diff options
Diffstat (limited to 'include/linux/perf_event.h')
| -rw-r--r-- | include/linux/perf_event.h | 1777 |
1 files changed, 1512 insertions, 265 deletions
diff --git a/include/linux/perf_event.h b/include/linux/perf_event.h index 8873f82c7baa..9870d768db4c 100644 --- a/include/linux/perf_event.h +++ b/include/linux/perf_event.h @@ -15,6 +15,7 @@ #define _LINUX_PERF_EVENT_H #include <uapi/linux/perf_event.h> +#include <uapi/linux/bpf_perf_event.h> /* * Kernel-internal data types and definitions: @@ -25,14 +26,9 @@ # include <asm/local64.h> #endif -struct perf_guest_info_callbacks { - int (*is_in_guest)(void); - int (*is_user_mode)(void); - unsigned long (*get_guest_ip)(void); -}; - #ifdef CONFIG_HAVE_HW_BREAKPOINT -#include <asm/hw_breakpoint.h> +# include <linux/rhashtable-types.h> +# include <asm/hw_breakpoint.h> #endif #include <linux/list.h> @@ -48,62 +44,78 @@ struct perf_guest_info_callbacks { #include <linux/cpu.h> #include <linux/irq_work.h> #include <linux/static_key.h> +#include <linux/jump_label_ratelimit.h> #include <linux/atomic.h> #include <linux/sysfs.h> #include <linux/perf_regs.h> +#include <linux/cgroup.h> +#include <linux/refcount.h> +#include <linux/security.h> +#include <linux/static_call.h> +#include <linux/lockdep.h> + #include <asm/local.h> struct perf_callchain_entry { - __u64 nr; - __u64 ip[PERF_MAX_STACK_DEPTH]; + u64 nr; + u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ }; +struct perf_callchain_entry_ctx { + struct perf_callchain_entry *entry; + u32 max_stack; + u32 nr; + short contexts; + bool contexts_maxed; +}; + +typedef unsigned long (*perf_copy_f)(void *dst, const void *src, + unsigned long off, unsigned long len); + +struct perf_raw_frag { + union { + struct perf_raw_frag *next; + unsigned long pad; + }; + perf_copy_f copy; + void *data; + u32 size; +} __packed; + struct perf_raw_record { + struct perf_raw_frag frag; u32 size; - void *data; }; -/* - * single taken branch record layout: - * - * from: source instruction (may not always be a branch insn) - * to: branch target - * mispred: branch target was mispredicted - * predicted: branch target was predicted - * - * support for mispred, predicted is optional. In case it - * is not supported mispred = predicted = 0. - * - * in_tx: running in a hardware transaction - * abort: aborting a hardware transaction - */ -struct perf_branch_entry { - __u64 from; - __u64 to; - __u64 mispred:1, /* target mispredicted */ - predicted:1,/* target predicted */ - in_tx:1, /* in transaction */ - abort:1, /* transaction abort */ - reserved:60; -}; +static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) +{ + return frag->pad < sizeof(u64); +} /* * branch stack layout: * nr: number of taken branches stored in entries[] + * hw_idx: The low level index of raw branch records + * for the most recent branch. + * -1ULL means invalid/unknown. * * Note that nr can vary from sample to sample * branches (to, from) are stored from most recent * to least recent, i.e., entries[0] contains the most * recent branch. + * The entries[] is an abstraction of raw branch records, + * which may not be stored in age order in HW, e.g. Intel LBR. + * The hw_idx is to expose the low level index of raw + * branch record for the most recent branch aka entries[0]. + * The hw_idx index is between -1 (unknown) and max depth, + * which can be retrieved in /sys/devices/cpu/caps/branches. + * For the architectures whose raw branch records are + * already stored in age order, the hw_idx should be 0. */ struct perf_branch_stack { - __u64 nr; - struct perf_branch_entry entries[0]; -}; - -struct perf_regs_user { - __u64 abi; - struct pt_regs *regs; + u64 nr; + u64 hw_idx; + struct perf_branch_entry entries[]; }; struct task_struct; @@ -112,13 +124,22 @@ struct task_struct; * extra PMU register associated with an event */ struct hw_perf_event_extra { - u64 config; /* register value */ - unsigned int reg; /* register address or index */ - int alloc; /* extra register already allocated */ - int idx; /* index in shared_regs->regs[] */ + u64 config; /* register value */ + unsigned int reg; /* register address or index */ + int alloc; /* extra register already allocated */ + int idx; /* index in shared_regs->regs[] */ }; -struct event_constraint; +/** + * hw_perf_event::flag values + * + * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific + * usage. + */ +#define PERF_EVENT_FLAG_ARCH 0x0fffffff +#define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 + +static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0); /** * struct hw_perf_event - performance event hardware details: @@ -128,7 +149,9 @@ struct hw_perf_event { union { struct { /* hardware */ u64 config; + u64 config1; u64 last_tag; + u64 dyn_constraint; unsigned long config_base; unsigned long event_base; int event_base_rdpmc; @@ -138,17 +161,27 @@ struct hw_perf_event { struct hw_perf_event_extra extra_reg; struct hw_perf_event_extra branch_reg; - - struct event_constraint *constraint; + }; + struct { /* aux / Intel-PT */ + u64 aux_config; + /* + * For AUX area events, aux_paused cannot be a state + * flag because it can be updated asynchronously to + * state. + */ + unsigned int aux_paused; }; struct { /* software */ struct hrtimer hrtimer; }; struct { /* tracepoint */ - struct task_struct *tp_target; /* for tp_event->class */ struct list_head tp_list; }; + struct { /* amd_power */ + u64 pwr_acc; + u64 ptsc; + }; #ifdef CONFIG_HAVE_HW_BREAKPOINT struct { /* breakpoint */ /* @@ -156,38 +189,139 @@ struct hw_perf_event { * problem hw_breakpoint has with context * creation and event initalization. */ - struct task_struct *bp_target; struct arch_hw_breakpoint info; - struct list_head bp_list; + struct rhlist_head bp_list; }; #endif + struct { /* amd_iommu */ + u8 iommu_bank; + u8 iommu_cntr; + u16 padding; + u64 conf; + u64 conf1; + }; }; + /* + * If the event is a per task event, this will point to the task in + * question. See the comment in perf_event_alloc(). + */ + struct task_struct *target; + + /* + * PMU would store hardware filter configuration + * here. + */ + void *addr_filters; + + /* Last sync'ed generation of filters */ + unsigned long addr_filters_gen; + +/* + * hw_perf_event::state flags; used to track the PERF_EF_* state. + */ + +/* the counter is stopped */ +#define PERF_HES_STOPPED 0x01 + +/* event->count up-to-date */ +#define PERF_HES_UPTODATE 0x02 + +#define PERF_HES_ARCH 0x04 + int state; + + /* + * The last observed hardware counter value, updated with a + * local64_cmpxchg() such that pmu::read() can be called nested. + */ local64_t prev_count; + + /* + * The period to start the next sample with. + */ u64 sample_period; - u64 last_period; - local64_t period_left; + + union { + struct { /* Sampling */ + /* + * The period we started this sample with. + */ + u64 last_period; + + /* + * However much is left of the current period; + * note that this is a full 64bit value and + * allows for generation of periods longer + * than hardware might allow. + */ + local64_t period_left; + }; + struct { /* Topdown events counting for context switch */ + u64 saved_metric; + u64 saved_slots; + }; + }; + + /* + * State for throttling the event, see __perf_event_overflow() and + * perf_adjust_freq_unthr_context(). + */ u64 interrupts_seq; u64 interrupts; + /* + * State for freq target events, see __perf_event_overflow() and + * perf_adjust_freq_unthr_context(). + */ u64 freq_time_stamp; u64 freq_count_stamp; -#endif +#endif /* CONFIG_PERF_EVENTS */ }; -/* - * hw_perf_event::state flags - */ -#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ -#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ -#define PERF_HES_ARCH 0x04 - struct perf_event; +struct perf_event_pmu_context; /* * Common implementation detail of pmu::{start,commit,cancel}_txn */ -#define PERF_EVENT_TXN 0x1 + +/* txn to add/schedule event on PMU */ +#define PERF_PMU_TXN_ADD 0x1 + +/* txn to read event group from PMU */ +#define PERF_PMU_TXN_READ 0x2 + +/** + * pmu::capabilities flags + */ +#define PERF_PMU_CAP_NO_INTERRUPT 0x0001 +#define PERF_PMU_CAP_NO_NMI 0x0002 +#define PERF_PMU_CAP_AUX_NO_SG 0x0004 +#define PERF_PMU_CAP_EXTENDED_REGS 0x0008 +#define PERF_PMU_CAP_EXCLUSIVE 0x0010 +#define PERF_PMU_CAP_ITRACE 0x0020 +#define PERF_PMU_CAP_NO_EXCLUDE 0x0040 +#define PERF_PMU_CAP_AUX_OUTPUT 0x0080 +#define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0100 +#define PERF_PMU_CAP_AUX_PAUSE 0x0200 +#define PERF_PMU_CAP_AUX_PREFER_LARGE 0x0400 + +/** + * pmu::scope + */ +enum perf_pmu_scope { + PERF_PMU_SCOPE_NONE = 0, + PERF_PMU_SCOPE_CORE, + PERF_PMU_SCOPE_DIE, + PERF_PMU_SCOPE_CLUSTER, + PERF_PMU_SCOPE_PKG, + PERF_PMU_SCOPE_SYS_WIDE, + PERF_PMU_MAX_SCOPE, +}; + +struct perf_output_handle; + +#define PMU_NULL_DEV ((void *)(~0UL)) /** * struct pmu - generic performance monitoring unit @@ -195,16 +329,35 @@ struct perf_event; struct pmu { struct list_head entry; + spinlock_t events_lock; + struct list_head events; + + struct module *module; struct device *dev; + struct device *parent; const struct attribute_group **attr_groups; + const struct attribute_group **attr_update; const char *name; int type; - int * __percpu pmu_disable_count; - struct perf_cpu_context * __percpu pmu_cpu_context; + /* + * various common per-pmu feature flags + */ + int capabilities; + + /* + * PMU scope + */ + unsigned int scope; + + struct perf_cpu_pmu_context * __percpu *cpu_pmu_context; + atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ int task_ctx_nr; int hrtimer_interval_ms; + /* number of address filters this PMU can do */ + unsigned int nr_addr_filters; + /* * Fully disable/enable this PMU, can be used to protect from the PMI * as well as for lazy/batch writing of the MSRs. @@ -214,31 +367,108 @@ struct pmu { /* * Try and initialize the event for this PMU. - * Should return -ENOENT when the @event doesn't match this PMU. + * + * Returns: + * -ENOENT -- @event is not for this PMU + * + * -ENODEV -- @event is for this PMU but PMU not present + * -EBUSY -- @event is for this PMU but PMU temporarily unavailable + * -EINVAL -- @event is for this PMU but @event is not valid + * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported + * -EACCES -- @event is for this PMU, @event is valid, but no privileges + * + * 0 -- @event is for this PMU and valid + * + * Other error return values are allowed. */ int (*event_init) (struct perf_event *event); -#define PERF_EF_START 0x01 /* start the counter when adding */ -#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ -#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ + /* + * Notification that the event was mapped or unmapped. Called + * in the context of the mapping task. + */ + void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ + void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ /* - * Adds/Removes a counter to/from the PMU, can be done inside - * a transaction, see the ->*_txn() methods. + * Flags for ->add()/->del()/ ->start()/->stop(). There are + * matching hw_perf_event::state flags. + */ + +/* start the counter when adding */ +#define PERF_EF_START 0x01 + +/* reload the counter when starting */ +#define PERF_EF_RELOAD 0x02 + +/* update the counter when stopping */ +#define PERF_EF_UPDATE 0x04 + +/* AUX area event, pause tracing */ +#define PERF_EF_PAUSE 0x08 + +/* AUX area event, resume tracing */ +#define PERF_EF_RESUME 0x10 + + /* + * Adds/Removes a counter to/from the PMU, can be done inside a + * transaction, see the ->*_txn() methods. + * + * The add/del callbacks will reserve all hardware resources required + * to service the event, this includes any counter constraint + * scheduling etc. + * + * Called with IRQs disabled and the PMU disabled on the CPU the event + * is on. + * + * ->add() called without PERF_EF_START should result in the same state + * as ->add() followed by ->stop(). + * + * ->del() must always PERF_EF_UPDATE stop an event. If it calls + * ->stop() that must deal with already being stopped without + * PERF_EF_UPDATE. */ int (*add) (struct perf_event *event, int flags); void (*del) (struct perf_event *event, int flags); /* - * Starts/Stops a counter present on the PMU. The PMI handler - * should stop the counter when perf_event_overflow() returns - * !0. ->start() will be used to continue. + * Starts/Stops a counter present on the PMU. + * + * The PMI handler should stop the counter when perf_event_overflow() + * returns !0. ->start() will be used to continue. + * + * Also used to change the sample period. + * + * Called with IRQs disabled and the PMU disabled on the CPU the event + * is on -- will be called from NMI context with the PMU generates + * NMIs. + * + * ->stop() with PERF_EF_UPDATE will read the counter and update + * period/count values like ->read() would. + * + * ->start() with PERF_EF_RELOAD will reprogram the counter + * value, must be preceded by a ->stop() with PERF_EF_UPDATE. + * + * ->stop() with PERF_EF_PAUSE will stop as simply as possible. Will not + * overlap another ->stop() with PERF_EF_PAUSE nor ->start() with + * PERF_EF_RESUME. + * + * ->start() with PERF_EF_RESUME will start as simply as possible but + * only if the counter is not otherwise stopped. Will not overlap + * another ->start() with PERF_EF_RESUME nor ->stop() with + * PERF_EF_PAUSE. + * + * Notably, PERF_EF_PAUSE/PERF_EF_RESUME *can* be concurrent with other + * ->stop()/->start() invocations, just not itself. */ void (*start) (struct perf_event *event, int flags); void (*stop) (struct perf_event *event, int flags); /* * Updates the counter value of the event. + * + * For sampling capable PMUs this will also update the software period + * hw_perf_event::period_left field. */ void (*read) (struct perf_event *event); @@ -249,38 +479,208 @@ struct pmu { * * Start the transaction, after this ->add() doesn't need to * do schedulability tests. + * + * Optional. */ - void (*start_txn) (struct pmu *pmu); /* optional */ + void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); /* * If ->start_txn() disabled the ->add() schedulability test * then ->commit_txn() is required to perform one. On success * the transaction is closed. On error the transaction is kept * open until ->cancel_txn() is called. + * + * Optional. */ - int (*commit_txn) (struct pmu *pmu); /* optional */ + int (*commit_txn) (struct pmu *pmu); /* * Will cancel the transaction, assumes ->del() is called * for each successful ->add() during the transaction. + * + * Optional. */ - void (*cancel_txn) (struct pmu *pmu); /* optional */ + void (*cancel_txn) (struct pmu *pmu); /* * Will return the value for perf_event_mmap_page::index for this event, - * if no implementation is provided it will default to: event->hw.idx + 1. + * if no implementation is provided it will default to 0 (see + * perf_event_idx_default). */ int (*event_idx) (struct perf_event *event); /*optional */ /* - * flush branch stack on context-switches (needed in cpu-wide mode) + * context-switches callback + */ + void (*sched_task) (struct perf_event_pmu_context *pmu_ctx, + struct task_struct *task, bool sched_in); + + /* + * Kmem cache of PMU specific data */ - void (*flush_branch_stack) (void); + struct kmem_cache *task_ctx_cache; + + /* + * Set up pmu-private data structures for an AUX area + */ + void *(*setup_aux) (struct perf_event *event, void **pages, + int nr_pages, bool overwrite); + /* optional */ + + /* + * Free pmu-private AUX data structures + */ + void (*free_aux) (void *aux); /* optional */ + + /* + * Take a snapshot of the AUX buffer without touching the event + * state, so that preempting ->start()/->stop() callbacks does + * not interfere with their logic. Called in PMI context. + * + * Returns the size of AUX data copied to the output handle. + * + * Optional. + */ + long (*snapshot_aux) (struct perf_event *event, + struct perf_output_handle *handle, + unsigned long size); + + /* + * Validate address range filters: make sure the HW supports the + * requested configuration and number of filters; return 0 if the + * supplied filters are valid, -errno otherwise. + * + * Runs in the context of the ioctl()ing process and is not serialized + * with the rest of the PMU callbacks. + */ + int (*addr_filters_validate) (struct list_head *filters); + /* optional */ + + /* + * Synchronize address range filter configuration: + * translate hw-agnostic filters into hardware configuration in + * event::hw::addr_filters. + * + * Runs as a part of filter sync sequence that is done in ->start() + * callback by calling perf_event_addr_filters_sync(). + * + * May (and should) traverse event::addr_filters::list, for which its + * caller provides necessary serialization. + */ + void (*addr_filters_sync) (struct perf_event *event); + /* optional */ + + /* + * Check if event can be used for aux_output purposes for + * events of this PMU. + * + * Runs from perf_event_open(). Should return 0 for "no match" + * or non-zero for "match". + */ + int (*aux_output_match) (struct perf_event *event); + /* optional */ + + /* + * Skip programming this PMU on the given CPU. Typically needed for + * big.LITTLE things. + */ + bool (*filter) (struct pmu *pmu, int cpu); /* optional */ + + /* + * Check period value for PERF_EVENT_IOC_PERIOD ioctl. + */ + int (*check_period) (struct perf_event *event, u64 value); /* optional */ +}; + +enum perf_addr_filter_action_t { + PERF_ADDR_FILTER_ACTION_STOP = 0, + PERF_ADDR_FILTER_ACTION_START, + PERF_ADDR_FILTER_ACTION_FILTER, }; /** - * enum perf_event_active_state - the states of a event + * struct perf_addr_filter - address range filter definition + * @entry: event's filter list linkage + * @path: object file's path for file-based filters + * @offset: filter range offset + * @size: filter range size (size==0 means single address trigger) + * @action: filter/start/stop + * + * This is a hardware-agnostic filter configuration as specified by the user. + */ +struct perf_addr_filter { + struct list_head entry; + struct path path; + unsigned long offset; + unsigned long size; + enum perf_addr_filter_action_t action; +}; + +/** + * struct perf_addr_filters_head - container for address range filters + * @list: list of filters for this event + * @lock: spinlock that serializes accesses to the @list and event's + * (and its children's) filter generations. + * @nr_file_filters: number of file-based filters + * + * A child event will use parent's @list (and therefore @lock), so they are + * bundled together; see perf_event_addr_filters(). + */ +struct perf_addr_filters_head { + struct list_head list; + raw_spinlock_t lock; + unsigned int nr_file_filters; +}; + +struct perf_addr_filter_range { + unsigned long start; + unsigned long size; +}; + +/* + * The normal states are: + * + * ACTIVE --. + * ^ | + * | | + * sched_{in,out}() | + * | | + * v | + * ,---> INACTIVE --+ <-. + * | | | + * | {dis,en}able() + * sched_in() | | + * | OFF <--' --+ + * | | + * `---> ERROR ------' + * + * That is: + * + * sched_in: INACTIVE -> {ACTIVE,ERROR} + * sched_out: ACTIVE -> INACTIVE + * disable: {ACTIVE,INACTIVE} -> OFF + * enable: {OFF,ERROR} -> INACTIVE + * + * Where {OFF,ERROR} are disabled states. + * + * Then we have the {EXIT,REVOKED,DEAD} states which are various shades of + * defunct events: + * + * - EXIT means task that the even was assigned to died, but child events + * still live, and further children can still be created. But the event + * itself will never be active again. It can only transition to + * {REVOKED,DEAD}; + * + * - REVOKED means the PMU the event was associated with is gone; all + * functionality is stopped but the event is still alive. Can only + * transition to DEAD; + * + * - DEAD event really is DYING tearing down state and freeing bits. + * */ -enum perf_event_active_state { - PERF_EVENT_STATE_ERROR = -2, +enum perf_event_state { + PERF_EVENT_STATE_DEAD = -5, + PERF_EVENT_STATE_REVOKED = -4, /* pmu gone, must not touch */ + PERF_EVENT_STATE_EXIT = -3, /* task died, still inherit */ + PERF_EVENT_STATE_ERROR = -2, /* scheduling error, can enable */ PERF_EVENT_STATE_OFF = -1, PERF_EVENT_STATE_INACTIVE = 0, PERF_EVENT_STATE_ACTIVE = 1, @@ -293,9 +693,22 @@ typedef void (*perf_overflow_handler_t)(struct perf_event *, struct perf_sample_data *, struct pt_regs *regs); -enum perf_group_flag { - PERF_GROUP_SOFTWARE = 0x1, -}; +/* + * Event capabilities. For event_caps and groups caps. + * + * PERF_EV_CAP_SOFTWARE: Is a software event. + * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read + * from any CPU in the package where it is active. + * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and + * cannot be a group leader. If an event with this flag is detached from the + * group it is scheduled out and moved into an unrecoverable ERROR state. + * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the + * PMU scope where it is active. + */ +#define PERF_EV_CAP_SOFTWARE BIT(0) +#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) +#define PERF_EV_CAP_SIBLING BIT(2) +#define PERF_EV_CAP_READ_SCOPE BIT(3) #define SWEVENT_HLIST_BITS 8 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) @@ -305,28 +718,96 @@ struct swevent_hlist { struct rcu_head rcu_head; }; -#define PERF_ATTACH_CONTEXT 0x01 -#define PERF_ATTACH_GROUP 0x02 -#define PERF_ATTACH_TASK 0x04 - +#define PERF_ATTACH_CONTEXT 0x0001 +#define PERF_ATTACH_GROUP 0x0002 +#define PERF_ATTACH_TASK 0x0004 +#define PERF_ATTACH_TASK_DATA 0x0008 +#define PERF_ATTACH_GLOBAL_DATA 0x0010 +#define PERF_ATTACH_SCHED_CB 0x0020 +#define PERF_ATTACH_CHILD 0x0040 +#define PERF_ATTACH_EXCLUSIVE 0x0080 +#define PERF_ATTACH_CALLCHAIN 0x0100 +#define PERF_ATTACH_ITRACE 0x0200 + +struct bpf_prog; struct perf_cgroup; -struct ring_buffer; +struct perf_buffer; + +struct pmu_event_list { + raw_spinlock_t lock; + struct list_head list; +}; + +/* + * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex + * as such iteration must hold either lock. However, since ctx->lock is an IRQ + * safe lock, and is only held by the CPU doing the modification, having IRQs + * disabled is sufficient since it will hold-off the IPIs. + */ +#ifdef CONFIG_PROVE_LOCKING +# define lockdep_assert_event_ctx(event) \ + WARN_ON_ONCE(__lockdep_enabled && \ + (this_cpu_read(hardirqs_enabled) && \ + lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD)) +#else +# define lockdep_assert_event_ctx(event) +#endif + +#define for_each_sibling_event(sibling, event) \ + lockdep_assert_event_ctx(event); \ + if ((event)->group_leader == (event)) \ + list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) /** * struct perf_event - performance event kernel representation: */ struct perf_event { #ifdef CONFIG_PERF_EVENTS - struct list_head group_entry; + /* + * entry onto perf_event_context::event_list; + * modifications require ctx->lock + * RCU safe iterations. + */ struct list_head event_entry; + + /* + * Locked for modification by both ctx->mutex and ctx->lock; holding + * either sufficies for read. + */ struct list_head sibling_list; + struct list_head active_list; + /* + * Node on the pinned or flexible tree located at the event context; + */ + struct rb_node group_node; + u64 group_index; + /* + * We need storage to track the entries in perf_pmu_migrate_context; we + * cannot use the event_entry because of RCU and we want to keep the + * group in tact which avoids us using the other two entries. + */ + struct list_head migrate_entry; + struct hlist_node hlist_entry; + struct list_head active_entry; int nr_siblings; - int group_flags; + + /* Not serialized. Only written during event initialization. */ + int event_caps; + /* The cumulative AND of all event_caps for events in this group. */ + int group_caps; + + unsigned int group_generation; struct perf_event *group_leader; + /* + * event->pmu will always point to pmu in which this event belongs. + * Whereas event->pmu_ctx->pmu may point to other pmu when group of + * different pmu events is created. + */ struct pmu *pmu; + void *pmu_private; - enum perf_event_active_state state; + enum perf_event_state state; unsigned int attach_state; local64_t count; atomic64_t child_count; @@ -336,36 +817,10 @@ struct perf_event { * has been enabled (i.e. eligible to run, and the task has * been scheduled in, if this is a per-task event) * and running (scheduled onto the CPU), respectively. - * - * They are computed from tstamp_enabled, tstamp_running and - * tstamp_stopped when the event is in INACTIVE or ACTIVE state. */ u64 total_time_enabled; u64 total_time_running; - - /* - * These are timestamps used for computing total_time_enabled - * and total_time_running when the event is in INACTIVE or - * ACTIVE state, measured in nanoseconds from an arbitrary point - * in time. - * tstamp_enabled: the notional time when the event was enabled - * tstamp_running: the notional time when the event was scheduled on - * tstamp_stopped: in INACTIVE state, the notional time when the - * event was scheduled off. - */ - u64 tstamp_enabled; - u64 tstamp_running; - u64 tstamp_stopped; - - /* - * timestamp shadows the actual context timing but it can - * be safely used in NMI interrupt context. It reflects the - * context time as it was when the event was last scheduled in. - * - * ctx_time already accounts for ctx->timestamp. Therefore to - * compute ctx_time for a sample, simply add perf_clock(). - */ - u64 shadow_ctx_time; + u64 tstamp; struct perf_event_attr attr; u16 header_size; @@ -374,6 +829,12 @@ struct perf_event { struct hw_perf_event hw; struct perf_event_context *ctx; + /* + * event->pmu_ctx points to perf_event_pmu_context in which the event + * is added. This pmu_ctx can be of other pmu for sw event when that + * sw event is part of a group which also contains non-sw events. + */ + struct perf_event_pmu_context *pmu_ctx; atomic_long_t refcount; /* @@ -398,61 +859,152 @@ struct perf_event { /* mmap bits */ struct mutex mmap_mutex; - atomic_t mmap_count; + refcount_t mmap_count; - struct ring_buffer *rb; + struct perf_buffer *rb; struct list_head rb_entry; + unsigned long rcu_batches; + int rcu_pending; /* poll related */ wait_queue_head_t waitq; struct fasync_struct *fasync; /* delayed work for NMIs and such */ - int pending_wakeup; - int pending_kill; - int pending_disable; - struct irq_work pending; + unsigned int pending_wakeup; + unsigned int pending_kill; + unsigned int pending_disable; + unsigned long pending_addr; /* SIGTRAP */ + struct irq_work pending_irq; + struct irq_work pending_disable_irq; + struct callback_head pending_task; + unsigned int pending_work; atomic_t event_limit; + /* address range filters */ + struct perf_addr_filters_head addr_filters; + /* vma address array for file-based filders */ + struct perf_addr_filter_range *addr_filter_ranges; + unsigned long addr_filters_gen; + + /* for aux_output events */ + struct perf_event *aux_event; + void (*destroy)(struct perf_event *); struct rcu_head rcu_head; struct pid_namespace *ns; u64 id; + atomic64_t lost_samples; + + u64 (*clock)(void); perf_overflow_handler_t overflow_handler; void *overflow_handler_context; + struct bpf_prog *prog; + u64 bpf_cookie; #ifdef CONFIG_EVENT_TRACING - struct ftrace_event_call *tp_event; + struct trace_event_call *tp_event; struct event_filter *filter; -#ifdef CONFIG_FUNCTION_TRACER +# ifdef CONFIG_FUNCTION_TRACER struct ftrace_ops ftrace_ops; -#endif +# endif #endif #ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; /* cgroup event is attach to */ - int cgrp_defer_enabled; #endif +#ifdef CONFIG_SECURITY + void *security; +#endif + struct list_head sb_list; + struct list_head pmu_list; + + /* + * Certain events gets forwarded to another pmu internally by over- + * writing kernel copy of event->attr.type without user being aware + * of it. event->orig_type contains original 'type' requested by + * user. + */ + u32 orig_type; #endif /* CONFIG_PERF_EVENTS */ }; -enum perf_event_context_type { - task_context, - cpu_context, +/* + * ,-----------------------[1:n]------------------------. + * V V + * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event + * | | + * `--[n:1]-> pmu <-[1:n]--' + * + * + * struct perf_event_pmu_context lifetime is refcount based and RCU freed + * (similar to perf_event_context). Locking is as if it were a member of + * perf_event_context; specifically: + * + * modification, both: ctx->mutex && ctx->lock + * reading, either: ctx->mutex || ctx->lock + * + * There is one exception to this; namely put_pmu_ctx() isn't always called + * with ctx->mutex held; this means that as long as we can guarantee the epc + * has events the above rules hold. + * + * Specificially, sys_perf_event_open()'s group_leader case depends on + * ctx->mutex pinning the configuration. Since we hold a reference on + * group_leader (through the filedesc) it can't go away, therefore it's + * associated pmu_ctx must exist and cannot change due to ctx->mutex. + * + * perf_event holds a refcount on perf_event_context + * perf_event holds a refcount on perf_event_pmu_context + */ +struct perf_event_pmu_context { + struct pmu *pmu; + struct perf_event_context *ctx; + + struct list_head pmu_ctx_entry; + + struct list_head pinned_active; + struct list_head flexible_active; + + /* Used to identify the per-cpu perf_event_pmu_context */ + unsigned int embedded : 1; + + unsigned int nr_events; + unsigned int nr_cgroups; + unsigned int nr_freq; + + atomic_t refcount; /* event <-> epc */ + struct rcu_head rcu_head; + + /* + * Set when one or more (plausibly active) event can't be scheduled + * due to pmu overcommit or pmu constraints, except tolerant to + * events not necessary to be active due to scheduling constraints, + * such as cgroups. + */ + int rotate_necessary; +}; + +static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc) +{ + return !list_empty(&epc->flexible_active) || !list_empty(&epc->pinned_active); +} + +struct perf_event_groups { + struct rb_root tree; + u64 index; }; + /** * struct perf_event_context - event context structure * * Used as a container for task events and CPU events as well: */ struct perf_event_context { - struct pmu *pmu; - enum perf_event_context_type type; /* * Protect the states of the events in the list, * nr_active, and the list: @@ -465,16 +1017,20 @@ struct perf_event_context { */ struct mutex mutex; - struct list_head pinned_groups; - struct list_head flexible_groups; + struct list_head pmu_ctx_list; + struct perf_event_groups pinned_groups; + struct perf_event_groups flexible_groups; struct list_head event_list; + int nr_events; - int nr_active; + int nr_user; int is_active; + int nr_stat; int nr_freq; int rotate_disable; - atomic_t refcount; + + refcount_t refcount; /* event <-> ctx */ struct task_struct *task; /* @@ -482,6 +1038,7 @@ struct perf_event_context { */ u64 time; u64 timestamp; + u64 timeoffset; /* * These fields let us detect when two contexts have both @@ -491,16 +1048,75 @@ struct perf_event_context { u64 parent_gen; u64 generation; int pin_count; +#ifdef CONFIG_CGROUP_PERF int nr_cgroups; /* cgroup evts */ - int nr_branch_stack; /* branch_stack evt */ +#endif struct rcu_head rcu_head; + + /* + * The count of events for which using the switch-out fast path + * should be avoided. + * + * Sum (event->pending_work + events with + * (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))) + * + * The SIGTRAP is targeted at ctx->task, as such it won't do changing + * that until the signal is delivered. + */ + local_t nr_no_switch_fast; }; -/* - * Number of contexts where an event can trigger: - * task, softirq, hardirq, nmi. +/** + * struct perf_ctx_data - PMU specific data for a task + * @rcu_head: To avoid the race on free PMU specific data + * @refcount: To track users + * @global: To track system-wide users + * @ctx_cache: Kmem cache of PMU specific data + * @data: PMU specific data + * + * Currently, the struct is only used in Intel LBR call stack mode to + * save/restore the call stack of a task on context switches. + * + * The rcu_head is used to prevent the race on free the data. + * The data only be allocated when Intel LBR call stack mode is enabled. + * The data will be freed when the mode is disabled. + * The content of the data will only be accessed in context switch, which + * should be protected by rcu_read_lock(). + * + * Because of the alignment requirement of Intel Arch LBR, the Kmem cache + * is used to allocate the PMU specific data. The ctx_cache is to track + * the Kmem cache. + * + * Careful: Struct perf_ctx_data is added as a pointer in struct task_struct. + * When system-wide Intel LBR call stack mode is enabled, a buffer with + * constant size will be allocated for each task. + * Also, system memory consumption can further grow when the size of + * struct perf_ctx_data enlarges. */ -#define PERF_NR_CONTEXTS 4 +struct perf_ctx_data { + struct rcu_head rcu_head; + refcount_t refcount; + int global; + struct kmem_cache *ctx_cache; + void *data; +}; + +struct perf_cpu_pmu_context { + struct perf_event_pmu_context epc; + struct perf_event_pmu_context *task_epc; + + struct list_head sched_cb_entry; + int sched_cb_usage; + + int active_oncpu; + int exclusive; + int pmu_disable_count; + + raw_spinlock_t hrtimer_lock; + struct hrtimer hrtimer; + ktime_t hrtimer_interval; + unsigned int hrtimer_active; +}; /** * struct perf_event_cpu_context - per cpu event context structure @@ -508,105 +1124,366 @@ struct perf_event_context { struct perf_cpu_context { struct perf_event_context ctx; struct perf_event_context *task_ctx; - int active_oncpu; - int exclusive; - struct hrtimer hrtimer; - ktime_t hrtimer_interval; - struct list_head rotation_list; - struct pmu *unique_pmu; + int online; + +#ifdef CONFIG_CGROUP_PERF struct perf_cgroup *cgrp; +#endif + + /* + * Per-CPU storage for iterators used in visit_groups_merge. The default + * storage is of size 2 to hold the CPU and any CPU event iterators. + */ + int heap_size; + struct perf_event **heap; + struct perf_event *heap_default[2]; }; struct perf_output_handle { struct perf_event *event; - struct ring_buffer *rb; + struct perf_buffer *rb; unsigned long wakeup; unsigned long size; - void *addr; + union { + u64 flags; /* perf_output*() */ + u64 aux_flags; /* perf_aux_output*() */ + struct { + u64 skip_read : 1; + }; + }; + union { + void *addr; + unsigned long head; + }; int page; }; +struct bpf_perf_event_data_kern { + bpf_user_pt_regs_t *regs; + struct perf_sample_data *data; + struct perf_event *event; +}; + +#ifdef CONFIG_CGROUP_PERF + +/* + * perf_cgroup_info keeps track of time_enabled for a cgroup. + * This is a per-cpu dynamically allocated data structure. + */ +struct perf_cgroup_info { + u64 time; + u64 timestamp; + u64 timeoffset; + int active; +}; + +struct perf_cgroup { + struct cgroup_subsys_state css; + struct perf_cgroup_info __percpu *info; +}; + +/* + * Must ensure cgroup is pinned (css_get) before calling + * this function. In other words, we cannot call this function + * if there is no cgroup event for the current CPU context. + */ +static inline struct perf_cgroup * +perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) +{ + return container_of(task_css_check(task, perf_event_cgrp_id, + ctx ? lockdep_is_held(&ctx->lock) + : true), + struct perf_cgroup, css); +} +#endif /* CONFIG_CGROUP_PERF */ + #ifdef CONFIG_PERF_EVENTS +extern struct perf_event_context *perf_cpu_task_ctx(void); + +extern void *perf_aux_output_begin(struct perf_output_handle *handle, + struct perf_event *event); +extern void perf_aux_output_end(struct perf_output_handle *handle, + unsigned long size); +extern int perf_aux_output_skip(struct perf_output_handle *handle, + unsigned long size); +extern void *perf_get_aux(struct perf_output_handle *handle); +extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); +extern void perf_event_itrace_started(struct perf_event *event); + extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); -extern void perf_pmu_unregister(struct pmu *pmu); +extern int perf_pmu_unregister(struct pmu *pmu); -extern int perf_num_counters(void); -extern const char *perf_pmu_name(void); extern void __perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task); extern void __perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next); -extern int perf_event_init_task(struct task_struct *child); +extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); extern void perf_event_exit_task(struct task_struct *child); extern void perf_event_free_task(struct task_struct *task); extern void perf_event_delayed_put(struct task_struct *task); +extern struct file *perf_event_get(unsigned int fd); +extern const struct perf_event *perf_get_event(struct file *file); +extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); extern void perf_event_print_debug(void); extern void perf_pmu_disable(struct pmu *pmu); extern void perf_pmu_enable(struct pmu *pmu); +extern void perf_sched_cb_dec(struct pmu *pmu); +extern void perf_sched_cb_inc(struct pmu *pmu); extern int perf_event_task_disable(void); extern int perf_event_task_enable(void); + +extern void perf_pmu_resched(struct pmu *pmu); + extern int perf_event_refresh(struct perf_event *event, int refresh); extern void perf_event_update_userpage(struct perf_event *event); extern int perf_event_release_kernel(struct perf_event *event); + extern struct perf_event * perf_event_create_kernel_counter(struct perf_event_attr *attr, - int cpu, - struct task_struct *task, - perf_overflow_handler_t callback, - void *context); + int cpu, + struct task_struct *task, + perf_overflow_handler_t callback, + void *context); + extern void perf_pmu_migrate_context(struct pmu *pmu, - int src_cpu, int dst_cpu); + int src_cpu, int dst_cpu); +extern int perf_event_read_local(struct perf_event *event, u64 *value, + u64 *enabled, u64 *running); extern u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running); +extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); + +static inline bool branch_sample_no_flags(const struct perf_event *event) +{ + return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS; +} + +static inline bool branch_sample_no_cycles(const struct perf_event *event) +{ + return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES; +} + +static inline bool branch_sample_type(const struct perf_event *event) +{ + return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE; +} + +static inline bool branch_sample_hw_index(const struct perf_event *event) +{ + return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; +} + +static inline bool branch_sample_priv(const struct perf_event *event) +{ + return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE; +} + +static inline bool branch_sample_counters(const struct perf_event *event) +{ + return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS; +} + +static inline bool branch_sample_call_stack(const struct perf_event *event) +{ + return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK; +} struct perf_sample_data { - u64 type; + /* + * Fields set by perf_sample_data_init() unconditionally, + * group so as to minimize the cachelines touched. + */ + u64 sample_flags; + u64 period; + u64 dyn_size; - u64 ip; + /* + * Fields commonly set by __perf_event_header__init_id(), + * group so as to minimize the cachelines touched. + */ + u64 type; struct { u32 pid; u32 tid; } tid_entry; u64 time; - u64 addr; u64 id; - u64 stream_id; struct { u32 cpu; u32 reserved; } cpu_entry; - u64 period; - union perf_mem_data_src data_src; + + /* + * The other fields, optionally {set,used} by + * perf_{prepare,output}_sample(). + */ + u64 ip; struct perf_callchain_entry *callchain; struct perf_raw_record *raw; struct perf_branch_stack *br_stack; - struct perf_regs_user regs_user; + u64 *br_stack_cntr; + union perf_sample_weight weight; + union perf_mem_data_src data_src; + u64 txn; + + struct perf_regs regs_user; + struct perf_regs regs_intr; u64 stack_user_size; - u64 weight; -}; + + u64 stream_id; + u64 cgroup; + u64 addr; + u64 phys_addr; + u64 data_page_size; + u64 code_page_size; + u64 aux_size; +} ____cacheline_aligned; + +/* default value for data source */ +#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ + PERF_MEM_S(LVL, NA) |\ + PERF_MEM_S(SNOOP, NA) |\ + PERF_MEM_S(LOCK, NA) |\ + PERF_MEM_S(TLB, NA) |\ + PERF_MEM_S(LVLNUM, NA)) static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr, u64 period) { /* remaining struct members initialized in perf_prepare_sample() */ - data->addr = addr; - data->raw = NULL; - data->br_stack = NULL; + data->sample_flags = PERF_SAMPLE_PERIOD; data->period = period; - data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE; - data->regs_user.regs = NULL; - data->stack_user_size = 0; - data->weight = 0; - data->data_src.val = 0; + data->dyn_size = 0; + + if (addr) { + data->addr = addr; + data->sample_flags |= PERF_SAMPLE_ADDR; + } +} + +static inline void perf_sample_save_callchain(struct perf_sample_data *data, + struct perf_event *event, + struct pt_regs *regs) +{ + int size = 1; + + if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) + return; + if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) + return; + + data->callchain = perf_callchain(event, regs); + size += data->callchain->nr; + + data->dyn_size += size * sizeof(u64); + data->sample_flags |= PERF_SAMPLE_CALLCHAIN; +} + +static inline void perf_sample_save_raw_data(struct perf_sample_data *data, + struct perf_event *event, + struct perf_raw_record *raw) +{ + struct perf_raw_frag *frag = &raw->frag; + u32 sum = 0; + int size; + + if (!(event->attr.sample_type & PERF_SAMPLE_RAW)) + return; + if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_RAW)) + return; + + do { + sum += frag->size; + if (perf_raw_frag_last(frag)) + break; + frag = frag->next; + } while (1); + + size = round_up(sum + sizeof(u32), sizeof(u64)); + raw->size = size - sizeof(u32); + frag->pad = raw->size - sum; + + data->raw = raw; + data->dyn_size += size; + data->sample_flags |= PERF_SAMPLE_RAW; +} + +static inline bool has_branch_stack(struct perf_event *event) +{ + return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; +} + +static inline void perf_sample_save_brstack(struct perf_sample_data *data, + struct perf_event *event, + struct perf_branch_stack *brs, + u64 *brs_cntr) +{ + int size = sizeof(u64); /* nr */ + + if (!has_branch_stack(event)) + return; + if (WARN_ON_ONCE(data->sample_flags & PERF_SAMPLE_BRANCH_STACK)) + return; + + if (branch_sample_hw_index(event)) + size += sizeof(u64); + + brs->nr = min_t(u16, event->attr.sample_max_stack, brs->nr); + + size += brs->nr * sizeof(struct perf_branch_entry); + + /* + * The extension space for counters is appended after the + * struct perf_branch_stack. It is used to store the occurrences + * of events of each branch. + */ + if (brs_cntr) + size += brs->nr * sizeof(u64); + + data->br_stack = brs; + data->br_stack_cntr = brs_cntr; + data->dyn_size += size; + data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; +} + +static inline u32 perf_sample_data_size(struct perf_sample_data *data, + struct perf_event *event) +{ + u32 size = sizeof(struct perf_event_header); + + size += event->header_size + event->id_header_size; + size += data->dyn_size; + + return size; +} + +/* + * Clear all bitfields in the perf_branch_entry. + * The to and from fields are not cleared because they are + * systematically modified by caller. + */ +static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br) +{ + br->mispred = 0; + br->predicted = 0; + br->in_tx = 0; + br->abort = 0; + br->cycles = 0; + br->type = 0; + br->spec = PERF_BR_SPEC_NA; + br->reserved = 0; } extern void perf_output_sample(struct perf_output_handle *handle, struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event); -extern void perf_prepare_sample(struct perf_event_header *header, +extern void perf_prepare_sample(struct perf_sample_data *data, + struct perf_event *event, + struct pt_regs *regs); +extern void perf_prepare_header(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event, struct pt_regs *regs); @@ -615,6 +1492,49 @@ extern int perf_event_overflow(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); +extern void perf_event_output_forward(struct perf_event *event, + struct perf_sample_data *data, + struct pt_regs *regs); +extern void perf_event_output_backward(struct perf_event *event, + struct perf_sample_data *data, + struct pt_regs *regs); +extern int perf_event_output(struct perf_event *event, + struct perf_sample_data *data, + struct pt_regs *regs); + +static inline bool +is_default_overflow_handler(struct perf_event *event) +{ + perf_overflow_handler_t overflow_handler = event->overflow_handler; + + if (likely(overflow_handler == perf_event_output_forward)) + return true; + if (unlikely(overflow_handler == perf_event_output_backward)) + return true; + return false; +} + +extern void +perf_event_header__init_id(struct perf_event_header *header, + struct perf_sample_data *data, + struct perf_event *event); +extern void +perf_event__output_id_sample(struct perf_event *event, + struct perf_output_handle *handle, + struct perf_sample_data *sample); + +extern void +perf_log_lost_samples(struct perf_event *event, u64 lost); + +static inline bool event_has_any_exclude_flag(struct perf_event *event) +{ + struct perf_event_attr *attr = &event->attr; + + return attr->exclude_idle || attr->exclude_user || + attr->exclude_kernel || attr->exclude_hv || + attr->exclude_guest || attr->exclude_host; +} + static inline bool is_sampling_event(struct perf_event *event) { return event->attr.sample_period != 0; @@ -625,11 +1545,25 @@ static inline bool is_sampling_event(struct perf_event *event) */ static inline int is_software_event(struct perf_event *event) { - return event->pmu->task_ctx_nr == perf_sw_context; + return event->event_caps & PERF_EV_CAP_SOFTWARE; +} + +/* + * Return 1 for event in sw context, 0 for event in hw context + */ +static inline int in_software_context(struct perf_event *event) +{ + return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context; +} + +static inline int is_exclusive_pmu(struct pmu *pmu) +{ + return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; } extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; +extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); #ifndef perf_arch_fetch_caller_regs @@ -637,145 +1571,389 @@ static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned lo #endif /* - * Take a snapshot of the regs. Skip ip and frame pointer to - * the nth caller. We only need a few of the regs: + * When generating a perf sample in-line, instead of from an interrupt / + * exception, we lack a pt_regs. This is typically used from software events + * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. + * + * We typically don't need a full set, but (for x86) do require: * - ip for PERF_SAMPLE_IP * - cs for user_mode() tests - * - bp for callchains - * - eflags, for future purposes, just in case + * - sp for PERF_SAMPLE_CALLCHAIN + * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) + * + * NOTE: assumes @regs is otherwise already 0 filled; this is important for + * things like PERF_SAMPLE_REGS_INTR. */ static inline void perf_fetch_caller_regs(struct pt_regs *regs) { - memset(regs, 0, sizeof(*regs)); - perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); } static __always_inline void perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { - struct pt_regs hot_regs; - - if (static_key_false(&perf_swevent_enabled[event_id])) { - if (!regs) { - perf_fetch_caller_regs(&hot_regs); - regs = &hot_regs; - } + if (static_key_false(&perf_swevent_enabled[event_id])) __perf_sw_event(event_id, nr, regs, addr); - } } -extern struct static_key_deferred perf_sched_events; +DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); + +/* + * 'Special' version for the scheduler, it hard assumes no recursion, + * which is guaranteed by us not actually scheduling inside other swevents + * because those disable preemption. + */ +static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) +{ + struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); + + perf_fetch_caller_regs(regs); + ___perf_sw_event(event_id, nr, regs, addr); +} + +extern struct static_key_false perf_sched_events; + +static __always_inline bool __perf_sw_enabled(int swevt) +{ + return static_key_false(&perf_swevent_enabled[swevt]); +} + +static inline void perf_event_task_migrate(struct task_struct *task) +{ + if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) + task->sched_migrated = 1; +} static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { - if (static_key_false(&perf_sched_events.key)) + if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_in(prev, task); + + if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && + task->sched_migrated) { + __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); + task->sched_migrated = 0; + } } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { - perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); + if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) + __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); - if (static_key_false(&perf_sched_events.key)) +#ifdef CONFIG_CGROUP_PERF + if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && + perf_cgroup_from_task(prev, NULL) != + perf_cgroup_from_task(next, NULL)) + __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); +#endif + + if (static_branch_unlikely(&perf_sched_events)) __perf_event_task_sched_out(prev, next); } extern void perf_event_mmap(struct vm_area_struct *vma); -extern struct perf_guest_info_callbacks *perf_guest_cbs; -extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); -extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); -extern void perf_event_comm(struct task_struct *tsk); +extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, + bool unregister, const char *sym); +extern void perf_event_bpf_event(struct bpf_prog *prog, + enum perf_bpf_event_type type, + u16 flags); + +#define PERF_GUEST_ACTIVE 0x01 +#define PERF_GUEST_USER 0x02 + +struct perf_guest_info_callbacks { + unsigned int (*state)(void); + unsigned long (*get_ip)(void); + unsigned int (*handle_intel_pt_intr)(void); +}; + +#ifdef CONFIG_GUEST_PERF_EVENTS + +extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; + +DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); +DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); +DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); + +static inline unsigned int perf_guest_state(void) +{ + return static_call(__perf_guest_state)(); +} + +static inline unsigned long perf_guest_get_ip(void) +{ + return static_call(__perf_guest_get_ip)(); +} + +static inline unsigned int perf_guest_handle_intel_pt_intr(void) +{ + return static_call(__perf_guest_handle_intel_pt_intr)(); +} + +extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); +extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); + +#else /* !CONFIG_GUEST_PERF_EVENTS: */ + +static inline unsigned int perf_guest_state(void) { return 0; } +static inline unsigned long perf_guest_get_ip(void) { return 0; } +static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } + +#endif /* !CONFIG_GUEST_PERF_EVENTS */ + +extern void perf_event_exec(void); +extern void perf_event_comm(struct task_struct *tsk, bool exec); +extern void perf_event_namespaces(struct task_struct *tsk); extern void perf_event_fork(struct task_struct *tsk); +extern void perf_event_text_poke(const void *addr, + const void *old_bytes, size_t old_len, + const void *new_bytes, size_t new_len); /* Callchains */ DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); -extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); -extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); +extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); +extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); +extern struct perf_callchain_entry * +get_perf_callchain(struct pt_regs *regs, bool kernel, bool user, + u32 max_stack, bool crosstask, bool add_mark, u64 defer_cookie); +extern int get_callchain_buffers(int max_stack); +extern void put_callchain_buffers(void); +extern struct perf_callchain_entry *get_callchain_entry(int *rctx); +extern void put_callchain_entry(int rctx); + +extern int sysctl_perf_event_max_stack; +extern int sysctl_perf_event_max_contexts_per_stack; + +static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) +{ + if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { + struct perf_callchain_entry *entry = ctx->entry; + + entry->ip[entry->nr++] = ip; + ++ctx->contexts; + return 0; + } else { + ctx->contexts_maxed = true; + return -1; /* no more room, stop walking the stack */ + } +} -static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) +static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) { - if (entry->nr < PERF_MAX_STACK_DEPTH) + if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { + struct perf_callchain_entry *entry = ctx->entry; + entry->ip[entry->nr++] = ip; + ++ctx->nr; + return 0; + } else { + return -1; /* no more room, stop walking the stack */ + } } extern int sysctl_perf_event_paranoid; -extern int sysctl_perf_event_mlock; extern int sysctl_perf_event_sample_rate; -extern int sysctl_perf_cpu_time_max_percent; extern void perf_sample_event_took(u64 sample_len_ns); -extern int perf_proc_update_handler(struct ctl_table *table, int write, - void __user *buffer, size_t *lenp, - loff_t *ppos); -extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, - void __user *buffer, size_t *lenp, - loff_t *ppos); +/* Access to perf_event_open(2) syscall. */ +#define PERF_SECURITY_OPEN 0 +/* Finer grained perf_event_open(2) access control. */ +#define PERF_SECURITY_CPU 1 +#define PERF_SECURITY_KERNEL 2 +#define PERF_SECURITY_TRACEPOINT 3 -static inline bool perf_paranoid_tracepoint_raw(void) +static inline int perf_is_paranoid(void) { return sysctl_perf_event_paranoid > -1; } -static inline bool perf_paranoid_cpu(void) +extern int perf_allow_kernel(void); + +static inline int perf_allow_cpu(void) { - return sysctl_perf_event_paranoid > 0; + if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) + return -EACCES; + + return security_perf_event_open(PERF_SECURITY_CPU); } -static inline bool perf_paranoid_kernel(void) +static inline int perf_allow_tracepoint(void) { - return sysctl_perf_event_paranoid > 1; + if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) + return -EPERM; + + return security_perf_event_open(PERF_SECURITY_TRACEPOINT); } +extern int perf_exclude_event(struct perf_event *event, struct pt_regs *regs); + extern void perf_event_init(void); -extern void perf_tp_event(u64 addr, u64 count, void *record, +extern void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, struct pt_regs *regs, struct hlist_head *head, int rctx, struct task_struct *task); extern void perf_bp_event(struct perf_event *event, void *data); -#ifndef perf_misc_flags -# define perf_misc_flags(regs) \ +extern unsigned long perf_misc_flags(struct perf_event *event, struct pt_regs *regs); +extern unsigned long perf_instruction_pointer(struct perf_event *event, + struct pt_regs *regs); + +#ifndef perf_arch_misc_flags +# define perf_arch_misc_flags(regs) \ (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) -# define perf_instruction_pointer(regs) instruction_pointer(regs) +# define perf_arch_instruction_pointer(regs) instruction_pointer(regs) +#endif +#ifndef perf_arch_bpf_user_pt_regs +# define perf_arch_bpf_user_pt_regs(regs) regs #endif -static inline bool has_branch_stack(struct perf_event *event) +#ifndef perf_arch_guest_misc_flags +static inline unsigned long perf_arch_guest_misc_flags(struct pt_regs *regs) { - return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; + unsigned long guest_state = perf_guest_state(); + + if (!(guest_state & PERF_GUEST_ACTIVE)) + return 0; + + if (guest_state & PERF_GUEST_USER) + return PERF_RECORD_MISC_GUEST_USER; + else + return PERF_RECORD_MISC_GUEST_KERNEL; +} +# define perf_arch_guest_misc_flags(regs) perf_arch_guest_misc_flags(regs) +#endif + +static inline bool needs_branch_stack(struct perf_event *event) +{ + return event->attr.branch_sample_type != 0; +} + +static inline bool has_aux(struct perf_event *event) +{ + return event->pmu && event->pmu->setup_aux; +} + +static inline bool has_aux_action(struct perf_event *event) +{ + return event->attr.aux_sample_size || + event->attr.aux_pause || + event->attr.aux_resume; } +static inline bool is_write_backward(struct perf_event *event) +{ + return !!event->attr.write_backward; +} + +static inline bool has_addr_filter(struct perf_event *event) +{ + return event->pmu->nr_addr_filters; +} + +/* + * An inherited event uses parent's filters + */ +static inline struct perf_addr_filters_head * +perf_event_addr_filters(struct perf_event *event) +{ + struct perf_addr_filters_head *ifh = &event->addr_filters; + + if (event->parent) + ifh = &event->parent->addr_filters; + + return ifh; +} + +static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) +{ + /* Only the parent has fasync state */ + if (event->parent) + event = event->parent; + return &event->fasync; +} + +extern void perf_event_addr_filters_sync(struct perf_event *event); +extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); + extern int perf_output_begin(struct perf_output_handle *handle, + struct perf_sample_data *data, struct perf_event *event, unsigned int size); +extern int perf_output_begin_forward(struct perf_output_handle *handle, + struct perf_sample_data *data, + struct perf_event *event, + unsigned int size); +extern int perf_output_begin_backward(struct perf_output_handle *handle, + struct perf_sample_data *data, + struct perf_event *event, + unsigned int size); + extern void perf_output_end(struct perf_output_handle *handle); extern unsigned int perf_output_copy(struct perf_output_handle *handle, - const void *buf, unsigned int len); + const void *buf, unsigned int len); extern unsigned int perf_output_skip(struct perf_output_handle *handle, unsigned int len); +extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, + struct perf_output_handle *handle, + unsigned long from, unsigned long to); extern int perf_swevent_get_recursion_context(void); extern void perf_swevent_put_recursion_context(int rctx); extern u64 perf_swevent_set_period(struct perf_event *event); extern void perf_event_enable(struct perf_event *event); extern void perf_event_disable(struct perf_event *event); -extern int __perf_event_disable(void *info); +extern void perf_event_disable_local(struct perf_event *event); +extern void perf_event_disable_inatomic(struct perf_event *event); extern void perf_event_task_tick(void); -#else +extern int perf_event_account_interrupt(struct perf_event *event); +extern int perf_event_period(struct perf_event *event, u64 value); +extern u64 perf_event_pause(struct perf_event *event, bool reset); + +#else /* !CONFIG_PERF_EVENTS: */ + +static inline void * +perf_aux_output_begin(struct perf_output_handle *handle, + struct perf_event *event) { return NULL; } +static inline void +perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) + { } +static inline int +perf_aux_output_skip(struct perf_output_handle *handle, + unsigned long size) { return -EINVAL; } +static inline void * +perf_get_aux(struct perf_output_handle *handle) { return NULL; } +static inline void +perf_event_task_migrate(struct task_struct *task) { } static inline void perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { } static inline void perf_event_task_sched_out(struct task_struct *prev, struct task_struct *next) { } -static inline int perf_event_init_task(struct task_struct *child) { return 0; } +static inline int perf_event_init_task(struct task_struct *child, + u64 clone_flags) { return 0; } static inline void perf_event_exit_task(struct task_struct *child) { } static inline void perf_event_free_task(struct task_struct *task) { } static inline void perf_event_delayed_put(struct task_struct *task) { } +static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } +static inline const struct perf_event *perf_get_event(struct file *file) +{ + return ERR_PTR(-EINVAL); +} +static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) +{ + return ERR_PTR(-EINVAL); +} +static inline int perf_event_read_local(struct perf_event *event, u64 *value, + u64 *enabled, u64 *running) +{ + return -EINVAL; +} static inline void perf_event_print_debug(void) { } static inline int perf_event_task_disable(void) { return -EINVAL; } static inline int perf_event_task_enable(void) { return -EINVAL; } @@ -789,14 +1967,23 @@ perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } static inline void perf_bp_event(struct perf_event *event, void *data) { } -static inline int perf_register_guest_info_callbacks -(struct perf_guest_info_callbacks *callbacks) { return 0; } -static inline int perf_unregister_guest_info_callbacks -(struct perf_guest_info_callbacks *callbacks) { return 0; } - static inline void perf_event_mmap(struct vm_area_struct *vma) { } -static inline void perf_event_comm(struct task_struct *tsk) { } + +typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); +static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, + bool unregister, const char *sym) { } +static inline void perf_event_bpf_event(struct bpf_prog *prog, + enum perf_bpf_event_type type, + u16 flags) { } +static inline void perf_event_exec(void) { } +static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } +static inline void perf_event_namespaces(struct task_struct *tsk) { } static inline void perf_event_fork(struct task_struct *tsk) { } +static inline void perf_event_text_poke(const void *addr, + const void *old_bytes, + size_t old_len, + const void *new_bytes, + size_t new_len) { } static inline void perf_event_init(void) { } static inline int perf_swevent_get_recursion_context(void) { return -1; } static inline void perf_swevent_put_recursion_context(int rctx) { } @@ -805,13 +1992,15 @@ static inline void perf_event_enable(struct perf_event *event) { } static inline void perf_event_disable(struct perf_event *event) { } static inline int __perf_event_disable(void *info) { return -1; } static inline void perf_event_task_tick(void) { } -#endif +static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } +static inline int +perf_event_period(struct perf_event *event, u64 value) { return -EINVAL; } +static inline u64 +perf_event_pause(struct perf_event *event, bool reset) { return 0; } +static inline int +perf_exclude_event(struct perf_event *event, struct pt_regs *regs) { return 0; } -#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) -extern bool perf_event_can_stop_tick(void); -#else -static inline bool perf_event_can_stop_tick(void) { return true; } -#endif +#endif /* !CONFIG_PERF_EVENTS */ #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) extern void perf_restore_debug_store(void); @@ -819,42 +2008,56 @@ extern void perf_restore_debug_store(void); static inline void perf_restore_debug_store(void) { } #endif -#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) +#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) -/* - * This has to have a higher priority than migration_notifier in sched/core.c. - */ -#define perf_cpu_notifier(fn) \ -do { \ - static struct notifier_block fn##_nb __cpuinitdata = \ - { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ - unsigned long cpu = smp_processor_id(); \ - unsigned long flags; \ - fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ - (void *)(unsigned long)cpu); \ - local_irq_save(flags); \ - fn(&fn##_nb, (unsigned long)CPU_STARTING, \ - (void *)(unsigned long)cpu); \ - local_irq_restore(flags); \ - fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ - (void *)(unsigned long)cpu); \ - register_cpu_notifier(&fn##_nb); \ -} while (0) +struct perf_pmu_events_attr { + struct device_attribute attr; + u64 id; + const char *event_str; +}; +struct perf_pmu_events_ht_attr { + struct device_attribute attr; + u64 id; + const char *event_str_ht; + const char *event_str_noht; +}; -struct perf_pmu_events_attr { - struct device_attribute attr; - u64 id; - const char *event_str; +struct perf_pmu_events_hybrid_attr { + struct device_attribute attr; + u64 id; + const char *event_str; + u64 pmu_type; }; +struct perf_pmu_format_hybrid_attr { + struct device_attribute attr; + u64 pmu_type; +}; + +ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, + char *page); + #define PMU_EVENT_ATTR(_name, _var, _id, _show) \ static struct perf_pmu_events_attr _var = { \ .attr = __ATTR(_name, 0444, _show, NULL), \ .id = _id, \ }; -#define PMU_FORMAT_ATTR(_name, _format) \ +#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ +static struct perf_pmu_events_attr _var = { \ + .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ + .id = 0, \ + .event_str = _str, \ +}; + +#define PMU_EVENT_ATTR_ID(_name, _show, _id) \ + (&((struct perf_pmu_events_attr[]) { \ + { .attr = __ATTR(_name, 0444, _show, NULL), \ + .id = _id, } \ + })[0].attr.attr) + +#define PMU_FORMAT_ATTR_SHOW(_name, _format) \ static ssize_t \ _name##_show(struct device *dev, \ struct device_attribute *attr, \ @@ -863,7 +2066,51 @@ _name##_show(struct device *dev, \ BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ return sprintf(page, _format "\n"); \ } \ + +#define PMU_FORMAT_ATTR(_name, _format) \ + PMU_FORMAT_ATTR_SHOW(_name, _format) \ \ static struct device_attribute format_attr_##_name = __ATTR_RO(_name) +/* Performance counter hotplug functions */ +#ifdef CONFIG_PERF_EVENTS +extern int perf_event_init_cpu(unsigned int cpu); +extern int perf_event_exit_cpu(unsigned int cpu); +#else +# define perf_event_init_cpu NULL +# define perf_event_exit_cpu NULL +#endif + +extern void arch_perf_update_userpage(struct perf_event *event, + struct perf_event_mmap_page *userpg, + u64 now); + +/* + * Snapshot branch stack on software events. + * + * Branch stack can be very useful in understanding software events. For + * example, when a long function, e.g. sys_perf_event_open, returns an + * errno, it is not obvious why the function failed. Branch stack could + * provide very helpful information in this type of scenarios. + * + * On software event, it is necessary to stop the hardware branch recorder + * fast. Otherwise, the hardware register/buffer will be flushed with + * entries of the triggering event. Therefore, static call is used to + * stop the hardware recorder. + */ + +/* + * cnt is the number of entries allocated for entries. + * Return number of entries copied to . + */ +typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, + unsigned int cnt); +DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); + +#ifndef PERF_NEEDS_LOPWR_CB +static inline void perf_lopwr_cb(bool mode) +{ +} +#endif + #endif /* _LINUX_PERF_EVENT_H */ |
