diff options
Diffstat (limited to 'kernel/bpf/helpers.c')
| -rw-r--r-- | kernel/bpf/helpers.c | 3214 |
1 files changed, 2852 insertions, 362 deletions
diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c index af30c6cbd65d..db72b96f9c8c 100644 --- a/kernel/bpf/helpers.c +++ b/kernel/bpf/helpers.c @@ -18,9 +18,17 @@ #include <linux/pid_namespace.h> #include <linux/poison.h> #include <linux/proc_ns.h> +#include <linux/sched/task.h> #include <linux/security.h> #include <linux/btf_ids.h> #include <linux/bpf_mem_alloc.h> +#include <linux/kasan.h> +#include <linux/bpf_verifier.h> +#include <linux/uaccess.h> +#include <linux/verification.h> +#include <linux/task_work.h> +#include <linux/irq_work.h> +#include <linux/buildid.h> #include "../../lib/kstrtox.h" @@ -30,12 +38,12 @@ * * Different map implementations will rely on rcu in map methods * lookup/update/delete, therefore eBPF programs must run under rcu lock - * if program is allowed to access maps, so check rcu_read_lock_held in - * all three functions. + * if program is allowed to access maps, so check rcu_read_lock_held() or + * rcu_read_lock_trace_held() in all three functions. */ BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) { - WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); + WARN_ON_ONCE(!bpf_rcu_lock_held()); return (unsigned long) map->ops->map_lookup_elem(map, key); } @@ -51,7 +59,7 @@ const struct bpf_func_proto bpf_map_lookup_elem_proto = { BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, void *, value, u64, flags) { - WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); + WARN_ON_ONCE(!bpf_rcu_lock_held()); return map->ops->map_update_elem(map, key, value, flags); } @@ -68,7 +76,7 @@ const struct bpf_func_proto bpf_map_update_elem_proto = { BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) { - WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); + WARN_ON_ONCE(!bpf_rcu_lock_held()); return map->ops->map_delete_elem(map, key); } @@ -106,7 +114,7 @@ const struct bpf_func_proto bpf_map_pop_elem_proto = { .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, - .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, + .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, }; BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) @@ -119,12 +127,12 @@ const struct bpf_func_proto bpf_map_peek_elem_proto = { .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, - .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, + .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, }; BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) { - WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); + WARN_ON_ONCE(!bpf_rcu_lock_held()); return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); } @@ -153,6 +161,7 @@ const struct bpf_func_proto bpf_get_smp_processor_id_proto = { .func = bpf_get_smp_processor_id, .gpl_only = false, .ret_type = RET_INTEGER, + .allow_fastcall = true, }; BPF_CALL_0(bpf_get_numa_node_id) @@ -257,7 +266,7 @@ BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) goto err_clear; /* Verifier guarantees that size > 0 */ - strscpy(buf, task->comm, size); + strscpy_pad(buf, task->comm, size); return 0; err_clear: memset(buf, 0, size); @@ -285,6 +294,7 @@ static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); + preempt_disable(); arch_spin_lock(l); } @@ -293,6 +303,7 @@ static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) arch_spinlock_t *l = (void *)lock; arch_spin_unlock(l); + preempt_enable(); } #else @@ -327,7 +338,7 @@ static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) __this_cpu_write(irqsave_flags, flags); } -notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) +NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) { __bpf_spin_lock_irqsave(lock); return 0; @@ -350,7 +361,7 @@ static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) local_irq_restore(flags); } -notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) +NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) { __bpf_spin_unlock_irqrestore(lock); return 0; @@ -510,16 +521,15 @@ static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, } BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, - long *, res) + s64 *, res) { long long _res; int err; + *res = 0; err = __bpf_strtoll(buf, buf_len, flags, &_res); if (err < 0) return err; - if (_res != (long)_res) - return -ERANGE; *res = _res; return err; } @@ -531,23 +541,23 @@ const struct bpf_func_proto bpf_strtol_proto = { .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, - .arg4_type = ARG_PTR_TO_LONG, + .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, + .arg4_size = sizeof(s64), }; BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, - unsigned long *, res) + u64 *, res) { unsigned long long _res; bool is_negative; int err; + *res = 0; err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); if (err < 0) return err; if (is_negative) return -EINVAL; - if (_res != (unsigned long)_res) - return -ERANGE; *res = _res; return err; } @@ -559,7 +569,8 @@ const struct bpf_func_proto bpf_strtoul_proto = { .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, - .arg4_type = ARG_PTR_TO_LONG, + .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, + .arg4_size = sizeof(u64), }; BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) @@ -571,7 +582,7 @@ static const struct bpf_func_proto bpf_strncmp_proto = { .func = bpf_strncmp, .gpl_only = false, .ret_type = RET_INTEGER, - .arg1_type = ARG_PTR_TO_MEM, + .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_PTR_TO_CONST_STR, }; @@ -707,7 +718,7 @@ BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) if (cpu >= nr_cpu_ids) return (unsigned long)NULL; - return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); + return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu); } const struct bpf_func_proto bpf_per_cpu_ptr_proto = { @@ -720,7 +731,7 @@ const struct bpf_func_proto bpf_per_cpu_ptr_proto = { BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) { - return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); + return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr); } const struct bpf_func_proto bpf_this_cpu_ptr_proto = { @@ -753,22 +764,14 @@ static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, return -EINVAL; } -/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary - * arguments representation. - */ -#define MAX_BPRINTF_BUF_LEN 512 - /* Support executing three nested bprintf helper calls on a given CPU */ #define MAX_BPRINTF_NEST_LEVEL 3 -struct bpf_bprintf_buffers { - char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN]; -}; -static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs); + +static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); -static int try_get_fmt_tmp_buf(char **tmp_buf) +int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs) { - struct bpf_bprintf_buffers *bufs; int nest_level; preempt_disable(); @@ -778,18 +781,24 @@ static int try_get_fmt_tmp_buf(char **tmp_buf) preempt_enable(); return -EBUSY; } - bufs = this_cpu_ptr(&bpf_bprintf_bufs); - *tmp_buf = bufs->tmp_bufs[nest_level - 1]; + *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); return 0; } -void bpf_bprintf_cleanup(void) +void bpf_put_buffers(void) { - if (this_cpu_read(bpf_bprintf_nest_level)) { - this_cpu_dec(bpf_bprintf_nest_level); - preempt_enable(); - } + if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) + return; + this_cpu_dec(bpf_bprintf_nest_level); + preempt_enable(); +} + +void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) +{ + if (!data->bin_args && !data->buf) + return; + bpf_put_buffers(); } /* @@ -798,18 +807,20 @@ void bpf_bprintf_cleanup(void) * Returns a negative value if fmt is an invalid format string or 0 otherwise. * * This can be used in two ways: - * - Format string verification only: when bin_args is NULL + * - Format string verification only: when data->get_bin_args is false * - Arguments preparation: in addition to the above verification, it writes in - * bin_args a binary representation of arguments usable by bstr_printf where - * pointers from BPF have been sanitized. + * data->bin_args a binary representation of arguments usable by bstr_printf + * where pointers from BPF have been sanitized. * * In argument preparation mode, if 0 is returned, safe temporary buffers are * allocated and bpf_bprintf_cleanup should be called to free them after use. */ -int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, - u32 **bin_args, u32 num_args) +int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args, + u32 num_args, struct bpf_bprintf_data *data) { + bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; + struct bpf_bprintf_buffers *buffers = NULL; size_t sizeof_cur_arg, sizeof_cur_ip; int err, i, num_spec = 0; u64 cur_arg; @@ -820,14 +831,19 @@ int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, return -EINVAL; fmt_size = fmt_end - fmt; - if (bin_args) { - if (num_args && try_get_fmt_tmp_buf(&tmp_buf)) - return -EBUSY; + if (get_buffers && bpf_try_get_buffers(&buffers)) + return -EBUSY; - tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN; - *bin_args = (u32 *)tmp_buf; + if (data->get_bin_args) { + if (num_args) + tmp_buf = buffers->bin_args; + tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; + data->bin_args = (u32 *)tmp_buf; } + if (data->get_buf) + data->buf = buffers->buf; + for (i = 0; i < fmt_size; i++) { if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { err = -EINVAL; @@ -865,6 +881,13 @@ int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, if (fmt[i] == 'p') { sizeof_cur_arg = sizeof(long); + if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || + ispunct(fmt[i + 1])) { + if (tmp_buf) + cur_arg = raw_args[num_spec]; + goto nocopy_fmt; + } + if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && fmt[i + 2] == 's') { fmt_ptype = fmt[i + 1]; @@ -872,11 +895,9 @@ int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, goto fmt_str; } - if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || - ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || + if (fmt[i + 1] == 'K' || fmt[i + 1] == 'x' || fmt[i + 1] == 's' || fmt[i + 1] == 'S') { - /* just kernel pointers */ if (tmp_buf) cur_arg = raw_args[num_spec]; i++; @@ -1021,31 +1042,33 @@ nocopy_fmt: err = 0; out: if (err) - bpf_bprintf_cleanup(); + bpf_bprintf_cleanup(data); return err; } BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, - const void *, data, u32, data_len) + const void *, args, u32, data_len) { + struct bpf_bprintf_data data = { + .get_bin_args = true, + }; int err, num_args; - u32 *bin_args; if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || - (data_len && !data)) + (data_len && !args)) return -EINVAL; num_args = data_len / 8; /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we * can safely give an unbounded size. */ - err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args); + err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); if (err < 0) return err; - err = bstr_printf(str, str_size, fmt, bin_args); + err = bstr_printf(str, str_size, fmt, data.bin_args); - bpf_bprintf_cleanup(); + bpf_bprintf_cleanup(&data); return err + 1; } @@ -1061,11 +1084,34 @@ const struct bpf_func_proto bpf_snprintf_proto = { .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; +static void *map_key_from_value(struct bpf_map *map, void *value, u32 *arr_idx) +{ + if (map->map_type == BPF_MAP_TYPE_ARRAY) { + struct bpf_array *array = container_of(map, struct bpf_array, map); + + *arr_idx = ((char *)value - array->value) / array->elem_size; + return arr_idx; + } + return (void *)value - round_up(map->key_size, 8); +} + +struct bpf_async_cb { + struct bpf_map *map; + struct bpf_prog *prog; + void __rcu *callback_fn; + void *value; + union { + struct rcu_head rcu; + struct work_struct delete_work; + }; + u64 flags; +}; + /* BPF map elements can contain 'struct bpf_timer'. * Such map owns all of its BPF timers. * 'struct bpf_timer' is allocated as part of map element allocation * and it's zero initialized. - * That space is used to keep 'struct bpf_timer_kern'. + * That space is used to keep 'struct bpf_async_kern'. * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and * remembers 'struct bpf_map *' pointer it's part of. * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. @@ -1078,16 +1124,24 @@ const struct bpf_func_proto bpf_snprintf_proto = { * freeing the timers when inner map is replaced or deleted by user space. */ struct bpf_hrtimer { + struct bpf_async_cb cb; struct hrtimer timer; - struct bpf_map *map; - struct bpf_prog *prog; - void __rcu *callback_fn; - void *value; + atomic_t cancelling; +}; + +struct bpf_work { + struct bpf_async_cb cb; + struct work_struct work; + struct work_struct delete_work; }; -/* the actual struct hidden inside uapi struct bpf_timer */ -struct bpf_timer_kern { - struct bpf_hrtimer *timer; +/* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */ +struct bpf_async_kern { + union { + struct bpf_async_cb *cb; + struct bpf_hrtimer *timer; + struct bpf_work *work; + }; /* bpf_spin_lock is used here instead of spinlock_t to make * sure that it always fits into space reserved by struct bpf_timer * regardless of LOCKDEP and spinlock debug flags. @@ -1095,19 +1149,24 @@ struct bpf_timer_kern { struct bpf_spin_lock lock; } __attribute__((aligned(8))); +enum bpf_async_type { + BPF_ASYNC_TYPE_TIMER = 0, + BPF_ASYNC_TYPE_WQ, +}; + static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) { struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); - struct bpf_map *map = t->map; - void *value = t->value; + struct bpf_map *map = t->cb.map; + void *value = t->cb.value; bpf_callback_t callback_fn; void *key; u32 idx; BTF_TYPE_EMIT(struct bpf_timer); - callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); + callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held()); if (!callback_fn) goto out; @@ -1118,15 +1177,8 @@ static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) * bpf_map_delete_elem() on the same timer. */ this_cpu_write(hrtimer_running, t); - if (map->map_type == BPF_MAP_TYPE_ARRAY) { - struct bpf_array *array = container_of(map, struct bpf_array, map); - /* compute the key */ - idx = ((char *)value - array->value) / array->elem_size; - key = &idx; - } else { /* hash or lru */ - key = value - round_up(map->key_size, 8); - } + key = map_key_from_value(map, value, &idx); callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); /* The verifier checked that return value is zero. */ @@ -1136,57 +1188,163 @@ out: return HRTIMER_NORESTART; } -BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, - u64, flags) +static void bpf_wq_work(struct work_struct *work) { - clockid_t clockid = flags & (MAX_CLOCKS - 1); + struct bpf_work *w = container_of(work, struct bpf_work, work); + struct bpf_async_cb *cb = &w->cb; + struct bpf_map *map = cb->map; + bpf_callback_t callback_fn; + void *value = cb->value; + void *key; + u32 idx; + + BTF_TYPE_EMIT(struct bpf_wq); + + callback_fn = READ_ONCE(cb->callback_fn); + if (!callback_fn) + return; + + key = map_key_from_value(map, value, &idx); + + rcu_read_lock_trace(); + migrate_disable(); + + callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); + + migrate_enable(); + rcu_read_unlock_trace(); +} + +static void bpf_async_cb_rcu_free(struct rcu_head *rcu) +{ + struct bpf_async_cb *cb = container_of(rcu, struct bpf_async_cb, rcu); + + kfree_nolock(cb); +} + +static void bpf_wq_delete_work(struct work_struct *work) +{ + struct bpf_work *w = container_of(work, struct bpf_work, delete_work); + + cancel_work_sync(&w->work); + + call_rcu(&w->cb.rcu, bpf_async_cb_rcu_free); +} + +static void bpf_timer_delete_work(struct work_struct *work) +{ + struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work); + + /* Cancel the timer and wait for callback to complete if it was running. + * If hrtimer_cancel() can be safely called it's safe to call + * call_rcu() right after for both preallocated and non-preallocated + * maps. The async->cb = NULL was already done and no code path can see + * address 't' anymore. Timer if armed for existing bpf_hrtimer before + * bpf_timer_cancel_and_free will have been cancelled. + */ + hrtimer_cancel(&t->timer); + call_rcu(&t->cb.rcu, bpf_async_cb_rcu_free); +} + +static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, + enum bpf_async_type type) +{ + struct bpf_async_cb *cb; struct bpf_hrtimer *t; + struct bpf_work *w; + clockid_t clockid; + size_t size; int ret = 0; - BUILD_BUG_ON(MAX_CLOCKS != 16); - BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); - BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); - if (in_nmi()) return -EOPNOTSUPP; - if (flags >= MAX_CLOCKS || - /* similar to timerfd except _ALARM variants are not supported */ - (clockid != CLOCK_MONOTONIC && - clockid != CLOCK_REALTIME && - clockid != CLOCK_BOOTTIME)) + switch (type) { + case BPF_ASYNC_TYPE_TIMER: + size = sizeof(struct bpf_hrtimer); + break; + case BPF_ASYNC_TYPE_WQ: + size = sizeof(struct bpf_work); + break; + default: return -EINVAL; - __bpf_spin_lock_irqsave(&timer->lock); - t = timer->timer; + } + + __bpf_spin_lock_irqsave(&async->lock); + t = async->timer; if (t) { ret = -EBUSY; goto out; } + + cb = bpf_map_kmalloc_nolock(map, size, 0, map->numa_node); + if (!cb) { + ret = -ENOMEM; + goto out; + } + + switch (type) { + case BPF_ASYNC_TYPE_TIMER: + clockid = flags & (MAX_CLOCKS - 1); + t = (struct bpf_hrtimer *)cb; + + atomic_set(&t->cancelling, 0); + INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work); + hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT); + cb->value = (void *)async - map->record->timer_off; + break; + case BPF_ASYNC_TYPE_WQ: + w = (struct bpf_work *)cb; + + INIT_WORK(&w->work, bpf_wq_work); + INIT_WORK(&w->delete_work, bpf_wq_delete_work); + cb->value = (void *)async - map->record->wq_off; + break; + } + cb->map = map; + cb->prog = NULL; + cb->flags = flags; + rcu_assign_pointer(cb->callback_fn, NULL); + + WRITE_ONCE(async->cb, cb); + /* Guarantee the order between async->cb and map->usercnt. So + * when there are concurrent uref release and bpf timer init, either + * bpf_timer_cancel_and_free() called by uref release reads a no-NULL + * timer or atomic64_read() below returns a zero usercnt. + */ + smp_mb(); if (!atomic64_read(&map->usercnt)) { /* maps with timers must be either held by user space * or pinned in bpffs. */ + WRITE_ONCE(async->cb, NULL); + kfree_nolock(cb); ret = -EPERM; - goto out; - } - /* allocate hrtimer via map_kmalloc to use memcg accounting */ - t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); - if (!t) { - ret = -ENOMEM; - goto out; } - t->value = (void *)timer - map->record->timer_off; - t->map = map; - t->prog = NULL; - rcu_assign_pointer(t->callback_fn, NULL); - hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); - t->timer.function = bpf_timer_cb; - timer->timer = t; out: - __bpf_spin_unlock_irqrestore(&timer->lock); + __bpf_spin_unlock_irqrestore(&async->lock); return ret; } +BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map, + u64, flags) +{ + clock_t clockid = flags & (MAX_CLOCKS - 1); + + BUILD_BUG_ON(MAX_CLOCKS != 16); + BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer)); + BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer)); + + if (flags >= MAX_CLOCKS || + /* similar to timerfd except _ALARM variants are not supported */ + (clockid != CLOCK_MONOTONIC && + clockid != CLOCK_REALTIME && + clockid != CLOCK_BOOTTIME)) + return -EINVAL; + + return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER); +} + static const struct bpf_func_proto bpf_timer_init_proto = { .func = bpf_timer_init, .gpl_only = true, @@ -1196,22 +1354,23 @@ static const struct bpf_func_proto bpf_timer_init_proto = { .arg3_type = ARG_ANYTHING, }; -BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, - struct bpf_prog_aux *, aux) +static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn, + struct bpf_prog_aux *aux, unsigned int flags, + enum bpf_async_type type) { struct bpf_prog *prev, *prog = aux->prog; - struct bpf_hrtimer *t; + struct bpf_async_cb *cb; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; - __bpf_spin_lock_irqsave(&timer->lock); - t = timer->timer; - if (!t) { + __bpf_spin_lock_irqsave(&async->lock); + cb = async->cb; + if (!cb) { ret = -EINVAL; goto out; } - if (!atomic64_read(&t->map->usercnt)) { + if (!atomic64_read(&cb->map->usercnt)) { /* maps with timers must be either held by user space * or pinned in bpffs. Otherwise timer might still be * running even when bpf prog is detached and user space @@ -1220,7 +1379,7 @@ BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callb ret = -EPERM; goto out; } - prev = t->prog; + prev = cb->prog; if (prev != prog) { /* Bump prog refcnt once. Every bpf_timer_set_callback() * can pick different callback_fn-s within the same prog. @@ -1233,14 +1392,20 @@ BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callb if (prev) /* Drop prev prog refcnt when swapping with new prog */ bpf_prog_put(prev); - t->prog = prog; + cb->prog = prog; } - rcu_assign_pointer(t->callback_fn, callback_fn); + rcu_assign_pointer(cb->callback_fn, callback_fn); out: - __bpf_spin_unlock_irqrestore(&timer->lock); + __bpf_spin_unlock_irqrestore(&async->lock); return ret; } +BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn, + struct bpf_prog_aux *, aux) +{ + return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER); +} + static const struct bpf_func_proto bpf_timer_set_callback_proto = { .func = bpf_timer_set_callback, .gpl_only = true, @@ -1249,22 +1414,32 @@ static const struct bpf_func_proto bpf_timer_set_callback_proto = { .arg2_type = ARG_PTR_TO_FUNC, }; -BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) +BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags) { struct bpf_hrtimer *t; int ret = 0; + enum hrtimer_mode mode; if (in_nmi()) return -EOPNOTSUPP; - if (flags) + if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) return -EINVAL; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; - if (!t || !t->prog) { + if (!t || !t->cb.prog) { ret = -EINVAL; goto out; } - hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); + + if (flags & BPF_F_TIMER_ABS) + mode = HRTIMER_MODE_ABS_SOFT; + else + mode = HRTIMER_MODE_REL_SOFT; + + if (flags & BPF_F_TIMER_CPU_PIN) + mode |= HRTIMER_MODE_PINNED; + + hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; @@ -1279,45 +1454,77 @@ static const struct bpf_func_proto bpf_timer_start_proto = { .arg3_type = ARG_ANYTHING, }; -static void drop_prog_refcnt(struct bpf_hrtimer *t) +static void drop_prog_refcnt(struct bpf_async_cb *async) { - struct bpf_prog *prog = t->prog; + struct bpf_prog *prog = async->prog; if (prog) { bpf_prog_put(prog); - t->prog = NULL; - rcu_assign_pointer(t->callback_fn, NULL); + async->prog = NULL; + rcu_assign_pointer(async->callback_fn, NULL); } } -BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) +BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) { - struct bpf_hrtimer *t; + struct bpf_hrtimer *t, *cur_t; + bool inc = false; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; + rcu_read_lock(); __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t) { ret = -EINVAL; goto out; } - if (this_cpu_read(hrtimer_running) == t) { + + cur_t = this_cpu_read(hrtimer_running); + if (cur_t == t) { /* If bpf callback_fn is trying to bpf_timer_cancel() * its own timer the hrtimer_cancel() will deadlock - * since it waits for callback_fn to finish + * since it waits for callback_fn to finish. */ ret = -EDEADLK; goto out; } - drop_prog_refcnt(t); + + /* Only account in-flight cancellations when invoked from a timer + * callback, since we want to avoid waiting only if other _callbacks_ + * are waiting on us, to avoid introducing lockups. Non-callback paths + * are ok, since nobody would synchronously wait for their completion. + */ + if (!cur_t) + goto drop; + atomic_inc(&t->cancelling); + /* Need full barrier after relaxed atomic_inc */ + smp_mb__after_atomic(); + inc = true; + if (atomic_read(&cur_t->cancelling)) { + /* We're cancelling timer t, while some other timer callback is + * attempting to cancel us. In such a case, it might be possible + * that timer t belongs to the other callback, or some other + * callback waiting upon it (creating transitive dependencies + * upon us), and we will enter a deadlock if we continue + * cancelling and waiting for it synchronously, since it might + * do the same. Bail! + */ + ret = -EDEADLK; + goto out; + } +drop: + drop_prog_refcnt(&t->cb); out: __bpf_spin_unlock_irqrestore(&timer->lock); /* Cancel the timer and wait for associated callback to finish * if it was running. */ ret = ret ?: hrtimer_cancel(&t->timer); + if (inc) + atomic_dec(&t->cancelling); + rcu_read_unlock(); return ret; } @@ -1328,57 +1535,114 @@ static const struct bpf_func_proto bpf_timer_cancel_proto = { .arg1_type = ARG_PTR_TO_TIMER, }; -/* This function is called by map_delete/update_elem for individual element and - * by ops->map_release_uref when the user space reference to a map reaches zero. - */ -void bpf_timer_cancel_and_free(void *val) +static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async) { - struct bpf_timer_kern *timer = val; - struct bpf_hrtimer *t; + struct bpf_async_cb *cb; - /* Performance optimization: read timer->timer without lock first. */ - if (!READ_ONCE(timer->timer)) - return; + /* Performance optimization: read async->cb without lock first. */ + if (!READ_ONCE(async->cb)) + return NULL; - __bpf_spin_lock_irqsave(&timer->lock); + __bpf_spin_lock_irqsave(&async->lock); /* re-read it under lock */ - t = timer->timer; - if (!t) + cb = async->cb; + if (!cb) goto out; - drop_prog_refcnt(t); + drop_prog_refcnt(cb); /* The subsequent bpf_timer_start/cancel() helpers won't be able to use * this timer, since it won't be initialized. */ - timer->timer = NULL; + WRITE_ONCE(async->cb, NULL); out: - __bpf_spin_unlock_irqrestore(&timer->lock); + __bpf_spin_unlock_irqrestore(&async->lock); + return cb; +} + +/* This function is called by map_delete/update_elem for individual element and + * by ops->map_release_uref when the user space reference to a map reaches zero. + */ +void bpf_timer_cancel_and_free(void *val) +{ + struct bpf_hrtimer *t; + + t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val); + if (!t) return; - /* Cancel the timer and wait for callback to complete if it was running. - * If hrtimer_cancel() can be safely called it's safe to call kfree(t) - * right after for both preallocated and non-preallocated maps. - * The timer->timer = NULL was already done and no code path can - * see address 't' anymore. - * - * Check that bpf_map_delete/update_elem() wasn't called from timer - * callback_fn. In such case don't call hrtimer_cancel() (since it will - * deadlock) and don't call hrtimer_try_to_cancel() (since it will just - * return -1). Though callback_fn is still running on this cpu it's + /* We check that bpf_map_delete/update_elem() was called from timer + * callback_fn. In such case we don't call hrtimer_cancel() (since it + * will deadlock) and don't call hrtimer_try_to_cancel() (since it will + * just return -1). Though callback_fn is still running on this cpu it's * safe to do kfree(t) because bpf_timer_cb() read everything it needed * from 't'. The bpf subprog callback_fn won't be able to access 't', - * since timer->timer = NULL was already done. The timer will be + * since async->cb = NULL was already done. The timer will be * effectively cancelled because bpf_timer_cb() will return * HRTIMER_NORESTART. + * + * However, it is possible the timer callback_fn calling us armed the + * timer _before_ calling us, such that failing to cancel it here will + * cause it to possibly use struct hrtimer after freeing bpf_hrtimer. + * Therefore, we _need_ to cancel any outstanding timers before we do + * call_rcu, even though no more timers can be armed. + * + * Moreover, we need to schedule work even if timer does not belong to + * the calling callback_fn, as on two different CPUs, we can end up in a + * situation where both sides run in parallel, try to cancel one + * another, and we end up waiting on both sides in hrtimer_cancel + * without making forward progress, since timer1 depends on time2 + * callback to finish, and vice versa. + * + * CPU 1 (timer1_cb) CPU 2 (timer2_cb) + * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1) + * + * To avoid these issues, punt to workqueue context when we are in a + * timer callback. + */ + if (this_cpu_read(hrtimer_running)) { + queue_work(system_dfl_wq, &t->cb.delete_work); + return; + } + + if (IS_ENABLED(CONFIG_PREEMPT_RT)) { + /* If the timer is running on other CPU, also use a kworker to + * wait for the completion of the timer instead of trying to + * acquire a sleepable lock in hrtimer_cancel() to wait for its + * completion. + */ + if (hrtimer_try_to_cancel(&t->timer) >= 0) + call_rcu(&t->cb.rcu, bpf_async_cb_rcu_free); + else + queue_work(system_dfl_wq, &t->cb.delete_work); + } else { + bpf_timer_delete_work(&t->cb.delete_work); + } +} + +/* This function is called by map_delete/update_elem for individual element and + * by ops->map_release_uref when the user space reference to a map reaches zero. + */ +void bpf_wq_cancel_and_free(void *val) +{ + struct bpf_work *work; + + BTF_TYPE_EMIT(struct bpf_wq); + + work = (struct bpf_work *)__bpf_async_cancel_and_free(val); + if (!work) + return; + /* Trigger cancel of the sleepable work, but *do not* wait for + * it to finish if it was running as we might not be in a + * sleepable context. + * kfree will be called once the work has finished. */ - if (this_cpu_read(hrtimer_running) != t) - hrtimer_cancel(&t->timer); - kfree(t); + schedule_work(&work->delete_work); } -BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) +BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr) { - unsigned long *kptr = map_value; + unsigned long *kptr = dst; + /* This helper may be inlined by verifier. */ return xchg(kptr, (unsigned long)ptr); } @@ -1391,11 +1655,18 @@ static const struct bpf_func_proto bpf_kptr_xchg_proto = { .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .ret_btf_id = BPF_PTR_POISON, - .arg1_type = ARG_PTR_TO_KPTR, + .arg1_type = ARG_KPTR_XCHG_DEST, .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, .arg2_btf_id = BPF_PTR_POISON, }; +struct bpf_dynptr_file_impl { + struct freader freader; + /* 64 bit offset and size overriding 32 bit ones in bpf_dynptr_kern */ + u64 offset; + u64 size; +}; + /* Since the upper 8 bits of dynptr->size is reserved, the * maximum supported size is 2^24 - 1. */ @@ -1404,26 +1675,85 @@ static const struct bpf_func_proto bpf_kptr_xchg_proto = { #define DYNPTR_SIZE_MASK 0xFFFFFF #define DYNPTR_RDONLY_BIT BIT(31) -static bool bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) +bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) { return ptr->size & DYNPTR_RDONLY_BIT; } +void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) +{ + ptr->size |= DYNPTR_RDONLY_BIT; +} + static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) { ptr->size |= type << DYNPTR_TYPE_SHIFT; } -u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr) +static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) { + return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; +} + +u64 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) +{ + if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) { + struct bpf_dynptr_file_impl *df = ptr->data; + + return df->size; + } + return ptr->size & DYNPTR_SIZE_MASK; } -int bpf_dynptr_check_size(u32 size) +static void bpf_dynptr_advance_offset(struct bpf_dynptr_kern *ptr, u64 off) +{ + if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) { + struct bpf_dynptr_file_impl *df = ptr->data; + + df->offset += off; + return; + } + ptr->offset += off; +} + +static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u64 new_size) +{ + u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; + + if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) { + struct bpf_dynptr_file_impl *df = ptr->data; + + df->size = new_size; + return; + } + ptr->size = (u32)new_size | metadata; +} + +int bpf_dynptr_check_size(u64 size) { return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; } +static int bpf_file_fetch_bytes(struct bpf_dynptr_file_impl *df, u64 offset, void *buf, u64 len) +{ + const void *ptr; + + if (!buf) + return -EINVAL; + + df->freader.buf = buf; + df->freader.buf_sz = len; + ptr = freader_fetch(&df->freader, offset + df->offset, len); + if (!ptr) + return df->freader.err; + + if (ptr != buf) /* Force copying into the buffer */ + memcpy(buf, ptr, len); + + return 0; +} + void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, enum bpf_dynptr_type type, u32 offset, u32 size) { @@ -1438,17 +1768,7 @@ void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) memset(ptr, 0, sizeof(*ptr)); } -static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) -{ - u32 size = bpf_dynptr_get_size(ptr); - - if (len > size || offset > size - len) - return -E2BIG; - - return 0; -} - -BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) +BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u64, size, u64, flags, struct bpf_dynptr_kern *, ptr) { int err; @@ -1480,12 +1800,13 @@ static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, - .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, + .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE, }; -BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, - u32, offset, u64, flags) +static int __bpf_dynptr_read(void *dst, u64 len, const struct bpf_dynptr_kern *src, + u64 offset, u64 flags) { + enum bpf_dynptr_type type; int err; if (!src->data || flags) @@ -1495,13 +1816,36 @@ BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern if (err) return err; - /* Source and destination may possibly overlap, hence use memmove to - * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr - * pointing to overlapping PTR_TO_MAP_VALUE regions. - */ - memmove(dst, src->data + src->offset + offset, len); + type = bpf_dynptr_get_type(src); - return 0; + switch (type) { + case BPF_DYNPTR_TYPE_LOCAL: + case BPF_DYNPTR_TYPE_RINGBUF: + /* Source and destination may possibly overlap, hence use memmove to + * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr + * pointing to overlapping PTR_TO_MAP_VALUE regions. + */ + memmove(dst, src->data + src->offset + offset, len); + return 0; + case BPF_DYNPTR_TYPE_SKB: + return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); + case BPF_DYNPTR_TYPE_XDP: + return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); + case BPF_DYNPTR_TYPE_SKB_META: + memmove(dst, bpf_skb_meta_pointer(src->data, src->offset + offset), len); + return 0; + case BPF_DYNPTR_TYPE_FILE: + return bpf_file_fetch_bytes(src->data, offset, dst, len); + default: + WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); + return -EFAULT; + } +} + +BPF_CALL_5(bpf_dynptr_read, void *, dst, u64, len, const struct bpf_dynptr_kern *, src, + u64, offset, u64, flags) +{ + return __bpf_dynptr_read(dst, len, src, offset, flags); } static const struct bpf_func_proto bpf_dynptr_read_proto = { @@ -1515,25 +1859,52 @@ static const struct bpf_func_proto bpf_dynptr_read_proto = { .arg5_type = ARG_ANYTHING, }; -BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, - u32, len, u64, flags) +int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u64 offset, void *src, + u64 len, u64 flags) { + enum bpf_dynptr_type type; int err; - if (!dst->data || flags || bpf_dynptr_is_rdonly(dst)) + if (!dst->data || __bpf_dynptr_is_rdonly(dst)) return -EINVAL; err = bpf_dynptr_check_off_len(dst, offset, len); if (err) return err; - /* Source and destination may possibly overlap, hence use memmove to - * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr - * pointing to overlapping PTR_TO_MAP_VALUE regions. - */ - memmove(dst->data + dst->offset + offset, src, len); + type = bpf_dynptr_get_type(dst); - return 0; + switch (type) { + case BPF_DYNPTR_TYPE_LOCAL: + case BPF_DYNPTR_TYPE_RINGBUF: + if (flags) + return -EINVAL; + /* Source and destination may possibly overlap, hence use memmove to + * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr + * pointing to overlapping PTR_TO_MAP_VALUE regions. + */ + memmove(dst->data + dst->offset + offset, src, len); + return 0; + case BPF_DYNPTR_TYPE_SKB: + return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, + flags); + case BPF_DYNPTR_TYPE_XDP: + if (flags) + return -EINVAL; + return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); + case BPF_DYNPTR_TYPE_SKB_META: + return __bpf_skb_meta_store_bytes(dst->data, dst->offset + offset, src, + len, flags); + default: + WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); + return -EFAULT; + } +} + +BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u64, offset, void *, src, + u64, len, u64, flags) +{ + return __bpf_dynptr_write(dst, offset, src, len, flags); } static const struct bpf_func_proto bpf_dynptr_write_proto = { @@ -1547,8 +1918,9 @@ static const struct bpf_func_proto bpf_dynptr_write_proto = { .arg5_type = ARG_ANYTHING, }; -BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) +BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u64, offset, u64, len) { + enum bpf_dynptr_type type; int err; if (!ptr->data) @@ -1558,10 +1930,24 @@ BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u3 if (err) return 0; - if (bpf_dynptr_is_rdonly(ptr)) + if (__bpf_dynptr_is_rdonly(ptr)) return 0; - return (unsigned long)(ptr->data + ptr->offset + offset); + type = bpf_dynptr_get_type(ptr); + + switch (type) { + case BPF_DYNPTR_TYPE_LOCAL: + case BPF_DYNPTR_TYPE_RINGBUF: + return (unsigned long)(ptr->data + ptr->offset + offset); + case BPF_DYNPTR_TYPE_SKB: + case BPF_DYNPTR_TYPE_XDP: + case BPF_DYNPTR_TYPE_SKB_META: + /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ + return 0; + default: + WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); + return 0; + } } static const struct bpf_func_proto bpf_dynptr_data_proto = { @@ -1580,9 +1966,15 @@ const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; const struct bpf_func_proto bpf_task_pt_regs_proto __weak; +const struct bpf_func_proto bpf_perf_event_read_proto __weak; +const struct bpf_func_proto bpf_send_signal_proto __weak; +const struct bpf_func_proto bpf_send_signal_thread_proto __weak; +const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak; +const struct bpf_func_proto bpf_get_task_stack_proto __weak; +const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak; const struct bpf_func_proto * -bpf_base_func_proto(enum bpf_func_id func_id) +bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_map_lookup_elem: @@ -1629,11 +2021,17 @@ bpf_base_func_proto(enum bpf_func_id func_id) return &bpf_strtol_proto; case BPF_FUNC_strtoul: return &bpf_strtoul_proto; + case BPF_FUNC_get_current_pid_tgid: + return &bpf_get_current_pid_tgid_proto; + case BPF_FUNC_get_ns_current_pid_tgid: + return &bpf_get_ns_current_pid_tgid_proto; + case BPF_FUNC_get_current_uid_gid: + return &bpf_get_current_uid_gid_proto; default: break; } - if (!bpf_capable()) + if (!bpf_token_capable(prog->aux->token, CAP_BPF)) return NULL; switch (func_id) { @@ -1682,12 +2080,30 @@ bpf_base_func_proto(enum bpf_func_id func_id) return &bpf_cgrp_storage_get_proto; case BPF_FUNC_cgrp_storage_delete: return &bpf_cgrp_storage_delete_proto; + case BPF_FUNC_get_current_cgroup_id: + return &bpf_get_current_cgroup_id_proto; + case BPF_FUNC_get_current_ancestor_cgroup_id: + return &bpf_get_current_ancestor_cgroup_id_proto; + case BPF_FUNC_current_task_under_cgroup: + return &bpf_current_task_under_cgroup_proto; #endif +#ifdef CONFIG_CGROUP_NET_CLASSID + case BPF_FUNC_get_cgroup_classid: + return &bpf_get_cgroup_classid_curr_proto; +#endif + case BPF_FUNC_task_storage_get: + if (bpf_prog_check_recur(prog)) + return &bpf_task_storage_get_recur_proto; + return &bpf_task_storage_get_proto; + case BPF_FUNC_task_storage_delete: + if (bpf_prog_check_recur(prog)) + return &bpf_task_storage_delete_recur_proto; + return &bpf_task_storage_delete_proto; default: break; } - if (!perfmon_capable()) + if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) return NULL; switch (func_id) { @@ -1697,6 +2113,8 @@ bpf_base_func_proto(enum bpf_func_id func_id) return &bpf_get_current_task_proto; case BPF_FUNC_get_current_task_btf: return &bpf_get_current_task_btf_proto; + case BPF_FUNC_get_current_comm: + return &bpf_get_current_comm_proto; case BPF_FUNC_probe_read_user: return &bpf_probe_read_user_proto; case BPF_FUNC_probe_read_kernel: @@ -1707,6 +2125,10 @@ bpf_base_func_proto(enum bpf_func_id func_id) case BPF_FUNC_probe_read_kernel_str: return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? NULL : &bpf_probe_read_kernel_str_proto; + case BPF_FUNC_copy_from_user: + return &bpf_copy_from_user_proto; + case BPF_FUNC_copy_from_user_task: + return &bpf_copy_from_user_task_proto; case BPF_FUNC_snprintf_btf: return &bpf_snprintf_btf_proto; case BPF_FUNC_snprintf: @@ -1715,10 +2137,26 @@ bpf_base_func_proto(enum bpf_func_id func_id) return &bpf_task_pt_regs_proto; case BPF_FUNC_trace_vprintk: return bpf_get_trace_vprintk_proto(); + case BPF_FUNC_perf_event_read_value: + return bpf_get_perf_event_read_value_proto(); + case BPF_FUNC_perf_event_read: + return &bpf_perf_event_read_proto; + case BPF_FUNC_send_signal: + return &bpf_send_signal_proto; + case BPF_FUNC_send_signal_thread: + return &bpf_send_signal_thread_proto; + case BPF_FUNC_get_task_stack: + return prog->sleepable ? &bpf_get_task_stack_sleepable_proto + : &bpf_get_task_stack_proto; + case BPF_FUNC_get_branch_snapshot: + return &bpf_get_branch_snapshot_proto; + case BPF_FUNC_find_vma: + return &bpf_find_vma_proto; default: return NULL; } } +EXPORT_SYMBOL_GPL(bpf_base_func_proto); void bpf_list_head_free(const struct btf_field *field, void *list_head, struct bpf_spin_lock *spin_lock) @@ -1745,27 +2183,55 @@ unlock: while (head != orig_head) { void *obj = head; - obj -= field->list_head.node_offset; + obj -= field->graph_root.node_offset; head = head->next; /* The contained type can also have resources, including a * bpf_list_head which needs to be freed. */ - bpf_obj_free_fields(field->list_head.value_rec, obj); - /* bpf_mem_free requires migrate_disable(), since we can be - * called from map free path as well apart from BPF program (as - * part of map ops doing bpf_obj_free_fields). - */ - migrate_disable(); - bpf_mem_free(&bpf_global_ma, obj); - migrate_enable(); + __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); } } -__diag_push(); -__diag_ignore_all("-Wmissing-prototypes", - "Global functions as their definitions will be in vmlinux BTF"); +/* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are + * 'rb_node *', so field name of rb_node within containing struct is not + * needed. + * + * Since bpf_rb_tree's node type has a corresponding struct btf_field with + * graph_root.node_offset, it's not necessary to know field name + * or type of node struct + */ +#define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ + for (pos = rb_first_postorder(root); \ + pos && ({ n = rb_next_postorder(pos); 1; }); \ + pos = n) -void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) +void bpf_rb_root_free(const struct btf_field *field, void *rb_root, + struct bpf_spin_lock *spin_lock) +{ + struct rb_root_cached orig_root, *root = rb_root; + struct rb_node *pos, *n; + void *obj; + + BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); + BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); + + __bpf_spin_lock_irqsave(spin_lock); + orig_root = *root; + *root = RB_ROOT_CACHED; + __bpf_spin_unlock_irqrestore(spin_lock); + + bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { + obj = pos; + obj -= field->graph_root.node_offset; + + + __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); + } +} + +__bpf_kfunc_start_defs(); + +__bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; u64 size = local_type_id__k; @@ -1775,139 +2241,283 @@ void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) if (!p) return NULL; if (meta) - bpf_obj_init(meta->field_offs, p); + bpf_obj_init(meta->record, p); return p; } -void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) +__bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign) +{ + u64 size = local_type_id__k; + + /* The verifier has ensured that meta__ign must be NULL */ + return bpf_mem_alloc(&bpf_global_percpu_ma, size); +} + +/* Must be called under migrate_disable(), as required by bpf_mem_free */ +void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu) +{ + struct bpf_mem_alloc *ma; + + if (rec && rec->refcount_off >= 0 && + !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { + /* Object is refcounted and refcount_dec didn't result in 0 + * refcount. Return without freeing the object + */ + return; + } + + if (rec) + bpf_obj_free_fields(rec, p); + + if (percpu) + ma = &bpf_global_percpu_ma; + else + ma = &bpf_global_ma; + bpf_mem_free_rcu(ma, p); +} + +__bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) { struct btf_struct_meta *meta = meta__ign; void *p = p__alloc; - if (meta) - bpf_obj_free_fields(meta->record, p); - bpf_mem_free(&bpf_global_ma, p); + __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false); } -static void __bpf_list_add(struct bpf_list_node *node, struct bpf_list_head *head, bool tail) +__bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign) { - struct list_head *n = (void *)node, *h = (void *)head; + /* The verifier has ensured that meta__ign must be NULL */ + bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc); +} +__bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) +{ + struct btf_struct_meta *meta = meta__ign; + struct bpf_refcount *ref; + + /* Could just cast directly to refcount_t *, but need some code using + * bpf_refcount type so that it is emitted in vmlinux BTF + */ + ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); + if (!refcount_inc_not_zero((refcount_t *)ref)) + return NULL; + + /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null + * in verifier.c + */ + return (void *)p__refcounted_kptr; +} + +static int __bpf_list_add(struct bpf_list_node_kern *node, + struct bpf_list_head *head, + bool tail, struct btf_record *rec, u64 off) +{ + struct list_head *n = &node->list_head, *h = (void *)head; + + /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't + * called on its fields, so init here + */ if (unlikely(!h->next)) INIT_LIST_HEAD(h); - if (unlikely(!n->next)) - INIT_LIST_HEAD(n); + + /* node->owner != NULL implies !list_empty(n), no need to separately + * check the latter + */ + if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { + /* Only called from BPF prog, no need to migrate_disable */ + __bpf_obj_drop_impl((void *)n - off, rec, false); + return -EINVAL; + } + tail ? list_add_tail(n, h) : list_add(n, h); + WRITE_ONCE(node->owner, head); + + return 0; } -void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node) +__bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, + struct bpf_list_node *node, + void *meta__ign, u64 off) { - return __bpf_list_add(node, head, false); + struct bpf_list_node_kern *n = (void *)node; + struct btf_struct_meta *meta = meta__ign; + + return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); } -void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node) +__bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, + struct bpf_list_node *node, + void *meta__ign, u64 off) { - return __bpf_list_add(node, head, true); + struct bpf_list_node_kern *n = (void *)node; + struct btf_struct_meta *meta = meta__ign; + + return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); } static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) { struct list_head *n, *h = (void *)head; + struct bpf_list_node_kern *node; + /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't + * called on its fields, so init here + */ if (unlikely(!h->next)) INIT_LIST_HEAD(h); if (list_empty(h)) return NULL; + n = tail ? h->prev : h->next; + node = container_of(n, struct bpf_list_node_kern, list_head); + if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) + return NULL; + list_del_init(n); + WRITE_ONCE(node->owner, NULL); return (struct bpf_list_node *)n; } -struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) +__bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) { return __bpf_list_del(head, false); } -struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) +__bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) { return __bpf_list_del(head, true); } -/** - * bpf_task_acquire - Acquire a reference to a task. A task acquired by this - * kfunc which is not stored in a map as a kptr, must be released by calling - * bpf_task_release(). - * @p: The task on which a reference is being acquired. - */ -struct task_struct *bpf_task_acquire(struct task_struct *p) +__bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head) { - return get_task_struct(p); + struct list_head *h = (struct list_head *)head; + + if (list_empty(h) || unlikely(!h->next)) + return NULL; + + return (struct bpf_list_node *)h->next; } -/** - * bpf_task_acquire_not_zero - Acquire a reference to a rcu task object. A task - * acquired by this kfunc which is not stored in a map as a kptr, must be - * released by calling bpf_task_release(). - * @p: The task on which a reference is being acquired. +__bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head) +{ + struct list_head *h = (struct list_head *)head; + + if (list_empty(h) || unlikely(!h->next)) + return NULL; + + return (struct bpf_list_node *)h->prev; +} + +__bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, + struct bpf_rb_node *node) +{ + struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; + struct rb_root_cached *r = (struct rb_root_cached *)root; + struct rb_node *n = &node_internal->rb_node; + + /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or + * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) + */ + if (READ_ONCE(node_internal->owner) != root) + return NULL; + + rb_erase_cached(n, r); + RB_CLEAR_NODE(n); + WRITE_ONCE(node_internal->owner, NULL); + return (struct bpf_rb_node *)n; +} + +/* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF + * program */ -struct task_struct *bpf_task_acquire_not_zero(struct task_struct *p) +static int __bpf_rbtree_add(struct bpf_rb_root *root, + struct bpf_rb_node_kern *node, + void *less, struct btf_record *rec, u64 off) { - /* For the time being this function returns NULL, as it's not currently - * possible to safely acquire a reference to a task with RCU protection - * using get_task_struct() and put_task_struct(). This is due to the - * slightly odd mechanics of p->rcu_users, and how task RCU protection - * works. - * - * A struct task_struct is refcounted by two different refcount_t - * fields: - * - * 1. p->usage: The "true" refcount field which tracks a task's - * lifetime. The task is freed as soon as this - * refcount drops to 0. - * - * 2. p->rcu_users: An "RCU users" refcount field which is statically - * initialized to 2, and is co-located in a union with - * a struct rcu_head field (p->rcu). p->rcu_users - * essentially encapsulates a single p->usage - * refcount, and when p->rcu_users goes to 0, an RCU - * callback is scheduled on the struct rcu_head which - * decrements the p->usage refcount. - * - * There are two important implications to this task refcounting logic - * described above. The first is that - * refcount_inc_not_zero(&p->rcu_users) cannot be used anywhere, as - * after the refcount goes to 0, the RCU callback being scheduled will - * cause the memory backing the refcount to again be nonzero due to the - * fields sharing a union. The other is that we can't rely on RCU to - * guarantee that a task is valid in a BPF program. This is because a - * task could have already transitioned to being in the TASK_DEAD - * state, had its rcu_users refcount go to 0, and its rcu callback - * invoked in which it drops its single p->usage reference. At this - * point the task will be freed as soon as the last p->usage reference - * goes to 0, without waiting for another RCU gp to elapse. The only - * way that a BPF program can guarantee that a task is valid is in this - * scenario is to hold a p->usage refcount itself. - * - * Until we're able to resolve this issue, either by pulling - * p->rcu_users and p->rcu out of the union, or by getting rid of - * p->usage and just using p->rcu_users for refcounting, we'll just - * return NULL here. + struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; + struct rb_node *parent = NULL, *n = &node->rb_node; + bpf_callback_t cb = (bpf_callback_t)less; + bool leftmost = true; + + /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately + * check the latter */ - return NULL; + if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { + /* Only called from BPF prog, no need to migrate_disable */ + __bpf_obj_drop_impl((void *)n - off, rec, false); + return -EINVAL; + } + + while (*link) { + parent = *link; + if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { + link = &parent->rb_left; + } else { + link = &parent->rb_right; + leftmost = false; + } + } + + rb_link_node(n, parent, link); + rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); + WRITE_ONCE(node->owner, root); + return 0; +} + +__bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, + bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), + void *meta__ign, u64 off) +{ + struct btf_struct_meta *meta = meta__ign; + struct bpf_rb_node_kern *n = (void *)node; + + return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); +} + +__bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) +{ + struct rb_root_cached *r = (struct rb_root_cached *)root; + + return (struct bpf_rb_node *)rb_first_cached(r); +} + +__bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root) +{ + struct rb_root_cached *r = (struct rb_root_cached *)root; + + return (struct bpf_rb_node *)r->rb_root.rb_node; +} + +__bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node) +{ + struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; + + if (READ_ONCE(node_internal->owner) != root) + return NULL; + + return (struct bpf_rb_node *)node_internal->rb_node.rb_left; +} + +__bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node) +{ + struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; + + if (READ_ONCE(node_internal->owner) != root) + return NULL; + + return (struct bpf_rb_node *)node_internal->rb_node.rb_right; } /** - * bpf_task_kptr_get - Acquire a reference on a struct task_struct kptr. A task - * kptr acquired by this kfunc which is not subsequently stored in a map, must - * be released by calling bpf_task_release(). - * @pp: A pointer to a task kptr on which a reference is being acquired. + * bpf_task_acquire - Acquire a reference to a task. A task acquired by this + * kfunc which is not stored in a map as a kptr, must be released by calling + * bpf_task_release(). + * @p: The task on which a reference is being acquired. */ -struct task_struct *bpf_task_kptr_get(struct task_struct **pp) +__bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) { - /* We must return NULL here until we have clarity on how to properly - * leverage RCU for ensuring a task's lifetime. See the comment above - * in bpf_task_acquire_not_zero() for more details. - */ + if (refcount_inc_not_zero(&p->rcu_users)) + return p; return NULL; } @@ -1915,13 +2525,16 @@ struct task_struct *bpf_task_kptr_get(struct task_struct **pp) * bpf_task_release - Release the reference acquired on a task. * @p: The task on which a reference is being released. */ -void bpf_task_release(struct task_struct *p) +__bpf_kfunc void bpf_task_release(struct task_struct *p) { - if (!p) - return; + put_task_struct_rcu_user(p); +} - put_task_struct(p); +__bpf_kfunc void bpf_task_release_dtor(void *p) +{ + put_task_struct_rcu_user(p); } +CFI_NOSEAL(bpf_task_release_dtor); #ifdef CONFIG_CGROUPS /** @@ -1930,41 +2543,9 @@ void bpf_task_release(struct task_struct *p) * calling bpf_cgroup_release(). * @cgrp: The cgroup on which a reference is being acquired. */ -struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) +__bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) { - cgroup_get(cgrp); - return cgrp; -} - -/** - * bpf_cgroup_kptr_get - Acquire a reference on a struct cgroup kptr. A cgroup - * kptr acquired by this kfunc which is not subsequently stored in a map, must - * be released by calling bpf_cgroup_release(). - * @cgrpp: A pointer to a cgroup kptr on which a reference is being acquired. - */ -struct cgroup *bpf_cgroup_kptr_get(struct cgroup **cgrpp) -{ - struct cgroup *cgrp; - - rcu_read_lock(); - /* Another context could remove the cgroup from the map and release it - * at any time, including after we've done the lookup above. This is - * safe because we're in an RCU read region, so the cgroup is - * guaranteed to remain valid until at least the rcu_read_unlock() - * below. - */ - cgrp = READ_ONCE(*cgrpp); - - if (cgrp && !cgroup_tryget(cgrp)) - /* If the cgroup had been removed from the map and freed as - * described above, cgroup_tryget() will return false. The - * cgroup will be freed at some point after the current RCU gp - * has ended, so just return NULL to the user. - */ - cgrp = NULL; - rcu_read_unlock(); - - return cgrp; + return cgroup_tryget(cgrp) ? cgrp : NULL; } /** @@ -1974,13 +2555,16 @@ struct cgroup *bpf_cgroup_kptr_get(struct cgroup **cgrpp) * drops to 0. * @cgrp: The cgroup on which a reference is being released. */ -void bpf_cgroup_release(struct cgroup *cgrp) +__bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) { - if (!cgrp) - return; + cgroup_put(cgrp); +} +__bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp) +{ cgroup_put(cgrp); } +CFI_NOSEAL(bpf_cgroup_release_dtor); /** * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor @@ -1989,17 +2573,98 @@ void bpf_cgroup_release(struct cgroup *cgrp) * @cgrp: The cgroup for which we're performing a lookup. * @level: The level of ancestor to look up. */ -struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) +__bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) { struct cgroup *ancestor; if (level > cgrp->level || level < 0) return NULL; + /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ ancestor = cgrp->ancestors[level]; - cgroup_get(ancestor); + if (!cgroup_tryget(ancestor)) + return NULL; return ancestor; } + +/** + * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this + * kfunc which is not subsequently stored in a map, must be released by calling + * bpf_cgroup_release(). + * @cgid: cgroup id. + */ +__bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) +{ + struct cgroup *cgrp; + + cgrp = __cgroup_get_from_id(cgid); + if (IS_ERR(cgrp)) + return NULL; + return cgrp; +} + +/** + * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test + * task's membership of cgroup ancestry. + * @task: the task to be tested + * @ancestor: possible ancestor of @task's cgroup + * + * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. + * It follows all the same rules as cgroup_is_descendant, and only applies + * to the default hierarchy. + */ +__bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, + struct cgroup *ancestor) +{ + long ret; + + rcu_read_lock(); + ret = task_under_cgroup_hierarchy(task, ancestor); + rcu_read_unlock(); + return ret; +} + +BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + struct cgroup *cgrp; + + if (unlikely(idx >= array->map.max_entries)) + return -E2BIG; + + cgrp = READ_ONCE(array->ptrs[idx]); + if (unlikely(!cgrp)) + return -EAGAIN; + + return task_under_cgroup_hierarchy(current, cgrp); +} + +const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { + .func = bpf_current_task_under_cgroup, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_ANYTHING, +}; + +/** + * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a + * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its + * hierarchy ID. + * @task: The target task + * @hierarchy_id: The ID of a cgroup1 hierarchy + * + * On success, the cgroup is returen. On failure, NULL is returned. + */ +__bpf_kfunc struct cgroup * +bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id) +{ + struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id); + + if (IS_ERR(cgrp)) + return NULL; + return cgrp; +} #endif /* CONFIG_CGROUPS */ /** @@ -2008,63 +2673,1771 @@ struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) * stored in a map, or released with bpf_task_release(). * @pid: The pid of the task being looked up. */ -struct task_struct *bpf_task_from_pid(s32 pid) +__bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) { struct task_struct *p; rcu_read_lock(); p = find_task_by_pid_ns(pid, &init_pid_ns); if (p) - bpf_task_acquire(p); + p = bpf_task_acquire(p); + rcu_read_unlock(); + + return p; +} + +/** + * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up + * in the pid namespace of the current task. If a task is returned, it must + * either be stored in a map, or released with bpf_task_release(). + * @vpid: The vpid of the task being looked up. + */ +__bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid) +{ + struct task_struct *p; + + rcu_read_lock(); + p = find_task_by_vpid(vpid); + if (p) + p = bpf_task_acquire(p); rcu_read_unlock(); return p; } -void *bpf_cast_to_kern_ctx(void *obj) +/** + * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. + * @p: The dynptr whose data slice to retrieve + * @offset: Offset into the dynptr + * @buffer__opt: User-provided buffer to copy contents into. May be NULL + * @buffer__szk: Size (in bytes) of the buffer if present. This is the + * length of the requested slice. This must be a constant. + * + * For non-skb and non-xdp type dynptrs, there is no difference between + * bpf_dynptr_slice and bpf_dynptr_data. + * + * If buffer__opt is NULL, the call will fail if buffer_opt was needed. + * + * If the intention is to write to the data slice, please use + * bpf_dynptr_slice_rdwr. + * + * The user must check that the returned pointer is not null before using it. + * + * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice + * does not change the underlying packet data pointers, so a call to + * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in + * the bpf program. + * + * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only + * data slice (can be either direct pointer to the data or a pointer to the user + * provided buffer, with its contents containing the data, if unable to obtain + * direct pointer) + */ +__bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u64 offset, + void *buffer__opt, u64 buffer__szk) +{ + const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + enum bpf_dynptr_type type; + u64 len = buffer__szk; + int err; + + if (!ptr->data) + return NULL; + + err = bpf_dynptr_check_off_len(ptr, offset, len); + if (err) + return NULL; + + type = bpf_dynptr_get_type(ptr); + + switch (type) { + case BPF_DYNPTR_TYPE_LOCAL: + case BPF_DYNPTR_TYPE_RINGBUF: + return ptr->data + ptr->offset + offset; + case BPF_DYNPTR_TYPE_SKB: + if (buffer__opt) + return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); + else + return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); + case BPF_DYNPTR_TYPE_XDP: + { + void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); + if (!IS_ERR_OR_NULL(xdp_ptr)) + return xdp_ptr; + + if (!buffer__opt) + return NULL; + bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); + return buffer__opt; + } + case BPF_DYNPTR_TYPE_SKB_META: + return bpf_skb_meta_pointer(ptr->data, ptr->offset + offset); + case BPF_DYNPTR_TYPE_FILE: + err = bpf_file_fetch_bytes(ptr->data, offset, buffer__opt, buffer__szk); + return err ? NULL : buffer__opt; + default: + WARN_ONCE(true, "unknown dynptr type %d\n", type); + return NULL; + } +} + +/** + * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. + * @p: The dynptr whose data slice to retrieve + * @offset: Offset into the dynptr + * @buffer__opt: User-provided buffer to copy contents into. May be NULL + * @buffer__szk: Size (in bytes) of the buffer if present. This is the + * length of the requested slice. This must be a constant. + * + * For non-skb and non-xdp type dynptrs, there is no difference between + * bpf_dynptr_slice and bpf_dynptr_data. + * + * If buffer__opt is NULL, the call will fail if buffer_opt was needed. + * + * The returned pointer is writable and may point to either directly the dynptr + * data at the requested offset or to the buffer if unable to obtain a direct + * data pointer to (example: the requested slice is to the paged area of an skb + * packet). In the case where the returned pointer is to the buffer, the user + * is responsible for persisting writes through calling bpf_dynptr_write(). This + * usually looks something like this pattern: + * + * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); + * if (!eth) + * return TC_ACT_SHOT; + * + * // mutate eth header // + * + * if (eth == buffer) + * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); + * + * Please note that, as in the example above, the user must check that the + * returned pointer is not null before using it. + * + * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr + * does not change the underlying packet data pointers, so a call to + * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in + * the bpf program. + * + * Return: NULL if the call failed (eg invalid dynptr), pointer to a + * data slice (can be either direct pointer to the data or a pointer to the user + * provided buffer, with its contents containing the data, if unable to obtain + * direct pointer) + */ +__bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u64 offset, + void *buffer__opt, u64 buffer__szk) +{ + const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + + if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) + return NULL; + + /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. + * + * For skb-type dynptrs, it is safe to write into the returned pointer + * if the bpf program allows skb data writes. There are two possibilities + * that may occur when calling bpf_dynptr_slice_rdwr: + * + * 1) The requested slice is in the head of the skb. In this case, the + * returned pointer is directly to skb data, and if the skb is cloned, the + * verifier will have uncloned it (see bpf_unclone_prologue()) already. + * The pointer can be directly written into. + * + * 2) Some portion of the requested slice is in the paged buffer area. + * In this case, the requested data will be copied out into the buffer + * and the returned pointer will be a pointer to the buffer. The skb + * will not be pulled. To persist the write, the user will need to call + * bpf_dynptr_write(), which will pull the skb and commit the write. + * + * Similarly for xdp programs, if the requested slice is not across xdp + * fragments, then a direct pointer will be returned, otherwise the data + * will be copied out into the buffer and the user will need to call + * bpf_dynptr_write() to commit changes. + */ + return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk); +} + +__bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u64 start, u64 end) +{ + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + u64 size; + + if (!ptr->data || start > end) + return -EINVAL; + + size = __bpf_dynptr_size(ptr); + + if (start > size || end > size) + return -ERANGE; + + bpf_dynptr_advance_offset(ptr, start); + bpf_dynptr_set_size(ptr, end - start); + + return 0; +} + +__bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p) +{ + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + + return !ptr->data; +} + +__bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p) +{ + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + + if (!ptr->data) + return false; + + return __bpf_dynptr_is_rdonly(ptr); +} + +__bpf_kfunc u64 bpf_dynptr_size(const struct bpf_dynptr *p) +{ + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + + if (!ptr->data) + return -EINVAL; + + return __bpf_dynptr_size(ptr); +} + +__bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p, + struct bpf_dynptr *clone__uninit) +{ + struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit; + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + + if (!ptr->data) { + bpf_dynptr_set_null(clone); + return -EINVAL; + } + + *clone = *ptr; + + return 0; +} + +/** + * bpf_dynptr_copy() - Copy data from one dynptr to another. + * @dst_ptr: Destination dynptr - where data should be copied to + * @dst_off: Offset into the destination dynptr + * @src_ptr: Source dynptr - where data should be copied from + * @src_off: Offset into the source dynptr + * @size: Length of the data to copy from source to destination + * + * Copies data from source dynptr to destination dynptr. + * Returns 0 on success; negative error, otherwise. + */ +__bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u64 dst_off, + struct bpf_dynptr *src_ptr, u64 src_off, u64 size) +{ + struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr; + struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr; + void *src_slice, *dst_slice; + char buf[256]; + u64 off; + + src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size); + dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size); + + if (src_slice && dst_slice) { + memmove(dst_slice, src_slice, size); + return 0; + } + + if (src_slice) + return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0); + + if (dst_slice) + return __bpf_dynptr_read(dst_slice, size, src, src_off, 0); + + if (bpf_dynptr_check_off_len(dst, dst_off, size) || + bpf_dynptr_check_off_len(src, src_off, size)) + return -E2BIG; + + off = 0; + while (off < size) { + u64 chunk_sz = min_t(u64, sizeof(buf), size - off); + int err; + + err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0); + if (err) + return err; + err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0); + if (err) + return err; + + off += chunk_sz; + } + return 0; +} + +/** + * bpf_dynptr_memset() - Fill dynptr memory with a constant byte. + * @p: Destination dynptr - where data will be filled + * @offset: Offset into the dynptr to start filling from + * @size: Number of bytes to fill + * @val: Constant byte to fill the memory with + * + * Fills the @size bytes of the memory area pointed to by @p + * at @offset with the constant byte @val. + * Returns 0 on success; negative error, otherwise. + */ +__bpf_kfunc int bpf_dynptr_memset(struct bpf_dynptr *p, u64 offset, u64 size, u8 val) +{ + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + u64 chunk_sz, write_off; + char buf[256]; + void* slice; + int err; + + slice = bpf_dynptr_slice_rdwr(p, offset, NULL, size); + if (likely(slice)) { + memset(slice, val, size); + return 0; + } + + if (__bpf_dynptr_is_rdonly(ptr)) + return -EINVAL; + + err = bpf_dynptr_check_off_len(ptr, offset, size); + if (err) + return err; + + /* Non-linear data under the dynptr, write from a local buffer */ + chunk_sz = min_t(u64, sizeof(buf), size); + memset(buf, val, chunk_sz); + + for (write_off = 0; write_off < size; write_off += chunk_sz) { + chunk_sz = min_t(u64, sizeof(buf), size - write_off); + err = __bpf_dynptr_write(ptr, offset + write_off, buf, chunk_sz, 0); + if (err) + return err; + } + + return 0; +} + +__bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) { return obj; } -void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k) +__bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k) { - return obj__ign; + return (void *)obj__ign; } -void bpf_rcu_read_lock(void) +__bpf_kfunc void bpf_rcu_read_lock(void) { rcu_read_lock(); } -void bpf_rcu_read_unlock(void) +__bpf_kfunc void bpf_rcu_read_unlock(void) { rcu_read_unlock(); } -__diag_pop(); +struct bpf_throw_ctx { + struct bpf_prog_aux *aux; + u64 sp; + u64 bp; + int cnt; +}; + +static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp) +{ + struct bpf_throw_ctx *ctx = cookie; + struct bpf_prog *prog; + + /* + * The RCU read lock is held to safely traverse the latch tree, but we + * don't need its protection when accessing the prog, since it has an + * active stack frame on the current stack trace, and won't disappear. + */ + rcu_read_lock(); + prog = bpf_prog_ksym_find(ip); + rcu_read_unlock(); + if (!prog) + return !ctx->cnt; + ctx->cnt++; + if (bpf_is_subprog(prog)) + return true; + ctx->aux = prog->aux; + ctx->sp = sp; + ctx->bp = bp; + return false; +} + +__bpf_kfunc void bpf_throw(u64 cookie) +{ + struct bpf_throw_ctx ctx = {}; + + arch_bpf_stack_walk(bpf_stack_walker, &ctx); + WARN_ON_ONCE(!ctx.aux); + if (ctx.aux) + WARN_ON_ONCE(!ctx.aux->exception_boundary); + WARN_ON_ONCE(!ctx.bp); + WARN_ON_ONCE(!ctx.cnt); + /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning + * deeper stack depths than ctx.sp as we do not return from bpf_throw, + * which skips compiler generated instrumentation to do the same. + */ + kasan_unpoison_task_stack_below((void *)(long)ctx.sp); + ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0); + WARN(1, "A call to BPF exception callback should never return\n"); +} + +__bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags) +{ + struct bpf_async_kern *async = (struct bpf_async_kern *)wq; + struct bpf_map *map = p__map; + + BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq)); + BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq)); + + if (flags) + return -EINVAL; + + return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ); +} + +__bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags) +{ + struct bpf_async_kern *async = (struct bpf_async_kern *)wq; + struct bpf_work *w; + + if (in_nmi()) + return -EOPNOTSUPP; + if (flags) + return -EINVAL; + w = READ_ONCE(async->work); + if (!w || !READ_ONCE(w->cb.prog)) + return -EINVAL; + + schedule_work(&w->work); + return 0; +} + +__bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq, + int (callback_fn)(void *map, int *key, void *value), + unsigned int flags, + void *aux__prog) +{ + struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog; + struct bpf_async_kern *async = (struct bpf_async_kern *)wq; + + if (flags) + return -EINVAL; + + return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ); +} + +__bpf_kfunc void bpf_preempt_disable(void) +{ + preempt_disable(); +} + +__bpf_kfunc void bpf_preempt_enable(void) +{ + preempt_enable(); +} + +struct bpf_iter_bits { + __u64 __opaque[2]; +} __aligned(8); + +#define BITS_ITER_NR_WORDS_MAX 511 + +struct bpf_iter_bits_kern { + union { + __u64 *bits; + __u64 bits_copy; + }; + int nr_bits; + int bit; +} __aligned(8); + +/* On 64-bit hosts, unsigned long and u64 have the same size, so passing + * a u64 pointer and an unsigned long pointer to find_next_bit() will + * return the same result, as both point to the same 8-byte area. + * + * For 32-bit little-endian hosts, using a u64 pointer or unsigned long + * pointer also makes no difference. This is because the first iterated + * unsigned long is composed of bits 0-31 of the u64 and the second unsigned + * long is composed of bits 32-63 of the u64. + * + * However, for 32-bit big-endian hosts, this is not the case. The first + * iterated unsigned long will be bits 32-63 of the u64, so swap these two + * ulong values within the u64. + */ +static void swap_ulong_in_u64(u64 *bits, unsigned int nr) +{ +#if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN) + unsigned int i; + + for (i = 0; i < nr; i++) + bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32); +#endif +} + +/** + * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area + * @it: The new bpf_iter_bits to be created + * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over + * @nr_words: The size of the specified memory area, measured in 8-byte units. + * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be + * further reduced by the BPF memory allocator implementation. + * + * This function initializes a new bpf_iter_bits structure for iterating over + * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It + * copies the data of the memory area to the newly created bpf_iter_bits @it for + * subsequent iteration operations. + * + * On success, 0 is returned. On failure, ERR is returned. + */ +__bpf_kfunc int +bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) +{ + struct bpf_iter_bits_kern *kit = (void *)it; + u32 nr_bytes = nr_words * sizeof(u64); + u32 nr_bits = BYTES_TO_BITS(nr_bytes); + int err; + + BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits)); + BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) != + __alignof__(struct bpf_iter_bits)); + + kit->nr_bits = 0; + kit->bits_copy = 0; + kit->bit = -1; + + if (!unsafe_ptr__ign || !nr_words) + return -EINVAL; + if (nr_words > BITS_ITER_NR_WORDS_MAX) + return -E2BIG; + + /* Optimization for u64 mask */ + if (nr_bits == 64) { + err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign); + if (err) + return -EFAULT; + + swap_ulong_in_u64(&kit->bits_copy, nr_words); + + kit->nr_bits = nr_bits; + return 0; + } + + if (bpf_mem_alloc_check_size(false, nr_bytes)) + return -E2BIG; + + /* Fallback to memalloc */ + kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes); + if (!kit->bits) + return -ENOMEM; + + err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign); + if (err) { + bpf_mem_free(&bpf_global_ma, kit->bits); + return err; + } + + swap_ulong_in_u64(kit->bits, nr_words); + + kit->nr_bits = nr_bits; + return 0; +} + +/** + * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits + * @it: The bpf_iter_bits to be checked + * + * This function returns a pointer to a number representing the value of the + * next bit in the bits. + * + * If there are no further bits available, it returns NULL. + */ +__bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it) +{ + struct bpf_iter_bits_kern *kit = (void *)it; + int bit = kit->bit, nr_bits = kit->nr_bits; + const void *bits; + + if (!nr_bits || bit >= nr_bits) + return NULL; + + bits = nr_bits == 64 ? &kit->bits_copy : kit->bits; + bit = find_next_bit(bits, nr_bits, bit + 1); + if (bit >= nr_bits) { + kit->bit = bit; + return NULL; + } + + kit->bit = bit; + return &kit->bit; +} + +/** + * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits + * @it: The bpf_iter_bits to be destroyed + * + * Destroy the resource associated with the bpf_iter_bits. + */ +__bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it) +{ + struct bpf_iter_bits_kern *kit = (void *)it; + + if (kit->nr_bits <= 64) + return; + bpf_mem_free(&bpf_global_ma, kit->bits); +} + +/** + * bpf_copy_from_user_str() - Copy a string from an unsafe user address + * @dst: Destination address, in kernel space. This buffer must be + * at least @dst__sz bytes long. + * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL. + * @unsafe_ptr__ign: Source address, in user space. + * @flags: The only supported flag is BPF_F_PAD_ZEROS + * + * Copies a NUL-terminated string from userspace to BPF space. If user string is + * too long this will still ensure zero termination in the dst buffer unless + * buffer size is 0. + * + * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and + * memset all of @dst on failure. + */ +__bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags) +{ + int ret; + + if (unlikely(flags & ~BPF_F_PAD_ZEROS)) + return -EINVAL; + + if (unlikely(!dst__sz)) + return 0; + + ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1); + if (ret < 0) { + if (flags & BPF_F_PAD_ZEROS) + memset((char *)dst, 0, dst__sz); + + return ret; + } + + if (flags & BPF_F_PAD_ZEROS) + memset((char *)dst + ret, 0, dst__sz - ret); + else + ((char *)dst)[ret] = '\0'; + + return ret + 1; +} + +/** + * bpf_copy_from_user_task_str() - Copy a string from an task's address space + * @dst: Destination address, in kernel space. This buffer must be + * at least @dst__sz bytes long. + * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL. + * @unsafe_ptr__ign: Source address in the task's address space. + * @tsk: The task whose address space will be used + * @flags: The only supported flag is BPF_F_PAD_ZEROS + * + * Copies a NUL terminated string from a task's address space to @dst__sz + * buffer. If user string is too long this will still ensure zero termination + * in the @dst__sz buffer unless buffer size is 0. + * + * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success + * and memset all of @dst__sz on failure. + * + * Return: The number of copied bytes on success including the NUL terminator. + * A negative error code on failure. + */ +__bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz, + const void __user *unsafe_ptr__ign, + struct task_struct *tsk, u64 flags) +{ + int ret; + + if (unlikely(flags & ~BPF_F_PAD_ZEROS)) + return -EINVAL; + + if (unlikely(dst__sz == 0)) + return 0; + + ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0); + if (ret < 0) { + if (flags & BPF_F_PAD_ZEROS) + memset(dst, 0, dst__sz); + return ret; + } + + if (flags & BPF_F_PAD_ZEROS) + memset(dst + ret, 0, dst__sz - ret); + + return ret + 1; +} + +/* Keep unsinged long in prototype so that kfunc is usable when emitted to + * vmlinux.h in BPF programs directly, but note that while in BPF prog, the + * unsigned long always points to 8-byte region on stack, the kernel may only + * read and write the 4-bytes on 32-bit. + */ +__bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag) +{ + local_irq_save(*flags__irq_flag); +} + +__bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag) +{ + local_irq_restore(*flags__irq_flag); +} + +__bpf_kfunc void __bpf_trap(void) +{ +} + +/* + * Kfuncs for string operations. + * + * Since strings are not necessarily %NUL-terminated, we cannot directly call + * in-kernel implementations. Instead, we open-code the implementations using + * __get_kernel_nofault instead of plain dereference to make them safe. + */ + +static int __bpf_strcasecmp(const char *s1, const char *s2, bool ignore_case) +{ + char c1, c2; + int i; + + if (!copy_from_kernel_nofault_allowed(s1, 1) || + !copy_from_kernel_nofault_allowed(s2, 1)) { + return -ERANGE; + } + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&c1, s1, char, err_out); + __get_kernel_nofault(&c2, s2, char, err_out); + if (ignore_case) { + c1 = tolower(c1); + c2 = tolower(c2); + } + if (c1 != c2) + return c1 < c2 ? -1 : 1; + if (c1 == '\0') + return 0; + s1++; + s2++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strcmp - Compare two strings + * @s1__ign: One string + * @s2__ign: Another string + * + * Return: + * * %0 - Strings are equal + * * %-1 - @s1__ign is smaller + * * %1 - @s2__ign is smaller + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of strings is too large + * * %-ERANGE - One of strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign) +{ + return __bpf_strcasecmp(s1__ign, s2__ign, false); +} + +/** + * bpf_strcasecmp - Compare two strings, ignoring the case of the characters + * @s1__ign: One string + * @s2__ign: Another string + * + * Return: + * * %0 - Strings are equal + * * %-1 - @s1__ign is smaller + * * %1 - @s2__ign is smaller + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of strings is too large + * * %-ERANGE - One of strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strcasecmp(const char *s1__ign, const char *s2__ign) +{ + return __bpf_strcasecmp(s1__ign, s2__ign, true); +} + +/** + * bpf_strnchr - Find a character in a length limited string + * @s__ign: The string to be searched + * @count: The number of characters to be searched + * @c: The character to search for + * + * Note that the %NUL-terminator is considered part of the string, and can + * be searched for. + * + * Return: + * * >=0 - Index of the first occurrence of @c within @s__ign + * * %-ENOENT - @c not found in the first @count characters of @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c) +{ + char sc; + int i; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1)) + return -ERANGE; + + guard(pagefault)(); + for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&sc, s__ign, char, err_out); + if (sc == c) + return i; + if (sc == '\0') + return -ENOENT; + s__ign++; + } + return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT; +err_out: + return -EFAULT; +} + +/** + * bpf_strchr - Find the first occurrence of a character in a string + * @s__ign: The string to be searched + * @c: The character to search for + * + * Note that the %NUL-terminator is considered part of the string, and can + * be searched for. + * + * Return: + * * >=0 - The index of the first occurrence of @c within @s__ign + * * %-ENOENT - @c not found in @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strchr(const char *s__ign, char c) +{ + return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c); +} + +/** + * bpf_strchrnul - Find and return a character in a string, or end of string + * @s__ign: The string to be searched + * @c: The character to search for + * + * Return: + * * >=0 - Index of the first occurrence of @c within @s__ign or index of + * the null byte at the end of @s__ign when @c is not found + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strchrnul(const char *s__ign, char c) +{ + char sc; + int i; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1)) + return -ERANGE; + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&sc, s__ign, char, err_out); + if (sc == '\0' || sc == c) + return i; + s__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strrchr - Find the last occurrence of a character in a string + * @s__ign: The string to be searched + * @c: The character to search for + * + * Return: + * * >=0 - Index of the last occurrence of @c within @s__ign + * * %-ENOENT - @c not found in @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strrchr(const char *s__ign, int c) +{ + char sc; + int i, last = -ENOENT; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1)) + return -ERANGE; + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&sc, s__ign, char, err_out); + if (sc == c) + last = i; + if (sc == '\0') + return last; + s__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strnlen - Calculate the length of a length-limited string + * @s__ign: The string + * @count: The maximum number of characters to count + * + * Return: + * * >=0 - The length of @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count) +{ + char c; + int i; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1)) + return -ERANGE; + + guard(pagefault)(); + for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&c, s__ign, char, err_out); + if (c == '\0') + return i; + s__ign++; + } + return i == XATTR_SIZE_MAX ? -E2BIG : i; +err_out: + return -EFAULT; +} + +/** + * bpf_strlen - Calculate the length of a string + * @s__ign: The string + * + * Return: + * * >=0 - The length of @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strlen(const char *s__ign) +{ + return bpf_strnlen(s__ign, XATTR_SIZE_MAX); +} -BTF_SET8_START(generic_btf_ids) -#ifdef CONFIG_KEXEC_CORE +/** + * bpf_strspn - Calculate the length of the initial substring of @s__ign which + * only contains letters in @accept__ign + * @s__ign: The string to be searched + * @accept__ign: The string to search for + * + * Return: + * * >=0 - The length of the initial substring of @s__ign which only + * contains letters from @accept__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign) +{ + char cs, ca; + int i, j; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1) || + !copy_from_kernel_nofault_allowed(accept__ign, 1)) { + return -ERANGE; + } + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&cs, s__ign, char, err_out); + if (cs == '\0') + return i; + for (j = 0; j < XATTR_SIZE_MAX; j++) { + __get_kernel_nofault(&ca, accept__ign + j, char, err_out); + if (cs == ca || ca == '\0') + break; + } + if (j == XATTR_SIZE_MAX) + return -E2BIG; + if (ca == '\0') + return i; + s__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strcspn - Calculate the length of the initial substring of @s__ign which + * does not contain letters in @reject__ign + * @s__ign: The string to be searched + * @reject__ign: The string to search for + * + * Return: + * * >=0 - The length of the initial substring of @s__ign which does not + * contain letters from @reject__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign) +{ + char cs, cr; + int i, j; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1) || + !copy_from_kernel_nofault_allowed(reject__ign, 1)) { + return -ERANGE; + } + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&cs, s__ign, char, err_out); + if (cs == '\0') + return i; + for (j = 0; j < XATTR_SIZE_MAX; j++) { + __get_kernel_nofault(&cr, reject__ign + j, char, err_out); + if (cs == cr || cr == '\0') + break; + } + if (j == XATTR_SIZE_MAX) + return -E2BIG; + if (cr != '\0') + return i; + s__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +static int __bpf_strnstr(const char *s1, const char *s2, size_t len, + bool ignore_case) +{ + char c1, c2; + int i, j; + + if (!copy_from_kernel_nofault_allowed(s1, 1) || + !copy_from_kernel_nofault_allowed(s2, 1)) { + return -ERANGE; + } + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + for (j = 0; i + j <= len && j < XATTR_SIZE_MAX; j++) { + __get_kernel_nofault(&c2, s2 + j, char, err_out); + if (c2 == '\0') + return i; + /* + * We allow reading an extra byte from s2 (note the + * `i + j <= len` above) to cover the case when s2 is + * a suffix of the first len chars of s1. + */ + if (i + j == len) + break; + __get_kernel_nofault(&c1, s1 + j, char, err_out); + + if (ignore_case) { + c1 = tolower(c1); + c2 = tolower(c2); + } + + if (c1 == '\0') + return -ENOENT; + if (c1 != c2) + break; + } + if (j == XATTR_SIZE_MAX) + return -E2BIG; + if (i + j == len) + return -ENOENT; + s1++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strstr - Find the first substring in a string + * @s1__ign: The string to be searched + * @s2__ign: The string to search for + * + * Return: + * * >=0 - Index of the first character of the first occurrence of @s2__ign + * within @s1__ign + * * %-ENOENT - @s2__ign is not a substring of @s1__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign) +{ + return __bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX, false); +} + +/** + * bpf_strcasestr - Find the first substring in a string, ignoring the case of + * the characters + * @s1__ign: The string to be searched + * @s2__ign: The string to search for + * + * Return: + * * >=0 - Index of the first character of the first occurrence of @s2__ign + * within @s1__ign + * * %-ENOENT - @s2__ign is not a substring of @s1__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strcasestr(const char *s1__ign, const char *s2__ign) +{ + return __bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX, true); +} + +/** + * bpf_strnstr - Find the first substring in a length-limited string + * @s1__ign: The string to be searched + * @s2__ign: The string to search for + * @len: the maximum number of characters to search + * + * Return: + * * >=0 - Index of the first character of the first occurrence of @s2__ign + * within the first @len characters of @s1__ign + * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign, + size_t len) +{ + return __bpf_strnstr(s1__ign, s2__ign, len, false); +} + +/** + * bpf_strncasestr - Find the first substring in a length-limited string, + * ignoring the case of the characters + * @s1__ign: The string to be searched + * @s2__ign: The string to search for + * @len: the maximum number of characters to search + * + * Return: + * * >=0 - Index of the first character of the first occurrence of @s2__ign + * within the first @len characters of @s1__ign + * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strncasestr(const char *s1__ign, const char *s2__ign, + size_t len) +{ + return __bpf_strnstr(s1__ign, s2__ign, len, true); +} + +#ifdef CONFIG_KEYS +/** + * bpf_lookup_user_key - lookup a key by its serial + * @serial: key handle serial number + * @flags: lookup-specific flags + * + * Search a key with a given *serial* and the provided *flags*. + * If found, increment the reference count of the key by one, and + * return it in the bpf_key structure. + * + * The bpf_key structure must be passed to bpf_key_put() when done + * with it, so that the key reference count is decremented and the + * bpf_key structure is freed. + * + * Permission checks are deferred to the time the key is used by + * one of the available key-specific kfuncs. + * + * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested + * special keyring (e.g. session keyring), if it doesn't yet exist. + * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting + * for the key construction, and to retrieve uninstantiated keys (keys + * without data attached to them). + * + * Return: a bpf_key pointer with a valid key pointer if the key is found, a + * NULL pointer otherwise. + */ +__bpf_kfunc struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags) +{ + key_ref_t key_ref; + struct bpf_key *bkey; + + if (flags & ~KEY_LOOKUP_ALL) + return NULL; + + /* + * Permission check is deferred until the key is used, as the + * intent of the caller is unknown here. + */ + key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK); + if (IS_ERR(key_ref)) + return NULL; + + bkey = kmalloc(sizeof(*bkey), GFP_KERNEL); + if (!bkey) { + key_put(key_ref_to_ptr(key_ref)); + return NULL; + } + + bkey->key = key_ref_to_ptr(key_ref); + bkey->has_ref = true; + + return bkey; +} + +/** + * bpf_lookup_system_key - lookup a key by a system-defined ID + * @id: key ID + * + * Obtain a bpf_key structure with a key pointer set to the passed key ID. + * The key pointer is marked as invalid, to prevent bpf_key_put() from + * attempting to decrement the key reference count on that pointer. The key + * pointer set in such way is currently understood only by + * verify_pkcs7_signature(). + * + * Set *id* to one of the values defined in include/linux/verification.h: + * 0 for the primary keyring (immutable keyring of system keys); + * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring + * (where keys can be added only if they are vouched for by existing keys + * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform + * keyring (primarily used by the integrity subsystem to verify a kexec'ed + * kerned image and, possibly, the initramfs signature). + * + * Return: a bpf_key pointer with an invalid key pointer set from the + * pre-determined ID on success, a NULL pointer otherwise + */ +__bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id) +{ + struct bpf_key *bkey; + + if (system_keyring_id_check(id) < 0) + return NULL; + + bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC); + if (!bkey) + return NULL; + + bkey->key = (struct key *)(unsigned long)id; + bkey->has_ref = false; + + return bkey; +} + +/** + * bpf_key_put - decrement key reference count if key is valid and free bpf_key + * @bkey: bpf_key structure + * + * Decrement the reference count of the key inside *bkey*, if the pointer + * is valid, and free *bkey*. + */ +__bpf_kfunc void bpf_key_put(struct bpf_key *bkey) +{ + if (bkey->has_ref) + key_put(bkey->key); + + kfree(bkey); +} + +/** + * bpf_verify_pkcs7_signature - verify a PKCS#7 signature + * @data_p: data to verify + * @sig_p: signature of the data + * @trusted_keyring: keyring with keys trusted for signature verification + * + * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr* + * with keys in a keyring referenced by *trusted_keyring*. + * + * Return: 0 on success, a negative value on error. + */ +__bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p, + struct bpf_dynptr *sig_p, + struct bpf_key *trusted_keyring) +{ +#ifdef CONFIG_SYSTEM_DATA_VERIFICATION + struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p; + struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p; + const void *data, *sig; + u32 data_len, sig_len; + int ret; + + if (trusted_keyring->has_ref) { + /* + * Do the permission check deferred in bpf_lookup_user_key(). + * See bpf_lookup_user_key() for more details. + * + * A call to key_task_permission() here would be redundant, as + * it is already done by keyring_search() called by + * find_asymmetric_key(). + */ + ret = key_validate(trusted_keyring->key); + if (ret < 0) + return ret; + } + + data_len = __bpf_dynptr_size(data_ptr); + data = __bpf_dynptr_data(data_ptr, data_len); + sig_len = __bpf_dynptr_size(sig_ptr); + sig = __bpf_dynptr_data(sig_ptr, sig_len); + + return verify_pkcs7_signature(data, data_len, sig, sig_len, + trusted_keyring->key, + VERIFYING_BPF_SIGNATURE, NULL, + NULL); +#else + return -EOPNOTSUPP; +#endif /* CONFIG_SYSTEM_DATA_VERIFICATION */ +} +#endif /* CONFIG_KEYS */ + +typedef int (*bpf_task_work_callback_t)(struct bpf_map *map, void *key, void *value); + +enum bpf_task_work_state { + /* bpf_task_work is ready to be used */ + BPF_TW_STANDBY = 0, + /* irq work scheduling in progress */ + BPF_TW_PENDING, + /* task work scheduling in progress */ + BPF_TW_SCHEDULING, + /* task work is scheduled successfully */ + BPF_TW_SCHEDULED, + /* callback is running */ + BPF_TW_RUNNING, + /* associated BPF map value is deleted */ + BPF_TW_FREED, +}; + +struct bpf_task_work_ctx { + enum bpf_task_work_state state; + refcount_t refcnt; + struct callback_head work; + struct irq_work irq_work; + /* bpf_prog that schedules task work */ + struct bpf_prog *prog; + /* task for which callback is scheduled */ + struct task_struct *task; + /* the map and map value associated with this context */ + struct bpf_map *map; + void *map_val; + enum task_work_notify_mode mode; + bpf_task_work_callback_t callback_fn; + struct rcu_head rcu; +} __aligned(8); + +/* Actual type for struct bpf_task_work */ +struct bpf_task_work_kern { + struct bpf_task_work_ctx *ctx; +}; + +static void bpf_task_work_ctx_reset(struct bpf_task_work_ctx *ctx) +{ + if (ctx->prog) { + bpf_prog_put(ctx->prog); + ctx->prog = NULL; + } + if (ctx->task) { + bpf_task_release(ctx->task); + ctx->task = NULL; + } +} + +static bool bpf_task_work_ctx_tryget(struct bpf_task_work_ctx *ctx) +{ + return refcount_inc_not_zero(&ctx->refcnt); +} + +static void bpf_task_work_ctx_put(struct bpf_task_work_ctx *ctx) +{ + if (!refcount_dec_and_test(&ctx->refcnt)) + return; + + bpf_task_work_ctx_reset(ctx); + + /* bpf_mem_free expects migration to be disabled */ + migrate_disable(); + bpf_mem_free(&bpf_global_ma, ctx); + migrate_enable(); +} + +static void bpf_task_work_cancel(struct bpf_task_work_ctx *ctx) +{ + /* + * Scheduled task_work callback holds ctx ref, so if we successfully + * cancelled, we put that ref on callback's behalf. If we couldn't + * cancel, callback will inevitably run or has already completed + * running, and it would have taken care of its ctx ref itself. + */ + if (task_work_cancel(ctx->task, &ctx->work)) + bpf_task_work_ctx_put(ctx); +} + +static void bpf_task_work_callback(struct callback_head *cb) +{ + struct bpf_task_work_ctx *ctx = container_of(cb, struct bpf_task_work_ctx, work); + enum bpf_task_work_state state; + u32 idx; + void *key; + + /* Read lock is needed to protect ctx and map key/value access */ + guard(rcu_tasks_trace)(); + /* + * This callback may start running before bpf_task_work_irq() switched to + * SCHEDULED state, so handle both transition variants SCHEDULING|SCHEDULED -> RUNNING. + */ + state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_RUNNING); + if (state == BPF_TW_SCHEDULED) + state = cmpxchg(&ctx->state, BPF_TW_SCHEDULED, BPF_TW_RUNNING); + if (state == BPF_TW_FREED) { + bpf_task_work_ctx_put(ctx); + return; + } + + key = (void *)map_key_from_value(ctx->map, ctx->map_val, &idx); + + migrate_disable(); + ctx->callback_fn(ctx->map, key, ctx->map_val); + migrate_enable(); + + bpf_task_work_ctx_reset(ctx); + (void)cmpxchg(&ctx->state, BPF_TW_RUNNING, BPF_TW_STANDBY); + + bpf_task_work_ctx_put(ctx); +} + +static void bpf_task_work_irq(struct irq_work *irq_work) +{ + struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work); + enum bpf_task_work_state state; + int err; + + guard(rcu_tasks_trace)(); + + if (cmpxchg(&ctx->state, BPF_TW_PENDING, BPF_TW_SCHEDULING) != BPF_TW_PENDING) { + bpf_task_work_ctx_put(ctx); + return; + } + + err = task_work_add(ctx->task, &ctx->work, ctx->mode); + if (err) { + bpf_task_work_ctx_reset(ctx); + /* + * try to switch back to STANDBY for another task_work reuse, but we might have + * gone to FREED already, which is fine as we already cleaned up after ourselves + */ + (void)cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_STANDBY); + bpf_task_work_ctx_put(ctx); + return; + } + + /* + * It's technically possible for just scheduled task_work callback to + * complete running by now, going SCHEDULING -> RUNNING and then + * dropping its ctx refcount. Instead of capturing extra ref just to + * protected below ctx->state access, we rely on RCU protection to + * perform below SCHEDULING -> SCHEDULED attempt. + */ + state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_SCHEDULED); + if (state == BPF_TW_FREED) + bpf_task_work_cancel(ctx); /* clean up if we switched into FREED state */ +} + +static struct bpf_task_work_ctx *bpf_task_work_fetch_ctx(struct bpf_task_work *tw, + struct bpf_map *map) +{ + struct bpf_task_work_kern *twk = (void *)tw; + struct bpf_task_work_ctx *ctx, *old_ctx; + + ctx = READ_ONCE(twk->ctx); + if (ctx) + return ctx; + + ctx = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_task_work_ctx)); + if (!ctx) + return ERR_PTR(-ENOMEM); + + memset(ctx, 0, sizeof(*ctx)); + refcount_set(&ctx->refcnt, 1); /* map's own ref */ + ctx->state = BPF_TW_STANDBY; + + old_ctx = cmpxchg(&twk->ctx, NULL, ctx); + if (old_ctx) { + /* + * tw->ctx is set by concurrent BPF program, release allocated + * memory and try to reuse already set context. + */ + bpf_mem_free(&bpf_global_ma, ctx); + return old_ctx; + } + + return ctx; /* Success */ +} + +static struct bpf_task_work_ctx *bpf_task_work_acquire_ctx(struct bpf_task_work *tw, + struct bpf_map *map) +{ + struct bpf_task_work_ctx *ctx; + + ctx = bpf_task_work_fetch_ctx(tw, map); + if (IS_ERR(ctx)) + return ctx; + + /* try to get ref for task_work callback to hold */ + if (!bpf_task_work_ctx_tryget(ctx)) + return ERR_PTR(-EBUSY); + + if (cmpxchg(&ctx->state, BPF_TW_STANDBY, BPF_TW_PENDING) != BPF_TW_STANDBY) { + /* lost acquiring race or map_release_uref() stole it from us, put ref and bail */ + bpf_task_work_ctx_put(ctx); + return ERR_PTR(-EBUSY); + } + + /* + * If no process or bpffs is holding a reference to the map, no new callbacks should be + * scheduled. This does not address any race or correctness issue, but rather is a policy + * choice: dropping user references should stop everything. + */ + if (!atomic64_read(&map->usercnt)) { + /* drop ref we just got for task_work callback itself */ + bpf_task_work_ctx_put(ctx); + /* transfer map's ref into cancel_and_free() */ + bpf_task_work_cancel_and_free(tw); + return ERR_PTR(-EBUSY); + } + + return ctx; +} + +static int bpf_task_work_schedule(struct task_struct *task, struct bpf_task_work *tw, + struct bpf_map *map, bpf_task_work_callback_t callback_fn, + struct bpf_prog_aux *aux, enum task_work_notify_mode mode) +{ + struct bpf_prog *prog; + struct bpf_task_work_ctx *ctx; + int err; + + BTF_TYPE_EMIT(struct bpf_task_work); + + prog = bpf_prog_inc_not_zero(aux->prog); + if (IS_ERR(prog)) + return -EBADF; + task = bpf_task_acquire(task); + if (!task) { + err = -EBADF; + goto release_prog; + } + + ctx = bpf_task_work_acquire_ctx(tw, map); + if (IS_ERR(ctx)) { + err = PTR_ERR(ctx); + goto release_all; + } + + ctx->task = task; + ctx->callback_fn = callback_fn; + ctx->prog = prog; + ctx->mode = mode; + ctx->map = map; + ctx->map_val = (void *)tw - map->record->task_work_off; + init_task_work(&ctx->work, bpf_task_work_callback); + init_irq_work(&ctx->irq_work, bpf_task_work_irq); + + irq_work_queue(&ctx->irq_work); + return 0; + +release_all: + bpf_task_release(task); +release_prog: + bpf_prog_put(prog); + return err; +} + +/** + * bpf_task_work_schedule_signal_impl - Schedule BPF callback using task_work_add with TWA_SIGNAL + * mode + * @task: Task struct for which callback should be scheduled + * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping + * @map__map: bpf_map that embeds struct bpf_task_work in the values + * @callback: pointer to BPF subprogram to call + * @aux__prog: user should pass NULL + * + * Return: 0 if task work has been scheduled successfully, negative error code otherwise + */ +__bpf_kfunc int bpf_task_work_schedule_signal_impl(struct task_struct *task, + struct bpf_task_work *tw, void *map__map, + bpf_task_work_callback_t callback, + void *aux__prog) +{ + return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_SIGNAL); +} + +/** + * bpf_task_work_schedule_resume_impl - Schedule BPF callback using task_work_add with TWA_RESUME + * mode + * @task: Task struct for which callback should be scheduled + * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping + * @map__map: bpf_map that embeds struct bpf_task_work in the values + * @callback: pointer to BPF subprogram to call + * @aux__prog: user should pass NULL + * + * Return: 0 if task work has been scheduled successfully, negative error code otherwise + */ +__bpf_kfunc int bpf_task_work_schedule_resume_impl(struct task_struct *task, + struct bpf_task_work *tw, void *map__map, + bpf_task_work_callback_t callback, + void *aux__prog) +{ + return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_RESUME); +} + +static int make_file_dynptr(struct file *file, u32 flags, bool may_sleep, + struct bpf_dynptr_kern *ptr) +{ + struct bpf_dynptr_file_impl *state; + + /* flags is currently unsupported */ + if (flags) { + bpf_dynptr_set_null(ptr); + return -EINVAL; + } + + state = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_dynptr_file_impl)); + if (!state) { + bpf_dynptr_set_null(ptr); + return -ENOMEM; + } + state->offset = 0; + state->size = U64_MAX; /* Don't restrict size, as file may change anyways */ + freader_init_from_file(&state->freader, NULL, 0, file, may_sleep); + bpf_dynptr_init(ptr, state, BPF_DYNPTR_TYPE_FILE, 0, 0); + bpf_dynptr_set_rdonly(ptr); + return 0; +} + +__bpf_kfunc int bpf_dynptr_from_file(struct file *file, u32 flags, struct bpf_dynptr *ptr__uninit) +{ + return make_file_dynptr(file, flags, false, (struct bpf_dynptr_kern *)ptr__uninit); +} + +int bpf_dynptr_from_file_sleepable(struct file *file, u32 flags, struct bpf_dynptr *ptr__uninit) +{ + return make_file_dynptr(file, flags, true, (struct bpf_dynptr_kern *)ptr__uninit); +} + +__bpf_kfunc int bpf_dynptr_file_discard(struct bpf_dynptr *dynptr) +{ + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)dynptr; + struct bpf_dynptr_file_impl *df = ptr->data; + + if (!df) + return 0; + + freader_cleanup(&df->freader); + bpf_mem_free(&bpf_global_ma, df); + bpf_dynptr_set_null(ptr); + return 0; +} + +__bpf_kfunc_end_defs(); + +static void bpf_task_work_cancel_scheduled(struct irq_work *irq_work) +{ + struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work); + + bpf_task_work_cancel(ctx); /* this might put task_work callback's ref */ + bpf_task_work_ctx_put(ctx); /* and here we put map's own ref that was transferred to us */ +} + +void bpf_task_work_cancel_and_free(void *val) +{ + struct bpf_task_work_kern *twk = val; + struct bpf_task_work_ctx *ctx; + enum bpf_task_work_state state; + + ctx = xchg(&twk->ctx, NULL); + if (!ctx) + return; + + state = xchg(&ctx->state, BPF_TW_FREED); + if (state == BPF_TW_SCHEDULED) { + /* run in irq_work to avoid locks in NMI */ + init_irq_work(&ctx->irq_work, bpf_task_work_cancel_scheduled); + irq_work_queue(&ctx->irq_work); + return; + } + + bpf_task_work_ctx_put(ctx); /* put bpf map's ref */ +} + +BTF_KFUNCS_START(generic_btf_ids) +#ifdef CONFIG_CRASH_DUMP BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) #endif BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) -BTF_ID_FLAGS(func, bpf_list_push_front) -BTF_ID_FLAGS(func, bpf_list_push_back) +BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE) +BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU) +BTF_ID_FLAGS(func, bpf_list_push_front_impl) +BTF_ID_FLAGS(func, bpf_list_push_back_impl) BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) -BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_TRUSTED_ARGS) -BTF_ID_FLAGS(func, bpf_task_acquire_not_zero, KF_ACQUIRE | KF_RCU | KF_RET_NULL) -BTF_ID_FLAGS(func, bpf_task_kptr_get, KF_ACQUIRE | KF_KPTR_GET | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) +BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_rbtree_add_impl) +BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL) + #ifdef CONFIG_CGROUPS -BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_TRUSTED_ARGS) -BTF_ID_FLAGS(func, bpf_cgroup_kptr_get, KF_ACQUIRE | KF_KPTR_GET | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) -BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_TRUSTED_ARGS | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) +BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) #endif BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) -BTF_SET8_END(generic_btf_ids) +BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_throw) +#ifdef CONFIG_BPF_EVENTS +BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS) +#endif +#ifdef CONFIG_KEYS +BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE) +#ifdef CONFIG_SYSTEM_DATA_VERIFICATION +BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE) +#endif +#endif +BTF_KFUNCS_END(generic_btf_ids) static const struct btf_kfunc_id_set generic_kfunc_set = { .owner = THIS_MODULE, @@ -2074,18 +4447,101 @@ static const struct btf_kfunc_id_set generic_kfunc_set = { BTF_ID_LIST(generic_dtor_ids) BTF_ID(struct, task_struct) -BTF_ID(func, bpf_task_release) +BTF_ID(func, bpf_task_release_dtor) #ifdef CONFIG_CGROUPS BTF_ID(struct, cgroup) -BTF_ID(func, bpf_cgroup_release) +BTF_ID(func, bpf_cgroup_release_dtor) #endif -BTF_SET8_START(common_btf_ids) -BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx) -BTF_ID_FLAGS(func, bpf_rdonly_cast) +BTF_KFUNCS_START(common_btf_ids) +BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL) +BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL) BTF_ID_FLAGS(func, bpf_rcu_read_lock) BTF_ID_FLAGS(func, bpf_rcu_read_unlock) -BTF_SET8_END(common_btf_ids) +BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) +BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) +BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU) +BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY) +#ifdef CONFIG_CGROUPS +BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY) +BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) +BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY) +#endif +BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) +BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY) +BTF_ID_FLAGS(func, bpf_dynptr_adjust) +BTF_ID_FLAGS(func, bpf_dynptr_is_null) +BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) +BTF_ID_FLAGS(func, bpf_dynptr_size) +BTF_ID_FLAGS(func, bpf_dynptr_clone) +BTF_ID_FLAGS(func, bpf_dynptr_copy) +BTF_ID_FLAGS(func, bpf_dynptr_memset) +#ifdef CONFIG_NET +BTF_ID_FLAGS(func, bpf_modify_return_test_tp) +#endif +BTF_ID_FLAGS(func, bpf_wq_init) +BTF_ID_FLAGS(func, bpf_wq_set_callback_impl) +BTF_ID_FLAGS(func, bpf_wq_start) +BTF_ID_FLAGS(func, bpf_preempt_disable) +BTF_ID_FLAGS(func, bpf_preempt_enable) +BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW) +BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY) +BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_get_kmem_cache) +BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_local_irq_save) +BTF_ID_FLAGS(func, bpf_local_irq_restore) +#ifdef CONFIG_BPF_EVENTS +BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr) +BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr) +BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr) +BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr) +BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS) +#endif +#ifdef CONFIG_DMA_SHARED_BUFFER +BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE) +#endif +BTF_ID_FLAGS(func, __bpf_trap) +BTF_ID_FLAGS(func, bpf_strcmp); +BTF_ID_FLAGS(func, bpf_strcasecmp); +BTF_ID_FLAGS(func, bpf_strchr); +BTF_ID_FLAGS(func, bpf_strchrnul); +BTF_ID_FLAGS(func, bpf_strnchr); +BTF_ID_FLAGS(func, bpf_strrchr); +BTF_ID_FLAGS(func, bpf_strlen); +BTF_ID_FLAGS(func, bpf_strnlen); +BTF_ID_FLAGS(func, bpf_strspn); +BTF_ID_FLAGS(func, bpf_strcspn); +BTF_ID_FLAGS(func, bpf_strstr); +BTF_ID_FLAGS(func, bpf_strcasestr); +BTF_ID_FLAGS(func, bpf_strnstr); +BTF_ID_FLAGS(func, bpf_strncasestr); +#if defined(CONFIG_BPF_LSM) && defined(CONFIG_CGROUPS) +BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU) +#endif +BTF_ID_FLAGS(func, bpf_stream_vprintk_impl, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_task_work_schedule_signal_impl, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_task_work_schedule_resume_impl, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_dynptr_from_file, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_dynptr_file_discard) +BTF_KFUNCS_END(common_btf_ids) static const struct btf_kfunc_id_set common_kfunc_set = { .owner = THIS_MODULE, @@ -2110,7 +4566,10 @@ static int __init kfunc_init(void) ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set); ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, ARRAY_SIZE(generic_dtors), THIS_MODULE); @@ -2118,3 +4577,34 @@ static int __init kfunc_init(void) } late_initcall(kfunc_init); + +/* Get a pointer to dynptr data up to len bytes for read only access. If + * the dynptr doesn't have continuous data up to len bytes, return NULL. + */ +const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u64 len) +{ + const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr; + + return bpf_dynptr_slice(p, 0, NULL, len); +} + +/* Get a pointer to dynptr data up to len bytes for read write access. If + * the dynptr doesn't have continuous data up to len bytes, or the dynptr + * is read only, return NULL. + */ +void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u64 len) +{ + if (__bpf_dynptr_is_rdonly(ptr)) + return NULL; + return (void *)__bpf_dynptr_data(ptr, len); +} + +void bpf_map_free_internal_structs(struct bpf_map *map, void *val) +{ + if (btf_record_has_field(map->record, BPF_TIMER)) + bpf_obj_free_timer(map->record, val); + if (btf_record_has_field(map->record, BPF_WORKQUEUE)) + bpf_obj_free_workqueue(map->record, val); + if (btf_record_has_field(map->record, BPF_TASK_WORK)) + bpf_obj_free_task_work(map->record, val); +} |
