diff options
Diffstat (limited to 'io_uring/io_uring.c')
| -rw-r--r-- | io_uring/io_uring.c | 3865 |
1 files changed, 3865 insertions, 0 deletions
diff --git a/io_uring/io_uring.c b/io_uring/io_uring.c new file mode 100644 index 000000000000..5d130c578435 --- /dev/null +++ b/io_uring/io_uring.c @@ -0,0 +1,3865 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Shared application/kernel submission and completion ring pairs, for + * supporting fast/efficient IO. + * + * A note on the read/write ordering memory barriers that are matched between + * the application and kernel side. + * + * After the application reads the CQ ring tail, it must use an + * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses + * before writing the tail (using smp_load_acquire to read the tail will + * do). It also needs a smp_mb() before updating CQ head (ordering the + * entry load(s) with the head store), pairing with an implicit barrier + * through a control-dependency in io_get_cqe (smp_store_release to + * store head will do). Failure to do so could lead to reading invalid + * CQ entries. + * + * Likewise, the application must use an appropriate smp_wmb() before + * writing the SQ tail (ordering SQ entry stores with the tail store), + * which pairs with smp_load_acquire in io_get_sqring (smp_store_release + * to store the tail will do). And it needs a barrier ordering the SQ + * head load before writing new SQ entries (smp_load_acquire to read + * head will do). + * + * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application + * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after* + * updating the SQ tail; a full memory barrier smp_mb() is needed + * between. + * + * Also see the examples in the liburing library: + * + * git://git.kernel.org/pub/scm/linux/kernel/git/axboe/liburing.git + * + * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens + * from data shared between the kernel and application. This is done both + * for ordering purposes, but also to ensure that once a value is loaded from + * data that the application could potentially modify, it remains stable. + * + * Copyright (C) 2018-2019 Jens Axboe + * Copyright (c) 2018-2019 Christoph Hellwig + */ +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/errno.h> +#include <linux/syscalls.h> +#include <net/compat.h> +#include <linux/refcount.h> +#include <linux/uio.h> +#include <linux/bits.h> + +#include <linux/sched/signal.h> +#include <linux/fs.h> +#include <linux/file.h> +#include <linux/mm.h> +#include <linux/mman.h> +#include <linux/percpu.h> +#include <linux/slab.h> +#include <linux/bvec.h> +#include <linux/net.h> +#include <net/sock.h> +#include <linux/anon_inodes.h> +#include <linux/sched/mm.h> +#include <linux/uaccess.h> +#include <linux/nospec.h> +#include <linux/fsnotify.h> +#include <linux/fadvise.h> +#include <linux/task_work.h> +#include <linux/io_uring.h> +#include <linux/io_uring/cmd.h> +#include <linux/audit.h> +#include <linux/security.h> +#include <linux/jump_label.h> +#include <asm/shmparam.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/io_uring.h> + +#include <uapi/linux/io_uring.h> + +#include "io-wq.h" + +#include "filetable.h" +#include "io_uring.h" +#include "opdef.h" +#include "refs.h" +#include "tctx.h" +#include "register.h" +#include "sqpoll.h" +#include "fdinfo.h" +#include "kbuf.h" +#include "rsrc.h" +#include "cancel.h" +#include "net.h" +#include "notif.h" +#include "waitid.h" +#include "futex.h" +#include "napi.h" +#include "uring_cmd.h" +#include "msg_ring.h" +#include "memmap.h" +#include "zcrx.h" + +#include "timeout.h" +#include "poll.h" +#include "rw.h" +#include "alloc_cache.h" +#include "eventfd.h" + +#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \ + IOSQE_IO_HARDLINK | IOSQE_ASYNC) + +#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK) + +#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \ + REQ_F_INFLIGHT | REQ_F_CREDS | REQ_F_ASYNC_DATA) + +#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \ + REQ_F_REISSUE | REQ_F_POLLED | \ + IO_REQ_CLEAN_FLAGS) + +#define IO_TCTX_REFS_CACHE_NR (1U << 10) + +#define IO_COMPL_BATCH 32 +#define IO_REQ_ALLOC_BATCH 8 +#define IO_LOCAL_TW_DEFAULT_MAX 20 + +/* requests with any of those set should undergo io_disarm_next() */ +#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL) + +/* + * No waiters. It's larger than any valid value of the tw counter + * so that tests against ->cq_wait_nr would fail and skip wake_up(). + */ +#define IO_CQ_WAKE_INIT (-1U) +/* Forced wake up if there is a waiter regardless of ->cq_wait_nr */ +#define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1) + +static void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags); +static void __io_req_caches_free(struct io_ring_ctx *ctx); + +static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray); + +struct kmem_cache *req_cachep; +static struct workqueue_struct *iou_wq __ro_after_init; + +static int __read_mostly sysctl_io_uring_disabled; +static int __read_mostly sysctl_io_uring_group = -1; + +#ifdef CONFIG_SYSCTL +static const struct ctl_table kernel_io_uring_disabled_table[] = { + { + .procname = "io_uring_disabled", + .data = &sysctl_io_uring_disabled, + .maxlen = sizeof(sysctl_io_uring_disabled), + .mode = 0644, + .proc_handler = proc_dointvec_minmax, + .extra1 = SYSCTL_ZERO, + .extra2 = SYSCTL_TWO, + }, + { + .procname = "io_uring_group", + .data = &sysctl_io_uring_group, + .maxlen = sizeof(gid_t), + .mode = 0644, + .proc_handler = proc_dointvec, + }, +}; +#endif + +static void io_poison_cached_req(struct io_kiocb *req) +{ + req->ctx = IO_URING_PTR_POISON; + req->tctx = IO_URING_PTR_POISON; + req->file = IO_URING_PTR_POISON; + req->creds = IO_URING_PTR_POISON; + req->io_task_work.func = IO_URING_PTR_POISON; + req->apoll = IO_URING_PTR_POISON; +} + +static void io_poison_req(struct io_kiocb *req) +{ + io_poison_cached_req(req); + req->async_data = IO_URING_PTR_POISON; + req->kbuf = IO_URING_PTR_POISON; + req->comp_list.next = IO_URING_PTR_POISON; + req->file_node = IO_URING_PTR_POISON; + req->link = IO_URING_PTR_POISON; +} + +static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx) +{ + return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head); +} + +static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx) +{ + return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head); +} + +static inline void req_fail_link_node(struct io_kiocb *req, int res) +{ + req_set_fail(req); + io_req_set_res(req, res, 0); +} + +static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx) +{ + if (IS_ENABLED(CONFIG_KASAN)) + io_poison_cached_req(req); + wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list); +} + +static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref) +{ + struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs); + + complete(&ctx->ref_comp); +} + +/* + * Terminate the request if either of these conditions are true: + * + * 1) It's being executed by the original task, but that task is marked + * with PF_EXITING as it's exiting. + * 2) PF_KTHREAD is set, in which case the invoker of the task_work is + * our fallback task_work. + * 3) The ring has been closed and is going away. + */ +static inline bool io_should_terminate_tw(struct io_ring_ctx *ctx) +{ + return (current->flags & (PF_EXITING | PF_KTHREAD)) || percpu_ref_is_dying(&ctx->refs); +} + +static __cold void io_fallback_req_func(struct work_struct *work) +{ + struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, + fallback_work.work); + struct llist_node *node = llist_del_all(&ctx->fallback_llist); + struct io_kiocb *req, *tmp; + struct io_tw_state ts = {}; + + percpu_ref_get(&ctx->refs); + mutex_lock(&ctx->uring_lock); + ts.cancel = io_should_terminate_tw(ctx); + llist_for_each_entry_safe(req, tmp, node, io_task_work.node) + req->io_task_work.func((struct io_tw_req){req}, ts); + io_submit_flush_completions(ctx); + mutex_unlock(&ctx->uring_lock); + percpu_ref_put(&ctx->refs); +} + +static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits) +{ + unsigned int hash_buckets; + int i; + + do { + hash_buckets = 1U << bits; + table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]), + GFP_KERNEL_ACCOUNT); + if (table->hbs) + break; + if (bits == 1) + return -ENOMEM; + bits--; + } while (1); + + table->hash_bits = bits; + for (i = 0; i < hash_buckets; i++) + INIT_HLIST_HEAD(&table->hbs[i].list); + return 0; +} + +static void io_free_alloc_caches(struct io_ring_ctx *ctx) +{ + io_alloc_cache_free(&ctx->apoll_cache, kfree); + io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free); + io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free); + io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free); + io_futex_cache_free(ctx); + io_rsrc_cache_free(ctx); +} + +static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p) +{ + struct io_ring_ctx *ctx; + int hash_bits; + bool ret; + + ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); + if (!ctx) + return NULL; + + xa_init(&ctx->io_bl_xa); + + /* + * Use 5 bits less than the max cq entries, that should give us around + * 32 entries per hash list if totally full and uniformly spread, but + * don't keep too many buckets to not overconsume memory. + */ + hash_bits = ilog2(p->cq_entries) - 5; + hash_bits = clamp(hash_bits, 1, 8); + if (io_alloc_hash_table(&ctx->cancel_table, hash_bits)) + goto err; + if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, + 0, GFP_KERNEL)) + goto err; + + ctx->flags = p->flags; + ctx->hybrid_poll_time = LLONG_MAX; + atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); + init_waitqueue_head(&ctx->sqo_sq_wait); + INIT_LIST_HEAD(&ctx->sqd_list); + INIT_LIST_HEAD(&ctx->cq_overflow_list); + ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX, + sizeof(struct async_poll), 0); + ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX, + sizeof(struct io_async_msghdr), + offsetof(struct io_async_msghdr, clear)); + ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX, + sizeof(struct io_async_rw), + offsetof(struct io_async_rw, clear)); + ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX, + sizeof(struct io_async_cmd), + sizeof(struct io_async_cmd)); + ret |= io_futex_cache_init(ctx); + ret |= io_rsrc_cache_init(ctx); + if (ret) + goto free_ref; + init_completion(&ctx->ref_comp); + xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1); + mutex_init(&ctx->uring_lock); + init_waitqueue_head(&ctx->cq_wait); + init_waitqueue_head(&ctx->poll_wq); + spin_lock_init(&ctx->completion_lock); + raw_spin_lock_init(&ctx->timeout_lock); + INIT_WQ_LIST(&ctx->iopoll_list); + INIT_LIST_HEAD(&ctx->defer_list); + INIT_LIST_HEAD(&ctx->timeout_list); + INIT_LIST_HEAD(&ctx->ltimeout_list); + init_llist_head(&ctx->work_llist); + INIT_LIST_HEAD(&ctx->tctx_list); + ctx->submit_state.free_list.next = NULL; + INIT_HLIST_HEAD(&ctx->waitid_list); + xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC); +#ifdef CONFIG_FUTEX + INIT_HLIST_HEAD(&ctx->futex_list); +#endif + INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func); + INIT_WQ_LIST(&ctx->submit_state.compl_reqs); + INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd); + io_napi_init(ctx); + mutex_init(&ctx->mmap_lock); + + return ctx; + +free_ref: + percpu_ref_exit(&ctx->refs); +err: + io_free_alloc_caches(ctx); + kvfree(ctx->cancel_table.hbs); + xa_destroy(&ctx->io_bl_xa); + kfree(ctx); + return NULL; +} + +static void io_clean_op(struct io_kiocb *req) +{ + if (unlikely(req->flags & REQ_F_BUFFER_SELECTED)) + io_kbuf_drop_legacy(req); + + if (req->flags & REQ_F_NEED_CLEANUP) { + const struct io_cold_def *def = &io_cold_defs[req->opcode]; + + if (def->cleanup) + def->cleanup(req); + } + if (req->flags & REQ_F_INFLIGHT) + atomic_dec(&req->tctx->inflight_tracked); + if (req->flags & REQ_F_CREDS) + put_cred(req->creds); + if (req->flags & REQ_F_ASYNC_DATA) { + kfree(req->async_data); + req->async_data = NULL; + } + req->flags &= ~IO_REQ_CLEAN_FLAGS; +} + +/* + * Mark the request as inflight, so that file cancelation will find it. + * Can be used if the file is an io_uring instance, or if the request itself + * relies on ->mm being alive for the duration of the request. + */ +inline void io_req_track_inflight(struct io_kiocb *req) +{ + if (!(req->flags & REQ_F_INFLIGHT)) { + req->flags |= REQ_F_INFLIGHT; + atomic_inc(&req->tctx->inflight_tracked); + } +} + +static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req) +{ + if (WARN_ON_ONCE(!req->link)) + return NULL; + + req->flags &= ~REQ_F_ARM_LTIMEOUT; + req->flags |= REQ_F_LINK_TIMEOUT; + + /* linked timeouts should have two refs once prep'ed */ + io_req_set_refcount(req); + __io_req_set_refcount(req->link, 2); + return req->link; +} + +static void io_prep_async_work(struct io_kiocb *req) +{ + const struct io_issue_def *def = &io_issue_defs[req->opcode]; + struct io_ring_ctx *ctx = req->ctx; + + if (!(req->flags & REQ_F_CREDS)) { + req->flags |= REQ_F_CREDS; + req->creds = get_current_cred(); + } + + req->work.list.next = NULL; + atomic_set(&req->work.flags, 0); + if (req->flags & REQ_F_FORCE_ASYNC) + atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags); + + if (req->file && !(req->flags & REQ_F_FIXED_FILE)) + req->flags |= io_file_get_flags(req->file); + + if (req->file && (req->flags & REQ_F_ISREG)) { + bool should_hash = def->hash_reg_file; + + /* don't serialize this request if the fs doesn't need it */ + if (should_hash && (req->file->f_flags & O_DIRECT) && + (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE)) + should_hash = false; + if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL)) + io_wq_hash_work(&req->work, file_inode(req->file)); + } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) { + if (def->unbound_nonreg_file) + atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags); + } +} + +static void io_prep_async_link(struct io_kiocb *req) +{ + struct io_kiocb *cur; + + if (req->flags & REQ_F_LINK_TIMEOUT) { + struct io_ring_ctx *ctx = req->ctx; + + raw_spin_lock_irq(&ctx->timeout_lock); + io_for_each_link(cur, req) + io_prep_async_work(cur); + raw_spin_unlock_irq(&ctx->timeout_lock); + } else { + io_for_each_link(cur, req) + io_prep_async_work(cur); + } +} + +static void io_queue_iowq(struct io_kiocb *req) +{ + struct io_uring_task *tctx = req->tctx; + + BUG_ON(!tctx); + + if ((current->flags & PF_KTHREAD) || !tctx->io_wq) { + io_req_task_queue_fail(req, -ECANCELED); + return; + } + + /* init ->work of the whole link before punting */ + io_prep_async_link(req); + + /* + * Not expected to happen, but if we do have a bug where this _can_ + * happen, catch it here and ensure the request is marked as + * canceled. That will make io-wq go through the usual work cancel + * procedure rather than attempt to run this request (or create a new + * worker for it). + */ + if (WARN_ON_ONCE(!same_thread_group(tctx->task, current))) + atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags); + + trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work)); + io_wq_enqueue(tctx->io_wq, &req->work); +} + +static void io_req_queue_iowq_tw(struct io_tw_req tw_req, io_tw_token_t tw) +{ + io_queue_iowq(tw_req.req); +} + +void io_req_queue_iowq(struct io_kiocb *req) +{ + req->io_task_work.func = io_req_queue_iowq_tw; + io_req_task_work_add(req); +} + +unsigned io_linked_nr(struct io_kiocb *req) +{ + struct io_kiocb *tmp; + unsigned nr = 0; + + io_for_each_link(tmp, req) + nr++; + return nr; +} + +static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx) +{ + bool drain_seen = false, first = true; + + lockdep_assert_held(&ctx->uring_lock); + __io_req_caches_free(ctx); + + while (!list_empty(&ctx->defer_list)) { + struct io_defer_entry *de = list_first_entry(&ctx->defer_list, + struct io_defer_entry, list); + + drain_seen |= de->req->flags & REQ_F_IO_DRAIN; + if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained) + return; + + list_del_init(&de->list); + ctx->nr_drained -= io_linked_nr(de->req); + io_req_task_queue(de->req); + kfree(de); + first = false; + } +} + +void __io_commit_cqring_flush(struct io_ring_ctx *ctx) +{ + if (ctx->poll_activated) + io_poll_wq_wake(ctx); + if (ctx->off_timeout_used) + io_flush_timeouts(ctx); + if (ctx->has_evfd) + io_eventfd_signal(ctx, true); +} + +static inline void __io_cq_lock(struct io_ring_ctx *ctx) +{ + if (!ctx->lockless_cq) + spin_lock(&ctx->completion_lock); +} + +static inline void io_cq_lock(struct io_ring_ctx *ctx) + __acquires(ctx->completion_lock) +{ + spin_lock(&ctx->completion_lock); +} + +static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx) +{ + io_commit_cqring(ctx); + if (!ctx->task_complete) { + if (!ctx->lockless_cq) + spin_unlock(&ctx->completion_lock); + /* IOPOLL rings only need to wake up if it's also SQPOLL */ + if (!ctx->syscall_iopoll) + io_cqring_wake(ctx); + } + io_commit_cqring_flush(ctx); +} + +static void io_cq_unlock_post(struct io_ring_ctx *ctx) + __releases(ctx->completion_lock) +{ + io_commit_cqring(ctx); + spin_unlock(&ctx->completion_lock); + io_cqring_wake(ctx); + io_commit_cqring_flush(ctx); +} + +static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying) +{ + lockdep_assert_held(&ctx->uring_lock); + + /* don't abort if we're dying, entries must get freed */ + if (!dying && __io_cqring_events(ctx) == ctx->cq_entries) + return; + + io_cq_lock(ctx); + while (!list_empty(&ctx->cq_overflow_list)) { + size_t cqe_size = sizeof(struct io_uring_cqe); + struct io_uring_cqe *cqe; + struct io_overflow_cqe *ocqe; + bool is_cqe32 = false; + + ocqe = list_first_entry(&ctx->cq_overflow_list, + struct io_overflow_cqe, list); + if (ocqe->cqe.flags & IORING_CQE_F_32 || + ctx->flags & IORING_SETUP_CQE32) { + is_cqe32 = true; + cqe_size <<= 1; + } + if (ctx->flags & IORING_SETUP_CQE32) + is_cqe32 = false; + + if (!dying) { + if (!io_get_cqe_overflow(ctx, &cqe, true, is_cqe32)) + break; + memcpy(cqe, &ocqe->cqe, cqe_size); + } + list_del(&ocqe->list); + kfree(ocqe); + + /* + * For silly syzbot cases that deliberately overflow by huge + * amounts, check if we need to resched and drop and + * reacquire the locks if so. Nothing real would ever hit this. + * Ideally we'd have a non-posting unlock for this, but hard + * to care for a non-real case. + */ + if (need_resched()) { + ctx->cqe_sentinel = ctx->cqe_cached; + io_cq_unlock_post(ctx); + mutex_unlock(&ctx->uring_lock); + cond_resched(); + mutex_lock(&ctx->uring_lock); + io_cq_lock(ctx); + } + } + + if (list_empty(&ctx->cq_overflow_list)) { + clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); + atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); + } + io_cq_unlock_post(ctx); +} + +static void io_cqring_overflow_kill(struct io_ring_ctx *ctx) +{ + if (ctx->rings) + __io_cqring_overflow_flush(ctx, true); +} + +static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx) +{ + mutex_lock(&ctx->uring_lock); + __io_cqring_overflow_flush(ctx, false); + mutex_unlock(&ctx->uring_lock); +} + +/* must to be called somewhat shortly after putting a request */ +static inline void io_put_task(struct io_kiocb *req) +{ + struct io_uring_task *tctx = req->tctx; + + if (likely(tctx->task == current)) { + tctx->cached_refs++; + } else { + percpu_counter_sub(&tctx->inflight, 1); + if (unlikely(atomic_read(&tctx->in_cancel))) + wake_up(&tctx->wait); + put_task_struct(tctx->task); + } +} + +void io_task_refs_refill(struct io_uring_task *tctx) +{ + unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR; + + percpu_counter_add(&tctx->inflight, refill); + refcount_add(refill, ¤t->usage); + tctx->cached_refs += refill; +} + +__cold void io_uring_drop_tctx_refs(struct task_struct *task) +{ + struct io_uring_task *tctx = task->io_uring; + unsigned int refs = tctx->cached_refs; + + if (refs) { + tctx->cached_refs = 0; + percpu_counter_sub(&tctx->inflight, refs); + put_task_struct_many(task, refs); + } +} + +static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx, + struct io_overflow_cqe *ocqe) +{ + lockdep_assert_held(&ctx->completion_lock); + + if (!ocqe) { + struct io_rings *r = ctx->rings; + + /* + * If we're in ring overflow flush mode, or in task cancel mode, + * or cannot allocate an overflow entry, then we need to drop it + * on the floor. + */ + WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1); + set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq); + return false; + } + if (list_empty(&ctx->cq_overflow_list)) { + set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq); + atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags); + + } + list_add_tail(&ocqe->list, &ctx->cq_overflow_list); + return true; +} + +static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx, + struct io_cqe *cqe, + struct io_big_cqe *big_cqe, gfp_t gfp) +{ + struct io_overflow_cqe *ocqe; + size_t ocq_size = sizeof(struct io_overflow_cqe); + bool is_cqe32 = false; + + if (cqe->flags & IORING_CQE_F_32 || ctx->flags & IORING_SETUP_CQE32) { + is_cqe32 = true; + ocq_size += sizeof(struct io_uring_cqe); + } + + ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT); + trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe); + if (ocqe) { + ocqe->cqe.user_data = cqe->user_data; + ocqe->cqe.res = cqe->res; + ocqe->cqe.flags = cqe->flags; + if (is_cqe32 && big_cqe) { + ocqe->cqe.big_cqe[0] = big_cqe->extra1; + ocqe->cqe.big_cqe[1] = big_cqe->extra2; + } + } + if (big_cqe) + big_cqe->extra1 = big_cqe->extra2 = 0; + return ocqe; +} + +/* + * Fill an empty dummy CQE, in case alignment is off for posting a 32b CQE + * because the ring is a single 16b entry away from wrapping. + */ +static bool io_fill_nop_cqe(struct io_ring_ctx *ctx, unsigned int off) +{ + if (__io_cqring_events(ctx) < ctx->cq_entries) { + struct io_uring_cqe *cqe = &ctx->rings->cqes[off]; + + cqe->user_data = 0; + cqe->res = 0; + cqe->flags = IORING_CQE_F_SKIP; + ctx->cached_cq_tail++; + return true; + } + return false; +} + +/* + * writes to the cq entry need to come after reading head; the + * control dependency is enough as we're using WRITE_ONCE to + * fill the cq entry + */ +bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow, bool cqe32) +{ + struct io_rings *rings = ctx->rings; + unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1); + unsigned int free, queued, len; + + /* + * Posting into the CQ when there are pending overflowed CQEs may break + * ordering guarantees, which will affect links, F_MORE users and more. + * Force overflow the completion. + */ + if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))) + return false; + + /* + * Post dummy CQE if a 32b CQE is needed and there's only room for a + * 16b CQE before the ring wraps. + */ + if (cqe32 && off + 1 == ctx->cq_entries) { + if (!io_fill_nop_cqe(ctx, off)) + return false; + off = 0; + } + + /* userspace may cheat modifying the tail, be safe and do min */ + queued = min(__io_cqring_events(ctx), ctx->cq_entries); + free = ctx->cq_entries - queued; + /* we need a contiguous range, limit based on the current array offset */ + len = min(free, ctx->cq_entries - off); + if (len < (cqe32 + 1)) + return false; + + if (ctx->flags & IORING_SETUP_CQE32) { + off <<= 1; + len <<= 1; + } + + ctx->cqe_cached = &rings->cqes[off]; + ctx->cqe_sentinel = ctx->cqe_cached + len; + return true; +} + +static bool io_fill_cqe_aux32(struct io_ring_ctx *ctx, + struct io_uring_cqe src_cqe[2]) +{ + struct io_uring_cqe *cqe; + + if (WARN_ON_ONCE(!(ctx->flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED)))) + return false; + if (unlikely(!io_get_cqe(ctx, &cqe, true))) + return false; + + memcpy(cqe, src_cqe, 2 * sizeof(*cqe)); + trace_io_uring_complete(ctx, NULL, cqe); + return true; +} + +static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, + u32 cflags) +{ + bool cqe32 = cflags & IORING_CQE_F_32; + struct io_uring_cqe *cqe; + + if (likely(io_get_cqe(ctx, &cqe, cqe32))) { + WRITE_ONCE(cqe->user_data, user_data); + WRITE_ONCE(cqe->res, res); + WRITE_ONCE(cqe->flags, cflags); + + if (cqe32) { + WRITE_ONCE(cqe->big_cqe[0], 0); + WRITE_ONCE(cqe->big_cqe[1], 0); + } + + trace_io_uring_complete(ctx, NULL, cqe); + return true; + } + return false; +} + +static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags) +{ + return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags }; +} + +static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe, + struct io_big_cqe *big_cqe) +{ + struct io_overflow_cqe *ocqe; + + ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL); + spin_lock(&ctx->completion_lock); + io_cqring_add_overflow(ctx, ocqe); + spin_unlock(&ctx->completion_lock); +} + +static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx, + struct io_cqe *cqe, + struct io_big_cqe *big_cqe) +{ + struct io_overflow_cqe *ocqe; + + ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_ATOMIC); + return io_cqring_add_overflow(ctx, ocqe); +} + +bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) +{ + bool filled; + + io_cq_lock(ctx); + filled = io_fill_cqe_aux(ctx, user_data, res, cflags); + if (unlikely(!filled)) { + struct io_cqe cqe = io_init_cqe(user_data, res, cflags); + + filled = io_cqe_overflow_locked(ctx, &cqe, NULL); + } + io_cq_unlock_post(ctx); + return filled; +} + +/* + * Must be called from inline task_work so we know a flush will happen later, + * and obviously with ctx->uring_lock held (tw always has that). + */ +void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags) +{ + lockdep_assert_held(&ctx->uring_lock); + lockdep_assert(ctx->lockless_cq); + + if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) { + struct io_cqe cqe = io_init_cqe(user_data, res, cflags); + + io_cqe_overflow(ctx, &cqe, NULL); + } + ctx->submit_state.cq_flush = true; +} + +/* + * A helper for multishot requests posting additional CQEs. + * Should only be used from a task_work including IO_URING_F_MULTISHOT. + */ +bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags) +{ + struct io_ring_ctx *ctx = req->ctx; + bool posted; + + /* + * If multishot has already posted deferred completions, ensure that + * those are flushed first before posting this one. If not, CQEs + * could get reordered. + */ + if (!wq_list_empty(&ctx->submit_state.compl_reqs)) + __io_submit_flush_completions(ctx); + + lockdep_assert(!io_wq_current_is_worker()); + lockdep_assert_held(&ctx->uring_lock); + + if (!ctx->lockless_cq) { + spin_lock(&ctx->completion_lock); + posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); + spin_unlock(&ctx->completion_lock); + } else { + posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags); + } + + ctx->submit_state.cq_flush = true; + return posted; +} + +/* + * A helper for multishot requests posting additional CQEs. + * Should only be used from a task_work including IO_URING_F_MULTISHOT. + */ +bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe cqe[2]) +{ + struct io_ring_ctx *ctx = req->ctx; + bool posted; + + lockdep_assert(!io_wq_current_is_worker()); + lockdep_assert_held(&ctx->uring_lock); + + cqe[0].user_data = req->cqe.user_data; + if (!ctx->lockless_cq) { + spin_lock(&ctx->completion_lock); + posted = io_fill_cqe_aux32(ctx, cqe); + spin_unlock(&ctx->completion_lock); + } else { + posted = io_fill_cqe_aux32(ctx, cqe); + } + + ctx->submit_state.cq_flush = true; + return posted; +} + +static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags) +{ + struct io_ring_ctx *ctx = req->ctx; + bool completed = true; + + /* + * All execution paths but io-wq use the deferred completions by + * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here. + */ + if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ))) + return; + + /* + * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires + * the submitter task context, IOPOLL protects with uring_lock. + */ + if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) { +defer_complete: + req->io_task_work.func = io_req_task_complete; + io_req_task_work_add(req); + return; + } + + io_cq_lock(ctx); + if (!(req->flags & REQ_F_CQE_SKIP)) + completed = io_fill_cqe_req(ctx, req); + io_cq_unlock_post(ctx); + + if (!completed) + goto defer_complete; + + /* + * We don't free the request here because we know it's called from + * io-wq only, which holds a reference, so it cannot be the last put. + */ + req_ref_put(req); +} + +void io_req_defer_failed(struct io_kiocb *req, s32 res) + __must_hold(&ctx->uring_lock) +{ + const struct io_cold_def *def = &io_cold_defs[req->opcode]; + + lockdep_assert_held(&req->ctx->uring_lock); + + req_set_fail(req); + io_req_set_res(req, res, io_put_kbuf(req, res, NULL)); + if (def->fail) + def->fail(req); + io_req_complete_defer(req); +} + +/* + * A request might get retired back into the request caches even before opcode + * handlers and io_issue_sqe() are done with it, e.g. inline completion path. + * Because of that, io_alloc_req() should be called only under ->uring_lock + * and with extra caution to not get a request that is still worked on. + */ +__cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx) + __must_hold(&ctx->uring_lock) +{ + gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO; + void *reqs[IO_REQ_ALLOC_BATCH]; + int ret; + + ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs); + + /* + * Bulk alloc is all-or-nothing. If we fail to get a batch, + * retry single alloc to be on the safe side. + */ + if (unlikely(ret <= 0)) { + reqs[0] = kmem_cache_alloc(req_cachep, gfp); + if (!reqs[0]) + return false; + ret = 1; + } + + percpu_ref_get_many(&ctx->refs, ret); + ctx->nr_req_allocated += ret; + + while (ret--) { + struct io_kiocb *req = reqs[ret]; + + io_req_add_to_cache(req, ctx); + } + return true; +} + +__cold void io_free_req(struct io_kiocb *req) +{ + /* refs were already put, restore them for io_req_task_complete() */ + req->flags &= ~REQ_F_REFCOUNT; + /* we only want to free it, don't post CQEs */ + req->flags |= REQ_F_CQE_SKIP; + req->io_task_work.func = io_req_task_complete; + io_req_task_work_add(req); +} + +static void __io_req_find_next_prep(struct io_kiocb *req) +{ + struct io_ring_ctx *ctx = req->ctx; + + spin_lock(&ctx->completion_lock); + io_disarm_next(req); + spin_unlock(&ctx->completion_lock); +} + +static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req) +{ + struct io_kiocb *nxt; + + /* + * If LINK is set, we have dependent requests in this chain. If we + * didn't fail this request, queue the first one up, moving any other + * dependencies to the next request. In case of failure, fail the rest + * of the chain. + */ + if (unlikely(req->flags & IO_DISARM_MASK)) + __io_req_find_next_prep(req); + nxt = req->link; + req->link = NULL; + return nxt; +} + +static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw) +{ + if (!ctx) + return; + if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) + atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); + + io_submit_flush_completions(ctx); + mutex_unlock(&ctx->uring_lock); + percpu_ref_put(&ctx->refs); +} + +/* + * Run queued task_work, returning the number of entries processed in *count. + * If more entries than max_entries are available, stop processing once this + * is reached and return the rest of the list. + */ +struct llist_node *io_handle_tw_list(struct llist_node *node, + unsigned int *count, + unsigned int max_entries) +{ + struct io_ring_ctx *ctx = NULL; + struct io_tw_state ts = { }; + + do { + struct llist_node *next = node->next; + struct io_kiocb *req = container_of(node, struct io_kiocb, + io_task_work.node); + + if (req->ctx != ctx) { + ctx_flush_and_put(ctx, ts); + ctx = req->ctx; + mutex_lock(&ctx->uring_lock); + percpu_ref_get(&ctx->refs); + ts.cancel = io_should_terminate_tw(ctx); + } + INDIRECT_CALL_2(req->io_task_work.func, + io_poll_task_func, io_req_rw_complete, + (struct io_tw_req){req}, ts); + node = next; + (*count)++; + if (unlikely(need_resched())) { + ctx_flush_and_put(ctx, ts); + ctx = NULL; + cond_resched(); + } + } while (node && *count < max_entries); + + ctx_flush_and_put(ctx, ts); + return node; +} + +static __cold void __io_fallback_tw(struct llist_node *node, bool sync) +{ + struct io_ring_ctx *last_ctx = NULL; + struct io_kiocb *req; + + while (node) { + req = container_of(node, struct io_kiocb, io_task_work.node); + node = node->next; + if (last_ctx != req->ctx) { + if (last_ctx) { + if (sync) + flush_delayed_work(&last_ctx->fallback_work); + percpu_ref_put(&last_ctx->refs); + } + last_ctx = req->ctx; + percpu_ref_get(&last_ctx->refs); + } + if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist)) + schedule_delayed_work(&last_ctx->fallback_work, 1); + } + + if (last_ctx) { + if (sync) + flush_delayed_work(&last_ctx->fallback_work); + percpu_ref_put(&last_ctx->refs); + } +} + +static void io_fallback_tw(struct io_uring_task *tctx, bool sync) +{ + struct llist_node *node = llist_del_all(&tctx->task_list); + + __io_fallback_tw(node, sync); +} + +struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, + unsigned int max_entries, + unsigned int *count) +{ + struct llist_node *node; + + node = llist_del_all(&tctx->task_list); + if (node) { + node = llist_reverse_order(node); + node = io_handle_tw_list(node, count, max_entries); + } + + /* relaxed read is enough as only the task itself sets ->in_cancel */ + if (unlikely(atomic_read(&tctx->in_cancel))) + io_uring_drop_tctx_refs(current); + + trace_io_uring_task_work_run(tctx, *count); + return node; +} + +void tctx_task_work(struct callback_head *cb) +{ + struct io_uring_task *tctx; + struct llist_node *ret; + unsigned int count = 0; + + tctx = container_of(cb, struct io_uring_task, task_work); + ret = tctx_task_work_run(tctx, UINT_MAX, &count); + /* can't happen */ + WARN_ON_ONCE(ret); +} + +static void io_req_local_work_add(struct io_kiocb *req, unsigned flags) +{ + struct io_ring_ctx *ctx = req->ctx; + unsigned nr_wait, nr_tw, nr_tw_prev; + struct llist_node *head; + + /* See comment above IO_CQ_WAKE_INIT */ + BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES); + + /* + * We don't know how many requests there are in the link and whether + * they can even be queued lazily, fall back to non-lazy. + */ + if (req->flags & IO_REQ_LINK_FLAGS) + flags &= ~IOU_F_TWQ_LAZY_WAKE; + + guard(rcu)(); + + head = READ_ONCE(ctx->work_llist.first); + do { + nr_tw_prev = 0; + if (head) { + struct io_kiocb *first_req = container_of(head, + struct io_kiocb, + io_task_work.node); + /* + * Might be executed at any moment, rely on + * SLAB_TYPESAFE_BY_RCU to keep it alive. + */ + nr_tw_prev = READ_ONCE(first_req->nr_tw); + } + + /* + * Theoretically, it can overflow, but that's fine as one of + * previous adds should've tried to wake the task. + */ + nr_tw = nr_tw_prev + 1; + if (!(flags & IOU_F_TWQ_LAZY_WAKE)) + nr_tw = IO_CQ_WAKE_FORCE; + + req->nr_tw = nr_tw; + req->io_task_work.node.next = head; + } while (!try_cmpxchg(&ctx->work_llist.first, &head, + &req->io_task_work.node)); + + /* + * cmpxchg implies a full barrier, which pairs with the barrier + * in set_current_state() on the io_cqring_wait() side. It's used + * to ensure that either we see updated ->cq_wait_nr, or waiters + * going to sleep will observe the work added to the list, which + * is similar to the wait/wawke task state sync. + */ + + if (!head) { + if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) + atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); + if (ctx->has_evfd) + io_eventfd_signal(ctx, false); + } + + nr_wait = atomic_read(&ctx->cq_wait_nr); + /* not enough or no one is waiting */ + if (nr_tw < nr_wait) + return; + /* the previous add has already woken it up */ + if (nr_tw_prev >= nr_wait) + return; + wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE); +} + +static void io_req_normal_work_add(struct io_kiocb *req) +{ + struct io_uring_task *tctx = req->tctx; + struct io_ring_ctx *ctx = req->ctx; + + /* task_work already pending, we're done */ + if (!llist_add(&req->io_task_work.node, &tctx->task_list)) + return; + + if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) + atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); + + /* SQPOLL doesn't need the task_work added, it'll run it itself */ + if (ctx->flags & IORING_SETUP_SQPOLL) { + __set_notify_signal(tctx->task); + return; + } + + if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method))) + return; + + io_fallback_tw(tctx, false); +} + +void __io_req_task_work_add(struct io_kiocb *req, unsigned flags) +{ + if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) + io_req_local_work_add(req, flags); + else + io_req_normal_work_add(req); +} + +void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags) +{ + if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN))) + return; + __io_req_task_work_add(req, flags); +} + +static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx) +{ + struct llist_node *node = llist_del_all(&ctx->work_llist); + + __io_fallback_tw(node, false); + node = llist_del_all(&ctx->retry_llist); + __io_fallback_tw(node, false); +} + +static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events, + int min_events) +{ + if (!io_local_work_pending(ctx)) + return false; + if (events < min_events) + return true; + if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) + atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); + return false; +} + +static int __io_run_local_work_loop(struct llist_node **node, + io_tw_token_t tw, + int events) +{ + int ret = 0; + + while (*node) { + struct llist_node *next = (*node)->next; + struct io_kiocb *req = container_of(*node, struct io_kiocb, + io_task_work.node); + INDIRECT_CALL_2(req->io_task_work.func, + io_poll_task_func, io_req_rw_complete, + (struct io_tw_req){req}, tw); + *node = next; + if (++ret >= events) + break; + } + + return ret; +} + +static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw, + int min_events, int max_events) +{ + struct llist_node *node; + unsigned int loops = 0; + int ret = 0; + + if (WARN_ON_ONCE(ctx->submitter_task != current)) + return -EEXIST; + if (ctx->flags & IORING_SETUP_TASKRUN_FLAG) + atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags); +again: + tw.cancel = io_should_terminate_tw(ctx); + min_events -= ret; + ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events); + if (ctx->retry_llist.first) + goto retry_done; + + /* + * llists are in reverse order, flip it back the right way before + * running the pending items. + */ + node = llist_reverse_order(llist_del_all(&ctx->work_llist)); + ret += __io_run_local_work_loop(&node, tw, max_events - ret); + ctx->retry_llist.first = node; + loops++; + + if (io_run_local_work_continue(ctx, ret, min_events)) + goto again; +retry_done: + io_submit_flush_completions(ctx); + if (io_run_local_work_continue(ctx, ret, min_events)) + goto again; + + trace_io_uring_local_work_run(ctx, ret, loops); + return ret; +} + +static inline int io_run_local_work_locked(struct io_ring_ctx *ctx, + int min_events) +{ + struct io_tw_state ts = {}; + + if (!io_local_work_pending(ctx)) + return 0; + return __io_run_local_work(ctx, ts, min_events, + max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); +} + +int io_run_local_work(struct io_ring_ctx *ctx, int min_events, int max_events) +{ + struct io_tw_state ts = {}; + int ret; + + mutex_lock(&ctx->uring_lock); + ret = __io_run_local_work(ctx, ts, min_events, max_events); + mutex_unlock(&ctx->uring_lock); + return ret; +} + +static void io_req_task_cancel(struct io_tw_req tw_req, io_tw_token_t tw) +{ + struct io_kiocb *req = tw_req.req; + + io_tw_lock(req->ctx, tw); + io_req_defer_failed(req, req->cqe.res); +} + +void io_req_task_submit(struct io_tw_req tw_req, io_tw_token_t tw) +{ + struct io_kiocb *req = tw_req.req; + struct io_ring_ctx *ctx = req->ctx; + + io_tw_lock(ctx, tw); + if (unlikely(tw.cancel)) + io_req_defer_failed(req, -EFAULT); + else if (req->flags & REQ_F_FORCE_ASYNC) + io_queue_iowq(req); + else + io_queue_sqe(req, 0); +} + +void io_req_task_queue_fail(struct io_kiocb *req, int ret) +{ + io_req_set_res(req, ret, 0); + req->io_task_work.func = io_req_task_cancel; + io_req_task_work_add(req); +} + +void io_req_task_queue(struct io_kiocb *req) +{ + req->io_task_work.func = io_req_task_submit; + io_req_task_work_add(req); +} + +void io_queue_next(struct io_kiocb *req) +{ + struct io_kiocb *nxt = io_req_find_next(req); + + if (nxt) + io_req_task_queue(nxt); +} + +static inline void io_req_put_rsrc_nodes(struct io_kiocb *req) +{ + if (req->file_node) { + io_put_rsrc_node(req->ctx, req->file_node); + req->file_node = NULL; + } + if (req->flags & REQ_F_BUF_NODE) + io_put_rsrc_node(req->ctx, req->buf_node); +} + +static void io_free_batch_list(struct io_ring_ctx *ctx, + struct io_wq_work_node *node) + __must_hold(&ctx->uring_lock) +{ + do { + struct io_kiocb *req = container_of(node, struct io_kiocb, + comp_list); + + if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) { + if (req->flags & REQ_F_REISSUE) { + node = req->comp_list.next; + req->flags &= ~REQ_F_REISSUE; + io_queue_iowq(req); + continue; + } + if (req->flags & REQ_F_REFCOUNT) { + node = req->comp_list.next; + if (!req_ref_put_and_test(req)) + continue; + } + if ((req->flags & REQ_F_POLLED) && req->apoll) { + struct async_poll *apoll = req->apoll; + + if (apoll->double_poll) + kfree(apoll->double_poll); + io_cache_free(&ctx->apoll_cache, apoll); + req->flags &= ~REQ_F_POLLED; + } + if (req->flags & IO_REQ_LINK_FLAGS) + io_queue_next(req); + if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS)) + io_clean_op(req); + } + io_put_file(req); + io_req_put_rsrc_nodes(req); + io_put_task(req); + + node = req->comp_list.next; + io_req_add_to_cache(req, ctx); + } while (node); +} + +void __io_submit_flush_completions(struct io_ring_ctx *ctx) + __must_hold(&ctx->uring_lock) +{ + struct io_submit_state *state = &ctx->submit_state; + struct io_wq_work_node *node; + + __io_cq_lock(ctx); + __wq_list_for_each(node, &state->compl_reqs) { + struct io_kiocb *req = container_of(node, struct io_kiocb, + comp_list); + + /* + * Requests marked with REQUEUE should not post a CQE, they + * will go through the io-wq retry machinery and post one + * later. + */ + if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) && + unlikely(!io_fill_cqe_req(ctx, req))) { + if (ctx->lockless_cq) + io_cqe_overflow(ctx, &req->cqe, &req->big_cqe); + else + io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe); + } + } + __io_cq_unlock_post(ctx); + + if (!wq_list_empty(&state->compl_reqs)) { + io_free_batch_list(ctx, state->compl_reqs.first); + INIT_WQ_LIST(&state->compl_reqs); + } + + if (unlikely(ctx->drain_active)) + io_queue_deferred(ctx); + + ctx->submit_state.cq_flush = false; +} + +static unsigned io_cqring_events(struct io_ring_ctx *ctx) +{ + /* See comment at the top of this file */ + smp_rmb(); + return __io_cqring_events(ctx); +} + +/* + * We can't just wait for polled events to come to us, we have to actively + * find and complete them. + */ +__cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx) +{ + if (!(ctx->flags & IORING_SETUP_IOPOLL)) + return; + + mutex_lock(&ctx->uring_lock); + while (!wq_list_empty(&ctx->iopoll_list)) { + /* let it sleep and repeat later if can't complete a request */ + if (io_do_iopoll(ctx, true) == 0) + break; + /* + * Ensure we allow local-to-the-cpu processing to take place, + * in this case we need to ensure that we reap all events. + * Also let task_work, etc. to progress by releasing the mutex + */ + if (need_resched()) { + mutex_unlock(&ctx->uring_lock); + cond_resched(); + mutex_lock(&ctx->uring_lock); + } + } + mutex_unlock(&ctx->uring_lock); + + if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) + io_move_task_work_from_local(ctx); +} + +static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events) +{ + unsigned int nr_events = 0; + unsigned long check_cq; + + min_events = min(min_events, ctx->cq_entries); + + lockdep_assert_held(&ctx->uring_lock); + + if (!io_allowed_run_tw(ctx)) + return -EEXIST; + + check_cq = READ_ONCE(ctx->check_cq); + if (unlikely(check_cq)) { + if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) + __io_cqring_overflow_flush(ctx, false); + /* + * Similarly do not spin if we have not informed the user of any + * dropped CQE. + */ + if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) + return -EBADR; + } + /* + * Don't enter poll loop if we already have events pending. + * If we do, we can potentially be spinning for commands that + * already triggered a CQE (eg in error). + */ + if (io_cqring_events(ctx)) + return 0; + + do { + int ret = 0; + + /* + * If a submit got punted to a workqueue, we can have the + * application entering polling for a command before it gets + * issued. That app will hold the uring_lock for the duration + * of the poll right here, so we need to take a breather every + * now and then to ensure that the issue has a chance to add + * the poll to the issued list. Otherwise we can spin here + * forever, while the workqueue is stuck trying to acquire the + * very same mutex. + */ + if (wq_list_empty(&ctx->iopoll_list) || + io_task_work_pending(ctx)) { + u32 tail = ctx->cached_cq_tail; + + (void) io_run_local_work_locked(ctx, min_events); + + if (task_work_pending(current) || + wq_list_empty(&ctx->iopoll_list)) { + mutex_unlock(&ctx->uring_lock); + io_run_task_work(); + mutex_lock(&ctx->uring_lock); + } + /* some requests don't go through iopoll_list */ + if (tail != ctx->cached_cq_tail || + wq_list_empty(&ctx->iopoll_list)) + break; + } + ret = io_do_iopoll(ctx, !min_events); + if (unlikely(ret < 0)) + return ret; + + if (task_sigpending(current)) + return -EINTR; + if (need_resched()) + break; + + nr_events += ret; + } while (nr_events < min_events); + + return 0; +} + +void io_req_task_complete(struct io_tw_req tw_req, io_tw_token_t tw) +{ + io_req_complete_defer(tw_req.req); +} + +/* + * After the iocb has been issued, it's safe to be found on the poll list. + * Adding the kiocb to the list AFTER submission ensures that we don't + * find it from a io_do_iopoll() thread before the issuer is done + * accessing the kiocb cookie. + */ +static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags) +{ + struct io_ring_ctx *ctx = req->ctx; + const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED; + + /* workqueue context doesn't hold uring_lock, grab it now */ + if (unlikely(needs_lock)) + mutex_lock(&ctx->uring_lock); + + /* + * Track whether we have multiple files in our lists. This will impact + * how we do polling eventually, not spinning if we're on potentially + * different devices. + */ + if (wq_list_empty(&ctx->iopoll_list)) { + ctx->poll_multi_queue = false; + } else if (!ctx->poll_multi_queue) { + struct io_kiocb *list_req; + + list_req = container_of(ctx->iopoll_list.first, struct io_kiocb, + comp_list); + if (list_req->file != req->file) + ctx->poll_multi_queue = true; + } + + /* + * For fast devices, IO may have already completed. If it has, add + * it to the front so we find it first. + */ + if (READ_ONCE(req->iopoll_completed)) + wq_list_add_head(&req->comp_list, &ctx->iopoll_list); + else + wq_list_add_tail(&req->comp_list, &ctx->iopoll_list); + + if (unlikely(needs_lock)) { + /* + * If IORING_SETUP_SQPOLL is enabled, sqes are either handle + * in sq thread task context or in io worker task context. If + * current task context is sq thread, we don't need to check + * whether should wake up sq thread. + */ + if ((ctx->flags & IORING_SETUP_SQPOLL) && + wq_has_sleeper(&ctx->sq_data->wait)) + wake_up(&ctx->sq_data->wait); + + mutex_unlock(&ctx->uring_lock); + } +} + +io_req_flags_t io_file_get_flags(struct file *file) +{ + io_req_flags_t res = 0; + + BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1); + + if (S_ISREG(file_inode(file)->i_mode)) + res |= REQ_F_ISREG; + if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT)) + res |= REQ_F_SUPPORT_NOWAIT; + return res; +} + +static __cold void io_drain_req(struct io_kiocb *req) + __must_hold(&ctx->uring_lock) +{ + struct io_ring_ctx *ctx = req->ctx; + bool drain = req->flags & IOSQE_IO_DRAIN; + struct io_defer_entry *de; + + de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT); + if (!de) { + io_req_defer_failed(req, -ENOMEM); + return; + } + + io_prep_async_link(req); + trace_io_uring_defer(req); + de->req = req; + + ctx->nr_drained += io_linked_nr(req); + list_add_tail(&de->list, &ctx->defer_list); + io_queue_deferred(ctx); + if (!drain && list_empty(&ctx->defer_list)) + ctx->drain_active = false; +} + +static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def, + unsigned int issue_flags) +{ + if (req->file || !def->needs_file) + return true; + + if (req->flags & REQ_F_FIXED_FILE) + req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags); + else + req->file = io_file_get_normal(req, req->cqe.fd); + + return !!req->file; +} + +#define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT) + +static inline int __io_issue_sqe(struct io_kiocb *req, + unsigned int issue_flags, + const struct io_issue_def *def) +{ + const struct cred *creds = NULL; + struct io_kiocb *link = NULL; + int ret; + + if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) { + if ((req->flags & REQ_F_CREDS) && req->creds != current_cred()) + creds = override_creds(req->creds); + if (req->flags & REQ_F_ARM_LTIMEOUT) + link = __io_prep_linked_timeout(req); + } + + if (!def->audit_skip) + audit_uring_entry(req->opcode); + + ret = def->issue(req, issue_flags); + + if (!def->audit_skip) + audit_uring_exit(!ret, ret); + + if (unlikely(creds || link)) { + if (creds) + revert_creds(creds); + if (link) + io_queue_linked_timeout(link); + } + + return ret; +} + +static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags) +{ + const struct io_issue_def *def = &io_issue_defs[req->opcode]; + int ret; + + if (unlikely(!io_assign_file(req, def, issue_flags))) + return -EBADF; + + ret = __io_issue_sqe(req, issue_flags, def); + + if (ret == IOU_COMPLETE) { + if (issue_flags & IO_URING_F_COMPLETE_DEFER) + io_req_complete_defer(req); + else + io_req_complete_post(req, issue_flags); + + return 0; + } + + if (ret == IOU_ISSUE_SKIP_COMPLETE) { + ret = 0; + + /* If the op doesn't have a file, we're not polling for it */ + if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue) + io_iopoll_req_issued(req, issue_flags); + } + return ret; +} + +int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw) +{ + const unsigned int issue_flags = IO_URING_F_NONBLOCK | + IO_URING_F_MULTISHOT | + IO_URING_F_COMPLETE_DEFER; + int ret; + + io_tw_lock(req->ctx, tw); + + WARN_ON_ONCE(!req->file); + if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL)) + return -EFAULT; + + ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]); + + WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE); + return ret; +} + +struct io_wq_work *io_wq_free_work(struct io_wq_work *work) +{ + struct io_kiocb *req = container_of(work, struct io_kiocb, work); + struct io_kiocb *nxt = NULL; + + if (req_ref_put_and_test_atomic(req)) { + if (req->flags & IO_REQ_LINK_FLAGS) + nxt = io_req_find_next(req); + io_free_req(req); + } + return nxt ? &nxt->work : NULL; +} + +void io_wq_submit_work(struct io_wq_work *work) +{ + struct io_kiocb *req = container_of(work, struct io_kiocb, work); + const struct io_issue_def *def = &io_issue_defs[req->opcode]; + unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ; + bool needs_poll = false; + int ret = 0, err = -ECANCELED; + + /* one will be dropped by io_wq_free_work() after returning to io-wq */ + if (!(req->flags & REQ_F_REFCOUNT)) + __io_req_set_refcount(req, 2); + else + req_ref_get(req); + + /* either cancelled or io-wq is dying, so don't touch tctx->iowq */ + if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) { +fail: + io_req_task_queue_fail(req, err); + return; + } + if (!io_assign_file(req, def, issue_flags)) { + err = -EBADF; + atomic_or(IO_WQ_WORK_CANCEL, &work->flags); + goto fail; + } + + /* + * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the + * submitter task context. Final request completions are handed to the + * right context, however this is not the case of auxiliary CQEs, + * which is the main mean of operation for multishot requests. + * Don't allow any multishot execution from io-wq. It's more restrictive + * than necessary and also cleaner. + */ + if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) { + err = -EBADFD; + if (!io_file_can_poll(req)) + goto fail; + if (req->file->f_flags & O_NONBLOCK || + req->file->f_mode & FMODE_NOWAIT) { + err = -ECANCELED; + if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK) + goto fail; + return; + } else { + req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT); + } + } + + if (req->flags & REQ_F_FORCE_ASYNC) { + bool opcode_poll = def->pollin || def->pollout; + + if (opcode_poll && io_file_can_poll(req)) { + needs_poll = true; + issue_flags |= IO_URING_F_NONBLOCK; + } + } + + do { + ret = io_issue_sqe(req, issue_flags); + if (ret != -EAGAIN) + break; + + /* + * If REQ_F_NOWAIT is set, then don't wait or retry with + * poll. -EAGAIN is final for that case. + */ + if (req->flags & REQ_F_NOWAIT) + break; + + /* + * We can get EAGAIN for iopolled IO even though we're + * forcing a sync submission from here, since we can't + * wait for request slots on the block side. + */ + if (!needs_poll) { + if (!(req->ctx->flags & IORING_SETUP_IOPOLL)) + break; + if (io_wq_worker_stopped()) + break; + cond_resched(); + continue; + } + + if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK) + return; + /* aborted or ready, in either case retry blocking */ + needs_poll = false; + issue_flags &= ~IO_URING_F_NONBLOCK; + } while (1); + + /* avoid locking problems by failing it from a clean context */ + if (ret) + io_req_task_queue_fail(req, ret); +} + +inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd, + unsigned int issue_flags) +{ + struct io_ring_ctx *ctx = req->ctx; + struct io_rsrc_node *node; + struct file *file = NULL; + + io_ring_submit_lock(ctx, issue_flags); + node = io_rsrc_node_lookup(&ctx->file_table.data, fd); + if (node) { + node->refs++; + req->file_node = node; + req->flags |= io_slot_flags(node); + file = io_slot_file(node); + } + io_ring_submit_unlock(ctx, issue_flags); + return file; +} + +struct file *io_file_get_normal(struct io_kiocb *req, int fd) +{ + struct file *file = fget(fd); + + trace_io_uring_file_get(req, fd); + + /* we don't allow fixed io_uring files */ + if (file && io_is_uring_fops(file)) + io_req_track_inflight(req); + return file; +} + +static int io_req_sqe_copy(struct io_kiocb *req, unsigned int issue_flags) +{ + const struct io_cold_def *def = &io_cold_defs[req->opcode]; + + if (req->flags & REQ_F_SQE_COPIED) + return 0; + req->flags |= REQ_F_SQE_COPIED; + if (!def->sqe_copy) + return 0; + if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_INLINE))) + return -EFAULT; + def->sqe_copy(req); + return 0; +} + +static void io_queue_async(struct io_kiocb *req, unsigned int issue_flags, int ret) + __must_hold(&req->ctx->uring_lock) +{ + if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) { +fail: + io_req_defer_failed(req, ret); + return; + } + + ret = io_req_sqe_copy(req, issue_flags); + if (unlikely(ret)) + goto fail; + + switch (io_arm_poll_handler(req, 0)) { + case IO_APOLL_READY: + io_req_task_queue(req); + break; + case IO_APOLL_ABORTED: + io_queue_iowq(req); + break; + case IO_APOLL_OK: + break; + } +} + +static inline void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags) + __must_hold(&req->ctx->uring_lock) +{ + unsigned int issue_flags = IO_URING_F_NONBLOCK | + IO_URING_F_COMPLETE_DEFER | extra_flags; + int ret; + + ret = io_issue_sqe(req, issue_flags); + + /* + * We async punt it if the file wasn't marked NOWAIT, or if the file + * doesn't support non-blocking read/write attempts + */ + if (unlikely(ret)) + io_queue_async(req, issue_flags, ret); +} + +static void io_queue_sqe_fallback(struct io_kiocb *req) + __must_hold(&req->ctx->uring_lock) +{ + if (unlikely(req->flags & REQ_F_FAIL)) { + /* + * We don't submit, fail them all, for that replace hardlinks + * with normal links. Extra REQ_F_LINK is tolerated. + */ + req->flags &= ~REQ_F_HARDLINK; + req->flags |= REQ_F_LINK; + io_req_defer_failed(req, req->cqe.res); + } else { + /* can't fail with IO_URING_F_INLINE */ + io_req_sqe_copy(req, IO_URING_F_INLINE); + if (unlikely(req->ctx->drain_active)) + io_drain_req(req); + else + io_queue_iowq(req); + } +} + +/* + * Check SQE restrictions (opcode and flags). + * + * Returns 'true' if SQE is allowed, 'false' otherwise. + */ +static inline bool io_check_restriction(struct io_ring_ctx *ctx, + struct io_kiocb *req, + unsigned int sqe_flags) +{ + if (!test_bit(req->opcode, ctx->restrictions.sqe_op)) + return false; + + if ((sqe_flags & ctx->restrictions.sqe_flags_required) != + ctx->restrictions.sqe_flags_required) + return false; + + if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed | + ctx->restrictions.sqe_flags_required)) + return false; + + return true; +} + +static void io_init_drain(struct io_ring_ctx *ctx) +{ + struct io_kiocb *head = ctx->submit_state.link.head; + + ctx->drain_active = true; + if (head) { + /* + * If we need to drain a request in the middle of a link, drain + * the head request and the next request/link after the current + * link. Considering sequential execution of links, + * REQ_F_IO_DRAIN will be maintained for every request of our + * link. + */ + head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; + ctx->drain_next = true; + } +} + +static __cold int io_init_fail_req(struct io_kiocb *req, int err) +{ + /* ensure per-opcode data is cleared if we fail before prep */ + memset(&req->cmd.data, 0, sizeof(req->cmd.data)); + return err; +} + +static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req, + const struct io_uring_sqe *sqe, unsigned int *left) + __must_hold(&ctx->uring_lock) +{ + const struct io_issue_def *def; + unsigned int sqe_flags; + int personality; + u8 opcode; + + req->ctx = ctx; + req->opcode = opcode = READ_ONCE(sqe->opcode); + /* same numerical values with corresponding REQ_F_*, safe to copy */ + sqe_flags = READ_ONCE(sqe->flags); + req->flags = (__force io_req_flags_t) sqe_flags; + req->cqe.user_data = READ_ONCE(sqe->user_data); + req->file = NULL; + req->tctx = current->io_uring; + req->cancel_seq_set = false; + req->async_data = NULL; + + if (unlikely(opcode >= IORING_OP_LAST)) { + req->opcode = 0; + return io_init_fail_req(req, -EINVAL); + } + opcode = array_index_nospec(opcode, IORING_OP_LAST); + + def = &io_issue_defs[opcode]; + if (def->is_128 && !(ctx->flags & IORING_SETUP_SQE128)) { + /* + * A 128b op on a non-128b SQ requires mixed SQE support as + * well as 2 contiguous entries. + */ + if (!(ctx->flags & IORING_SETUP_SQE_MIXED) || *left < 2 || + !(ctx->cached_sq_head & (ctx->sq_entries - 1))) + return io_init_fail_req(req, -EINVAL); + /* + * A 128b operation on a mixed SQ uses two entries, so we have + * to increment the head and cached refs, and decrement what's + * left. + */ + current->io_uring->cached_refs++; + ctx->cached_sq_head++; + (*left)--; + } + + if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) { + /* enforce forwards compatibility on users */ + if (sqe_flags & ~SQE_VALID_FLAGS) + return io_init_fail_req(req, -EINVAL); + if (sqe_flags & IOSQE_BUFFER_SELECT) { + if (!def->buffer_select) + return io_init_fail_req(req, -EOPNOTSUPP); + req->buf_index = READ_ONCE(sqe->buf_group); + } + if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS) + ctx->drain_disabled = true; + if (sqe_flags & IOSQE_IO_DRAIN) { + if (ctx->drain_disabled) + return io_init_fail_req(req, -EOPNOTSUPP); + io_init_drain(ctx); + } + } + if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) { + if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags)) + return io_init_fail_req(req, -EACCES); + /* knock it to the slow queue path, will be drained there */ + if (ctx->drain_active) + req->flags |= REQ_F_FORCE_ASYNC; + /* if there is no link, we're at "next" request and need to drain */ + if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) { + ctx->drain_next = false; + ctx->drain_active = true; + req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC; + } + } + + if (!def->ioprio && sqe->ioprio) + return io_init_fail_req(req, -EINVAL); + if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL)) + return io_init_fail_req(req, -EINVAL); + + if (def->needs_file) { + struct io_submit_state *state = &ctx->submit_state; + + req->cqe.fd = READ_ONCE(sqe->fd); + + /* + * Plug now if we have more than 2 IO left after this, and the + * target is potentially a read/write to block based storage. + */ + if (state->need_plug && def->plug) { + state->plug_started = true; + state->need_plug = false; + blk_start_plug_nr_ios(&state->plug, state->submit_nr); + } + } + + personality = READ_ONCE(sqe->personality); + if (personality) { + int ret; + + req->creds = xa_load(&ctx->personalities, personality); + if (!req->creds) + return io_init_fail_req(req, -EINVAL); + get_cred(req->creds); + ret = security_uring_override_creds(req->creds); + if (ret) { + put_cred(req->creds); + return io_init_fail_req(req, ret); + } + req->flags |= REQ_F_CREDS; + } + + return def->prep(req, sqe); +} + +static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe, + struct io_kiocb *req, int ret) +{ + struct io_ring_ctx *ctx = req->ctx; + struct io_submit_link *link = &ctx->submit_state.link; + struct io_kiocb *head = link->head; + + trace_io_uring_req_failed(sqe, req, ret); + + /* + * Avoid breaking links in the middle as it renders links with SQPOLL + * unusable. Instead of failing eagerly, continue assembling the link if + * applicable and mark the head with REQ_F_FAIL. The link flushing code + * should find the flag and handle the rest. + */ + req_fail_link_node(req, ret); + if (head && !(head->flags & REQ_F_FAIL)) + req_fail_link_node(head, -ECANCELED); + + if (!(req->flags & IO_REQ_LINK_FLAGS)) { + if (head) { + link->last->link = req; + link->head = NULL; + req = head; + } + io_queue_sqe_fallback(req); + return ret; + } + + if (head) + link->last->link = req; + else + link->head = req; + link->last = req; + return 0; +} + +static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req, + const struct io_uring_sqe *sqe, unsigned int *left) + __must_hold(&ctx->uring_lock) +{ + struct io_submit_link *link = &ctx->submit_state.link; + int ret; + + ret = io_init_req(ctx, req, sqe, left); + if (unlikely(ret)) + return io_submit_fail_init(sqe, req, ret); + + trace_io_uring_submit_req(req); + + /* + * If we already have a head request, queue this one for async + * submittal once the head completes. If we don't have a head but + * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be + * submitted sync once the chain is complete. If none of those + * conditions are true (normal request), then just queue it. + */ + if (unlikely(link->head)) { + trace_io_uring_link(req, link->last); + io_req_sqe_copy(req, IO_URING_F_INLINE); + link->last->link = req; + link->last = req; + + if (req->flags & IO_REQ_LINK_FLAGS) + return 0; + /* last request of the link, flush it */ + req = link->head; + link->head = NULL; + if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)) + goto fallback; + + } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS | + REQ_F_FORCE_ASYNC | REQ_F_FAIL))) { + if (req->flags & IO_REQ_LINK_FLAGS) { + link->head = req; + link->last = req; + } else { +fallback: + io_queue_sqe_fallback(req); + } + return 0; + } + + io_queue_sqe(req, IO_URING_F_INLINE); + return 0; +} + +/* + * Batched submission is done, ensure local IO is flushed out. + */ +static void io_submit_state_end(struct io_ring_ctx *ctx) +{ + struct io_submit_state *state = &ctx->submit_state; + + if (unlikely(state->link.head)) + io_queue_sqe_fallback(state->link.head); + /* flush only after queuing links as they can generate completions */ + io_submit_flush_completions(ctx); + if (state->plug_started) + blk_finish_plug(&state->plug); +} + +/* + * Start submission side cache. + */ +static void io_submit_state_start(struct io_submit_state *state, + unsigned int max_ios) +{ + state->plug_started = false; + state->need_plug = max_ios > 2; + state->submit_nr = max_ios; + /* set only head, no need to init link_last in advance */ + state->link.head = NULL; +} + +static void io_commit_sqring(struct io_ring_ctx *ctx) +{ + struct io_rings *rings = ctx->rings; + + /* + * Ensure any loads from the SQEs are done at this point, + * since once we write the new head, the application could + * write new data to them. + */ + smp_store_release(&rings->sq.head, ctx->cached_sq_head); +} + +/* + * Fetch an sqe, if one is available. Note this returns a pointer to memory + * that is mapped by userspace. This means that care needs to be taken to + * ensure that reads are stable, as we cannot rely on userspace always + * being a good citizen. If members of the sqe are validated and then later + * used, it's important that those reads are done through READ_ONCE() to + * prevent a re-load down the line. + */ +static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe) +{ + unsigned mask = ctx->sq_entries - 1; + unsigned head = ctx->cached_sq_head++ & mask; + + if (static_branch_unlikely(&io_key_has_sqarray) && + (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) { + head = READ_ONCE(ctx->sq_array[head]); + if (unlikely(head >= ctx->sq_entries)) { + WRITE_ONCE(ctx->rings->sq_dropped, + READ_ONCE(ctx->rings->sq_dropped) + 1); + return false; + } + head = array_index_nospec(head, ctx->sq_entries); + } + + /* + * The cached sq head (or cq tail) serves two purposes: + * + * 1) allows us to batch the cost of updating the user visible + * head updates. + * 2) allows the kernel side to track the head on its own, even + * though the application is the one updating it. + */ + + /* double index for 128-byte SQEs, twice as long */ + if (ctx->flags & IORING_SETUP_SQE128) + head <<= 1; + *sqe = &ctx->sq_sqes[head]; + return true; +} + +int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr) + __must_hold(&ctx->uring_lock) +{ + unsigned int entries = io_sqring_entries(ctx); + unsigned int left; + int ret; + + entries = min(nr, entries); + if (unlikely(!entries)) + return 0; + + ret = left = entries; + io_get_task_refs(left); + io_submit_state_start(&ctx->submit_state, left); + + do { + const struct io_uring_sqe *sqe; + struct io_kiocb *req; + + if (unlikely(!io_alloc_req(ctx, &req))) + break; + if (unlikely(!io_get_sqe(ctx, &sqe))) { + io_req_add_to_cache(req, ctx); + break; + } + + /* + * Continue submitting even for sqe failure if the + * ring was setup with IORING_SETUP_SUBMIT_ALL + */ + if (unlikely(io_submit_sqe(ctx, req, sqe, &left)) && + !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) { + left--; + break; + } + } while (--left); + + if (unlikely(left)) { + ret -= left; + /* try again if it submitted nothing and can't allocate a req */ + if (!ret && io_req_cache_empty(ctx)) + ret = -EAGAIN; + current->io_uring->cached_refs += left; + } + + io_submit_state_end(ctx); + /* Commit SQ ring head once we've consumed and submitted all SQEs */ + io_commit_sqring(ctx); + return ret; +} + +static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode, + int wake_flags, void *key) +{ + struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq); + + /* + * Cannot safely flush overflowed CQEs from here, ensure we wake up + * the task, and the next invocation will do it. + */ + if (io_should_wake(iowq) || io_has_work(iowq->ctx)) + return autoremove_wake_function(curr, mode, wake_flags, key); + return -1; +} + +int io_run_task_work_sig(struct io_ring_ctx *ctx) +{ + if (io_local_work_pending(ctx)) { + __set_current_state(TASK_RUNNING); + if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0) + return 0; + } + if (io_run_task_work() > 0) + return 0; + if (task_sigpending(current)) + return -EINTR; + return 0; +} + +static bool current_pending_io(void) +{ + struct io_uring_task *tctx = current->io_uring; + + if (!tctx) + return false; + return percpu_counter_read_positive(&tctx->inflight); +} + +static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer) +{ + struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); + + WRITE_ONCE(iowq->hit_timeout, 1); + iowq->min_timeout = 0; + wake_up_process(iowq->wq.private); + return HRTIMER_NORESTART; +} + +/* + * Doing min_timeout portion. If we saw any timeouts, events, or have work, + * wake up. If not, and we have a normal timeout, switch to that and keep + * sleeping. + */ +static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer) +{ + struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t); + struct io_ring_ctx *ctx = iowq->ctx; + + /* no general timeout, or shorter (or equal), we are done */ + if (iowq->timeout == KTIME_MAX || + ktime_compare(iowq->min_timeout, iowq->timeout) >= 0) + goto out_wake; + /* work we may need to run, wake function will see if we need to wake */ + if (io_has_work(ctx)) + goto out_wake; + /* got events since we started waiting, min timeout is done */ + if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail)) + goto out_wake; + /* if we have any events and min timeout expired, we're done */ + if (io_cqring_events(ctx)) + goto out_wake; + + /* + * If using deferred task_work running and application is waiting on + * more than one request, ensure we reset it now where we are switching + * to normal sleeps. Any request completion post min_wait should wake + * the task and return. + */ + if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { + atomic_set(&ctx->cq_wait_nr, 1); + smp_mb(); + if (!llist_empty(&ctx->work_llist)) + goto out_wake; + } + + hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup); + hrtimer_set_expires(timer, iowq->timeout); + return HRTIMER_RESTART; +out_wake: + return io_cqring_timer_wakeup(timer); +} + +static int io_cqring_schedule_timeout(struct io_wait_queue *iowq, + clockid_t clock_id, ktime_t start_time) +{ + ktime_t timeout; + + if (iowq->min_timeout) { + timeout = ktime_add_ns(iowq->min_timeout, start_time); + hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id, + HRTIMER_MODE_ABS); + } else { + timeout = iowq->timeout; + hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id, + HRTIMER_MODE_ABS); + } + + hrtimer_set_expires_range_ns(&iowq->t, timeout, 0); + hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS); + + if (!READ_ONCE(iowq->hit_timeout)) + schedule(); + + hrtimer_cancel(&iowq->t); + destroy_hrtimer_on_stack(&iowq->t); + __set_current_state(TASK_RUNNING); + + return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0; +} + +struct ext_arg { + size_t argsz; + struct timespec64 ts; + const sigset_t __user *sig; + ktime_t min_time; + bool ts_set; + bool iowait; +}; + +static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx, + struct io_wait_queue *iowq, + struct ext_arg *ext_arg, + ktime_t start_time) +{ + int ret = 0; + + /* + * Mark us as being in io_wait if we have pending requests, so cpufreq + * can take into account that the task is waiting for IO - turns out + * to be important for low QD IO. + */ + if (ext_arg->iowait && current_pending_io()) + current->in_iowait = 1; + if (iowq->timeout != KTIME_MAX || iowq->min_timeout) + ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time); + else + schedule(); + current->in_iowait = 0; + return ret; +} + +/* If this returns > 0, the caller should retry */ +static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx, + struct io_wait_queue *iowq, + struct ext_arg *ext_arg, + ktime_t start_time) +{ + if (unlikely(READ_ONCE(ctx->check_cq))) + return 1; + if (unlikely(io_local_work_pending(ctx))) + return 1; + if (unlikely(task_work_pending(current))) + return 1; + if (unlikely(task_sigpending(current))) + return -EINTR; + if (unlikely(io_should_wake(iowq))) + return 0; + + return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time); +} + +/* + * Wait until events become available, if we don't already have some. The + * application must reap them itself, as they reside on the shared cq ring. + */ +static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags, + struct ext_arg *ext_arg) +{ + struct io_wait_queue iowq; + struct io_rings *rings = ctx->rings; + ktime_t start_time; + int ret; + + min_events = min_t(int, min_events, ctx->cq_entries); + + if (!io_allowed_run_tw(ctx)) + return -EEXIST; + if (io_local_work_pending(ctx)) + io_run_local_work(ctx, min_events, + max(IO_LOCAL_TW_DEFAULT_MAX, min_events)); + io_run_task_work(); + + if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))) + io_cqring_do_overflow_flush(ctx); + if (__io_cqring_events_user(ctx) >= min_events) + return 0; + + init_waitqueue_func_entry(&iowq.wq, io_wake_function); + iowq.wq.private = current; + INIT_LIST_HEAD(&iowq.wq.entry); + iowq.ctx = ctx; + iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events; + iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail); + iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts); + iowq.hit_timeout = 0; + iowq.min_timeout = ext_arg->min_time; + iowq.timeout = KTIME_MAX; + start_time = io_get_time(ctx); + + if (ext_arg->ts_set) { + iowq.timeout = timespec64_to_ktime(ext_arg->ts); + if (!(flags & IORING_ENTER_ABS_TIMER)) + iowq.timeout = ktime_add(iowq.timeout, start_time); + } + + if (ext_arg->sig) { +#ifdef CONFIG_COMPAT + if (in_compat_syscall()) + ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig, + ext_arg->argsz); + else +#endif + ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz); + + if (ret) + return ret; + } + + io_napi_busy_loop(ctx, &iowq); + + trace_io_uring_cqring_wait(ctx, min_events); + do { + unsigned long check_cq; + int nr_wait; + + /* if min timeout has been hit, don't reset wait count */ + if (!iowq.hit_timeout) + nr_wait = (int) iowq.cq_tail - + READ_ONCE(ctx->rings->cq.tail); + else + nr_wait = 1; + + if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) { + atomic_set(&ctx->cq_wait_nr, nr_wait); + set_current_state(TASK_INTERRUPTIBLE); + } else { + prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq, + TASK_INTERRUPTIBLE); + } + + ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time); + __set_current_state(TASK_RUNNING); + atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT); + + /* + * Run task_work after scheduling and before io_should_wake(). + * If we got woken because of task_work being processed, run it + * now rather than let the caller do another wait loop. + */ + if (io_local_work_pending(ctx)) + io_run_local_work(ctx, nr_wait, nr_wait); + io_run_task_work(); + + /* + * Non-local task_work will be run on exit to userspace, but + * if we're using DEFER_TASKRUN, then we could have waited + * with a timeout for a number of requests. If the timeout + * hits, we could have some requests ready to process. Ensure + * this break is _after_ we have run task_work, to avoid + * deferring running potentially pending requests until the + * next time we wait for events. + */ + if (ret < 0) + break; + + check_cq = READ_ONCE(ctx->check_cq); + if (unlikely(check_cq)) { + /* let the caller flush overflows, retry */ + if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)) + io_cqring_do_overflow_flush(ctx); + if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) { + ret = -EBADR; + break; + } + } + + if (io_should_wake(&iowq)) { + ret = 0; + break; + } + cond_resched(); + } while (1); + + if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) + finish_wait(&ctx->cq_wait, &iowq.wq); + restore_saved_sigmask_unless(ret == -EINTR); + + return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0; +} + +static void io_rings_free(struct io_ring_ctx *ctx) +{ + io_free_region(ctx->user, &ctx->sq_region); + io_free_region(ctx->user, &ctx->ring_region); + ctx->rings = NULL; + ctx->sq_sqes = NULL; +} + +static int rings_size(unsigned int flags, unsigned int sq_entries, + unsigned int cq_entries, struct io_rings_layout *rl) +{ + struct io_rings *rings; + size_t sqe_size; + size_t off; + + if (flags & IORING_SETUP_CQE_MIXED) { + if (cq_entries < 2) + return -EOVERFLOW; + } + if (flags & IORING_SETUP_SQE_MIXED) { + if (sq_entries < 2) + return -EOVERFLOW; + } + + rl->sq_array_offset = SIZE_MAX; + + sqe_size = sizeof(struct io_uring_sqe); + if (flags & IORING_SETUP_SQE128) + sqe_size *= 2; + + rl->sq_size = array_size(sqe_size, sq_entries); + if (rl->sq_size == SIZE_MAX) + return -EOVERFLOW; + + off = struct_size(rings, cqes, cq_entries); + if (flags & IORING_SETUP_CQE32) + off = size_mul(off, 2); + if (off == SIZE_MAX) + return -EOVERFLOW; + +#ifdef CONFIG_SMP + off = ALIGN(off, SMP_CACHE_BYTES); + if (off == 0) + return -EOVERFLOW; +#endif + + if (!(flags & IORING_SETUP_NO_SQARRAY)) { + size_t sq_array_size; + + rl->sq_array_offset = off; + + sq_array_size = array_size(sizeof(u32), sq_entries); + off = size_add(off, sq_array_size); + if (off == SIZE_MAX) + return -EOVERFLOW; + } + + rl->rings_size = off; + return 0; +} + +static __cold void __io_req_caches_free(struct io_ring_ctx *ctx) +{ + struct io_kiocb *req; + int nr = 0; + + while (!io_req_cache_empty(ctx)) { + req = io_extract_req(ctx); + io_poison_req(req); + kmem_cache_free(req_cachep, req); + nr++; + } + if (nr) { + ctx->nr_req_allocated -= nr; + percpu_ref_put_many(&ctx->refs, nr); + } +} + +static __cold void io_req_caches_free(struct io_ring_ctx *ctx) +{ + guard(mutex)(&ctx->uring_lock); + __io_req_caches_free(ctx); +} + +static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx) +{ + io_sq_thread_finish(ctx); + + mutex_lock(&ctx->uring_lock); + io_sqe_buffers_unregister(ctx); + io_sqe_files_unregister(ctx); + io_unregister_zcrx_ifqs(ctx); + io_cqring_overflow_kill(ctx); + io_eventfd_unregister(ctx); + io_free_alloc_caches(ctx); + io_destroy_buffers(ctx); + io_free_region(ctx->user, &ctx->param_region); + mutex_unlock(&ctx->uring_lock); + if (ctx->sq_creds) + put_cred(ctx->sq_creds); + if (ctx->submitter_task) + put_task_struct(ctx->submitter_task); + + WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list)); + + if (ctx->mm_account) { + mmdrop(ctx->mm_account); + ctx->mm_account = NULL; + } + io_rings_free(ctx); + + if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) + static_branch_dec(&io_key_has_sqarray); + + percpu_ref_exit(&ctx->refs); + free_uid(ctx->user); + io_req_caches_free(ctx); + + WARN_ON_ONCE(ctx->nr_req_allocated); + + if (ctx->hash_map) + io_wq_put_hash(ctx->hash_map); + io_napi_free(ctx); + kvfree(ctx->cancel_table.hbs); + xa_destroy(&ctx->io_bl_xa); + kfree(ctx); +} + +static __cold void io_activate_pollwq_cb(struct callback_head *cb) +{ + struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx, + poll_wq_task_work); + + mutex_lock(&ctx->uring_lock); + ctx->poll_activated = true; + mutex_unlock(&ctx->uring_lock); + + /* + * Wake ups for some events between start of polling and activation + * might've been lost due to loose synchronisation. + */ + wake_up_all(&ctx->poll_wq); + percpu_ref_put(&ctx->refs); +} + +__cold void io_activate_pollwq(struct io_ring_ctx *ctx) +{ + spin_lock(&ctx->completion_lock); + /* already activated or in progress */ + if (ctx->poll_activated || ctx->poll_wq_task_work.func) + goto out; + if (WARN_ON_ONCE(!ctx->task_complete)) + goto out; + if (!ctx->submitter_task) + goto out; + /* + * with ->submitter_task only the submitter task completes requests, we + * only need to sync with it, which is done by injecting a tw + */ + init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb); + percpu_ref_get(&ctx->refs); + if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL)) + percpu_ref_put(&ctx->refs); +out: + spin_unlock(&ctx->completion_lock); +} + +static __poll_t io_uring_poll(struct file *file, poll_table *wait) +{ + struct io_ring_ctx *ctx = file->private_data; + __poll_t mask = 0; + + if (unlikely(!ctx->poll_activated)) + io_activate_pollwq(ctx); + /* + * provides mb() which pairs with barrier from wq_has_sleeper + * call in io_commit_cqring + */ + poll_wait(file, &ctx->poll_wq, wait); + + if (!io_sqring_full(ctx)) + mask |= EPOLLOUT | EPOLLWRNORM; + + /* + * Don't flush cqring overflow list here, just do a simple check. + * Otherwise there could possible be ABBA deadlock: + * CPU0 CPU1 + * ---- ---- + * lock(&ctx->uring_lock); + * lock(&ep->mtx); + * lock(&ctx->uring_lock); + * lock(&ep->mtx); + * + * Users may get EPOLLIN meanwhile seeing nothing in cqring, this + * pushes them to do the flush. + */ + + if (__io_cqring_events_user(ctx) || io_has_work(ctx)) + mask |= EPOLLIN | EPOLLRDNORM; + + return mask; +} + +struct io_tctx_exit { + struct callback_head task_work; + struct completion completion; + struct io_ring_ctx *ctx; +}; + +static __cold void io_tctx_exit_cb(struct callback_head *cb) +{ + struct io_uring_task *tctx = current->io_uring; + struct io_tctx_exit *work; + + work = container_of(cb, struct io_tctx_exit, task_work); + /* + * When @in_cancel, we're in cancellation and it's racy to remove the + * node. It'll be removed by the end of cancellation, just ignore it. + * tctx can be NULL if the queueing of this task_work raced with + * work cancelation off the exec path. + */ + if (tctx && !atomic_read(&tctx->in_cancel)) + io_uring_del_tctx_node((unsigned long)work->ctx); + complete(&work->completion); +} + +static __cold void io_ring_exit_work(struct work_struct *work) +{ + struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work); + unsigned long timeout = jiffies + HZ * 60 * 5; + unsigned long interval = HZ / 20; + struct io_tctx_exit exit; + struct io_tctx_node *node; + int ret; + + /* + * If we're doing polled IO and end up having requests being + * submitted async (out-of-line), then completions can come in while + * we're waiting for refs to drop. We need to reap these manually, + * as nobody else will be looking for them. + */ + do { + if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) { + mutex_lock(&ctx->uring_lock); + io_cqring_overflow_kill(ctx); + mutex_unlock(&ctx->uring_lock); + } + + if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) + io_move_task_work_from_local(ctx); + + /* The SQPOLL thread never reaches this path */ + while (io_uring_try_cancel_requests(ctx, NULL, true, false)) + cond_resched(); + + if (ctx->sq_data) { + struct io_sq_data *sqd = ctx->sq_data; + struct task_struct *tsk; + + io_sq_thread_park(sqd); + tsk = sqpoll_task_locked(sqd); + if (tsk && tsk->io_uring && tsk->io_uring->io_wq) + io_wq_cancel_cb(tsk->io_uring->io_wq, + io_cancel_ctx_cb, ctx, true); + io_sq_thread_unpark(sqd); + } + + io_req_caches_free(ctx); + + if (WARN_ON_ONCE(time_after(jiffies, timeout))) { + /* there is little hope left, don't run it too often */ + interval = HZ * 60; + } + /* + * This is really an uninterruptible wait, as it has to be + * complete. But it's also run from a kworker, which doesn't + * take signals, so it's fine to make it interruptible. This + * avoids scenarios where we knowingly can wait much longer + * on completions, for example if someone does a SIGSTOP on + * a task that needs to finish task_work to make this loop + * complete. That's a synthetic situation that should not + * cause a stuck task backtrace, and hence a potential panic + * on stuck tasks if that is enabled. + */ + } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval)); + + init_completion(&exit.completion); + init_task_work(&exit.task_work, io_tctx_exit_cb); + exit.ctx = ctx; + + mutex_lock(&ctx->uring_lock); + while (!list_empty(&ctx->tctx_list)) { + WARN_ON_ONCE(time_after(jiffies, timeout)); + + node = list_first_entry(&ctx->tctx_list, struct io_tctx_node, + ctx_node); + /* don't spin on a single task if cancellation failed */ + list_rotate_left(&ctx->tctx_list); + ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL); + if (WARN_ON_ONCE(ret)) + continue; + + mutex_unlock(&ctx->uring_lock); + /* + * See comment above for + * wait_for_completion_interruptible_timeout() on why this + * wait is marked as interruptible. + */ + wait_for_completion_interruptible(&exit.completion); + mutex_lock(&ctx->uring_lock); + } + mutex_unlock(&ctx->uring_lock); + spin_lock(&ctx->completion_lock); + spin_unlock(&ctx->completion_lock); + + /* pairs with RCU read section in io_req_local_work_add() */ + if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) + synchronize_rcu(); + + io_ring_ctx_free(ctx); +} + +static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx) +{ + unsigned long index; + struct creds *creds; + + mutex_lock(&ctx->uring_lock); + percpu_ref_kill(&ctx->refs); + xa_for_each(&ctx->personalities, index, creds) + io_unregister_personality(ctx, index); + mutex_unlock(&ctx->uring_lock); + + flush_delayed_work(&ctx->fallback_work); + + INIT_WORK(&ctx->exit_work, io_ring_exit_work); + /* + * Use system_dfl_wq to avoid spawning tons of event kworkers + * if we're exiting a ton of rings at the same time. It just adds + * noise and overhead, there's no discernable change in runtime + * over using system_percpu_wq. + */ + queue_work(iou_wq, &ctx->exit_work); +} + +static int io_uring_release(struct inode *inode, struct file *file) +{ + struct io_ring_ctx *ctx = file->private_data; + + file->private_data = NULL; + io_ring_ctx_wait_and_kill(ctx); + return 0; +} + +static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx, + const struct io_uring_getevents_arg __user *uarg) +{ + unsigned long size = sizeof(struct io_uring_reg_wait); + unsigned long offset = (uintptr_t)uarg; + unsigned long end; + + if (unlikely(offset % sizeof(long))) + return ERR_PTR(-EFAULT); + + /* also protects from NULL ->cq_wait_arg as the size would be 0 */ + if (unlikely(check_add_overflow(offset, size, &end) || + end > ctx->cq_wait_size)) + return ERR_PTR(-EFAULT); + + offset = array_index_nospec(offset, ctx->cq_wait_size - size); + return ctx->cq_wait_arg + offset; +} + +static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags, + const void __user *argp, size_t argsz) +{ + struct io_uring_getevents_arg arg; + + if (!(flags & IORING_ENTER_EXT_ARG)) + return 0; + if (flags & IORING_ENTER_EXT_ARG_REG) + return -EINVAL; + if (argsz != sizeof(arg)) + return -EINVAL; + if (copy_from_user(&arg, argp, sizeof(arg))) + return -EFAULT; + return 0; +} + +static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags, + const void __user *argp, struct ext_arg *ext_arg) +{ + const struct io_uring_getevents_arg __user *uarg = argp; + struct io_uring_getevents_arg arg; + + ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT); + + /* + * If EXT_ARG isn't set, then we have no timespec and the argp pointer + * is just a pointer to the sigset_t. + */ + if (!(flags & IORING_ENTER_EXT_ARG)) { + ext_arg->sig = (const sigset_t __user *) argp; + return 0; + } + + if (flags & IORING_ENTER_EXT_ARG_REG) { + struct io_uring_reg_wait *w; + + if (ext_arg->argsz != sizeof(struct io_uring_reg_wait)) + return -EINVAL; + w = io_get_ext_arg_reg(ctx, argp); + if (IS_ERR(w)) + return PTR_ERR(w); + + if (w->flags & ~IORING_REG_WAIT_TS) + return -EINVAL; + ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC; + ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask)); + ext_arg->argsz = READ_ONCE(w->sigmask_sz); + if (w->flags & IORING_REG_WAIT_TS) { + ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec); + ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec); + ext_arg->ts_set = true; + } + return 0; + } + + /* + * EXT_ARG is set - ensure we agree on the size of it and copy in our + * timespec and sigset_t pointers if good. + */ + if (ext_arg->argsz != sizeof(arg)) + return -EINVAL; +#ifdef CONFIG_64BIT + if (!user_access_begin(uarg, sizeof(*uarg))) + return -EFAULT; + unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end); + unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end); + unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end); + unsafe_get_user(arg.ts, &uarg->ts, uaccess_end); + user_access_end(); +#else + if (copy_from_user(&arg, uarg, sizeof(arg))) + return -EFAULT; +#endif + ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC; + ext_arg->sig = u64_to_user_ptr(arg.sigmask); + ext_arg->argsz = arg.sigmask_sz; + if (arg.ts) { + if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts))) + return -EFAULT; + ext_arg->ts_set = true; + } + return 0; +#ifdef CONFIG_64BIT +uaccess_end: + user_access_end(); + return -EFAULT; +#endif +} + +SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit, + u32, min_complete, u32, flags, const void __user *, argp, + size_t, argsz) +{ + struct io_ring_ctx *ctx; + struct file *file; + long ret; + + if (unlikely(flags & ~IORING_ENTER_FLAGS)) + return -EINVAL; + + /* + * Ring fd has been registered via IORING_REGISTER_RING_FDS, we + * need only dereference our task private array to find it. + */ + if (flags & IORING_ENTER_REGISTERED_RING) { + struct io_uring_task *tctx = current->io_uring; + + if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX)) + return -EINVAL; + fd = array_index_nospec(fd, IO_RINGFD_REG_MAX); + file = tctx->registered_rings[fd]; + if (unlikely(!file)) + return -EBADF; + } else { + file = fget(fd); + if (unlikely(!file)) + return -EBADF; + ret = -EOPNOTSUPP; + if (unlikely(!io_is_uring_fops(file))) + goto out; + } + + ctx = file->private_data; + ret = -EBADFD; + if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED)) + goto out; + + /* + * For SQ polling, the thread will do all submissions and completions. + * Just return the requested submit count, and wake the thread if + * we were asked to. + */ + ret = 0; + if (ctx->flags & IORING_SETUP_SQPOLL) { + if (unlikely(ctx->sq_data->thread == NULL)) { + ret = -EOWNERDEAD; + goto out; + } + if (flags & IORING_ENTER_SQ_WAKEUP) + wake_up(&ctx->sq_data->wait); + if (flags & IORING_ENTER_SQ_WAIT) + io_sqpoll_wait_sq(ctx); + + ret = to_submit; + } else if (to_submit) { + ret = io_uring_add_tctx_node(ctx); + if (unlikely(ret)) + goto out; + + mutex_lock(&ctx->uring_lock); + ret = io_submit_sqes(ctx, to_submit); + if (ret != to_submit) { + mutex_unlock(&ctx->uring_lock); + goto out; + } + if (flags & IORING_ENTER_GETEVENTS) { + if (ctx->syscall_iopoll) + goto iopoll_locked; + /* + * Ignore errors, we'll soon call io_cqring_wait() and + * it should handle ownership problems if any. + */ + if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) + (void)io_run_local_work_locked(ctx, min_complete); + } + mutex_unlock(&ctx->uring_lock); + } + + if (flags & IORING_ENTER_GETEVENTS) { + int ret2; + + if (ctx->syscall_iopoll) { + /* + * We disallow the app entering submit/complete with + * polling, but we still need to lock the ring to + * prevent racing with polled issue that got punted to + * a workqueue. + */ + mutex_lock(&ctx->uring_lock); +iopoll_locked: + ret2 = io_validate_ext_arg(ctx, flags, argp, argsz); + if (likely(!ret2)) + ret2 = io_iopoll_check(ctx, min_complete); + mutex_unlock(&ctx->uring_lock); + } else { + struct ext_arg ext_arg = { .argsz = argsz }; + + ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg); + if (likely(!ret2)) + ret2 = io_cqring_wait(ctx, min_complete, flags, + &ext_arg); + } + + if (!ret) { + ret = ret2; + + /* + * EBADR indicates that one or more CQE were dropped. + * Once the user has been informed we can clear the bit + * as they are obviously ok with those drops. + */ + if (unlikely(ret2 == -EBADR)) + clear_bit(IO_CHECK_CQ_DROPPED_BIT, + &ctx->check_cq); + } + } +out: + if (!(flags & IORING_ENTER_REGISTERED_RING)) + fput(file); + return ret; +} + +static const struct file_operations io_uring_fops = { + .release = io_uring_release, + .mmap = io_uring_mmap, + .get_unmapped_area = io_uring_get_unmapped_area, +#ifndef CONFIG_MMU + .mmap_capabilities = io_uring_nommu_mmap_capabilities, +#endif + .poll = io_uring_poll, +#ifdef CONFIG_PROC_FS + .show_fdinfo = io_uring_show_fdinfo, +#endif +}; + +bool io_is_uring_fops(struct file *file) +{ + return file->f_op == &io_uring_fops; +} + +static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx, + struct io_ctx_config *config) +{ + struct io_uring_params *p = &config->p; + struct io_rings_layout *rl = &config->layout; + struct io_uring_region_desc rd; + struct io_rings *rings; + int ret; + + /* make sure these are sane, as we already accounted them */ + ctx->sq_entries = p->sq_entries; + ctx->cq_entries = p->cq_entries; + + memset(&rd, 0, sizeof(rd)); + rd.size = PAGE_ALIGN(rl->rings_size); + if (ctx->flags & IORING_SETUP_NO_MMAP) { + rd.user_addr = p->cq_off.user_addr; + rd.flags |= IORING_MEM_REGION_TYPE_USER; + } + ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING); + if (ret) + return ret; + ctx->rings = rings = io_region_get_ptr(&ctx->ring_region); + if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) + ctx->sq_array = (u32 *)((char *)rings + rl->sq_array_offset); + + memset(&rd, 0, sizeof(rd)); + rd.size = PAGE_ALIGN(rl->sq_size); + if (ctx->flags & IORING_SETUP_NO_MMAP) { + rd.user_addr = p->sq_off.user_addr; + rd.flags |= IORING_MEM_REGION_TYPE_USER; + } + ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES); + if (ret) { + io_rings_free(ctx); + return ret; + } + ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region); + + memset(rings, 0, sizeof(*rings)); + WRITE_ONCE(rings->sq_ring_mask, ctx->sq_entries - 1); + WRITE_ONCE(rings->cq_ring_mask, ctx->cq_entries - 1); + WRITE_ONCE(rings->sq_ring_entries, ctx->sq_entries); + WRITE_ONCE(rings->cq_ring_entries, ctx->cq_entries); + return 0; +} + +static int io_uring_install_fd(struct file *file) +{ + int fd; + + fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); + if (fd < 0) + return fd; + fd_install(fd, file); + return fd; +} + +/* + * Allocate an anonymous fd, this is what constitutes the application + * visible backing of an io_uring instance. The application mmaps this + * fd to gain access to the SQ/CQ ring details. + */ +static struct file *io_uring_get_file(struct io_ring_ctx *ctx) +{ + /* Create a new inode so that the LSM can block the creation. */ + return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx, + O_RDWR | O_CLOEXEC, NULL); +} + +static int io_uring_sanitise_params(struct io_uring_params *p) +{ + unsigned flags = p->flags; + + if (flags & ~IORING_SETUP_FLAGS) + return -EINVAL; + + /* There is no way to mmap rings without a real fd */ + if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) && + !(flags & IORING_SETUP_NO_MMAP)) + return -EINVAL; + + if (flags & IORING_SETUP_SQPOLL) { + /* IPI related flags don't make sense with SQPOLL */ + if (flags & (IORING_SETUP_COOP_TASKRUN | + IORING_SETUP_TASKRUN_FLAG | + IORING_SETUP_DEFER_TASKRUN)) + return -EINVAL; + } + + if (flags & IORING_SETUP_TASKRUN_FLAG) { + if (!(flags & (IORING_SETUP_COOP_TASKRUN | + IORING_SETUP_DEFER_TASKRUN))) + return -EINVAL; + } + + /* HYBRID_IOPOLL only valid with IOPOLL */ + if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL)) + return -EINVAL; + + /* + * For DEFER_TASKRUN we require the completion task to be the same as + * the submission task. This implies that there is only one submitter. + */ + if ((flags & IORING_SETUP_DEFER_TASKRUN) && + !(flags & IORING_SETUP_SINGLE_ISSUER)) + return -EINVAL; + + /* + * Nonsensical to ask for CQE32 and mixed CQE support, it's not + * supported to post 16b CQEs on a ring setup with CQE32. + */ + if ((flags & (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED)) == + (IORING_SETUP_CQE32|IORING_SETUP_CQE_MIXED)) + return -EINVAL; + /* + * Nonsensical to ask for SQE128 and mixed SQE support, it's not + * supported to post 64b SQEs on a ring setup with SQE128. + */ + if ((flags & (IORING_SETUP_SQE128|IORING_SETUP_SQE_MIXED)) == + (IORING_SETUP_SQE128|IORING_SETUP_SQE_MIXED)) + return -EINVAL; + + return 0; +} + +static int io_uring_fill_params(struct io_uring_params *p) +{ + unsigned entries = p->sq_entries; + + if (!entries) + return -EINVAL; + if (entries > IORING_MAX_ENTRIES) { + if (!(p->flags & IORING_SETUP_CLAMP)) + return -EINVAL; + entries = IORING_MAX_ENTRIES; + } + + /* + * Use twice as many entries for the CQ ring. It's possible for the + * application to drive a higher depth than the size of the SQ ring, + * since the sqes are only used at submission time. This allows for + * some flexibility in overcommitting a bit. If the application has + * set IORING_SETUP_CQSIZE, it will have passed in the desired number + * of CQ ring entries manually. + */ + p->sq_entries = roundup_pow_of_two(entries); + if (p->flags & IORING_SETUP_CQSIZE) { + /* + * If IORING_SETUP_CQSIZE is set, we do the same roundup + * to a power-of-two, if it isn't already. We do NOT impose + * any cq vs sq ring sizing. + */ + if (!p->cq_entries) + return -EINVAL; + if (p->cq_entries > IORING_MAX_CQ_ENTRIES) { + if (!(p->flags & IORING_SETUP_CLAMP)) + return -EINVAL; + p->cq_entries = IORING_MAX_CQ_ENTRIES; + } + p->cq_entries = roundup_pow_of_two(p->cq_entries); + if (p->cq_entries < p->sq_entries) + return -EINVAL; + } else { + p->cq_entries = 2 * p->sq_entries; + } + + return 0; +} + +int io_prepare_config(struct io_ctx_config *config) +{ + struct io_uring_params *p = &config->p; + int ret; + + ret = io_uring_sanitise_params(p); + if (ret) + return ret; + + ret = io_uring_fill_params(p); + if (ret) + return ret; + + ret = rings_size(p->flags, p->sq_entries, p->cq_entries, + &config->layout); + if (ret) + return ret; + + p->sq_off.head = offsetof(struct io_rings, sq.head); + p->sq_off.tail = offsetof(struct io_rings, sq.tail); + p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask); + p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries); + p->sq_off.flags = offsetof(struct io_rings, sq_flags); + p->sq_off.dropped = offsetof(struct io_rings, sq_dropped); + p->sq_off.resv1 = 0; + if (!(p->flags & IORING_SETUP_NO_MMAP)) + p->sq_off.user_addr = 0; + + p->cq_off.head = offsetof(struct io_rings, cq.head); + p->cq_off.tail = offsetof(struct io_rings, cq.tail); + p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask); + p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries); + p->cq_off.overflow = offsetof(struct io_rings, cq_overflow); + p->cq_off.cqes = offsetof(struct io_rings, cqes); + p->cq_off.flags = offsetof(struct io_rings, cq_flags); + p->cq_off.resv1 = 0; + if (!(p->flags & IORING_SETUP_NO_MMAP)) + p->cq_off.user_addr = 0; + if (!(p->flags & IORING_SETUP_NO_SQARRAY)) + p->sq_off.array = config->layout.sq_array_offset; + + return 0; +} + +static __cold int io_uring_create(struct io_ctx_config *config) +{ + struct io_uring_params *p = &config->p; + struct io_ring_ctx *ctx; + struct io_uring_task *tctx; + struct file *file; + int ret; + + ret = io_prepare_config(config); + if (ret) + return ret; + + ctx = io_ring_ctx_alloc(p); + if (!ctx) + return -ENOMEM; + + ctx->clockid = CLOCK_MONOTONIC; + ctx->clock_offset = 0; + + if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) + static_branch_inc(&io_key_has_sqarray); + + if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) && + !(ctx->flags & IORING_SETUP_IOPOLL) && + !(ctx->flags & IORING_SETUP_SQPOLL)) + ctx->task_complete = true; + + if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL)) + ctx->lockless_cq = true; + + /* + * lazy poll_wq activation relies on ->task_complete for synchronisation + * purposes, see io_activate_pollwq() + */ + if (!ctx->task_complete) + ctx->poll_activated = true; + + /* + * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user + * space applications don't need to do io completion events + * polling again, they can rely on io_sq_thread to do polling + * work, which can reduce cpu usage and uring_lock contention. + */ + if (ctx->flags & IORING_SETUP_IOPOLL && + !(ctx->flags & IORING_SETUP_SQPOLL)) + ctx->syscall_iopoll = 1; + + ctx->compat = in_compat_syscall(); + if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK)) + ctx->user = get_uid(current_user()); + + /* + * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if + * COOP_TASKRUN is set, then IPIs are never needed by the app. + */ + if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN)) + ctx->notify_method = TWA_SIGNAL_NO_IPI; + else + ctx->notify_method = TWA_SIGNAL; + + /* + * This is just grabbed for accounting purposes. When a process exits, + * the mm is exited and dropped before the files, hence we need to hang + * on to this mm purely for the purposes of being able to unaccount + * memory (locked/pinned vm). It's not used for anything else. + */ + mmgrab(current->mm); + ctx->mm_account = current->mm; + + ret = io_allocate_scq_urings(ctx, config); + if (ret) + goto err; + + ret = io_sq_offload_create(ctx, p); + if (ret) + goto err; + + p->features = IORING_FEAT_FLAGS; + + if (copy_to_user(config->uptr, p, sizeof(*p))) { + ret = -EFAULT; + goto err; + } + + if (ctx->flags & IORING_SETUP_SINGLE_ISSUER + && !(ctx->flags & IORING_SETUP_R_DISABLED)) { + /* + * Unlike io_register_enable_rings(), don't need WRITE_ONCE() + * since ctx isn't yet accessible from other tasks + */ + ctx->submitter_task = get_task_struct(current); + } + + file = io_uring_get_file(ctx); + if (IS_ERR(file)) { + ret = PTR_ERR(file); + goto err; + } + + ret = __io_uring_add_tctx_node(ctx); + if (ret) + goto err_fput; + tctx = current->io_uring; + + /* + * Install ring fd as the very last thing, so we don't risk someone + * having closed it before we finish setup + */ + if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY) + ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX); + else + ret = io_uring_install_fd(file); + if (ret < 0) + goto err_fput; + + trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags); + return ret; +err: + io_ring_ctx_wait_and_kill(ctx); + return ret; +err_fput: + fput(file); + return ret; +} + +/* + * Sets up an aio uring context, and returns the fd. Applications asks for a + * ring size, we return the actual sq/cq ring sizes (among other things) in the + * params structure passed in. + */ +static long io_uring_setup(u32 entries, struct io_uring_params __user *params) +{ + struct io_ctx_config config; + + memset(&config, 0, sizeof(config)); + + if (copy_from_user(&config.p, params, sizeof(config.p))) + return -EFAULT; + + if (!mem_is_zero(&config.p.resv, sizeof(config.p.resv))) + return -EINVAL; + + config.p.sq_entries = entries; + config.uptr = params; + return io_uring_create(&config); +} + +static inline int io_uring_allowed(void) +{ + int disabled = READ_ONCE(sysctl_io_uring_disabled); + kgid_t io_uring_group; + + if (disabled == 2) + return -EPERM; + + if (disabled == 0 || capable(CAP_SYS_ADMIN)) + goto allowed_lsm; + + io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group); + if (!gid_valid(io_uring_group)) + return -EPERM; + + if (!in_group_p(io_uring_group)) + return -EPERM; + +allowed_lsm: + return security_uring_allowed(); +} + +SYSCALL_DEFINE2(io_uring_setup, u32, entries, + struct io_uring_params __user *, params) +{ + int ret; + + ret = io_uring_allowed(); + if (ret) + return ret; + + return io_uring_setup(entries, params); +} + +static int __init io_uring_init(void) +{ + struct kmem_cache_args kmem_args = { + .useroffset = offsetof(struct io_kiocb, cmd.data), + .usersize = sizeof_field(struct io_kiocb, cmd.data), + .freeptr_offset = offsetof(struct io_kiocb, work), + .use_freeptr_offset = true, + }; + +#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \ + BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \ + BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \ +} while (0) + +#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \ + __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename) +#define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \ + __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename) + BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64); + BUILD_BUG_SQE_ELEM(0, __u8, opcode); + BUILD_BUG_SQE_ELEM(1, __u8, flags); + BUILD_BUG_SQE_ELEM(2, __u16, ioprio); + BUILD_BUG_SQE_ELEM(4, __s32, fd); + BUILD_BUG_SQE_ELEM(8, __u64, off); + BUILD_BUG_SQE_ELEM(8, __u64, addr2); + BUILD_BUG_SQE_ELEM(8, __u32, cmd_op); + BUILD_BUG_SQE_ELEM(12, __u32, __pad1); + BUILD_BUG_SQE_ELEM(16, __u64, addr); + BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in); + BUILD_BUG_SQE_ELEM(24, __u32, len); + BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags); + BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags); + BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags); + BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags); + BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events); + BUILD_BUG_SQE_ELEM(28, __u32, poll32_events); + BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags); + BUILD_BUG_SQE_ELEM(28, __u32, msg_flags); + BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags); + BUILD_BUG_SQE_ELEM(28, __u32, accept_flags); + BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags); + BUILD_BUG_SQE_ELEM(28, __u32, open_flags); + BUILD_BUG_SQE_ELEM(28, __u32, statx_flags); + BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice); + BUILD_BUG_SQE_ELEM(28, __u32, splice_flags); + BUILD_BUG_SQE_ELEM(28, __u32, rename_flags); + BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags); + BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags); + BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags); + BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags); + BUILD_BUG_SQE_ELEM(32, __u64, user_data); + BUILD_BUG_SQE_ELEM(40, __u16, buf_index); + BUILD_BUG_SQE_ELEM(40, __u16, buf_group); + BUILD_BUG_SQE_ELEM(42, __u16, personality); + BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in); + BUILD_BUG_SQE_ELEM(44, __u32, file_index); + BUILD_BUG_SQE_ELEM(44, __u16, addr_len); + BUILD_BUG_SQE_ELEM(44, __u8, write_stream); + BUILD_BUG_SQE_ELEM(45, __u8, __pad4[0]); + BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]); + BUILD_BUG_SQE_ELEM(48, __u64, addr3); + BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd); + BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr); + BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask); + BUILD_BUG_SQE_ELEM(56, __u64, __pad2); + + BUILD_BUG_ON(sizeof(struct io_uring_files_update) != + sizeof(struct io_uring_rsrc_update)); + BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) > + sizeof(struct io_uring_rsrc_update2)); + + /* ->buf_index is u16 */ + BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0); + BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) != + offsetof(struct io_uring_buf_ring, tail)); + + /* should fit into one byte */ + BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8)); + BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8)); + BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS); + + BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags)); + + BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32)); + + /* top 8bits are for internal use */ + BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0); + + io_uring_optable_init(); + + /* imu->dir is u8 */ + BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX); + + /* + * Allow user copy in the per-command field, which starts after the + * file in io_kiocb and until the opcode field. The openat2 handling + * requires copying in user memory into the io_kiocb object in that + * range, and HARDENED_USERCOPY will complain if we haven't + * correctly annotated this range. + */ + req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args, + SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT | + SLAB_TYPESAFE_BY_RCU); + + iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64); + BUG_ON(!iou_wq); + +#ifdef CONFIG_SYSCTL + register_sysctl_init("kernel", kernel_io_uring_disabled_table); +#endif + + return 0; +}; +__initcall(io_uring_init); |
