summaryrefslogtreecommitdiff
path: root/include/linux/highmem.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/highmem.h')
-rw-r--r--include/linux/highmem.h399
1 files changed, 341 insertions, 58 deletions
diff --git a/include/linux/highmem.h b/include/linux/highmem.h
index 39bb9b47fa9c..abc20f9810fd 100644
--- a/include/linux/highmem.h
+++ b/include/linux/highmem.h
@@ -6,6 +6,7 @@
#include <linux/kernel.h>
#include <linux/bug.h>
#include <linux/cacheflush.h>
+#include <linux/kmsan.h>
#include <linux/mm.h>
#include <linux/uaccess.h>
#include <linux/hardirq.h>
@@ -37,12 +38,12 @@ static inline void *kmap(struct page *page);
/**
* kunmap - Unmap the virtual address mapped by kmap()
- * @addr: Virtual address to be unmapped
+ * @page: Pointer to the page which was mapped by kmap()
*
* Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
* pages in the low memory area.
*/
-static inline void kunmap(struct page *page);
+static inline void kunmap(const struct page *page);
/**
* kmap_to_page - Get the page for a kmap'ed address
@@ -60,11 +61,11 @@ static inline void kmap_flush_unused(void);
/**
* kmap_local_page - Map a page for temporary usage
- * @page: Pointer to the page to be mapped
+ * @page: Pointer to the page to be mapped
*
* Returns: The virtual address of the mapping
*
- * Can be invoked from any context.
+ * Can be invoked from any context, including interrupts.
*
* Requires careful handling when nesting multiple mappings because the map
* management is stack based. The unmap has to be in the reverse order of
@@ -85,15 +86,14 @@ static inline void kmap_flush_unused(void);
* virtual address of the direct mapping. Only real highmem pages are
* temporarily mapped.
*
- * While it is significantly faster than kmap() for the higmem case it
- * comes with restrictions about the pointer validity. Only use when really
- * necessary.
+ * While kmap_local_page() is significantly faster than kmap() for the highmem
+ * case it comes with restrictions about the pointer validity.
*
* On HIGHMEM enabled systems mapping a highmem page has the side effect of
* disabling migration in order to keep the virtual address stable across
* preemption. No caller of kmap_local_page() can rely on this side effect.
*/
-static inline void *kmap_local_page(struct page *page);
+static inline void *kmap_local_page(const struct page *page);
/**
* kmap_local_folio - Map a page in this folio for temporary usage
@@ -119,9 +119,8 @@ static inline void *kmap_local_page(struct page *page);
* virtual address of the direct mapping. Only real highmem pages are
* temporarily mapped.
*
- * While it is significantly faster than kmap() for the higmem case it
- * comes with restrictions about the pointer validity. Only use when really
- * necessary.
+ * While it is significantly faster than kmap() for the highmem case it
+ * comes with restrictions about the pointer validity.
*
* On HIGHMEM enabled systems mapping a highmem page has the side effect of
* disabling migration in order to keep the virtual address stable across
@@ -130,7 +129,7 @@ static inline void *kmap_local_page(struct page *page);
* Context: Can be invoked from any context.
* Return: The virtual address of @offset.
*/
-static inline void *kmap_local_folio(struct folio *folio, size_t offset);
+static inline void *kmap_local_folio(const struct folio *folio, size_t offset);
/**
* kmap_atomic - Atomically map a page for temporary usage - Deprecated!
@@ -138,26 +137,49 @@ static inline void *kmap_local_folio(struct folio *folio, size_t offset);
*
* Returns: The virtual address of the mapping
*
- * Effectively a wrapper around kmap_local_page() which disables pagefaults
- * and preemption.
+ * In fact a wrapper around kmap_local_page() which also disables pagefaults
+ * and, depending on PREEMPT_RT configuration, also CPU migration and
+ * preemption. Therefore users should not count on the latter two side effects.
+ *
+ * Mappings should always be released by kunmap_atomic().
*
* Do not use in new code. Use kmap_local_page() instead.
- */
-static inline void *kmap_atomic(struct page *page);
-
-/**
- * kunmap_atomic - Unmap the virtual address mapped by kmap_atomic()
- * @addr: Virtual address to be unmapped
*
- * Counterpart to kmap_atomic().
+ * It is used in atomic context when code wants to access the contents of a
+ * page that might be allocated from high memory (see __GFP_HIGHMEM), for
+ * example a page in the pagecache. The API has two functions, and they
+ * can be used in a manner similar to the following::
+ *
+ * // Find the page of interest.
+ * struct page *page = find_get_page(mapping, offset);
+ *
+ * // Gain access to the contents of that page.
+ * void *vaddr = kmap_atomic(page);
+ *
+ * // Do something to the contents of that page.
+ * memset(vaddr, 0, PAGE_SIZE);
*
- * Effectively a wrapper around kunmap_local() which additionally undoes
- * the side effects of kmap_atomic(), i.e. reenabling pagefaults and
- * preemption.
+ * // Unmap that page.
+ * kunmap_atomic(vaddr);
+ *
+ * Note that the kunmap_atomic() call takes the result of the kmap_atomic()
+ * call, not the argument.
+ *
+ * If you need to map two pages because you want to copy from one page to
+ * another you need to keep the kmap_atomic calls strictly nested, like:
+ *
+ * vaddr1 = kmap_atomic(page1);
+ * vaddr2 = kmap_atomic(page2);
+ *
+ * memcpy(vaddr1, vaddr2, PAGE_SIZE);
+ *
+ * kunmap_atomic(vaddr2);
+ * kunmap_atomic(vaddr1);
*/
+static inline void *kmap_atomic(const struct page *page);
/* Highmem related interfaces for management code */
-static inline unsigned int nr_free_highpages(void);
+static inline unsigned long nr_free_highpages(void);
static inline unsigned long totalhigh_pages(void);
#ifndef ARCH_HAS_FLUSH_ANON_PAGE
@@ -185,29 +207,30 @@ static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
}
#endif
-#ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE
+#ifndef vma_alloc_zeroed_movable_folio
/**
- * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move
- * @vma: The VMA the page is to be allocated for
- * @vaddr: The virtual address the page will be inserted into
+ * vma_alloc_zeroed_movable_folio - Allocate a zeroed page for a VMA.
+ * @vma: The VMA the page is to be allocated for.
+ * @vaddr: The virtual address the page will be inserted into.
*
- * This function will allocate a page for a VMA that the caller knows will
- * be able to migrate in the future using move_pages() or reclaimed
+ * This function will allocate a page suitable for inserting into this
+ * VMA at this virtual address. It may be allocated from highmem or
+ * the movable zone. An architecture may provide its own implementation.
*
- * An architecture may override this function by defining
- * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE and providing their own
- * implementation.
+ * Return: A folio containing one allocated and zeroed page or NULL if
+ * we are out of memory.
*/
-static inline struct page *
-alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
+static inline
+struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
unsigned long vaddr)
{
- struct page *page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
+ struct folio *folio;
- if (page)
- clear_user_highpage(page, vaddr);
+ folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vaddr);
+ if (folio && user_alloc_needs_zeroing())
+ clear_user_highpage(&folio->page, vaddr);
- return page;
+ return folio;
}
#endif
@@ -218,10 +241,20 @@ static inline void clear_highpage(struct page *page)
kunmap_local(kaddr);
}
-#ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE
+static inline void clear_highpage_kasan_tagged(struct page *page)
+{
+ void *kaddr = kmap_local_page(page);
-static inline void tag_clear_highpage(struct page *page)
+ clear_page(kasan_reset_tag(kaddr));
+ kunmap_local(kaddr);
+}
+
+#ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGES
+
+/* Return false to let people know we did not initialize the pages */
+static inline bool tag_clear_highpages(struct page *page, int numpages)
{
+ return false;
}
#endif
@@ -261,12 +294,6 @@ static inline void zero_user_segment(struct page *page,
zero_user_segments(page, start, end, 0, 0);
}
-static inline void zero_user(struct page *page,
- unsigned start, unsigned size)
-{
- zero_user_segments(page, start, start + size, 0, 0);
-}
-
#ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
static inline void copy_user_highpage(struct page *to, struct page *from,
@@ -277,6 +304,7 @@ static inline void copy_user_highpage(struct page *to, struct page *from,
vfrom = kmap_local_page(from);
vto = kmap_local_page(to);
copy_user_page(vto, vfrom, vaddr, to);
+ kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
kunmap_local(vto);
kunmap_local(vfrom);
}
@@ -292,12 +320,73 @@ static inline void copy_highpage(struct page *to, struct page *from)
vfrom = kmap_local_page(from);
vto = kmap_local_page(to);
copy_page(vto, vfrom);
+ kmsan_copy_page_meta(to, from);
kunmap_local(vto);
kunmap_local(vfrom);
}
#endif
+#ifdef copy_mc_to_kernel
+/*
+ * If architecture supports machine check exception handling, define the
+ * #MC versions of copy_user_highpage and copy_highpage. They copy a memory
+ * page with #MC in source page (@from) handled, and return the number
+ * of bytes not copied if there was a #MC, otherwise 0 for success.
+ */
+static inline int copy_mc_user_highpage(struct page *to, struct page *from,
+ unsigned long vaddr, struct vm_area_struct *vma)
+{
+ unsigned long ret;
+ char *vfrom, *vto;
+
+ vfrom = kmap_local_page(from);
+ vto = kmap_local_page(to);
+ ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
+ if (!ret)
+ kmsan_unpoison_memory(page_address(to), PAGE_SIZE);
+ kunmap_local(vto);
+ kunmap_local(vfrom);
+
+ if (ret)
+ memory_failure_queue(page_to_pfn(from), 0);
+
+ return ret;
+}
+
+static inline int copy_mc_highpage(struct page *to, struct page *from)
+{
+ unsigned long ret;
+ char *vfrom, *vto;
+
+ vfrom = kmap_local_page(from);
+ vto = kmap_local_page(to);
+ ret = copy_mc_to_kernel(vto, vfrom, PAGE_SIZE);
+ if (!ret)
+ kmsan_copy_page_meta(to, from);
+ kunmap_local(vto);
+ kunmap_local(vfrom);
+
+ if (ret)
+ memory_failure_queue(page_to_pfn(from), 0);
+
+ return ret;
+}
+#else
+static inline int copy_mc_user_highpage(struct page *to, struct page *from,
+ unsigned long vaddr, struct vm_area_struct *vma)
+{
+ copy_user_highpage(to, from, vaddr, vma);
+ return 0;
+}
+
+static inline int copy_mc_highpage(struct page *to, struct page *from)
+{
+ copy_highpage(to, from);
+ return 0;
+}
+#endif
+
static inline void memcpy_page(struct page *dst_page, size_t dst_off,
struct page *src_page, size_t src_off,
size_t len)
@@ -311,17 +400,31 @@ static inline void memcpy_page(struct page *dst_page, size_t dst_off,
kunmap_local(dst);
}
-static inline void memmove_page(struct page *dst_page, size_t dst_off,
- struct page *src_page, size_t src_off,
- size_t len)
+static inline void memcpy_folio(struct folio *dst_folio, size_t dst_off,
+ struct folio *src_folio, size_t src_off, size_t len)
{
- char *dst = kmap_local_page(dst_page);
- char *src = kmap_local_page(src_page);
-
- VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
- memmove(dst + dst_off, src + src_off, len);
- kunmap_local(src);
- kunmap_local(dst);
+ VM_BUG_ON(dst_off + len > folio_size(dst_folio));
+ VM_BUG_ON(src_off + len > folio_size(src_folio));
+
+ do {
+ char *dst = kmap_local_folio(dst_folio, dst_off);
+ const char *src = kmap_local_folio(src_folio, src_off);
+ size_t chunk = len;
+
+ if (folio_test_highmem(dst_folio) &&
+ chunk > PAGE_SIZE - offset_in_page(dst_off))
+ chunk = PAGE_SIZE - offset_in_page(dst_off);
+ if (folio_test_highmem(src_folio) &&
+ chunk > PAGE_SIZE - offset_in_page(src_off))
+ chunk = PAGE_SIZE - offset_in_page(src_off);
+ memcpy(dst, src, chunk);
+ kunmap_local(src);
+ kunmap_local(dst);
+
+ dst_off += chunk;
+ src_off += chunk;
+ len -= chunk;
+ } while (len > 0);
}
static inline void memset_page(struct page *page, size_t offset, int val,
@@ -358,12 +461,178 @@ static inline void memcpy_to_page(struct page *page, size_t offset,
static inline void memzero_page(struct page *page, size_t offset, size_t len)
{
char *addr = kmap_local_page(page);
+
+ VM_BUG_ON(offset + len > PAGE_SIZE);
memset(addr + offset, 0, len);
flush_dcache_page(page);
kunmap_local(addr);
}
/**
+ * memcpy_from_folio - Copy a range of bytes from a folio.
+ * @to: The memory to copy to.
+ * @folio: The folio to read from.
+ * @offset: The first byte in the folio to read.
+ * @len: The number of bytes to copy.
+ */
+static inline void memcpy_from_folio(char *to, struct folio *folio,
+ size_t offset, size_t len)
+{
+ VM_BUG_ON(offset + len > folio_size(folio));
+
+ do {
+ const char *from = kmap_local_folio(folio, offset);
+ size_t chunk = len;
+
+ if (folio_test_partial_kmap(folio) &&
+ chunk > PAGE_SIZE - offset_in_page(offset))
+ chunk = PAGE_SIZE - offset_in_page(offset);
+ memcpy(to, from, chunk);
+ kunmap_local(from);
+
+ to += chunk;
+ offset += chunk;
+ len -= chunk;
+ } while (len > 0);
+}
+
+/**
+ * memcpy_to_folio - Copy a range of bytes to a folio.
+ * @folio: The folio to write to.
+ * @offset: The first byte in the folio to store to.
+ * @from: The memory to copy from.
+ * @len: The number of bytes to copy.
+ */
+static inline void memcpy_to_folio(struct folio *folio, size_t offset,
+ const char *from, size_t len)
+{
+ VM_BUG_ON(offset + len > folio_size(folio));
+
+ do {
+ char *to = kmap_local_folio(folio, offset);
+ size_t chunk = len;
+
+ if (folio_test_partial_kmap(folio) &&
+ chunk > PAGE_SIZE - offset_in_page(offset))
+ chunk = PAGE_SIZE - offset_in_page(offset);
+ memcpy(to, from, chunk);
+ kunmap_local(to);
+
+ from += chunk;
+ offset += chunk;
+ len -= chunk;
+ } while (len > 0);
+
+ flush_dcache_folio(folio);
+}
+
+/**
+ * folio_zero_tail - Zero the tail of a folio.
+ * @folio: The folio to zero.
+ * @offset: The byte offset in the folio to start zeroing at.
+ * @kaddr: The address the folio is currently mapped to.
+ *
+ * If you have already used kmap_local_folio() to map a folio, written
+ * some data to it and now need to zero the end of the folio (and flush
+ * the dcache), you can use this function. If you do not have the
+ * folio kmapped (eg the folio has been partially populated by DMA),
+ * use folio_zero_range() or folio_zero_segment() instead.
+ *
+ * Return: An address which can be passed to kunmap_local().
+ */
+static inline __must_check void *folio_zero_tail(struct folio *folio,
+ size_t offset, void *kaddr)
+{
+ size_t len = folio_size(folio) - offset;
+
+ if (folio_test_partial_kmap(folio)) {
+ size_t max = PAGE_SIZE - offset_in_page(offset);
+
+ while (len > max) {
+ memset(kaddr, 0, max);
+ kunmap_local(kaddr);
+ len -= max;
+ offset += max;
+ max = PAGE_SIZE;
+ kaddr = kmap_local_folio(folio, offset);
+ }
+ }
+
+ memset(kaddr, 0, len);
+ flush_dcache_folio(folio);
+
+ return kaddr;
+}
+
+/**
+ * folio_fill_tail - Copy some data to a folio and pad with zeroes.
+ * @folio: The destination folio.
+ * @offset: The offset into @folio at which to start copying.
+ * @from: The data to copy.
+ * @len: How many bytes of data to copy.
+ *
+ * This function is most useful for filesystems which support inline data.
+ * When they want to copy data from the inode into the page cache, this
+ * function does everything for them. It supports large folios even on
+ * HIGHMEM configurations.
+ */
+static inline void folio_fill_tail(struct folio *folio, size_t offset,
+ const char *from, size_t len)
+{
+ char *to = kmap_local_folio(folio, offset);
+
+ VM_BUG_ON(offset + len > folio_size(folio));
+
+ if (folio_test_partial_kmap(folio)) {
+ size_t max = PAGE_SIZE - offset_in_page(offset);
+
+ while (len > max) {
+ memcpy(to, from, max);
+ kunmap_local(to);
+ len -= max;
+ from += max;
+ offset += max;
+ max = PAGE_SIZE;
+ to = kmap_local_folio(folio, offset);
+ }
+ }
+
+ memcpy(to, from, len);
+ to = folio_zero_tail(folio, offset + len, to + len);
+ kunmap_local(to);
+}
+
+/**
+ * memcpy_from_file_folio - Copy some bytes from a file folio.
+ * @to: The destination buffer.
+ * @folio: The folio to copy from.
+ * @pos: The position in the file.
+ * @len: The maximum number of bytes to copy.
+ *
+ * Copy up to @len bytes from this folio. This may be limited by PAGE_SIZE
+ * if the folio comes from HIGHMEM, and by the size of the folio.
+ *
+ * Return: The number of bytes copied from the folio.
+ */
+static inline size_t memcpy_from_file_folio(char *to, struct folio *folio,
+ loff_t pos, size_t len)
+{
+ size_t offset = offset_in_folio(folio, pos);
+ char *from = kmap_local_folio(folio, offset);
+
+ if (folio_test_partial_kmap(folio)) {
+ offset = offset_in_page(offset);
+ len = min_t(size_t, len, PAGE_SIZE - offset);
+ } else
+ len = min(len, folio_size(folio) - offset);
+
+ memcpy(to, from, len);
+ kunmap_local(from);
+
+ return len;
+}
+
+/**
* folio_zero_segments() - Zero two byte ranges in a folio.
* @folio: The folio to write to.
* @start1: The first byte to zero.
@@ -401,4 +670,18 @@ static inline void folio_zero_range(struct folio *folio,
zero_user_segments(&folio->page, start, start + length, 0, 0);
}
+/**
+ * folio_release_kmap - Unmap a folio and drop a refcount.
+ * @folio: The folio to release.
+ * @addr: The address previously returned by a call to kmap_local_folio().
+ *
+ * It is common, eg in directory handling to kmap a folio. This function
+ * unmaps the folio and drops the refcount that was being held to keep the
+ * folio alive while we accessed it.
+ */
+static inline void folio_release_kmap(struct folio *folio, void *addr)
+{
+ kunmap_local(addr);
+ folio_put(folio);
+}
#endif /* _LINUX_HIGHMEM_H */