diff options
Diffstat (limited to 'include/linux/math64.h')
| -rw-r--r-- | include/linux/math64.h | 329 |
1 files changed, 318 insertions, 11 deletions
diff --git a/include/linux/math64.h b/include/linux/math64.h index 2913b86eb12a..cc305206d89f 100644 --- a/include/linux/math64.h +++ b/include/linux/math64.h @@ -1,8 +1,11 @@ +/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MATH64_H #define _LINUX_MATH64_H #include <linux/types.h> +#include <linux/math.h> #include <asm/div64.h> +#include <vdso/math64.h> #if BITS_PER_LONG == 64 @@ -11,6 +14,11 @@ /** * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder + * @dividend: unsigned 64bit dividend + * @divisor: unsigned 32bit divisor + * @remainder: pointer to unsigned 32bit remainder + * + * Return: sets ``*remainder``, then returns dividend / divisor * * This is commonly provided by 32bit archs to provide an optimized 64bit * divide. @@ -23,6 +31,11 @@ static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) /** * div_s64_rem - signed 64bit divide with 32bit divisor with remainder + * @dividend: signed 64bit dividend + * @divisor: signed 32bit divisor + * @remainder: pointer to signed 32bit remainder + * + * Return: sets ``*remainder``, then returns dividend / divisor */ static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) { @@ -31,7 +44,25 @@ static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) } /** + * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder + * @dividend: unsigned 64bit dividend + * @divisor: unsigned 64bit divisor + * @remainder: pointer to unsigned 64bit remainder + * + * Return: sets ``*remainder``, then returns dividend / divisor + */ +static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) +{ + *remainder = dividend % divisor; + return dividend / divisor; +} + +/** * div64_u64 - unsigned 64bit divide with 64bit divisor + * @dividend: unsigned 64bit dividend + * @divisor: unsigned 64bit divisor + * + * Return: dividend / divisor */ static inline u64 div64_u64(u64 dividend, u64 divisor) { @@ -40,6 +71,10 @@ static inline u64 div64_u64(u64 dividend, u64 divisor) /** * div64_s64 - signed 64bit divide with 64bit divisor + * @dividend: signed 64bit dividend + * @divisor: signed 64bit divisor + * + * Return: dividend / divisor */ static inline s64 div64_s64(s64 dividend, s64 divisor) { @@ -63,6 +98,10 @@ static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder); #endif +#ifndef div64_u64_rem +extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder); +#endif + #ifndef div64_u64 extern u64 div64_u64(u64 dividend, u64 divisor); #endif @@ -75,10 +114,14 @@ extern s64 div64_s64(s64 dividend, s64 divisor); /** * div_u64 - unsigned 64bit divide with 32bit divisor + * @dividend: unsigned 64bit dividend + * @divisor: unsigned 32bit divisor * * This is the most common 64bit divide and should be used if possible, * as many 32bit archs can optimize this variant better than a full 64bit * divide. + * + * Return: dividend / divisor */ #ifndef div_u64 static inline u64 div_u64(u64 dividend, u32 divisor) @@ -90,6 +133,10 @@ static inline u64 div_u64(u64 dividend, u32 divisor) /** * div_s64 - signed 64bit divide with 32bit divisor + * @dividend: signed 64bit dividend + * @divisor: signed 32bit divisor + * + * Return: dividend / divisor */ #ifndef div_s64 static inline s64 div_s64(s64 dividend, s32 divisor) @@ -101,23 +148,283 @@ static inline s64 div_s64(s64 dividend, s32 divisor) u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder); -static __always_inline u32 -__iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) +#ifndef mul_u32_u32 +/* + * Many a GCC version messes this up and generates a 64x64 mult :-( + */ +static inline u64 mul_u32_u32(u32 a, u32 b) +{ + return (u64)a * b; +} +#endif + +#ifndef add_u64_u32 +/* + * Many a GCC version also messes this up. + * Zero extending b and then spilling everything to stack. + */ +static inline u64 add_u64_u32(u64 a, u32 b) +{ + return a + b; +} +#endif + +#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__) + +#ifndef mul_u64_u32_shr +static __always_inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift) +{ + return (u64)(((unsigned __int128)a * mul) >> shift); +} +#endif /* mul_u64_u32_shr */ + +#ifndef mul_u64_u64_shr +static __always_inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift) +{ + return (u64)(((unsigned __int128)a * mul) >> shift); +} +#endif /* mul_u64_u64_shr */ + +#else + +#ifndef mul_u64_u32_shr +static __always_inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift) +{ + u32 ah = a >> 32, al = a; + u64 ret; + + ret = mul_u32_u32(al, mul) >> shift; + if (ah) + ret += mul_u32_u32(ah, mul) << (32 - shift); + return ret; +} +#endif /* mul_u64_u32_shr */ + +#ifndef mul_u64_u64_shr +static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift) { - u32 ret = 0; + union { + u64 ll; + struct { +#ifdef __BIG_ENDIAN + u32 high, low; +#else + u32 low, high; +#endif + } l; + } rl, rm, rn, rh, a0, b0; + u64 c; + + a0.ll = a; + b0.ll = b; - while (dividend >= divisor) { - /* The following asm() prevents the compiler from - optimising this loop into a modulo operation. */ - asm("" : "+rm"(dividend)); + rl.ll = mul_u32_u32(a0.l.low, b0.l.low); + rm.ll = mul_u32_u32(a0.l.low, b0.l.high); + rn.ll = mul_u32_u32(a0.l.high, b0.l.low); + rh.ll = mul_u32_u32(a0.l.high, b0.l.high); - dividend -= divisor; - ret++; - } + /* + * Each of these lines computes a 64-bit intermediate result into "c", + * starting at bits 32-95. The low 32-bits go into the result of the + * multiplication, the high 32-bits are carried into the next step. + */ + rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low; + rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low; + rh.l.high = (c >> 32) + rh.l.high; + + /* + * The 128-bit result of the multiplication is in rl.ll and rh.ll, + * shift it right and throw away the high part of the result. + */ + if (shift == 0) + return rl.ll; + if (shift < 64) + return (rl.ll >> shift) | (rh.ll << (64 - shift)); + return rh.ll >> (shift & 63); +} +#endif /* mul_u64_u64_shr */ - *remainder = dividend; +#endif + +#ifndef mul_s64_u64_shr +static inline u64 mul_s64_u64_shr(s64 a, u64 b, unsigned int shift) +{ + u64 ret; + + /* + * Extract the sign before the multiplication and put it back + * afterwards if needed. + */ + ret = mul_u64_u64_shr(abs(a), b, shift); + + if (a < 0) + ret = -((s64) ret); return ret; } +#endif /* mul_s64_u64_shr */ + +#ifndef mul_u64_u32_div +static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor) +{ + union { + u64 ll; + struct { +#ifdef __BIG_ENDIAN + u32 high, low; +#else + u32 low, high; +#endif + } l; + } u, rl, rh; + + u.ll = a; + rl.ll = mul_u32_u32(u.l.low, mul); + rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high; + /* Bits 32-63 of the result will be in rh.l.low. */ + rl.l.high = do_div(rh.ll, divisor); + + /* Bits 0-31 of the result will be in rl.l.low. */ + do_div(rl.ll, divisor); + + rl.l.high = rh.l.low; + return rl.ll; +} +#endif /* mul_u64_u32_div */ + +/** + * mul_u64_add_u64_div_u64 - unsigned 64bit multiply, add, and divide + * @a: first unsigned 64bit multiplicand + * @b: second unsigned 64bit multiplicand + * @c: unsigned 64bit addend + * @d: unsigned 64bit divisor + * + * Multiply two 64bit values together to generate a 128bit product + * add a third value and then divide by a fourth. + * The Generic code divides by 0 if @d is zero and returns ~0 on overflow. + * Architecture specific code may trap on zero or overflow. + * + * Return: (@a * @b + @c) / @d + */ +u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d); + +/** + * mul_u64_u64_div_u64 - unsigned 64bit multiply and divide + * @a: first unsigned 64bit multiplicand + * @b: second unsigned 64bit multiplicand + * @d: unsigned 64bit divisor + * + * Multiply two 64bit values together to generate a 128bit product + * and then divide by a third value. + * The Generic code divides by 0 if @d is zero and returns ~0 on overflow. + * Architecture specific code may trap on zero or overflow. + * + * Return: @a * @b / @d + */ +#define mul_u64_u64_div_u64(a, b, d) mul_u64_add_u64_div_u64(a, b, 0, d) + +/** + * mul_u64_u64_div_u64_roundup - unsigned 64bit multiply and divide rounded up + * @a: first unsigned 64bit multiplicand + * @b: second unsigned 64bit multiplicand + * @d: unsigned 64bit divisor + * + * Multiply two 64bit values together to generate a 128bit product + * and then divide and round up. + * The Generic code divides by 0 if @d is zero and returns ~0 on overflow. + * Architecture specific code may trap on zero or overflow. + * + * Return: (@a * @b + @d - 1) / @d + */ +#define mul_u64_u64_div_u64_roundup(a, b, d) \ + ({ u64 _tmp = (d); mul_u64_add_u64_div_u64(a, b, _tmp - 1, _tmp); }) + + +/** + * DIV64_U64_ROUND_UP - unsigned 64bit divide with 64bit divisor rounded up + * @ll: unsigned 64bit dividend + * @d: unsigned 64bit divisor + * + * Divide unsigned 64bit dividend by unsigned 64bit divisor + * and round up. + * + * Return: dividend / divisor rounded up + */ +#define DIV64_U64_ROUND_UP(ll, d) \ + ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); }) + +/** + * DIV_U64_ROUND_UP - unsigned 64bit divide with 32bit divisor rounded up + * @ll: unsigned 64bit dividend + * @d: unsigned 32bit divisor + * + * Divide unsigned 64bit dividend by unsigned 32bit divisor + * and round up. + * + * Return: dividend / divisor rounded up + */ +#define DIV_U64_ROUND_UP(ll, d) \ + ({ u32 _tmp = (d); div_u64((ll) + _tmp - 1, _tmp); }) + +/** + * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer + * @dividend: unsigned 64bit dividend + * @divisor: unsigned 64bit divisor + * + * Divide unsigned 64bit dividend by unsigned 64bit divisor + * and round to closest integer. + * + * Return: dividend / divisor rounded to nearest integer + */ +#define DIV64_U64_ROUND_CLOSEST(dividend, divisor) \ + ({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); }) + +/** + * DIV_U64_ROUND_CLOSEST - unsigned 64bit divide with 32bit divisor rounded to nearest integer + * @dividend: unsigned 64bit dividend + * @divisor: unsigned 32bit divisor + * + * Divide unsigned 64bit dividend by unsigned 32bit divisor + * and round to closest integer. + * + * Return: dividend / divisor rounded to nearest integer + */ +#define DIV_U64_ROUND_CLOSEST(dividend, divisor) \ + ({ u32 _tmp = (divisor); div_u64((u64)(dividend) + _tmp / 2, _tmp); }) + +/** + * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer + * @dividend: signed 64bit dividend + * @divisor: signed 32bit divisor + * + * Divide signed 64bit dividend by signed 32bit divisor + * and round to closest integer. + * + * Return: dividend / divisor rounded to nearest integer + */ +#define DIV_S64_ROUND_CLOSEST(dividend, divisor)( \ +{ \ + s64 __x = (dividend); \ + s32 __d = (divisor); \ + ((__x > 0) == (__d > 0)) ? \ + div_s64((__x + (__d / 2)), __d) : \ + div_s64((__x - (__d / 2)), __d); \ +} \ +) + +/** + * roundup_u64 - Round up a 64bit value to the next specified 32bit multiple + * @x: the value to up + * @y: 32bit multiple to round up to + * + * Rounds @x to the next multiple of @y. For 32bit @x values, see roundup and + * the faster round_up() for powers of 2. + * + * Return: rounded up value. + */ +static inline u64 roundup_u64(u64 x, u32 y) +{ + return DIV_U64_ROUND_UP(x, y) * y; +} #endif /* _LINUX_MATH64_H */ |
