summaryrefslogtreecommitdiff
path: root/kernel/bpf/verifier.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/bpf/verifier.c')
-rw-r--r--kernel/bpf/verifier.c7222
1 files changed, 4914 insertions, 2308 deletions
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index 1c4ebb326785..f0ca69f888fa 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -44,6 +44,12 @@ static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#undef BPF_LINK_TYPE
};
+enum bpf_features {
+ BPF_FEAT_RDONLY_CAST_TO_VOID = 0,
+ BPF_FEAT_STREAMS = 1,
+ __MAX_BPF_FEAT,
+};
+
struct bpf_mem_alloc bpf_global_percpu_ma;
static bool bpf_global_percpu_ma_set;
@@ -196,14 +202,13 @@ struct bpf_verifier_stack_elem {
#define BPF_PRIV_STACK_MIN_SIZE 64
-static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
+static int acquire_reference(struct bpf_verifier_env *env, int insn_idx);
+static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id);
static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
static int ref_set_non_owning(struct bpf_verifier_env *env,
struct bpf_reg_state *reg);
-static void specialize_kfunc(struct bpf_verifier_env *env,
- u32 func_id, u16 offset, unsigned long *addr);
static bool is_trusted_reg(const struct bpf_reg_state *reg);
static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
@@ -286,6 +291,7 @@ struct bpf_call_arg_meta {
u32 ret_btf_id;
u32 subprogno;
struct btf_field *kptr_field;
+ s64 const_map_key;
};
struct bpf_kfunc_call_arg_meta {
@@ -320,6 +326,7 @@ struct bpf_kfunc_call_arg_meta {
struct btf *arg_btf;
u32 arg_btf_id;
bool arg_owning_ref;
+ bool arg_prog;
struct {
struct btf_field *field;
@@ -402,7 +409,8 @@ static bool reg_not_null(const struct bpf_reg_state *reg)
type == PTR_TO_MAP_KEY ||
type == PTR_TO_SOCK_COMMON ||
(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
- type == PTR_TO_MEM;
+ (type == PTR_TO_MEM && !(reg->type & PTR_UNTRUSTED)) ||
+ type == CONST_PTR_TO_MAP;
}
static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
@@ -420,25 +428,6 @@ static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
return rec;
}
-static bool mask_raw_tp_reg_cond(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) {
- return reg->type == (PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL) &&
- bpf_prog_is_raw_tp(env->prog) && !reg->ref_obj_id;
-}
-
-static bool mask_raw_tp_reg(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
-{
- if (!mask_raw_tp_reg_cond(env, reg))
- return false;
- reg->type &= ~PTR_MAYBE_NULL;
- return true;
-}
-
-static void unmask_raw_tp_reg(struct bpf_reg_state *reg, bool result)
-{
- if (result)
- reg->type |= PTR_MAYBE_NULL;
-}
-
static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
{
struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
@@ -473,7 +462,7 @@ static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog)
static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
{
- return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
+ return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK);
}
static bool type_is_rdonly_mem(u32 type)
@@ -524,6 +513,7 @@ static bool is_callback_calling_kfunc(u32 btf_id);
static bool is_bpf_throw_kfunc(struct bpf_insn *insn);
static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id);
+static bool is_task_work_add_kfunc(u32 func_id);
static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
{
@@ -556,6 +546,21 @@ static bool is_async_callback_calling_insn(struct bpf_insn *insn)
(bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm));
}
+static bool is_async_cb_sleepable(struct bpf_verifier_env *env, struct bpf_insn *insn)
+{
+ /* bpf_timer callbacks are never sleepable. */
+ if (bpf_helper_call(insn) && insn->imm == BPF_FUNC_timer_set_callback)
+ return false;
+
+ /* bpf_wq and bpf_task_work callbacks are always sleepable. */
+ if (bpf_pseudo_kfunc_call(insn) && insn->off == 0 &&
+ (is_bpf_wq_set_callback_impl_kfunc(insn->imm) || is_task_work_add_kfunc(insn->imm)))
+ return true;
+
+ verifier_bug(env, "unhandled async callback in is_async_cb_sleepable");
+ return false;
+}
+
static bool is_may_goto_insn(struct bpf_insn *insn)
{
return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO;
@@ -596,6 +601,13 @@ static bool is_cmpxchg_insn(const struct bpf_insn *insn)
insn->imm == BPF_CMPXCHG;
}
+static bool is_atomic_load_insn(const struct bpf_insn *insn)
+{
+ return BPF_CLASS(insn->code) == BPF_STX &&
+ BPF_MODE(insn->code) == BPF_ATOMIC &&
+ insn->imm == BPF_LOAD_ACQ;
+}
+
static int __get_spi(s32 off)
{
return (-off - 1) / BPF_REG_SIZE;
@@ -660,6 +672,11 @@ static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
}
+static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
+{
+ return stack_slot_obj_get_spi(env, reg, "irq_flag", 1);
+}
+
static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
{
switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
@@ -671,6 +688,10 @@ static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
return BPF_DYNPTR_TYPE_SKB;
case DYNPTR_TYPE_XDP:
return BPF_DYNPTR_TYPE_XDP;
+ case DYNPTR_TYPE_SKB_META:
+ return BPF_DYNPTR_TYPE_SKB_META;
+ case DYNPTR_TYPE_FILE:
+ return BPF_DYNPTR_TYPE_FILE;
default:
return BPF_DYNPTR_TYPE_INVALID;
}
@@ -687,6 +708,10 @@ static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
return DYNPTR_TYPE_SKB;
case BPF_DYNPTR_TYPE_XDP:
return DYNPTR_TYPE_XDP;
+ case BPF_DYNPTR_TYPE_SKB_META:
+ return DYNPTR_TYPE_SKB_META;
+ case BPF_DYNPTR_TYPE_FILE:
+ return DYNPTR_TYPE_FILE;
default:
return 0;
}
@@ -694,7 +719,7 @@ static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
{
- return type == BPF_DYNPTR_TYPE_RINGBUF;
+ return type == BPF_DYNPTR_TYPE_RINGBUF || type == BPF_DYNPTR_TYPE_FILE;
}
static void __mark_dynptr_reg(struct bpf_reg_state *reg,
@@ -771,7 +796,7 @@ static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_
if (clone_ref_obj_id)
id = clone_ref_obj_id;
else
- id = acquire_reference_state(env, insn_idx);
+ id = acquire_reference(env, insn_idx);
if (id < 0)
return id;
@@ -780,8 +805,7 @@ static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_
state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
}
- state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
- state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
+ bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
return 0;
}
@@ -798,29 +822,7 @@ static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_stat
__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
- /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
- *
- * While we don't allow reading STACK_INVALID, it is still possible to
- * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
- * helpers or insns can do partial read of that part without failing,
- * but check_stack_range_initialized, check_stack_read_var_off, and
- * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
- * the slot conservatively. Hence we need to prevent those liveness
- * marking walks.
- *
- * This was not a problem before because STACK_INVALID is only set by
- * default (where the default reg state has its reg->parent as NULL), or
- * in clean_live_states after REG_LIVE_DONE (at which point
- * mark_reg_read won't walk reg->parent chain), but not randomly during
- * verifier state exploration (like we did above). Hence, for our case
- * parentage chain will still be live (i.e. reg->parent may be
- * non-NULL), while earlier reg->parent was NULL, so we need
- * REG_LIVE_WRITTEN to screen off read marker propagation when it is
- * done later on reads or by mark_dynptr_read as well to unnecessary
- * mark registers in verifier state.
- */
- state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
- state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
+ bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
}
static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
@@ -828,6 +830,15 @@ static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_re
struct bpf_func_state *state = func(env, reg);
int spi, ref_obj_id, i;
+ /*
+ * This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
+ * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
+ * is safe to do directly.
+ */
+ if (reg->type == CONST_PTR_TO_DYNPTR) {
+ verifier_bug(env, "CONST_PTR_TO_DYNPTR cannot be released");
+ return -EFAULT;
+ }
spi = dynptr_get_spi(env, reg);
if (spi < 0)
return spi;
@@ -859,7 +870,7 @@ static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_re
* dynptr
*/
if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
- verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
+ verifier_bug(env, "misconfigured ref_obj_id");
return -EFAULT;
}
if (state->stack[i].spilled_ptr.dynptr.first_slot)
@@ -929,9 +940,7 @@ static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
- /* Same reason as unmark_stack_slots_dynptr above */
- state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
- state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
+ bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
return 0;
}
@@ -1033,7 +1042,7 @@ static int mark_stack_slots_iter(struct bpf_verifier_env *env,
if (spi < 0)
return spi;
- id = acquire_reference_state(env, insn_idx);
+ id = acquire_reference(env, insn_idx);
if (id < 0)
return id;
@@ -1049,7 +1058,6 @@ static int mark_stack_slots_iter(struct bpf_verifier_env *env,
else
st->type |= PTR_UNTRUSTED;
}
- st->live |= REG_LIVE_WRITTEN;
st->ref_obj_id = i == 0 ? id : 0;
st->iter.btf = btf;
st->iter.btf_id = btf_id;
@@ -1059,6 +1067,7 @@ static int mark_stack_slots_iter(struct bpf_verifier_env *env,
for (j = 0; j < BPF_REG_SIZE; j++)
slot->slot_type[j] = STACK_ITER;
+ bpf_mark_stack_write(env, state->frameno, BIT(spi - i));
mark_stack_slot_scratched(env, spi - i);
}
@@ -1084,12 +1093,10 @@ static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
__mark_reg_not_init(env, st);
- /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
- st->live |= REG_LIVE_WRITTEN;
-
for (j = 0; j < BPF_REG_SIZE; j++)
slot->slot_type[j] = STACK_INVALID;
+ bpf_mark_stack_write(env, state->frameno, BIT(spi - i));
mark_stack_slot_scratched(env, spi - i);
}
@@ -1155,10 +1162,147 @@ static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_s
return 0;
}
+static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx);
+static int release_irq_state(struct bpf_verifier_state *state, int id);
+
+static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env,
+ struct bpf_kfunc_call_arg_meta *meta,
+ struct bpf_reg_state *reg, int insn_idx,
+ int kfunc_class)
+{
+ struct bpf_func_state *state = func(env, reg);
+ struct bpf_stack_state *slot;
+ struct bpf_reg_state *st;
+ int spi, i, id;
+
+ spi = irq_flag_get_spi(env, reg);
+ if (spi < 0)
+ return spi;
+
+ id = acquire_irq_state(env, insn_idx);
+ if (id < 0)
+ return id;
+
+ slot = &state->stack[spi];
+ st = &slot->spilled_ptr;
+
+ bpf_mark_stack_write(env, reg->frameno, BIT(spi));
+ __mark_reg_known_zero(st);
+ st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
+ st->ref_obj_id = id;
+ st->irq.kfunc_class = kfunc_class;
+
+ for (i = 0; i < BPF_REG_SIZE; i++)
+ slot->slot_type[i] = STACK_IRQ_FLAG;
+
+ mark_stack_slot_scratched(env, spi);
+ return 0;
+}
+
+static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
+ int kfunc_class)
+{
+ struct bpf_func_state *state = func(env, reg);
+ struct bpf_stack_state *slot;
+ struct bpf_reg_state *st;
+ int spi, i, err;
+
+ spi = irq_flag_get_spi(env, reg);
+ if (spi < 0)
+ return spi;
+
+ slot = &state->stack[spi];
+ st = &slot->spilled_ptr;
+
+ if (st->irq.kfunc_class != kfunc_class) {
+ const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
+ const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock";
+
+ verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n",
+ flag_kfunc, used_kfunc);
+ return -EINVAL;
+ }
+
+ err = release_irq_state(env->cur_state, st->ref_obj_id);
+ WARN_ON_ONCE(err && err != -EACCES);
+ if (err) {
+ int insn_idx = 0;
+
+ for (int i = 0; i < env->cur_state->acquired_refs; i++) {
+ if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) {
+ insn_idx = env->cur_state->refs[i].insn_idx;
+ break;
+ }
+ }
+
+ verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n",
+ env->cur_state->active_irq_id, insn_idx);
+ return err;
+ }
+
+ __mark_reg_not_init(env, st);
+
+ bpf_mark_stack_write(env, reg->frameno, BIT(spi));
+
+ for (i = 0; i < BPF_REG_SIZE; i++)
+ slot->slot_type[i] = STACK_INVALID;
+
+ mark_stack_slot_scratched(env, spi);
+ return 0;
+}
+
+static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
+{
+ struct bpf_func_state *state = func(env, reg);
+ struct bpf_stack_state *slot;
+ int spi, i;
+
+ /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
+ * will do check_mem_access to check and update stack bounds later, so
+ * return true for that case.
+ */
+ spi = irq_flag_get_spi(env, reg);
+ if (spi == -ERANGE)
+ return true;
+ if (spi < 0)
+ return false;
+
+ slot = &state->stack[spi];
+
+ for (i = 0; i < BPF_REG_SIZE; i++)
+ if (slot->slot_type[i] == STACK_IRQ_FLAG)
+ return false;
+ return true;
+}
+
+static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
+{
+ struct bpf_func_state *state = func(env, reg);
+ struct bpf_stack_state *slot;
+ struct bpf_reg_state *st;
+ int spi, i;
+
+ spi = irq_flag_get_spi(env, reg);
+ if (spi < 0)
+ return -EINVAL;
+
+ slot = &state->stack[spi];
+ st = &slot->spilled_ptr;
+
+ if (!st->ref_obj_id)
+ return -EINVAL;
+
+ for (i = 0; i < BPF_REG_SIZE; i++)
+ if (slot->slot_type[i] != STACK_IRQ_FLAG)
+ return -EINVAL;
+ return 0;
+}
+
/* Check if given stack slot is "special":
* - spilled register state (STACK_SPILL);
* - dynptr state (STACK_DYNPTR);
* - iter state (STACK_ITER).
+ * - irq flag state (STACK_IRQ_FLAG)
*/
static bool is_stack_slot_special(const struct bpf_stack_state *stack)
{
@@ -1168,6 +1312,7 @@ static bool is_stack_slot_special(const struct bpf_stack_state *stack)
case STACK_SPILL:
case STACK_DYNPTR:
case STACK_ITER:
+ case STACK_IRQ_FLAG:
return true;
case STACK_INVALID:
case STACK_MISC:
@@ -1202,14 +1347,17 @@ static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack)
/* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which
* case they are equivalent, or it's STACK_ZERO, in which case we preserve
* more precise STACK_ZERO.
- * Note, in uprivileged mode leaving STACK_INVALID is wrong, so we take
- * env->allow_ptr_leaks into account and force STACK_MISC, if necessary.
+ * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged
+ * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is
+ * unnecessary as both are considered equivalent when loading data and pruning,
+ * in case of unprivileged mode it will be incorrect to allow reads of invalid
+ * slots.
*/
static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype)
{
if (*stype == STACK_ZERO)
return;
- if (env->allow_ptr_leaks && *stype == STACK_INVALID)
+ if (*stype == STACK_INVALID)
return;
*stype = STACK_MISC;
}
@@ -1265,7 +1413,7 @@ static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
goto out;
alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
- new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
+ new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT);
if (!new_arr) {
kfree(arr);
return NULL;
@@ -1279,15 +1427,20 @@ out:
return arr ? arr : ZERO_SIZE_PTR;
}
-static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
+static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src)
{
dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
- sizeof(struct bpf_reference_state), GFP_KERNEL);
+ sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT);
if (!dst->refs)
return -ENOMEM;
- dst->active_locks = src->active_locks;
dst->acquired_refs = src->acquired_refs;
+ dst->active_locks = src->active_locks;
+ dst->active_preempt_locks = src->active_preempt_locks;
+ dst->active_rcu_locks = src->active_rcu_locks;
+ dst->active_irq_id = src->active_irq_id;
+ dst->active_lock_id = src->active_lock_id;
+ dst->active_lock_ptr = src->active_lock_ptr;
return 0;
}
@@ -1296,7 +1449,7 @@ static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_st
size_t n = src->allocated_stack / BPF_REG_SIZE;
dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
- GFP_KERNEL);
+ GFP_KERNEL_ACCOUNT);
if (!dst->stack)
return -ENOMEM;
@@ -1304,7 +1457,7 @@ static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_st
return 0;
}
-static int resize_reference_state(struct bpf_func_state *state, size_t n)
+static int resize_reference_state(struct bpf_verifier_state *state, size_t n)
{
state->refs = realloc_array(state->refs, state->acquired_refs, n,
sizeof(struct bpf_reference_state));
@@ -1347,94 +1500,151 @@ static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state
* On success, returns a valid pointer id to associate with the register
* On failure, returns a negative errno.
*/
-static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
+static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
{
- struct bpf_func_state *state = cur_func(env);
+ struct bpf_verifier_state *state = env->cur_state;
int new_ofs = state->acquired_refs;
- int id, err;
+ int err;
err = resize_reference_state(state, state->acquired_refs + 1);
if (err)
- return err;
- id = ++env->id_gen;
- state->refs[new_ofs].type = REF_TYPE_PTR;
- state->refs[new_ofs].id = id;
+ return NULL;
state->refs[new_ofs].insn_idx = insn_idx;
- return id;
+ return &state->refs[new_ofs];
+}
+
+static int acquire_reference(struct bpf_verifier_env *env, int insn_idx)
+{
+ struct bpf_reference_state *s;
+
+ s = acquire_reference_state(env, insn_idx);
+ if (!s)
+ return -ENOMEM;
+ s->type = REF_TYPE_PTR;
+ s->id = ++env->id_gen;
+ return s->id;
}
static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type,
int id, void *ptr)
{
- struct bpf_func_state *state = cur_func(env);
- int new_ofs = state->acquired_refs;
- int err;
+ struct bpf_verifier_state *state = env->cur_state;
+ struct bpf_reference_state *s;
- err = resize_reference_state(state, state->acquired_refs + 1);
- if (err)
- return err;
- state->refs[new_ofs].type = type;
- state->refs[new_ofs].id = id;
- state->refs[new_ofs].insn_idx = insn_idx;
- state->refs[new_ofs].ptr = ptr;
+ s = acquire_reference_state(env, insn_idx);
+ if (!s)
+ return -ENOMEM;
+ s->type = type;
+ s->id = id;
+ s->ptr = ptr;
state->active_locks++;
+ state->active_lock_id = id;
+ state->active_lock_ptr = ptr;
return 0;
}
-/* release function corresponding to acquire_reference_state(). Idempotent. */
-static int release_reference_state(struct bpf_func_state *state, int ptr_id)
+static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx)
+{
+ struct bpf_verifier_state *state = env->cur_state;
+ struct bpf_reference_state *s;
+
+ s = acquire_reference_state(env, insn_idx);
+ if (!s)
+ return -ENOMEM;
+ s->type = REF_TYPE_IRQ;
+ s->id = ++env->id_gen;
+
+ state->active_irq_id = s->id;
+ return s->id;
+}
+
+static void release_reference_state(struct bpf_verifier_state *state, int idx)
{
- int i, last_idx;
+ int last_idx;
+ size_t rem;
+ /* IRQ state requires the relative ordering of elements remaining the
+ * same, since it relies on the refs array to behave as a stack, so that
+ * it can detect out-of-order IRQ restore. Hence use memmove to shift
+ * the array instead of swapping the final element into the deleted idx.
+ */
last_idx = state->acquired_refs - 1;
+ rem = state->acquired_refs - idx - 1;
+ if (last_idx && idx != last_idx)
+ memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem);
+ memset(&state->refs[last_idx], 0, sizeof(*state->refs));
+ state->acquired_refs--;
+ return;
+}
+
+static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id)
+{
+ int i;
+
+ for (i = 0; i < state->acquired_refs; i++)
+ if (state->refs[i].id == ptr_id)
+ return true;
+
+ return false;
+}
+
+static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr)
+{
+ void *prev_ptr = NULL;
+ u32 prev_id = 0;
+ int i;
+
for (i = 0; i < state->acquired_refs; i++) {
- if (state->refs[i].type != REF_TYPE_PTR)
- continue;
- if (state->refs[i].id == ptr_id) {
- if (last_idx && i != last_idx)
- memcpy(&state->refs[i], &state->refs[last_idx],
- sizeof(*state->refs));
- memset(&state->refs[last_idx], 0, sizeof(*state->refs));
- state->acquired_refs--;
+ if (state->refs[i].type == type && state->refs[i].id == id &&
+ state->refs[i].ptr == ptr) {
+ release_reference_state(state, i);
+ state->active_locks--;
+ /* Reassign active lock (id, ptr). */
+ state->active_lock_id = prev_id;
+ state->active_lock_ptr = prev_ptr;
return 0;
}
+ if (state->refs[i].type & REF_TYPE_LOCK_MASK) {
+ prev_id = state->refs[i].id;
+ prev_ptr = state->refs[i].ptr;
+ }
}
return -EINVAL;
}
-static int release_lock_state(struct bpf_func_state *state, int type, int id, void *ptr)
+static int release_irq_state(struct bpf_verifier_state *state, int id)
{
- int i, last_idx;
+ u32 prev_id = 0;
+ int i;
+
+ if (id != state->active_irq_id)
+ return -EACCES;
- last_idx = state->acquired_refs - 1;
for (i = 0; i < state->acquired_refs; i++) {
- if (state->refs[i].type != type)
+ if (state->refs[i].type != REF_TYPE_IRQ)
continue;
- if (state->refs[i].id == id && state->refs[i].ptr == ptr) {
- if (last_idx && i != last_idx)
- memcpy(&state->refs[i], &state->refs[last_idx],
- sizeof(*state->refs));
- memset(&state->refs[last_idx], 0, sizeof(*state->refs));
- state->acquired_refs--;
- state->active_locks--;
+ if (state->refs[i].id == id) {
+ release_reference_state(state, i);
+ state->active_irq_id = prev_id;
return 0;
+ } else {
+ prev_id = state->refs[i].id;
}
}
return -EINVAL;
}
-static struct bpf_reference_state *find_lock_state(struct bpf_verifier_env *env, enum ref_state_type type,
+static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type,
int id, void *ptr)
{
- struct bpf_func_state *state = cur_func(env);
int i;
for (i = 0; i < state->acquired_refs; i++) {
struct bpf_reference_state *s = &state->refs[i];
- if (s->type == REF_TYPE_PTR || s->type != type)
+ if (!(s->type & type))
continue;
if (s->id == id && s->ptr == ptr)
@@ -1443,15 +1653,29 @@ static struct bpf_reference_state *find_lock_state(struct bpf_verifier_env *env,
return NULL;
}
+static void update_peak_states(struct bpf_verifier_env *env)
+{
+ u32 cur_states;
+
+ cur_states = env->explored_states_size + env->free_list_size + env->num_backedges;
+ env->peak_states = max(env->peak_states, cur_states);
+}
+
static void free_func_state(struct bpf_func_state *state)
{
if (!state)
return;
- kfree(state->refs);
kfree(state->stack);
kfree(state);
}
+static void clear_jmp_history(struct bpf_verifier_state *state)
+{
+ kfree(state->jmp_history);
+ state->jmp_history = NULL;
+ state->jmp_history_cnt = 0;
+}
+
static void free_verifier_state(struct bpf_verifier_state *state,
bool free_self)
{
@@ -1461,22 +1685,50 @@ static void free_verifier_state(struct bpf_verifier_state *state,
free_func_state(state->frame[i]);
state->frame[i] = NULL;
}
+ kfree(state->refs);
+ clear_jmp_history(state);
if (free_self)
kfree(state);
}
+/* struct bpf_verifier_state->parent refers to states
+ * that are in either of env->{expored_states,free_list}.
+ * In both cases the state is contained in struct bpf_verifier_state_list.
+ */
+static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st)
+{
+ if (st->parent)
+ return container_of(st->parent, struct bpf_verifier_state_list, state);
+ return NULL;
+}
+
+static bool incomplete_read_marks(struct bpf_verifier_env *env,
+ struct bpf_verifier_state *st);
+
+/* A state can be freed if it is no longer referenced:
+ * - is in the env->free_list;
+ * - has no children states;
+ */
+static void maybe_free_verifier_state(struct bpf_verifier_env *env,
+ struct bpf_verifier_state_list *sl)
+{
+ if (!sl->in_free_list
+ || sl->state.branches != 0
+ || incomplete_read_marks(env, &sl->state))
+ return;
+ list_del(&sl->node);
+ free_verifier_state(&sl->state, false);
+ kfree(sl);
+ env->free_list_size--;
+}
+
/* copy verifier state from src to dst growing dst stack space
* when necessary to accommodate larger src stack
*/
static int copy_func_state(struct bpf_func_state *dst,
const struct bpf_func_state *src)
{
- int err;
-
- memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
- err = copy_reference_state(dst, src);
- if (err)
- return err;
+ memcpy(dst, src, offsetof(struct bpf_func_state, stack));
return copy_stack_state(dst, src);
}
@@ -1486,6 +1738,13 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state,
struct bpf_func_state *dst;
int i, err;
+ dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
+ src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
+ GFP_KERNEL_ACCOUNT);
+ if (!dst_state->jmp_history)
+ return -ENOMEM;
+ dst_state->jmp_history_cnt = src->jmp_history_cnt;
+
/* if dst has more stack frames then src frame, free them, this is also
* necessary in case of exceptional exits using bpf_throw.
*/
@@ -1493,25 +1752,25 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state,
free_func_state(dst_state->frame[i]);
dst_state->frame[i] = NULL;
}
+ err = copy_reference_state(dst_state, src);
+ if (err)
+ return err;
dst_state->speculative = src->speculative;
- dst_state->active_rcu_lock = src->active_rcu_lock;
- dst_state->active_preempt_lock = src->active_preempt_lock;
dst_state->in_sleepable = src->in_sleepable;
+ dst_state->cleaned = src->cleaned;
dst_state->curframe = src->curframe;
dst_state->branches = src->branches;
dst_state->parent = src->parent;
dst_state->first_insn_idx = src->first_insn_idx;
dst_state->last_insn_idx = src->last_insn_idx;
- dst_state->insn_hist_start = src->insn_hist_start;
- dst_state->insn_hist_end = src->insn_hist_end;
dst_state->dfs_depth = src->dfs_depth;
dst_state->callback_unroll_depth = src->callback_unroll_depth;
- dst_state->used_as_loop_entry = src->used_as_loop_entry;
dst_state->may_goto_depth = src->may_goto_depth;
+ dst_state->equal_state = src->equal_state;
for (i = 0; i <= src->curframe; i++) {
dst = dst_state->frame[i];
if (!dst) {
- dst = kzalloc(sizeof(*dst), GFP_KERNEL);
+ dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT);
if (!dst)
return -ENOMEM;
dst_state->frame[i] = dst;
@@ -1528,7 +1787,7 @@ static u32 state_htab_size(struct bpf_verifier_env *env)
return env->prog->len;
}
-static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
+static struct list_head *explored_state(struct bpf_verifier_env *env, int idx)
{
struct bpf_verifier_state *cur = env->cur_state;
struct bpf_func_state *state = cur->frame[cur->curframe];
@@ -1550,186 +1809,264 @@ static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_sta
return true;
}
-/* Open coded iterators allow back-edges in the state graph in order to
- * check unbounded loops that iterators.
- *
- * In is_state_visited() it is necessary to know if explored states are
- * part of some loops in order to decide whether non-exact states
- * comparison could be used:
- * - non-exact states comparison establishes sub-state relation and uses
- * read and precision marks to do so, these marks are propagated from
- * children states and thus are not guaranteed to be final in a loop;
- * - exact states comparison just checks if current and explored states
- * are identical (and thus form a back-edge).
- *
- * Paper "A New Algorithm for Identifying Loops in Decompilation"
- * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
- * algorithm for loop structure detection and gives an overview of
- * relevant terminology. It also has helpful illustrations.
- *
- * [1] https://api.semanticscholar.org/CorpusID:15784067
- *
- * We use a similar algorithm but because loop nested structure is
- * irrelevant for verifier ours is significantly simpler and resembles
- * strongly connected components algorithm from Sedgewick's textbook.
- *
- * Define topmost loop entry as a first node of the loop traversed in a
- * depth first search starting from initial state. The goal of the loop
- * tracking algorithm is to associate topmost loop entries with states
- * derived from these entries.
- *
- * For each step in the DFS states traversal algorithm needs to identify
- * the following situations:
- *
- * initial initial initial
- * | | |
- * V V V
- * ... ... .---------> hdr
- * | | | |
- * V V | V
- * cur .-> succ | .------...
- * | | | | | |
- * V | V | V V
- * succ '-- cur | ... ...
- * | | |
- * | V V
- * | succ <- cur
- * | |
- * | V
- * | ...
- * | |
- * '----'
- *
- * (A) successor state of cur (B) successor state of cur or it's entry
- * not yet traversed are in current DFS path, thus cur and succ
- * are members of the same outermost loop
- *
- * initial initial
- * | |
- * V V
- * ... ...
- * | |
- * V V
- * .------... .------...
- * | | | |
- * V V V V
- * .-> hdr ... ... ...
- * | | | | |
- * | V V V V
- * | succ <- cur succ <- cur
- * | | |
- * | V V
- * | ... ...
- * | | |
- * '----' exit
- *
- * (C) successor state of cur is a part of some loop but this loop
- * does not include cur or successor state is not in a loop at all.
- *
- * Algorithm could be described as the following python code:
- *
- * traversed = set() # Set of traversed nodes
- * entries = {} # Mapping from node to loop entry
- * depths = {} # Depth level assigned to graph node
- * path = set() # Current DFS path
- *
- * # Find outermost loop entry known for n
- * def get_loop_entry(n):
- * h = entries.get(n, None)
- * while h in entries and entries[h] != h:
- * h = entries[h]
- * return h
- *
- * # Update n's loop entry if h's outermost entry comes
- * # before n's outermost entry in current DFS path.
- * def update_loop_entry(n, h):
- * n1 = get_loop_entry(n) or n
- * h1 = get_loop_entry(h) or h
- * if h1 in path and depths[h1] <= depths[n1]:
- * entries[n] = h1
+/* Return IP for a given frame in a call stack */
+static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame)
+{
+ return frame == st->curframe
+ ? st->insn_idx
+ : st->frame[frame + 1]->callsite;
+}
+
+/* For state @st look for a topmost frame with frame_insn_idx() in some SCC,
+ * if such frame exists form a corresponding @callchain as an array of
+ * call sites leading to this frame and SCC id.
+ * E.g.:
*
- * def dfs(n, depth):
- * traversed.add(n)
- * path.add(n)
- * depths[n] = depth
- * for succ in G.successors(n):
- * if succ not in traversed:
- * # Case A: explore succ and update cur's loop entry
- * # only if succ's entry is in current DFS path.
- * dfs(succ, depth + 1)
- * h = get_loop_entry(succ)
- * update_loop_entry(n, h)
- * else:
- * # Case B or C depending on `h1 in path` check in update_loop_entry().
- * update_loop_entry(n, succ)
- * path.remove(n)
+ * void foo() { A: loop {... SCC#1 ...}; }
+ * void bar() { B: loop { C: foo(); ... SCC#2 ... }
+ * D: loop { E: foo(); ... SCC#3 ... } }
+ * void main() { F: bar(); }
*
- * To adapt this algorithm for use with verifier:
- * - use st->branch == 0 as a signal that DFS of succ had been finished
- * and cur's loop entry has to be updated (case A), handle this in
- * update_branch_counts();
- * - use st->branch > 0 as a signal that st is in the current DFS path;
- * - handle cases B and C in is_state_visited();
- * - update topmost loop entry for intermediate states in get_loop_entry().
+ * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending
+ * on @st frame call sites being (F,C,A) or (F,E,A).
*/
-static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
+static bool compute_scc_callchain(struct bpf_verifier_env *env,
+ struct bpf_verifier_state *st,
+ struct bpf_scc_callchain *callchain)
{
- struct bpf_verifier_state *topmost = st->loop_entry, *old;
+ u32 i, scc, insn_idx;
- while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
- topmost = topmost->loop_entry;
- /* Update loop entries for intermediate states to avoid this
- * traversal in future get_loop_entry() calls.
- */
- while (st && st->loop_entry != topmost) {
- old = st->loop_entry;
- st->loop_entry = topmost;
- st = old;
+ memset(callchain, 0, sizeof(*callchain));
+ for (i = 0; i <= st->curframe; i++) {
+ insn_idx = frame_insn_idx(st, i);
+ scc = env->insn_aux_data[insn_idx].scc;
+ if (scc) {
+ callchain->scc = scc;
+ break;
+ } else if (i < st->curframe) {
+ callchain->callsites[i] = insn_idx;
+ } else {
+ return false;
+ }
}
- return topmost;
+ return true;
}
-static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
+/* Check if bpf_scc_visit instance for @callchain exists. */
+static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env,
+ struct bpf_scc_callchain *callchain)
{
- struct bpf_verifier_state *cur1, *hdr1;
+ struct bpf_scc_info *info = env->scc_info[callchain->scc];
+ struct bpf_scc_visit *visits = info->visits;
+ u32 i;
- cur1 = get_loop_entry(cur) ?: cur;
- hdr1 = get_loop_entry(hdr) ?: hdr;
- /* The head1->branches check decides between cases B and C in
- * comment for get_loop_entry(). If hdr1->branches == 0 then
- * head's topmost loop entry is not in current DFS path,
- * hence 'cur' and 'hdr' are not in the same loop and there is
- * no need to update cur->loop_entry.
- */
- if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
- cur->loop_entry = hdr;
- hdr->used_as_loop_entry = true;
+ if (!info)
+ return NULL;
+ for (i = 0; i < info->num_visits; i++)
+ if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0)
+ return &visits[i];
+ return NULL;
+}
+
+/* Allocate a new bpf_scc_visit instance corresponding to @callchain.
+ * Allocated instances are alive for a duration of the do_check_common()
+ * call and are freed by free_states().
+ */
+static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env,
+ struct bpf_scc_callchain *callchain)
+{
+ struct bpf_scc_visit *visit;
+ struct bpf_scc_info *info;
+ u32 scc, num_visits;
+ u64 new_sz;
+
+ scc = callchain->scc;
+ info = env->scc_info[scc];
+ num_visits = info ? info->num_visits : 0;
+ new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1);
+ info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT);
+ if (!info)
+ return NULL;
+ env->scc_info[scc] = info;
+ info->num_visits = num_visits + 1;
+ visit = &info->visits[num_visits];
+ memset(visit, 0, sizeof(*visit));
+ memcpy(&visit->callchain, callchain, sizeof(*callchain));
+ return visit;
+}
+
+/* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */
+static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain)
+{
+ char *buf = env->tmp_str_buf;
+ int i, delta = 0;
+
+ delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "(");
+ for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) {
+ if (!callchain->callsites[i])
+ break;
+ delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,",
+ callchain->callsites[i]);
}
+ delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc);
+ return env->tmp_str_buf;
}
-static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
+/* If callchain for @st exists (@st is in some SCC), ensure that
+ * bpf_scc_visit instance for this callchain exists.
+ * If instance does not exist or is empty, assign visit->entry_state to @st.
+ */
+static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
{
- while (st) {
- u32 br = --st->branches;
+ struct bpf_scc_callchain *callchain = &env->callchain_buf;
+ struct bpf_scc_visit *visit;
+
+ if (!compute_scc_callchain(env, st, callchain))
+ return 0;
+ visit = scc_visit_lookup(env, callchain);
+ visit = visit ?: scc_visit_alloc(env, callchain);
+ if (!visit)
+ return -ENOMEM;
+ if (!visit->entry_state) {
+ visit->entry_state = st;
+ if (env->log.level & BPF_LOG_LEVEL2)
+ verbose(env, "SCC enter %s\n", format_callchain(env, callchain));
+ }
+ return 0;
+}
- /* br == 0 signals that DFS exploration for 'st' is finished,
- * thus it is necessary to update parent's loop entry if it
- * turned out that st is a part of some loop.
- * This is a part of 'case A' in get_loop_entry() comment.
+static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit);
+
+/* If callchain for @st exists (@st is in some SCC), make it empty:
+ * - set visit->entry_state to NULL;
+ * - flush accumulated backedges.
+ */
+static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
+{
+ struct bpf_scc_callchain *callchain = &env->callchain_buf;
+ struct bpf_scc_visit *visit;
+
+ if (!compute_scc_callchain(env, st, callchain))
+ return 0;
+ visit = scc_visit_lookup(env, callchain);
+ if (!visit) {
+ /*
+ * If path traversal stops inside an SCC, corresponding bpf_scc_visit
+ * must exist for non-speculative paths. For non-speculative paths
+ * traversal stops when:
+ * a. Verification error is found, maybe_exit_scc() is not called.
+ * b. Top level BPF_EXIT is reached. Top level BPF_EXIT is not a member
+ * of any SCC.
+ * c. A checkpoint is reached and matched. Checkpoints are created by
+ * is_state_visited(), which calls maybe_enter_scc(), which allocates
+ * bpf_scc_visit instances for checkpoints within SCCs.
+ * (c) is the only case that can reach this point.
*/
- if (br == 0 && st->parent && st->loop_entry)
- update_loop_entry(st->parent, st->loop_entry);
+ if (!st->speculative) {
+ verifier_bug(env, "scc exit: no visit info for call chain %s",
+ format_callchain(env, callchain));
+ return -EFAULT;
+ }
+ return 0;
+ }
+ if (visit->entry_state != st)
+ return 0;
+ if (env->log.level & BPF_LOG_LEVEL2)
+ verbose(env, "SCC exit %s\n", format_callchain(env, callchain));
+ visit->entry_state = NULL;
+ env->num_backedges -= visit->num_backedges;
+ visit->num_backedges = 0;
+ update_peak_states(env);
+ return propagate_backedges(env, visit);
+}
+
+/* Lookup an bpf_scc_visit instance corresponding to @st callchain
+ * and add @backedge to visit->backedges. @st callchain must exist.
+ */
+static int add_scc_backedge(struct bpf_verifier_env *env,
+ struct bpf_verifier_state *st,
+ struct bpf_scc_backedge *backedge)
+{
+ struct bpf_scc_callchain *callchain = &env->callchain_buf;
+ struct bpf_scc_visit *visit;
+
+ if (!compute_scc_callchain(env, st, callchain)) {
+ verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d",
+ st->insn_idx);
+ return -EFAULT;
+ }
+ visit = scc_visit_lookup(env, callchain);
+ if (!visit) {
+ verifier_bug(env, "add backedge: no visit info for call chain %s",
+ format_callchain(env, callchain));
+ return -EFAULT;
+ }
+ if (env->log.level & BPF_LOG_LEVEL2)
+ verbose(env, "SCC backedge %s\n", format_callchain(env, callchain));
+ backedge->next = visit->backedges;
+ visit->backedges = backedge;
+ visit->num_backedges++;
+ env->num_backedges++;
+ update_peak_states(env);
+ return 0;
+}
+
+/* bpf_reg_state->live marks for registers in a state @st are incomplete,
+ * if state @st is in some SCC and not all execution paths starting at this
+ * SCC are fully explored.
+ */
+static bool incomplete_read_marks(struct bpf_verifier_env *env,
+ struct bpf_verifier_state *st)
+{
+ struct bpf_scc_callchain *callchain = &env->callchain_buf;
+ struct bpf_scc_visit *visit;
+
+ if (!compute_scc_callchain(env, st, callchain))
+ return false;
+ visit = scc_visit_lookup(env, callchain);
+ if (!visit)
+ return false;
+ return !!visit->backedges;
+}
+
+static void free_backedges(struct bpf_scc_visit *visit)
+{
+ struct bpf_scc_backedge *backedge, *next;
+
+ for (backedge = visit->backedges; backedge; backedge = next) {
+ free_verifier_state(&backedge->state, false);
+ next = backedge->next;
+ kfree(backedge);
+ }
+ visit->backedges = NULL;
+}
+
+static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
+{
+ struct bpf_verifier_state_list *sl = NULL, *parent_sl;
+ struct bpf_verifier_state *parent;
+ int err;
+
+ while (st) {
+ u32 br = --st->branches;
- /* WARN_ON(br > 1) technically makes sense here,
+ /* verifier_bug_if(br > 1, ...) technically makes sense here,
* but see comment in push_stack(), hence:
*/
- WARN_ONCE((int)br < 0,
- "BUG update_branch_counts:branches_to_explore=%d\n",
- br);
+ verifier_bug_if((int)br < 0, env, "%s:branches_to_explore=%d", __func__, br);
if (br)
break;
- st = st->parent;
+ err = maybe_exit_scc(env, st);
+ if (err)
+ return err;
+ parent = st->parent;
+ parent_sl = state_parent_as_list(st);
+ if (sl)
+ maybe_free_verifier_state(env, sl);
+ st = parent;
+ sl = parent_sl;
}
+ return 0;
}
static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
@@ -1761,6 +2098,18 @@ static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
return 0;
}
+static bool error_recoverable_with_nospec(int err)
+{
+ /* Should only return true for non-fatal errors that are allowed to
+ * occur during speculative verification. For these we can insert a
+ * nospec and the program might still be accepted. Do not include
+ * something like ENOMEM because it is likely to re-occur for the next
+ * architectural path once it has been recovered-from in all speculative
+ * paths.
+ */
+ return err == -EPERM || err == -EACCES || err == -EINVAL;
+}
+
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx,
bool speculative)
@@ -1769,9 +2118,9 @@ static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
struct bpf_verifier_stack_elem *elem;
int err;
- elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
+ elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT);
if (!elem)
- goto err;
+ return ERR_PTR(-ENOMEM);
elem->insn_idx = insn_idx;
elem->prev_insn_idx = prev_insn_idx;
@@ -1781,12 +2130,12 @@ static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
env->stack_size++;
err = copy_verifier_state(&elem->st, cur);
if (err)
- goto err;
+ return ERR_PTR(-ENOMEM);
elem->st.speculative |= speculative;
if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
verbose(env, "The sequence of %d jumps is too complex.\n",
env->stack_size);
- goto err;
+ return ERR_PTR(-E2BIG);
}
if (elem->st.parent) {
++elem->st.parent->branches;
@@ -1801,12 +2150,6 @@ static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
*/
}
return &elem->st;
-err:
- free_verifier_state(env->cur_state, true);
- env->cur_state = NULL;
- /* pop all elements and return */
- while (!pop_stack(env, NULL, NULL, false));
- return NULL;
}
#define CALLER_SAVED_REGS 6
@@ -1908,10 +2251,10 @@ static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
/* transfer reg's id which is unique for every map_lookup_elem
* as UID of the inner map.
*/
- if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
- reg->map_uid = reg->id;
- if (btf_record_has_field(map->inner_map_meta->record, BPF_WORKQUEUE))
+ if (btf_record_has_field(map->inner_map_meta->record,
+ BPF_TIMER | BPF_WORKQUEUE | BPF_TASK_WORK)) {
reg->map_uid = reg->id;
+ }
} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
reg->type = PTR_TO_XDP_SOCK;
} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
@@ -1950,7 +2293,8 @@ static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
{
return base_type(reg->type) == PTR_TO_MEM &&
- (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
+ (reg->type &
+ (DYNPTR_TYPE_SKB | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META));
}
/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
@@ -2199,6 +2543,58 @@ static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
if ((u64)reg->smin_value <= (u64)reg->smax_value) {
reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value);
reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value);
+ } else {
+ /* If the s64 range crosses the sign boundary, then it's split
+ * between the beginning and end of the U64 domain. In that
+ * case, we can derive new bounds if the u64 range overlaps
+ * with only one end of the s64 range.
+ *
+ * In the following example, the u64 range overlaps only with
+ * positive portion of the s64 range.
+ *
+ * 0 U64_MAX
+ * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] |
+ * |----------------------------|----------------------------|
+ * |xxxxx s64 range xxxxxxxxx] [xxxxxxx|
+ * 0 S64_MAX S64_MIN -1
+ *
+ * We can thus derive the following new s64 and u64 ranges.
+ *
+ * 0 U64_MAX
+ * | [xxxxxx u64 range xxxxx] |
+ * |----------------------------|----------------------------|
+ * | [xxxxxx s64 range xxxxx] |
+ * 0 S64_MAX S64_MIN -1
+ *
+ * If they overlap in two places, we can't derive anything
+ * because reg_state can't represent two ranges per numeric
+ * domain.
+ *
+ * 0 U64_MAX
+ * | [xxxxxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxxxxx] |
+ * |----------------------------|----------------------------|
+ * |xxxxx s64 range xxxxxxxxx] [xxxxxxxxxx|
+ * 0 S64_MAX S64_MIN -1
+ *
+ * The first condition below corresponds to the first diagram
+ * above.
+ */
+ if (reg->umax_value < (u64)reg->smin_value) {
+ reg->smin_value = (s64)reg->umin_value;
+ reg->umax_value = min_t(u64, reg->umax_value, reg->smax_value);
+ } else if ((u64)reg->smax_value < reg->umin_value) {
+ /* This second condition considers the case where the u64 range
+ * overlaps with the negative portion of the s64 range:
+ *
+ * 0 U64_MAX
+ * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] |
+ * |----------------------------|----------------------------|
+ * |xxxxxxxxx] [xxxxxxxxxxxx s64 range |
+ * 0 S64_MAX S64_MIN -1
+ */
+ reg->smax_value = (s64)reg->umax_value;
+ reg->umin_value = max_t(u64, reg->umin_value, reg->smin_value);
+ }
}
}
@@ -2230,20 +2626,6 @@ static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg)
reg->smin_value = max_t(s64, reg->smin_value, new_smin);
reg->smax_value = min_t(s64, reg->smax_value, new_smax);
- /* if s32 can be treated as valid u32 range, we can use it as well */
- if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) {
- /* s32 -> u64 tightening */
- new_umin = (reg->umin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
- new_umax = (reg->umax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
- reg->umin_value = max_t(u64, reg->umin_value, new_umin);
- reg->umax_value = min_t(u64, reg->umax_value, new_umax);
- /* s32 -> s64 tightening */
- new_smin = (reg->smin_value & ~0xffffffffULL) | (u32)reg->s32_min_value;
- new_smax = (reg->smax_value & ~0xffffffffULL) | (u32)reg->s32_max_value;
- reg->smin_value = max_t(s64, reg->smin_value, new_smin);
- reg->smax_value = min_t(s64, reg->smax_value, new_smax);
- }
-
/* Here we would like to handle a special case after sign extending load,
* when upper bits for a 64-bit range are all 1s or all 0s.
*
@@ -2310,6 +2692,7 @@ static void reg_bounds_sync(struct bpf_reg_state *reg)
/* We might have learned something about the sign bit. */
__reg_deduce_bounds(reg);
__reg_deduce_bounds(reg);
+ __reg_deduce_bounds(reg);
/* We might have learned some bits from the bounds. */
__reg_bound_offset(reg);
/* Intersecting with the old var_off might have improved our bounds
@@ -2356,13 +2739,13 @@ static int reg_bounds_sanity_check(struct bpf_verifier_env *env,
return 0;
out:
- verbose(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
- "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)\n",
- ctx, msg, reg->umin_value, reg->umax_value,
- reg->smin_value, reg->smax_value,
- reg->u32_min_value, reg->u32_max_value,
- reg->s32_min_value, reg->s32_max_value,
- reg->var_off.value, reg->var_off.mask);
+ verifier_bug(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] "
+ "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)",
+ ctx, msg, reg->umin_value, reg->umax_value,
+ reg->smin_value, reg->smax_value,
+ reg->u32_min_value, reg->u32_max_value,
+ reg->s32_min_value, reg->s32_max_value,
+ reg->var_off.value, reg->var_off.mask);
if (env->test_reg_invariants)
return -EFAULT;
__mark_reg_unbounded(reg);
@@ -2472,22 +2855,33 @@ static void mark_reg_not_init(struct bpf_verifier_env *env,
__mark_reg_not_init(env, regs + regno);
}
-static void mark_btf_ld_reg(struct bpf_verifier_env *env,
- struct bpf_reg_state *regs, u32 regno,
- enum bpf_reg_type reg_type,
- struct btf *btf, u32 btf_id,
- enum bpf_type_flag flag)
+static int mark_btf_ld_reg(struct bpf_verifier_env *env,
+ struct bpf_reg_state *regs, u32 regno,
+ enum bpf_reg_type reg_type,
+ struct btf *btf, u32 btf_id,
+ enum bpf_type_flag flag)
{
- if (reg_type == SCALAR_VALUE) {
+ switch (reg_type) {
+ case SCALAR_VALUE:
mark_reg_unknown(env, regs, regno);
- return;
+ return 0;
+ case PTR_TO_BTF_ID:
+ mark_reg_known_zero(env, regs, regno);
+ regs[regno].type = PTR_TO_BTF_ID | flag;
+ regs[regno].btf = btf;
+ regs[regno].btf_id = btf_id;
+ if (type_may_be_null(flag))
+ regs[regno].id = ++env->id_gen;
+ return 0;
+ case PTR_TO_MEM:
+ mark_reg_known_zero(env, regs, regno);
+ regs[regno].type = PTR_TO_MEM | flag;
+ regs[regno].mem_size = 0;
+ return 0;
+ default:
+ verifier_bug(env, "unexpected reg_type %d in %s\n", reg_type, __func__);
+ return -EFAULT;
}
- mark_reg_known_zero(env, regs, regno);
- regs[regno].type = PTR_TO_BTF_ID | flag;
- regs[regno].btf = btf;
- regs[regno].btf_id = btf_id;
- if (type_may_be_null(flag))
- regs[regno].id = ++env->id_gen;
}
#define DEF_NOT_SUBREG (0)
@@ -2499,8 +2893,6 @@ static void init_reg_state(struct bpf_verifier_env *env,
for (i = 0; i < MAX_BPF_REG; i++) {
mark_reg_not_init(env, regs, i);
- regs[i].live = REG_LIVE_NONE;
- regs[i].parent = NULL;
regs[i].subreg_def = DEF_NOT_SUBREG;
}
@@ -2536,9 +2928,9 @@ static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
struct bpf_verifier_stack_elem *elem;
struct bpf_func_state *frame;
- elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
+ elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT);
if (!elem)
- goto err;
+ return ERR_PTR(-ENOMEM);
elem->insn_idx = insn_idx;
elem->prev_insn_idx = prev_insn_idx;
@@ -2550,35 +2942,24 @@ static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
verbose(env,
"The sequence of %d jumps is too complex for async cb.\n",
env->stack_size);
- goto err;
+ return ERR_PTR(-E2BIG);
}
/* Unlike push_stack() do not copy_verifier_state().
* The caller state doesn't matter.
* This is async callback. It starts in a fresh stack.
* Initialize it similar to do_check_common().
- * But we do need to make sure to not clobber insn_hist, so we keep
- * chaining insn_hist_start/insn_hist_end indices as for a normal
- * child state.
*/
elem->st.branches = 1;
elem->st.in_sleepable = is_sleepable;
- elem->st.insn_hist_start = env->cur_state->insn_hist_end;
- elem->st.insn_hist_end = elem->st.insn_hist_start;
- frame = kzalloc(sizeof(*frame), GFP_KERNEL);
+ frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT);
if (!frame)
- goto err;
+ return ERR_PTR(-ENOMEM);
init_func_state(env, frame,
BPF_MAIN_FUNC /* callsite */,
0 /* frameno within this callchain */,
subprog /* subprog number within this prog */);
elem->st.frame[0] = frame;
return &elem->st;
-err:
- free_verifier_state(env->cur_state, true);
- env->cur_state = NULL;
- /* pop all elements and return */
- while (!pop_stack(env, NULL, NULL, false));
- return NULL;
}
@@ -2594,16 +2975,36 @@ static int cmp_subprogs(const void *a, const void *b)
((struct bpf_subprog_info *)b)->start;
}
+/* Find subprogram that contains instruction at 'off' */
+struct bpf_subprog_info *bpf_find_containing_subprog(struct bpf_verifier_env *env, int off)
+{
+ struct bpf_subprog_info *vals = env->subprog_info;
+ int l, r, m;
+
+ if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0)
+ return NULL;
+
+ l = 0;
+ r = env->subprog_cnt - 1;
+ while (l < r) {
+ m = l + (r - l + 1) / 2;
+ if (vals[m].start <= off)
+ l = m;
+ else
+ r = m - 1;
+ }
+ return &vals[l];
+}
+
+/* Find subprogram that starts exactly at 'off' */
static int find_subprog(struct bpf_verifier_env *env, int off)
{
struct bpf_subprog_info *p;
- p = bsearch(&off, env->subprog_info, env->subprog_cnt,
- sizeof(env->subprog_info[0]), cmp_subprogs);
- if (!p)
+ p = bpf_find_containing_subprog(env, off);
+ if (!p || p->start != off)
return -ENOENT;
return p - env->subprog_info;
-
}
static int add_subprog(struct bpf_verifier_env *env, int off)
@@ -2723,6 +3124,9 @@ struct bpf_kfunc_btf_tab {
u32 nr_descs;
};
+static int specialize_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc,
+ int insn_idx);
+
static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
{
const struct bpf_kfunc_desc *d0 = a;
@@ -2740,7 +3144,7 @@ static int kfunc_btf_cmp_by_off(const void *a, const void *b)
return d0->offset - d1->offset;
}
-static const struct bpf_kfunc_desc *
+static struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
{
struct bpf_kfunc_desc desc = {
@@ -2863,12 +3267,12 @@ static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
{
const struct btf_type *func, *func_proto;
struct bpf_kfunc_btf_tab *btf_tab;
+ struct btf_func_model func_model;
struct bpf_kfunc_desc_tab *tab;
struct bpf_prog_aux *prog_aux;
struct bpf_kfunc_desc *desc;
const char *func_name;
struct btf *desc_btf;
- unsigned long call_imm;
unsigned long addr;
int err;
@@ -2896,7 +3300,7 @@ static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
return -EINVAL;
}
- tab = kzalloc(sizeof(*tab), GFP_KERNEL);
+ tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT);
if (!tab)
return -ENOMEM;
prog_aux->kfunc_tab = tab;
@@ -2912,7 +3316,7 @@ static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
return 0;
if (!btf_tab && offset) {
- btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
+ btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT);
if (!btf_tab)
return -ENOMEM;
prog_aux->kfunc_btf_tab = btf_tab;
@@ -2952,19 +3356,6 @@ static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
func_name);
return -EINVAL;
}
- specialize_kfunc(env, func_id, offset, &addr);
-
- if (bpf_jit_supports_far_kfunc_call()) {
- call_imm = func_id;
- } else {
- call_imm = BPF_CALL_IMM(addr);
- /* Check whether the relative offset overflows desc->imm */
- if ((unsigned long)(s32)call_imm != call_imm) {
- verbose(env, "address of kernel function %s is out of range\n",
- func_name);
- return -EINVAL;
- }
- }
if (bpf_dev_bound_kfunc_id(func_id)) {
err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
@@ -2972,18 +3363,20 @@ static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
return err;
}
+ err = btf_distill_func_proto(&env->log, desc_btf,
+ func_proto, func_name,
+ &func_model);
+ if (err)
+ return err;
+
desc = &tab->descs[tab->nr_descs++];
desc->func_id = func_id;
- desc->imm = call_imm;
desc->offset = offset;
desc->addr = addr;
- err = btf_distill_func_proto(&env->log, desc_btf,
- func_proto, func_name,
- &desc->func_model);
- if (!err)
- sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
- kfunc_desc_cmp_by_id_off, NULL);
- return err;
+ desc->func_model = func_model;
+ sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
+ kfunc_desc_cmp_by_id_off, NULL);
+ return 0;
}
static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
@@ -2998,16 +3391,43 @@ static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
return 0;
}
-static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
+static int set_kfunc_desc_imm(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc)
+{
+ unsigned long call_imm;
+
+ if (bpf_jit_supports_far_kfunc_call()) {
+ call_imm = desc->func_id;
+ } else {
+ call_imm = BPF_CALL_IMM(desc->addr);
+ /* Check whether the relative offset overflows desc->imm */
+ if ((unsigned long)(s32)call_imm != call_imm) {
+ verbose(env, "address of kernel func_id %u is out of range\n",
+ desc->func_id);
+ return -EINVAL;
+ }
+ }
+ desc->imm = call_imm;
+ return 0;
+}
+
+static int sort_kfunc_descs_by_imm_off(struct bpf_verifier_env *env)
{
struct bpf_kfunc_desc_tab *tab;
+ int i, err;
- tab = prog->aux->kfunc_tab;
+ tab = env->prog->aux->kfunc_tab;
if (!tab)
- return;
+ return 0;
+
+ for (i = 0; i < tab->nr_descs; i++) {
+ err = set_kfunc_desc_imm(env, &tab->descs[i]);
+ if (err)
+ return err;
+ }
sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
kfunc_desc_cmp_by_imm_off, NULL);
+ return 0;
}
bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
@@ -3033,6 +3453,21 @@ bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
return res ? &res->func_model : NULL;
}
+static int add_kfunc_in_insns(struct bpf_verifier_env *env,
+ struct bpf_insn *insn, int cnt)
+{
+ int i, ret;
+
+ for (i = 0; i < cnt; i++, insn++) {
+ if (bpf_pseudo_kfunc_call(insn)) {
+ ret = add_kfunc_call(env, insn->imm, insn->off);
+ if (ret < 0)
+ return ret;
+ }
+ }
+ return 0;
+}
+
static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
{
struct bpf_subprog_info *subprog = env->subprog_info;
@@ -3120,12 +3555,13 @@ static int check_subprogs(struct bpf_verifier_env *env)
subprog[cur_subprog].has_ld_abs = true;
if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
goto next;
- if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
+ if (BPF_OP(code) == BPF_CALL)
goto next;
- if (code == (BPF_JMP32 | BPF_JA))
- off = i + insn[i].imm + 1;
- else
- off = i + insn[i].off + 1;
+ if (BPF_OP(code) == BPF_EXIT) {
+ subprog[cur_subprog].exit_idx = i;
+ goto next;
+ }
+ off = i + bpf_jmp_offset(&insn[i]) + 1;
if (off < subprog_start || off >= subprog_end) {
verbose(env, "jump out of range from insn %d to %d\n", i, off);
return -EINVAL;
@@ -3151,61 +3587,23 @@ next:
return 0;
}
-/* Parentage chain of this register (or stack slot) should take care of all
- * issues like callee-saved registers, stack slot allocation time, etc.
- */
-static int mark_reg_read(struct bpf_verifier_env *env,
- const struct bpf_reg_state *state,
- struct bpf_reg_state *parent, u8 flag)
+static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
+ int spi, int nr_slots)
{
- bool writes = parent == state->parent; /* Observe write marks */
- int cnt = 0;
+ int err, i;
- while (parent) {
- /* if read wasn't screened by an earlier write ... */
- if (writes && state->live & REG_LIVE_WRITTEN)
- break;
- if (parent->live & REG_LIVE_DONE) {
- verbose(env, "verifier BUG type %s var_off %lld off %d\n",
- reg_type_str(env, parent->type),
- parent->var_off.value, parent->off);
- return -EFAULT;
- }
- /* The first condition is more likely to be true than the
- * second, checked it first.
- */
- if ((parent->live & REG_LIVE_READ) == flag ||
- parent->live & REG_LIVE_READ64)
- /* The parentage chain never changes and
- * this parent was already marked as LIVE_READ.
- * There is no need to keep walking the chain again and
- * keep re-marking all parents as LIVE_READ.
- * This case happens when the same register is read
- * multiple times without writes into it in-between.
- * Also, if parent has the stronger REG_LIVE_READ64 set,
- * then no need to set the weak REG_LIVE_READ32.
- */
- break;
- /* ... then we depend on parent's value */
- parent->live |= flag;
- /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
- if (flag == REG_LIVE_READ64)
- parent->live &= ~REG_LIVE_READ32;
- state = parent;
- parent = state->parent;
- writes = true;
- cnt++;
- }
-
- if (env->longest_mark_read_walk < cnt)
- env->longest_mark_read_walk = cnt;
+ for (i = 0; i < nr_slots; i++) {
+ err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi - i));
+ if (err)
+ return err;
+ mark_stack_slot_scratched(env, spi - i);
+ }
return 0;
}
static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
{
- struct bpf_func_state *state = func(env, reg);
- int spi, ret;
+ int spi;
/* For CONST_PTR_TO_DYNPTR, it must have already been done by
* check_reg_arg in check_helper_call and mark_btf_func_reg_size in
@@ -3220,38 +3618,30 @@ static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *
* bounds and spi is the first dynptr slot. Simply mark stack slot as
* read.
*/
- ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
- state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
- if (ret)
- return ret;
- return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
- state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
+ return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS);
}
static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
int spi, int nr_slots)
{
- struct bpf_func_state *state = func(env, reg);
- int err, i;
-
- for (i = 0; i < nr_slots; i++) {
- struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
-
- err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
- if (err)
- return err;
+ return mark_stack_slot_obj_read(env, reg, spi, nr_slots);
+}
- mark_stack_slot_scratched(env, spi - i);
- }
+static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
+{
+ int spi;
- return 0;
+ spi = irq_flag_get_spi(env, reg);
+ if (spi < 0)
+ return spi;
+ return mark_stack_slot_obj_read(env, reg, spi, 1);
}
/* This function is supposed to be used by the following 32-bit optimization
* code only. It returns TRUE if the source or destination register operates
* on 64-bit, otherwise return FALSE.
*/
-static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
+static bool is_reg64(struct bpf_insn *insn,
u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
{
u8 code, class, op;
@@ -3301,7 +3691,7 @@ static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
}
if (class == BPF_STX) {
- /* BPF_STX (including atomic variants) has multiple source
+ /* BPF_STX (including atomic variants) has one or more source
* operands, one of which is a ptr. Check whether the caller is
* asking about it.
*/
@@ -3346,30 +3736,30 @@ static int insn_def_regno(const struct bpf_insn *insn)
case BPF_ST:
return -1;
case BPF_STX:
- if ((BPF_MODE(insn->code) == BPF_ATOMIC ||
- BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) &&
- (insn->imm & BPF_FETCH)) {
+ if (BPF_MODE(insn->code) == BPF_ATOMIC ||
+ BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) {
if (insn->imm == BPF_CMPXCHG)
return BPF_REG_0;
- else
+ else if (insn->imm == BPF_LOAD_ACQ)
+ return insn->dst_reg;
+ else if (insn->imm & BPF_FETCH)
return insn->src_reg;
- } else {
- return -1;
}
+ return -1;
default:
return insn->dst_reg;
}
}
/* Return TRUE if INSN has defined any 32-bit value explicitly. */
-static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
+static bool insn_has_def32(struct bpf_insn *insn)
{
int dst_reg = insn_def_regno(insn);
if (dst_reg == -1)
return false;
- return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
+ return !is_reg64(insn, dst_reg, NULL, DST_OP);
}
static void mark_insn_zext(struct bpf_verifier_env *env,
@@ -3400,7 +3790,7 @@ static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *r
mark_reg_scratched(env, regno);
reg = &regs[regno];
- rw64 = is_reg64(env, insn, regno, reg, t);
+ rw64 = is_reg64(insn, regno, reg, t);
if (t == SRC_OP) {
/* check whether register used as source operand can be read */
if (reg->type == NOT_INIT) {
@@ -3414,15 +3804,13 @@ static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *r
if (rw64)
mark_insn_zext(env, reg);
- return mark_reg_read(env, reg, reg->parent,
- rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
+ return 0;
} else {
/* check whether register used as dest operand can be written to */
if (regno == BPF_REG_FP) {
verbose(env, "frame pointer is read only\n");
return -EACCES;
}
- reg->live |= REG_LIVE_WRITTEN;
reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
if (t == DST_OP)
mark_reg_unknown(env, regs, regno);
@@ -3543,10 +3931,11 @@ static void linked_regs_unpack(u64 val, struct linked_regs *s)
}
/* for any branch, call, exit record the history of jmps in the given state */
-static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
- int insn_flags, u64 linked_regs)
+static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
+ int insn_flags, u64 linked_regs)
{
- struct bpf_insn_hist_entry *p;
+ u32 cnt = cur->jmp_history_cnt;
+ struct bpf_jmp_history_entry *p;
size_t alloc_size;
/* combine instruction flags if we already recorded this instruction */
@@ -3554,44 +3943,41 @@ static int push_insn_history(struct bpf_verifier_env *env, struct bpf_verifier_s
/* atomic instructions push insn_flags twice, for READ and
* WRITE sides, but they should agree on stack slot
*/
- WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
- (env->cur_hist_ent->flags & insn_flags) != insn_flags,
- "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
- env->insn_idx, env->cur_hist_ent->flags, insn_flags);
+ verifier_bug_if((env->cur_hist_ent->flags & insn_flags) &&
+ (env->cur_hist_ent->flags & insn_flags) != insn_flags,
+ env, "insn history: insn_idx %d cur flags %x new flags %x",
+ env->insn_idx, env->cur_hist_ent->flags, insn_flags);
env->cur_hist_ent->flags |= insn_flags;
- WARN_ONCE(env->cur_hist_ent->linked_regs != 0,
- "verifier insn history bug: insn_idx %d linked_regs != 0: %#llx\n",
- env->insn_idx, env->cur_hist_ent->linked_regs);
+ verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env,
+ "insn history: insn_idx %d linked_regs: %#llx",
+ env->insn_idx, env->cur_hist_ent->linked_regs);
env->cur_hist_ent->linked_regs = linked_regs;
return 0;
}
- if (cur->insn_hist_end + 1 > env->insn_hist_cap) {
- alloc_size = size_mul(cur->insn_hist_end + 1, sizeof(*p));
- p = kvrealloc(env->insn_hist, alloc_size, GFP_USER);
- if (!p)
- return -ENOMEM;
- env->insn_hist = p;
- env->insn_hist_cap = alloc_size / sizeof(*p);
- }
+ cnt++;
+ alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
+ p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT);
+ if (!p)
+ return -ENOMEM;
+ cur->jmp_history = p;
- p = &env->insn_hist[cur->insn_hist_end];
+ p = &cur->jmp_history[cnt - 1];
p->idx = env->insn_idx;
p->prev_idx = env->prev_insn_idx;
p->flags = insn_flags;
p->linked_regs = linked_regs;
-
- cur->insn_hist_end++;
+ cur->jmp_history_cnt = cnt;
env->cur_hist_ent = p;
return 0;
}
-static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *env,
- u32 hist_start, u32 hist_end, int insn_idx)
+static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
+ u32 hist_end, int insn_idx)
{
- if (hist_end > hist_start && env->insn_hist[hist_end - 1].idx == insn_idx)
- return &env->insn_hist[hist_end - 1];
+ if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
+ return &st->jmp_history[hist_end - 1];
return NULL;
}
@@ -3608,26 +3994,25 @@ static struct bpf_insn_hist_entry *get_insn_hist_entry(struct bpf_verifier_env *
* history entry recording a jump from last instruction of parent state and
* first instruction of given state.
*/
-static int get_prev_insn_idx(const struct bpf_verifier_env *env,
- struct bpf_verifier_state *st,
- int insn_idx, u32 hist_start, u32 *hist_endp)
+static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
+ u32 *history)
{
- u32 hist_end = *hist_endp;
- u32 cnt = hist_end - hist_start;
+ u32 cnt = *history;
- if (insn_idx == st->first_insn_idx) {
+ if (i == st->first_insn_idx) {
if (cnt == 0)
return -ENOENT;
- if (cnt == 1 && env->insn_hist[hist_start].idx == insn_idx)
+ if (cnt == 1 && st->jmp_history[0].idx == i)
return -ENOENT;
}
- if (cnt && env->insn_hist[hist_end - 1].idx == insn_idx) {
- (*hist_endp)--;
- return env->insn_hist[hist_end - 1].prev_idx;
+ if (cnt && st->jmp_history[cnt - 1].idx == i) {
+ i = st->jmp_history[cnt - 1].prev_idx;
+ (*history)--;
} else {
- return insn_idx - 1;
+ i--;
}
+ return i;
}
static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
@@ -3646,6 +4031,17 @@ static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
return btf_name_by_offset(desc_btf, func->name_off);
}
+static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn)
+{
+ const struct bpf_insn_cbs cbs = {
+ .cb_call = disasm_kfunc_name,
+ .cb_print = verbose,
+ .private_data = env,
+ };
+
+ print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
+}
+
static inline void bt_init(struct backtrack_state *bt, u32 frame)
{
bt->frame = frame;
@@ -3673,8 +4069,7 @@ static inline u32 bt_empty(struct backtrack_state *bt)
static inline int bt_subprog_enter(struct backtrack_state *bt)
{
if (bt->frame == MAX_CALL_FRAMES - 1) {
- verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
- WARN_ONCE(1, "verifier backtracking bug");
+ verifier_bug(bt->env, "subprog enter from frame %d", bt->frame);
return -EFAULT;
}
bt->frame++;
@@ -3684,8 +4079,7 @@ static inline int bt_subprog_enter(struct backtrack_state *bt)
static inline int bt_subprog_exit(struct backtrack_state *bt)
{
if (bt->frame == 0) {
- verbose(bt->env, "BUG subprog exit from frame 0\n");
- WARN_ONCE(1, "verifier backtracking bug");
+ verifier_bug(bt->env, "subprog exit from frame 0");
return -EFAULT;
}
bt->frame--;
@@ -3777,7 +4171,7 @@ static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
}
}
/* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
-static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
+void bpf_fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
{
DECLARE_BITMAP(mask, 64);
bool first = true;
@@ -3799,7 +4193,7 @@ static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
/* If any register R in hist->linked_regs is marked as precise in bt,
* do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs.
*/
-static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist_entry *hist)
+static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist)
{
struct linked_regs linked_regs;
bool some_precise = false;
@@ -3832,8 +4226,6 @@ static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_insn_hist
}
}
-static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
-
/* For given verifier state backtrack_insn() is called from the last insn to
* the first insn. Its purpose is to compute a bitmask of registers and
* stack slots that needs precision in the parent verifier state.
@@ -3844,13 +4236,8 @@ static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
* - *was* processed previously during backtracking.
*/
static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
- struct bpf_insn_hist_entry *hist, struct backtrack_state *bt)
+ struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
{
- const struct bpf_insn_cbs cbs = {
- .cb_call = disasm_kfunc_name,
- .cb_print = verbose,
- .private_data = env,
- };
struct bpf_insn *insn = env->prog->insnsi + idx;
u8 class = BPF_CLASS(insn->code);
u8 opcode = BPF_OP(insn->code);
@@ -3865,10 +4252,10 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
verbose(env, "mark_precise: frame%d: regs=%s ",
bt->frame, env->tmp_str_buf);
- fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
+ bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
verbose(env, "stack=%s before ", env->tmp_str_buf);
verbose(env, "%d: ", idx);
- print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
+ verbose_insn(env, insn);
}
/* If there is a history record that some registers gained range at this insn,
@@ -3915,7 +4302,7 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
* dreg still needs precision before this insn
*/
}
- } else if (class == BPF_LDX) {
+ } else if (class == BPF_LDX || is_atomic_load_insn(insn)) {
if (!bt_is_reg_set(bt, dreg))
return 0;
bt_clear_reg(bt, dreg);
@@ -3968,14 +4355,15 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
* should be literally next instruction in
* caller program
*/
- WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
+ verifier_bug_if(idx + 1 != subseq_idx, env,
+ "extra insn from subprog");
/* r1-r5 are invalidated after subprog call,
* so for global func call it shouldn't be set
* anymore
*/
if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
- verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
- WARN_ONCE(1, "verifier backtracking bug");
+ verifier_bug(env, "global subprog unexpected regs %x",
+ bt_reg_mask(bt));
return -EFAULT;
}
/* global subprog always sets R0 */
@@ -3989,16 +4377,17 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
* the current frame should be zero by now
*/
if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
- verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
- WARN_ONCE(1, "verifier backtracking bug");
+ verifier_bug(env, "static subprog unexpected regs %x",
+ bt_reg_mask(bt));
return -EFAULT;
}
/* we are now tracking register spills correctly,
* so any instance of leftover slots is a bug
*/
if (bt_stack_mask(bt) != 0) {
- verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
- WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
+ verifier_bug(env,
+ "static subprog leftover stack slots %llx",
+ bt_stack_mask(bt));
return -EFAULT;
}
/* propagate r1-r5 to the caller */
@@ -4021,13 +4410,13 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
* not actually arguments passed directly to callback subprogs
*/
if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
- verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
- WARN_ONCE(1, "verifier backtracking bug");
+ verifier_bug(env, "callback unexpected regs %x",
+ bt_reg_mask(bt));
return -EFAULT;
}
if (bt_stack_mask(bt) != 0) {
- verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
- WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
+ verifier_bug(env, "callback leftover stack slots %llx",
+ bt_stack_mask(bt));
return -EFAULT;
}
/* clear r1-r5 in callback subprog's mask */
@@ -4046,13 +4435,18 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
/* regular helper call sets R0 */
bt_clear_reg(bt, BPF_REG_0);
if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
- /* if backtracing was looking for registers R1-R5
+ /* if backtracking was looking for registers R1-R5
* they should have been found already.
*/
- verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
- WARN_ONCE(1, "verifier backtracking bug");
+ verifier_bug(env, "backtracking call unexpected regs %x",
+ bt_reg_mask(bt));
return -EFAULT;
}
+ if (insn->src_reg == BPF_REG_0 && insn->imm == BPF_FUNC_tail_call
+ && subseq_idx - idx != 1) {
+ if (bt_subprog_enter(bt))
+ return -EFAULT;
+ }
} else if (opcode == BPF_EXIT) {
bool r0_precise;
@@ -4064,12 +4458,12 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
* backtracking, as these registers are set by the function
* invoking callback.
*/
- if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
+ if (subseq_idx >= 0 && bpf_calls_callback(env, subseq_idx))
for (i = BPF_REG_1; i <= BPF_REG_5; i++)
bt_clear_reg(bt, i);
if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
- verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
- WARN_ONCE(1, "verifier backtracking bug");
+ verifier_bug(env, "backtracking exit unexpected regs %x",
+ bt_reg_mask(bt));
return -EFAULT;
}
@@ -4104,8 +4498,10 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
* before it would be equally necessary to
* propagate it to dreg.
*/
- bt_set_reg(bt, dreg);
- bt_set_reg(bt, sreg);
+ if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK))
+ bt_set_reg(bt, sreg);
+ if (!hist || !(hist->flags & INSN_F_DST_REG_STACK))
+ bt_set_reg(bt, dreg);
} else if (BPF_SRC(insn->code) == BPF_K) {
/* dreg <cond> K
* Only dreg still needs precision before
@@ -4140,7 +4536,7 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
* . if (scalar cond K|scalar)
* . helper_call(.., scalar, ...) where ARG_CONST is expected
* backtrack through the verifier states and mark all registers and
- * stack slots with spilled constants that these scalar regisers
+ * stack slots with spilled constants that these scalar registers
* should be precise.
* . during state pruning two registers (or spilled stack slots)
* are equivalent if both are not precise.
@@ -4263,7 +4659,7 @@ static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_
* SCALARS, as well as any other registers and slots that contribute to
* a tracked state of given registers/stack slots, depending on specific BPF
* assembly instructions (see backtrack_insns() for exact instruction handling
- * logic). This backtracking relies on recorded insn_hist and is able to
+ * logic). This backtracking relies on recorded jmp_history and is able to
* traverse entire chain of parent states. This process ends only when all the
* necessary registers/slots and their transitive dependencies are marked as
* precise.
@@ -4343,23 +4739,27 @@ static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_
* mark_all_scalars_imprecise() to hopefully get more permissive and generic
* finalized states which help in short circuiting more future states.
*/
-static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
+static int __mark_chain_precision(struct bpf_verifier_env *env,
+ struct bpf_verifier_state *starting_state,
+ int regno,
+ bool *changed)
{
+ struct bpf_verifier_state *st = starting_state;
struct backtrack_state *bt = &env->bt;
- struct bpf_verifier_state *st = env->cur_state;
int first_idx = st->first_insn_idx;
- int last_idx = env->insn_idx;
+ int last_idx = starting_state->insn_idx;
int subseq_idx = -1;
struct bpf_func_state *func;
+ bool tmp, skip_first = true;
struct bpf_reg_state *reg;
- bool skip_first = true;
int i, fr, err;
if (!env->bpf_capable)
return 0;
+ changed = changed ?: &tmp;
/* set frame number from which we are starting to backtrack */
- bt_init(bt, env->cur_state->curframe);
+ bt_init(bt, starting_state->curframe);
/* Do sanity checks against current state of register and/or stack
* slot, but don't set precise flag in current state, as precision
@@ -4369,7 +4769,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
if (regno >= 0) {
reg = &func->regs[regno];
if (reg->type != SCALAR_VALUE) {
- WARN_ONCE(1, "backtracing misuse");
+ verifier_bug(env, "backtracking misuse");
return -EFAULT;
}
bt_set_reg(bt, regno);
@@ -4380,9 +4780,8 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
for (;;) {
DECLARE_BITMAP(mask, 64);
- u32 hist_start = st->insn_hist_start;
- u32 hist_end = st->insn_hist_end;
- struct bpf_insn_hist_entry *hist;
+ u32 history = st->jmp_history_cnt;
+ struct bpf_jmp_history_entry *hist;
if (env->log.level & BPF_LOG_LEVEL2) {
verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
@@ -4404,15 +4803,16 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
for_each_set_bit(i, mask, 32) {
reg = &st->frame[0]->regs[i];
bt_clear_reg(bt, i);
- if (reg->type == SCALAR_VALUE)
+ if (reg->type == SCALAR_VALUE) {
reg->precise = true;
+ *changed = true;
+ }
}
return 0;
}
- verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
- st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
- WARN_ONCE(1, "verifier backtracking bug");
+ verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx",
+ st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
return -EFAULT;
}
@@ -4421,11 +4821,11 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
err = 0;
skip_first = false;
} else {
- hist = get_insn_hist_entry(env, hist_start, hist_end, i);
+ hist = get_jmp_hist_entry(st, history, i);
err = backtrack_insn(env, i, subseq_idx, hist, bt);
}
if (err == -ENOTSUPP) {
- mark_all_scalars_precise(env, env->cur_state);
+ mark_all_scalars_precise(env, starting_state);
bt_reset(bt);
return 0;
} else if (err) {
@@ -4438,7 +4838,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
*/
return 0;
subseq_idx = i;
- i = get_prev_insn_idx(env, st, i, hist_start, &hist_end);
+ i = get_prev_insn_idx(st, i, &history);
if (i == -ENOENT)
break;
if (i >= env->prog->len) {
@@ -4448,8 +4848,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
* It means the backtracking missed the spot where
* particular register was initialized with a constant.
*/
- verbose(env, "BUG backtracking idx %d\n", i);
- WARN_ONCE(1, "verifier backtracking bug");
+ verifier_bug(env, "backtracking idx %d", i);
return -EFAULT;
}
}
@@ -4466,40 +4865,42 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
bt_clear_frame_reg(bt, fr, i);
continue;
}
- if (reg->precise)
+ if (reg->precise) {
bt_clear_frame_reg(bt, fr, i);
- else
+ } else {
reg->precise = true;
+ *changed = true;
+ }
}
bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
for_each_set_bit(i, mask, 64) {
- if (i >= func->allocated_stack / BPF_REG_SIZE) {
- verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
- i, func->allocated_stack / BPF_REG_SIZE);
- WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
+ if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE,
+ env, "stack slot %d, total slots %d",
+ i, func->allocated_stack / BPF_REG_SIZE))
return -EFAULT;
- }
if (!is_spilled_scalar_reg(&func->stack[i])) {
bt_clear_frame_slot(bt, fr, i);
continue;
}
reg = &func->stack[i].spilled_ptr;
- if (reg->precise)
+ if (reg->precise) {
bt_clear_frame_slot(bt, fr, i);
- else
+ } else {
reg->precise = true;
+ *changed = true;
+ }
}
if (env->log.level & BPF_LOG_LEVEL2) {
fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
bt_frame_reg_mask(bt, fr));
verbose(env, "mark_precise: frame%d: parent state regs=%s ",
fr, env->tmp_str_buf);
- fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
+ bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
bt_frame_stack_mask(bt, fr));
verbose(env, "stack=%s: ", env->tmp_str_buf);
- print_verifier_state(env, func, true);
+ print_verifier_state(env, st, fr, true);
}
}
@@ -4516,7 +4917,7 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
* fallback to marking all precise
*/
if (!bt_empty(bt)) {
- mark_all_scalars_precise(env, env->cur_state);
+ mark_all_scalars_precise(env, starting_state);
bt_reset(bt);
}
@@ -4525,15 +4926,16 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
int mark_chain_precision(struct bpf_verifier_env *env, int regno)
{
- return __mark_chain_precision(env, regno);
+ return __mark_chain_precision(env, env->cur_state, regno, NULL);
}
/* mark_chain_precision_batch() assumes that env->bt is set in the caller to
* desired reg and stack masks across all relevant frames
*/
-static int mark_chain_precision_batch(struct bpf_verifier_env *env)
+static int mark_chain_precision_batch(struct bpf_verifier_env *env,
+ struct bpf_verifier_state *starting_state)
{
- return __mark_chain_precision(env, -1);
+ return __mark_chain_precision(env, starting_state, -1, NULL);
}
static bool is_spillable_regtype(enum bpf_reg_type type)
@@ -4618,12 +5020,7 @@ static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
/* Copy src state preserving dst->parent and dst->live fields */
static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
{
- struct bpf_reg_state *parent = dst->parent;
- enum bpf_reg_liveness live = dst->live;
-
*dst = *src;
- dst->parent = parent;
- dst->live = live;
}
static void save_register_state(struct bpf_verifier_env *env,
@@ -4634,8 +5031,6 @@ static void save_register_state(struct bpf_verifier_env *env,
int i;
copy_register_state(&state->stack[spi].spilled_ptr, reg);
- if (size == BPF_REG_SIZE)
- state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
state->stack[spi].slot_type[i - 1] = STACK_SPILL;
@@ -4700,6 +5095,7 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
*/
if (!env->allow_ptr_leaks &&
is_spilled_reg(&state->stack[spi]) &&
+ !is_spilled_scalar_reg(&state->stack[spi]) &&
size != BPF_REG_SIZE) {
verbose(env, "attempt to corrupt spilled pointer on stack\n");
return -EACCES;
@@ -4721,13 +5117,25 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
}
if (sanitize)
- env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
+ env->insn_aux_data[insn_idx].nospec_result = true;
}
err = destroy_if_dynptr_stack_slot(env, state, spi);
if (err)
return err;
+ if (!(off % BPF_REG_SIZE) && size == BPF_REG_SIZE) {
+ /* only mark the slot as written if all 8 bytes were written
+ * otherwise read propagation may incorrectly stop too soon
+ * when stack slots are partially written.
+ * This heuristic means that read propagation will be
+ * conservative, since it will add reg_live_read marks
+ * to stack slots all the way to first state when programs
+ * writes+reads less than 8 bytes
+ */
+ bpf_mark_stack_write(env, state->frameno, BIT(spi));
+ }
+
check_fastcall_stack_contract(env, state, insn_idx, off);
mark_stack_slot_scratched(env, spi);
if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) {
@@ -4771,17 +5179,6 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
for (i = 0; i < BPF_REG_SIZE; i++)
scrub_spilled_slot(&state->stack[spi].slot_type[i]);
- /* only mark the slot as written if all 8 bytes were written
- * otherwise read propagation may incorrectly stop too soon
- * when stack slots are partially written.
- * This heuristic means that read propagation will be
- * conservative, since it will add reg_live_read marks
- * to stack slots all the way to first state when programs
- * writes+reads less than 8 bytes
- */
- if (size == BPF_REG_SIZE)
- state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
-
/* when we zero initialize stack slots mark them as such */
if ((reg && register_is_null(reg)) ||
(!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
@@ -4804,7 +5201,7 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
}
if (insn_flags)
- return push_insn_history(env, env->cur_state, insn_flags, 0);
+ return push_jmp_history(env, env->cur_state, insn_flags, 0);
return 0;
}
@@ -4974,7 +5371,6 @@ static void mark_reg_stack_read(struct bpf_verifier_env *env,
/* have read misc data from the stack */
mark_reg_unknown(env, state->regs, dst_regno);
}
- state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
}
/* Read the stack at 'off' and put the results into the register indicated by
@@ -4997,12 +5393,16 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
struct bpf_reg_state *reg;
u8 *stype, type;
int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
+ int err;
stype = reg_state->stack[spi].slot_type;
reg = &reg_state->stack[spi].spilled_ptr;
mark_stack_slot_scratched(env, spi);
check_fastcall_stack_contract(env, state, env->insn_idx, off);
+ err = bpf_mark_stack_read(env, reg_state->frameno, env->insn_idx, BIT(spi));
+ if (err)
+ return err;
if (is_spilled_reg(&reg_state->stack[spi])) {
u8 spill_size = 1;
@@ -5017,7 +5417,6 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
return -EACCES;
}
- mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
if (dst_regno < 0)
return 0;
@@ -5071,7 +5470,6 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
insn_flags = 0; /* not restoring original register state */
}
}
- state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
} else if (dst_regno >= 0) {
/* restore register state from stack */
copy_register_state(&state->regs[dst_regno], reg);
@@ -5079,7 +5477,6 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
* has its liveness marks cleared by is_state_visited()
* which resets stack/reg liveness for state transitions
*/
- state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
/* If dst_regno==-1, the caller is asking us whether
* it is acceptable to use this value as a SCALAR_VALUE
@@ -5091,7 +5488,6 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
off);
return -EACCES;
}
- mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
} else {
for (i = 0; i < size; i++) {
type = stype[(slot - i) % BPF_REG_SIZE];
@@ -5105,13 +5501,12 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
off, i, size);
return -EACCES;
}
- mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
if (dst_regno >= 0)
mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
insn_flags = 0; /* we are not restoring spilled register */
}
if (insn_flags)
- return push_insn_history(env, env->cur_state, insn_flags, 0);
+ return push_jmp_history(env, env->cur_state, insn_flags, 0);
return 0;
}
@@ -5123,7 +5518,7 @@ enum bpf_access_src {
static int check_stack_range_initialized(struct bpf_verifier_env *env,
int regno, int off, int access_size,
bool zero_size_allowed,
- enum bpf_access_src type,
+ enum bpf_access_type type,
struct bpf_call_arg_meta *meta);
static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
@@ -5156,7 +5551,7 @@ static int check_stack_read_var_off(struct bpf_verifier_env *env,
/* Note that we pass a NULL meta, so raw access will not be permitted.
*/
err = check_stack_range_initialized(env, ptr_regno, off, size,
- false, ACCESS_DIRECT, NULL);
+ false, BPF_READ, NULL);
if (err)
return err;
@@ -5486,8 +5881,7 @@ bad_type:
static bool in_sleepable(struct bpf_verifier_env *env)
{
- return env->prog->sleepable ||
- (env->cur_state && env->cur_state->in_sleepable);
+ return env->cur_state->in_sleepable;
}
/* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
@@ -5495,14 +5889,16 @@ static bool in_sleepable(struct bpf_verifier_env *env)
*/
static bool in_rcu_cs(struct bpf_verifier_env *env)
{
- return env->cur_state->active_rcu_lock ||
- cur_func(env)->active_locks ||
+ return env->cur_state->active_rcu_locks ||
+ env->cur_state->active_locks ||
!in_sleepable(env);
}
/* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
BTF_SET_START(rcu_protected_types)
+#ifdef CONFIG_NET
BTF_ID(struct, prog_test_ref_kfunc)
+#endif
#ifdef CONFIG_CGROUPS
BTF_ID(struct, cgroup)
#endif
@@ -5510,7 +5906,9 @@ BTF_ID(struct, cgroup)
BTF_ID(struct, bpf_cpumask)
#endif
BTF_ID(struct, task_struct)
+#ifdef CONFIG_CRYPTO
BTF_ID(struct, bpf_crypto_ctx)
+#endif
BTF_SET_END(rcu_protected_types)
static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
@@ -5587,6 +5985,7 @@ static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
int class = BPF_CLASS(insn->code);
struct bpf_reg_state *val_reg;
+ int ret;
/* Things we already checked for in check_map_access and caller:
* - Reject cases where variable offset may touch kptr
@@ -5620,8 +6019,11 @@ static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
/* We can simply mark the value_regno receiving the pointer
* value from map as PTR_TO_BTF_ID, with the correct type.
*/
- mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
- kptr_field->kptr.btf_id, btf_ld_kptr_type(env, kptr_field));
+ ret = mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID,
+ kptr_field->kptr.btf, kptr_field->kptr.btf_id,
+ btf_ld_kptr_type(env, kptr_field));
+ if (ret < 0)
+ return ret;
} else if (class == BPF_STX) {
val_reg = reg_state(env, value_regno);
if (!register_is_null(val_reg) &&
@@ -5640,6 +6042,18 @@ static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
return 0;
}
+/*
+ * Return the size of the memory region accessible from a pointer to map value.
+ * For INSN_ARRAY maps whole bpf_insn_array->ips array is accessible.
+ */
+static u32 map_mem_size(const struct bpf_map *map)
+{
+ if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY)
+ return map->max_entries * sizeof(long);
+
+ return map->value_size;
+}
+
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
int off, int size, bool zero_size_allowed,
@@ -5649,11 +6063,11 @@ static int check_map_access(struct bpf_verifier_env *env, u32 regno,
struct bpf_func_state *state = vstate->frame[vstate->curframe];
struct bpf_reg_state *reg = &state->regs[regno];
struct bpf_map *map = reg->map_ptr;
+ u32 mem_size = map_mem_size(map);
struct btf_record *rec;
int err, i;
- err = check_mem_region_access(env, regno, off, size, map->value_size,
- zero_size_allowed);
+ err = check_mem_region_access(env, regno, off, size, mem_size, zero_size_allowed);
if (err)
return err;
@@ -5795,18 +6209,10 @@ static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
- enum bpf_access_type t, enum bpf_reg_type *reg_type,
- struct btf **btf, u32 *btf_id, bool *is_retval, bool is_ldsx)
+ enum bpf_access_type t, struct bpf_insn_access_aux *info)
{
- struct bpf_insn_access_aux info = {
- .reg_type = *reg_type,
- .log = &env->log,
- .is_retval = false,
- .is_ldsx = is_ldsx,
- };
-
if (env->ops->is_valid_access &&
- env->ops->is_valid_access(off, size, t, env->prog, &info)) {
+ env->ops->is_valid_access(off, size, t, env->prog, info)) {
/* A non zero info.ctx_field_size indicates that this field is a
* candidate for later verifier transformation to load the whole
* field and then apply a mask when accessed with a narrower
@@ -5814,14 +6220,15 @@ static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off,
* will only allow for whole field access and rejects any other
* type of narrower access.
*/
- *reg_type = info.reg_type;
- *is_retval = info.is_retval;
-
- if (base_type(*reg_type) == PTR_TO_BTF_ID) {
- *btf = info.btf;
- *btf_id = info.btf_id;
+ if (base_type(info->reg_type) == PTR_TO_BTF_ID) {
+ if (info->ref_obj_id &&
+ !find_reference_state(env->cur_state, info->ref_obj_id)) {
+ verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n",
+ off);
+ return -EACCES;
+ }
} else {
- env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
+ env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size;
}
/* remember the offset of last byte accessed in ctx */
if (env->prog->aux->max_ctx_offset < off + size)
@@ -5931,6 +6338,26 @@ static bool is_arena_reg(struct bpf_verifier_env *env, int regno)
return reg->type == PTR_TO_ARENA;
}
+/* Return false if @regno contains a pointer whose type isn't supported for
+ * atomic instruction @insn.
+ */
+static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno,
+ struct bpf_insn *insn)
+{
+ if (is_ctx_reg(env, regno))
+ return false;
+ if (is_pkt_reg(env, regno))
+ return false;
+ if (is_flow_key_reg(env, regno))
+ return false;
+ if (is_sk_reg(env, regno))
+ return false;
+ if (is_arena_reg(env, regno))
+ return bpf_jit_supports_insn(insn, true);
+
+ return true;
+}
+
static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
#ifdef CONFIG_NET
[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
@@ -6055,6 +6482,8 @@ static int check_ptr_alignment(struct bpf_verifier_env *env,
break;
case PTR_TO_MAP_VALUE:
pointer_desc = "value ";
+ if (reg->map_ptr->map_type == BPF_MAP_TYPE_INSN_ARRAY)
+ strict = true;
break;
case PTR_TO_CTX:
pointer_desc = "context ";
@@ -6234,21 +6663,18 @@ continue_func:
/* find the callee */
next_insn = i + insn[i].imm + 1;
sidx = find_subprog(env, next_insn);
- if (sidx < 0) {
- WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
- next_insn);
+ if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn))
return -EFAULT;
- }
if (subprog[sidx].is_async_cb) {
if (subprog[sidx].has_tail_call) {
- verbose(env, "verifier bug. subprog has tail_call and async cb\n");
+ verifier_bug(env, "subprog has tail_call and async cb");
return -EFAULT;
}
/* async callbacks don't increase bpf prog stack size unless called directly */
if (!bpf_pseudo_call(insn + i))
continue;
if (subprog[sidx].is_exception_cb) {
- verbose(env, "insn %d cannot call exception cb directly\n", i);
+ verbose(env, "insn %d cannot call exception cb directly", i);
return -EINVAL;
}
}
@@ -6348,11 +6774,8 @@ static int get_callee_stack_depth(struct bpf_verifier_env *env,
int start = idx + insn->imm + 1, subprog;
subprog = find_subprog(env, start);
- if (subprog < 0) {
- WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
- start);
+ if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start))
return -EFAULT;
- }
return env->subprog_info[subprog].stack_depth;
}
#endif
@@ -6677,9 +7100,16 @@ BTF_TYPE_SAFE_RCU(struct css_set) {
struct cgroup *dfl_cgrp;
};
+BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) {
+ struct cgroup *cgroup;
+};
+
/* RCU trusted: these fields are trusted in RCU CS and can be NULL */
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
struct file __rcu *exe_file;
+#ifdef CONFIG_MEMCG
+ struct task_struct __rcu *owner;
+#endif
};
/* skb->sk, req->sk are not RCU protected, but we mark them as such
@@ -6711,8 +7141,7 @@ BTF_TYPE_SAFE_TRUSTED(struct file) {
struct inode *f_inode;
};
-BTF_TYPE_SAFE_TRUSTED(struct dentry) {
- /* no negative dentry-s in places where bpf can see it */
+BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) {
struct inode *d_inode;
};
@@ -6720,6 +7149,11 @@ BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
struct sock *sk;
};
+BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct) {
+ struct mm_struct *vm_mm;
+ struct file *vm_file;
+};
+
static bool type_is_rcu(struct bpf_verifier_env *env,
struct bpf_reg_state *reg,
const char *field_name, u32 btf_id)
@@ -6727,6 +7161,7 @@ static bool type_is_rcu(struct bpf_verifier_env *env,
BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
+ BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state));
return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
}
@@ -6750,7 +7185,6 @@ static bool type_is_trusted(struct bpf_verifier_env *env,
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
- BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
}
@@ -6760,6 +7194,8 @@ static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
const char *field_name, u32 btf_id)
{
BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
+ BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry));
+ BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct));
return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
"__safe_trusted_or_null");
@@ -6777,7 +7213,6 @@ static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
const char *field_name = NULL;
enum bpf_type_flag flag = 0;
u32 btf_id = 0;
- bool mask;
int ret;
if (!env->allow_ptr_leaks) {
@@ -6824,7 +7259,7 @@ static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
if (!btf_is_kernel(reg->btf)) {
- verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
+ verifier_bug(env, "reg->btf must be kernel btf");
return -EFAULT;
}
ret = env->ops->btf_struct_access(&env->log, reg, off, size);
@@ -6840,7 +7275,7 @@ static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
!(reg->type & MEM_RCU) && !reg->ref_obj_id) {
- verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
+ verifier_bug(env, "ref_obj_id for allocated object must be non-zero");
return -EFAULT;
}
@@ -6849,21 +7284,7 @@ static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
if (ret < 0)
return ret;
- /* For raw_tp progs, we allow dereference of PTR_MAYBE_NULL
- * trusted PTR_TO_BTF_ID, these are the ones that are possibly
- * arguments to the raw_tp. Since internal checks in for trusted
- * reg in check_ptr_to_btf_access would consider PTR_MAYBE_NULL
- * modifier as problematic, mask it out temporarily for the
- * check. Don't apply this to pointers with ref_obj_id > 0, as
- * those won't be raw_tp args.
- *
- * We may end up applying this relaxation to other trusted
- * PTR_TO_BTF_ID with maybe null flag, since we cannot
- * distinguish PTR_MAYBE_NULL tagged for arguments vs normal
- * tagging, but that should expand allowed behavior, and not
- * cause regression for existing behavior.
- */
- mask = mask_raw_tp_reg(env, reg);
+
if (ret != PTR_TO_BTF_ID) {
/* just mark; */
@@ -6925,12 +7346,10 @@ static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
}
if (atype == BPF_READ && value_regno >= 0) {
- mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
- /* We've assigned a new type to regno, so don't undo masking. */
- if (regno == value_regno)
- mask = false;
+ ret = mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
+ if (ret < 0)
+ return ret;
}
- unmask_raw_tp_reg(reg, mask);
return 0;
}
@@ -6984,13 +7403,19 @@ static int check_ptr_to_map_access(struct bpf_verifier_env *env,
/* Simulate access to a PTR_TO_BTF_ID */
memset(&map_reg, 0, sizeof(map_reg));
- mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
+ ret = mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID,
+ btf_vmlinux, *map->ops->map_btf_id, 0);
+ if (ret < 0)
+ return ret;
ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
if (ret < 0)
return ret;
- if (value_regno >= 0)
- mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
+ if (value_regno >= 0) {
+ ret = mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
+ if (ret < 0)
+ return ret;
+ }
return 0;
}
@@ -7026,7 +7451,7 @@ static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
static int check_stack_access_within_bounds(
struct bpf_verifier_env *env,
int regno, int off, int access_size,
- enum bpf_access_src src, enum bpf_access_type type)
+ enum bpf_access_type type)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = regs + regno;
@@ -7035,10 +7460,7 @@ static int check_stack_access_within_bounds(
int err;
char *err_extra;
- if (src == ACCESS_HELPER)
- /* We don't know if helpers are reading or writing (or both). */
- err_extra = " indirect access to";
- else if (type == BPF_READ)
+ if (type == BPF_READ)
err_extra = " read from";
else
err_extra = " write to";
@@ -7157,10 +7579,14 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
} else if (t == BPF_READ && value_regno >= 0) {
struct bpf_map *map = reg->map_ptr;
- /* if map is read-only, track its contents as scalars */
+ /*
+ * If map is read-only, track its contents as scalars,
+ * unless it is an insn array (see the special case below)
+ */
if (tnum_is_const(reg->var_off) &&
bpf_map_is_rdonly(map) &&
- map->ops->map_direct_value_addr) {
+ map->ops->map_direct_value_addr &&
+ map->map_type != BPF_MAP_TYPE_INSN_ARRAY) {
int map_off = off + reg->var_off.value;
u64 val = 0;
@@ -7171,12 +7597,21 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
regs[value_regno].type = SCALAR_VALUE;
__mark_reg_known(&regs[value_regno], val);
+ } else if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) {
+ if (bpf_size != BPF_DW) {
+ verbose(env, "Invalid read of %d bytes from insn_array\n",
+ size);
+ return -EACCES;
+ }
+ copy_register_state(&regs[value_regno], reg);
+ regs[value_regno].type = PTR_TO_INSN;
} else {
mark_reg_unknown(env, regs, value_regno);
}
}
} else if (base_type(reg->type) == PTR_TO_MEM) {
bool rdonly_mem = type_is_rdonly_mem(reg->type);
+ bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED);
if (type_may_be_null(reg->type)) {
verbose(env, "R%d invalid mem access '%s'\n", regno,
@@ -7196,16 +7631,22 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
return -EACCES;
}
- err = check_mem_region_access(env, regno, off, size,
- reg->mem_size, false);
+ /*
+ * Accesses to untrusted PTR_TO_MEM are done through probe
+ * instructions, hence no need to check bounds in that case.
+ */
+ if (!rdonly_untrusted)
+ err = check_mem_region_access(env, regno, off, size,
+ reg->mem_size, false);
if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
mark_reg_unknown(env, regs, value_regno);
} else if (reg->type == PTR_TO_CTX) {
- bool is_retval = false;
struct bpf_retval_range range;
- enum bpf_reg_type reg_type = SCALAR_VALUE;
- struct btf *btf = NULL;
- u32 btf_id = 0;
+ struct bpf_insn_access_aux info = {
+ .reg_type = SCALAR_VALUE,
+ .is_ldsx = is_ldsx,
+ .log = &env->log,
+ };
if (t == BPF_WRITE && value_regno >= 0 &&
is_pointer_value(env, value_regno)) {
@@ -7217,8 +7658,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
if (err < 0)
return err;
- err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
- &btf_id, &is_retval, is_ldsx);
+ err = check_ctx_access(env, insn_idx, off, size, t, &info);
if (err)
verbose_linfo(env, insn_idx, "; ");
if (!err && t == BPF_READ && value_regno >= 0) {
@@ -7226,8 +7666,8 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
* PTR_TO_PACKET[_META,_END]. In the latter
* case, we know the offset is zero.
*/
- if (reg_type == SCALAR_VALUE) {
- if (is_retval && get_func_retval_range(env->prog, &range)) {
+ if (info.reg_type == SCALAR_VALUE) {
+ if (info.is_retval && get_func_retval_range(env->prog, &range)) {
err = __mark_reg_s32_range(env, regs, value_regno,
range.minval, range.maxval);
if (err)
@@ -7238,7 +7678,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
} else {
mark_reg_known_zero(env, regs,
value_regno);
- if (type_may_be_null(reg_type))
+ if (type_may_be_null(info.reg_type))
regs[value_regno].id = ++env->id_gen;
/* A load of ctx field could have different
* actual load size with the one encoded in the
@@ -7246,17 +7686,18 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
* a sub-register.
*/
regs[value_regno].subreg_def = DEF_NOT_SUBREG;
- if (base_type(reg_type) == PTR_TO_BTF_ID) {
- regs[value_regno].btf = btf;
- regs[value_regno].btf_id = btf_id;
+ if (base_type(info.reg_type) == PTR_TO_BTF_ID) {
+ regs[value_regno].btf = info.btf;
+ regs[value_regno].btf_id = info.btf_id;
+ regs[value_regno].ref_obj_id = info.ref_obj_id;
}
}
- regs[value_regno].type = reg_type;
+ regs[value_regno].type = info.reg_type;
}
} else if (reg->type == PTR_TO_STACK) {
/* Basic bounds checks. */
- err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
+ err = check_stack_access_within_bounds(env, regno, off, size, t);
if (err)
return err;
@@ -7305,7 +7746,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
if (!err && t == BPF_READ && value_regno >= 0)
mark_reg_unknown(env, regs, value_regno);
} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
- (mask_raw_tp_reg_cond(env, reg) || !type_may_be_null(reg->type))) {
+ !type_may_be_null(reg->type)) {
err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
value_regno);
} else if (reg->type == CONST_PTR_TO_MAP) {
@@ -7354,27 +7795,72 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
bool allow_trust_mismatch);
-static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
+static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn,
+ bool strict_alignment_once, bool is_ldsx,
+ bool allow_trust_mismatch, const char *ctx)
{
- int load_reg;
+ struct bpf_reg_state *regs = cur_regs(env);
+ enum bpf_reg_type src_reg_type;
int err;
- switch (insn->imm) {
- case BPF_ADD:
- case BPF_ADD | BPF_FETCH:
- case BPF_AND:
- case BPF_AND | BPF_FETCH:
- case BPF_OR:
- case BPF_OR | BPF_FETCH:
- case BPF_XOR:
- case BPF_XOR | BPF_FETCH:
- case BPF_XCHG:
- case BPF_CMPXCHG:
- break;
- default:
- verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
- return -EINVAL;
- }
+ /* check src operand */
+ err = check_reg_arg(env, insn->src_reg, SRC_OP);
+ if (err)
+ return err;
+
+ /* check dst operand */
+ err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
+ if (err)
+ return err;
+
+ src_reg_type = regs[insn->src_reg].type;
+
+ /* Check if (src_reg + off) is readable. The state of dst_reg will be
+ * updated by this call.
+ */
+ err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off,
+ BPF_SIZE(insn->code), BPF_READ, insn->dst_reg,
+ strict_alignment_once, is_ldsx);
+ err = err ?: save_aux_ptr_type(env, src_reg_type,
+ allow_trust_mismatch);
+ err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], ctx);
+
+ return err;
+}
+
+static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn,
+ bool strict_alignment_once)
+{
+ struct bpf_reg_state *regs = cur_regs(env);
+ enum bpf_reg_type dst_reg_type;
+ int err;
+
+ /* check src1 operand */
+ err = check_reg_arg(env, insn->src_reg, SRC_OP);
+ if (err)
+ return err;
+
+ /* check src2 operand */
+ err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+ if (err)
+ return err;
+
+ dst_reg_type = regs[insn->dst_reg].type;
+
+ /* Check if (dst_reg + off) is writeable. */
+ err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
+ BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg,
+ strict_alignment_once, false);
+ err = err ?: save_aux_ptr_type(env, dst_reg_type, false);
+
+ return err;
+}
+
+static int check_atomic_rmw(struct bpf_verifier_env *env,
+ struct bpf_insn *insn)
+{
+ int load_reg;
+ int err;
if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
verbose(env, "invalid atomic operand size\n");
@@ -7410,11 +7896,7 @@ static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_i
return -EACCES;
}
- if (is_ctx_reg(env, insn->dst_reg) ||
- is_pkt_reg(env, insn->dst_reg) ||
- is_flow_key_reg(env, insn->dst_reg) ||
- is_sk_reg(env, insn->dst_reg) ||
- (is_arena_reg(env, insn->dst_reg) && !bpf_jit_supports_insn(insn, true))) {
+ if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
insn->dst_reg,
reg_type_str(env, reg_state(env, insn->dst_reg)->type));
@@ -7441,12 +7923,12 @@ static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_i
/* Check whether we can read the memory, with second call for fetch
* case to simulate the register fill.
*/
- err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
+ err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_READ, -1, true, false);
if (!err && load_reg >= 0)
- err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
- BPF_SIZE(insn->code), BPF_READ, load_reg,
- true, false);
+ err = check_mem_access(env, env->insn_idx, insn->dst_reg,
+ insn->off, BPF_SIZE(insn->code),
+ BPF_READ, load_reg, true, false);
if (err)
return err;
@@ -7456,13 +7938,86 @@ static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_i
return err;
}
/* Check whether we can write into the same memory. */
- err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
+ err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
if (err)
return err;
return 0;
}
+static int check_atomic_load(struct bpf_verifier_env *env,
+ struct bpf_insn *insn)
+{
+ int err;
+
+ err = check_load_mem(env, insn, true, false, false, "atomic_load");
+ if (err)
+ return err;
+
+ if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) {
+ verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n",
+ insn->src_reg,
+ reg_type_str(env, reg_state(env, insn->src_reg)->type));
+ return -EACCES;
+ }
+
+ return 0;
+}
+
+static int check_atomic_store(struct bpf_verifier_env *env,
+ struct bpf_insn *insn)
+{
+ int err;
+
+ err = check_store_reg(env, insn, true);
+ if (err)
+ return err;
+
+ if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) {
+ verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
+ insn->dst_reg,
+ reg_type_str(env, reg_state(env, insn->dst_reg)->type));
+ return -EACCES;
+ }
+
+ return 0;
+}
+
+static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn)
+{
+ switch (insn->imm) {
+ case BPF_ADD:
+ case BPF_ADD | BPF_FETCH:
+ case BPF_AND:
+ case BPF_AND | BPF_FETCH:
+ case BPF_OR:
+ case BPF_OR | BPF_FETCH:
+ case BPF_XOR:
+ case BPF_XOR | BPF_FETCH:
+ case BPF_XCHG:
+ case BPF_CMPXCHG:
+ return check_atomic_rmw(env, insn);
+ case BPF_LOAD_ACQ:
+ if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
+ verbose(env,
+ "64-bit load-acquires are only supported on 64-bit arches\n");
+ return -EOPNOTSUPP;
+ }
+ return check_atomic_load(env, insn);
+ case BPF_STORE_REL:
+ if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) {
+ verbose(env,
+ "64-bit store-releases are only supported on 64-bit arches\n");
+ return -EOPNOTSUPP;
+ }
+ return check_atomic_store(env, insn);
+ default:
+ verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n",
+ insn->imm);
+ return -EINVAL;
+ }
+}
+
/* When register 'regno' is used to read the stack (either directly or through
* a helper function) make sure that it's within stack boundary and, depending
* on the access type and privileges, that all elements of the stack are
@@ -7476,13 +8031,11 @@ static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_i
static int check_stack_range_initialized(
struct bpf_verifier_env *env, int regno, int off,
int access_size, bool zero_size_allowed,
- enum bpf_access_src type, struct bpf_call_arg_meta *meta)
+ enum bpf_access_type type, struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *reg = reg_state(env, regno);
struct bpf_func_state *state = func(env, reg);
int err, min_off, max_off, i, j, slot, spi;
- char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
- enum bpf_access_type bounds_check_type;
/* Some accesses can write anything into the stack, others are
* read-only.
*/
@@ -7493,18 +8046,10 @@ static int check_stack_range_initialized(
return -EACCES;
}
- if (type == ACCESS_HELPER) {
- /* The bounds checks for writes are more permissive than for
- * reads. However, if raw_mode is not set, we'll do extra
- * checks below.
- */
- bounds_check_type = BPF_WRITE;
+ if (type == BPF_WRITE)
clobber = true;
- } else {
- bounds_check_type = BPF_READ;
- }
- err = check_stack_access_within_bounds(env, regno, off, access_size,
- type, bounds_check_type);
+
+ err = check_stack_access_within_bounds(env, regno, off, access_size, type);
if (err)
return err;
@@ -7521,8 +8066,8 @@ static int check_stack_range_initialized(
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
- verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
- regno, err_extra, tn_buf);
+ verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
+ regno, tn_buf);
return -EACCES;
}
/* Only initialized buffer on stack is allowed to be accessed
@@ -7575,7 +8120,7 @@ static int check_stack_range_initialized(
slot = -i - 1;
spi = slot / BPF_REG_SIZE;
if (state->allocated_stack <= slot) {
- verbose(env, "verifier bug: allocated_stack too small");
+ verbose(env, "allocated_stack too small\n");
return -EFAULT;
}
@@ -7603,24 +8148,24 @@ static int check_stack_range_initialized(
}
if (tnum_is_const(reg->var_off)) {
- verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
- err_extra, regno, min_off, i - min_off, access_size);
+ verbose(env, "invalid read from stack R%d off %d+%d size %d\n",
+ regno, min_off, i - min_off, access_size);
} else {
char tn_buf[48];
tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
- verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
- err_extra, regno, tn_buf, i - min_off, access_size);
+ verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n",
+ regno, tn_buf, i - min_off, access_size);
}
return -EACCES;
mark:
/* reading any byte out of 8-byte 'spill_slot' will cause
* the whole slot to be marked as 'read'
*/
- mark_reg_read(env, &state->stack[spi].spilled_ptr,
- state->stack[spi].spilled_ptr.parent,
- REG_LIVE_READ64);
- /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
+ err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi));
+ if (err)
+ return err;
+ /* We do not call bpf_mark_stack_write(), as we can not
* be sure that whether stack slot is written to or not. Hence,
* we must still conservatively propagate reads upwards even if
* helper may write to the entire memory range.
@@ -7685,7 +8230,7 @@ static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
return check_stack_range_initialized(
env,
regno, reg->off, access_size,
- zero_size_allowed, ACCESS_HELPER, meta);
+ zero_size_allowed, access_type, meta);
case PTR_TO_BTF_ID:
return check_ptr_to_btf_access(env, regs, regno, reg->off,
access_size, BPF_READ, -1);
@@ -7831,6 +8376,12 @@ static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg
return err;
}
+enum {
+ PROCESS_SPIN_LOCK = (1 << 0),
+ PROCESS_RES_LOCK = (1 << 1),
+ PROCESS_LOCK_IRQ = (1 << 2),
+};
+
/* Implementation details:
* bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
* bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
@@ -7850,33 +8401,36 @@ static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg
* Since only one bpf_spin_lock is allowed the checks are simpler than
* reg_is_refcounted() logic. The verifier needs to remember only
* one spin_lock instead of array of acquired_refs.
- * cur_func(env)->active_locks remembers which map value element or allocated
+ * env->cur_state->active_locks remembers which map value element or allocated
* object got locked and clears it after bpf_spin_unlock.
*/
-static int process_spin_lock(struct bpf_verifier_env *env, int regno,
- bool is_lock)
+static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags)
{
+ bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK;
+ const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin";
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+ struct bpf_verifier_state *cur = env->cur_state;
bool is_const = tnum_is_const(reg->var_off);
- struct bpf_func_state *cur = cur_func(env);
+ bool is_irq = flags & PROCESS_LOCK_IRQ;
u64 val = reg->var_off.value;
struct bpf_map *map = NULL;
struct btf *btf = NULL;
struct btf_record *rec;
+ u32 spin_lock_off;
int err;
if (!is_const) {
verbose(env,
- "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
- regno);
+ "R%d doesn't have constant offset. %s_lock has to be at the constant offset\n",
+ regno, lock_str);
return -EINVAL;
}
if (reg->type == PTR_TO_MAP_VALUE) {
map = reg->map_ptr;
if (!map->btf) {
verbose(env,
- "map '%s' has to have BTF in order to use bpf_spin_lock\n",
- map->name);
+ "map '%s' has to have BTF in order to use %s_lock\n",
+ map->name, lock_str);
return -EINVAL;
}
} else {
@@ -7884,36 +8438,53 @@ static int process_spin_lock(struct bpf_verifier_env *env, int regno,
}
rec = reg_btf_record(reg);
- if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
- verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
- map ? map->name : "kptr");
+ if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) {
+ verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local",
+ map ? map->name : "kptr", lock_str);
return -EINVAL;
}
- if (rec->spin_lock_off != val + reg->off) {
- verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
- val + reg->off, rec->spin_lock_off);
+ spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off;
+ if (spin_lock_off != val + reg->off) {
+ verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n",
+ val + reg->off, lock_str, spin_lock_off);
return -EINVAL;
}
if (is_lock) {
void *ptr;
+ int type;
if (map)
ptr = map;
else
ptr = btf;
- if (cur->active_locks) {
- verbose(env,
- "Locking two bpf_spin_locks are not allowed\n");
- return -EINVAL;
+ if (!is_res_lock && cur->active_locks) {
+ if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) {
+ verbose(env,
+ "Locking two bpf_spin_locks are not allowed\n");
+ return -EINVAL;
+ }
+ } else if (is_res_lock && cur->active_locks) {
+ if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) {
+ verbose(env, "Acquiring the same lock again, AA deadlock detected\n");
+ return -EINVAL;
+ }
}
- err = acquire_lock_state(env, env->insn_idx, REF_TYPE_LOCK, reg->id, ptr);
+
+ if (is_res_lock && is_irq)
+ type = REF_TYPE_RES_LOCK_IRQ;
+ else if (is_res_lock)
+ type = REF_TYPE_RES_LOCK;
+ else
+ type = REF_TYPE_LOCK;
+ err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr);
if (err < 0) {
verbose(env, "Failed to acquire lock state\n");
return err;
}
} else {
void *ptr;
+ int type;
if (map)
ptr = map;
@@ -7921,12 +8492,26 @@ static int process_spin_lock(struct bpf_verifier_env *env, int regno,
ptr = btf;
if (!cur->active_locks) {
- verbose(env, "bpf_spin_unlock without taking a lock\n");
+ verbose(env, "%s_unlock without taking a lock\n", lock_str);
return -EINVAL;
}
- if (release_lock_state(cur_func(env), REF_TYPE_LOCK, reg->id, ptr)) {
- verbose(env, "bpf_spin_unlock of different lock\n");
+ if (is_res_lock && is_irq)
+ type = REF_TYPE_RES_LOCK_IRQ;
+ else if (is_res_lock)
+ type = REF_TYPE_RES_LOCK;
+ else
+ type = REF_TYPE_LOCK;
+ if (!find_lock_state(cur, type, reg->id, ptr)) {
+ verbose(env, "%s_unlock of different lock\n", lock_str);
+ return -EINVAL;
+ }
+ if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) {
+ verbose(env, "%s_unlock cannot be out of order\n", lock_str);
+ return -EINVAL;
+ }
+ if (release_lock_state(cur, type, reg->id, ptr)) {
+ verbose(env, "%s_unlock of different lock\n", lock_str);
return -EINVAL;
}
@@ -7935,38 +8520,73 @@ static int process_spin_lock(struct bpf_verifier_env *env, int regno,
return 0;
}
-static int process_timer_func(struct bpf_verifier_env *env, int regno,
- struct bpf_call_arg_meta *meta)
+/* Check if @regno is a pointer to a specific field in a map value */
+static int check_map_field_pointer(struct bpf_verifier_env *env, u32 regno,
+ enum btf_field_type field_type)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
bool is_const = tnum_is_const(reg->var_off);
struct bpf_map *map = reg->map_ptr;
u64 val = reg->var_off.value;
+ const char *struct_name = btf_field_type_name(field_type);
+ int field_off = -1;
if (!is_const) {
verbose(env,
- "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
- regno);
+ "R%d doesn't have constant offset. %s has to be at the constant offset\n",
+ regno, struct_name);
return -EINVAL;
}
if (!map->btf) {
- verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
- map->name);
+ verbose(env, "map '%s' has to have BTF in order to use %s\n", map->name,
+ struct_name);
+ return -EINVAL;
+ }
+ if (!btf_record_has_field(map->record, field_type)) {
+ verbose(env, "map '%s' has no valid %s\n", map->name, struct_name);
return -EINVAL;
}
- if (!btf_record_has_field(map->record, BPF_TIMER)) {
- verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
+ switch (field_type) {
+ case BPF_TIMER:
+ field_off = map->record->timer_off;
+ break;
+ case BPF_TASK_WORK:
+ field_off = map->record->task_work_off;
+ break;
+ case BPF_WORKQUEUE:
+ field_off = map->record->wq_off;
+ break;
+ default:
+ verifier_bug(env, "unsupported BTF field type: %s\n", struct_name);
return -EINVAL;
}
- if (map->record->timer_off != val + reg->off) {
- verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
- val + reg->off, map->record->timer_off);
+ if (field_off != val + reg->off) {
+ verbose(env, "off %lld doesn't point to 'struct %s' that is at %d\n",
+ val + reg->off, struct_name, field_off);
return -EINVAL;
}
+ return 0;
+}
+
+static int process_timer_func(struct bpf_verifier_env *env, int regno,
+ struct bpf_call_arg_meta *meta)
+{
+ struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+ struct bpf_map *map = reg->map_ptr;
+ int err;
+
+ err = check_map_field_pointer(env, regno, BPF_TIMER);
+ if (err)
+ return err;
+
if (meta->map_ptr) {
- verbose(env, "verifier bug. Two map pointers in a timer helper\n");
+ verifier_bug(env, "Two map pointers in a timer helper");
return -EFAULT;
}
+ if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
+ verbose(env, "bpf_timer cannot be used for PREEMPT_RT.\n");
+ return -EOPNOTSUPP;
+ }
meta->map_uid = reg->map_uid;
meta->map_ptr = map;
return 0;
@@ -7977,12 +8597,36 @@ static int process_wq_func(struct bpf_verifier_env *env, int regno,
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
struct bpf_map *map = reg->map_ptr;
- u64 val = reg->var_off.value;
+ int err;
- if (map->record->wq_off != val + reg->off) {
- verbose(env, "off %lld doesn't point to 'struct bpf_wq' that is at %d\n",
- val + reg->off, map->record->wq_off);
- return -EINVAL;
+ err = check_map_field_pointer(env, regno, BPF_WORKQUEUE);
+ if (err)
+ return err;
+
+ if (meta->map.ptr) {
+ verifier_bug(env, "Two map pointers in a bpf_wq helper");
+ return -EFAULT;
+ }
+
+ meta->map.uid = reg->map_uid;
+ meta->map.ptr = map;
+ return 0;
+}
+
+static int process_task_work_func(struct bpf_verifier_env *env, int regno,
+ struct bpf_kfunc_call_arg_meta *meta)
+{
+ struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+ struct bpf_map *map = reg->map_ptr;
+ int err;
+
+ err = check_map_field_pointer(env, regno, BPF_TASK_WORK);
+ if (err)
+ return err;
+
+ if (meta->map.ptr) {
+ verifier_bug(env, "Two map pointers in a bpf_task_work helper");
+ return -EFAULT;
}
meta->map.uid = reg->map_uid;
meta->map.ptr = map;
@@ -8071,7 +8715,7 @@ static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn
if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) {
verbose(env,
"arg#%d expected pointer to stack or const struct bpf_dynptr\n",
- regno);
+ regno - 1);
return -EINVAL;
}
@@ -8079,7 +8723,7 @@ static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn
* ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
*/
if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
- verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
+ verifier_bug(env, "misconfigured dynptr helper type flags");
return -EFAULT;
}
@@ -8125,7 +8769,7 @@ static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn
if (!is_dynptr_reg_valid_init(env, reg)) {
verbose(env,
"Expected an initialized dynptr as arg #%d\n",
- regno);
+ regno - 1);
return -EINVAL;
}
@@ -8133,7 +8777,7 @@ static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn
if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
verbose(env,
"Expected a dynptr of type %s as arg #%d\n",
- dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
+ dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1);
return -EINVAL;
}
@@ -8189,6 +8833,11 @@ static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_id
const struct btf_type *t;
int spi, err, i, nr_slots, btf_id;
+ if (reg->type != PTR_TO_STACK) {
+ verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1);
+ return -EINVAL;
+ }
+
/* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs()
* ensures struct convention, so we wouldn't need to do any BTF
* validation here. But given iter state can be passed as a parameter
@@ -8197,7 +8846,7 @@ static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_id
*/
btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1);
if (btf_id < 0) {
- verbose(env, "expected valid iter pointer as arg #%d\n", regno);
+ verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1);
return -EINVAL;
}
t = btf_type_by_id(meta->btf, btf_id);
@@ -8207,7 +8856,7 @@ static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_id
/* bpf_iter_<type>_new() expects pointer to uninit iter state */
if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
verbose(env, "expected uninitialized iter_%s as arg #%d\n",
- iter_type_str(meta->btf, btf_id), regno);
+ iter_type_str(meta->btf, btf_id), regno - 1);
return -EINVAL;
}
@@ -8231,7 +8880,7 @@ static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_id
break;
case -EINVAL:
verbose(env, "expected an initialized iter_%s as arg #%d\n",
- iter_type_str(meta->btf, btf_id), regno);
+ iter_type_str(meta->btf, btf_id), regno - 1);
return err;
case -EPROTO:
verbose(env, "expected an RCU CS when using %s\n", meta->func_name);
@@ -8272,10 +8921,12 @@ static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
{
struct bpf_verifier_state_list *sl;
struct bpf_verifier_state *st;
+ struct list_head *pos, *head;
/* Explored states are pushed in stack order, most recent states come first */
- sl = *explored_state(env, insn_idx);
- for (; sl; sl = sl->next) {
+ head = explored_state(env, insn_idx);
+ list_for_each(pos, head) {
+ sl = container_of(pos, struct bpf_verifier_state_list, node);
/* If st->branches != 0 state is a part of current DFS verification path,
* hence cur & st for a loop.
*/
@@ -8311,7 +8962,7 @@ static int widen_imprecise_scalars(struct bpf_verifier_env *env,
struct bpf_verifier_state *cur)
{
struct bpf_func_state *fold, *fcur;
- int i, fr;
+ int i, fr, num_slots;
reset_idmap_scratch(env);
for (fr = old->curframe; fr >= 0; fr--) {
@@ -8324,7 +8975,9 @@ static int widen_imprecise_scalars(struct bpf_verifier_env *env,
&fcur->regs[i],
&env->idmap_scratch);
- for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
+ num_slots = min(fold->allocated_stack / BPF_REG_SIZE,
+ fcur->allocated_stack / BPF_REG_SIZE);
+ for (i = 0; i < num_slots; i++) {
if (!is_spilled_reg(&fold->stack[i]) ||
!is_spilled_reg(&fcur->stack[i]))
continue;
@@ -8438,8 +9091,8 @@ static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
- verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
- cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
+ verifier_bug(env, "unexpected iterator state %d (%s)",
+ cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
return -EFAULT;
}
@@ -8449,7 +9102,7 @@ static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
*/
if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
!same_callsites(cur_st->parent, cur_st)) {
- verbose(env, "bug: bad parent state for iter next call");
+ verifier_bug(env, "bad parent state for iter next call");
return -EFAULT;
}
/* Note cur_st->parent in the call below, it is necessary to skip
@@ -8459,8 +9112,8 @@ static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
/* branch out active iter state */
queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
- if (!queued_st)
- return -ENOMEM;
+ if (IS_ERR(queued_st))
+ return PTR_ERR(queued_st);
queued_iter = get_iter_from_state(queued_st, meta);
queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
@@ -8508,8 +9161,8 @@ static int resolve_map_arg_type(struct bpf_verifier_env *env,
{
if (!meta->map_ptr) {
/* kernel subsystem misconfigured verifier */
- verbose(env, "invalid map_ptr to access map->type\n");
- return -EACCES;
+ verifier_bug(env, "invalid map_ptr to access map->type");
+ return -EFAULT;
}
switch (meta->map_ptr->map_type) {
@@ -8655,7 +9308,7 @@ static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
compatible = compatible_reg_types[base_type(arg_type)];
if (!compatible) {
- verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
+ verifier_bug(env, "unsupported arg type %d", arg_type);
return -EFAULT;
}
@@ -8737,7 +9390,7 @@ found:
if (!arg_btf_id) {
if (!compatible->btf_id) {
- verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
+ verifier_bug(env, "missing arg compatible BTF ID");
return -EFAULT;
}
arg_btf_id = compatible->btf_id;
@@ -8769,7 +9422,7 @@ found:
case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC:
if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
meta->func_id != BPF_FUNC_kptr_xchg) {
- verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
+ verifier_bug(env, "unimplemented handling of MEM_ALLOC");
return -EFAULT;
}
/* Check if local kptr in src arg matches kptr in dst arg */
@@ -8784,7 +9437,7 @@ found:
/* Handled by helper specific checks */
break;
default:
- verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
+ verifier_bug(env, "invalid PTR_TO_BTF_ID register for type match");
return -EFAULT;
}
return 0;
@@ -8992,6 +9645,69 @@ static int check_reg_const_str(struct bpf_verifier_env *env,
return 0;
}
+/* Returns constant key value in `value` if possible, else negative error */
+static int get_constant_map_key(struct bpf_verifier_env *env,
+ struct bpf_reg_state *key,
+ u32 key_size,
+ s64 *value)
+{
+ struct bpf_func_state *state = func(env, key);
+ struct bpf_reg_state *reg;
+ int slot, spi, off;
+ int spill_size = 0;
+ int zero_size = 0;
+ int stack_off;
+ int i, err;
+ u8 *stype;
+
+ if (!env->bpf_capable)
+ return -EOPNOTSUPP;
+ if (key->type != PTR_TO_STACK)
+ return -EOPNOTSUPP;
+ if (!tnum_is_const(key->var_off))
+ return -EOPNOTSUPP;
+
+ stack_off = key->off + key->var_off.value;
+ slot = -stack_off - 1;
+ spi = slot / BPF_REG_SIZE;
+ off = slot % BPF_REG_SIZE;
+ stype = state->stack[spi].slot_type;
+
+ /* First handle precisely tracked STACK_ZERO */
+ for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--)
+ zero_size++;
+ if (zero_size >= key_size) {
+ *value = 0;
+ return 0;
+ }
+
+ /* Check that stack contains a scalar spill of expected size */
+ if (!is_spilled_scalar_reg(&state->stack[spi]))
+ return -EOPNOTSUPP;
+ for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--)
+ spill_size++;
+ if (spill_size != key_size)
+ return -EOPNOTSUPP;
+
+ reg = &state->stack[spi].spilled_ptr;
+ if (!tnum_is_const(reg->var_off))
+ /* Stack value not statically known */
+ return -EOPNOTSUPP;
+
+ /* We are relying on a constant value. So mark as precise
+ * to prevent pruning on it.
+ */
+ bt_set_frame_slot(&env->bt, key->frameno, spi);
+ err = mark_chain_precision_batch(env, env->cur_state);
+ if (err < 0)
+ return err;
+
+ *value = reg->var_off.value;
+ return 0;
+}
+
+static bool can_elide_value_nullness(enum bpf_map_type type);
+
static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
struct bpf_call_arg_meta *meta,
const struct bpf_func_proto *fn,
@@ -9002,8 +9718,8 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
enum bpf_arg_type arg_type = fn->arg_type[arg];
enum bpf_reg_type type = reg->type;
u32 *arg_btf_id = NULL;
+ u32 key_size;
int err = 0;
- bool mask;
if (arg_type == ARG_DONTCARE)
return 0;
@@ -9044,11 +9760,11 @@ static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
arg_btf_id = fn->arg_btf_id[arg];
- mask = mask_raw_tp_reg(env, reg);
err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
+ if (err)
+ return err;
- err = err ?: check_func_arg_reg_off(env, reg, regno, arg_type);
- unmask_raw_tp_reg(reg, mask);
+ err = check_func_arg_reg_off(env, reg, regno, arg_type);
if (err)
return err;
@@ -9079,7 +9795,7 @@ skip_type_check:
return -EINVAL;
}
if (meta->release_regno) {
- verbose(env, "verifier internal error: more than one release argument\n");
+ verifier_bug(env, "more than one release argument");
return -EFAULT;
}
meta->release_regno = regno;
@@ -9087,10 +9803,10 @@ skip_type_check:
if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) {
if (meta->ref_obj_id) {
- verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
+ verbose(env, "more than one arg with ref_obj_id R%d %u %u",
regno, reg->ref_obj_id,
meta->ref_obj_id);
- return -EFAULT;
+ return -EACCES;
}
meta->ref_obj_id = reg->ref_obj_id;
}
@@ -9133,11 +9849,23 @@ skip_type_check:
* we have to check map_key here. Otherwise it means
* that kernel subsystem misconfigured verifier
*/
- verbose(env, "invalid map_ptr to access map->key\n");
- return -EACCES;
+ verifier_bug(env, "invalid map_ptr to access map->key");
+ return -EFAULT;
+ }
+ key_size = meta->map_ptr->key_size;
+ err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL);
+ if (err)
+ return err;
+ if (can_elide_value_nullness(meta->map_ptr->map_type)) {
+ err = get_constant_map_key(env, reg, key_size, &meta->const_map_key);
+ if (err < 0) {
+ meta->const_map_key = -1;
+ if (err == -EOPNOTSUPP)
+ err = 0;
+ else
+ return err;
+ }
}
- err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
- BPF_READ, false, NULL);
break;
case ARG_PTR_TO_MAP_VALUE:
if (type_may_be_null(arg_type) && register_is_null(reg))
@@ -9148,8 +9876,8 @@ skip_type_check:
*/
if (!meta->map_ptr) {
/* kernel subsystem misconfigured verifier */
- verbose(env, "invalid map_ptr to access map->value\n");
- return -EACCES;
+ verifier_bug(env, "invalid map_ptr to access map->value");
+ return -EFAULT;
}
meta->raw_mode = arg_type & MEM_UNINIT;
err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
@@ -9170,15 +9898,15 @@ skip_type_check:
return -EACCES;
}
if (meta->func_id == BPF_FUNC_spin_lock) {
- err = process_spin_lock(env, regno, true);
+ err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK);
if (err)
return err;
} else if (meta->func_id == BPF_FUNC_spin_unlock) {
- err = process_spin_lock(env, regno, false);
+ err = process_spin_lock(env, regno, 0);
if (err)
return err;
} else {
- verbose(env, "verifier internal error\n");
+ verifier_bug(env, "spin lock arg on unexpected helper");
return -EFAULT;
}
break;
@@ -9422,6 +10150,8 @@ static int check_map_func_compatibility(struct bpf_verifier_env *env,
func_id != BPF_FUNC_map_push_elem)
goto error;
break;
+ case BPF_MAP_TYPE_INSN_ARRAY:
+ goto error;
default:
break;
}
@@ -9432,7 +10162,7 @@ static int check_map_func_compatibility(struct bpf_verifier_env *env,
if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
goto error;
if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
- verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
+ verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n");
return -EINVAL;
}
break;
@@ -9669,21 +10399,38 @@ static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range
reg->range = AT_PKT_END;
}
+static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id)
+{
+ int i;
+
+ for (i = 0; i < state->acquired_refs; i++) {
+ if (state->refs[i].type != REF_TYPE_PTR)
+ continue;
+ if (state->refs[i].id == ref_obj_id) {
+ release_reference_state(state, i);
+ return 0;
+ }
+ }
+ return -EINVAL;
+}
+
/* The pointer with the specified id has released its reference to kernel
* resources. Identify all copies of the same pointer and clear the reference.
+ *
+ * This is the release function corresponding to acquire_reference(). Idempotent.
*/
-static int release_reference(struct bpf_verifier_env *env,
- int ref_obj_id)
+static int release_reference(struct bpf_verifier_env *env, int ref_obj_id)
{
+ struct bpf_verifier_state *vstate = env->cur_state;
struct bpf_func_state *state;
struct bpf_reg_state *reg;
int err;
- err = release_reference_state(cur_func(env), ref_obj_id);
+ err = release_reference_nomark(vstate, ref_obj_id);
if (err)
return err;
- bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
+ bpf_for_each_reg_in_vstate(vstate, state, reg, ({
if (reg->ref_obj_id == ref_obj_id)
mark_reg_invalid(env, reg);
}));
@@ -9737,13 +10484,12 @@ static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int calls
}
if (state->frame[state->curframe + 1]) {
- verbose(env, "verifier bug. Frame %d already allocated\n",
- state->curframe + 1);
+ verifier_bug(env, "Frame %d already allocated", state->curframe + 1);
return -EFAULT;
}
caller = state->frame[state->curframe];
- callee = kzalloc(sizeof(*callee), GFP_KERNEL);
+ callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT);
if (!callee)
return -ENOMEM;
state->frame[state->curframe + 1] = callee;
@@ -9757,9 +10503,7 @@ static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int calls
callsite,
state->curframe + 1 /* frameno within this callchain */,
subprog /* subprog number within this prog */);
- /* Transfer references to the callee */
- err = copy_reference_state(callee, caller);
- err = err ?: set_callee_state_cb(env, caller, callee, callsite);
+ err = set_callee_state_cb(env, caller, callee, callsite);
if (err)
goto err_out;
@@ -9800,6 +10544,12 @@ static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
bpf_log(log, "R%d is not a scalar\n", regno);
return -EINVAL;
}
+ } else if (arg->arg_type & PTR_UNTRUSTED) {
+ /*
+ * Anything is allowed for untrusted arguments, as these are
+ * read-only and probe read instructions would protect against
+ * invalid memory access.
+ */
} else if (arg->arg_type == ARG_PTR_TO_CTX) {
ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE);
if (ret < 0)
@@ -9843,22 +10593,18 @@ static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
return ret;
} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
struct bpf_call_arg_meta meta;
- bool mask;
int err;
if (register_is_null(reg) && type_may_be_null(arg->arg_type))
continue;
memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */
- mask = mask_raw_tp_reg(env, reg);
err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta);
err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type);
- unmask_raw_tp_reg(reg, mask);
if (err)
return err;
} else {
- bpf_log(log, "verifier bug: unrecognized arg#%d type %d\n",
- i, arg->arg_type);
+ verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type);
return -EFAULT;
}
}
@@ -9921,13 +10667,13 @@ static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *ins
env->subprog_info[subprog].is_cb = true;
if (bpf_pseudo_kfunc_call(insn) &&
!is_callback_calling_kfunc(insn->imm)) {
- verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
- func_id_name(insn->imm), insn->imm);
+ verifier_bug(env, "kfunc %s#%d not marked as callback-calling",
+ func_id_name(insn->imm), insn->imm);
return -EFAULT;
} else if (!bpf_pseudo_kfunc_call(insn) &&
!is_callback_calling_function(insn->imm)) { /* helper */
- verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
- func_id_name(insn->imm), insn->imm);
+ verifier_bug(env, "helper %s#%d not marked as callback-calling",
+ func_id_name(insn->imm), insn->imm);
return -EFAULT;
}
@@ -9938,9 +10684,9 @@ static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *ins
env->subprog_info[subprog].is_async_cb = true;
async_cb = push_async_cb(env, env->subprog_info[subprog].start,
insn_idx, subprog,
- is_bpf_wq_set_callback_impl_kfunc(insn->imm));
- if (!async_cb)
- return -EFAULT;
+ is_async_cb_sleepable(env, insn));
+ if (IS_ERR(async_cb))
+ return PTR_ERR(async_cb);
callee = async_cb->frame[0];
callee->async_entry_cnt = caller->async_entry_cnt + 1;
@@ -9956,8 +10702,8 @@ static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *ins
* proceed with next instruction within current frame.
*/
callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
- if (!callback_state)
- return -ENOMEM;
+ if (IS_ERR(callback_state))
+ return PTR_ERR(callback_state);
err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
callback_state);
@@ -9979,10 +10725,9 @@ static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
target_insn = *insn_idx + insn->imm + 1;
subprog = find_subprog(env, target_insn);
- if (subprog < 0) {
- verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
+ if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program",
+ target_insn))
return -EFAULT;
- }
caller = state->frame[state->curframe];
err = btf_check_subprog_call(env, subprog, caller->regs);
@@ -9991,17 +10736,18 @@ static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
if (subprog_is_global(env, subprog)) {
const char *sub_name = subprog_name(env, subprog);
- /* Only global subprogs cannot be called with a lock held. */
- if (cur_func(env)->active_locks) {
+ if (env->cur_state->active_locks) {
verbose(env, "global function calls are not allowed while holding a lock,\n"
"use static function instead\n");
return -EINVAL;
}
- /* Only global subprogs cannot be called with preemption disabled. */
- if (env->cur_state->active_preempt_lock) {
- verbose(env, "global function calls are not allowed with preemption disabled,\n"
- "use static function instead\n");
+ if (env->subprog_info[subprog].might_sleep &&
+ (env->cur_state->active_rcu_locks || env->cur_state->active_preempt_locks ||
+ env->cur_state->active_irq_id || !in_sleepable(env))) {
+ verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n"
+ "i.e., in a RCU/IRQ/preempt-disabled section, or in\n"
+ "a non-sleepable BPF program context\n");
return -EINVAL;
}
@@ -10011,8 +10757,11 @@ static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
return err;
}
- verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
- subprog, sub_name);
+ if (env->log.level & BPF_LOG_LEVEL)
+ verbose(env, "Func#%d ('%s') is global and assumed valid.\n",
+ subprog, sub_name);
+ if (env->subprog_info[subprog].changes_pkt_data)
+ clear_all_pkt_pointers(env);
/* mark global subprog for verifying after main prog */
subprog_aux(env, subprog)->called = true;
clear_caller_saved_regs(env, caller->regs);
@@ -10037,11 +10786,13 @@ static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
/* and go analyze first insn of the callee */
*insn_idx = env->subprog_info[subprog].start - 1;
+ bpf_reset_live_stack_callchain(env);
+
if (env->log.level & BPF_LOG_LEVEL) {
verbose(env, "caller:\n");
- print_verifier_state(env, caller, true);
+ print_verifier_state(env, state, caller->frameno, true);
verbose(env, "callee:\n");
- print_verifier_state(env, state->frame[state->curframe], true);
+ print_verifier_state(env, state, state->curframe, true);
}
return 0;
@@ -10162,7 +10913,7 @@ static int set_timer_callback_state(struct bpf_verifier_env *env,
__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
callee->in_async_callback_fn = true;
- callee->callback_ret_range = retval_range(0, 1);
+ callee->callback_ret_range = retval_range(0, 0);
return 0;
}
@@ -10249,6 +11000,36 @@ static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
return 0;
}
+static int set_task_work_schedule_callback_state(struct bpf_verifier_env *env,
+ struct bpf_func_state *caller,
+ struct bpf_func_state *callee,
+ int insn_idx)
+{
+ struct bpf_map *map_ptr = caller->regs[BPF_REG_3].map_ptr;
+
+ /*
+ * callback_fn(struct bpf_map *map, void *key, void *value);
+ */
+ callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
+ __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
+ callee->regs[BPF_REG_1].map_ptr = map_ptr;
+
+ callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
+ __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
+ callee->regs[BPF_REG_2].map_ptr = map_ptr;
+
+ callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
+ __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
+ callee->regs[BPF_REG_3].map_ptr = map_ptr;
+
+ /* unused */
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
+ __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
+ callee->in_async_callback_fn = true;
+ callee->callback_ret_range = retval_range(S32_MIN, S32_MAX);
+ return 0;
+}
+
static bool is_rbtree_lock_required_kfunc(u32 btf_id);
/* Are we currently verifying the callback for a rbtree helper that must
@@ -10291,6 +11072,10 @@ static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
bool in_callback_fn;
int err;
+ err = bpf_update_live_stack(env);
+ if (err)
+ return err;
+
callee = state->frame[state->curframe];
r0 = &callee->regs[BPF_REG_0];
if (r0->type == PTR_TO_STACK) {
@@ -10312,8 +11097,7 @@ static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
}
/* we are going to rely on register's precise value */
- err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
- err = err ?: mark_chain_precision(env, BPF_REG_0);
+ err = mark_chain_precision(env, BPF_REG_0);
if (err)
return err;
@@ -10323,9 +11107,9 @@ static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
"At callback return", "R0");
return -EINVAL;
}
- if (!calls_callback(env, callee->callsite)) {
- verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
- *insn_idx, callee->callsite);
+ if (!bpf_calls_callback(env, callee->callsite)) {
+ verifier_bug(env, "in callback at %d, callsite %d !calls_callback",
+ *insn_idx, callee->callsite);
return -EFAULT;
}
} else {
@@ -10333,11 +11117,6 @@ static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
caller->regs[BPF_REG_0] = *r0;
}
- /* Transfer references to the caller */
- err = copy_reference_state(caller, callee);
- if (err)
- return err;
-
/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
* there function call logic would reschedule callback visit. If iteration
* converges is_state_visited() would prune that visit eventually.
@@ -10350,9 +11129,9 @@ static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
if (env->log.level & BPF_LOG_LEVEL) {
verbose(env, "returning from callee:\n");
- print_verifier_state(env, callee, true);
+ print_verifier_state(env, state, callee->frameno, true);
verbose(env, "to caller at %d:\n", *insn_idx);
- print_verifier_state(env, caller, true);
+ print_verifier_state(env, state, caller->frameno, true);
}
/* clear everything in the callee. In case of exceptional exits using
* bpf_throw, this will be done by copy_verifier_state for extra frames. */
@@ -10437,8 +11216,8 @@ record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
return 0;
if (map == NULL) {
- verbose(env, "kernel subsystem misconfigured verifier\n");
- return -EINVAL;
+ verifier_bug(env, "expected map for helper call");
+ return -EFAULT;
}
/* In case of read-only, some additional restrictions
@@ -10476,7 +11255,7 @@ record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
if (func_id != BPF_FUNC_tail_call)
return 0;
if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
- verbose(env, "kernel subsystem misconfigured verifier\n");
+ verbose(env, "expected prog array map for tail call");
return -EINVAL;
}
@@ -10502,16 +11281,24 @@ record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit)
{
- struct bpf_func_state *state = cur_func(env);
+ struct bpf_verifier_state *state = env->cur_state;
+ enum bpf_prog_type type = resolve_prog_type(env->prog);
+ struct bpf_reg_state *reg = reg_state(env, BPF_REG_0);
bool refs_lingering = false;
int i;
- if (!exception_exit && state->frameno)
+ if (!exception_exit && cur_func(env)->frameno)
return 0;
for (i = 0; i < state->acquired_refs; i++) {
if (state->refs[i].type != REF_TYPE_PTR)
continue;
+ /* Allow struct_ops programs to return a referenced kptr back to
+ * kernel. Type checks are performed later in check_return_code.
+ */
+ if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit &&
+ reg->ref_obj_id == state->refs[i].id)
+ continue;
verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
state->refs[i].id, state->refs[i].insn_idx);
refs_lingering = true;
@@ -10523,7 +11310,7 @@ static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit
{
int err;
- if (check_lock && cur_func(env)->active_locks) {
+ if (check_lock && env->cur_state->active_locks) {
verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix);
return -EINVAL;
}
@@ -10534,12 +11321,17 @@ static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit
return err;
}
- if (check_lock && env->cur_state->active_rcu_lock) {
+ if (check_lock && env->cur_state->active_irq_id) {
+ verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix);
+ return -EINVAL;
+ }
+
+ if (check_lock && env->cur_state->active_rcu_locks) {
verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix);
return -EINVAL;
}
- if (check_lock && env->cur_state->active_preempt_lock) {
+ if (check_lock && env->cur_state->active_preempt_locks) {
verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix);
return -EINVAL;
}
@@ -10570,7 +11362,7 @@ static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
fmt_map_off);
if (err) {
- verbose(env, "verifier bug\n");
+ verbose(env, "failed to retrieve map value address\n");
return -EFAULT;
}
fmt = (char *)(long)fmt_addr + fmt_map_off;
@@ -10606,7 +11398,7 @@ static int check_get_func_ip(struct bpf_verifier_env *env)
return -ENOTSUPP;
}
-static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
+static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env)
{
return &env->insn_aux_data[env->insn_idx];
}
@@ -10641,6 +11433,21 @@ static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno
state->callback_subprogno == subprogno);
}
+/* Returns whether or not the given map type can potentially elide
+ * lookup return value nullness check. This is possible if the key
+ * is statically known.
+ */
+static bool can_elide_value_nullness(enum bpf_map_type type)
+{
+ switch (type) {
+ case BPF_MAP_TYPE_ARRAY:
+ case BPF_MAP_TYPE_PERCPU_ARRAY:
+ return true;
+ default:
+ return false;
+ }
+}
+
static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
const struct bpf_func_proto **ptr)
{
@@ -10651,7 +11458,16 @@ static int get_helper_proto(struct bpf_verifier_env *env, int func_id,
return -EINVAL;
*ptr = env->ops->get_func_proto(func_id, env->prog);
- return *ptr ? 0 : -EINVAL;
+ return *ptr && (*ptr)->func ? 0 : -EINVAL;
+}
+
+/* Check if we're in a sleepable context. */
+static inline bool in_sleepable_context(struct bpf_verifier_env *env)
+{
+ return !env->cur_state->active_rcu_locks &&
+ !env->cur_state->active_preempt_locks &&
+ !env->cur_state->active_irq_id &&
+ in_sleepable(env);
}
static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
@@ -10699,11 +11515,10 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
}
/* With LD_ABS/IND some JITs save/restore skb from r1. */
- changes_data = bpf_helper_changes_pkt_data(fn->func);
+ changes_data = bpf_helper_changes_pkt_data(func_id);
if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
- verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
- func_id_name(func_id), func_id);
- return -EINVAL;
+ verifier_bug(env, "func %s#%d: r1 != ctx", func_id_name(func_id), func_id);
+ return -EFAULT;
}
memset(&meta, 0, sizeof(meta));
@@ -10711,33 +11526,38 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
err = check_func_proto(fn, func_id);
if (err) {
- verbose(env, "kernel subsystem misconfigured func %s#%d\n",
- func_id_name(func_id), func_id);
+ verifier_bug(env, "incorrect func proto %s#%d", func_id_name(func_id), func_id);
return err;
}
- if (env->cur_state->active_rcu_lock) {
+ if (env->cur_state->active_rcu_locks) {
if (fn->might_sleep) {
verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
func_id_name(func_id), func_id);
return -EINVAL;
}
-
- if (in_sleepable(env) && is_storage_get_function(func_id))
- env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
}
- if (env->cur_state->active_preempt_lock) {
+ if (env->cur_state->active_preempt_locks) {
if (fn->might_sleep) {
verbose(env, "sleepable helper %s#%d in non-preemptible region\n",
func_id_name(func_id), func_id);
return -EINVAL;
}
+ }
- if (in_sleepable(env) && is_storage_get_function(func_id))
- env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
+ if (env->cur_state->active_irq_id) {
+ if (fn->might_sleep) {
+ verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n",
+ func_id_name(func_id), func_id);
+ return -EINVAL;
+ }
}
+ /* Track non-sleepable context for helpers. */
+ if (!in_sleepable_context(env))
+ env->insn_aux_data[insn_idx].non_sleepable = true;
+
meta.func_id = func_id;
/* check args */
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
@@ -10768,15 +11588,7 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
if (meta.release_regno) {
err = -EINVAL;
- /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
- * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
- * is safe to do directly.
- */
if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
- if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
- verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
- return -EFAULT;
- }
err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
} else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) {
u32 ref_obj_id = meta.ref_obj_id;
@@ -10784,7 +11596,7 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
struct bpf_func_state *state;
struct bpf_reg_state *reg;
- err = release_reference_state(cur_func(env), ref_obj_id);
+ err = release_reference_nomark(env->cur_state, ref_obj_id);
if (!err) {
bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
if (reg->ref_obj_id == ref_obj_id) {
@@ -10891,23 +11703,23 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
if (meta.dynptr_id) {
- verbose(env, "verifier internal error: meta.dynptr_id already set\n");
+ verifier_bug(env, "meta.dynptr_id already set");
return -EFAULT;
}
if (meta.ref_obj_id) {
- verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
+ verifier_bug(env, "meta.ref_obj_id already set");
return -EFAULT;
}
id = dynptr_id(env, reg);
if (id < 0) {
- verbose(env, "verifier internal error: failed to obtain dynptr id\n");
+ verifier_bug(env, "failed to obtain dynptr id");
return id;
}
ref_obj_id = dynptr_ref_obj_id(env, reg);
if (ref_obj_id < 0) {
- verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
+ verifier_bug(env, "failed to obtain dynptr ref_obj_id");
return ref_obj_id;
}
@@ -10929,7 +11741,8 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
return -EFAULT;
- if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
+ if (dynptr_type == BPF_DYNPTR_TYPE_SKB ||
+ dynptr_type == BPF_DYNPTR_TYPE_SKB_META)
/* this will trigger clear_all_pkt_pointers(), which will
* invalidate all dynptr slices associated with the skb
*/
@@ -10992,15 +11805,21 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
* to map element returned from bpf_map_lookup_elem()
*/
if (meta.map_ptr == NULL) {
- verbose(env,
- "kernel subsystem misconfigured verifier\n");
- return -EINVAL;
+ verifier_bug(env, "unexpected null map_ptr");
+ return -EFAULT;
}
+
+ if (func_id == BPF_FUNC_map_lookup_elem &&
+ can_elide_value_nullness(meta.map_ptr->map_type) &&
+ meta.const_map_key >= 0 &&
+ meta.const_map_key < meta.map_ptr->max_entries)
+ ret_flag &= ~PTR_MAYBE_NULL;
+
regs[BPF_REG_0].map_ptr = meta.map_ptr;
regs[BPF_REG_0].map_uid = meta.map_uid;
regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
- if (!type_may_be_null(ret_type) &&
- btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
+ if (!type_may_be_null(ret_flag) &&
+ btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
regs[BPF_REG_0].id = ++env->id_gen;
}
break;
@@ -11077,10 +11896,9 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
}
} else {
if (fn->ret_btf_id == BPF_PTR_POISON) {
- verbose(env, "verifier internal error:");
- verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
- func_id_name(func_id));
- return -EINVAL;
+ verifier_bug(env, "func %s has non-overwritten BPF_PTR_POISON return type",
+ func_id_name(func_id));
+ return -EFAULT;
}
ret_btf = btf_vmlinux;
ret_btf_id = *fn->ret_btf_id;
@@ -11105,8 +11923,8 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
regs[BPF_REG_0].id = ++env->id_gen;
if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
- verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
- func_id_name(func_id), func_id);
+ verifier_bug(env, "func %s#%d sets ref_obj_id more than once",
+ func_id_name(func_id), func_id);
return -EFAULT;
}
@@ -11117,7 +11935,7 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
/* For release_reference() */
regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
} else if (is_acquire_function(func_id, meta.map_ptr)) {
- int id = acquire_reference_state(env, insn_idx);
+ int id = acquire_reference(env, insn_idx);
if (id < 0)
return id;
@@ -11164,6 +11982,25 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
env->prog->call_get_func_ip = true;
}
+ if (func_id == BPF_FUNC_tail_call) {
+ if (env->cur_state->curframe) {
+ struct bpf_verifier_state *branch;
+
+ mark_reg_scratched(env, BPF_REG_0);
+ branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
+ if (IS_ERR(branch))
+ return PTR_ERR(branch);
+ clear_all_pkt_pointers(env);
+ mark_reg_unknown(env, regs, BPF_REG_0);
+ err = prepare_func_exit(env, &env->insn_idx);
+ if (err)
+ return err;
+ env->insn_idx--;
+ } else {
+ changes_data = false;
+ }
+ }
+
if (changes_data)
clear_all_pkt_pointers(env);
return 0;
@@ -11172,27 +12009,27 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
/* mark_btf_func_reg_size() is used when the reg size is determined by
* the BTF func_proto's return value size and argument.
*/
-static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
- size_t reg_size)
+static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs,
+ u32 regno, size_t reg_size)
{
- struct bpf_reg_state *reg = &cur_regs(env)[regno];
+ struct bpf_reg_state *reg = &regs[regno];
if (regno == BPF_REG_0) {
/* Function return value */
- reg->live |= REG_LIVE_WRITTEN;
reg->subreg_def = reg_size == sizeof(u64) ?
DEF_NOT_SUBREG : env->insn_idx + 1;
- } else {
+ } else if (reg_size == sizeof(u64)) {
/* Function argument */
- if (reg_size == sizeof(u64)) {
- mark_insn_zext(env, reg);
- mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
- } else {
- mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
- }
+ mark_insn_zext(env, reg);
}
}
+static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
+ size_t reg_size)
+{
+ return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size);
+}
+
static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
{
return meta->kfunc_flags & KF_ACQUIRE;
@@ -11299,6 +12136,16 @@ static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param
return btf_param_match_suffix(btf, arg, "__str");
}
+static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg)
+{
+ return btf_param_match_suffix(btf, arg, "__irq_flag");
+}
+
+static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg)
+{
+ return btf_param_match_suffix(btf, arg, "__prog");
+}
+
static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
const struct btf_param *arg,
const char *name)
@@ -11325,6 +12172,8 @@ enum {
KF_ARG_RB_ROOT_ID,
KF_ARG_RB_NODE_ID,
KF_ARG_WORKQUEUE_ID,
+ KF_ARG_RES_SPIN_LOCK_ID,
+ KF_ARG_TASK_WORK_ID,
};
BTF_ID_LIST(kf_arg_btf_ids)
@@ -11334,6 +12183,8 @@ BTF_ID(struct, bpf_list_node)
BTF_ID(struct, bpf_rb_root)
BTF_ID(struct, bpf_rb_node)
BTF_ID(struct, bpf_wq)
+BTF_ID(struct, bpf_res_spin_lock)
+BTF_ID(struct, bpf_task_work)
static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
const struct btf_param *arg, int type)
@@ -11382,6 +12233,26 @@ static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg)
return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID);
}
+static bool is_kfunc_arg_task_work(const struct btf *btf, const struct btf_param *arg)
+{
+ return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_TASK_WORK_ID);
+}
+
+static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg)
+{
+ return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID);
+}
+
+static bool is_rbtree_node_type(const struct btf_type *t)
+{
+ return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]);
+}
+
+static bool is_list_node_type(const struct btf_type *t)
+{
+ return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]);
+}
+
static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
const struct btf_param *arg)
{
@@ -11452,6 +12323,9 @@ enum kfunc_ptr_arg_type {
KF_ARG_PTR_TO_CONST_STR,
KF_ARG_PTR_TO_MAP,
KF_ARG_PTR_TO_WORKQUEUE,
+ KF_ARG_PTR_TO_IRQ_FLAG,
+ KF_ARG_PTR_TO_RES_SPIN_LOCK,
+ KF_ARG_PTR_TO_TASK_WORK,
};
enum special_kfunc_type {
@@ -11462,6 +12336,8 @@ enum special_kfunc_type {
KF_bpf_list_push_back_impl,
KF_bpf_list_pop_front,
KF_bpf_list_pop_back,
+ KF_bpf_list_front,
+ KF_bpf_list_back,
KF_bpf_cast_to_kern_ctx,
KF_bpf_rdonly_cast,
KF_bpf_rcu_read_lock,
@@ -11469,8 +12345,13 @@ enum special_kfunc_type {
KF_bpf_rbtree_remove,
KF_bpf_rbtree_add_impl,
KF_bpf_rbtree_first,
+ KF_bpf_rbtree_root,
+ KF_bpf_rbtree_left,
+ KF_bpf_rbtree_right,
KF_bpf_dynptr_from_skb,
KF_bpf_dynptr_from_xdp,
+ KF_bpf_dynptr_from_skb_meta,
+ KF_bpf_xdp_pull_data,
KF_bpf_dynptr_slice,
KF_bpf_dynptr_slice_rdwr,
KF_bpf_dynptr_clone,
@@ -11483,35 +12364,24 @@ enum special_kfunc_type {
KF_bpf_iter_css_task_new,
KF_bpf_session_cookie,
KF_bpf_get_kmem_cache,
+ KF_bpf_local_irq_save,
+ KF_bpf_local_irq_restore,
+ KF_bpf_iter_num_new,
+ KF_bpf_iter_num_next,
+ KF_bpf_iter_num_destroy,
+ KF_bpf_set_dentry_xattr,
+ KF_bpf_remove_dentry_xattr,
+ KF_bpf_res_spin_lock,
+ KF_bpf_res_spin_unlock,
+ KF_bpf_res_spin_lock_irqsave,
+ KF_bpf_res_spin_unlock_irqrestore,
+ KF_bpf_dynptr_from_file,
+ KF_bpf_dynptr_file_discard,
+ KF___bpf_trap,
+ KF_bpf_task_work_schedule_signal_impl,
+ KF_bpf_task_work_schedule_resume_impl,
};
-BTF_SET_START(special_kfunc_set)
-BTF_ID(func, bpf_obj_new_impl)
-BTF_ID(func, bpf_obj_drop_impl)
-BTF_ID(func, bpf_refcount_acquire_impl)
-BTF_ID(func, bpf_list_push_front_impl)
-BTF_ID(func, bpf_list_push_back_impl)
-BTF_ID(func, bpf_list_pop_front)
-BTF_ID(func, bpf_list_pop_back)
-BTF_ID(func, bpf_cast_to_kern_ctx)
-BTF_ID(func, bpf_rdonly_cast)
-BTF_ID(func, bpf_rbtree_remove)
-BTF_ID(func, bpf_rbtree_add_impl)
-BTF_ID(func, bpf_rbtree_first)
-BTF_ID(func, bpf_dynptr_from_skb)
-BTF_ID(func, bpf_dynptr_from_xdp)
-BTF_ID(func, bpf_dynptr_slice)
-BTF_ID(func, bpf_dynptr_slice_rdwr)
-BTF_ID(func, bpf_dynptr_clone)
-BTF_ID(func, bpf_percpu_obj_new_impl)
-BTF_ID(func, bpf_percpu_obj_drop_impl)
-BTF_ID(func, bpf_throw)
-BTF_ID(func, bpf_wq_set_callback_impl)
-#ifdef CONFIG_CGROUPS
-BTF_ID(func, bpf_iter_css_task_new)
-#endif
-BTF_SET_END(special_kfunc_set)
-
BTF_ID_LIST(special_kfunc_list)
BTF_ID(func, bpf_obj_new_impl)
BTF_ID(func, bpf_obj_drop_impl)
@@ -11520,6 +12390,8 @@ BTF_ID(func, bpf_list_push_front_impl)
BTF_ID(func, bpf_list_push_back_impl)
BTF_ID(func, bpf_list_pop_front)
BTF_ID(func, bpf_list_pop_back)
+BTF_ID(func, bpf_list_front)
+BTF_ID(func, bpf_list_back)
BTF_ID(func, bpf_cast_to_kern_ctx)
BTF_ID(func, bpf_rdonly_cast)
BTF_ID(func, bpf_rcu_read_lock)
@@ -11527,8 +12399,20 @@ BTF_ID(func, bpf_rcu_read_unlock)
BTF_ID(func, bpf_rbtree_remove)
BTF_ID(func, bpf_rbtree_add_impl)
BTF_ID(func, bpf_rbtree_first)
+BTF_ID(func, bpf_rbtree_root)
+BTF_ID(func, bpf_rbtree_left)
+BTF_ID(func, bpf_rbtree_right)
+#ifdef CONFIG_NET
BTF_ID(func, bpf_dynptr_from_skb)
BTF_ID(func, bpf_dynptr_from_xdp)
+BTF_ID(func, bpf_dynptr_from_skb_meta)
+BTF_ID(func, bpf_xdp_pull_data)
+#else
+BTF_ID_UNUSED
+BTF_ID_UNUSED
+BTF_ID_UNUSED
+BTF_ID_UNUSED
+#endif
BTF_ID(func, bpf_dynptr_slice)
BTF_ID(func, bpf_dynptr_slice_rdwr)
BTF_ID(func, bpf_dynptr_clone)
@@ -11549,6 +12433,33 @@ BTF_ID(func, bpf_session_cookie)
BTF_ID_UNUSED
#endif
BTF_ID(func, bpf_get_kmem_cache)
+BTF_ID(func, bpf_local_irq_save)
+BTF_ID(func, bpf_local_irq_restore)
+BTF_ID(func, bpf_iter_num_new)
+BTF_ID(func, bpf_iter_num_next)
+BTF_ID(func, bpf_iter_num_destroy)
+#ifdef CONFIG_BPF_LSM
+BTF_ID(func, bpf_set_dentry_xattr)
+BTF_ID(func, bpf_remove_dentry_xattr)
+#else
+BTF_ID_UNUSED
+BTF_ID_UNUSED
+#endif
+BTF_ID(func, bpf_res_spin_lock)
+BTF_ID(func, bpf_res_spin_unlock)
+BTF_ID(func, bpf_res_spin_lock_irqsave)
+BTF_ID(func, bpf_res_spin_unlock_irqrestore)
+BTF_ID(func, bpf_dynptr_from_file)
+BTF_ID(func, bpf_dynptr_file_discard)
+BTF_ID(func, __bpf_trap)
+BTF_ID(func, bpf_task_work_schedule_signal_impl)
+BTF_ID(func, bpf_task_work_schedule_resume_impl)
+
+static bool is_task_work_add_kfunc(u32 func_id)
+{
+ return func_id == special_kfunc_list[KF_bpf_task_work_schedule_signal_impl] ||
+ func_id == special_kfunc_list[KF_bpf_task_work_schedule_resume_impl];
+}
static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
{
@@ -11580,6 +12491,11 @@ static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta)
return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable];
}
+static bool is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta *meta)
+{
+ return meta->func_id == special_kfunc_list[KF_bpf_xdp_pull_data];
+}
+
static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
struct bpf_kfunc_call_arg_meta *meta,
@@ -11639,6 +12555,15 @@ get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
if (is_kfunc_arg_wq(meta->btf, &args[argno]))
return KF_ARG_PTR_TO_WORKQUEUE;
+ if (is_kfunc_arg_task_work(meta->btf, &args[argno]))
+ return KF_ARG_PTR_TO_TASK_WORK;
+
+ if (is_kfunc_arg_irq_flag(meta->btf, &args[argno]))
+ return KF_ARG_PTR_TO_IRQ_FLAG;
+
+ if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno]))
+ return KF_ARG_PTR_TO_RES_SPIN_LOCK;
+
if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
if (!btf_type_is_struct(ref_t)) {
verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
@@ -11742,17 +12667,71 @@ static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
return 0;
}
+static int process_irq_flag(struct bpf_verifier_env *env, int regno,
+ struct bpf_kfunc_call_arg_meta *meta)
+{
+ struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
+ int err, kfunc_class = IRQ_NATIVE_KFUNC;
+ bool irq_save;
+
+ if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] ||
+ meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) {
+ irq_save = true;
+ if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
+ kfunc_class = IRQ_LOCK_KFUNC;
+ } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] ||
+ meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) {
+ irq_save = false;
+ if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
+ kfunc_class = IRQ_LOCK_KFUNC;
+ } else {
+ verifier_bug(env, "unknown irq flags kfunc");
+ return -EFAULT;
+ }
+
+ if (irq_save) {
+ if (!is_irq_flag_reg_valid_uninit(env, reg)) {
+ verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1);
+ return -EINVAL;
+ }
+
+ err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false);
+ if (err)
+ return err;
+
+ err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class);
+ if (err)
+ return err;
+ } else {
+ err = is_irq_flag_reg_valid_init(env, reg);
+ if (err) {
+ verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1);
+ return err;
+ }
+
+ err = mark_irq_flag_read(env, reg);
+ if (err)
+ return err;
+
+ err = unmark_stack_slot_irq_flag(env, reg, kfunc_class);
+ if (err)
+ return err;
+ }
+ return 0;
+}
+
+
static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
{
struct btf_record *rec = reg_btf_record(reg);
- if (!cur_func(env)->active_locks) {
- verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
+ if (!env->cur_state->active_locks) {
+ verifier_bug(env, "%s w/o active lock", __func__);
return -EFAULT;
}
if (type_flag(reg->type) & NON_OWN_REF) {
- verbose(env, "verifier internal error: NON_OWN_REF already set\n");
+ verifier_bug(env, "NON_OWN_REF already set");
return -EFAULT;
}
@@ -11765,15 +12744,13 @@ static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state
static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
{
- struct bpf_func_state *state, *unused;
+ struct bpf_verifier_state *state = env->cur_state;
+ struct bpf_func_state *unused;
struct bpf_reg_state *reg;
int i;
- state = cur_func(env);
-
if (!ref_obj_id) {
- verbose(env, "verifier internal error: ref_obj_id is zero for "
- "owning -> non-owning conversion\n");
+ verifier_bug(env, "ref_obj_id is zero for owning -> non-owning conversion");
return -EFAULT;
}
@@ -11793,7 +12770,7 @@ static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_o
return 0;
}
- verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
+ verifier_bug(env, "ref state missing for ref_obj_id");
return -EFAULT;
}
@@ -11855,14 +12832,14 @@ static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_
ptr = reg->btf;
break;
default:
- verbose(env, "verifier internal error: unknown reg type for lock check\n");
+ verifier_bug(env, "unknown reg type for lock check");
return -EFAULT;
}
id = reg->id;
- if (!cur_func(env)->active_locks)
+ if (!env->cur_state->active_locks)
return -EINVAL;
- s = find_lock_state(env, REF_TYPE_LOCK, id, ptr);
+ s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr);
if (!s) {
verbose(env, "held lock and object are not in the same allocation\n");
return -EINVAL;
@@ -11875,14 +12852,26 @@ static bool is_bpf_list_api_kfunc(u32 btf_id)
return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
- btf_id == special_kfunc_list[KF_bpf_list_pop_back];
+ btf_id == special_kfunc_list[KF_bpf_list_pop_back] ||
+ btf_id == special_kfunc_list[KF_bpf_list_front] ||
+ btf_id == special_kfunc_list[KF_bpf_list_back];
}
static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
{
return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
- btf_id == special_kfunc_list[KF_bpf_rbtree_first];
+ btf_id == special_kfunc_list[KF_bpf_rbtree_first] ||
+ btf_id == special_kfunc_list[KF_bpf_rbtree_root] ||
+ btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
+ btf_id == special_kfunc_list[KF_bpf_rbtree_right];
+}
+
+static bool is_bpf_iter_num_api_kfunc(u32 btf_id)
+{
+ return btf_id == special_kfunc_list[KF_bpf_iter_num_new] ||
+ btf_id == special_kfunc_list[KF_bpf_iter_num_next] ||
+ btf_id == special_kfunc_list[KF_bpf_iter_num_destroy];
}
static bool is_bpf_graph_api_kfunc(u32 btf_id)
@@ -11891,6 +12880,20 @@ static bool is_bpf_graph_api_kfunc(u32 btf_id)
btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
}
+static bool is_bpf_res_spin_lock_kfunc(u32 btf_id)
+{
+ return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
+ btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] ||
+ btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
+ btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore];
+}
+
+static bool kfunc_spin_allowed(u32 btf_id)
+{
+ return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) ||
+ is_bpf_res_spin_lock_kfunc(btf_id);
+}
+
static bool is_sync_callback_calling_kfunc(u32 btf_id)
{
return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
@@ -11898,7 +12901,8 @@ static bool is_sync_callback_calling_kfunc(u32 btf_id)
static bool is_async_callback_calling_kfunc(u32 btf_id)
{
- return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl];
+ return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl] ||
+ is_task_work_add_kfunc(btf_id);
}
static bool is_bpf_throw_kfunc(struct bpf_insn *insn)
@@ -11961,7 +12965,9 @@ static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
break;
case BPF_RB_NODE:
ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
- kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
+ kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
+ kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] ||
+ kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]);
break;
default:
verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
@@ -11988,7 +12994,7 @@ __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
u32 head_off;
if (meta->btf != btf_vmlinux) {
- verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
+ verifier_bug(env, "unexpected btf mismatch in kfunc call");
return -EFAULT;
}
@@ -12019,7 +13025,7 @@ __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
}
if (*head_field) {
- verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
+ verifier_bug(env, "repeating %s arg", head_type_name);
return -EFAULT;
}
*head_field = field;
@@ -12056,7 +13062,7 @@ __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
u32 node_off;
if (meta->btf != btf_vmlinux) {
- verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
+ verifier_bug(env, "unexpected btf mismatch in kfunc call");
return -EFAULT;
}
@@ -12174,7 +13180,6 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
enum bpf_arg_type arg_type = ARG_DONTCARE;
u32 regno = i + 1, ref_id, type_size;
bool is_ret_buf_sz = false;
- bool mask = false;
int kf_arg_type;
t = btf_type_skip_modifiers(btf, args[i].type, NULL);
@@ -12182,6 +13187,17 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
if (is_kfunc_arg_ignore(btf, &args[i]))
continue;
+ if (is_kfunc_arg_prog(btf, &args[i])) {
+ /* Used to reject repeated use of __prog. */
+ if (meta->arg_prog) {
+ verifier_bug(env, "Only 1 prog->aux argument supported per-kfunc");
+ return -EFAULT;
+ }
+ meta->arg_prog = true;
+ cur_aux(env)->arg_prog = regno;
+ continue;
+ }
+
if (btf_type_is_scalar(t)) {
if (reg->type != SCALAR_VALUE) {
verbose(env, "R%d is not a scalar\n", regno);
@@ -12190,7 +13206,7 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
if (is_kfunc_arg_constant(meta->btf, &args[i])) {
if (meta->arg_constant.found) {
- verbose(env, "verifier internal error: only one constant argument permitted\n");
+ verifier_bug(env, "only one constant argument permitted");
return -EFAULT;
}
if (!tnum_is_const(reg->var_off)) {
@@ -12233,21 +13249,18 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
return -EINVAL;
}
- mask = mask_raw_tp_reg(env, reg);
if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
(register_is_null(reg) || type_may_be_null(reg->type)) &&
!is_kfunc_arg_nullable(meta->btf, &args[i])) {
verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
- unmask_raw_tp_reg(reg, mask);
return -EACCES;
}
- unmask_raw_tp_reg(reg, mask);
if (reg->ref_obj_id) {
if (is_kfunc_release(meta) && meta->ref_obj_id) {
- verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
- regno, reg->ref_obj_id,
- meta->ref_obj_id);
+ verifier_bug(env, "more than one arg with ref_obj_id R%d %u %u",
+ regno, reg->ref_obj_id,
+ meta->ref_obj_id);
return -EFAULT;
}
meta->ref_obj_id = reg->ref_obj_id;
@@ -12270,7 +13283,8 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
verbose(env, "pointer in R%d isn't map pointer\n", regno);
return -EINVAL;
}
- if (meta->map.ptr && reg->map_ptr->record->wq_off >= 0) {
+ if (meta->map.ptr && (reg->map_ptr->record->wq_off >= 0 ||
+ reg->map_ptr->record->task_work_off >= 0)) {
/* Use map_uid (which is unique id of inner map) to reject:
* inner_map1 = bpf_map_lookup_elem(outer_map, key1)
* inner_map2 = bpf_map_lookup_elem(outer_map, key2)
@@ -12285,6 +13299,12 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
*/
if (meta->map.ptr != reg->map_ptr ||
meta->map.uid != reg->map_uid) {
+ if (reg->map_ptr->record->task_work_off >= 0) {
+ verbose(env,
+ "bpf_task_work pointer in R2 map_uid=%d doesn't match map pointer in R3 map_uid=%d\n",
+ meta->map.uid, reg->map_uid);
+ return -EINVAL;
+ }
verbose(env,
"workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
meta->map.uid, reg->map_uid);
@@ -12299,24 +13319,16 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
break;
- /* Allow passing maybe NULL raw_tp arguments to
- * kfuncs for compatibility. Don't apply this to
- * arguments with ref_obj_id > 0.
- */
- mask = mask_raw_tp_reg(env, reg);
if (!is_trusted_reg(reg)) {
if (!is_kfunc_rcu(meta)) {
verbose(env, "R%d must be referenced or trusted\n", regno);
- unmask_raw_tp_reg(reg, mask);
return -EINVAL;
}
if (!is_rcu_reg(reg)) {
verbose(env, "R%d must be a rcu pointer\n", regno);
- unmask_raw_tp_reg(reg, mask);
return -EINVAL;
}
}
- unmask_raw_tp_reg(reg, mask);
fallthrough;
case KF_ARG_PTR_TO_CTX:
case KF_ARG_PTR_TO_DYNPTR:
@@ -12331,17 +13343,18 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
case KF_ARG_PTR_TO_CONST_STR:
case KF_ARG_PTR_TO_WORKQUEUE:
+ case KF_ARG_PTR_TO_TASK_WORK:
+ case KF_ARG_PTR_TO_IRQ_FLAG:
+ case KF_ARG_PTR_TO_RES_SPIN_LOCK:
break;
default:
- WARN_ON_ONCE(1);
+ verifier_bug(env, "unknown kfunc arg type %d", kf_arg_type);
return -EFAULT;
}
if (is_kfunc_release(meta) && reg->ref_obj_id)
arg_type |= OBJ_RELEASE;
- mask = mask_raw_tp_reg(env, reg);
ret = check_func_arg_reg_off(env, reg, regno, arg_type);
- unmask_raw_tp_reg(reg, mask);
if (ret < 0)
return ret;
@@ -12399,19 +13412,26 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
dynptr_arg_type |= DYNPTR_TYPE_SKB;
} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
dynptr_arg_type |= DYNPTR_TYPE_XDP;
+ } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb_meta]) {
+ dynptr_arg_type |= DYNPTR_TYPE_SKB_META;
+ } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_file]) {
+ dynptr_arg_type |= DYNPTR_TYPE_FILE;
+ } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_file_discard]) {
+ dynptr_arg_type |= DYNPTR_TYPE_FILE;
+ meta->release_regno = regno;
} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
(dynptr_arg_type & MEM_UNINIT)) {
enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
- verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
+ verifier_bug(env, "no dynptr type for parent of clone");
return -EFAULT;
}
dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
- verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
+ verifier_bug(env, "missing ref obj id for parent of clone");
return -EFAULT;
}
}
@@ -12424,7 +13444,7 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
int id = dynptr_id(env, reg);
if (id < 0) {
- verbose(env, "verifier internal error: failed to obtain dynptr id\n");
+ verifier_bug(env, "failed to obtain dynptr id");
return id;
}
meta->initialized_dynptr.id = id;
@@ -12487,22 +13507,22 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
return ret;
break;
case KF_ARG_PTR_TO_RB_NODE:
- if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
- if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
- verbose(env, "rbtree_remove node input must be non-owning ref\n");
+ if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
+ if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
+ verbose(env, "arg#%d expected pointer to allocated object\n", i);
return -EINVAL;
}
- if (in_rbtree_lock_required_cb(env)) {
- verbose(env, "rbtree_remove not allowed in rbtree cb\n");
+ if (!reg->ref_obj_id) {
+ verbose(env, "allocated object must be referenced\n");
return -EINVAL;
}
} else {
- if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
- verbose(env, "arg#%d expected pointer to allocated object\n", i);
+ if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) {
+ verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name);
return -EINVAL;
}
- if (!reg->ref_obj_id) {
- verbose(env, "allocated object must be referenced\n");
+ if (in_rbtree_lock_required_cb(env)) {
+ verbose(env, "%s not allowed in rbtree cb\n", func_name);
return -EINVAL;
}
}
@@ -12518,7 +13538,6 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
ref_tname = btf_name_by_offset(btf, ref_t->name_off);
fallthrough;
case KF_ARG_PTR_TO_BTF_ID:
- mask = mask_raw_tp_reg(env, reg);
/* Only base_type is checked, further checks are done here */
if ((base_type(reg->type) != PTR_TO_BTF_ID ||
(bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
@@ -12527,11 +13546,9 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
verbose(env, "expected %s or socket\n",
reg_type_str(env, base_type(reg->type) |
(type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
- unmask_raw_tp_reg(reg, mask);
return -EINVAL;
}
ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
- unmask_raw_tp_reg(reg, mask);
if (ret < 0)
return ret;
break;
@@ -12563,7 +13580,7 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
if (meta->arg_constant.found) {
- verbose(env, "verifier internal error: only one constant argument permitted\n");
+ verifier_bug(env, "only one constant argument permitted");
return -EFAULT;
}
if (!tnum_is_const(size_reg->var_off)) {
@@ -12595,7 +13612,7 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
rec = reg_btf_record(reg);
if (!rec) {
- verbose(env, "verifier internal error: Couldn't find btf_record\n");
+ verifier_bug(env, "Couldn't find btf_record");
return -EFAULT;
}
@@ -12625,6 +13642,46 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_
if (ret < 0)
return ret;
break;
+ case KF_ARG_PTR_TO_TASK_WORK:
+ if (reg->type != PTR_TO_MAP_VALUE) {
+ verbose(env, "arg#%d doesn't point to a map value\n", i);
+ return -EINVAL;
+ }
+ ret = process_task_work_func(env, regno, meta);
+ if (ret < 0)
+ return ret;
+ break;
+ case KF_ARG_PTR_TO_IRQ_FLAG:
+ if (reg->type != PTR_TO_STACK) {
+ verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i);
+ return -EINVAL;
+ }
+ ret = process_irq_flag(env, regno, meta);
+ if (ret < 0)
+ return ret;
+ break;
+ case KF_ARG_PTR_TO_RES_SPIN_LOCK:
+ {
+ int flags = PROCESS_RES_LOCK;
+
+ if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
+ verbose(env, "arg#%d doesn't point to map value or allocated object\n", i);
+ return -EINVAL;
+ }
+
+ if (!is_bpf_res_spin_lock_kfunc(meta->func_id))
+ return -EFAULT;
+ if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
+ meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])
+ flags |= PROCESS_SPIN_LOCK;
+ if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] ||
+ meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore])
+ flags |= PROCESS_LOCK_IRQ;
+ ret = process_spin_lock(env, regno, flags);
+ if (ret < 0)
+ return ret;
+ break;
+ }
}
}
@@ -12679,6 +13736,186 @@ static int fetch_kfunc_meta(struct bpf_verifier_env *env,
return 0;
}
+/* check special kfuncs and return:
+ * 1 - not fall-through to 'else' branch, continue verification
+ * 0 - fall-through to 'else' branch
+ * < 0 - not fall-through to 'else' branch, return error
+ */
+static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
+ struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux,
+ const struct btf_type *ptr_type, struct btf *desc_btf)
+{
+ const struct btf_type *ret_t;
+ int err = 0;
+
+ if (meta->btf != btf_vmlinux)
+ return 0;
+
+ if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
+ meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
+ struct btf_struct_meta *struct_meta;
+ struct btf *ret_btf;
+ u32 ret_btf_id;
+
+ if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
+ return -ENOMEM;
+
+ if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) {
+ verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
+ return -EINVAL;
+ }
+
+ ret_btf = env->prog->aux->btf;
+ ret_btf_id = meta->arg_constant.value;
+
+ /* This may be NULL due to user not supplying a BTF */
+ if (!ret_btf) {
+ verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
+ return -EINVAL;
+ }
+
+ ret_t = btf_type_by_id(ret_btf, ret_btf_id);
+ if (!ret_t || !__btf_type_is_struct(ret_t)) {
+ verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
+ return -EINVAL;
+ }
+
+ if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
+ if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
+ verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
+ ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
+ return -EINVAL;
+ }
+
+ if (!bpf_global_percpu_ma_set) {
+ mutex_lock(&bpf_percpu_ma_lock);
+ if (!bpf_global_percpu_ma_set) {
+ /* Charge memory allocated with bpf_global_percpu_ma to
+ * root memcg. The obj_cgroup for root memcg is NULL.
+ */
+ err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
+ if (!err)
+ bpf_global_percpu_ma_set = true;
+ }
+ mutex_unlock(&bpf_percpu_ma_lock);
+ if (err)
+ return err;
+ }
+
+ mutex_lock(&bpf_percpu_ma_lock);
+ err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
+ mutex_unlock(&bpf_percpu_ma_lock);
+ if (err)
+ return err;
+ }
+
+ struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
+ if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
+ if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
+ verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
+ return -EINVAL;
+ }
+
+ if (struct_meta) {
+ verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
+ return -EINVAL;
+ }
+ }
+
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
+ regs[BPF_REG_0].btf = ret_btf;
+ regs[BPF_REG_0].btf_id = ret_btf_id;
+ if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
+ regs[BPF_REG_0].type |= MEM_PERCPU;
+
+ insn_aux->obj_new_size = ret_t->size;
+ insn_aux->kptr_struct_meta = struct_meta;
+ } else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
+ regs[BPF_REG_0].btf = meta->arg_btf;
+ regs[BPF_REG_0].btf_id = meta->arg_btf_id;
+
+ insn_aux->kptr_struct_meta =
+ btf_find_struct_meta(meta->arg_btf,
+ meta->arg_btf_id);
+ } else if (is_list_node_type(ptr_type)) {
+ struct btf_field *field = meta->arg_list_head.field;
+
+ mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
+ } else if (is_rbtree_node_type(ptr_type)) {
+ struct btf_field *field = meta->arg_rbtree_root.field;
+
+ mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
+ } else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
+ regs[BPF_REG_0].btf = desc_btf;
+ regs[BPF_REG_0].btf_id = meta->ret_btf_id;
+ } else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
+ ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value);
+ if (!ret_t) {
+ verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n",
+ meta->arg_constant.value);
+ return -EINVAL;
+ } else if (btf_type_is_struct(ret_t)) {
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
+ regs[BPF_REG_0].btf = desc_btf;
+ regs[BPF_REG_0].btf_id = meta->arg_constant.value;
+ } else if (btf_type_is_void(ret_t)) {
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+ regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED;
+ regs[BPF_REG_0].mem_size = 0;
+ } else {
+ verbose(env,
+ "kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n");
+ return -EINVAL;
+ }
+ } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
+ meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
+ enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type);
+
+ mark_reg_known_zero(env, regs, BPF_REG_0);
+
+ if (!meta->arg_constant.found) {
+ verifier_bug(env, "bpf_dynptr_slice(_rdwr) no constant size");
+ return -EFAULT;
+ }
+
+ regs[BPF_REG_0].mem_size = meta->arg_constant.value;
+
+ /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
+ regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
+
+ if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
+ regs[BPF_REG_0].type |= MEM_RDONLY;
+ } else {
+ /* this will set env->seen_direct_write to true */
+ if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
+ verbose(env, "the prog does not allow writes to packet data\n");
+ return -EINVAL;
+ }
+ }
+
+ if (!meta->initialized_dynptr.id) {
+ verifier_bug(env, "no dynptr id");
+ return -EFAULT;
+ }
+ regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id;
+
+ /* we don't need to set BPF_REG_0's ref obj id
+ * because packet slices are not refcounted (see
+ * dynptr_type_refcounted)
+ */
+ } else {
+ return 0;
+ }
+
+ return 1;
+}
+
static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name);
static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
@@ -12693,7 +13930,6 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
struct bpf_insn_aux_data *insn_aux;
int err, insn_idx = *insn_idx_p;
const struct btf_param *args;
- const struct btf_type *ret_t;
struct btf *desc_btf;
/* skip for now, but return error when we find this in fixup_kfunc_call */
@@ -12710,6 +13946,36 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
+ if (!insn->off &&
+ (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] ||
+ insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) {
+ struct bpf_verifier_state *branch;
+ struct bpf_reg_state *regs;
+
+ branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
+ if (IS_ERR(branch)) {
+ verbose(env, "failed to push state for failed lock acquisition\n");
+ return PTR_ERR(branch);
+ }
+
+ regs = branch->frame[branch->curframe]->regs;
+
+ /* Clear r0-r5 registers in forked state */
+ for (i = 0; i < CALLER_SAVED_REGS; i++)
+ mark_reg_not_init(env, regs, caller_saved[i]);
+
+ mark_reg_unknown(env, regs, BPF_REG_0);
+ err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1);
+ if (err) {
+ verbose(env, "failed to mark s32 range for retval in forked state for lock\n");
+ return err;
+ }
+ __mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32));
+ } else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) {
+ verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n");
+ return -EFAULT;
+ }
+
if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
return -EACCES;
@@ -12721,6 +13987,10 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
return -EACCES;
}
+ /* Track non-sleepable context for kfuncs, same as for helpers. */
+ if (!in_sleepable_context(env))
+ insn_aux->non_sleepable = true;
+
/* Check the arguments */
err = check_kfunc_args(env, &meta, insn_idx);
if (err < 0)
@@ -12751,70 +14021,93 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
}
}
+ if (is_task_work_add_kfunc(meta.func_id)) {
+ err = push_callback_call(env, insn, insn_idx, meta.subprogno,
+ set_task_work_schedule_callback_state);
+ if (err) {
+ verbose(env, "kfunc %s#%d failed callback verification\n",
+ func_name, meta.func_id);
+ return err;
+ }
+ }
+
rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
preempt_disable = is_kfunc_bpf_preempt_disable(&meta);
preempt_enable = is_kfunc_bpf_preempt_enable(&meta);
- if (env->cur_state->active_rcu_lock) {
+ if (rcu_lock) {
+ env->cur_state->active_rcu_locks++;
+ } else if (rcu_unlock) {
struct bpf_func_state *state;
struct bpf_reg_state *reg;
u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER);
- if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
- verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
- return -EACCES;
- }
-
- if (rcu_lock) {
- verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
+ if (env->cur_state->active_rcu_locks == 0) {
+ verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
return -EINVAL;
- } else if (rcu_unlock) {
+ }
+ if (--env->cur_state->active_rcu_locks == 0) {
bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({
if (reg->type & MEM_RCU) {
reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
reg->type |= PTR_UNTRUSTED;
}
}));
- env->cur_state->active_rcu_lock = false;
- } else if (sleepable) {
- verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
- return -EACCES;
}
- } else if (rcu_lock) {
- env->cur_state->active_rcu_lock = true;
- } else if (rcu_unlock) {
- verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
- return -EINVAL;
+ } else if (sleepable && env->cur_state->active_rcu_locks) {
+ verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
+ return -EACCES;
}
- if (env->cur_state->active_preempt_lock) {
+ if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
+ verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
+ return -EACCES;
+ }
+
+ if (env->cur_state->active_preempt_locks) {
if (preempt_disable) {
- env->cur_state->active_preempt_lock++;
+ env->cur_state->active_preempt_locks++;
} else if (preempt_enable) {
- env->cur_state->active_preempt_lock--;
+ env->cur_state->active_preempt_locks--;
} else if (sleepable) {
verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name);
return -EACCES;
}
} else if (preempt_disable) {
- env->cur_state->active_preempt_lock++;
+ env->cur_state->active_preempt_locks++;
} else if (preempt_enable) {
verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name);
return -EINVAL;
}
+ if (env->cur_state->active_irq_id && sleepable) {
+ verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name);
+ return -EACCES;
+ }
+
+ if (is_kfunc_rcu_protected(&meta) && !in_rcu_cs(env)) {
+ verbose(env, "kernel func %s requires RCU critical section protection\n", func_name);
+ return -EACCES;
+ }
+
/* In case of release function, we get register number of refcounted
* PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
*/
if (meta.release_regno) {
- err = release_reference(env, regs[meta.release_regno].ref_obj_id);
- if (err) {
- verbose(env, "kfunc %s#%d reference has not been acquired before\n",
- func_name, meta.func_id);
- return err;
+ struct bpf_reg_state *reg = &regs[meta.release_regno];
+
+ if (meta.initialized_dynptr.ref_obj_id) {
+ err = unmark_stack_slots_dynptr(env, reg);
+ } else {
+ err = release_reference(env, reg->ref_obj_id);
+ if (err)
+ verbose(env, "kfunc %s#%d reference has not been acquired before\n",
+ func_name, meta.func_id);
}
+ if (err)
+ return err;
}
if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
@@ -12875,168 +14168,16 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
if (btf_type_is_scalar(t)) {
mark_reg_unknown(env, regs, BPF_REG_0);
+ if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] ||
+ meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]))
+ __mark_reg_const_zero(env, &regs[BPF_REG_0]);
mark_btf_func_reg_size(env, BPF_REG_0, t->size);
} else if (btf_type_is_ptr(t)) {
ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
-
- if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
- if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] ||
- meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
- struct btf_struct_meta *struct_meta;
- struct btf *ret_btf;
- u32 ret_btf_id;
-
- if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set)
- return -ENOMEM;
-
- if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
- verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
- return -EINVAL;
- }
-
- ret_btf = env->prog->aux->btf;
- ret_btf_id = meta.arg_constant.value;
-
- /* This may be NULL due to user not supplying a BTF */
- if (!ret_btf) {
- verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n");
- return -EINVAL;
- }
-
- ret_t = btf_type_by_id(ret_btf, ret_btf_id);
- if (!ret_t || !__btf_type_is_struct(ret_t)) {
- verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n");
- return -EINVAL;
- }
-
- if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
- if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) {
- verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n",
- ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE);
- return -EINVAL;
- }
-
- if (!bpf_global_percpu_ma_set) {
- mutex_lock(&bpf_percpu_ma_lock);
- if (!bpf_global_percpu_ma_set) {
- /* Charge memory allocated with bpf_global_percpu_ma to
- * root memcg. The obj_cgroup for root memcg is NULL.
- */
- err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL);
- if (!err)
- bpf_global_percpu_ma_set = true;
- }
- mutex_unlock(&bpf_percpu_ma_lock);
- if (err)
- return err;
- }
-
- mutex_lock(&bpf_percpu_ma_lock);
- err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size);
- mutex_unlock(&bpf_percpu_ma_lock);
- if (err)
- return err;
- }
-
- struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id);
- if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) {
- if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) {
- verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n");
- return -EINVAL;
- }
-
- if (struct_meta) {
- verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n");
- return -EINVAL;
- }
- }
-
- mark_reg_known_zero(env, regs, BPF_REG_0);
- regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
- regs[BPF_REG_0].btf = ret_btf;
- regs[BPF_REG_0].btf_id = ret_btf_id;
- if (meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl])
- regs[BPF_REG_0].type |= MEM_PERCPU;
-
- insn_aux->obj_new_size = ret_t->size;
- insn_aux->kptr_struct_meta = struct_meta;
- } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
- mark_reg_known_zero(env, regs, BPF_REG_0);
- regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
- regs[BPF_REG_0].btf = meta.arg_btf;
- regs[BPF_REG_0].btf_id = meta.arg_btf_id;
-
- insn_aux->kptr_struct_meta =
- btf_find_struct_meta(meta.arg_btf,
- meta.arg_btf_id);
- } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
- meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
- struct btf_field *field = meta.arg_list_head.field;
-
- mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
- } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
- meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
- struct btf_field *field = meta.arg_rbtree_root.field;
-
- mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
- } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
- mark_reg_known_zero(env, regs, BPF_REG_0);
- regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
- regs[BPF_REG_0].btf = desc_btf;
- regs[BPF_REG_0].btf_id = meta.ret_btf_id;
- } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
- ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
- if (!ret_t || !btf_type_is_struct(ret_t)) {
- verbose(env,
- "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
- return -EINVAL;
- }
-
- mark_reg_known_zero(env, regs, BPF_REG_0);
- regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
- regs[BPF_REG_0].btf = desc_btf;
- regs[BPF_REG_0].btf_id = meta.arg_constant.value;
- } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
- meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
- enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
-
- mark_reg_known_zero(env, regs, BPF_REG_0);
-
- if (!meta.arg_constant.found) {
- verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
- return -EFAULT;
- }
-
- regs[BPF_REG_0].mem_size = meta.arg_constant.value;
-
- /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
- regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
-
- if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
- regs[BPF_REG_0].type |= MEM_RDONLY;
- } else {
- /* this will set env->seen_direct_write to true */
- if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
- verbose(env, "the prog does not allow writes to packet data\n");
- return -EINVAL;
- }
- }
-
- if (!meta.initialized_dynptr.id) {
- verbose(env, "verifier internal error: no dynptr id\n");
- return -EFAULT;
- }
- regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
-
- /* we don't need to set BPF_REG_0's ref obj id
- * because packet slices are not refcounted (see
- * dynptr_type_refcounted)
- */
- } else {
- verbose(env, "kernel function %s unhandled dynamic return type\n",
- meta.func_name);
- return -EFAULT;
- }
+ err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf);
+ if (err) {
+ if (err < 0)
+ return err;
} else if (btf_type_is_void(ptr_type)) {
/* kfunc returning 'void *' is equivalent to returning scalar */
mark_reg_unknown(env, regs, BPF_REG_0);
@@ -13070,6 +14211,9 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
/* Ensures we don't access the memory after a release_reference() */
if (meta.ref_obj_id)
regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
+
+ if (is_kfunc_rcu_protected(&meta))
+ regs[BPF_REG_0].type |= MEM_RCU;
} else {
mark_reg_known_zero(env, regs, BPF_REG_0);
regs[BPF_REG_0].btf = desc_btf;
@@ -13078,6 +14222,8 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache])
regs[BPF_REG_0].type |= PTR_UNTRUSTED;
+ else if (is_kfunc_rcu_protected(&meta))
+ regs[BPF_REG_0].type |= MEM_RCU;
if (is_iter_next_kfunc(&meta)) {
struct bpf_reg_state *cur_iter;
@@ -13098,21 +14244,21 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
}
mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
if (is_kfunc_acquire(&meta)) {
- int id = acquire_reference_state(env, insn_idx);
+ int id = acquire_reference(env, insn_idx);
if (id < 0)
return id;
if (is_kfunc_ret_null(&meta))
regs[BPF_REG_0].id = id;
regs[BPF_REG_0].ref_obj_id = id;
- } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
+ } else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) {
ref_set_non_owning(env, &regs[BPF_REG_0]);
}
if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
regs[BPF_REG_0].id = ++env->id_gen;
} else if (btf_type_is_void(t)) {
- if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
+ if (meta.btf == btf_vmlinux) {
if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) {
insn_aux->kptr_struct_meta =
@@ -13122,6 +14268,9 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
}
}
+ if (is_kfunc_pkt_changing(&meta))
+ clear_all_pkt_pointers(env);
+
nargs = btf_type_vlen(meta.func_proto);
args = (const struct btf_param *)(meta.func_proto + 1);
for (i = 0; i < nargs; i++) {
@@ -13221,7 +14370,9 @@ static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
const struct bpf_insn *insn)
{
- return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
+ return env->bypass_spec_v1 ||
+ BPF_SRC(insn->code) == BPF_K ||
+ cur_aux(env)->nospec;
}
static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
@@ -13262,16 +14413,15 @@ struct bpf_sanitize_info {
bool mask_to_left;
};
-static struct bpf_verifier_state *
-sanitize_speculative_path(struct bpf_verifier_env *env,
- const struct bpf_insn *insn,
- u32 next_idx, u32 curr_idx)
+static int sanitize_speculative_path(struct bpf_verifier_env *env,
+ const struct bpf_insn *insn,
+ u32 next_idx, u32 curr_idx)
{
struct bpf_verifier_state *branch;
struct bpf_reg_state *regs;
branch = push_stack(env, next_idx, curr_idx, true);
- if (branch && insn) {
+ if (!IS_ERR(branch) && insn) {
regs = branch->frame[branch->curframe]->regs;
if (BPF_SRC(insn->code) == BPF_K) {
mark_reg_unknown(env, regs, insn->dst_reg);
@@ -13280,7 +14430,7 @@ sanitize_speculative_path(struct bpf_verifier_env *env,
mark_reg_unknown(env, regs, insn->src_reg);
}
}
- return branch;
+ return PTR_ERR_OR_ZERO(branch);
}
static int sanitize_ptr_alu(struct bpf_verifier_env *env,
@@ -13299,7 +14449,6 @@ static int sanitize_ptr_alu(struct bpf_verifier_env *env,
u8 opcode = BPF_OP(insn->code);
u32 alu_state, alu_limit;
struct bpf_reg_state tmp;
- bool ret;
int err;
if (can_skip_alu_sanitation(env, insn))
@@ -13372,11 +14521,12 @@ do_sim:
tmp = *dst_reg;
copy_register_state(dst_reg, ptr_reg);
}
- ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
- env->insn_idx);
- if (!ptr_is_dst_reg && ret)
+ err = sanitize_speculative_path(env, NULL, env->insn_idx + 1, env->insn_idx);
+ if (err < 0)
+ return REASON_STACK;
+ if (!ptr_is_dst_reg)
*dst_reg = tmp;
- return !ret ? REASON_STACK : 0;
+ return 0;
}
static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
@@ -13421,10 +14571,9 @@ static int sanitize_err(struct bpf_verifier_env *env,
case REASON_STACK:
verbose(env, "R%d could not be pushed for speculative verification, %s\n",
dst, err);
- break;
+ return -ENOMEM;
default:
- verbose(env, "verifier internal error: unknown reason (%d)\n",
- reason);
+ verifier_bug(env, "unknown reason (%d)", reason);
break;
}
@@ -13491,7 +14640,7 @@ static int sanitize_check_bounds(struct bpf_verifier_env *env,
}
break;
default:
- break;
+ return -EOPNOTSUPP;
}
return 0;
@@ -13504,7 +14653,7 @@ static int sanitize_check_bounds(struct bpf_verifier_env *env,
*/
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
struct bpf_insn *insn,
- struct bpf_reg_state *ptr_reg,
+ const struct bpf_reg_state *ptr_reg,
const struct bpf_reg_state *off_reg)
{
struct bpf_verifier_state *vstate = env->cur_state;
@@ -13518,8 +14667,7 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
struct bpf_sanitize_info info = {};
u8 opcode = BPF_OP(insn->code);
u32 dst = insn->dst_reg;
- bool mask;
- int ret;
+ int ret, bounds_ret;
dst_reg = &regs[dst];
@@ -13545,14 +14693,18 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
return -EACCES;
}
- mask = mask_raw_tp_reg(env, ptr_reg);
if (ptr_reg->type & PTR_MAYBE_NULL) {
verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
dst, reg_type_str(env, ptr_reg->type));
- unmask_raw_tp_reg(ptr_reg, mask);
return -EACCES;
}
- unmask_raw_tp_reg(ptr_reg, mask);
+
+ /*
+ * Accesses to untrusted PTR_TO_MEM are done through probe
+ * instructions, hence no need to track offsets.
+ */
+ if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED))
+ return 0;
switch (base_type(ptr_reg->type)) {
case PTR_TO_CTX:
@@ -13722,11 +14874,19 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
return -EINVAL;
reg_bounds_sync(dst_reg);
- if (sanitize_check_bounds(env, insn, dst_reg) < 0)
- return -EACCES;
+ bounds_ret = sanitize_check_bounds(env, insn, dst_reg);
+ if (bounds_ret == -EACCES)
+ return bounds_ret;
if (sanitize_needed(opcode)) {
ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
&info, true);
+ if (verifier_bug_if(!can_skip_alu_sanitation(env, insn)
+ && !env->cur_state->speculative
+ && bounds_ret
+ && !ret,
+ env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) {
+ return -EFAULT;
+ }
if (ret < 0)
return sanitize_err(env, insn, ret, off_reg, dst_reg);
}
@@ -13741,14 +14901,25 @@ static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
s32 *dst_smax = &dst_reg->s32_max_value;
u32 *dst_umin = &dst_reg->u32_min_value;
u32 *dst_umax = &dst_reg->u32_max_value;
+ u32 umin_val = src_reg->u32_min_value;
+ u32 umax_val = src_reg->u32_max_value;
+ bool min_overflow, max_overflow;
if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) ||
check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) {
*dst_smin = S32_MIN;
*dst_smax = S32_MAX;
}
- if (check_add_overflow(*dst_umin, src_reg->u32_min_value, dst_umin) ||
- check_add_overflow(*dst_umax, src_reg->u32_max_value, dst_umax)) {
+
+ /* If either all additions overflow or no additions overflow, then
+ * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax =
+ * dst_umax + src_umax. Otherwise (some additions overflow), set
+ * the output bounds to unbounded.
+ */
+ min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin);
+ max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax);
+
+ if (!min_overflow && max_overflow) {
*dst_umin = 0;
*dst_umax = U32_MAX;
}
@@ -13761,14 +14932,25 @@ static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
s64 *dst_smax = &dst_reg->smax_value;
u64 *dst_umin = &dst_reg->umin_value;
u64 *dst_umax = &dst_reg->umax_value;
+ u64 umin_val = src_reg->umin_value;
+ u64 umax_val = src_reg->umax_value;
+ bool min_overflow, max_overflow;
if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) ||
check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) {
*dst_smin = S64_MIN;
*dst_smax = S64_MAX;
}
- if (check_add_overflow(*dst_umin, src_reg->umin_value, dst_umin) ||
- check_add_overflow(*dst_umax, src_reg->umax_value, dst_umax)) {
+
+ /* If either all additions overflow or no additions overflow, then
+ * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax =
+ * dst_umax + src_umax. Otherwise (some additions overflow), set
+ * the output bounds to unbounded.
+ */
+ min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin);
+ max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax);
+
+ if (!min_overflow && max_overflow) {
*dst_umin = 0;
*dst_umax = U64_MAX;
}
@@ -13779,8 +14961,11 @@ static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
{
s32 *dst_smin = &dst_reg->s32_min_value;
s32 *dst_smax = &dst_reg->s32_max_value;
+ u32 *dst_umin = &dst_reg->u32_min_value;
+ u32 *dst_umax = &dst_reg->u32_max_value;
u32 umin_val = src_reg->u32_min_value;
u32 umax_val = src_reg->u32_max_value;
+ bool min_underflow, max_underflow;
if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) ||
check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) {
@@ -13788,14 +14973,18 @@ static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
*dst_smin = S32_MIN;
*dst_smax = S32_MAX;
}
- if (dst_reg->u32_min_value < umax_val) {
- /* Overflow possible, we know nothing */
- dst_reg->u32_min_value = 0;
- dst_reg->u32_max_value = U32_MAX;
- } else {
- /* Cannot overflow (as long as bounds are consistent) */
- dst_reg->u32_min_value -= umax_val;
- dst_reg->u32_max_value -= umin_val;
+
+ /* If either all subtractions underflow or no subtractions
+ * underflow, it is okay to set: dst_umin = dst_umin - src_umax,
+ * dst_umax = dst_umax - src_umin. Otherwise (some subtractions
+ * underflow), set the output bounds to unbounded.
+ */
+ min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin);
+ max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax);
+
+ if (min_underflow && !max_underflow) {
+ *dst_umin = 0;
+ *dst_umax = U32_MAX;
}
}
@@ -13804,8 +14993,11 @@ static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
{
s64 *dst_smin = &dst_reg->smin_value;
s64 *dst_smax = &dst_reg->smax_value;
+ u64 *dst_umin = &dst_reg->umin_value;
+ u64 *dst_umax = &dst_reg->umax_value;
u64 umin_val = src_reg->umin_value;
u64 umax_val = src_reg->umax_value;
+ bool min_underflow, max_underflow;
if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) ||
check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) {
@@ -13813,78 +15005,74 @@ static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
*dst_smin = S64_MIN;
*dst_smax = S64_MAX;
}
- if (dst_reg->umin_value < umax_val) {
- /* Overflow possible, we know nothing */
- dst_reg->umin_value = 0;
- dst_reg->umax_value = U64_MAX;
- } else {
- /* Cannot overflow (as long as bounds are consistent) */
- dst_reg->umin_value -= umax_val;
- dst_reg->umax_value -= umin_val;
+
+ /* If either all subtractions underflow or no subtractions
+ * underflow, it is okay to set: dst_umin = dst_umin - src_umax,
+ * dst_umax = dst_umax - src_umin. Otherwise (some subtractions
+ * underflow), set the output bounds to unbounded.
+ */
+ min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin);
+ max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax);
+
+ if (min_underflow && !max_underflow) {
+ *dst_umin = 0;
+ *dst_umax = U64_MAX;
}
}
static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
- s32 smin_val = src_reg->s32_min_value;
- u32 umin_val = src_reg->u32_min_value;
- u32 umax_val = src_reg->u32_max_value;
+ s32 *dst_smin = &dst_reg->s32_min_value;
+ s32 *dst_smax = &dst_reg->s32_max_value;
+ u32 *dst_umin = &dst_reg->u32_min_value;
+ u32 *dst_umax = &dst_reg->u32_max_value;
+ s32 tmp_prod[4];
- if (smin_val < 0 || dst_reg->s32_min_value < 0) {
- /* Ain't nobody got time to multiply that sign */
- __mark_reg32_unbounded(dst_reg);
- return;
- }
- /* Both values are positive, so we can work with unsigned and
- * copy the result to signed (unless it exceeds S32_MAX).
- */
- if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
- /* Potential overflow, we know nothing */
- __mark_reg32_unbounded(dst_reg);
- return;
+ if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) ||
+ check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) {
+ /* Overflow possible, we know nothing */
+ *dst_umin = 0;
+ *dst_umax = U32_MAX;
}
- dst_reg->u32_min_value *= umin_val;
- dst_reg->u32_max_value *= umax_val;
- if (dst_reg->u32_max_value > S32_MAX) {
+ if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) ||
+ check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) ||
+ check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) ||
+ check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) {
/* Overflow possible, we know nothing */
- dst_reg->s32_min_value = S32_MIN;
- dst_reg->s32_max_value = S32_MAX;
+ *dst_smin = S32_MIN;
+ *dst_smax = S32_MAX;
} else {
- dst_reg->s32_min_value = dst_reg->u32_min_value;
- dst_reg->s32_max_value = dst_reg->u32_max_value;
+ *dst_smin = min_array(tmp_prod, 4);
+ *dst_smax = max_array(tmp_prod, 4);
}
}
static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
struct bpf_reg_state *src_reg)
{
- s64 smin_val = src_reg->smin_value;
- u64 umin_val = src_reg->umin_value;
- u64 umax_val = src_reg->umax_value;
+ s64 *dst_smin = &dst_reg->smin_value;
+ s64 *dst_smax = &dst_reg->smax_value;
+ u64 *dst_umin = &dst_reg->umin_value;
+ u64 *dst_umax = &dst_reg->umax_value;
+ s64 tmp_prod[4];
- if (smin_val < 0 || dst_reg->smin_value < 0) {
- /* Ain't nobody got time to multiply that sign */
- __mark_reg64_unbounded(dst_reg);
- return;
- }
- /* Both values are positive, so we can work with unsigned and
- * copy the result to signed (unless it exceeds S64_MAX).
- */
- if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
- /* Potential overflow, we know nothing */
- __mark_reg64_unbounded(dst_reg);
- return;
+ if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) ||
+ check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) {
+ /* Overflow possible, we know nothing */
+ *dst_umin = 0;
+ *dst_umax = U64_MAX;
}
- dst_reg->umin_value *= umin_val;
- dst_reg->umax_value *= umax_val;
- if (dst_reg->umax_value > S64_MAX) {
+ if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) ||
+ check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) ||
+ check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) ||
+ check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) {
/* Overflow possible, we know nothing */
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
+ *dst_smin = S64_MIN;
+ *dst_smax = S64_MAX;
} else {
- dst_reg->smin_value = dst_reg->umin_value;
- dst_reg->smax_value = dst_reg->umax_value;
+ *dst_smin = min_array(tmp_prod, 4);
+ *dst_smax = max_array(tmp_prod, 4);
}
}
@@ -14290,6 +15478,7 @@ static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn,
switch (BPF_OP(insn->code)) {
case BPF_ADD:
case BPF_SUB:
+ case BPF_NEG:
case BPF_AND:
case BPF_XOR:
case BPF_OR:
@@ -14358,6 +15547,13 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
scalar_min_max_sub(dst_reg, &src_reg);
dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
break;
+ case BPF_NEG:
+ env->fake_reg[0] = *dst_reg;
+ __mark_reg_known(dst_reg, 0);
+ scalar32_min_max_sub(dst_reg, &env->fake_reg[0]);
+ scalar_min_max_sub(dst_reg, &env->fake_reg[0]);
+ dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off);
+ break;
case BPF_MUL:
dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
scalar32_min_max_mul(dst_reg, &src_reg);
@@ -14495,14 +15691,14 @@ static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
/* Got here implies adding two SCALAR_VALUEs */
if (WARN_ON_ONCE(ptr_reg)) {
- print_verifier_state(env, state, true);
+ print_verifier_state(env, vstate, vstate->curframe, true);
verbose(env, "verifier internal error: unexpected ptr_reg\n");
- return -EINVAL;
+ return -EFAULT;
}
if (WARN_ON(!src_reg)) {
- print_verifier_state(env, state, true);
+ print_verifier_state(env, vstate, vstate->curframe, true);
verbose(env, "verifier internal error: no src_reg\n");
- return -EINVAL;
+ return -EFAULT;
}
err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
if (err)
@@ -14581,7 +15777,15 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
}
/* check dest operand */
- err = check_reg_arg(env, insn->dst_reg, DST_OP);
+ if (opcode == BPF_NEG &&
+ regs[insn->dst_reg].type == SCALAR_VALUE) {
+ err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
+ err = err ?: adjust_scalar_min_max_vals(env, insn,
+ &regs[insn->dst_reg],
+ regs[insn->dst_reg]);
+ } else {
+ err = check_reg_arg(env, insn->dst_reg, DST_OP);
+ }
if (err)
return err;
@@ -14646,7 +15850,6 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
*/
assign_scalar_id_before_mov(env, src_reg);
copy_register_state(dst_reg, src_reg);
- dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = DEF_NOT_SUBREG;
} else {
/* case: R1 = (s8, s16 s32)R2 */
@@ -14665,7 +15868,6 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
if (!no_sext)
dst_reg->id = 0;
coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
- dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = DEF_NOT_SUBREG;
} else {
mark_reg_unknown(env, regs, insn->dst_reg);
@@ -14691,7 +15893,6 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
*/
if (!is_src_reg_u32)
dst_reg->id = 0;
- dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = env->insn_idx + 1;
} else {
/* case: W1 = (s8, s16)W2 */
@@ -14702,7 +15903,6 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
copy_register_state(dst_reg, src_reg);
if (!no_sext)
dst_reg->id = 0;
- dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = env->insn_idx + 1;
coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
}
@@ -14736,7 +15936,7 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
} else { /* all other ALU ops: and, sub, xor, add, ... */
if (BPF_SRC(insn->code) == BPF_X) {
- if (insn->imm != 0 || insn->off > 1 ||
+ if (insn->imm != 0 || (insn->off != 0 && insn->off != 1) ||
(insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
verbose(env, "BPF_ALU uses reserved fields\n");
return -EINVAL;
@@ -14746,7 +15946,7 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
if (err)
return err;
} else {
- if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
+ if (insn->src_reg != BPF_REG_0 || (insn->off != 0 && insn->off != 1) ||
(insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
verbose(env, "BPF_ALU uses reserved fields\n");
return -EINVAL;
@@ -14880,6 +16080,30 @@ static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_sta
s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value;
s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value;
+ if (reg1 == reg2) {
+ switch (opcode) {
+ case BPF_JGE:
+ case BPF_JLE:
+ case BPF_JSGE:
+ case BPF_JSLE:
+ case BPF_JEQ:
+ return 1;
+ case BPF_JGT:
+ case BPF_JLT:
+ case BPF_JSGT:
+ case BPF_JSLT:
+ case BPF_JNE:
+ return 0;
+ case BPF_JSET:
+ if (tnum_is_const(t1))
+ return t1.value != 0;
+ else
+ return (smin1 <= 0 && smax1 >= 0) ? -1 : 1;
+ default:
+ return -1;
+ }
+ }
+
switch (opcode) {
case BPF_JEQ:
/* constants, umin/umax and smin/smax checks would be
@@ -14887,6 +16111,8 @@ static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_sta
*/
if (tnum_is_const(t1) && tnum_is_const(t2))
return t1.value == t2.value;
+ if (!tnum_overlap(t1, t2))
+ return 0;
/* non-overlapping ranges */
if (umin1 > umax2 || umax1 < umin2)
return 0;
@@ -14911,6 +16137,8 @@ static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_sta
*/
if (tnum_is_const(t1) && tnum_is_const(t2))
return t1.value != t2.value;
+ if (!tnum_overlap(t1, t2))
+ return 1;
/* non-overlapping ranges */
if (umin1 > umax2 || umax1 < umin2)
return 1;
@@ -15248,6 +16476,10 @@ static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state
if (!is_reg_const(reg2, is_jmp32))
break;
val = reg_const_value(reg2, is_jmp32);
+ /* Forget the ranges before narrowing tnums, to avoid invariant
+ * violations if we're on a dead branch.
+ */
+ __mark_reg_unbounded(reg1);
if (is_jmp32) {
t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val));
reg1->var_off = tnum_with_subreg(reg1->var_off, t);
@@ -15318,6 +16550,13 @@ static int reg_set_min_max(struct bpf_verifier_env *env,
if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE)
return 0;
+ /* We compute branch direction for same SCALAR_VALUE registers in
+ * is_scalar_branch_taken(). For unknown branch directions (e.g., BPF_JSET)
+ * on the same registers, we don't need to adjust the min/max values.
+ */
+ if (false_reg1 == false_reg2)
+ return 0;
+
/* fallthrough (FALSE) branch */
regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32);
reg_bounds_sync(false_reg1);
@@ -15398,7 +16637,7 @@ static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
* No one could have freed the reference state before
* doing the NULL check.
*/
- WARN_ON_ONCE(release_reference_state(state, id));
+ WARN_ON_ONCE(release_reference_nomark(vstate, id));
bpf_for_each_reg_in_vstate(vstate, state, reg, ({
mark_ptr_or_null_reg(state, reg, id, is_null);
@@ -15613,6 +16852,7 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
struct bpf_reg_state *eq_branch_regs;
struct linked_regs linked_regs = {};
u8 opcode = BPF_OP(insn->code);
+ int insn_flags = 0;
bool is_jmp32;
int pred = -1;
int err;
@@ -15629,17 +16869,16 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
if (insn->code != (BPF_JMP | BPF_JCOND) ||
insn->src_reg != BPF_MAY_GOTO ||
- insn->dst_reg || insn->imm || insn->off == 0) {
- verbose(env, "invalid may_goto off %d imm %d\n",
- insn->off, insn->imm);
+ insn->dst_reg || insn->imm) {
+ verbose(env, "invalid may_goto imm %d\n", insn->imm);
return -EINVAL;
}
prev_st = find_prev_entry(env, cur_st->parent, idx);
/* branch out 'fallthrough' insn as a new state to explore */
queued_st = push_stack(env, idx + 1, idx, false);
- if (!queued_st)
- return -ENOMEM;
+ if (IS_ERR(queued_st))
+ return PTR_ERR(queued_st);
queued_st->may_goto_depth++;
if (prev_st)
@@ -15672,6 +16911,11 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
insn->src_reg);
return -EACCES;
}
+
+ if (src_reg->type == PTR_TO_STACK)
+ insn_flags |= INSN_F_SRC_REG_STACK;
+ if (dst_reg->type == PTR_TO_STACK)
+ insn_flags |= INSN_F_DST_REG_STACK;
} else {
if (insn->src_reg != BPF_REG_0) {
verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
@@ -15681,6 +16925,15 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
memset(src_reg, 0, sizeof(*src_reg));
src_reg->type = SCALAR_VALUE;
__mark_reg_known(src_reg, insn->imm);
+
+ if (dst_reg->type == PTR_TO_STACK)
+ insn_flags |= INSN_F_DST_REG_STACK;
+ }
+
+ if (insn_flags) {
+ err = push_jmp_history(env, this_branch, insn_flags, 0);
+ if (err)
+ return err;
}
is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
@@ -15703,12 +16956,13 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
* the fall-through branch for simulation under speculative
* execution.
*/
- if (!env->bypass_spec_v1 &&
- !sanitize_speculative_path(env, insn, *insn_idx + 1,
- *insn_idx))
- return -EFAULT;
+ if (!env->bypass_spec_v1) {
+ err = sanitize_speculative_path(env, insn, *insn_idx + 1, *insn_idx);
+ if (err < 0)
+ return err;
+ }
if (env->log.level & BPF_LOG_LEVEL)
- print_insn_state(env, this_branch->frame[this_branch->curframe]);
+ print_insn_state(env, this_branch, this_branch->curframe);
*insn_idx += insn->off;
return 0;
} else if (pred == 0) {
@@ -15716,13 +16970,14 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
* program will go. If needed, push the goto branch for
* simulation under speculative execution.
*/
- if (!env->bypass_spec_v1 &&
- !sanitize_speculative_path(env, insn,
- *insn_idx + insn->off + 1,
- *insn_idx))
- return -EFAULT;
+ if (!env->bypass_spec_v1) {
+ err = sanitize_speculative_path(env, insn, *insn_idx + insn->off + 1,
+ *insn_idx);
+ if (err < 0)
+ return err;
+ }
if (env->log.level & BPF_LOG_LEVEL)
- print_insn_state(env, this_branch->frame[this_branch->curframe]);
+ print_insn_state(env, this_branch, this_branch->curframe);
return 0;
}
@@ -15736,15 +16991,14 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
if (dst_reg->type == SCALAR_VALUE && dst_reg->id)
collect_linked_regs(this_branch, dst_reg->id, &linked_regs);
if (linked_regs.cnt > 1) {
- err = push_insn_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
+ err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs));
if (err)
return err;
}
- other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
- false);
- if (!other_branch)
- return -EFAULT;
+ other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, false);
+ if (IS_ERR(other_branch))
+ return PTR_ERR(other_branch);
other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
if (BPF_SRC(insn->code) == BPF_X) {
@@ -15839,7 +17093,7 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env,
return -EACCES;
}
if (env->log.level & BPF_LOG_LEVEL)
- print_insn_state(env, this_branch->frame[this_branch->curframe]);
+ print_insn_state(env, this_branch, this_branch->curframe);
return 0;
}
@@ -15891,7 +17145,7 @@ static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
dst_reg->btf_id = aux->btf_var.btf_id;
break;
default:
- verbose(env, "bpf verifier is misconfigured\n");
+ verifier_bug(env, "pseudo btf id: unexpected dst reg type");
return -EFAULT;
}
return 0;
@@ -15927,14 +17181,15 @@ static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
}
dst_reg->type = PTR_TO_MAP_VALUE;
dst_reg->off = aux->map_off;
- WARN_ON_ONCE(map->max_entries != 1);
+ WARN_ON_ONCE(map->map_type != BPF_MAP_TYPE_INSN_ARRAY &&
+ map->max_entries != 1);
/* We want reg->id to be same (0) as map_value is not distinct */
} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
insn->src_reg == BPF_PSEUDO_MAP_IDX) {
dst_reg->type = CONST_PTR_TO_MAP;
} else {
- verbose(env, "bpf verifier is misconfigured\n");
- return -EINVAL;
+ verifier_bug(env, "unexpected src reg value for ldimm64");
+ return -EFAULT;
}
return 0;
@@ -15980,8 +17235,8 @@ static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
}
if (!env->ops->gen_ld_abs) {
- verbose(env, "bpf verifier is misconfigured\n");
- return -EINVAL;
+ verifier_bug(env, "gen_ld_abs is null");
+ return -EFAULT;
}
if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
@@ -16042,13 +17297,14 @@ static int check_return_code(struct bpf_verifier_env *env, int regno, const char
const char *exit_ctx = "At program exit";
struct tnum enforce_attach_type_range = tnum_unknown;
const struct bpf_prog *prog = env->prog;
- struct bpf_reg_state *reg;
+ struct bpf_reg_state *reg = reg_state(env, regno);
struct bpf_retval_range range = retval_range(0, 1);
enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
int err;
struct bpf_func_state *frame = env->cur_state->frame[0];
const bool is_subprog = frame->subprogno;
bool return_32bit = false;
+ const struct btf_type *reg_type, *ret_type = NULL;
/* LSM and struct_ops func-ptr's return type could be "void" */
if (!is_subprog || frame->in_exception_callback_fn) {
@@ -16057,10 +17313,26 @@ static int check_return_code(struct bpf_verifier_env *env, int regno, const char
if (prog->expected_attach_type == BPF_LSM_CGROUP)
/* See below, can be 0 or 0-1 depending on hook. */
break;
- fallthrough;
+ if (!prog->aux->attach_func_proto->type)
+ return 0;
+ break;
case BPF_PROG_TYPE_STRUCT_OPS:
if (!prog->aux->attach_func_proto->type)
return 0;
+
+ if (frame->in_exception_callback_fn)
+ break;
+
+ /* Allow a struct_ops program to return a referenced kptr if it
+ * matches the operator's return type and is in its unmodified
+ * form. A scalar zero (i.e., a null pointer) is also allowed.
+ */
+ reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL;
+ ret_type = btf_type_resolve_ptr(prog->aux->attach_btf,
+ prog->aux->attach_func_proto->type,
+ NULL);
+ if (ret_type && ret_type == reg_type && reg->ref_obj_id)
+ return __check_ptr_off_reg(env, reg, regno, false);
break;
default:
break;
@@ -16082,12 +17354,9 @@ static int check_return_code(struct bpf_verifier_env *env, int regno, const char
return -EACCES;
}
- reg = cur_regs(env) + regno;
-
if (frame->in_async_callback_fn) {
- /* enforce return zero from async callbacks like timer */
exit_ctx = "At async callback return";
- range = retval_range(0, 0);
+ range = frame->callback_ret_range;
goto enforce_retval;
}
@@ -16182,6 +17451,11 @@ static int check_return_code(struct bpf_verifier_env *env, int regno, const char
case BPF_PROG_TYPE_NETFILTER:
range = retval_range(NF_DROP, NF_ACCEPT);
break;
+ case BPF_PROG_TYPE_STRUCT_OPS:
+ if (!ret_type)
+ return 0;
+ range = retval_range(0, 0);
+ break;
case BPF_PROG_TYPE_EXT:
/* freplace program can return anything as its return value
* depends on the to-be-replaced kernel func or bpf program.
@@ -16217,6 +17491,38 @@ enforce_retval:
return 0;
}
+static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off)
+{
+ struct bpf_subprog_info *subprog;
+
+ subprog = bpf_find_containing_subprog(env, off);
+ subprog->changes_pkt_data = true;
+}
+
+static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off)
+{
+ struct bpf_subprog_info *subprog;
+
+ subprog = bpf_find_containing_subprog(env, off);
+ subprog->might_sleep = true;
+}
+
+/* 't' is an index of a call-site.
+ * 'w' is a callee entry point.
+ * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED.
+ * Rely on DFS traversal order and absence of recursive calls to guarantee that
+ * callee's change_pkt_data marks would be correct at that moment.
+ */
+static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w)
+{
+ struct bpf_subprog_info *caller, *callee;
+
+ caller = bpf_find_containing_subprog(env, t);
+ callee = bpf_find_containing_subprog(env, w);
+ caller->changes_pkt_data |= callee->changes_pkt_data;
+ caller->might_sleep |= callee->might_sleep;
+}
+
/* non-recursive DFS pseudo code
* 1 procedure DFS-iterative(G,v):
* 2 label v as discovered
@@ -16282,7 +17588,7 @@ static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
env->insn_aux_data[idx].calls_callback = true;
}
-static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
+bool bpf_calls_callback(struct bpf_verifier_env *env, int insn_idx)
{
return env->insn_aux_data[insn_idx].calls_callback;
}
@@ -16339,7 +17645,7 @@ static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
/* forward- or cross-edge */
insn_state[t] = DISCOVERED | e;
} else {
- verbose(env, "insn state internal bug\n");
+ verifier_bug(env, "insn state internal bug");
return -EFAULT;
}
return DONE_EXPLORING;
@@ -16350,6 +17656,7 @@ static int visit_func_call_insn(int t, struct bpf_insn *insns,
bool visit_callee)
{
int ret, insn_sz;
+ int w;
insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
@@ -16361,8 +17668,10 @@ static int visit_func_call_insn(int t, struct bpf_insn *insns,
mark_jmp_point(env, t + insn_sz);
if (visit_callee) {
+ w = t + insns[t].imm + 1;
mark_prune_point(env, t);
- ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
+ merge_callee_effects(env, t, w);
+ ret = push_insn(t, w, BRANCH, env);
}
return ret;
}
@@ -16370,27 +17679,6 @@ static int visit_func_call_insn(int t, struct bpf_insn *insns,
/* Bitmask with 1s for all caller saved registers */
#define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
-/* Return a bitmask specifying which caller saved registers are
- * clobbered by a call to a helper *as if* this helper follows
- * bpf_fastcall contract:
- * - includes R0 if function is non-void;
- * - includes R1-R5 if corresponding parameter has is described
- * in the function prototype.
- */
-static u32 helper_fastcall_clobber_mask(const struct bpf_func_proto *fn)
-{
- u32 mask;
- int i;
-
- mask = 0;
- if (fn->ret_type != RET_VOID)
- mask |= BIT(BPF_REG_0);
- for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i)
- if (fn->arg_type[i] != ARG_DONTCARE)
- mask |= BIT(BPF_REG_1 + i);
- return mask;
-}
-
/* True if do_misc_fixups() replaces calls to helper number 'imm',
* replacement patch is presumed to follow bpf_fastcall contract
* (see mark_fastcall_pattern_for_call() below).
@@ -16407,24 +17695,54 @@ static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm)
}
}
-/* Same as helper_fastcall_clobber_mask() but for kfuncs, see comment above */
-static u32 kfunc_fastcall_clobber_mask(struct bpf_kfunc_call_arg_meta *meta)
+struct call_summary {
+ u8 num_params;
+ bool is_void;
+ bool fastcall;
+};
+
+/* If @call is a kfunc or helper call, fills @cs and returns true,
+ * otherwise returns false.
+ */
+static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call,
+ struct call_summary *cs)
{
- u32 vlen, i, mask;
+ struct bpf_kfunc_call_arg_meta meta;
+ const struct bpf_func_proto *fn;
+ int i;
- vlen = btf_type_vlen(meta->func_proto);
- mask = 0;
- if (!btf_type_is_void(btf_type_by_id(meta->btf, meta->func_proto->type)))
- mask |= BIT(BPF_REG_0);
- for (i = 0; i < vlen; ++i)
- mask |= BIT(BPF_REG_1 + i);
- return mask;
-}
+ if (bpf_helper_call(call)) {
-/* Same as verifier_inlines_helper_call() but for kfuncs, see comment above */
-static bool is_fastcall_kfunc_call(struct bpf_kfunc_call_arg_meta *meta)
-{
- return meta->kfunc_flags & KF_FASTCALL;
+ if (get_helper_proto(env, call->imm, &fn) < 0)
+ /* error would be reported later */
+ return false;
+ cs->fastcall = fn->allow_fastcall &&
+ (verifier_inlines_helper_call(env, call->imm) ||
+ bpf_jit_inlines_helper_call(call->imm));
+ cs->is_void = fn->ret_type == RET_VOID;
+ cs->num_params = 0;
+ for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) {
+ if (fn->arg_type[i] == ARG_DONTCARE)
+ break;
+ cs->num_params++;
+ }
+ return true;
+ }
+
+ if (bpf_pseudo_kfunc_call(call)) {
+ int err;
+
+ err = fetch_kfunc_meta(env, call, &meta, NULL);
+ if (err < 0)
+ /* error would be reported later */
+ return false;
+ cs->num_params = btf_type_vlen(meta.func_proto);
+ cs->fastcall = meta.kfunc_flags & KF_FASTCALL;
+ cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type));
+ return true;
+ }
+
+ return false;
}
/* LLVM define a bpf_fastcall function attribute.
@@ -16507,39 +17825,23 @@ static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
{
struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx;
struct bpf_insn *call = &env->prog->insnsi[insn_idx];
- const struct bpf_func_proto *fn;
- u32 clobbered_regs_mask = ALL_CALLER_SAVED_REGS;
+ u32 clobbered_regs_mask;
+ struct call_summary cs;
u32 expected_regs_mask;
- bool can_be_inlined = false;
s16 off;
int i;
- if (bpf_helper_call(call)) {
- if (get_helper_proto(env, call->imm, &fn) < 0)
- /* error would be reported later */
- return;
- clobbered_regs_mask = helper_fastcall_clobber_mask(fn);
- can_be_inlined = fn->allow_fastcall &&
- (verifier_inlines_helper_call(env, call->imm) ||
- bpf_jit_inlines_helper_call(call->imm));
- }
-
- if (bpf_pseudo_kfunc_call(call)) {
- struct bpf_kfunc_call_arg_meta meta;
- int err;
-
- err = fetch_kfunc_meta(env, call, &meta, NULL);
- if (err < 0)
- /* error would be reported later */
- return;
-
- clobbered_regs_mask = kfunc_fastcall_clobber_mask(&meta);
- can_be_inlined = is_fastcall_kfunc_call(&meta);
- }
-
- if (clobbered_regs_mask == ALL_CALLER_SAVED_REGS)
+ if (!get_call_summary(env, call, &cs))
return;
+ /* A bitmask specifying which caller saved registers are clobbered
+ * by a call to a helper/kfunc *as if* this helper/kfunc follows
+ * bpf_fastcall contract:
+ * - includes R0 if function is non-void;
+ * - includes R1-R5 if corresponding parameter has is described
+ * in the function prototype.
+ */
+ clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0);
/* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */
expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS;
@@ -16597,7 +17899,7 @@ static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env,
* don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills()
* does not remove spill/fill pair {4,6}.
*/
- if (can_be_inlined)
+ if (cs.fastcall)
env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1;
else
subprog->keep_fastcall_stack = 1;
@@ -16632,6 +17934,247 @@ static int mark_fastcall_patterns(struct bpf_verifier_env *env)
return 0;
}
+static struct bpf_iarray *iarray_realloc(struct bpf_iarray *old, size_t n_elem)
+{
+ size_t new_size = sizeof(struct bpf_iarray) + n_elem * sizeof(old->items[0]);
+ struct bpf_iarray *new;
+
+ new = kvrealloc(old, new_size, GFP_KERNEL_ACCOUNT);
+ if (!new) {
+ /* this is what callers always want, so simplify the call site */
+ kvfree(old);
+ return NULL;
+ }
+
+ new->cnt = n_elem;
+ return new;
+}
+
+static int copy_insn_array(struct bpf_map *map, u32 start, u32 end, u32 *items)
+{
+ struct bpf_insn_array_value *value;
+ u32 i;
+
+ for (i = start; i <= end; i++) {
+ value = map->ops->map_lookup_elem(map, &i);
+ /*
+ * map_lookup_elem of an array map will never return an error,
+ * but not checking it makes some static analysers to worry
+ */
+ if (IS_ERR(value))
+ return PTR_ERR(value);
+ else if (!value)
+ return -EINVAL;
+ items[i - start] = value->xlated_off;
+ }
+ return 0;
+}
+
+static int cmp_ptr_to_u32(const void *a, const void *b)
+{
+ return *(u32 *)a - *(u32 *)b;
+}
+
+static int sort_insn_array_uniq(u32 *items, int cnt)
+{
+ int unique = 1;
+ int i;
+
+ sort(items, cnt, sizeof(items[0]), cmp_ptr_to_u32, NULL);
+
+ for (i = 1; i < cnt; i++)
+ if (items[i] != items[unique - 1])
+ items[unique++] = items[i];
+
+ return unique;
+}
+
+/*
+ * sort_unique({map[start], ..., map[end]}) into off
+ */
+static int copy_insn_array_uniq(struct bpf_map *map, u32 start, u32 end, u32 *off)
+{
+ u32 n = end - start + 1;
+ int err;
+
+ err = copy_insn_array(map, start, end, off);
+ if (err)
+ return err;
+
+ return sort_insn_array_uniq(off, n);
+}
+
+/*
+ * Copy all unique offsets from the map
+ */
+static struct bpf_iarray *jt_from_map(struct bpf_map *map)
+{
+ struct bpf_iarray *jt;
+ int err;
+ int n;
+
+ jt = iarray_realloc(NULL, map->max_entries);
+ if (!jt)
+ return ERR_PTR(-ENOMEM);
+
+ n = copy_insn_array_uniq(map, 0, map->max_entries - 1, jt->items);
+ if (n < 0) {
+ err = n;
+ goto err_free;
+ }
+ if (n == 0) {
+ err = -EINVAL;
+ goto err_free;
+ }
+ jt->cnt = n;
+ return jt;
+
+err_free:
+ kvfree(jt);
+ return ERR_PTR(err);
+}
+
+/*
+ * Find and collect all maps which fit in the subprog. Return the result as one
+ * combined jump table in jt->items (allocated with kvcalloc)
+ */
+static struct bpf_iarray *jt_from_subprog(struct bpf_verifier_env *env,
+ int subprog_start, int subprog_end)
+{
+ struct bpf_iarray *jt = NULL;
+ struct bpf_map *map;
+ struct bpf_iarray *jt_cur;
+ int i;
+
+ for (i = 0; i < env->insn_array_map_cnt; i++) {
+ /*
+ * TODO (when needed): collect only jump tables, not static keys
+ * or maps for indirect calls
+ */
+ map = env->insn_array_maps[i];
+
+ jt_cur = jt_from_map(map);
+ if (IS_ERR(jt_cur)) {
+ kvfree(jt);
+ return jt_cur;
+ }
+
+ /*
+ * This is enough to check one element. The full table is
+ * checked to fit inside the subprog later in create_jt()
+ */
+ if (jt_cur->items[0] >= subprog_start && jt_cur->items[0] < subprog_end) {
+ u32 old_cnt = jt ? jt->cnt : 0;
+ jt = iarray_realloc(jt, old_cnt + jt_cur->cnt);
+ if (!jt) {
+ kvfree(jt_cur);
+ return ERR_PTR(-ENOMEM);
+ }
+ memcpy(jt->items + old_cnt, jt_cur->items, jt_cur->cnt << 2);
+ }
+
+ kvfree(jt_cur);
+ }
+
+ if (!jt) {
+ verbose(env, "no jump tables found for subprog starting at %u\n", subprog_start);
+ return ERR_PTR(-EINVAL);
+ }
+
+ jt->cnt = sort_insn_array_uniq(jt->items, jt->cnt);
+ return jt;
+}
+
+static struct bpf_iarray *
+create_jt(int t, struct bpf_verifier_env *env)
+{
+ static struct bpf_subprog_info *subprog;
+ int subprog_start, subprog_end;
+ struct bpf_iarray *jt;
+ int i;
+
+ subprog = bpf_find_containing_subprog(env, t);
+ subprog_start = subprog->start;
+ subprog_end = (subprog + 1)->start;
+ jt = jt_from_subprog(env, subprog_start, subprog_end);
+ if (IS_ERR(jt))
+ return jt;
+
+ /* Check that the every element of the jump table fits within the given subprogram */
+ for (i = 0; i < jt->cnt; i++) {
+ if (jt->items[i] < subprog_start || jt->items[i] >= subprog_end) {
+ verbose(env, "jump table for insn %d points outside of the subprog [%u,%u]\n",
+ t, subprog_start, subprog_end);
+ kvfree(jt);
+ return ERR_PTR(-EINVAL);
+ }
+ }
+
+ return jt;
+}
+
+/* "conditional jump with N edges" */
+static int visit_gotox_insn(int t, struct bpf_verifier_env *env)
+{
+ int *insn_stack = env->cfg.insn_stack;
+ int *insn_state = env->cfg.insn_state;
+ bool keep_exploring = false;
+ struct bpf_iarray *jt;
+ int i, w;
+
+ jt = env->insn_aux_data[t].jt;
+ if (!jt) {
+ jt = create_jt(t, env);
+ if (IS_ERR(jt))
+ return PTR_ERR(jt);
+
+ env->insn_aux_data[t].jt = jt;
+ }
+
+ mark_prune_point(env, t);
+ for (i = 0; i < jt->cnt; i++) {
+ w = jt->items[i];
+ if (w < 0 || w >= env->prog->len) {
+ verbose(env, "indirect jump out of range from insn %d to %d\n", t, w);
+ return -EINVAL;
+ }
+
+ mark_jmp_point(env, w);
+
+ /* EXPLORED || DISCOVERED */
+ if (insn_state[w])
+ continue;
+
+ if (env->cfg.cur_stack >= env->prog->len)
+ return -E2BIG;
+
+ insn_stack[env->cfg.cur_stack++] = w;
+ insn_state[w] |= DISCOVERED;
+ keep_exploring = true;
+ }
+
+ return keep_exploring ? KEEP_EXPLORING : DONE_EXPLORING;
+}
+
+static int visit_tailcall_insn(struct bpf_verifier_env *env, int t)
+{
+ static struct bpf_subprog_info *subprog;
+ struct bpf_iarray *jt;
+
+ if (env->insn_aux_data[t].jt)
+ return 0;
+
+ jt = iarray_realloc(NULL, 2);
+ if (!jt)
+ return -ENOMEM;
+
+ subprog = bpf_find_containing_subprog(env, t);
+ jt->items[0] = t + 1;
+ jt->items[1] = subprog->exit_idx;
+ env->insn_aux_data[t].jt = jt;
+ return 0;
+}
+
/* Visits the instruction at index t and returns one of the following:
* < 0 - an error occurred
* DONE_EXPLORING - the instruction was fully explored
@@ -16679,7 +18222,22 @@ static int visit_insn(int t, struct bpf_verifier_env *env)
mark_prune_point(env, t);
mark_jmp_point(env, t);
}
- if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
+ if (bpf_helper_call(insn)) {
+ const struct bpf_func_proto *fp;
+
+ ret = get_helper_proto(env, insn->imm, &fp);
+ /* If called in a non-sleepable context program will be
+ * rejected anyway, so we should end up with precise
+ * sleepable marks on subprogs, except for dead code
+ * elimination.
+ */
+ if (ret == 0 && fp->might_sleep)
+ mark_subprog_might_sleep(env, t);
+ if (bpf_helper_changes_pkt_data(insn->imm))
+ mark_subprog_changes_pkt_data(env, t);
+ if (insn->imm == BPF_FUNC_tail_call)
+ visit_tailcall_insn(env, t);
+ } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
struct bpf_kfunc_call_arg_meta meta;
ret = fetch_kfunc_meta(env, insn, &meta, NULL);
@@ -16698,12 +18256,21 @@ static int visit_insn(int t, struct bpf_verifier_env *env)
*/
mark_force_checkpoint(env, t);
}
+ /* Same as helpers, if called in a non-sleepable context
+ * program will be rejected anyway, so we should end up
+ * with precise sleepable marks on subprogs, except for
+ * dead code elimination.
+ */
+ if (ret == 0 && is_kfunc_sleepable(&meta))
+ mark_subprog_might_sleep(env, t);
+ if (ret == 0 && is_kfunc_pkt_changing(&meta))
+ mark_subprog_changes_pkt_data(env, t);
}
return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
case BPF_JA:
- if (BPF_SRC(insn->code) != BPF_K)
- return -EINVAL;
+ if (BPF_SRC(insn->code) == BPF_X)
+ return visit_gotox_insn(t, env);
if (BPF_CLASS(insn->code) == BPF_JMP)
off = insn->off;
@@ -16742,18 +18309,21 @@ static int check_cfg(struct bpf_verifier_env *env)
int insn_cnt = env->prog->len;
int *insn_stack, *insn_state;
int ex_insn_beg, i, ret = 0;
- bool ex_done = false;
- insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
+ insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
if (!insn_state)
return -ENOMEM;
- insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
+ insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
if (!insn_stack) {
kvfree(insn_state);
return -ENOMEM;
}
+ ex_insn_beg = env->exception_callback_subprog
+ ? env->subprog_info[env->exception_callback_subprog].start
+ : 0;
+
insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
insn_stack[0] = 0; /* 0 is the first instruction */
env->cfg.cur_stack = 1;
@@ -16772,7 +18342,7 @@ walk_cfg:
break;
default:
if (ret > 0) {
- verbose(env, "visit_insn internal bug\n");
+ verifier_bug(env, "visit_insn internal bug");
ret = -EFAULT;
}
goto err_free;
@@ -16780,18 +18350,15 @@ walk_cfg:
}
if (env->cfg.cur_stack < 0) {
- verbose(env, "pop stack internal bug\n");
+ verifier_bug(env, "pop stack internal bug");
ret = -EFAULT;
goto err_free;
}
- if (env->exception_callback_subprog && !ex_done) {
- ex_insn_beg = env->subprog_info[env->exception_callback_subprog].start;
-
+ if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) {
insn_state[ex_insn_beg] = DISCOVERED;
insn_stack[0] = ex_insn_beg;
env->cfg.cur_stack = 1;
- ex_done = true;
goto walk_cfg;
}
@@ -16813,6 +18380,8 @@ walk_cfg:
}
}
ret = 0; /* cfg looks good */
+ env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data;
+ env->prog->aux->might_sleep = env->subprog_info[0].might_sleep;
err_free:
kvfree(insn_state);
@@ -16821,6 +18390,57 @@ err_free:
return ret;
}
+/*
+ * For each subprogram 'i' fill array env->cfg.insn_subprogram sub-range
+ * [env->subprog_info[i].postorder_start, env->subprog_info[i+1].postorder_start)
+ * with indices of 'i' instructions in postorder.
+ */
+static int compute_postorder(struct bpf_verifier_env *env)
+{
+ u32 cur_postorder, i, top, stack_sz, s;
+ int *stack = NULL, *postorder = NULL, *state = NULL;
+ struct bpf_iarray *succ;
+
+ postorder = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT);
+ state = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT);
+ stack = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT);
+ if (!postorder || !state || !stack) {
+ kvfree(postorder);
+ kvfree(state);
+ kvfree(stack);
+ return -ENOMEM;
+ }
+ cur_postorder = 0;
+ for (i = 0; i < env->subprog_cnt; i++) {
+ env->subprog_info[i].postorder_start = cur_postorder;
+ stack[0] = env->subprog_info[i].start;
+ stack_sz = 1;
+ do {
+ top = stack[stack_sz - 1];
+ state[top] |= DISCOVERED;
+ if (state[top] & EXPLORED) {
+ postorder[cur_postorder++] = top;
+ stack_sz--;
+ continue;
+ }
+ succ = bpf_insn_successors(env, top);
+ for (s = 0; s < succ->cnt; ++s) {
+ if (!state[succ->items[s]]) {
+ stack[stack_sz++] = succ->items[s];
+ state[succ->items[s]] |= DISCOVERED;
+ }
+ }
+ state[top] |= EXPLORED;
+ } while (stack_sz);
+ }
+ env->subprog_info[i].postorder_start = cur_postorder;
+ env->cfg.insn_postorder = postorder;
+ env->cfg.cur_postorder = cur_postorder;
+ kvfree(stack);
+ kvfree(state);
+ return 0;
+}
+
static int check_abnormal_return(struct bpf_verifier_env *env)
{
int i;
@@ -16877,7 +18497,7 @@ static int check_btf_func_early(struct bpf_verifier_env *env,
urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
min_size = min_t(u32, krec_size, urec_size);
- krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
+ krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
if (!krecord)
return -ENOMEM;
@@ -16977,7 +18597,7 @@ static int check_btf_func(struct bpf_verifier_env *env,
urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
krecord = prog->aux->func_info;
- info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
+ info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
if (!info_aux)
return -ENOMEM;
@@ -17063,7 +18683,7 @@ static int check_btf_line(struct bpf_verifier_env *env,
* pass in a smaller bpf_line_info object.
*/
linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
- GFP_KERNEL | __GFP_NOWARN);
+ GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
if (!linfo)
return -ENOMEM;
@@ -17353,16 +18973,15 @@ static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
}
static void clean_func_state(struct bpf_verifier_env *env,
- struct bpf_func_state *st)
+ struct bpf_func_state *st,
+ u32 ip)
{
- enum bpf_reg_liveness live;
+ u16 live_regs = env->insn_aux_data[ip].live_regs_before;
int i, j;
for (i = 0; i < BPF_REG_FP; i++) {
- live = st->regs[i].live;
/* liveness must not touch this register anymore */
- st->regs[i].live |= REG_LIVE_DONE;
- if (!(live & REG_LIVE_READ))
+ if (!(live_regs & BIT(i)))
/* since the register is unused, clear its state
* to make further comparison simpler
*/
@@ -17370,10 +18989,7 @@ static void clean_func_state(struct bpf_verifier_env *env,
}
for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
- live = st->stack[i].spilled_ptr.live;
- /* liveness must not touch this stack slot anymore */
- st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
- if (!(live & REG_LIVE_READ)) {
+ if (!bpf_stack_slot_alive(env, st->frameno, i)) {
__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
for (j = 0; j < BPF_REG_SIZE; j++)
st->stack[i].slot_type[j] = STACK_INVALID;
@@ -17384,43 +19000,41 @@ static void clean_func_state(struct bpf_verifier_env *env,
static void clean_verifier_state(struct bpf_verifier_env *env,
struct bpf_verifier_state *st)
{
- int i;
+ int i, ip;
- if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
- /* all regs in this state in all frames were already marked */
- return;
-
- for (i = 0; i <= st->curframe; i++)
- clean_func_state(env, st->frame[i]);
+ bpf_live_stack_query_init(env, st);
+ st->cleaned = true;
+ for (i = 0; i <= st->curframe; i++) {
+ ip = frame_insn_idx(st, i);
+ clean_func_state(env, st->frame[i], ip);
+ }
}
/* the parentage chains form a tree.
* the verifier states are added to state lists at given insn and
* pushed into state stack for future exploration.
- * when the verifier reaches bpf_exit insn some of the verifer states
+ * when the verifier reaches bpf_exit insn some of the verifier states
* stored in the state lists have their final liveness state already,
* but a lot of states will get revised from liveness point of view when
* the verifier explores other branches.
* Example:
- * 1: r0 = 1
+ * 1: *(u64)(r10 - 8) = 1
* 2: if r1 == 100 goto pc+1
- * 3: r0 = 2
- * 4: exit
- * when the verifier reaches exit insn the register r0 in the state list of
- * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
- * of insn 2 and goes exploring further. At the insn 4 it will walk the
- * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
+ * 3: *(u64)(r10 - 8) = 2
+ * 4: r0 = *(u64)(r10 - 8)
+ * 5: exit
+ * when the verifier reaches exit insn the stack slot -8 in the state list of
+ * insn 2 is not yet marked alive. Then the verifier pops the other_branch
+ * of insn 2 and goes exploring further. After the insn 4 read, liveness
+ * analysis would propagate read mark for -8 at insn 2.
*
* Since the verifier pushes the branch states as it sees them while exploring
* the program the condition of walking the branch instruction for the second
* time means that all states below this branch were already explored and
* their final liveness marks are already propagated.
* Hence when the verifier completes the search of state list in is_state_visited()
- * we can call this clean_live_states() function to mark all liveness states
- * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
- * will not be used.
- * This function also clears the registers and stack for states that !READ
- * to simplify state merging.
+ * we can call this clean_live_states() function to clear dead the registers and stack
+ * slots to simplify state merging.
*
* Important note here that walking the same branch instruction in the callee
* doesn't meant that the states are DONE. The verifier has to compare
@@ -17430,17 +19044,22 @@ static void clean_live_states(struct bpf_verifier_env *env, int insn,
struct bpf_verifier_state *cur)
{
struct bpf_verifier_state_list *sl;
+ struct list_head *pos, *head;
- sl = *explored_state(env, insn);
- while (sl) {
+ head = explored_state(env, insn);
+ list_for_each(pos, head) {
+ sl = container_of(pos, struct bpf_verifier_state_list, node);
if (sl->state.branches)
- goto next;
+ continue;
if (sl->state.insn_idx != insn ||
!same_callsites(&sl->state, cur))
- goto next;
+ continue;
+ if (sl->state.cleaned)
+ /* all regs in this state in all frames were already marked */
+ continue;
+ if (incomplete_read_marks(env, &sl->state))
+ continue;
clean_verifier_state(env, &sl->state);
-next:
- sl = sl->next;
}
}
@@ -17467,9 +19086,6 @@ static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
if (exact == EXACT)
return regs_exact(rold, rcur, idmap);
- if (!(rold->live & REG_LIVE_READ) && exact == NOT_EXACT)
- /* explored state didn't use this */
- return true;
if (rold->type == NOT_INIT) {
if (exact == NOT_EXACT || rcur->type == NOT_INIT)
/* explored state can't have used this */
@@ -17583,6 +19199,10 @@ static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
case PTR_TO_ARENA:
return true;
+ case PTR_TO_INSN:
+ return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
+ rold->off == rcur->off && range_within(rold, rcur) &&
+ tnum_in(rold->var_off, rcur->var_off);
default:
return regs_exact(rold, rcur, idmap);
}
@@ -17593,7 +19213,6 @@ static struct bpf_reg_state unbound_reg;
static __init int unbound_reg_init(void)
{
__mark_reg_unknown_imprecise(&unbound_reg);
- unbound_reg.live |= REG_LIVE_READ;
return 0;
}
late_initcall(unbound_reg_init);
@@ -17646,13 +19265,6 @@ static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
return false;
- if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)
- && exact == NOT_EXACT) {
- i += BPF_REG_SIZE - 1;
- /* explored state didn't use this */
- continue;
- }
-
if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
continue;
@@ -17738,6 +19350,13 @@ static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
return false;
break;
+ case STACK_IRQ_FLAG:
+ old_reg = &old->stack[spi].spilled_ptr;
+ cur_reg = &cur->stack[spi].spilled_ptr;
+ if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) ||
+ old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class)
+ return false;
+ break;
case STACK_MISC:
case STACK_ZERO:
case STACK_INVALID:
@@ -17750,7 +19369,7 @@ static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
return true;
}
-static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
+static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur,
struct bpf_idmap *idmap)
{
int i;
@@ -17758,14 +19377,33 @@ static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
if (old->acquired_refs != cur->acquired_refs)
return false;
+ if (old->active_locks != cur->active_locks)
+ return false;
+
+ if (old->active_preempt_locks != cur->active_preempt_locks)
+ return false;
+
+ if (old->active_rcu_locks != cur->active_rcu_locks)
+ return false;
+
+ if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap))
+ return false;
+
+ if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) ||
+ old->active_lock_ptr != cur->active_lock_ptr)
+ return false;
+
for (i = 0; i < old->acquired_refs; i++) {
if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) ||
old->refs[i].type != cur->refs[i].type)
return false;
switch (old->refs[i].type) {
case REF_TYPE_PTR:
+ case REF_TYPE_IRQ:
break;
case REF_TYPE_LOCK:
+ case REF_TYPE_RES_LOCK:
+ case REF_TYPE_RES_LOCK_IRQ:
if (old->refs[i].ptr != cur->refs[i].ptr)
return false;
break;
@@ -17805,24 +19443,23 @@ static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
* the current state will reach 'bpf_exit' instruction safely
*/
static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
- struct bpf_func_state *cur, enum exact_level exact)
+ struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact)
{
- int i;
+ u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before;
+ u16 i;
if (old->callback_depth > cur->callback_depth)
return false;
for (i = 0; i < MAX_BPF_REG; i++)
- if (!regsafe(env, &old->regs[i], &cur->regs[i],
+ if (((1 << i) & live_regs) &&
+ !regsafe(env, &old->regs[i], &cur->regs[i],
&env->idmap_scratch, exact))
return false;
if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
return false;
- if (!refsafe(old, cur, &env->idmap_scratch))
- return false;
-
return true;
}
@@ -17837,6 +19474,7 @@ static bool states_equal(struct bpf_verifier_env *env,
struct bpf_verifier_state *cur,
enum exact_level exact)
{
+ u32 insn_idx;
int i;
if (old->curframe != cur->curframe)
@@ -17850,112 +19488,32 @@ static bool states_equal(struct bpf_verifier_env *env,
if (old->speculative && !cur->speculative)
return false;
- if (old->active_rcu_lock != cur->active_rcu_lock)
- return false;
-
- if (old->active_preempt_lock != cur->active_preempt_lock)
+ if (old->in_sleepable != cur->in_sleepable)
return false;
- if (old->in_sleepable != cur->in_sleepable)
+ if (!refsafe(old, cur, &env->idmap_scratch))
return false;
/* for states to be equal callsites have to be the same
* and all frame states need to be equivalent
*/
for (i = 0; i <= old->curframe; i++) {
+ insn_idx = frame_insn_idx(old, i);
if (old->frame[i]->callsite != cur->frame[i]->callsite)
return false;
- if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
+ if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact))
return false;
}
return true;
}
-/* Return 0 if no propagation happened. Return negative error code if error
- * happened. Otherwise, return the propagated bit.
- */
-static int propagate_liveness_reg(struct bpf_verifier_env *env,
- struct bpf_reg_state *reg,
- struct bpf_reg_state *parent_reg)
-{
- u8 parent_flag = parent_reg->live & REG_LIVE_READ;
- u8 flag = reg->live & REG_LIVE_READ;
- int err;
-
- /* When comes here, read flags of PARENT_REG or REG could be any of
- * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
- * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
- */
- if (parent_flag == REG_LIVE_READ64 ||
- /* Or if there is no read flag from REG. */
- !flag ||
- /* Or if the read flag from REG is the same as PARENT_REG. */
- parent_flag == flag)
- return 0;
-
- err = mark_reg_read(env, reg, parent_reg, flag);
- if (err)
- return err;
-
- return flag;
-}
-
-/* A write screens off any subsequent reads; but write marks come from the
- * straight-line code between a state and its parent. When we arrive at an
- * equivalent state (jump target or such) we didn't arrive by the straight-line
- * code, so read marks in the state must propagate to the parent regardless
- * of the state's write marks. That's what 'parent == state->parent' comparison
- * in mark_reg_read() is for.
- */
-static int propagate_liveness(struct bpf_verifier_env *env,
- const struct bpf_verifier_state *vstate,
- struct bpf_verifier_state *vparent)
-{
- struct bpf_reg_state *state_reg, *parent_reg;
- struct bpf_func_state *state, *parent;
- int i, frame, err = 0;
-
- if (vparent->curframe != vstate->curframe) {
- WARN(1, "propagate_live: parent frame %d current frame %d\n",
- vparent->curframe, vstate->curframe);
- return -EFAULT;
- }
- /* Propagate read liveness of registers... */
- BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
- for (frame = 0; frame <= vstate->curframe; frame++) {
- parent = vparent->frame[frame];
- state = vstate->frame[frame];
- parent_reg = parent->regs;
- state_reg = state->regs;
- /* We don't need to worry about FP liveness, it's read-only */
- for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
- err = propagate_liveness_reg(env, &state_reg[i],
- &parent_reg[i]);
- if (err < 0)
- return err;
- if (err == REG_LIVE_READ64)
- mark_insn_zext(env, &parent_reg[i]);
- }
-
- /* Propagate stack slots. */
- for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
- i < parent->allocated_stack / BPF_REG_SIZE; i++) {
- parent_reg = &parent->stack[i].spilled_ptr;
- state_reg = &state->stack[i].spilled_ptr;
- err = propagate_liveness_reg(env, state_reg,
- parent_reg);
- if (err < 0)
- return err;
- }
- }
- return 0;
-}
-
/* find precise scalars in the previous equivalent state and
* propagate them into the current state
*/
static int propagate_precision(struct bpf_verifier_env *env,
- const struct bpf_verifier_state *old)
+ const struct bpf_verifier_state *old,
+ struct bpf_verifier_state *cur,
+ bool *changed)
{
struct bpf_reg_state *state_reg;
struct bpf_func_state *state;
@@ -17968,8 +19526,7 @@ static int propagate_precision(struct bpf_verifier_env *env,
first = true;
for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
if (state_reg->type != SCALAR_VALUE ||
- !state_reg->precise ||
- !(state_reg->live & REG_LIVE_READ))
+ !state_reg->precise)
continue;
if (env->log.level & BPF_LOG_LEVEL2) {
if (first)
@@ -17986,8 +19543,7 @@ static int propagate_precision(struct bpf_verifier_env *env,
continue;
state_reg = &state->stack[i].spilled_ptr;
if (state_reg->type != SCALAR_VALUE ||
- !state_reg->precise ||
- !(state_reg->live & REG_LIVE_READ))
+ !state_reg->precise)
continue;
if (env->log.level & BPF_LOG_LEVEL2) {
if (first)
@@ -17999,17 +19555,54 @@ static int propagate_precision(struct bpf_verifier_env *env,
bt_set_frame_slot(&env->bt, fr, i);
first = false;
}
- if (!first)
+ if (!first && (env->log.level & BPF_LOG_LEVEL2))
verbose(env, "\n");
}
- err = mark_chain_precision_batch(env);
+ err = __mark_chain_precision(env, cur, -1, changed);
if (err < 0)
return err;
return 0;
}
+#define MAX_BACKEDGE_ITERS 64
+
+/* Propagate read and precision marks from visit->backedges[*].state->equal_state
+ * to corresponding parent states of visit->backedges[*].state until fixed point is reached,
+ * then free visit->backedges.
+ * After execution of this function incomplete_read_marks() will return false
+ * for all states corresponding to @visit->callchain.
+ */
+static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit)
+{
+ struct bpf_scc_backedge *backedge;
+ struct bpf_verifier_state *st;
+ bool changed;
+ int i, err;
+
+ i = 0;
+ do {
+ if (i++ > MAX_BACKEDGE_ITERS) {
+ if (env->log.level & BPF_LOG_LEVEL2)
+ verbose(env, "%s: too many iterations\n", __func__);
+ for (backedge = visit->backedges; backedge; backedge = backedge->next)
+ mark_all_scalars_precise(env, &backedge->state);
+ break;
+ }
+ changed = false;
+ for (backedge = visit->backedges; backedge; backedge = backedge->next) {
+ st = &backedge->state;
+ err = propagate_precision(env, st->equal_state, st, &changed);
+ if (err)
+ return err;
+ }
+ } while (changed);
+
+ free_backedges(visit);
+ return 0;
+}
+
static bool states_maybe_looping(struct bpf_verifier_state *old,
struct bpf_verifier_state *cur)
{
@@ -18023,7 +19616,7 @@ static bool states_maybe_looping(struct bpf_verifier_state *old,
fcur = cur->frame[fr];
for (i = 0; i < MAX_BPF_REG; i++)
if (memcmp(&fold->regs[i], &fcur->regs[i],
- offsetof(struct bpf_reg_state, parent)))
+ offsetof(struct bpf_reg_state, frameno)))
return false;
return true;
}
@@ -18037,7 +19630,7 @@ static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
* terminology) calls specially: as opposed to bounded BPF loops, it *expects*
* states to match, which otherwise would look like an infinite loop. So while
* iter_next() calls are taken care of, we still need to be careful and
- * prevent erroneous and too eager declaration of "ininite loop", when
+ * prevent erroneous and too eager declaration of "infinite loop", when
* iterators are involved.
*
* Here's a situation in pseudo-BPF assembly form:
@@ -18079,7 +19672,7 @@ static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
*
* This approach allows to keep infinite loop heuristic even in the face of
* active iterator. E.g., C snippet below is and will be detected as
- * inifintely looping:
+ * infinitely looping:
*
* struct bpf_iter_num it;
* int *p, x;
@@ -18118,14 +19711,15 @@ static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
{
struct bpf_verifier_state_list *new_sl;
- struct bpf_verifier_state_list *sl, **pprev;
- struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
- int i, j, n, err, states_cnt = 0;
- bool force_new_state, add_new_state, force_exact;
+ struct bpf_verifier_state_list *sl;
+ struct bpf_verifier_state *cur = env->cur_state, *new;
+ bool force_new_state, add_new_state, loop;
+ int n, err, states_cnt = 0;
+ struct list_head *pos, *tmp, *head;
force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
/* Avoid accumulating infinitely long jmp history */
- cur->insn_hist_end - cur->insn_hist_start > 40;
+ cur->jmp_history_cnt > 40;
/* bpf progs typically have pruning point every 4 instructions
* http://vger.kernel.org/bpfconf2019.html#session-1
@@ -18140,15 +19734,15 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
env->insn_processed - env->prev_insn_processed >= 8)
add_new_state = true;
- pprev = explored_state(env, insn_idx);
- sl = *pprev;
-
clean_live_states(env, insn_idx, cur);
- while (sl) {
+ loop = false;
+ head = explored_state(env, insn_idx);
+ list_for_each_safe(pos, tmp, head) {
+ sl = container_of(pos, struct bpf_verifier_state_list, node);
states_cnt++;
if (sl->state.insn_idx != insn_idx)
- goto next;
+ continue;
if (sl->state.branches) {
struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
@@ -18222,7 +19816,7 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
- update_loop_entry(cur, &sl->state);
+ loop = true;
goto hit;
}
}
@@ -18231,11 +19825,11 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
if (is_may_goto_insn_at(env, insn_idx)) {
if (sl->state.may_goto_depth != cur->may_goto_depth &&
states_equal(env, &sl->state, cur, RANGE_WITHIN)) {
- update_loop_entry(cur, &sl->state);
+ loop = true;
goto hit;
}
}
- if (calls_callback(env, insn_idx)) {
+ if (bpf_calls_callback(env, insn_idx)) {
if (states_equal(env, &sl->state, cur, RANGE_WITHIN))
goto hit;
goto skip_inf_loop_check;
@@ -18249,9 +19843,9 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
verbose_linfo(env, insn_idx, "; ");
verbose(env, "infinite loop detected at insn %d\n", insn_idx);
verbose(env, "cur state:");
- print_verifier_state(env, cur->frame[cur->curframe], true);
+ print_verifier_state(env, cur, cur->curframe, true);
verbose(env, "old state:");
- print_verifier_state(env, sl->state.frame[cur->curframe], true);
+ print_verifier_state(env, &sl->state, cur->curframe, true);
return -EINVAL;
}
/* if the verifier is processing a loop, avoid adding new state
@@ -18273,60 +19867,111 @@ skip_inf_loop_check:
add_new_state = false;
goto miss;
}
- /* If sl->state is a part of a loop and this loop's entry is a part of
- * current verification path then states have to be compared exactly.
- * 'force_exact' is needed to catch the following case:
- *
- * initial Here state 'succ' was processed first,
- * | it was eventually tracked to produce a
- * V state identical to 'hdr'.
- * .---------> hdr All branches from 'succ' had been explored
- * | | and thus 'succ' has its .branches == 0.
- * | V
- * | .------... Suppose states 'cur' and 'succ' correspond
- * | | | to the same instruction + callsites.
- * | V V In such case it is necessary to check
- * | ... ... if 'succ' and 'cur' are states_equal().
- * | | | If 'succ' and 'cur' are a part of the
- * | V V same loop exact flag has to be set.
- * | succ <- cur To check if that is the case, verify
- * | | if loop entry of 'succ' is in current
- * | V DFS path.
- * | ...
- * | |
- * '----'
- *
- * Additional details are in the comment before get_loop_entry().
- */
- loop_entry = get_loop_entry(&sl->state);
- force_exact = loop_entry && loop_entry->branches > 0;
- if (states_equal(env, &sl->state, cur, force_exact ? RANGE_WITHIN : NOT_EXACT)) {
- if (force_exact)
- update_loop_entry(cur, loop_entry);
+ /* See comments for mark_all_regs_read_and_precise() */
+ loop = incomplete_read_marks(env, &sl->state);
+ if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) {
hit:
sl->hit_cnt++;
- /* reached equivalent register/stack state,
- * prune the search.
- * Registers read by the continuation are read by us.
- * If we have any write marks in env->cur_state, they
- * will prevent corresponding reads in the continuation
- * from reaching our parent (an explored_state). Our
- * own state will get the read marks recorded, but
- * they'll be immediately forgotten as we're pruning
- * this state and will pop a new one.
- */
- err = propagate_liveness(env, &sl->state, cur);
/* if previous state reached the exit with precision and
* current state is equivalent to it (except precision marks)
* the precision needs to be propagated back in
* the current state.
*/
+ err = 0;
if (is_jmp_point(env, env->insn_idx))
- err = err ? : push_insn_history(env, cur, 0, 0);
- err = err ? : propagate_precision(env, &sl->state);
+ err = push_jmp_history(env, cur, 0, 0);
+ err = err ? : propagate_precision(env, &sl->state, cur, NULL);
if (err)
return err;
+ /* When processing iterator based loops above propagate_liveness and
+ * propagate_precision calls are not sufficient to transfer all relevant
+ * read and precision marks. E.g. consider the following case:
+ *
+ * .-> A --. Assume the states are visited in the order A, B, C.
+ * | | | Assume that state B reaches a state equivalent to state A.
+ * | v v At this point, state C is not processed yet, so state A
+ * '-- B C has not received any read or precision marks from C.
+ * Thus, marks propagated from A to B are incomplete.
+ *
+ * The verifier mitigates this by performing the following steps:
+ *
+ * - Prior to the main verification pass, strongly connected components
+ * (SCCs) are computed over the program's control flow graph,
+ * intraprocedurally.
+ *
+ * - During the main verification pass, `maybe_enter_scc()` checks
+ * whether the current verifier state is entering an SCC. If so, an
+ * instance of a `bpf_scc_visit` object is created, and the state
+ * entering the SCC is recorded as the entry state.
+ *
+ * - This instance is associated not with the SCC itself, but with a
+ * `bpf_scc_callchain`: a tuple consisting of the call sites leading to
+ * the SCC and the SCC id. See `compute_scc_callchain()`.
+ *
+ * - When a verification path encounters a `states_equal(...,
+ * RANGE_WITHIN)` condition, there exists a call chain describing the
+ * current state and a corresponding `bpf_scc_visit` instance. A copy
+ * of the current state is created and added to
+ * `bpf_scc_visit->backedges`.
+ *
+ * - When a verification path terminates, `maybe_exit_scc()` is called
+ * from `update_branch_counts()`. For states with `branches == 0`, it
+ * checks whether the state is the entry state of any `bpf_scc_visit`
+ * instance. If it is, this indicates that all paths originating from
+ * this SCC visit have been explored. `propagate_backedges()` is then
+ * called, which propagates read and precision marks through the
+ * backedges until a fixed point is reached.
+ * (In the earlier example, this would propagate marks from A to B,
+ * from C to A, and then again from A to B.)
+ *
+ * A note on callchains
+ * --------------------
+ *
+ * Consider the following example:
+ *
+ * void foo() { loop { ... SCC#1 ... } }
+ * void main() {
+ * A: foo();
+ * B: ...
+ * C: foo();
+ * }
+ *
+ * Here, there are two distinct callchains leading to SCC#1:
+ * - (A, SCC#1)
+ * - (C, SCC#1)
+ *
+ * Each callchain identifies a separate `bpf_scc_visit` instance that
+ * accumulates backedge states. The `propagate_{liveness,precision}()`
+ * functions traverse the parent state of each backedge state, which
+ * means these parent states must remain valid (i.e., not freed) while
+ * the corresponding `bpf_scc_visit` instance exists.
+ *
+ * Associating `bpf_scc_visit` instances directly with SCCs instead of
+ * callchains would break this invariant:
+ * - States explored during `C: foo()` would contribute backedges to
+ * SCC#1, but SCC#1 would only be exited once the exploration of
+ * `A: foo()` completes.
+ * - By that time, the states explored between `A: foo()` and `C: foo()`
+ * (i.e., `B: ...`) may have already been freed, causing the parent
+ * links for states from `C: foo()` to become invalid.
+ */
+ if (loop) {
+ struct bpf_scc_backedge *backedge;
+
+ backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT);
+ if (!backedge)
+ return -ENOMEM;
+ err = copy_verifier_state(&backedge->state, cur);
+ backedge->state.equal_state = &sl->state;
+ backedge->state.insn_idx = insn_idx;
+ err = err ?: add_scc_backedge(env, &sl->state, backedge);
+ if (err) {
+ free_verifier_state(&backedge->state, false);
+ kfree(backedge);
+ return err;
+ }
+ }
return 1;
}
miss:
@@ -18351,31 +19996,13 @@ miss:
/* the state is unlikely to be useful. Remove it to
* speed up verification
*/
- *pprev = sl->next;
- if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
- !sl->state.used_as_loop_entry) {
- u32 br = sl->state.branches;
-
- WARN_ONCE(br,
- "BUG live_done but branches_to_explore %d\n",
- br);
- free_verifier_state(&sl->state, false);
- kfree(sl);
- env->peak_states--;
- } else {
- /* cannot free this state, since parentage chain may
- * walk it later. Add it for free_list instead to
- * be freed at the end of verification
- */
- sl->next = env->free_list;
- env->free_list = sl;
- }
- sl = *pprev;
- continue;
+ sl->in_free_list = true;
+ list_del(&sl->node);
+ list_add(&sl->node, &env->free_list);
+ env->free_list_size++;
+ env->explored_states_size--;
+ maybe_free_verifier_state(env, sl);
}
-next:
- pprev = &sl->next;
- sl = *pprev;
}
if (env->max_states_per_insn < states_cnt)
@@ -18396,11 +20023,12 @@ next:
* When looping the sl->state.branches will be > 0 and this state
* will not be considered for equivalence until branches == 0.
*/
- new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
+ new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT);
if (!new_sl)
return -ENOMEM;
env->total_states++;
- env->peak_states++;
+ env->explored_states_size++;
+ update_peak_states(env);
env->prev_jmps_processed = env->jmps_processed;
env->prev_insn_processed = env->insn_processed;
@@ -18417,46 +20045,21 @@ next:
return err;
}
new->insn_idx = insn_idx;
- WARN_ONCE(new->branches != 1,
- "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
+ verifier_bug_if(new->branches != 1, env,
+ "%s:branches_to_explore=%d insn %d",
+ __func__, new->branches, insn_idx);
+ err = maybe_enter_scc(env, new);
+ if (err) {
+ free_verifier_state(new, false);
+ kfree(new_sl);
+ return err;
+ }
cur->parent = new;
cur->first_insn_idx = insn_idx;
- cur->insn_hist_start = cur->insn_hist_end;
cur->dfs_depth = new->dfs_depth + 1;
- new_sl->next = *explored_state(env, insn_idx);
- *explored_state(env, insn_idx) = new_sl;
- /* connect new state to parentage chain. Current frame needs all
- * registers connected. Only r6 - r9 of the callers are alive (pushed
- * to the stack implicitly by JITs) so in callers' frames connect just
- * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
- * the state of the call instruction (with WRITTEN set), and r0 comes
- * from callee with its full parentage chain, anyway.
- */
- /* clear write marks in current state: the writes we did are not writes
- * our child did, so they don't screen off its reads from us.
- * (There are no read marks in current state, because reads always mark
- * their parent and current state never has children yet. Only
- * explored_states can get read marks.)
- */
- for (j = 0; j <= cur->curframe; j++) {
- for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
- cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
- for (i = 0; i < BPF_REG_FP; i++)
- cur->frame[j]->regs[i].live = REG_LIVE_NONE;
- }
-
- /* all stack frames are accessible from callee, clear them all */
- for (j = 0; j <= cur->curframe; j++) {
- struct bpf_func_state *frame = cur->frame[j];
- struct bpf_func_state *newframe = new->frame[j];
-
- for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
- frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
- frame->stack[i].spilled_ptr.parent =
- &newframe->stack[i].spilled_ptr;
- }
- }
+ clear_jmp_history(cur);
+ list_add(&new_sl->node, head);
return 0;
}
@@ -18495,10 +20098,27 @@ static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
!reg_type_mismatch_ok(prev));
}
+static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type)
+{
+ switch (base_type(type)) {
+ case PTR_TO_MEM:
+ case PTR_TO_BTF_ID:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static bool is_ptr_to_mem(enum bpf_reg_type type)
+{
+ return base_type(type) == PTR_TO_MEM;
+}
+
static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
bool allow_trust_mismatch)
{
enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
+ enum bpf_reg_type merged_type;
if (*prev_type == NOT_INIT) {
/* Saw a valid insn
@@ -18515,15 +20135,24 @@ static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type typ
* Reject it.
*/
if (allow_trust_mismatch &&
- base_type(type) == PTR_TO_BTF_ID &&
- base_type(*prev_type) == PTR_TO_BTF_ID) {
+ is_ptr_to_mem_or_btf_id(type) &&
+ is_ptr_to_mem_or_btf_id(*prev_type)) {
/*
* Have to support a use case when one path through
* the program yields TRUSTED pointer while another
* is UNTRUSTED. Fallback to UNTRUSTED to generate
* BPF_PROBE_MEM/BPF_PROBE_MEMSX.
+ * Same behavior of MEM_RDONLY flag.
*/
- *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
+ if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type))
+ merged_type = PTR_TO_MEM;
+ else
+ merged_type = PTR_TO_BTF_ID;
+ if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED))
+ merged_type |= PTR_UNTRUSTED;
+ if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY))
+ merged_type |= MEM_RDONLY;
+ *prev_type = merged_type;
} else {
verbose(env, "same insn cannot be used with different pointers\n");
return -EINVAL;
@@ -18533,21 +20162,327 @@ static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type typ
return 0;
}
+enum {
+ PROCESS_BPF_EXIT = 1
+};
+
+static int process_bpf_exit_full(struct bpf_verifier_env *env,
+ bool *do_print_state,
+ bool exception_exit)
+{
+ /* We must do check_reference_leak here before
+ * prepare_func_exit to handle the case when
+ * state->curframe > 0, it may be a callback function,
+ * for which reference_state must match caller reference
+ * state when it exits.
+ */
+ int err = check_resource_leak(env, exception_exit,
+ !env->cur_state->curframe,
+ "BPF_EXIT instruction in main prog");
+ if (err)
+ return err;
+
+ /* The side effect of the prepare_func_exit which is
+ * being skipped is that it frees bpf_func_state.
+ * Typically, process_bpf_exit will only be hit with
+ * outermost exit. copy_verifier_state in pop_stack will
+ * handle freeing of any extra bpf_func_state left over
+ * from not processing all nested function exits. We
+ * also skip return code checks as they are not needed
+ * for exceptional exits.
+ */
+ if (exception_exit)
+ return PROCESS_BPF_EXIT;
+
+ if (env->cur_state->curframe) {
+ /* exit from nested function */
+ err = prepare_func_exit(env, &env->insn_idx);
+ if (err)
+ return err;
+ *do_print_state = true;
+ return 0;
+ }
+
+ err = check_return_code(env, BPF_REG_0, "R0");
+ if (err)
+ return err;
+ return PROCESS_BPF_EXIT;
+}
+
+static int indirect_jump_min_max_index(struct bpf_verifier_env *env,
+ int regno,
+ struct bpf_map *map,
+ u32 *pmin_index, u32 *pmax_index)
+{
+ struct bpf_reg_state *reg = reg_state(env, regno);
+ u64 min_index, max_index;
+ const u32 size = 8;
+
+ if (check_add_overflow(reg->umin_value, reg->off, &min_index) ||
+ (min_index > (u64) U32_MAX * size)) {
+ verbose(env, "the sum of R%u umin_value %llu and off %u is too big\n",
+ regno, reg->umin_value, reg->off);
+ return -ERANGE;
+ }
+ if (check_add_overflow(reg->umax_value, reg->off, &max_index) ||
+ (max_index > (u64) U32_MAX * size)) {
+ verbose(env, "the sum of R%u umax_value %llu and off %u is too big\n",
+ regno, reg->umax_value, reg->off);
+ return -ERANGE;
+ }
+
+ min_index /= size;
+ max_index /= size;
+
+ if (max_index >= map->max_entries) {
+ verbose(env, "R%u points to outside of jump table: [%llu,%llu] max_entries %u\n",
+ regno, min_index, max_index, map->max_entries);
+ return -EINVAL;
+ }
+
+ *pmin_index = min_index;
+ *pmax_index = max_index;
+ return 0;
+}
+
+/* gotox *dst_reg */
+static int check_indirect_jump(struct bpf_verifier_env *env, struct bpf_insn *insn)
+{
+ struct bpf_verifier_state *other_branch;
+ struct bpf_reg_state *dst_reg;
+ struct bpf_map *map;
+ u32 min_index, max_index;
+ int err = 0;
+ int n;
+ int i;
+
+ dst_reg = reg_state(env, insn->dst_reg);
+ if (dst_reg->type != PTR_TO_INSN) {
+ verbose(env, "R%d has type %s, expected PTR_TO_INSN\n",
+ insn->dst_reg, reg_type_str(env, dst_reg->type));
+ return -EINVAL;
+ }
+
+ map = dst_reg->map_ptr;
+ if (verifier_bug_if(!map, env, "R%d has an empty map pointer", insn->dst_reg))
+ return -EFAULT;
+
+ if (verifier_bug_if(map->map_type != BPF_MAP_TYPE_INSN_ARRAY, env,
+ "R%d has incorrect map type %d", insn->dst_reg, map->map_type))
+ return -EFAULT;
+
+ err = indirect_jump_min_max_index(env, insn->dst_reg, map, &min_index, &max_index);
+ if (err)
+ return err;
+
+ /* Ensure that the buffer is large enough */
+ if (!env->gotox_tmp_buf || env->gotox_tmp_buf->cnt < max_index - min_index + 1) {
+ env->gotox_tmp_buf = iarray_realloc(env->gotox_tmp_buf,
+ max_index - min_index + 1);
+ if (!env->gotox_tmp_buf)
+ return -ENOMEM;
+ }
+
+ n = copy_insn_array_uniq(map, min_index, max_index, env->gotox_tmp_buf->items);
+ if (n < 0)
+ return n;
+ if (n == 0) {
+ verbose(env, "register R%d doesn't point to any offset in map id=%d\n",
+ insn->dst_reg, map->id);
+ return -EINVAL;
+ }
+
+ for (i = 0; i < n - 1; i++) {
+ other_branch = push_stack(env, env->gotox_tmp_buf->items[i],
+ env->insn_idx, env->cur_state->speculative);
+ if (IS_ERR(other_branch))
+ return PTR_ERR(other_branch);
+ }
+ env->insn_idx = env->gotox_tmp_buf->items[n-1];
+ return 0;
+}
+
+static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state)
+{
+ int err;
+ struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx];
+ u8 class = BPF_CLASS(insn->code);
+
+ if (class == BPF_ALU || class == BPF_ALU64) {
+ err = check_alu_op(env, insn);
+ if (err)
+ return err;
+
+ } else if (class == BPF_LDX) {
+ bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX;
+
+ /* Check for reserved fields is already done in
+ * resolve_pseudo_ldimm64().
+ */
+ err = check_load_mem(env, insn, false, is_ldsx, true, "ldx");
+ if (err)
+ return err;
+ } else if (class == BPF_STX) {
+ if (BPF_MODE(insn->code) == BPF_ATOMIC) {
+ err = check_atomic(env, insn);
+ if (err)
+ return err;
+ env->insn_idx++;
+ return 0;
+ }
+
+ if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
+ verbose(env, "BPF_STX uses reserved fields\n");
+ return -EINVAL;
+ }
+
+ err = check_store_reg(env, insn, false);
+ if (err)
+ return err;
+ } else if (class == BPF_ST) {
+ enum bpf_reg_type dst_reg_type;
+
+ if (BPF_MODE(insn->code) != BPF_MEM ||
+ insn->src_reg != BPF_REG_0) {
+ verbose(env, "BPF_ST uses reserved fields\n");
+ return -EINVAL;
+ }
+ /* check src operand */
+ err = check_reg_arg(env, insn->dst_reg, SRC_OP);
+ if (err)
+ return err;
+
+ dst_reg_type = cur_regs(env)[insn->dst_reg].type;
+
+ /* check that memory (dst_reg + off) is writeable */
+ err = check_mem_access(env, env->insn_idx, insn->dst_reg,
+ insn->off, BPF_SIZE(insn->code),
+ BPF_WRITE, -1, false, false);
+ if (err)
+ return err;
+
+ err = save_aux_ptr_type(env, dst_reg_type, false);
+ if (err)
+ return err;
+ } else if (class == BPF_JMP || class == BPF_JMP32) {
+ u8 opcode = BPF_OP(insn->code);
+
+ env->jmps_processed++;
+ if (opcode == BPF_CALL) {
+ if (BPF_SRC(insn->code) != BPF_K ||
+ (insn->src_reg != BPF_PSEUDO_KFUNC_CALL &&
+ insn->off != 0) ||
+ (insn->src_reg != BPF_REG_0 &&
+ insn->src_reg != BPF_PSEUDO_CALL &&
+ insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
+ insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) {
+ verbose(env, "BPF_CALL uses reserved fields\n");
+ return -EINVAL;
+ }
+
+ if (env->cur_state->active_locks) {
+ if ((insn->src_reg == BPF_REG_0 &&
+ insn->imm != BPF_FUNC_spin_unlock) ||
+ (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
+ (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) {
+ verbose(env,
+ "function calls are not allowed while holding a lock\n");
+ return -EINVAL;
+ }
+ }
+ if (insn->src_reg == BPF_PSEUDO_CALL) {
+ err = check_func_call(env, insn, &env->insn_idx);
+ } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
+ err = check_kfunc_call(env, insn, &env->insn_idx);
+ if (!err && is_bpf_throw_kfunc(insn))
+ return process_bpf_exit_full(env, do_print_state, true);
+ } else {
+ err = check_helper_call(env, insn, &env->insn_idx);
+ }
+ if (err)
+ return err;
+
+ mark_reg_scratched(env, BPF_REG_0);
+ } else if (opcode == BPF_JA) {
+ if (BPF_SRC(insn->code) == BPF_X) {
+ if (insn->src_reg != BPF_REG_0 ||
+ insn->imm != 0 || insn->off != 0) {
+ verbose(env, "BPF_JA|BPF_X uses reserved fields\n");
+ return -EINVAL;
+ }
+ return check_indirect_jump(env, insn);
+ }
+
+ if (BPF_SRC(insn->code) != BPF_K ||
+ insn->src_reg != BPF_REG_0 ||
+ insn->dst_reg != BPF_REG_0 ||
+ (class == BPF_JMP && insn->imm != 0) ||
+ (class == BPF_JMP32 && insn->off != 0)) {
+ verbose(env, "BPF_JA uses reserved fields\n");
+ return -EINVAL;
+ }
+
+ if (class == BPF_JMP)
+ env->insn_idx += insn->off + 1;
+ else
+ env->insn_idx += insn->imm + 1;
+ return 0;
+ } else if (opcode == BPF_EXIT) {
+ if (BPF_SRC(insn->code) != BPF_K ||
+ insn->imm != 0 ||
+ insn->src_reg != BPF_REG_0 ||
+ insn->dst_reg != BPF_REG_0 ||
+ class == BPF_JMP32) {
+ verbose(env, "BPF_EXIT uses reserved fields\n");
+ return -EINVAL;
+ }
+ return process_bpf_exit_full(env, do_print_state, false);
+ } else {
+ err = check_cond_jmp_op(env, insn, &env->insn_idx);
+ if (err)
+ return err;
+ }
+ } else if (class == BPF_LD) {
+ u8 mode = BPF_MODE(insn->code);
+
+ if (mode == BPF_ABS || mode == BPF_IND) {
+ err = check_ld_abs(env, insn);
+ if (err)
+ return err;
+
+ } else if (mode == BPF_IMM) {
+ err = check_ld_imm(env, insn);
+ if (err)
+ return err;
+
+ env->insn_idx++;
+ sanitize_mark_insn_seen(env);
+ } else {
+ verbose(env, "invalid BPF_LD mode\n");
+ return -EINVAL;
+ }
+ } else {
+ verbose(env, "unknown insn class %d\n", class);
+ return -EINVAL;
+ }
+
+ env->insn_idx++;
+ return 0;
+}
+
static int do_check(struct bpf_verifier_env *env)
{
bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
struct bpf_verifier_state *state = env->cur_state;
struct bpf_insn *insns = env->prog->insnsi;
- struct bpf_reg_state *regs;
int insn_cnt = env->prog->len;
bool do_print_state = false;
int prev_insn_idx = -1;
for (;;) {
- bool exception_exit = false;
struct bpf_insn *insn;
- u8 class;
- int err;
+ struct bpf_insn_aux_data *insn_aux;
+ int err, marks_err;
/* reset current history entry on each new instruction */
env->cur_hist_ent = NULL;
@@ -18560,7 +20495,7 @@ static int do_check(struct bpf_verifier_env *env)
}
insn = &insns[env->insn_idx];
- class = BPF_CLASS(insn->code);
+ insn_aux = &env->insn_aux_data[env->insn_idx];
if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
verbose(env,
@@ -18570,6 +20505,7 @@ static int do_check(struct bpf_verifier_env *env)
}
state->last_insn_idx = env->prev_insn_idx;
+ state->insn_idx = env->insn_idx;
if (is_prune_point(env, env->insn_idx)) {
err = is_state_visited(env, env->insn_idx);
@@ -18591,7 +20527,7 @@ static int do_check(struct bpf_verifier_env *env)
}
if (is_jmp_point(env, env->insn_idx)) {
- err = push_insn_history(env, state, 0, 0);
+ err = push_jmp_history(env, state, 0, 0);
if (err)
return err;
}
@@ -18607,24 +20543,18 @@ static int do_check(struct bpf_verifier_env *env)
env->prev_insn_idx, env->insn_idx,
env->cur_state->speculative ?
" (speculative execution)" : "");
- print_verifier_state(env, state->frame[state->curframe], true);
+ print_verifier_state(env, state, state->curframe, true);
do_print_state = false;
}
if (env->log.level & BPF_LOG_LEVEL) {
- const struct bpf_insn_cbs cbs = {
- .cb_call = disasm_kfunc_name,
- .cb_print = verbose,
- .private_data = env,
- };
-
if (verifier_state_scratched(env))
- print_insn_state(env, state->frame[state->curframe]);
+ print_insn_state(env, state, state->curframe);
verbose_linfo(env, env->insn_idx, "; ");
env->prev_log_pos = env->log.end_pos;
verbose(env, "%d: ", env->insn_idx);
- print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
+ verbose_insn(env, insn);
env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
env->prev_log_pos = env->log.end_pos;
}
@@ -18636,249 +20566,78 @@ static int do_check(struct bpf_verifier_env *env)
return err;
}
- regs = cur_regs(env);
sanitize_mark_insn_seen(env);
prev_insn_idx = env->insn_idx;
- if (class == BPF_ALU || class == BPF_ALU64) {
- err = check_alu_op(env, insn);
- if (err)
- return err;
-
- } else if (class == BPF_LDX) {
- enum bpf_reg_type src_reg_type;
-
- /* check for reserved fields is already done */
-
- /* check src operand */
- err = check_reg_arg(env, insn->src_reg, SRC_OP);
- if (err)
- return err;
-
- err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
- if (err)
- return err;
-
- src_reg_type = regs[insn->src_reg].type;
+ /* Reduce verification complexity by stopping speculative path
+ * verification when a nospec is encountered.
+ */
+ if (state->speculative && insn_aux->nospec)
+ goto process_bpf_exit;
- /* check that memory (src_reg + off) is readable,
- * the state of dst_reg will be updated by this func
+ err = bpf_reset_stack_write_marks(env, env->insn_idx);
+ if (err)
+ return err;
+ err = do_check_insn(env, &do_print_state);
+ if (err >= 0 || error_recoverable_with_nospec(err)) {
+ marks_err = bpf_commit_stack_write_marks(env);
+ if (marks_err)
+ return marks_err;
+ }
+ if (error_recoverable_with_nospec(err) && state->speculative) {
+ /* Prevent this speculative path from ever reaching the
+ * insn that would have been unsafe to execute.
*/
- err = check_mem_access(env, env->insn_idx, insn->src_reg,
- insn->off, BPF_SIZE(insn->code),
- BPF_READ, insn->dst_reg, false,
- BPF_MODE(insn->code) == BPF_MEMSX);
- err = err ?: save_aux_ptr_type(env, src_reg_type, true);
- err = err ?: reg_bounds_sanity_check(env, &regs[insn->dst_reg], "ldx");
- if (err)
- return err;
- } else if (class == BPF_STX) {
- enum bpf_reg_type dst_reg_type;
-
- if (BPF_MODE(insn->code) == BPF_ATOMIC) {
- err = check_atomic(env, env->insn_idx, insn);
- if (err)
- return err;
- env->insn_idx++;
- continue;
- }
-
- if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
- verbose(env, "BPF_STX uses reserved fields\n");
- return -EINVAL;
- }
-
- /* check src1 operand */
- err = check_reg_arg(env, insn->src_reg, SRC_OP);
- if (err)
- return err;
- /* check src2 operand */
- err = check_reg_arg(env, insn->dst_reg, SRC_OP);
- if (err)
- return err;
-
- dst_reg_type = regs[insn->dst_reg].type;
-
- /* check that memory (dst_reg + off) is writeable */
- err = check_mem_access(env, env->insn_idx, insn->dst_reg,
- insn->off, BPF_SIZE(insn->code),
- BPF_WRITE, insn->src_reg, false, false);
- if (err)
- return err;
-
- err = save_aux_ptr_type(env, dst_reg_type, false);
- if (err)
- return err;
- } else if (class == BPF_ST) {
- enum bpf_reg_type dst_reg_type;
-
- if (BPF_MODE(insn->code) != BPF_MEM ||
- insn->src_reg != BPF_REG_0) {
- verbose(env, "BPF_ST uses reserved fields\n");
- return -EINVAL;
- }
- /* check src operand */
- err = check_reg_arg(env, insn->dst_reg, SRC_OP);
- if (err)
- return err;
-
- dst_reg_type = regs[insn->dst_reg].type;
-
- /* check that memory (dst_reg + off) is writeable */
- err = check_mem_access(env, env->insn_idx, insn->dst_reg,
- insn->off, BPF_SIZE(insn->code),
- BPF_WRITE, -1, false, false);
+ insn_aux->nospec = true;
+ /* If it was an ADD/SUB insn, potentially remove any
+ * markings for alu sanitization.
+ */
+ insn_aux->alu_state = 0;
+ goto process_bpf_exit;
+ } else if (err < 0) {
+ return err;
+ } else if (err == PROCESS_BPF_EXIT) {
+ goto process_bpf_exit;
+ }
+ WARN_ON_ONCE(err);
+
+ if (state->speculative && insn_aux->nospec_result) {
+ /* If we are on a path that performed a jump-op, this
+ * may skip a nospec patched-in after the jump. This can
+ * currently never happen because nospec_result is only
+ * used for the write-ops
+ * `*(size*)(dst_reg+off)=src_reg|imm32` which must
+ * never skip the following insn. Still, add a warning
+ * to document this in case nospec_result is used
+ * elsewhere in the future.
+ *
+ * All non-branch instructions have a single
+ * fall-through edge. For these, nospec_result should
+ * already work.
+ */
+ if (verifier_bug_if(BPF_CLASS(insn->code) == BPF_JMP ||
+ BPF_CLASS(insn->code) == BPF_JMP32, env,
+ "speculation barrier after jump instruction may not have the desired effect"))
+ return -EFAULT;
+process_bpf_exit:
+ mark_verifier_state_scratched(env);
+ err = update_branch_counts(env, env->cur_state);
if (err)
return err;
-
- err = save_aux_ptr_type(env, dst_reg_type, false);
+ err = bpf_update_live_stack(env);
if (err)
return err;
- } else if (class == BPF_JMP || class == BPF_JMP32) {
- u8 opcode = BPF_OP(insn->code);
-
- env->jmps_processed++;
- if (opcode == BPF_CALL) {
- if (BPF_SRC(insn->code) != BPF_K ||
- (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
- && insn->off != 0) ||
- (insn->src_reg != BPF_REG_0 &&
- insn->src_reg != BPF_PSEUDO_CALL &&
- insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
- insn->dst_reg != BPF_REG_0 ||
- class == BPF_JMP32) {
- verbose(env, "BPF_CALL uses reserved fields\n");
- return -EINVAL;
- }
-
- if (cur_func(env)->active_locks) {
- if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
- (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
- (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
- verbose(env, "function calls are not allowed while holding a lock\n");
- return -EINVAL;
- }
- }
- if (insn->src_reg == BPF_PSEUDO_CALL) {
- err = check_func_call(env, insn, &env->insn_idx);
- } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
- err = check_kfunc_call(env, insn, &env->insn_idx);
- if (!err && is_bpf_throw_kfunc(insn)) {
- exception_exit = true;
- goto process_bpf_exit_full;
- }
- } else {
- err = check_helper_call(env, insn, &env->insn_idx);
- }
- if (err)
- return err;
-
- mark_reg_scratched(env, BPF_REG_0);
- } else if (opcode == BPF_JA) {
- if (BPF_SRC(insn->code) != BPF_K ||
- insn->src_reg != BPF_REG_0 ||
- insn->dst_reg != BPF_REG_0 ||
- (class == BPF_JMP && insn->imm != 0) ||
- (class == BPF_JMP32 && insn->off != 0)) {
- verbose(env, "BPF_JA uses reserved fields\n");
- return -EINVAL;
- }
-
- if (class == BPF_JMP)
- env->insn_idx += insn->off + 1;
- else
- env->insn_idx += insn->imm + 1;
- continue;
-
- } else if (opcode == BPF_EXIT) {
- if (BPF_SRC(insn->code) != BPF_K ||
- insn->imm != 0 ||
- insn->src_reg != BPF_REG_0 ||
- insn->dst_reg != BPF_REG_0 ||
- class == BPF_JMP32) {
- verbose(env, "BPF_EXIT uses reserved fields\n");
- return -EINVAL;
- }
-process_bpf_exit_full:
- /* We must do check_reference_leak here before
- * prepare_func_exit to handle the case when
- * state->curframe > 0, it may be a callback
- * function, for which reference_state must
- * match caller reference state when it exits.
- */
- err = check_resource_leak(env, exception_exit, !env->cur_state->curframe,
- "BPF_EXIT instruction");
- if (err)
+ err = pop_stack(env, &prev_insn_idx, &env->insn_idx,
+ pop_log);
+ if (err < 0) {
+ if (err != -ENOENT)
return err;
-
- /* The side effect of the prepare_func_exit
- * which is being skipped is that it frees
- * bpf_func_state. Typically, process_bpf_exit
- * will only be hit with outermost exit.
- * copy_verifier_state in pop_stack will handle
- * freeing of any extra bpf_func_state left over
- * from not processing all nested function
- * exits. We also skip return code checks as
- * they are not needed for exceptional exits.
- */
- if (exception_exit)
- goto process_bpf_exit;
-
- if (state->curframe) {
- /* exit from nested function */
- err = prepare_func_exit(env, &env->insn_idx);
- if (err)
- return err;
- do_print_state = true;
- continue;
- }
-
- err = check_return_code(env, BPF_REG_0, "R0");
- if (err)
- return err;
-process_bpf_exit:
- mark_verifier_state_scratched(env);
- update_branch_counts(env, env->cur_state);
- err = pop_stack(env, &prev_insn_idx,
- &env->insn_idx, pop_log);
- if (err < 0) {
- if (err != -ENOENT)
- return err;
- break;
- } else {
- do_print_state = true;
- continue;
- }
- } else {
- err = check_cond_jmp_op(env, insn, &env->insn_idx);
- if (err)
- return err;
- }
- } else if (class == BPF_LD) {
- u8 mode = BPF_MODE(insn->code);
-
- if (mode == BPF_ABS || mode == BPF_IND) {
- err = check_ld_abs(env, insn);
- if (err)
- return err;
-
- } else if (mode == BPF_IMM) {
- err = check_ld_imm(env, insn);
- if (err)
- return err;
-
- env->insn_idx++;
- sanitize_mark_insn_seen(env);
+ break;
} else {
- verbose(env, "invalid BPF_LD mode\n");
- return -EINVAL;
+ do_print_state = true;
+ continue;
}
- } else {
- verbose(env, "unknown insn class %d\n", class);
- return -EINVAL;
}
-
- env->insn_idx++;
}
return 0;
@@ -18914,50 +20673,71 @@ static int find_btf_percpu_datasec(struct btf *btf)
return -ENOENT;
}
+/*
+ * Add btf to the used_btfs array and return the index. (If the btf was
+ * already added, then just return the index.) Upon successful insertion
+ * increase btf refcnt, and, if present, also refcount the corresponding
+ * kernel module.
+ */
+static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf)
+{
+ struct btf_mod_pair *btf_mod;
+ int i;
+
+ /* check whether we recorded this BTF (and maybe module) already */
+ for (i = 0; i < env->used_btf_cnt; i++)
+ if (env->used_btfs[i].btf == btf)
+ return i;
+
+ if (env->used_btf_cnt >= MAX_USED_BTFS) {
+ verbose(env, "The total number of btfs per program has reached the limit of %u\n",
+ MAX_USED_BTFS);
+ return -E2BIG;
+ }
+
+ btf_get(btf);
+
+ btf_mod = &env->used_btfs[env->used_btf_cnt];
+ btf_mod->btf = btf;
+ btf_mod->module = NULL;
+
+ /* if we reference variables from kernel module, bump its refcount */
+ if (btf_is_module(btf)) {
+ btf_mod->module = btf_try_get_module(btf);
+ if (!btf_mod->module) {
+ btf_put(btf);
+ return -ENXIO;
+ }
+ }
+
+ return env->used_btf_cnt++;
+}
+
/* replace pseudo btf_id with kernel symbol address */
-static int check_pseudo_btf_id(struct bpf_verifier_env *env,
- struct bpf_insn *insn,
- struct bpf_insn_aux_data *aux)
+static int __check_pseudo_btf_id(struct bpf_verifier_env *env,
+ struct bpf_insn *insn,
+ struct bpf_insn_aux_data *aux,
+ struct btf *btf)
{
const struct btf_var_secinfo *vsi;
const struct btf_type *datasec;
- struct btf_mod_pair *btf_mod;
const struct btf_type *t;
const char *sym_name;
bool percpu = false;
u32 type, id = insn->imm;
- struct btf *btf;
s32 datasec_id;
u64 addr;
- int i, btf_fd, err;
-
- btf_fd = insn[1].imm;
- if (btf_fd) {
- btf = btf_get_by_fd(btf_fd);
- if (IS_ERR(btf)) {
- verbose(env, "invalid module BTF object FD specified.\n");
- return -EINVAL;
- }
- } else {
- if (!btf_vmlinux) {
- verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
- return -EINVAL;
- }
- btf = btf_vmlinux;
- btf_get(btf);
- }
+ int i;
t = btf_type_by_id(btf, id);
if (!t) {
verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
- err = -ENOENT;
- goto err_put;
+ return -ENOENT;
}
if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
- err = -EINVAL;
- goto err_put;
+ return -EINVAL;
}
sym_name = btf_name_by_offset(btf, t->name_off);
@@ -18965,8 +20745,7 @@ static int check_pseudo_btf_id(struct bpf_verifier_env *env,
if (!addr) {
verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
sym_name);
- err = -ENOENT;
- goto err_put;
+ return -ENOENT;
}
insn[0].imm = (u32)addr;
insn[1].imm = addr >> 32;
@@ -18974,7 +20753,7 @@ static int check_pseudo_btf_id(struct bpf_verifier_env *env,
if (btf_type_is_func(t)) {
aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
aux->btf_var.mem_size = 0;
- goto check_btf;
+ return 0;
}
datasec_id = find_btf_percpu_datasec(btf);
@@ -19005,8 +20784,7 @@ static int check_pseudo_btf_id(struct bpf_verifier_env *env,
tname = btf_name_by_offset(btf, t->name_off);
verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
tname, PTR_ERR(ret));
- err = -EINVAL;
- goto err_put;
+ return -EINVAL;
}
aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
aux->btf_var.mem_size = tsize;
@@ -19015,39 +20793,43 @@ static int check_pseudo_btf_id(struct bpf_verifier_env *env,
aux->btf_var.btf = btf;
aux->btf_var.btf_id = type;
}
-check_btf:
- /* check whether we recorded this BTF (and maybe module) already */
- for (i = 0; i < env->used_btf_cnt; i++) {
- if (env->used_btfs[i].btf == btf) {
- btf_put(btf);
- return 0;
- }
- }
- if (env->used_btf_cnt >= MAX_USED_BTFS) {
- err = -E2BIG;
- goto err_put;
- }
+ return 0;
+}
- btf_mod = &env->used_btfs[env->used_btf_cnt];
- btf_mod->btf = btf;
- btf_mod->module = NULL;
+static int check_pseudo_btf_id(struct bpf_verifier_env *env,
+ struct bpf_insn *insn,
+ struct bpf_insn_aux_data *aux)
+{
+ struct btf *btf;
+ int btf_fd;
+ int err;
- /* if we reference variables from kernel module, bump its refcount */
- if (btf_is_module(btf)) {
- btf_mod->module = btf_try_get_module(btf);
- if (!btf_mod->module) {
- err = -ENXIO;
- goto err_put;
+ btf_fd = insn[1].imm;
+ if (btf_fd) {
+ CLASS(fd, f)(btf_fd);
+
+ btf = __btf_get_by_fd(f);
+ if (IS_ERR(btf)) {
+ verbose(env, "invalid module BTF object FD specified.\n");
+ return -EINVAL;
+ }
+ } else {
+ if (!btf_vmlinux) {
+ verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
+ return -EINVAL;
}
+ btf = btf_vmlinux;
}
- env->used_btf_cnt++;
+ err = __check_pseudo_btf_id(env, insn, aux, btf);
+ if (err)
+ return err;
+ err = __add_used_btf(env, btf);
+ if (err < 0)
+ return err;
return 0;
-err_put:
- btf_put(btf);
- return err;
}
static bool is_tracing_prog_type(enum bpf_prog_type type)
@@ -19064,6 +20846,12 @@ static bool is_tracing_prog_type(enum bpf_prog_type type)
}
}
+static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
+{
+ return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
+ map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
+}
+
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
struct bpf_map *map,
struct bpf_prog *prog)
@@ -19071,6 +20859,12 @@ static int check_map_prog_compatibility(struct bpf_verifier_env *env,
{
enum bpf_prog_type prog_type = resolve_prog_type(prog);
+ if (map->excl_prog_sha &&
+ memcmp(map->excl_prog_sha, prog->digest, SHA256_DIGEST_SIZE)) {
+ verbose(env, "program's hash doesn't match map's excl_prog_hash\n");
+ return -EACCES;
+ }
+
if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
btf_record_has_field(map->record, BPF_RB_ROOT)) {
if (is_tracing_prog_type(prog_type)) {
@@ -19079,7 +20873,7 @@ static int check_map_prog_compatibility(struct bpf_verifier_env *env,
}
}
- if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
+ if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) {
if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
return -EINVAL;
@@ -19135,6 +20929,7 @@ static int check_map_prog_compatibility(struct bpf_verifier_env *env,
case BPF_MAP_TYPE_QUEUE:
case BPF_MAP_TYPE_STACK:
case BPF_MAP_TYPE_ARENA:
+ case BPF_MAP_TYPE_INSN_ARRAY:
break;
default:
verbose(env,
@@ -19142,39 +20937,47 @@ static int check_map_prog_compatibility(struct bpf_verifier_env *env,
return -EINVAL;
}
- return 0;
-}
+ if (bpf_map_is_cgroup_storage(map) &&
+ bpf_cgroup_storage_assign(env->prog->aux, map)) {
+ verbose(env, "only one cgroup storage of each type is allowed\n");
+ return -EBUSY;
+ }
-static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
-{
- return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
- map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
+ if (map->map_type == BPF_MAP_TYPE_ARENA) {
+ if (env->prog->aux->arena) {
+ verbose(env, "Only one arena per program\n");
+ return -EBUSY;
+ }
+ if (!env->allow_ptr_leaks || !env->bpf_capable) {
+ verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
+ return -EPERM;
+ }
+ if (!env->prog->jit_requested) {
+ verbose(env, "JIT is required to use arena\n");
+ return -EOPNOTSUPP;
+ }
+ if (!bpf_jit_supports_arena()) {
+ verbose(env, "JIT doesn't support arena\n");
+ return -EOPNOTSUPP;
+ }
+ env->prog->aux->arena = (void *)map;
+ if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
+ verbose(env, "arena's user address must be set via map_extra or mmap()\n");
+ return -EINVAL;
+ }
+ }
+
+ return 0;
}
-/* Add map behind fd to used maps list, if it's not already there, and return
- * its index. Also set *reused to true if this map was already in the list of
- * used maps.
- * Returns <0 on error, or >= 0 index, on success.
- */
-static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reused)
+static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map)
{
- CLASS(fd, f)(fd);
- struct bpf_map *map;
- int i;
-
- map = __bpf_map_get(f);
- if (IS_ERR(map)) {
- verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
- return PTR_ERR(map);
- }
+ int i, err;
/* check whether we recorded this map already */
- for (i = 0; i < env->used_map_cnt; i++) {
- if (env->used_maps[i] == map) {
- *reused = true;
+ for (i = 0; i < env->used_map_cnt; i++)
+ if (env->used_maps[i] == map)
return i;
- }
- }
if (env->used_map_cnt >= MAX_USED_MAPS) {
verbose(env, "The total number of maps per program has reached the limit of %u\n",
@@ -19182,6 +20985,10 @@ static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reus
return -E2BIG;
}
+ err = check_map_prog_compatibility(env, map, env->prog);
+ if (err)
+ return err;
+
if (env->prog->sleepable)
atomic64_inc(&map->sleepable_refcnt);
@@ -19192,12 +20999,38 @@ static int add_used_map_from_fd(struct bpf_verifier_env *env, int fd, bool *reus
*/
bpf_map_inc(map);
- *reused = false;
env->used_maps[env->used_map_cnt++] = map;
+ if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) {
+ err = bpf_insn_array_init(map, env->prog);
+ if (err) {
+ verbose(env, "Failed to properly initialize insn array\n");
+ return err;
+ }
+ env->insn_array_maps[env->insn_array_map_cnt++] = map;
+ }
+
return env->used_map_cnt - 1;
}
+/* Add map behind fd to used maps list, if it's not already there, and return
+ * its index.
+ * Returns <0 on error, or >= 0 index, on success.
+ */
+static int add_used_map(struct bpf_verifier_env *env, int fd)
+{
+ struct bpf_map *map;
+ CLASS(fd, f)(fd);
+
+ map = __bpf_map_get(f);
+ if (IS_ERR(map)) {
+ verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
+ return PTR_ERR(map);
+ }
+
+ return __add_used_map(env, map);
+}
+
/* find and rewrite pseudo imm in ld_imm64 instructions:
*
* 1. if it accesses map FD, replace it with actual map pointer.
@@ -19229,7 +21062,6 @@ static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
int map_idx;
u64 addr;
u32 fd;
- bool reused;
if (i == insn_cnt - 1 || insn[1].code != 0 ||
insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
@@ -19290,7 +21122,7 @@ static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
break;
}
- map_idx = add_used_map_from_fd(env, fd, &reused);
+ map_idx = add_used_map(env, fd);
if (map_idx < 0)
return map_idx;
map = env->used_maps[map_idx];
@@ -19298,10 +21130,6 @@ static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
aux = &env->insn_aux_data[i];
aux->map_index = map_idx;
- err = check_map_prog_compatibility(env, map, env->prog);
- if (err)
- return err;
-
if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
addr = (unsigned long)map;
@@ -19332,39 +21160,6 @@ static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
insn[0].imm = (u32)addr;
insn[1].imm = addr >> 32;
- /* proceed with extra checks only if its newly added used map */
- if (reused)
- goto next_insn;
-
- if (bpf_map_is_cgroup_storage(map) &&
- bpf_cgroup_storage_assign(env->prog->aux, map)) {
- verbose(env, "only one cgroup storage of each type is allowed\n");
- return -EBUSY;
- }
- if (map->map_type == BPF_MAP_TYPE_ARENA) {
- if (env->prog->aux->arena) {
- verbose(env, "Only one arena per program\n");
- return -EBUSY;
- }
- if (!env->allow_ptr_leaks || !env->bpf_capable) {
- verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n");
- return -EPERM;
- }
- if (!env->prog->jit_requested) {
- verbose(env, "JIT is required to use arena\n");
- return -EOPNOTSUPP;
- }
- if (!bpf_jit_supports_arena()) {
- verbose(env, "JIT doesn't support arena\n");
- return -EOPNOTSUPP;
- }
- env->prog->aux->arena = (void *)map;
- if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) {
- verbose(env, "arena's user address must be set via map_extra or mmap()\n");
- return -EINVAL;
- }
- }
-
next_insn:
insn++;
i++;
@@ -19419,12 +21214,11 @@ static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
* [0, off) and [off, end) to new locations, so the patched range stays zero
*/
static void adjust_insn_aux_data(struct bpf_verifier_env *env,
- struct bpf_insn_aux_data *new_data,
struct bpf_prog *new_prog, u32 off, u32 cnt)
{
- struct bpf_insn_aux_data *old_data = env->insn_aux_data;
+ struct bpf_insn_aux_data *data = env->insn_aux_data;
struct bpf_insn *insn = new_prog->insnsi;
- u32 old_seen = old_data[off].seen;
+ u32 old_seen = data[off].seen;
u32 prog_len;
int i;
@@ -19432,22 +21226,20 @@ static void adjust_insn_aux_data(struct bpf_verifier_env *env,
* (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
* original insn at old prog.
*/
- old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
+ data[off].zext_dst = insn_has_def32(insn + off + cnt - 1);
if (cnt == 1)
return;
prog_len = new_prog->len;
- memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
- memcpy(new_data + off + cnt - 1, old_data + off,
- sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
+ memmove(data + off + cnt - 1, data + off,
+ sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
+ memset(data + off, 0, sizeof(struct bpf_insn_aux_data) * (cnt - 1));
for (i = off; i < off + cnt - 1; i++) {
/* Expand insni[off]'s seen count to the patched range. */
- new_data[i].seen = old_seen;
- new_data[i].zext_dst = insn_has_def32(env, insn + i);
+ data[i].seen = old_seen;
+ data[i].zext_dst = insn_has_def32(insn + i);
}
- env->insn_aux_data = new_data;
- vfree(old_data);
}
static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
@@ -19464,6 +21256,33 @@ static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len
}
}
+static void release_insn_arrays(struct bpf_verifier_env *env)
+{
+ int i;
+
+ for (i = 0; i < env->insn_array_map_cnt; i++)
+ bpf_insn_array_release(env->insn_array_maps[i]);
+}
+
+static void adjust_insn_arrays(struct bpf_verifier_env *env, u32 off, u32 len)
+{
+ int i;
+
+ if (len == 1)
+ return;
+
+ for (i = 0; i < env->insn_array_map_cnt; i++)
+ bpf_insn_array_adjust(env->insn_array_maps[i], off, len);
+}
+
+static void adjust_insn_arrays_after_remove(struct bpf_verifier_env *env, u32 off, u32 len)
+{
+ int i;
+
+ for (i = 0; i < env->insn_array_map_cnt; i++)
+ bpf_insn_array_adjust_after_remove(env->insn_array_maps[i], off, len);
+}
+
static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
{
struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
@@ -19485,10 +21304,14 @@ static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 of
struct bpf_insn_aux_data *new_data = NULL;
if (len > 1) {
- new_data = vzalloc(array_size(env->prog->len + len - 1,
- sizeof(struct bpf_insn_aux_data)));
+ new_data = vrealloc(env->insn_aux_data,
+ array_size(env->prog->len + len - 1,
+ sizeof(struct bpf_insn_aux_data)),
+ GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!new_data)
return NULL;
+
+ env->insn_aux_data = new_data;
}
new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
@@ -19497,11 +21320,11 @@ static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 of
verbose(env,
"insn %d cannot be patched due to 16-bit range\n",
env->insn_aux_data[off].orig_idx);
- vfree(new_data);
return NULL;
}
- adjust_insn_aux_data(env, new_data, new_prog, off, len);
+ adjust_insn_aux_data(env, new_prog, off, len);
adjust_subprog_starts(env, off, len);
+ adjust_insn_arrays(env, off, len);
adjust_poke_descs(new_prog, off, len);
return new_prog;
}
@@ -19664,6 +21487,27 @@ static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
return 0;
}
+/*
+ * Clean up dynamically allocated fields of aux data for instructions [start, ...]
+ */
+static void clear_insn_aux_data(struct bpf_verifier_env *env, int start, int len)
+{
+ struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
+ struct bpf_insn *insns = env->prog->insnsi;
+ int end = start + len;
+ int i;
+
+ for (i = start; i < end; i++) {
+ if (aux_data[i].jt) {
+ kvfree(aux_data[i].jt);
+ aux_data[i].jt = NULL;
+ }
+
+ if (bpf_is_ldimm64(&insns[i]))
+ i++;
+ }
+}
+
static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
{
struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
@@ -19673,6 +21517,9 @@ static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
if (bpf_prog_is_offloaded(env->prog->aux))
bpf_prog_offload_remove_insns(env, off, cnt);
+ /* Should be called before bpf_remove_insns, as it uses prog->insnsi */
+ clear_insn_aux_data(env, off, cnt);
+
err = bpf_remove_insns(env->prog, off, cnt);
if (err)
return err;
@@ -19685,6 +21532,8 @@ static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
if (err)
return err;
+ adjust_insn_arrays_after_remove(env, off, cnt);
+
memmove(aux_data + off, aux_data + off + cnt,
sizeof(*aux_data) * (orig_prog_len - off - cnt));
@@ -19783,23 +21632,28 @@ static int opt_remove_dead_code(struct bpf_verifier_env *env)
}
static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
+static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0);
static int opt_remove_nops(struct bpf_verifier_env *env)
{
- const struct bpf_insn ja = NOP;
struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len;
+ bool is_may_goto_0, is_ja;
int i, err;
for (i = 0; i < insn_cnt; i++) {
- if (memcmp(&insn[i], &ja, sizeof(ja)))
+ is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0));
+ is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP));
+
+ if (!is_may_goto_0 && !is_ja)
continue;
err = verifier_remove_insns(env, i, 1);
if (err)
return err;
insn_cnt--;
- i--;
+ /* Go back one insn to catch may_goto +1; may_goto +0 sequence */
+ i -= (is_may_goto_0 && i > 0) ? 2 : 1;
}
return 0;
@@ -19808,7 +21662,10 @@ static int opt_remove_nops(struct bpf_verifier_env *env)
static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
const union bpf_attr *attr)
{
- struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
+ struct bpf_insn *patch;
+ /* use env->insn_buf as two independent buffers */
+ struct bpf_insn *zext_patch = env->insn_buf;
+ struct bpf_insn *rnd_hi32_patch = &env->insn_buf[2];
struct bpf_insn_aux_data *aux = env->insn_aux_data;
int i, patch_len, delta = 0, len = env->prog->len;
struct bpf_insn *insns = env->prog->insnsi;
@@ -19843,7 +21700,7 @@ static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
* BPF_STX + SRC_OP, so it is safe to pass NULL
* here.
*/
- if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
+ if (is_reg64(&insn, load_reg, NULL, DST_OP)) {
if (class == BPF_LD &&
BPF_MODE(code) == BPF_IMM)
i++;
@@ -19881,10 +21738,9 @@ static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
if (bpf_pseudo_kfunc_call(&insn))
continue;
- if (WARN_ON(load_reg == -1)) {
- verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
+ if (verifier_bug_if(load_reg == -1, env,
+ "zext_dst is set, but no reg is defined"))
return -EFAULT;
- }
zext_patch[0] = insn;
zext_patch[1].dst_reg = load_reg;
@@ -19913,7 +21769,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
{
struct bpf_subprog_info *subprogs = env->subprog_info;
const struct bpf_verifier_ops *ops = env->ops;
- int i, cnt, size, ctx_field_size, delta = 0, epilogue_cnt = 0;
+ int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0;
const int insn_cnt = env->prog->len;
struct bpf_insn *epilogue_buf = env->epilogue_buf;
struct bpf_insn *insn_buf = env->insn_buf;
@@ -19928,8 +21784,8 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog,
-(subprogs[0].stack_depth + 8));
if (epilogue_cnt >= INSN_BUF_SIZE) {
- verbose(env, "bpf verifier is misconfigured\n");
- return -EINVAL;
+ verifier_bug(env, "epilogue is too long");
+ return -EFAULT;
} else if (epilogue_cnt) {
/* Save the ARG_PTR_TO_CTX for the epilogue to use */
cnt = 0;
@@ -19942,19 +21798,23 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
return -ENOMEM;
env->prog = new_prog;
delta += cnt - 1;
+
+ ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1);
+ if (ret < 0)
+ return ret;
}
}
if (ops->gen_prologue || env->seen_direct_write) {
if (!ops->gen_prologue) {
- verbose(env, "bpf verifier is misconfigured\n");
- return -EINVAL;
+ verifier_bug(env, "gen_prologue is null");
+ return -EFAULT;
}
cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
env->prog);
if (cnt >= INSN_BUF_SIZE) {
- verbose(env, "bpf verifier is misconfigured\n");
- return -EINVAL;
+ verifier_bug(env, "prologue is too long");
+ return -EFAULT;
} else if (cnt) {
new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
if (!new_prog)
@@ -19962,6 +21822,10 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
env->prog = new_prog;
delta += cnt - 1;
+
+ ret = add_kfunc_in_insns(env, insn_buf, cnt - 1);
+ if (ret < 0)
+ return ret;
}
}
@@ -19977,6 +21841,28 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
bpf_convert_ctx_access_t convert_ctx_access;
u8 mode;
+ if (env->insn_aux_data[i + delta].nospec) {
+ WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state);
+ struct bpf_insn *patch = insn_buf;
+
+ *patch++ = BPF_ST_NOSPEC();
+ *patch++ = *insn;
+ cnt = patch - insn_buf;
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ /* This can not be easily merged with the
+ * nospec_result-case, because an insn may require a
+ * nospec before and after itself. Therefore also do not
+ * 'continue' here but potentially apply further
+ * patching to insn. *insn should equal patch[1] now.
+ */
+ }
+
if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
@@ -19994,7 +21880,9 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
type = BPF_WRITE;
- } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
+ } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) ||
+ insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) ||
+ insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) ||
insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) &&
env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) {
insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code);
@@ -20024,14 +21912,16 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
}
if (type == BPF_WRITE &&
- env->insn_aux_data[i + delta].sanitize_stack_spill) {
- struct bpf_insn patch[] = {
- *insn,
- BPF_ST_NOSPEC(),
- };
+ env->insn_aux_data[i + delta].nospec_result) {
+ /* nospec_result is only used to mitigate Spectre v4 and
+ * to limit verification-time for Spectre v1.
+ */
+ struct bpf_insn *patch = insn_buf;
- cnt = ARRAY_SIZE(patch);
- new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
+ *patch++ = *insn;
+ *patch++ = BPF_ST_NOSPEC();
+ cnt = patch - insn_buf;
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
@@ -20066,7 +21956,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
* for this case.
*/
case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
- case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL:
+ case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED:
if (type == BPF_READ) {
if (BPF_MODE(insn->code) == BPF_MEM)
insn->code = BPF_LDX | BPF_PROBE_MEM |
@@ -20079,10 +21969,14 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
continue;
case PTR_TO_ARENA:
if (BPF_MODE(insn->code) == BPF_MEMSX) {
- verbose(env, "sign extending loads from arena are not supported yet\n");
- return -EOPNOTSUPP;
+ if (!bpf_jit_supports_insn(insn, true)) {
+ verbose(env, "sign extending loads from arena are not supported yet\n");
+ return -EOPNOTSUPP;
+ }
+ insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32SX | BPF_SIZE(insn->code);
+ } else {
+ insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
}
- insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code);
env->prog->aux->num_exentries++;
continue;
default:
@@ -20105,8 +21999,8 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
u8 size_code;
if (type == BPF_WRITE) {
- verbose(env, "bpf verifier narrow ctx access misconfigured\n");
- return -EINVAL;
+ verifier_bug(env, "narrow ctx access misconfigured");
+ return -EFAULT;
}
size_code = BPF_H;
@@ -20124,16 +22018,16 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
&target_size);
if (cnt == 0 || cnt >= INSN_BUF_SIZE ||
(ctx_field_size && !target_size)) {
- verbose(env, "bpf verifier is misconfigured\n");
- return -EINVAL;
+ verifier_bug(env, "error during ctx access conversion (%d)", cnt);
+ return -EFAULT;
}
if (is_narrower_load && size < target_size) {
u8 shift = bpf_ctx_narrow_access_offset(
off, size, size_default) * 8;
if (shift && cnt + 1 >= INSN_BUF_SIZE) {
- verbose(env, "bpf verifier narrow ctx load misconfigured\n");
- return -EINVAL;
+ verifier_bug(env, "narrow ctx load misconfigured");
+ return -EFAULT;
}
if (ctx_field_size <= 4) {
if (shift)
@@ -20179,6 +22073,7 @@ static int jit_subprogs(struct bpf_verifier_env *env)
struct bpf_insn *insn;
void *old_bpf_func;
int err, num_exentries;
+ int old_len, subprog_start_adjustment = 0;
if (env->subprog_cnt <= 1)
return 0;
@@ -20192,11 +22087,9 @@ static int jit_subprogs(struct bpf_verifier_env *env)
* propagated in any case.
*/
subprog = find_subprog(env, i + insn->imm + 1);
- if (subprog < 0) {
- WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
- i + insn->imm + 1);
+ if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d",
+ i + insn->imm + 1))
return -EFAULT;
- }
/* temporarily remember subprog id inside insn instead of
* aux_data, since next loop will split up all insns into funcs
*/
@@ -20255,10 +22148,12 @@ static int jit_subprogs(struct bpf_verifier_env *env)
func[i]->aux->func_idx = i;
/* Below members will be freed only at prog->aux */
func[i]->aux->btf = prog->aux->btf;
+ func[i]->aux->subprog_start = subprog_start + subprog_start_adjustment;
func[i]->aux->func_info = prog->aux->func_info;
func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
func[i]->aux->poke_tab = prog->aux->poke_tab;
func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
+ func[i]->aux->main_prog_aux = prog->aux;
for (j = 0; j < prog->aux->size_poke_tab; j++) {
struct bpf_jit_poke_descriptor *poke;
@@ -20283,12 +22178,15 @@ static int jit_subprogs(struct bpf_verifier_env *env)
func[i]->aux->jited_linfo = prog->aux->jited_linfo;
func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
func[i]->aux->arena = prog->aux->arena;
+ func[i]->aux->used_maps = env->used_maps;
+ func[i]->aux->used_map_cnt = env->used_map_cnt;
num_exentries = 0;
insn = func[i]->insnsi;
for (j = 0; j < func[i]->len; j++, insn++) {
if (BPF_CLASS(insn->code) == BPF_LDX &&
(BPF_MODE(insn->code) == BPF_PROBE_MEM ||
BPF_MODE(insn->code) == BPF_PROBE_MEM32 ||
+ BPF_MODE(insn->code) == BPF_PROBE_MEM32SX ||
BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
num_exentries++;
if ((BPF_CLASS(insn->code) == BPF_STX ||
@@ -20302,9 +22200,19 @@ static int jit_subprogs(struct bpf_verifier_env *env)
func[i]->aux->num_exentries = num_exentries;
func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb;
+ func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data;
+ func[i]->aux->might_sleep = env->subprog_info[i].might_sleep;
if (!i)
func[i]->aux->exception_boundary = env->seen_exception;
+
+ /*
+ * To properly pass the absolute subprog start to jit
+ * all instruction adjustments should be accumulated
+ */
+ old_len = func[i]->len;
func[i] = bpf_int_jit_compile(func[i]);
+ subprog_start_adjustment += func[i]->len - old_len;
+
if (!func[i]->jited) {
err = -ENOTSUPP;
goto out_free;
@@ -20357,6 +22265,15 @@ static int jit_subprogs(struct bpf_verifier_env *env)
cond_resched();
}
+ /*
+ * Cleanup func[i]->aux fields which aren't required
+ * or can become invalid in future
+ */
+ for (i = 0; i < env->subprog_cnt; i++) {
+ func[i]->aux->used_maps = NULL;
+ func[i]->aux->used_map_cnt = 0;
+ }
+
/* finally lock prog and jit images for all functions and
* populate kallsysm. Begin at the first subprogram, since
* bpf_prog_load will add the kallsyms for the main program.
@@ -20486,38 +22403,47 @@ static int fixup_call_args(struct bpf_verifier_env *env)
}
/* replace a generic kfunc with a specialized version if necessary */
-static void specialize_kfunc(struct bpf_verifier_env *env,
- u32 func_id, u16 offset, unsigned long *addr)
+static int specialize_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc, int insn_idx)
{
struct bpf_prog *prog = env->prog;
bool seen_direct_write;
void *xdp_kfunc;
bool is_rdonly;
+ u32 func_id = desc->func_id;
+ u16 offset = desc->offset;
+ unsigned long addr = desc->addr;
+
+ if (offset) /* return if module BTF is used */
+ return 0;
if (bpf_dev_bound_kfunc_id(func_id)) {
xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
- if (xdp_kfunc) {
- *addr = (unsigned long)xdp_kfunc;
- return;
- }
+ if (xdp_kfunc)
+ addr = (unsigned long)xdp_kfunc;
/* fallback to default kfunc when not supported by netdev */
- }
-
- if (offset)
- return;
-
- if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
+ } else if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
seen_direct_write = env->seen_direct_write;
is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
if (is_rdonly)
- *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
+ addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
/* restore env->seen_direct_write to its original value, since
* may_access_direct_pkt_data mutates it
*/
env->seen_direct_write = seen_direct_write;
+ } else if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr]) {
+ if (bpf_lsm_has_d_inode_locked(prog))
+ addr = (unsigned long)bpf_set_dentry_xattr_locked;
+ } else if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr]) {
+ if (bpf_lsm_has_d_inode_locked(prog))
+ addr = (unsigned long)bpf_remove_dentry_xattr_locked;
+ } else if (func_id == special_kfunc_list[KF_bpf_dynptr_from_file]) {
+ if (!env->insn_aux_data[insn_idx].non_sleepable)
+ addr = (unsigned long)bpf_dynptr_from_file_sleepable;
}
+ desc->addr = addr;
+ return 0;
}
static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
@@ -20540,7 +22466,8 @@ static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
struct bpf_insn *insn_buf, int insn_idx, int *cnt)
{
- const struct bpf_kfunc_desc *desc;
+ struct bpf_kfunc_desc *desc;
+ int err;
if (!insn->imm) {
verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
@@ -20555,11 +22482,15 @@ static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
*/
desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
if (!desc) {
- verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
- insn->imm);
+ verifier_bug(env, "kernel function descriptor not found for func_id %u",
+ insn->imm);
return -EFAULT;
}
+ err = specialize_kfunc(env, desc, insn_idx);
+ if (err)
+ return err;
+
if (!bpf_jit_supports_far_kfunc_call())
insn->imm = BPF_CALL_IMM(desc->addr);
if (insn->off)
@@ -20571,8 +22502,8 @@ static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) {
- verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
- insn_idx);
+ verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d",
+ insn_idx);
return -EFAULT;
}
@@ -20588,15 +22519,15 @@ static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) {
- verbose(env, "verifier internal error: NULL kptr_struct_meta expected at insn_idx %d\n",
- insn_idx);
+ verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d",
+ insn_idx);
return -EFAULT;
}
if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
!kptr_struct_meta) {
- verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
- insn_idx);
+ verifier_bug(env, "kptr_struct_meta expected at insn_idx %d",
+ insn_idx);
return -EFAULT;
}
@@ -20618,8 +22549,8 @@ static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
}
if (!kptr_struct_meta) {
- verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
- insn_idx);
+ verifier_bug(env, "kptr_struct_meta expected at insn_idx %d",
+ insn_idx);
return -EFAULT;
}
@@ -20629,13 +22560,17 @@ static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
*cnt = 1;
- } else if (is_bpf_wq_set_callback_impl_kfunc(desc->func_id)) {
- struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(BPF_REG_4, (long)env->prog->aux) };
+ }
- insn_buf[0] = ld_addrs[0];
- insn_buf[1] = ld_addrs[1];
- insn_buf[2] = *insn;
- *cnt = 3;
+ if (env->insn_aux_data[insn_idx].arg_prog) {
+ u32 regno = env->insn_aux_data[insn_idx].arg_prog;
+ struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) };
+ int idx = *cnt;
+
+ insn_buf[idx++] = ld_addrs[0];
+ insn_buf[idx++] = ld_addrs[1];
+ insn_buf[idx++] = *insn;
+ *cnt = idx;
}
return 0;
}
@@ -20649,7 +22584,7 @@ static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *pat
/* We only reserve one slot for hidden subprogs in subprog_info. */
if (env->hidden_subprog_cnt) {
- verbose(env, "verifier internal error: only one hidden subprog supported\n");
+ verifier_bug(env, "only one hidden subprog supported");
return -EFAULT;
}
/* We're not patching any existing instruction, just appending the new
@@ -20689,13 +22624,12 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
u16 stack_depth_extra = 0;
if (env->seen_exception && !env->exception_callback_subprog) {
- struct bpf_insn patch[] = {
- env->prog->insnsi[insn_cnt - 1],
- BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
- BPF_EXIT_INSN(),
- };
+ struct bpf_insn *patch = insn_buf;
- ret = add_hidden_subprog(env, patch, ARRAY_SIZE(patch));
+ *patch++ = env->prog->insnsi[insn_cnt - 1];
+ *patch++ = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
+ *patch++ = BPF_EXIT_INSN();
+ ret = add_hidden_subprog(env, insn_buf, patch - insn_buf);
if (ret < 0)
return ret;
prog = env->prog;
@@ -20731,20 +22665,18 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
insn->off == 1 && insn->imm == -1) {
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
bool isdiv = BPF_OP(insn->code) == BPF_DIV;
- struct bpf_insn *patchlet;
- struct bpf_insn chk_and_sdiv[] = {
- BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
- BPF_NEG | BPF_K, insn->dst_reg,
- 0, 0, 0),
- };
- struct bpf_insn chk_and_smod[] = {
- BPF_MOV32_IMM(insn->dst_reg, 0),
- };
+ struct bpf_insn *patch = insn_buf;
- patchlet = isdiv ? chk_and_sdiv : chk_and_smod;
- cnt = isdiv ? ARRAY_SIZE(chk_and_sdiv) : ARRAY_SIZE(chk_and_smod);
+ if (isdiv)
+ *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
+ BPF_NEG | BPF_K, insn->dst_reg,
+ 0, 0, 0);
+ else
+ *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0);
- new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
+ cnt = patch - insn_buf;
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
@@ -20763,83 +22695,79 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
bool isdiv = BPF_OP(insn->code) == BPF_DIV;
bool is_sdiv = isdiv && insn->off == 1;
bool is_smod = !isdiv && insn->off == 1;
- struct bpf_insn *patchlet;
- struct bpf_insn chk_and_div[] = {
- /* [R,W]x div 0 -> 0 */
- BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
- BPF_JNE | BPF_K, insn->src_reg,
- 0, 2, 0),
- BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
- BPF_JMP_IMM(BPF_JA, 0, 0, 1),
- *insn,
- };
- struct bpf_insn chk_and_mod[] = {
- /* [R,W]x mod 0 -> [R,W]x */
- BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
- BPF_JEQ | BPF_K, insn->src_reg,
- 0, 1 + (is64 ? 0 : 1), 0),
- *insn,
- BPF_JMP_IMM(BPF_JA, 0, 0, 1),
- BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
- };
- struct bpf_insn chk_and_sdiv[] = {
+ struct bpf_insn *patch = insn_buf;
+
+ if (is_sdiv) {
/* [R,W]x sdiv 0 -> 0
* LLONG_MIN sdiv -1 -> LLONG_MIN
* INT_MIN sdiv -1 -> INT_MIN
*/
- BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
- BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
- BPF_ADD | BPF_K, BPF_REG_AX,
- 0, 0, 1),
- BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
- BPF_JGT | BPF_K, BPF_REG_AX,
- 0, 4, 1),
- BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
- BPF_JEQ | BPF_K, BPF_REG_AX,
- 0, 1, 0),
- BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
- BPF_MOV | BPF_K, insn->dst_reg,
- 0, 0, 0),
+ *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
+ *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
+ BPF_ADD | BPF_K, BPF_REG_AX,
+ 0, 0, 1);
+ *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
+ BPF_JGT | BPF_K, BPF_REG_AX,
+ 0, 4, 1);
+ *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
+ BPF_JEQ | BPF_K, BPF_REG_AX,
+ 0, 1, 0);
+ *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
+ BPF_MOV | BPF_K, insn->dst_reg,
+ 0, 0, 0);
/* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */
- BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
- BPF_NEG | BPF_K, insn->dst_reg,
- 0, 0, 0),
- BPF_JMP_IMM(BPF_JA, 0, 0, 1),
- *insn,
- };
- struct bpf_insn chk_and_smod[] = {
+ *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
+ BPF_NEG | BPF_K, insn->dst_reg,
+ 0, 0, 0);
+ *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ *patch++ = *insn;
+ cnt = patch - insn_buf;
+ } else if (is_smod) {
/* [R,W]x mod 0 -> [R,W]x */
/* [R,W]x mod -1 -> 0 */
- BPF_MOV64_REG(BPF_REG_AX, insn->src_reg),
- BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
- BPF_ADD | BPF_K, BPF_REG_AX,
- 0, 0, 1),
- BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
- BPF_JGT | BPF_K, BPF_REG_AX,
- 0, 3, 1),
- BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
- BPF_JEQ | BPF_K, BPF_REG_AX,
- 0, 3 + (is64 ? 0 : 1), 1),
- BPF_MOV32_IMM(insn->dst_reg, 0),
- BPF_JMP_IMM(BPF_JA, 0, 0, 1),
- *insn,
- BPF_JMP_IMM(BPF_JA, 0, 0, 1),
- BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
- };
-
- if (is_sdiv) {
- patchlet = chk_and_sdiv;
- cnt = ARRAY_SIZE(chk_and_sdiv);
- } else if (is_smod) {
- patchlet = chk_and_smod;
- cnt = ARRAY_SIZE(chk_and_smod) - (is64 ? 2 : 0);
+ *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg);
+ *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) |
+ BPF_ADD | BPF_K, BPF_REG_AX,
+ 0, 0, 1);
+ *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
+ BPF_JGT | BPF_K, BPF_REG_AX,
+ 0, 3, 1);
+ *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
+ BPF_JEQ | BPF_K, BPF_REG_AX,
+ 0, 3 + (is64 ? 0 : 1), 1);
+ *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0);
+ *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ *patch++ = *insn;
+
+ if (!is64) {
+ *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg);
+ }
+ cnt = patch - insn_buf;
+ } else if (isdiv) {
+ /* [R,W]x div 0 -> 0 */
+ *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
+ BPF_JNE | BPF_K, insn->src_reg,
+ 0, 2, 0);
+ *patch++ = BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg);
+ *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ *patch++ = *insn;
+ cnt = patch - insn_buf;
} else {
- patchlet = isdiv ? chk_and_div : chk_and_mod;
- cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
- ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
+ /* [R,W]x mod 0 -> [R,W]x */
+ *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
+ BPF_JEQ | BPF_K, insn->src_reg,
+ 0, 1 + (is64 ? 0 : 1), 0);
+ *patch++ = *insn;
+
+ if (!is64) {
+ *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg);
+ }
+ cnt = patch - insn_buf;
}
- new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
@@ -20853,7 +22781,7 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
if (BPF_CLASS(insn->code) == BPF_LDX &&
(BPF_MODE(insn->code) == BPF_PROBE_MEM ||
BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) {
- struct bpf_insn *patch = &insn_buf[0];
+ struct bpf_insn *patch = insn_buf;
u64 uaddress_limit = bpf_arch_uaddress_limit();
if (!uaddress_limit)
@@ -20885,8 +22813,8 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
BPF_MODE(insn->code) == BPF_IND)) {
cnt = env->ops->gen_ld_abs(insn, insn_buf);
if (cnt == 0 || cnt >= INSN_BUF_SIZE) {
- verbose(env, "bpf verifier is misconfigured\n");
- return -EINVAL;
+ verifier_bug(env, "%d insns generated for ld_abs", cnt);
+ return -EFAULT;
}
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
@@ -20904,7 +22832,7 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
- struct bpf_insn *patch = &insn_buf[0];
+ struct bpf_insn *patch = insn_buf;
bool issrc, isneg, isimm;
u32 off_reg;
@@ -20952,7 +22880,50 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
goto next_insn;
}
- if (is_may_goto_insn(insn)) {
+ if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) {
+ int stack_off_cnt = -stack_depth - 16;
+
+ /*
+ * Two 8 byte slots, depth-16 stores the count, and
+ * depth-8 stores the start timestamp of the loop.
+ *
+ * The starting value of count is BPF_MAX_TIMED_LOOPS
+ * (0xffff). Every iteration loads it and subs it by 1,
+ * until the value becomes 0 in AX (thus, 1 in stack),
+ * after which we call arch_bpf_timed_may_goto, which
+ * either sets AX to 0xffff to keep looping, or to 0
+ * upon timeout. AX is then stored into the stack. In
+ * the next iteration, we either see 0 and break out, or
+ * continue iterating until the next time value is 0
+ * after subtraction, rinse and repeat.
+ */
+ stack_depth_extra = 16;
+ insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt);
+ if (insn->off >= 0)
+ insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5);
+ else
+ insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1);
+ insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1);
+ insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2);
+ /*
+ * AX is used as an argument to pass in stack_off_cnt
+ * (to add to r10/fp), and also as the return value of
+ * the call to arch_bpf_timed_may_goto.
+ */
+ insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt);
+ insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto);
+ insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt);
+ cnt = 7;
+
+ new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+ if (!new_prog)
+ return -ENOMEM;
+
+ delta += cnt - 1;
+ env->prog = prog = new_prog;
+ insn = new_prog->insnsi + i + delta;
+ goto next_insn;
+ } else if (is_may_goto_insn(insn)) {
int stack_off = -stack_depth - 8;
stack_depth_extra = 8;
@@ -21115,8 +23086,7 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
}
if (is_storage_get_function(insn->imm)) {
- if (!in_sleepable(env) ||
- env->insn_aux_data[i + delta].storage_get_func_atomic)
+ if (env->insn_aux_data[i + delta].non_sleepable)
insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
else
insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
@@ -21178,8 +23148,8 @@ static int do_misc_fixups(struct bpf_verifier_env *env)
if (cnt == -EOPNOTSUPP)
goto patch_map_ops_generic;
if (cnt <= 0 || cnt >= INSN_BUF_SIZE) {
- verbose(env, "bpf verifier is misconfigured\n");
- return -EINVAL;
+ verifier_bug(env, "%d insns generated for map lookup", cnt);
+ return -EFAULT;
}
new_prog = bpf_patch_insn_data(env, i + delta,
@@ -21281,15 +23251,19 @@ patch_map_ops_generic:
if (insn->imm == BPF_FUNC_get_smp_processor_id &&
verifier_inlines_helper_call(env, insn->imm)) {
/* BPF_FUNC_get_smp_processor_id inlining is an
- * optimization, so if pcpu_hot.cpu_number is ever
+ * optimization, so if cpu_number is ever
* changed in some incompatible and hard to support
* way, it's fine to back out this inlining logic
*/
- insn_buf[0] = BPF_MOV32_IMM(BPF_REG_0, (u32)(unsigned long)&pcpu_hot.cpu_number);
+#ifdef CONFIG_SMP
+ insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number);
insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0);
insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0);
cnt = 3;
-
+#else
+ insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
+ cnt = 1;
+#endif
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
@@ -21462,9 +23436,9 @@ patch_call_imm:
* programs to call them, must be real in-kernel functions
*/
if (!fn->func) {
- verbose(env,
- "kernel subsystem misconfigured func %s#%d\n",
- func_id_name(insn->imm), insn->imm);
+ verifier_bug(env,
+ "not inlined functions %s#%d is missing func",
+ func_id_name(insn->imm), insn->imm);
return -EFAULT;
}
insn->imm = fn->func - __bpf_call_base;
@@ -21472,6 +23446,13 @@ next_insn:
if (subprogs[cur_subprog + 1].start == i + delta + 1) {
subprogs[cur_subprog].stack_depth += stack_depth_extra;
subprogs[cur_subprog].stack_extra = stack_depth_extra;
+
+ stack_depth = subprogs[cur_subprog].stack_depth;
+ if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) {
+ verbose(env, "stack size %d(extra %d) is too large\n",
+ stack_depth, stack_depth_extra);
+ return -EINVAL;
+ }
cur_subprog++;
stack_depth = subprogs[cur_subprog].stack_depth;
stack_depth_extra = 0;
@@ -21482,23 +23463,33 @@ next_insn:
env->prog->aux->stack_depth = subprogs[0].stack_depth;
for (i = 0; i < env->subprog_cnt; i++) {
+ int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1;
int subprog_start = subprogs[i].start;
int stack_slots = subprogs[i].stack_extra / 8;
+ int slots = delta, cnt = 0;
if (!stack_slots)
continue;
- if (stack_slots > 1) {
- verbose(env, "verifier bug: stack_slots supports may_goto only\n");
+ /* We need two slots in case timed may_goto is supported. */
+ if (stack_slots > slots) {
+ verifier_bug(env, "stack_slots supports may_goto only");
return -EFAULT;
}
- /* Add ST insn to subprog prologue to init extra stack */
- insn_buf[0] = BPF_ST_MEM(BPF_DW, BPF_REG_FP,
- -subprogs[i].stack_depth, BPF_MAX_LOOPS);
+ stack_depth = subprogs[i].stack_depth;
+ if (bpf_jit_supports_timed_may_goto()) {
+ insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
+ BPF_MAX_TIMED_LOOPS);
+ insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0);
+ } else {
+ /* Add ST insn to subprog prologue to init extra stack */
+ insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth,
+ BPF_MAX_LOOPS);
+ }
/* Copy first actual insn to preserve it */
- insn_buf[1] = env->prog->insnsi[subprog_start];
+ insn_buf[cnt++] = env->prog->insnsi[subprog_start];
- new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, 2);
+ new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt);
if (!new_prog)
return -ENOMEM;
env->prog = prog = new_prog;
@@ -21508,7 +23499,7 @@ next_insn:
* to insn after BPF_ST that inits may_goto count.
* Adjustment will succeed because bpf_patch_insn_data() didn't fail.
*/
- WARN_ON(adjust_jmp_off(env->prog, subprog_start, 1));
+ WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta));
}
/* Since poke tab is now finalized, publish aux to tracker. */
@@ -21517,8 +23508,8 @@ next_insn:
if (!map_ptr->ops->map_poke_track ||
!map_ptr->ops->map_poke_untrack ||
!map_ptr->ops->map_poke_run) {
- verbose(env, "bpf verifier is misconfigured\n");
- return -EINVAL;
+ verifier_bug(env, "poke tab is misconfigured");
+ return -EFAULT;
}
ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
@@ -21528,7 +23519,9 @@ next_insn:
}
}
- sort_kfunc_descs_by_imm_off(env->prog);
+ ret = sort_kfunc_descs_by_imm_off(env);
+ if (ret)
+ return ret;
return 0;
}
@@ -21706,31 +23699,44 @@ static int remove_fastcall_spills_fills(struct bpf_verifier_env *env)
static void free_states(struct bpf_verifier_env *env)
{
- struct bpf_verifier_state_list *sl, *sln;
- int i;
+ struct bpf_verifier_state_list *sl;
+ struct list_head *head, *pos, *tmp;
+ struct bpf_scc_info *info;
+ int i, j;
- sl = env->free_list;
- while (sl) {
- sln = sl->next;
+ free_verifier_state(env->cur_state, true);
+ env->cur_state = NULL;
+ while (!pop_stack(env, NULL, NULL, false));
+
+ list_for_each_safe(pos, tmp, &env->free_list) {
+ sl = container_of(pos, struct bpf_verifier_state_list, node);
free_verifier_state(&sl->state, false);
kfree(sl);
- sl = sln;
}
- env->free_list = NULL;
+ INIT_LIST_HEAD(&env->free_list);
+
+ for (i = 0; i < env->scc_cnt; ++i) {
+ info = env->scc_info[i];
+ if (!info)
+ continue;
+ for (j = 0; j < info->num_visits; j++)
+ free_backedges(&info->visits[j]);
+ kvfree(info);
+ env->scc_info[i] = NULL;
+ }
if (!env->explored_states)
return;
for (i = 0; i < state_htab_size(env); i++) {
- sl = env->explored_states[i];
+ head = &env->explored_states[i];
- while (sl) {
- sln = sl->next;
+ list_for_each_safe(pos, tmp, head) {
+ sl = container_of(pos, struct bpf_verifier_state_list, node);
free_verifier_state(&sl->state, false);
kfree(sl);
- sl = sln;
}
- env->explored_states[i] = NULL;
+ INIT_LIST_HEAD(&env->explored_states[i]);
}
}
@@ -21738,6 +23744,7 @@ static int do_check_common(struct bpf_verifier_env *env, int subprog)
{
bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
struct bpf_subprog_info *sub = subprog_info(env, subprog);
+ struct bpf_prog_aux *aux = env->prog->aux;
struct bpf_verifier_state *state;
struct bpf_reg_state *regs;
int ret, i;
@@ -21745,13 +23752,14 @@ static int do_check_common(struct bpf_verifier_env *env, int subprog)
env->prev_linfo = NULL;
env->pass_cnt++;
- state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
+ state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT);
if (!state)
return -ENOMEM;
state->curframe = 0;
state->speculative = false;
state->branches = 1;
- state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
+ state->in_sleepable = env->prog->sleepable;
+ state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT);
if (!state->frame[0]) {
kfree(state);
return -ENOMEM;
@@ -21770,7 +23778,8 @@ static int do_check_common(struct bpf_verifier_env *env, int subprog)
struct bpf_subprog_arg_info *arg;
struct bpf_reg_state *reg;
- verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
+ if (env->log.level & BPF_LOG_LEVEL)
+ verbose(env, "Validating %s() func#%d...\n", sub_name, subprog);
ret = btf_prepare_func_args(env, subprog);
if (ret)
goto out;
@@ -21802,11 +23811,12 @@ static int do_check_common(struct bpf_verifier_env *env, int subprog)
__mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen);
} else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) {
reg->type = PTR_TO_MEM;
- if (arg->arg_type & PTR_MAYBE_NULL)
- reg->type |= PTR_MAYBE_NULL;
+ reg->type |= arg->arg_type &
+ (PTR_MAYBE_NULL | PTR_UNTRUSTED | MEM_RDONLY);
mark_reg_known_zero(env, regs, i);
reg->mem_size = arg->mem_size;
- reg->id = ++env->id_gen;
+ if (arg->arg_type & PTR_MAYBE_NULL)
+ reg->id = ++env->id_gen;
} else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) {
reg->type = PTR_TO_BTF_ID;
if (arg->arg_type & PTR_MAYBE_NULL)
@@ -21823,8 +23833,8 @@ static int do_check_common(struct bpf_verifier_env *env, int subprog)
/* caller can pass either PTR_TO_ARENA or SCALAR */
mark_reg_unknown(env, regs, i);
} else {
- WARN_ONCE(1, "BUG: unhandled arg#%d type %d\n",
- i - BPF_REG_1, arg->arg_type);
+ verifier_bug(env, "unhandled arg#%d type %d",
+ i - BPF_REG_1, arg->arg_type);
ret = -EFAULT;
goto out;
}
@@ -21845,16 +23855,15 @@ static int do_check_common(struct bpf_verifier_env *env, int subprog)
mark_reg_known_zero(env, regs, BPF_REG_1);
}
+ /* Acquire references for struct_ops program arguments tagged with "__ref" */
+ if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) {
+ for (i = 0; i < aux->ctx_arg_info_size; i++)
+ aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ?
+ acquire_reference(env, 0) : 0;
+ }
+
ret = do_check(env);
out:
- /* check for NULL is necessary, since cur_state can be freed inside
- * do_check() under memory pressure.
- */
- if (env->cur_state) {
- free_verifier_state(env->cur_state, true);
- env->cur_state = NULL;
- }
- while (!pop_stack(env, NULL, NULL, false));
if (!ret && pop_log)
bpf_vlog_reset(&env->log, 0);
free_states(env);
@@ -21967,6 +23976,15 @@ static void print_verification_stats(struct bpf_verifier_env *env)
env->peak_states, env->longest_mark_read_walk);
}
+int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
+ const struct bpf_ctx_arg_aux *info, u32 cnt)
+{
+ prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT);
+ prog->aux->ctx_arg_info_size = cnt;
+
+ return prog->aux->ctx_arg_info ? 0 : -ENOMEM;
+}
+
static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
{
const struct btf_type *t, *func_proto;
@@ -21974,10 +23992,11 @@ static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
const struct bpf_struct_ops *st_ops;
const struct btf_member *member;
struct bpf_prog *prog = env->prog;
- u32 btf_id, member_idx;
+ bool has_refcounted_arg = false;
+ u32 btf_id, member_idx, member_off;
struct btf *btf;
const char *mname;
- int err;
+ int i, err;
if (!prog->gpl_compatible) {
verbose(env, "struct ops programs must have a GPL compatible license\n");
@@ -22025,7 +24044,8 @@ static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
return -EINVAL;
}
- err = bpf_struct_ops_supported(st_ops, __btf_member_bit_offset(t, member) / 8);
+ member_off = __btf_member_bit_offset(t, member) / 8;
+ err = bpf_struct_ops_supported(st_ops, member_off);
if (err) {
verbose(env, "attach to unsupported member %s of struct %s\n",
mname, st_ops->name);
@@ -22047,17 +24067,32 @@ static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
return -EACCES;
}
- /* btf_ctx_access() used this to provide argument type info */
- prog->aux->ctx_arg_info =
- st_ops_desc->arg_info[member_idx].info;
- prog->aux->ctx_arg_info_size =
- st_ops_desc->arg_info[member_idx].cnt;
+ for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) {
+ if (st_ops_desc->arg_info[member_idx].info->refcounted) {
+ has_refcounted_arg = true;
+ break;
+ }
+ }
+
+ /* Tail call is not allowed for programs with refcounted arguments since we
+ * cannot guarantee that valid refcounted kptrs will be passed to the callee.
+ */
+ for (i = 0; i < env->subprog_cnt; i++) {
+ if (has_refcounted_arg && env->subprog_info[i].has_tail_call) {
+ verbose(env, "program with __ref argument cannot tail call\n");
+ return -EINVAL;
+ }
+ }
+
+ prog->aux->st_ops = st_ops;
+ prog->aux->attach_st_ops_member_off = member_off;
prog->aux->attach_func_proto = func_proto;
prog->aux->attach_func_name = mname;
env->ops = st_ops->verifier_ops;
- return 0;
+ return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info,
+ st_ops_desc->arg_info[member_idx].cnt);
}
#define SECURITY_PREFIX "security_"
@@ -22132,6 +24167,8 @@ int bpf_check_attach_target(struct bpf_verifier_log *log,
}
if (tgt_prog) {
struct bpf_prog_aux *aux = tgt_prog->aux;
+ bool tgt_changes_pkt_data;
+ bool tgt_might_sleep;
if (bpf_prog_is_dev_bound(prog->aux) &&
!bpf_prog_dev_bound_match(prog, tgt_prog)) {
@@ -22166,6 +24203,23 @@ int bpf_check_attach_target(struct bpf_verifier_log *log,
"Extension programs should be JITed\n");
return -EINVAL;
}
+ tgt_changes_pkt_data = aux->func
+ ? aux->func[subprog]->aux->changes_pkt_data
+ : aux->changes_pkt_data;
+ if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) {
+ bpf_log(log,
+ "Extension program changes packet data, while original does not\n");
+ return -EINVAL;
+ }
+
+ tgt_might_sleep = aux->func
+ ? aux->func[subprog]->aux->might_sleep
+ : aux->might_sleep;
+ if (prog->aux->might_sleep && !tgt_might_sleep) {
+ bpf_log(log,
+ "Extension program may sleep, while original does not\n");
+ return -EINVAL;
+ }
}
if (!tgt_prog->jited) {
bpf_log(log, "Can attach to only JITed progs\n");
@@ -22406,6 +24460,7 @@ int bpf_check_attach_target(struct bpf_verifier_log *log,
BTF_SET_START(btf_id_deny)
BTF_ID_UNUSED
#ifdef CONFIG_SMP
+BTF_ID(func, ___migrate_enable)
BTF_ID(func, migrate_disable)
BTF_ID(func, migrate_enable)
#endif
@@ -22422,6 +24477,33 @@ BTF_ID(func, __rcu_read_unlock)
#endif
BTF_SET_END(btf_id_deny)
+/* fexit and fmod_ret can't be used to attach to __noreturn functions.
+ * Currently, we must manually list all __noreturn functions here. Once a more
+ * robust solution is implemented, this workaround can be removed.
+ */
+BTF_SET_START(noreturn_deny)
+#ifdef CONFIG_IA32_EMULATION
+BTF_ID(func, __ia32_sys_exit)
+BTF_ID(func, __ia32_sys_exit_group)
+#endif
+#ifdef CONFIG_KUNIT
+BTF_ID(func, __kunit_abort)
+BTF_ID(func, kunit_try_catch_throw)
+#endif
+#ifdef CONFIG_MODULES
+BTF_ID(func, __module_put_and_kthread_exit)
+#endif
+#ifdef CONFIG_X86_64
+BTF_ID(func, __x64_sys_exit)
+BTF_ID(func, __x64_sys_exit_group)
+#endif
+BTF_ID(func, do_exit)
+BTF_ID(func, do_group_exit)
+BTF_ID(func, kthread_complete_and_exit)
+BTF_ID(func, kthread_exit)
+BTF_ID(func, make_task_dead)
+BTF_SET_END(noreturn_deny)
+
static bool can_be_sleepable(struct bpf_prog *prog)
{
if (prog->type == BPF_PROG_TYPE_TRACING) {
@@ -22498,9 +24580,7 @@ static int check_attach_btf_id(struct bpf_verifier_env *env)
prog->aux->attach_btf_trace = true;
return 0;
} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
- if (!bpf_iter_prog_supported(prog))
- return -EINVAL;
- return 0;
+ return bpf_iter_prog_supported(prog);
}
if (prog->type == BPF_PROG_TYPE_LSM) {
@@ -22509,6 +24589,14 @@ static int check_attach_btf_id(struct bpf_verifier_env *env)
return ret;
} else if (prog->type == BPF_PROG_TYPE_TRACING &&
btf_id_set_contains(&btf_id_deny, btf_id)) {
+ verbose(env, "Attaching tracing programs to function '%s' is rejected.\n",
+ tgt_info.tgt_name);
+ return -EINVAL;
+ } else if ((prog->expected_attach_type == BPF_TRACE_FEXIT ||
+ prog->expected_attach_type == BPF_MODIFY_RETURN) &&
+ btf_id_set_contains(&noreturn_deny, btf_id)) {
+ verbose(env, "Attaching fexit/fmod_ret to __noreturn function '%s' is rejected.\n",
+ tgt_info.tgt_name);
return -EINVAL;
}
@@ -22535,6 +24623,489 @@ struct btf *bpf_get_btf_vmlinux(void)
return btf_vmlinux;
}
+/*
+ * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In
+ * this case expect that every file descriptor in the array is either a map or
+ * a BTF. Everything else is considered to be trash.
+ */
+static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd)
+{
+ struct bpf_map *map;
+ struct btf *btf;
+ CLASS(fd, f)(fd);
+ int err;
+
+ map = __bpf_map_get(f);
+ if (!IS_ERR(map)) {
+ err = __add_used_map(env, map);
+ if (err < 0)
+ return err;
+ return 0;
+ }
+
+ btf = __btf_get_by_fd(f);
+ if (!IS_ERR(btf)) {
+ err = __add_used_btf(env, btf);
+ if (err < 0)
+ return err;
+ return 0;
+ }
+
+ verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd);
+ return PTR_ERR(map);
+}
+
+static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr)
+{
+ size_t size = sizeof(int);
+ int ret;
+ int fd;
+ u32 i;
+
+ env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
+
+ /*
+ * The only difference between old (no fd_array_cnt is given) and new
+ * APIs is that in the latter case the fd_array is expected to be
+ * continuous and is scanned for map fds right away
+ */
+ if (!attr->fd_array_cnt)
+ return 0;
+
+ /* Check for integer overflow */
+ if (attr->fd_array_cnt >= (U32_MAX / size)) {
+ verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt);
+ return -EINVAL;
+ }
+
+ for (i = 0; i < attr->fd_array_cnt; i++) {
+ if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size))
+ return -EFAULT;
+
+ ret = add_fd_from_fd_array(env, fd);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+/* Each field is a register bitmask */
+struct insn_live_regs {
+ u16 use; /* registers read by instruction */
+ u16 def; /* registers written by instruction */
+ u16 in; /* registers that may be alive before instruction */
+ u16 out; /* registers that may be alive after instruction */
+};
+
+/* Bitmask with 1s for all caller saved registers */
+#define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1)
+
+/* Compute info->{use,def} fields for the instruction */
+static void compute_insn_live_regs(struct bpf_verifier_env *env,
+ struct bpf_insn *insn,
+ struct insn_live_regs *info)
+{
+ struct call_summary cs;
+ u8 class = BPF_CLASS(insn->code);
+ u8 code = BPF_OP(insn->code);
+ u8 mode = BPF_MODE(insn->code);
+ u16 src = BIT(insn->src_reg);
+ u16 dst = BIT(insn->dst_reg);
+ u16 r0 = BIT(0);
+ u16 def = 0;
+ u16 use = 0xffff;
+
+ switch (class) {
+ case BPF_LD:
+ switch (mode) {
+ case BPF_IMM:
+ if (BPF_SIZE(insn->code) == BPF_DW) {
+ def = dst;
+ use = 0;
+ }
+ break;
+ case BPF_LD | BPF_ABS:
+ case BPF_LD | BPF_IND:
+ /* stick with defaults */
+ break;
+ }
+ break;
+ case BPF_LDX:
+ switch (mode) {
+ case BPF_MEM:
+ case BPF_MEMSX:
+ def = dst;
+ use = src;
+ break;
+ }
+ break;
+ case BPF_ST:
+ switch (mode) {
+ case BPF_MEM:
+ def = 0;
+ use = dst;
+ break;
+ }
+ break;
+ case BPF_STX:
+ switch (mode) {
+ case BPF_MEM:
+ def = 0;
+ use = dst | src;
+ break;
+ case BPF_ATOMIC:
+ switch (insn->imm) {
+ case BPF_CMPXCHG:
+ use = r0 | dst | src;
+ def = r0;
+ break;
+ case BPF_LOAD_ACQ:
+ def = dst;
+ use = src;
+ break;
+ case BPF_STORE_REL:
+ def = 0;
+ use = dst | src;
+ break;
+ default:
+ use = dst | src;
+ if (insn->imm & BPF_FETCH)
+ def = src;
+ else
+ def = 0;
+ }
+ break;
+ }
+ break;
+ case BPF_ALU:
+ case BPF_ALU64:
+ switch (code) {
+ case BPF_END:
+ use = dst;
+ def = dst;
+ break;
+ case BPF_MOV:
+ def = dst;
+ if (BPF_SRC(insn->code) == BPF_K)
+ use = 0;
+ else
+ use = src;
+ break;
+ default:
+ def = dst;
+ if (BPF_SRC(insn->code) == BPF_K)
+ use = dst;
+ else
+ use = dst | src;
+ }
+ break;
+ case BPF_JMP:
+ case BPF_JMP32:
+ switch (code) {
+ case BPF_JA:
+ case BPF_JCOND:
+ def = 0;
+ use = 0;
+ break;
+ case BPF_EXIT:
+ def = 0;
+ use = r0;
+ break;
+ case BPF_CALL:
+ def = ALL_CALLER_SAVED_REGS;
+ use = def & ~BIT(BPF_REG_0);
+ if (get_call_summary(env, insn, &cs))
+ use = GENMASK(cs.num_params, 1);
+ break;
+ default:
+ def = 0;
+ if (BPF_SRC(insn->code) == BPF_K)
+ use = dst;
+ else
+ use = dst | src;
+ }
+ break;
+ }
+
+ info->def = def;
+ info->use = use;
+}
+
+/* Compute may-live registers after each instruction in the program.
+ * The register is live after the instruction I if it is read by some
+ * instruction S following I during program execution and is not
+ * overwritten between I and S.
+ *
+ * Store result in env->insn_aux_data[i].live_regs.
+ */
+static int compute_live_registers(struct bpf_verifier_env *env)
+{
+ struct bpf_insn_aux_data *insn_aux = env->insn_aux_data;
+ struct bpf_insn *insns = env->prog->insnsi;
+ struct insn_live_regs *state;
+ int insn_cnt = env->prog->len;
+ int err = 0, i, j;
+ bool changed;
+
+ /* Use the following algorithm:
+ * - define the following:
+ * - I.use : a set of all registers read by instruction I;
+ * - I.def : a set of all registers written by instruction I;
+ * - I.in : a set of all registers that may be alive before I execution;
+ * - I.out : a set of all registers that may be alive after I execution;
+ * - insn_successors(I): a set of instructions S that might immediately
+ * follow I for some program execution;
+ * - associate separate empty sets 'I.in' and 'I.out' with each instruction;
+ * - visit each instruction in a postorder and update
+ * state[i].in, state[i].out as follows:
+ *
+ * state[i].out = U [state[s].in for S in insn_successors(i)]
+ * state[i].in = (state[i].out / state[i].def) U state[i].use
+ *
+ * (where U stands for set union, / stands for set difference)
+ * - repeat the computation while {in,out} fields changes for
+ * any instruction.
+ */
+ state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT);
+ if (!state) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ for (i = 0; i < insn_cnt; ++i)
+ compute_insn_live_regs(env, &insns[i], &state[i]);
+
+ changed = true;
+ while (changed) {
+ changed = false;
+ for (i = 0; i < env->cfg.cur_postorder; ++i) {
+ int insn_idx = env->cfg.insn_postorder[i];
+ struct insn_live_regs *live = &state[insn_idx];
+ struct bpf_iarray *succ;
+ u16 new_out = 0;
+ u16 new_in = 0;
+
+ succ = bpf_insn_successors(env, insn_idx);
+ for (int s = 0; s < succ->cnt; ++s)
+ new_out |= state[succ->items[s]].in;
+ new_in = (new_out & ~live->def) | live->use;
+ if (new_out != live->out || new_in != live->in) {
+ live->in = new_in;
+ live->out = new_out;
+ changed = true;
+ }
+ }
+ }
+
+ for (i = 0; i < insn_cnt; ++i)
+ insn_aux[i].live_regs_before = state[i].in;
+
+ if (env->log.level & BPF_LOG_LEVEL2) {
+ verbose(env, "Live regs before insn:\n");
+ for (i = 0; i < insn_cnt; ++i) {
+ if (env->insn_aux_data[i].scc)
+ verbose(env, "%3d ", env->insn_aux_data[i].scc);
+ else
+ verbose(env, " ");
+ verbose(env, "%3d: ", i);
+ for (j = BPF_REG_0; j < BPF_REG_10; ++j)
+ if (insn_aux[i].live_regs_before & BIT(j))
+ verbose(env, "%d", j);
+ else
+ verbose(env, ".");
+ verbose(env, " ");
+ verbose_insn(env, &insns[i]);
+ if (bpf_is_ldimm64(&insns[i]))
+ i++;
+ }
+ }
+
+out:
+ kvfree(state);
+ return err;
+}
+
+/*
+ * Compute strongly connected components (SCCs) on the CFG.
+ * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc.
+ * If instruction is a sole member of its SCC and there are no self edges,
+ * assign it SCC number of zero.
+ * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation.
+ */
+static int compute_scc(struct bpf_verifier_env *env)
+{
+ const u32 NOT_ON_STACK = U32_MAX;
+
+ struct bpf_insn_aux_data *aux = env->insn_aux_data;
+ const u32 insn_cnt = env->prog->len;
+ int stack_sz, dfs_sz, err = 0;
+ u32 *stack, *pre, *low, *dfs;
+ u32 i, j, t, w;
+ u32 next_preorder_num;
+ u32 next_scc_id;
+ bool assign_scc;
+ struct bpf_iarray *succ;
+
+ next_preorder_num = 1;
+ next_scc_id = 1;
+ /*
+ * - 'stack' accumulates vertices in DFS order, see invariant comment below;
+ * - 'pre[t] == p' => preorder number of vertex 't' is 'p';
+ * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n';
+ * - 'dfs' DFS traversal stack, used to emulate explicit recursion.
+ */
+ stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
+ pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
+ low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT);
+ dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT);
+ if (!stack || !pre || !low || !dfs) {
+ err = -ENOMEM;
+ goto exit;
+ }
+ /*
+ * References:
+ * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms"
+ * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components"
+ *
+ * The algorithm maintains the following invariant:
+ * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]';
+ * - then, vertex 'u' remains on stack while vertex 'v' is on stack.
+ *
+ * Consequently:
+ * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u',
+ * such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack,
+ * and thus there is an SCC (loop) containing both 'u' and 'v'.
+ * - If 'low[v] == pre[v]', loops containing 'v' have been explored,
+ * and 'v' can be considered the root of some SCC.
+ *
+ * Here is a pseudo-code for an explicitly recursive version of the algorithm:
+ *
+ * NOT_ON_STACK = insn_cnt + 1
+ * pre = [0] * insn_cnt
+ * low = [0] * insn_cnt
+ * scc = [0] * insn_cnt
+ * stack = []
+ *
+ * next_preorder_num = 1
+ * next_scc_id = 1
+ *
+ * def recur(w):
+ * nonlocal next_preorder_num
+ * nonlocal next_scc_id
+ *
+ * pre[w] = next_preorder_num
+ * low[w] = next_preorder_num
+ * next_preorder_num += 1
+ * stack.append(w)
+ * for s in successors(w):
+ * # Note: for classic algorithm the block below should look as:
+ * #
+ * # if pre[s] == 0:
+ * # recur(s)
+ * # low[w] = min(low[w], low[s])
+ * # elif low[s] != NOT_ON_STACK:
+ * # low[w] = min(low[w], pre[s])
+ * #
+ * # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])'
+ * # does not break the invariant and makes itartive version of the algorithm
+ * # simpler. See 'Algorithm #3' from [2].
+ *
+ * # 's' not yet visited
+ * if pre[s] == 0:
+ * recur(s)
+ * # if 's' is on stack, pick lowest reachable preorder number from it;
+ * # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]',
+ * # so 'min' would be a noop.
+ * low[w] = min(low[w], low[s])
+ *
+ * if low[w] == pre[w]:
+ * # 'w' is the root of an SCC, pop all vertices
+ * # below 'w' on stack and assign same SCC to them.
+ * while True:
+ * t = stack.pop()
+ * low[t] = NOT_ON_STACK
+ * scc[t] = next_scc_id
+ * if t == w:
+ * break
+ * next_scc_id += 1
+ *
+ * for i in range(0, insn_cnt):
+ * if pre[i] == 0:
+ * recur(i)
+ *
+ * Below implementation replaces explicit recursion with array 'dfs'.
+ */
+ for (i = 0; i < insn_cnt; i++) {
+ if (pre[i])
+ continue;
+ stack_sz = 0;
+ dfs_sz = 1;
+ dfs[0] = i;
+dfs_continue:
+ while (dfs_sz) {
+ w = dfs[dfs_sz - 1];
+ if (pre[w] == 0) {
+ low[w] = next_preorder_num;
+ pre[w] = next_preorder_num;
+ next_preorder_num++;
+ stack[stack_sz++] = w;
+ }
+ /* Visit 'w' successors */
+ succ = bpf_insn_successors(env, w);
+ for (j = 0; j < succ->cnt; ++j) {
+ if (pre[succ->items[j]]) {
+ low[w] = min(low[w], low[succ->items[j]]);
+ } else {
+ dfs[dfs_sz++] = succ->items[j];
+ goto dfs_continue;
+ }
+ }
+ /*
+ * Preserve the invariant: if some vertex above in the stack
+ * is reachable from 'w', keep 'w' on the stack.
+ */
+ if (low[w] < pre[w]) {
+ dfs_sz--;
+ goto dfs_continue;
+ }
+ /*
+ * Assign SCC number only if component has two or more elements,
+ * or if component has a self reference.
+ */
+ assign_scc = stack[stack_sz - 1] != w;
+ for (j = 0; j < succ->cnt; ++j) {
+ if (succ->items[j] == w) {
+ assign_scc = true;
+ break;
+ }
+ }
+ /* Pop component elements from stack */
+ do {
+ t = stack[--stack_sz];
+ low[t] = NOT_ON_STACK;
+ if (assign_scc)
+ aux[t].scc = next_scc_id;
+ } while (t != w);
+ if (assign_scc)
+ next_scc_id++;
+ dfs_sz--;
+ }
+ }
+ env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT);
+ if (!env->scc_info) {
+ err = -ENOMEM;
+ goto exit;
+ }
+ env->scc_cnt = next_scc_id;
+exit:
+ kvfree(stack);
+ kvfree(pre);
+ kvfree(low);
+ kvfree(dfs);
+ return err;
+}
+
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
{
u64 start_time = ktime_get_ns();
@@ -22543,6 +25114,8 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u3
u32 log_true_size;
bool is_priv;
+ BTF_TYPE_EMIT(enum bpf_features);
+
/* no program is valid */
if (ARRAY_SIZE(bpf_verifier_ops) == 0)
return -EINVAL;
@@ -22550,7 +25123,7 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u3
/* 'struct bpf_verifier_env' can be global, but since it's not small,
* allocate/free it every time bpf_check() is called
*/
- env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
+ env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT);
if (!env)
return -ENOMEM;
@@ -22564,9 +25137,11 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u3
goto err_free_env;
for (i = 0; i < len; i++)
env->insn_aux_data[i].orig_idx = i;
+ env->succ = iarray_realloc(NULL, 2);
+ if (!env->succ)
+ goto err_free_env;
env->prog = *prog;
env->ops = bpf_verifier_ops[env->prog->type];
- env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token);
env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token);
@@ -22589,6 +25164,10 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u3
if (ret)
goto err_unlock;
+ ret = process_fd_array(env, attr, uattr);
+ if (ret)
+ goto skip_full_check;
+
mark_verifier_state_clean(env);
if (IS_ERR(btf_vmlinux)) {
@@ -22609,12 +25188,16 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u3
env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS;
env->explored_states = kvcalloc(state_htab_size(env),
- sizeof(struct bpf_verifier_state_list *),
- GFP_USER);
+ sizeof(struct list_head),
+ GFP_KERNEL_ACCOUNT);
ret = -ENOMEM;
if (!env->explored_states)
goto skip_full_check;
+ for (i = 0; i < state_htab_size(env); i++)
+ INIT_LIST_HEAD(&env->explored_states[i]);
+ INIT_LIST_HEAD(&env->free_list);
+
ret = check_btf_info_early(env, attr, uattr);
if (ret < 0)
goto skip_full_check;
@@ -22631,10 +25214,6 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u3
if (ret < 0)
goto skip_full_check;
- ret = check_attach_btf_id(env);
- if (ret)
- goto skip_full_check;
-
ret = resolve_pseudo_ldimm64(env);
if (ret < 0)
goto skip_full_check;
@@ -22649,6 +25228,26 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u3
if (ret < 0)
goto skip_full_check;
+ ret = compute_postorder(env);
+ if (ret < 0)
+ goto skip_full_check;
+
+ ret = bpf_stack_liveness_init(env);
+ if (ret)
+ goto skip_full_check;
+
+ ret = check_attach_btf_id(env);
+ if (ret)
+ goto skip_full_check;
+
+ ret = compute_scc(env);
+ if (ret < 0)
+ goto skip_full_check;
+
+ ret = compute_live_registers(env);
+ if (ret < 0)
+ goto skip_full_check;
+
ret = mark_fastcall_patterns(env);
if (ret < 0)
goto skip_full_check;
@@ -22729,7 +25328,7 @@ skip_full_check:
/* if program passed verifier, update used_maps in bpf_prog_info */
env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
sizeof(env->used_maps[0]),
- GFP_KERNEL);
+ GFP_KERNEL_ACCOUNT);
if (!env->prog->aux->used_maps) {
ret = -ENOMEM;
@@ -22744,7 +25343,7 @@ skip_full_check:
/* if program passed verifier, update used_btfs in bpf_prog_aux */
env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
sizeof(env->used_btfs[0]),
- GFP_KERNEL);
+ GFP_KERNEL_ACCOUNT);
if (!env->prog->aux->used_btfs) {
ret = -ENOMEM;
goto err_release_maps;
@@ -22764,6 +25363,8 @@ skip_full_check:
adjust_btf_func(env);
err_release_maps:
+ if (ret)
+ release_insn_arrays(env);
if (!env->prog->aux->used_maps)
/* if we didn't copy map pointers into bpf_prog_info, release
* them now. Otherwise free_used_maps() will release them.
@@ -22784,9 +25385,14 @@ err_release_maps:
err_unlock:
if (!is_priv)
mutex_unlock(&bpf_verifier_lock);
+ clear_insn_aux_data(env, 0, env->prog->len);
vfree(env->insn_aux_data);
- kvfree(env->insn_hist);
err_free_env:
+ bpf_stack_liveness_free(env);
+ kvfree(env->cfg.insn_postorder);
+ kvfree(env->scc_info);
+ kvfree(env->succ);
+ kvfree(env->gotox_tmp_buf);
kvfree(env);
return ret;
}