diff options
Diffstat (limited to 'include/linux/uaccess.h')
| -rw-r--r-- | include/linux/uaccess.h | 755 |
1 files changed, 680 insertions, 75 deletions
diff --git a/include/linux/uaccess.h b/include/linux/uaccess.h index 37b226e8df13..1f3804245c06 100644 --- a/include/linux/uaccess.h +++ b/include/linux/uaccess.h @@ -2,15 +2,55 @@ #ifndef __LINUX_UACCESS_H__ #define __LINUX_UACCESS_H__ +#include <linux/cleanup.h> +#include <linux/fault-inject-usercopy.h> +#include <linux/instrumented.h> +#include <linux/minmax.h> +#include <linux/nospec.h> #include <linux/sched.h> -#include <linux/thread_info.h> -#include <linux/kasan-checks.h> - -#define uaccess_kernel() segment_eq(get_fs(), KERNEL_DS) +#include <linux/ucopysize.h> #include <asm/uaccess.h> /* + * Architectures that support memory tagging (assigning tags to memory regions, + * embedding these tags into addresses that point to these memory regions, and + * checking that the memory and the pointer tags match on memory accesses) + * redefine this macro to strip tags from pointers. + * + * Passing down mm_struct allows to define untagging rules on per-process + * basis. + * + * It's defined as noop for architectures that don't support memory tagging. + */ +#ifndef untagged_addr +#define untagged_addr(addr) (addr) +#endif + +#ifndef untagged_addr_remote +#define untagged_addr_remote(mm, addr) ({ \ + mmap_assert_locked(mm); \ + untagged_addr(addr); \ +}) +#endif + +#ifdef masked_user_access_begin + #define can_do_masked_user_access() 1 +# ifndef masked_user_write_access_begin +# define masked_user_write_access_begin masked_user_access_begin +# endif +# ifndef masked_user_read_access_begin +# define masked_user_read_access_begin masked_user_access_begin +#endif +#else + #define can_do_masked_user_access() 0 + #define masked_user_access_begin(src) NULL + #define masked_user_read_access_begin(src) NULL + #define masked_user_write_access_begin(src) NULL + #define mask_user_address(src) (src) +#endif + +/* * Architectures should provide two primitives (raw_copy_{to,from}_user()) * and get rid of their private instances of copy_{to,from}_user() and * __copy_{to,from}_user{,_inatomic}(). @@ -55,21 +95,31 @@ * as usual) and both source and destination can trigger faults. */ -static __always_inline unsigned long +static __always_inline __must_check unsigned long __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n) { - kasan_check_write(to, n); + unsigned long res; + + instrument_copy_from_user_before(to, from, n); check_object_size(to, n, false); - return raw_copy_from_user(to, from, n); + res = raw_copy_from_user(to, from, n); + instrument_copy_from_user_after(to, from, n, res); + return res; } -static __always_inline unsigned long +static __always_inline __must_check unsigned long __copy_from_user(void *to, const void __user *from, unsigned long n) { + unsigned long res; + might_fault(); - kasan_check_write(to, n); + instrument_copy_from_user_before(to, from, n); + if (should_fail_usercopy()) + return n; check_object_size(to, n, false); - return raw_copy_from_user(to, from, n); + res = raw_copy_from_user(to, from, n); + instrument_copy_from_user_after(to, from, n, res); + return res; } /** @@ -85,81 +135,118 @@ __copy_from_user(void *to, const void __user *from, unsigned long n) * The caller should also make sure he pins the user space address * so that we don't result in page fault and sleep. */ -static __always_inline unsigned long +static __always_inline __must_check unsigned long __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n) { - kasan_check_read(from, n); + if (should_fail_usercopy()) + return n; + instrument_copy_to_user(to, from, n); check_object_size(from, n, true); return raw_copy_to_user(to, from, n); } -static __always_inline unsigned long +static __always_inline __must_check unsigned long __copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); - kasan_check_read(from, n); + if (should_fail_usercopy()) + return n; + instrument_copy_to_user(to, from, n); check_object_size(from, n, true); return raw_copy_to_user(to, from, n); } -#ifdef INLINE_COPY_FROM_USER -static inline unsigned long -_copy_from_user(void *to, const void __user *from, unsigned long n) +/* + * Architectures that #define INLINE_COPY_TO_USER use this function + * directly in the normal copy_to/from_user(), the other ones go + * through an extern _copy_to/from_user(), which expands the same code + * here. + */ +static inline __must_check unsigned long +_inline_copy_from_user(void *to, const void __user *from, unsigned long n) { unsigned long res = n; might_fault(); - if (likely(access_ok(from, n))) { - kasan_check_write(to, n); - res = raw_copy_from_user(to, from, n); + if (should_fail_usercopy()) + goto fail; + if (can_do_masked_user_access()) + from = mask_user_address(from); + else { + if (!access_ok(from, n)) + goto fail; + /* + * Ensure that bad access_ok() speculation will not + * lead to nasty side effects *after* the copy is + * finished: + */ + barrier_nospec(); } - if (unlikely(res)) - memset(to + (n - res), 0, res); + instrument_copy_from_user_before(to, from, n); + res = raw_copy_from_user(to, from, n); + instrument_copy_from_user_after(to, from, n, res); + if (likely(!res)) + return 0; +fail: + memset(to + (n - res), 0, res); return res; } -#else -extern unsigned long +#ifndef INLINE_COPY_FROM_USER +extern __must_check unsigned long _copy_from_user(void *, const void __user *, unsigned long); #endif -#ifdef INLINE_COPY_TO_USER -static inline unsigned long -_copy_to_user(void __user *to, const void *from, unsigned long n) +static inline __must_check unsigned long +_inline_copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); + if (should_fail_usercopy()) + return n; if (access_ok(to, n)) { - kasan_check_read(from, n); + instrument_copy_to_user(to, from, n); n = raw_copy_to_user(to, from, n); } return n; } -#else -extern unsigned long +#ifndef INLINE_COPY_TO_USER +extern __must_check unsigned long _copy_to_user(void __user *, const void *, unsigned long); #endif static __always_inline unsigned long __must_check copy_from_user(void *to, const void __user *from, unsigned long n) { - if (likely(check_copy_size(to, n, false))) - n = _copy_from_user(to, from, n); - return n; + if (!check_copy_size(to, n, false)) + return n; +#ifdef INLINE_COPY_FROM_USER + return _inline_copy_from_user(to, from, n); +#else + return _copy_from_user(to, from, n); +#endif } static __always_inline unsigned long __must_check copy_to_user(void __user *to, const void *from, unsigned long n) { - if (likely(check_copy_size(from, n, true))) - n = _copy_to_user(to, from, n); - return n; + if (!check_copy_size(from, n, true)) + return n; + +#ifdef INLINE_COPY_TO_USER + return _inline_copy_to_user(to, from, n); +#else + return _copy_to_user(to, from, n); +#endif } -#ifdef CONFIG_COMPAT -static __always_inline unsigned long __must_check -copy_in_user(void __user *to, const void __user *from, unsigned long n) + +#ifndef copy_mc_to_kernel +/* + * Without arch opt-in this generic copy_mc_to_kernel() will not handle + * #MC (or arch equivalent) during source read. + */ +static inline unsigned long __must_check +copy_mc_to_kernel(void *dst, const void *src, size_t cnt) { - might_fault(); - if (access_ok(to, n) && access_ok(from, n)) - n = raw_copy_in_user(to, from, n); - return n; + memcpy(dst, src, cnt); + return 0; } #endif @@ -203,7 +290,10 @@ static inline void pagefault_enable(void) /* * Is the pagefault handler disabled? If so, user access methods will not sleep. */ -#define pagefault_disabled() (current->pagefault_disabled != 0) +static inline bool pagefault_disabled(void) +{ + return current->pagefault_disabled != 0; +} /* * The pagefault handler is in general disabled by pagefault_disable() or @@ -217,62 +307,577 @@ static inline void pagefault_enable(void) */ #define faulthandler_disabled() (pagefault_disabled() || in_atomic()) +DEFINE_LOCK_GUARD_0(pagefault, pagefault_disable(), pagefault_enable()) + +#ifndef CONFIG_ARCH_HAS_SUBPAGE_FAULTS + +/** + * probe_subpage_writeable: probe the user range for write faults at sub-page + * granularity (e.g. arm64 MTE) + * @uaddr: start of address range + * @size: size of address range + * + * Returns 0 on success, the number of bytes not probed on fault. + * + * It is expected that the caller checked for the write permission of each + * page in the range either by put_user() or GUP. The architecture port can + * implement a more efficient get_user() probing if the same sub-page faults + * are triggered by either a read or a write. + */ +static inline size_t probe_subpage_writeable(char __user *uaddr, size_t size) +{ + return 0; +} + +#endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */ + #ifndef ARCH_HAS_NOCACHE_UACCESS -static inline unsigned long __copy_from_user_inatomic_nocache(void *to, - const void __user *from, unsigned long n) +static inline __must_check unsigned long +__copy_from_user_inatomic_nocache(void *to, const void __user *from, + unsigned long n) { return __copy_from_user_inatomic(to, from, n); } #endif /* ARCH_HAS_NOCACHE_UACCESS */ -/* - * probe_kernel_read(): safely attempt to read from a location - * @dst: pointer to the buffer that shall take the data - * @src: address to read from - * @size: size of the data chunk +extern __must_check int check_zeroed_user(const void __user *from, size_t size); + +/** + * copy_struct_from_user: copy a struct from userspace + * @dst: Destination address, in kernel space. This buffer must be @ksize + * bytes long. + * @ksize: Size of @dst struct. + * @src: Source address, in userspace. + * @usize: (Alleged) size of @src struct. + * + * Copies a struct from userspace to kernel space, in a way that guarantees + * backwards-compatibility for struct syscall arguments (as long as future + * struct extensions are made such that all new fields are *appended* to the + * old struct, and zeroed-out new fields have the same meaning as the old + * struct). + * + * @ksize is just sizeof(*dst), and @usize should've been passed by userspace. + * The recommended usage is something like the following: + * + * SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize) + * { + * int err; + * struct foo karg = {}; + * + * if (usize > PAGE_SIZE) + * return -E2BIG; + * if (usize < FOO_SIZE_VER0) + * return -EINVAL; + * + * err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize); + * if (err) + * return err; + * + * // ... + * } + * + * There are three cases to consider: + * * If @usize == @ksize, then it's copied verbatim. + * * If @usize < @ksize, then the userspace has passed an old struct to a + * newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize) + * are to be zero-filled. + * * If @usize > @ksize, then the userspace has passed a new struct to an + * older kernel. The trailing bytes unknown to the kernel (@usize - @ksize) + * are checked to ensure they are zeroed, otherwise -E2BIG is returned. * - * Safely read from address @src to the buffer at @dst. If a kernel fault - * happens, handle that and return -EFAULT. + * Returns (in all cases, some data may have been copied): + * * -E2BIG: (@usize > @ksize) and there are non-zero trailing bytes in @src. + * * -EFAULT: access to userspace failed. */ -extern long probe_kernel_read(void *dst, const void *src, size_t size); -extern long __probe_kernel_read(void *dst, const void *src, size_t size); +static __always_inline __must_check int +copy_struct_from_user(void *dst, size_t ksize, const void __user *src, + size_t usize) +{ + size_t size = min(ksize, usize); + size_t rest = max(ksize, usize) - size; -/* - * probe_kernel_write(): safely attempt to write to a location - * @dst: address to write to - * @src: pointer to the data that shall be written - * @size: size of the data chunk + /* Double check if ksize is larger than a known object size. */ + if (WARN_ON_ONCE(ksize > __builtin_object_size(dst, 1))) + return -E2BIG; + + /* Deal with trailing bytes. */ + if (usize < ksize) { + memset(dst + size, 0, rest); + } else if (usize > ksize) { + int ret = check_zeroed_user(src + size, rest); + if (ret <= 0) + return ret ?: -E2BIG; + } + /* Copy the interoperable parts of the struct. */ + if (copy_from_user(dst, src, size)) + return -EFAULT; + return 0; +} + +/** + * copy_struct_to_user: copy a struct to userspace + * @dst: Destination address, in userspace. This buffer must be @ksize + * bytes long. + * @usize: (Alleged) size of @dst struct. + * @src: Source address, in kernel space. + * @ksize: Size of @src struct. + * @ignored_trailing: Set to %true if there was a non-zero byte in @src that + * userspace cannot see because they are using an smaller struct. + * + * Copies a struct from kernel space to userspace, in a way that guarantees + * backwards-compatibility for struct syscall arguments (as long as future + * struct extensions are made such that all new fields are *appended* to the + * old struct, and zeroed-out new fields have the same meaning as the old + * struct). + * + * Some syscalls may wish to make sure that userspace knows about everything in + * the struct, and if there is a non-zero value that userspce doesn't know + * about, they want to return an error (such as -EMSGSIZE) or have some other + * fallback (such as adding a "you're missing some information" flag). If + * @ignored_trailing is non-%NULL, it will be set to %true if there was a + * non-zero byte that could not be copied to userspace (ie. was past @usize). + * + * While unconditionally returning an error in this case is the simplest + * solution, for maximum backward compatibility you should try to only return + * -EMSGSIZE if the user explicitly requested the data that couldn't be copied. + * Note that structure sizes can change due to header changes and simple + * recompilations without code changes(!), so if you care about + * @ignored_trailing you probably want to make sure that any new field data is + * associated with a flag. Otherwise you might assume that a program knows + * about data it does not. * - * Safely write to address @dst from the buffer at @src. If a kernel fault - * happens, handle that and return -EFAULT. + * @ksize is just sizeof(*src), and @usize should've been passed by userspace. + * The recommended usage is something like the following: + * + * SYSCALL_DEFINE2(foobar, struct foo __user *, uarg, size_t, usize) + * { + * int err; + * bool ignored_trailing; + * struct foo karg = {}; + * + * if (usize > PAGE_SIZE) + * return -E2BIG; + * if (usize < FOO_SIZE_VER0) + * return -EINVAL; + * + * // ... modify karg somehow ... + * + * err = copy_struct_to_user(uarg, usize, &karg, sizeof(karg), + * &ignored_trailing); + * if (err) + * return err; + * if (ignored_trailing) + * return -EMSGSIZE: + * + * // ... + * } + * + * There are three cases to consider: + * * If @usize == @ksize, then it's copied verbatim. + * * If @usize < @ksize, then the kernel is trying to pass userspace a newer + * struct than it supports. Thus we only copy the interoperable portions + * (@usize) and ignore the rest (but @ignored_trailing is set to %true if + * any of the trailing (@ksize - @usize) bytes are non-zero). + * * If @usize > @ksize, then the kernel is trying to pass userspace an older + * struct than userspace supports. In order to make sure the + * unknown-to-the-kernel fields don't contain garbage values, we zero the + * trailing (@usize - @ksize) bytes. + * + * Returns (in all cases, some data may have been copied): + * * -EFAULT: access to userspace failed. */ -extern long notrace probe_kernel_write(void *dst, const void *src, size_t size); -extern long notrace __probe_kernel_write(void *dst, const void *src, size_t size); +static __always_inline __must_check int +copy_struct_to_user(void __user *dst, size_t usize, const void *src, + size_t ksize, bool *ignored_trailing) +{ + size_t size = min(ksize, usize); + size_t rest = max(ksize, usize) - size; -extern long strncpy_from_unsafe(char *dst, const void *unsafe_addr, long count); + /* Double check if ksize is larger than a known object size. */ + if (WARN_ON_ONCE(ksize > __builtin_object_size(src, 1))) + return -E2BIG; + + /* Deal with trailing bytes. */ + if (usize > ksize) { + if (clear_user(dst + size, rest)) + return -EFAULT; + } + if (ignored_trailing) + *ignored_trailing = ksize < usize && + memchr_inv(src + size, 0, rest) != NULL; + /* Copy the interoperable parts of the struct. */ + if (copy_to_user(dst, src, size)) + return -EFAULT; + return 0; +} + +bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size); + +long copy_from_kernel_nofault(void *dst, const void *src, size_t size); +long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size); + +long copy_from_user_nofault(void *dst, const void __user *src, size_t size); +long notrace copy_to_user_nofault(void __user *dst, const void *src, + size_t size); + +long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr, + long count); + +long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr, + long count); +long strnlen_user_nofault(const void __user *unsafe_addr, long count); + +#ifdef arch_get_kernel_nofault +/* + * Wrap the architecture implementation so that @label can be outside of a + * cleanup() scope. A regular C goto works correctly, but ASM goto does + * not. Clang rejects such an attempt, but GCC silently emits buggy code. + */ +#define __get_kernel_nofault(dst, src, type, label) \ +do { \ + __label__ local_label; \ + arch_get_kernel_nofault(dst, src, type, local_label); \ + if (0) { \ + local_label: \ + goto label; \ + } \ +} while (0) + +#define __put_kernel_nofault(dst, src, type, label) \ +do { \ + __label__ local_label; \ + arch_put_kernel_nofault(dst, src, type, local_label); \ + if (0) { \ + local_label: \ + goto label; \ + } \ +} while (0) + +#elif !defined(__get_kernel_nofault) /* arch_get_kernel_nofault */ + +#define __get_kernel_nofault(dst, src, type, label) \ +do { \ + type __user *p = (type __force __user *)(src); \ + type data; \ + if (__get_user(data, p)) \ + goto label; \ + *(type *)dst = data; \ +} while (0) + +#define __put_kernel_nofault(dst, src, type, label) \ +do { \ + type __user *p = (type __force __user *)(dst); \ + type data = *(type *)src; \ + if (__put_user(data, p)) \ + goto label; \ +} while (0) + +#endif /* !__get_kernel_nofault */ /** - * probe_kernel_address(): safely attempt to read from a location - * @addr: address to read from - * @retval: read into this variable + * get_kernel_nofault(): safely attempt to read from a location + * @val: read into this variable + * @ptr: address to read from * * Returns 0 on success, or -EFAULT. */ -#define probe_kernel_address(addr, retval) \ - probe_kernel_read(&retval, addr, sizeof(retval)) +#define get_kernel_nofault(val, ptr) ({ \ + const typeof(val) *__gk_ptr = (ptr); \ + copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\ +}) + +#ifdef user_access_begin + +#ifdef arch_unsafe_get_user +/* + * Wrap the architecture implementation so that @label can be outside of a + * cleanup() scope. A regular C goto works correctly, but ASM goto does + * not. Clang rejects such an attempt, but GCC silently emits buggy code. + * + * Some architectures use internal local labels already, but this extra + * indirection here is harmless because the compiler optimizes it out + * completely in any case. This construct just ensures that the ASM GOTO + * target is always in the local scope. The C goto 'label' works correctly + * when leaving a cleanup() scope. + */ +#define unsafe_get_user(x, ptr, label) \ +do { \ + __label__ local_label; \ + arch_unsafe_get_user(x, ptr, local_label); \ + if (0) { \ + local_label: \ + goto label; \ + } \ +} while (0) + +#define unsafe_put_user(x, ptr, label) \ +do { \ + __label__ local_label; \ + arch_unsafe_put_user(x, ptr, local_label); \ + if (0) { \ + local_label: \ + goto label; \ + } \ +} while (0) +#endif /* arch_unsafe_get_user */ -#ifndef user_access_begin +#else /* user_access_begin */ #define user_access_begin(ptr,len) access_ok(ptr, len) #define user_access_end() do { } while (0) -#define unsafe_get_user(x, ptr, err) do { if (unlikely(__get_user(x, ptr))) goto err; } while (0) -#define unsafe_put_user(x, ptr, err) do { if (unlikely(__put_user(x, ptr))) goto err; } while (0) +#define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0) +#define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e) +#define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e) +#define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e) +#define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e) +static inline unsigned long user_access_save(void) { return 0UL; } +static inline void user_access_restore(unsigned long flags) { } +#endif /* !user_access_begin */ + +#ifndef user_write_access_begin +#define user_write_access_begin user_access_begin +#define user_write_access_end user_access_end +#endif +#ifndef user_read_access_begin +#define user_read_access_begin user_access_begin +#define user_read_access_end user_access_end #endif +/* Define RW variant so the below _mode macro expansion works */ +#define masked_user_rw_access_begin(u) masked_user_access_begin(u) +#define user_rw_access_begin(u, s) user_access_begin(u, s) +#define user_rw_access_end() user_access_end() + +/* Scoped user access */ +#define USER_ACCESS_GUARD(_mode) \ +static __always_inline void __user * \ +class_user_##_mode##_begin(void __user *ptr) \ +{ \ + return ptr; \ +} \ + \ +static __always_inline void \ +class_user_##_mode##_end(void __user *ptr) \ +{ \ + user_##_mode##_access_end(); \ +} \ + \ +DEFINE_CLASS(user_ ##_mode## _access, void __user *, \ + class_user_##_mode##_end(_T), \ + class_user_##_mode##_begin(ptr), void __user *ptr) \ + \ +static __always_inline class_user_##_mode##_access_t \ +class_user_##_mode##_access_ptr(void __user *scope) \ +{ \ + return scope; \ +} + +USER_ACCESS_GUARD(read) +USER_ACCESS_GUARD(write) +USER_ACCESS_GUARD(rw) +#undef USER_ACCESS_GUARD + +/** + * __scoped_user_access_begin - Start a scoped user access + * @mode: The mode of the access class (read, write, rw) + * @uptr: The pointer to access user space memory + * @size: Size of the access + * @elbl: Error label to goto when the access region is rejected + * + * Internal helper for __scoped_user_access(). Don't use directly. + */ +#define __scoped_user_access_begin(mode, uptr, size, elbl) \ +({ \ + typeof(uptr) __retptr; \ + \ + if (can_do_masked_user_access()) { \ + __retptr = masked_user_##mode##_access_begin(uptr); \ + } else { \ + __retptr = uptr; \ + if (!user_##mode##_access_begin(uptr, size)) \ + goto elbl; \ + } \ + __retptr; \ +}) + +/** + * __scoped_user_access - Open a scope for user access + * @mode: The mode of the access class (read, write, rw) + * @uptr: The pointer to access user space memory + * @size: Size of the access + * @elbl: Error label to goto when the access region is rejected. It + * must be placed outside the scope + * + * If the user access function inside the scope requires a fault label, it + * can use @elbl or a different label outside the scope, which requires + * that user access which is implemented with ASM GOTO has been properly + * wrapped. See unsafe_get_user() for reference. + * + * scoped_user_rw_access(ptr, efault) { + * unsafe_get_user(rval, &ptr->rval, efault); + * unsafe_put_user(wval, &ptr->wval, efault); + * } + * return 0; + * efault: + * return -EFAULT; + * + * The scope is internally implemented as a autoterminating nested for() + * loop, which can be left with 'return', 'break' and 'goto' at any + * point. + * + * When the scope is left user_##@_mode##_access_end() is automatically + * invoked. + * + * When the architecture supports masked user access and the access region + * which is determined by @uptr and @size is not a valid user space + * address, i.e. < TASK_SIZE, the scope sets the pointer to a faulting user + * space address and does not terminate early. This optimizes for the good + * case and lets the performance uncritical bad case go through the fault. + * + * The eventual modification of the pointer is limited to the scope. + * Outside of the scope the original pointer value is unmodified, so that + * the original pointer value is available for diagnostic purposes in an + * out of scope fault path. + * + * Nesting scoped user access into a user access scope is invalid and fails + * the build. Nesting into other guards, e.g. pagefault is safe. + * + * The masked variant does not check the size of the access and relies on a + * mapping hole (e.g. guard page) to catch an out of range pointer, the + * first access to user memory inside the scope has to be within + * @uptr ... @uptr + PAGE_SIZE - 1 + * + * Don't use directly. Use scoped_masked_user_$MODE_access() instead. + */ +#define __scoped_user_access(mode, uptr, size, elbl) \ +for (bool done = false; !done; done = true) \ + for (void __user *_tmpptr = __scoped_user_access_begin(mode, uptr, size, elbl); \ + !done; done = true) \ + for (CLASS(user_##mode##_access, scope)(_tmpptr); !done; done = true) \ + /* Force modified pointer usage within the scope */ \ + for (const typeof(uptr) uptr = _tmpptr; !done; done = true) + +/** + * scoped_user_read_access_size - Start a scoped user read access with given size + * @usrc: Pointer to the user space address to read from + * @size: Size of the access starting from @usrc + * @elbl: Error label to goto when the access region is rejected + * + * For further information see __scoped_user_access() above. + */ +#define scoped_user_read_access_size(usrc, size, elbl) \ + __scoped_user_access(read, usrc, size, elbl) + +/** + * scoped_user_read_access - Start a scoped user read access + * @usrc: Pointer to the user space address to read from + * @elbl: Error label to goto when the access region is rejected + * + * The size of the access starting from @usrc is determined via sizeof(*@usrc)). + * + * For further information see __scoped_user_access() above. + */ +#define scoped_user_read_access(usrc, elbl) \ + scoped_user_read_access_size(usrc, sizeof(*(usrc)), elbl) + +/** + * scoped_user_write_access_size - Start a scoped user write access with given size + * @udst: Pointer to the user space address to write to + * @size: Size of the access starting from @udst + * @elbl: Error label to goto when the access region is rejected + * + * For further information see __scoped_user_access() above. + */ +#define scoped_user_write_access_size(udst, size, elbl) \ + __scoped_user_access(write, udst, size, elbl) + +/** + * scoped_user_write_access - Start a scoped user write access + * @udst: Pointer to the user space address to write to + * @elbl: Error label to goto when the access region is rejected + * + * The size of the access starting from @udst is determined via sizeof(*@udst)). + * + * For further information see __scoped_user_access() above. + */ +#define scoped_user_write_access(udst, elbl) \ + scoped_user_write_access_size(udst, sizeof(*(udst)), elbl) + +/** + * scoped_user_rw_access_size - Start a scoped user read/write access with given size + * @uptr Pointer to the user space address to read from and write to + * @size: Size of the access starting from @uptr + * @elbl: Error label to goto when the access region is rejected + * + * For further information see __scoped_user_access() above. + */ +#define scoped_user_rw_access_size(uptr, size, elbl) \ + __scoped_user_access(rw, uptr, size, elbl) + +/** + * scoped_user_rw_access - Start a scoped user read/write access + * @uptr Pointer to the user space address to read from and write to + * @elbl: Error label to goto when the access region is rejected + * + * The size of the access starting from @uptr is determined via sizeof(*@uptr)). + * + * For further information see __scoped_user_access() above. + */ +#define scoped_user_rw_access(uptr, elbl) \ + scoped_user_rw_access_size(uptr, sizeof(*(uptr)), elbl) + +/** + * get_user_inline - Read user data inlined + * @val: The variable to store the value read from user memory + * @usrc: Pointer to the user space memory to read from + * + * Return: 0 if successful, -EFAULT when faulted + * + * Inlined variant of get_user(). Only use when there is a demonstrable + * performance reason. + */ +#define get_user_inline(val, usrc) \ +({ \ + __label__ efault; \ + typeof(usrc) _tmpsrc = usrc; \ + int _ret = 0; \ + \ + scoped_user_read_access(_tmpsrc, efault) \ + unsafe_get_user(val, _tmpsrc, efault); \ + if (0) { \ + efault: \ + _ret = -EFAULT; \ + } \ + _ret; \ +}) + +/** + * put_user_inline - Write to user memory inlined + * @val: The value to write + * @udst: Pointer to the user space memory to write to + * + * Return: 0 if successful, -EFAULT when faulted + * + * Inlined variant of put_user(). Only use when there is a demonstrable + * performance reason. + */ +#define put_user_inline(val, udst) \ +({ \ + __label__ efault; \ + typeof(udst) _tmpdst = udst; \ + int _ret = 0; \ + \ + scoped_user_write_access(_tmpdst, efault) \ + unsafe_put_user(val, _tmpdst, efault); \ + if (0) { \ + efault: \ + _ret = -EFAULT; \ + } \ + _ret; \ +}) + #ifdef CONFIG_HARDENED_USERCOPY -void usercopy_warn(const char *name, const char *detail, bool to_user, - unsigned long offset, unsigned long len); void __noreturn usercopy_abort(const char *name, const char *detail, bool to_user, unsigned long offset, unsigned long len); |
