diff options
Diffstat (limited to 'include/linux/edac.h')
| -rw-r--r-- | include/linux/edac.h | 575 |
1 files changed, 358 insertions, 217 deletions
diff --git a/include/linux/edac.h b/include/linux/edac.h index 0b763276f619..fa32f2aca22f 100644 --- a/include/linux/edac.h +++ b/include/linux/edac.h @@ -17,6 +17,9 @@ #include <linux/completion.h> #include <linux/workqueue.h> #include <linux/debugfs.h> +#include <linux/numa.h> + +#define EDAC_DEVICE_NAME_LEN 31 struct device; @@ -26,14 +29,8 @@ struct device; #define EDAC_OPSTATE_INT 2 extern int edac_op_state; -extern int edac_err_assert; -extern atomic_t edac_handlers; -extern struct bus_type edac_subsys; -extern int edac_handler_set(void); -extern void edac_atomic_assert_error(void); -extern struct bus_type *edac_get_sysfs_subsys(void); -extern void edac_put_sysfs_subsys(void); +const struct bus_type *edac_get_sysfs_subsys(void); static inline void opstate_init(void) { @@ -51,7 +48,7 @@ static inline void opstate_init(void) #define EDAC_MC_LABEL_LEN 31 /* Maximum size of the location string */ -#define LOCATION_SIZE 80 +#define LOCATION_SIZE 256 /* Defines the maximum number of labels that can be reported */ #define EDAC_MAX_LABELS 8 @@ -102,12 +99,21 @@ enum dev_type { * fatal (maybe it is on an unused memory area, * or the memory controller could recover from * it for example, by re-trying the operation). + * @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable + * error whose handling is not urgent. This could + * be due to hardware data poisoning where the + * system can continue operation until the poisoned + * data is consumed. Preemptive measures may also + * be taken, e.g. offlining pages, etc. * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not * be recovered. + * @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth + * type of error: informational logs. */ enum hw_event_mc_err_type { HW_EVENT_ERR_CORRECTED, HW_EVENT_ERR_UNCORRECTED, + HW_EVENT_ERR_DEFERRED, HW_EVENT_ERR_FATAL, HW_EVENT_ERR_INFO, }; @@ -119,6 +125,8 @@ static inline char *mc_event_error_type(const unsigned int err_type) return "Corrected"; case HW_EVENT_ERR_UNCORRECTED: return "Uncorrected"; + case HW_EVENT_ERR_DEFERRED: + return "Deferred"; case HW_EVENT_ERR_FATAL: return "Fatal"; default: @@ -131,7 +139,7 @@ static inline char *mc_event_error_type(const unsigned int err_type) * enum mem_type - memory types. For a more detailed reference, please see * http://en.wikipedia.org/wiki/DRAM * - * @MEM_EMPTY Empty csrow + * @MEM_EMPTY: Empty csrow * @MEM_RESERVED: Reserved csrow type * @MEM_UNKNOWN: Unknown csrow type * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995. @@ -151,8 +159,8 @@ static inline char *mc_event_error_type(const unsigned int err_type) * part of the memory details to the memory controller. * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers. * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F. - * Those memories are labed as "PC2-" instead of "PC" to - * differenciate from DDR. + * Those memories are labeled as "PC2-" instead of "PC" to + * differentiate from DDR. * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205 * and JESD206. * Those memories are accessed per DIMM slot, and not by @@ -166,6 +174,20 @@ static inline char *mc_event_error_type(const unsigned int err_type) * @MEM_DDR3: DDR3 RAM * @MEM_RDDR3: Registered DDR3 RAM * This is a variant of the DDR3 memories. + * @MEM_LRDDR3: Load-Reduced DDR3 memory. + * @MEM_LPDDR3: Low-Power DDR3 memory. + * @MEM_DDR4: Unbuffered DDR4 RAM + * @MEM_RDDR4: Registered DDR4 RAM + * This is a variant of the DDR4 memories. + * @MEM_LRDDR4: Load-Reduced DDR4 memory. + * @MEM_LPDDR4: Low-Power DDR4 memory. + * @MEM_DDR5: Unbuffered DDR5 RAM + * @MEM_RDDR5: Registered DDR5 RAM + * @MEM_LRDDR5: Load-Reduced DDR5 memory. + * @MEM_NVDIMM: Non-volatile RAM + * @MEM_WIO2: Wide I/O 2. + * @MEM_HBM2: High bandwidth Memory Gen 2. + * @MEM_HBM3: High bandwidth Memory Gen 3. */ enum mem_type { MEM_EMPTY = 0, @@ -185,6 +207,19 @@ enum mem_type { MEM_XDR, MEM_DDR3, MEM_RDDR3, + MEM_LRDDR3, + MEM_LPDDR3, + MEM_DDR4, + MEM_RDDR4, + MEM_LRDDR4, + MEM_LPDDR4, + MEM_DDR5, + MEM_RDDR5, + MEM_LRDDR5, + MEM_NVDIMM, + MEM_WIO2, + MEM_HBM2, + MEM_HBM3, }; #define MEM_FLAG_EMPTY BIT(MEM_EMPTY) @@ -198,15 +233,27 @@ enum mem_type { #define MEM_FLAG_DDR BIT(MEM_DDR) #define MEM_FLAG_RDDR BIT(MEM_RDDR) #define MEM_FLAG_RMBS BIT(MEM_RMBS) -#define MEM_FLAG_DDR2 BIT(MEM_DDR2) -#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2) -#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2) -#define MEM_FLAG_XDR BIT(MEM_XDR) -#define MEM_FLAG_DDR3 BIT(MEM_DDR3) -#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3) +#define MEM_FLAG_DDR2 BIT(MEM_DDR2) +#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2) +#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2) +#define MEM_FLAG_XDR BIT(MEM_XDR) +#define MEM_FLAG_DDR3 BIT(MEM_DDR3) +#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3) +#define MEM_FLAG_LPDDR3 BIT(MEM_LPDDR3) +#define MEM_FLAG_DDR4 BIT(MEM_DDR4) +#define MEM_FLAG_RDDR4 BIT(MEM_RDDR4) +#define MEM_FLAG_LRDDR4 BIT(MEM_LRDDR4) +#define MEM_FLAG_LPDDR4 BIT(MEM_LPDDR4) +#define MEM_FLAG_DDR5 BIT(MEM_DDR5) +#define MEM_FLAG_RDDR5 BIT(MEM_RDDR5) +#define MEM_FLAG_LRDDR5 BIT(MEM_LRDDR5) +#define MEM_FLAG_NVDIMM BIT(MEM_NVDIMM) +#define MEM_FLAG_WIO2 BIT(MEM_WIO2) +#define MEM_FLAG_HBM2 BIT(MEM_HBM2) +#define MEM_FLAG_HBM3 BIT(MEM_HBM3) /** - * enum edac-type - Error Detection and Correction capabilities and mode + * enum edac_type - Error Detection and Correction capabilities and mode * @EDAC_UNKNOWN: Unknown if ECC is available * @EDAC_NONE: Doesn't support ECC * @EDAC_RESERVED: Reserved ECC type @@ -243,7 +290,7 @@ enum edac_type { /** * enum scrub_type - scrubbing capabilities - * @SCRUB_UNKNOWN Unknown if scrubber is available + * @SCRUB_UNKNOWN: Unknown if scrubber is available * @SCRUB_NONE: No scrubber * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing * @SCRUB_SW_SRC: Software scrub only errors @@ -252,7 +299,7 @@ enum edac_type { * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing * @SCRUB_HW_SRC: Hardware scrub only errors * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error - * SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable + * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable */ enum scrub_type { SCRUB_UNKNOWN = 0, @@ -285,116 +332,8 @@ enum scrub_type { #define OP_RUNNING_POLL_INTR 0x203 #define OP_OFFLINE 0x300 -/* - * Concepts used at the EDAC subsystem - * - * There are several things to be aware of that aren't at all obvious: - * - * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc.. - * - * These are some of the many terms that are thrown about that don't always - * mean what people think they mean (Inconceivable!). In the interest of - * creating a common ground for discussion, terms and their definitions - * will be established. - * - * Memory devices: The individual DRAM chips on a memory stick. These - * devices commonly output 4 and 8 bits each (x4, x8). - * Grouping several of these in parallel provides the - * number of bits that the memory controller expects: - * typically 72 bits, in order to provide 64 bits + - * 8 bits of ECC data. - * - * Memory Stick: A printed circuit board that aggregates multiple - * memory devices in parallel. In general, this is the - * Field Replaceable Unit (FRU) which gets replaced, in - * the case of excessive errors. Most often it is also - * called DIMM (Dual Inline Memory Module). - * - * Memory Socket: A physical connector on the motherboard that accepts - * a single memory stick. Also called as "slot" on several - * datasheets. - * - * Channel: A memory controller channel, responsible to communicate - * with a group of DIMMs. Each channel has its own - * independent control (command) and data bus, and can - * be used independently or grouped with other channels. - * - * Branch: It is typically the highest hierarchy on a - * Fully-Buffered DIMM memory controller. - * Typically, it contains two channels. - * Two channels at the same branch can be used in single - * mode or in lockstep mode. - * When lockstep is enabled, the cacheline is doubled, - * but it generally brings some performance penalty. - * Also, it is generally not possible to point to just one - * memory stick when an error occurs, as the error - * correction code is calculated using two DIMMs instead - * of one. Due to that, it is capable of correcting more - * errors than on single mode. - * - * Single-channel: The data accessed by the memory controller is contained - * into one dimm only. E. g. if the data is 64 bits-wide, - * the data flows to the CPU using one 64 bits parallel - * access. - * Typically used with SDR, DDR, DDR2 and DDR3 memories. - * FB-DIMM and RAMBUS use a different concept for channel, - * so this concept doesn't apply there. - * - * Double-channel: The data size accessed by the memory controller is - * interlaced into two dimms, accessed at the same time. - * E. g. if the DIMM is 64 bits-wide (72 bits with ECC), - * the data flows to the CPU using a 128 bits parallel - * access. - * - * Chip-select row: This is the name of the DRAM signal used to select the - * DRAM ranks to be accessed. Common chip-select rows for - * single channel are 64 bits, for dual channel 128 bits. - * It may not be visible by the memory controller, as some - * DIMM types have a memory buffer that can hide direct - * access to it from the Memory Controller. - * - * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory. - * Motherboards commonly drive two chip-select pins to - * a memory stick. A single-ranked stick, will occupy - * only one of those rows. The other will be unused. - * - * Double-Ranked stick: A double-ranked stick has two chip-select rows which - * access different sets of memory devices. The two - * rows cannot be accessed concurrently. - * - * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick. - * A double-sided stick has two chip-select rows which - * access different sets of memory devices. The two - * rows cannot be accessed concurrently. "Double-sided" - * is irrespective of the memory devices being mounted - * on both sides of the memory stick. - * - * Socket set: All of the memory sticks that are required for - * a single memory access or all of the memory sticks - * spanned by a chip-select row. A single socket set - * has two chip-select rows and if double-sided sticks - * are used these will occupy those chip-select rows. - * - * Bank: This term is avoided because it is unclear when - * needing to distinguish between chip-select rows and - * socket sets. - * - * Controller pages: - * - * Physical pages: - * - * Virtual pages: - * - * - * STRUCTURE ORGANIZATION AND CHOICES - * - * - * - * PS - I enjoyed writing all that about as much as you enjoyed reading it. - */ - /** - * enum edac_mc_layer - memory controller hierarchy layer + * enum edac_mc_layer_type - memory controller hierarchy layer * * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch" * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel" @@ -417,7 +356,7 @@ enum edac_mc_layer_type { /** * struct edac_mc_layer - describes the memory controller hierarchy - * @layer: layer type + * @type: layer type * @size: number of components per layer. For example, * if the channel layer has two channels, size = 2 * @is_virt_csrow: This layer is part of the "csrow" when old API @@ -439,81 +378,16 @@ struct edac_mc_layer { */ #define EDAC_MAX_LAYERS 3 -/** - * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer array - * for the element given by [layer0,layer1,layer2] position - * - * @layers: a struct edac_mc_layer array, describing how many elements - * were allocated for each layer - * @n_layers: Number of layers at the @layers array - * @layer0: layer0 position - * @layer1: layer1 position. Unused if n_layers < 2 - * @layer2: layer2 position. Unused if n_layers < 3 - * - * For 1 layer, this macro returns &var[layer0] - &var - * For 2 layers, this macro is similar to allocate a bi-dimensional array - * and to return "&var[layer0][layer1] - &var" - * For 3 layers, this macro is similar to allocate a tri-dimensional array - * and to return "&var[layer0][layer1][layer2] - &var" - * - * A loop could be used here to make it more generic, but, as we only have - * 3 layers, this is a little faster. - * By design, layers can never be 0 or more than 3. If that ever happens, - * a NULL is returned, causing an OOPS during the memory allocation routine, - * with would point to the developer that he's doing something wrong. - */ -#define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({ \ - int __i; \ - if ((nlayers) == 1) \ - __i = layer0; \ - else if ((nlayers) == 2) \ - __i = (layer1) + ((layers[1]).size * (layer0)); \ - else if ((nlayers) == 3) \ - __i = (layer2) + ((layers[2]).size * ((layer1) + \ - ((layers[1]).size * (layer0)))); \ - else \ - __i = -EINVAL; \ - __i; \ -}) - -/** - * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array - * for the element given by [layer0,layer1,layer2] position - * - * @layers: a struct edac_mc_layer array, describing how many elements - * were allocated for each layer - * @var: name of the var where we want to get the pointer - * (like mci->dimms) - * @n_layers: Number of layers at the @layers array - * @layer0: layer0 position - * @layer1: layer1 position. Unused if n_layers < 2 - * @layer2: layer2 position. Unused if n_layers < 3 - * - * For 1 layer, this macro returns &var[layer0] - * For 2 layers, this macro is similar to allocate a bi-dimensional array - * and to return "&var[layer0][layer1]" - * For 3 layers, this macro is similar to allocate a tri-dimensional array - * and to return "&var[layer0][layer1][layer2]" - */ -#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \ - typeof(*var) __p; \ - int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2); \ - if (___i < 0) \ - __p = NULL; \ - else \ - __p = (var)[___i]; \ - __p; \ -}) - struct dimm_info { struct device dev; char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */ /* Memory location data */ - unsigned location[EDAC_MAX_LAYERS]; + unsigned int location[EDAC_MAX_LAYERS]; struct mem_ctl_info *mci; /* the parent */ + unsigned int idx; /* index within the parent dimm array */ u32 grain; /* granularity of reported error in bytes */ enum dev_type dtype; /* memory device type */ @@ -522,7 +396,12 @@ struct dimm_info { u32 nr_pages; /* number of pages on this dimm */ - unsigned csrow, cschannel; /* Points to the old API data */ + unsigned int csrow, cschannel; /* Points to the old API data */ + + u16 smbios_handle; /* Handle for SMBIOS type 17 */ + + u32 ce_count; + u32 ue_count; }; /** @@ -579,9 +458,10 @@ struct errcount_attribute_data { }; /** - * edac_raw_error_desc - Raw error report structure + * struct edac_raw_error_desc - Raw error report structure * @grain: minimum granularity for an error report, in bytes * @error_count: number of errors of the same type + * @type: severity of the error (CE/UE/Fatal) * @top_layer: top layer of the error (layer[0]) * @mid_layer: middle layer of the error (layer[1]) * @low_layer: low layer of the error (layer[2]) @@ -593,20 +473,14 @@ struct errcount_attribute_data { * @location: location of the error * @label: label of the affected DIMM(s) * @other_detail: other driver-specific detail about the error - * @enable_per_layer_report: if false, the error affects all layers - * (typically, a memory controller error) */ struct edac_raw_error_desc { - /* - * NOTE: everything before grain won't be cleaned by - * edac_raw_error_desc_clean() - */ char location[LOCATION_SIZE]; char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS]; long grain; - /* the vars below and grain will be cleaned on every new error report */ u16 error_count; + enum hw_event_mc_err_type type; int top_layer; int mid_layer; int low_layer; @@ -615,14 +489,13 @@ struct edac_raw_error_desc { unsigned long syndrome; const char *msg; const char *other_detail; - bool enable_per_layer_report; }; /* MEMORY controller information structure */ struct mem_ctl_info { struct device dev; - struct bus_type bus; + const struct bus_type *bus; struct list_head link; /* for global list of mem_ctl_info structs */ @@ -666,7 +539,7 @@ struct mem_ctl_info { unsigned long page); int mc_idx; struct csrow_info **csrows; - unsigned nr_csrows, num_cschannel; + unsigned int nr_csrows, num_cschannel; /* * Memory Controller hierarchy @@ -677,14 +550,14 @@ struct mem_ctl_info { * of the recent drivers enumerate memories per DIMM, instead. * When the memory controller is per rank, csbased is true. */ - unsigned n_layers; + unsigned int n_layers; struct edac_mc_layer *layers; bool csbased; /* * DIMM info. Will eventually remove the entire csrows_info some day */ - unsigned tot_dimms; + unsigned int tot_dimms; struct dimm_info **dimms; /* @@ -694,7 +567,6 @@ struct mem_ctl_info { */ struct device *pdev; const char *mod_name; - const char *mod_ver; const char *ctl_name; const char *dev_name; void *pvt_info; @@ -706,7 +578,6 @@ struct mem_ctl_info { */ u32 ce_noinfo_count, ue_noinfo_count; u32 ue_mc, ce_mc; - u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; struct completion complete; @@ -734,12 +605,282 @@ struct mem_ctl_info { /* the internal state of this controller instance */ int op_state; -#ifdef CONFIG_EDAC_DEBUG struct dentry *debugfs; u8 fake_inject_layer[EDAC_MAX_LAYERS]; - u32 fake_inject_ue; + bool fake_inject_ue; u16 fake_inject_count; -#endif }; -#endif +#define mci_for_each_dimm(mci, dimm) \ + for ((dimm) = (mci)->dimms[0]; \ + (dimm); \ + (dimm) = (dimm)->idx + 1 < (mci)->tot_dimms \ + ? (mci)->dimms[(dimm)->idx + 1] \ + : NULL) + +/** + * edac_get_dimm - Get DIMM info from a memory controller given by + * [layer0,layer1,layer2] position + * + * @mci: MC descriptor struct mem_ctl_info + * @layer0: layer0 position + * @layer1: layer1 position. Unused if n_layers < 2 + * @layer2: layer2 position. Unused if n_layers < 3 + * + * For 1 layer, this function returns "dimms[layer0]"; + * + * For 2 layers, this function is similar to allocating a two-dimensional + * array and returning "dimms[layer0][layer1]"; + * + * For 3 layers, this function is similar to allocating a tri-dimensional + * array and returning "dimms[layer0][layer1][layer2]"; + */ +static inline struct dimm_info *edac_get_dimm(struct mem_ctl_info *mci, + int layer0, int layer1, int layer2) +{ + int index; + + if (layer0 < 0 + || (mci->n_layers > 1 && layer1 < 0) + || (mci->n_layers > 2 && layer2 < 0)) + return NULL; + + index = layer0; + + if (mci->n_layers > 1) + index = index * mci->layers[1].size + layer1; + + if (mci->n_layers > 2) + index = index * mci->layers[2].size + layer2; + + if (index < 0 || index >= mci->tot_dimms) + return NULL; + + if (WARN_ON_ONCE(mci->dimms[index]->idx != index)) + return NULL; + + return mci->dimms[index]; +} + +#define EDAC_FEAT_NAME_LEN 128 + +/* RAS feature type */ +enum edac_dev_feat { + RAS_FEAT_SCRUB, + RAS_FEAT_ECS, + RAS_FEAT_MEM_REPAIR, + RAS_FEAT_MAX +}; + +/** + * struct edac_scrub_ops - scrub device operations (all elements optional) + * @read_addr: read base address of scrubbing range. + * @read_size: read offset of scrubbing range. + * @write_addr: set base address of the scrubbing range. + * @write_size: set offset of the scrubbing range. + * @get_enabled_bg: check if currently performing background scrub. + * @set_enabled_bg: start or stop a bg-scrub. + * @get_min_cycle: get minimum supported scrub cycle duration in seconds. + * @get_max_cycle: get maximum supported scrub cycle duration in seconds. + * @get_cycle_duration: get current scrub cycle duration in seconds. + * @set_cycle_duration: set current scrub cycle duration in seconds. + */ +struct edac_scrub_ops { + int (*read_addr)(struct device *dev, void *drv_data, u64 *base); + int (*read_size)(struct device *dev, void *drv_data, u64 *size); + int (*write_addr)(struct device *dev, void *drv_data, u64 base); + int (*write_size)(struct device *dev, void *drv_data, u64 size); + int (*get_enabled_bg)(struct device *dev, void *drv_data, bool *enable); + int (*set_enabled_bg)(struct device *dev, void *drv_data, bool enable); + int (*get_min_cycle)(struct device *dev, void *drv_data, u32 *min); + int (*get_max_cycle)(struct device *dev, void *drv_data, u32 *max); + int (*get_cycle_duration)(struct device *dev, void *drv_data, u32 *cycle); + int (*set_cycle_duration)(struct device *dev, void *drv_data, u32 cycle); +}; + +#if IS_ENABLED(CONFIG_EDAC_SCRUB) +int edac_scrub_get_desc(struct device *scrub_dev, + const struct attribute_group **attr_groups, + u8 instance); +#else +static inline int edac_scrub_get_desc(struct device *scrub_dev, + const struct attribute_group **attr_groups, + u8 instance) +{ return -EOPNOTSUPP; } +#endif /* CONFIG_EDAC_SCRUB */ + +/** + * struct edac_ecs_ops - ECS device operations (all elements optional) + * @get_log_entry_type: read the log entry type value. + * @set_log_entry_type: set the log entry type value. + * @get_mode: read the mode value. + * @set_mode: set the mode value. + * @reset: reset the ECS counter. + * @get_threshold: read the threshold count per gigabits of memory cells. + * @set_threshold: set the threshold count per gigabits of memory cells. + */ +struct edac_ecs_ops { + int (*get_log_entry_type)(struct device *dev, void *drv_data, int fru_id, u32 *val); + int (*set_log_entry_type)(struct device *dev, void *drv_data, int fru_id, u32 val); + int (*get_mode)(struct device *dev, void *drv_data, int fru_id, u32 *val); + int (*set_mode)(struct device *dev, void *drv_data, int fru_id, u32 val); + int (*reset)(struct device *dev, void *drv_data, int fru_id, u32 val); + int (*get_threshold)(struct device *dev, void *drv_data, int fru_id, u32 *threshold); + int (*set_threshold)(struct device *dev, void *drv_data, int fru_id, u32 threshold); +}; + +struct edac_ecs_ex_info { + u16 num_media_frus; +}; + +#if IS_ENABLED(CONFIG_EDAC_ECS) +int edac_ecs_get_desc(struct device *ecs_dev, + const struct attribute_group **attr_groups, + u16 num_media_frus); +#else +static inline int edac_ecs_get_desc(struct device *ecs_dev, + const struct attribute_group **attr_groups, + u16 num_media_frus) +{ return -EOPNOTSUPP; } +#endif /* CONFIG_EDAC_ECS */ + +enum edac_mem_repair_type { + EDAC_REPAIR_PPR, + EDAC_REPAIR_CACHELINE_SPARING, + EDAC_REPAIR_ROW_SPARING, + EDAC_REPAIR_BANK_SPARING, + EDAC_REPAIR_RANK_SPARING, + EDAC_REPAIR_MAX +}; + +extern const char * const edac_repair_type[]; + +enum edac_mem_repair_cmd { + EDAC_DO_MEM_REPAIR = 1, +}; + +/** + * struct edac_mem_repair_ops - memory repair operations + * (all elements are optional except do_repair, set_hpa/set_dpa) + * @get_repair_type: get the memory repair type, listed in + * enum edac_mem_repair_function. + * @get_persist_mode: get the current persist mode. + * false - Soft repair type (temporary repair). + * true - Hard memory repair type (permanent repair). + * @set_persist_mode: set the persist mode of the memory repair instance. + * @get_repair_safe_when_in_use: get whether memory media is accessible and + * data is retained during repair operation. + * @get_hpa: get current host physical address (HPA) of memory to repair. + * @set_hpa: set host physical address (HPA) of memory to repair. + * @get_min_hpa: get the minimum supported host physical address (HPA). + * @get_max_hpa: get the maximum supported host physical address (HPA). + * @get_dpa: get current device physical address (DPA) of memory to repair. + * @set_dpa: set device physical address (DPA) of memory to repair. + * In some states of system configuration (e.g. before address decoders + * have been configured), memory devices (e.g. CXL) may not have an active + * mapping in the host physical address map. As such, the memory + * to repair must be identified by a device specific physical addressing + * scheme using a device physical address(DPA). The DPA and other control + * attributes to use for the repair operations will be presented in related + * error records. + * @get_min_dpa: get the minimum supported device physical address (DPA). + * @get_max_dpa: get the maximum supported device physical address (DPA). + * @get_nibble_mask: get current nibble mask of memory to repair. + * @set_nibble_mask: set nibble mask of memory to repair. + * @get_bank_group: get current bank group of memory to repair. + * @set_bank_group: set bank group of memory to repair. + * @get_bank: get current bank of memory to repair. + * @set_bank: set bank of memory to repair. + * @get_rank: get current rank of memory to repair. + * @set_rank: set rank of memory to repair. + * @get_row: get current row of memory to repair. + * @set_row: set row of memory to repair. + * @get_column: get current column of memory to repair. + * @set_column: set column of memory to repair. + * @get_channel: get current channel of memory to repair. + * @set_channel: set channel of memory to repair. + * @get_sub_channel: get current subchannel of memory to repair. + * @set_sub_channel: set subchannel of memory to repair. + * @do_repair: Issue memory repair operation for the HPA/DPA and + * other control attributes set for the memory to repair. + * + * All elements are optional except do_repair and at least one of set_hpa/set_dpa. + */ +struct edac_mem_repair_ops { + int (*get_repair_type)(struct device *dev, void *drv_data, const char **type); + int (*get_persist_mode)(struct device *dev, void *drv_data, bool *persist); + int (*set_persist_mode)(struct device *dev, void *drv_data, bool persist); + int (*get_repair_safe_when_in_use)(struct device *dev, void *drv_data, bool *safe); + int (*get_hpa)(struct device *dev, void *drv_data, u64 *hpa); + int (*set_hpa)(struct device *dev, void *drv_data, u64 hpa); + int (*get_min_hpa)(struct device *dev, void *drv_data, u64 *hpa); + int (*get_max_hpa)(struct device *dev, void *drv_data, u64 *hpa); + int (*get_dpa)(struct device *dev, void *drv_data, u64 *dpa); + int (*set_dpa)(struct device *dev, void *drv_data, u64 dpa); + int (*get_min_dpa)(struct device *dev, void *drv_data, u64 *dpa); + int (*get_max_dpa)(struct device *dev, void *drv_data, u64 *dpa); + int (*get_nibble_mask)(struct device *dev, void *drv_data, u32 *val); + int (*set_nibble_mask)(struct device *dev, void *drv_data, u32 val); + int (*get_bank_group)(struct device *dev, void *drv_data, u32 *val); + int (*set_bank_group)(struct device *dev, void *drv_data, u32 val); + int (*get_bank)(struct device *dev, void *drv_data, u32 *val); + int (*set_bank)(struct device *dev, void *drv_data, u32 val); + int (*get_rank)(struct device *dev, void *drv_data, u32 *val); + int (*set_rank)(struct device *dev, void *drv_data, u32 val); + int (*get_row)(struct device *dev, void *drv_data, u32 *val); + int (*set_row)(struct device *dev, void *drv_data, u32 val); + int (*get_column)(struct device *dev, void *drv_data, u32 *val); + int (*set_column)(struct device *dev, void *drv_data, u32 val); + int (*get_channel)(struct device *dev, void *drv_data, u32 *val); + int (*set_channel)(struct device *dev, void *drv_data, u32 val); + int (*get_sub_channel)(struct device *dev, void *drv_data, u32 *val); + int (*set_sub_channel)(struct device *dev, void *drv_data, u32 val); + int (*do_repair)(struct device *dev, void *drv_data, u32 val); +}; + +#if IS_ENABLED(CONFIG_EDAC_MEM_REPAIR) +int edac_mem_repair_get_desc(struct device *dev, + const struct attribute_group **attr_groups, + u8 instance); +#else +static inline int edac_mem_repair_get_desc(struct device *dev, + const struct attribute_group **attr_groups, + u8 instance) +{ return -EOPNOTSUPP; } +#endif /* CONFIG_EDAC_MEM_REPAIR */ + +/* EDAC device feature information structure */ +struct edac_dev_data { + union { + const struct edac_scrub_ops *scrub_ops; + const struct edac_ecs_ops *ecs_ops; + const struct edac_mem_repair_ops *mem_repair_ops; + }; + u8 instance; + void *private; +}; + +struct edac_dev_feat_ctx { + struct device dev; + void *private; + struct edac_dev_data *scrub; + struct edac_dev_data ecs; + struct edac_dev_data *mem_repair; +}; + +struct edac_dev_feature { + enum edac_dev_feat ft_type; + u8 instance; + union { + const struct edac_scrub_ops *scrub_ops; + const struct edac_ecs_ops *ecs_ops; + const struct edac_mem_repair_ops *mem_repair_ops; + }; + void *ctx; + struct edac_ecs_ex_info ecs_info; +}; + +int edac_dev_register(struct device *parent, char *dev_name, + void *parent_pvt_data, int num_features, + const struct edac_dev_feature *ras_features); +#endif /* _LINUX_EDAC_H_ */ |
