diff options
Diffstat (limited to 'include/linux/crypto.h')
| -rw-r--r-- | include/linux/crypto.h | 1441 |
1 files changed, 181 insertions, 1260 deletions
diff --git a/include/linux/crypto.h b/include/linux/crypto.h index 84da9978e951..a2137e19be7d 100644 --- a/include/linux/crypto.h +++ b/include/linux/crypto.h @@ -1,3 +1,4 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Scatterlist Cryptographic API. * @@ -7,61 +8,34 @@ * * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> * and Nettle, by Niels Möller. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the Free - * Software Foundation; either version 2 of the License, or (at your option) - * any later version. - * */ #ifndef _LINUX_CRYPTO_H #define _LINUX_CRYPTO_H -#include <linux/atomic.h> -#include <linux/kernel.h> -#include <linux/list.h> -#include <linux/bug.h> +#include <linux/completion.h> +#include <linux/errno.h> +#include <linux/refcount_types.h> #include <linux/slab.h> -#include <linux/string.h> -#include <linux/uaccess.h> - -/* - * Autoloaded crypto modules should only use a prefixed name to avoid allowing - * arbitrary modules to be loaded. Loading from userspace may still need the - * unprefixed names, so retains those aliases as well. - * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 - * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro - * expands twice on the same line. Instead, use a separate base name for the - * alias. - */ -#define MODULE_ALIAS_CRYPTO(name) \ - __MODULE_INFO(alias, alias_userspace, name); \ - __MODULE_INFO(alias, alias_crypto, "crypto-" name) +#include <linux/types.h> /* * Algorithm masks and types. */ #define CRYPTO_ALG_TYPE_MASK 0x0000000f #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 -#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 #define CRYPTO_ALG_TYPE_AEAD 0x00000003 -#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 -#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 +#define CRYPTO_ALG_TYPE_LSKCIPHER 0x00000004 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 -#define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006 +#define CRYPTO_ALG_TYPE_AKCIPHER 0x00000006 +#define CRYPTO_ALG_TYPE_SIG 0x00000007 #define CRYPTO_ALG_TYPE_KPP 0x00000008 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b #define CRYPTO_ALG_TYPE_RNG 0x0000000c -#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d -#define CRYPTO_ALG_TYPE_DIGEST 0x0000000e #define CRYPTO_ALG_TYPE_HASH 0x0000000e #define CRYPTO_ALG_TYPE_SHASH 0x0000000e #define CRYPTO_ALG_TYPE_AHASH 0x0000000f -#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e -#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e -#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e #define CRYPTO_ALG_LARVAL 0x00000010 @@ -70,16 +44,19 @@ #define CRYPTO_ALG_ASYNC 0x00000080 /* - * Set this bit if and only if the algorithm requires another algorithm of - * the same type to handle corner cases. + * Set if the algorithm (or an algorithm which it uses) requires another + * algorithm of the same type to handle corner cases. */ #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 /* - * This bit is set for symmetric key ciphers that have already been wrapped - * with a generic IV generator to prevent them from being wrapped again. + * Set if the algorithm data structure should be duplicated into + * kmalloc memory before registration. This is useful for hardware + * that can be disconnected at will. Do not use this if the data + * structure is embedded into a bigger one. Duplicate the overall + * data structure in the driver in that case. */ -#define CRYPTO_ALG_GENIV 0x00000200 +#define CRYPTO_ALG_DUP_FIRST 0x00000200 /* * Set if the algorithm has passed automated run-time testing. Note that @@ -106,19 +83,74 @@ #define CRYPTO_ALG_INTERNAL 0x00002000 /* + * Set if the algorithm has a ->setkey() method but can be used without + * calling it first, i.e. there is a default key. + */ +#define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 + +/* + * Don't trigger module loading + */ +#define CRYPTO_NOLOAD 0x00008000 + +/* + * The algorithm may allocate memory during request processing, i.e. during + * encryption, decryption, or hashing. Users can request an algorithm with this + * flag unset if they can't handle memory allocation failures. + * + * This flag is currently only implemented for algorithms of type "skcipher", + * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not + * have this flag set even if they allocate memory. + * + * In some edge cases, algorithms can allocate memory regardless of this flag. + * To avoid these cases, users must obey the following usage constraints: + * skcipher: + * - The IV buffer and all scatterlist elements must be aligned to the + * algorithm's alignmask. + * - If the data were to be divided into chunks of size + * crypto_skcipher_walksize() (with any remainder going at the end), no + * chunk can cross a page boundary or a scatterlist element boundary. + * aead: + * - The IV buffer and all scatterlist elements must be aligned to the + * algorithm's alignmask. + * - The first scatterlist element must contain all the associated data, + * and its pages must be !PageHighMem. + * - If the plaintext/ciphertext were to be divided into chunks of size + * crypto_aead_walksize() (with the remainder going at the end), no chunk + * can cross a page boundary or a scatterlist element boundary. + * ahash: + * - crypto_ahash_finup() must not be used unless the algorithm implements + * ->finup() natively. + */ +#define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000 + +/* + * Mark an algorithm as a service implementation only usable by a + * template and never by a normal user of the kernel crypto API. + * This is intended to be used by algorithms that are themselves + * not FIPS-approved but may instead be used to implement parts of + * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)). + */ +#define CRYPTO_ALG_FIPS_INTERNAL 0x00020000 + +/* Set if the algorithm supports virtual addresses. */ +#define CRYPTO_ALG_REQ_VIRT 0x00040000 + +/* Set if the algorithm cannot have a fallback (e.g., phmac). */ +#define CRYPTO_ALG_NO_FALLBACK 0x00080000 + +/* The high bits 0xff000000 are reserved for type-specific flags. */ + +/* * Transform masks and values (for crt_flags). */ -#define CRYPTO_TFM_REQ_MASK 0x000fff00 -#define CRYPTO_TFM_RES_MASK 0xfff00000 +#define CRYPTO_TFM_NEED_KEY 0x00000001 -#define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100 +#define CRYPTO_TFM_REQ_MASK 0x000fff00 +#define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 -#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 -#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 -#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 -#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 -#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 +#define CRYPTO_TFM_REQ_ON_STACK 0x00000800 /* * Miscellaneous stuff. @@ -129,23 +161,22 @@ * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual * declaration) is used to ensure that the crypto_tfm context structure is * aligned correctly for the given architecture so that there are no alignment - * faults for C data types. In particular, this is required on platforms such - * as arm where pointers are 32-bit aligned but there are data types such as - * u64 which require 64-bit alignment. + * faults for C data types. On architectures that support non-cache coherent + * DMA, such as ARM or arm64, it also takes into account the minimal alignment + * that is required to ensure that the context struct member does not share any + * cachelines with the rest of the struct. This is needed to ensure that cache + * maintenance for non-coherent DMA (cache invalidation in particular) does not + * affect data that may be accessed by the CPU concurrently. */ #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) -struct scatterlist; -struct crypto_ablkcipher; -struct crypto_async_request; -struct crypto_blkcipher; struct crypto_tfm; struct crypto_type; -struct skcipher_givcrypt_request; +struct module; -typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); +typedef void (*crypto_completion_t)(void *req, int err); /** * DOC: Block Cipher Context Data Structures @@ -163,33 +194,6 @@ struct crypto_async_request { u32 flags; }; -struct ablkcipher_request { - struct crypto_async_request base; - - unsigned int nbytes; - - void *info; - - struct scatterlist *src; - struct scatterlist *dst; - - void *__ctx[] CRYPTO_MINALIGN_ATTR; -}; - -struct blkcipher_desc { - struct crypto_blkcipher *tfm; - void *info; - u32 flags; -}; - -struct cipher_desc { - struct crypto_tfm *tfm; - void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); - unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst, - const u8 *src, unsigned int nbytes); - void *info; -}; - /** * DOC: Block Cipher Algorithm Definitions * @@ -198,101 +202,6 @@ struct cipher_desc { */ /** - * struct ablkcipher_alg - asynchronous block cipher definition - * @min_keysize: Minimum key size supported by the transformation. This is the - * smallest key length supported by this transformation algorithm. - * This must be set to one of the pre-defined values as this is - * not hardware specific. Possible values for this field can be - * found via git grep "_MIN_KEY_SIZE" include/crypto/ - * @max_keysize: Maximum key size supported by the transformation. This is the - * largest key length supported by this transformation algorithm. - * This must be set to one of the pre-defined values as this is - * not hardware specific. Possible values for this field can be - * found via git grep "_MAX_KEY_SIZE" include/crypto/ - * @setkey: Set key for the transformation. This function is used to either - * program a supplied key into the hardware or store the key in the - * transformation context for programming it later. Note that this - * function does modify the transformation context. This function can - * be called multiple times during the existence of the transformation - * object, so one must make sure the key is properly reprogrammed into - * the hardware. This function is also responsible for checking the key - * length for validity. In case a software fallback was put in place in - * the @cra_init call, this function might need to use the fallback if - * the algorithm doesn't support all of the key sizes. - * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt - * the supplied scatterlist containing the blocks of data. The crypto - * API consumer is responsible for aligning the entries of the - * scatterlist properly and making sure the chunks are correctly - * sized. In case a software fallback was put in place in the - * @cra_init call, this function might need to use the fallback if - * the algorithm doesn't support all of the key sizes. In case the - * key was stored in transformation context, the key might need to be - * re-programmed into the hardware in this function. This function - * shall not modify the transformation context, as this function may - * be called in parallel with the same transformation object. - * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt - * and the conditions are exactly the same. - * @givencrypt: Update the IV for encryption. With this function, a cipher - * implementation may provide the function on how to update the IV - * for encryption. - * @givdecrypt: Update the IV for decryption. This is the reverse of - * @givencrypt . - * @geniv: The transformation implementation may use an "IV generator" provided - * by the kernel crypto API. Several use cases have a predefined - * approach how IVs are to be updated. For such use cases, the kernel - * crypto API provides ready-to-use implementations that can be - * referenced with this variable. - * @ivsize: IV size applicable for transformation. The consumer must provide an - * IV of exactly that size to perform the encrypt or decrypt operation. - * - * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are - * mandatory and must be filled. - */ -struct ablkcipher_alg { - int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, - unsigned int keylen); - int (*encrypt)(struct ablkcipher_request *req); - int (*decrypt)(struct ablkcipher_request *req); - int (*givencrypt)(struct skcipher_givcrypt_request *req); - int (*givdecrypt)(struct skcipher_givcrypt_request *req); - - const char *geniv; - - unsigned int min_keysize; - unsigned int max_keysize; - unsigned int ivsize; -}; - -/** - * struct blkcipher_alg - synchronous block cipher definition - * @min_keysize: see struct ablkcipher_alg - * @max_keysize: see struct ablkcipher_alg - * @setkey: see struct ablkcipher_alg - * @encrypt: see struct ablkcipher_alg - * @decrypt: see struct ablkcipher_alg - * @geniv: see struct ablkcipher_alg - * @ivsize: see struct ablkcipher_alg - * - * All fields except @geniv and @ivsize are mandatory and must be filled. - */ -struct blkcipher_alg { - int (*setkey)(struct crypto_tfm *tfm, const u8 *key, - unsigned int keylen); - int (*encrypt)(struct blkcipher_desc *desc, - struct scatterlist *dst, struct scatterlist *src, - unsigned int nbytes); - int (*decrypt)(struct blkcipher_desc *desc, - struct scatterlist *dst, struct scatterlist *src, - unsigned int nbytes); - - const char *geniv; - - unsigned int min_keysize; - unsigned int max_keysize; - unsigned int ivsize; -}; - -/** * struct cipher_alg - single-block symmetric ciphers definition * @cia_min_keysize: Minimum key size supported by the transformation. This is * the smallest key length supported by this transformation @@ -348,18 +257,7 @@ struct cipher_alg { void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); }; -struct compress_alg { - int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, - unsigned int slen, u8 *dst, unsigned int *dlen); - int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, - unsigned int slen, u8 *dst, unsigned int *dlen); -}; - - -#define cra_ablkcipher cra_u.ablkcipher -#define cra_blkcipher cra_u.blkcipher #define cra_cipher cra_u.cipher -#define cra_compress cra_u.compress /** * struct crypto_alg - definition of a cryptograpic cipher algorithm @@ -378,18 +276,21 @@ struct compress_alg { * @cra_ctxsize: Size of the operational context of the transformation. This * value informs the kernel crypto API about the memory size * needed to be allocated for the transformation context. - * @cra_alignmask: Alignment mask for the input and output data buffer. The data - * buffer containing the input data for the algorithm must be - * aligned to this alignment mask. The data buffer for the - * output data must be aligned to this alignment mask. Note that - * the Crypto API will do the re-alignment in software, but - * only under special conditions and there is a performance hit. - * The re-alignment happens at these occasions for different - * @cra_u types: cipher -- For both input data and output data - * buffer; ahash -- For output hash destination buf; shash -- - * For output hash destination buf. - * This is needed on hardware which is flawed by design and - * cannot pick data from arbitrary addresses. + * @cra_alignmask: For cipher, skcipher, lskcipher, and aead algorithms this is + * 1 less than the alignment, in bytes, that the algorithm + * implementation requires for input and output buffers. When + * the crypto API is invoked with buffers that are not aligned + * to this alignment, the crypto API automatically utilizes + * appropriately aligned temporary buffers to comply with what + * the algorithm needs. (For scatterlists this happens only if + * the algorithm uses the skcipher_walk helper functions.) This + * misalignment handling carries a performance penalty, so it is + * preferred that algorithms do not set a nonzero alignmask. + * Also, crypto API users may wish to allocate buffers aligned + * to the alignmask of the algorithm being used, in order to + * avoid the API having to realign them. Note: the alignmask is + * not supported for hash algorithms and is always 0 for them. + * @cra_reqsize: Size of the request context for this algorithm. * @cra_priority: Priority of this transformation implementation. In case * multiple transformations with same @cra_name are available to * the Crypto API, the kernel will use the one with highest @@ -405,27 +306,19 @@ struct compress_alg { * transformation algorithm. * @cra_type: Type of the cryptographic transformation. This is a pointer to * struct crypto_type, which implements callbacks common for all - * transformation types. There are multiple options: - * &crypto_blkcipher_type, &crypto_ablkcipher_type, - * &crypto_ahash_type, &crypto_rng_type. + * transformation types. There are multiple options, such as + * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. * This field might be empty. In that case, there are no common - * callbacks. This is the case for: cipher, compress, shash. + * callbacks. This is the case for: cipher. * @cra_u: Callbacks implementing the transformation. This is a union of * multiple structures. Depending on the type of transformation selected * by @cra_type and @cra_flags above, the associated structure must be * filled with callbacks. This field might be empty. This is the case * for ahash, shash. - * @cra_init: Initialize the cryptographic transformation object. This function - * is used to initialize the cryptographic transformation object. - * This function is called only once at the instantiation time, right - * after the transformation context was allocated. In case the - * cryptographic hardware has some special requirements which need to - * be handled by software, this function shall check for the precise - * requirement of the transformation and put any software fallbacks - * in place. - * @cra_exit: Deinitialize the cryptographic transformation object. This is a - * counterpart to @cra_init, used to remove various changes set in - * @cra_init. + * @cra_init: Deprecated, do not use. + * @cra_exit: Deprecated, do not use. + * @cra_u.cipher: Union member which contains a single-block symmetric cipher + * definition. See @struct @cipher_alg. * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE * @cra_list: internally used * @cra_users: internally used @@ -444,9 +337,10 @@ struct crypto_alg { unsigned int cra_blocksize; unsigned int cra_ctxsize; unsigned int cra_alignmask; + unsigned int cra_reqsize; int cra_priority; - atomic_t cra_refcnt; + refcount_t cra_refcnt; char cra_name[CRYPTO_MAX_ALG_NAME]; char cra_driver_name[CRYPTO_MAX_ALG_NAME]; @@ -454,10 +348,7 @@ struct crypto_alg { const struct crypto_type *cra_type; union { - struct ablkcipher_alg ablkcipher; - struct blkcipher_alg blkcipher; struct cipher_alg cipher; - struct compress_alg compress; } cra_u; int (*cra_init)(struct crypto_tfm *tfm); @@ -468,125 +359,69 @@ struct crypto_alg { } CRYPTO_MINALIGN_ATTR; /* - * Algorithm registration interface. + * A helper struct for waiting for completion of async crypto ops */ -int crypto_register_alg(struct crypto_alg *alg); -int crypto_unregister_alg(struct crypto_alg *alg); -int crypto_register_algs(struct crypto_alg *algs, int count); -int crypto_unregister_algs(struct crypto_alg *algs, int count); +struct crypto_wait { + struct completion completion; + int err; +}; /* - * Algorithm query interface. + * Macro for declaring a crypto op async wait object on stack */ -int crypto_has_alg(const char *name, u32 type, u32 mask); +#define DECLARE_CRYPTO_WAIT(_wait) \ + struct crypto_wait _wait = { \ + COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } /* - * Transforms: user-instantiated objects which encapsulate algorithms - * and core processing logic. Managed via crypto_alloc_*() and - * crypto_free_*(), as well as the various helpers below. + * Async ops completion helper functioons */ +void crypto_req_done(void *req, int err); -struct ablkcipher_tfm { - int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, - unsigned int keylen); - int (*encrypt)(struct ablkcipher_request *req); - int (*decrypt)(struct ablkcipher_request *req); - - struct crypto_ablkcipher *base; - - unsigned int ivsize; - unsigned int reqsize; -}; +static inline int crypto_wait_req(int err, struct crypto_wait *wait) +{ + switch (err) { + case -EINPROGRESS: + case -EBUSY: + wait_for_completion(&wait->completion); + reinit_completion(&wait->completion); + err = wait->err; + break; + } -struct blkcipher_tfm { - void *iv; - int (*setkey)(struct crypto_tfm *tfm, const u8 *key, - unsigned int keylen); - int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, - struct scatterlist *src, unsigned int nbytes); - int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, - struct scatterlist *src, unsigned int nbytes); -}; + return err; +} -struct cipher_tfm { - int (*cit_setkey)(struct crypto_tfm *tfm, - const u8 *key, unsigned int keylen); - void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); - void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); -}; +static inline void crypto_init_wait(struct crypto_wait *wait) +{ + init_completion(&wait->completion); +} -struct compress_tfm { - int (*cot_compress)(struct crypto_tfm *tfm, - const u8 *src, unsigned int slen, - u8 *dst, unsigned int *dlen); - int (*cot_decompress)(struct crypto_tfm *tfm, - const u8 *src, unsigned int slen, - u8 *dst, unsigned int *dlen); -}; +/* + * Algorithm query interface. + */ +int crypto_has_alg(const char *name, u32 type, u32 mask); -#define crt_ablkcipher crt_u.ablkcipher -#define crt_blkcipher crt_u.blkcipher -#define crt_cipher crt_u.cipher -#define crt_compress crt_u.compress +/* + * Transforms: user-instantiated objects which encapsulate algorithms + * and core processing logic. Managed via crypto_alloc_*() and + * crypto_free_*(), as well as the various helpers below. + */ struct crypto_tfm { + refcount_t refcnt; u32 crt_flags; - - union { - struct ablkcipher_tfm ablkcipher; - struct blkcipher_tfm blkcipher; - struct cipher_tfm cipher; - struct compress_tfm compress; - } crt_u; - - void (*exit)(struct crypto_tfm *tfm); - - struct crypto_alg *__crt_alg; - - void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; -}; - -struct crypto_ablkcipher { - struct crypto_tfm base; -}; - -struct crypto_blkcipher { - struct crypto_tfm base; -}; - -struct crypto_cipher { - struct crypto_tfm base; -}; - -struct crypto_comp { - struct crypto_tfm base; -}; - -enum { - CRYPTOA_UNSPEC, - CRYPTOA_ALG, - CRYPTOA_TYPE, - CRYPTOA_U32, - __CRYPTOA_MAX, -}; -#define CRYPTOA_MAX (__CRYPTOA_MAX - 1) + int node; -/* Maximum number of (rtattr) parameters for each template. */ -#define CRYPTO_MAX_ATTRS 32 + struct crypto_tfm *fb; -struct crypto_attr_alg { - char name[CRYPTO_MAX_ALG_NAME]; -}; + void (*exit)(struct crypto_tfm *tfm); -struct crypto_attr_type { - u32 type; - u32 mask; -}; + struct crypto_alg *__crt_alg; -struct crypto_attr_u32 { - u32 num; + void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; }; /* @@ -601,8 +436,6 @@ static inline void crypto_free_tfm(struct crypto_tfm *tfm) return crypto_destroy_tfm(tfm, tfm); } -int alg_test(const char *driver, const char *alg, u32 type, u32 mask); - /* * Transform helpers which query the underlying algorithm. */ @@ -616,16 +449,6 @@ static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) return tfm->__crt_alg->cra_driver_name; } -static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) -{ - return tfm->__crt_alg->cra_priority; -} - -static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) -{ - return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; -} - static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_blocksize; @@ -636,6 +459,11 @@ static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) return tfm->__crt_alg->cra_alignmask; } +static inline unsigned int crypto_tfm_alg_reqsize(struct crypto_tfm *tfm) +{ + return tfm->__crt_alg->cra_reqsize; +} + static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) { return tfm->crt_flags; @@ -651,957 +479,50 @@ static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) tfm->crt_flags &= ~flags; } -static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) -{ - return tfm->__crt_ctx; -} - static inline unsigned int crypto_tfm_ctx_alignment(void) { struct crypto_tfm *tfm; return __alignof__(tfm->__crt_ctx); } -/* - * API wrappers. - */ -static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( - struct crypto_tfm *tfm) -{ - return (struct crypto_ablkcipher *)tfm; -} - -static inline u32 crypto_skcipher_type(u32 type) -{ - type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); - type |= CRYPTO_ALG_TYPE_BLKCIPHER; - return type; -} - -static inline u32 crypto_skcipher_mask(u32 mask) -{ - mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); - mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; - return mask; -} - -/** - * DOC: Asynchronous Block Cipher API - * - * Asynchronous block cipher API is used with the ciphers of type - * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). - * - * Asynchronous cipher operations imply that the function invocation for a - * cipher request returns immediately before the completion of the operation. - * The cipher request is scheduled as a separate kernel thread and therefore - * load-balanced on the different CPUs via the process scheduler. To allow - * the kernel crypto API to inform the caller about the completion of a cipher - * request, the caller must provide a callback function. That function is - * invoked with the cipher handle when the request completes. - * - * To support the asynchronous operation, additional information than just the - * cipher handle must be supplied to the kernel crypto API. That additional - * information is given by filling in the ablkcipher_request data structure. - * - * For the asynchronous block cipher API, the state is maintained with the tfm - * cipher handle. A single tfm can be used across multiple calls and in - * parallel. For asynchronous block cipher calls, context data supplied and - * only used by the caller can be referenced the request data structure in - * addition to the IV used for the cipher request. The maintenance of such - * state information would be important for a crypto driver implementer to - * have, because when calling the callback function upon completion of the - * cipher operation, that callback function may need some information about - * which operation just finished if it invoked multiple in parallel. This - * state information is unused by the kernel crypto API. - */ - -static inline struct crypto_tfm *crypto_ablkcipher_tfm( - struct crypto_ablkcipher *tfm) -{ - return &tfm->base; -} - -/** - * crypto_free_ablkcipher() - zeroize and free cipher handle - * @tfm: cipher handle to be freed - */ -static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) -{ - crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); -} - -/** - * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. - * @alg_name: is the cra_name / name or cra_driver_name / driver name of the - * ablkcipher - * @type: specifies the type of the cipher - * @mask: specifies the mask for the cipher - * - * Return: true when the ablkcipher is known to the kernel crypto API; false - * otherwise - */ -static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, - u32 mask) +static inline bool crypto_tfm_is_async(struct crypto_tfm *tfm) { - return crypto_has_alg(alg_name, crypto_skcipher_type(type), - crypto_skcipher_mask(mask)); + return tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC; } -static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( - struct crypto_ablkcipher *tfm) +static inline bool crypto_req_on_stack(struct crypto_async_request *req) { - return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; + return req->flags & CRYPTO_TFM_REQ_ON_STACK; } -/** - * crypto_ablkcipher_ivsize() - obtain IV size - * @tfm: cipher handle - * - * The size of the IV for the ablkcipher referenced by the cipher handle is - * returned. This IV size may be zero if the cipher does not need an IV. - * - * Return: IV size in bytes - */ -static inline unsigned int crypto_ablkcipher_ivsize( - struct crypto_ablkcipher *tfm) +static inline void crypto_request_set_callback( + struct crypto_async_request *req, u32 flags, + crypto_completion_t compl, void *data) { - return crypto_ablkcipher_crt(tfm)->ivsize; -} + u32 keep = CRYPTO_TFM_REQ_ON_STACK; -/** - * crypto_ablkcipher_blocksize() - obtain block size of cipher - * @tfm: cipher handle - * - * The block size for the ablkcipher referenced with the cipher handle is - * returned. The caller may use that information to allocate appropriate - * memory for the data returned by the encryption or decryption operation - * - * Return: block size of cipher - */ -static inline unsigned int crypto_ablkcipher_blocksize( - struct crypto_ablkcipher *tfm) -{ - return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); + req->complete = compl; + req->data = data; + req->flags &= keep; + req->flags |= flags & ~keep; } -static inline unsigned int crypto_ablkcipher_alignmask( - struct crypto_ablkcipher *tfm) -{ - return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); -} - -static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) -{ - return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); -} - -static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, - u32 flags) -{ - crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); -} - -static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, - u32 flags) -{ - crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); -} - -/** - * crypto_ablkcipher_setkey() - set key for cipher - * @tfm: cipher handle - * @key: buffer holding the key - * @keylen: length of the key in bytes - * - * The caller provided key is set for the ablkcipher referenced by the cipher - * handle. - * - * Note, the key length determines the cipher type. Many block ciphers implement - * different cipher modes depending on the key size, such as AES-128 vs AES-192 - * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 - * is performed. - * - * Return: 0 if the setting of the key was successful; < 0 if an error occurred - */ -static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, - const u8 *key, unsigned int keylen) -{ - struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); - - return crt->setkey(crt->base, key, keylen); -} - -/** - * crypto_ablkcipher_reqtfm() - obtain cipher handle from request - * @req: ablkcipher_request out of which the cipher handle is to be obtained - * - * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request - * data structure. - * - * Return: crypto_ablkcipher handle - */ -static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( - struct ablkcipher_request *req) -{ - return __crypto_ablkcipher_cast(req->base.tfm); -} - -/** - * crypto_ablkcipher_encrypt() - encrypt plaintext - * @req: reference to the ablkcipher_request handle that holds all information - * needed to perform the cipher operation - * - * Encrypt plaintext data using the ablkcipher_request handle. That data - * structure and how it is filled with data is discussed with the - * ablkcipher_request_* functions. - * - * Return: 0 if the cipher operation was successful; < 0 if an error occurred - */ -static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) -{ - struct ablkcipher_tfm *crt = - crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); - return crt->encrypt(req); -} - -/** - * crypto_ablkcipher_decrypt() - decrypt ciphertext - * @req: reference to the ablkcipher_request handle that holds all information - * needed to perform the cipher operation - * - * Decrypt ciphertext data using the ablkcipher_request handle. That data - * structure and how it is filled with data is discussed with the - * ablkcipher_request_* functions. - * - * Return: 0 if the cipher operation was successful; < 0 if an error occurred - */ -static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) -{ - struct ablkcipher_tfm *crt = - crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); - return crt->decrypt(req); -} - -/** - * DOC: Asynchronous Cipher Request Handle - * - * The ablkcipher_request data structure contains all pointers to data - * required for the asynchronous cipher operation. This includes the cipher - * handle (which can be used by multiple ablkcipher_request instances), pointer - * to plaintext and ciphertext, asynchronous callback function, etc. It acts - * as a handle to the ablkcipher_request_* API calls in a similar way as - * ablkcipher handle to the crypto_ablkcipher_* API calls. - */ - -/** - * crypto_ablkcipher_reqsize() - obtain size of the request data structure - * @tfm: cipher handle - * - * Return: number of bytes - */ -static inline unsigned int crypto_ablkcipher_reqsize( - struct crypto_ablkcipher *tfm) -{ - return crypto_ablkcipher_crt(tfm)->reqsize; -} - -/** - * ablkcipher_request_set_tfm() - update cipher handle reference in request - * @req: request handle to be modified - * @tfm: cipher handle that shall be added to the request handle - * - * Allow the caller to replace the existing ablkcipher handle in the request - * data structure with a different one. - */ -static inline void ablkcipher_request_set_tfm( - struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) -{ - req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); -} - -static inline struct ablkcipher_request *ablkcipher_request_cast( - struct crypto_async_request *req) -{ - return container_of(req, struct ablkcipher_request, base); -} - -/** - * ablkcipher_request_alloc() - allocate request data structure - * @tfm: cipher handle to be registered with the request - * @gfp: memory allocation flag that is handed to kmalloc by the API call. - * - * Allocate the request data structure that must be used with the ablkcipher - * encrypt and decrypt API calls. During the allocation, the provided ablkcipher - * handle is registered in the request data structure. - * - * Return: allocated request handle in case of success, or NULL if out of memory - */ -static inline struct ablkcipher_request *ablkcipher_request_alloc( - struct crypto_ablkcipher *tfm, gfp_t gfp) -{ - struct ablkcipher_request *req; - - req = kmalloc(sizeof(struct ablkcipher_request) + - crypto_ablkcipher_reqsize(tfm), gfp); - - if (likely(req)) - ablkcipher_request_set_tfm(req, tfm); - - return req; -} - -/** - * ablkcipher_request_free() - zeroize and free request data structure - * @req: request data structure cipher handle to be freed - */ -static inline void ablkcipher_request_free(struct ablkcipher_request *req) -{ - kzfree(req); -} - -/** - * ablkcipher_request_set_callback() - set asynchronous callback function - * @req: request handle - * @flags: specify zero or an ORing of the flags - * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and - * increase the wait queue beyond the initial maximum size; - * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep - * @compl: callback function pointer to be registered with the request handle - * @data: The data pointer refers to memory that is not used by the kernel - * crypto API, but provided to the callback function for it to use. Here, - * the caller can provide a reference to memory the callback function can - * operate on. As the callback function is invoked asynchronously to the - * related functionality, it may need to access data structures of the - * related functionality which can be referenced using this pointer. The - * callback function can access the memory via the "data" field in the - * crypto_async_request data structure provided to the callback function. - * - * This function allows setting the callback function that is triggered once the - * cipher operation completes. - * - * The callback function is registered with the ablkcipher_request handle and - * must comply with the following template:: - * - * void callback_function(struct crypto_async_request *req, int error) - */ -static inline void ablkcipher_request_set_callback( - struct ablkcipher_request *req, - u32 flags, crypto_completion_t compl, void *data) -{ - req->base.complete = compl; - req->base.data = data; - req->base.flags = flags; -} - -/** - * ablkcipher_request_set_crypt() - set data buffers - * @req: request handle - * @src: source scatter / gather list - * @dst: destination scatter / gather list - * @nbytes: number of bytes to process from @src - * @iv: IV for the cipher operation which must comply with the IV size defined - * by crypto_ablkcipher_ivsize - * - * This function allows setting of the source data and destination data - * scatter / gather lists. - * - * For encryption, the source is treated as the plaintext and the - * destination is the ciphertext. For a decryption operation, the use is - * reversed - the source is the ciphertext and the destination is the plaintext. - */ -static inline void ablkcipher_request_set_crypt( - struct ablkcipher_request *req, - struct scatterlist *src, struct scatterlist *dst, - unsigned int nbytes, void *iv) +static inline void crypto_request_set_tfm(struct crypto_async_request *req, + struct crypto_tfm *tfm) { - req->src = src; - req->dst = dst; - req->nbytes = nbytes; - req->info = iv; + req->tfm = tfm; + req->flags &= ~CRYPTO_TFM_REQ_ON_STACK; } -/** - * DOC: Synchronous Block Cipher API - * - * The synchronous block cipher API is used with the ciphers of type - * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) - * - * Synchronous calls, have a context in the tfm. But since a single tfm can be - * used in multiple calls and in parallel, this info should not be changeable - * (unless a lock is used). This applies, for example, to the symmetric key. - * However, the IV is changeable, so there is an iv field in blkcipher_tfm - * structure for synchronous blkcipher api. So, its the only state info that can - * be kept for synchronous calls without using a big lock across a tfm. - * - * The block cipher API allows the use of a complete cipher, i.e. a cipher - * consisting of a template (a block chaining mode) and a single block cipher - * primitive (e.g. AES). - * - * The plaintext data buffer and the ciphertext data buffer are pointed to - * by using scatter/gather lists. The cipher operation is performed - * on all segments of the provided scatter/gather lists. - * - * The kernel crypto API supports a cipher operation "in-place" which means that - * the caller may provide the same scatter/gather list for the plaintext and - * cipher text. After the completion of the cipher operation, the plaintext - * data is replaced with the ciphertext data in case of an encryption and vice - * versa for a decryption. The caller must ensure that the scatter/gather lists - * for the output data point to sufficiently large buffers, i.e. multiples of - * the block size of the cipher. - */ - -static inline struct crypto_blkcipher *__crypto_blkcipher_cast( - struct crypto_tfm *tfm) -{ - return (struct crypto_blkcipher *)tfm; -} - -static inline struct crypto_blkcipher *crypto_blkcipher_cast( - struct crypto_tfm *tfm) -{ - BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); - return __crypto_blkcipher_cast(tfm); -} - -/** - * crypto_alloc_blkcipher() - allocate synchronous block cipher handle - * @alg_name: is the cra_name / name or cra_driver_name / driver name of the - * blkcipher cipher - * @type: specifies the type of the cipher - * @mask: specifies the mask for the cipher - * - * Allocate a cipher handle for a block cipher. The returned struct - * crypto_blkcipher is the cipher handle that is required for any subsequent - * API invocation for that block cipher. - * - * Return: allocated cipher handle in case of success; IS_ERR() is true in case - * of an error, PTR_ERR() returns the error code. - */ -static inline struct crypto_blkcipher *crypto_alloc_blkcipher( - const char *alg_name, u32 type, u32 mask) -{ - type &= ~CRYPTO_ALG_TYPE_MASK; - type |= CRYPTO_ALG_TYPE_BLKCIPHER; - mask |= CRYPTO_ALG_TYPE_MASK; - - return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); -} - -static inline struct crypto_tfm *crypto_blkcipher_tfm( - struct crypto_blkcipher *tfm) -{ - return &tfm->base; -} - -/** - * crypto_free_blkcipher() - zeroize and free the block cipher handle - * @tfm: cipher handle to be freed - */ -static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) -{ - crypto_free_tfm(crypto_blkcipher_tfm(tfm)); -} - -/** - * crypto_has_blkcipher() - Search for the availability of a block cipher - * @alg_name: is the cra_name / name or cra_driver_name / driver name of the - * block cipher - * @type: specifies the type of the cipher - * @mask: specifies the mask for the cipher - * - * Return: true when the block cipher is known to the kernel crypto API; false - * otherwise - */ -static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) -{ - type &= ~CRYPTO_ALG_TYPE_MASK; - type |= CRYPTO_ALG_TYPE_BLKCIPHER; - mask |= CRYPTO_ALG_TYPE_MASK; - - return crypto_has_alg(alg_name, type, mask); -} - -/** - * crypto_blkcipher_name() - return the name / cra_name from the cipher handle - * @tfm: cipher handle - * - * Return: The character string holding the name of the cipher - */ -static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) -{ - return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); -} - -static inline struct blkcipher_tfm *crypto_blkcipher_crt( - struct crypto_blkcipher *tfm) -{ - return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; -} - -static inline struct blkcipher_alg *crypto_blkcipher_alg( - struct crypto_blkcipher *tfm) -{ - return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; -} - -/** - * crypto_blkcipher_ivsize() - obtain IV size - * @tfm: cipher handle - * - * The size of the IV for the block cipher referenced by the cipher handle is - * returned. This IV size may be zero if the cipher does not need an IV. - * - * Return: IV size in bytes - */ -static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) -{ - return crypto_blkcipher_alg(tfm)->ivsize; -} - -/** - * crypto_blkcipher_blocksize() - obtain block size of cipher - * @tfm: cipher handle - * - * The block size for the block cipher referenced with the cipher handle is - * returned. The caller may use that information to allocate appropriate - * memory for the data returned by the encryption or decryption operation. - * - * Return: block size of cipher - */ -static inline unsigned int crypto_blkcipher_blocksize( - struct crypto_blkcipher *tfm) -{ - return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); -} - -static inline unsigned int crypto_blkcipher_alignmask( - struct crypto_blkcipher *tfm) -{ - return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); -} - -static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) -{ - return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); -} - -static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, - u32 flags) -{ - crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); -} - -static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, - u32 flags) -{ - crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); -} - -/** - * crypto_blkcipher_setkey() - set key for cipher - * @tfm: cipher handle - * @key: buffer holding the key - * @keylen: length of the key in bytes - * - * The caller provided key is set for the block cipher referenced by the cipher - * handle. - * - * Note, the key length determines the cipher type. Many block ciphers implement - * different cipher modes depending on the key size, such as AES-128 vs AES-192 - * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 - * is performed. - * - * Return: 0 if the setting of the key was successful; < 0 if an error occurred - */ -static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, - const u8 *key, unsigned int keylen) -{ - return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), - key, keylen); -} - -/** - * crypto_blkcipher_encrypt() - encrypt plaintext - * @desc: reference to the block cipher handle with meta data - * @dst: scatter/gather list that is filled by the cipher operation with the - * ciphertext - * @src: scatter/gather list that holds the plaintext - * @nbytes: number of bytes of the plaintext to encrypt. - * - * Encrypt plaintext data using the IV set by the caller with a preceding - * call of crypto_blkcipher_set_iv. - * - * The blkcipher_desc data structure must be filled by the caller and can - * reside on the stack. The caller must fill desc as follows: desc.tfm is filled - * with the block cipher handle; desc.flags is filled with either - * CRYPTO_TFM_REQ_MAY_SLEEP or 0. - * - * Return: 0 if the cipher operation was successful; < 0 if an error occurred - */ -static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, - struct scatterlist *dst, - struct scatterlist *src, - unsigned int nbytes) -{ - desc->info = crypto_blkcipher_crt(desc->tfm)->iv; - return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); -} - -/** - * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV - * @desc: reference to the block cipher handle with meta data - * @dst: scatter/gather list that is filled by the cipher operation with the - * ciphertext - * @src: scatter/gather list that holds the plaintext - * @nbytes: number of bytes of the plaintext to encrypt. - * - * Encrypt plaintext data with the use of an IV that is solely used for this - * cipher operation. Any previously set IV is not used. - * - * The blkcipher_desc data structure must be filled by the caller and can - * reside on the stack. The caller must fill desc as follows: desc.tfm is filled - * with the block cipher handle; desc.info is filled with the IV to be used for - * the current operation; desc.flags is filled with either - * CRYPTO_TFM_REQ_MAY_SLEEP or 0. - * - * Return: 0 if the cipher operation was successful; < 0 if an error occurred - */ -static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, - struct scatterlist *dst, - struct scatterlist *src, - unsigned int nbytes) -{ - return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); -} - -/** - * crypto_blkcipher_decrypt() - decrypt ciphertext - * @desc: reference to the block cipher handle with meta data - * @dst: scatter/gather list that is filled by the cipher operation with the - * plaintext - * @src: scatter/gather list that holds the ciphertext - * @nbytes: number of bytes of the ciphertext to decrypt. - * - * Decrypt ciphertext data using the IV set by the caller with a preceding - * call of crypto_blkcipher_set_iv. - * - * The blkcipher_desc data structure must be filled by the caller as documented - * for the crypto_blkcipher_encrypt call above. - * - * Return: 0 if the cipher operation was successful; < 0 if an error occurred - * - */ -static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, - struct scatterlist *dst, - struct scatterlist *src, - unsigned int nbytes) -{ - desc->info = crypto_blkcipher_crt(desc->tfm)->iv; - return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); -} - -/** - * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV - * @desc: reference to the block cipher handle with meta data - * @dst: scatter/gather list that is filled by the cipher operation with the - * plaintext - * @src: scatter/gather list that holds the ciphertext - * @nbytes: number of bytes of the ciphertext to decrypt. - * - * Decrypt ciphertext data with the use of an IV that is solely used for this - * cipher operation. Any previously set IV is not used. - * - * The blkcipher_desc data structure must be filled by the caller as documented - * for the crypto_blkcipher_encrypt_iv call above. - * - * Return: 0 if the cipher operation was successful; < 0 if an error occurred - */ -static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, - struct scatterlist *dst, - struct scatterlist *src, - unsigned int nbytes) -{ - return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); -} - -/** - * crypto_blkcipher_set_iv() - set IV for cipher - * @tfm: cipher handle - * @src: buffer holding the IV - * @len: length of the IV in bytes - * - * The caller provided IV is set for the block cipher referenced by the cipher - * handle. - */ -static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, - const u8 *src, unsigned int len) -{ - memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); -} - -/** - * crypto_blkcipher_get_iv() - obtain IV from cipher - * @tfm: cipher handle - * @dst: buffer filled with the IV - * @len: length of the buffer dst - * - * The caller can obtain the IV set for the block cipher referenced by the - * cipher handle and store it into the user-provided buffer. If the buffer - * has an insufficient space, the IV is truncated to fit the buffer. - */ -static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, - u8 *dst, unsigned int len) -{ - memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); -} - -/** - * DOC: Single Block Cipher API - * - * The single block cipher API is used with the ciphers of type - * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). - * - * Using the single block cipher API calls, operations with the basic cipher - * primitive can be implemented. These cipher primitives exclude any block - * chaining operations including IV handling. - * - * The purpose of this single block cipher API is to support the implementation - * of templates or other concepts that only need to perform the cipher operation - * on one block at a time. Templates invoke the underlying cipher primitive - * block-wise and process either the input or the output data of these cipher - * operations. - */ - -static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) -{ - return (struct crypto_cipher *)tfm; -} - -static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) -{ - BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); - return __crypto_cipher_cast(tfm); -} - -/** - * crypto_alloc_cipher() - allocate single block cipher handle - * @alg_name: is the cra_name / name or cra_driver_name / driver name of the - * single block cipher - * @type: specifies the type of the cipher - * @mask: specifies the mask for the cipher - * - * Allocate a cipher handle for a single block cipher. The returned struct - * crypto_cipher is the cipher handle that is required for any subsequent API - * invocation for that single block cipher. - * - * Return: allocated cipher handle in case of success; IS_ERR() is true in case - * of an error, PTR_ERR() returns the error code. - */ -static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, - u32 type, u32 mask) -{ - type &= ~CRYPTO_ALG_TYPE_MASK; - type |= CRYPTO_ALG_TYPE_CIPHER; - mask |= CRYPTO_ALG_TYPE_MASK; - - return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); -} - -static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) -{ - return &tfm->base; -} - -/** - * crypto_free_cipher() - zeroize and free the single block cipher handle - * @tfm: cipher handle to be freed - */ -static inline void crypto_free_cipher(struct crypto_cipher *tfm) -{ - crypto_free_tfm(crypto_cipher_tfm(tfm)); -} - -/** - * crypto_has_cipher() - Search for the availability of a single block cipher - * @alg_name: is the cra_name / name or cra_driver_name / driver name of the - * single block cipher - * @type: specifies the type of the cipher - * @mask: specifies the mask for the cipher - * - * Return: true when the single block cipher is known to the kernel crypto API; - * false otherwise - */ -static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) -{ - type &= ~CRYPTO_ALG_TYPE_MASK; - type |= CRYPTO_ALG_TYPE_CIPHER; - mask |= CRYPTO_ALG_TYPE_MASK; - - return crypto_has_alg(alg_name, type, mask); -} - -static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) -{ - return &crypto_cipher_tfm(tfm)->crt_cipher; -} - -/** - * crypto_cipher_blocksize() - obtain block size for cipher - * @tfm: cipher handle - * - * The block size for the single block cipher referenced with the cipher handle - * tfm is returned. The caller may use that information to allocate appropriate - * memory for the data returned by the encryption or decryption operation - * - * Return: block size of cipher - */ -static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) -{ - return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); -} - -static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) -{ - return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); -} - -static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) -{ - return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); -} - -static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, - u32 flags) -{ - crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); -} - -static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, - u32 flags) -{ - crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); -} - -/** - * crypto_cipher_setkey() - set key for cipher - * @tfm: cipher handle - * @key: buffer holding the key - * @keylen: length of the key in bytes - * - * The caller provided key is set for the single block cipher referenced by the - * cipher handle. - * - * Note, the key length determines the cipher type. Many block ciphers implement - * different cipher modes depending on the key size, such as AES-128 vs AES-192 - * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 - * is performed. - * - * Return: 0 if the setting of the key was successful; < 0 if an error occurred - */ -static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, - const u8 *key, unsigned int keylen) -{ - return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), - key, keylen); -} - -/** - * crypto_cipher_encrypt_one() - encrypt one block of plaintext - * @tfm: cipher handle - * @dst: points to the buffer that will be filled with the ciphertext - * @src: buffer holding the plaintext to be encrypted - * - * Invoke the encryption operation of one block. The caller must ensure that - * the plaintext and ciphertext buffers are at least one block in size. - */ -static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, - u8 *dst, const u8 *src) -{ - crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), - dst, src); -} - -/** - * crypto_cipher_decrypt_one() - decrypt one block of ciphertext - * @tfm: cipher handle - * @dst: points to the buffer that will be filled with the plaintext - * @src: buffer holding the ciphertext to be decrypted - * - * Invoke the decryption operation of one block. The caller must ensure that - * the plaintext and ciphertext buffers are at least one block in size. - */ -static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, - u8 *dst, const u8 *src) -{ - crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), - dst, src); -} - -static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) -{ - return (struct crypto_comp *)tfm; -} - -static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) -{ - BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & - CRYPTO_ALG_TYPE_MASK); - return __crypto_comp_cast(tfm); -} - -static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, - u32 type, u32 mask) -{ - type &= ~CRYPTO_ALG_TYPE_MASK; - type |= CRYPTO_ALG_TYPE_COMPRESS; - mask |= CRYPTO_ALG_TYPE_MASK; - - return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); -} - -static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) -{ - return &tfm->base; -} - -static inline void crypto_free_comp(struct crypto_comp *tfm) -{ - crypto_free_tfm(crypto_comp_tfm(tfm)); -} - -static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) -{ - type &= ~CRYPTO_ALG_TYPE_MASK; - type |= CRYPTO_ALG_TYPE_COMPRESS; - mask |= CRYPTO_ALG_TYPE_MASK; - - return crypto_has_alg(alg_name, type, mask); -} - -static inline const char *crypto_comp_name(struct crypto_comp *tfm) -{ - return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); -} - -static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) -{ - return &crypto_comp_tfm(tfm)->crt_compress; -} - -static inline int crypto_comp_compress(struct crypto_comp *tfm, - const u8 *src, unsigned int slen, - u8 *dst, unsigned int *dlen) -{ - return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), - src, slen, dst, dlen); -} +struct crypto_async_request *crypto_request_clone( + struct crypto_async_request *req, size_t total, gfp_t gfp); -static inline int crypto_comp_decompress(struct crypto_comp *tfm, - const u8 *src, unsigned int slen, - u8 *dst, unsigned int *dlen) +static inline void crypto_stack_request_init(struct crypto_async_request *req, + struct crypto_tfm *tfm) { - return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), - src, slen, dst, dlen); + req->flags = 0; + crypto_request_set_tfm(req, tfm); + req->flags |= CRYPTO_TFM_REQ_ON_STACK; } #endif /* _LINUX_CRYPTO_H */ |
