summaryrefslogtreecommitdiff
path: root/include/linux/uaccess.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/uaccess.h')
-rw-r--r--include/linux/uaccess.h905
1 files changed, 840 insertions, 65 deletions
diff --git a/include/linux/uaccess.h b/include/linux/uaccess.h
index 5ca0951e1855..1f3804245c06 100644
--- a/include/linux/uaccess.h
+++ b/include/linux/uaccess.h
@@ -1,21 +1,275 @@
+/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_UACCESS_H__
#define __LINUX_UACCESS_H__
-#include <linux/preempt.h>
+#include <linux/cleanup.h>
+#include <linux/fault-inject-usercopy.h>
+#include <linux/instrumented.h>
+#include <linux/minmax.h>
+#include <linux/nospec.h>
+#include <linux/sched.h>
+#include <linux/ucopysize.h>
+
#include <asm/uaccess.h>
/*
- * These routines enable/disable the pagefault handler in that
- * it will not take any locks and go straight to the fixup table.
+ * Architectures that support memory tagging (assigning tags to memory regions,
+ * embedding these tags into addresses that point to these memory regions, and
+ * checking that the memory and the pointer tags match on memory accesses)
+ * redefine this macro to strip tags from pointers.
+ *
+ * Passing down mm_struct allows to define untagging rules on per-process
+ * basis.
*
- * They have great resemblance to the preempt_disable/enable calls
- * and in fact they are identical; this is because currently there is
- * no other way to make the pagefault handlers do this. So we do
- * disable preemption but we don't necessarily care about that.
+ * It's defined as noop for architectures that don't support memory tagging.
+ */
+#ifndef untagged_addr
+#define untagged_addr(addr) (addr)
+#endif
+
+#ifndef untagged_addr_remote
+#define untagged_addr_remote(mm, addr) ({ \
+ mmap_assert_locked(mm); \
+ untagged_addr(addr); \
+})
+#endif
+
+#ifdef masked_user_access_begin
+ #define can_do_masked_user_access() 1
+# ifndef masked_user_write_access_begin
+# define masked_user_write_access_begin masked_user_access_begin
+# endif
+# ifndef masked_user_read_access_begin
+# define masked_user_read_access_begin masked_user_access_begin
+#endif
+#else
+ #define can_do_masked_user_access() 0
+ #define masked_user_access_begin(src) NULL
+ #define masked_user_read_access_begin(src) NULL
+ #define masked_user_write_access_begin(src) NULL
+ #define mask_user_address(src) (src)
+#endif
+
+/*
+ * Architectures should provide two primitives (raw_copy_{to,from}_user())
+ * and get rid of their private instances of copy_{to,from}_user() and
+ * __copy_{to,from}_user{,_inatomic}().
+ *
+ * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
+ * return the amount left to copy. They should assume that access_ok() has
+ * already been checked (and succeeded); they should *not* zero-pad anything.
+ * No KASAN or object size checks either - those belong here.
+ *
+ * Both of these functions should attempt to copy size bytes starting at from
+ * into the area starting at to. They must not fetch or store anything
+ * outside of those areas. Return value must be between 0 (everything
+ * copied successfully) and size (nothing copied).
+ *
+ * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
+ * at to must become equal to the bytes fetched from the corresponding area
+ * starting at from. All data past to + size - N must be left unmodified.
+ *
+ * If copying succeeds, the return value must be 0. If some data cannot be
+ * fetched, it is permitted to copy less than had been fetched; the only
+ * hard requirement is that not storing anything at all (i.e. returning size)
+ * should happen only when nothing could be copied. In other words, you don't
+ * have to squeeze as much as possible - it is allowed, but not necessary.
+ *
+ * For raw_copy_from_user() to always points to kernel memory and no faults
+ * on store should happen. Interpretation of from is affected by set_fs().
+ * For raw_copy_to_user() it's the other way round.
+ *
+ * Both can be inlined - it's up to architectures whether it wants to bother
+ * with that. They should not be used directly; they are used to implement
+ * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
+ * that are used instead. Out of those, __... ones are inlined. Plain
+ * copy_{to,from}_user() might or might not be inlined. If you want them
+ * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
+ *
+ * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
+ * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
+ * at all; their callers absolutely must check the return value.
+ *
+ * Biarch ones should also provide raw_copy_in_user() - similar to the above,
+ * but both source and destination are __user pointers (affected by set_fs()
+ * as usual) and both source and destination can trigger faults.
+ */
+
+static __always_inline __must_check unsigned long
+__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
+{
+ unsigned long res;
+
+ instrument_copy_from_user_before(to, from, n);
+ check_object_size(to, n, false);
+ res = raw_copy_from_user(to, from, n);
+ instrument_copy_from_user_after(to, from, n, res);
+ return res;
+}
+
+static __always_inline __must_check unsigned long
+__copy_from_user(void *to, const void __user *from, unsigned long n)
+{
+ unsigned long res;
+
+ might_fault();
+ instrument_copy_from_user_before(to, from, n);
+ if (should_fail_usercopy())
+ return n;
+ check_object_size(to, n, false);
+ res = raw_copy_from_user(to, from, n);
+ instrument_copy_from_user_after(to, from, n, res);
+ return res;
+}
+
+/**
+ * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
+ * @to: Destination address, in user space.
+ * @from: Source address, in kernel space.
+ * @n: Number of bytes to copy.
+ *
+ * Context: User context only.
+ *
+ * Copy data from kernel space to user space. Caller must check
+ * the specified block with access_ok() before calling this function.
+ * The caller should also make sure he pins the user space address
+ * so that we don't result in page fault and sleep.
+ */
+static __always_inline __must_check unsigned long
+__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
+{
+ if (should_fail_usercopy())
+ return n;
+ instrument_copy_to_user(to, from, n);
+ check_object_size(from, n, true);
+ return raw_copy_to_user(to, from, n);
+}
+
+static __always_inline __must_check unsigned long
+__copy_to_user(void __user *to, const void *from, unsigned long n)
+{
+ might_fault();
+ if (should_fail_usercopy())
+ return n;
+ instrument_copy_to_user(to, from, n);
+ check_object_size(from, n, true);
+ return raw_copy_to_user(to, from, n);
+}
+
+/*
+ * Architectures that #define INLINE_COPY_TO_USER use this function
+ * directly in the normal copy_to/from_user(), the other ones go
+ * through an extern _copy_to/from_user(), which expands the same code
+ * here.
+ */
+static inline __must_check unsigned long
+_inline_copy_from_user(void *to, const void __user *from, unsigned long n)
+{
+ unsigned long res = n;
+ might_fault();
+ if (should_fail_usercopy())
+ goto fail;
+ if (can_do_masked_user_access())
+ from = mask_user_address(from);
+ else {
+ if (!access_ok(from, n))
+ goto fail;
+ /*
+ * Ensure that bad access_ok() speculation will not
+ * lead to nasty side effects *after* the copy is
+ * finished:
+ */
+ barrier_nospec();
+ }
+ instrument_copy_from_user_before(to, from, n);
+ res = raw_copy_from_user(to, from, n);
+ instrument_copy_from_user_after(to, from, n, res);
+ if (likely(!res))
+ return 0;
+fail:
+ memset(to + (n - res), 0, res);
+ return res;
+}
+#ifndef INLINE_COPY_FROM_USER
+extern __must_check unsigned long
+_copy_from_user(void *, const void __user *, unsigned long);
+#endif
+
+static inline __must_check unsigned long
+_inline_copy_to_user(void __user *to, const void *from, unsigned long n)
+{
+ might_fault();
+ if (should_fail_usercopy())
+ return n;
+ if (access_ok(to, n)) {
+ instrument_copy_to_user(to, from, n);
+ n = raw_copy_to_user(to, from, n);
+ }
+ return n;
+}
+#ifndef INLINE_COPY_TO_USER
+extern __must_check unsigned long
+_copy_to_user(void __user *, const void *, unsigned long);
+#endif
+
+static __always_inline unsigned long __must_check
+copy_from_user(void *to, const void __user *from, unsigned long n)
+{
+ if (!check_copy_size(to, n, false))
+ return n;
+#ifdef INLINE_COPY_FROM_USER
+ return _inline_copy_from_user(to, from, n);
+#else
+ return _copy_from_user(to, from, n);
+#endif
+}
+
+static __always_inline unsigned long __must_check
+copy_to_user(void __user *to, const void *from, unsigned long n)
+{
+ if (!check_copy_size(from, n, true))
+ return n;
+
+#ifdef INLINE_COPY_TO_USER
+ return _inline_copy_to_user(to, from, n);
+#else
+ return _copy_to_user(to, from, n);
+#endif
+}
+
+#ifndef copy_mc_to_kernel
+/*
+ * Without arch opt-in this generic copy_mc_to_kernel() will not handle
+ * #MC (or arch equivalent) during source read.
+ */
+static inline unsigned long __must_check
+copy_mc_to_kernel(void *dst, const void *src, size_t cnt)
+{
+ memcpy(dst, src, cnt);
+ return 0;
+}
+#endif
+
+static __always_inline void pagefault_disabled_inc(void)
+{
+ current->pagefault_disabled++;
+}
+
+static __always_inline void pagefault_disabled_dec(void)
+{
+ current->pagefault_disabled--;
+}
+
+/*
+ * These routines enable/disable the pagefault handler. If disabled, it will
+ * not take any locks and go straight to the fixup table.
+ *
+ * User access methods will not sleep when called from a pagefault_disabled()
+ * environment.
*/
static inline void pagefault_disable(void)
{
- inc_preempt_count();
+ pagefault_disabled_inc();
/*
* make sure to have issued the store before a pagefault
* can hit.
@@ -30,82 +284,603 @@ static inline void pagefault_enable(void)
* the pagefault handler again.
*/
barrier();
- dec_preempt_count();
- /*
- * make sure we do..
- */
- barrier();
- preempt_check_resched();
+ pagefault_disabled_dec();
}
-#ifndef ARCH_HAS_NOCACHE_UACCESS
+/*
+ * Is the pagefault handler disabled? If so, user access methods will not sleep.
+ */
+static inline bool pagefault_disabled(void)
+{
+ return current->pagefault_disabled != 0;
+}
+
+/*
+ * The pagefault handler is in general disabled by pagefault_disable() or
+ * when in irq context (via in_atomic()).
+ *
+ * This function should only be used by the fault handlers. Other users should
+ * stick to pagefault_disabled().
+ * Please NEVER use preempt_disable() to disable the fault handler. With
+ * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
+ * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
+ */
+#define faulthandler_disabled() (pagefault_disabled() || in_atomic())
+
+DEFINE_LOCK_GUARD_0(pagefault, pagefault_disable(), pagefault_enable())
-static inline unsigned long __copy_from_user_inatomic_nocache(void *to,
- const void __user *from, unsigned long n)
+#ifndef CONFIG_ARCH_HAS_SUBPAGE_FAULTS
+
+/**
+ * probe_subpage_writeable: probe the user range for write faults at sub-page
+ * granularity (e.g. arm64 MTE)
+ * @uaddr: start of address range
+ * @size: size of address range
+ *
+ * Returns 0 on success, the number of bytes not probed on fault.
+ *
+ * It is expected that the caller checked for the write permission of each
+ * page in the range either by put_user() or GUP. The architecture port can
+ * implement a more efficient get_user() probing if the same sub-page faults
+ * are triggered by either a read or a write.
+ */
+static inline size_t probe_subpage_writeable(char __user *uaddr, size_t size)
{
- return __copy_from_user_inatomic(to, from, n);
+ return 0;
}
-static inline unsigned long __copy_from_user_nocache(void *to,
- const void __user *from, unsigned long n)
+#endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */
+
+#ifndef ARCH_HAS_NOCACHE_UACCESS
+
+static inline __must_check unsigned long
+__copy_from_user_inatomic_nocache(void *to, const void __user *from,
+ unsigned long n)
{
- return __copy_from_user(to, from, n);
+ return __copy_from_user_inatomic(to, from, n);
}
#endif /* ARCH_HAS_NOCACHE_UACCESS */
+extern __must_check int check_zeroed_user(const void __user *from, size_t size);
+
/**
- * probe_kernel_address(): safely attempt to read from a location
- * @addr: address to read from - its type is type typeof(retval)*
- * @retval: read into this variable
- *
- * Safely read from address @addr into variable @revtal. If a kernel fault
- * happens, handle that and return -EFAULT.
- * We ensure that the __get_user() is executed in atomic context so that
- * do_page_fault() doesn't attempt to take mmap_sem. This makes
- * probe_kernel_address() suitable for use within regions where the caller
- * already holds mmap_sem, or other locks which nest inside mmap_sem.
- * This must be a macro because __get_user() needs to know the types of the
- * args.
- *
- * We don't include enough header files to be able to do the set_fs(). We
- * require that the probe_kernel_address() caller will do that.
- */
-#define probe_kernel_address(addr, retval) \
- ({ \
- long ret; \
- mm_segment_t old_fs = get_fs(); \
- \
- set_fs(KERNEL_DS); \
- pagefault_disable(); \
- ret = __copy_from_user_inatomic(&(retval), (__force typeof(retval) __user *)(addr), sizeof(retval)); \
- pagefault_enable(); \
- set_fs(old_fs); \
- ret; \
- })
+ * copy_struct_from_user: copy a struct from userspace
+ * @dst: Destination address, in kernel space. This buffer must be @ksize
+ * bytes long.
+ * @ksize: Size of @dst struct.
+ * @src: Source address, in userspace.
+ * @usize: (Alleged) size of @src struct.
+ *
+ * Copies a struct from userspace to kernel space, in a way that guarantees
+ * backwards-compatibility for struct syscall arguments (as long as future
+ * struct extensions are made such that all new fields are *appended* to the
+ * old struct, and zeroed-out new fields have the same meaning as the old
+ * struct).
+ *
+ * @ksize is just sizeof(*dst), and @usize should've been passed by userspace.
+ * The recommended usage is something like the following:
+ *
+ * SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize)
+ * {
+ * int err;
+ * struct foo karg = {};
+ *
+ * if (usize > PAGE_SIZE)
+ * return -E2BIG;
+ * if (usize < FOO_SIZE_VER0)
+ * return -EINVAL;
+ *
+ * err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
+ * if (err)
+ * return err;
+ *
+ * // ...
+ * }
+ *
+ * There are three cases to consider:
+ * * If @usize == @ksize, then it's copied verbatim.
+ * * If @usize < @ksize, then the userspace has passed an old struct to a
+ * newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize)
+ * are to be zero-filled.
+ * * If @usize > @ksize, then the userspace has passed a new struct to an
+ * older kernel. The trailing bytes unknown to the kernel (@usize - @ksize)
+ * are checked to ensure they are zeroed, otherwise -E2BIG is returned.
+ *
+ * Returns (in all cases, some data may have been copied):
+ * * -E2BIG: (@usize > @ksize) and there are non-zero trailing bytes in @src.
+ * * -EFAULT: access to userspace failed.
+ */
+static __always_inline __must_check int
+copy_struct_from_user(void *dst, size_t ksize, const void __user *src,
+ size_t usize)
+{
+ size_t size = min(ksize, usize);
+ size_t rest = max(ksize, usize) - size;
+ /* Double check if ksize is larger than a known object size. */
+ if (WARN_ON_ONCE(ksize > __builtin_object_size(dst, 1)))
+ return -E2BIG;
+
+ /* Deal with trailing bytes. */
+ if (usize < ksize) {
+ memset(dst + size, 0, rest);
+ } else if (usize > ksize) {
+ int ret = check_zeroed_user(src + size, rest);
+ if (ret <= 0)
+ return ret ?: -E2BIG;
+ }
+ /* Copy the interoperable parts of the struct. */
+ if (copy_from_user(dst, src, size))
+ return -EFAULT;
+ return 0;
+}
+
+/**
+ * copy_struct_to_user: copy a struct to userspace
+ * @dst: Destination address, in userspace. This buffer must be @ksize
+ * bytes long.
+ * @usize: (Alleged) size of @dst struct.
+ * @src: Source address, in kernel space.
+ * @ksize: Size of @src struct.
+ * @ignored_trailing: Set to %true if there was a non-zero byte in @src that
+ * userspace cannot see because they are using an smaller struct.
+ *
+ * Copies a struct from kernel space to userspace, in a way that guarantees
+ * backwards-compatibility for struct syscall arguments (as long as future
+ * struct extensions are made such that all new fields are *appended* to the
+ * old struct, and zeroed-out new fields have the same meaning as the old
+ * struct).
+ *
+ * Some syscalls may wish to make sure that userspace knows about everything in
+ * the struct, and if there is a non-zero value that userspce doesn't know
+ * about, they want to return an error (such as -EMSGSIZE) or have some other
+ * fallback (such as adding a "you're missing some information" flag). If
+ * @ignored_trailing is non-%NULL, it will be set to %true if there was a
+ * non-zero byte that could not be copied to userspace (ie. was past @usize).
+ *
+ * While unconditionally returning an error in this case is the simplest
+ * solution, for maximum backward compatibility you should try to only return
+ * -EMSGSIZE if the user explicitly requested the data that couldn't be copied.
+ * Note that structure sizes can change due to header changes and simple
+ * recompilations without code changes(!), so if you care about
+ * @ignored_trailing you probably want to make sure that any new field data is
+ * associated with a flag. Otherwise you might assume that a program knows
+ * about data it does not.
+ *
+ * @ksize is just sizeof(*src), and @usize should've been passed by userspace.
+ * The recommended usage is something like the following:
+ *
+ * SYSCALL_DEFINE2(foobar, struct foo __user *, uarg, size_t, usize)
+ * {
+ * int err;
+ * bool ignored_trailing;
+ * struct foo karg = {};
+ *
+ * if (usize > PAGE_SIZE)
+ * return -E2BIG;
+ * if (usize < FOO_SIZE_VER0)
+ * return -EINVAL;
+ *
+ * // ... modify karg somehow ...
+ *
+ * err = copy_struct_to_user(uarg, usize, &karg, sizeof(karg),
+ * &ignored_trailing);
+ * if (err)
+ * return err;
+ * if (ignored_trailing)
+ * return -EMSGSIZE:
+ *
+ * // ...
+ * }
+ *
+ * There are three cases to consider:
+ * * If @usize == @ksize, then it's copied verbatim.
+ * * If @usize < @ksize, then the kernel is trying to pass userspace a newer
+ * struct than it supports. Thus we only copy the interoperable portions
+ * (@usize) and ignore the rest (but @ignored_trailing is set to %true if
+ * any of the trailing (@ksize - @usize) bytes are non-zero).
+ * * If @usize > @ksize, then the kernel is trying to pass userspace an older
+ * struct than userspace supports. In order to make sure the
+ * unknown-to-the-kernel fields don't contain garbage values, we zero the
+ * trailing (@usize - @ksize) bytes.
+ *
+ * Returns (in all cases, some data may have been copied):
+ * * -EFAULT: access to userspace failed.
+ */
+static __always_inline __must_check int
+copy_struct_to_user(void __user *dst, size_t usize, const void *src,
+ size_t ksize, bool *ignored_trailing)
+{
+ size_t size = min(ksize, usize);
+ size_t rest = max(ksize, usize) - size;
+
+ /* Double check if ksize is larger than a known object size. */
+ if (WARN_ON_ONCE(ksize > __builtin_object_size(src, 1)))
+ return -E2BIG;
+
+ /* Deal with trailing bytes. */
+ if (usize > ksize) {
+ if (clear_user(dst + size, rest))
+ return -EFAULT;
+ }
+ if (ignored_trailing)
+ *ignored_trailing = ksize < usize &&
+ memchr_inv(src + size, 0, rest) != NULL;
+ /* Copy the interoperable parts of the struct. */
+ if (copy_to_user(dst, src, size))
+ return -EFAULT;
+ return 0;
+}
+
+bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size);
+
+long copy_from_kernel_nofault(void *dst, const void *src, size_t size);
+long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size);
+
+long copy_from_user_nofault(void *dst, const void __user *src, size_t size);
+long notrace copy_to_user_nofault(void __user *dst, const void *src,
+ size_t size);
+
+long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr,
+ long count);
+
+long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr,
+ long count);
+long strnlen_user_nofault(const void __user *unsafe_addr, long count);
+
+#ifdef arch_get_kernel_nofault
/*
- * probe_kernel_read(): safely attempt to read from a location
- * @dst: pointer to the buffer that shall take the data
- * @src: address to read from
- * @size: size of the data chunk
+ * Wrap the architecture implementation so that @label can be outside of a
+ * cleanup() scope. A regular C goto works correctly, but ASM goto does
+ * not. Clang rejects such an attempt, but GCC silently emits buggy code.
+ */
+#define __get_kernel_nofault(dst, src, type, label) \
+do { \
+ __label__ local_label; \
+ arch_get_kernel_nofault(dst, src, type, local_label); \
+ if (0) { \
+ local_label: \
+ goto label; \
+ } \
+} while (0)
+
+#define __put_kernel_nofault(dst, src, type, label) \
+do { \
+ __label__ local_label; \
+ arch_put_kernel_nofault(dst, src, type, local_label); \
+ if (0) { \
+ local_label: \
+ goto label; \
+ } \
+} while (0)
+
+#elif !defined(__get_kernel_nofault) /* arch_get_kernel_nofault */
+
+#define __get_kernel_nofault(dst, src, type, label) \
+do { \
+ type __user *p = (type __force __user *)(src); \
+ type data; \
+ if (__get_user(data, p)) \
+ goto label; \
+ *(type *)dst = data; \
+} while (0)
+
+#define __put_kernel_nofault(dst, src, type, label) \
+do { \
+ type __user *p = (type __force __user *)(dst); \
+ type data = *(type *)src; \
+ if (__put_user(data, p)) \
+ goto label; \
+} while (0)
+
+#endif /* !__get_kernel_nofault */
+
+/**
+ * get_kernel_nofault(): safely attempt to read from a location
+ * @val: read into this variable
+ * @ptr: address to read from
*
- * Safely read from address @src to the buffer at @dst. If a kernel fault
- * happens, handle that and return -EFAULT.
+ * Returns 0 on success, or -EFAULT.
*/
-extern long probe_kernel_read(void *dst, const void *src, size_t size);
-extern long __probe_kernel_read(void *dst, const void *src, size_t size);
+#define get_kernel_nofault(val, ptr) ({ \
+ const typeof(val) *__gk_ptr = (ptr); \
+ copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\
+})
+
+#ifdef user_access_begin
+#ifdef arch_unsafe_get_user
/*
- * probe_kernel_write(): safely attempt to write to a location
- * @dst: address to write to
- * @src: pointer to the data that shall be written
- * @size: size of the data chunk
+ * Wrap the architecture implementation so that @label can be outside of a
+ * cleanup() scope. A regular C goto works correctly, but ASM goto does
+ * not. Clang rejects such an attempt, but GCC silently emits buggy code.
+ *
+ * Some architectures use internal local labels already, but this extra
+ * indirection here is harmless because the compiler optimizes it out
+ * completely in any case. This construct just ensures that the ASM GOTO
+ * target is always in the local scope. The C goto 'label' works correctly
+ * when leaving a cleanup() scope.
+ */
+#define unsafe_get_user(x, ptr, label) \
+do { \
+ __label__ local_label; \
+ arch_unsafe_get_user(x, ptr, local_label); \
+ if (0) { \
+ local_label: \
+ goto label; \
+ } \
+} while (0)
+
+#define unsafe_put_user(x, ptr, label) \
+do { \
+ __label__ local_label; \
+ arch_unsafe_put_user(x, ptr, local_label); \
+ if (0) { \
+ local_label: \
+ goto label; \
+ } \
+} while (0)
+#endif /* arch_unsafe_get_user */
+
+#else /* user_access_begin */
+#define user_access_begin(ptr,len) access_ok(ptr, len)
+#define user_access_end() do { } while (0)
+#define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0)
+#define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e)
+#define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e)
+#define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e)
+#define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e)
+static inline unsigned long user_access_save(void) { return 0UL; }
+static inline void user_access_restore(unsigned long flags) { }
+#endif /* !user_access_begin */
+
+#ifndef user_write_access_begin
+#define user_write_access_begin user_access_begin
+#define user_write_access_end user_access_end
+#endif
+#ifndef user_read_access_begin
+#define user_read_access_begin user_access_begin
+#define user_read_access_end user_access_end
+#endif
+
+/* Define RW variant so the below _mode macro expansion works */
+#define masked_user_rw_access_begin(u) masked_user_access_begin(u)
+#define user_rw_access_begin(u, s) user_access_begin(u, s)
+#define user_rw_access_end() user_access_end()
+
+/* Scoped user access */
+#define USER_ACCESS_GUARD(_mode) \
+static __always_inline void __user * \
+class_user_##_mode##_begin(void __user *ptr) \
+{ \
+ return ptr; \
+} \
+ \
+static __always_inline void \
+class_user_##_mode##_end(void __user *ptr) \
+{ \
+ user_##_mode##_access_end(); \
+} \
+ \
+DEFINE_CLASS(user_ ##_mode## _access, void __user *, \
+ class_user_##_mode##_end(_T), \
+ class_user_##_mode##_begin(ptr), void __user *ptr) \
+ \
+static __always_inline class_user_##_mode##_access_t \
+class_user_##_mode##_access_ptr(void __user *scope) \
+{ \
+ return scope; \
+}
+
+USER_ACCESS_GUARD(read)
+USER_ACCESS_GUARD(write)
+USER_ACCESS_GUARD(rw)
+#undef USER_ACCESS_GUARD
+
+/**
+ * __scoped_user_access_begin - Start a scoped user access
+ * @mode: The mode of the access class (read, write, rw)
+ * @uptr: The pointer to access user space memory
+ * @size: Size of the access
+ * @elbl: Error label to goto when the access region is rejected
+ *
+ * Internal helper for __scoped_user_access(). Don't use directly.
+ */
+#define __scoped_user_access_begin(mode, uptr, size, elbl) \
+({ \
+ typeof(uptr) __retptr; \
+ \
+ if (can_do_masked_user_access()) { \
+ __retptr = masked_user_##mode##_access_begin(uptr); \
+ } else { \
+ __retptr = uptr; \
+ if (!user_##mode##_access_begin(uptr, size)) \
+ goto elbl; \
+ } \
+ __retptr; \
+})
+
+/**
+ * __scoped_user_access - Open a scope for user access
+ * @mode: The mode of the access class (read, write, rw)
+ * @uptr: The pointer to access user space memory
+ * @size: Size of the access
+ * @elbl: Error label to goto when the access region is rejected. It
+ * must be placed outside the scope
+ *
+ * If the user access function inside the scope requires a fault label, it
+ * can use @elbl or a different label outside the scope, which requires
+ * that user access which is implemented with ASM GOTO has been properly
+ * wrapped. See unsafe_get_user() for reference.
+ *
+ * scoped_user_rw_access(ptr, efault) {
+ * unsafe_get_user(rval, &ptr->rval, efault);
+ * unsafe_put_user(wval, &ptr->wval, efault);
+ * }
+ * return 0;
+ * efault:
+ * return -EFAULT;
+ *
+ * The scope is internally implemented as a autoterminating nested for()
+ * loop, which can be left with 'return', 'break' and 'goto' at any
+ * point.
+ *
+ * When the scope is left user_##@_mode##_access_end() is automatically
+ * invoked.
+ *
+ * When the architecture supports masked user access and the access region
+ * which is determined by @uptr and @size is not a valid user space
+ * address, i.e. < TASK_SIZE, the scope sets the pointer to a faulting user
+ * space address and does not terminate early. This optimizes for the good
+ * case and lets the performance uncritical bad case go through the fault.
+ *
+ * The eventual modification of the pointer is limited to the scope.
+ * Outside of the scope the original pointer value is unmodified, so that
+ * the original pointer value is available for diagnostic purposes in an
+ * out of scope fault path.
+ *
+ * Nesting scoped user access into a user access scope is invalid and fails
+ * the build. Nesting into other guards, e.g. pagefault is safe.
+ *
+ * The masked variant does not check the size of the access and relies on a
+ * mapping hole (e.g. guard page) to catch an out of range pointer, the
+ * first access to user memory inside the scope has to be within
+ * @uptr ... @uptr + PAGE_SIZE - 1
+ *
+ * Don't use directly. Use scoped_masked_user_$MODE_access() instead.
+ */
+#define __scoped_user_access(mode, uptr, size, elbl) \
+for (bool done = false; !done; done = true) \
+ for (void __user *_tmpptr = __scoped_user_access_begin(mode, uptr, size, elbl); \
+ !done; done = true) \
+ for (CLASS(user_##mode##_access, scope)(_tmpptr); !done; done = true) \
+ /* Force modified pointer usage within the scope */ \
+ for (const typeof(uptr) uptr = _tmpptr; !done; done = true)
+
+/**
+ * scoped_user_read_access_size - Start a scoped user read access with given size
+ * @usrc: Pointer to the user space address to read from
+ * @size: Size of the access starting from @usrc
+ * @elbl: Error label to goto when the access region is rejected
+ *
+ * For further information see __scoped_user_access() above.
+ */
+#define scoped_user_read_access_size(usrc, size, elbl) \
+ __scoped_user_access(read, usrc, size, elbl)
+
+/**
+ * scoped_user_read_access - Start a scoped user read access
+ * @usrc: Pointer to the user space address to read from
+ * @elbl: Error label to goto when the access region is rejected
+ *
+ * The size of the access starting from @usrc is determined via sizeof(*@usrc)).
+ *
+ * For further information see __scoped_user_access() above.
+ */
+#define scoped_user_read_access(usrc, elbl) \
+ scoped_user_read_access_size(usrc, sizeof(*(usrc)), elbl)
+
+/**
+ * scoped_user_write_access_size - Start a scoped user write access with given size
+ * @udst: Pointer to the user space address to write to
+ * @size: Size of the access starting from @udst
+ * @elbl: Error label to goto when the access region is rejected
+ *
+ * For further information see __scoped_user_access() above.
+ */
+#define scoped_user_write_access_size(udst, size, elbl) \
+ __scoped_user_access(write, udst, size, elbl)
+
+/**
+ * scoped_user_write_access - Start a scoped user write access
+ * @udst: Pointer to the user space address to write to
+ * @elbl: Error label to goto when the access region is rejected
+ *
+ * The size of the access starting from @udst is determined via sizeof(*@udst)).
+ *
+ * For further information see __scoped_user_access() above.
+ */
+#define scoped_user_write_access(udst, elbl) \
+ scoped_user_write_access_size(udst, sizeof(*(udst)), elbl)
+
+/**
+ * scoped_user_rw_access_size - Start a scoped user read/write access with given size
+ * @uptr Pointer to the user space address to read from and write to
+ * @size: Size of the access starting from @uptr
+ * @elbl: Error label to goto when the access region is rejected
+ *
+ * For further information see __scoped_user_access() above.
+ */
+#define scoped_user_rw_access_size(uptr, size, elbl) \
+ __scoped_user_access(rw, uptr, size, elbl)
+
+/**
+ * scoped_user_rw_access - Start a scoped user read/write access
+ * @uptr Pointer to the user space address to read from and write to
+ * @elbl: Error label to goto when the access region is rejected
*
- * Safely write to address @dst from the buffer at @src. If a kernel fault
- * happens, handle that and return -EFAULT.
+ * The size of the access starting from @uptr is determined via sizeof(*@uptr)).
+ *
+ * For further information see __scoped_user_access() above.
+ */
+#define scoped_user_rw_access(uptr, elbl) \
+ scoped_user_rw_access_size(uptr, sizeof(*(uptr)), elbl)
+
+/**
+ * get_user_inline - Read user data inlined
+ * @val: The variable to store the value read from user memory
+ * @usrc: Pointer to the user space memory to read from
+ *
+ * Return: 0 if successful, -EFAULT when faulted
+ *
+ * Inlined variant of get_user(). Only use when there is a demonstrable
+ * performance reason.
*/
-extern long notrace probe_kernel_write(void *dst, const void *src, size_t size);
-extern long notrace __probe_kernel_write(void *dst, const void *src, size_t size);
+#define get_user_inline(val, usrc) \
+({ \
+ __label__ efault; \
+ typeof(usrc) _tmpsrc = usrc; \
+ int _ret = 0; \
+ \
+ scoped_user_read_access(_tmpsrc, efault) \
+ unsafe_get_user(val, _tmpsrc, efault); \
+ if (0) { \
+ efault: \
+ _ret = -EFAULT; \
+ } \
+ _ret; \
+})
+
+/**
+ * put_user_inline - Write to user memory inlined
+ * @val: The value to write
+ * @udst: Pointer to the user space memory to write to
+ *
+ * Return: 0 if successful, -EFAULT when faulted
+ *
+ * Inlined variant of put_user(). Only use when there is a demonstrable
+ * performance reason.
+ */
+#define put_user_inline(val, udst) \
+({ \
+ __label__ efault; \
+ typeof(udst) _tmpdst = udst; \
+ int _ret = 0; \
+ \
+ scoped_user_write_access(_tmpdst, efault) \
+ unsafe_put_user(val, _tmpdst, efault); \
+ if (0) { \
+ efault: \
+ _ret = -EFAULT; \
+ } \
+ _ret; \
+})
+
+#ifdef CONFIG_HARDENED_USERCOPY
+void __noreturn usercopy_abort(const char *name, const char *detail,
+ bool to_user, unsigned long offset,
+ unsigned long len);
+#endif
#endif /* __LINUX_UACCESS_H__ */