summaryrefslogtreecommitdiff
path: root/ipc/sem.c
diff options
context:
space:
mode:
Diffstat (limited to 'ipc/sem.c')
-rw-r--r--ipc/sem.c1869
1 files changed, 1138 insertions, 731 deletions
diff --git a/ipc/sem.c b/ipc/sem.c
index 41088899783d..0f06e4bd4673 100644
--- a/ipc/sem.c
+++ b/ipc/sem.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0
/*
* linux/ipc/sem.c
* Copyright (C) 1992 Krishna Balasubramanian
@@ -11,6 +12,7 @@
* (c) 2001 Red Hat Inc
* Lockless wakeup
* (c) 2003 Manfred Spraul <manfred@colorfullife.com>
+ * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
* Further wakeup optimizations, documentation
* (c) 2010 Manfred Spraul <manfred@colorfullife.com>
*
@@ -34,7 +36,7 @@
* - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
* - undo adjustments at process exit are limited to 0..SEMVMX.
* - namespace are supported.
- * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
+ * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing
* to /proc/sys/kernel/sem.
* - statistics about the usage are reported in /proc/sysvipc/sem.
*
@@ -47,22 +49,17 @@
* Thus: Perfect SMP scaling between independent semaphore arrays.
* If multiple semaphores in one array are used, then cache line
* trashing on the semaphore array spinlock will limit the scaling.
- * - semncnt and semzcnt are calculated on demand in count_semncnt() and
- * count_semzcnt()
+ * - semncnt and semzcnt are calculated on demand in count_semcnt()
* - the task that performs a successful semop() scans the list of all
* sleeping tasks and completes any pending operations that can be fulfilled.
* Semaphores are actively given to waiting tasks (necessary for FIFO).
* (see update_queue())
* - To improve the scalability, the actual wake-up calls are performed after
- * dropping all locks. (see wake_up_sem_queue_prepare(),
- * wake_up_sem_queue_do())
+ * dropping all locks. (see wake_up_sem_queue_prepare())
* - All work is done by the waker, the woken up task does not have to do
* anything - not even acquiring a lock or dropping a refcount.
* - A woken up task may not even touch the semaphore array anymore, it may
* have been destroyed already by a semctl(RMID).
- * - The synchronizations between wake-ups due to a timeout/signal and a
- * wake-up due to a completed semaphore operation is achieved by using an
- * intermediate state (IN_WAKEUP).
* - UNDO values are stored in an array (one per process and per
* semaphore array, lazily allocated). For backwards compatibility, multiple
* modes for the UNDO variables are supported (per process, per thread)
@@ -73,6 +70,7 @@
* The worst-case behavior is nevertheless O(N^2) for N wakeups.
*/
+#include <linux/compat.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/init.h>
@@ -86,32 +84,60 @@
#include <linux/rwsem.h>
#include <linux/nsproxy.h>
#include <linux/ipc_namespace.h>
+#include <linux/sched/wake_q.h>
+#include <linux/nospec.h>
+#include <linux/rhashtable.h>
-#include <asm/uaccess.h>
+#include <linux/uaccess.h>
#include "util.h"
/* One semaphore structure for each semaphore in the system. */
struct sem {
int semval; /* current value */
- int sempid; /* pid of last operation */
+ /*
+ * PID of the process that last modified the semaphore. For
+ * Linux, specifically these are:
+ * - semop
+ * - semctl, via SETVAL and SETALL.
+ * - at task exit when performing undo adjustments (see exit_sem).
+ */
+ struct pid *sempid;
spinlock_t lock; /* spinlock for fine-grained semtimedop */
struct list_head pending_alter; /* pending single-sop operations */
/* that alter the semaphore */
struct list_head pending_const; /* pending single-sop operations */
/* that do not alter the semaphore*/
- time_t sem_otime; /* candidate for sem_otime */
+ time64_t sem_otime; /* candidate for sem_otime */
} ____cacheline_aligned_in_smp;
+/* One sem_array data structure for each set of semaphores in the system. */
+struct sem_array {
+ struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
+ time64_t sem_ctime; /* create/last semctl() time */
+ struct list_head pending_alter; /* pending operations */
+ /* that alter the array */
+ struct list_head pending_const; /* pending complex operations */
+ /* that do not alter semvals */
+ struct list_head list_id; /* undo requests on this array */
+ int sem_nsems; /* no. of semaphores in array */
+ int complex_count; /* pending complex operations */
+ unsigned int use_global_lock;/* >0: global lock required */
+
+ struct sem sems[];
+} __randomize_layout;
+
/* One queue for each sleeping process in the system. */
struct sem_queue {
struct list_head list; /* queue of pending operations */
struct task_struct *sleeper; /* this process */
struct sem_undo *undo; /* undo structure */
- int pid; /* process id of requesting process */
+ struct pid *pid; /* process id of requesting process */
int status; /* completion status of operation */
struct sembuf *sops; /* array of pending operations */
+ struct sembuf *blocking; /* the operation that blocked */
int nsops; /* number of operations */
- int alter; /* does *sops alter the array? */
+ bool alter; /* does *sops alter the array? */
+ bool dupsop; /* sops on more than one sem_num */
};
/* Each task has a list of undo requests. They are executed automatically
@@ -126,7 +152,7 @@ struct sem_undo {
struct list_head list_id; /* per semaphore array list:
* all undos for one array */
int semid; /* semaphore set identifier */
- short *semadj; /* array of adjustments */
+ short semadj[]; /* array of adjustments */
/* one per semaphore */
};
@@ -134,7 +160,7 @@ struct sem_undo {
* that may be shared among all a CLONE_SYSVSEM task group.
*/
struct sem_undo_list {
- atomic_t refcnt;
+ refcount_t refcnt;
spinlock_t lock;
struct list_head list_proc;
};
@@ -142,8 +168,6 @@ struct sem_undo_list {
#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
-#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
-
static int newary(struct ipc_namespace *, struct ipc_params *);
static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
#ifdef CONFIG_PROC_FS
@@ -154,15 +178,67 @@ static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
/*
+ * Switching from the mode suitable for simple ops
+ * to the mode for complex ops is costly. Therefore:
+ * use some hysteresis
+ */
+#define USE_GLOBAL_LOCK_HYSTERESIS 10
+
+/*
* Locking:
+ * a) global sem_lock() for read/write
* sem_undo.id_next,
* sem_array.complex_count,
- * sem_array.pending{_alter,_cont},
- * sem_array.sem_undo: global sem_lock() for read/write
- * sem_undo.proc_next: only "current" is allowed to read/write that field.
- *
- * sem_array.sem_base[i].pending_{const,alter}:
- * global or semaphore sem_lock() for read/write
+ * sem_array.pending{_alter,_const},
+ * sem_array.sem_undo
+ *
+ * b) global or semaphore sem_lock() for read/write:
+ * sem_array.sems[i].pending_{const,alter}:
+ *
+ * c) special:
+ * sem_undo_list.list_proc:
+ * * undo_list->lock for write
+ * * rcu for read
+ * use_global_lock:
+ * * global sem_lock() for write
+ * * either local or global sem_lock() for read.
+ *
+ * Memory ordering:
+ * Most ordering is enforced by using spin_lock() and spin_unlock().
+ *
+ * Exceptions:
+ * 1) use_global_lock: (SEM_BARRIER_1)
+ * Setting it from non-zero to 0 is a RELEASE, this is ensured by
+ * using smp_store_release(): Immediately after setting it to 0,
+ * a simple op can start.
+ * Testing if it is non-zero is an ACQUIRE, this is ensured by using
+ * smp_load_acquire().
+ * Setting it from 0 to non-zero must be ordered with regards to
+ * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
+ * is inside a spin_lock() and after a write from 0 to non-zero a
+ * spin_lock()+spin_unlock() is done.
+ * To prevent the compiler/cpu temporarily writing 0 to use_global_lock,
+ * READ_ONCE()/WRITE_ONCE() is used.
+ *
+ * 2) queue.status: (SEM_BARRIER_2)
+ * Initialization is done while holding sem_lock(), so no further barrier is
+ * required.
+ * Setting it to a result code is a RELEASE, this is ensured by both a
+ * smp_store_release() (for case a) and while holding sem_lock()
+ * (for case b).
+ * The ACQUIRE when reading the result code without holding sem_lock() is
+ * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
+ * (case a above).
+ * Reading the result code while holding sem_lock() needs no further barriers,
+ * the locks inside sem_lock() enforce ordering (case b above)
+ *
+ * 3) current->state:
+ * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
+ * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
+ * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
+ * when holding sem_lock(), no further barriers are required.
+ *
+ * See also ipc/mqueue.c for more details on the covered races.
*/
#define sc_semmsl sem_ctls[0]
@@ -185,10 +261,11 @@ void sem_exit_ns(struct ipc_namespace *ns)
{
free_ipcs(ns, &sem_ids(ns), freeary);
idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
+ rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
}
#endif
-void __init sem_init (void)
+void __init sem_init(void)
{
sem_init_ns(&init_ipc_ns);
ipc_init_proc_interface("sysvipc/sem",
@@ -217,7 +294,7 @@ static void unmerge_queues(struct sem_array *sma)
*/
list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
struct sem *curr;
- curr = &sma->sem_base[q->sops[0].sem_num];
+ curr = &sma->sems[q->sops[0].sem_num];
list_add_tail(&q->list, &curr->pending_alter);
}
@@ -225,7 +302,7 @@ static void unmerge_queues(struct sem_array *sma)
}
/**
- * merge_queues - Merge single semop queues into global queue
+ * merge_queues - merge single semop queues into global queue
* @sma: semaphore array
*
* This function merges all per-semaphore queues into the global queue.
@@ -237,122 +314,170 @@ static void merge_queues(struct sem_array *sma)
{
int i;
for (i = 0; i < sma->sem_nsems; i++) {
- struct sem *sem = sma->sem_base + i;
+ struct sem *sem = &sma->sems[i];
list_splice_init(&sem->pending_alter, &sma->pending_alter);
}
}
+static void sem_rcu_free(struct rcu_head *head)
+{
+ struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
+ struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
+
+ security_sem_free(&sma->sem_perm);
+ kvfree(sma);
+}
+
+/*
+ * Enter the mode suitable for non-simple operations:
+ * Caller must own sem_perm.lock.
+ */
+static void complexmode_enter(struct sem_array *sma)
+{
+ int i;
+ struct sem *sem;
+
+ if (sma->use_global_lock > 0) {
+ /*
+ * We are already in global lock mode.
+ * Nothing to do, just reset the
+ * counter until we return to simple mode.
+ */
+ WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
+ return;
+ }
+ WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
+
+ for (i = 0; i < sma->sem_nsems; i++) {
+ sem = &sma->sems[i];
+ spin_lock(&sem->lock);
+ spin_unlock(&sem->lock);
+ }
+}
+
+/*
+ * Try to leave the mode that disallows simple operations:
+ * Caller must own sem_perm.lock.
+ */
+static void complexmode_tryleave(struct sem_array *sma)
+{
+ if (sma->complex_count) {
+ /* Complex ops are sleeping.
+ * We must stay in complex mode
+ */
+ return;
+ }
+ if (sma->use_global_lock == 1) {
+
+ /* See SEM_BARRIER_1 for purpose/pairing */
+ smp_store_release(&sma->use_global_lock, 0);
+ } else {
+ WRITE_ONCE(sma->use_global_lock,
+ sma->use_global_lock-1);
+ }
+}
+
+#define SEM_GLOBAL_LOCK (-1)
/*
* If the request contains only one semaphore operation, and there are
* no complex transactions pending, lock only the semaphore involved.
* Otherwise, lock the entire semaphore array, since we either have
* multiple semaphores in our own semops, or we need to look at
* semaphores from other pending complex operations.
- *
- * Carefully guard against sma->complex_count changing between zero
- * and non-zero while we are spinning for the lock. The value of
- * sma->complex_count cannot change while we are holding the lock,
- * so sem_unlock should be fine.
- *
- * The global lock path checks that all the local locks have been released,
- * checking each local lock once. This means that the local lock paths
- * cannot start their critical sections while the global lock is held.
*/
static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
int nsops)
{
- int locknum;
- again:
- if (nsops == 1 && !sma->complex_count) {
- struct sem *sem = sma->sem_base + sops->sem_num;
+ struct sem *sem;
+ int idx;
- /* Lock just the semaphore we are interested in. */
- spin_lock(&sem->lock);
+ if (nsops != 1) {
+ /* Complex operation - acquire a full lock */
+ ipc_lock_object(&sma->sem_perm);
+ /* Prevent parallel simple ops */
+ complexmode_enter(sma);
+ return SEM_GLOBAL_LOCK;
+ }
+
+ /*
+ * Only one semaphore affected - try to optimize locking.
+ * Optimized locking is possible if no complex operation
+ * is either enqueued or processed right now.
+ *
+ * Both facts are tracked by use_global_mode.
+ */
+ idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
+ sem = &sma->sems[idx];
+
+ /*
+ * Initial check for use_global_lock. Just an optimization,
+ * no locking, no memory barrier.
+ */
+ if (!READ_ONCE(sma->use_global_lock)) {
/*
- * If sma->complex_count was set while we were spinning,
- * we may need to look at things we did not lock here.
+ * It appears that no complex operation is around.
+ * Acquire the per-semaphore lock.
*/
- if (unlikely(sma->complex_count)) {
- spin_unlock(&sem->lock);
- goto lock_array;
+ spin_lock(&sem->lock);
+
+ /* see SEM_BARRIER_1 for purpose/pairing */
+ if (!smp_load_acquire(&sma->use_global_lock)) {
+ /* fast path successful! */
+ return sops->sem_num;
}
+ spin_unlock(&sem->lock);
+ }
+
+ /* slow path: acquire the full lock */
+ ipc_lock_object(&sma->sem_perm);
+ if (sma->use_global_lock == 0) {
/*
- * Another process is holding the global lock on the
- * sem_array; we cannot enter our critical section,
- * but have to wait for the global lock to be released.
+ * The use_global_lock mode ended while we waited for
+ * sma->sem_perm.lock. Thus we must switch to locking
+ * with sem->lock.
+ * Unlike in the fast path, there is no need to recheck
+ * sma->use_global_lock after we have acquired sem->lock:
+ * We own sma->sem_perm.lock, thus use_global_lock cannot
+ * change.
*/
- if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
- spin_unlock(&sem->lock);
- spin_unlock_wait(&sma->sem_perm.lock);
- goto again;
- }
+ spin_lock(&sem->lock);
- locknum = sops->sem_num;
+ ipc_unlock_object(&sma->sem_perm);
+ return sops->sem_num;
} else {
- int i;
/*
- * Lock the semaphore array, and wait for all of the
- * individual semaphore locks to go away. The code
- * above ensures no new single-lock holders will enter
- * their critical section while the array lock is held.
+ * Not a false alarm, thus continue to use the global lock
+ * mode. No need for complexmode_enter(), this was done by
+ * the caller that has set use_global_mode to non-zero.
*/
- lock_array:
- ipc_lock_object(&sma->sem_perm);
- for (i = 0; i < sma->sem_nsems; i++) {
- struct sem *sem = sma->sem_base + i;
- spin_unlock_wait(&sem->lock);
- }
- locknum = -1;
+ return SEM_GLOBAL_LOCK;
}
- return locknum;
}
static inline void sem_unlock(struct sem_array *sma, int locknum)
{
- if (locknum == -1) {
+ if (locknum == SEM_GLOBAL_LOCK) {
unmerge_queues(sma);
+ complexmode_tryleave(sma);
ipc_unlock_object(&sma->sem_perm);
} else {
- struct sem *sem = sma->sem_base + locknum;
+ struct sem *sem = &sma->sems[locknum];
spin_unlock(&sem->lock);
}
}
/*
- * sem_lock_(check_) routines are called in the paths where the rw_mutex
+ * sem_lock_(check_) routines are called in the paths where the rwsem
* is not held.
*
* The caller holds the RCU read lock.
*/
-static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
- int id, struct sembuf *sops, int nsops, int *locknum)
-{
- struct kern_ipc_perm *ipcp;
- struct sem_array *sma;
-
- ipcp = ipc_obtain_object(&sem_ids(ns), id);
- if (IS_ERR(ipcp))
- return ERR_CAST(ipcp);
-
- sma = container_of(ipcp, struct sem_array, sem_perm);
- *locknum = sem_lock(sma, sops, nsops);
-
- /* ipc_rmid() may have already freed the ID while sem_lock
- * was spinning: verify that the structure is still valid
- */
- if (!ipcp->deleted)
- return container_of(ipcp, struct sem_array, sem_perm);
-
- sem_unlock(sma, *locknum);
- return ERR_PTR(-EINVAL);
-}
-
static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
{
- struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
+ struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
if (IS_ERR(ipcp))
return ERR_CAST(ipcp);
@@ -374,12 +499,7 @@ static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns
static inline void sem_lock_and_putref(struct sem_array *sma)
{
sem_lock(sma, NULL, -1);
- ipc_rcu_putref(sma);
-}
-
-static inline void sem_putref(struct sem_array *sma)
-{
- ipc_rcu_putref(sma);
+ ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
}
static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
@@ -387,54 +507,31 @@ static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
ipc_rmid(&sem_ids(ns), &s->sem_perm);
}
-/*
- * Lockless wakeup algorithm:
- * Without the check/retry algorithm a lockless wakeup is possible:
- * - queue.status is initialized to -EINTR before blocking.
- * - wakeup is performed by
- * * unlinking the queue entry from the pending list
- * * setting queue.status to IN_WAKEUP
- * This is the notification for the blocked thread that a
- * result value is imminent.
- * * call wake_up_process
- * * set queue.status to the final value.
- * - the previously blocked thread checks queue.status:
- * * if it's IN_WAKEUP, then it must wait until the value changes
- * * if it's not -EINTR, then the operation was completed by
- * update_queue. semtimedop can return queue.status without
- * performing any operation on the sem array.
- * * otherwise it must acquire the spinlock and check what's up.
- *
- * The two-stage algorithm is necessary to protect against the following
- * races:
- * - if queue.status is set after wake_up_process, then the woken up idle
- * thread could race forward and try (and fail) to acquire sma->lock
- * before update_queue had a chance to set queue.status
- * - if queue.status is written before wake_up_process and if the
- * blocked process is woken up by a signal between writing
- * queue.status and the wake_up_process, then the woken up
- * process could return from semtimedop and die by calling
- * sys_exit before wake_up_process is called. Then wake_up_process
- * will oops, because the task structure is already invalid.
- * (yes, this happened on s390 with sysv msg).
- *
- */
-#define IN_WAKEUP 1
+static struct sem_array *sem_alloc(size_t nsems)
+{
+ struct sem_array *sma;
+
+ if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
+ return NULL;
+
+ sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL_ACCOUNT);
+ if (unlikely(!sma))
+ return NULL;
+
+ return sma;
+}
/**
* newary - Create a new semaphore set
* @ns: namespace
* @params: ptr to the structure that contains key, semflg and nsems
*
- * Called with sem_ids.rw_mutex held (as a writer)
+ * Called with sem_ids.rwsem held (as a writer)
*/
-
static int newary(struct ipc_namespace *ns, struct ipc_params *params)
{
- int id;
int retval;
struct sem_array *sma;
- int size;
key_t key = params->key;
int nsems = params->u.nsems;
int semflg = params->flg;
@@ -445,45 +542,42 @@ static int newary(struct ipc_namespace *ns, struct ipc_params *params)
if (ns->used_sems + nsems > ns->sc_semmns)
return -ENOSPC;
- size = sizeof (*sma) + nsems * sizeof (struct sem);
- sma = ipc_rcu_alloc(size);
- if (!sma) {
+ sma = sem_alloc(nsems);
+ if (!sma)
return -ENOMEM;
- }
- memset (sma, 0, size);
sma->sem_perm.mode = (semflg & S_IRWXUGO);
sma->sem_perm.key = key;
sma->sem_perm.security = NULL;
- retval = security_sem_alloc(sma);
+ retval = security_sem_alloc(&sma->sem_perm);
if (retval) {
- ipc_rcu_putref(sma);
+ kvfree(sma);
return retval;
}
- id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
- if (id < 0) {
- security_sem_free(sma);
- ipc_rcu_putref(sma);
- return id;
- }
- ns->used_sems += nsems;
-
- sma->sem_base = (struct sem *) &sma[1];
-
for (i = 0; i < nsems; i++) {
- INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
- INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
- spin_lock_init(&sma->sem_base[i].lock);
+ INIT_LIST_HEAD(&sma->sems[i].pending_alter);
+ INIT_LIST_HEAD(&sma->sems[i].pending_const);
+ spin_lock_init(&sma->sems[i].lock);
}
sma->complex_count = 0;
+ sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
INIT_LIST_HEAD(&sma->pending_alter);
INIT_LIST_HEAD(&sma->pending_const);
INIT_LIST_HEAD(&sma->list_id);
sma->sem_nsems = nsems;
- sma->sem_ctime = get_seconds();
+ sma->sem_ctime = ktime_get_real_seconds();
+
+ /* ipc_addid() locks sma upon success. */
+ retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
+ if (retval < 0) {
+ ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
+ return retval;
+ }
+ ns->used_sems += nsems;
+
sem_unlock(sma, -1);
rcu_read_unlock();
@@ -492,21 +586,9 @@ static int newary(struct ipc_namespace *ns, struct ipc_params *params)
/*
- * Called with sem_ids.rw_mutex and ipcp locked.
- */
-static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
-{
- struct sem_array *sma;
-
- sma = container_of(ipcp, struct sem_array, sem_perm);
- return security_sem_associate(sma, semflg);
-}
-
-/*
- * Called with sem_ids.rw_mutex and ipcp locked.
+ * Called with sem_ids.rwsem and ipcp locked.
*/
-static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
- struct ipc_params *params)
+static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
{
struct sem_array *sma;
@@ -517,10 +599,14 @@ static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
return 0;
}
-SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
+long ksys_semget(key_t key, int nsems, int semflg)
{
struct ipc_namespace *ns;
- struct ipc_ops sem_ops;
+ static const struct ipc_ops sem_ops = {
+ .getnew = newary,
+ .associate = security_sem_associate,
+ .more_checks = sem_more_checks,
+ };
struct ipc_params sem_params;
ns = current->nsproxy->ipc_ns;
@@ -528,10 +614,6 @@ SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
if (nsems < 0 || nsems > ns->sc_semmsl)
return -EINVAL;
- sem_ops.getnew = newary;
- sem_ops.associate = sem_security;
- sem_ops.more_checks = sem_more_checks;
-
sem_params.key = key;
sem_params.flg = semflg;
sem_params.u.nsems = nsems;
@@ -539,30 +621,47 @@ SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
}
-/** perform_atomic_semop - Perform (if possible) a semaphore operation
+SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
+{
+ return ksys_semget(key, nsems, semflg);
+}
+
+/**
+ * perform_atomic_semop[_slow] - Attempt to perform semaphore
+ * operations on a given array.
* @sma: semaphore array
- * @sops: array with operations that should be checked
- * @nsems: number of sops
- * @un: undo array
- * @pid: pid that did the change
+ * @q: struct sem_queue that describes the operation
+ *
+ * Caller blocking are as follows, based the value
+ * indicated by the semaphore operation (sem_op):
+ *
+ * (1) >0 never blocks.
+ * (2) 0 (wait-for-zero operation): semval is non-zero.
+ * (3) <0 attempting to decrement semval to a value smaller than zero.
*
* Returns 0 if the operation was possible.
* Returns 1 if the operation is impossible, the caller must sleep.
- * Negative values are error codes.
+ * Returns <0 for error codes.
*/
-
-static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
- int nsops, struct sem_undo *un, int pid)
+static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
{
- int result, sem_op;
+ int result, sem_op, nsops;
+ struct pid *pid;
struct sembuf *sop;
- struct sem * curr;
+ struct sem *curr;
+ struct sembuf *sops;
+ struct sem_undo *un;
+
+ sops = q->sops;
+ nsops = q->nsops;
+ un = q->undo;
for (sop = sops; sop < sops + nsops; sop++) {
- curr = sma->sem_base + sop->sem_num;
+ int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
+ curr = &sma->sems[idx];
sem_op = sop->sem_op;
result = curr->semval;
-
+
if (!sem_op && result)
goto would_block;
@@ -571,25 +670,25 @@ static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
goto would_block;
if (result > SEMVMX)
goto out_of_range;
+
if (sop->sem_flg & SEM_UNDO) {
int undo = un->semadj[sop->sem_num] - sem_op;
- /*
- * Exceeding the undo range is an error.
- */
+ /* Exceeding the undo range is an error. */
if (undo < (-SEMAEM - 1) || undo > SEMAEM)
goto out_of_range;
+ un->semadj[sop->sem_num] = undo;
}
+
curr->semval = result;
}
sop--;
+ pid = q->pid;
while (sop >= sops) {
- sma->sem_base[sop->sem_num].sempid = pid;
- if (sop->sem_flg & SEM_UNDO)
- un->semadj[sop->sem_num] -= sop->sem_op;
+ ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
sop--;
}
-
+
return 0;
out_of_range:
@@ -597,6 +696,8 @@ out_of_range:
goto undo;
would_block:
+ q->blocking = sop;
+
if (sop->sem_flg & IPC_NOWAIT)
result = -EAGAIN;
else
@@ -605,58 +706,94 @@ would_block:
undo:
sop--;
while (sop >= sops) {
- sma->sem_base[sop->sem_num].semval -= sop->sem_op;
+ sem_op = sop->sem_op;
+ sma->sems[sop->sem_num].semval -= sem_op;
+ if (sop->sem_flg & SEM_UNDO)
+ un->semadj[sop->sem_num] += sem_op;
sop--;
}
return result;
}
-/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
- * @q: queue entry that must be signaled
- * @error: Error value for the signal
- *
- * Prepare the wake-up of the queue entry q.
- */
-static void wake_up_sem_queue_prepare(struct list_head *pt,
- struct sem_queue *q, int error)
+static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
{
- if (list_empty(pt)) {
- /*
- * Hold preempt off so that we don't get preempted and have the
- * wakee busy-wait until we're scheduled back on.
- */
- preempt_disable();
+ int result, sem_op, nsops;
+ struct sembuf *sop;
+ struct sem *curr;
+ struct sembuf *sops;
+ struct sem_undo *un;
+
+ sops = q->sops;
+ nsops = q->nsops;
+ un = q->undo;
+
+ if (unlikely(q->dupsop))
+ return perform_atomic_semop_slow(sma, q);
+
+ /*
+ * We scan the semaphore set twice, first to ensure that the entire
+ * operation can succeed, therefore avoiding any pointless writes
+ * to shared memory and having to undo such changes in order to block
+ * until the operations can go through.
+ */
+ for (sop = sops; sop < sops + nsops; sop++) {
+ int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
+
+ curr = &sma->sems[idx];
+ sem_op = sop->sem_op;
+ result = curr->semval;
+
+ if (!sem_op && result)
+ goto would_block; /* wait-for-zero */
+
+ result += sem_op;
+ if (result < 0)
+ goto would_block;
+
+ if (result > SEMVMX)
+ return -ERANGE;
+
+ if (sop->sem_flg & SEM_UNDO) {
+ int undo = un->semadj[sop->sem_num] - sem_op;
+
+ /* Exceeding the undo range is an error. */
+ if (undo < (-SEMAEM - 1) || undo > SEMAEM)
+ return -ERANGE;
+ }
}
- q->status = IN_WAKEUP;
- q->pid = error;
- list_add_tail(&q->list, pt);
+ for (sop = sops; sop < sops + nsops; sop++) {
+ curr = &sma->sems[sop->sem_num];
+ sem_op = sop->sem_op;
+
+ if (sop->sem_flg & SEM_UNDO) {
+ int undo = un->semadj[sop->sem_num] - sem_op;
+
+ un->semadj[sop->sem_num] = undo;
+ }
+ curr->semval += sem_op;
+ ipc_update_pid(&curr->sempid, q->pid);
+ }
+
+ return 0;
+
+would_block:
+ q->blocking = sop;
+ return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
}
-/**
- * wake_up_sem_queue_do(pt) - do the actual wake-up
- * @pt: list of tasks to be woken up
- *
- * Do the actual wake-up.
- * The function is called without any locks held, thus the semaphore array
- * could be destroyed already and the tasks can disappear as soon as the
- * status is set to the actual return code.
- */
-static void wake_up_sem_queue_do(struct list_head *pt)
+static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
+ struct wake_q_head *wake_q)
{
- struct sem_queue *q, *t;
- int did_something;
+ struct task_struct *sleeper;
- did_something = !list_empty(pt);
- list_for_each_entry_safe(q, t, pt, list) {
- wake_up_process(q->sleeper);
- /* q can disappear immediately after writing q->status. */
- smp_wmb();
- q->status = q->pid;
- }
- if (did_something)
- preempt_enable();
+ sleeper = get_task_struct(q->sleeper);
+
+ /* see SEM_BARRIER_2 for purpose/pairing */
+ smp_store_release(&q->status, error);
+
+ wake_q_add_safe(wake_q, sleeper);
}
static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
@@ -676,7 +813,7 @@ static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
* modified the array.
* Note that wait-for-zero operations are handled without restart.
*/
-static int check_restart(struct sem_array *sma, struct sem_queue *q)
+static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
{
/* pending complex alter operations are too difficult to analyse */
if (!list_empty(&sma->pending_alter))
@@ -688,7 +825,7 @@ static int check_restart(struct sem_array *sma, struct sem_queue *q)
/* It is impossible that someone waits for the new value:
* - complex operations always restart.
- * - wait-for-zero are handled seperately.
+ * - wait-for-zero are handled separately.
* - q is a previously sleeping simple operation that
* altered the array. It must be a decrement, because
* simple increments never sleep.
@@ -701,69 +838,60 @@ static int check_restart(struct sem_array *sma, struct sem_queue *q)
}
/**
- * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
+ * wake_const_ops - wake up non-alter tasks
* @sma: semaphore array.
* @semnum: semaphore that was modified.
- * @pt: list head for the tasks that must be woken up.
+ * @wake_q: lockless wake-queue head.
*
* wake_const_ops must be called after a semaphore in a semaphore array
* was set to 0. If complex const operations are pending, wake_const_ops must
* be called with semnum = -1, as well as with the number of each modified
* semaphore.
- * The tasks that must be woken up are added to @pt. The return code
+ * The tasks that must be woken up are added to @wake_q. The return code
* is stored in q->pid.
* The function returns 1 if at least one operation was completed successfully.
*/
static int wake_const_ops(struct sem_array *sma, int semnum,
- struct list_head *pt)
+ struct wake_q_head *wake_q)
{
- struct sem_queue *q;
- struct list_head *walk;
+ struct sem_queue *q, *tmp;
struct list_head *pending_list;
int semop_completed = 0;
if (semnum == -1)
pending_list = &sma->pending_const;
else
- pending_list = &sma->sem_base[semnum].pending_const;
-
- walk = pending_list->next;
- while (walk != pending_list) {
- int error;
+ pending_list = &sma->sems[semnum].pending_const;
- q = container_of(walk, struct sem_queue, list);
- walk = walk->next;
+ list_for_each_entry_safe(q, tmp, pending_list, list) {
+ int error = perform_atomic_semop(sma, q);
- error = perform_atomic_semop(sma, q->sops, q->nsops,
- q->undo, q->pid);
-
- if (error <= 0) {
- /* operation completed, remove from queue & wakeup */
-
- unlink_queue(sma, q);
+ if (error > 0)
+ continue;
+ /* operation completed, remove from queue & wakeup */
+ unlink_queue(sma, q);
- wake_up_sem_queue_prepare(pt, q, error);
- if (error == 0)
- semop_completed = 1;
- }
+ wake_up_sem_queue_prepare(q, error, wake_q);
+ if (error == 0)
+ semop_completed = 1;
}
+
return semop_completed;
}
/**
- * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
+ * do_smart_wakeup_zero - wakeup all wait for zero tasks
* @sma: semaphore array
* @sops: operations that were performed
* @nsops: number of operations
- * @pt: list head of the tasks that must be woken up.
+ * @wake_q: lockless wake-queue head
*
- * do_smart_wakeup_zero() checks all required queue for wait-for-zero
- * operations, based on the actual changes that were performed on the
- * semaphore array.
+ * Checks all required queue for wait-for-zero operations, based
+ * on the actual changes that were performed on the semaphore array.
* The function returns 1 if at least one operation was completed successfully.
*/
static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
- int nsops, struct list_head *pt)
+ int nsops, struct wake_q_head *wake_q)
{
int i;
int semop_completed = 0;
@@ -774,9 +902,9 @@ static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
for (i = 0; i < nsops; i++) {
int num = sops[i].sem_num;
- if (sma->sem_base[num].semval == 0) {
+ if (sma->sems[num].semval == 0) {
got_zero = 1;
- semop_completed |= wake_const_ops(sma, num, pt);
+ semop_completed |= wake_const_ops(sma, num, wake_q);
}
}
} else {
@@ -785,9 +913,9 @@ static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
* Assume all were changed.
*/
for (i = 0; i < sma->sem_nsems; i++) {
- if (sma->sem_base[i].semval == 0) {
+ if (sma->sems[i].semval == 0) {
got_zero = 1;
- semop_completed |= wake_const_ops(sma, i, pt);
+ semop_completed |= wake_const_ops(sma, i, wake_q);
}
}
}
@@ -796,48 +924,43 @@ static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
* then check the global queue, too.
*/
if (got_zero)
- semop_completed |= wake_const_ops(sma, -1, pt);
+ semop_completed |= wake_const_ops(sma, -1, wake_q);
return semop_completed;
}
/**
- * update_queue(sma, semnum): Look for tasks that can be completed.
+ * update_queue - look for tasks that can be completed.
* @sma: semaphore array.
* @semnum: semaphore that was modified.
- * @pt: list head for the tasks that must be woken up.
+ * @wake_q: lockless wake-queue head.
*
* update_queue must be called after a semaphore in a semaphore array
* was modified. If multiple semaphores were modified, update_queue must
* be called with semnum = -1, as well as with the number of each modified
* semaphore.
- * The tasks that must be woken up are added to @pt. The return code
+ * The tasks that must be woken up are added to @wake_q. The return code
* is stored in q->pid.
* The function internally checks if const operations can now succeed.
*
* The function return 1 if at least one semop was completed successfully.
*/
-static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
+static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
{
- struct sem_queue *q;
- struct list_head *walk;
+ struct sem_queue *q, *tmp;
struct list_head *pending_list;
int semop_completed = 0;
if (semnum == -1)
pending_list = &sma->pending_alter;
else
- pending_list = &sma->sem_base[semnum].pending_alter;
+ pending_list = &sma->sems[semnum].pending_alter;
again:
- walk = pending_list->next;
- while (walk != pending_list) {
+ list_for_each_entry_safe(q, tmp, pending_list, list) {
int error, restart;
- q = container_of(walk, struct sem_queue, list);
- walk = walk->next;
-
/* If we are scanning the single sop, per-semaphore list of
* one semaphore and that semaphore is 0, then it is not
* necessary to scan further: simple increments
@@ -845,11 +968,10 @@ again:
* be in the per semaphore pending queue, and decrements
* cannot be successful if the value is already 0.
*/
- if (semnum != -1 && sma->sem_base[semnum].semval == 0)
+ if (semnum != -1 && sma->sems[semnum].semval == 0)
break;
- error = perform_atomic_semop(sma, q->sops, q->nsops,
- q->undo, q->pid);
+ error = perform_atomic_semop(sma, q);
/* Does q->sleeper still need to sleep? */
if (error > 0)
@@ -861,11 +983,11 @@ again:
restart = 0;
} else {
semop_completed = 1;
- do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
+ do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
restart = check_restart(sma, q);
}
- wake_up_sem_queue_prepare(pt, q, error);
+ wake_up_sem_queue_prepare(q, error, wake_q);
if (restart)
goto again;
}
@@ -873,29 +995,47 @@ again:
}
/**
- * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
+ * set_semotime - set sem_otime
+ * @sma: semaphore array
+ * @sops: operations that modified the array, may be NULL
+ *
+ * sem_otime is replicated to avoid cache line trashing.
+ * This function sets one instance to the current time.
+ */
+static void set_semotime(struct sem_array *sma, struct sembuf *sops)
+{
+ if (sops == NULL) {
+ sma->sems[0].sem_otime = ktime_get_real_seconds();
+ } else {
+ sma->sems[sops[0].sem_num].sem_otime =
+ ktime_get_real_seconds();
+ }
+}
+
+/**
+ * do_smart_update - optimized update_queue
* @sma: semaphore array
* @sops: operations that were performed
* @nsops: number of operations
* @otime: force setting otime
- * @pt: list head of the tasks that must be woken up.
+ * @wake_q: lockless wake-queue head
*
* do_smart_update() does the required calls to update_queue and wakeup_zero,
* based on the actual changes that were performed on the semaphore array.
* Note that the function does not do the actual wake-up: the caller is
- * responsible for calling wake_up_sem_queue_do(@pt).
+ * responsible for calling wake_up_q().
* It is safe to perform this call after dropping all locks.
*/
static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
- int otime, struct list_head *pt)
+ int otime, struct wake_q_head *wake_q)
{
int i;
- otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
+ otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
if (!list_empty(&sma->pending_alter)) {
/* semaphore array uses the global queue - just process it. */
- otime |= update_queue(sma, -1, pt);
+ otime |= update_queue(sma, -1, wake_q);
} else {
if (!sops) {
/*
@@ -903,99 +1043,101 @@ static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsop
* known. Check all.
*/
for (i = 0; i < sma->sem_nsems; i++)
- otime |= update_queue(sma, i, pt);
+ otime |= update_queue(sma, i, wake_q);
} else {
/*
* Check the semaphores that were increased:
* - No complex ops, thus all sleeping ops are
* decrease.
* - if we decreased the value, then any sleeping
- * semaphore ops wont be able to run: If the
+ * semaphore ops won't be able to run: If the
* previous value was too small, then the new
* value will be too small, too.
*/
for (i = 0; i < nsops; i++) {
if (sops[i].sem_op > 0) {
otime |= update_queue(sma,
- sops[i].sem_num, pt);
+ sops[i].sem_num, wake_q);
}
}
}
}
- if (otime) {
- if (sops == NULL) {
- sma->sem_base[0].sem_otime = get_seconds();
- } else {
- sma->sem_base[sops[0].sem_num].sem_otime =
- get_seconds();
- }
- }
+ if (otime)
+ set_semotime(sma, sops);
}
+/*
+ * check_qop: Test if a queued operation sleeps on the semaphore semnum
+ */
+static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
+ bool count_zero)
+{
+ struct sembuf *sop = q->blocking;
+
+ /*
+ * Linux always (since 0.99.10) reported a task as sleeping on all
+ * semaphores. This violates SUS, therefore it was changed to the
+ * standard compliant behavior.
+ * Give the administrators a chance to notice that an application
+ * might misbehave because it relies on the Linux behavior.
+ */
+ pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
+ "The task %s (%d) triggered the difference, watch for misbehavior.\n",
+ current->comm, task_pid_nr(current));
+
+ if (sop->sem_num != semnum)
+ return 0;
+
+ if (count_zero && sop->sem_op == 0)
+ return 1;
+ if (!count_zero && sop->sem_op < 0)
+ return 1;
+
+ return 0;
+}
/* The following counts are associated to each semaphore:
* semncnt number of tasks waiting on semval being nonzero
* semzcnt number of tasks waiting on semval being zero
- * This model assumes that a task waits on exactly one semaphore.
- * Since semaphore operations are to be performed atomically, tasks actually
- * wait on a whole sequence of semaphores simultaneously.
- * The counts we return here are a rough approximation, but still
- * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
+ *
+ * Per definition, a task waits only on the semaphore of the first semop
+ * that cannot proceed, even if additional operation would block, too.
*/
-static int count_semncnt (struct sem_array * sma, ushort semnum)
+static int count_semcnt(struct sem_array *sma, ushort semnum,
+ bool count_zero)
{
- int semncnt;
- struct sem_queue * q;
+ struct list_head *l;
+ struct sem_queue *q;
+ int semcnt;
- semncnt = 0;
- list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
- struct sembuf * sops = q->sops;
- BUG_ON(sops->sem_num != semnum);
- if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
- semncnt++;
- }
+ semcnt = 0;
+ /* First: check the simple operations. They are easy to evaluate */
+ if (count_zero)
+ l = &sma->sems[semnum].pending_const;
+ else
+ l = &sma->sems[semnum].pending_alter;
- list_for_each_entry(q, &sma->pending_alter, list) {
- struct sembuf * sops = q->sops;
- int nsops = q->nsops;
- int i;
- for (i = 0; i < nsops; i++)
- if (sops[i].sem_num == semnum
- && (sops[i].sem_op < 0)
- && !(sops[i].sem_flg & IPC_NOWAIT))
- semncnt++;
+ list_for_each_entry(q, l, list) {
+ /* all task on a per-semaphore list sleep on exactly
+ * that semaphore
+ */
+ semcnt++;
}
- return semncnt;
-}
-
-static int count_semzcnt (struct sem_array * sma, ushort semnum)
-{
- int semzcnt;
- struct sem_queue * q;
- semzcnt = 0;
- list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
- struct sembuf * sops = q->sops;
- BUG_ON(sops->sem_num != semnum);
- if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
- semzcnt++;
+ /* Then: check the complex operations. */
+ list_for_each_entry(q, &sma->pending_alter, list) {
+ semcnt += check_qop(sma, semnum, q, count_zero);
}
-
- list_for_each_entry(q, &sma->pending_const, list) {
- struct sembuf * sops = q->sops;
- int nsops = q->nsops;
- int i;
- for (i = 0; i < nsops; i++)
- if (sops[i].sem_num == semnum
- && (sops[i].sem_op == 0)
- && !(sops[i].sem_flg & IPC_NOWAIT))
- semzcnt++;
+ if (count_zero) {
+ list_for_each_entry(q, &sma->pending_const, list) {
+ semcnt += check_qop(sma, semnum, q, count_zero);
+ }
}
- return semzcnt;
+ return semcnt;
}
-/* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
- * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
+/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
+ * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
* remains locked on exit.
*/
static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
@@ -1003,8 +1145,8 @@ static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
struct sem_undo *un, *tu;
struct sem_queue *q, *tq;
struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
- struct list_head tasks;
int i;
+ DEFINE_WAKE_Q(wake_q);
/* Free the existing undo structures for this semaphore set. */
ipc_assert_locked_object(&sma->sem_perm);
@@ -1014,30 +1156,30 @@ static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
un->semid = -1;
list_del_rcu(&un->list_proc);
spin_unlock(&un->ulp->lock);
- kfree_rcu(un, rcu);
+ kvfree_rcu(un, rcu);
}
/* Wake up all pending processes and let them fail with EIDRM. */
- INIT_LIST_HEAD(&tasks);
list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
unlink_queue(sma, q);
- wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
+ wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
}
list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
unlink_queue(sma, q);
- wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
+ wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
}
for (i = 0; i < sma->sem_nsems; i++) {
- struct sem *sem = sma->sem_base + i;
+ struct sem *sem = &sma->sems[i];
list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
unlink_queue(sma, q);
- wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
+ wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
}
list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
unlink_queue(sma, q);
- wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
+ wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
}
+ ipc_update_pid(&sem->sempid, NULL);
}
/* Remove the semaphore set from the IDR */
@@ -1045,15 +1187,14 @@ static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
sem_unlock(sma, -1);
rcu_read_unlock();
- wake_up_sem_queue_do(&tasks);
+ wake_up_q(&wake_q);
ns->used_sems -= sma->sem_nsems;
- security_sem_free(sma);
- ipc_rcu_putref(sma);
+ ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
}
static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
{
- switch(version) {
+ switch (version) {
case IPC_64:
return copy_to_user(buf, in, sizeof(*in));
case IPC_OLD:
@@ -1075,14 +1216,14 @@ static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in,
}
}
-static time_t get_semotime(struct sem_array *sma)
+static time64_t get_semotime(struct sem_array *sma)
{
int i;
- time_t res;
+ time64_t res;
- res = sma->sem_base[0].sem_otime;
+ res = sma->sems[0].sem_otime;
for (i = 1; i < sma->sem_nsems; i++) {
- time_t to = sma->sem_base[i].sem_otime;
+ time64_t to = sma->sems[i].sem_otime;
if (to > res)
res = to;
@@ -1090,117 +1231,127 @@ static time_t get_semotime(struct sem_array *sma)
return res;
}
-static int semctl_nolock(struct ipc_namespace *ns, int semid,
- int cmd, int version, void __user *p)
+static int semctl_stat(struct ipc_namespace *ns, int semid,
+ int cmd, struct semid64_ds *semid64)
{
- int err;
struct sem_array *sma;
+ time64_t semotime;
+ int err;
- switch(cmd) {
- case IPC_INFO:
- case SEM_INFO:
- {
- struct seminfo seminfo;
- int max_id;
+ memset(semid64, 0, sizeof(*semid64));
- err = security_sem_semctl(NULL, cmd);
- if (err)
- return err;
-
- memset(&seminfo,0,sizeof(seminfo));
- seminfo.semmni = ns->sc_semmni;
- seminfo.semmns = ns->sc_semmns;
- seminfo.semmsl = ns->sc_semmsl;
- seminfo.semopm = ns->sc_semopm;
- seminfo.semvmx = SEMVMX;
- seminfo.semmnu = SEMMNU;
- seminfo.semmap = SEMMAP;
- seminfo.semume = SEMUME;
- down_read(&sem_ids(ns).rw_mutex);
- if (cmd == SEM_INFO) {
- seminfo.semusz = sem_ids(ns).in_use;
- seminfo.semaem = ns->used_sems;
- } else {
- seminfo.semusz = SEMUSZ;
- seminfo.semaem = SEMAEM;
+ rcu_read_lock();
+ if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
+ sma = sem_obtain_object(ns, semid);
+ if (IS_ERR(sma)) {
+ err = PTR_ERR(sma);
+ goto out_unlock;
}
- max_id = ipc_get_maxid(&sem_ids(ns));
- up_read(&sem_ids(ns).rw_mutex);
- if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
- return -EFAULT;
- return (max_id < 0) ? 0: max_id;
- }
- case IPC_STAT:
- case SEM_STAT:
- {
- struct semid64_ds tbuf;
- int id = 0;
-
- memset(&tbuf, 0, sizeof(tbuf));
-
- rcu_read_lock();
- if (cmd == SEM_STAT) {
- sma = sem_obtain_object(ns, semid);
- if (IS_ERR(sma)) {
- err = PTR_ERR(sma);
- goto out_unlock;
- }
- id = sma->sem_perm.id;
- } else {
- sma = sem_obtain_object_check(ns, semid);
- if (IS_ERR(sma)) {
- err = PTR_ERR(sma);
- goto out_unlock;
- }
+ } else { /* IPC_STAT */
+ sma = sem_obtain_object_check(ns, semid);
+ if (IS_ERR(sma)) {
+ err = PTR_ERR(sma);
+ goto out_unlock;
}
+ }
+ /* see comment for SHM_STAT_ANY */
+ if (cmd == SEM_STAT_ANY)
+ audit_ipc_obj(&sma->sem_perm);
+ else {
err = -EACCES;
if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
goto out_unlock;
+ }
- err = security_sem_semctl(sma, cmd);
- if (err)
- goto out_unlock;
+ err = security_sem_semctl(&sma->sem_perm, cmd);
+ if (err)
+ goto out_unlock;
- kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
- tbuf.sem_otime = get_semotime(sma);
- tbuf.sem_ctime = sma->sem_ctime;
- tbuf.sem_nsems = sma->sem_nsems;
- rcu_read_unlock();
- if (copy_semid_to_user(p, &tbuf, version))
- return -EFAULT;
- return id;
+ ipc_lock_object(&sma->sem_perm);
+
+ if (!ipc_valid_object(&sma->sem_perm)) {
+ ipc_unlock_object(&sma->sem_perm);
+ err = -EIDRM;
+ goto out_unlock;
}
- default:
- return -EINVAL;
+
+ kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
+ semotime = get_semotime(sma);
+ semid64->sem_otime = semotime;
+ semid64->sem_ctime = sma->sem_ctime;
+#ifndef CONFIG_64BIT
+ semid64->sem_otime_high = semotime >> 32;
+ semid64->sem_ctime_high = sma->sem_ctime >> 32;
+#endif
+ semid64->sem_nsems = sma->sem_nsems;
+
+ if (cmd == IPC_STAT) {
+ /*
+ * As defined in SUS:
+ * Return 0 on success
+ */
+ err = 0;
+ } else {
+ /*
+ * SEM_STAT and SEM_STAT_ANY (both Linux specific)
+ * Return the full id, including the sequence number
+ */
+ err = sma->sem_perm.id;
}
+ ipc_unlock_object(&sma->sem_perm);
out_unlock:
rcu_read_unlock();
return err;
}
+static int semctl_info(struct ipc_namespace *ns, int semid,
+ int cmd, void __user *p)
+{
+ struct seminfo seminfo;
+ int max_idx;
+ int err;
+
+ err = security_sem_semctl(NULL, cmd);
+ if (err)
+ return err;
+
+ memset(&seminfo, 0, sizeof(seminfo));
+ seminfo.semmni = ns->sc_semmni;
+ seminfo.semmns = ns->sc_semmns;
+ seminfo.semmsl = ns->sc_semmsl;
+ seminfo.semopm = ns->sc_semopm;
+ seminfo.semvmx = SEMVMX;
+ seminfo.semmnu = SEMMNU;
+ seminfo.semmap = SEMMAP;
+ seminfo.semume = SEMUME;
+ down_read(&sem_ids(ns).rwsem);
+ if (cmd == SEM_INFO) {
+ seminfo.semusz = sem_ids(ns).in_use;
+ seminfo.semaem = ns->used_sems;
+ } else {
+ seminfo.semusz = SEMUSZ;
+ seminfo.semaem = SEMAEM;
+ }
+ max_idx = ipc_get_maxidx(&sem_ids(ns));
+ up_read(&sem_ids(ns).rwsem);
+ if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
+ return -EFAULT;
+ return (max_idx < 0) ? 0 : max_idx;
+}
+
static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
- unsigned long arg)
+ int val)
{
struct sem_undo *un;
struct sem_array *sma;
- struct sem* curr;
+ struct sem *curr;
int err;
- struct list_head tasks;
- int val;
-#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
- /* big-endian 64bit */
- val = arg >> 32;
-#else
- /* 32bit or little-endian 64bit */
- val = arg;
-#endif
+ DEFINE_WAKE_Q(wake_q);
if (val > SEMVMX || val < 0)
return -ERANGE;
- INIT_LIST_HEAD(&tasks);
-
rcu_read_lock();
sma = sem_obtain_object_check(ns, semid);
if (IS_ERR(sma)) {
@@ -1219,7 +1370,7 @@ static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
return -EACCES;
}
- err = security_sem_semctl(sma, SETVAL);
+ err = security_sem_semctl(&sma->sem_perm, SETVAL);
if (err) {
rcu_read_unlock();
return -EACCES;
@@ -1227,20 +1378,27 @@ static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
sem_lock(sma, NULL, -1);
- curr = &sma->sem_base[semnum];
+ if (!ipc_valid_object(&sma->sem_perm)) {
+ sem_unlock(sma, -1);
+ rcu_read_unlock();
+ return -EIDRM;
+ }
+
+ semnum = array_index_nospec(semnum, sma->sem_nsems);
+ curr = &sma->sems[semnum];
ipc_assert_locked_object(&sma->sem_perm);
list_for_each_entry(un, &sma->list_id, list_id)
un->semadj[semnum] = 0;
curr->semval = val;
- curr->sempid = task_tgid_vnr(current);
- sma->sem_ctime = get_seconds();
+ ipc_update_pid(&curr->sempid, task_tgid(current));
+ sma->sem_ctime = ktime_get_real_seconds();
/* maybe some queued-up processes were waiting for this */
- do_smart_update(sma, NULL, 0, 0, &tasks);
+ do_smart_update(sma, NULL, 0, 0, &wake_q);
sem_unlock(sma, -1);
rcu_read_unlock();
- wake_up_sem_queue_do(&tasks);
+ wake_up_q(&wake_q);
return 0;
}
@@ -1248,13 +1406,11 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
int cmd, void __user *p)
{
struct sem_array *sma;
- struct sem* curr;
+ struct sem *curr;
int err, nsems;
ushort fast_sem_io[SEMMSL_FAST];
- ushort* sem_io = fast_sem_io;
- struct list_head tasks;
-
- INIT_LIST_HEAD(&tasks);
+ ushort *sem_io = fast_sem_io;
+ DEFINE_WAKE_Q(wake_q);
rcu_read_lock();
sma = sem_obtain_object_check(ns, semid);
@@ -1269,11 +1425,10 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
goto out_rcu_wakeup;
- err = security_sem_semctl(sma, cmd);
+ err = security_sem_semctl(&sma->sem_perm, cmd);
if (err)
goto out_rcu_wakeup;
- err = -EACCES;
switch (cmd) {
case GETALL:
{
@@ -1281,36 +1436,37 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
int i;
sem_lock(sma, NULL, -1);
- if(nsems > SEMMSL_FAST) {
- if (!ipc_rcu_getref(sma)) {
- sem_unlock(sma, -1);
- rcu_read_unlock();
+ if (!ipc_valid_object(&sma->sem_perm)) {
+ err = -EIDRM;
+ goto out_unlock;
+ }
+ if (nsems > SEMMSL_FAST) {
+ if (!ipc_rcu_getref(&sma->sem_perm)) {
err = -EIDRM;
- goto out_free;
+ goto out_unlock;
}
sem_unlock(sma, -1);
rcu_read_unlock();
- sem_io = ipc_alloc(sizeof(ushort)*nsems);
- if(sem_io == NULL) {
- sem_putref(sma);
+ sem_io = kvmalloc_array(nsems, sizeof(ushort),
+ GFP_KERNEL);
+ if (sem_io == NULL) {
+ ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
return -ENOMEM;
}
rcu_read_lock();
sem_lock_and_putref(sma);
- if (sma->sem_perm.deleted) {
- sem_unlock(sma, -1);
- rcu_read_unlock();
+ if (!ipc_valid_object(&sma->sem_perm)) {
err = -EIDRM;
- goto out_free;
+ goto out_unlock;
}
}
for (i = 0; i < sma->sem_nsems; i++)
- sem_io[i] = sma->sem_base[i].semval;
+ sem_io[i] = sma->sems[i].semval;
sem_unlock(sma, -1);
rcu_read_unlock();
err = 0;
- if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
+ if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
err = -EFAULT;
goto out_free;
}
@@ -1319,53 +1475,54 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
int i;
struct sem_undo *un;
- if (!ipc_rcu_getref(sma)) {
- rcu_read_unlock();
- return -EIDRM;
+ if (!ipc_rcu_getref(&sma->sem_perm)) {
+ err = -EIDRM;
+ goto out_rcu_wakeup;
}
rcu_read_unlock();
- if(nsems > SEMMSL_FAST) {
- sem_io = ipc_alloc(sizeof(ushort)*nsems);
- if(sem_io == NULL) {
- sem_putref(sma);
+ if (nsems > SEMMSL_FAST) {
+ sem_io = kvmalloc_array(nsems, sizeof(ushort),
+ GFP_KERNEL);
+ if (sem_io == NULL) {
+ ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
return -ENOMEM;
}
}
- if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
- sem_putref(sma);
+ if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
+ ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
err = -EFAULT;
goto out_free;
}
for (i = 0; i < nsems; i++) {
if (sem_io[i] > SEMVMX) {
- sem_putref(sma);
+ ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
err = -ERANGE;
goto out_free;
}
}
rcu_read_lock();
sem_lock_and_putref(sma);
- if (sma->sem_perm.deleted) {
- sem_unlock(sma, -1);
- rcu_read_unlock();
+ if (!ipc_valid_object(&sma->sem_perm)) {
err = -EIDRM;
- goto out_free;
+ goto out_unlock;
}
- for (i = 0; i < nsems; i++)
- sma->sem_base[i].semval = sem_io[i];
+ for (i = 0; i < nsems; i++) {
+ sma->sems[i].semval = sem_io[i];
+ ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
+ }
ipc_assert_locked_object(&sma->sem_perm);
list_for_each_entry(un, &sma->list_id, list_id) {
for (i = 0; i < nsems; i++)
un->semadj[i] = 0;
}
- sma->sem_ctime = get_seconds();
+ sma->sem_ctime = ktime_get_real_seconds();
/* maybe some queued-up processes were waiting for this */
- do_smart_update(sma, NULL, 0, 0, &tasks);
+ do_smart_update(sma, NULL, 0, 0, &wake_q);
err = 0;
goto out_unlock;
}
@@ -1376,20 +1533,26 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
goto out_rcu_wakeup;
sem_lock(sma, NULL, -1);
- curr = &sma->sem_base[semnum];
+ if (!ipc_valid_object(&sma->sem_perm)) {
+ err = -EIDRM;
+ goto out_unlock;
+ }
+
+ semnum = array_index_nospec(semnum, nsems);
+ curr = &sma->sems[semnum];
switch (cmd) {
case GETVAL:
err = curr->semval;
goto out_unlock;
case GETPID:
- err = curr->sempid;
+ err = pid_vnr(curr->sempid);
goto out_unlock;
case GETNCNT:
- err = count_semncnt(sma,semnum);
+ err = count_semcnt(sma, semnum, 0);
goto out_unlock;
case GETZCNT:
- err = count_semzcnt(sma,semnum);
+ err = count_semcnt(sma, semnum, 1);
goto out_unlock;
}
@@ -1397,17 +1560,17 @@ out_unlock:
sem_unlock(sma, -1);
out_rcu_wakeup:
rcu_read_unlock();
- wake_up_sem_queue_do(&tasks);
+ wake_up_q(&wake_q);
out_free:
- if(sem_io != fast_sem_io)
- ipc_free(sem_io, sizeof(ushort)*nsems);
+ if (sem_io != fast_sem_io)
+ kvfree(sem_io);
return err;
}
static inline unsigned long
copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
{
- switch(version) {
+ switch (version) {
case IPC_64:
if (copy_from_user(out, buf, sizeof(*out)))
return -EFAULT;
@@ -1416,7 +1579,7 @@ copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
{
struct semid_ds tbuf_old;
- if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
+ if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
return -EFAULT;
out->sem_perm.uid = tbuf_old.sem_perm.uid;
@@ -1431,28 +1594,22 @@ copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
}
/*
- * This function handles some semctl commands which require the rw_mutex
+ * This function handles some semctl commands which require the rwsem
* to be held in write mode.
- * NOTE: no locks must be held, the rw_mutex is taken inside this function.
+ * NOTE: no locks must be held, the rwsem is taken inside this function.
*/
static int semctl_down(struct ipc_namespace *ns, int semid,
- int cmd, int version, void __user *p)
+ int cmd, struct semid64_ds *semid64)
{
struct sem_array *sma;
int err;
- struct semid64_ds semid64;
struct kern_ipc_perm *ipcp;
- if(cmd == IPC_SET) {
- if (copy_semid_from_user(&semid64, p, version))
- return -EFAULT;
- }
-
- down_write(&sem_ids(ns).rw_mutex);
+ down_write(&sem_ids(ns).rwsem);
rcu_read_lock();
- ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
- &semid64.sem_perm, 0);
+ ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
+ &semid64->sem_perm, 0);
if (IS_ERR(ipcp)) {
err = PTR_ERR(ipcp);
goto out_unlock1;
@@ -1460,7 +1617,7 @@ static int semctl_down(struct ipc_namespace *ns, int semid,
sma = container_of(ipcp, struct sem_array, sem_perm);
- err = security_sem_semctl(sma, cmd);
+ err = security_sem_semctl(&sma->sem_perm, cmd);
if (err)
goto out_unlock1;
@@ -1472,10 +1629,10 @@ static int semctl_down(struct ipc_namespace *ns, int semid,
goto out_up;
case IPC_SET:
sem_lock(sma, NULL, -1);
- err = ipc_update_perm(&semid64.sem_perm, ipcp);
+ err = ipc_update_perm(&semid64->sem_perm, ipcp);
if (err)
goto out_unlock0;
- sma->sem_ctime = get_seconds();
+ sma->sem_ctime = ktime_get_real_seconds();
break;
default:
err = -EINVAL;
@@ -1487,28 +1644,35 @@ out_unlock0:
out_unlock1:
rcu_read_unlock();
out_up:
- up_write(&sem_ids(ns).rw_mutex);
+ up_write(&sem_ids(ns).rwsem);
return err;
}
-SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
+static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
{
- int version;
struct ipc_namespace *ns;
void __user *p = (void __user *)arg;
+ struct semid64_ds semid64;
+ int err;
if (semid < 0)
return -EINVAL;
- version = ipc_parse_version(&cmd);
ns = current->nsproxy->ipc_ns;
- switch(cmd) {
+ switch (cmd) {
case IPC_INFO:
case SEM_INFO:
+ return semctl_info(ns, semid, cmd, p);
case IPC_STAT:
case SEM_STAT:
- return semctl_nolock(ns, semid, cmd, version, p);
+ case SEM_STAT_ANY:
+ err = semctl_stat(ns, semid, cmd, &semid64);
+ if (err < 0)
+ return err;
+ if (copy_semid_to_user(p, &semid64, version))
+ err = -EFAULT;
+ return err;
case GETALL:
case GETVAL:
case GETPID:
@@ -1516,16 +1680,162 @@ SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
case GETZCNT:
case SETALL:
return semctl_main(ns, semid, semnum, cmd, p);
+ case SETVAL: {
+ int val;
+#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
+ /* big-endian 64bit */
+ val = arg >> 32;
+#else
+ /* 32bit or little-endian 64bit */
+ val = arg;
+#endif
+ return semctl_setval(ns, semid, semnum, val);
+ }
+ case IPC_SET:
+ if (copy_semid_from_user(&semid64, p, version))
+ return -EFAULT;
+ fallthrough;
+ case IPC_RMID:
+ return semctl_down(ns, semid, cmd, &semid64);
+ default:
+ return -EINVAL;
+ }
+}
+
+SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
+{
+ return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
+}
+
+#ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
+long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
+{
+ int version = ipc_parse_version(&cmd);
+
+ return ksys_semctl(semid, semnum, cmd, arg, version);
+}
+
+SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
+{
+ return ksys_old_semctl(semid, semnum, cmd, arg);
+}
+#endif
+
+#ifdef CONFIG_COMPAT
+
+struct compat_semid_ds {
+ struct compat_ipc_perm sem_perm;
+ old_time32_t sem_otime;
+ old_time32_t sem_ctime;
+ compat_uptr_t sem_base;
+ compat_uptr_t sem_pending;
+ compat_uptr_t sem_pending_last;
+ compat_uptr_t undo;
+ unsigned short sem_nsems;
+};
+
+static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
+ int version)
+{
+ memset(out, 0, sizeof(*out));
+ if (version == IPC_64) {
+ struct compat_semid64_ds __user *p = buf;
+ return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
+ } else {
+ struct compat_semid_ds __user *p = buf;
+ return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
+ }
+}
+
+static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
+ int version)
+{
+ if (version == IPC_64) {
+ struct compat_semid64_ds v;
+ memset(&v, 0, sizeof(v));
+ to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
+ v.sem_otime = lower_32_bits(in->sem_otime);
+ v.sem_otime_high = upper_32_bits(in->sem_otime);
+ v.sem_ctime = lower_32_bits(in->sem_ctime);
+ v.sem_ctime_high = upper_32_bits(in->sem_ctime);
+ v.sem_nsems = in->sem_nsems;
+ return copy_to_user(buf, &v, sizeof(v));
+ } else {
+ struct compat_semid_ds v;
+ memset(&v, 0, sizeof(v));
+ to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
+ v.sem_otime = in->sem_otime;
+ v.sem_ctime = in->sem_ctime;
+ v.sem_nsems = in->sem_nsems;
+ return copy_to_user(buf, &v, sizeof(v));
+ }
+}
+
+static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
+{
+ void __user *p = compat_ptr(arg);
+ struct ipc_namespace *ns;
+ struct semid64_ds semid64;
+ int err;
+
+ ns = current->nsproxy->ipc_ns;
+
+ if (semid < 0)
+ return -EINVAL;
+
+ switch (cmd & (~IPC_64)) {
+ case IPC_INFO:
+ case SEM_INFO:
+ return semctl_info(ns, semid, cmd, p);
+ case IPC_STAT:
+ case SEM_STAT:
+ case SEM_STAT_ANY:
+ err = semctl_stat(ns, semid, cmd, &semid64);
+ if (err < 0)
+ return err;
+ if (copy_compat_semid_to_user(p, &semid64, version))
+ err = -EFAULT;
+ return err;
+ case GETVAL:
+ case GETPID:
+ case GETNCNT:
+ case GETZCNT:
+ case GETALL:
+ case SETALL:
+ return semctl_main(ns, semid, semnum, cmd, p);
case SETVAL:
return semctl_setval(ns, semid, semnum, arg);
- case IPC_RMID:
case IPC_SET:
- return semctl_down(ns, semid, cmd, version, p);
+ if (copy_compat_semid_from_user(&semid64, p, version))
+ return -EFAULT;
+ fallthrough;
+ case IPC_RMID:
+ return semctl_down(ns, semid, cmd, &semid64);
default:
return -EINVAL;
}
}
+COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
+{
+ return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
+}
+
+#ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
+long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
+{
+ int version = compat_ipc_parse_version(&cmd);
+
+ return compat_ksys_semctl(semid, semnum, cmd, arg, version);
+}
+
+COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
+{
+ return compat_ksys_old_semctl(semid, semnum, cmd, arg);
+}
+#endif
+#endif
+
/* If the task doesn't already have a undo_list, then allocate one
* here. We guarantee there is only one thread using this undo list,
* and current is THE ONE
@@ -1543,11 +1853,11 @@ static inline int get_undo_list(struct sem_undo_list **undo_listp)
undo_list = current->sysvsem.undo_list;
if (!undo_list) {
- undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
+ undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_ACCOUNT);
if (undo_list == NULL)
return -ENOMEM;
spin_lock_init(&undo_list->lock);
- atomic_set(&undo_list->refcnt, 1);
+ refcount_set(&undo_list->refcnt, 1);
INIT_LIST_HEAD(&undo_list->list_proc);
current->sysvsem.undo_list = undo_list;
@@ -1560,7 +1870,8 @@ static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
{
struct sem_undo *un;
- list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
+ list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
+ spin_is_locked(&ulp->lock)) {
if (un->semid == semid)
return un;
}
@@ -1571,7 +1882,7 @@ static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
{
struct sem_undo *un;
- assert_spin_locked(&ulp->lock);
+ assert_spin_locked(&ulp->lock);
un = __lookup_undo(ulp, semid);
if (un) {
@@ -1582,7 +1893,7 @@ static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
}
/**
- * find_alloc_undo - Lookup (and if not present create) undo array
+ * find_alloc_undo - lookup (and if not present create) undo array
* @ns: namespace
* @semid: semaphore array id
*
@@ -1607,7 +1918,7 @@ static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
spin_lock(&ulp->lock);
un = lookup_undo(ulp, semid);
spin_unlock(&ulp->lock);
- if (likely(un!=NULL))
+ if (likely(un != NULL))
goto out;
/* no undo structure around - allocate one. */
@@ -1619,7 +1930,7 @@ static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
}
nsems = sma->sem_nsems;
- if (!ipc_rcu_getref(sma)) {
+ if (!ipc_rcu_getref(&sma->sem_perm)) {
rcu_read_unlock();
un = ERR_PTR(-EIDRM);
goto out;
@@ -1627,19 +1938,19 @@ static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
rcu_read_unlock();
/* step 2: allocate new undo structure */
- new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
+ new = kvzalloc(struct_size(new, semadj, nsems), GFP_KERNEL_ACCOUNT);
if (!new) {
- sem_putref(sma);
+ ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
return ERR_PTR(-ENOMEM);
}
/* step 3: Acquire the lock on semaphore array */
rcu_read_lock();
sem_lock_and_putref(sma);
- if (sma->sem_perm.deleted) {
+ if (!ipc_valid_object(&sma->sem_perm)) {
sem_unlock(sma, -1);
rcu_read_unlock();
- kfree(new);
+ kvfree(new);
un = ERR_PTR(-EIDRM);
goto out;
}
@@ -1650,11 +1961,11 @@ static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
*/
un = lookup_undo(ulp, semid);
if (un) {
- kfree(new);
+ spin_unlock(&ulp->lock);
+ kvfree(new);
goto success;
}
/* step 5: initialize & link new undo structure */
- new->semadj = (short *) &new[1];
new->ulp = ulp;
new->semid = semid;
assert_spin_locked(&ulp->lock);
@@ -1662,100 +1973,71 @@ static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
ipc_assert_locked_object(&sma->sem_perm);
list_add(&new->list_id, &sma->list_id);
un = new;
-
-success:
spin_unlock(&ulp->lock);
+success:
sem_unlock(sma, -1);
out:
return un;
}
-
-/**
- * get_queue_result - Retrieve the result code from sem_queue
- * @q: Pointer to queue structure
- *
- * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
- * q->status, then we must loop until the value is replaced with the final
- * value: This may happen if a task is woken up by an unrelated event (e.g.
- * signal) and in parallel the task is woken up by another task because it got
- * the requested semaphores.
- *
- * The function can be called with or without holding the semaphore spinlock.
- */
-static int get_queue_result(struct sem_queue *q)
-{
- int error;
-
- error = q->status;
- while (unlikely(error == IN_WAKEUP)) {
- cpu_relax();
- error = q->status;
- }
-
- return error;
-}
-
-SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
- unsigned, nsops, const struct timespec __user *, timeout)
+long __do_semtimedop(int semid, struct sembuf *sops,
+ unsigned nsops, const struct timespec64 *timeout,
+ struct ipc_namespace *ns)
{
int error = -EINVAL;
struct sem_array *sma;
- struct sembuf fast_sops[SEMOPM_FAST];
- struct sembuf* sops = fast_sops, *sop;
+ struct sembuf *sop;
struct sem_undo *un;
- int undos = 0, alter = 0, max, locknum;
+ int max, locknum;
+ bool undos = false, alter = false, dupsop = false;
struct sem_queue queue;
- unsigned long jiffies_left = 0;
- struct ipc_namespace *ns;
- struct list_head tasks;
-
- ns = current->nsproxy->ipc_ns;
+ unsigned long dup = 0;
+ ktime_t expires, *exp = NULL;
+ bool timed_out = false;
if (nsops < 1 || semid < 0)
return -EINVAL;
if (nsops > ns->sc_semopm)
return -E2BIG;
- if(nsops > SEMOPM_FAST) {
- sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
- if(sops==NULL)
- return -ENOMEM;
- }
- if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
- error=-EFAULT;
- goto out_free;
- }
+
if (timeout) {
- struct timespec _timeout;
- if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
- error = -EFAULT;
- goto out_free;
- }
- if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
- _timeout.tv_nsec >= 1000000000L) {
- error = -EINVAL;
- goto out_free;
- }
- jiffies_left = timespec_to_jiffies(&_timeout);
+ if (!timespec64_valid(timeout))
+ return -EINVAL;
+ expires = ktime_add_safe(ktime_get(),
+ timespec64_to_ktime(*timeout));
+ exp = &expires;
}
+
+
max = 0;
for (sop = sops; sop < sops + nsops; sop++) {
+ unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
+
if (sop->sem_num >= max)
max = sop->sem_num;
if (sop->sem_flg & SEM_UNDO)
- undos = 1;
- if (sop->sem_op != 0)
- alter = 1;
+ undos = true;
+ if (dup & mask) {
+ /*
+ * There was a previous alter access that appears
+ * to have accessed the same semaphore, thus use
+ * the dupsop logic. "appears", because the detection
+ * can only check % BITS_PER_LONG.
+ */
+ dupsop = true;
+ }
+ if (sop->sem_op != 0) {
+ alter = true;
+ dup |= mask;
+ }
}
- INIT_LIST_HEAD(&tasks);
-
if (undos) {
/* On success, find_alloc_undo takes the rcu_read_lock */
un = find_alloc_undo(ns, semid);
if (IS_ERR(un)) {
error = PTR_ERR(un);
- goto out_free;
+ goto out;
}
} else {
un = NULL;
@@ -1766,21 +2048,39 @@ SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
if (IS_ERR(sma)) {
rcu_read_unlock();
error = PTR_ERR(sma);
- goto out_free;
+ goto out;
}
error = -EFBIG;
- if (max >= sma->sem_nsems)
- goto out_rcu_wakeup;
+ if (max >= sma->sem_nsems) {
+ rcu_read_unlock();
+ goto out;
+ }
error = -EACCES;
- if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
- goto out_rcu_wakeup;
+ if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
+ rcu_read_unlock();
+ goto out;
+ }
- error = security_sem_semop(sma, sops, nsops, alter);
- if (error)
- goto out_rcu_wakeup;
+ error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
+ if (error) {
+ rcu_read_unlock();
+ goto out;
+ }
+ error = -EIDRM;
+ locknum = sem_lock(sma, sops, nsops);
+ /*
+ * We eventually might perform the following check in a lockless
+ * fashion, considering ipc_valid_object() locking constraints.
+ * If nsops == 1 and there is no contention for sem_perm.lock, then
+ * only a per-semaphore lock is held and it's OK to proceed with the
+ * check below. More details on the fine grained locking scheme
+ * entangled here and why it's RMID race safe on comments at sem_lock()
+ */
+ if (!ipc_valid_object(&sma->sem_perm))
+ goto out_unlock;
/*
* semid identifiers are not unique - find_alloc_undo may have
* allocated an undo structure, it was invalidated by an RMID
@@ -1788,33 +2088,46 @@ SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
* This case can be detected checking un->semid. The existence of
* "un" itself is guaranteed by rcu.
*/
- error = -EIDRM;
- locknum = sem_lock(sma, sops, nsops);
if (un && un->semid == -1)
- goto out_unlock_free;
-
- error = perform_atomic_semop(sma, sops, nsops, un,
- task_tgid_vnr(current));
- if (error <= 0) {
- if (alter && error == 0)
- do_smart_update(sma, sops, nsops, 1, &tasks);
-
- goto out_unlock_free;
- }
+ goto out_unlock;
- /* We need to sleep on this operation, so we put the current
- * task into the pending queue and go to sleep.
- */
-
queue.sops = sops;
queue.nsops = nsops;
queue.undo = un;
- queue.pid = task_tgid_vnr(current);
+ queue.pid = task_tgid(current);
queue.alter = alter;
+ queue.dupsop = dupsop;
+
+ error = perform_atomic_semop(sma, &queue);
+ if (error == 0) { /* non-blocking successful path */
+ DEFINE_WAKE_Q(wake_q);
+
+ /*
+ * If the operation was successful, then do
+ * the required updates.
+ */
+ if (alter)
+ do_smart_update(sma, sops, nsops, 1, &wake_q);
+ else
+ set_semotime(sma, sops);
+
+ sem_unlock(sma, locknum);
+ rcu_read_unlock();
+ wake_up_q(&wake_q);
+
+ goto out;
+ }
+ if (error < 0) /* non-blocking error path */
+ goto out_unlock;
+ /*
+ * We need to sleep on this operation, so we put the current
+ * task into the pending queue and go to sleep.
+ */
if (nsops == 1) {
struct sem *curr;
- curr = &sma->sem_base[sops->sem_num];
+ int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
+ curr = &sma->sems[idx];
if (alter) {
if (sma->complex_count) {
@@ -1840,96 +2153,157 @@ SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
sma->complex_count++;
}
- queue.status = -EINTR;
- queue.sleeper = current;
+ do {
+ /* memory ordering ensured by the lock in sem_lock() */
+ WRITE_ONCE(queue.status, -EINTR);
+ queue.sleeper = current;
-sleep_again:
- current->state = TASK_INTERRUPTIBLE;
- sem_unlock(sma, locknum);
- rcu_read_unlock();
+ /* memory ordering is ensured by the lock in sem_lock() */
+ __set_current_state(TASK_INTERRUPTIBLE);
+ sem_unlock(sma, locknum);
+ rcu_read_unlock();
- if (timeout)
- jiffies_left = schedule_timeout(jiffies_left);
- else
- schedule();
+ timed_out = !schedule_hrtimeout_range(exp,
+ current->timer_slack_ns, HRTIMER_MODE_ABS);
- error = get_queue_result(&queue);
+ /*
+ * fastpath: the semop has completed, either successfully or
+ * not, from the syscall pov, is quite irrelevant to us at this
+ * point; we're done.
+ *
+ * We _do_ care, nonetheless, about being awoken by a signal or
+ * spuriously. The queue.status is checked again in the
+ * slowpath (aka after taking sem_lock), such that we can detect
+ * scenarios where we were awakened externally, during the
+ * window between wake_q_add() and wake_up_q().
+ */
+ rcu_read_lock();
+ error = READ_ONCE(queue.status);
+ if (error != -EINTR) {
+ /* see SEM_BARRIER_2 for purpose/pairing */
+ smp_acquire__after_ctrl_dep();
+ rcu_read_unlock();
+ goto out;
+ }
+
+ locknum = sem_lock(sma, sops, nsops);
- if (error != -EINTR) {
- /* fast path: update_queue already obtained all requested
- * resources.
- * Perform a smp_mb(): User space could assume that semop()
- * is a memory barrier: Without the mb(), the cpu could
- * speculatively read in user space stale data that was
- * overwritten by the previous owner of the semaphore.
+ if (!ipc_valid_object(&sma->sem_perm))
+ goto out_unlock;
+
+ /*
+ * No necessity for any barrier: We are protect by sem_lock()
*/
- smp_mb();
+ error = READ_ONCE(queue.status);
- goto out_free;
- }
+ /*
+ * If queue.status != -EINTR we are woken up by another process.
+ * Leave without unlink_queue(), but with sem_unlock().
+ */
+ if (error != -EINTR)
+ goto out_unlock;
- rcu_read_lock();
- sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
+ /*
+ * If an interrupt occurred we have to clean up the queue.
+ */
+ if (timed_out)
+ error = -EAGAIN;
+ } while (error == -EINTR && !signal_pending(current)); /* spurious */
- /*
- * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
- */
- error = get_queue_result(&queue);
+ unlink_queue(sma, &queue);
- /*
- * Array removed? If yes, leave without sem_unlock().
- */
- if (IS_ERR(sma)) {
- rcu_read_unlock();
+out_unlock:
+ sem_unlock(sma, locknum);
+ rcu_read_unlock();
+out:
+ return error;
+}
+
+static long do_semtimedop(int semid, struct sembuf __user *tsops,
+ unsigned nsops, const struct timespec64 *timeout)
+{
+ struct sembuf fast_sops[SEMOPM_FAST];
+ struct sembuf *sops = fast_sops;
+ struct ipc_namespace *ns;
+ int ret;
+
+ ns = current->nsproxy->ipc_ns;
+ if (nsops > ns->sc_semopm)
+ return -E2BIG;
+ if (nsops < 1)
+ return -EINVAL;
+
+ if (nsops > SEMOPM_FAST) {
+ sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
+ if (sops == NULL)
+ return -ENOMEM;
+ }
+
+ if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
+ ret = -EFAULT;
goto out_free;
}
+ ret = __do_semtimedop(semid, sops, nsops, timeout, ns);
- /*
- * If queue.status != -EINTR we are woken up by another process.
- * Leave without unlink_queue(), but with sem_unlock().
- */
+out_free:
+ if (sops != fast_sops)
+ kvfree(sops);
- if (error != -EINTR) {
- goto out_unlock_free;
- }
+ return ret;
+}
- /*
- * If an interrupt occurred we have to clean up the queue
- */
- if (timeout && jiffies_left == 0)
- error = -EAGAIN;
+long ksys_semtimedop(int semid, struct sembuf __user *tsops,
+ unsigned int nsops, const struct __kernel_timespec __user *timeout)
+{
+ if (timeout) {
+ struct timespec64 ts;
+ if (get_timespec64(&ts, timeout))
+ return -EFAULT;
+ return do_semtimedop(semid, tsops, nsops, &ts);
+ }
+ return do_semtimedop(semid, tsops, nsops, NULL);
+}
- /*
- * If the wakeup was spurious, just retry
- */
- if (error == -EINTR && !signal_pending(current))
- goto sleep_again;
+SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
+ unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
+{
+ return ksys_semtimedop(semid, tsops, nsops, timeout);
+}
- unlink_queue(sma, &queue);
+#ifdef CONFIG_COMPAT_32BIT_TIME
+long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
+ unsigned int nsops,
+ const struct old_timespec32 __user *timeout)
+{
+ if (timeout) {
+ struct timespec64 ts;
+ if (get_old_timespec32(&ts, timeout))
+ return -EFAULT;
+ return do_semtimedop(semid, tsems, nsops, &ts);
+ }
+ return do_semtimedop(semid, tsems, nsops, NULL);
+}
-out_unlock_free:
- sem_unlock(sma, locknum);
-out_rcu_wakeup:
- rcu_read_unlock();
- wake_up_sem_queue_do(&tasks);
-out_free:
- if(sops != fast_sops)
- kfree(sops);
- return error;
+SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
+ unsigned int, nsops,
+ const struct old_timespec32 __user *, timeout)
+{
+ return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
}
+#endif
SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
unsigned, nsops)
{
- return sys_semtimedop(semid, tsops, nsops, NULL);
+ return do_semtimedop(semid, tsops, nsops, NULL);
}
/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
* parent and child tasks.
*/
-int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
+int copy_semundo(u64 clone_flags, struct task_struct *tsk)
{
struct sem_undo_list *undo_list;
int error;
@@ -1938,9 +2312,9 @@ int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
error = get_undo_list(&undo_list);
if (error)
return error;
- atomic_inc(&undo_list->refcnt);
+ refcount_inc(&undo_list->refcnt);
tsk->sysvsem.undo_list = undo_list;
- } else
+ } else
tsk->sysvsem.undo_list = NULL;
return 0;
@@ -1967,29 +2341,43 @@ void exit_sem(struct task_struct *tsk)
return;
tsk->sysvsem.undo_list = NULL;
- if (!atomic_dec_and_test(&ulp->refcnt))
+ if (!refcount_dec_and_test(&ulp->refcnt))
return;
for (;;) {
struct sem_array *sma;
struct sem_undo *un;
- struct list_head tasks;
int semid, i;
+ DEFINE_WAKE_Q(wake_q);
+
+ cond_resched();
rcu_read_lock();
un = list_entry_rcu(ulp->list_proc.next,
struct sem_undo, list_proc);
- if (&un->list_proc == &ulp->list_proc)
- semid = -1;
- else
- semid = un->semid;
+ if (&un->list_proc == &ulp->list_proc) {
+ /*
+ * We must wait for freeary() before freeing this ulp,
+ * in case we raced with last sem_undo. There is a small
+ * possibility where we exit while freeary() didn't
+ * finish unlocking sem_undo_list.
+ */
+ spin_lock(&ulp->lock);
+ spin_unlock(&ulp->lock);
+ rcu_read_unlock();
+ break;
+ }
+ spin_lock(&ulp->lock);
+ semid = un->semid;
+ spin_unlock(&ulp->lock);
+ /* exit_sem raced with IPC_RMID, nothing to do */
if (semid == -1) {
rcu_read_unlock();
- break;
+ continue;
}
- sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
+ sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
/* exit_sem raced with IPC_RMID, nothing to do */
if (IS_ERR(sma)) {
rcu_read_unlock();
@@ -1997,6 +2385,12 @@ void exit_sem(struct task_struct *tsk)
}
sem_lock(sma, NULL, -1);
+ /* exit_sem raced with IPC_RMID, nothing to do */
+ if (!ipc_valid_object(&sma->sem_perm)) {
+ sem_unlock(sma, -1);
+ rcu_read_unlock();
+ continue;
+ }
un = __lookup_undo(ulp, semid);
if (un == NULL) {
/* exit_sem raced with IPC_RMID+semget() that created
@@ -2017,7 +2411,7 @@ void exit_sem(struct task_struct *tsk)
/* perform adjustments registered in un */
for (i = 0; i < sma->sem_nsems; i++) {
- struct sem * semaphore = &sma->sem_base[i];
+ struct sem *semaphore = &sma->sems[i];
if (un->semadj[i]) {
semaphore->semval += un->semadj[i];
/*
@@ -2031,23 +2425,22 @@ void exit_sem(struct task_struct *tsk)
* Linux caps the semaphore value, both at 0
* and at SEMVMX.
*
- * Manfred <manfred@colorfullife.com>
+ * Manfred <manfred@colorfullife.com>
*/
if (semaphore->semval < 0)
semaphore->semval = 0;
if (semaphore->semval > SEMVMX)
semaphore->semval = SEMVMX;
- semaphore->sempid = task_tgid_vnr(current);
+ ipc_update_pid(&semaphore->sempid, task_tgid(current));
}
}
/* maybe some queued-up processes were waiting for this */
- INIT_LIST_HEAD(&tasks);
- do_smart_update(sma, NULL, 0, 1, &tasks);
+ do_smart_update(sma, NULL, 0, 1, &wake_q);
sem_unlock(sma, -1);
rcu_read_unlock();
- wake_up_sem_queue_do(&tasks);
+ wake_up_q(&wake_q);
- kfree_rcu(un, rcu);
+ kvfree_rcu(un, rcu);
}
kfree(ulp);
}
@@ -2056,22 +2449,36 @@ void exit_sem(struct task_struct *tsk)
static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
{
struct user_namespace *user_ns = seq_user_ns(s);
- struct sem_array *sma = it;
- time_t sem_otime;
+ struct kern_ipc_perm *ipcp = it;
+ struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
+ time64_t sem_otime;
+
+ /*
+ * The proc interface isn't aware of sem_lock(), it calls
+ * ipc_lock_object(), i.e. spin_lock(&sma->sem_perm.lock).
+ * (in sysvipc_find_ipc)
+ * In order to stay compatible with sem_lock(), we must
+ * enter / leave complex_mode.
+ */
+ complexmode_enter(sma);
sem_otime = get_semotime(sma);
- return seq_printf(s,
- "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
- sma->sem_perm.key,
- sma->sem_perm.id,
- sma->sem_perm.mode,
- sma->sem_nsems,
- from_kuid_munged(user_ns, sma->sem_perm.uid),
- from_kgid_munged(user_ns, sma->sem_perm.gid),
- from_kuid_munged(user_ns, sma->sem_perm.cuid),
- from_kgid_munged(user_ns, sma->sem_perm.cgid),
- sem_otime,
- sma->sem_ctime);
+ seq_printf(s,
+ "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
+ sma->sem_perm.key,
+ sma->sem_perm.id,
+ sma->sem_perm.mode,
+ sma->sem_nsems,
+ from_kuid_munged(user_ns, sma->sem_perm.uid),
+ from_kgid_munged(user_ns, sma->sem_perm.gid),
+ from_kuid_munged(user_ns, sma->sem_perm.cuid),
+ from_kgid_munged(user_ns, sma->sem_perm.cgid),
+ sem_otime,
+ sma->sem_ctime);
+
+ complexmode_tryleave(sma);
+
+ return 0;
}
#endif