diff options
Diffstat (limited to 'include/linux/compiler.h')
| -rw-r--r-- | include/linux/compiler.h | 425 |
1 files changed, 227 insertions, 198 deletions
diff --git a/include/linux/compiler.h b/include/linux/compiler.h index 445348facea9..04487c9bd751 100644 --- a/include/linux/compiler.h +++ b/include/linux/compiler.h @@ -12,11 +12,10 @@ * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code * to disable branch tracing on a per file basis. */ -#if defined(CONFIG_TRACE_BRANCH_PROFILING) \ - && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) void ftrace_likely_update(struct ftrace_likely_data *f, int val, int expect, int is_constant); - +#if defined(CONFIG_TRACE_BRANCH_PROFILING) \ + && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) #define likely_notrace(x) __builtin_expect(!!(x), 1) #define unlikely_notrace(x) __builtin_expect(!!(x), 0) @@ -53,37 +52,54 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val, * "Define 'is'", Bill Clinton * "Define 'if'", Steven Rostedt */ -#define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) ) -#define __trace_if(cond) \ - if (__builtin_constant_p(!!(cond)) ? !!(cond) : \ - ({ \ - int ______r; \ - static struct ftrace_branch_data \ - __aligned(4) \ - __section("_ftrace_branch") \ - ______f = { \ - .func = __func__, \ - .file = __FILE__, \ - .line = __LINE__, \ - }; \ - ______r = !!(cond); \ - ______f.miss_hit[______r]++; \ - ______r; \ - })) +#define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) ) + +#define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond)) + +#define __trace_if_value(cond) ({ \ + static struct ftrace_branch_data \ + __aligned(4) \ + __section("_ftrace_branch") \ + __if_trace = { \ + .func = __func__, \ + .file = __FILE__, \ + .line = __LINE__, \ + }; \ + (cond) ? \ + (__if_trace.miss_hit[1]++,1) : \ + (__if_trace.miss_hit[0]++,0); \ +}) + #endif /* CONFIG_PROFILE_ALL_BRANCHES */ #else # define likely(x) __builtin_expect(!!(x), 1) # define unlikely(x) __builtin_expect(!!(x), 0) +# define likely_notrace(x) likely(x) +# define unlikely_notrace(x) unlikely(x) #endif /* Optimization barrier */ #ifndef barrier -# define barrier() __memory_barrier() +/* The "volatile" is due to gcc bugs */ +# define barrier() __asm__ __volatile__("": : :"memory") #endif #ifndef barrier_data -# define barrier_data(ptr) barrier() +/* + * This version is i.e. to prevent dead stores elimination on @ptr + * where gcc and llvm may behave differently when otherwise using + * normal barrier(): while gcc behavior gets along with a normal + * barrier(), llvm needs an explicit input variable to be assumed + * clobbered. The issue is as follows: while the inline asm might + * access any memory it wants, the compiler could have fit all of + * @ptr into memory registers instead, and since @ptr never escaped + * from that, it proved that the inline asm wasn't touching any of + * it. This version works well with both compilers, i.e. we're telling + * the compiler that the inline asm absolutely may see the contents + * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495 + */ +# define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory") #endif /* workaround for GCC PR82365 if needed */ @@ -92,43 +108,22 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val, #endif /* Unreachable code */ -#ifdef CONFIG_STACK_VALIDATION +#ifdef CONFIG_OBJTOOL +/* Annotate a C jump table to allow objtool to follow the code flow */ +#define __annotate_jump_table __section(".data.rel.ro.c_jump_table") +#else /* !CONFIG_OBJTOOL */ +#define __annotate_jump_table +#endif /* CONFIG_OBJTOOL */ + /* - * These macros help objtool understand GCC code flow for unreachable code. - * The __COUNTER__ based labels are a hack to make each instance of the macros - * unique, to convince GCC not to merge duplicate inline asm statements. + * Mark a position in code as unreachable. This can be used to + * suppress control flow warnings after asm blocks that transfer + * control elsewhere. */ -#define annotate_reachable() ({ \ - asm volatile("%c0:\n\t" \ - ".pushsection .discard.reachable\n\t" \ - ".long %c0b - .\n\t" \ - ".popsection\n\t" : : "i" (__COUNTER__)); \ -}) -#define annotate_unreachable() ({ \ - asm volatile("%c0:\n\t" \ - ".pushsection .discard.unreachable\n\t" \ - ".long %c0b - .\n\t" \ - ".popsection\n\t" : : "i" (__COUNTER__)); \ -}) -#define ASM_UNREACHABLE \ - "999:\n\t" \ - ".pushsection .discard.unreachable\n\t" \ - ".long 999b - .\n\t" \ - ".popsection\n\t" -#else -#define annotate_reachable() -#define annotate_unreachable() -#endif - -#ifndef ASM_UNREACHABLE -# define ASM_UNREACHABLE -#endif -#ifndef unreachable -# define unreachable() do { \ - annotate_unreachable(); \ +#define unreachable() do { \ + barrier_before_unreachable(); \ __builtin_unreachable(); \ } while (0) -#endif /* * KENTRY - kernel entry point @@ -149,7 +144,7 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val, extern typeof(sym) sym; \ static const unsigned long __kentry_##sym \ __used \ - __section("___kentry" "+" #sym ) \ + __attribute__((__section__("___kentry+" #sym))) \ = (unsigned long)&sym; #endif @@ -160,140 +155,112 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val, (typeof(ptr)) (__ptr + (off)); }) #endif +#define absolute_pointer(val) RELOC_HIDE((void *)(val), 0) + #ifndef OPTIMIZER_HIDE_VAR /* Make the optimizer believe the variable can be manipulated arbitrarily. */ #define OPTIMIZER_HIDE_VAR(var) \ __asm__ ("" : "=r" (var) : "0" (var)) #endif -/* Not-quite-unique ID. */ -#ifndef __UNIQUE_ID -# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__) -#endif +/* Format: __UNIQUE_ID_<name>_<__COUNTER__> */ +#define __UNIQUE_ID(name) \ + __PASTE(__UNIQUE_ID_, \ + __PASTE(name, \ + __PASTE(_, __COUNTER__))) -#include <uapi/linux/types.h> - -#define __READ_ONCE_SIZE \ +/** + * data_race - mark an expression as containing intentional data races + * + * This data_race() macro is useful for situations in which data races + * should be forgiven. One example is diagnostic code that accesses + * shared variables but is not a part of the core synchronization design. + * For example, if accesses to a given variable are protected by a lock, + * except for diagnostic code, then the accesses under the lock should + * be plain C-language accesses and those in the diagnostic code should + * use data_race(). This way, KCSAN will complain if buggy lockless + * accesses to that variable are introduced, even if the buggy accesses + * are protected by READ_ONCE() or WRITE_ONCE(). + * + * This macro *does not* affect normal code generation, but is a hint + * to tooling that data races here are to be ignored. If the access must + * be atomic *and* KCSAN should ignore the access, use both data_race() + * and READ_ONCE(), for example, data_race(READ_ONCE(x)). + */ +#define data_race(expr) \ ({ \ - switch (size) { \ - case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \ - case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \ - case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \ - case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \ - default: \ - barrier(); \ - __builtin_memcpy((void *)res, (const void *)p, size); \ - barrier(); \ - } \ + __kcsan_disable_current(); \ + auto __v = (expr); \ + __kcsan_enable_current(); \ + __v; \ }) -static __always_inline -void __read_once_size(const volatile void *p, void *res, int size) -{ - __READ_ONCE_SIZE; -} +#ifdef __CHECKER__ +#define __BUILD_BUG_ON_ZERO_MSG(e, msg, ...) (0) +#else /* __CHECKER__ */ +#define __BUILD_BUG_ON_ZERO_MSG(e, msg, ...) ((int)sizeof(struct {_Static_assert(!(e), msg);})) +#endif /* __CHECKER__ */ + +/* &a[0] degrades to a pointer: a different type from an array */ +#define __is_array(a) (!__same_type((a), &(a)[0])) +#define __must_be_array(a) __BUILD_BUG_ON_ZERO_MSG(!__is_array(a), \ + "must be array") + +#define __is_byte_array(a) (__is_array(a) && sizeof((a)[0]) == 1) +#define __must_be_byte_array(a) __BUILD_BUG_ON_ZERO_MSG(!__is_byte_array(a), \ + "must be byte array") -#ifdef CONFIG_KASAN /* - * We can't declare function 'inline' because __no_sanitize_address confilcts - * with inlining. Attempt to inline it may cause a build failure. - * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368 - * '__maybe_unused' allows us to avoid defined-but-not-used warnings. + * If the "nonstring" attribute isn't available, we have to return true + * so the __must_*() checks pass when "nonstring" isn't supported. */ -# define __no_kasan_or_inline __no_sanitize_address notrace __maybe_unused +#if __has_attribute(__nonstring__) && defined(__annotated) +#define __is_cstr(a) (!__annotated(a, nonstring)) +#define __is_noncstr(a) (__annotated(a, nonstring)) #else -# define __no_kasan_or_inline __always_inline +#define __is_cstr(a) (true) +#define __is_noncstr(a) (true) #endif -static __no_kasan_or_inline -void __read_once_size_nocheck(const volatile void *p, void *res, int size) -{ - __READ_ONCE_SIZE; -} - -static __always_inline void __write_once_size(volatile void *p, void *res, int size) -{ - switch (size) { - case 1: *(volatile __u8 *)p = *(__u8 *)res; break; - case 2: *(volatile __u16 *)p = *(__u16 *)res; break; - case 4: *(volatile __u32 *)p = *(__u32 *)res; break; - case 8: *(volatile __u64 *)p = *(__u64 *)res; break; - default: - barrier(); - __builtin_memcpy((void *)p, (const void *)res, size); - barrier(); - } -} +/* Require C Strings (i.e. NUL-terminated) lack the "nonstring" attribute. */ +#define __must_be_cstr(p) \ + __BUILD_BUG_ON_ZERO_MSG(!__is_cstr(p), \ + "must be C-string (NUL-terminated)") +#define __must_be_noncstr(p) \ + __BUILD_BUG_ON_ZERO_MSG(!__is_noncstr(p), \ + "must be non-C-string (not NUL-terminated)") /* - * Prevent the compiler from merging or refetching reads or writes. The - * compiler is also forbidden from reordering successive instances of - * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some - * particular ordering. One way to make the compiler aware of ordering is to - * put the two invocations of READ_ONCE or WRITE_ONCE in different C - * statements. - * - * These two macros will also work on aggregate data types like structs or - * unions. If the size of the accessed data type exceeds the word size of - * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will - * fall back to memcpy(). There's at least two memcpy()s: one for the - * __builtin_memcpy() and then one for the macro doing the copy of variable - * - '__u' allocated on the stack. + * Use __typeof_unqual__() when available. * - * Their two major use cases are: (1) Mediating communication between - * process-level code and irq/NMI handlers, all running on the same CPU, - * and (2) Ensuring that the compiler does not fold, spindle, or otherwise - * mutilate accesses that either do not require ordering or that interact - * with an explicit memory barrier or atomic instruction that provides the - * required ordering. + * XXX: Remove test for __CHECKER__ once + * sparse learns about __typeof_unqual__(). */ -#include <asm/barrier.h> -#include <linux/kasan-checks.h> - -#define __READ_ONCE(x, check) \ -({ \ - union { typeof(x) __val; char __c[1]; } __u; \ - if (check) \ - __read_once_size(&(x), __u.__c, sizeof(x)); \ - else \ - __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \ - smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \ - __u.__val; \ -}) -#define READ_ONCE(x) __READ_ONCE(x, 1) +#if CC_HAS_TYPEOF_UNQUAL && !defined(__CHECKER__) +# define USE_TYPEOF_UNQUAL 1 +#endif /* - * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need - * to hide memory access from KASAN. + * Define TYPEOF_UNQUAL() to use __typeof_unqual__() as typeof + * operator when available, to return an unqualified type of the exp. */ -#define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0) - -static __no_kasan_or_inline -unsigned long read_word_at_a_time(const void *addr) -{ - kasan_check_read(addr, 1); - return *(unsigned long *)addr; -} - -#define WRITE_ONCE(x, val) \ -({ \ - union { typeof(x) __val; char __c[1]; } __u = \ - { .__val = (__force typeof(x)) (val) }; \ - __write_once_size(&(x), __u.__c, sizeof(x)); \ - __u.__val; \ -}) +#if defined(USE_TYPEOF_UNQUAL) +# define TYPEOF_UNQUAL(exp) __typeof_unqual__(exp) +#else +# define TYPEOF_UNQUAL(exp) __typeof__(exp) +#endif #endif /* __KERNEL__ */ +#if defined(CONFIG_CFI) && !defined(__DISABLE_EXPORTS) && !defined(BUILD_VDSO) /* - * Force the compiler to emit 'sym' as a symbol, so that we can reference - * it from inline assembler. Necessary in case 'sym' could be inlined - * otherwise, or eliminated entirely due to lack of references that are - * visible to the compiler. + * Force a reference to the external symbol so the compiler generates + * __kcfi_typid. */ -#define __ADDRESSABLE(sym) \ - static void * __section(".discard.addressable") __used \ - __PASTE(__addressable_##sym, __LINE__) = (void *)&sym; +#define KCFI_REFERENCE(sym) __ADDRESSABLE(sym) +#else +#define KCFI_REFERENCE(sym) +#endif /** * offset_to_ptr - convert a relative memory offset to an absolute pointer @@ -306,48 +273,110 @@ static inline void *offset_to_ptr(const int *off) #endif /* __ASSEMBLY__ */ -/* Compile time object size, -1 for unknown */ -#ifndef __compiletime_object_size -# define __compiletime_object_size(obj) -1 -#endif -#ifndef __compiletime_warning -# define __compiletime_warning(message) -#endif -#ifndef __compiletime_error -# define __compiletime_error(message) -#endif +/* + * Force the compiler to emit 'sym' as a symbol, so that we can reference + * it from inline assembler. Necessary in case 'sym' could be inlined + * otherwise, or eliminated entirely due to lack of references that are + * visible to the compiler. + */ +#define ___ADDRESSABLE(sym, __attrs) \ + static void * __used __attrs \ + __UNIQUE_ID(__PASTE(addressable_, sym)) = (void *)(uintptr_t)&sym; -#ifdef __OPTIMIZE__ -# define __compiletime_assert(condition, msg, prefix, suffix) \ - do { \ - extern void prefix ## suffix(void) __compiletime_error(msg); \ - if (!(condition)) \ - prefix ## suffix(); \ - } while (0) -#else -# define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0) -#endif +#define __ADDRESSABLE(sym) \ + ___ADDRESSABLE(sym, __section(".discard.addressable")) -#define _compiletime_assert(condition, msg, prefix, suffix) \ - __compiletime_assert(condition, msg, prefix, suffix) +/* + * This returns a constant expression while determining if an argument is + * a constant expression, most importantly without evaluating the argument. + * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> + * + * Details: + * - sizeof() return an integer constant expression, and does not evaluate + * the value of its operand; it only examines the type of its operand. + * - The results of comparing two integer constant expressions is also + * an integer constant expression. + * - The first literal "8" isn't important. It could be any literal value. + * - The second literal "8" is to avoid warnings about unaligned pointers; + * this could otherwise just be "1". + * - (long)(x) is used to avoid warnings about 64-bit types on 32-bit + * architectures. + * - The C Standard defines "null pointer constant", "(void *)0", as + * distinct from other void pointers. + * - If (x) is an integer constant expression, then the "* 0l" resolves + * it into an integer constant expression of value 0. Since it is cast to + * "void *", this makes the second operand a null pointer constant. + * - If (x) is not an integer constant expression, then the second operand + * resolves to a void pointer (but not a null pointer constant: the value + * is not an integer constant 0). + * - The conditional operator's third operand, "(int *)8", is an object + * pointer (to type "int"). + * - The behavior (including the return type) of the conditional operator + * ("operand1 ? operand2 : operand3") depends on the kind of expressions + * given for the second and third operands. This is the central mechanism + * of the macro: + * - When one operand is a null pointer constant (i.e. when x is an integer + * constant expression) and the other is an object pointer (i.e. our + * third operand), the conditional operator returns the type of the + * object pointer operand (i.e. "int *"). Here, within the sizeof(), we + * would then get: + * sizeof(*((int *)(...)) == sizeof(int) == 4 + * - When one operand is a void pointer (i.e. when x is not an integer + * constant expression) and the other is an object pointer (i.e. our + * third operand), the conditional operator returns a "void *" type. + * Here, within the sizeof(), we would then get: + * sizeof(*((void *)(...)) == sizeof(void) == 1 + * - The equality comparison to "sizeof(int)" therefore depends on (x): + * sizeof(int) == sizeof(int) (x) was a constant expression + * sizeof(int) != sizeof(void) (x) was not a constant expression + */ +#define __is_constexpr(x) \ + (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) -/** - * compiletime_assert - break build and emit msg if condition is false - * @condition: a compile-time constant condition to check - * @msg: a message to emit if condition is false +/* + * Whether 'type' is a signed type or an unsigned type. Supports scalar types, + * bool and also pointer types. + */ +#define is_signed_type(type) (((type)(-1)) < (__force type)1) +#define is_unsigned_type(type) (!is_signed_type(type)) + +/* + * Useful shorthand for "is this condition known at compile-time?" * - * In tradition of POSIX assert, this macro will break the build if the - * supplied condition is *false*, emitting the supplied error message if the - * compiler has support to do so. + * Note that the condition may involve non-constant values, + * but the compiler may know enough about the details of the + * values to determine that the condition is statically true. */ -#define compiletime_assert(condition, msg) \ - _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__) +#define statically_true(x) (__builtin_constant_p(x) && (x)) -#define compiletime_assert_atomic_type(t) \ - compiletime_assert(__native_word(t), \ - "Need native word sized stores/loads for atomicity.") +/* + * Similar to statically_true() but produces a constant expression + * + * To be used in conjunction with macros, such as BUILD_BUG_ON_ZERO(), + * which require their input to be a constant expression and for which + * statically_true() would otherwise fail. + * + * This is a trade-off: const_true() requires all its operands to be + * compile time constants. Else, it would always returns false even on + * the most trivial cases like: + * + * true || non_const_var + * + * On the opposite, statically_true() is able to fold more complex + * tautologies and will return true on expressions such as: + * + * !(non_const_var * 8 % 4) + * + * For the general case, statically_true() is better. + */ +#define const_true(x) __builtin_choose_expr(__is_constexpr(x), x, false) -/* &a[0] degrades to a pointer: a different type from an array */ -#define __must_be_array(a) BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0])) +/* + * This is needed in functions which generate the stack canary, see + * arch/x86/kernel/smpboot.c::start_secondary() for an example. + */ +#define prevent_tail_call_optimization() mb() + +#include <asm/rwonce.h> #endif /* __LINUX_COMPILER_H */ |
