diff options
Diffstat (limited to 'kernel/bpf')
78 files changed, 83059 insertions, 0 deletions
diff --git a/kernel/bpf/Kconfig b/kernel/bpf/Kconfig new file mode 100644 index 000000000000..eb3de35734f0 --- /dev/null +++ b/kernel/bpf/Kconfig @@ -0,0 +1,104 @@ +# SPDX-License-Identifier: GPL-2.0-only + +# BPF interpreter that, for example, classic socket filters depend on. +config BPF + bool + select CRYPTO_LIB_SHA256 + +# Used by archs to tell that they support BPF JIT compiler plus which +# flavour. Only one of the two can be selected for a specific arch since +# eBPF JIT supersedes the cBPF JIT. + +# Classic BPF JIT (cBPF) +config HAVE_CBPF_JIT + bool + +# Extended BPF JIT (eBPF) +config HAVE_EBPF_JIT + bool + +# Used by archs to tell that they want the BPF JIT compiler enabled by +# default for kernels that were compiled with BPF JIT support. +config ARCH_WANT_DEFAULT_BPF_JIT + bool + +menu "BPF subsystem" + +config BPF_SYSCALL + bool "Enable bpf() system call" + select BPF + select IRQ_WORK + select NEED_TASKS_RCU + select TASKS_TRACE_RCU + select BINARY_PRINTF + select NET_SOCK_MSG if NET + select NET_XGRESS if NET + select PAGE_POOL if NET + default n + help + Enable the bpf() system call that allows to manipulate BPF programs + and maps via file descriptors. + +config BPF_JIT + bool "Enable BPF Just In Time compiler" + depends on BPF + depends on HAVE_CBPF_JIT || HAVE_EBPF_JIT + select EXECMEM + help + BPF programs are normally handled by a BPF interpreter. This option + allows the kernel to generate native code when a program is loaded + into the kernel. This will significantly speed-up processing of BPF + programs. + + Note, an admin should enable this feature changing: + /proc/sys/net/core/bpf_jit_enable + /proc/sys/net/core/bpf_jit_harden (optional) + /proc/sys/net/core/bpf_jit_kallsyms (optional) + +config BPF_JIT_ALWAYS_ON + bool "Permanently enable BPF JIT and remove BPF interpreter" + depends on BPF_SYSCALL && HAVE_EBPF_JIT && BPF_JIT + help + Enables BPF JIT and removes BPF interpreter to avoid speculative + execution of BPF instructions by the interpreter. + + When CONFIG_BPF_JIT_ALWAYS_ON is enabled, /proc/sys/net/core/bpf_jit_enable + is permanently set to 1 and setting any other value than that will + return failure. + +config BPF_JIT_DEFAULT_ON + def_bool ARCH_WANT_DEFAULT_BPF_JIT || BPF_JIT_ALWAYS_ON + depends on HAVE_EBPF_JIT && BPF_JIT + +config BPF_UNPRIV_DEFAULT_OFF + bool "Disable unprivileged BPF by default" + default y + depends on BPF_SYSCALL + help + Disables unprivileged BPF by default by setting the corresponding + /proc/sys/kernel/unprivileged_bpf_disabled knob to 2. An admin can + still reenable it by setting it to 0 later on, or permanently + disable it by setting it to 1 (from which no other transition to + 0 is possible anymore). + + Unprivileged BPF could be used to exploit certain potential + speculative execution side-channel vulnerabilities on unmitigated + affected hardware. + + If you are unsure how to answer this question, answer Y. + +source "kernel/bpf/preload/Kconfig" + +config BPF_LSM + bool "Enable BPF LSM Instrumentation" + depends on BPF_EVENTS + depends on BPF_SYSCALL + depends on SECURITY + depends on BPF_JIT + help + Enables instrumentation of the security hooks with BPF programs for + implementing dynamic MAC and Audit Policies. + + If you are unsure how to answer this question, answer N. + +endmenu # "BPF subsystem" diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile new file mode 100644 index 000000000000..232cbc97434d --- /dev/null +++ b/kernel/bpf/Makefile @@ -0,0 +1,65 @@ +# SPDX-License-Identifier: GPL-2.0 +obj-y := core.o +ifneq ($(CONFIG_BPF_JIT_ALWAYS_ON),y) +# ___bpf_prog_run() needs GCSE disabled on x86; see 3193c0836f203 for details +cflags-nogcse-$(CONFIG_X86)$(CONFIG_CC_IS_GCC) := -fno-gcse +endif +CFLAGS_core.o += -Wno-override-init $(cflags-nogcse-yy) + +obj-$(CONFIG_BPF_SYSCALL) += syscall.o verifier.o inode.o helpers.o tnum.o log.o token.o liveness.o +obj-$(CONFIG_BPF_SYSCALL) += bpf_iter.o map_iter.o task_iter.o prog_iter.o link_iter.o +obj-$(CONFIG_BPF_SYSCALL) += hashtab.o arraymap.o percpu_freelist.o bpf_lru_list.o lpm_trie.o map_in_map.o bloom_filter.o +obj-$(CONFIG_BPF_SYSCALL) += local_storage.o queue_stack_maps.o ringbuf.o bpf_insn_array.o +obj-$(CONFIG_BPF_SYSCALL) += bpf_local_storage.o bpf_task_storage.o +obj-${CONFIG_BPF_LSM} += bpf_inode_storage.o +obj-$(CONFIG_BPF_SYSCALL) += disasm.o mprog.o +obj-$(CONFIG_BPF_JIT) += trampoline.o +obj-$(CONFIG_BPF_SYSCALL) += btf.o memalloc.o rqspinlock.o stream.o +ifeq ($(CONFIG_MMU)$(CONFIG_64BIT),yy) +obj-$(CONFIG_BPF_SYSCALL) += arena.o range_tree.o +endif +obj-$(CONFIG_BPF_JIT) += dispatcher.o +ifeq ($(CONFIG_NET),y) +obj-$(CONFIG_BPF_SYSCALL) += devmap.o +obj-$(CONFIG_BPF_SYSCALL) += cpumap.o +obj-$(CONFIG_BPF_SYSCALL) += offload.o +obj-$(CONFIG_BPF_SYSCALL) += net_namespace.o +obj-$(CONFIG_BPF_SYSCALL) += tcx.o +endif +ifeq ($(CONFIG_PERF_EVENTS),y) +obj-$(CONFIG_BPF_SYSCALL) += stackmap.o +endif +ifeq ($(CONFIG_CGROUPS),y) +obj-$(CONFIG_BPF_SYSCALL) += cgroup_iter.o bpf_cgrp_storage.o +endif +obj-$(CONFIG_CGROUP_BPF) += cgroup.o +ifeq ($(CONFIG_INET),y) +obj-$(CONFIG_BPF_SYSCALL) += reuseport_array.o +endif +ifeq ($(CONFIG_SYSFS),y) +obj-$(CONFIG_DEBUG_INFO_BTF) += sysfs_btf.o +endif +ifeq ($(CONFIG_BPF_JIT),y) +obj-$(CONFIG_BPF_SYSCALL) += bpf_struct_ops.o +obj-$(CONFIG_BPF_SYSCALL) += cpumask.o +obj-${CONFIG_BPF_LSM} += bpf_lsm.o +endif +ifneq ($(CONFIG_CRYPTO),) +obj-$(CONFIG_BPF_SYSCALL) += crypto.o +endif +obj-$(CONFIG_BPF_PRELOAD) += preload/ + +obj-$(CONFIG_BPF_SYSCALL) += relo_core.o +obj-$(CONFIG_BPF_SYSCALL) += btf_iter.o +obj-$(CONFIG_BPF_SYSCALL) += btf_relocate.o +obj-$(CONFIG_BPF_SYSCALL) += kmem_cache_iter.o +ifeq ($(CONFIG_DMA_SHARED_BUFFER),y) +obj-$(CONFIG_BPF_SYSCALL) += dmabuf_iter.o +endif + +CFLAGS_REMOVE_percpu_freelist.o = $(CC_FLAGS_FTRACE) +CFLAGS_REMOVE_bpf_lru_list.o = $(CC_FLAGS_FTRACE) +CFLAGS_REMOVE_queue_stack_maps.o = $(CC_FLAGS_FTRACE) +CFLAGS_REMOVE_lpm_trie.o = $(CC_FLAGS_FTRACE) +CFLAGS_REMOVE_ringbuf.o = $(CC_FLAGS_FTRACE) +CFLAGS_REMOVE_rqspinlock.o = $(CC_FLAGS_FTRACE) diff --git a/kernel/bpf/arena.c b/kernel/bpf/arena.c new file mode 100644 index 000000000000..872dc0e41c65 --- /dev/null +++ b/kernel/bpf/arena.c @@ -0,0 +1,665 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */ +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/err.h> +#include "linux/filter.h" +#include <linux/btf_ids.h> +#include <linux/vmalloc.h> +#include <linux/pagemap.h> +#include "range_tree.h" + +/* + * bpf_arena is a sparsely populated shared memory region between bpf program and + * user space process. + * + * For example on x86-64 the values could be: + * user_vm_start 7f7d26200000 // picked by mmap() + * kern_vm_start ffffc90001e69000 // picked by get_vm_area() + * For user space all pointers within the arena are normal 8-byte addresses. + * In this example 7f7d26200000 is the address of the first page (pgoff=0). + * The bpf program will access it as: kern_vm_start + lower_32bit_of_user_ptr + * (u32)7f7d26200000 -> 26200000 + * hence + * ffffc90001e69000 + 26200000 == ffffc90028069000 is "pgoff=0" within 4Gb + * kernel memory region. + * + * BPF JITs generate the following code to access arena: + * mov eax, eax // eax has lower 32-bit of user pointer + * mov word ptr [rax + r12 + off], bx + * where r12 == kern_vm_start and off is s16. + * Hence allocate 4Gb + GUARD_SZ/2 on each side. + * + * Initially kernel vm_area and user vma are not populated. + * User space can fault-in any address which will insert the page + * into kernel and user vma. + * bpf program can allocate a page via bpf_arena_alloc_pages() kfunc + * which will insert it into kernel vm_area. + * The later fault-in from user space will populate that page into user vma. + */ + +/* number of bytes addressable by LDX/STX insn with 16-bit 'off' field */ +#define GUARD_SZ round_up(1ull << sizeof_field(struct bpf_insn, off) * 8, PAGE_SIZE << 1) +#define KERN_VM_SZ (SZ_4G + GUARD_SZ) + +struct bpf_arena { + struct bpf_map map; + u64 user_vm_start; + u64 user_vm_end; + struct vm_struct *kern_vm; + struct range_tree rt; + struct list_head vma_list; + struct mutex lock; +}; + +u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena) +{ + return arena ? (u64) (long) arena->kern_vm->addr + GUARD_SZ / 2 : 0; +} + +u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena) +{ + return arena ? arena->user_vm_start : 0; +} + +static long arena_map_peek_elem(struct bpf_map *map, void *value) +{ + return -EOPNOTSUPP; +} + +static long arena_map_push_elem(struct bpf_map *map, void *value, u64 flags) +{ + return -EOPNOTSUPP; +} + +static long arena_map_pop_elem(struct bpf_map *map, void *value) +{ + return -EOPNOTSUPP; +} + +static long arena_map_delete_elem(struct bpf_map *map, void *value) +{ + return -EOPNOTSUPP; +} + +static int arena_map_get_next_key(struct bpf_map *map, void *key, void *next_key) +{ + return -EOPNOTSUPP; +} + +static long compute_pgoff(struct bpf_arena *arena, long uaddr) +{ + return (u32)(uaddr - (u32)arena->user_vm_start) >> PAGE_SHIFT; +} + +static struct bpf_map *arena_map_alloc(union bpf_attr *attr) +{ + struct vm_struct *kern_vm; + int numa_node = bpf_map_attr_numa_node(attr); + struct bpf_arena *arena; + u64 vm_range; + int err = -ENOMEM; + + if (!bpf_jit_supports_arena()) + return ERR_PTR(-EOPNOTSUPP); + + if (attr->key_size || attr->value_size || attr->max_entries == 0 || + /* BPF_F_MMAPABLE must be set */ + !(attr->map_flags & BPF_F_MMAPABLE) || + /* No unsupported flags present */ + (attr->map_flags & ~(BPF_F_SEGV_ON_FAULT | BPF_F_MMAPABLE | BPF_F_NO_USER_CONV))) + return ERR_PTR(-EINVAL); + + if (attr->map_extra & ~PAGE_MASK) + /* If non-zero the map_extra is an expected user VMA start address */ + return ERR_PTR(-EINVAL); + + vm_range = (u64)attr->max_entries * PAGE_SIZE; + if (vm_range > SZ_4G) + return ERR_PTR(-E2BIG); + + if ((attr->map_extra >> 32) != ((attr->map_extra + vm_range - 1) >> 32)) + /* user vma must not cross 32-bit boundary */ + return ERR_PTR(-ERANGE); + + kern_vm = get_vm_area(KERN_VM_SZ, VM_SPARSE | VM_USERMAP); + if (!kern_vm) + return ERR_PTR(-ENOMEM); + + arena = bpf_map_area_alloc(sizeof(*arena), numa_node); + if (!arena) + goto err; + + arena->kern_vm = kern_vm; + arena->user_vm_start = attr->map_extra; + if (arena->user_vm_start) + arena->user_vm_end = arena->user_vm_start + vm_range; + + INIT_LIST_HEAD(&arena->vma_list); + bpf_map_init_from_attr(&arena->map, attr); + range_tree_init(&arena->rt); + err = range_tree_set(&arena->rt, 0, attr->max_entries); + if (err) { + bpf_map_area_free(arena); + goto err; + } + mutex_init(&arena->lock); + + return &arena->map; +err: + free_vm_area(kern_vm); + return ERR_PTR(err); +} + +static int existing_page_cb(pte_t *ptep, unsigned long addr, void *data) +{ + struct page *page; + pte_t pte; + + pte = ptep_get(ptep); + if (!pte_present(pte)) /* sanity check */ + return 0; + page = pte_page(pte); + /* + * We do not update pte here: + * 1. Nobody should be accessing bpf_arena's range outside of a kernel bug + * 2. TLB flushing is batched or deferred. Even if we clear pte, + * the TLB entries can stick around and continue to permit access to + * the freed page. So it all relies on 1. + */ + __free_page(page); + return 0; +} + +static void arena_map_free(struct bpf_map *map) +{ + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + + /* + * Check that user vma-s are not around when bpf map is freed. + * mmap() holds vm_file which holds bpf_map refcnt. + * munmap() must have happened on vma followed by arena_vm_close() + * which would clear arena->vma_list. + */ + if (WARN_ON_ONCE(!list_empty(&arena->vma_list))) + return; + + /* + * free_vm_area() calls remove_vm_area() that calls free_unmap_vmap_area(). + * It unmaps everything from vmalloc area and clears pgtables. + * Call apply_to_existing_page_range() first to find populated ptes and + * free those pages. + */ + apply_to_existing_page_range(&init_mm, bpf_arena_get_kern_vm_start(arena), + KERN_VM_SZ - GUARD_SZ, existing_page_cb, NULL); + free_vm_area(arena->kern_vm); + range_tree_destroy(&arena->rt); + bpf_map_area_free(arena); +} + +static void *arena_map_lookup_elem(struct bpf_map *map, void *key) +{ + return ERR_PTR(-EINVAL); +} + +static long arena_map_update_elem(struct bpf_map *map, void *key, + void *value, u64 flags) +{ + return -EOPNOTSUPP; +} + +static int arena_map_check_btf(const struct bpf_map *map, const struct btf *btf, + const struct btf_type *key_type, const struct btf_type *value_type) +{ + return 0; +} + +static u64 arena_map_mem_usage(const struct bpf_map *map) +{ + return 0; +} + +struct vma_list { + struct vm_area_struct *vma; + struct list_head head; + refcount_t mmap_count; +}; + +static int remember_vma(struct bpf_arena *arena, struct vm_area_struct *vma) +{ + struct vma_list *vml; + + vml = kmalloc(sizeof(*vml), GFP_KERNEL); + if (!vml) + return -ENOMEM; + refcount_set(&vml->mmap_count, 1); + vma->vm_private_data = vml; + vml->vma = vma; + list_add(&vml->head, &arena->vma_list); + return 0; +} + +static void arena_vm_open(struct vm_area_struct *vma) +{ + struct vma_list *vml = vma->vm_private_data; + + refcount_inc(&vml->mmap_count); +} + +static void arena_vm_close(struct vm_area_struct *vma) +{ + struct bpf_map *map = vma->vm_file->private_data; + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + struct vma_list *vml = vma->vm_private_data; + + if (!refcount_dec_and_test(&vml->mmap_count)) + return; + guard(mutex)(&arena->lock); + /* update link list under lock */ + list_del(&vml->head); + vma->vm_private_data = NULL; + kfree(vml); +} + +static vm_fault_t arena_vm_fault(struct vm_fault *vmf) +{ + struct bpf_map *map = vmf->vma->vm_file->private_data; + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + struct page *page; + long kbase, kaddr; + int ret; + + kbase = bpf_arena_get_kern_vm_start(arena); + kaddr = kbase + (u32)(vmf->address); + + guard(mutex)(&arena->lock); + page = vmalloc_to_page((void *)kaddr); + if (page) + /* already have a page vmap-ed */ + goto out; + + if (arena->map.map_flags & BPF_F_SEGV_ON_FAULT) + /* User space requested to segfault when page is not allocated by bpf prog */ + return VM_FAULT_SIGSEGV; + + ret = range_tree_clear(&arena->rt, vmf->pgoff, 1); + if (ret) + return VM_FAULT_SIGSEGV; + + /* Account into memcg of the process that created bpf_arena */ + ret = bpf_map_alloc_pages(map, NUMA_NO_NODE, 1, &page); + if (ret) { + range_tree_set(&arena->rt, vmf->pgoff, 1); + return VM_FAULT_SIGSEGV; + } + + ret = vm_area_map_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE, &page); + if (ret) { + range_tree_set(&arena->rt, vmf->pgoff, 1); + __free_page(page); + return VM_FAULT_SIGSEGV; + } +out: + page_ref_add(page, 1); + vmf->page = page; + return 0; +} + +static const struct vm_operations_struct arena_vm_ops = { + .open = arena_vm_open, + .close = arena_vm_close, + .fault = arena_vm_fault, +}; + +static unsigned long arena_get_unmapped_area(struct file *filp, unsigned long addr, + unsigned long len, unsigned long pgoff, + unsigned long flags) +{ + struct bpf_map *map = filp->private_data; + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + long ret; + + if (pgoff) + return -EINVAL; + if (len > SZ_4G) + return -E2BIG; + + /* if user_vm_start was specified at arena creation time */ + if (arena->user_vm_start) { + if (len > arena->user_vm_end - arena->user_vm_start) + return -E2BIG; + if (len != arena->user_vm_end - arena->user_vm_start) + return -EINVAL; + if (addr != arena->user_vm_start) + return -EINVAL; + } + + ret = mm_get_unmapped_area(filp, addr, len * 2, 0, flags); + if (IS_ERR_VALUE(ret)) + return ret; + if ((ret >> 32) == ((ret + len - 1) >> 32)) + return ret; + if (WARN_ON_ONCE(arena->user_vm_start)) + /* checks at map creation time should prevent this */ + return -EFAULT; + return round_up(ret, SZ_4G); +} + +static int arena_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) +{ + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + + guard(mutex)(&arena->lock); + if (arena->user_vm_start && arena->user_vm_start != vma->vm_start) + /* + * If map_extra was not specified at arena creation time then + * 1st user process can do mmap(NULL, ...) to pick user_vm_start + * 2nd user process must pass the same addr to mmap(addr, MAP_FIXED..); + * or + * specify addr in map_extra and + * use the same addr later with mmap(addr, MAP_FIXED..); + */ + return -EBUSY; + + if (arena->user_vm_end && arena->user_vm_end != vma->vm_end) + /* all user processes must have the same size of mmap-ed region */ + return -EBUSY; + + /* Earlier checks should prevent this */ + if (WARN_ON_ONCE(vma->vm_end - vma->vm_start > SZ_4G || vma->vm_pgoff)) + return -EFAULT; + + if (remember_vma(arena, vma)) + return -ENOMEM; + + arena->user_vm_start = vma->vm_start; + arena->user_vm_end = vma->vm_end; + /* + * bpf_map_mmap() checks that it's being mmaped as VM_SHARED and + * clears VM_MAYEXEC. Set VM_DONTEXPAND as well to avoid + * potential change of user_vm_start. + */ + vm_flags_set(vma, VM_DONTEXPAND); + vma->vm_ops = &arena_vm_ops; + return 0; +} + +static int arena_map_direct_value_addr(const struct bpf_map *map, u64 *imm, u32 off) +{ + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + + if ((u64)off > arena->user_vm_end - arena->user_vm_start) + return -ERANGE; + *imm = (unsigned long)arena->user_vm_start; + return 0; +} + +BTF_ID_LIST_SINGLE(bpf_arena_map_btf_ids, struct, bpf_arena) +const struct bpf_map_ops arena_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc = arena_map_alloc, + .map_free = arena_map_free, + .map_direct_value_addr = arena_map_direct_value_addr, + .map_mmap = arena_map_mmap, + .map_get_unmapped_area = arena_get_unmapped_area, + .map_get_next_key = arena_map_get_next_key, + .map_push_elem = arena_map_push_elem, + .map_peek_elem = arena_map_peek_elem, + .map_pop_elem = arena_map_pop_elem, + .map_lookup_elem = arena_map_lookup_elem, + .map_update_elem = arena_map_update_elem, + .map_delete_elem = arena_map_delete_elem, + .map_check_btf = arena_map_check_btf, + .map_mem_usage = arena_map_mem_usage, + .map_btf_id = &bpf_arena_map_btf_ids[0], +}; + +static u64 clear_lo32(u64 val) +{ + return val & ~(u64)~0U; +} + +/* + * Allocate pages and vmap them into kernel vmalloc area. + * Later the pages will be mmaped into user space vma. + */ +static long arena_alloc_pages(struct bpf_arena *arena, long uaddr, long page_cnt, int node_id) +{ + /* user_vm_end/start are fixed before bpf prog runs */ + long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT; + u64 kern_vm_start = bpf_arena_get_kern_vm_start(arena); + struct page **pages; + long pgoff = 0; + u32 uaddr32; + int ret, i; + + if (page_cnt > page_cnt_max) + return 0; + + if (uaddr) { + if (uaddr & ~PAGE_MASK) + return 0; + pgoff = compute_pgoff(arena, uaddr); + if (pgoff > page_cnt_max - page_cnt) + /* requested address will be outside of user VMA */ + return 0; + } + + /* zeroing is needed, since alloc_pages_bulk() only fills in non-zero entries */ + pages = kvcalloc(page_cnt, sizeof(struct page *), GFP_KERNEL); + if (!pages) + return 0; + + guard(mutex)(&arena->lock); + + if (uaddr) { + ret = is_range_tree_set(&arena->rt, pgoff, page_cnt); + if (ret) + goto out_free_pages; + ret = range_tree_clear(&arena->rt, pgoff, page_cnt); + } else { + ret = pgoff = range_tree_find(&arena->rt, page_cnt); + if (pgoff >= 0) + ret = range_tree_clear(&arena->rt, pgoff, page_cnt); + } + if (ret) + goto out_free_pages; + + ret = bpf_map_alloc_pages(&arena->map, node_id, page_cnt, pages); + if (ret) + goto out; + + uaddr32 = (u32)(arena->user_vm_start + pgoff * PAGE_SIZE); + /* Earlier checks made sure that uaddr32 + page_cnt * PAGE_SIZE - 1 + * will not overflow 32-bit. Lower 32-bit need to represent + * contiguous user address range. + * Map these pages at kern_vm_start base. + * kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE - 1 can overflow + * lower 32-bit and it's ok. + */ + ret = vm_area_map_pages(arena->kern_vm, kern_vm_start + uaddr32, + kern_vm_start + uaddr32 + page_cnt * PAGE_SIZE, pages); + if (ret) { + for (i = 0; i < page_cnt; i++) + __free_page(pages[i]); + goto out; + } + kvfree(pages); + return clear_lo32(arena->user_vm_start) + uaddr32; +out: + range_tree_set(&arena->rt, pgoff, page_cnt); +out_free_pages: + kvfree(pages); + return 0; +} + +/* + * If page is present in vmalloc area, unmap it from vmalloc area, + * unmap it from all user space vma-s, + * and free it. + */ +static void zap_pages(struct bpf_arena *arena, long uaddr, long page_cnt) +{ + struct vma_list *vml; + + list_for_each_entry(vml, &arena->vma_list, head) + zap_page_range_single(vml->vma, uaddr, + PAGE_SIZE * page_cnt, NULL); +} + +static void arena_free_pages(struct bpf_arena *arena, long uaddr, long page_cnt) +{ + u64 full_uaddr, uaddr_end; + long kaddr, pgoff, i; + struct page *page; + + /* only aligned lower 32-bit are relevant */ + uaddr = (u32)uaddr; + uaddr &= PAGE_MASK; + full_uaddr = clear_lo32(arena->user_vm_start) + uaddr; + uaddr_end = min(arena->user_vm_end, full_uaddr + (page_cnt << PAGE_SHIFT)); + if (full_uaddr >= uaddr_end) + return; + + page_cnt = (uaddr_end - full_uaddr) >> PAGE_SHIFT; + + guard(mutex)(&arena->lock); + + pgoff = compute_pgoff(arena, uaddr); + /* clear range */ + range_tree_set(&arena->rt, pgoff, page_cnt); + + if (page_cnt > 1) + /* bulk zap if multiple pages being freed */ + zap_pages(arena, full_uaddr, page_cnt); + + kaddr = bpf_arena_get_kern_vm_start(arena) + uaddr; + for (i = 0; i < page_cnt; i++, kaddr += PAGE_SIZE, full_uaddr += PAGE_SIZE) { + page = vmalloc_to_page((void *)kaddr); + if (!page) + continue; + if (page_cnt == 1 && page_mapped(page)) /* mapped by some user process */ + /* Optimization for the common case of page_cnt==1: + * If page wasn't mapped into some user vma there + * is no need to call zap_pages which is slow. When + * page_cnt is big it's faster to do the batched zap. + */ + zap_pages(arena, full_uaddr, 1); + vm_area_unmap_pages(arena->kern_vm, kaddr, kaddr + PAGE_SIZE); + __free_page(page); + } +} + +/* + * Reserve an arena virtual address range without populating it. This call stops + * bpf_arena_alloc_pages from adding pages to this range. + */ +static int arena_reserve_pages(struct bpf_arena *arena, long uaddr, u32 page_cnt) +{ + long page_cnt_max = (arena->user_vm_end - arena->user_vm_start) >> PAGE_SHIFT; + long pgoff; + int ret; + + if (uaddr & ~PAGE_MASK) + return 0; + + pgoff = compute_pgoff(arena, uaddr); + if (pgoff + page_cnt > page_cnt_max) + return -EINVAL; + + guard(mutex)(&arena->lock); + + /* Cannot guard already allocated pages. */ + ret = is_range_tree_set(&arena->rt, pgoff, page_cnt); + if (ret) + return -EBUSY; + + /* "Allocate" the region to prevent it from being allocated. */ + return range_tree_clear(&arena->rt, pgoff, page_cnt); +} + +__bpf_kfunc_start_defs(); + +__bpf_kfunc void *bpf_arena_alloc_pages(void *p__map, void *addr__ign, u32 page_cnt, + int node_id, u64 flags) +{ + struct bpf_map *map = p__map; + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + + if (map->map_type != BPF_MAP_TYPE_ARENA || flags || !page_cnt) + return NULL; + + return (void *)arena_alloc_pages(arena, (long)addr__ign, page_cnt, node_id); +} + +__bpf_kfunc void bpf_arena_free_pages(void *p__map, void *ptr__ign, u32 page_cnt) +{ + struct bpf_map *map = p__map; + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + + if (map->map_type != BPF_MAP_TYPE_ARENA || !page_cnt || !ptr__ign) + return; + arena_free_pages(arena, (long)ptr__ign, page_cnt); +} + +__bpf_kfunc int bpf_arena_reserve_pages(void *p__map, void *ptr__ign, u32 page_cnt) +{ + struct bpf_map *map = p__map; + struct bpf_arena *arena = container_of(map, struct bpf_arena, map); + + if (map->map_type != BPF_MAP_TYPE_ARENA) + return -EINVAL; + + if (!page_cnt) + return 0; + + return arena_reserve_pages(arena, (long)ptr__ign, page_cnt); +} +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(arena_kfuncs) +BTF_ID_FLAGS(func, bpf_arena_alloc_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE | KF_ARENA_RET | KF_ARENA_ARG2) +BTF_ID_FLAGS(func, bpf_arena_free_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE | KF_ARENA_ARG2) +BTF_ID_FLAGS(func, bpf_arena_reserve_pages, KF_TRUSTED_ARGS | KF_SLEEPABLE | KF_ARENA_ARG2) +BTF_KFUNCS_END(arena_kfuncs) + +static const struct btf_kfunc_id_set common_kfunc_set = { + .owner = THIS_MODULE, + .set = &arena_kfuncs, +}; + +static int __init kfunc_init(void) +{ + return register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); +} +late_initcall(kfunc_init); + +void bpf_prog_report_arena_violation(bool write, unsigned long addr, unsigned long fault_ip) +{ + struct bpf_stream_stage ss; + struct bpf_prog *prog; + u64 user_vm_start; + + /* + * The RCU read lock is held to safely traverse the latch tree, but we + * don't need its protection when accessing the prog, since it will not + * disappear while we are handling the fault. + */ + rcu_read_lock(); + prog = bpf_prog_ksym_find(fault_ip); + rcu_read_unlock(); + if (!prog) + return; + + /* Use main prog for stream access */ + prog = prog->aux->main_prog_aux->prog; + + user_vm_start = bpf_arena_get_user_vm_start(prog->aux->arena); + addr += clear_lo32(user_vm_start); + + bpf_stream_stage(ss, prog, BPF_STDERR, ({ + bpf_stream_printk(ss, "ERROR: Arena %s access at unmapped address 0x%lx\n", + write ? "WRITE" : "READ", addr); + bpf_stream_dump_stack(ss); + })); +} diff --git a/kernel/bpf/arraymap.c b/kernel/bpf/arraymap.c new file mode 100644 index 000000000000..1eeb31c5b317 --- /dev/null +++ b/kernel/bpf/arraymap.c @@ -0,0 +1,1443 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com + * Copyright (c) 2016,2017 Facebook + */ +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/err.h> +#include <linux/slab.h> +#include <linux/mm.h> +#include <linux/filter.h> +#include <linux/perf_event.h> +#include <uapi/linux/btf.h> +#include <linux/rcupdate_trace.h> +#include <linux/btf_ids.h> +#include <crypto/sha2.h> + +#include "map_in_map.h" + +#define ARRAY_CREATE_FLAG_MASK \ + (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \ + BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP) + +static void bpf_array_free_percpu(struct bpf_array *array) +{ + int i; + + for (i = 0; i < array->map.max_entries; i++) { + free_percpu(array->pptrs[i]); + cond_resched(); + } +} + +static int bpf_array_alloc_percpu(struct bpf_array *array) +{ + void __percpu *ptr; + int i; + + for (i = 0; i < array->map.max_entries; i++) { + ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8, + GFP_USER | __GFP_NOWARN); + if (!ptr) { + bpf_array_free_percpu(array); + return -ENOMEM; + } + array->pptrs[i] = ptr; + cond_resched(); + } + + return 0; +} + +/* Called from syscall */ +int array_map_alloc_check(union bpf_attr *attr) +{ + bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; + int numa_node = bpf_map_attr_numa_node(attr); + + /* check sanity of attributes */ + if (attr->max_entries == 0 || attr->key_size != 4 || + attr->value_size == 0 || + attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || + !bpf_map_flags_access_ok(attr->map_flags) || + (percpu && numa_node != NUMA_NO_NODE)) + return -EINVAL; + + if (attr->map_type != BPF_MAP_TYPE_ARRAY && + attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP)) + return -EINVAL; + + if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY && + attr->map_flags & BPF_F_PRESERVE_ELEMS) + return -EINVAL; + + /* avoid overflow on round_up(map->value_size) */ + if (attr->value_size > INT_MAX) + return -E2BIG; + /* percpu map value size is bound by PCPU_MIN_UNIT_SIZE */ + if (percpu && round_up(attr->value_size, 8) > PCPU_MIN_UNIT_SIZE) + return -E2BIG; + + return 0; +} + +static struct bpf_map *array_map_alloc(union bpf_attr *attr) +{ + bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; + int numa_node = bpf_map_attr_numa_node(attr); + u32 elem_size, index_mask, max_entries; + bool bypass_spec_v1 = bpf_bypass_spec_v1(NULL); + u64 array_size, mask64; + struct bpf_array *array; + + elem_size = round_up(attr->value_size, 8); + + max_entries = attr->max_entries; + + /* On 32 bit archs roundup_pow_of_two() with max_entries that has + * upper most bit set in u32 space is undefined behavior due to + * resulting 1U << 32, so do it manually here in u64 space. + */ + mask64 = fls_long(max_entries - 1); + mask64 = 1ULL << mask64; + mask64 -= 1; + + index_mask = mask64; + if (!bypass_spec_v1) { + /* round up array size to nearest power of 2, + * since cpu will speculate within index_mask limits + */ + max_entries = index_mask + 1; + /* Check for overflows. */ + if (max_entries < attr->max_entries) + return ERR_PTR(-E2BIG); + } + + array_size = sizeof(*array); + if (percpu) { + array_size += (u64) max_entries * sizeof(void *); + } else { + /* rely on vmalloc() to return page-aligned memory and + * ensure array->value is exactly page-aligned + */ + if (attr->map_flags & BPF_F_MMAPABLE) { + array_size = PAGE_ALIGN(array_size); + array_size += PAGE_ALIGN((u64) max_entries * elem_size); + } else { + array_size += (u64) max_entries * elem_size; + } + } + + /* allocate all map elements and zero-initialize them */ + if (attr->map_flags & BPF_F_MMAPABLE) { + void *data; + + /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ + data = bpf_map_area_mmapable_alloc(array_size, numa_node); + if (!data) + return ERR_PTR(-ENOMEM); + array = data + PAGE_ALIGN(sizeof(struct bpf_array)) + - offsetof(struct bpf_array, value); + } else { + array = bpf_map_area_alloc(array_size, numa_node); + } + if (!array) + return ERR_PTR(-ENOMEM); + array->index_mask = index_mask; + array->map.bypass_spec_v1 = bypass_spec_v1; + + /* copy mandatory map attributes */ + bpf_map_init_from_attr(&array->map, attr); + array->elem_size = elem_size; + + if (percpu && bpf_array_alloc_percpu(array)) { + bpf_map_area_free(array); + return ERR_PTR(-ENOMEM); + } + + return &array->map; +} + +static void *array_map_elem_ptr(struct bpf_array* array, u32 index) +{ + return array->value + (u64)array->elem_size * index; +} + +/* Called from syscall or from eBPF program */ +static void *array_map_lookup_elem(struct bpf_map *map, void *key) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + u32 index = *(u32 *)key; + + if (unlikely(index >= array->map.max_entries)) + return NULL; + + return array->value + (u64)array->elem_size * (index & array->index_mask); +} + +static int array_map_get_hash(struct bpf_map *map, u32 hash_buf_size, + void *hash_buf) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + + sha256(array->value, (u64)array->elem_size * array->map.max_entries, + hash_buf); + memcpy(array->map.sha, hash_buf, sizeof(array->map.sha)); + return 0; +} + +static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, + u32 off) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + + if (map->max_entries != 1) + return -ENOTSUPP; + if (off >= map->value_size) + return -EINVAL; + + *imm = (unsigned long)array->value; + return 0; +} + +static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, + u32 *off) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + u64 base = (unsigned long)array->value; + u64 range = array->elem_size; + + if (map->max_entries != 1) + return -ENOTSUPP; + if (imm < base || imm >= base + range) + return -ENOENT; + + *off = imm - base; + return 0; +} + +/* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ +static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + struct bpf_insn *insn = insn_buf; + u32 elem_size = array->elem_size; + const int ret = BPF_REG_0; + const int map_ptr = BPF_REG_1; + const int index = BPF_REG_2; + + if (map->map_flags & BPF_F_INNER_MAP) + return -EOPNOTSUPP; + + *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); + *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); + if (!map->bypass_spec_v1) { + *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); + *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); + } else { + *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); + } + + if (is_power_of_2(elem_size)) { + *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); + } else { + *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); + } + *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); + *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); + *insn++ = BPF_MOV64_IMM(ret, 0); + return insn - insn_buf; +} + +/* Called from eBPF program */ +static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + u32 index = *(u32 *)key; + + if (unlikely(index >= array->map.max_entries)) + return NULL; + + return this_cpu_ptr(array->pptrs[index & array->index_mask]); +} + +/* emit BPF instructions equivalent to C code of percpu_array_map_lookup_elem() */ +static int percpu_array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + struct bpf_insn *insn = insn_buf; + + if (!bpf_jit_supports_percpu_insn()) + return -EOPNOTSUPP; + + if (map->map_flags & BPF_F_INNER_MAP) + return -EOPNOTSUPP; + + BUILD_BUG_ON(offsetof(struct bpf_array, map) != 0); + *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, offsetof(struct bpf_array, pptrs)); + + *insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_2, 0); + if (!map->bypass_spec_v1) { + *insn++ = BPF_JMP_IMM(BPF_JGE, BPF_REG_0, map->max_entries, 6); + *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_0, array->index_mask); + } else { + *insn++ = BPF_JMP_IMM(BPF_JGE, BPF_REG_0, map->max_entries, 5); + } + + *insn++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); + *insn++ = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); + *insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0); + *insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); + *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); + *insn++ = BPF_MOV64_IMM(BPF_REG_0, 0); + return insn - insn_buf; +} + +static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + u32 index = *(u32 *)key; + + if (cpu >= nr_cpu_ids) + return NULL; + + if (unlikely(index >= array->map.max_entries)) + return NULL; + + return per_cpu_ptr(array->pptrs[index & array->index_mask], cpu); +} + +int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + u32 index = *(u32 *)key; + void __percpu *pptr; + int cpu, off = 0; + u32 size; + + if (unlikely(index >= array->map.max_entries)) + return -ENOENT; + + /* per_cpu areas are zero-filled and bpf programs can only + * access 'value_size' of them, so copying rounded areas + * will not leak any kernel data + */ + size = array->elem_size; + rcu_read_lock(); + pptr = array->pptrs[index & array->index_mask]; + for_each_possible_cpu(cpu) { + copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); + check_and_init_map_value(map, value + off); + off += size; + } + rcu_read_unlock(); + return 0; +} + +/* Called from syscall */ +int bpf_array_get_next_key(struct bpf_map *map, void *key, void *next_key) +{ + u32 index = key ? *(u32 *)key : U32_MAX; + u32 *next = (u32 *)next_key; + + if (index >= map->max_entries) { + *next = 0; + return 0; + } + + if (index == map->max_entries - 1) + return -ENOENT; + + *next = index + 1; + return 0; +} + +/* Called from syscall or from eBPF program */ +static long array_map_update_elem(struct bpf_map *map, void *key, void *value, + u64 map_flags) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + u32 index = *(u32 *)key; + char *val; + + if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) + /* unknown flags */ + return -EINVAL; + + if (unlikely(index >= array->map.max_entries)) + /* all elements were pre-allocated, cannot insert a new one */ + return -E2BIG; + + if (unlikely(map_flags & BPF_NOEXIST)) + /* all elements already exist */ + return -EEXIST; + + if (unlikely((map_flags & BPF_F_LOCK) && + !btf_record_has_field(map->record, BPF_SPIN_LOCK))) + return -EINVAL; + + if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { + val = this_cpu_ptr(array->pptrs[index & array->index_mask]); + copy_map_value(map, val, value); + bpf_obj_free_fields(array->map.record, val); + } else { + val = array->value + + (u64)array->elem_size * (index & array->index_mask); + if (map_flags & BPF_F_LOCK) + copy_map_value_locked(map, val, value, false); + else + copy_map_value(map, val, value); + bpf_obj_free_fields(array->map.record, val); + } + return 0; +} + +int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, + u64 map_flags) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + u32 index = *(u32 *)key; + void __percpu *pptr; + int cpu, off = 0; + u32 size; + + if (unlikely(map_flags > BPF_EXIST)) + /* unknown flags */ + return -EINVAL; + + if (unlikely(index >= array->map.max_entries)) + /* all elements were pre-allocated, cannot insert a new one */ + return -E2BIG; + + if (unlikely(map_flags == BPF_NOEXIST)) + /* all elements already exist */ + return -EEXIST; + + /* the user space will provide round_up(value_size, 8) bytes that + * will be copied into per-cpu area. bpf programs can only access + * value_size of it. During lookup the same extra bytes will be + * returned or zeros which were zero-filled by percpu_alloc, + * so no kernel data leaks possible + */ + size = array->elem_size; + rcu_read_lock(); + pptr = array->pptrs[index & array->index_mask]; + for_each_possible_cpu(cpu) { + copy_map_value_long(map, per_cpu_ptr(pptr, cpu), value + off); + bpf_obj_free_fields(array->map.record, per_cpu_ptr(pptr, cpu)); + off += size; + } + rcu_read_unlock(); + return 0; +} + +/* Called from syscall or from eBPF program */ +static long array_map_delete_elem(struct bpf_map *map, void *key) +{ + return -EINVAL; +} + +static void *array_map_vmalloc_addr(struct bpf_array *array) +{ + return (void *)round_down((unsigned long)array, PAGE_SIZE); +} + +static void array_map_free_internal_structs(struct bpf_map *map) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + int i; + + /* We only free internal structs on uref dropping to zero */ + if (!bpf_map_has_internal_structs(map)) + return; + + for (i = 0; i < array->map.max_entries; i++) + bpf_map_free_internal_structs(map, array_map_elem_ptr(array, i)); +} + +/* Called when map->refcnt goes to zero, either from workqueue or from syscall */ +static void array_map_free(struct bpf_map *map) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + int i; + + if (!IS_ERR_OR_NULL(map->record)) { + if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { + for (i = 0; i < array->map.max_entries; i++) { + void __percpu *pptr = array->pptrs[i & array->index_mask]; + int cpu; + + for_each_possible_cpu(cpu) { + bpf_obj_free_fields(map->record, per_cpu_ptr(pptr, cpu)); + cond_resched(); + } + } + } else { + for (i = 0; i < array->map.max_entries; i++) + bpf_obj_free_fields(map->record, array_map_elem_ptr(array, i)); + } + } + + if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) + bpf_array_free_percpu(array); + + if (array->map.map_flags & BPF_F_MMAPABLE) + bpf_map_area_free(array_map_vmalloc_addr(array)); + else + bpf_map_area_free(array); +} + +static void array_map_seq_show_elem(struct bpf_map *map, void *key, + struct seq_file *m) +{ + void *value; + + rcu_read_lock(); + + value = array_map_lookup_elem(map, key); + if (!value) { + rcu_read_unlock(); + return; + } + + if (map->btf_key_type_id) + seq_printf(m, "%u: ", *(u32 *)key); + btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); + seq_putc(m, '\n'); + + rcu_read_unlock(); +} + +static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, + struct seq_file *m) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + u32 index = *(u32 *)key; + void __percpu *pptr; + int cpu; + + rcu_read_lock(); + + seq_printf(m, "%u: {\n", *(u32 *)key); + pptr = array->pptrs[index & array->index_mask]; + for_each_possible_cpu(cpu) { + seq_printf(m, "\tcpu%d: ", cpu); + btf_type_seq_show(map->btf, map->btf_value_type_id, + per_cpu_ptr(pptr, cpu), m); + seq_putc(m, '\n'); + } + seq_puts(m, "}\n"); + + rcu_read_unlock(); +} + +static int array_map_check_btf(const struct bpf_map *map, + const struct btf *btf, + const struct btf_type *key_type, + const struct btf_type *value_type) +{ + /* One exception for keyless BTF: .bss/.data/.rodata map */ + if (btf_type_is_void(key_type)) { + if (map->map_type != BPF_MAP_TYPE_ARRAY || + map->max_entries != 1) + return -EINVAL; + + if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) + return -EINVAL; + + return 0; + } + + /* + * Bpf array can only take a u32 key. This check makes sure + * that the btf matches the attr used during map_create. + */ + if (!btf_type_is_i32(key_type)) + return -EINVAL; + + return 0; +} + +static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; + + if (!(map->map_flags & BPF_F_MMAPABLE)) + return -EINVAL; + + if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > + PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) + return -EINVAL; + + return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), + vma->vm_pgoff + pgoff); +} + +static bool array_map_meta_equal(const struct bpf_map *meta0, + const struct bpf_map *meta1) +{ + if (!bpf_map_meta_equal(meta0, meta1)) + return false; + return meta0->map_flags & BPF_F_INNER_MAP ? true : + meta0->max_entries == meta1->max_entries; +} + +struct bpf_iter_seq_array_map_info { + struct bpf_map *map; + void *percpu_value_buf; + u32 index; +}; + +static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos) +{ + struct bpf_iter_seq_array_map_info *info = seq->private; + struct bpf_map *map = info->map; + struct bpf_array *array; + u32 index; + + if (info->index >= map->max_entries) + return NULL; + + if (*pos == 0) + ++*pos; + array = container_of(map, struct bpf_array, map); + index = info->index & array->index_mask; + if (info->percpu_value_buf) + return (void *)(uintptr_t)array->pptrs[index]; + return array_map_elem_ptr(array, index); +} + +static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) +{ + struct bpf_iter_seq_array_map_info *info = seq->private; + struct bpf_map *map = info->map; + struct bpf_array *array; + u32 index; + + ++*pos; + ++info->index; + if (info->index >= map->max_entries) + return NULL; + + array = container_of(map, struct bpf_array, map); + index = info->index & array->index_mask; + if (info->percpu_value_buf) + return (void *)(uintptr_t)array->pptrs[index]; + return array_map_elem_ptr(array, index); +} + +static int __bpf_array_map_seq_show(struct seq_file *seq, void *v) +{ + struct bpf_iter_seq_array_map_info *info = seq->private; + struct bpf_iter__bpf_map_elem ctx = {}; + struct bpf_map *map = info->map; + struct bpf_array *array = container_of(map, struct bpf_array, map); + struct bpf_iter_meta meta; + struct bpf_prog *prog; + int off = 0, cpu = 0; + void __percpu *pptr; + u32 size; + + meta.seq = seq; + prog = bpf_iter_get_info(&meta, v == NULL); + if (!prog) + return 0; + + ctx.meta = &meta; + ctx.map = info->map; + if (v) { + ctx.key = &info->index; + + if (!info->percpu_value_buf) { + ctx.value = v; + } else { + pptr = (void __percpu *)(uintptr_t)v; + size = array->elem_size; + for_each_possible_cpu(cpu) { + copy_map_value_long(map, info->percpu_value_buf + off, + per_cpu_ptr(pptr, cpu)); + check_and_init_map_value(map, info->percpu_value_buf + off); + off += size; + } + ctx.value = info->percpu_value_buf; + } + } + + return bpf_iter_run_prog(prog, &ctx); +} + +static int bpf_array_map_seq_show(struct seq_file *seq, void *v) +{ + return __bpf_array_map_seq_show(seq, v); +} + +static void bpf_array_map_seq_stop(struct seq_file *seq, void *v) +{ + if (!v) + (void)__bpf_array_map_seq_show(seq, NULL); +} + +static int bpf_iter_init_array_map(void *priv_data, + struct bpf_iter_aux_info *aux) +{ + struct bpf_iter_seq_array_map_info *seq_info = priv_data; + struct bpf_map *map = aux->map; + struct bpf_array *array = container_of(map, struct bpf_array, map); + void *value_buf; + u32 buf_size; + + if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { + buf_size = array->elem_size * num_possible_cpus(); + value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); + if (!value_buf) + return -ENOMEM; + + seq_info->percpu_value_buf = value_buf; + } + + /* bpf_iter_attach_map() acquires a map uref, and the uref may be + * released before or in the middle of iterating map elements, so + * acquire an extra map uref for iterator. + */ + bpf_map_inc_with_uref(map); + seq_info->map = map; + return 0; +} + +static void bpf_iter_fini_array_map(void *priv_data) +{ + struct bpf_iter_seq_array_map_info *seq_info = priv_data; + + bpf_map_put_with_uref(seq_info->map); + kfree(seq_info->percpu_value_buf); +} + +static const struct seq_operations bpf_array_map_seq_ops = { + .start = bpf_array_map_seq_start, + .next = bpf_array_map_seq_next, + .stop = bpf_array_map_seq_stop, + .show = bpf_array_map_seq_show, +}; + +static const struct bpf_iter_seq_info iter_seq_info = { + .seq_ops = &bpf_array_map_seq_ops, + .init_seq_private = bpf_iter_init_array_map, + .fini_seq_private = bpf_iter_fini_array_map, + .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info), +}; + +static long bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn, + void *callback_ctx, u64 flags) +{ + u32 i, key, num_elems = 0; + struct bpf_array *array; + bool is_percpu; + u64 ret = 0; + void *val; + + cant_migrate(); + + if (flags != 0) + return -EINVAL; + + is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; + array = container_of(map, struct bpf_array, map); + for (i = 0; i < map->max_entries; i++) { + if (is_percpu) + val = this_cpu_ptr(array->pptrs[i]); + else + val = array_map_elem_ptr(array, i); + num_elems++; + key = i; + ret = callback_fn((u64)(long)map, (u64)(long)&key, + (u64)(long)val, (u64)(long)callback_ctx, 0); + /* return value: 0 - continue, 1 - stop and return */ + if (ret) + break; + } + + return num_elems; +} + +static u64 array_map_mem_usage(const struct bpf_map *map) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + bool percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; + u32 elem_size = array->elem_size; + u64 entries = map->max_entries; + u64 usage = sizeof(*array); + + if (percpu) { + usage += entries * sizeof(void *); + usage += entries * elem_size * num_possible_cpus(); + } else { + if (map->map_flags & BPF_F_MMAPABLE) { + usage = PAGE_ALIGN(usage); + usage += PAGE_ALIGN(entries * elem_size); + } else { + usage += entries * elem_size; + } + } + return usage; +} + +BTF_ID_LIST_SINGLE(array_map_btf_ids, struct, bpf_array) +const struct bpf_map_ops array_map_ops = { + .map_meta_equal = array_map_meta_equal, + .map_alloc_check = array_map_alloc_check, + .map_alloc = array_map_alloc, + .map_free = array_map_free, + .map_get_next_key = bpf_array_get_next_key, + .map_release_uref = array_map_free_internal_structs, + .map_lookup_elem = array_map_lookup_elem, + .map_update_elem = array_map_update_elem, + .map_delete_elem = array_map_delete_elem, + .map_gen_lookup = array_map_gen_lookup, + .map_direct_value_addr = array_map_direct_value_addr, + .map_direct_value_meta = array_map_direct_value_meta, + .map_mmap = array_map_mmap, + .map_seq_show_elem = array_map_seq_show_elem, + .map_check_btf = array_map_check_btf, + .map_lookup_batch = generic_map_lookup_batch, + .map_update_batch = generic_map_update_batch, + .map_set_for_each_callback_args = map_set_for_each_callback_args, + .map_for_each_callback = bpf_for_each_array_elem, + .map_mem_usage = array_map_mem_usage, + .map_btf_id = &array_map_btf_ids[0], + .iter_seq_info = &iter_seq_info, + .map_get_hash = &array_map_get_hash, +}; + +const struct bpf_map_ops percpu_array_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = array_map_alloc_check, + .map_alloc = array_map_alloc, + .map_free = array_map_free, + .map_get_next_key = bpf_array_get_next_key, + .map_lookup_elem = percpu_array_map_lookup_elem, + .map_gen_lookup = percpu_array_map_gen_lookup, + .map_update_elem = array_map_update_elem, + .map_delete_elem = array_map_delete_elem, + .map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem, + .map_seq_show_elem = percpu_array_map_seq_show_elem, + .map_check_btf = array_map_check_btf, + .map_lookup_batch = generic_map_lookup_batch, + .map_update_batch = generic_map_update_batch, + .map_set_for_each_callback_args = map_set_for_each_callback_args, + .map_for_each_callback = bpf_for_each_array_elem, + .map_mem_usage = array_map_mem_usage, + .map_btf_id = &array_map_btf_ids[0], + .iter_seq_info = &iter_seq_info, +}; + +static int fd_array_map_alloc_check(union bpf_attr *attr) +{ + /* only file descriptors can be stored in this type of map */ + if (attr->value_size != sizeof(u32)) + return -EINVAL; + /* Program read-only/write-only not supported for special maps yet. */ + if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) + return -EINVAL; + return array_map_alloc_check(attr); +} + +static void fd_array_map_free(struct bpf_map *map) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + int i; + + /* make sure it's empty */ + for (i = 0; i < array->map.max_entries; i++) + BUG_ON(array->ptrs[i] != NULL); + + bpf_map_area_free(array); +} + +static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) +{ + return ERR_PTR(-EOPNOTSUPP); +} + +/* only called from syscall */ +int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) +{ + void **elem, *ptr; + int ret = 0; + + if (!map->ops->map_fd_sys_lookup_elem) + return -ENOTSUPP; + + rcu_read_lock(); + elem = array_map_lookup_elem(map, key); + if (elem && (ptr = READ_ONCE(*elem))) + *value = map->ops->map_fd_sys_lookup_elem(ptr); + else + ret = -ENOENT; + rcu_read_unlock(); + + return ret; +} + +/* only called from syscall */ +int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, + void *key, void *value, u64 map_flags) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + void *new_ptr, *old_ptr; + u32 index = *(u32 *)key, ufd; + + if (map_flags != BPF_ANY) + return -EINVAL; + + if (index >= array->map.max_entries) + return -E2BIG; + + ufd = *(u32 *)value; + new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); + if (IS_ERR(new_ptr)) + return PTR_ERR(new_ptr); + + if (map->ops->map_poke_run) { + mutex_lock(&array->aux->poke_mutex); + old_ptr = xchg(array->ptrs + index, new_ptr); + map->ops->map_poke_run(map, index, old_ptr, new_ptr); + mutex_unlock(&array->aux->poke_mutex); + } else { + old_ptr = xchg(array->ptrs + index, new_ptr); + } + + if (old_ptr) + map->ops->map_fd_put_ptr(map, old_ptr, true); + return 0; +} + +static long __fd_array_map_delete_elem(struct bpf_map *map, void *key, bool need_defer) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + void *old_ptr; + u32 index = *(u32 *)key; + + if (index >= array->map.max_entries) + return -E2BIG; + + if (map->ops->map_poke_run) { + mutex_lock(&array->aux->poke_mutex); + old_ptr = xchg(array->ptrs + index, NULL); + map->ops->map_poke_run(map, index, old_ptr, NULL); + mutex_unlock(&array->aux->poke_mutex); + } else { + old_ptr = xchg(array->ptrs + index, NULL); + } + + if (old_ptr) { + map->ops->map_fd_put_ptr(map, old_ptr, need_defer); + return 0; + } else { + return -ENOENT; + } +} + +static long fd_array_map_delete_elem(struct bpf_map *map, void *key) +{ + return __fd_array_map_delete_elem(map, key, true); +} + +static void *prog_fd_array_get_ptr(struct bpf_map *map, + struct file *map_file, int fd) +{ + struct bpf_prog *prog = bpf_prog_get(fd); + bool is_extended; + + if (IS_ERR(prog)) + return prog; + + if (prog->type == BPF_PROG_TYPE_EXT || + !bpf_prog_map_compatible(map, prog)) { + bpf_prog_put(prog); + return ERR_PTR(-EINVAL); + } + + mutex_lock(&prog->aux->ext_mutex); + is_extended = prog->aux->is_extended; + if (!is_extended) + prog->aux->prog_array_member_cnt++; + mutex_unlock(&prog->aux->ext_mutex); + if (is_extended) { + /* Extended prog can not be tail callee. It's to prevent a + * potential infinite loop like: + * tail callee prog entry -> tail callee prog subprog -> + * freplace prog entry --tailcall-> tail callee prog entry. + */ + bpf_prog_put(prog); + return ERR_PTR(-EBUSY); + } + + return prog; +} + +static void prog_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) +{ + struct bpf_prog *prog = ptr; + + mutex_lock(&prog->aux->ext_mutex); + prog->aux->prog_array_member_cnt--; + mutex_unlock(&prog->aux->ext_mutex); + /* bpf_prog is freed after one RCU or tasks trace grace period */ + bpf_prog_put(prog); +} + +static u32 prog_fd_array_sys_lookup_elem(void *ptr) +{ + return ((struct bpf_prog *)ptr)->aux->id; +} + +/* decrement refcnt of all bpf_progs that are stored in this map */ +static void bpf_fd_array_map_clear(struct bpf_map *map, bool need_defer) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + int i; + + for (i = 0; i < array->map.max_entries; i++) + __fd_array_map_delete_elem(map, &i, need_defer); +} + +static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, + struct seq_file *m) +{ + void **elem, *ptr; + u32 prog_id; + + rcu_read_lock(); + + elem = array_map_lookup_elem(map, key); + if (elem) { + ptr = READ_ONCE(*elem); + if (ptr) { + seq_printf(m, "%u: ", *(u32 *)key); + prog_id = prog_fd_array_sys_lookup_elem(ptr); + btf_type_seq_show(map->btf, map->btf_value_type_id, + &prog_id, m); + seq_putc(m, '\n'); + } + } + + rcu_read_unlock(); +} + +struct prog_poke_elem { + struct list_head list; + struct bpf_prog_aux *aux; +}; + +static int prog_array_map_poke_track(struct bpf_map *map, + struct bpf_prog_aux *prog_aux) +{ + struct prog_poke_elem *elem; + struct bpf_array_aux *aux; + int ret = 0; + + aux = container_of(map, struct bpf_array, map)->aux; + mutex_lock(&aux->poke_mutex); + list_for_each_entry(elem, &aux->poke_progs, list) { + if (elem->aux == prog_aux) + goto out; + } + + elem = kmalloc(sizeof(*elem), GFP_KERNEL); + if (!elem) { + ret = -ENOMEM; + goto out; + } + + INIT_LIST_HEAD(&elem->list); + /* We must track the program's aux info at this point in time + * since the program pointer itself may not be stable yet, see + * also comment in prog_array_map_poke_run(). + */ + elem->aux = prog_aux; + + list_add_tail(&elem->list, &aux->poke_progs); +out: + mutex_unlock(&aux->poke_mutex); + return ret; +} + +static void prog_array_map_poke_untrack(struct bpf_map *map, + struct bpf_prog_aux *prog_aux) +{ + struct prog_poke_elem *elem, *tmp; + struct bpf_array_aux *aux; + + aux = container_of(map, struct bpf_array, map)->aux; + mutex_lock(&aux->poke_mutex); + list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { + if (elem->aux == prog_aux) { + list_del_init(&elem->list); + kfree(elem); + break; + } + } + mutex_unlock(&aux->poke_mutex); +} + +void __weak bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, + struct bpf_prog *new, struct bpf_prog *old) +{ + WARN_ON_ONCE(1); +} + +static void prog_array_map_poke_run(struct bpf_map *map, u32 key, + struct bpf_prog *old, + struct bpf_prog *new) +{ + struct prog_poke_elem *elem; + struct bpf_array_aux *aux; + + aux = container_of(map, struct bpf_array, map)->aux; + WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); + + list_for_each_entry(elem, &aux->poke_progs, list) { + struct bpf_jit_poke_descriptor *poke; + int i; + + for (i = 0; i < elem->aux->size_poke_tab; i++) { + poke = &elem->aux->poke_tab[i]; + + /* Few things to be aware of: + * + * 1) We can only ever access aux in this context, but + * not aux->prog since it might not be stable yet and + * there could be danger of use after free otherwise. + * 2) Initially when we start tracking aux, the program + * is not JITed yet and also does not have a kallsyms + * entry. We skip these as poke->tailcall_target_stable + * is not active yet. The JIT will do the final fixup + * before setting it stable. The various + * poke->tailcall_target_stable are successively + * activated, so tail call updates can arrive from here + * while JIT is still finishing its final fixup for + * non-activated poke entries. + * 3) Also programs reaching refcount of zero while patching + * is in progress is okay since we're protected under + * poke_mutex and untrack the programs before the JIT + * buffer is freed. + */ + if (!READ_ONCE(poke->tailcall_target_stable)) + continue; + if (poke->reason != BPF_POKE_REASON_TAIL_CALL) + continue; + if (poke->tail_call.map != map || + poke->tail_call.key != key) + continue; + + bpf_arch_poke_desc_update(poke, new, old); + } + } +} + +static void prog_array_map_clear_deferred(struct work_struct *work) +{ + struct bpf_map *map = container_of(work, struct bpf_array_aux, + work)->map; + bpf_fd_array_map_clear(map, true); + bpf_map_put(map); +} + +static void prog_array_map_clear(struct bpf_map *map) +{ + struct bpf_array_aux *aux = container_of(map, struct bpf_array, + map)->aux; + bpf_map_inc(map); + schedule_work(&aux->work); +} + +static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) +{ + struct bpf_array_aux *aux; + struct bpf_map *map; + + aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT); + if (!aux) + return ERR_PTR(-ENOMEM); + + INIT_WORK(&aux->work, prog_array_map_clear_deferred); + INIT_LIST_HEAD(&aux->poke_progs); + mutex_init(&aux->poke_mutex); + + map = array_map_alloc(attr); + if (IS_ERR(map)) { + kfree(aux); + return map; + } + + container_of(map, struct bpf_array, map)->aux = aux; + aux->map = map; + + return map; +} + +static void prog_array_map_free(struct bpf_map *map) +{ + struct prog_poke_elem *elem, *tmp; + struct bpf_array_aux *aux; + + aux = container_of(map, struct bpf_array, map)->aux; + list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { + list_del_init(&elem->list); + kfree(elem); + } + kfree(aux); + fd_array_map_free(map); +} + +/* prog_array->aux->{type,jited} is a runtime binding. + * Doing static check alone in the verifier is not enough. + * Thus, prog_array_map cannot be used as an inner_map + * and map_meta_equal is not implemented. + */ +const struct bpf_map_ops prog_array_map_ops = { + .map_alloc_check = fd_array_map_alloc_check, + .map_alloc = prog_array_map_alloc, + .map_free = prog_array_map_free, + .map_poke_track = prog_array_map_poke_track, + .map_poke_untrack = prog_array_map_poke_untrack, + .map_poke_run = prog_array_map_poke_run, + .map_get_next_key = bpf_array_get_next_key, + .map_lookup_elem = fd_array_map_lookup_elem, + .map_delete_elem = fd_array_map_delete_elem, + .map_fd_get_ptr = prog_fd_array_get_ptr, + .map_fd_put_ptr = prog_fd_array_put_ptr, + .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, + .map_release_uref = prog_array_map_clear, + .map_seq_show_elem = prog_array_map_seq_show_elem, + .map_mem_usage = array_map_mem_usage, + .map_btf_id = &array_map_btf_ids[0], +}; + +static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, + struct file *map_file) +{ + struct bpf_event_entry *ee; + + ee = kzalloc(sizeof(*ee), GFP_KERNEL); + if (ee) { + ee->event = perf_file->private_data; + ee->perf_file = perf_file; + ee->map_file = map_file; + } + + return ee; +} + +static void __bpf_event_entry_free(struct rcu_head *rcu) +{ + struct bpf_event_entry *ee; + + ee = container_of(rcu, struct bpf_event_entry, rcu); + fput(ee->perf_file); + kfree(ee); +} + +static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) +{ + call_rcu(&ee->rcu, __bpf_event_entry_free); +} + +static void *perf_event_fd_array_get_ptr(struct bpf_map *map, + struct file *map_file, int fd) +{ + struct bpf_event_entry *ee; + struct perf_event *event; + struct file *perf_file; + u64 value; + + perf_file = perf_event_get(fd); + if (IS_ERR(perf_file)) + return perf_file; + + ee = ERR_PTR(-EOPNOTSUPP); + event = perf_file->private_data; + if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) + goto err_out; + + ee = bpf_event_entry_gen(perf_file, map_file); + if (ee) + return ee; + ee = ERR_PTR(-ENOMEM); +err_out: + fput(perf_file); + return ee; +} + +static void perf_event_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) +{ + /* bpf_perf_event is freed after one RCU grace period */ + bpf_event_entry_free_rcu(ptr); +} + +static void perf_event_fd_array_release(struct bpf_map *map, + struct file *map_file) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + struct bpf_event_entry *ee; + int i; + + if (map->map_flags & BPF_F_PRESERVE_ELEMS) + return; + + rcu_read_lock(); + for (i = 0; i < array->map.max_entries; i++) { + ee = READ_ONCE(array->ptrs[i]); + if (ee && ee->map_file == map_file) + __fd_array_map_delete_elem(map, &i, true); + } + rcu_read_unlock(); +} + +static void perf_event_fd_array_map_free(struct bpf_map *map) +{ + if (map->map_flags & BPF_F_PRESERVE_ELEMS) + bpf_fd_array_map_clear(map, false); + fd_array_map_free(map); +} + +const struct bpf_map_ops perf_event_array_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = fd_array_map_alloc_check, + .map_alloc = array_map_alloc, + .map_free = perf_event_fd_array_map_free, + .map_get_next_key = bpf_array_get_next_key, + .map_lookup_elem = fd_array_map_lookup_elem, + .map_delete_elem = fd_array_map_delete_elem, + .map_fd_get_ptr = perf_event_fd_array_get_ptr, + .map_fd_put_ptr = perf_event_fd_array_put_ptr, + .map_release = perf_event_fd_array_release, + .map_check_btf = map_check_no_btf, + .map_mem_usage = array_map_mem_usage, + .map_btf_id = &array_map_btf_ids[0], +}; + +#ifdef CONFIG_CGROUPS +static void *cgroup_fd_array_get_ptr(struct bpf_map *map, + struct file *map_file /* not used */, + int fd) +{ + return cgroup_get_from_fd(fd); +} + +static void cgroup_fd_array_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) +{ + /* cgroup_put free cgrp after a rcu grace period */ + cgroup_put(ptr); +} + +static void cgroup_fd_array_free(struct bpf_map *map) +{ + bpf_fd_array_map_clear(map, false); + fd_array_map_free(map); +} + +const struct bpf_map_ops cgroup_array_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = fd_array_map_alloc_check, + .map_alloc = array_map_alloc, + .map_free = cgroup_fd_array_free, + .map_get_next_key = bpf_array_get_next_key, + .map_lookup_elem = fd_array_map_lookup_elem, + .map_delete_elem = fd_array_map_delete_elem, + .map_fd_get_ptr = cgroup_fd_array_get_ptr, + .map_fd_put_ptr = cgroup_fd_array_put_ptr, + .map_check_btf = map_check_no_btf, + .map_mem_usage = array_map_mem_usage, + .map_btf_id = &array_map_btf_ids[0], +}; +#endif + +static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) +{ + struct bpf_map *map, *inner_map_meta; + + inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); + if (IS_ERR(inner_map_meta)) + return inner_map_meta; + + map = array_map_alloc(attr); + if (IS_ERR(map)) { + bpf_map_meta_free(inner_map_meta); + return map; + } + + map->inner_map_meta = inner_map_meta; + + return map; +} + +static void array_of_map_free(struct bpf_map *map) +{ + /* map->inner_map_meta is only accessed by syscall which + * is protected by fdget/fdput. + */ + bpf_map_meta_free(map->inner_map_meta); + bpf_fd_array_map_clear(map, false); + fd_array_map_free(map); +} + +static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) +{ + struct bpf_map **inner_map = array_map_lookup_elem(map, key); + + if (!inner_map) + return NULL; + + return READ_ONCE(*inner_map); +} + +static int array_of_map_gen_lookup(struct bpf_map *map, + struct bpf_insn *insn_buf) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + u32 elem_size = array->elem_size; + struct bpf_insn *insn = insn_buf; + const int ret = BPF_REG_0; + const int map_ptr = BPF_REG_1; + const int index = BPF_REG_2; + + *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); + *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); + if (!map->bypass_spec_v1) { + *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); + *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); + } else { + *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); + } + if (is_power_of_2(elem_size)) + *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); + else + *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); + *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); + *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); + *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); + *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); + *insn++ = BPF_MOV64_IMM(ret, 0); + + return insn - insn_buf; +} + +const struct bpf_map_ops array_of_maps_map_ops = { + .map_alloc_check = fd_array_map_alloc_check, + .map_alloc = array_of_map_alloc, + .map_free = array_of_map_free, + .map_get_next_key = bpf_array_get_next_key, + .map_lookup_elem = array_of_map_lookup_elem, + .map_delete_elem = fd_array_map_delete_elem, + .map_fd_get_ptr = bpf_map_fd_get_ptr, + .map_fd_put_ptr = bpf_map_fd_put_ptr, + .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, + .map_gen_lookup = array_of_map_gen_lookup, + .map_lookup_batch = generic_map_lookup_batch, + .map_update_batch = generic_map_update_batch, + .map_check_btf = map_check_no_btf, + .map_mem_usage = array_map_mem_usage, + .map_btf_id = &array_map_btf_ids[0], +}; diff --git a/kernel/bpf/bloom_filter.c b/kernel/bpf/bloom_filter.c new file mode 100644 index 000000000000..35e1ddca74d2 --- /dev/null +++ b/kernel/bpf/bloom_filter.c @@ -0,0 +1,219 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (c) 2021 Facebook */ + +#include <linux/bitmap.h> +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/err.h> +#include <linux/jhash.h> +#include <linux/random.h> +#include <linux/btf_ids.h> + +#define BLOOM_CREATE_FLAG_MASK \ + (BPF_F_NUMA_NODE | BPF_F_ZERO_SEED | BPF_F_ACCESS_MASK) + +struct bpf_bloom_filter { + struct bpf_map map; + u32 bitset_mask; + u32 hash_seed; + u32 nr_hash_funcs; + unsigned long bitset[]; +}; + +static u32 hash(struct bpf_bloom_filter *bloom, void *value, + u32 value_size, u32 index) +{ + u32 h; + + if (likely(value_size % 4 == 0)) + h = jhash2(value, value_size / 4, bloom->hash_seed + index); + else + h = jhash(value, value_size, bloom->hash_seed + index); + + return h & bloom->bitset_mask; +} + +static long bloom_map_peek_elem(struct bpf_map *map, void *value) +{ + struct bpf_bloom_filter *bloom = + container_of(map, struct bpf_bloom_filter, map); + u32 i, h; + + for (i = 0; i < bloom->nr_hash_funcs; i++) { + h = hash(bloom, value, map->value_size, i); + if (!test_bit(h, bloom->bitset)) + return -ENOENT; + } + + return 0; +} + +static long bloom_map_push_elem(struct bpf_map *map, void *value, u64 flags) +{ + struct bpf_bloom_filter *bloom = + container_of(map, struct bpf_bloom_filter, map); + u32 i, h; + + if (flags != BPF_ANY) + return -EINVAL; + + for (i = 0; i < bloom->nr_hash_funcs; i++) { + h = hash(bloom, value, map->value_size, i); + set_bit(h, bloom->bitset); + } + + return 0; +} + +static long bloom_map_pop_elem(struct bpf_map *map, void *value) +{ + return -EOPNOTSUPP; +} + +static long bloom_map_delete_elem(struct bpf_map *map, void *value) +{ + return -EOPNOTSUPP; +} + +static int bloom_map_get_next_key(struct bpf_map *map, void *key, void *next_key) +{ + return -EOPNOTSUPP; +} + +/* Called from syscall */ +static int bloom_map_alloc_check(union bpf_attr *attr) +{ + if (attr->value_size > KMALLOC_MAX_SIZE) + /* if value_size is bigger, the user space won't be able to + * access the elements. + */ + return -E2BIG; + + return 0; +} + +static struct bpf_map *bloom_map_alloc(union bpf_attr *attr) +{ + u32 bitset_bytes, bitset_mask, nr_hash_funcs, nr_bits; + int numa_node = bpf_map_attr_numa_node(attr); + struct bpf_bloom_filter *bloom; + + if (attr->key_size != 0 || attr->value_size == 0 || + attr->max_entries == 0 || + attr->map_flags & ~BLOOM_CREATE_FLAG_MASK || + !bpf_map_flags_access_ok(attr->map_flags) || + /* The lower 4 bits of map_extra (0xF) specify the number + * of hash functions + */ + (attr->map_extra & ~0xF)) + return ERR_PTR(-EINVAL); + + nr_hash_funcs = attr->map_extra; + if (nr_hash_funcs == 0) + /* Default to using 5 hash functions if unspecified */ + nr_hash_funcs = 5; + + /* For the bloom filter, the optimal bit array size that minimizes the + * false positive probability is n * k / ln(2) where n is the number of + * expected entries in the bloom filter and k is the number of hash + * functions. We use 7 / 5 to approximate 1 / ln(2). + * + * We round this up to the nearest power of two to enable more efficient + * hashing using bitmasks. The bitmask will be the bit array size - 1. + * + * If this overflows a u32, the bit array size will have 2^32 (4 + * GB) bits. + */ + if (check_mul_overflow(attr->max_entries, nr_hash_funcs, &nr_bits) || + check_mul_overflow(nr_bits / 5, (u32)7, &nr_bits) || + nr_bits > (1UL << 31)) { + /* The bit array size is 2^32 bits but to avoid overflowing the + * u32, we use U32_MAX, which will round up to the equivalent + * number of bytes + */ + bitset_bytes = BITS_TO_BYTES(U32_MAX); + bitset_mask = U32_MAX; + } else { + if (nr_bits <= BITS_PER_LONG) + nr_bits = BITS_PER_LONG; + else + nr_bits = roundup_pow_of_two(nr_bits); + bitset_bytes = BITS_TO_BYTES(nr_bits); + bitset_mask = nr_bits - 1; + } + + bitset_bytes = roundup(bitset_bytes, sizeof(unsigned long)); + bloom = bpf_map_area_alloc(sizeof(*bloom) + bitset_bytes, numa_node); + + if (!bloom) + return ERR_PTR(-ENOMEM); + + bpf_map_init_from_attr(&bloom->map, attr); + + bloom->nr_hash_funcs = nr_hash_funcs; + bloom->bitset_mask = bitset_mask; + + if (!(attr->map_flags & BPF_F_ZERO_SEED)) + bloom->hash_seed = get_random_u32(); + + return &bloom->map; +} + +static void bloom_map_free(struct bpf_map *map) +{ + struct bpf_bloom_filter *bloom = + container_of(map, struct bpf_bloom_filter, map); + + bpf_map_area_free(bloom); +} + +static void *bloom_map_lookup_elem(struct bpf_map *map, void *key) +{ + /* The eBPF program should use map_peek_elem instead */ + return ERR_PTR(-EINVAL); +} + +static long bloom_map_update_elem(struct bpf_map *map, void *key, + void *value, u64 flags) +{ + /* The eBPF program should use map_push_elem instead */ + return -EINVAL; +} + +static int bloom_map_check_btf(const struct bpf_map *map, + const struct btf *btf, + const struct btf_type *key_type, + const struct btf_type *value_type) +{ + /* Bloom filter maps are keyless */ + return btf_type_is_void(key_type) ? 0 : -EINVAL; +} + +static u64 bloom_map_mem_usage(const struct bpf_map *map) +{ + struct bpf_bloom_filter *bloom; + u64 bitset_bytes; + + bloom = container_of(map, struct bpf_bloom_filter, map); + bitset_bytes = BITS_TO_BYTES((u64)bloom->bitset_mask + 1); + bitset_bytes = roundup(bitset_bytes, sizeof(unsigned long)); + return sizeof(*bloom) + bitset_bytes; +} + +BTF_ID_LIST_SINGLE(bpf_bloom_map_btf_ids, struct, bpf_bloom_filter) +const struct bpf_map_ops bloom_filter_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = bloom_map_alloc_check, + .map_alloc = bloom_map_alloc, + .map_free = bloom_map_free, + .map_get_next_key = bloom_map_get_next_key, + .map_push_elem = bloom_map_push_elem, + .map_peek_elem = bloom_map_peek_elem, + .map_pop_elem = bloom_map_pop_elem, + .map_lookup_elem = bloom_map_lookup_elem, + .map_update_elem = bloom_map_update_elem, + .map_delete_elem = bloom_map_delete_elem, + .map_check_btf = bloom_map_check_btf, + .map_mem_usage = bloom_map_mem_usage, + .map_btf_id = &bpf_bloom_map_btf_ids[0], +}; diff --git a/kernel/bpf/bpf_cgrp_storage.c b/kernel/bpf/bpf_cgrp_storage.c new file mode 100644 index 000000000000..0687a760974a --- /dev/null +++ b/kernel/bpf/bpf_cgrp_storage.c @@ -0,0 +1,238 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + */ + +#include <linux/types.h> +#include <linux/bpf.h> +#include <linux/bpf_local_storage.h> +#include <uapi/linux/btf.h> +#include <linux/btf_ids.h> + +DEFINE_BPF_STORAGE_CACHE(cgroup_cache); + +static DEFINE_PER_CPU(int, bpf_cgrp_storage_busy); + +static void bpf_cgrp_storage_lock(void) +{ + cant_migrate(); + this_cpu_inc(bpf_cgrp_storage_busy); +} + +static void bpf_cgrp_storage_unlock(void) +{ + this_cpu_dec(bpf_cgrp_storage_busy); +} + +static bool bpf_cgrp_storage_trylock(void) +{ + cant_migrate(); + if (unlikely(this_cpu_inc_return(bpf_cgrp_storage_busy) != 1)) { + this_cpu_dec(bpf_cgrp_storage_busy); + return false; + } + return true; +} + +static struct bpf_local_storage __rcu **cgroup_storage_ptr(void *owner) +{ + struct cgroup *cg = owner; + + return &cg->bpf_cgrp_storage; +} + +void bpf_cgrp_storage_free(struct cgroup *cgroup) +{ + struct bpf_local_storage *local_storage; + + rcu_read_lock_dont_migrate(); + local_storage = rcu_dereference(cgroup->bpf_cgrp_storage); + if (!local_storage) + goto out; + + bpf_cgrp_storage_lock(); + bpf_local_storage_destroy(local_storage); + bpf_cgrp_storage_unlock(); +out: + rcu_read_unlock_migrate(); +} + +static struct bpf_local_storage_data * +cgroup_storage_lookup(struct cgroup *cgroup, struct bpf_map *map, bool cacheit_lockit) +{ + struct bpf_local_storage *cgroup_storage; + struct bpf_local_storage_map *smap; + + cgroup_storage = rcu_dereference_check(cgroup->bpf_cgrp_storage, + bpf_rcu_lock_held()); + if (!cgroup_storage) + return NULL; + + smap = (struct bpf_local_storage_map *)map; + return bpf_local_storage_lookup(cgroup_storage, smap, cacheit_lockit); +} + +static void *bpf_cgrp_storage_lookup_elem(struct bpf_map *map, void *key) +{ + struct bpf_local_storage_data *sdata; + struct cgroup *cgroup; + int fd; + + fd = *(int *)key; + cgroup = cgroup_v1v2_get_from_fd(fd); + if (IS_ERR(cgroup)) + return ERR_CAST(cgroup); + + bpf_cgrp_storage_lock(); + sdata = cgroup_storage_lookup(cgroup, map, true); + bpf_cgrp_storage_unlock(); + cgroup_put(cgroup); + return sdata ? sdata->data : NULL; +} + +static long bpf_cgrp_storage_update_elem(struct bpf_map *map, void *key, + void *value, u64 map_flags) +{ + struct bpf_local_storage_data *sdata; + struct cgroup *cgroup; + int fd; + + fd = *(int *)key; + cgroup = cgroup_v1v2_get_from_fd(fd); + if (IS_ERR(cgroup)) + return PTR_ERR(cgroup); + + bpf_cgrp_storage_lock(); + sdata = bpf_local_storage_update(cgroup, (struct bpf_local_storage_map *)map, + value, map_flags, false, GFP_ATOMIC); + bpf_cgrp_storage_unlock(); + cgroup_put(cgroup); + return PTR_ERR_OR_ZERO(sdata); +} + +static int cgroup_storage_delete(struct cgroup *cgroup, struct bpf_map *map) +{ + struct bpf_local_storage_data *sdata; + + sdata = cgroup_storage_lookup(cgroup, map, false); + if (!sdata) + return -ENOENT; + + bpf_selem_unlink(SELEM(sdata), false); + return 0; +} + +static long bpf_cgrp_storage_delete_elem(struct bpf_map *map, void *key) +{ + struct cgroup *cgroup; + int err, fd; + + fd = *(int *)key; + cgroup = cgroup_v1v2_get_from_fd(fd); + if (IS_ERR(cgroup)) + return PTR_ERR(cgroup); + + bpf_cgrp_storage_lock(); + err = cgroup_storage_delete(cgroup, map); + bpf_cgrp_storage_unlock(); + cgroup_put(cgroup); + return err; +} + +static int notsupp_get_next_key(struct bpf_map *map, void *key, void *next_key) +{ + return -ENOTSUPP; +} + +static struct bpf_map *cgroup_storage_map_alloc(union bpf_attr *attr) +{ + return bpf_local_storage_map_alloc(attr, &cgroup_cache, true); +} + +static void cgroup_storage_map_free(struct bpf_map *map) +{ + bpf_local_storage_map_free(map, &cgroup_cache, &bpf_cgrp_storage_busy); +} + +/* *gfp_flags* is a hidden argument provided by the verifier */ +BPF_CALL_5(bpf_cgrp_storage_get, struct bpf_map *, map, struct cgroup *, cgroup, + void *, value, u64, flags, gfp_t, gfp_flags) +{ + struct bpf_local_storage_data *sdata; + bool nobusy; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + if (flags & ~(BPF_LOCAL_STORAGE_GET_F_CREATE)) + return (unsigned long)NULL; + + if (!cgroup) + return (unsigned long)NULL; + + nobusy = bpf_cgrp_storage_trylock(); + + sdata = cgroup_storage_lookup(cgroup, map, nobusy); + if (sdata) + goto unlock; + + /* only allocate new storage, when the cgroup is refcounted */ + if (!percpu_ref_is_dying(&cgroup->self.refcnt) && + (flags & BPF_LOCAL_STORAGE_GET_F_CREATE) && nobusy) + sdata = bpf_local_storage_update(cgroup, (struct bpf_local_storage_map *)map, + value, BPF_NOEXIST, false, gfp_flags); + +unlock: + if (nobusy) + bpf_cgrp_storage_unlock(); + return IS_ERR_OR_NULL(sdata) ? (unsigned long)NULL : (unsigned long)sdata->data; +} + +BPF_CALL_2(bpf_cgrp_storage_delete, struct bpf_map *, map, struct cgroup *, cgroup) +{ + int ret; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + if (!cgroup) + return -EINVAL; + + if (!bpf_cgrp_storage_trylock()) + return -EBUSY; + + ret = cgroup_storage_delete(cgroup, map); + bpf_cgrp_storage_unlock(); + return ret; +} + +const struct bpf_map_ops cgrp_storage_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = bpf_local_storage_map_alloc_check, + .map_alloc = cgroup_storage_map_alloc, + .map_free = cgroup_storage_map_free, + .map_get_next_key = notsupp_get_next_key, + .map_lookup_elem = bpf_cgrp_storage_lookup_elem, + .map_update_elem = bpf_cgrp_storage_update_elem, + .map_delete_elem = bpf_cgrp_storage_delete_elem, + .map_check_btf = bpf_local_storage_map_check_btf, + .map_mem_usage = bpf_local_storage_map_mem_usage, + .map_btf_id = &bpf_local_storage_map_btf_id[0], + .map_owner_storage_ptr = cgroup_storage_ptr, +}; + +const struct bpf_func_proto bpf_cgrp_storage_get_proto = { + .func = bpf_cgrp_storage_get, + .gpl_only = false, + .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL, + .arg2_btf_id = &bpf_cgroup_btf_id[0], + .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, + .arg4_type = ARG_ANYTHING, +}; + +const struct bpf_func_proto bpf_cgrp_storage_delete_proto = { + .func = bpf_cgrp_storage_delete, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL, + .arg2_btf_id = &bpf_cgroup_btf_id[0], +}; diff --git a/kernel/bpf/bpf_inode_storage.c b/kernel/bpf/bpf_inode_storage.c new file mode 100644 index 000000000000..e54cce2b9175 --- /dev/null +++ b/kernel/bpf/bpf_inode_storage.c @@ -0,0 +1,227 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2019 Facebook + * Copyright 2020 Google LLC. + */ + +#include <linux/rculist.h> +#include <linux/list.h> +#include <linux/hash.h> +#include <linux/types.h> +#include <linux/spinlock.h> +#include <linux/bpf.h> +#include <linux/bpf_local_storage.h> +#include <net/sock.h> +#include <uapi/linux/sock_diag.h> +#include <uapi/linux/btf.h> +#include <linux/bpf_lsm.h> +#include <linux/btf_ids.h> +#include <linux/rcupdate_trace.h> + +DEFINE_BPF_STORAGE_CACHE(inode_cache); + +static struct bpf_local_storage __rcu ** +inode_storage_ptr(void *owner) +{ + struct inode *inode = owner; + struct bpf_storage_blob *bsb; + + bsb = bpf_inode(inode); + if (!bsb) + return NULL; + return &bsb->storage; +} + +static struct bpf_local_storage_data *inode_storage_lookup(struct inode *inode, + struct bpf_map *map, + bool cacheit_lockit) +{ + struct bpf_local_storage *inode_storage; + struct bpf_local_storage_map *smap; + struct bpf_storage_blob *bsb; + + bsb = bpf_inode(inode); + if (!bsb) + return NULL; + + inode_storage = + rcu_dereference_check(bsb->storage, bpf_rcu_lock_held()); + if (!inode_storage) + return NULL; + + smap = (struct bpf_local_storage_map *)map; + return bpf_local_storage_lookup(inode_storage, smap, cacheit_lockit); +} + +void bpf_inode_storage_free(struct inode *inode) +{ + struct bpf_local_storage *local_storage; + struct bpf_storage_blob *bsb; + + bsb = bpf_inode(inode); + if (!bsb) + return; + + rcu_read_lock_dont_migrate(); + + local_storage = rcu_dereference(bsb->storage); + if (!local_storage) + goto out; + + bpf_local_storage_destroy(local_storage); +out: + rcu_read_unlock_migrate(); +} + +static void *bpf_fd_inode_storage_lookup_elem(struct bpf_map *map, void *key) +{ + struct bpf_local_storage_data *sdata; + CLASS(fd_raw, f)(*(int *)key); + + if (fd_empty(f)) + return ERR_PTR(-EBADF); + + sdata = inode_storage_lookup(file_inode(fd_file(f)), map, true); + return sdata ? sdata->data : NULL; +} + +static long bpf_fd_inode_storage_update_elem(struct bpf_map *map, void *key, + void *value, u64 map_flags) +{ + struct bpf_local_storage_data *sdata; + CLASS(fd_raw, f)(*(int *)key); + + if (fd_empty(f)) + return -EBADF; + if (!inode_storage_ptr(file_inode(fd_file(f)))) + return -EBADF; + + sdata = bpf_local_storage_update(file_inode(fd_file(f)), + (struct bpf_local_storage_map *)map, + value, map_flags, false, GFP_ATOMIC); + return PTR_ERR_OR_ZERO(sdata); +} + +static int inode_storage_delete(struct inode *inode, struct bpf_map *map) +{ + struct bpf_local_storage_data *sdata; + + sdata = inode_storage_lookup(inode, map, false); + if (!sdata) + return -ENOENT; + + bpf_selem_unlink(SELEM(sdata), false); + + return 0; +} + +static long bpf_fd_inode_storage_delete_elem(struct bpf_map *map, void *key) +{ + CLASS(fd_raw, f)(*(int *)key); + + if (fd_empty(f)) + return -EBADF; + return inode_storage_delete(file_inode(fd_file(f)), map); +} + +/* *gfp_flags* is a hidden argument provided by the verifier */ +BPF_CALL_5(bpf_inode_storage_get, struct bpf_map *, map, struct inode *, inode, + void *, value, u64, flags, gfp_t, gfp_flags) +{ + struct bpf_local_storage_data *sdata; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + if (flags & ~(BPF_LOCAL_STORAGE_GET_F_CREATE)) + return (unsigned long)NULL; + + /* explicitly check that the inode_storage_ptr is not + * NULL as inode_storage_lookup returns NULL in this case and + * bpf_local_storage_update expects the owner to have a + * valid storage pointer. + */ + if (!inode || !inode_storage_ptr(inode)) + return (unsigned long)NULL; + + sdata = inode_storage_lookup(inode, map, true); + if (sdata) + return (unsigned long)sdata->data; + + /* This helper must only called from where the inode is guaranteed + * to have a refcount and cannot be freed. + */ + if (flags & BPF_LOCAL_STORAGE_GET_F_CREATE) { + sdata = bpf_local_storage_update( + inode, (struct bpf_local_storage_map *)map, value, + BPF_NOEXIST, false, gfp_flags); + return IS_ERR(sdata) ? (unsigned long)NULL : + (unsigned long)sdata->data; + } + + return (unsigned long)NULL; +} + +BPF_CALL_2(bpf_inode_storage_delete, + struct bpf_map *, map, struct inode *, inode) +{ + WARN_ON_ONCE(!bpf_rcu_lock_held()); + if (!inode) + return -EINVAL; + + /* This helper must only called from where the inode is guaranteed + * to have a refcount and cannot be freed. + */ + return inode_storage_delete(inode, map); +} + +static int notsupp_get_next_key(struct bpf_map *map, void *key, + void *next_key) +{ + return -ENOTSUPP; +} + +static struct bpf_map *inode_storage_map_alloc(union bpf_attr *attr) +{ + return bpf_local_storage_map_alloc(attr, &inode_cache, false); +} + +static void inode_storage_map_free(struct bpf_map *map) +{ + bpf_local_storage_map_free(map, &inode_cache, NULL); +} + +const struct bpf_map_ops inode_storage_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = bpf_local_storage_map_alloc_check, + .map_alloc = inode_storage_map_alloc, + .map_free = inode_storage_map_free, + .map_get_next_key = notsupp_get_next_key, + .map_lookup_elem = bpf_fd_inode_storage_lookup_elem, + .map_update_elem = bpf_fd_inode_storage_update_elem, + .map_delete_elem = bpf_fd_inode_storage_delete_elem, + .map_check_btf = bpf_local_storage_map_check_btf, + .map_mem_usage = bpf_local_storage_map_mem_usage, + .map_btf_id = &bpf_local_storage_map_btf_id[0], + .map_owner_storage_ptr = inode_storage_ptr, +}; + +BTF_ID_LIST_SINGLE(bpf_inode_storage_btf_ids, struct, inode) + +const struct bpf_func_proto bpf_inode_storage_get_proto = { + .func = bpf_inode_storage_get, + .gpl_only = false, + .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL, + .arg2_btf_id = &bpf_inode_storage_btf_ids[0], + .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, + .arg4_type = ARG_ANYTHING, +}; + +const struct bpf_func_proto bpf_inode_storage_delete_proto = { + .func = bpf_inode_storage_delete, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL, + .arg2_btf_id = &bpf_inode_storage_btf_ids[0], +}; diff --git a/kernel/bpf/bpf_insn_array.c b/kernel/bpf/bpf_insn_array.c new file mode 100644 index 000000000000..c96630cb75bf --- /dev/null +++ b/kernel/bpf/bpf_insn_array.c @@ -0,0 +1,304 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2025 Isovalent */ + +#include <linux/bpf.h> + +struct bpf_insn_array { + struct bpf_map map; + atomic_t used; + long *ips; + DECLARE_FLEX_ARRAY(struct bpf_insn_array_value, values); +}; + +#define cast_insn_array(MAP_PTR) \ + container_of((MAP_PTR), struct bpf_insn_array, map) + +#define INSN_DELETED ((u32)-1) + +static inline u64 insn_array_alloc_size(u32 max_entries) +{ + const u64 base_size = sizeof(struct bpf_insn_array); + const u64 entry_size = sizeof(struct bpf_insn_array_value); + + return base_size + max_entries * (entry_size + sizeof(long)); +} + +static int insn_array_alloc_check(union bpf_attr *attr) +{ + u32 value_size = sizeof(struct bpf_insn_array_value); + + if (attr->max_entries == 0 || attr->key_size != 4 || + attr->value_size != value_size || attr->map_flags != 0) + return -EINVAL; + + return 0; +} + +static void insn_array_free(struct bpf_map *map) +{ + struct bpf_insn_array *insn_array = cast_insn_array(map); + + bpf_map_area_free(insn_array); +} + +static struct bpf_map *insn_array_alloc(union bpf_attr *attr) +{ + u64 size = insn_array_alloc_size(attr->max_entries); + struct bpf_insn_array *insn_array; + + insn_array = bpf_map_area_alloc(size, NUMA_NO_NODE); + if (!insn_array) + return ERR_PTR(-ENOMEM); + + /* ips are allocated right after the insn_array->values[] array */ + insn_array->ips = (void *)&insn_array->values[attr->max_entries]; + + bpf_map_init_from_attr(&insn_array->map, attr); + + /* BPF programs aren't allowed to write to the map */ + insn_array->map.map_flags |= BPF_F_RDONLY_PROG; + + return &insn_array->map; +} + +static void *insn_array_lookup_elem(struct bpf_map *map, void *key) +{ + struct bpf_insn_array *insn_array = cast_insn_array(map); + u32 index = *(u32 *)key; + + if (unlikely(index >= insn_array->map.max_entries)) + return NULL; + + return &insn_array->values[index]; +} + +static long insn_array_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) +{ + struct bpf_insn_array *insn_array = cast_insn_array(map); + u32 index = *(u32 *)key; + struct bpf_insn_array_value val = {}; + + if (unlikely(index >= insn_array->map.max_entries)) + return -E2BIG; + + if (unlikely(map_flags & BPF_NOEXIST)) + return -EEXIST; + + copy_map_value(map, &val, value); + if (val.jitted_off || val.xlated_off) + return -EINVAL; + + insn_array->values[index].orig_off = val.orig_off; + + return 0; +} + +static long insn_array_delete_elem(struct bpf_map *map, void *key) +{ + return -EINVAL; +} + +static int insn_array_check_btf(const struct bpf_map *map, + const struct btf *btf, + const struct btf_type *key_type, + const struct btf_type *value_type) +{ + if (!btf_type_is_i32(key_type)) + return -EINVAL; + + if (!btf_type_is_i64(value_type)) + return -EINVAL; + + return 0; +} + +static u64 insn_array_mem_usage(const struct bpf_map *map) +{ + return insn_array_alloc_size(map->max_entries); +} + +static int insn_array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, u32 off) +{ + struct bpf_insn_array *insn_array = cast_insn_array(map); + + if ((off % sizeof(long)) != 0 || + (off / sizeof(long)) >= map->max_entries) + return -EINVAL; + + /* from BPF's point of view, this map is a jump table */ + *imm = (unsigned long)insn_array->ips + off; + + return 0; +} + +BTF_ID_LIST_SINGLE(insn_array_btf_ids, struct, bpf_insn_array) + +const struct bpf_map_ops insn_array_map_ops = { + .map_alloc_check = insn_array_alloc_check, + .map_alloc = insn_array_alloc, + .map_free = insn_array_free, + .map_get_next_key = bpf_array_get_next_key, + .map_lookup_elem = insn_array_lookup_elem, + .map_update_elem = insn_array_update_elem, + .map_delete_elem = insn_array_delete_elem, + .map_check_btf = insn_array_check_btf, + .map_mem_usage = insn_array_mem_usage, + .map_direct_value_addr = insn_array_map_direct_value_addr, + .map_btf_id = &insn_array_btf_ids[0], +}; + +static inline bool is_frozen(struct bpf_map *map) +{ + guard(mutex)(&map->freeze_mutex); + + return map->frozen; +} + +static bool is_insn_array(const struct bpf_map *map) +{ + return map->map_type == BPF_MAP_TYPE_INSN_ARRAY; +} + +static inline bool valid_offsets(const struct bpf_insn_array *insn_array, + const struct bpf_prog *prog) +{ + u32 off; + int i; + + for (i = 0; i < insn_array->map.max_entries; i++) { + off = insn_array->values[i].orig_off; + + if (off >= prog->len) + return false; + + if (off > 0) { + if (prog->insnsi[off-1].code == (BPF_LD | BPF_DW | BPF_IMM)) + return false; + } + } + + return true; +} + +int bpf_insn_array_init(struct bpf_map *map, const struct bpf_prog *prog) +{ + struct bpf_insn_array *insn_array = cast_insn_array(map); + struct bpf_insn_array_value *values = insn_array->values; + int i; + + if (!is_frozen(map)) + return -EINVAL; + + if (!valid_offsets(insn_array, prog)) + return -EINVAL; + + /* + * There can be only one program using the map + */ + if (atomic_xchg(&insn_array->used, 1)) + return -EBUSY; + + /* + * Reset all the map indexes to the original values. This is needed, + * e.g., when a replay of verification with different log level should + * be performed. + */ + for (i = 0; i < map->max_entries; i++) + values[i].xlated_off = values[i].orig_off; + + return 0; +} + +int bpf_insn_array_ready(struct bpf_map *map) +{ + struct bpf_insn_array *insn_array = cast_insn_array(map); + int i; + + for (i = 0; i < map->max_entries; i++) { + if (insn_array->values[i].xlated_off == INSN_DELETED) + continue; + if (!insn_array->ips[i]) + return -EFAULT; + } + + return 0; +} + +void bpf_insn_array_release(struct bpf_map *map) +{ + struct bpf_insn_array *insn_array = cast_insn_array(map); + + atomic_set(&insn_array->used, 0); +} + +void bpf_insn_array_adjust(struct bpf_map *map, u32 off, u32 len) +{ + struct bpf_insn_array *insn_array = cast_insn_array(map); + int i; + + if (len <= 1) + return; + + for (i = 0; i < map->max_entries; i++) { + if (insn_array->values[i].xlated_off <= off) + continue; + if (insn_array->values[i].xlated_off == INSN_DELETED) + continue; + insn_array->values[i].xlated_off += len - 1; + } +} + +void bpf_insn_array_adjust_after_remove(struct bpf_map *map, u32 off, u32 len) +{ + struct bpf_insn_array *insn_array = cast_insn_array(map); + int i; + + for (i = 0; i < map->max_entries; i++) { + if (insn_array->values[i].xlated_off < off) + continue; + if (insn_array->values[i].xlated_off == INSN_DELETED) + continue; + if (insn_array->values[i].xlated_off < off + len) + insn_array->values[i].xlated_off = INSN_DELETED; + else + insn_array->values[i].xlated_off -= len; + } +} + +/* + * This function is called by JITs. The image is the real program + * image, the offsets array set up the xlated -> jitted mapping. + * The offsets[xlated] offset should point to the beginning of + * the jitted instruction. + */ +void bpf_prog_update_insn_ptrs(struct bpf_prog *prog, u32 *offsets, void *image) +{ + struct bpf_insn_array *insn_array; + struct bpf_map *map; + u32 xlated_off; + int i, j; + + if (!offsets || !image) + return; + + for (i = 0; i < prog->aux->used_map_cnt; i++) { + map = prog->aux->used_maps[i]; + if (!is_insn_array(map)) + continue; + + insn_array = cast_insn_array(map); + for (j = 0; j < map->max_entries; j++) { + xlated_off = insn_array->values[j].xlated_off; + if (xlated_off == INSN_DELETED) + continue; + if (xlated_off < prog->aux->subprog_start) + continue; + xlated_off -= prog->aux->subprog_start; + if (xlated_off >= prog->len) + continue; + + insn_array->values[j].jitted_off = offsets[xlated_off]; + insn_array->ips[j] = (long)(image + offsets[xlated_off]); + } + } +} diff --git a/kernel/bpf/bpf_iter.c b/kernel/bpf/bpf_iter.c new file mode 100644 index 000000000000..eec60b57bd3d --- /dev/null +++ b/kernel/bpf/bpf_iter.c @@ -0,0 +1,827 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2020 Facebook */ + +#include <linux/fs.h> +#include <linux/anon_inodes.h> +#include <linux/filter.h> +#include <linux/bpf.h> +#include <linux/rcupdate_trace.h> + +struct bpf_iter_target_info { + struct list_head list; + const struct bpf_iter_reg *reg_info; + u32 btf_id; /* cached value */ +}; + +struct bpf_iter_link { + struct bpf_link link; + struct bpf_iter_aux_info aux; + struct bpf_iter_target_info *tinfo; +}; + +struct bpf_iter_priv_data { + struct bpf_iter_target_info *tinfo; + const struct bpf_iter_seq_info *seq_info; + struct bpf_prog *prog; + u64 session_id; + u64 seq_num; + bool done_stop; + u8 target_private[] __aligned(8); +}; + +static struct list_head targets = LIST_HEAD_INIT(targets); +static DEFINE_MUTEX(targets_mutex); + +/* protect bpf_iter_link changes */ +static DEFINE_MUTEX(link_mutex); + +/* incremented on every opened seq_file */ +static atomic64_t session_id; + +static int prepare_seq_file(struct file *file, struct bpf_iter_link *link); + +static void bpf_iter_inc_seq_num(struct seq_file *seq) +{ + struct bpf_iter_priv_data *iter_priv; + + iter_priv = container_of(seq->private, struct bpf_iter_priv_data, + target_private); + iter_priv->seq_num++; +} + +static void bpf_iter_dec_seq_num(struct seq_file *seq) +{ + struct bpf_iter_priv_data *iter_priv; + + iter_priv = container_of(seq->private, struct bpf_iter_priv_data, + target_private); + iter_priv->seq_num--; +} + +static void bpf_iter_done_stop(struct seq_file *seq) +{ + struct bpf_iter_priv_data *iter_priv; + + iter_priv = container_of(seq->private, struct bpf_iter_priv_data, + target_private); + iter_priv->done_stop = true; +} + +static inline bool bpf_iter_target_support_resched(const struct bpf_iter_target_info *tinfo) +{ + return tinfo->reg_info->feature & BPF_ITER_RESCHED; +} + +static bool bpf_iter_support_resched(struct seq_file *seq) +{ + struct bpf_iter_priv_data *iter_priv; + + iter_priv = container_of(seq->private, struct bpf_iter_priv_data, + target_private); + return bpf_iter_target_support_resched(iter_priv->tinfo); +} + +/* maximum visited objects before bailing out */ +#define MAX_ITER_OBJECTS 1000000 + +/* bpf_seq_read, a customized and simpler version for bpf iterator. + * The following are differences from seq_read(): + * . fixed buffer size (PAGE_SIZE) + * . assuming NULL ->llseek() + * . stop() may call bpf program, handling potential overflow there + */ +static ssize_t bpf_seq_read(struct file *file, char __user *buf, size_t size, + loff_t *ppos) +{ + struct seq_file *seq = file->private_data; + size_t n, offs, copied = 0; + int err = 0, num_objs = 0; + bool can_resched; + void *p; + + mutex_lock(&seq->lock); + + if (!seq->buf) { + seq->size = PAGE_SIZE << 3; + seq->buf = kvmalloc(seq->size, GFP_KERNEL); + if (!seq->buf) { + err = -ENOMEM; + goto done; + } + } + + if (seq->count) { + n = min(seq->count, size); + err = copy_to_user(buf, seq->buf + seq->from, n); + if (err) { + err = -EFAULT; + goto done; + } + seq->count -= n; + seq->from += n; + copied = n; + goto done; + } + + seq->from = 0; + p = seq->op->start(seq, &seq->index); + if (!p) + goto stop; + if (IS_ERR(p)) { + err = PTR_ERR(p); + seq->op->stop(seq, p); + seq->count = 0; + goto done; + } + + err = seq->op->show(seq, p); + if (err > 0) { + /* object is skipped, decrease seq_num, so next + * valid object can reuse the same seq_num. + */ + bpf_iter_dec_seq_num(seq); + seq->count = 0; + } else if (err < 0 || seq_has_overflowed(seq)) { + if (!err) + err = -E2BIG; + seq->op->stop(seq, p); + seq->count = 0; + goto done; + } + + can_resched = bpf_iter_support_resched(seq); + while (1) { + loff_t pos = seq->index; + + num_objs++; + offs = seq->count; + p = seq->op->next(seq, p, &seq->index); + if (pos == seq->index) { + pr_info_ratelimited("buggy seq_file .next function %ps " + "did not updated position index\n", + seq->op->next); + seq->index++; + } + + if (IS_ERR_OR_NULL(p)) + break; + + /* got a valid next object, increase seq_num */ + bpf_iter_inc_seq_num(seq); + + if (seq->count >= size) + break; + + if (num_objs >= MAX_ITER_OBJECTS) { + if (offs == 0) { + err = -EAGAIN; + seq->op->stop(seq, p); + goto done; + } + break; + } + + err = seq->op->show(seq, p); + if (err > 0) { + bpf_iter_dec_seq_num(seq); + seq->count = offs; + } else if (err < 0 || seq_has_overflowed(seq)) { + seq->count = offs; + if (offs == 0) { + if (!err) + err = -E2BIG; + seq->op->stop(seq, p); + goto done; + } + break; + } + + if (can_resched) + cond_resched(); + } +stop: + offs = seq->count; + if (IS_ERR(p)) { + seq->op->stop(seq, NULL); + err = PTR_ERR(p); + goto done; + } + /* bpf program called if !p */ + seq->op->stop(seq, p); + if (!p) { + if (!seq_has_overflowed(seq)) { + bpf_iter_done_stop(seq); + } else { + seq->count = offs; + if (offs == 0) { + err = -E2BIG; + goto done; + } + } + } + + n = min(seq->count, size); + err = copy_to_user(buf, seq->buf, n); + if (err) { + err = -EFAULT; + goto done; + } + copied = n; + seq->count -= n; + seq->from = n; +done: + if (!copied) + copied = err; + else + *ppos += copied; + mutex_unlock(&seq->lock); + return copied; +} + +static const struct bpf_iter_seq_info * +__get_seq_info(struct bpf_iter_link *link) +{ + const struct bpf_iter_seq_info *seq_info; + + if (link->aux.map) { + seq_info = link->aux.map->ops->iter_seq_info; + if (seq_info) + return seq_info; + } + + return link->tinfo->reg_info->seq_info; +} + +static int iter_open(struct inode *inode, struct file *file) +{ + struct bpf_iter_link *link = inode->i_private; + + return prepare_seq_file(file, link); +} + +static int iter_release(struct inode *inode, struct file *file) +{ + struct bpf_iter_priv_data *iter_priv; + struct seq_file *seq; + + seq = file->private_data; + if (!seq) + return 0; + + iter_priv = container_of(seq->private, struct bpf_iter_priv_data, + target_private); + + if (iter_priv->seq_info->fini_seq_private) + iter_priv->seq_info->fini_seq_private(seq->private); + + bpf_prog_put(iter_priv->prog); + seq->private = iter_priv; + + return seq_release_private(inode, file); +} + +const struct file_operations bpf_iter_fops = { + .open = iter_open, + .read = bpf_seq_read, + .release = iter_release, +}; + +/* The argument reg_info will be cached in bpf_iter_target_info. + * The common practice is to declare target reg_info as + * a const static variable and passed as an argument to + * bpf_iter_reg_target(). + */ +int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info) +{ + struct bpf_iter_target_info *tinfo; + + tinfo = kzalloc(sizeof(*tinfo), GFP_KERNEL); + if (!tinfo) + return -ENOMEM; + + tinfo->reg_info = reg_info; + INIT_LIST_HEAD(&tinfo->list); + + mutex_lock(&targets_mutex); + list_add(&tinfo->list, &targets); + mutex_unlock(&targets_mutex); + + return 0; +} + +void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info) +{ + struct bpf_iter_target_info *tinfo; + bool found = false; + + mutex_lock(&targets_mutex); + list_for_each_entry(tinfo, &targets, list) { + if (reg_info == tinfo->reg_info) { + list_del(&tinfo->list); + kfree(tinfo); + found = true; + break; + } + } + mutex_unlock(&targets_mutex); + + WARN_ON(found == false); +} + +static void cache_btf_id(struct bpf_iter_target_info *tinfo, + struct bpf_prog *prog) +{ + tinfo->btf_id = prog->aux->attach_btf_id; +} + +int bpf_iter_prog_supported(struct bpf_prog *prog) +{ + const char *attach_fname = prog->aux->attach_func_name; + struct bpf_iter_target_info *tinfo = NULL, *iter; + u32 prog_btf_id = prog->aux->attach_btf_id; + const char *prefix = BPF_ITER_FUNC_PREFIX; + int prefix_len = strlen(prefix); + + if (strncmp(attach_fname, prefix, prefix_len)) + return -EINVAL; + + mutex_lock(&targets_mutex); + list_for_each_entry(iter, &targets, list) { + if (iter->btf_id && iter->btf_id == prog_btf_id) { + tinfo = iter; + break; + } + if (!strcmp(attach_fname + prefix_len, iter->reg_info->target)) { + cache_btf_id(iter, prog); + tinfo = iter; + break; + } + } + mutex_unlock(&targets_mutex); + + if (!tinfo) + return -EINVAL; + + return bpf_prog_ctx_arg_info_init(prog, tinfo->reg_info->ctx_arg_info, + tinfo->reg_info->ctx_arg_info_size); +} + +const struct bpf_func_proto * +bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) +{ + const struct bpf_iter_target_info *tinfo; + const struct bpf_func_proto *fn = NULL; + + mutex_lock(&targets_mutex); + list_for_each_entry(tinfo, &targets, list) { + if (tinfo->btf_id == prog->aux->attach_btf_id) { + const struct bpf_iter_reg *reg_info; + + reg_info = tinfo->reg_info; + if (reg_info->get_func_proto) + fn = reg_info->get_func_proto(func_id, prog); + break; + } + } + mutex_unlock(&targets_mutex); + + return fn; +} + +static void bpf_iter_link_release(struct bpf_link *link) +{ + struct bpf_iter_link *iter_link = + container_of(link, struct bpf_iter_link, link); + + if (iter_link->tinfo->reg_info->detach_target) + iter_link->tinfo->reg_info->detach_target(&iter_link->aux); +} + +static void bpf_iter_link_dealloc(struct bpf_link *link) +{ + struct bpf_iter_link *iter_link = + container_of(link, struct bpf_iter_link, link); + + kfree(iter_link); +} + +static int bpf_iter_link_replace(struct bpf_link *link, + struct bpf_prog *new_prog, + struct bpf_prog *old_prog) +{ + int ret = 0; + + mutex_lock(&link_mutex); + if (old_prog && link->prog != old_prog) { + ret = -EPERM; + goto out_unlock; + } + + if (link->prog->type != new_prog->type || + link->prog->expected_attach_type != new_prog->expected_attach_type || + link->prog->aux->attach_btf_id != new_prog->aux->attach_btf_id) { + ret = -EINVAL; + goto out_unlock; + } + + old_prog = xchg(&link->prog, new_prog); + bpf_prog_put(old_prog); + +out_unlock: + mutex_unlock(&link_mutex); + return ret; +} + +static void bpf_iter_link_show_fdinfo(const struct bpf_link *link, + struct seq_file *seq) +{ + struct bpf_iter_link *iter_link = + container_of(link, struct bpf_iter_link, link); + bpf_iter_show_fdinfo_t show_fdinfo; + + seq_printf(seq, + "target_name:\t%s\n", + iter_link->tinfo->reg_info->target); + + show_fdinfo = iter_link->tinfo->reg_info->show_fdinfo; + if (show_fdinfo) + show_fdinfo(&iter_link->aux, seq); +} + +static int bpf_iter_link_fill_link_info(const struct bpf_link *link, + struct bpf_link_info *info) +{ + struct bpf_iter_link *iter_link = + container_of(link, struct bpf_iter_link, link); + char __user *ubuf = u64_to_user_ptr(info->iter.target_name); + bpf_iter_fill_link_info_t fill_link_info; + u32 ulen = info->iter.target_name_len; + const char *target_name; + u32 target_len; + + if (!ulen ^ !ubuf) + return -EINVAL; + + target_name = iter_link->tinfo->reg_info->target; + target_len = strlen(target_name); + info->iter.target_name_len = target_len + 1; + + if (ubuf) { + if (ulen >= target_len + 1) { + if (copy_to_user(ubuf, target_name, target_len + 1)) + return -EFAULT; + } else { + char zero = '\0'; + + if (copy_to_user(ubuf, target_name, ulen - 1)) + return -EFAULT; + if (put_user(zero, ubuf + ulen - 1)) + return -EFAULT; + return -ENOSPC; + } + } + + fill_link_info = iter_link->tinfo->reg_info->fill_link_info; + if (fill_link_info) + return fill_link_info(&iter_link->aux, info); + + return 0; +} + +static const struct bpf_link_ops bpf_iter_link_lops = { + .release = bpf_iter_link_release, + .dealloc = bpf_iter_link_dealloc, + .update_prog = bpf_iter_link_replace, + .show_fdinfo = bpf_iter_link_show_fdinfo, + .fill_link_info = bpf_iter_link_fill_link_info, +}; + +bool bpf_link_is_iter(struct bpf_link *link) +{ + return link->ops == &bpf_iter_link_lops; +} + +int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, + struct bpf_prog *prog) +{ + struct bpf_iter_target_info *tinfo = NULL, *iter; + struct bpf_link_primer link_primer; + union bpf_iter_link_info linfo; + struct bpf_iter_link *link; + u32 prog_btf_id, linfo_len; + bpfptr_t ulinfo; + int err; + + if (attr->link_create.target_fd || attr->link_create.flags) + return -EINVAL; + + memset(&linfo, 0, sizeof(union bpf_iter_link_info)); + + ulinfo = make_bpfptr(attr->link_create.iter_info, uattr.is_kernel); + linfo_len = attr->link_create.iter_info_len; + if (bpfptr_is_null(ulinfo) ^ !linfo_len) + return -EINVAL; + + if (!bpfptr_is_null(ulinfo)) { + err = bpf_check_uarg_tail_zero(ulinfo, sizeof(linfo), + linfo_len); + if (err) + return err; + linfo_len = min_t(u32, linfo_len, sizeof(linfo)); + if (copy_from_bpfptr(&linfo, ulinfo, linfo_len)) + return -EFAULT; + } + + prog_btf_id = prog->aux->attach_btf_id; + mutex_lock(&targets_mutex); + list_for_each_entry(iter, &targets, list) { + if (iter->btf_id == prog_btf_id) { + tinfo = iter; + break; + } + } + mutex_unlock(&targets_mutex); + if (!tinfo) + return -ENOENT; + + /* Only allow sleepable program for resched-able iterator */ + if (prog->sleepable && !bpf_iter_target_support_resched(tinfo)) + return -EINVAL; + + link = kzalloc(sizeof(*link), GFP_USER | __GFP_NOWARN); + if (!link) + return -ENOMEM; + + bpf_link_init(&link->link, BPF_LINK_TYPE_ITER, &bpf_iter_link_lops, prog, + attr->link_create.attach_type); + link->tinfo = tinfo; + + err = bpf_link_prime(&link->link, &link_primer); + if (err) { + kfree(link); + return err; + } + + if (tinfo->reg_info->attach_target) { + err = tinfo->reg_info->attach_target(prog, &linfo, &link->aux); + if (err) { + bpf_link_cleanup(&link_primer); + return err; + } + } + + return bpf_link_settle(&link_primer); +} + +static void init_seq_meta(struct bpf_iter_priv_data *priv_data, + struct bpf_iter_target_info *tinfo, + const struct bpf_iter_seq_info *seq_info, + struct bpf_prog *prog) +{ + priv_data->tinfo = tinfo; + priv_data->seq_info = seq_info; + priv_data->prog = prog; + priv_data->session_id = atomic64_inc_return(&session_id); + priv_data->seq_num = 0; + priv_data->done_stop = false; +} + +static int prepare_seq_file(struct file *file, struct bpf_iter_link *link) +{ + const struct bpf_iter_seq_info *seq_info = __get_seq_info(link); + struct bpf_iter_priv_data *priv_data; + struct bpf_iter_target_info *tinfo; + struct bpf_prog *prog; + u32 total_priv_dsize; + struct seq_file *seq; + int err = 0; + + mutex_lock(&link_mutex); + prog = link->link.prog; + bpf_prog_inc(prog); + mutex_unlock(&link_mutex); + + tinfo = link->tinfo; + total_priv_dsize = offsetof(struct bpf_iter_priv_data, target_private) + + seq_info->seq_priv_size; + priv_data = __seq_open_private(file, seq_info->seq_ops, + total_priv_dsize); + if (!priv_data) { + err = -ENOMEM; + goto release_prog; + } + + if (seq_info->init_seq_private) { + err = seq_info->init_seq_private(priv_data->target_private, &link->aux); + if (err) + goto release_seq_file; + } + + init_seq_meta(priv_data, tinfo, seq_info, prog); + seq = file->private_data; + seq->private = priv_data->target_private; + + return 0; + +release_seq_file: + seq_release_private(file->f_inode, file); + file->private_data = NULL; +release_prog: + bpf_prog_put(prog); + return err; +} + +int bpf_iter_new_fd(struct bpf_link *link) +{ + struct bpf_iter_link *iter_link; + unsigned int flags; + int err; + + if (link->ops != &bpf_iter_link_lops) + return -EINVAL; + + flags = O_RDONLY | O_CLOEXEC; + + FD_PREPARE(fdf, flags, anon_inode_getfile("bpf_iter", &bpf_iter_fops, NULL, flags)); + if (fdf.err) + return fdf.err; + + iter_link = container_of(link, struct bpf_iter_link, link); + err = prepare_seq_file(fd_prepare_file(fdf), iter_link); + if (err) + return err; /* Automatic cleanup handles fput */ + + return fd_publish(fdf); +} + +struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop) +{ + struct bpf_iter_priv_data *iter_priv; + struct seq_file *seq; + void *seq_priv; + + seq = meta->seq; + if (seq->file->f_op != &bpf_iter_fops) + return NULL; + + seq_priv = seq->private; + iter_priv = container_of(seq_priv, struct bpf_iter_priv_data, + target_private); + + if (in_stop && iter_priv->done_stop) + return NULL; + + meta->session_id = iter_priv->session_id; + meta->seq_num = iter_priv->seq_num; + + return iter_priv->prog; +} + +int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx) +{ + struct bpf_run_ctx run_ctx, *old_run_ctx; + int ret; + + if (prog->sleepable) { + rcu_read_lock_trace(); + migrate_disable(); + might_fault(); + old_run_ctx = bpf_set_run_ctx(&run_ctx); + ret = bpf_prog_run(prog, ctx); + bpf_reset_run_ctx(old_run_ctx); + migrate_enable(); + rcu_read_unlock_trace(); + } else { + rcu_read_lock_dont_migrate(); + old_run_ctx = bpf_set_run_ctx(&run_ctx); + ret = bpf_prog_run(prog, ctx); + bpf_reset_run_ctx(old_run_ctx); + rcu_read_unlock_migrate(); + } + + /* bpf program can only return 0 or 1: + * 0 : okay + * 1 : retry the same object + * The bpf_iter_run_prog() return value + * will be seq_ops->show() return value. + */ + return ret == 0 ? 0 : -EAGAIN; +} + +BPF_CALL_4(bpf_for_each_map_elem, struct bpf_map *, map, void *, callback_fn, + void *, callback_ctx, u64, flags) +{ + return map->ops->map_for_each_callback(map, callback_fn, callback_ctx, flags); +} + +const struct bpf_func_proto bpf_for_each_map_elem_proto = { + .func = bpf_for_each_map_elem, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_FUNC, + .arg3_type = ARG_PTR_TO_STACK_OR_NULL, + .arg4_type = ARG_ANYTHING, +}; + +BPF_CALL_4(bpf_loop, u32, nr_loops, void *, callback_fn, void *, callback_ctx, + u64, flags) +{ + bpf_callback_t callback = (bpf_callback_t)callback_fn; + u64 ret; + u32 i; + + /* Note: these safety checks are also verified when bpf_loop + * is inlined, be careful to modify this code in sync. See + * function verifier.c:inline_bpf_loop. + */ + if (flags) + return -EINVAL; + if (nr_loops > BPF_MAX_LOOPS) + return -E2BIG; + + for (i = 0; i < nr_loops; i++) { + ret = callback((u64)i, (u64)(long)callback_ctx, 0, 0, 0); + /* return value: 0 - continue, 1 - stop and return */ + if (ret) + return i + 1; + } + + return i; +} + +const struct bpf_func_proto bpf_loop_proto = { + .func = bpf_loop, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_ANYTHING, + .arg2_type = ARG_PTR_TO_FUNC, + .arg3_type = ARG_PTR_TO_STACK_OR_NULL, + .arg4_type = ARG_ANYTHING, +}; + +struct bpf_iter_num_kern { + int cur; /* current value, inclusive */ + int end; /* final value, exclusive */ +} __aligned(8); + +__bpf_kfunc_start_defs(); + +__bpf_kfunc int bpf_iter_num_new(struct bpf_iter_num *it, int start, int end) +{ + struct bpf_iter_num_kern *s = (void *)it; + + BUILD_BUG_ON(sizeof(struct bpf_iter_num_kern) != sizeof(struct bpf_iter_num)); + BUILD_BUG_ON(__alignof__(struct bpf_iter_num_kern) != __alignof__(struct bpf_iter_num)); + + /* start == end is legit, it's an empty range and we'll just get NULL + * on first (and any subsequent) bpf_iter_num_next() call + */ + if (start > end) { + s->cur = s->end = 0; + return -EINVAL; + } + + /* avoid overflows, e.g., if start == INT_MIN and end == INT_MAX */ + if ((s64)end - (s64)start > BPF_MAX_LOOPS) { + s->cur = s->end = 0; + return -E2BIG; + } + + /* user will call bpf_iter_num_next() first, + * which will set s->cur to exactly start value; + * underflow shouldn't matter + */ + s->cur = start - 1; + s->end = end; + + return 0; +} + +__bpf_kfunc int *bpf_iter_num_next(struct bpf_iter_num* it) +{ + struct bpf_iter_num_kern *s = (void *)it; + + /* check failed initialization or if we are done (same behavior); + * need to be careful about overflow, so convert to s64 for checks, + * e.g., if s->cur == s->end == INT_MAX, we can't just do + * s->cur + 1 >= s->end + */ + if ((s64)(s->cur + 1) >= s->end) { + s->cur = s->end = 0; + return NULL; + } + + s->cur++; + + return &s->cur; +} + +__bpf_kfunc void bpf_iter_num_destroy(struct bpf_iter_num *it) +{ + struct bpf_iter_num_kern *s = (void *)it; + + s->cur = s->end = 0; +} + +__bpf_kfunc_end_defs(); diff --git a/kernel/bpf/bpf_local_storage.c b/kernel/bpf/bpf_local_storage.c new file mode 100644 index 000000000000..e2fe6c32822b --- /dev/null +++ b/kernel/bpf/bpf_local_storage.c @@ -0,0 +1,825 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (c) 2019 Facebook */ +#include <linux/rculist.h> +#include <linux/list.h> +#include <linux/hash.h> +#include <linux/types.h> +#include <linux/spinlock.h> +#include <linux/bpf.h> +#include <linux/btf_ids.h> +#include <linux/bpf_local_storage.h> +#include <net/sock.h> +#include <uapi/linux/sock_diag.h> +#include <uapi/linux/btf.h> +#include <linux/rcupdate.h> +#include <linux/rcupdate_trace.h> +#include <linux/rcupdate_wait.h> + +#define BPF_LOCAL_STORAGE_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_CLONE) + +static struct bpf_local_storage_map_bucket * +select_bucket(struct bpf_local_storage_map *smap, + struct bpf_local_storage_elem *selem) +{ + return &smap->buckets[hash_ptr(selem, smap->bucket_log)]; +} + +static int mem_charge(struct bpf_local_storage_map *smap, void *owner, u32 size) +{ + struct bpf_map *map = &smap->map; + + if (!map->ops->map_local_storage_charge) + return 0; + + return map->ops->map_local_storage_charge(smap, owner, size); +} + +static void mem_uncharge(struct bpf_local_storage_map *smap, void *owner, + u32 size) +{ + struct bpf_map *map = &smap->map; + + if (map->ops->map_local_storage_uncharge) + map->ops->map_local_storage_uncharge(smap, owner, size); +} + +static struct bpf_local_storage __rcu ** +owner_storage(struct bpf_local_storage_map *smap, void *owner) +{ + struct bpf_map *map = &smap->map; + + return map->ops->map_owner_storage_ptr(owner); +} + +static bool selem_linked_to_storage_lockless(const struct bpf_local_storage_elem *selem) +{ + return !hlist_unhashed_lockless(&selem->snode); +} + +static bool selem_linked_to_storage(const struct bpf_local_storage_elem *selem) +{ + return !hlist_unhashed(&selem->snode); +} + +static bool selem_linked_to_map_lockless(const struct bpf_local_storage_elem *selem) +{ + return !hlist_unhashed_lockless(&selem->map_node); +} + +static bool selem_linked_to_map(const struct bpf_local_storage_elem *selem) +{ + return !hlist_unhashed(&selem->map_node); +} + +struct bpf_local_storage_elem * +bpf_selem_alloc(struct bpf_local_storage_map *smap, void *owner, + void *value, bool swap_uptrs, gfp_t gfp_flags) +{ + struct bpf_local_storage_elem *selem; + + if (mem_charge(smap, owner, smap->elem_size)) + return NULL; + + if (smap->use_kmalloc_nolock) { + selem = bpf_map_kmalloc_nolock(&smap->map, smap->elem_size, + __GFP_ZERO, NUMA_NO_NODE); + } else { + selem = bpf_map_kzalloc(&smap->map, smap->elem_size, + gfp_flags | __GFP_NOWARN); + } + + if (selem) { + RCU_INIT_POINTER(SDATA(selem)->smap, smap); + + if (value) { + /* No need to call check_and_init_map_value as memory is zero init */ + copy_map_value(&smap->map, SDATA(selem)->data, value); + if (swap_uptrs) + bpf_obj_swap_uptrs(smap->map.record, SDATA(selem)->data, value); + } + return selem; + } + + mem_uncharge(smap, owner, smap->elem_size); + + return NULL; +} + +/* rcu tasks trace callback for use_kmalloc_nolock == false */ +static void __bpf_local_storage_free_trace_rcu(struct rcu_head *rcu) +{ + struct bpf_local_storage *local_storage; + + /* If RCU Tasks Trace grace period implies RCU grace period, do + * kfree(), else do kfree_rcu(). + */ + local_storage = container_of(rcu, struct bpf_local_storage, rcu); + if (rcu_trace_implies_rcu_gp()) + kfree(local_storage); + else + kfree_rcu(local_storage, rcu); +} + +/* Handle use_kmalloc_nolock == false */ +static void __bpf_local_storage_free(struct bpf_local_storage *local_storage, + bool vanilla_rcu) +{ + if (vanilla_rcu) + kfree_rcu(local_storage, rcu); + else + call_rcu_tasks_trace(&local_storage->rcu, + __bpf_local_storage_free_trace_rcu); +} + +static void bpf_local_storage_free_rcu(struct rcu_head *rcu) +{ + struct bpf_local_storage *local_storage; + + local_storage = container_of(rcu, struct bpf_local_storage, rcu); + kfree_nolock(local_storage); +} + +static void bpf_local_storage_free_trace_rcu(struct rcu_head *rcu) +{ + if (rcu_trace_implies_rcu_gp()) + bpf_local_storage_free_rcu(rcu); + else + call_rcu(rcu, bpf_local_storage_free_rcu); +} + +static void bpf_local_storage_free(struct bpf_local_storage *local_storage, + bool reuse_now) +{ + if (!local_storage) + return; + + if (!local_storage->use_kmalloc_nolock) { + __bpf_local_storage_free(local_storage, reuse_now); + return; + } + + if (reuse_now) { + call_rcu(&local_storage->rcu, bpf_local_storage_free_rcu); + return; + } + + call_rcu_tasks_trace(&local_storage->rcu, + bpf_local_storage_free_trace_rcu); +} + +/* rcu tasks trace callback for use_kmalloc_nolock == false */ +static void __bpf_selem_free_trace_rcu(struct rcu_head *rcu) +{ + struct bpf_local_storage_elem *selem; + + selem = container_of(rcu, struct bpf_local_storage_elem, rcu); + if (rcu_trace_implies_rcu_gp()) + kfree(selem); + else + kfree_rcu(selem, rcu); +} + +/* Handle use_kmalloc_nolock == false */ +static void __bpf_selem_free(struct bpf_local_storage_elem *selem, + bool vanilla_rcu) +{ + if (vanilla_rcu) + kfree_rcu(selem, rcu); + else + call_rcu_tasks_trace(&selem->rcu, __bpf_selem_free_trace_rcu); +} + +static void bpf_selem_free_rcu(struct rcu_head *rcu) +{ + struct bpf_local_storage_elem *selem; + struct bpf_local_storage_map *smap; + + selem = container_of(rcu, struct bpf_local_storage_elem, rcu); + /* The bpf_local_storage_map_free will wait for rcu_barrier */ + smap = rcu_dereference_check(SDATA(selem)->smap, 1); + + migrate_disable(); + bpf_obj_free_fields(smap->map.record, SDATA(selem)->data); + migrate_enable(); + kfree_nolock(selem); +} + +static void bpf_selem_free_trace_rcu(struct rcu_head *rcu) +{ + if (rcu_trace_implies_rcu_gp()) + bpf_selem_free_rcu(rcu); + else + call_rcu(rcu, bpf_selem_free_rcu); +} + +void bpf_selem_free(struct bpf_local_storage_elem *selem, + bool reuse_now) +{ + struct bpf_local_storage_map *smap; + + smap = rcu_dereference_check(SDATA(selem)->smap, bpf_rcu_lock_held()); + + if (!smap->use_kmalloc_nolock) { + /* + * No uptr will be unpin even when reuse_now == false since uptr + * is only supported in task local storage, where + * smap->use_kmalloc_nolock == true. + */ + bpf_obj_free_fields(smap->map.record, SDATA(selem)->data); + __bpf_selem_free(selem, reuse_now); + return; + } + + if (reuse_now) { + /* + * While it is okay to call bpf_obj_free_fields() that unpins uptr when + * reuse_now == true, keep it in bpf_selem_free_rcu() for simplicity. + */ + call_rcu(&selem->rcu, bpf_selem_free_rcu); + return; + } + + call_rcu_tasks_trace(&selem->rcu, bpf_selem_free_trace_rcu); +} + +static void bpf_selem_free_list(struct hlist_head *list, bool reuse_now) +{ + struct bpf_local_storage_elem *selem; + struct hlist_node *n; + + /* The "_safe" iteration is needed. + * The loop is not removing the selem from the list + * but bpf_selem_free will use the selem->rcu_head + * which is union-ized with the selem->free_node. + */ + hlist_for_each_entry_safe(selem, n, list, free_node) + bpf_selem_free(selem, reuse_now); +} + +/* local_storage->lock must be held and selem->local_storage == local_storage. + * The caller must ensure selem->smap is still valid to be + * dereferenced for its smap->elem_size and smap->cache_idx. + */ +static bool bpf_selem_unlink_storage_nolock(struct bpf_local_storage *local_storage, + struct bpf_local_storage_elem *selem, + struct hlist_head *free_selem_list) +{ + struct bpf_local_storage_map *smap; + bool free_local_storage; + void *owner; + + smap = rcu_dereference_check(SDATA(selem)->smap, bpf_rcu_lock_held()); + owner = local_storage->owner; + + /* All uncharging on the owner must be done first. + * The owner may be freed once the last selem is unlinked + * from local_storage. + */ + mem_uncharge(smap, owner, smap->elem_size); + + free_local_storage = hlist_is_singular_node(&selem->snode, + &local_storage->list); + if (free_local_storage) { + mem_uncharge(smap, owner, sizeof(struct bpf_local_storage)); + local_storage->owner = NULL; + + /* After this RCU_INIT, owner may be freed and cannot be used */ + RCU_INIT_POINTER(*owner_storage(smap, owner), NULL); + + /* local_storage is not freed now. local_storage->lock is + * still held and raw_spin_unlock_bh(&local_storage->lock) + * will be done by the caller. + * + * Although the unlock will be done under + * rcu_read_lock(), it is more intuitive to + * read if the freeing of the storage is done + * after the raw_spin_unlock_bh(&local_storage->lock). + * + * Hence, a "bool free_local_storage" is returned + * to the caller which then calls then frees the storage after + * all the RCU grace periods have expired. + */ + } + hlist_del_init_rcu(&selem->snode); + if (rcu_access_pointer(local_storage->cache[smap->cache_idx]) == + SDATA(selem)) + RCU_INIT_POINTER(local_storage->cache[smap->cache_idx], NULL); + + hlist_add_head(&selem->free_node, free_selem_list); + + if (rcu_access_pointer(local_storage->smap) == smap) + RCU_INIT_POINTER(local_storage->smap, NULL); + + return free_local_storage; +} + +static void bpf_selem_unlink_storage(struct bpf_local_storage_elem *selem, + bool reuse_now) +{ + struct bpf_local_storage *local_storage; + bool free_local_storage = false; + HLIST_HEAD(selem_free_list); + unsigned long flags; + + if (unlikely(!selem_linked_to_storage_lockless(selem))) + /* selem has already been unlinked from sk */ + return; + + local_storage = rcu_dereference_check(selem->local_storage, + bpf_rcu_lock_held()); + + raw_spin_lock_irqsave(&local_storage->lock, flags); + if (likely(selem_linked_to_storage(selem))) + free_local_storage = bpf_selem_unlink_storage_nolock( + local_storage, selem, &selem_free_list); + raw_spin_unlock_irqrestore(&local_storage->lock, flags); + + bpf_selem_free_list(&selem_free_list, reuse_now); + + if (free_local_storage) + bpf_local_storage_free(local_storage, reuse_now); +} + +void bpf_selem_link_storage_nolock(struct bpf_local_storage *local_storage, + struct bpf_local_storage_elem *selem) +{ + RCU_INIT_POINTER(selem->local_storage, local_storage); + hlist_add_head_rcu(&selem->snode, &local_storage->list); +} + +static void bpf_selem_unlink_map(struct bpf_local_storage_elem *selem) +{ + struct bpf_local_storage_map *smap; + struct bpf_local_storage_map_bucket *b; + unsigned long flags; + + if (unlikely(!selem_linked_to_map_lockless(selem))) + /* selem has already be unlinked from smap */ + return; + + smap = rcu_dereference_check(SDATA(selem)->smap, bpf_rcu_lock_held()); + b = select_bucket(smap, selem); + raw_spin_lock_irqsave(&b->lock, flags); + if (likely(selem_linked_to_map(selem))) + hlist_del_init_rcu(&selem->map_node); + raw_spin_unlock_irqrestore(&b->lock, flags); +} + +void bpf_selem_link_map(struct bpf_local_storage_map *smap, + struct bpf_local_storage_elem *selem) +{ + struct bpf_local_storage_map_bucket *b = select_bucket(smap, selem); + unsigned long flags; + + raw_spin_lock_irqsave(&b->lock, flags); + hlist_add_head_rcu(&selem->map_node, &b->list); + raw_spin_unlock_irqrestore(&b->lock, flags); +} + +void bpf_selem_unlink(struct bpf_local_storage_elem *selem, bool reuse_now) +{ + /* Always unlink from map before unlinking from local_storage + * because selem will be freed after successfully unlinked from + * the local_storage. + */ + bpf_selem_unlink_map(selem); + bpf_selem_unlink_storage(selem, reuse_now); +} + +void __bpf_local_storage_insert_cache(struct bpf_local_storage *local_storage, + struct bpf_local_storage_map *smap, + struct bpf_local_storage_elem *selem) +{ + unsigned long flags; + + /* spinlock is needed to avoid racing with the + * parallel delete. Otherwise, publishing an already + * deleted sdata to the cache will become a use-after-free + * problem in the next bpf_local_storage_lookup(). + */ + raw_spin_lock_irqsave(&local_storage->lock, flags); + if (selem_linked_to_storage(selem)) + rcu_assign_pointer(local_storage->cache[smap->cache_idx], SDATA(selem)); + raw_spin_unlock_irqrestore(&local_storage->lock, flags); +} + +static int check_flags(const struct bpf_local_storage_data *old_sdata, + u64 map_flags) +{ + if (old_sdata && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) + /* elem already exists */ + return -EEXIST; + + if (!old_sdata && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) + /* elem doesn't exist, cannot update it */ + return -ENOENT; + + return 0; +} + +int bpf_local_storage_alloc(void *owner, + struct bpf_local_storage_map *smap, + struct bpf_local_storage_elem *first_selem, + gfp_t gfp_flags) +{ + struct bpf_local_storage *prev_storage, *storage; + struct bpf_local_storage **owner_storage_ptr; + int err; + + err = mem_charge(smap, owner, sizeof(*storage)); + if (err) + return err; + + if (smap->use_kmalloc_nolock) + storage = bpf_map_kmalloc_nolock(&smap->map, sizeof(*storage), + __GFP_ZERO, NUMA_NO_NODE); + else + storage = bpf_map_kzalloc(&smap->map, sizeof(*storage), + gfp_flags | __GFP_NOWARN); + if (!storage) { + err = -ENOMEM; + goto uncharge; + } + + RCU_INIT_POINTER(storage->smap, smap); + INIT_HLIST_HEAD(&storage->list); + raw_spin_lock_init(&storage->lock); + storage->owner = owner; + storage->use_kmalloc_nolock = smap->use_kmalloc_nolock; + + bpf_selem_link_storage_nolock(storage, first_selem); + bpf_selem_link_map(smap, first_selem); + + owner_storage_ptr = + (struct bpf_local_storage **)owner_storage(smap, owner); + /* Publish storage to the owner. + * Instead of using any lock of the kernel object (i.e. owner), + * cmpxchg will work with any kernel object regardless what + * the running context is, bh, irq...etc. + * + * From now on, the owner->storage pointer (e.g. sk->sk_bpf_storage) + * is protected by the storage->lock. Hence, when freeing + * the owner->storage, the storage->lock must be held before + * setting owner->storage ptr to NULL. + */ + prev_storage = cmpxchg(owner_storage_ptr, NULL, storage); + if (unlikely(prev_storage)) { + bpf_selem_unlink_map(first_selem); + err = -EAGAIN; + goto uncharge; + } + + return 0; + +uncharge: + bpf_local_storage_free(storage, true); + mem_uncharge(smap, owner, sizeof(*storage)); + return err; +} + +/* sk cannot be going away because it is linking new elem + * to sk->sk_bpf_storage. (i.e. sk->sk_refcnt cannot be 0). + * Otherwise, it will become a leak (and other memory issues + * during map destruction). + */ +struct bpf_local_storage_data * +bpf_local_storage_update(void *owner, struct bpf_local_storage_map *smap, + void *value, u64 map_flags, bool swap_uptrs, gfp_t gfp_flags) +{ + struct bpf_local_storage_data *old_sdata = NULL; + struct bpf_local_storage_elem *alloc_selem, *selem = NULL; + struct bpf_local_storage *local_storage; + HLIST_HEAD(old_selem_free_list); + unsigned long flags; + int err; + + /* BPF_EXIST and BPF_NOEXIST cannot be both set */ + if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST) || + /* BPF_F_LOCK can only be used in a value with spin_lock */ + unlikely((map_flags & BPF_F_LOCK) && + !btf_record_has_field(smap->map.record, BPF_SPIN_LOCK))) + return ERR_PTR(-EINVAL); + + if (gfp_flags == GFP_KERNEL && (map_flags & ~BPF_F_LOCK) != BPF_NOEXIST) + return ERR_PTR(-EINVAL); + + local_storage = rcu_dereference_check(*owner_storage(smap, owner), + bpf_rcu_lock_held()); + if (!local_storage || hlist_empty(&local_storage->list)) { + /* Very first elem for the owner */ + err = check_flags(NULL, map_flags); + if (err) + return ERR_PTR(err); + + selem = bpf_selem_alloc(smap, owner, value, swap_uptrs, gfp_flags); + if (!selem) + return ERR_PTR(-ENOMEM); + + err = bpf_local_storage_alloc(owner, smap, selem, gfp_flags); + if (err) { + bpf_selem_free(selem, true); + mem_uncharge(smap, owner, smap->elem_size); + return ERR_PTR(err); + } + + return SDATA(selem); + } + + if ((map_flags & BPF_F_LOCK) && !(map_flags & BPF_NOEXIST)) { + /* Hoping to find an old_sdata to do inline update + * such that it can avoid taking the local_storage->lock + * and changing the lists. + */ + old_sdata = + bpf_local_storage_lookup(local_storage, smap, false); + err = check_flags(old_sdata, map_flags); + if (err) + return ERR_PTR(err); + if (old_sdata && selem_linked_to_storage_lockless(SELEM(old_sdata))) { + copy_map_value_locked(&smap->map, old_sdata->data, + value, false); + return old_sdata; + } + } + + /* A lookup has just been done before and concluded a new selem is + * needed. The chance of an unnecessary alloc is unlikely. + */ + alloc_selem = selem = bpf_selem_alloc(smap, owner, value, swap_uptrs, gfp_flags); + if (!alloc_selem) + return ERR_PTR(-ENOMEM); + + raw_spin_lock_irqsave(&local_storage->lock, flags); + + /* Recheck local_storage->list under local_storage->lock */ + if (unlikely(hlist_empty(&local_storage->list))) { + /* A parallel del is happening and local_storage is going + * away. It has just been checked before, so very + * unlikely. Return instead of retry to keep things + * simple. + */ + err = -EAGAIN; + goto unlock; + } + + old_sdata = bpf_local_storage_lookup(local_storage, smap, false); + err = check_flags(old_sdata, map_flags); + if (err) + goto unlock; + + if (old_sdata && (map_flags & BPF_F_LOCK)) { + copy_map_value_locked(&smap->map, old_sdata->data, value, + false); + selem = SELEM(old_sdata); + goto unlock; + } + + alloc_selem = NULL; + /* First, link the new selem to the map */ + bpf_selem_link_map(smap, selem); + + /* Second, link (and publish) the new selem to local_storage */ + bpf_selem_link_storage_nolock(local_storage, selem); + + /* Third, remove old selem, SELEM(old_sdata) */ + if (old_sdata) { + bpf_selem_unlink_map(SELEM(old_sdata)); + bpf_selem_unlink_storage_nolock(local_storage, SELEM(old_sdata), + &old_selem_free_list); + } + +unlock: + raw_spin_unlock_irqrestore(&local_storage->lock, flags); + bpf_selem_free_list(&old_selem_free_list, false); + if (alloc_selem) { + mem_uncharge(smap, owner, smap->elem_size); + bpf_selem_free(alloc_selem, true); + } + return err ? ERR_PTR(err) : SDATA(selem); +} + +static u16 bpf_local_storage_cache_idx_get(struct bpf_local_storage_cache *cache) +{ + u64 min_usage = U64_MAX; + u16 i, res = 0; + + spin_lock(&cache->idx_lock); + + for (i = 0; i < BPF_LOCAL_STORAGE_CACHE_SIZE; i++) { + if (cache->idx_usage_counts[i] < min_usage) { + min_usage = cache->idx_usage_counts[i]; + res = i; + + /* Found a free cache_idx */ + if (!min_usage) + break; + } + } + cache->idx_usage_counts[res]++; + + spin_unlock(&cache->idx_lock); + + return res; +} + +static void bpf_local_storage_cache_idx_free(struct bpf_local_storage_cache *cache, + u16 idx) +{ + spin_lock(&cache->idx_lock); + cache->idx_usage_counts[idx]--; + spin_unlock(&cache->idx_lock); +} + +int bpf_local_storage_map_alloc_check(union bpf_attr *attr) +{ + if (attr->map_flags & ~BPF_LOCAL_STORAGE_CREATE_FLAG_MASK || + !(attr->map_flags & BPF_F_NO_PREALLOC) || + attr->max_entries || + attr->key_size != sizeof(int) || !attr->value_size || + /* Enforce BTF for userspace sk dumping */ + !attr->btf_key_type_id || !attr->btf_value_type_id) + return -EINVAL; + + if (attr->value_size > BPF_LOCAL_STORAGE_MAX_VALUE_SIZE) + return -E2BIG; + + return 0; +} + +int bpf_local_storage_map_check_btf(const struct bpf_map *map, + const struct btf *btf, + const struct btf_type *key_type, + const struct btf_type *value_type) +{ + if (!btf_type_is_i32(key_type)) + return -EINVAL; + + return 0; +} + +void bpf_local_storage_destroy(struct bpf_local_storage *local_storage) +{ + struct bpf_local_storage_elem *selem; + bool free_storage = false; + HLIST_HEAD(free_selem_list); + struct hlist_node *n; + unsigned long flags; + + /* Neither the bpf_prog nor the bpf_map's syscall + * could be modifying the local_storage->list now. + * Thus, no elem can be added to or deleted from the + * local_storage->list by the bpf_prog or by the bpf_map's syscall. + * + * It is racing with bpf_local_storage_map_free() alone + * when unlinking elem from the local_storage->list and + * the map's bucket->list. + */ + raw_spin_lock_irqsave(&local_storage->lock, flags); + hlist_for_each_entry_safe(selem, n, &local_storage->list, snode) { + /* Always unlink from map before unlinking from + * local_storage. + */ + bpf_selem_unlink_map(selem); + /* If local_storage list has only one element, the + * bpf_selem_unlink_storage_nolock() will return true. + * Otherwise, it will return false. The current loop iteration + * intends to remove all local storage. So the last iteration + * of the loop will set the free_cgroup_storage to true. + */ + free_storage = bpf_selem_unlink_storage_nolock( + local_storage, selem, &free_selem_list); + } + raw_spin_unlock_irqrestore(&local_storage->lock, flags); + + bpf_selem_free_list(&free_selem_list, true); + + if (free_storage) + bpf_local_storage_free(local_storage, true); +} + +u64 bpf_local_storage_map_mem_usage(const struct bpf_map *map) +{ + struct bpf_local_storage_map *smap = (struct bpf_local_storage_map *)map; + u64 usage = sizeof(*smap); + + /* The dynamically callocated selems are not counted currently. */ + usage += sizeof(*smap->buckets) * (1ULL << smap->bucket_log); + return usage; +} + +struct bpf_map * +bpf_local_storage_map_alloc(union bpf_attr *attr, + struct bpf_local_storage_cache *cache, + bool use_kmalloc_nolock) +{ + struct bpf_local_storage_map *smap; + unsigned int i; + u32 nbuckets; + int err; + + smap = bpf_map_area_alloc(sizeof(*smap), NUMA_NO_NODE); + if (!smap) + return ERR_PTR(-ENOMEM); + bpf_map_init_from_attr(&smap->map, attr); + + nbuckets = roundup_pow_of_two(num_possible_cpus()); + /* Use at least 2 buckets, select_bucket() is undefined behavior with 1 bucket */ + nbuckets = max_t(u32, 2, nbuckets); + smap->bucket_log = ilog2(nbuckets); + + smap->buckets = bpf_map_kvcalloc(&smap->map, nbuckets, + sizeof(*smap->buckets), GFP_USER | __GFP_NOWARN); + if (!smap->buckets) { + err = -ENOMEM; + goto free_smap; + } + + for (i = 0; i < nbuckets; i++) { + INIT_HLIST_HEAD(&smap->buckets[i].list); + raw_spin_lock_init(&smap->buckets[i].lock); + } + + smap->elem_size = offsetof(struct bpf_local_storage_elem, + sdata.data[attr->value_size]); + + /* In PREEMPT_RT, kmalloc(GFP_ATOMIC) is still not safe in non + * preemptible context. Thus, enforce all storages to use + * kmalloc_nolock() when CONFIG_PREEMPT_RT is enabled. + */ + smap->use_kmalloc_nolock = IS_ENABLED(CONFIG_PREEMPT_RT) ? true : use_kmalloc_nolock; + + smap->cache_idx = bpf_local_storage_cache_idx_get(cache); + return &smap->map; + +free_smap: + kvfree(smap->buckets); + bpf_map_area_free(smap); + return ERR_PTR(err); +} + +void bpf_local_storage_map_free(struct bpf_map *map, + struct bpf_local_storage_cache *cache, + int __percpu *busy_counter) +{ + struct bpf_local_storage_map_bucket *b; + struct bpf_local_storage_elem *selem; + struct bpf_local_storage_map *smap; + unsigned int i; + + smap = (struct bpf_local_storage_map *)map; + bpf_local_storage_cache_idx_free(cache, smap->cache_idx); + + /* Note that this map might be concurrently cloned from + * bpf_sk_storage_clone. Wait for any existing bpf_sk_storage_clone + * RCU read section to finish before proceeding. New RCU + * read sections should be prevented via bpf_map_inc_not_zero. + */ + synchronize_rcu(); + + /* bpf prog and the userspace can no longer access this map + * now. No new selem (of this map) can be added + * to the owner->storage or to the map bucket's list. + * + * The elem of this map can be cleaned up here + * or when the storage is freed e.g. + * by bpf_sk_storage_free() during __sk_destruct(). + */ + for (i = 0; i < (1U << smap->bucket_log); i++) { + b = &smap->buckets[i]; + + rcu_read_lock(); + /* No one is adding to b->list now */ + while ((selem = hlist_entry_safe( + rcu_dereference_raw(hlist_first_rcu(&b->list)), + struct bpf_local_storage_elem, map_node))) { + if (busy_counter) + this_cpu_inc(*busy_counter); + bpf_selem_unlink(selem, true); + if (busy_counter) + this_cpu_dec(*busy_counter); + cond_resched_rcu(); + } + rcu_read_unlock(); + } + + /* While freeing the storage we may still need to access the map. + * + * e.g. when bpf_sk_storage_free() has unlinked selem from the map + * which then made the above while((selem = ...)) loop + * exit immediately. + * + * However, while freeing the storage one still needs to access the + * smap->elem_size to do the uncharging in + * bpf_selem_unlink_storage_nolock(). + * + * Hence, wait another rcu grace period for the storage to be freed. + */ + synchronize_rcu(); + + if (smap->use_kmalloc_nolock) { + rcu_barrier_tasks_trace(); + rcu_barrier(); + } + kvfree(smap->buckets); + bpf_map_area_free(smap); +} diff --git a/kernel/bpf/bpf_lru_list.c b/kernel/bpf/bpf_lru_list.c new file mode 100644 index 000000000000..e7a2fc60523f --- /dev/null +++ b/kernel/bpf/bpf_lru_list.c @@ -0,0 +1,695 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2016 Facebook + */ +#include <linux/cpumask.h> +#include <linux/spinlock.h> +#include <linux/percpu.h> + +#include "bpf_lru_list.h" + +#define LOCAL_FREE_TARGET (128) +#define LOCAL_NR_SCANS LOCAL_FREE_TARGET + +#define PERCPU_FREE_TARGET (4) +#define PERCPU_NR_SCANS PERCPU_FREE_TARGET + +/* Helpers to get the local list index */ +#define LOCAL_LIST_IDX(t) ((t) - BPF_LOCAL_LIST_T_OFFSET) +#define LOCAL_FREE_LIST_IDX LOCAL_LIST_IDX(BPF_LRU_LOCAL_LIST_T_FREE) +#define LOCAL_PENDING_LIST_IDX LOCAL_LIST_IDX(BPF_LRU_LOCAL_LIST_T_PENDING) +#define IS_LOCAL_LIST_TYPE(t) ((t) >= BPF_LOCAL_LIST_T_OFFSET) + +/* Local list helpers */ +static struct list_head *local_free_list(struct bpf_lru_locallist *loc_l) +{ + return &loc_l->lists[LOCAL_FREE_LIST_IDX]; +} + +static struct list_head *local_pending_list(struct bpf_lru_locallist *loc_l) +{ + return &loc_l->lists[LOCAL_PENDING_LIST_IDX]; +} + +/* bpf_lru_node helpers */ +static bool bpf_lru_node_is_ref(const struct bpf_lru_node *node) +{ + return READ_ONCE(node->ref); +} + +static void bpf_lru_node_clear_ref(struct bpf_lru_node *node) +{ + WRITE_ONCE(node->ref, 0); +} + +static void bpf_lru_list_count_inc(struct bpf_lru_list *l, + enum bpf_lru_list_type type) +{ + if (type < NR_BPF_LRU_LIST_COUNT) + l->counts[type]++; +} + +static void bpf_lru_list_count_dec(struct bpf_lru_list *l, + enum bpf_lru_list_type type) +{ + if (type < NR_BPF_LRU_LIST_COUNT) + l->counts[type]--; +} + +static void __bpf_lru_node_move_to_free(struct bpf_lru_list *l, + struct bpf_lru_node *node, + struct list_head *free_list, + enum bpf_lru_list_type tgt_free_type) +{ + if (WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(node->type))) + return; + + /* If the removing node is the next_inactive_rotation candidate, + * move the next_inactive_rotation pointer also. + */ + if (&node->list == l->next_inactive_rotation) + l->next_inactive_rotation = l->next_inactive_rotation->prev; + + bpf_lru_list_count_dec(l, node->type); + + node->type = tgt_free_type; + list_move(&node->list, free_list); +} + +/* Move nodes from local list to the LRU list */ +static void __bpf_lru_node_move_in(struct bpf_lru_list *l, + struct bpf_lru_node *node, + enum bpf_lru_list_type tgt_type) +{ + if (WARN_ON_ONCE(!IS_LOCAL_LIST_TYPE(node->type)) || + WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(tgt_type))) + return; + + bpf_lru_list_count_inc(l, tgt_type); + node->type = tgt_type; + bpf_lru_node_clear_ref(node); + list_move(&node->list, &l->lists[tgt_type]); +} + +/* Move nodes between or within active and inactive list (like + * active to inactive, inactive to active or tail of active back to + * the head of active). + */ +static void __bpf_lru_node_move(struct bpf_lru_list *l, + struct bpf_lru_node *node, + enum bpf_lru_list_type tgt_type) +{ + if (WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(node->type)) || + WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(tgt_type))) + return; + + if (node->type != tgt_type) { + bpf_lru_list_count_dec(l, node->type); + bpf_lru_list_count_inc(l, tgt_type); + node->type = tgt_type; + } + bpf_lru_node_clear_ref(node); + + /* If the moving node is the next_inactive_rotation candidate, + * move the next_inactive_rotation pointer also. + */ + if (&node->list == l->next_inactive_rotation) + l->next_inactive_rotation = l->next_inactive_rotation->prev; + + list_move(&node->list, &l->lists[tgt_type]); +} + +static bool bpf_lru_list_inactive_low(const struct bpf_lru_list *l) +{ + return l->counts[BPF_LRU_LIST_T_INACTIVE] < + l->counts[BPF_LRU_LIST_T_ACTIVE]; +} + +/* Rotate the active list: + * 1. Start from tail + * 2. If the node has the ref bit set, it will be rotated + * back to the head of active list with the ref bit cleared. + * Give this node one more chance to survive in the active list. + * 3. If the ref bit is not set, move it to the head of the + * inactive list. + * 4. It will at most scan nr_scans nodes + */ +static void __bpf_lru_list_rotate_active(struct bpf_lru *lru, + struct bpf_lru_list *l) +{ + struct list_head *active = &l->lists[BPF_LRU_LIST_T_ACTIVE]; + struct bpf_lru_node *node, *tmp_node, *first_node; + unsigned int i = 0; + + first_node = list_first_entry(active, struct bpf_lru_node, list); + list_for_each_entry_safe_reverse(node, tmp_node, active, list) { + if (bpf_lru_node_is_ref(node)) + __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_ACTIVE); + else + __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_INACTIVE); + + if (++i == lru->nr_scans || node == first_node) + break; + } +} + +/* Rotate the inactive list. It starts from the next_inactive_rotation + * 1. If the node has ref bit set, it will be moved to the head + * of active list with the ref bit cleared. + * 2. If the node does not have ref bit set, it will leave it + * at its current location (i.e. do nothing) so that it can + * be considered during the next inactive_shrink. + * 3. It will at most scan nr_scans nodes + */ +static void __bpf_lru_list_rotate_inactive(struct bpf_lru *lru, + struct bpf_lru_list *l) +{ + struct list_head *inactive = &l->lists[BPF_LRU_LIST_T_INACTIVE]; + struct list_head *cur, *last, *next = inactive; + struct bpf_lru_node *node; + unsigned int i = 0; + + if (list_empty(inactive)) + return; + + last = l->next_inactive_rotation->next; + if (last == inactive) + last = last->next; + + cur = l->next_inactive_rotation; + while (i < lru->nr_scans) { + if (cur == inactive) { + cur = cur->prev; + continue; + } + + node = list_entry(cur, struct bpf_lru_node, list); + next = cur->prev; + if (bpf_lru_node_is_ref(node)) + __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_ACTIVE); + if (cur == last) + break; + cur = next; + i++; + } + + l->next_inactive_rotation = next; +} + +/* Shrink the inactive list. It starts from the tail of the + * inactive list and only move the nodes without the ref bit + * set to the designated free list. + */ +static unsigned int +__bpf_lru_list_shrink_inactive(struct bpf_lru *lru, + struct bpf_lru_list *l, + unsigned int tgt_nshrink, + struct list_head *free_list, + enum bpf_lru_list_type tgt_free_type) +{ + struct list_head *inactive = &l->lists[BPF_LRU_LIST_T_INACTIVE]; + struct bpf_lru_node *node, *tmp_node; + unsigned int nshrinked = 0; + unsigned int i = 0; + + list_for_each_entry_safe_reverse(node, tmp_node, inactive, list) { + if (bpf_lru_node_is_ref(node)) { + __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_ACTIVE); + } else if (lru->del_from_htab(lru->del_arg, node)) { + __bpf_lru_node_move_to_free(l, node, free_list, + tgt_free_type); + if (++nshrinked == tgt_nshrink) + break; + } + + if (++i == lru->nr_scans) + break; + } + + return nshrinked; +} + +/* 1. Rotate the active list (if needed) + * 2. Always rotate the inactive list + */ +static void __bpf_lru_list_rotate(struct bpf_lru *lru, struct bpf_lru_list *l) +{ + if (bpf_lru_list_inactive_low(l)) + __bpf_lru_list_rotate_active(lru, l); + + __bpf_lru_list_rotate_inactive(lru, l); +} + +/* Calls __bpf_lru_list_shrink_inactive() to shrink some + * ref-bit-cleared nodes and move them to the designated + * free list. + * + * If it cannot get a free node after calling + * __bpf_lru_list_shrink_inactive(). It will just remove + * one node from either inactive or active list without + * honoring the ref-bit. It prefers inactive list to active + * list in this situation. + */ +static unsigned int __bpf_lru_list_shrink(struct bpf_lru *lru, + struct bpf_lru_list *l, + unsigned int tgt_nshrink, + struct list_head *free_list, + enum bpf_lru_list_type tgt_free_type) + +{ + struct bpf_lru_node *node, *tmp_node; + struct list_head *force_shrink_list; + unsigned int nshrinked; + + nshrinked = __bpf_lru_list_shrink_inactive(lru, l, tgt_nshrink, + free_list, tgt_free_type); + if (nshrinked) + return nshrinked; + + /* Do a force shrink by ignoring the reference bit */ + if (!list_empty(&l->lists[BPF_LRU_LIST_T_INACTIVE])) + force_shrink_list = &l->lists[BPF_LRU_LIST_T_INACTIVE]; + else + force_shrink_list = &l->lists[BPF_LRU_LIST_T_ACTIVE]; + + list_for_each_entry_safe_reverse(node, tmp_node, force_shrink_list, + list) { + if (lru->del_from_htab(lru->del_arg, node)) { + __bpf_lru_node_move_to_free(l, node, free_list, + tgt_free_type); + return 1; + } + } + + return 0; +} + +/* Flush the nodes from the local pending list to the LRU list */ +static void __local_list_flush(struct bpf_lru_list *l, + struct bpf_lru_locallist *loc_l) +{ + struct bpf_lru_node *node, *tmp_node; + + list_for_each_entry_safe_reverse(node, tmp_node, + local_pending_list(loc_l), list) { + if (bpf_lru_node_is_ref(node)) + __bpf_lru_node_move_in(l, node, BPF_LRU_LIST_T_ACTIVE); + else + __bpf_lru_node_move_in(l, node, + BPF_LRU_LIST_T_INACTIVE); + } +} + +static void bpf_lru_list_push_free(struct bpf_lru_list *l, + struct bpf_lru_node *node) +{ + unsigned long flags; + + if (WARN_ON_ONCE(IS_LOCAL_LIST_TYPE(node->type))) + return; + + raw_spin_lock_irqsave(&l->lock, flags); + __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_FREE); + raw_spin_unlock_irqrestore(&l->lock, flags); +} + +static void bpf_lru_list_pop_free_to_local(struct bpf_lru *lru, + struct bpf_lru_locallist *loc_l) +{ + struct bpf_lru_list *l = &lru->common_lru.lru_list; + struct bpf_lru_node *node, *tmp_node; + unsigned int nfree = 0; + + raw_spin_lock(&l->lock); + + __local_list_flush(l, loc_l); + + __bpf_lru_list_rotate(lru, l); + + list_for_each_entry_safe(node, tmp_node, &l->lists[BPF_LRU_LIST_T_FREE], + list) { + __bpf_lru_node_move_to_free(l, node, local_free_list(loc_l), + BPF_LRU_LOCAL_LIST_T_FREE); + if (++nfree == lru->target_free) + break; + } + + if (nfree < lru->target_free) + __bpf_lru_list_shrink(lru, l, lru->target_free - nfree, + local_free_list(loc_l), + BPF_LRU_LOCAL_LIST_T_FREE); + + raw_spin_unlock(&l->lock); +} + +static void __local_list_add_pending(struct bpf_lru *lru, + struct bpf_lru_locallist *loc_l, + int cpu, + struct bpf_lru_node *node, + u32 hash) +{ + *(u32 *)((void *)node + lru->hash_offset) = hash; + node->cpu = cpu; + node->type = BPF_LRU_LOCAL_LIST_T_PENDING; + bpf_lru_node_clear_ref(node); + list_add(&node->list, local_pending_list(loc_l)); +} + +static struct bpf_lru_node * +__local_list_pop_free(struct bpf_lru_locallist *loc_l) +{ + struct bpf_lru_node *node; + + node = list_first_entry_or_null(local_free_list(loc_l), + struct bpf_lru_node, + list); + if (node) + list_del(&node->list); + + return node; +} + +static struct bpf_lru_node * +__local_list_pop_pending(struct bpf_lru *lru, struct bpf_lru_locallist *loc_l) +{ + struct bpf_lru_node *node; + bool force = false; + +ignore_ref: + /* Get from the tail (i.e. older element) of the pending list. */ + list_for_each_entry_reverse(node, local_pending_list(loc_l), + list) { + if ((!bpf_lru_node_is_ref(node) || force) && + lru->del_from_htab(lru->del_arg, node)) { + list_del(&node->list); + return node; + } + } + + if (!force) { + force = true; + goto ignore_ref; + } + + return NULL; +} + +static struct bpf_lru_node *bpf_percpu_lru_pop_free(struct bpf_lru *lru, + u32 hash) +{ + struct list_head *free_list; + struct bpf_lru_node *node = NULL; + struct bpf_lru_list *l; + unsigned long flags; + int cpu = raw_smp_processor_id(); + + l = per_cpu_ptr(lru->percpu_lru, cpu); + + raw_spin_lock_irqsave(&l->lock, flags); + + __bpf_lru_list_rotate(lru, l); + + free_list = &l->lists[BPF_LRU_LIST_T_FREE]; + if (list_empty(free_list)) + __bpf_lru_list_shrink(lru, l, PERCPU_FREE_TARGET, free_list, + BPF_LRU_LIST_T_FREE); + + if (!list_empty(free_list)) { + node = list_first_entry(free_list, struct bpf_lru_node, list); + *(u32 *)((void *)node + lru->hash_offset) = hash; + bpf_lru_node_clear_ref(node); + __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_INACTIVE); + } + + raw_spin_unlock_irqrestore(&l->lock, flags); + + return node; +} + +static struct bpf_lru_node *bpf_common_lru_pop_free(struct bpf_lru *lru, + u32 hash) +{ + struct bpf_lru_locallist *loc_l, *steal_loc_l; + struct bpf_common_lru *clru = &lru->common_lru; + struct bpf_lru_node *node; + int steal, first_steal; + unsigned long flags; + int cpu = raw_smp_processor_id(); + + loc_l = per_cpu_ptr(clru->local_list, cpu); + + raw_spin_lock_irqsave(&loc_l->lock, flags); + + node = __local_list_pop_free(loc_l); + if (!node) { + bpf_lru_list_pop_free_to_local(lru, loc_l); + node = __local_list_pop_free(loc_l); + } + + if (node) + __local_list_add_pending(lru, loc_l, cpu, node, hash); + + raw_spin_unlock_irqrestore(&loc_l->lock, flags); + + if (node) + return node; + + /* No free nodes found from the local free list and + * the global LRU list. + * + * Steal from the local free/pending list of the + * current CPU and remote CPU in RR. It starts + * with the loc_l->next_steal CPU. + */ + + first_steal = loc_l->next_steal; + steal = first_steal; + do { + steal_loc_l = per_cpu_ptr(clru->local_list, steal); + + raw_spin_lock_irqsave(&steal_loc_l->lock, flags); + + node = __local_list_pop_free(steal_loc_l); + if (!node) + node = __local_list_pop_pending(lru, steal_loc_l); + + raw_spin_unlock_irqrestore(&steal_loc_l->lock, flags); + + steal = cpumask_next_wrap(steal, cpu_possible_mask); + } while (!node && steal != first_steal); + + loc_l->next_steal = steal; + + if (node) { + raw_spin_lock_irqsave(&loc_l->lock, flags); + __local_list_add_pending(lru, loc_l, cpu, node, hash); + raw_spin_unlock_irqrestore(&loc_l->lock, flags); + } + + return node; +} + +struct bpf_lru_node *bpf_lru_pop_free(struct bpf_lru *lru, u32 hash) +{ + if (lru->percpu) + return bpf_percpu_lru_pop_free(lru, hash); + else + return bpf_common_lru_pop_free(lru, hash); +} + +static void bpf_common_lru_push_free(struct bpf_lru *lru, + struct bpf_lru_node *node) +{ + u8 node_type = READ_ONCE(node->type); + unsigned long flags; + + if (WARN_ON_ONCE(node_type == BPF_LRU_LIST_T_FREE) || + WARN_ON_ONCE(node_type == BPF_LRU_LOCAL_LIST_T_FREE)) + return; + + if (node_type == BPF_LRU_LOCAL_LIST_T_PENDING) { + struct bpf_lru_locallist *loc_l; + + loc_l = per_cpu_ptr(lru->common_lru.local_list, node->cpu); + + raw_spin_lock_irqsave(&loc_l->lock, flags); + + if (unlikely(node->type != BPF_LRU_LOCAL_LIST_T_PENDING)) { + raw_spin_unlock_irqrestore(&loc_l->lock, flags); + goto check_lru_list; + } + + node->type = BPF_LRU_LOCAL_LIST_T_FREE; + bpf_lru_node_clear_ref(node); + list_move(&node->list, local_free_list(loc_l)); + + raw_spin_unlock_irqrestore(&loc_l->lock, flags); + return; + } + +check_lru_list: + bpf_lru_list_push_free(&lru->common_lru.lru_list, node); +} + +static void bpf_percpu_lru_push_free(struct bpf_lru *lru, + struct bpf_lru_node *node) +{ + struct bpf_lru_list *l; + unsigned long flags; + + l = per_cpu_ptr(lru->percpu_lru, node->cpu); + + raw_spin_lock_irqsave(&l->lock, flags); + + __bpf_lru_node_move(l, node, BPF_LRU_LIST_T_FREE); + + raw_spin_unlock_irqrestore(&l->lock, flags); +} + +void bpf_lru_push_free(struct bpf_lru *lru, struct bpf_lru_node *node) +{ + if (lru->percpu) + bpf_percpu_lru_push_free(lru, node); + else + bpf_common_lru_push_free(lru, node); +} + +static void bpf_common_lru_populate(struct bpf_lru *lru, void *buf, + u32 node_offset, u32 elem_size, + u32 nr_elems) +{ + struct bpf_lru_list *l = &lru->common_lru.lru_list; + u32 i; + + for (i = 0; i < nr_elems; i++) { + struct bpf_lru_node *node; + + node = (struct bpf_lru_node *)(buf + node_offset); + node->type = BPF_LRU_LIST_T_FREE; + bpf_lru_node_clear_ref(node); + list_add(&node->list, &l->lists[BPF_LRU_LIST_T_FREE]); + buf += elem_size; + } + + lru->target_free = clamp((nr_elems / num_possible_cpus()) / 2, + 1, LOCAL_FREE_TARGET); +} + +static void bpf_percpu_lru_populate(struct bpf_lru *lru, void *buf, + u32 node_offset, u32 elem_size, + u32 nr_elems) +{ + u32 i, pcpu_entries; + int cpu; + struct bpf_lru_list *l; + + pcpu_entries = nr_elems / num_possible_cpus(); + + i = 0; + + for_each_possible_cpu(cpu) { + struct bpf_lru_node *node; + + l = per_cpu_ptr(lru->percpu_lru, cpu); +again: + node = (struct bpf_lru_node *)(buf + node_offset); + node->cpu = cpu; + node->type = BPF_LRU_LIST_T_FREE; + bpf_lru_node_clear_ref(node); + list_add(&node->list, &l->lists[BPF_LRU_LIST_T_FREE]); + i++; + buf += elem_size; + if (i == nr_elems) + break; + if (i % pcpu_entries) + goto again; + } +} + +void bpf_lru_populate(struct bpf_lru *lru, void *buf, u32 node_offset, + u32 elem_size, u32 nr_elems) +{ + if (lru->percpu) + bpf_percpu_lru_populate(lru, buf, node_offset, elem_size, + nr_elems); + else + bpf_common_lru_populate(lru, buf, node_offset, elem_size, + nr_elems); +} + +static void bpf_lru_locallist_init(struct bpf_lru_locallist *loc_l, int cpu) +{ + int i; + + for (i = 0; i < NR_BPF_LRU_LOCAL_LIST_T; i++) + INIT_LIST_HEAD(&loc_l->lists[i]); + + loc_l->next_steal = cpu; + + raw_spin_lock_init(&loc_l->lock); +} + +static void bpf_lru_list_init(struct bpf_lru_list *l) +{ + int i; + + for (i = 0; i < NR_BPF_LRU_LIST_T; i++) + INIT_LIST_HEAD(&l->lists[i]); + + for (i = 0; i < NR_BPF_LRU_LIST_COUNT; i++) + l->counts[i] = 0; + + l->next_inactive_rotation = &l->lists[BPF_LRU_LIST_T_INACTIVE]; + + raw_spin_lock_init(&l->lock); +} + +int bpf_lru_init(struct bpf_lru *lru, bool percpu, u32 hash_offset, + del_from_htab_func del_from_htab, void *del_arg) +{ + int cpu; + + if (percpu) { + lru->percpu_lru = alloc_percpu(struct bpf_lru_list); + if (!lru->percpu_lru) + return -ENOMEM; + + for_each_possible_cpu(cpu) { + struct bpf_lru_list *l; + + l = per_cpu_ptr(lru->percpu_lru, cpu); + bpf_lru_list_init(l); + } + lru->nr_scans = PERCPU_NR_SCANS; + } else { + struct bpf_common_lru *clru = &lru->common_lru; + + clru->local_list = alloc_percpu(struct bpf_lru_locallist); + if (!clru->local_list) + return -ENOMEM; + + for_each_possible_cpu(cpu) { + struct bpf_lru_locallist *loc_l; + + loc_l = per_cpu_ptr(clru->local_list, cpu); + bpf_lru_locallist_init(loc_l, cpu); + } + + bpf_lru_list_init(&clru->lru_list); + lru->nr_scans = LOCAL_NR_SCANS; + } + + lru->percpu = percpu; + lru->del_from_htab = del_from_htab; + lru->del_arg = del_arg; + lru->hash_offset = hash_offset; + + return 0; +} + +void bpf_lru_destroy(struct bpf_lru *lru) +{ + if (lru->percpu) + free_percpu(lru->percpu_lru); + else + free_percpu(lru->common_lru.local_list); +} diff --git a/kernel/bpf/bpf_lru_list.h b/kernel/bpf/bpf_lru_list.h new file mode 100644 index 000000000000..fe2661a58ea9 --- /dev/null +++ b/kernel/bpf/bpf_lru_list.h @@ -0,0 +1,80 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* Copyright (c) 2016 Facebook + */ +#ifndef __BPF_LRU_LIST_H_ +#define __BPF_LRU_LIST_H_ + +#include <linux/cache.h> +#include <linux/list.h> +#include <linux/spinlock_types.h> + +#define NR_BPF_LRU_LIST_T (3) +#define NR_BPF_LRU_LIST_COUNT (2) +#define NR_BPF_LRU_LOCAL_LIST_T (2) +#define BPF_LOCAL_LIST_T_OFFSET NR_BPF_LRU_LIST_T + +enum bpf_lru_list_type { + BPF_LRU_LIST_T_ACTIVE, + BPF_LRU_LIST_T_INACTIVE, + BPF_LRU_LIST_T_FREE, + BPF_LRU_LOCAL_LIST_T_FREE, + BPF_LRU_LOCAL_LIST_T_PENDING, +}; + +struct bpf_lru_node { + struct list_head list; + u16 cpu; + u8 type; + u8 ref; +}; + +struct bpf_lru_list { + struct list_head lists[NR_BPF_LRU_LIST_T]; + unsigned int counts[NR_BPF_LRU_LIST_COUNT]; + /* The next inactive list rotation starts from here */ + struct list_head *next_inactive_rotation; + + raw_spinlock_t lock ____cacheline_aligned_in_smp; +}; + +struct bpf_lru_locallist { + struct list_head lists[NR_BPF_LRU_LOCAL_LIST_T]; + u16 next_steal; + raw_spinlock_t lock; +}; + +struct bpf_common_lru { + struct bpf_lru_list lru_list; + struct bpf_lru_locallist __percpu *local_list; +}; + +typedef bool (*del_from_htab_func)(void *arg, struct bpf_lru_node *node); + +struct bpf_lru { + union { + struct bpf_common_lru common_lru; + struct bpf_lru_list __percpu *percpu_lru; + }; + del_from_htab_func del_from_htab; + void *del_arg; + unsigned int hash_offset; + unsigned int target_free; + unsigned int nr_scans; + bool percpu; +}; + +static inline void bpf_lru_node_set_ref(struct bpf_lru_node *node) +{ + if (!READ_ONCE(node->ref)) + WRITE_ONCE(node->ref, 1); +} + +int bpf_lru_init(struct bpf_lru *lru, bool percpu, u32 hash_offset, + del_from_htab_func del_from_htab, void *delete_arg); +void bpf_lru_populate(struct bpf_lru *lru, void *buf, u32 node_offset, + u32 elem_size, u32 nr_elems); +void bpf_lru_destroy(struct bpf_lru *lru); +struct bpf_lru_node *bpf_lru_pop_free(struct bpf_lru *lru, u32 hash); +void bpf_lru_push_free(struct bpf_lru *lru, struct bpf_lru_node *node); + +#endif diff --git a/kernel/bpf/bpf_lsm.c b/kernel/bpf/bpf_lsm.c new file mode 100644 index 000000000000..7cb6e8d4282c --- /dev/null +++ b/kernel/bpf/bpf_lsm.c @@ -0,0 +1,448 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright (C) 2020 Google LLC. + */ + +#include <linux/filter.h> +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/binfmts.h> +#include <linux/lsm_hooks.h> +#include <linux/bpf_lsm.h> +#include <linux/kallsyms.h> +#include <net/bpf_sk_storage.h> +#include <linux/bpf_local_storage.h> +#include <linux/btf_ids.h> +#include <linux/ima.h> +#include <linux/bpf-cgroup.h> + +/* For every LSM hook that allows attachment of BPF programs, declare a nop + * function where a BPF program can be attached. + */ +#define LSM_HOOK(RET, DEFAULT, NAME, ...) \ +noinline RET bpf_lsm_##NAME(__VA_ARGS__) \ +{ \ + return DEFAULT; \ +} + +#include <linux/lsm_hook_defs.h> +#undef LSM_HOOK + +#define LSM_HOOK(RET, DEFAULT, NAME, ...) BTF_ID(func, bpf_lsm_##NAME) +BTF_SET_START(bpf_lsm_hooks) +#include <linux/lsm_hook_defs.h> +#undef LSM_HOOK +BTF_SET_END(bpf_lsm_hooks) + +BTF_SET_START(bpf_lsm_disabled_hooks) +BTF_ID(func, bpf_lsm_vm_enough_memory) +BTF_ID(func, bpf_lsm_inode_need_killpriv) +BTF_ID(func, bpf_lsm_inode_getsecurity) +BTF_ID(func, bpf_lsm_inode_listsecurity) +BTF_ID(func, bpf_lsm_inode_copy_up_xattr) +BTF_ID(func, bpf_lsm_getselfattr) +BTF_ID(func, bpf_lsm_getprocattr) +BTF_ID(func, bpf_lsm_setprocattr) +#ifdef CONFIG_KEYS +BTF_ID(func, bpf_lsm_key_getsecurity) +#endif +#ifdef CONFIG_AUDIT +BTF_ID(func, bpf_lsm_audit_rule_match) +#endif +BTF_ID(func, bpf_lsm_ismaclabel) +BTF_ID(func, bpf_lsm_file_alloc_security) +BTF_SET_END(bpf_lsm_disabled_hooks) + +/* List of LSM hooks that should operate on 'current' cgroup regardless + * of function signature. + */ +BTF_SET_START(bpf_lsm_current_hooks) +/* operate on freshly allocated sk without any cgroup association */ +#ifdef CONFIG_SECURITY_NETWORK +BTF_ID(func, bpf_lsm_sk_alloc_security) +BTF_ID(func, bpf_lsm_sk_free_security) +#endif +BTF_SET_END(bpf_lsm_current_hooks) + +/* List of LSM hooks that trigger while the socket is properly locked. + */ +BTF_SET_START(bpf_lsm_locked_sockopt_hooks) +#ifdef CONFIG_SECURITY_NETWORK +BTF_ID(func, bpf_lsm_sock_graft) +BTF_ID(func, bpf_lsm_inet_csk_clone) +BTF_ID(func, bpf_lsm_inet_conn_established) +#endif +BTF_SET_END(bpf_lsm_locked_sockopt_hooks) + +/* List of LSM hooks that trigger while the socket is _not_ locked, + * but it's ok to call bpf_{g,s}etsockopt because the socket is still + * in the early init phase. + */ +BTF_SET_START(bpf_lsm_unlocked_sockopt_hooks) +#ifdef CONFIG_SECURITY_NETWORK +BTF_ID(func, bpf_lsm_socket_post_create) +BTF_ID(func, bpf_lsm_socket_socketpair) +#endif +BTF_SET_END(bpf_lsm_unlocked_sockopt_hooks) + +#ifdef CONFIG_CGROUP_BPF +void bpf_lsm_find_cgroup_shim(const struct bpf_prog *prog, + bpf_func_t *bpf_func) +{ + const struct btf_param *args __maybe_unused; + + if (btf_type_vlen(prog->aux->attach_func_proto) < 1 || + btf_id_set_contains(&bpf_lsm_current_hooks, + prog->aux->attach_btf_id)) { + *bpf_func = __cgroup_bpf_run_lsm_current; + return; + } + +#ifdef CONFIG_NET + args = btf_params(prog->aux->attach_func_proto); + + if (args[0].type == btf_sock_ids[BTF_SOCK_TYPE_SOCKET]) + *bpf_func = __cgroup_bpf_run_lsm_socket; + else if (args[0].type == btf_sock_ids[BTF_SOCK_TYPE_SOCK]) + *bpf_func = __cgroup_bpf_run_lsm_sock; + else +#endif + *bpf_func = __cgroup_bpf_run_lsm_current; +} +#endif + +int bpf_lsm_verify_prog(struct bpf_verifier_log *vlog, + const struct bpf_prog *prog) +{ + u32 btf_id = prog->aux->attach_btf_id; + const char *func_name = prog->aux->attach_func_name; + + if (!prog->gpl_compatible) { + bpf_log(vlog, + "LSM programs must have a GPL compatible license\n"); + return -EINVAL; + } + + if (btf_id_set_contains(&bpf_lsm_disabled_hooks, btf_id)) { + bpf_log(vlog, "attach_btf_id %u points to disabled hook %s\n", + btf_id, func_name); + return -EINVAL; + } + + if (!btf_id_set_contains(&bpf_lsm_hooks, btf_id)) { + bpf_log(vlog, "attach_btf_id %u points to wrong type name %s\n", + btf_id, func_name); + return -EINVAL; + } + + return 0; +} + +/* Mask for all the currently supported BPRM option flags */ +#define BPF_F_BRPM_OPTS_MASK BPF_F_BPRM_SECUREEXEC + +BPF_CALL_2(bpf_bprm_opts_set, struct linux_binprm *, bprm, u64, flags) +{ + if (flags & ~BPF_F_BRPM_OPTS_MASK) + return -EINVAL; + + bprm->secureexec = (flags & BPF_F_BPRM_SECUREEXEC); + return 0; +} + +BTF_ID_LIST_SINGLE(bpf_bprm_opts_set_btf_ids, struct, linux_binprm) + +static const struct bpf_func_proto bpf_bprm_opts_set_proto = { + .func = bpf_bprm_opts_set, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_BTF_ID, + .arg1_btf_id = &bpf_bprm_opts_set_btf_ids[0], + .arg2_type = ARG_ANYTHING, +}; + +BPF_CALL_3(bpf_ima_inode_hash, struct inode *, inode, void *, dst, u32, size) +{ + return ima_inode_hash(inode, dst, size); +} + +static bool bpf_ima_inode_hash_allowed(const struct bpf_prog *prog) +{ + return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id); +} + +BTF_ID_LIST_SINGLE(bpf_ima_inode_hash_btf_ids, struct, inode) + +static const struct bpf_func_proto bpf_ima_inode_hash_proto = { + .func = bpf_ima_inode_hash, + .gpl_only = false, + .might_sleep = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_BTF_ID, + .arg1_btf_id = &bpf_ima_inode_hash_btf_ids[0], + .arg2_type = ARG_PTR_TO_UNINIT_MEM, + .arg3_type = ARG_CONST_SIZE, + .allowed = bpf_ima_inode_hash_allowed, +}; + +BPF_CALL_3(bpf_ima_file_hash, struct file *, file, void *, dst, u32, size) +{ + return ima_file_hash(file, dst, size); +} + +BTF_ID_LIST_SINGLE(bpf_ima_file_hash_btf_ids, struct, file) + +static const struct bpf_func_proto bpf_ima_file_hash_proto = { + .func = bpf_ima_file_hash, + .gpl_only = false, + .might_sleep = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_BTF_ID, + .arg1_btf_id = &bpf_ima_file_hash_btf_ids[0], + .arg2_type = ARG_PTR_TO_UNINIT_MEM, + .arg3_type = ARG_CONST_SIZE, + .allowed = bpf_ima_inode_hash_allowed, +}; + +BPF_CALL_1(bpf_get_attach_cookie, void *, ctx) +{ + struct bpf_trace_run_ctx *run_ctx; + + run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx); + return run_ctx->bpf_cookie; +} + +static const struct bpf_func_proto bpf_get_attach_cookie_proto = { + .func = bpf_get_attach_cookie, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_CTX, +}; + +static const struct bpf_func_proto * +bpf_lsm_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) +{ + const struct bpf_func_proto *func_proto; + + if (prog->expected_attach_type == BPF_LSM_CGROUP) { + func_proto = cgroup_common_func_proto(func_id, prog); + if (func_proto) + return func_proto; + } + + switch (func_id) { + case BPF_FUNC_inode_storage_get: + return &bpf_inode_storage_get_proto; + case BPF_FUNC_inode_storage_delete: + return &bpf_inode_storage_delete_proto; +#ifdef CONFIG_NET + case BPF_FUNC_sk_storage_get: + return &bpf_sk_storage_get_proto; + case BPF_FUNC_sk_storage_delete: + return &bpf_sk_storage_delete_proto; +#endif /* CONFIG_NET */ + case BPF_FUNC_spin_lock: + return &bpf_spin_lock_proto; + case BPF_FUNC_spin_unlock: + return &bpf_spin_unlock_proto; + case BPF_FUNC_bprm_opts_set: + return &bpf_bprm_opts_set_proto; + case BPF_FUNC_ima_inode_hash: + return &bpf_ima_inode_hash_proto; + case BPF_FUNC_ima_file_hash: + return &bpf_ima_file_hash_proto; + case BPF_FUNC_get_attach_cookie: + return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto : NULL; +#ifdef CONFIG_NET + case BPF_FUNC_setsockopt: + if (prog->expected_attach_type != BPF_LSM_CGROUP) + return NULL; + if (btf_id_set_contains(&bpf_lsm_locked_sockopt_hooks, + prog->aux->attach_btf_id)) + return &bpf_sk_setsockopt_proto; + if (btf_id_set_contains(&bpf_lsm_unlocked_sockopt_hooks, + prog->aux->attach_btf_id)) + return &bpf_unlocked_sk_setsockopt_proto; + return NULL; + case BPF_FUNC_getsockopt: + if (prog->expected_attach_type != BPF_LSM_CGROUP) + return NULL; + if (btf_id_set_contains(&bpf_lsm_locked_sockopt_hooks, + prog->aux->attach_btf_id)) + return &bpf_sk_getsockopt_proto; + if (btf_id_set_contains(&bpf_lsm_unlocked_sockopt_hooks, + prog->aux->attach_btf_id)) + return &bpf_unlocked_sk_getsockopt_proto; + return NULL; +#endif + default: + return tracing_prog_func_proto(func_id, prog); + } +} + +/* The set of hooks which are called without pagefaults disabled and are allowed + * to "sleep" and thus can be used for sleepable BPF programs. + */ +BTF_SET_START(sleepable_lsm_hooks) +BTF_ID(func, bpf_lsm_bpf) +BTF_ID(func, bpf_lsm_bpf_map) +BTF_ID(func, bpf_lsm_bpf_map_create) +BTF_ID(func, bpf_lsm_bpf_map_free) +BTF_ID(func, bpf_lsm_bpf_prog) +BTF_ID(func, bpf_lsm_bpf_prog_load) +BTF_ID(func, bpf_lsm_bpf_prog_free) +BTF_ID(func, bpf_lsm_bpf_token_create) +BTF_ID(func, bpf_lsm_bpf_token_free) +BTF_ID(func, bpf_lsm_bpf_token_cmd) +BTF_ID(func, bpf_lsm_bpf_token_capable) +BTF_ID(func, bpf_lsm_bprm_check_security) +BTF_ID(func, bpf_lsm_bprm_committed_creds) +BTF_ID(func, bpf_lsm_bprm_committing_creds) +BTF_ID(func, bpf_lsm_bprm_creds_for_exec) +BTF_ID(func, bpf_lsm_bprm_creds_from_file) +BTF_ID(func, bpf_lsm_capget) +BTF_ID(func, bpf_lsm_capset) +BTF_ID(func, bpf_lsm_cred_prepare) +BTF_ID(func, bpf_lsm_file_ioctl) +BTF_ID(func, bpf_lsm_file_lock) +BTF_ID(func, bpf_lsm_file_open) +BTF_ID(func, bpf_lsm_file_post_open) +BTF_ID(func, bpf_lsm_file_receive) + +BTF_ID(func, bpf_lsm_inode_create) +BTF_ID(func, bpf_lsm_inode_free_security) +BTF_ID(func, bpf_lsm_inode_getattr) +BTF_ID(func, bpf_lsm_inode_getxattr) +BTF_ID(func, bpf_lsm_inode_mknod) +BTF_ID(func, bpf_lsm_inode_need_killpriv) +BTF_ID(func, bpf_lsm_inode_post_setxattr) +BTF_ID(func, bpf_lsm_inode_post_removexattr) +BTF_ID(func, bpf_lsm_inode_readlink) +BTF_ID(func, bpf_lsm_inode_removexattr) +BTF_ID(func, bpf_lsm_inode_rename) +BTF_ID(func, bpf_lsm_inode_rmdir) +BTF_ID(func, bpf_lsm_inode_setattr) +BTF_ID(func, bpf_lsm_inode_setxattr) +BTF_ID(func, bpf_lsm_inode_symlink) +BTF_ID(func, bpf_lsm_inode_unlink) +BTF_ID(func, bpf_lsm_kernel_module_request) +BTF_ID(func, bpf_lsm_kernel_read_file) +BTF_ID(func, bpf_lsm_kernfs_init_security) + +#ifdef CONFIG_SECURITY_PATH +BTF_ID(func, bpf_lsm_path_unlink) +BTF_ID(func, bpf_lsm_path_mkdir) +BTF_ID(func, bpf_lsm_path_rmdir) +BTF_ID(func, bpf_lsm_path_truncate) +BTF_ID(func, bpf_lsm_path_symlink) +BTF_ID(func, bpf_lsm_path_link) +BTF_ID(func, bpf_lsm_path_rename) +BTF_ID(func, bpf_lsm_path_chmod) +BTF_ID(func, bpf_lsm_path_chown) +#endif /* CONFIG_SECURITY_PATH */ + +BTF_ID(func, bpf_lsm_mmap_file) +BTF_ID(func, bpf_lsm_netlink_send) +BTF_ID(func, bpf_lsm_path_notify) +BTF_ID(func, bpf_lsm_release_secctx) +BTF_ID(func, bpf_lsm_sb_alloc_security) +BTF_ID(func, bpf_lsm_sb_eat_lsm_opts) +BTF_ID(func, bpf_lsm_sb_kern_mount) +BTF_ID(func, bpf_lsm_sb_mount) +BTF_ID(func, bpf_lsm_sb_remount) +BTF_ID(func, bpf_lsm_sb_set_mnt_opts) +BTF_ID(func, bpf_lsm_sb_show_options) +BTF_ID(func, bpf_lsm_sb_statfs) +BTF_ID(func, bpf_lsm_sb_umount) +BTF_ID(func, bpf_lsm_settime) + +#ifdef CONFIG_SECURITY_NETWORK +BTF_ID(func, bpf_lsm_inet_conn_established) + +BTF_ID(func, bpf_lsm_socket_accept) +BTF_ID(func, bpf_lsm_socket_bind) +BTF_ID(func, bpf_lsm_socket_connect) +BTF_ID(func, bpf_lsm_socket_create) +BTF_ID(func, bpf_lsm_socket_getpeername) +BTF_ID(func, bpf_lsm_socket_getpeersec_dgram) +BTF_ID(func, bpf_lsm_socket_getsockname) +BTF_ID(func, bpf_lsm_socket_getsockopt) +BTF_ID(func, bpf_lsm_socket_listen) +BTF_ID(func, bpf_lsm_socket_post_create) +BTF_ID(func, bpf_lsm_socket_recvmsg) +BTF_ID(func, bpf_lsm_socket_sendmsg) +BTF_ID(func, bpf_lsm_socket_shutdown) +BTF_ID(func, bpf_lsm_socket_socketpair) +#endif /* CONFIG_SECURITY_NETWORK */ + +BTF_ID(func, bpf_lsm_syslog) +BTF_ID(func, bpf_lsm_task_alloc) +BTF_ID(func, bpf_lsm_task_prctl) +BTF_ID(func, bpf_lsm_task_setscheduler) +BTF_ID(func, bpf_lsm_task_to_inode) +BTF_ID(func, bpf_lsm_userns_create) +BTF_SET_END(sleepable_lsm_hooks) + +BTF_SET_START(untrusted_lsm_hooks) +BTF_ID(func, bpf_lsm_bpf_map_free) +BTF_ID(func, bpf_lsm_bpf_prog_free) +BTF_ID(func, bpf_lsm_file_alloc_security) +BTF_ID(func, bpf_lsm_file_free_security) +#ifdef CONFIG_SECURITY_NETWORK +BTF_ID(func, bpf_lsm_sk_alloc_security) +BTF_ID(func, bpf_lsm_sk_free_security) +#endif /* CONFIG_SECURITY_NETWORK */ +BTF_ID(func, bpf_lsm_task_free) +BTF_SET_END(untrusted_lsm_hooks) + +bool bpf_lsm_is_sleepable_hook(u32 btf_id) +{ + return btf_id_set_contains(&sleepable_lsm_hooks, btf_id); +} + +bool bpf_lsm_is_trusted(const struct bpf_prog *prog) +{ + return !btf_id_set_contains(&untrusted_lsm_hooks, prog->aux->attach_btf_id); +} + +const struct bpf_prog_ops lsm_prog_ops = { +}; + +const struct bpf_verifier_ops lsm_verifier_ops = { + .get_func_proto = bpf_lsm_func_proto, + .is_valid_access = btf_ctx_access, +}; + +/* hooks return 0 or 1 */ +BTF_SET_START(bool_lsm_hooks) +#ifdef CONFIG_SECURITY_NETWORK_XFRM +BTF_ID(func, bpf_lsm_xfrm_state_pol_flow_match) +#endif +#ifdef CONFIG_AUDIT +BTF_ID(func, bpf_lsm_audit_rule_known) +#endif +BTF_ID(func, bpf_lsm_inode_xattr_skipcap) +BTF_SET_END(bool_lsm_hooks) + +int bpf_lsm_get_retval_range(const struct bpf_prog *prog, + struct bpf_retval_range *retval_range) +{ + /* no return value range for void hooks */ + if (!prog->aux->attach_func_proto->type) + return -EINVAL; + + if (btf_id_set_contains(&bool_lsm_hooks, prog->aux->attach_btf_id)) { + retval_range->minval = 0; + retval_range->maxval = 1; + } else { + /* All other available LSM hooks, except task_prctl, return 0 + * on success and negative error code on failure. + * To keep things simple, we only allow bpf progs to return 0 + * or negative errno for task_prctl too. + */ + retval_range->minval = -MAX_ERRNO; + retval_range->maxval = 0; + } + return 0; +} diff --git a/kernel/bpf/bpf_struct_ops.c b/kernel/bpf/bpf_struct_ops.c new file mode 100644 index 000000000000..278490683d28 --- /dev/null +++ b/kernel/bpf/bpf_struct_ops.c @@ -0,0 +1,1404 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2019 Facebook */ + +#include <linux/bpf.h> +#include <linux/bpf_verifier.h> +#include <linux/btf.h> +#include <linux/filter.h> +#include <linux/slab.h> +#include <linux/numa.h> +#include <linux/seq_file.h> +#include <linux/refcount.h> +#include <linux/mutex.h> +#include <linux/btf_ids.h> +#include <linux/rcupdate_wait.h> +#include <linux/poll.h> + +struct bpf_struct_ops_value { + struct bpf_struct_ops_common_value common; + char data[] ____cacheline_aligned_in_smp; +}; + +#define MAX_TRAMP_IMAGE_PAGES 8 + +struct bpf_struct_ops_map { + struct bpf_map map; + const struct bpf_struct_ops_desc *st_ops_desc; + /* protect map_update */ + struct mutex lock; + /* link has all the bpf_links that is populated + * to the func ptr of the kernel's struct + * (in kvalue.data). + */ + struct bpf_link **links; + /* ksyms for bpf trampolines */ + struct bpf_ksym **ksyms; + u32 funcs_cnt; + u32 image_pages_cnt; + /* image_pages is an array of pages that has all the trampolines + * that stores the func args before calling the bpf_prog. + */ + void *image_pages[MAX_TRAMP_IMAGE_PAGES]; + /* The owner moduler's btf. */ + struct btf *btf; + /* uvalue->data stores the kernel struct + * (e.g. tcp_congestion_ops) that is more useful + * to userspace than the kvalue. For example, + * the bpf_prog's id is stored instead of the kernel + * address of a func ptr. + */ + struct bpf_struct_ops_value *uvalue; + /* kvalue.data stores the actual kernel's struct + * (e.g. tcp_congestion_ops) that will be + * registered to the kernel subsystem. + */ + struct bpf_struct_ops_value kvalue; +}; + +struct bpf_struct_ops_link { + struct bpf_link link; + struct bpf_map __rcu *map; + wait_queue_head_t wait_hup; +}; + +static DEFINE_MUTEX(update_mutex); + +#define VALUE_PREFIX "bpf_struct_ops_" +#define VALUE_PREFIX_LEN (sizeof(VALUE_PREFIX) - 1) + +const struct bpf_verifier_ops bpf_struct_ops_verifier_ops = { +}; + +const struct bpf_prog_ops bpf_struct_ops_prog_ops = { +#ifdef CONFIG_NET + .test_run = bpf_struct_ops_test_run, +#endif +}; + +BTF_ID_LIST(st_ops_ids) +BTF_ID(struct, module) +BTF_ID(struct, bpf_struct_ops_common_value) + +enum { + IDX_MODULE_ID, + IDX_ST_OPS_COMMON_VALUE_ID, +}; + +extern struct btf *btf_vmlinux; + +static bool is_valid_value_type(struct btf *btf, s32 value_id, + const struct btf_type *type, + const char *value_name) +{ + const struct btf_type *common_value_type; + const struct btf_member *member; + const struct btf_type *vt, *mt; + + vt = btf_type_by_id(btf, value_id); + if (btf_vlen(vt) != 2) { + pr_warn("The number of %s's members should be 2, but we get %d\n", + value_name, btf_vlen(vt)); + return false; + } + member = btf_type_member(vt); + mt = btf_type_by_id(btf, member->type); + common_value_type = btf_type_by_id(btf_vmlinux, + st_ops_ids[IDX_ST_OPS_COMMON_VALUE_ID]); + if (mt != common_value_type) { + pr_warn("The first member of %s should be bpf_struct_ops_common_value\n", + value_name); + return false; + } + member++; + mt = btf_type_by_id(btf, member->type); + if (mt != type) { + pr_warn("The second member of %s should be %s\n", + value_name, btf_name_by_offset(btf, type->name_off)); + return false; + } + + return true; +} + +static void *bpf_struct_ops_image_alloc(void) +{ + void *image; + int err; + + err = bpf_jit_charge_modmem(PAGE_SIZE); + if (err) + return ERR_PTR(err); + image = arch_alloc_bpf_trampoline(PAGE_SIZE); + if (!image) { + bpf_jit_uncharge_modmem(PAGE_SIZE); + return ERR_PTR(-ENOMEM); + } + + return image; +} + +void bpf_struct_ops_image_free(void *image) +{ + if (image) { + arch_free_bpf_trampoline(image, PAGE_SIZE); + bpf_jit_uncharge_modmem(PAGE_SIZE); + } +} + +#define MAYBE_NULL_SUFFIX "__nullable" +#define REFCOUNTED_SUFFIX "__ref" + +/* Prepare argument info for every nullable argument of a member of a + * struct_ops type. + * + * Initialize a struct bpf_struct_ops_arg_info according to type info of + * the arguments of a stub function. (Check kCFI for more information about + * stub functions.) + * + * Each member in the struct_ops type has a struct bpf_struct_ops_arg_info + * to provide an array of struct bpf_ctx_arg_aux, which in turn provides + * the information that used by the verifier to check the arguments of the + * BPF struct_ops program assigned to the member. Here, we only care about + * the arguments that are marked as __nullable. + * + * The array of struct bpf_ctx_arg_aux is eventually assigned to + * prog->aux->ctx_arg_info of BPF struct_ops programs and passed to the + * verifier. (See check_struct_ops_btf_id()) + * + * arg_info->info will be the list of struct bpf_ctx_arg_aux if success. If + * fails, it will be kept untouched. + */ +static int prepare_arg_info(struct btf *btf, + const char *st_ops_name, + const char *member_name, + const struct btf_type *func_proto, void *stub_func_addr, + struct bpf_struct_ops_arg_info *arg_info) +{ + const struct btf_type *stub_func_proto, *pointed_type; + bool is_nullable = false, is_refcounted = false; + const struct btf_param *stub_args, *args; + struct bpf_ctx_arg_aux *info, *info_buf; + u32 nargs, arg_no, info_cnt = 0; + char ksym[KSYM_SYMBOL_LEN]; + const char *stub_fname; + const char *suffix; + s32 stub_func_id; + u32 arg_btf_id; + int offset; + + stub_fname = kallsyms_lookup((unsigned long)stub_func_addr, NULL, NULL, NULL, ksym); + if (!stub_fname) { + pr_warn("Cannot find the stub function name for the %s in struct %s\n", + member_name, st_ops_name); + return -ENOENT; + } + + stub_func_id = btf_find_by_name_kind(btf, stub_fname, BTF_KIND_FUNC); + if (stub_func_id < 0) { + pr_warn("Cannot find the stub function %s in btf\n", stub_fname); + return -ENOENT; + } + + stub_func_proto = btf_type_by_id(btf, stub_func_id); + stub_func_proto = btf_type_by_id(btf, stub_func_proto->type); + + /* Check if the number of arguments of the stub function is the same + * as the number of arguments of the function pointer. + */ + nargs = btf_type_vlen(func_proto); + if (nargs != btf_type_vlen(stub_func_proto)) { + pr_warn("the number of arguments of the stub function %s does not match the number of arguments of the member %s of struct %s\n", + stub_fname, member_name, st_ops_name); + return -EINVAL; + } + + if (!nargs) + return 0; + + args = btf_params(func_proto); + stub_args = btf_params(stub_func_proto); + + info_buf = kcalloc(nargs, sizeof(*info_buf), GFP_KERNEL); + if (!info_buf) + return -ENOMEM; + + /* Prepare info for every nullable argument */ + info = info_buf; + for (arg_no = 0; arg_no < nargs; arg_no++) { + /* Skip arguments that is not suffixed with + * "__nullable or __ref". + */ + is_nullable = btf_param_match_suffix(btf, &stub_args[arg_no], + MAYBE_NULL_SUFFIX); + is_refcounted = btf_param_match_suffix(btf, &stub_args[arg_no], + REFCOUNTED_SUFFIX); + + if (is_nullable) + suffix = MAYBE_NULL_SUFFIX; + else if (is_refcounted) + suffix = REFCOUNTED_SUFFIX; + else + continue; + + /* Should be a pointer to struct */ + pointed_type = btf_type_resolve_ptr(btf, + args[arg_no].type, + &arg_btf_id); + if (!pointed_type || + !btf_type_is_struct(pointed_type)) { + pr_warn("stub function %s has %s tagging to an unsupported type\n", + stub_fname, suffix); + goto err_out; + } + + offset = btf_ctx_arg_offset(btf, func_proto, arg_no); + if (offset < 0) { + pr_warn("stub function %s has an invalid trampoline ctx offset for arg#%u\n", + stub_fname, arg_no); + goto err_out; + } + + if (args[arg_no].type != stub_args[arg_no].type) { + pr_warn("arg#%u type in stub function %s does not match with its original func_proto\n", + arg_no, stub_fname); + goto err_out; + } + + /* Fill the information of the new argument */ + info->btf_id = arg_btf_id; + info->btf = btf; + info->offset = offset; + if (is_nullable) { + info->reg_type = PTR_TRUSTED | PTR_TO_BTF_ID | PTR_MAYBE_NULL; + } else if (is_refcounted) { + info->reg_type = PTR_TRUSTED | PTR_TO_BTF_ID; + info->refcounted = true; + } + + info++; + info_cnt++; + } + + if (info_cnt) { + arg_info->info = info_buf; + arg_info->cnt = info_cnt; + } else { + kfree(info_buf); + } + + return 0; + +err_out: + kfree(info_buf); + + return -EINVAL; +} + +/* Clean up the arg_info in a struct bpf_struct_ops_desc. */ +void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) +{ + struct bpf_struct_ops_arg_info *arg_info; + int i; + + arg_info = st_ops_desc->arg_info; + for (i = 0; i < btf_type_vlen(st_ops_desc->type); i++) + kfree(arg_info[i].info); + + kfree(arg_info); +} + +static bool is_module_member(const struct btf *btf, u32 id) +{ + const struct btf_type *t; + + t = btf_type_resolve_ptr(btf, id, NULL); + if (!t) + return false; + + if (!__btf_type_is_struct(t) && !btf_type_is_fwd(t)) + return false; + + return !strcmp(btf_name_by_offset(btf, t->name_off), "module"); +} + +int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff) +{ + void *func_ptr = *(void **)(st_ops->cfi_stubs + moff); + + return func_ptr ? 0 : -ENOTSUPP; +} + +int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, + struct btf *btf, + struct bpf_verifier_log *log) +{ + struct bpf_struct_ops *st_ops = st_ops_desc->st_ops; + struct bpf_struct_ops_arg_info *arg_info; + const struct btf_member *member; + const struct btf_type *t; + s32 type_id, value_id; + char value_name[128]; + const char *mname; + int i, err; + + if (strlen(st_ops->name) + VALUE_PREFIX_LEN >= + sizeof(value_name)) { + pr_warn("struct_ops name %s is too long\n", + st_ops->name); + return -EINVAL; + } + sprintf(value_name, "%s%s", VALUE_PREFIX, st_ops->name); + + if (!st_ops->cfi_stubs) { + pr_warn("struct_ops for %s has no cfi_stubs\n", st_ops->name); + return -EINVAL; + } + + type_id = btf_find_by_name_kind(btf, st_ops->name, + BTF_KIND_STRUCT); + if (type_id < 0) { + pr_warn("Cannot find struct %s in %s\n", + st_ops->name, btf_get_name(btf)); + return -EINVAL; + } + t = btf_type_by_id(btf, type_id); + if (btf_type_vlen(t) > BPF_STRUCT_OPS_MAX_NR_MEMBERS) { + pr_warn("Cannot support #%u members in struct %s\n", + btf_type_vlen(t), st_ops->name); + return -EINVAL; + } + + value_id = btf_find_by_name_kind(btf, value_name, + BTF_KIND_STRUCT); + if (value_id < 0) { + pr_warn("Cannot find struct %s in %s\n", + value_name, btf_get_name(btf)); + return -EINVAL; + } + if (!is_valid_value_type(btf, value_id, t, value_name)) + return -EINVAL; + + arg_info = kcalloc(btf_type_vlen(t), sizeof(*arg_info), + GFP_KERNEL); + if (!arg_info) + return -ENOMEM; + + st_ops_desc->arg_info = arg_info; + st_ops_desc->type = t; + st_ops_desc->type_id = type_id; + st_ops_desc->value_id = value_id; + st_ops_desc->value_type = btf_type_by_id(btf, value_id); + + for_each_member(i, t, member) { + const struct btf_type *func_proto, *ret_type; + void **stub_func_addr; + u32 moff; + + moff = __btf_member_bit_offset(t, member) / 8; + mname = btf_name_by_offset(btf, member->name_off); + if (!*mname) { + pr_warn("anon member in struct %s is not supported\n", + st_ops->name); + err = -EOPNOTSUPP; + goto errout; + } + + if (__btf_member_bitfield_size(t, member)) { + pr_warn("bit field member %s in struct %s is not supported\n", + mname, st_ops->name); + err = -EOPNOTSUPP; + goto errout; + } + + if (!st_ops_ids[IDX_MODULE_ID] && is_module_member(btf, member->type)) { + pr_warn("'struct module' btf id not found. Is CONFIG_MODULES enabled? bpf_struct_ops '%s' needs module support.\n", + st_ops->name); + err = -EOPNOTSUPP; + goto errout; + } + + func_proto = btf_type_resolve_func_ptr(btf, + member->type, + NULL); + + /* The member is not a function pointer or + * the function pointer is not supported. + */ + if (!func_proto || bpf_struct_ops_supported(st_ops, moff)) + continue; + + if (func_proto->type) { + ret_type = btf_type_resolve_ptr(btf, func_proto->type, NULL); + if (ret_type && !__btf_type_is_struct(ret_type)) { + pr_warn("func ptr %s in struct %s returns non-struct pointer, which is not supported\n", + mname, st_ops->name); + err = -EOPNOTSUPP; + goto errout; + } + } + + if (btf_distill_func_proto(log, btf, + func_proto, mname, + &st_ops->func_models[i])) { + pr_warn("Error in parsing func ptr %s in struct %s\n", + mname, st_ops->name); + err = -EINVAL; + goto errout; + } + + stub_func_addr = *(void **)(st_ops->cfi_stubs + moff); + err = prepare_arg_info(btf, st_ops->name, mname, + func_proto, stub_func_addr, + arg_info + i); + if (err) + goto errout; + } + + if (st_ops->init(btf)) { + pr_warn("Error in init bpf_struct_ops %s\n", + st_ops->name); + err = -EINVAL; + goto errout; + } + + return 0; + +errout: + bpf_struct_ops_desc_release(st_ops_desc); + + return err; +} + +static int bpf_struct_ops_map_get_next_key(struct bpf_map *map, void *key, + void *next_key) +{ + if (key && *(u32 *)key == 0) + return -ENOENT; + + *(u32 *)next_key = 0; + return 0; +} + +int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, + void *value) +{ + struct bpf_struct_ops_map *st_map = (struct bpf_struct_ops_map *)map; + struct bpf_struct_ops_value *uvalue, *kvalue; + enum bpf_struct_ops_state state; + s64 refcnt; + + if (unlikely(*(u32 *)key != 0)) + return -ENOENT; + + kvalue = &st_map->kvalue; + /* Pair with smp_store_release() during map_update */ + state = smp_load_acquire(&kvalue->common.state); + if (state == BPF_STRUCT_OPS_STATE_INIT) { + memset(value, 0, map->value_size); + return 0; + } + + /* No lock is needed. state and refcnt do not need + * to be updated together under atomic context. + */ + uvalue = value; + memcpy(uvalue, st_map->uvalue, map->value_size); + uvalue->common.state = state; + + /* This value offers the user space a general estimate of how + * many sockets are still utilizing this struct_ops for TCP + * congestion control. The number might not be exact, but it + * should sufficiently meet our present goals. + */ + refcnt = atomic64_read(&map->refcnt) - atomic64_read(&map->usercnt); + refcount_set(&uvalue->common.refcnt, max_t(s64, refcnt, 0)); + + return 0; +} + +static void *bpf_struct_ops_map_lookup_elem(struct bpf_map *map, void *key) +{ + return ERR_PTR(-EINVAL); +} + +static void bpf_struct_ops_map_put_progs(struct bpf_struct_ops_map *st_map) +{ + u32 i; + + for (i = 0; i < st_map->funcs_cnt; i++) { + if (!st_map->links[i]) + break; + bpf_link_put(st_map->links[i]); + st_map->links[i] = NULL; + } +} + +static void bpf_struct_ops_map_free_image(struct bpf_struct_ops_map *st_map) +{ + int i; + + for (i = 0; i < st_map->image_pages_cnt; i++) + bpf_struct_ops_image_free(st_map->image_pages[i]); + st_map->image_pages_cnt = 0; +} + +static int check_zero_holes(const struct btf *btf, const struct btf_type *t, void *data) +{ + const struct btf_member *member; + u32 i, moff, msize, prev_mend = 0; + const struct btf_type *mtype; + + for_each_member(i, t, member) { + moff = __btf_member_bit_offset(t, member) / 8; + if (moff > prev_mend && + memchr_inv(data + prev_mend, 0, moff - prev_mend)) + return -EINVAL; + + mtype = btf_type_by_id(btf, member->type); + mtype = btf_resolve_size(btf, mtype, &msize); + if (IS_ERR(mtype)) + return PTR_ERR(mtype); + prev_mend = moff + msize; + } + + if (t->size > prev_mend && + memchr_inv(data + prev_mend, 0, t->size - prev_mend)) + return -EINVAL; + + return 0; +} + +static void bpf_struct_ops_link_release(struct bpf_link *link) +{ +} + +static void bpf_struct_ops_link_dealloc(struct bpf_link *link) +{ + struct bpf_tramp_link *tlink = container_of(link, struct bpf_tramp_link, link); + + kfree(tlink); +} + +const struct bpf_link_ops bpf_struct_ops_link_lops = { + .release = bpf_struct_ops_link_release, + .dealloc = bpf_struct_ops_link_dealloc, +}; + +int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, + struct bpf_tramp_link *link, + const struct btf_func_model *model, + void *stub_func, + void **_image, u32 *_image_off, + bool allow_alloc) +{ + u32 image_off = *_image_off, flags = BPF_TRAMP_F_INDIRECT; + void *image = *_image; + int size; + + tlinks[BPF_TRAMP_FENTRY].links[0] = link; + tlinks[BPF_TRAMP_FENTRY].nr_links = 1; + + if (model->ret_size > 0) + flags |= BPF_TRAMP_F_RET_FENTRY_RET; + + size = arch_bpf_trampoline_size(model, flags, tlinks, stub_func); + if (size <= 0) + return size ? : -EFAULT; + + /* Allocate image buffer if necessary */ + if (!image || size > PAGE_SIZE - image_off) { + if (!allow_alloc) + return -E2BIG; + + image = bpf_struct_ops_image_alloc(); + if (IS_ERR(image)) + return PTR_ERR(image); + image_off = 0; + } + + size = arch_prepare_bpf_trampoline(NULL, image + image_off, + image + image_off + size, + model, flags, tlinks, stub_func); + if (size <= 0) { + if (image != *_image) + bpf_struct_ops_image_free(image); + return size ? : -EFAULT; + } + + *_image = image; + *_image_off = image_off + size; + return 0; +} + +static void bpf_struct_ops_ksym_init(const char *tname, const char *mname, + void *image, unsigned int size, + struct bpf_ksym *ksym) +{ + snprintf(ksym->name, KSYM_NAME_LEN, "bpf__%s_%s", tname, mname); + INIT_LIST_HEAD_RCU(&ksym->lnode); + bpf_image_ksym_init(image, size, ksym); +} + +static void bpf_struct_ops_map_add_ksyms(struct bpf_struct_ops_map *st_map) +{ + u32 i; + + for (i = 0; i < st_map->funcs_cnt; i++) { + if (!st_map->ksyms[i]) + break; + bpf_image_ksym_add(st_map->ksyms[i]); + } +} + +static void bpf_struct_ops_map_del_ksyms(struct bpf_struct_ops_map *st_map) +{ + u32 i; + + for (i = 0; i < st_map->funcs_cnt; i++) { + if (!st_map->ksyms[i]) + break; + bpf_image_ksym_del(st_map->ksyms[i]); + } +} + +static void bpf_struct_ops_map_free_ksyms(struct bpf_struct_ops_map *st_map) +{ + u32 i; + + for (i = 0; i < st_map->funcs_cnt; i++) { + if (!st_map->ksyms[i]) + break; + kfree(st_map->ksyms[i]); + st_map->ksyms[i] = NULL; + } +} + +static long bpf_struct_ops_map_update_elem(struct bpf_map *map, void *key, + void *value, u64 flags) +{ + struct bpf_struct_ops_map *st_map = (struct bpf_struct_ops_map *)map; + const struct bpf_struct_ops_desc *st_ops_desc = st_map->st_ops_desc; + const struct bpf_struct_ops *st_ops = st_ops_desc->st_ops; + struct bpf_struct_ops_value *uvalue, *kvalue; + const struct btf_type *module_type; + const struct btf_member *member; + const struct btf_type *t = st_ops_desc->type; + struct bpf_tramp_links *tlinks; + void *udata, *kdata; + int prog_fd, err; + u32 i, trampoline_start, image_off = 0; + void *cur_image = NULL, *image = NULL; + struct bpf_link **plink; + struct bpf_ksym **pksym; + const char *tname, *mname; + + if (flags) + return -EINVAL; + + if (*(u32 *)key != 0) + return -E2BIG; + + err = check_zero_holes(st_map->btf, st_ops_desc->value_type, value); + if (err) + return err; + + uvalue = value; + err = check_zero_holes(st_map->btf, t, uvalue->data); + if (err) + return err; + + if (uvalue->common.state || refcount_read(&uvalue->common.refcnt)) + return -EINVAL; + + tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL); + if (!tlinks) + return -ENOMEM; + + uvalue = (struct bpf_struct_ops_value *)st_map->uvalue; + kvalue = (struct bpf_struct_ops_value *)&st_map->kvalue; + + mutex_lock(&st_map->lock); + + if (kvalue->common.state != BPF_STRUCT_OPS_STATE_INIT) { + err = -EBUSY; + goto unlock; + } + + memcpy(uvalue, value, map->value_size); + + udata = &uvalue->data; + kdata = &kvalue->data; + + plink = st_map->links; + pksym = st_map->ksyms; + tname = btf_name_by_offset(st_map->btf, t->name_off); + module_type = btf_type_by_id(btf_vmlinux, st_ops_ids[IDX_MODULE_ID]); + for_each_member(i, t, member) { + const struct btf_type *mtype, *ptype; + struct bpf_prog *prog; + struct bpf_tramp_link *link; + struct bpf_ksym *ksym; + u32 moff; + + moff = __btf_member_bit_offset(t, member) / 8; + mname = btf_name_by_offset(st_map->btf, member->name_off); + ptype = btf_type_resolve_ptr(st_map->btf, member->type, NULL); + if (ptype == module_type) { + if (*(void **)(udata + moff)) + goto reset_unlock; + *(void **)(kdata + moff) = BPF_MODULE_OWNER; + continue; + } + + err = st_ops->init_member(t, member, kdata, udata); + if (err < 0) + goto reset_unlock; + + /* The ->init_member() has handled this member */ + if (err > 0) + continue; + + /* If st_ops->init_member does not handle it, + * we will only handle func ptrs and zero-ed members + * here. Reject everything else. + */ + + /* All non func ptr member must be 0 */ + if (!ptype || !btf_type_is_func_proto(ptype)) { + u32 msize; + + mtype = btf_type_by_id(st_map->btf, member->type); + mtype = btf_resolve_size(st_map->btf, mtype, &msize); + if (IS_ERR(mtype)) { + err = PTR_ERR(mtype); + goto reset_unlock; + } + + if (memchr_inv(udata + moff, 0, msize)) { + err = -EINVAL; + goto reset_unlock; + } + + continue; + } + + prog_fd = (int)(*(unsigned long *)(udata + moff)); + /* Similar check as the attr->attach_prog_fd */ + if (!prog_fd) + continue; + + prog = bpf_prog_get(prog_fd); + if (IS_ERR(prog)) { + err = PTR_ERR(prog); + goto reset_unlock; + } + + if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || + prog->aux->attach_btf_id != st_ops_desc->type_id || + prog->expected_attach_type != i) { + bpf_prog_put(prog); + err = -EINVAL; + goto reset_unlock; + } + + link = kzalloc(sizeof(*link), GFP_USER); + if (!link) { + bpf_prog_put(prog); + err = -ENOMEM; + goto reset_unlock; + } + bpf_link_init(&link->link, BPF_LINK_TYPE_STRUCT_OPS, + &bpf_struct_ops_link_lops, prog, prog->expected_attach_type); + *plink++ = &link->link; + + ksym = kzalloc(sizeof(*ksym), GFP_USER); + if (!ksym) { + err = -ENOMEM; + goto reset_unlock; + } + *pksym++ = ksym; + + trampoline_start = image_off; + err = bpf_struct_ops_prepare_trampoline(tlinks, link, + &st_ops->func_models[i], + *(void **)(st_ops->cfi_stubs + moff), + &image, &image_off, + st_map->image_pages_cnt < MAX_TRAMP_IMAGE_PAGES); + if (err) + goto reset_unlock; + + if (cur_image != image) { + st_map->image_pages[st_map->image_pages_cnt++] = image; + cur_image = image; + trampoline_start = 0; + } + + *(void **)(kdata + moff) = image + trampoline_start + cfi_get_offset(); + + /* put prog_id to udata */ + *(unsigned long *)(udata + moff) = prog->aux->id; + + /* init ksym for this trampoline */ + bpf_struct_ops_ksym_init(tname, mname, + image + trampoline_start, + image_off - trampoline_start, + ksym); + } + + if (st_ops->validate) { + err = st_ops->validate(kdata); + if (err) + goto reset_unlock; + } + for (i = 0; i < st_map->image_pages_cnt; i++) { + err = arch_protect_bpf_trampoline(st_map->image_pages[i], + PAGE_SIZE); + if (err) + goto reset_unlock; + } + + if (st_map->map.map_flags & BPF_F_LINK) { + err = 0; + /* Let bpf_link handle registration & unregistration. + * + * Pair with smp_load_acquire() during lookup_elem(). + */ + smp_store_release(&kvalue->common.state, BPF_STRUCT_OPS_STATE_READY); + goto unlock; + } + + err = st_ops->reg(kdata, NULL); + if (likely(!err)) { + /* This refcnt increment on the map here after + * 'st_ops->reg()' is secure since the state of the + * map must be set to INIT at this moment, and thus + * bpf_struct_ops_map_delete_elem() can't unregister + * or transition it to TOBEFREE concurrently. + */ + bpf_map_inc(map); + /* Pair with smp_load_acquire() during lookup_elem(). + * It ensures the above udata updates (e.g. prog->aux->id) + * can be seen once BPF_STRUCT_OPS_STATE_INUSE is set. + */ + smp_store_release(&kvalue->common.state, BPF_STRUCT_OPS_STATE_INUSE); + goto unlock; + } + + /* Error during st_ops->reg(). Can happen if this struct_ops needs to be + * verified as a whole, after all init_member() calls. Can also happen if + * there was a race in registering the struct_ops (under the same name) to + * a sub-system through different struct_ops's maps. + */ + +reset_unlock: + bpf_struct_ops_map_free_ksyms(st_map); + bpf_struct_ops_map_free_image(st_map); + bpf_struct_ops_map_put_progs(st_map); + memset(uvalue, 0, map->value_size); + memset(kvalue, 0, map->value_size); +unlock: + kfree(tlinks); + mutex_unlock(&st_map->lock); + if (!err) + bpf_struct_ops_map_add_ksyms(st_map); + return err; +} + +static long bpf_struct_ops_map_delete_elem(struct bpf_map *map, void *key) +{ + enum bpf_struct_ops_state prev_state; + struct bpf_struct_ops_map *st_map; + + st_map = (struct bpf_struct_ops_map *)map; + if (st_map->map.map_flags & BPF_F_LINK) + return -EOPNOTSUPP; + + prev_state = cmpxchg(&st_map->kvalue.common.state, + BPF_STRUCT_OPS_STATE_INUSE, + BPF_STRUCT_OPS_STATE_TOBEFREE); + switch (prev_state) { + case BPF_STRUCT_OPS_STATE_INUSE: + st_map->st_ops_desc->st_ops->unreg(&st_map->kvalue.data, NULL); + bpf_map_put(map); + return 0; + case BPF_STRUCT_OPS_STATE_TOBEFREE: + return -EINPROGRESS; + case BPF_STRUCT_OPS_STATE_INIT: + return -ENOENT; + default: + WARN_ON_ONCE(1); + /* Should never happen. Treat it as not found. */ + return -ENOENT; + } +} + +static void bpf_struct_ops_map_seq_show_elem(struct bpf_map *map, void *key, + struct seq_file *m) +{ + struct bpf_struct_ops_map *st_map = (struct bpf_struct_ops_map *)map; + void *value; + int err; + + value = kmalloc(map->value_size, GFP_USER | __GFP_NOWARN); + if (!value) + return; + + err = bpf_struct_ops_map_sys_lookup_elem(map, key, value); + if (!err) { + btf_type_seq_show(st_map->btf, + map->btf_vmlinux_value_type_id, + value, m); + seq_putc(m, '\n'); + } + + kfree(value); +} + +static void __bpf_struct_ops_map_free(struct bpf_map *map) +{ + struct bpf_struct_ops_map *st_map = (struct bpf_struct_ops_map *)map; + + if (st_map->links) + bpf_struct_ops_map_put_progs(st_map); + if (st_map->ksyms) + bpf_struct_ops_map_free_ksyms(st_map); + bpf_map_area_free(st_map->links); + bpf_map_area_free(st_map->ksyms); + bpf_struct_ops_map_free_image(st_map); + bpf_map_area_free(st_map->uvalue); + bpf_map_area_free(st_map); +} + +static void bpf_struct_ops_map_free(struct bpf_map *map) +{ + struct bpf_struct_ops_map *st_map = (struct bpf_struct_ops_map *)map; + + /* st_ops->owner was acquired during map_alloc to implicitly holds + * the btf's refcnt. The acquire was only done when btf_is_module() + * st_map->btf cannot be NULL here. + */ + if (btf_is_module(st_map->btf)) + module_put(st_map->st_ops_desc->st_ops->owner); + + bpf_struct_ops_map_del_ksyms(st_map); + + /* The struct_ops's function may switch to another struct_ops. + * + * For example, bpf_tcp_cc_x->init() may switch to + * another tcp_cc_y by calling + * setsockopt(TCP_CONGESTION, "tcp_cc_y"). + * During the switch, bpf_struct_ops_put(tcp_cc_x) is called + * and its refcount may reach 0 which then free its + * trampoline image while tcp_cc_x is still running. + * + * A vanilla rcu gp is to wait for all bpf-tcp-cc prog + * to finish. bpf-tcp-cc prog is non sleepable. + * A rcu_tasks gp is to wait for the last few insn + * in the tramopline image to finish before releasing + * the trampoline image. + */ + synchronize_rcu_mult(call_rcu, call_rcu_tasks); + + __bpf_struct_ops_map_free(map); +} + +static int bpf_struct_ops_map_alloc_check(union bpf_attr *attr) +{ + if (attr->key_size != sizeof(unsigned int) || attr->max_entries != 1 || + (attr->map_flags & ~(BPF_F_LINK | BPF_F_VTYPE_BTF_OBJ_FD)) || + !attr->btf_vmlinux_value_type_id) + return -EINVAL; + return 0; +} + +static u32 count_func_ptrs(const struct btf *btf, const struct btf_type *t) +{ + int i; + u32 count; + const struct btf_member *member; + + count = 0; + for_each_member(i, t, member) + if (btf_type_resolve_func_ptr(btf, member->type, NULL)) + count++; + return count; +} + +static struct bpf_map *bpf_struct_ops_map_alloc(union bpf_attr *attr) +{ + const struct bpf_struct_ops_desc *st_ops_desc; + size_t st_map_size; + struct bpf_struct_ops_map *st_map; + const struct btf_type *t, *vt; + struct module *mod = NULL; + struct bpf_map *map; + struct btf *btf; + int ret; + + if (attr->map_flags & BPF_F_VTYPE_BTF_OBJ_FD) { + /* The map holds btf for its whole life time. */ + btf = btf_get_by_fd(attr->value_type_btf_obj_fd); + if (IS_ERR(btf)) + return ERR_CAST(btf); + if (!btf_is_module(btf)) { + btf_put(btf); + return ERR_PTR(-EINVAL); + } + + mod = btf_try_get_module(btf); + /* mod holds a refcnt to btf. We don't need an extra refcnt + * here. + */ + btf_put(btf); + if (!mod) + return ERR_PTR(-EINVAL); + } else { + btf = bpf_get_btf_vmlinux(); + if (IS_ERR(btf)) + return ERR_CAST(btf); + if (!btf) + return ERR_PTR(-ENOTSUPP); + } + + st_ops_desc = bpf_struct_ops_find_value(btf, attr->btf_vmlinux_value_type_id); + if (!st_ops_desc) { + ret = -ENOTSUPP; + goto errout; + } + + vt = st_ops_desc->value_type; + if (attr->value_size != vt->size) { + ret = -EINVAL; + goto errout; + } + + t = st_ops_desc->type; + + st_map_size = sizeof(*st_map) + + /* kvalue stores the + * struct bpf_struct_ops_tcp_congestions_ops + */ + (vt->size - sizeof(struct bpf_struct_ops_value)); + + st_map = bpf_map_area_alloc(st_map_size, NUMA_NO_NODE); + if (!st_map) { + ret = -ENOMEM; + goto errout; + } + + st_map->st_ops_desc = st_ops_desc; + map = &st_map->map; + + st_map->uvalue = bpf_map_area_alloc(vt->size, NUMA_NO_NODE); + st_map->funcs_cnt = count_func_ptrs(btf, t); + st_map->links = + bpf_map_area_alloc(st_map->funcs_cnt * sizeof(struct bpf_link *), + NUMA_NO_NODE); + + st_map->ksyms = + bpf_map_area_alloc(st_map->funcs_cnt * sizeof(struct bpf_ksym *), + NUMA_NO_NODE); + if (!st_map->uvalue || !st_map->links || !st_map->ksyms) { + ret = -ENOMEM; + goto errout_free; + } + st_map->btf = btf; + + mutex_init(&st_map->lock); + bpf_map_init_from_attr(map, attr); + + return map; + +errout_free: + __bpf_struct_ops_map_free(map); +errout: + module_put(mod); + + return ERR_PTR(ret); +} + +static u64 bpf_struct_ops_map_mem_usage(const struct bpf_map *map) +{ + struct bpf_struct_ops_map *st_map = (struct bpf_struct_ops_map *)map; + const struct bpf_struct_ops_desc *st_ops_desc = st_map->st_ops_desc; + const struct btf_type *vt = st_ops_desc->value_type; + u64 usage; + + usage = sizeof(*st_map) + + vt->size - sizeof(struct bpf_struct_ops_value); + usage += vt->size; + usage += st_map->funcs_cnt * sizeof(struct bpf_link *); + usage += st_map->funcs_cnt * sizeof(struct bpf_ksym *); + usage += PAGE_SIZE; + return usage; +} + +BTF_ID_LIST_SINGLE(bpf_struct_ops_map_btf_ids, struct, bpf_struct_ops_map) +const struct bpf_map_ops bpf_struct_ops_map_ops = { + .map_alloc_check = bpf_struct_ops_map_alloc_check, + .map_alloc = bpf_struct_ops_map_alloc, + .map_free = bpf_struct_ops_map_free, + .map_get_next_key = bpf_struct_ops_map_get_next_key, + .map_lookup_elem = bpf_struct_ops_map_lookup_elem, + .map_delete_elem = bpf_struct_ops_map_delete_elem, + .map_update_elem = bpf_struct_ops_map_update_elem, + .map_seq_show_elem = bpf_struct_ops_map_seq_show_elem, + .map_mem_usage = bpf_struct_ops_map_mem_usage, + .map_btf_id = &bpf_struct_ops_map_btf_ids[0], +}; + +/* "const void *" because some subsystem is + * passing a const (e.g. const struct tcp_congestion_ops *) + */ +bool bpf_struct_ops_get(const void *kdata) +{ + struct bpf_struct_ops_value *kvalue; + struct bpf_struct_ops_map *st_map; + struct bpf_map *map; + + kvalue = container_of(kdata, struct bpf_struct_ops_value, data); + st_map = container_of(kvalue, struct bpf_struct_ops_map, kvalue); + + map = __bpf_map_inc_not_zero(&st_map->map, false); + return !IS_ERR(map); +} +EXPORT_SYMBOL_GPL(bpf_struct_ops_get); + +void bpf_struct_ops_put(const void *kdata) +{ + struct bpf_struct_ops_value *kvalue; + struct bpf_struct_ops_map *st_map; + + kvalue = container_of(kdata, struct bpf_struct_ops_value, data); + st_map = container_of(kvalue, struct bpf_struct_ops_map, kvalue); + + bpf_map_put(&st_map->map); +} +EXPORT_SYMBOL_GPL(bpf_struct_ops_put); + +u32 bpf_struct_ops_id(const void *kdata) +{ + struct bpf_struct_ops_value *kvalue; + struct bpf_struct_ops_map *st_map; + + kvalue = container_of(kdata, struct bpf_struct_ops_value, data); + st_map = container_of(kvalue, struct bpf_struct_ops_map, kvalue); + + return st_map->map.id; +} +EXPORT_SYMBOL_GPL(bpf_struct_ops_id); + +static bool bpf_struct_ops_valid_to_reg(struct bpf_map *map) +{ + struct bpf_struct_ops_map *st_map = (struct bpf_struct_ops_map *)map; + + return map->map_type == BPF_MAP_TYPE_STRUCT_OPS && + map->map_flags & BPF_F_LINK && + /* Pair with smp_store_release() during map_update */ + smp_load_acquire(&st_map->kvalue.common.state) == BPF_STRUCT_OPS_STATE_READY; +} + +static void bpf_struct_ops_map_link_dealloc(struct bpf_link *link) +{ + struct bpf_struct_ops_link *st_link; + struct bpf_struct_ops_map *st_map; + + st_link = container_of(link, struct bpf_struct_ops_link, link); + st_map = (struct bpf_struct_ops_map *) + rcu_dereference_protected(st_link->map, true); + if (st_map) { + st_map->st_ops_desc->st_ops->unreg(&st_map->kvalue.data, link); + bpf_map_put(&st_map->map); + } + kfree(st_link); +} + +static void bpf_struct_ops_map_link_show_fdinfo(const struct bpf_link *link, + struct seq_file *seq) +{ + struct bpf_struct_ops_link *st_link; + struct bpf_map *map; + + st_link = container_of(link, struct bpf_struct_ops_link, link); + rcu_read_lock(); + map = rcu_dereference(st_link->map); + if (map) + seq_printf(seq, "map_id:\t%d\n", map->id); + rcu_read_unlock(); +} + +static int bpf_struct_ops_map_link_fill_link_info(const struct bpf_link *link, + struct bpf_link_info *info) +{ + struct bpf_struct_ops_link *st_link; + struct bpf_map *map; + + st_link = container_of(link, struct bpf_struct_ops_link, link); + rcu_read_lock(); + map = rcu_dereference(st_link->map); + if (map) + info->struct_ops.map_id = map->id; + rcu_read_unlock(); + return 0; +} + +static int bpf_struct_ops_map_link_update(struct bpf_link *link, struct bpf_map *new_map, + struct bpf_map *expected_old_map) +{ + struct bpf_struct_ops_map *st_map, *old_st_map; + struct bpf_map *old_map; + struct bpf_struct_ops_link *st_link; + int err; + + st_link = container_of(link, struct bpf_struct_ops_link, link); + st_map = container_of(new_map, struct bpf_struct_ops_map, map); + + if (!bpf_struct_ops_valid_to_reg(new_map)) + return -EINVAL; + + if (!st_map->st_ops_desc->st_ops->update) + return -EOPNOTSUPP; + + mutex_lock(&update_mutex); + + old_map = rcu_dereference_protected(st_link->map, lockdep_is_held(&update_mutex)); + if (!old_map) { + err = -ENOLINK; + goto err_out; + } + if (expected_old_map && old_map != expected_old_map) { + err = -EPERM; + goto err_out; + } + + old_st_map = container_of(old_map, struct bpf_struct_ops_map, map); + /* The new and old struct_ops must be the same type. */ + if (st_map->st_ops_desc != old_st_map->st_ops_desc) { + err = -EINVAL; + goto err_out; + } + + err = st_map->st_ops_desc->st_ops->update(st_map->kvalue.data, old_st_map->kvalue.data, link); + if (err) + goto err_out; + + bpf_map_inc(new_map); + rcu_assign_pointer(st_link->map, new_map); + bpf_map_put(old_map); + +err_out: + mutex_unlock(&update_mutex); + + return err; +} + +static int bpf_struct_ops_map_link_detach(struct bpf_link *link) +{ + struct bpf_struct_ops_link *st_link = container_of(link, struct bpf_struct_ops_link, link); + struct bpf_struct_ops_map *st_map; + struct bpf_map *map; + + mutex_lock(&update_mutex); + + map = rcu_dereference_protected(st_link->map, lockdep_is_held(&update_mutex)); + if (!map) { + mutex_unlock(&update_mutex); + return 0; + } + st_map = container_of(map, struct bpf_struct_ops_map, map); + + st_map->st_ops_desc->st_ops->unreg(&st_map->kvalue.data, link); + + RCU_INIT_POINTER(st_link->map, NULL); + /* Pair with bpf_map_get() in bpf_struct_ops_link_create() or + * bpf_map_inc() in bpf_struct_ops_map_link_update(). + */ + bpf_map_put(&st_map->map); + + mutex_unlock(&update_mutex); + + wake_up_interruptible_poll(&st_link->wait_hup, EPOLLHUP); + + return 0; +} + +static __poll_t bpf_struct_ops_map_link_poll(struct file *file, + struct poll_table_struct *pts) +{ + struct bpf_struct_ops_link *st_link = file->private_data; + + poll_wait(file, &st_link->wait_hup, pts); + + return rcu_access_pointer(st_link->map) ? 0 : EPOLLHUP; +} + +static const struct bpf_link_ops bpf_struct_ops_map_lops = { + .dealloc = bpf_struct_ops_map_link_dealloc, + .detach = bpf_struct_ops_map_link_detach, + .show_fdinfo = bpf_struct_ops_map_link_show_fdinfo, + .fill_link_info = bpf_struct_ops_map_link_fill_link_info, + .update_map = bpf_struct_ops_map_link_update, + .poll = bpf_struct_ops_map_link_poll, +}; + +int bpf_struct_ops_link_create(union bpf_attr *attr) +{ + struct bpf_struct_ops_link *link = NULL; + struct bpf_link_primer link_primer; + struct bpf_struct_ops_map *st_map; + struct bpf_map *map; + int err; + + map = bpf_map_get(attr->link_create.map_fd); + if (IS_ERR(map)) + return PTR_ERR(map); + + st_map = (struct bpf_struct_ops_map *)map; + + if (!bpf_struct_ops_valid_to_reg(map)) { + err = -EINVAL; + goto err_out; + } + + link = kzalloc(sizeof(*link), GFP_USER); + if (!link) { + err = -ENOMEM; + goto err_out; + } + bpf_link_init(&link->link, BPF_LINK_TYPE_STRUCT_OPS, &bpf_struct_ops_map_lops, NULL, + attr->link_create.attach_type); + + err = bpf_link_prime(&link->link, &link_primer); + if (err) + goto err_out; + + init_waitqueue_head(&link->wait_hup); + + /* Hold the update_mutex such that the subsystem cannot + * do link->ops->detach() before the link is fully initialized. + */ + mutex_lock(&update_mutex); + err = st_map->st_ops_desc->st_ops->reg(st_map->kvalue.data, &link->link); + if (err) { + mutex_unlock(&update_mutex); + bpf_link_cleanup(&link_primer); + link = NULL; + goto err_out; + } + RCU_INIT_POINTER(link->map, map); + mutex_unlock(&update_mutex); + + return bpf_link_settle(&link_primer); + +err_out: + bpf_map_put(map); + kfree(link); + return err; +} + +void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) +{ + struct bpf_struct_ops_map *st_map = (struct bpf_struct_ops_map *)map; + + info->btf_vmlinux_id = btf_obj_id(st_map->btf); +} diff --git a/kernel/bpf/bpf_task_storage.c b/kernel/bpf/bpf_task_storage.c new file mode 100644 index 000000000000..a1dc1bf0848a --- /dev/null +++ b/kernel/bpf/bpf_task_storage.c @@ -0,0 +1,373 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2020 Facebook + * Copyright 2020 Google LLC. + */ + +#include <linux/pid.h> +#include <linux/sched.h> +#include <linux/rculist.h> +#include <linux/list.h> +#include <linux/hash.h> +#include <linux/types.h> +#include <linux/spinlock.h> +#include <linux/bpf.h> +#include <linux/bpf_local_storage.h> +#include <linux/filter.h> +#include <uapi/linux/btf.h> +#include <linux/btf_ids.h> +#include <linux/rcupdate_trace.h> + +DEFINE_BPF_STORAGE_CACHE(task_cache); + +static DEFINE_PER_CPU(int, bpf_task_storage_busy); + +static void bpf_task_storage_lock(void) +{ + cant_migrate(); + this_cpu_inc(bpf_task_storage_busy); +} + +static void bpf_task_storage_unlock(void) +{ + this_cpu_dec(bpf_task_storage_busy); +} + +static bool bpf_task_storage_trylock(void) +{ + cant_migrate(); + if (unlikely(this_cpu_inc_return(bpf_task_storage_busy) != 1)) { + this_cpu_dec(bpf_task_storage_busy); + return false; + } + return true; +} + +static struct bpf_local_storage __rcu **task_storage_ptr(void *owner) +{ + struct task_struct *task = owner; + + return &task->bpf_storage; +} + +static struct bpf_local_storage_data * +task_storage_lookup(struct task_struct *task, struct bpf_map *map, + bool cacheit_lockit) +{ + struct bpf_local_storage *task_storage; + struct bpf_local_storage_map *smap; + + task_storage = + rcu_dereference_check(task->bpf_storage, bpf_rcu_lock_held()); + if (!task_storage) + return NULL; + + smap = (struct bpf_local_storage_map *)map; + return bpf_local_storage_lookup(task_storage, smap, cacheit_lockit); +} + +void bpf_task_storage_free(struct task_struct *task) +{ + struct bpf_local_storage *local_storage; + + rcu_read_lock_dont_migrate(); + + local_storage = rcu_dereference(task->bpf_storage); + if (!local_storage) + goto out; + + bpf_task_storage_lock(); + bpf_local_storage_destroy(local_storage); + bpf_task_storage_unlock(); +out: + rcu_read_unlock_migrate(); +} + +static void *bpf_pid_task_storage_lookup_elem(struct bpf_map *map, void *key) +{ + struct bpf_local_storage_data *sdata; + struct task_struct *task; + unsigned int f_flags; + struct pid *pid; + int fd, err; + + fd = *(int *)key; + pid = pidfd_get_pid(fd, &f_flags); + if (IS_ERR(pid)) + return ERR_CAST(pid); + + /* We should be in an RCU read side critical section, it should be safe + * to call pid_task. + */ + WARN_ON_ONCE(!rcu_read_lock_held()); + task = pid_task(pid, PIDTYPE_PID); + if (!task) { + err = -ENOENT; + goto out; + } + + bpf_task_storage_lock(); + sdata = task_storage_lookup(task, map, true); + bpf_task_storage_unlock(); + put_pid(pid); + return sdata ? sdata->data : NULL; +out: + put_pid(pid); + return ERR_PTR(err); +} + +static long bpf_pid_task_storage_update_elem(struct bpf_map *map, void *key, + void *value, u64 map_flags) +{ + struct bpf_local_storage_data *sdata; + struct task_struct *task; + unsigned int f_flags; + struct pid *pid; + int fd, err; + + if ((map_flags & BPF_F_LOCK) && btf_record_has_field(map->record, BPF_UPTR)) + return -EOPNOTSUPP; + + fd = *(int *)key; + pid = pidfd_get_pid(fd, &f_flags); + if (IS_ERR(pid)) + return PTR_ERR(pid); + + /* We should be in an RCU read side critical section, it should be safe + * to call pid_task. + */ + WARN_ON_ONCE(!rcu_read_lock_held()); + task = pid_task(pid, PIDTYPE_PID); + if (!task) { + err = -ENOENT; + goto out; + } + + bpf_task_storage_lock(); + sdata = bpf_local_storage_update( + task, (struct bpf_local_storage_map *)map, value, map_flags, + true, GFP_ATOMIC); + bpf_task_storage_unlock(); + + err = PTR_ERR_OR_ZERO(sdata); +out: + put_pid(pid); + return err; +} + +static int task_storage_delete(struct task_struct *task, struct bpf_map *map, + bool nobusy) +{ + struct bpf_local_storage_data *sdata; + + sdata = task_storage_lookup(task, map, false); + if (!sdata) + return -ENOENT; + + if (!nobusy) + return -EBUSY; + + bpf_selem_unlink(SELEM(sdata), false); + + return 0; +} + +static long bpf_pid_task_storage_delete_elem(struct bpf_map *map, void *key) +{ + struct task_struct *task; + unsigned int f_flags; + struct pid *pid; + int fd, err; + + fd = *(int *)key; + pid = pidfd_get_pid(fd, &f_flags); + if (IS_ERR(pid)) + return PTR_ERR(pid); + + /* We should be in an RCU read side critical section, it should be safe + * to call pid_task. + */ + WARN_ON_ONCE(!rcu_read_lock_held()); + task = pid_task(pid, PIDTYPE_PID); + if (!task) { + err = -ENOENT; + goto out; + } + + bpf_task_storage_lock(); + err = task_storage_delete(task, map, true); + bpf_task_storage_unlock(); +out: + put_pid(pid); + return err; +} + +/* Called by bpf_task_storage_get*() helpers */ +static void *__bpf_task_storage_get(struct bpf_map *map, + struct task_struct *task, void *value, + u64 flags, gfp_t gfp_flags, bool nobusy) +{ + struct bpf_local_storage_data *sdata; + + sdata = task_storage_lookup(task, map, nobusy); + if (sdata) + return sdata->data; + + /* only allocate new storage, when the task is refcounted */ + if (refcount_read(&task->usage) && + (flags & BPF_LOCAL_STORAGE_GET_F_CREATE) && nobusy) { + sdata = bpf_local_storage_update( + task, (struct bpf_local_storage_map *)map, value, + BPF_NOEXIST, false, gfp_flags); + return IS_ERR(sdata) ? NULL : sdata->data; + } + + return NULL; +} + +/* *gfp_flags* is a hidden argument provided by the verifier */ +BPF_CALL_5(bpf_task_storage_get_recur, struct bpf_map *, map, struct task_struct *, + task, void *, value, u64, flags, gfp_t, gfp_flags) +{ + bool nobusy; + void *data; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + if (flags & ~BPF_LOCAL_STORAGE_GET_F_CREATE || !task) + return (unsigned long)NULL; + + nobusy = bpf_task_storage_trylock(); + data = __bpf_task_storage_get(map, task, value, flags, + gfp_flags, nobusy); + if (nobusy) + bpf_task_storage_unlock(); + return (unsigned long)data; +} + +/* *gfp_flags* is a hidden argument provided by the verifier */ +BPF_CALL_5(bpf_task_storage_get, struct bpf_map *, map, struct task_struct *, + task, void *, value, u64, flags, gfp_t, gfp_flags) +{ + void *data; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + if (flags & ~BPF_LOCAL_STORAGE_GET_F_CREATE || !task) + return (unsigned long)NULL; + + bpf_task_storage_lock(); + data = __bpf_task_storage_get(map, task, value, flags, + gfp_flags, true); + bpf_task_storage_unlock(); + return (unsigned long)data; +} + +BPF_CALL_2(bpf_task_storage_delete_recur, struct bpf_map *, map, struct task_struct *, + task) +{ + bool nobusy; + int ret; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + if (!task) + return -EINVAL; + + nobusy = bpf_task_storage_trylock(); + /* This helper must only be called from places where the lifetime of the task + * is guaranteed. Either by being refcounted or by being protected + * by an RCU read-side critical section. + */ + ret = task_storage_delete(task, map, nobusy); + if (nobusy) + bpf_task_storage_unlock(); + return ret; +} + +BPF_CALL_2(bpf_task_storage_delete, struct bpf_map *, map, struct task_struct *, + task) +{ + int ret; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + if (!task) + return -EINVAL; + + bpf_task_storage_lock(); + /* This helper must only be called from places where the lifetime of the task + * is guaranteed. Either by being refcounted or by being protected + * by an RCU read-side critical section. + */ + ret = task_storage_delete(task, map, true); + bpf_task_storage_unlock(); + return ret; +} + +static int notsupp_get_next_key(struct bpf_map *map, void *key, void *next_key) +{ + return -ENOTSUPP; +} + +static struct bpf_map *task_storage_map_alloc(union bpf_attr *attr) +{ + return bpf_local_storage_map_alloc(attr, &task_cache, true); +} + +static void task_storage_map_free(struct bpf_map *map) +{ + bpf_local_storage_map_free(map, &task_cache, &bpf_task_storage_busy); +} + +BTF_ID_LIST_GLOBAL_SINGLE(bpf_local_storage_map_btf_id, struct, bpf_local_storage_map) +const struct bpf_map_ops task_storage_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = bpf_local_storage_map_alloc_check, + .map_alloc = task_storage_map_alloc, + .map_free = task_storage_map_free, + .map_get_next_key = notsupp_get_next_key, + .map_lookup_elem = bpf_pid_task_storage_lookup_elem, + .map_update_elem = bpf_pid_task_storage_update_elem, + .map_delete_elem = bpf_pid_task_storage_delete_elem, + .map_check_btf = bpf_local_storage_map_check_btf, + .map_mem_usage = bpf_local_storage_map_mem_usage, + .map_btf_id = &bpf_local_storage_map_btf_id[0], + .map_owner_storage_ptr = task_storage_ptr, +}; + +const struct bpf_func_proto bpf_task_storage_get_recur_proto = { + .func = bpf_task_storage_get_recur, + .gpl_only = false, + .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL, + .arg2_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], + .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, + .arg4_type = ARG_ANYTHING, +}; + +const struct bpf_func_proto bpf_task_storage_get_proto = { + .func = bpf_task_storage_get, + .gpl_only = false, + .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL, + .arg2_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], + .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, + .arg4_type = ARG_ANYTHING, +}; + +const struct bpf_func_proto bpf_task_storage_delete_recur_proto = { + .func = bpf_task_storage_delete_recur, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL, + .arg2_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], +}; + +const struct bpf_func_proto bpf_task_storage_delete_proto = { + .func = bpf_task_storage_delete, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL, + .arg2_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], +}; diff --git a/kernel/bpf/btf.c b/kernel/bpf/btf.c new file mode 100644 index 000000000000..0de8fc8a0e0b --- /dev/null +++ b/kernel/bpf/btf.c @@ -0,0 +1,9579 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (c) 2018 Facebook */ + +#include <uapi/linux/btf.h> +#include <uapi/linux/bpf.h> +#include <uapi/linux/bpf_perf_event.h> +#include <uapi/linux/types.h> +#include <linux/seq_file.h> +#include <linux/compiler.h> +#include <linux/ctype.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/anon_inodes.h> +#include <linux/file.h> +#include <linux/uaccess.h> +#include <linux/kernel.h> +#include <linux/idr.h> +#include <linux/sort.h> +#include <linux/bpf_verifier.h> +#include <linux/btf.h> +#include <linux/btf_ids.h> +#include <linux/bpf.h> +#include <linux/bpf_lsm.h> +#include <linux/skmsg.h> +#include <linux/perf_event.h> +#include <linux/bsearch.h> +#include <linux/kobject.h> +#include <linux/sysfs.h> +#include <linux/overflow.h> + +#include <net/netfilter/nf_bpf_link.h> + +#include <net/sock.h> +#include <net/xdp.h> +#include "../tools/lib/bpf/relo_core.h" + +/* BTF (BPF Type Format) is the meta data format which describes + * the data types of BPF program/map. Hence, it basically focus + * on the C programming language which the modern BPF is primary + * using. + * + * ELF Section: + * ~~~~~~~~~~~ + * The BTF data is stored under the ".BTF" ELF section + * + * struct btf_type: + * ~~~~~~~~~~~~~~~ + * Each 'struct btf_type' object describes a C data type. + * Depending on the type it is describing, a 'struct btf_type' + * object may be followed by more data. F.e. + * To describe an array, 'struct btf_type' is followed by + * 'struct btf_array'. + * + * 'struct btf_type' and any extra data following it are + * 4 bytes aligned. + * + * Type section: + * ~~~~~~~~~~~~~ + * The BTF type section contains a list of 'struct btf_type' objects. + * Each one describes a C type. Recall from the above section + * that a 'struct btf_type' object could be immediately followed by extra + * data in order to describe some particular C types. + * + * type_id: + * ~~~~~~~ + * Each btf_type object is identified by a type_id. The type_id + * is implicitly implied by the location of the btf_type object in + * the BTF type section. The first one has type_id 1. The second + * one has type_id 2...etc. Hence, an earlier btf_type has + * a smaller type_id. + * + * A btf_type object may refer to another btf_type object by using + * type_id (i.e. the "type" in the "struct btf_type"). + * + * NOTE that we cannot assume any reference-order. + * A btf_type object can refer to an earlier btf_type object + * but it can also refer to a later btf_type object. + * + * For example, to describe "const void *". A btf_type + * object describing "const" may refer to another btf_type + * object describing "void *". This type-reference is done + * by specifying type_id: + * + * [1] CONST (anon) type_id=2 + * [2] PTR (anon) type_id=0 + * + * The above is the btf_verifier debug log: + * - Each line started with "[?]" is a btf_type object + * - [?] is the type_id of the btf_type object. + * - CONST/PTR is the BTF_KIND_XXX + * - "(anon)" is the name of the type. It just + * happens that CONST and PTR has no name. + * - type_id=XXX is the 'u32 type' in btf_type + * + * NOTE: "void" has type_id 0 + * + * String section: + * ~~~~~~~~~~~~~~ + * The BTF string section contains the names used by the type section. + * Each string is referred by an "offset" from the beginning of the + * string section. + * + * Each string is '\0' terminated. + * + * The first character in the string section must be '\0' + * which is used to mean 'anonymous'. Some btf_type may not + * have a name. + */ + +/* BTF verification: + * + * To verify BTF data, two passes are needed. + * + * Pass #1 + * ~~~~~~~ + * The first pass is to collect all btf_type objects to + * an array: "btf->types". + * + * Depending on the C type that a btf_type is describing, + * a btf_type may be followed by extra data. We don't know + * how many btf_type is there, and more importantly we don't + * know where each btf_type is located in the type section. + * + * Without knowing the location of each type_id, most verifications + * cannot be done. e.g. an earlier btf_type may refer to a later + * btf_type (recall the "const void *" above), so we cannot + * check this type-reference in the first pass. + * + * In the first pass, it still does some verifications (e.g. + * checking the name is a valid offset to the string section). + * + * Pass #2 + * ~~~~~~~ + * The main focus is to resolve a btf_type that is referring + * to another type. + * + * We have to ensure the referring type: + * 1) does exist in the BTF (i.e. in btf->types[]) + * 2) does not cause a loop: + * struct A { + * struct B b; + * }; + * + * struct B { + * struct A a; + * }; + * + * btf_type_needs_resolve() decides if a btf_type needs + * to be resolved. + * + * The needs_resolve type implements the "resolve()" ops which + * essentially does a DFS and detects backedge. + * + * During resolve (or DFS), different C types have different + * "RESOLVED" conditions. + * + * When resolving a BTF_KIND_STRUCT, we need to resolve all its + * members because a member is always referring to another + * type. A struct's member can be treated as "RESOLVED" if + * it is referring to a BTF_KIND_PTR. Otherwise, the + * following valid C struct would be rejected: + * + * struct A { + * int m; + * struct A *a; + * }; + * + * When resolving a BTF_KIND_PTR, it needs to keep resolving if + * it is referring to another BTF_KIND_PTR. Otherwise, we cannot + * detect a pointer loop, e.g.: + * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + + * ^ | + * +-----------------------------------------+ + * + */ + +#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) +#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) +#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) +#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) +#define BITS_ROUNDUP_BYTES(bits) \ + (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) + +#define BTF_INFO_MASK 0x9f00ffff +#define BTF_INT_MASK 0x0fffffff +#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) +#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) + +/* 16MB for 64k structs and each has 16 members and + * a few MB spaces for the string section. + * The hard limit is S32_MAX. + */ +#define BTF_MAX_SIZE (16 * 1024 * 1024) + +#define for_each_member_from(i, from, struct_type, member) \ + for (i = from, member = btf_type_member(struct_type) + from; \ + i < btf_type_vlen(struct_type); \ + i++, member++) + +#define for_each_vsi_from(i, from, struct_type, member) \ + for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ + i < btf_type_vlen(struct_type); \ + i++, member++) + +DEFINE_IDR(btf_idr); +DEFINE_SPINLOCK(btf_idr_lock); + +enum btf_kfunc_hook { + BTF_KFUNC_HOOK_COMMON, + BTF_KFUNC_HOOK_XDP, + BTF_KFUNC_HOOK_TC, + BTF_KFUNC_HOOK_STRUCT_OPS, + BTF_KFUNC_HOOK_TRACING, + BTF_KFUNC_HOOK_SYSCALL, + BTF_KFUNC_HOOK_FMODRET, + BTF_KFUNC_HOOK_CGROUP, + BTF_KFUNC_HOOK_SCHED_ACT, + BTF_KFUNC_HOOK_SK_SKB, + BTF_KFUNC_HOOK_SOCKET_FILTER, + BTF_KFUNC_HOOK_LWT, + BTF_KFUNC_HOOK_NETFILTER, + BTF_KFUNC_HOOK_KPROBE, + BTF_KFUNC_HOOK_MAX, +}; + +enum { + BTF_KFUNC_SET_MAX_CNT = 256, + BTF_DTOR_KFUNC_MAX_CNT = 256, + BTF_KFUNC_FILTER_MAX_CNT = 16, +}; + +struct btf_kfunc_hook_filter { + btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; + u32 nr_filters; +}; + +struct btf_kfunc_set_tab { + struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; + struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; +}; + +struct btf_id_dtor_kfunc_tab { + u32 cnt; + struct btf_id_dtor_kfunc dtors[]; +}; + +struct btf_struct_ops_tab { + u32 cnt; + u32 capacity; + struct bpf_struct_ops_desc ops[]; +}; + +struct btf { + void *data; + struct btf_type **types; + u32 *resolved_ids; + u32 *resolved_sizes; + const char *strings; + void *nohdr_data; + struct btf_header hdr; + u32 nr_types; /* includes VOID for base BTF */ + u32 types_size; + u32 data_size; + refcount_t refcnt; + u32 id; + struct rcu_head rcu; + struct btf_kfunc_set_tab *kfunc_set_tab; + struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; + struct btf_struct_metas *struct_meta_tab; + struct btf_struct_ops_tab *struct_ops_tab; + + /* split BTF support */ + struct btf *base_btf; + u32 start_id; /* first type ID in this BTF (0 for base BTF) */ + u32 start_str_off; /* first string offset (0 for base BTF) */ + char name[MODULE_NAME_LEN]; + bool kernel_btf; + __u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */ +}; + +enum verifier_phase { + CHECK_META, + CHECK_TYPE, +}; + +struct resolve_vertex { + const struct btf_type *t; + u32 type_id; + u16 next_member; +}; + +enum visit_state { + NOT_VISITED, + VISITED, + RESOLVED, +}; + +enum resolve_mode { + RESOLVE_TBD, /* To Be Determined */ + RESOLVE_PTR, /* Resolving for Pointer */ + RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union + * or array + */ +}; + +#define MAX_RESOLVE_DEPTH 32 + +struct btf_sec_info { + u32 off; + u32 len; +}; + +struct btf_verifier_env { + struct btf *btf; + u8 *visit_states; + struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; + struct bpf_verifier_log log; + u32 log_type_id; + u32 top_stack; + enum verifier_phase phase; + enum resolve_mode resolve_mode; +}; + +static const char * const btf_kind_str[NR_BTF_KINDS] = { + [BTF_KIND_UNKN] = "UNKNOWN", + [BTF_KIND_INT] = "INT", + [BTF_KIND_PTR] = "PTR", + [BTF_KIND_ARRAY] = "ARRAY", + [BTF_KIND_STRUCT] = "STRUCT", + [BTF_KIND_UNION] = "UNION", + [BTF_KIND_ENUM] = "ENUM", + [BTF_KIND_FWD] = "FWD", + [BTF_KIND_TYPEDEF] = "TYPEDEF", + [BTF_KIND_VOLATILE] = "VOLATILE", + [BTF_KIND_CONST] = "CONST", + [BTF_KIND_RESTRICT] = "RESTRICT", + [BTF_KIND_FUNC] = "FUNC", + [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", + [BTF_KIND_VAR] = "VAR", + [BTF_KIND_DATASEC] = "DATASEC", + [BTF_KIND_FLOAT] = "FLOAT", + [BTF_KIND_DECL_TAG] = "DECL_TAG", + [BTF_KIND_TYPE_TAG] = "TYPE_TAG", + [BTF_KIND_ENUM64] = "ENUM64", +}; + +const char *btf_type_str(const struct btf_type *t) +{ + return btf_kind_str[BTF_INFO_KIND(t->info)]; +} + +/* Chunk size we use in safe copy of data to be shown. */ +#define BTF_SHOW_OBJ_SAFE_SIZE 32 + +/* + * This is the maximum size of a base type value (equivalent to a + * 128-bit int); if we are at the end of our safe buffer and have + * less than 16 bytes space we can't be assured of being able + * to copy the next type safely, so in such cases we will initiate + * a new copy. + */ +#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 + +/* Type name size */ +#define BTF_SHOW_NAME_SIZE 80 + +/* + * The suffix of a type that indicates it cannot alias another type when + * comparing BTF IDs for kfunc invocations. + */ +#define NOCAST_ALIAS_SUFFIX "___init" + +/* + * Common data to all BTF show operations. Private show functions can add + * their own data to a structure containing a struct btf_show and consult it + * in the show callback. See btf_type_show() below. + * + * One challenge with showing nested data is we want to skip 0-valued + * data, but in order to figure out whether a nested object is all zeros + * we need to walk through it. As a result, we need to make two passes + * when handling structs, unions and arrays; the first path simply looks + * for nonzero data, while the second actually does the display. The first + * pass is signalled by show->state.depth_check being set, and if we + * encounter a non-zero value we set show->state.depth_to_show to + * the depth at which we encountered it. When we have completed the + * first pass, we will know if anything needs to be displayed if + * depth_to_show > depth. See btf_[struct,array]_show() for the + * implementation of this. + * + * Another problem is we want to ensure the data for display is safe to + * access. To support this, the anonymous "struct {} obj" tracks the data + * object and our safe copy of it. We copy portions of the data needed + * to the object "copy" buffer, but because its size is limited to + * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we + * traverse larger objects for display. + * + * The various data type show functions all start with a call to + * btf_show_start_type() which returns a pointer to the safe copy + * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the + * raw data itself). btf_show_obj_safe() is responsible for + * using copy_from_kernel_nofault() to update the safe data if necessary + * as we traverse the object's data. skbuff-like semantics are + * used: + * + * - obj.head points to the start of the toplevel object for display + * - obj.size is the size of the toplevel object + * - obj.data points to the current point in the original data at + * which our safe data starts. obj.data will advance as we copy + * portions of the data. + * + * In most cases a single copy will suffice, but larger data structures + * such as "struct task_struct" will require many copies. The logic in + * btf_show_obj_safe() handles the logic that determines if a new + * copy_from_kernel_nofault() is needed. + */ +struct btf_show { + u64 flags; + void *target; /* target of show operation (seq file, buffer) */ + __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); + const struct btf *btf; + /* below are used during iteration */ + struct { + u8 depth; + u8 depth_to_show; + u8 depth_check; + u8 array_member:1, + array_terminated:1; + u16 array_encoding; + u32 type_id; + int status; /* non-zero for error */ + const struct btf_type *type; + const struct btf_member *member; + char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ + } state; + struct { + u32 size; + void *head; + void *data; + u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; + } obj; +}; + +struct btf_kind_operations { + s32 (*check_meta)(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left); + int (*resolve)(struct btf_verifier_env *env, + const struct resolve_vertex *v); + int (*check_member)(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type); + int (*check_kflag_member)(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type); + void (*log_details)(struct btf_verifier_env *env, + const struct btf_type *t); + void (*show)(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offsets, + struct btf_show *show); +}; + +static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; +static struct btf_type btf_void; + +static int btf_resolve(struct btf_verifier_env *env, + const struct btf_type *t, u32 type_id); + +static int btf_func_check(struct btf_verifier_env *env, + const struct btf_type *t); + +static bool btf_type_is_modifier(const struct btf_type *t) +{ + /* Some of them is not strictly a C modifier + * but they are grouped into the same bucket + * for BTF concern: + * A type (t) that refers to another + * type through t->type AND its size cannot + * be determined without following the t->type. + * + * ptr does not fall into this bucket + * because its size is always sizeof(void *). + */ + switch (BTF_INFO_KIND(t->info)) { + case BTF_KIND_TYPEDEF: + case BTF_KIND_VOLATILE: + case BTF_KIND_CONST: + case BTF_KIND_RESTRICT: + case BTF_KIND_TYPE_TAG: + return true; + } + + return false; +} + +bool btf_type_is_void(const struct btf_type *t) +{ + return t == &btf_void; +} + +static bool btf_type_is_datasec(const struct btf_type *t) +{ + return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; +} + +static bool btf_type_is_decl_tag(const struct btf_type *t) +{ + return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; +} + +static bool btf_type_nosize(const struct btf_type *t) +{ + return btf_type_is_void(t) || btf_type_is_fwd(t) || + btf_type_is_func(t) || btf_type_is_func_proto(t) || + btf_type_is_decl_tag(t); +} + +static bool btf_type_nosize_or_null(const struct btf_type *t) +{ + return !t || btf_type_nosize(t); +} + +static bool btf_type_is_decl_tag_target(const struct btf_type *t) +{ + return btf_type_is_func(t) || btf_type_is_struct(t) || + btf_type_is_var(t) || btf_type_is_typedef(t); +} + +bool btf_is_vmlinux(const struct btf *btf) +{ + return btf->kernel_btf && !btf->base_btf; +} + +u32 btf_nr_types(const struct btf *btf) +{ + u32 total = 0; + + while (btf) { + total += btf->nr_types; + btf = btf->base_btf; + } + + return total; +} + +s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) +{ + const struct btf_type *t; + const char *tname; + u32 i, total; + + total = btf_nr_types(btf); + for (i = 1; i < total; i++) { + t = btf_type_by_id(btf, i); + if (BTF_INFO_KIND(t->info) != kind) + continue; + + tname = btf_name_by_offset(btf, t->name_off); + if (!strcmp(tname, name)) + return i; + } + + return -ENOENT; +} + +s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) +{ + struct btf *btf; + s32 ret; + int id; + + btf = bpf_get_btf_vmlinux(); + if (IS_ERR(btf)) + return PTR_ERR(btf); + if (!btf) + return -EINVAL; + + ret = btf_find_by_name_kind(btf, name, kind); + /* ret is never zero, since btf_find_by_name_kind returns + * positive btf_id or negative error. + */ + if (ret > 0) { + btf_get(btf); + *btf_p = btf; + return ret; + } + + /* If name is not found in vmlinux's BTF then search in module's BTFs */ + spin_lock_bh(&btf_idr_lock); + idr_for_each_entry(&btf_idr, btf, id) { + if (!btf_is_module(btf)) + continue; + /* linear search could be slow hence unlock/lock + * the IDR to avoiding holding it for too long + */ + btf_get(btf); + spin_unlock_bh(&btf_idr_lock); + ret = btf_find_by_name_kind(btf, name, kind); + if (ret > 0) { + *btf_p = btf; + return ret; + } + btf_put(btf); + spin_lock_bh(&btf_idr_lock); + } + spin_unlock_bh(&btf_idr_lock); + return ret; +} +EXPORT_SYMBOL_GPL(bpf_find_btf_id); + +const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, + u32 id, u32 *res_id) +{ + const struct btf_type *t = btf_type_by_id(btf, id); + + while (btf_type_is_modifier(t)) { + id = t->type; + t = btf_type_by_id(btf, t->type); + } + + if (res_id) + *res_id = id; + + return t; +} + +const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, + u32 id, u32 *res_id) +{ + const struct btf_type *t; + + t = btf_type_skip_modifiers(btf, id, NULL); + if (!btf_type_is_ptr(t)) + return NULL; + + return btf_type_skip_modifiers(btf, t->type, res_id); +} + +const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, + u32 id, u32 *res_id) +{ + const struct btf_type *ptype; + + ptype = btf_type_resolve_ptr(btf, id, res_id); + if (ptype && btf_type_is_func_proto(ptype)) + return ptype; + + return NULL; +} + +/* Types that act only as a source, not sink or intermediate + * type when resolving. + */ +static bool btf_type_is_resolve_source_only(const struct btf_type *t) +{ + return btf_type_is_var(t) || + btf_type_is_decl_tag(t) || + btf_type_is_datasec(t); +} + +/* What types need to be resolved? + * + * btf_type_is_modifier() is an obvious one. + * + * btf_type_is_struct() because its member refers to + * another type (through member->type). + * + * btf_type_is_var() because the variable refers to + * another type. btf_type_is_datasec() holds multiple + * btf_type_is_var() types that need resolving. + * + * btf_type_is_array() because its element (array->type) + * refers to another type. Array can be thought of a + * special case of struct while array just has the same + * member-type repeated by array->nelems of times. + */ +static bool btf_type_needs_resolve(const struct btf_type *t) +{ + return btf_type_is_modifier(t) || + btf_type_is_ptr(t) || + btf_type_is_struct(t) || + btf_type_is_array(t) || + btf_type_is_var(t) || + btf_type_is_func(t) || + btf_type_is_decl_tag(t) || + btf_type_is_datasec(t); +} + +/* t->size can be used */ +static bool btf_type_has_size(const struct btf_type *t) +{ + switch (BTF_INFO_KIND(t->info)) { + case BTF_KIND_INT: + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: + case BTF_KIND_ENUM: + case BTF_KIND_DATASEC: + case BTF_KIND_FLOAT: + case BTF_KIND_ENUM64: + return true; + } + + return false; +} + +static const char *btf_int_encoding_str(u8 encoding) +{ + if (encoding == 0) + return "(none)"; + else if (encoding == BTF_INT_SIGNED) + return "SIGNED"; + else if (encoding == BTF_INT_CHAR) + return "CHAR"; + else if (encoding == BTF_INT_BOOL) + return "BOOL"; + else + return "UNKN"; +} + +static u32 btf_type_int(const struct btf_type *t) +{ + return *(u32 *)(t + 1); +} + +static const struct btf_array *btf_type_array(const struct btf_type *t) +{ + return (const struct btf_array *)(t + 1); +} + +static const struct btf_enum *btf_type_enum(const struct btf_type *t) +{ + return (const struct btf_enum *)(t + 1); +} + +static const struct btf_var *btf_type_var(const struct btf_type *t) +{ + return (const struct btf_var *)(t + 1); +} + +static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) +{ + return (const struct btf_decl_tag *)(t + 1); +} + +static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) +{ + return (const struct btf_enum64 *)(t + 1); +} + +static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) +{ + return kind_ops[BTF_INFO_KIND(t->info)]; +} + +static bool btf_name_offset_valid(const struct btf *btf, u32 offset) +{ + if (!BTF_STR_OFFSET_VALID(offset)) + return false; + + while (offset < btf->start_str_off) + btf = btf->base_btf; + + offset -= btf->start_str_off; + return offset < btf->hdr.str_len; +} + +static bool __btf_name_char_ok(char c, bool first) +{ + if ((first ? !isalpha(c) : + !isalnum(c)) && + c != '_' && + c != '.') + return false; + return true; +} + +const char *btf_str_by_offset(const struct btf *btf, u32 offset) +{ + while (offset < btf->start_str_off) + btf = btf->base_btf; + + offset -= btf->start_str_off; + if (offset < btf->hdr.str_len) + return &btf->strings[offset]; + + return NULL; +} + +static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) +{ + /* offset must be valid */ + const char *src = btf_str_by_offset(btf, offset); + const char *src_limit; + + if (!__btf_name_char_ok(*src, true)) + return false; + + /* set a limit on identifier length */ + src_limit = src + KSYM_NAME_LEN; + src++; + while (*src && src < src_limit) { + if (!__btf_name_char_ok(*src, false)) + return false; + src++; + } + + return !*src; +} + +/* Allow any printable character in DATASEC names */ +static bool btf_name_valid_section(const struct btf *btf, u32 offset) +{ + /* offset must be valid */ + const char *src = btf_str_by_offset(btf, offset); + const char *src_limit; + + if (!*src) + return false; + + /* set a limit on identifier length */ + src_limit = src + KSYM_NAME_LEN; + while (*src && src < src_limit) { + if (!isprint(*src)) + return false; + src++; + } + + return !*src; +} + +static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) +{ + const char *name; + + if (!offset) + return "(anon)"; + + name = btf_str_by_offset(btf, offset); + return name ?: "(invalid-name-offset)"; +} + +const char *btf_name_by_offset(const struct btf *btf, u32 offset) +{ + return btf_str_by_offset(btf, offset); +} + +const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) +{ + while (type_id < btf->start_id) + btf = btf->base_btf; + + type_id -= btf->start_id; + if (type_id >= btf->nr_types) + return NULL; + return btf->types[type_id]; +} +EXPORT_SYMBOL_GPL(btf_type_by_id); + +/* + * Check that the type @t is a regular int. This means that @t is not + * a bit field and it has the same size as either of u8/u16/u32/u64 + * or __int128. If @expected_size is not zero, then size of @t should + * be the same. A caller should already have checked that the type @t + * is an integer. + */ +static bool __btf_type_int_is_regular(const struct btf_type *t, size_t expected_size) +{ + u32 int_data = btf_type_int(t); + u8 nr_bits = BTF_INT_BITS(int_data); + u8 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); + + return BITS_PER_BYTE_MASKED(nr_bits) == 0 && + BTF_INT_OFFSET(int_data) == 0 && + (nr_bytes <= 16 && is_power_of_2(nr_bytes)) && + (expected_size == 0 || nr_bytes == expected_size); +} + +static bool btf_type_int_is_regular(const struct btf_type *t) +{ + return __btf_type_int_is_regular(t, 0); +} + +bool btf_type_is_i32(const struct btf_type *t) +{ + return btf_type_is_int(t) && __btf_type_int_is_regular(t, 4); +} + +bool btf_type_is_i64(const struct btf_type *t) +{ + return btf_type_is_int(t) && __btf_type_int_is_regular(t, 8); +} + +bool btf_type_is_primitive(const struct btf_type *t) +{ + return (btf_type_is_int(t) && btf_type_int_is_regular(t)) || + btf_is_any_enum(t); +} + +/* + * Check that given struct member is a regular int with expected + * offset and size. + */ +bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, + const struct btf_member *m, + u32 expected_offset, u32 expected_size) +{ + const struct btf_type *t; + u32 id, int_data; + u8 nr_bits; + + id = m->type; + t = btf_type_id_size(btf, &id, NULL); + if (!t || !btf_type_is_int(t)) + return false; + + int_data = btf_type_int(t); + nr_bits = BTF_INT_BITS(int_data); + if (btf_type_kflag(s)) { + u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); + u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); + + /* if kflag set, int should be a regular int and + * bit offset should be at byte boundary. + */ + return !bitfield_size && + BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && + BITS_ROUNDUP_BYTES(nr_bits) == expected_size; + } + + if (BTF_INT_OFFSET(int_data) || + BITS_PER_BYTE_MASKED(m->offset) || + BITS_ROUNDUP_BYTES(m->offset) != expected_offset || + BITS_PER_BYTE_MASKED(nr_bits) || + BITS_ROUNDUP_BYTES(nr_bits) != expected_size) + return false; + + return true; +} + +/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ +static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, + u32 id) +{ + const struct btf_type *t = btf_type_by_id(btf, id); + + while (btf_type_is_modifier(t) && + BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { + t = btf_type_by_id(btf, t->type); + } + + return t; +} + +#define BTF_SHOW_MAX_ITER 10 + +#define BTF_KIND_BIT(kind) (1ULL << kind) + +/* + * Populate show->state.name with type name information. + * Format of type name is + * + * [.member_name = ] (type_name) + */ +static const char *btf_show_name(struct btf_show *show) +{ + /* BTF_MAX_ITER array suffixes "[]" */ + const char *array_suffixes = "[][][][][][][][][][]"; + const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; + /* BTF_MAX_ITER pointer suffixes "*" */ + const char *ptr_suffixes = "**********"; + const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; + const char *name = NULL, *prefix = "", *parens = ""; + const struct btf_member *m = show->state.member; + const struct btf_type *t; + const struct btf_array *array; + u32 id = show->state.type_id; + const char *member = NULL; + bool show_member = false; + u64 kinds = 0; + int i; + + show->state.name[0] = '\0'; + + /* + * Don't show type name if we're showing an array member; + * in that case we show the array type so don't need to repeat + * ourselves for each member. + */ + if (show->state.array_member) + return ""; + + /* Retrieve member name, if any. */ + if (m) { + member = btf_name_by_offset(show->btf, m->name_off); + show_member = strlen(member) > 0; + id = m->type; + } + + /* + * Start with type_id, as we have resolved the struct btf_type * + * via btf_modifier_show() past the parent typedef to the child + * struct, int etc it is defined as. In such cases, the type_id + * still represents the starting type while the struct btf_type * + * in our show->state points at the resolved type of the typedef. + */ + t = btf_type_by_id(show->btf, id); + if (!t) + return ""; + + /* + * The goal here is to build up the right number of pointer and + * array suffixes while ensuring the type name for a typedef + * is represented. Along the way we accumulate a list of + * BTF kinds we have encountered, since these will inform later + * display; for example, pointer types will not require an + * opening "{" for struct, we will just display the pointer value. + * + * We also want to accumulate the right number of pointer or array + * indices in the format string while iterating until we get to + * the typedef/pointee/array member target type. + * + * We start by pointing at the end of pointer and array suffix + * strings; as we accumulate pointers and arrays we move the pointer + * or array string backwards so it will show the expected number of + * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers + * and/or arrays and typedefs are supported as a precaution. + * + * We also want to get typedef name while proceeding to resolve + * type it points to so that we can add parentheses if it is a + * "typedef struct" etc. + */ + for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { + + switch (BTF_INFO_KIND(t->info)) { + case BTF_KIND_TYPEDEF: + if (!name) + name = btf_name_by_offset(show->btf, + t->name_off); + kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); + id = t->type; + break; + case BTF_KIND_ARRAY: + kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); + parens = "["; + if (!t) + return ""; + array = btf_type_array(t); + if (array_suffix > array_suffixes) + array_suffix -= 2; + id = array->type; + break; + case BTF_KIND_PTR: + kinds |= BTF_KIND_BIT(BTF_KIND_PTR); + if (ptr_suffix > ptr_suffixes) + ptr_suffix -= 1; + id = t->type; + break; + default: + id = 0; + break; + } + if (!id) + break; + t = btf_type_skip_qualifiers(show->btf, id); + } + /* We may not be able to represent this type; bail to be safe */ + if (i == BTF_SHOW_MAX_ITER) + return ""; + + if (!name) + name = btf_name_by_offset(show->btf, t->name_off); + + switch (BTF_INFO_KIND(t->info)) { + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: + prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? + "struct" : "union"; + /* if it's an array of struct/union, parens is already set */ + if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) + parens = "{"; + break; + case BTF_KIND_ENUM: + case BTF_KIND_ENUM64: + prefix = "enum"; + break; + default: + break; + } + + /* pointer does not require parens */ + if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) + parens = ""; + /* typedef does not require struct/union/enum prefix */ + if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) + prefix = ""; + + if (!name) + name = ""; + + /* Even if we don't want type name info, we want parentheses etc */ + if (show->flags & BTF_SHOW_NONAME) + snprintf(show->state.name, sizeof(show->state.name), "%s", + parens); + else + snprintf(show->state.name, sizeof(show->state.name), + "%s%s%s(%s%s%s%s%s%s)%s", + /* first 3 strings comprise ".member = " */ + show_member ? "." : "", + show_member ? member : "", + show_member ? " = " : "", + /* ...next is our prefix (struct, enum, etc) */ + prefix, + strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", + /* ...this is the type name itself */ + name, + /* ...suffixed by the appropriate '*', '[]' suffixes */ + strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, + array_suffix, parens); + + return show->state.name; +} + +static const char *__btf_show_indent(struct btf_show *show) +{ + const char *indents = " "; + const char *indent = &indents[strlen(indents)]; + + if ((indent - show->state.depth) >= indents) + return indent - show->state.depth; + return indents; +} + +static const char *btf_show_indent(struct btf_show *show) +{ + return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); +} + +static const char *btf_show_newline(struct btf_show *show) +{ + return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; +} + +static const char *btf_show_delim(struct btf_show *show) +{ + if (show->state.depth == 0) + return ""; + + if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && + BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) + return "|"; + + return ","; +} + +__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) +{ + va_list args; + + if (!show->state.depth_check) { + va_start(args, fmt); + show->showfn(show, fmt, args); + va_end(args); + } +} + +/* Macros are used here as btf_show_type_value[s]() prepends and appends + * format specifiers to the format specifier passed in; these do the work of + * adding indentation, delimiters etc while the caller simply has to specify + * the type value(s) in the format specifier + value(s). + */ +#define btf_show_type_value(show, fmt, value) \ + do { \ + if ((value) != (__typeof__(value))0 || \ + (show->flags & BTF_SHOW_ZERO) || \ + show->state.depth == 0) { \ + btf_show(show, "%s%s" fmt "%s%s", \ + btf_show_indent(show), \ + btf_show_name(show), \ + value, btf_show_delim(show), \ + btf_show_newline(show)); \ + if (show->state.depth > show->state.depth_to_show) \ + show->state.depth_to_show = show->state.depth; \ + } \ + } while (0) + +#define btf_show_type_values(show, fmt, ...) \ + do { \ + btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ + btf_show_name(show), \ + __VA_ARGS__, btf_show_delim(show), \ + btf_show_newline(show)); \ + if (show->state.depth > show->state.depth_to_show) \ + show->state.depth_to_show = show->state.depth; \ + } while (0) + +/* How much is left to copy to safe buffer after @data? */ +static int btf_show_obj_size_left(struct btf_show *show, void *data) +{ + return show->obj.head + show->obj.size - data; +} + +/* Is object pointed to by @data of @size already copied to our safe buffer? */ +static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) +{ + return data >= show->obj.data && + (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); +} + +/* + * If object pointed to by @data of @size falls within our safe buffer, return + * the equivalent pointer to the same safe data. Assumes + * copy_from_kernel_nofault() has already happened and our safe buffer is + * populated. + */ +static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) +{ + if (btf_show_obj_is_safe(show, data, size)) + return show->obj.safe + (data - show->obj.data); + return NULL; +} + +/* + * Return a safe-to-access version of data pointed to by @data. + * We do this by copying the relevant amount of information + * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). + * + * If BTF_SHOW_UNSAFE is specified, just return data as-is; no + * safe copy is needed. + * + * Otherwise we need to determine if we have the required amount + * of data (determined by the @data pointer and the size of the + * largest base type we can encounter (represented by + * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures + * that we will be able to print some of the current object, + * and if more is needed a copy will be triggered. + * Some objects such as structs will not fit into the buffer; + * in such cases additional copies when we iterate over their + * members may be needed. + * + * btf_show_obj_safe() is used to return a safe buffer for + * btf_show_start_type(); this ensures that as we recurse into + * nested types we always have safe data for the given type. + * This approach is somewhat wasteful; it's possible for example + * that when iterating over a large union we'll end up copying the + * same data repeatedly, but the goal is safety not performance. + * We use stack data as opposed to per-CPU buffers because the + * iteration over a type can take some time, and preemption handling + * would greatly complicate use of the safe buffer. + */ +static void *btf_show_obj_safe(struct btf_show *show, + const struct btf_type *t, + void *data) +{ + const struct btf_type *rt; + int size_left, size; + void *safe = NULL; + + if (show->flags & BTF_SHOW_UNSAFE) + return data; + + rt = btf_resolve_size(show->btf, t, &size); + if (IS_ERR(rt)) { + show->state.status = PTR_ERR(rt); + return NULL; + } + + /* + * Is this toplevel object? If so, set total object size and + * initialize pointers. Otherwise check if we still fall within + * our safe object data. + */ + if (show->state.depth == 0) { + show->obj.size = size; + show->obj.head = data; + } else { + /* + * If the size of the current object is > our remaining + * safe buffer we _may_ need to do a new copy. However + * consider the case of a nested struct; it's size pushes + * us over the safe buffer limit, but showing any individual + * struct members does not. In such cases, we don't need + * to initiate a fresh copy yet; however we definitely need + * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left + * in our buffer, regardless of the current object size. + * The logic here is that as we resolve types we will + * hit a base type at some point, and we need to be sure + * the next chunk of data is safely available to display + * that type info safely. We cannot rely on the size of + * the current object here because it may be much larger + * than our current buffer (e.g. task_struct is 8k). + * All we want to do here is ensure that we can print the + * next basic type, which we can if either + * - the current type size is within the safe buffer; or + * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in + * the safe buffer. + */ + safe = __btf_show_obj_safe(show, data, + min(size, + BTF_SHOW_OBJ_BASE_TYPE_SIZE)); + } + + /* + * We need a new copy to our safe object, either because we haven't + * yet copied and are initializing safe data, or because the data + * we want falls outside the boundaries of the safe object. + */ + if (!safe) { + size_left = btf_show_obj_size_left(show, data); + if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) + size_left = BTF_SHOW_OBJ_SAFE_SIZE; + show->state.status = copy_from_kernel_nofault(show->obj.safe, + data, size_left); + if (!show->state.status) { + show->obj.data = data; + safe = show->obj.safe; + } + } + + return safe; +} + +/* + * Set the type we are starting to show and return a safe data pointer + * to be used for showing the associated data. + */ +static void *btf_show_start_type(struct btf_show *show, + const struct btf_type *t, + u32 type_id, void *data) +{ + show->state.type = t; + show->state.type_id = type_id; + show->state.name[0] = '\0'; + + return btf_show_obj_safe(show, t, data); +} + +static void btf_show_end_type(struct btf_show *show) +{ + show->state.type = NULL; + show->state.type_id = 0; + show->state.name[0] = '\0'; +} + +static void *btf_show_start_aggr_type(struct btf_show *show, + const struct btf_type *t, + u32 type_id, void *data) +{ + void *safe_data = btf_show_start_type(show, t, type_id, data); + + if (!safe_data) + return safe_data; + + btf_show(show, "%s%s%s", btf_show_indent(show), + btf_show_name(show), + btf_show_newline(show)); + show->state.depth++; + return safe_data; +} + +static void btf_show_end_aggr_type(struct btf_show *show, + const char *suffix) +{ + show->state.depth--; + btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, + btf_show_delim(show), btf_show_newline(show)); + btf_show_end_type(show); +} + +static void btf_show_start_member(struct btf_show *show, + const struct btf_member *m) +{ + show->state.member = m; +} + +static void btf_show_start_array_member(struct btf_show *show) +{ + show->state.array_member = 1; + btf_show_start_member(show, NULL); +} + +static void btf_show_end_member(struct btf_show *show) +{ + show->state.member = NULL; +} + +static void btf_show_end_array_member(struct btf_show *show) +{ + show->state.array_member = 0; + btf_show_end_member(show); +} + +static void *btf_show_start_array_type(struct btf_show *show, + const struct btf_type *t, + u32 type_id, + u16 array_encoding, + void *data) +{ + show->state.array_encoding = array_encoding; + show->state.array_terminated = 0; + return btf_show_start_aggr_type(show, t, type_id, data); +} + +static void btf_show_end_array_type(struct btf_show *show) +{ + show->state.array_encoding = 0; + show->state.array_terminated = 0; + btf_show_end_aggr_type(show, "]"); +} + +static void *btf_show_start_struct_type(struct btf_show *show, + const struct btf_type *t, + u32 type_id, + void *data) +{ + return btf_show_start_aggr_type(show, t, type_id, data); +} + +static void btf_show_end_struct_type(struct btf_show *show) +{ + btf_show_end_aggr_type(show, "}"); +} + +__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, + const char *fmt, ...) +{ + va_list args; + + va_start(args, fmt); + bpf_verifier_vlog(log, fmt, args); + va_end(args); +} + +__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, + const char *fmt, ...) +{ + struct bpf_verifier_log *log = &env->log; + va_list args; + + if (!bpf_verifier_log_needed(log)) + return; + + va_start(args, fmt); + bpf_verifier_vlog(log, fmt, args); + va_end(args); +} + +__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, + const struct btf_type *t, + bool log_details, + const char *fmt, ...) +{ + struct bpf_verifier_log *log = &env->log; + struct btf *btf = env->btf; + va_list args; + + if (!bpf_verifier_log_needed(log)) + return; + + if (log->level == BPF_LOG_KERNEL) { + /* btf verifier prints all types it is processing via + * btf_verifier_log_type(..., fmt = NULL). + * Skip those prints for in-kernel BTF verification. + */ + if (!fmt) + return; + + /* Skip logging when loading module BTF with mismatches permitted */ + if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) + return; + } + + __btf_verifier_log(log, "[%u] %s %s%s", + env->log_type_id, + btf_type_str(t), + __btf_name_by_offset(btf, t->name_off), + log_details ? " " : ""); + + if (log_details) + btf_type_ops(t)->log_details(env, t); + + if (fmt && *fmt) { + __btf_verifier_log(log, " "); + va_start(args, fmt); + bpf_verifier_vlog(log, fmt, args); + va_end(args); + } + + __btf_verifier_log(log, "\n"); +} + +#define btf_verifier_log_type(env, t, ...) \ + __btf_verifier_log_type((env), (t), true, __VA_ARGS__) +#define btf_verifier_log_basic(env, t, ...) \ + __btf_verifier_log_type((env), (t), false, __VA_ARGS__) + +__printf(4, 5) +static void btf_verifier_log_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const char *fmt, ...) +{ + struct bpf_verifier_log *log = &env->log; + struct btf *btf = env->btf; + va_list args; + + if (!bpf_verifier_log_needed(log)) + return; + + if (log->level == BPF_LOG_KERNEL) { + if (!fmt) + return; + + /* Skip logging when loading module BTF with mismatches permitted */ + if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) + return; + } + + /* The CHECK_META phase already did a btf dump. + * + * If member is logged again, it must hit an error in + * parsing this member. It is useful to print out which + * struct this member belongs to. + */ + if (env->phase != CHECK_META) + btf_verifier_log_type(env, struct_type, NULL); + + if (btf_type_kflag(struct_type)) + __btf_verifier_log(log, + "\t%s type_id=%u bitfield_size=%u bits_offset=%u", + __btf_name_by_offset(btf, member->name_off), + member->type, + BTF_MEMBER_BITFIELD_SIZE(member->offset), + BTF_MEMBER_BIT_OFFSET(member->offset)); + else + __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", + __btf_name_by_offset(btf, member->name_off), + member->type, member->offset); + + if (fmt && *fmt) { + __btf_verifier_log(log, " "); + va_start(args, fmt); + bpf_verifier_vlog(log, fmt, args); + va_end(args); + } + + __btf_verifier_log(log, "\n"); +} + +__printf(4, 5) +static void btf_verifier_log_vsi(struct btf_verifier_env *env, + const struct btf_type *datasec_type, + const struct btf_var_secinfo *vsi, + const char *fmt, ...) +{ + struct bpf_verifier_log *log = &env->log; + va_list args; + + if (!bpf_verifier_log_needed(log)) + return; + if (log->level == BPF_LOG_KERNEL && !fmt) + return; + if (env->phase != CHECK_META) + btf_verifier_log_type(env, datasec_type, NULL); + + __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", + vsi->type, vsi->offset, vsi->size); + if (fmt && *fmt) { + __btf_verifier_log(log, " "); + va_start(args, fmt); + bpf_verifier_vlog(log, fmt, args); + va_end(args); + } + + __btf_verifier_log(log, "\n"); +} + +static void btf_verifier_log_hdr(struct btf_verifier_env *env, + u32 btf_data_size) +{ + struct bpf_verifier_log *log = &env->log; + const struct btf *btf = env->btf; + const struct btf_header *hdr; + + if (!bpf_verifier_log_needed(log)) + return; + + if (log->level == BPF_LOG_KERNEL) + return; + hdr = &btf->hdr; + __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); + __btf_verifier_log(log, "version: %u\n", hdr->version); + __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); + __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); + __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); + __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); + __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); + __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); + __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); +} + +static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) +{ + struct btf *btf = env->btf; + + if (btf->types_size == btf->nr_types) { + /* Expand 'types' array */ + + struct btf_type **new_types; + u32 expand_by, new_size; + + if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { + btf_verifier_log(env, "Exceeded max num of types"); + return -E2BIG; + } + + expand_by = max_t(u32, btf->types_size >> 2, 16); + new_size = min_t(u32, BTF_MAX_TYPE, + btf->types_size + expand_by); + + new_types = kvcalloc(new_size, sizeof(*new_types), + GFP_KERNEL | __GFP_NOWARN); + if (!new_types) + return -ENOMEM; + + if (btf->nr_types == 0) { + if (!btf->base_btf) { + /* lazily init VOID type */ + new_types[0] = &btf_void; + btf->nr_types++; + } + } else { + memcpy(new_types, btf->types, + sizeof(*btf->types) * btf->nr_types); + } + + kvfree(btf->types); + btf->types = new_types; + btf->types_size = new_size; + } + + btf->types[btf->nr_types++] = t; + + return 0; +} + +static int btf_alloc_id(struct btf *btf) +{ + int id; + + idr_preload(GFP_KERNEL); + spin_lock_bh(&btf_idr_lock); + id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); + if (id > 0) + btf->id = id; + spin_unlock_bh(&btf_idr_lock); + idr_preload_end(); + + if (WARN_ON_ONCE(!id)) + return -ENOSPC; + + return id > 0 ? 0 : id; +} + +static void btf_free_id(struct btf *btf) +{ + unsigned long flags; + + /* + * In map-in-map, calling map_delete_elem() on outer + * map will call bpf_map_put on the inner map. + * It will then eventually call btf_free_id() + * on the inner map. Some of the map_delete_elem() + * implementation may have irq disabled, so + * we need to use the _irqsave() version instead + * of the _bh() version. + */ + spin_lock_irqsave(&btf_idr_lock, flags); + idr_remove(&btf_idr, btf->id); + spin_unlock_irqrestore(&btf_idr_lock, flags); +} + +static void btf_free_kfunc_set_tab(struct btf *btf) +{ + struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; + int hook; + + if (!tab) + return; + for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) + kfree(tab->sets[hook]); + kfree(tab); + btf->kfunc_set_tab = NULL; +} + +static void btf_free_dtor_kfunc_tab(struct btf *btf) +{ + struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; + + if (!tab) + return; + kfree(tab); + btf->dtor_kfunc_tab = NULL; +} + +static void btf_struct_metas_free(struct btf_struct_metas *tab) +{ + int i; + + if (!tab) + return; + for (i = 0; i < tab->cnt; i++) + btf_record_free(tab->types[i].record); + kfree(tab); +} + +static void btf_free_struct_meta_tab(struct btf *btf) +{ + struct btf_struct_metas *tab = btf->struct_meta_tab; + + btf_struct_metas_free(tab); + btf->struct_meta_tab = NULL; +} + +static void btf_free_struct_ops_tab(struct btf *btf) +{ + struct btf_struct_ops_tab *tab = btf->struct_ops_tab; + u32 i; + + if (!tab) + return; + + for (i = 0; i < tab->cnt; i++) + bpf_struct_ops_desc_release(&tab->ops[i]); + + kfree(tab); + btf->struct_ops_tab = NULL; +} + +static void btf_free(struct btf *btf) +{ + btf_free_struct_meta_tab(btf); + btf_free_dtor_kfunc_tab(btf); + btf_free_kfunc_set_tab(btf); + btf_free_struct_ops_tab(btf); + kvfree(btf->types); + kvfree(btf->resolved_sizes); + kvfree(btf->resolved_ids); + /* vmlinux does not allocate btf->data, it simply points it at + * __start_BTF. + */ + if (!btf_is_vmlinux(btf)) + kvfree(btf->data); + kvfree(btf->base_id_map); + kfree(btf); +} + +static void btf_free_rcu(struct rcu_head *rcu) +{ + struct btf *btf = container_of(rcu, struct btf, rcu); + + btf_free(btf); +} + +const char *btf_get_name(const struct btf *btf) +{ + return btf->name; +} + +void btf_get(struct btf *btf) +{ + refcount_inc(&btf->refcnt); +} + +void btf_put(struct btf *btf) +{ + if (btf && refcount_dec_and_test(&btf->refcnt)) { + btf_free_id(btf); + call_rcu(&btf->rcu, btf_free_rcu); + } +} + +struct btf *btf_base_btf(const struct btf *btf) +{ + return btf->base_btf; +} + +const struct btf_header *btf_header(const struct btf *btf) +{ + return &btf->hdr; +} + +void btf_set_base_btf(struct btf *btf, const struct btf *base_btf) +{ + btf->base_btf = (struct btf *)base_btf; + btf->start_id = btf_nr_types(base_btf); + btf->start_str_off = base_btf->hdr.str_len; +} + +static int env_resolve_init(struct btf_verifier_env *env) +{ + struct btf *btf = env->btf; + u32 nr_types = btf->nr_types; + u32 *resolved_sizes = NULL; + u32 *resolved_ids = NULL; + u8 *visit_states = NULL; + + resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), + GFP_KERNEL | __GFP_NOWARN); + if (!resolved_sizes) + goto nomem; + + resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), + GFP_KERNEL | __GFP_NOWARN); + if (!resolved_ids) + goto nomem; + + visit_states = kvcalloc(nr_types, sizeof(*visit_states), + GFP_KERNEL | __GFP_NOWARN); + if (!visit_states) + goto nomem; + + btf->resolved_sizes = resolved_sizes; + btf->resolved_ids = resolved_ids; + env->visit_states = visit_states; + + return 0; + +nomem: + kvfree(resolved_sizes); + kvfree(resolved_ids); + kvfree(visit_states); + return -ENOMEM; +} + +static void btf_verifier_env_free(struct btf_verifier_env *env) +{ + kvfree(env->visit_states); + kfree(env); +} + +static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, + const struct btf_type *next_type) +{ + switch (env->resolve_mode) { + case RESOLVE_TBD: + /* int, enum or void is a sink */ + return !btf_type_needs_resolve(next_type); + case RESOLVE_PTR: + /* int, enum, void, struct, array, func or func_proto is a sink + * for ptr + */ + return !btf_type_is_modifier(next_type) && + !btf_type_is_ptr(next_type); + case RESOLVE_STRUCT_OR_ARRAY: + /* int, enum, void, ptr, func or func_proto is a sink + * for struct and array + */ + return !btf_type_is_modifier(next_type) && + !btf_type_is_array(next_type) && + !btf_type_is_struct(next_type); + default: + BUG(); + } +} + +static bool env_type_is_resolved(const struct btf_verifier_env *env, + u32 type_id) +{ + /* base BTF types should be resolved by now */ + if (type_id < env->btf->start_id) + return true; + + return env->visit_states[type_id - env->btf->start_id] == RESOLVED; +} + +static int env_stack_push(struct btf_verifier_env *env, + const struct btf_type *t, u32 type_id) +{ + const struct btf *btf = env->btf; + struct resolve_vertex *v; + + if (env->top_stack == MAX_RESOLVE_DEPTH) + return -E2BIG; + + if (type_id < btf->start_id + || env->visit_states[type_id - btf->start_id] != NOT_VISITED) + return -EEXIST; + + env->visit_states[type_id - btf->start_id] = VISITED; + + v = &env->stack[env->top_stack++]; + v->t = t; + v->type_id = type_id; + v->next_member = 0; + + if (env->resolve_mode == RESOLVE_TBD) { + if (btf_type_is_ptr(t)) + env->resolve_mode = RESOLVE_PTR; + else if (btf_type_is_struct(t) || btf_type_is_array(t)) + env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; + } + + return 0; +} + +static void env_stack_set_next_member(struct btf_verifier_env *env, + u16 next_member) +{ + env->stack[env->top_stack - 1].next_member = next_member; +} + +static void env_stack_pop_resolved(struct btf_verifier_env *env, + u32 resolved_type_id, + u32 resolved_size) +{ + u32 type_id = env->stack[--(env->top_stack)].type_id; + struct btf *btf = env->btf; + + type_id -= btf->start_id; /* adjust to local type id */ + btf->resolved_sizes[type_id] = resolved_size; + btf->resolved_ids[type_id] = resolved_type_id; + env->visit_states[type_id] = RESOLVED; +} + +static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) +{ + return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; +} + +/* Resolve the size of a passed-in "type" + * + * type: is an array (e.g. u32 array[x][y]) + * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, + * *type_size: (x * y * sizeof(u32)). Hence, *type_size always + * corresponds to the return type. + * *elem_type: u32 + * *elem_id: id of u32 + * *total_nelems: (x * y). Hence, individual elem size is + * (*type_size / *total_nelems) + * *type_id: id of type if it's changed within the function, 0 if not + * + * type: is not an array (e.g. const struct X) + * return type: type "struct X" + * *type_size: sizeof(struct X) + * *elem_type: same as return type ("struct X") + * *elem_id: 0 + * *total_nelems: 1 + * *type_id: id of type if it's changed within the function, 0 if not + */ +static const struct btf_type * +__btf_resolve_size(const struct btf *btf, const struct btf_type *type, + u32 *type_size, const struct btf_type **elem_type, + u32 *elem_id, u32 *total_nelems, u32 *type_id) +{ + const struct btf_type *array_type = NULL; + const struct btf_array *array = NULL; + u32 i, size, nelems = 1, id = 0; + + for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { + switch (BTF_INFO_KIND(type->info)) { + /* type->size can be used */ + case BTF_KIND_INT: + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: + case BTF_KIND_ENUM: + case BTF_KIND_FLOAT: + case BTF_KIND_ENUM64: + size = type->size; + goto resolved; + + case BTF_KIND_PTR: + size = sizeof(void *); + goto resolved; + + /* Modifiers */ + case BTF_KIND_TYPEDEF: + case BTF_KIND_VOLATILE: + case BTF_KIND_CONST: + case BTF_KIND_RESTRICT: + case BTF_KIND_TYPE_TAG: + id = type->type; + type = btf_type_by_id(btf, type->type); + break; + + case BTF_KIND_ARRAY: + if (!array_type) + array_type = type; + array = btf_type_array(type); + if (nelems && array->nelems > U32_MAX / nelems) + return ERR_PTR(-EINVAL); + nelems *= array->nelems; + type = btf_type_by_id(btf, array->type); + break; + + /* type without size */ + default: + return ERR_PTR(-EINVAL); + } + } + + return ERR_PTR(-EINVAL); + +resolved: + if (nelems && size > U32_MAX / nelems) + return ERR_PTR(-EINVAL); + + *type_size = nelems * size; + if (total_nelems) + *total_nelems = nelems; + if (elem_type) + *elem_type = type; + if (elem_id) + *elem_id = array ? array->type : 0; + if (type_id && id) + *type_id = id; + + return array_type ? : type; +} + +const struct btf_type * +btf_resolve_size(const struct btf *btf, const struct btf_type *type, + u32 *type_size) +{ + return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); +} + +static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) +{ + while (type_id < btf->start_id) + btf = btf->base_btf; + + return btf->resolved_ids[type_id - btf->start_id]; +} + +/* The input param "type_id" must point to a needs_resolve type */ +static const struct btf_type *btf_type_id_resolve(const struct btf *btf, + u32 *type_id) +{ + *type_id = btf_resolved_type_id(btf, *type_id); + return btf_type_by_id(btf, *type_id); +} + +static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) +{ + while (type_id < btf->start_id) + btf = btf->base_btf; + + return btf->resolved_sizes[type_id - btf->start_id]; +} + +const struct btf_type *btf_type_id_size(const struct btf *btf, + u32 *type_id, u32 *ret_size) +{ + const struct btf_type *size_type; + u32 size_type_id = *type_id; + u32 size = 0; + + size_type = btf_type_by_id(btf, size_type_id); + if (btf_type_nosize_or_null(size_type)) + return NULL; + + if (btf_type_has_size(size_type)) { + size = size_type->size; + } else if (btf_type_is_array(size_type)) { + size = btf_resolved_type_size(btf, size_type_id); + } else if (btf_type_is_ptr(size_type)) { + size = sizeof(void *); + } else { + if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && + !btf_type_is_var(size_type))) + return NULL; + + size_type_id = btf_resolved_type_id(btf, size_type_id); + size_type = btf_type_by_id(btf, size_type_id); + if (btf_type_nosize_or_null(size_type)) + return NULL; + else if (btf_type_has_size(size_type)) + size = size_type->size; + else if (btf_type_is_array(size_type)) + size = btf_resolved_type_size(btf, size_type_id); + else if (btf_type_is_ptr(size_type)) + size = sizeof(void *); + else + return NULL; + } + + *type_id = size_type_id; + if (ret_size) + *ret_size = size; + + return size_type; +} + +static int btf_df_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + btf_verifier_log_basic(env, struct_type, + "Unsupported check_member"); + return -EINVAL; +} + +static int btf_df_check_kflag_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + btf_verifier_log_basic(env, struct_type, + "Unsupported check_kflag_member"); + return -EINVAL; +} + +/* Used for ptr, array struct/union and float type members. + * int, enum and modifier types have their specific callback functions. + */ +static int btf_generic_check_kflag_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member bitfield_size"); + return -EINVAL; + } + + /* bitfield size is 0, so member->offset represents bit offset only. + * It is safe to call non kflag check_member variants. + */ + return btf_type_ops(member_type)->check_member(env, struct_type, + member, + member_type); +} + +static int btf_df_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + btf_verifier_log_basic(env, v->t, "Unsupported resolve"); + return -EINVAL; +} + +static void btf_df_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offsets, + struct btf_show *show) +{ + btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); +} + +static int btf_int_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 int_data = btf_type_int(member_type); + u32 struct_bits_off = member->offset; + u32 struct_size = struct_type->size; + u32 nr_copy_bits; + u32 bytes_offset; + + if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { + btf_verifier_log_member(env, struct_type, member, + "bits_offset exceeds U32_MAX"); + return -EINVAL; + } + + struct_bits_off += BTF_INT_OFFSET(int_data); + bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); + nr_copy_bits = BTF_INT_BITS(int_data) + + BITS_PER_BYTE_MASKED(struct_bits_off); + + if (nr_copy_bits > BITS_PER_U128) { + btf_verifier_log_member(env, struct_type, member, + "nr_copy_bits exceeds 128"); + return -EINVAL; + } + + if (struct_size < bytes_offset || + struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static int btf_int_check_kflag_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; + u32 int_data = btf_type_int(member_type); + u32 struct_size = struct_type->size; + u32 nr_copy_bits; + + /* a regular int type is required for the kflag int member */ + if (!btf_type_int_is_regular(member_type)) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member base type"); + return -EINVAL; + } + + /* check sanity of bitfield size */ + nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); + struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); + nr_int_data_bits = BTF_INT_BITS(int_data); + if (!nr_bits) { + /* Not a bitfield member, member offset must be at byte + * boundary. + */ + if (BITS_PER_BYTE_MASKED(struct_bits_off)) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member offset"); + return -EINVAL; + } + + nr_bits = nr_int_data_bits; + } else if (nr_bits > nr_int_data_bits) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member bitfield_size"); + return -EINVAL; + } + + bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); + nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); + if (nr_copy_bits > BITS_PER_U128) { + btf_verifier_log_member(env, struct_type, member, + "nr_copy_bits exceeds 128"); + return -EINVAL; + } + + if (struct_size < bytes_offset || + struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static s32 btf_int_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + u32 int_data, nr_bits, meta_needed = sizeof(int_data); + u16 encoding; + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + int_data = btf_type_int(t); + if (int_data & ~BTF_INT_MASK) { + btf_verifier_log_basic(env, t, "Invalid int_data:%x", + int_data); + return -EINVAL; + } + + nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); + + if (nr_bits > BITS_PER_U128) { + btf_verifier_log_type(env, t, "nr_bits exceeds %zu", + BITS_PER_U128); + return -EINVAL; + } + + if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { + btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); + return -EINVAL; + } + + /* + * Only one of the encoding bits is allowed and it + * should be sufficient for the pretty print purpose (i.e. decoding). + * Multiple bits can be allowed later if it is found + * to be insufficient. + */ + encoding = BTF_INT_ENCODING(int_data); + if (encoding && + encoding != BTF_INT_SIGNED && + encoding != BTF_INT_CHAR && + encoding != BTF_INT_BOOL) { + btf_verifier_log_type(env, t, "Unsupported encoding"); + return -ENOTSUPP; + } + + btf_verifier_log_type(env, t, NULL); + + return meta_needed; +} + +static void btf_int_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + int int_data = btf_type_int(t); + + btf_verifier_log(env, + "size=%u bits_offset=%u nr_bits=%u encoding=%s", + t->size, BTF_INT_OFFSET(int_data), + BTF_INT_BITS(int_data), + btf_int_encoding_str(BTF_INT_ENCODING(int_data))); +} + +static void btf_int128_print(struct btf_show *show, void *data) +{ + /* data points to a __int128 number. + * Suppose + * int128_num = *(__int128 *)data; + * The below formulas shows what upper_num and lower_num represents: + * upper_num = int128_num >> 64; + * lower_num = int128_num & 0xffffffffFFFFFFFFULL; + */ + u64 upper_num, lower_num; + +#ifdef __BIG_ENDIAN_BITFIELD + upper_num = *(u64 *)data; + lower_num = *(u64 *)(data + 8); +#else + upper_num = *(u64 *)(data + 8); + lower_num = *(u64 *)data; +#endif + if (upper_num == 0) + btf_show_type_value(show, "0x%llx", lower_num); + else + btf_show_type_values(show, "0x%llx%016llx", upper_num, + lower_num); +} + +static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, + u16 right_shift_bits) +{ + u64 upper_num, lower_num; + +#ifdef __BIG_ENDIAN_BITFIELD + upper_num = print_num[0]; + lower_num = print_num[1]; +#else + upper_num = print_num[1]; + lower_num = print_num[0]; +#endif + + /* shake out un-needed bits by shift/or operations */ + if (left_shift_bits >= 64) { + upper_num = lower_num << (left_shift_bits - 64); + lower_num = 0; + } else { + upper_num = (upper_num << left_shift_bits) | + (lower_num >> (64 - left_shift_bits)); + lower_num = lower_num << left_shift_bits; + } + + if (right_shift_bits >= 64) { + lower_num = upper_num >> (right_shift_bits - 64); + upper_num = 0; + } else { + lower_num = (lower_num >> right_shift_bits) | + (upper_num << (64 - right_shift_bits)); + upper_num = upper_num >> right_shift_bits; + } + +#ifdef __BIG_ENDIAN_BITFIELD + print_num[0] = upper_num; + print_num[1] = lower_num; +#else + print_num[0] = lower_num; + print_num[1] = upper_num; +#endif +} + +static void btf_bitfield_show(void *data, u8 bits_offset, + u8 nr_bits, struct btf_show *show) +{ + u16 left_shift_bits, right_shift_bits; + u8 nr_copy_bytes; + u8 nr_copy_bits; + u64 print_num[2] = {}; + + nr_copy_bits = nr_bits + bits_offset; + nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); + + memcpy(print_num, data, nr_copy_bytes); + +#ifdef __BIG_ENDIAN_BITFIELD + left_shift_bits = bits_offset; +#else + left_shift_bits = BITS_PER_U128 - nr_copy_bits; +#endif + right_shift_bits = BITS_PER_U128 - nr_bits; + + btf_int128_shift(print_num, left_shift_bits, right_shift_bits); + btf_int128_print(show, print_num); +} + + +static void btf_int_bits_show(const struct btf *btf, + const struct btf_type *t, + void *data, u8 bits_offset, + struct btf_show *show) +{ + u32 int_data = btf_type_int(t); + u8 nr_bits = BTF_INT_BITS(int_data); + u8 total_bits_offset; + + /* + * bits_offset is at most 7. + * BTF_INT_OFFSET() cannot exceed 128 bits. + */ + total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); + data += BITS_ROUNDDOWN_BYTES(total_bits_offset); + bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); + btf_bitfield_show(data, bits_offset, nr_bits, show); +} + +static void btf_int_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + u32 int_data = btf_type_int(t); + u8 encoding = BTF_INT_ENCODING(int_data); + bool sign = encoding & BTF_INT_SIGNED; + u8 nr_bits = BTF_INT_BITS(int_data); + void *safe_data; + + safe_data = btf_show_start_type(show, t, type_id, data); + if (!safe_data) + return; + + if (bits_offset || BTF_INT_OFFSET(int_data) || + BITS_PER_BYTE_MASKED(nr_bits)) { + btf_int_bits_show(btf, t, safe_data, bits_offset, show); + goto out; + } + + switch (nr_bits) { + case 128: + btf_int128_print(show, safe_data); + break; + case 64: + if (sign) + btf_show_type_value(show, "%lld", *(s64 *)safe_data); + else + btf_show_type_value(show, "%llu", *(u64 *)safe_data); + break; + case 32: + if (sign) + btf_show_type_value(show, "%d", *(s32 *)safe_data); + else + btf_show_type_value(show, "%u", *(u32 *)safe_data); + break; + case 16: + if (sign) + btf_show_type_value(show, "%d", *(s16 *)safe_data); + else + btf_show_type_value(show, "%u", *(u16 *)safe_data); + break; + case 8: + if (show->state.array_encoding == BTF_INT_CHAR) { + /* check for null terminator */ + if (show->state.array_terminated) + break; + if (*(char *)data == '\0') { + show->state.array_terminated = 1; + break; + } + if (isprint(*(char *)data)) { + btf_show_type_value(show, "'%c'", + *(char *)safe_data); + break; + } + } + if (sign) + btf_show_type_value(show, "%d", *(s8 *)safe_data); + else + btf_show_type_value(show, "%u", *(u8 *)safe_data); + break; + default: + btf_int_bits_show(btf, t, safe_data, bits_offset, show); + break; + } +out: + btf_show_end_type(show); +} + +static const struct btf_kind_operations int_ops = { + .check_meta = btf_int_check_meta, + .resolve = btf_df_resolve, + .check_member = btf_int_check_member, + .check_kflag_member = btf_int_check_kflag_member, + .log_details = btf_int_log, + .show = btf_int_show, +}; + +static int btf_modifier_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + const struct btf_type *resolved_type; + u32 resolved_type_id = member->type; + struct btf_member resolved_member; + struct btf *btf = env->btf; + + resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); + if (!resolved_type) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member"); + return -EINVAL; + } + + resolved_member = *member; + resolved_member.type = resolved_type_id; + + return btf_type_ops(resolved_type)->check_member(env, struct_type, + &resolved_member, + resolved_type); +} + +static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + const struct btf_type *resolved_type; + u32 resolved_type_id = member->type; + struct btf_member resolved_member; + struct btf *btf = env->btf; + + resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); + if (!resolved_type) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member"); + return -EINVAL; + } + + resolved_member = *member; + resolved_member.type = resolved_type_id; + + return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, + &resolved_member, + resolved_type); +} + +static int btf_ptr_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 struct_size, struct_bits_off, bytes_offset; + + struct_size = struct_type->size; + struct_bits_off = member->offset; + bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); + + if (BITS_PER_BYTE_MASKED(struct_bits_off)) { + btf_verifier_log_member(env, struct_type, member, + "Member is not byte aligned"); + return -EINVAL; + } + + if (struct_size - bytes_offset < sizeof(void *)) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static int btf_ref_type_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const char *value; + + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (btf_type_kflag(t) && !btf_type_is_type_tag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + if (!BTF_TYPE_ID_VALID(t->type)) { + btf_verifier_log_type(env, t, "Invalid type_id"); + return -EINVAL; + } + + /* typedef/type_tag type must have a valid name, and other ref types, + * volatile, const, restrict, should have a null name. + */ + if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { + if (!t->name_off || + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { + value = btf_name_by_offset(env->btf, t->name_off); + if (!value || !value[0]) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + } else { + if (t->name_off) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + } + + btf_verifier_log_type(env, t, NULL); + + return 0; +} + +static int btf_modifier_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_type *t = v->t; + const struct btf_type *next_type; + u32 next_type_id = t->type; + struct btf *btf = env->btf; + + next_type = btf_type_by_id(btf, next_type_id); + if (!next_type || btf_type_is_resolve_source_only(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, next_type) && + !env_type_is_resolved(env, next_type_id)) + return env_stack_push(env, next_type, next_type_id); + + /* Figure out the resolved next_type_id with size. + * They will be stored in the current modifier's + * resolved_ids and resolved_sizes such that it can + * save us a few type-following when we use it later (e.g. in + * pretty print). + */ + if (!btf_type_id_size(btf, &next_type_id, NULL)) { + if (env_type_is_resolved(env, next_type_id)) + next_type = btf_type_id_resolve(btf, &next_type_id); + + /* "typedef void new_void", "const void"...etc */ + if (!btf_type_is_void(next_type) && + !btf_type_is_fwd(next_type) && + !btf_type_is_func_proto(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + } + + env_stack_pop_resolved(env, next_type_id, 0); + + return 0; +} + +static int btf_var_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_type *next_type; + const struct btf_type *t = v->t; + u32 next_type_id = t->type; + struct btf *btf = env->btf; + + next_type = btf_type_by_id(btf, next_type_id); + if (!next_type || btf_type_is_resolve_source_only(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, next_type) && + !env_type_is_resolved(env, next_type_id)) + return env_stack_push(env, next_type, next_type_id); + + if (btf_type_is_modifier(next_type)) { + const struct btf_type *resolved_type; + u32 resolved_type_id; + + resolved_type_id = next_type_id; + resolved_type = btf_type_id_resolve(btf, &resolved_type_id); + + if (btf_type_is_ptr(resolved_type) && + !env_type_is_resolve_sink(env, resolved_type) && + !env_type_is_resolved(env, resolved_type_id)) + return env_stack_push(env, resolved_type, + resolved_type_id); + } + + /* We must resolve to something concrete at this point, no + * forward types or similar that would resolve to size of + * zero is allowed. + */ + if (!btf_type_id_size(btf, &next_type_id, NULL)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + + env_stack_pop_resolved(env, next_type_id, 0); + + return 0; +} + +static int btf_ptr_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_type *next_type; + const struct btf_type *t = v->t; + u32 next_type_id = t->type; + struct btf *btf = env->btf; + + next_type = btf_type_by_id(btf, next_type_id); + if (!next_type || btf_type_is_resolve_source_only(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, next_type) && + !env_type_is_resolved(env, next_type_id)) + return env_stack_push(env, next_type, next_type_id); + + /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, + * the modifier may have stopped resolving when it was resolved + * to a ptr (last-resolved-ptr). + * + * We now need to continue from the last-resolved-ptr to + * ensure the last-resolved-ptr will not referring back to + * the current ptr (t). + */ + if (btf_type_is_modifier(next_type)) { + const struct btf_type *resolved_type; + u32 resolved_type_id; + + resolved_type_id = next_type_id; + resolved_type = btf_type_id_resolve(btf, &resolved_type_id); + + if (btf_type_is_ptr(resolved_type) && + !env_type_is_resolve_sink(env, resolved_type) && + !env_type_is_resolved(env, resolved_type_id)) + return env_stack_push(env, resolved_type, + resolved_type_id); + } + + if (!btf_type_id_size(btf, &next_type_id, NULL)) { + if (env_type_is_resolved(env, next_type_id)) + next_type = btf_type_id_resolve(btf, &next_type_id); + + if (!btf_type_is_void(next_type) && + !btf_type_is_fwd(next_type) && + !btf_type_is_func_proto(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + } + + env_stack_pop_resolved(env, next_type_id, 0); + + return 0; +} + +static void btf_modifier_show(const struct btf *btf, + const struct btf_type *t, + u32 type_id, void *data, + u8 bits_offset, struct btf_show *show) +{ + if (btf->resolved_ids) + t = btf_type_id_resolve(btf, &type_id); + else + t = btf_type_skip_modifiers(btf, type_id, NULL); + + btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); +} + +static void btf_var_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + t = btf_type_id_resolve(btf, &type_id); + + btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); +} + +static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + void *safe_data; + + safe_data = btf_show_start_type(show, t, type_id, data); + if (!safe_data) + return; + + /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ + if (show->flags & BTF_SHOW_PTR_RAW) + btf_show_type_value(show, "0x%px", *(void **)safe_data); + else + btf_show_type_value(show, "0x%p", *(void **)safe_data); + btf_show_end_type(show); +} + +static void btf_ref_type_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + btf_verifier_log(env, "type_id=%u", t->type); +} + +static const struct btf_kind_operations modifier_ops = { + .check_meta = btf_ref_type_check_meta, + .resolve = btf_modifier_resolve, + .check_member = btf_modifier_check_member, + .check_kflag_member = btf_modifier_check_kflag_member, + .log_details = btf_ref_type_log, + .show = btf_modifier_show, +}; + +static const struct btf_kind_operations ptr_ops = { + .check_meta = btf_ref_type_check_meta, + .resolve = btf_ptr_resolve, + .check_member = btf_ptr_check_member, + .check_kflag_member = btf_generic_check_kflag_member, + .log_details = btf_ref_type_log, + .show = btf_ptr_show, +}; + +static s32 btf_fwd_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (t->type) { + btf_verifier_log_type(env, t, "type != 0"); + return -EINVAL; + } + + /* fwd type must have a valid name */ + if (!t->name_off || + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return 0; +} + +static void btf_fwd_type_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); +} + +static const struct btf_kind_operations fwd_ops = { + .check_meta = btf_fwd_check_meta, + .resolve = btf_df_resolve, + .check_member = btf_df_check_member, + .check_kflag_member = btf_df_check_kflag_member, + .log_details = btf_fwd_type_log, + .show = btf_df_show, +}; + +static int btf_array_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 struct_bits_off = member->offset; + u32 struct_size, bytes_offset; + u32 array_type_id, array_size; + struct btf *btf = env->btf; + + if (BITS_PER_BYTE_MASKED(struct_bits_off)) { + btf_verifier_log_member(env, struct_type, member, + "Member is not byte aligned"); + return -EINVAL; + } + + array_type_id = member->type; + btf_type_id_size(btf, &array_type_id, &array_size); + struct_size = struct_type->size; + bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); + if (struct_size - bytes_offset < array_size) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static s32 btf_array_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const struct btf_array *array = btf_type_array(t); + u32 meta_needed = sizeof(*array); + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + /* array type should not have a name */ + if (t->name_off) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + if (t->size) { + btf_verifier_log_type(env, t, "size != 0"); + return -EINVAL; + } + + /* Array elem type and index type cannot be in type void, + * so !array->type and !array->index_type are not allowed. + */ + if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { + btf_verifier_log_type(env, t, "Invalid elem"); + return -EINVAL; + } + + if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { + btf_verifier_log_type(env, t, "Invalid index"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return meta_needed; +} + +static int btf_array_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_array *array = btf_type_array(v->t); + const struct btf_type *elem_type, *index_type; + u32 elem_type_id, index_type_id; + struct btf *btf = env->btf; + u32 elem_size; + + /* Check array->index_type */ + index_type_id = array->index_type; + index_type = btf_type_by_id(btf, index_type_id); + if (btf_type_nosize_or_null(index_type) || + btf_type_is_resolve_source_only(index_type)) { + btf_verifier_log_type(env, v->t, "Invalid index"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, index_type) && + !env_type_is_resolved(env, index_type_id)) + return env_stack_push(env, index_type, index_type_id); + + index_type = btf_type_id_size(btf, &index_type_id, NULL); + if (!index_type || !btf_type_is_int(index_type) || + !btf_type_int_is_regular(index_type)) { + btf_verifier_log_type(env, v->t, "Invalid index"); + return -EINVAL; + } + + /* Check array->type */ + elem_type_id = array->type; + elem_type = btf_type_by_id(btf, elem_type_id); + if (btf_type_nosize_or_null(elem_type) || + btf_type_is_resolve_source_only(elem_type)) { + btf_verifier_log_type(env, v->t, + "Invalid elem"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, elem_type) && + !env_type_is_resolved(env, elem_type_id)) + return env_stack_push(env, elem_type, elem_type_id); + + elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); + if (!elem_type) { + btf_verifier_log_type(env, v->t, "Invalid elem"); + return -EINVAL; + } + + if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { + btf_verifier_log_type(env, v->t, "Invalid array of int"); + return -EINVAL; + } + + if (array->nelems && elem_size > U32_MAX / array->nelems) { + btf_verifier_log_type(env, v->t, + "Array size overflows U32_MAX"); + return -EINVAL; + } + + env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); + + return 0; +} + +static void btf_array_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + const struct btf_array *array = btf_type_array(t); + + btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", + array->type, array->index_type, array->nelems); +} + +static void __btf_array_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_array *array = btf_type_array(t); + const struct btf_kind_operations *elem_ops; + const struct btf_type *elem_type; + u32 i, elem_size = 0, elem_type_id; + u16 encoding = 0; + + elem_type_id = array->type; + elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); + if (elem_type && btf_type_has_size(elem_type)) + elem_size = elem_type->size; + + if (elem_type && btf_type_is_int(elem_type)) { + u32 int_type = btf_type_int(elem_type); + + encoding = BTF_INT_ENCODING(int_type); + + /* + * BTF_INT_CHAR encoding never seems to be set for + * char arrays, so if size is 1 and element is + * printable as a char, we'll do that. + */ + if (elem_size == 1) + encoding = BTF_INT_CHAR; + } + + if (!btf_show_start_array_type(show, t, type_id, encoding, data)) + return; + + if (!elem_type) + goto out; + elem_ops = btf_type_ops(elem_type); + + for (i = 0; i < array->nelems; i++) { + + btf_show_start_array_member(show); + + elem_ops->show(btf, elem_type, elem_type_id, data, + bits_offset, show); + data += elem_size; + + btf_show_end_array_member(show); + + if (show->state.array_terminated) + break; + } +out: + btf_show_end_array_type(show); +} + +static void btf_array_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_member *m = show->state.member; + + /* + * First check if any members would be shown (are non-zero). + * See comments above "struct btf_show" definition for more + * details on how this works at a high-level. + */ + if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { + if (!show->state.depth_check) { + show->state.depth_check = show->state.depth + 1; + show->state.depth_to_show = 0; + } + __btf_array_show(btf, t, type_id, data, bits_offset, show); + show->state.member = m; + + if (show->state.depth_check != show->state.depth + 1) + return; + show->state.depth_check = 0; + + if (show->state.depth_to_show <= show->state.depth) + return; + /* + * Reaching here indicates we have recursed and found + * non-zero array member(s). + */ + } + __btf_array_show(btf, t, type_id, data, bits_offset, show); +} + +static const struct btf_kind_operations array_ops = { + .check_meta = btf_array_check_meta, + .resolve = btf_array_resolve, + .check_member = btf_array_check_member, + .check_kflag_member = btf_generic_check_kflag_member, + .log_details = btf_array_log, + .show = btf_array_show, +}; + +static int btf_struct_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 struct_bits_off = member->offset; + u32 struct_size, bytes_offset; + + if (BITS_PER_BYTE_MASKED(struct_bits_off)) { + btf_verifier_log_member(env, struct_type, member, + "Member is not byte aligned"); + return -EINVAL; + } + + struct_size = struct_type->size; + bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); + if (struct_size - bytes_offset < member_type->size) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static s32 btf_struct_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; + const struct btf_member *member; + u32 meta_needed, last_offset; + struct btf *btf = env->btf; + u32 struct_size = t->size; + u32 offset; + u16 i; + + meta_needed = btf_type_vlen(t) * sizeof(*member); + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + /* struct type either no name or a valid one */ + if (t->name_off && + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + last_offset = 0; + for_each_member(i, t, member) { + if (!btf_name_offset_valid(btf, member->name_off)) { + btf_verifier_log_member(env, t, member, + "Invalid member name_offset:%u", + member->name_off); + return -EINVAL; + } + + /* struct member either no name or a valid one */ + if (member->name_off && + !btf_name_valid_identifier(btf, member->name_off)) { + btf_verifier_log_member(env, t, member, "Invalid name"); + return -EINVAL; + } + /* A member cannot be in type void */ + if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { + btf_verifier_log_member(env, t, member, + "Invalid type_id"); + return -EINVAL; + } + + offset = __btf_member_bit_offset(t, member); + if (is_union && offset) { + btf_verifier_log_member(env, t, member, + "Invalid member bits_offset"); + return -EINVAL; + } + + /* + * ">" instead of ">=" because the last member could be + * "char a[0];" + */ + if (last_offset > offset) { + btf_verifier_log_member(env, t, member, + "Invalid member bits_offset"); + return -EINVAL; + } + + if (BITS_ROUNDUP_BYTES(offset) > struct_size) { + btf_verifier_log_member(env, t, member, + "Member bits_offset exceeds its struct size"); + return -EINVAL; + } + + btf_verifier_log_member(env, t, member, NULL); + last_offset = offset; + } + + return meta_needed; +} + +static int btf_struct_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_member *member; + int err; + u16 i; + + /* Before continue resolving the next_member, + * ensure the last member is indeed resolved to a + * type with size info. + */ + if (v->next_member) { + const struct btf_type *last_member_type; + const struct btf_member *last_member; + u32 last_member_type_id; + + last_member = btf_type_member(v->t) + v->next_member - 1; + last_member_type_id = last_member->type; + if (WARN_ON_ONCE(!env_type_is_resolved(env, + last_member_type_id))) + return -EINVAL; + + last_member_type = btf_type_by_id(env->btf, + last_member_type_id); + if (btf_type_kflag(v->t)) + err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, + last_member, + last_member_type); + else + err = btf_type_ops(last_member_type)->check_member(env, v->t, + last_member, + last_member_type); + if (err) + return err; + } + + for_each_member_from(i, v->next_member, v->t, member) { + u32 member_type_id = member->type; + const struct btf_type *member_type = btf_type_by_id(env->btf, + member_type_id); + + if (btf_type_nosize_or_null(member_type) || + btf_type_is_resolve_source_only(member_type)) { + btf_verifier_log_member(env, v->t, member, + "Invalid member"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, member_type) && + !env_type_is_resolved(env, member_type_id)) { + env_stack_set_next_member(env, i + 1); + return env_stack_push(env, member_type, member_type_id); + } + + if (btf_type_kflag(v->t)) + err = btf_type_ops(member_type)->check_kflag_member(env, v->t, + member, + member_type); + else + err = btf_type_ops(member_type)->check_member(env, v->t, + member, + member_type); + if (err) + return err; + } + + env_stack_pop_resolved(env, 0, 0); + + return 0; +} + +static void btf_struct_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); +} + +enum { + BTF_FIELD_IGNORE = 0, + BTF_FIELD_FOUND = 1, +}; + +struct btf_field_info { + enum btf_field_type type; + u32 off; + union { + struct { + u32 type_id; + } kptr; + struct { + const char *node_name; + u32 value_btf_id; + } graph_root; + }; +}; + +static int btf_find_struct(const struct btf *btf, const struct btf_type *t, + u32 off, int sz, enum btf_field_type field_type, + struct btf_field_info *info) +{ + if (!__btf_type_is_struct(t)) + return BTF_FIELD_IGNORE; + if (t->size != sz) + return BTF_FIELD_IGNORE; + info->type = field_type; + info->off = off; + return BTF_FIELD_FOUND; +} + +static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, + u32 off, int sz, struct btf_field_info *info, u32 field_mask) +{ + enum btf_field_type type; + const char *tag_value; + bool is_type_tag; + u32 res_id; + + /* Permit modifiers on the pointer itself */ + if (btf_type_is_volatile(t)) + t = btf_type_by_id(btf, t->type); + /* For PTR, sz is always == 8 */ + if (!btf_type_is_ptr(t)) + return BTF_FIELD_IGNORE; + t = btf_type_by_id(btf, t->type); + is_type_tag = btf_type_is_type_tag(t) && !btf_type_kflag(t); + if (!is_type_tag) + return BTF_FIELD_IGNORE; + /* Reject extra tags */ + if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) + return -EINVAL; + tag_value = __btf_name_by_offset(btf, t->name_off); + if (!strcmp("kptr_untrusted", tag_value)) + type = BPF_KPTR_UNREF; + else if (!strcmp("kptr", tag_value)) + type = BPF_KPTR_REF; + else if (!strcmp("percpu_kptr", tag_value)) + type = BPF_KPTR_PERCPU; + else if (!strcmp("uptr", tag_value)) + type = BPF_UPTR; + else + return -EINVAL; + + if (!(type & field_mask)) + return BTF_FIELD_IGNORE; + + /* Get the base type */ + t = btf_type_skip_modifiers(btf, t->type, &res_id); + /* Only pointer to struct is allowed */ + if (!__btf_type_is_struct(t)) + return -EINVAL; + + info->type = type; + info->off = off; + info->kptr.type_id = res_id; + return BTF_FIELD_FOUND; +} + +int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, + int comp_idx, const char *tag_key, int last_id) +{ + int len = strlen(tag_key); + int i, n; + + for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) { + const struct btf_type *t = btf_type_by_id(btf, i); + + if (!btf_type_is_decl_tag(t)) + continue; + if (pt != btf_type_by_id(btf, t->type)) + continue; + if (btf_type_decl_tag(t)->component_idx != comp_idx) + continue; + if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) + continue; + return i; + } + return -ENOENT; +} + +const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, + int comp_idx, const char *tag_key) +{ + const char *value = NULL; + const struct btf_type *t; + int len, id; + + id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0); + if (id < 0) + return ERR_PTR(id); + + t = btf_type_by_id(btf, id); + len = strlen(tag_key); + value = __btf_name_by_offset(btf, t->name_off) + len; + + /* Prevent duplicate entries for same type */ + id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id); + if (id >= 0) + return ERR_PTR(-EEXIST); + + return value; +} + +static int +btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, + const struct btf_type *t, int comp_idx, u32 off, + int sz, struct btf_field_info *info, + enum btf_field_type head_type) +{ + const char *node_field_name; + const char *value_type; + s32 id; + + if (!__btf_type_is_struct(t)) + return BTF_FIELD_IGNORE; + if (t->size != sz) + return BTF_FIELD_IGNORE; + value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); + if (IS_ERR(value_type)) + return -EINVAL; + node_field_name = strstr(value_type, ":"); + if (!node_field_name) + return -EINVAL; + value_type = kstrndup(value_type, node_field_name - value_type, + GFP_KERNEL_ACCOUNT | __GFP_NOWARN); + if (!value_type) + return -ENOMEM; + id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); + kfree(value_type); + if (id < 0) + return id; + node_field_name++; + if (str_is_empty(node_field_name)) + return -EINVAL; + info->type = head_type; + info->off = off; + info->graph_root.value_btf_id = id; + info->graph_root.node_name = node_field_name; + return BTF_FIELD_FOUND; +} + +static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type, + u32 field_mask, u32 *seen_mask, int *align, int *sz) +{ + const struct { + enum btf_field_type type; + const char *const name; + const bool is_unique; + } field_types[] = { + { BPF_SPIN_LOCK, "bpf_spin_lock", true }, + { BPF_RES_SPIN_LOCK, "bpf_res_spin_lock", true }, + { BPF_TIMER, "bpf_timer", true }, + { BPF_WORKQUEUE, "bpf_wq", true }, + { BPF_TASK_WORK, "bpf_task_work", true }, + { BPF_LIST_HEAD, "bpf_list_head", false }, + { BPF_LIST_NODE, "bpf_list_node", false }, + { BPF_RB_ROOT, "bpf_rb_root", false }, + { BPF_RB_NODE, "bpf_rb_node", false }, + { BPF_REFCOUNT, "bpf_refcount", false }, + }; + int type = 0, i; + const char *name = __btf_name_by_offset(btf, var_type->name_off); + const char *field_type_name; + enum btf_field_type field_type; + bool is_unique; + + for (i = 0; i < ARRAY_SIZE(field_types); ++i) { + field_type = field_types[i].type; + field_type_name = field_types[i].name; + is_unique = field_types[i].is_unique; + if (!(field_mask & field_type) || strcmp(name, field_type_name)) + continue; + if (is_unique) { + if (*seen_mask & field_type) + return -E2BIG; + *seen_mask |= field_type; + } + type = field_type; + goto end; + } + + /* Only return BPF_KPTR when all other types with matchable names fail */ + if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) { + type = BPF_KPTR_REF; + goto end; + } + return 0; +end: + *sz = btf_field_type_size(type); + *align = btf_field_type_align(type); + return type; +} + +/* Repeat a number of fields for a specified number of times. + * + * Copy the fields starting from the first field and repeat them for + * repeat_cnt times. The fields are repeated by adding the offset of each + * field with + * (i + 1) * elem_size + * where i is the repeat index and elem_size is the size of an element. + */ +static int btf_repeat_fields(struct btf_field_info *info, int info_cnt, + u32 field_cnt, u32 repeat_cnt, u32 elem_size) +{ + u32 i, j; + u32 cur; + + /* Ensure not repeating fields that should not be repeated. */ + for (i = 0; i < field_cnt; i++) { + switch (info[i].type) { + case BPF_KPTR_UNREF: + case BPF_KPTR_REF: + case BPF_KPTR_PERCPU: + case BPF_UPTR: + case BPF_LIST_HEAD: + case BPF_RB_ROOT: + break; + default: + return -EINVAL; + } + } + + /* The type of struct size or variable size is u32, + * so the multiplication will not overflow. + */ + if (field_cnt * (repeat_cnt + 1) > info_cnt) + return -E2BIG; + + cur = field_cnt; + for (i = 0; i < repeat_cnt; i++) { + memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0])); + for (j = 0; j < field_cnt; j++) + info[cur++].off += (i + 1) * elem_size; + } + + return 0; +} + +static int btf_find_struct_field(const struct btf *btf, + const struct btf_type *t, u32 field_mask, + struct btf_field_info *info, int info_cnt, + u32 level); + +/* Find special fields in the struct type of a field. + * + * This function is used to find fields of special types that is not a + * global variable or a direct field of a struct type. It also handles the + * repetition if it is the element type of an array. + */ +static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t, + u32 off, u32 nelems, + u32 field_mask, struct btf_field_info *info, + int info_cnt, u32 level) +{ + int ret, err, i; + + level++; + if (level >= MAX_RESOLVE_DEPTH) + return -E2BIG; + + ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level); + + if (ret <= 0) + return ret; + + /* Shift the offsets of the nested struct fields to the offsets + * related to the container. + */ + for (i = 0; i < ret; i++) + info[i].off += off; + + if (nelems > 1) { + err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size); + if (err == 0) + ret *= nelems; + else + ret = err; + } + + return ret; +} + +static int btf_find_field_one(const struct btf *btf, + const struct btf_type *var, + const struct btf_type *var_type, + int var_idx, + u32 off, u32 expected_size, + u32 field_mask, u32 *seen_mask, + struct btf_field_info *info, int info_cnt, + u32 level) +{ + int ret, align, sz, field_type; + struct btf_field_info tmp; + const struct btf_array *array; + u32 i, nelems = 1; + + /* Walk into array types to find the element type and the number of + * elements in the (flattened) array. + */ + for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) { + array = btf_array(var_type); + nelems *= array->nelems; + var_type = btf_type_by_id(btf, array->type); + } + if (i == MAX_RESOLVE_DEPTH) + return -E2BIG; + if (nelems == 0) + return 0; + + field_type = btf_get_field_type(btf, var_type, + field_mask, seen_mask, &align, &sz); + /* Look into variables of struct types */ + if (!field_type && __btf_type_is_struct(var_type)) { + sz = var_type->size; + if (expected_size && expected_size != sz * nelems) + return 0; + ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask, + &info[0], info_cnt, level); + return ret; + } + + if (field_type == 0) + return 0; + if (field_type < 0) + return field_type; + + if (expected_size && expected_size != sz * nelems) + return 0; + if (off % align) + return 0; + + switch (field_type) { + case BPF_SPIN_LOCK: + case BPF_RES_SPIN_LOCK: + case BPF_TIMER: + case BPF_WORKQUEUE: + case BPF_LIST_NODE: + case BPF_RB_NODE: + case BPF_REFCOUNT: + case BPF_TASK_WORK: + ret = btf_find_struct(btf, var_type, off, sz, field_type, + info_cnt ? &info[0] : &tmp); + if (ret < 0) + return ret; + break; + case BPF_KPTR_UNREF: + case BPF_KPTR_REF: + case BPF_KPTR_PERCPU: + case BPF_UPTR: + ret = btf_find_kptr(btf, var_type, off, sz, + info_cnt ? &info[0] : &tmp, field_mask); + if (ret < 0) + return ret; + break; + case BPF_LIST_HEAD: + case BPF_RB_ROOT: + ret = btf_find_graph_root(btf, var, var_type, + var_idx, off, sz, + info_cnt ? &info[0] : &tmp, + field_type); + if (ret < 0) + return ret; + break; + default: + return -EFAULT; + } + + if (ret == BTF_FIELD_IGNORE) + return 0; + if (!info_cnt) + return -E2BIG; + if (nelems > 1) { + ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz); + if (ret < 0) + return ret; + } + return nelems; +} + +static int btf_find_struct_field(const struct btf *btf, + const struct btf_type *t, u32 field_mask, + struct btf_field_info *info, int info_cnt, + u32 level) +{ + int ret, idx = 0; + const struct btf_member *member; + u32 i, off, seen_mask = 0; + + for_each_member(i, t, member) { + const struct btf_type *member_type = btf_type_by_id(btf, + member->type); + + off = __btf_member_bit_offset(t, member); + if (off % 8) + /* valid C code cannot generate such BTF */ + return -EINVAL; + off /= 8; + + ret = btf_find_field_one(btf, t, member_type, i, + off, 0, + field_mask, &seen_mask, + &info[idx], info_cnt - idx, level); + if (ret < 0) + return ret; + idx += ret; + } + return idx; +} + +static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, + u32 field_mask, struct btf_field_info *info, + int info_cnt, u32 level) +{ + int ret, idx = 0; + const struct btf_var_secinfo *vsi; + u32 i, off, seen_mask = 0; + + for_each_vsi(i, t, vsi) { + const struct btf_type *var = btf_type_by_id(btf, vsi->type); + const struct btf_type *var_type = btf_type_by_id(btf, var->type); + + off = vsi->offset; + ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size, + field_mask, &seen_mask, + &info[idx], info_cnt - idx, + level); + if (ret < 0) + return ret; + idx += ret; + } + return idx; +} + +static int btf_find_field(const struct btf *btf, const struct btf_type *t, + u32 field_mask, struct btf_field_info *info, + int info_cnt) +{ + if (__btf_type_is_struct(t)) + return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0); + else if (btf_type_is_datasec(t)) + return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0); + return -EINVAL; +} + +/* Callers have to ensure the life cycle of btf if it is program BTF */ +static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, + struct btf_field_info *info) +{ + struct module *mod = NULL; + const struct btf_type *t; + /* If a matching btf type is found in kernel or module BTFs, kptr_ref + * is that BTF, otherwise it's program BTF + */ + struct btf *kptr_btf; + int ret; + s32 id; + + /* Find type in map BTF, and use it to look up the matching type + * in vmlinux or module BTFs, by name and kind. + */ + t = btf_type_by_id(btf, info->kptr.type_id); + id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), + &kptr_btf); + if (id == -ENOENT) { + /* btf_parse_kptr should only be called w/ btf = program BTF */ + WARN_ON_ONCE(btf_is_kernel(btf)); + + /* Type exists only in program BTF. Assume that it's a MEM_ALLOC + * kptr allocated via bpf_obj_new + */ + field->kptr.dtor = NULL; + id = info->kptr.type_id; + kptr_btf = (struct btf *)btf; + goto found_dtor; + } + if (id < 0) + return id; + + /* Find and stash the function pointer for the destruction function that + * needs to be eventually invoked from the map free path. + */ + if (info->type == BPF_KPTR_REF) { + const struct btf_type *dtor_func; + const char *dtor_func_name; + unsigned long addr; + s32 dtor_btf_id; + + /* This call also serves as a whitelist of allowed objects that + * can be used as a referenced pointer and be stored in a map at + * the same time. + */ + dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); + if (dtor_btf_id < 0) { + ret = dtor_btf_id; + goto end_btf; + } + + dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); + if (!dtor_func) { + ret = -ENOENT; + goto end_btf; + } + + if (btf_is_module(kptr_btf)) { + mod = btf_try_get_module(kptr_btf); + if (!mod) { + ret = -ENXIO; + goto end_btf; + } + } + + /* We already verified dtor_func to be btf_type_is_func + * in register_btf_id_dtor_kfuncs. + */ + dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); + addr = kallsyms_lookup_name(dtor_func_name); + if (!addr) { + ret = -EINVAL; + goto end_mod; + } + field->kptr.dtor = (void *)addr; + } + +found_dtor: + field->kptr.btf_id = id; + field->kptr.btf = kptr_btf; + field->kptr.module = mod; + return 0; +end_mod: + module_put(mod); +end_btf: + btf_put(kptr_btf); + return ret; +} + +static int btf_parse_graph_root(const struct btf *btf, + struct btf_field *field, + struct btf_field_info *info, + const char *node_type_name, + size_t node_type_align) +{ + const struct btf_type *t, *n = NULL; + const struct btf_member *member; + u32 offset; + int i; + + t = btf_type_by_id(btf, info->graph_root.value_btf_id); + /* We've already checked that value_btf_id is a struct type. We + * just need to figure out the offset of the list_node, and + * verify its type. + */ + for_each_member(i, t, member) { + if (strcmp(info->graph_root.node_name, + __btf_name_by_offset(btf, member->name_off))) + continue; + /* Invalid BTF, two members with same name */ + if (n) + return -EINVAL; + n = btf_type_by_id(btf, member->type); + if (!__btf_type_is_struct(n)) + return -EINVAL; + if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) + return -EINVAL; + offset = __btf_member_bit_offset(n, member); + if (offset % 8) + return -EINVAL; + offset /= 8; + if (offset % node_type_align) + return -EINVAL; + + field->graph_root.btf = (struct btf *)btf; + field->graph_root.value_btf_id = info->graph_root.value_btf_id; + field->graph_root.node_offset = offset; + } + if (!n) + return -ENOENT; + return 0; +} + +static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, + struct btf_field_info *info) +{ + return btf_parse_graph_root(btf, field, info, "bpf_list_node", + __alignof__(struct bpf_list_node)); +} + +static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, + struct btf_field_info *info) +{ + return btf_parse_graph_root(btf, field, info, "bpf_rb_node", + __alignof__(struct bpf_rb_node)); +} + +static int btf_field_cmp(const void *_a, const void *_b, const void *priv) +{ + const struct btf_field *a = (const struct btf_field *)_a; + const struct btf_field *b = (const struct btf_field *)_b; + + if (a->offset < b->offset) + return -1; + else if (a->offset > b->offset) + return 1; + return 0; +} + +struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, + u32 field_mask, u32 value_size) +{ + struct btf_field_info info_arr[BTF_FIELDS_MAX]; + u32 next_off = 0, field_type_size; + struct btf_record *rec; + int ret, i, cnt; + + ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); + if (ret < 0) + return ERR_PTR(ret); + if (!ret) + return NULL; + + cnt = ret; + /* This needs to be kzalloc to zero out padding and unused fields, see + * comment in btf_record_equal. + */ + rec = kzalloc(struct_size(rec, fields, cnt), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); + if (!rec) + return ERR_PTR(-ENOMEM); + + rec->spin_lock_off = -EINVAL; + rec->res_spin_lock_off = -EINVAL; + rec->timer_off = -EINVAL; + rec->wq_off = -EINVAL; + rec->refcount_off = -EINVAL; + rec->task_work_off = -EINVAL; + for (i = 0; i < cnt; i++) { + field_type_size = btf_field_type_size(info_arr[i].type); + if (info_arr[i].off + field_type_size > value_size) { + WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); + ret = -EFAULT; + goto end; + } + if (info_arr[i].off < next_off) { + ret = -EEXIST; + goto end; + } + next_off = info_arr[i].off + field_type_size; + + rec->field_mask |= info_arr[i].type; + rec->fields[i].offset = info_arr[i].off; + rec->fields[i].type = info_arr[i].type; + rec->fields[i].size = field_type_size; + + switch (info_arr[i].type) { + case BPF_SPIN_LOCK: + WARN_ON_ONCE(rec->spin_lock_off >= 0); + /* Cache offset for faster lookup at runtime */ + rec->spin_lock_off = rec->fields[i].offset; + break; + case BPF_RES_SPIN_LOCK: + WARN_ON_ONCE(rec->spin_lock_off >= 0); + /* Cache offset for faster lookup at runtime */ + rec->res_spin_lock_off = rec->fields[i].offset; + break; + case BPF_TIMER: + WARN_ON_ONCE(rec->timer_off >= 0); + /* Cache offset for faster lookup at runtime */ + rec->timer_off = rec->fields[i].offset; + break; + case BPF_WORKQUEUE: + WARN_ON_ONCE(rec->wq_off >= 0); + /* Cache offset for faster lookup at runtime */ + rec->wq_off = rec->fields[i].offset; + break; + case BPF_TASK_WORK: + WARN_ON_ONCE(rec->task_work_off >= 0); + rec->task_work_off = rec->fields[i].offset; + break; + case BPF_REFCOUNT: + WARN_ON_ONCE(rec->refcount_off >= 0); + /* Cache offset for faster lookup at runtime */ + rec->refcount_off = rec->fields[i].offset; + break; + case BPF_KPTR_UNREF: + case BPF_KPTR_REF: + case BPF_KPTR_PERCPU: + case BPF_UPTR: + ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); + if (ret < 0) + goto end; + break; + case BPF_LIST_HEAD: + ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); + if (ret < 0) + goto end; + break; + case BPF_RB_ROOT: + ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); + if (ret < 0) + goto end; + break; + case BPF_LIST_NODE: + case BPF_RB_NODE: + break; + default: + ret = -EFAULT; + goto end; + } + rec->cnt++; + } + + if (rec->spin_lock_off >= 0 && rec->res_spin_lock_off >= 0) { + ret = -EINVAL; + goto end; + } + + /* bpf_{list_head, rb_node} require bpf_spin_lock */ + if ((btf_record_has_field(rec, BPF_LIST_HEAD) || + btf_record_has_field(rec, BPF_RB_ROOT)) && + (rec->spin_lock_off < 0 && rec->res_spin_lock_off < 0)) { + ret = -EINVAL; + goto end; + } + + if (rec->refcount_off < 0 && + btf_record_has_field(rec, BPF_LIST_NODE) && + btf_record_has_field(rec, BPF_RB_NODE)) { + ret = -EINVAL; + goto end; + } + + sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, + NULL, rec); + + return rec; +end: + btf_record_free(rec); + return ERR_PTR(ret); +} + +int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) +{ + int i; + + /* There are three types that signify ownership of some other type: + * kptr_ref, bpf_list_head, bpf_rb_root. + * kptr_ref only supports storing kernel types, which can't store + * references to program allocated local types. + * + * Hence we only need to ensure that bpf_{list_head,rb_root} ownership + * does not form cycles. + */ + if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR))) + return 0; + for (i = 0; i < rec->cnt; i++) { + struct btf_struct_meta *meta; + const struct btf_type *t; + u32 btf_id; + + if (rec->fields[i].type == BPF_UPTR) { + /* The uptr only supports pinning one page and cannot + * point to a kernel struct + */ + if (btf_is_kernel(rec->fields[i].kptr.btf)) + return -EINVAL; + t = btf_type_by_id(rec->fields[i].kptr.btf, + rec->fields[i].kptr.btf_id); + if (!t->size) + return -EINVAL; + if (t->size > PAGE_SIZE) + return -E2BIG; + continue; + } + + if (!(rec->fields[i].type & BPF_GRAPH_ROOT)) + continue; + btf_id = rec->fields[i].graph_root.value_btf_id; + meta = btf_find_struct_meta(btf, btf_id); + if (!meta) + return -EFAULT; + rec->fields[i].graph_root.value_rec = meta->record; + + /* We need to set value_rec for all root types, but no need + * to check ownership cycle for a type unless it's also a + * node type. + */ + if (!(rec->field_mask & BPF_GRAPH_NODE)) + continue; + + /* We need to ensure ownership acyclicity among all types. The + * proper way to do it would be to topologically sort all BTF + * IDs based on the ownership edges, since there can be multiple + * bpf_{list_head,rb_node} in a type. Instead, we use the + * following resaoning: + * + * - A type can only be owned by another type in user BTF if it + * has a bpf_{list,rb}_node. Let's call these node types. + * - A type can only _own_ another type in user BTF if it has a + * bpf_{list_head,rb_root}. Let's call these root types. + * + * We ensure that if a type is both a root and node, its + * element types cannot be root types. + * + * To ensure acyclicity: + * + * When A is an root type but not a node, its ownership + * chain can be: + * A -> B -> C + * Where: + * - A is an root, e.g. has bpf_rb_root. + * - B is both a root and node, e.g. has bpf_rb_node and + * bpf_list_head. + * - C is only an root, e.g. has bpf_list_node + * + * When A is both a root and node, some other type already + * owns it in the BTF domain, hence it can not own + * another root type through any of the ownership edges. + * A -> B + * Where: + * - A is both an root and node. + * - B is only an node. + */ + if (meta->record->field_mask & BPF_GRAPH_ROOT) + return -ELOOP; + } + return 0; +} + +static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_member *member; + void *safe_data; + u32 i; + + safe_data = btf_show_start_struct_type(show, t, type_id, data); + if (!safe_data) + return; + + for_each_member(i, t, member) { + const struct btf_type *member_type = btf_type_by_id(btf, + member->type); + const struct btf_kind_operations *ops; + u32 member_offset, bitfield_size; + u32 bytes_offset; + u8 bits8_offset; + + btf_show_start_member(show, member); + + member_offset = __btf_member_bit_offset(t, member); + bitfield_size = __btf_member_bitfield_size(t, member); + bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); + bits8_offset = BITS_PER_BYTE_MASKED(member_offset); + if (bitfield_size) { + safe_data = btf_show_start_type(show, member_type, + member->type, + data + bytes_offset); + if (safe_data) + btf_bitfield_show(safe_data, + bits8_offset, + bitfield_size, show); + btf_show_end_type(show); + } else { + ops = btf_type_ops(member_type); + ops->show(btf, member_type, member->type, + data + bytes_offset, bits8_offset, show); + } + + btf_show_end_member(show); + } + + btf_show_end_struct_type(show); +} + +static void btf_struct_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_member *m = show->state.member; + + /* + * First check if any members would be shown (are non-zero). + * See comments above "struct btf_show" definition for more + * details on how this works at a high-level. + */ + if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { + if (!show->state.depth_check) { + show->state.depth_check = show->state.depth + 1; + show->state.depth_to_show = 0; + } + __btf_struct_show(btf, t, type_id, data, bits_offset, show); + /* Restore saved member data here */ + show->state.member = m; + if (show->state.depth_check != show->state.depth + 1) + return; + show->state.depth_check = 0; + + if (show->state.depth_to_show <= show->state.depth) + return; + /* + * Reaching here indicates we have recursed and found + * non-zero child values. + */ + } + + __btf_struct_show(btf, t, type_id, data, bits_offset, show); +} + +static const struct btf_kind_operations struct_ops = { + .check_meta = btf_struct_check_meta, + .resolve = btf_struct_resolve, + .check_member = btf_struct_check_member, + .check_kflag_member = btf_generic_check_kflag_member, + .log_details = btf_struct_log, + .show = btf_struct_show, +}; + +static int btf_enum_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 struct_bits_off = member->offset; + u32 struct_size, bytes_offset; + + if (BITS_PER_BYTE_MASKED(struct_bits_off)) { + btf_verifier_log_member(env, struct_type, member, + "Member is not byte aligned"); + return -EINVAL; + } + + struct_size = struct_type->size; + bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); + if (struct_size - bytes_offset < member_type->size) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static int btf_enum_check_kflag_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 struct_bits_off, nr_bits, bytes_end, struct_size; + u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; + + struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); + nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); + if (!nr_bits) { + if (BITS_PER_BYTE_MASKED(struct_bits_off)) { + btf_verifier_log_member(env, struct_type, member, + "Member is not byte aligned"); + return -EINVAL; + } + + nr_bits = int_bitsize; + } else if (nr_bits > int_bitsize) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member bitfield_size"); + return -EINVAL; + } + + struct_size = struct_type->size; + bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); + if (struct_size < bytes_end) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static s32 btf_enum_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const struct btf_enum *enums = btf_type_enum(t); + struct btf *btf = env->btf; + const char *fmt_str; + u16 i, nr_enums; + u32 meta_needed; + + nr_enums = btf_type_vlen(t); + meta_needed = nr_enums * sizeof(*enums); + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + if (t->size > 8 || !is_power_of_2(t->size)) { + btf_verifier_log_type(env, t, "Unexpected size"); + return -EINVAL; + } + + /* enum type either no name or a valid one */ + if (t->name_off && + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + for (i = 0; i < nr_enums; i++) { + if (!btf_name_offset_valid(btf, enums[i].name_off)) { + btf_verifier_log(env, "\tInvalid name_offset:%u", + enums[i].name_off); + return -EINVAL; + } + + /* enum member must have a valid name */ + if (!enums[i].name_off || + !btf_name_valid_identifier(btf, enums[i].name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + if (env->log.level == BPF_LOG_KERNEL) + continue; + fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; + btf_verifier_log(env, fmt_str, + __btf_name_by_offset(btf, enums[i].name_off), + enums[i].val); + } + + return meta_needed; +} + +static void btf_enum_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); +} + +static void btf_enum_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_enum *enums = btf_type_enum(t); + u32 i, nr_enums = btf_type_vlen(t); + void *safe_data; + int v; + + safe_data = btf_show_start_type(show, t, type_id, data); + if (!safe_data) + return; + + v = *(int *)safe_data; + + for (i = 0; i < nr_enums; i++) { + if (v != enums[i].val) + continue; + + btf_show_type_value(show, "%s", + __btf_name_by_offset(btf, + enums[i].name_off)); + + btf_show_end_type(show); + return; + } + + if (btf_type_kflag(t)) + btf_show_type_value(show, "%d", v); + else + btf_show_type_value(show, "%u", v); + btf_show_end_type(show); +} + +static const struct btf_kind_operations enum_ops = { + .check_meta = btf_enum_check_meta, + .resolve = btf_df_resolve, + .check_member = btf_enum_check_member, + .check_kflag_member = btf_enum_check_kflag_member, + .log_details = btf_enum_log, + .show = btf_enum_show, +}; + +static s32 btf_enum64_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const struct btf_enum64 *enums = btf_type_enum64(t); + struct btf *btf = env->btf; + const char *fmt_str; + u16 i, nr_enums; + u32 meta_needed; + + nr_enums = btf_type_vlen(t); + meta_needed = nr_enums * sizeof(*enums); + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + if (t->size > 8 || !is_power_of_2(t->size)) { + btf_verifier_log_type(env, t, "Unexpected size"); + return -EINVAL; + } + + /* enum type either no name or a valid one */ + if (t->name_off && + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + for (i = 0; i < nr_enums; i++) { + if (!btf_name_offset_valid(btf, enums[i].name_off)) { + btf_verifier_log(env, "\tInvalid name_offset:%u", + enums[i].name_off); + return -EINVAL; + } + + /* enum member must have a valid name */ + if (!enums[i].name_off || + !btf_name_valid_identifier(btf, enums[i].name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + if (env->log.level == BPF_LOG_KERNEL) + continue; + + fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; + btf_verifier_log(env, fmt_str, + __btf_name_by_offset(btf, enums[i].name_off), + btf_enum64_value(enums + i)); + } + + return meta_needed; +} + +static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_enum64 *enums = btf_type_enum64(t); + u32 i, nr_enums = btf_type_vlen(t); + void *safe_data; + s64 v; + + safe_data = btf_show_start_type(show, t, type_id, data); + if (!safe_data) + return; + + v = *(u64 *)safe_data; + + for (i = 0; i < nr_enums; i++) { + if (v != btf_enum64_value(enums + i)) + continue; + + btf_show_type_value(show, "%s", + __btf_name_by_offset(btf, + enums[i].name_off)); + + btf_show_end_type(show); + return; + } + + if (btf_type_kflag(t)) + btf_show_type_value(show, "%lld", v); + else + btf_show_type_value(show, "%llu", v); + btf_show_end_type(show); +} + +static const struct btf_kind_operations enum64_ops = { + .check_meta = btf_enum64_check_meta, + .resolve = btf_df_resolve, + .check_member = btf_enum_check_member, + .check_kflag_member = btf_enum_check_kflag_member, + .log_details = btf_enum_log, + .show = btf_enum64_show, +}; + +static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + if (t->name_off) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return meta_needed; +} + +static void btf_func_proto_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + const struct btf_param *args = (const struct btf_param *)(t + 1); + u16 nr_args = btf_type_vlen(t), i; + + btf_verifier_log(env, "return=%u args=(", t->type); + if (!nr_args) { + btf_verifier_log(env, "void"); + goto done; + } + + if (nr_args == 1 && !args[0].type) { + /* Only one vararg */ + btf_verifier_log(env, "vararg"); + goto done; + } + + btf_verifier_log(env, "%u %s", args[0].type, + __btf_name_by_offset(env->btf, + args[0].name_off)); + for (i = 1; i < nr_args - 1; i++) + btf_verifier_log(env, ", %u %s", args[i].type, + __btf_name_by_offset(env->btf, + args[i].name_off)); + + if (nr_args > 1) { + const struct btf_param *last_arg = &args[nr_args - 1]; + + if (last_arg->type) + btf_verifier_log(env, ", %u %s", last_arg->type, + __btf_name_by_offset(env->btf, + last_arg->name_off)); + else + btf_verifier_log(env, ", vararg"); + } + +done: + btf_verifier_log(env, ")"); +} + +static const struct btf_kind_operations func_proto_ops = { + .check_meta = btf_func_proto_check_meta, + .resolve = btf_df_resolve, + /* + * BTF_KIND_FUNC_PROTO cannot be directly referred by + * a struct's member. + * + * It should be a function pointer instead. + * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) + * + * Hence, there is no btf_func_check_member(). + */ + .check_member = btf_df_check_member, + .check_kflag_member = btf_df_check_kflag_member, + .log_details = btf_func_proto_log, + .show = btf_df_show, +}; + +static s32 btf_func_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + if (!t->name_off || + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { + btf_verifier_log_type(env, t, "Invalid func linkage"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return 0; +} + +static int btf_func_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_type *t = v->t; + u32 next_type_id = t->type; + int err; + + err = btf_func_check(env, t); + if (err) + return err; + + env_stack_pop_resolved(env, next_type_id, 0); + return 0; +} + +static const struct btf_kind_operations func_ops = { + .check_meta = btf_func_check_meta, + .resolve = btf_func_resolve, + .check_member = btf_df_check_member, + .check_kflag_member = btf_df_check_kflag_member, + .log_details = btf_ref_type_log, + .show = btf_df_show, +}; + +static s32 btf_var_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const struct btf_var *var; + u32 meta_needed = sizeof(*var); + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + if (!t->name_off || + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + /* A var cannot be in type void */ + if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { + btf_verifier_log_type(env, t, "Invalid type_id"); + return -EINVAL; + } + + var = btf_type_var(t); + if (var->linkage != BTF_VAR_STATIC && + var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { + btf_verifier_log_type(env, t, "Linkage not supported"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return meta_needed; +} + +static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) +{ + const struct btf_var *var = btf_type_var(t); + + btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); +} + +static const struct btf_kind_operations var_ops = { + .check_meta = btf_var_check_meta, + .resolve = btf_var_resolve, + .check_member = btf_df_check_member, + .check_kflag_member = btf_df_check_kflag_member, + .log_details = btf_var_log, + .show = btf_var_show, +}; + +static s32 btf_datasec_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const struct btf_var_secinfo *vsi; + u64 last_vsi_end_off = 0, sum = 0; + u32 i, meta_needed; + + meta_needed = btf_type_vlen(t) * sizeof(*vsi); + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + if (!t->size) { + btf_verifier_log_type(env, t, "size == 0"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + if (!t->name_off || + !btf_name_valid_section(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + for_each_vsi(i, t, vsi) { + /* A var cannot be in type void */ + if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { + btf_verifier_log_vsi(env, t, vsi, + "Invalid type_id"); + return -EINVAL; + } + + if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { + btf_verifier_log_vsi(env, t, vsi, + "Invalid offset"); + return -EINVAL; + } + + if (!vsi->size || vsi->size > t->size) { + btf_verifier_log_vsi(env, t, vsi, + "Invalid size"); + return -EINVAL; + } + + last_vsi_end_off = vsi->offset + vsi->size; + if (last_vsi_end_off > t->size) { + btf_verifier_log_vsi(env, t, vsi, + "Invalid offset+size"); + return -EINVAL; + } + + btf_verifier_log_vsi(env, t, vsi, NULL); + sum += vsi->size; + } + + if (t->size < sum) { + btf_verifier_log_type(env, t, "Invalid btf_info size"); + return -EINVAL; + } + + return meta_needed; +} + +static int btf_datasec_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_var_secinfo *vsi; + struct btf *btf = env->btf; + u16 i; + + env->resolve_mode = RESOLVE_TBD; + for_each_vsi_from(i, v->next_member, v->t, vsi) { + u32 var_type_id = vsi->type, type_id, type_size = 0; + const struct btf_type *var_type = btf_type_by_id(env->btf, + var_type_id); + if (!var_type || !btf_type_is_var(var_type)) { + btf_verifier_log_vsi(env, v->t, vsi, + "Not a VAR kind member"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, var_type) && + !env_type_is_resolved(env, var_type_id)) { + env_stack_set_next_member(env, i + 1); + return env_stack_push(env, var_type, var_type_id); + } + + type_id = var_type->type; + if (!btf_type_id_size(btf, &type_id, &type_size)) { + btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); + return -EINVAL; + } + + if (vsi->size < type_size) { + btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); + return -EINVAL; + } + } + + env_stack_pop_resolved(env, 0, 0); + return 0; +} + +static void btf_datasec_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); +} + +static void btf_datasec_show(const struct btf *btf, + const struct btf_type *t, u32 type_id, + void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_var_secinfo *vsi; + const struct btf_type *var; + u32 i; + + if (!btf_show_start_type(show, t, type_id, data)) + return; + + btf_show_type_value(show, "section (\"%s\") = {", + __btf_name_by_offset(btf, t->name_off)); + for_each_vsi(i, t, vsi) { + var = btf_type_by_id(btf, vsi->type); + if (i) + btf_show(show, ","); + btf_type_ops(var)->show(btf, var, vsi->type, + data + vsi->offset, bits_offset, show); + } + btf_show_end_type(show); +} + +static const struct btf_kind_operations datasec_ops = { + .check_meta = btf_datasec_check_meta, + .resolve = btf_datasec_resolve, + .check_member = btf_df_check_member, + .check_kflag_member = btf_df_check_kflag_member, + .log_details = btf_datasec_log, + .show = btf_datasec_show, +}; + +static s32 btf_float_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && + t->size != 16) { + btf_verifier_log_type(env, t, "Invalid type_size"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return 0; +} + +static int btf_float_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u64 start_offset_bytes; + u64 end_offset_bytes; + u64 misalign_bits; + u64 align_bytes; + u64 align_bits; + + /* Different architectures have different alignment requirements, so + * here we check only for the reasonable minimum. This way we ensure + * that types after CO-RE can pass the kernel BTF verifier. + */ + align_bytes = min_t(u64, sizeof(void *), member_type->size); + align_bits = align_bytes * BITS_PER_BYTE; + div64_u64_rem(member->offset, align_bits, &misalign_bits); + if (misalign_bits) { + btf_verifier_log_member(env, struct_type, member, + "Member is not properly aligned"); + return -EINVAL; + } + + start_offset_bytes = member->offset / BITS_PER_BYTE; + end_offset_bytes = start_offset_bytes + member_type->size; + if (end_offset_bytes > struct_type->size) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static void btf_float_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + btf_verifier_log(env, "size=%u", t->size); +} + +static const struct btf_kind_operations float_ops = { + .check_meta = btf_float_check_meta, + .resolve = btf_df_resolve, + .check_member = btf_float_check_member, + .check_kflag_member = btf_generic_check_kflag_member, + .log_details = btf_float_log, + .show = btf_df_show, +}; + +static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const struct btf_decl_tag *tag; + u32 meta_needed = sizeof(*tag); + s32 component_idx; + const char *value; + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + value = btf_name_by_offset(env->btf, t->name_off); + if (!value || !value[0]) { + btf_verifier_log_type(env, t, "Invalid value"); + return -EINVAL; + } + + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + component_idx = btf_type_decl_tag(t)->component_idx; + if (component_idx < -1) { + btf_verifier_log_type(env, t, "Invalid component_idx"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return meta_needed; +} + +static int btf_decl_tag_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_type *next_type; + const struct btf_type *t = v->t; + u32 next_type_id = t->type; + struct btf *btf = env->btf; + s32 component_idx; + u32 vlen; + + next_type = btf_type_by_id(btf, next_type_id); + if (!next_type || !btf_type_is_decl_tag_target(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, next_type) && + !env_type_is_resolved(env, next_type_id)) + return env_stack_push(env, next_type, next_type_id); + + component_idx = btf_type_decl_tag(t)->component_idx; + if (component_idx != -1) { + if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid component_idx"); + return -EINVAL; + } + + if (btf_type_is_struct(next_type)) { + vlen = btf_type_vlen(next_type); + } else { + /* next_type should be a function */ + next_type = btf_type_by_id(btf, next_type->type); + vlen = btf_type_vlen(next_type); + } + + if ((u32)component_idx >= vlen) { + btf_verifier_log_type(env, v->t, "Invalid component_idx"); + return -EINVAL; + } + } + + env_stack_pop_resolved(env, next_type_id, 0); + + return 0; +} + +static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) +{ + btf_verifier_log(env, "type=%u component_idx=%d", t->type, + btf_type_decl_tag(t)->component_idx); +} + +static const struct btf_kind_operations decl_tag_ops = { + .check_meta = btf_decl_tag_check_meta, + .resolve = btf_decl_tag_resolve, + .check_member = btf_df_check_member, + .check_kflag_member = btf_df_check_kflag_member, + .log_details = btf_decl_tag_log, + .show = btf_df_show, +}; + +static int btf_func_proto_check(struct btf_verifier_env *env, + const struct btf_type *t) +{ + const struct btf_type *ret_type; + const struct btf_param *args; + const struct btf *btf; + u16 nr_args, i; + int err; + + btf = env->btf; + args = (const struct btf_param *)(t + 1); + nr_args = btf_type_vlen(t); + + /* Check func return type which could be "void" (t->type == 0) */ + if (t->type) { + u32 ret_type_id = t->type; + + ret_type = btf_type_by_id(btf, ret_type_id); + if (!ret_type) { + btf_verifier_log_type(env, t, "Invalid return type"); + return -EINVAL; + } + + if (btf_type_is_resolve_source_only(ret_type)) { + btf_verifier_log_type(env, t, "Invalid return type"); + return -EINVAL; + } + + if (btf_type_needs_resolve(ret_type) && + !env_type_is_resolved(env, ret_type_id)) { + err = btf_resolve(env, ret_type, ret_type_id); + if (err) + return err; + } + + /* Ensure the return type is a type that has a size */ + if (!btf_type_id_size(btf, &ret_type_id, NULL)) { + btf_verifier_log_type(env, t, "Invalid return type"); + return -EINVAL; + } + } + + if (!nr_args) + return 0; + + /* Last func arg type_id could be 0 if it is a vararg */ + if (!args[nr_args - 1].type) { + if (args[nr_args - 1].name_off) { + btf_verifier_log_type(env, t, "Invalid arg#%u", + nr_args); + return -EINVAL; + } + nr_args--; + } + + for (i = 0; i < nr_args; i++) { + const struct btf_type *arg_type; + u32 arg_type_id; + + arg_type_id = args[i].type; + arg_type = btf_type_by_id(btf, arg_type_id); + if (!arg_type) { + btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); + return -EINVAL; + } + + if (btf_type_is_resolve_source_only(arg_type)) { + btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); + return -EINVAL; + } + + if (args[i].name_off && + (!btf_name_offset_valid(btf, args[i].name_off) || + !btf_name_valid_identifier(btf, args[i].name_off))) { + btf_verifier_log_type(env, t, + "Invalid arg#%u", i + 1); + return -EINVAL; + } + + if (btf_type_needs_resolve(arg_type) && + !env_type_is_resolved(env, arg_type_id)) { + err = btf_resolve(env, arg_type, arg_type_id); + if (err) + return err; + } + + if (!btf_type_id_size(btf, &arg_type_id, NULL)) { + btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); + return -EINVAL; + } + } + + return 0; +} + +static int btf_func_check(struct btf_verifier_env *env, + const struct btf_type *t) +{ + const struct btf_type *proto_type; + const struct btf_param *args; + const struct btf *btf; + u16 nr_args, i; + + btf = env->btf; + proto_type = btf_type_by_id(btf, t->type); + + if (!proto_type || !btf_type_is_func_proto(proto_type)) { + btf_verifier_log_type(env, t, "Invalid type_id"); + return -EINVAL; + } + + args = (const struct btf_param *)(proto_type + 1); + nr_args = btf_type_vlen(proto_type); + for (i = 0; i < nr_args; i++) { + if (!args[i].name_off && args[i].type) { + btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); + return -EINVAL; + } + } + + return 0; +} + +static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { + [BTF_KIND_INT] = &int_ops, + [BTF_KIND_PTR] = &ptr_ops, + [BTF_KIND_ARRAY] = &array_ops, + [BTF_KIND_STRUCT] = &struct_ops, + [BTF_KIND_UNION] = &struct_ops, + [BTF_KIND_ENUM] = &enum_ops, + [BTF_KIND_FWD] = &fwd_ops, + [BTF_KIND_TYPEDEF] = &modifier_ops, + [BTF_KIND_VOLATILE] = &modifier_ops, + [BTF_KIND_CONST] = &modifier_ops, + [BTF_KIND_RESTRICT] = &modifier_ops, + [BTF_KIND_FUNC] = &func_ops, + [BTF_KIND_FUNC_PROTO] = &func_proto_ops, + [BTF_KIND_VAR] = &var_ops, + [BTF_KIND_DATASEC] = &datasec_ops, + [BTF_KIND_FLOAT] = &float_ops, + [BTF_KIND_DECL_TAG] = &decl_tag_ops, + [BTF_KIND_TYPE_TAG] = &modifier_ops, + [BTF_KIND_ENUM64] = &enum64_ops, +}; + +static s32 btf_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + u32 saved_meta_left = meta_left; + s32 var_meta_size; + + if (meta_left < sizeof(*t)) { + btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", + env->log_type_id, meta_left, sizeof(*t)); + return -EINVAL; + } + meta_left -= sizeof(*t); + + if (t->info & ~BTF_INFO_MASK) { + btf_verifier_log(env, "[%u] Invalid btf_info:%x", + env->log_type_id, t->info); + return -EINVAL; + } + + if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || + BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { + btf_verifier_log(env, "[%u] Invalid kind:%u", + env->log_type_id, BTF_INFO_KIND(t->info)); + return -EINVAL; + } + + if (!btf_name_offset_valid(env->btf, t->name_off)) { + btf_verifier_log(env, "[%u] Invalid name_offset:%u", + env->log_type_id, t->name_off); + return -EINVAL; + } + + var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); + if (var_meta_size < 0) + return var_meta_size; + + meta_left -= var_meta_size; + + return saved_meta_left - meta_left; +} + +static int btf_check_all_metas(struct btf_verifier_env *env) +{ + struct btf *btf = env->btf; + struct btf_header *hdr; + void *cur, *end; + + hdr = &btf->hdr; + cur = btf->nohdr_data + hdr->type_off; + end = cur + hdr->type_len; + + env->log_type_id = btf->base_btf ? btf->start_id : 1; + while (cur < end) { + struct btf_type *t = cur; + s32 meta_size; + + meta_size = btf_check_meta(env, t, end - cur); + if (meta_size < 0) + return meta_size; + + btf_add_type(env, t); + cur += meta_size; + env->log_type_id++; + } + + return 0; +} + +static bool btf_resolve_valid(struct btf_verifier_env *env, + const struct btf_type *t, + u32 type_id) +{ + struct btf *btf = env->btf; + + if (!env_type_is_resolved(env, type_id)) + return false; + + if (btf_type_is_struct(t) || btf_type_is_datasec(t)) + return !btf_resolved_type_id(btf, type_id) && + !btf_resolved_type_size(btf, type_id); + + if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) + return btf_resolved_type_id(btf, type_id) && + !btf_resolved_type_size(btf, type_id); + + if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || + btf_type_is_var(t)) { + t = btf_type_id_resolve(btf, &type_id); + return t && + !btf_type_is_modifier(t) && + !btf_type_is_var(t) && + !btf_type_is_datasec(t); + } + + if (btf_type_is_array(t)) { + const struct btf_array *array = btf_type_array(t); + const struct btf_type *elem_type; + u32 elem_type_id = array->type; + u32 elem_size; + + elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); + return elem_type && !btf_type_is_modifier(elem_type) && + (array->nelems * elem_size == + btf_resolved_type_size(btf, type_id)); + } + + return false; +} + +static int btf_resolve(struct btf_verifier_env *env, + const struct btf_type *t, u32 type_id) +{ + u32 save_log_type_id = env->log_type_id; + const struct resolve_vertex *v; + int err = 0; + + env->resolve_mode = RESOLVE_TBD; + env_stack_push(env, t, type_id); + while (!err && (v = env_stack_peak(env))) { + env->log_type_id = v->type_id; + err = btf_type_ops(v->t)->resolve(env, v); + } + + env->log_type_id = type_id; + if (err == -E2BIG) { + btf_verifier_log_type(env, t, + "Exceeded max resolving depth:%u", + MAX_RESOLVE_DEPTH); + } else if (err == -EEXIST) { + btf_verifier_log_type(env, t, "Loop detected"); + } + + /* Final sanity check */ + if (!err && !btf_resolve_valid(env, t, type_id)) { + btf_verifier_log_type(env, t, "Invalid resolve state"); + err = -EINVAL; + } + + env->log_type_id = save_log_type_id; + return err; +} + +static int btf_check_all_types(struct btf_verifier_env *env) +{ + struct btf *btf = env->btf; + const struct btf_type *t; + u32 type_id, i; + int err; + + err = env_resolve_init(env); + if (err) + return err; + + env->phase++; + for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { + type_id = btf->start_id + i; + t = btf_type_by_id(btf, type_id); + + env->log_type_id = type_id; + if (btf_type_needs_resolve(t) && + !env_type_is_resolved(env, type_id)) { + err = btf_resolve(env, t, type_id); + if (err) + return err; + } + + if (btf_type_is_func_proto(t)) { + err = btf_func_proto_check(env, t); + if (err) + return err; + } + } + + return 0; +} + +static int btf_parse_type_sec(struct btf_verifier_env *env) +{ + const struct btf_header *hdr = &env->btf->hdr; + int err; + + /* Type section must align to 4 bytes */ + if (hdr->type_off & (sizeof(u32) - 1)) { + btf_verifier_log(env, "Unaligned type_off"); + return -EINVAL; + } + + if (!env->btf->base_btf && !hdr->type_len) { + btf_verifier_log(env, "No type found"); + return -EINVAL; + } + + err = btf_check_all_metas(env); + if (err) + return err; + + return btf_check_all_types(env); +} + +static int btf_parse_str_sec(struct btf_verifier_env *env) +{ + const struct btf_header *hdr; + struct btf *btf = env->btf; + const char *start, *end; + + hdr = &btf->hdr; + start = btf->nohdr_data + hdr->str_off; + end = start + hdr->str_len; + + if (end != btf->data + btf->data_size) { + btf_verifier_log(env, "String section is not at the end"); + return -EINVAL; + } + + btf->strings = start; + + if (btf->base_btf && !hdr->str_len) + return 0; + if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { + btf_verifier_log(env, "Invalid string section"); + return -EINVAL; + } + if (!btf->base_btf && start[0]) { + btf_verifier_log(env, "Invalid string section"); + return -EINVAL; + } + + return 0; +} + +static const size_t btf_sec_info_offset[] = { + offsetof(struct btf_header, type_off), + offsetof(struct btf_header, str_off), +}; + +static int btf_sec_info_cmp(const void *a, const void *b) +{ + const struct btf_sec_info *x = a; + const struct btf_sec_info *y = b; + + return (int)(x->off - y->off) ? : (int)(x->len - y->len); +} + +static int btf_check_sec_info(struct btf_verifier_env *env, + u32 btf_data_size) +{ + struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; + u32 total, expected_total, i; + const struct btf_header *hdr; + const struct btf *btf; + + btf = env->btf; + hdr = &btf->hdr; + + /* Populate the secs from hdr */ + for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) + secs[i] = *(struct btf_sec_info *)((void *)hdr + + btf_sec_info_offset[i]); + + sort(secs, ARRAY_SIZE(btf_sec_info_offset), + sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); + + /* Check for gaps and overlap among sections */ + total = 0; + expected_total = btf_data_size - hdr->hdr_len; + for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { + if (expected_total < secs[i].off) { + btf_verifier_log(env, "Invalid section offset"); + return -EINVAL; + } + if (total < secs[i].off) { + /* gap */ + btf_verifier_log(env, "Unsupported section found"); + return -EINVAL; + } + if (total > secs[i].off) { + btf_verifier_log(env, "Section overlap found"); + return -EINVAL; + } + if (expected_total - total < secs[i].len) { + btf_verifier_log(env, + "Total section length too long"); + return -EINVAL; + } + total += secs[i].len; + } + + /* There is data other than hdr and known sections */ + if (expected_total != total) { + btf_verifier_log(env, "Unsupported section found"); + return -EINVAL; + } + + return 0; +} + +static int btf_parse_hdr(struct btf_verifier_env *env) +{ + u32 hdr_len, hdr_copy, btf_data_size; + const struct btf_header *hdr; + struct btf *btf; + + btf = env->btf; + btf_data_size = btf->data_size; + + if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { + btf_verifier_log(env, "hdr_len not found"); + return -EINVAL; + } + + hdr = btf->data; + hdr_len = hdr->hdr_len; + if (btf_data_size < hdr_len) { + btf_verifier_log(env, "btf_header not found"); + return -EINVAL; + } + + /* Ensure the unsupported header fields are zero */ + if (hdr_len > sizeof(btf->hdr)) { + u8 *expected_zero = btf->data + sizeof(btf->hdr); + u8 *end = btf->data + hdr_len; + + for (; expected_zero < end; expected_zero++) { + if (*expected_zero) { + btf_verifier_log(env, "Unsupported btf_header"); + return -E2BIG; + } + } + } + + hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); + memcpy(&btf->hdr, btf->data, hdr_copy); + + hdr = &btf->hdr; + + btf_verifier_log_hdr(env, btf_data_size); + + if (hdr->magic != BTF_MAGIC) { + btf_verifier_log(env, "Invalid magic"); + return -EINVAL; + } + + if (hdr->version != BTF_VERSION) { + btf_verifier_log(env, "Unsupported version"); + return -ENOTSUPP; + } + + if (hdr->flags) { + btf_verifier_log(env, "Unsupported flags"); + return -ENOTSUPP; + } + + if (!btf->base_btf && btf_data_size == hdr->hdr_len) { + btf_verifier_log(env, "No data"); + return -EINVAL; + } + + return btf_check_sec_info(env, btf_data_size); +} + +static const char *alloc_obj_fields[] = { + "bpf_spin_lock", + "bpf_list_head", + "bpf_list_node", + "bpf_rb_root", + "bpf_rb_node", + "bpf_refcount", +}; + +static struct btf_struct_metas * +btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) +{ + struct btf_struct_metas *tab = NULL; + struct btf_id_set *aof; + int i, n, id, ret; + + BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); + BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); + + aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN); + if (!aof) + return ERR_PTR(-ENOMEM); + aof->cnt = 0; + + for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { + /* Try to find whether this special type exists in user BTF, and + * if so remember its ID so we can easily find it among members + * of structs that we iterate in the next loop. + */ + struct btf_id_set *new_aof; + + id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); + if (id < 0) + continue; + + new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1), + GFP_KERNEL | __GFP_NOWARN); + if (!new_aof) { + ret = -ENOMEM; + goto free_aof; + } + aof = new_aof; + aof->ids[aof->cnt++] = id; + } + + n = btf_nr_types(btf); + for (i = 1; i < n; i++) { + /* Try to find if there are kptrs in user BTF and remember their ID */ + struct btf_id_set *new_aof; + struct btf_field_info tmp; + const struct btf_type *t; + + t = btf_type_by_id(btf, i); + if (!t) { + ret = -EINVAL; + goto free_aof; + } + + ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR); + if (ret != BTF_FIELD_FOUND) + continue; + + new_aof = krealloc(aof, struct_size(new_aof, ids, aof->cnt + 1), + GFP_KERNEL | __GFP_NOWARN); + if (!new_aof) { + ret = -ENOMEM; + goto free_aof; + } + aof = new_aof; + aof->ids[aof->cnt++] = i; + } + + if (!aof->cnt) { + kfree(aof); + return NULL; + } + sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL); + + for (i = 1; i < n; i++) { + struct btf_struct_metas *new_tab; + const struct btf_member *member; + struct btf_struct_meta *type; + struct btf_record *record; + const struct btf_type *t; + int j, tab_cnt; + + t = btf_type_by_id(btf, i); + if (!__btf_type_is_struct(t)) + continue; + + cond_resched(); + + for_each_member(j, t, member) { + if (btf_id_set_contains(aof, member->type)) + goto parse; + } + continue; + parse: + tab_cnt = tab ? tab->cnt : 0; + new_tab = krealloc(tab, struct_size(new_tab, types, tab_cnt + 1), + GFP_KERNEL | __GFP_NOWARN); + if (!new_tab) { + ret = -ENOMEM; + goto free; + } + if (!tab) + new_tab->cnt = 0; + tab = new_tab; + + type = &tab->types[tab->cnt]; + type->btf_id = i; + record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | + BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT | + BPF_KPTR, t->size); + /* The record cannot be unset, treat it as an error if so */ + if (IS_ERR_OR_NULL(record)) { + ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; + goto free; + } + type->record = record; + tab->cnt++; + } + kfree(aof); + return tab; +free: + btf_struct_metas_free(tab); +free_aof: + kfree(aof); + return ERR_PTR(ret); +} + +struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) +{ + struct btf_struct_metas *tab; + + BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); + tab = btf->struct_meta_tab; + if (!tab) + return NULL; + return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); +} + +static int btf_check_type_tags(struct btf_verifier_env *env, + struct btf *btf, int start_id) +{ + int i, n, good_id = start_id - 1; + bool in_tags; + + n = btf_nr_types(btf); + for (i = start_id; i < n; i++) { + const struct btf_type *t; + int chain_limit = 32; + u32 cur_id = i; + + t = btf_type_by_id(btf, i); + if (!t) + return -EINVAL; + if (!btf_type_is_modifier(t)) + continue; + + cond_resched(); + + in_tags = btf_type_is_type_tag(t); + while (btf_type_is_modifier(t)) { + if (!chain_limit--) { + btf_verifier_log(env, "Max chain length or cycle detected"); + return -ELOOP; + } + if (btf_type_is_type_tag(t)) { + if (!in_tags) { + btf_verifier_log(env, "Type tags don't precede modifiers"); + return -EINVAL; + } + } else if (in_tags) { + in_tags = false; + } + if (cur_id <= good_id) + break; + /* Move to next type */ + cur_id = t->type; + t = btf_type_by_id(btf, cur_id); + if (!t) + return -EINVAL; + } + good_id = i; + } + return 0; +} + +static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) +{ + u32 log_true_size; + int err; + + err = bpf_vlog_finalize(log, &log_true_size); + + if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && + copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), + &log_true_size, sizeof(log_true_size))) + err = -EFAULT; + + return err; +} + +static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) +{ + bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); + char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); + struct btf_struct_metas *struct_meta_tab; + struct btf_verifier_env *env = NULL; + struct btf *btf = NULL; + u8 *data; + int err, ret; + + if (attr->btf_size > BTF_MAX_SIZE) + return ERR_PTR(-E2BIG); + + env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); + if (!env) + return ERR_PTR(-ENOMEM); + + /* user could have requested verbose verifier output + * and supplied buffer to store the verification trace + */ + err = bpf_vlog_init(&env->log, attr->btf_log_level, + log_ubuf, attr->btf_log_size); + if (err) + goto errout_free; + + btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); + if (!btf) { + err = -ENOMEM; + goto errout; + } + env->btf = btf; + + data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); + if (!data) { + err = -ENOMEM; + goto errout; + } + + btf->data = data; + btf->data_size = attr->btf_size; + + if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { + err = -EFAULT; + goto errout; + } + + err = btf_parse_hdr(env); + if (err) + goto errout; + + btf->nohdr_data = btf->data + btf->hdr.hdr_len; + + err = btf_parse_str_sec(env); + if (err) + goto errout; + + err = btf_parse_type_sec(env); + if (err) + goto errout; + + err = btf_check_type_tags(env, btf, 1); + if (err) + goto errout; + + struct_meta_tab = btf_parse_struct_metas(&env->log, btf); + if (IS_ERR(struct_meta_tab)) { + err = PTR_ERR(struct_meta_tab); + goto errout; + } + btf->struct_meta_tab = struct_meta_tab; + + if (struct_meta_tab) { + int i; + + for (i = 0; i < struct_meta_tab->cnt; i++) { + err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); + if (err < 0) + goto errout_meta; + } + } + + err = finalize_log(&env->log, uattr, uattr_size); + if (err) + goto errout_free; + + btf_verifier_env_free(env); + refcount_set(&btf->refcnt, 1); + return btf; + +errout_meta: + btf_free_struct_meta_tab(btf); +errout: + /* overwrite err with -ENOSPC or -EFAULT */ + ret = finalize_log(&env->log, uattr, uattr_size); + if (ret) + err = ret; +errout_free: + btf_verifier_env_free(env); + if (btf) + btf_free(btf); + return ERR_PTR(err); +} + +extern char __start_BTF[]; +extern char __stop_BTF[]; +extern struct btf *btf_vmlinux; + +#define BPF_MAP_TYPE(_id, _ops) +#define BPF_LINK_TYPE(_id, _name) +static union { + struct bpf_ctx_convert { +#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ + prog_ctx_type _id##_prog; \ + kern_ctx_type _id##_kern; +#include <linux/bpf_types.h> +#undef BPF_PROG_TYPE + } *__t; + /* 't' is written once under lock. Read many times. */ + const struct btf_type *t; +} bpf_ctx_convert; +enum { +#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ + __ctx_convert##_id, +#include <linux/bpf_types.h> +#undef BPF_PROG_TYPE + __ctx_convert_unused, /* to avoid empty enum in extreme .config */ +}; +static u8 bpf_ctx_convert_map[] = { +#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ + [_id] = __ctx_convert##_id, +#include <linux/bpf_types.h> +#undef BPF_PROG_TYPE + 0, /* avoid empty array */ +}; +#undef BPF_MAP_TYPE +#undef BPF_LINK_TYPE + +static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type) +{ + const struct btf_type *conv_struct; + const struct btf_member *ctx_type; + + conv_struct = bpf_ctx_convert.t; + if (!conv_struct) + return NULL; + /* prog_type is valid bpf program type. No need for bounds check. */ + ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; + /* ctx_type is a pointer to prog_ctx_type in vmlinux. + * Like 'struct __sk_buff' + */ + return btf_type_by_id(btf_vmlinux, ctx_type->type); +} + +static int find_kern_ctx_type_id(enum bpf_prog_type prog_type) +{ + const struct btf_type *conv_struct; + const struct btf_member *ctx_type; + + conv_struct = bpf_ctx_convert.t; + if (!conv_struct) + return -EFAULT; + /* prog_type is valid bpf program type. No need for bounds check. */ + ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; + /* ctx_type is a pointer to prog_ctx_type in vmlinux. + * Like 'struct sk_buff' + */ + return ctx_type->type; +} + +bool btf_is_projection_of(const char *pname, const char *tname) +{ + if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) + return true; + if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) + return true; + return false; +} + +bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, + const struct btf_type *t, enum bpf_prog_type prog_type, + int arg) +{ + const struct btf_type *ctx_type; + const char *tname, *ctx_tname; + + t = btf_type_by_id(btf, t->type); + + /* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to + * check before we skip all the typedef below. + */ + if (prog_type == BPF_PROG_TYPE_KPROBE) { + while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) + t = btf_type_by_id(btf, t->type); + + if (btf_type_is_typedef(t)) { + tname = btf_name_by_offset(btf, t->name_off); + if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) + return true; + } + } + + while (btf_type_is_modifier(t)) + t = btf_type_by_id(btf, t->type); + if (!btf_type_is_struct(t)) { + /* Only pointer to struct is supported for now. + * That means that BPF_PROG_TYPE_TRACEPOINT with BTF + * is not supported yet. + * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. + */ + return false; + } + tname = btf_name_by_offset(btf, t->name_off); + if (!tname) { + bpf_log(log, "arg#%d struct doesn't have a name\n", arg); + return false; + } + + ctx_type = find_canonical_prog_ctx_type(prog_type); + if (!ctx_type) { + bpf_log(log, "btf_vmlinux is malformed\n"); + /* should not happen */ + return false; + } +again: + ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); + if (!ctx_tname) { + /* should not happen */ + bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); + return false; + } + /* program types without named context types work only with arg:ctx tag */ + if (ctx_tname[0] == '\0') + return false; + /* only compare that prog's ctx type name is the same as + * kernel expects. No need to compare field by field. + * It's ok for bpf prog to do: + * struct __sk_buff {}; + * int socket_filter_bpf_prog(struct __sk_buff *skb) + * { // no fields of skb are ever used } + */ + if (btf_is_projection_of(ctx_tname, tname)) + return true; + if (strcmp(ctx_tname, tname)) { + /* bpf_user_pt_regs_t is a typedef, so resolve it to + * underlying struct and check name again + */ + if (!btf_type_is_modifier(ctx_type)) + return false; + while (btf_type_is_modifier(ctx_type)) + ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); + goto again; + } + return true; +} + +/* forward declarations for arch-specific underlying types of + * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef + * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still + * works correctly with __builtin_types_compatible_p() on respective + * architectures + */ +struct user_regs_struct; +struct user_pt_regs; + +static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, + const struct btf_type *t, int arg, + enum bpf_prog_type prog_type, + enum bpf_attach_type attach_type) +{ + const struct btf_type *ctx_type; + const char *tname, *ctx_tname; + + if (!btf_is_ptr(t)) { + bpf_log(log, "arg#%d type isn't a pointer\n", arg); + return -EINVAL; + } + t = btf_type_by_id(btf, t->type); + + /* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */ + if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) { + while (btf_type_is_modifier(t) && !btf_type_is_typedef(t)) + t = btf_type_by_id(btf, t->type); + + if (btf_type_is_typedef(t)) { + tname = btf_name_by_offset(btf, t->name_off); + if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0) + return 0; + } + } + + /* all other program types don't use typedefs for context type */ + while (btf_type_is_modifier(t)) + t = btf_type_by_id(btf, t->type); + + /* `void *ctx __arg_ctx` is always valid */ + if (btf_type_is_void(t)) + return 0; + + tname = btf_name_by_offset(btf, t->name_off); + if (str_is_empty(tname)) { + bpf_log(log, "arg#%d type doesn't have a name\n", arg); + return -EINVAL; + } + + /* special cases */ + switch (prog_type) { + case BPF_PROG_TYPE_KPROBE: + if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) + return 0; + break; + case BPF_PROG_TYPE_PERF_EVENT: + if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && + __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0) + return 0; + if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && + __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) + return 0; + if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && + __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) + return 0; + break; + case BPF_PROG_TYPE_RAW_TRACEPOINT: + case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: + /* allow u64* as ctx */ + if (btf_is_int(t) && t->size == 8) + return 0; + break; + case BPF_PROG_TYPE_TRACING: + switch (attach_type) { + case BPF_TRACE_RAW_TP: + /* tp_btf program is TRACING, so need special case here */ + if (__btf_type_is_struct(t) && + strcmp(tname, "bpf_raw_tracepoint_args") == 0) + return 0; + /* allow u64* as ctx */ + if (btf_is_int(t) && t->size == 8) + return 0; + break; + case BPF_TRACE_ITER: + /* allow struct bpf_iter__xxx types only */ + if (__btf_type_is_struct(t) && + strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0) + return 0; + break; + case BPF_TRACE_FENTRY: + case BPF_TRACE_FEXIT: + case BPF_MODIFY_RETURN: + /* allow u64* as ctx */ + if (btf_is_int(t) && t->size == 8) + return 0; + break; + default: + break; + } + break; + case BPF_PROG_TYPE_LSM: + case BPF_PROG_TYPE_STRUCT_OPS: + /* allow u64* as ctx */ + if (btf_is_int(t) && t->size == 8) + return 0; + break; + case BPF_PROG_TYPE_TRACEPOINT: + case BPF_PROG_TYPE_SYSCALL: + case BPF_PROG_TYPE_EXT: + return 0; /* anything goes */ + default: + break; + } + + ctx_type = find_canonical_prog_ctx_type(prog_type); + if (!ctx_type) { + /* should not happen */ + bpf_log(log, "btf_vmlinux is malformed\n"); + return -EINVAL; + } + + /* resolve typedefs and check that underlying structs are matching as well */ + while (btf_type_is_modifier(ctx_type)) + ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type); + + /* if program type doesn't have distinctly named struct type for + * context, then __arg_ctx argument can only be `void *`, which we + * already checked above + */ + if (!__btf_type_is_struct(ctx_type)) { + bpf_log(log, "arg#%d should be void pointer\n", arg); + return -EINVAL; + } + + ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off); + if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) { + bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname); + return -EINVAL; + } + + return 0; +} + +static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, + struct btf *btf, + const struct btf_type *t, + enum bpf_prog_type prog_type, + int arg) +{ + if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg)) + return -ENOENT; + return find_kern_ctx_type_id(prog_type); +} + +int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) +{ + const struct btf_member *kctx_member; + const struct btf_type *conv_struct; + const struct btf_type *kctx_type; + u32 kctx_type_id; + + conv_struct = bpf_ctx_convert.t; + /* get member for kernel ctx type */ + kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; + kctx_type_id = kctx_member->type; + kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); + if (!btf_type_is_struct(kctx_type)) { + bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); + return -EINVAL; + } + + return kctx_type_id; +} + +BTF_ID_LIST_SINGLE(bpf_ctx_convert_btf_id, struct, bpf_ctx_convert) + +static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name, + void *data, unsigned int data_size) +{ + struct btf *btf = NULL; + int err; + + if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) + return ERR_PTR(-ENOENT); + + btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); + if (!btf) { + err = -ENOMEM; + goto errout; + } + env->btf = btf; + + btf->data = data; + btf->data_size = data_size; + btf->kernel_btf = true; + snprintf(btf->name, sizeof(btf->name), "%s", name); + + err = btf_parse_hdr(env); + if (err) + goto errout; + + btf->nohdr_data = btf->data + btf->hdr.hdr_len; + + err = btf_parse_str_sec(env); + if (err) + goto errout; + + err = btf_check_all_metas(env); + if (err) + goto errout; + + err = btf_check_type_tags(env, btf, 1); + if (err) + goto errout; + + refcount_set(&btf->refcnt, 1); + + return btf; + +errout: + if (btf) { + kvfree(btf->types); + kfree(btf); + } + return ERR_PTR(err); +} + +struct btf *btf_parse_vmlinux(void) +{ + struct btf_verifier_env *env = NULL; + struct bpf_verifier_log *log; + struct btf *btf; + int err; + + env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); + if (!env) + return ERR_PTR(-ENOMEM); + + log = &env->log; + log->level = BPF_LOG_KERNEL; + btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF); + if (IS_ERR(btf)) + goto err_out; + + /* btf_parse_vmlinux() runs under bpf_verifier_lock */ + bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); + err = btf_alloc_id(btf); + if (err) { + btf_free(btf); + btf = ERR_PTR(err); + } +err_out: + btf_verifier_env_free(env); + return btf; +} + +/* If .BTF_ids section was created with distilled base BTF, both base and + * split BTF ids will need to be mapped to actual base/split ids for + * BTF now that it has been relocated. + */ +static __u32 btf_relocate_id(const struct btf *btf, __u32 id) +{ + if (!btf->base_btf || !btf->base_id_map) + return id; + return btf->base_id_map[id]; +} + +#ifdef CONFIG_DEBUG_INFO_BTF_MODULES + +static struct btf *btf_parse_module(const char *module_name, const void *data, + unsigned int data_size, void *base_data, + unsigned int base_data_size) +{ + struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL; + struct btf_verifier_env *env = NULL; + struct bpf_verifier_log *log; + int err = 0; + + vmlinux_btf = bpf_get_btf_vmlinux(); + if (IS_ERR(vmlinux_btf)) + return vmlinux_btf; + if (!vmlinux_btf) + return ERR_PTR(-EINVAL); + + env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); + if (!env) + return ERR_PTR(-ENOMEM); + + log = &env->log; + log->level = BPF_LOG_KERNEL; + + if (base_data) { + base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size); + if (IS_ERR(base_btf)) { + err = PTR_ERR(base_btf); + goto errout; + } + } else { + base_btf = vmlinux_btf; + } + + btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); + if (!btf) { + err = -ENOMEM; + goto errout; + } + env->btf = btf; + + btf->base_btf = base_btf; + btf->start_id = base_btf->nr_types; + btf->start_str_off = base_btf->hdr.str_len; + btf->kernel_btf = true; + snprintf(btf->name, sizeof(btf->name), "%s", module_name); + + btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN); + if (!btf->data) { + err = -ENOMEM; + goto errout; + } + btf->data_size = data_size; + + err = btf_parse_hdr(env); + if (err) + goto errout; + + btf->nohdr_data = btf->data + btf->hdr.hdr_len; + + err = btf_parse_str_sec(env); + if (err) + goto errout; + + err = btf_check_all_metas(env); + if (err) + goto errout; + + err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); + if (err) + goto errout; + + if (base_btf != vmlinux_btf) { + err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map); + if (err) + goto errout; + btf_free(base_btf); + base_btf = vmlinux_btf; + } + + btf_verifier_env_free(env); + refcount_set(&btf->refcnt, 1); + return btf; + +errout: + btf_verifier_env_free(env); + if (!IS_ERR(base_btf) && base_btf != vmlinux_btf) + btf_free(base_btf); + if (btf) { + kvfree(btf->data); + kvfree(btf->types); + kfree(btf); + } + return ERR_PTR(err); +} + +#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ + +struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) +{ + struct bpf_prog *tgt_prog = prog->aux->dst_prog; + + if (tgt_prog) + return tgt_prog->aux->btf; + else + return prog->aux->attach_btf; +} + +static bool is_void_or_int_ptr(struct btf *btf, const struct btf_type *t) +{ + /* skip modifiers */ + t = btf_type_skip_modifiers(btf, t->type, NULL); + return btf_type_is_void(t) || btf_type_is_int(t); +} + +u32 btf_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, + int off) +{ + const struct btf_param *args; + const struct btf_type *t; + u32 offset = 0, nr_args; + int i; + + if (!func_proto) + return off / 8; + + nr_args = btf_type_vlen(func_proto); + args = (const struct btf_param *)(func_proto + 1); + for (i = 0; i < nr_args; i++) { + t = btf_type_skip_modifiers(btf, args[i].type, NULL); + offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); + if (off < offset) + return i; + } + + t = btf_type_skip_modifiers(btf, func_proto->type, NULL); + offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); + if (off < offset) + return nr_args; + + return nr_args + 1; +} + +static bool prog_args_trusted(const struct bpf_prog *prog) +{ + enum bpf_attach_type atype = prog->expected_attach_type; + + switch (prog->type) { + case BPF_PROG_TYPE_TRACING: + return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; + case BPF_PROG_TYPE_LSM: + return bpf_lsm_is_trusted(prog); + case BPF_PROG_TYPE_STRUCT_OPS: + return true; + default: + return false; + } +} + +int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto, + u32 arg_no) +{ + const struct btf_param *args; + const struct btf_type *t; + int off = 0, i; + u32 sz; + + args = btf_params(func_proto); + for (i = 0; i < arg_no; i++) { + t = btf_type_by_id(btf, args[i].type); + t = btf_resolve_size(btf, t, &sz); + if (IS_ERR(t)) + return PTR_ERR(t); + off += roundup(sz, 8); + } + + return off; +} + +struct bpf_raw_tp_null_args { + const char *func; + u64 mask; +}; + +static const struct bpf_raw_tp_null_args raw_tp_null_args[] = { + /* sched */ + { "sched_pi_setprio", 0x10 }, + /* ... from sched_numa_pair_template event class */ + { "sched_stick_numa", 0x100 }, + { "sched_swap_numa", 0x100 }, + /* afs */ + { "afs_make_fs_call", 0x10 }, + { "afs_make_fs_calli", 0x10 }, + { "afs_make_fs_call1", 0x10 }, + { "afs_make_fs_call2", 0x10 }, + { "afs_protocol_error", 0x1 }, + { "afs_flock_ev", 0x10 }, + /* cachefiles */ + { "cachefiles_lookup", 0x1 | 0x200 }, + { "cachefiles_unlink", 0x1 }, + { "cachefiles_rename", 0x1 }, + { "cachefiles_prep_read", 0x1 }, + { "cachefiles_mark_active", 0x1 }, + { "cachefiles_mark_failed", 0x1 }, + { "cachefiles_mark_inactive", 0x1 }, + { "cachefiles_vfs_error", 0x1 }, + { "cachefiles_io_error", 0x1 }, + { "cachefiles_ondemand_open", 0x1 }, + { "cachefiles_ondemand_copen", 0x1 }, + { "cachefiles_ondemand_close", 0x1 }, + { "cachefiles_ondemand_read", 0x1 }, + { "cachefiles_ondemand_cread", 0x1 }, + { "cachefiles_ondemand_fd_write", 0x1 }, + { "cachefiles_ondemand_fd_release", 0x1 }, + /* ext4, from ext4__mballoc event class */ + { "ext4_mballoc_discard", 0x10 }, + { "ext4_mballoc_free", 0x10 }, + /* fib */ + { "fib_table_lookup", 0x100 }, + /* filelock */ + /* ... from filelock_lock event class */ + { "posix_lock_inode", 0x10 }, + { "fcntl_setlk", 0x10 }, + { "locks_remove_posix", 0x10 }, + { "flock_lock_inode", 0x10 }, + /* ... from filelock_lease event class */ + { "break_lease_noblock", 0x10 }, + { "break_lease_block", 0x10 }, + { "break_lease_unblock", 0x10 }, + { "generic_delete_lease", 0x10 }, + { "time_out_leases", 0x10 }, + /* host1x */ + { "host1x_cdma_push_gather", 0x10000 }, + /* huge_memory */ + { "mm_khugepaged_scan_pmd", 0x10 }, + { "mm_collapse_huge_page_isolate", 0x1 }, + { "mm_khugepaged_scan_file", 0x10 }, + { "mm_khugepaged_collapse_file", 0x10 }, + /* kmem */ + { "mm_page_alloc", 0x1 }, + { "mm_page_pcpu_drain", 0x1 }, + /* .. from mm_page event class */ + { "mm_page_alloc_zone_locked", 0x1 }, + /* netfs */ + { "netfs_failure", 0x10 }, + /* power */ + { "device_pm_callback_start", 0x10 }, + /* qdisc */ + { "qdisc_dequeue", 0x1000 }, + /* rxrpc */ + { "rxrpc_recvdata", 0x1 }, + { "rxrpc_resend", 0x10 }, + { "rxrpc_tq", 0x10 }, + { "rxrpc_client", 0x1 }, + /* skb */ + {"kfree_skb", 0x1000}, + /* sunrpc */ + { "xs_stream_read_data", 0x1 }, + /* ... from xprt_cong_event event class */ + { "xprt_reserve_cong", 0x10 }, + { "xprt_release_cong", 0x10 }, + { "xprt_get_cong", 0x10 }, + { "xprt_put_cong", 0x10 }, + /* tcp */ + { "tcp_send_reset", 0x11 }, + { "tcp_sendmsg_locked", 0x100 }, + /* tegra_apb_dma */ + { "tegra_dma_tx_status", 0x100 }, + /* timer_migration */ + { "tmigr_update_events", 0x1 }, + /* writeback, from writeback_folio_template event class */ + { "writeback_dirty_folio", 0x10 }, + { "folio_wait_writeback", 0x10 }, + /* rdma */ + { "mr_integ_alloc", 0x2000 }, + /* bpf_testmod */ + { "bpf_testmod_test_read", 0x0 }, + /* amdgpu */ + { "amdgpu_vm_bo_map", 0x1 }, + { "amdgpu_vm_bo_unmap", 0x1 }, + /* netfs */ + { "netfs_folioq", 0x1 }, + /* xfs from xfs_defer_pending_class */ + { "xfs_defer_create_intent", 0x1 }, + { "xfs_defer_cancel_list", 0x1 }, + { "xfs_defer_pending_finish", 0x1 }, + { "xfs_defer_pending_abort", 0x1 }, + { "xfs_defer_relog_intent", 0x1 }, + { "xfs_defer_isolate_paused", 0x1 }, + { "xfs_defer_item_pause", 0x1 }, + { "xfs_defer_item_unpause", 0x1 }, + /* xfs from xfs_defer_pending_item_class */ + { "xfs_defer_add_item", 0x1 }, + { "xfs_defer_cancel_item", 0x1 }, + { "xfs_defer_finish_item", 0x1 }, + /* xfs from xfs_icwalk_class */ + { "xfs_ioc_free_eofblocks", 0x10 }, + { "xfs_blockgc_free_space", 0x10 }, + /* xfs from xfs_btree_cur_class */ + { "xfs_btree_updkeys", 0x100 }, + { "xfs_btree_overlapped_query_range", 0x100 }, + /* xfs from xfs_imap_class*/ + { "xfs_map_blocks_found", 0x10000 }, + { "xfs_map_blocks_alloc", 0x10000 }, + { "xfs_iomap_alloc", 0x1000 }, + { "xfs_iomap_found", 0x1000 }, + /* xfs from xfs_fs_class */ + { "xfs_inodegc_flush", 0x1 }, + { "xfs_inodegc_push", 0x1 }, + { "xfs_inodegc_start", 0x1 }, + { "xfs_inodegc_stop", 0x1 }, + { "xfs_inodegc_queue", 0x1 }, + { "xfs_inodegc_throttle", 0x1 }, + { "xfs_fs_sync_fs", 0x1 }, + { "xfs_blockgc_start", 0x1 }, + { "xfs_blockgc_stop", 0x1 }, + { "xfs_blockgc_worker", 0x1 }, + { "xfs_blockgc_flush_all", 0x1 }, + /* xfs_scrub */ + { "xchk_nlinks_live_update", 0x10 }, + /* xfs_scrub from xchk_metapath_class */ + { "xchk_metapath_lookup", 0x100 }, + /* nfsd */ + { "nfsd_dirent", 0x1 }, + { "nfsd_file_acquire", 0x1001 }, + { "nfsd_file_insert_err", 0x1 }, + { "nfsd_file_cons_err", 0x1 }, + /* nfs4 */ + { "nfs4_setup_sequence", 0x1 }, + { "pnfs_update_layout", 0x10000 }, + { "nfs4_inode_callback_event", 0x200 }, + { "nfs4_inode_stateid_callback_event", 0x200 }, + /* nfs from pnfs_layout_event */ + { "pnfs_mds_fallback_pg_init_read", 0x10000 }, + { "pnfs_mds_fallback_pg_init_write", 0x10000 }, + { "pnfs_mds_fallback_pg_get_mirror_count", 0x10000 }, + { "pnfs_mds_fallback_read_done", 0x10000 }, + { "pnfs_mds_fallback_write_done", 0x10000 }, + { "pnfs_mds_fallback_read_pagelist", 0x10000 }, + { "pnfs_mds_fallback_write_pagelist", 0x10000 }, + /* coda */ + { "coda_dec_pic_run", 0x10 }, + { "coda_dec_pic_done", 0x10 }, + /* cfg80211 */ + { "cfg80211_scan_done", 0x11 }, + { "rdev_set_coalesce", 0x10 }, + { "cfg80211_report_wowlan_wakeup", 0x100 }, + { "cfg80211_inform_bss_frame", 0x100 }, + { "cfg80211_michael_mic_failure", 0x10000 }, + /* cfg80211 from wiphy_work_event */ + { "wiphy_work_queue", 0x10 }, + { "wiphy_work_run", 0x10 }, + { "wiphy_work_cancel", 0x10 }, + { "wiphy_work_flush", 0x10 }, + /* hugetlbfs */ + { "hugetlbfs_alloc_inode", 0x10 }, + /* spufs */ + { "spufs_context", 0x10 }, + /* kvm_hv */ + { "kvm_page_fault_enter", 0x100 }, + /* dpu */ + { "dpu_crtc_setup_mixer", 0x100 }, + /* binder */ + { "binder_transaction", 0x100 }, + /* bcachefs */ + { "btree_path_free", 0x100 }, + /* hfi1_tx */ + { "hfi1_sdma_progress", 0x1000 }, + /* iptfs */ + { "iptfs_ingress_postq_event", 0x1000 }, + /* neigh */ + { "neigh_update", 0x10 }, + /* snd_firewire_lib */ + { "amdtp_packet", 0x100 }, +}; + +bool btf_ctx_access(int off, int size, enum bpf_access_type type, + const struct bpf_prog *prog, + struct bpf_insn_access_aux *info) +{ + const struct btf_type *t = prog->aux->attach_func_proto; + struct bpf_prog *tgt_prog = prog->aux->dst_prog; + struct btf *btf = bpf_prog_get_target_btf(prog); + const char *tname = prog->aux->attach_func_name; + struct bpf_verifier_log *log = info->log; + const struct btf_param *args; + bool ptr_err_raw_tp = false; + const char *tag_value; + u32 nr_args, arg; + int i, ret; + + if (off % 8) { + bpf_log(log, "func '%s' offset %d is not multiple of 8\n", + tname, off); + return false; + } + arg = btf_ctx_arg_idx(btf, t, off); + args = (const struct btf_param *)(t + 1); + /* if (t == NULL) Fall back to default BPF prog with + * MAX_BPF_FUNC_REG_ARGS u64 arguments. + */ + nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; + if (prog->aux->attach_btf_trace) { + /* skip first 'void *__data' argument in btf_trace_##name typedef */ + args++; + nr_args--; + } + + if (arg > nr_args) { + bpf_log(log, "func '%s' doesn't have %d-th argument\n", + tname, arg + 1); + return false; + } + + if (arg == nr_args) { + switch (prog->expected_attach_type) { + case BPF_LSM_MAC: + /* mark we are accessing the return value */ + info->is_retval = true; + fallthrough; + case BPF_LSM_CGROUP: + case BPF_TRACE_FEXIT: + /* When LSM programs are attached to void LSM hooks + * they use FEXIT trampolines and when attached to + * int LSM hooks, they use MODIFY_RETURN trampolines. + * + * While the LSM programs are BPF_MODIFY_RETURN-like + * the check: + * + * if (ret_type != 'int') + * return -EINVAL; + * + * is _not_ done here. This is still safe as LSM hooks + * have only void and int return types. + */ + if (!t) + return true; + t = btf_type_by_id(btf, t->type); + break; + case BPF_MODIFY_RETURN: + /* For now the BPF_MODIFY_RETURN can only be attached to + * functions that return an int. + */ + if (!t) + return false; + + t = btf_type_skip_modifiers(btf, t->type, NULL); + if (!btf_type_is_small_int(t)) { + bpf_log(log, + "ret type %s not allowed for fmod_ret\n", + btf_type_str(t)); + return false; + } + break; + default: + bpf_log(log, "func '%s' doesn't have %d-th argument\n", + tname, arg + 1); + return false; + } + } else { + if (!t) + /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ + return true; + t = btf_type_by_id(btf, args[arg].type); + } + + /* skip modifiers */ + while (btf_type_is_modifier(t)) + t = btf_type_by_id(btf, t->type); + if (btf_type_is_small_int(t) || btf_is_any_enum(t) || btf_type_is_struct(t)) + /* accessing a scalar */ + return true; + if (!btf_type_is_ptr(t)) { + bpf_log(log, + "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", + tname, arg, + __btf_name_by_offset(btf, t->name_off), + btf_type_str(t)); + return false; + } + + if (size != sizeof(u64)) { + bpf_log(log, "func '%s' size %d must be 8\n", + tname, size); + return false; + } + + /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ + for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { + const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; + u32 type, flag; + + type = base_type(ctx_arg_info->reg_type); + flag = type_flag(ctx_arg_info->reg_type); + if (ctx_arg_info->offset == off && type == PTR_TO_BUF && + (flag & PTR_MAYBE_NULL)) { + info->reg_type = ctx_arg_info->reg_type; + return true; + } + } + + /* + * If it's a pointer to void, it's the same as scalar from the verifier + * safety POV. Either way, no futher pointer walking is allowed. + */ + if (is_void_or_int_ptr(btf, t)) + return true; + + /* this is a pointer to another type */ + for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { + const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; + + if (ctx_arg_info->offset == off) { + if (!ctx_arg_info->btf_id) { + bpf_log(log,"invalid btf_id for context argument offset %u\n", off); + return false; + } + + info->reg_type = ctx_arg_info->reg_type; + info->btf = ctx_arg_info->btf ? : btf_vmlinux; + info->btf_id = ctx_arg_info->btf_id; + info->ref_obj_id = ctx_arg_info->ref_obj_id; + return true; + } + } + + info->reg_type = PTR_TO_BTF_ID; + if (prog_args_trusted(prog)) + info->reg_type |= PTR_TRUSTED; + + if (btf_param_match_suffix(btf, &args[arg], "__nullable")) + info->reg_type |= PTR_MAYBE_NULL; + + if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { + struct btf *btf = prog->aux->attach_btf; + const struct btf_type *t; + const char *tname; + + /* BTF lookups cannot fail, return false on error */ + t = btf_type_by_id(btf, prog->aux->attach_btf_id); + if (!t) + return false; + tname = btf_name_by_offset(btf, t->name_off); + if (!tname) + return false; + /* Checked by bpf_check_attach_target */ + tname += sizeof("btf_trace_") - 1; + for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) { + /* Is this a func with potential NULL args? */ + if (strcmp(tname, raw_tp_null_args[i].func)) + continue; + if (raw_tp_null_args[i].mask & (0x1ULL << (arg * 4))) + info->reg_type |= PTR_MAYBE_NULL; + /* Is the current arg IS_ERR? */ + if (raw_tp_null_args[i].mask & (0x2ULL << (arg * 4))) + ptr_err_raw_tp = true; + break; + } + /* If we don't know NULL-ness specification and the tracepoint + * is coming from a loadable module, be conservative and mark + * argument as PTR_MAYBE_NULL. + */ + if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf)) + info->reg_type |= PTR_MAYBE_NULL; + } + + if (tgt_prog) { + enum bpf_prog_type tgt_type; + + if (tgt_prog->type == BPF_PROG_TYPE_EXT) + tgt_type = tgt_prog->aux->saved_dst_prog_type; + else + tgt_type = tgt_prog->type; + + ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); + if (ret > 0) { + info->btf = btf_vmlinux; + info->btf_id = ret; + return true; + } else { + return false; + } + } + + info->btf = btf; + info->btf_id = t->type; + t = btf_type_by_id(btf, t->type); + + if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) { + tag_value = __btf_name_by_offset(btf, t->name_off); + if (strcmp(tag_value, "user") == 0) + info->reg_type |= MEM_USER; + if (strcmp(tag_value, "percpu") == 0) + info->reg_type |= MEM_PERCPU; + } + + /* skip modifiers */ + while (btf_type_is_modifier(t)) { + info->btf_id = t->type; + t = btf_type_by_id(btf, t->type); + } + if (!btf_type_is_struct(t)) { + bpf_log(log, + "func '%s' arg%d type %s is not a struct\n", + tname, arg, btf_type_str(t)); + return false; + } + bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", + tname, arg, info->btf_id, btf_type_str(t), + __btf_name_by_offset(btf, t->name_off)); + + /* Perform all checks on the validity of type for this argument, but if + * we know it can be IS_ERR at runtime, scrub pointer type and mark as + * scalar. + */ + if (ptr_err_raw_tp) { + bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg); + info->reg_type = SCALAR_VALUE; + } + return true; +} +EXPORT_SYMBOL_GPL(btf_ctx_access); + +enum bpf_struct_walk_result { + /* < 0 error */ + WALK_SCALAR = 0, + WALK_PTR, + WALK_PTR_UNTRUSTED, + WALK_STRUCT, +}; + +static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, + const struct btf_type *t, int off, int size, + u32 *next_btf_id, enum bpf_type_flag *flag, + const char **field_name) +{ + u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; + const struct btf_type *mtype, *elem_type = NULL; + const struct btf_member *member; + const char *tname, *mname, *tag_value; + u32 vlen, elem_id, mid; + +again: + if (btf_type_is_modifier(t)) + t = btf_type_skip_modifiers(btf, t->type, NULL); + tname = __btf_name_by_offset(btf, t->name_off); + if (!btf_type_is_struct(t)) { + bpf_log(log, "Type '%s' is not a struct\n", tname); + return -EINVAL; + } + + vlen = btf_type_vlen(t); + if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) + /* + * walking unions yields untrusted pointers + * with exception of __bpf_md_ptr and other + * unions with a single member + */ + *flag |= PTR_UNTRUSTED; + + if (off + size > t->size) { + /* If the last element is a variable size array, we may + * need to relax the rule. + */ + struct btf_array *array_elem; + + if (vlen == 0) + goto error; + + member = btf_type_member(t) + vlen - 1; + mtype = btf_type_skip_modifiers(btf, member->type, + NULL); + if (!btf_type_is_array(mtype)) + goto error; + + array_elem = (struct btf_array *)(mtype + 1); + if (array_elem->nelems != 0) + goto error; + + moff = __btf_member_bit_offset(t, member) / 8; + if (off < moff) + goto error; + + /* allow structure and integer */ + t = btf_type_skip_modifiers(btf, array_elem->type, + NULL); + + if (btf_type_is_int(t)) + return WALK_SCALAR; + + if (!btf_type_is_struct(t)) + goto error; + + off = (off - moff) % t->size; + goto again; + +error: + bpf_log(log, "access beyond struct %s at off %u size %u\n", + tname, off, size); + return -EACCES; + } + + for_each_member(i, t, member) { + /* offset of the field in bytes */ + moff = __btf_member_bit_offset(t, member) / 8; + if (off + size <= moff) + /* won't find anything, field is already too far */ + break; + + if (__btf_member_bitfield_size(t, member)) { + u32 end_bit = __btf_member_bit_offset(t, member) + + __btf_member_bitfield_size(t, member); + + /* off <= moff instead of off == moff because clang + * does not generate a BTF member for anonymous + * bitfield like the ":16" here: + * struct { + * int :16; + * int x:8; + * }; + */ + if (off <= moff && + BITS_ROUNDUP_BYTES(end_bit) <= off + size) + return WALK_SCALAR; + + /* off may be accessing a following member + * + * or + * + * Doing partial access at either end of this + * bitfield. Continue on this case also to + * treat it as not accessing this bitfield + * and eventually error out as field not + * found to keep it simple. + * It could be relaxed if there was a legit + * partial access case later. + */ + continue; + } + + /* In case of "off" is pointing to holes of a struct */ + if (off < moff) + break; + + /* type of the field */ + mid = member->type; + mtype = btf_type_by_id(btf, member->type); + mname = __btf_name_by_offset(btf, member->name_off); + + mtype = __btf_resolve_size(btf, mtype, &msize, + &elem_type, &elem_id, &total_nelems, + &mid); + if (IS_ERR(mtype)) { + bpf_log(log, "field %s doesn't have size\n", mname); + return -EFAULT; + } + + mtrue_end = moff + msize; + if (off >= mtrue_end) + /* no overlap with member, keep iterating */ + continue; + + if (btf_type_is_array(mtype)) { + u32 elem_idx; + + /* __btf_resolve_size() above helps to + * linearize a multi-dimensional array. + * + * The logic here is treating an array + * in a struct as the following way: + * + * struct outer { + * struct inner array[2][2]; + * }; + * + * looks like: + * + * struct outer { + * struct inner array_elem0; + * struct inner array_elem1; + * struct inner array_elem2; + * struct inner array_elem3; + * }; + * + * When accessing outer->array[1][0], it moves + * moff to "array_elem2", set mtype to + * "struct inner", and msize also becomes + * sizeof(struct inner). Then most of the + * remaining logic will fall through without + * caring the current member is an array or + * not. + * + * Unlike mtype/msize/moff, mtrue_end does not + * change. The naming difference ("_true") tells + * that it is not always corresponding to + * the current mtype/msize/moff. + * It is the true end of the current + * member (i.e. array in this case). That + * will allow an int array to be accessed like + * a scratch space, + * i.e. allow access beyond the size of + * the array's element as long as it is + * within the mtrue_end boundary. + */ + + /* skip empty array */ + if (moff == mtrue_end) + continue; + + msize /= total_nelems; + elem_idx = (off - moff) / msize; + moff += elem_idx * msize; + mtype = elem_type; + mid = elem_id; + } + + /* the 'off' we're looking for is either equal to start + * of this field or inside of this struct + */ + if (btf_type_is_struct(mtype)) { + /* our field must be inside that union or struct */ + t = mtype; + + /* return if the offset matches the member offset */ + if (off == moff) { + *next_btf_id = mid; + return WALK_STRUCT; + } + + /* adjust offset we're looking for */ + off -= moff; + goto again; + } + + if (btf_type_is_ptr(mtype)) { + const struct btf_type *stype, *t; + enum bpf_type_flag tmp_flag = 0; + u32 id; + + if (msize != size || off != moff) { + bpf_log(log, + "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", + mname, moff, tname, off, size); + return -EACCES; + } + + /* check type tag */ + t = btf_type_by_id(btf, mtype->type); + if (btf_type_is_type_tag(t) && !btf_type_kflag(t)) { + tag_value = __btf_name_by_offset(btf, t->name_off); + /* check __user tag */ + if (strcmp(tag_value, "user") == 0) + tmp_flag = MEM_USER; + /* check __percpu tag */ + if (strcmp(tag_value, "percpu") == 0) + tmp_flag = MEM_PERCPU; + /* check __rcu tag */ + if (strcmp(tag_value, "rcu") == 0) + tmp_flag = MEM_RCU; + } + + stype = btf_type_skip_modifiers(btf, mtype->type, &id); + if (btf_type_is_struct(stype)) { + *next_btf_id = id; + *flag |= tmp_flag; + if (field_name) + *field_name = mname; + return WALK_PTR; + } + + return WALK_PTR_UNTRUSTED; + } + + /* Allow more flexible access within an int as long as + * it is within mtrue_end. + * Since mtrue_end could be the end of an array, + * that also allows using an array of int as a scratch + * space. e.g. skb->cb[]. + */ + if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { + bpf_log(log, + "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", + mname, mtrue_end, tname, off, size); + return -EACCES; + } + + return WALK_SCALAR; + } + bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); + return -EINVAL; +} + +int btf_struct_access(struct bpf_verifier_log *log, + const struct bpf_reg_state *reg, + int off, int size, enum bpf_access_type atype __maybe_unused, + u32 *next_btf_id, enum bpf_type_flag *flag, + const char **field_name) +{ + const struct btf *btf = reg->btf; + enum bpf_type_flag tmp_flag = 0; + const struct btf_type *t; + u32 id = reg->btf_id; + int err; + + while (type_is_alloc(reg->type)) { + struct btf_struct_meta *meta; + struct btf_record *rec; + int i; + + meta = btf_find_struct_meta(btf, id); + if (!meta) + break; + rec = meta->record; + for (i = 0; i < rec->cnt; i++) { + struct btf_field *field = &rec->fields[i]; + u32 offset = field->offset; + if (off < offset + field->size && offset < off + size) { + bpf_log(log, + "direct access to %s is disallowed\n", + btf_field_type_name(field->type)); + return -EACCES; + } + } + break; + } + + t = btf_type_by_id(btf, id); + do { + err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); + + switch (err) { + case WALK_PTR: + /* For local types, the destination register cannot + * become a pointer again. + */ + if (type_is_alloc(reg->type)) + return SCALAR_VALUE; + /* If we found the pointer or scalar on t+off, + * we're done. + */ + *next_btf_id = id; + *flag = tmp_flag; + return PTR_TO_BTF_ID; + case WALK_PTR_UNTRUSTED: + *flag = MEM_RDONLY | PTR_UNTRUSTED; + return PTR_TO_MEM; + case WALK_SCALAR: + return SCALAR_VALUE; + case WALK_STRUCT: + /* We found nested struct, so continue the search + * by diving in it. At this point the offset is + * aligned with the new type, so set it to 0. + */ + t = btf_type_by_id(btf, id); + off = 0; + break; + default: + /* It's either error or unknown return value.. + * scream and leave. + */ + if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) + return -EINVAL; + return err; + } + } while (t); + + return -EINVAL; +} + +/* Check that two BTF types, each specified as an BTF object + id, are exactly + * the same. Trivial ID check is not enough due to module BTFs, because we can + * end up with two different module BTFs, but IDs point to the common type in + * vmlinux BTF. + */ +bool btf_types_are_same(const struct btf *btf1, u32 id1, + const struct btf *btf2, u32 id2) +{ + if (id1 != id2) + return false; + if (btf1 == btf2) + return true; + return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); +} + +bool btf_struct_ids_match(struct bpf_verifier_log *log, + const struct btf *btf, u32 id, int off, + const struct btf *need_btf, u32 need_type_id, + bool strict) +{ + const struct btf_type *type; + enum bpf_type_flag flag = 0; + int err; + + /* Are we already done? */ + if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) + return true; + /* In case of strict type match, we do not walk struct, the top level + * type match must succeed. When strict is true, off should have already + * been 0. + */ + if (strict) + return false; +again: + type = btf_type_by_id(btf, id); + if (!type) + return false; + err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); + if (err != WALK_STRUCT) + return false; + + /* We found nested struct object. If it matches + * the requested ID, we're done. Otherwise let's + * continue the search with offset 0 in the new + * type. + */ + if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { + off = 0; + goto again; + } + + return true; +} + +static int __get_type_size(struct btf *btf, u32 btf_id, + const struct btf_type **ret_type) +{ + const struct btf_type *t; + + *ret_type = btf_type_by_id(btf, 0); + if (!btf_id) + /* void */ + return 0; + t = btf_type_by_id(btf, btf_id); + while (t && btf_type_is_modifier(t)) + t = btf_type_by_id(btf, t->type); + if (!t) + return -EINVAL; + *ret_type = t; + if (btf_type_is_ptr(t)) + /* kernel size of pointer. Not BPF's size of pointer*/ + return sizeof(void *); + if (btf_type_is_int(t) || btf_is_any_enum(t) || btf_type_is_struct(t)) + return t->size; + return -EINVAL; +} + +static u8 __get_type_fmodel_flags(const struct btf_type *t) +{ + u8 flags = 0; + + if (btf_type_is_struct(t)) + flags |= BTF_FMODEL_STRUCT_ARG; + if (btf_type_is_signed_int(t)) + flags |= BTF_FMODEL_SIGNED_ARG; + + return flags; +} + +int btf_distill_func_proto(struct bpf_verifier_log *log, + struct btf *btf, + const struct btf_type *func, + const char *tname, + struct btf_func_model *m) +{ + const struct btf_param *args; + const struct btf_type *t; + u32 i, nargs; + int ret; + + if (!func) { + /* BTF function prototype doesn't match the verifier types. + * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. + */ + for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { + m->arg_size[i] = 8; + m->arg_flags[i] = 0; + } + m->ret_size = 8; + m->ret_flags = 0; + m->nr_args = MAX_BPF_FUNC_REG_ARGS; + return 0; + } + args = (const struct btf_param *)(func + 1); + nargs = btf_type_vlen(func); + if (nargs > MAX_BPF_FUNC_ARGS) { + bpf_log(log, + "The function %s has %d arguments. Too many.\n", + tname, nargs); + return -EINVAL; + } + ret = __get_type_size(btf, func->type, &t); + if (ret < 0 || btf_type_is_struct(t)) { + bpf_log(log, + "The function %s return type %s is unsupported.\n", + tname, btf_type_str(t)); + return -EINVAL; + } + m->ret_size = ret; + m->ret_flags = __get_type_fmodel_flags(t); + + for (i = 0; i < nargs; i++) { + if (i == nargs - 1 && args[i].type == 0) { + bpf_log(log, + "The function %s with variable args is unsupported.\n", + tname); + return -EINVAL; + } + ret = __get_type_size(btf, args[i].type, &t); + + /* No support of struct argument size greater than 16 bytes */ + if (ret < 0 || ret > 16) { + bpf_log(log, + "The function %s arg%d type %s is unsupported.\n", + tname, i, btf_type_str(t)); + return -EINVAL; + } + if (ret == 0) { + bpf_log(log, + "The function %s has malformed void argument.\n", + tname); + return -EINVAL; + } + m->arg_size[i] = ret; + m->arg_flags[i] = __get_type_fmodel_flags(t); + } + m->nr_args = nargs; + return 0; +} + +/* Compare BTFs of two functions assuming only scalars and pointers to context. + * t1 points to BTF_KIND_FUNC in btf1 + * t2 points to BTF_KIND_FUNC in btf2 + * Returns: + * EINVAL - function prototype mismatch + * EFAULT - verifier bug + * 0 - 99% match. The last 1% is validated by the verifier. + */ +static int btf_check_func_type_match(struct bpf_verifier_log *log, + struct btf *btf1, const struct btf_type *t1, + struct btf *btf2, const struct btf_type *t2) +{ + const struct btf_param *args1, *args2; + const char *fn1, *fn2, *s1, *s2; + u32 nargs1, nargs2, i; + + fn1 = btf_name_by_offset(btf1, t1->name_off); + fn2 = btf_name_by_offset(btf2, t2->name_off); + + if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { + bpf_log(log, "%s() is not a global function\n", fn1); + return -EINVAL; + } + if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { + bpf_log(log, "%s() is not a global function\n", fn2); + return -EINVAL; + } + + t1 = btf_type_by_id(btf1, t1->type); + if (!t1 || !btf_type_is_func_proto(t1)) + return -EFAULT; + t2 = btf_type_by_id(btf2, t2->type); + if (!t2 || !btf_type_is_func_proto(t2)) + return -EFAULT; + + args1 = (const struct btf_param *)(t1 + 1); + nargs1 = btf_type_vlen(t1); + args2 = (const struct btf_param *)(t2 + 1); + nargs2 = btf_type_vlen(t2); + + if (nargs1 != nargs2) { + bpf_log(log, "%s() has %d args while %s() has %d args\n", + fn1, nargs1, fn2, nargs2); + return -EINVAL; + } + + t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); + t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); + if (t1->info != t2->info) { + bpf_log(log, + "Return type %s of %s() doesn't match type %s of %s()\n", + btf_type_str(t1), fn1, + btf_type_str(t2), fn2); + return -EINVAL; + } + + for (i = 0; i < nargs1; i++) { + t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); + t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); + + if (t1->info != t2->info) { + bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", + i, fn1, btf_type_str(t1), + fn2, btf_type_str(t2)); + return -EINVAL; + } + if (btf_type_has_size(t1) && t1->size != t2->size) { + bpf_log(log, + "arg%d in %s() has size %d while %s() has %d\n", + i, fn1, t1->size, + fn2, t2->size); + return -EINVAL; + } + + /* global functions are validated with scalars and pointers + * to context only. And only global functions can be replaced. + * Hence type check only those types. + */ + if (btf_type_is_int(t1) || btf_is_any_enum(t1)) + continue; + if (!btf_type_is_ptr(t1)) { + bpf_log(log, + "arg%d in %s() has unrecognized type\n", + i, fn1); + return -EINVAL; + } + t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); + t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); + if (!btf_type_is_struct(t1)) { + bpf_log(log, + "arg%d in %s() is not a pointer to context\n", + i, fn1); + return -EINVAL; + } + if (!btf_type_is_struct(t2)) { + bpf_log(log, + "arg%d in %s() is not a pointer to context\n", + i, fn2); + return -EINVAL; + } + /* This is an optional check to make program writing easier. + * Compare names of structs and report an error to the user. + * btf_prepare_func_args() already checked that t2 struct + * is a context type. btf_prepare_func_args() will check + * later that t1 struct is a context type as well. + */ + s1 = btf_name_by_offset(btf1, t1->name_off); + s2 = btf_name_by_offset(btf2, t2->name_off); + if (strcmp(s1, s2)) { + bpf_log(log, + "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", + i, fn1, s1, fn2, s2); + return -EINVAL; + } + } + return 0; +} + +/* Compare BTFs of given program with BTF of target program */ +int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, + struct btf *btf2, const struct btf_type *t2) +{ + struct btf *btf1 = prog->aux->btf; + const struct btf_type *t1; + u32 btf_id = 0; + + if (!prog->aux->func_info) { + bpf_log(log, "Program extension requires BTF\n"); + return -EINVAL; + } + + btf_id = prog->aux->func_info[0].type_id; + if (!btf_id) + return -EFAULT; + + t1 = btf_type_by_id(btf1, btf_id); + if (!t1 || !btf_type_is_func(t1)) + return -EFAULT; + + return btf_check_func_type_match(log, btf1, t1, btf2, t2); +} + +static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t) +{ + const char *name; + + t = btf_type_by_id(btf, t->type); /* skip PTR */ + + while (btf_type_is_modifier(t)) + t = btf_type_by_id(btf, t->type); + + /* allow either struct or struct forward declaration */ + if (btf_type_is_struct(t) || + (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) { + name = btf_str_by_offset(btf, t->name_off); + return name && strcmp(name, "bpf_dynptr") == 0; + } + + return false; +} + +struct bpf_cand_cache { + const char *name; + u32 name_len; + u16 kind; + u16 cnt; + struct { + const struct btf *btf; + u32 id; + } cands[]; +}; + +static DEFINE_MUTEX(cand_cache_mutex); + +static struct bpf_cand_cache * +bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id); + +static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx, + const struct btf *btf, const struct btf_type *t) +{ + struct bpf_cand_cache *cc; + struct bpf_core_ctx ctx = { + .btf = btf, + .log = log, + }; + u32 kern_type_id, type_id; + int err = 0; + + /* skip PTR and modifiers */ + type_id = t->type; + t = btf_type_by_id(btf, t->type); + while (btf_type_is_modifier(t)) { + type_id = t->type; + t = btf_type_by_id(btf, t->type); + } + + mutex_lock(&cand_cache_mutex); + cc = bpf_core_find_cands(&ctx, type_id); + if (IS_ERR(cc)) { + err = PTR_ERR(cc); + bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n", + arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), + err); + goto cand_cache_unlock; + } + if (cc->cnt != 1) { + bpf_log(log, "arg#%d reference type('%s %s') %s\n", + arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), + cc->cnt == 0 ? "has no matches" : "is ambiguous"); + err = cc->cnt == 0 ? -ENOENT : -ESRCH; + goto cand_cache_unlock; + } + if (btf_is_module(cc->cands[0].btf)) { + bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n", + arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); + err = -EOPNOTSUPP; + goto cand_cache_unlock; + } + kern_type_id = cc->cands[0].id; + +cand_cache_unlock: + mutex_unlock(&cand_cache_mutex); + if (err) + return err; + + return kern_type_id; +} + +enum btf_arg_tag { + ARG_TAG_CTX = BIT_ULL(0), + ARG_TAG_NONNULL = BIT_ULL(1), + ARG_TAG_TRUSTED = BIT_ULL(2), + ARG_TAG_UNTRUSTED = BIT_ULL(3), + ARG_TAG_NULLABLE = BIT_ULL(4), + ARG_TAG_ARENA = BIT_ULL(5), +}; + +/* Process BTF of a function to produce high-level expectation of function + * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information + * is cached in subprog info for reuse. + * Returns: + * EFAULT - there is a verifier bug. Abort verification. + * EINVAL - cannot convert BTF. + * 0 - Successfully processed BTF and constructed argument expectations. + */ +int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog) +{ + bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL; + struct bpf_subprog_info *sub = subprog_info(env, subprog); + struct bpf_verifier_log *log = &env->log; + struct bpf_prog *prog = env->prog; + enum bpf_prog_type prog_type = prog->type; + struct btf *btf = prog->aux->btf; + const struct btf_param *args; + const struct btf_type *t, *ref_t, *fn_t; + u32 i, nargs, btf_id; + const char *tname; + + if (sub->args_cached) + return 0; + + if (!prog->aux->func_info) { + verifier_bug(env, "func_info undefined"); + return -EFAULT; + } + + btf_id = prog->aux->func_info[subprog].type_id; + if (!btf_id) { + if (!is_global) /* not fatal for static funcs */ + return -EINVAL; + bpf_log(log, "Global functions need valid BTF\n"); + return -EFAULT; + } + + fn_t = btf_type_by_id(btf, btf_id); + if (!fn_t || !btf_type_is_func(fn_t)) { + /* These checks were already done by the verifier while loading + * struct bpf_func_info + */ + bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", + subprog); + return -EFAULT; + } + tname = btf_name_by_offset(btf, fn_t->name_off); + + if (prog->aux->func_info_aux[subprog].unreliable) { + verifier_bug(env, "unreliable BTF for function %s()", tname); + return -EFAULT; + } + if (prog_type == BPF_PROG_TYPE_EXT) + prog_type = prog->aux->dst_prog->type; + + t = btf_type_by_id(btf, fn_t->type); + if (!t || !btf_type_is_func_proto(t)) { + bpf_log(log, "Invalid type of function %s()\n", tname); + return -EFAULT; + } + args = (const struct btf_param *)(t + 1); + nargs = btf_type_vlen(t); + if (nargs > MAX_BPF_FUNC_REG_ARGS) { + if (!is_global) + return -EINVAL; + bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", + tname, nargs, MAX_BPF_FUNC_REG_ARGS); + return -EINVAL; + } + /* check that function returns int, exception cb also requires this */ + t = btf_type_by_id(btf, t->type); + while (btf_type_is_modifier(t)) + t = btf_type_by_id(btf, t->type); + if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { + if (!is_global) + return -EINVAL; + bpf_log(log, + "Global function %s() doesn't return scalar. Only those are supported.\n", + tname); + return -EINVAL; + } + /* Convert BTF function arguments into verifier types. + * Only PTR_TO_CTX and SCALAR are supported atm. + */ + for (i = 0; i < nargs; i++) { + u32 tags = 0; + int id = 0; + + /* 'arg:<tag>' decl_tag takes precedence over derivation of + * register type from BTF type itself + */ + while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) { + const struct btf_type *tag_t = btf_type_by_id(btf, id); + const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4; + + /* disallow arg tags in static subprogs */ + if (!is_global) { + bpf_log(log, "arg#%d type tag is not supported in static functions\n", i); + return -EOPNOTSUPP; + } + + if (strcmp(tag, "ctx") == 0) { + tags |= ARG_TAG_CTX; + } else if (strcmp(tag, "trusted") == 0) { + tags |= ARG_TAG_TRUSTED; + } else if (strcmp(tag, "untrusted") == 0) { + tags |= ARG_TAG_UNTRUSTED; + } else if (strcmp(tag, "nonnull") == 0) { + tags |= ARG_TAG_NONNULL; + } else if (strcmp(tag, "nullable") == 0) { + tags |= ARG_TAG_NULLABLE; + } else if (strcmp(tag, "arena") == 0) { + tags |= ARG_TAG_ARENA; + } else { + bpf_log(log, "arg#%d has unsupported set of tags\n", i); + return -EOPNOTSUPP; + } + } + if (id != -ENOENT) { + bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id); + return id; + } + + t = btf_type_by_id(btf, args[i].type); + while (btf_type_is_modifier(t)) + t = btf_type_by_id(btf, t->type); + if (!btf_type_is_ptr(t)) + goto skip_pointer; + + if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) { + if (tags & ~ARG_TAG_CTX) { + bpf_log(log, "arg#%d has invalid combination of tags\n", i); + return -EINVAL; + } + if ((tags & ARG_TAG_CTX) && + btf_validate_prog_ctx_type(log, btf, t, i, prog_type, + prog->expected_attach_type)) + return -EINVAL; + sub->args[i].arg_type = ARG_PTR_TO_CTX; + continue; + } + if (btf_is_dynptr_ptr(btf, t)) { + if (tags) { + bpf_log(log, "arg#%d has invalid combination of tags\n", i); + return -EINVAL; + } + sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY; + continue; + } + if (tags & ARG_TAG_TRUSTED) { + int kern_type_id; + + if (tags & ARG_TAG_NONNULL) { + bpf_log(log, "arg#%d has invalid combination of tags\n", i); + return -EINVAL; + } + + kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); + if (kern_type_id < 0) + return kern_type_id; + + sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED; + if (tags & ARG_TAG_NULLABLE) + sub->args[i].arg_type |= PTR_MAYBE_NULL; + sub->args[i].btf_id = kern_type_id; + continue; + } + if (tags & ARG_TAG_UNTRUSTED) { + struct btf *vmlinux_btf; + int kern_type_id; + + if (tags & ~ARG_TAG_UNTRUSTED) { + bpf_log(log, "arg#%d untrusted cannot be combined with any other tags\n", i); + return -EINVAL; + } + + ref_t = btf_type_skip_modifiers(btf, t->type, NULL); + if (btf_type_is_void(ref_t) || btf_type_is_primitive(ref_t)) { + sub->args[i].arg_type = ARG_PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED; + sub->args[i].mem_size = 0; + continue; + } + + kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t); + if (kern_type_id < 0) + return kern_type_id; + + vmlinux_btf = bpf_get_btf_vmlinux(); + ref_t = btf_type_by_id(vmlinux_btf, kern_type_id); + if (!btf_type_is_struct(ref_t)) { + tname = __btf_name_by_offset(vmlinux_btf, t->name_off); + bpf_log(log, "arg#%d has type %s '%s', but only struct or primitive types are allowed\n", + i, btf_type_str(ref_t), tname); + return -EINVAL; + } + sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_UNTRUSTED; + sub->args[i].btf_id = kern_type_id; + continue; + } + if (tags & ARG_TAG_ARENA) { + if (tags & ~ARG_TAG_ARENA) { + bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i); + return -EINVAL; + } + sub->args[i].arg_type = ARG_PTR_TO_ARENA; + continue; + } + if (is_global) { /* generic user data pointer */ + u32 mem_size; + + if (tags & ARG_TAG_NULLABLE) { + bpf_log(log, "arg#%d has invalid combination of tags\n", i); + return -EINVAL; + } + + t = btf_type_skip_modifiers(btf, t->type, NULL); + ref_t = btf_resolve_size(btf, t, &mem_size); + if (IS_ERR(ref_t)) { + bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", + i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), + PTR_ERR(ref_t)); + return -EINVAL; + } + + sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL; + if (tags & ARG_TAG_NONNULL) + sub->args[i].arg_type &= ~PTR_MAYBE_NULL; + sub->args[i].mem_size = mem_size; + continue; + } + +skip_pointer: + if (tags) { + bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i); + return -EINVAL; + } + if (btf_type_is_int(t) || btf_is_any_enum(t)) { + sub->args[i].arg_type = ARG_ANYTHING; + continue; + } + if (!is_global) + return -EINVAL; + bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", + i, btf_type_str(t), tname); + return -EINVAL; + } + + sub->arg_cnt = nargs; + sub->args_cached = true; + + return 0; +} + +static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, + struct btf_show *show) +{ + const struct btf_type *t = btf_type_by_id(btf, type_id); + + show->btf = btf; + memset(&show->state, 0, sizeof(show->state)); + memset(&show->obj, 0, sizeof(show->obj)); + + btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); +} + +__printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, + va_list args) +{ + seq_vprintf((struct seq_file *)show->target, fmt, args); +} + +int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, + void *obj, struct seq_file *m, u64 flags) +{ + struct btf_show sseq; + + sseq.target = m; + sseq.showfn = btf_seq_show; + sseq.flags = flags; + + btf_type_show(btf, type_id, obj, &sseq); + + return sseq.state.status; +} + +void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, + struct seq_file *m) +{ + (void) btf_type_seq_show_flags(btf, type_id, obj, m, + BTF_SHOW_NONAME | BTF_SHOW_COMPACT | + BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); +} + +struct btf_show_snprintf { + struct btf_show show; + int len_left; /* space left in string */ + int len; /* length we would have written */ +}; + +__printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, + va_list args) +{ + struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; + int len; + + len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); + + if (len < 0) { + ssnprintf->len_left = 0; + ssnprintf->len = len; + } else if (len >= ssnprintf->len_left) { + /* no space, drive on to get length we would have written */ + ssnprintf->len_left = 0; + ssnprintf->len += len; + } else { + ssnprintf->len_left -= len; + ssnprintf->len += len; + show->target += len; + } +} + +int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, + char *buf, int len, u64 flags) +{ + struct btf_show_snprintf ssnprintf; + + ssnprintf.show.target = buf; + ssnprintf.show.flags = flags; + ssnprintf.show.showfn = btf_snprintf_show; + ssnprintf.len_left = len; + ssnprintf.len = 0; + + btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); + + /* If we encountered an error, return it. */ + if (ssnprintf.show.state.status) + return ssnprintf.show.state.status; + + /* Otherwise return length we would have written */ + return ssnprintf.len; +} + +#ifdef CONFIG_PROC_FS +static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) +{ + const struct btf *btf = filp->private_data; + + seq_printf(m, "btf_id:\t%u\n", btf->id); +} +#endif + +static int btf_release(struct inode *inode, struct file *filp) +{ + btf_put(filp->private_data); + return 0; +} + +const struct file_operations btf_fops = { +#ifdef CONFIG_PROC_FS + .show_fdinfo = bpf_btf_show_fdinfo, +#endif + .release = btf_release, +}; + +static int __btf_new_fd(struct btf *btf) +{ + return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); +} + +int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) +{ + struct btf *btf; + int ret; + + btf = btf_parse(attr, uattr, uattr_size); + if (IS_ERR(btf)) + return PTR_ERR(btf); + + ret = btf_alloc_id(btf); + if (ret) { + btf_free(btf); + return ret; + } + + /* + * The BTF ID is published to the userspace. + * All BTF free must go through call_rcu() from + * now on (i.e. free by calling btf_put()). + */ + + ret = __btf_new_fd(btf); + if (ret < 0) + btf_put(btf); + + return ret; +} + +struct btf *btf_get_by_fd(int fd) +{ + struct btf *btf; + CLASS(fd, f)(fd); + + btf = __btf_get_by_fd(f); + if (!IS_ERR(btf)) + refcount_inc(&btf->refcnt); + + return btf; +} + +int btf_get_info_by_fd(const struct btf *btf, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + struct bpf_btf_info __user *uinfo; + struct bpf_btf_info info; + u32 info_copy, btf_copy; + void __user *ubtf; + char __user *uname; + u32 uinfo_len, uname_len, name_len; + int ret = 0; + + uinfo = u64_to_user_ptr(attr->info.info); + uinfo_len = attr->info.info_len; + + info_copy = min_t(u32, uinfo_len, sizeof(info)); + memset(&info, 0, sizeof(info)); + if (copy_from_user(&info, uinfo, info_copy)) + return -EFAULT; + + info.id = btf->id; + ubtf = u64_to_user_ptr(info.btf); + btf_copy = min_t(u32, btf->data_size, info.btf_size); + if (copy_to_user(ubtf, btf->data, btf_copy)) + return -EFAULT; + info.btf_size = btf->data_size; + + info.kernel_btf = btf->kernel_btf; + + uname = u64_to_user_ptr(info.name); + uname_len = info.name_len; + if (!uname ^ !uname_len) + return -EINVAL; + + name_len = strlen(btf->name); + info.name_len = name_len; + + if (uname) { + if (uname_len >= name_len + 1) { + if (copy_to_user(uname, btf->name, name_len + 1)) + return -EFAULT; + } else { + char zero = '\0'; + + if (copy_to_user(uname, btf->name, uname_len - 1)) + return -EFAULT; + if (put_user(zero, uname + uname_len - 1)) + return -EFAULT; + /* let user-space know about too short buffer */ + ret = -ENOSPC; + } + } + + if (copy_to_user(uinfo, &info, info_copy) || + put_user(info_copy, &uattr->info.info_len)) + return -EFAULT; + + return ret; +} + +int btf_get_fd_by_id(u32 id) +{ + struct btf *btf; + int fd; + + rcu_read_lock(); + btf = idr_find(&btf_idr, id); + if (!btf || !refcount_inc_not_zero(&btf->refcnt)) + btf = ERR_PTR(-ENOENT); + rcu_read_unlock(); + + if (IS_ERR(btf)) + return PTR_ERR(btf); + + fd = __btf_new_fd(btf); + if (fd < 0) + btf_put(btf); + + return fd; +} + +u32 btf_obj_id(const struct btf *btf) +{ + return btf->id; +} + +bool btf_is_kernel(const struct btf *btf) +{ + return btf->kernel_btf; +} + +bool btf_is_module(const struct btf *btf) +{ + return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; +} + +enum { + BTF_MODULE_F_LIVE = (1 << 0), +}; + +#ifdef CONFIG_DEBUG_INFO_BTF_MODULES +struct btf_module { + struct list_head list; + struct module *module; + struct btf *btf; + struct bin_attribute *sysfs_attr; + int flags; +}; + +static LIST_HEAD(btf_modules); +static DEFINE_MUTEX(btf_module_mutex); + +static void purge_cand_cache(struct btf *btf); + +static int btf_module_notify(struct notifier_block *nb, unsigned long op, + void *module) +{ + struct btf_module *btf_mod, *tmp; + struct module *mod = module; + struct btf *btf; + int err = 0; + + if (mod->btf_data_size == 0 || + (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && + op != MODULE_STATE_GOING)) + goto out; + + switch (op) { + case MODULE_STATE_COMING: + btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); + if (!btf_mod) { + err = -ENOMEM; + goto out; + } + btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size, + mod->btf_base_data, mod->btf_base_data_size); + if (IS_ERR(btf)) { + kfree(btf_mod); + if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { + pr_warn("failed to validate module [%s] BTF: %ld\n", + mod->name, PTR_ERR(btf)); + err = PTR_ERR(btf); + } else { + pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); + } + goto out; + } + err = btf_alloc_id(btf); + if (err) { + btf_free(btf); + kfree(btf_mod); + goto out; + } + + purge_cand_cache(NULL); + mutex_lock(&btf_module_mutex); + btf_mod->module = module; + btf_mod->btf = btf; + list_add(&btf_mod->list, &btf_modules); + mutex_unlock(&btf_module_mutex); + + if (IS_ENABLED(CONFIG_SYSFS)) { + struct bin_attribute *attr; + + attr = kzalloc(sizeof(*attr), GFP_KERNEL); + if (!attr) + goto out; + + sysfs_bin_attr_init(attr); + attr->attr.name = btf->name; + attr->attr.mode = 0444; + attr->size = btf->data_size; + attr->private = btf->data; + attr->read = sysfs_bin_attr_simple_read; + + err = sysfs_create_bin_file(btf_kobj, attr); + if (err) { + pr_warn("failed to register module [%s] BTF in sysfs: %d\n", + mod->name, err); + kfree(attr); + err = 0; + goto out; + } + + btf_mod->sysfs_attr = attr; + } + + break; + case MODULE_STATE_LIVE: + mutex_lock(&btf_module_mutex); + list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { + if (btf_mod->module != module) + continue; + + btf_mod->flags |= BTF_MODULE_F_LIVE; + break; + } + mutex_unlock(&btf_module_mutex); + break; + case MODULE_STATE_GOING: + mutex_lock(&btf_module_mutex); + list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { + if (btf_mod->module != module) + continue; + + list_del(&btf_mod->list); + if (btf_mod->sysfs_attr) + sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); + purge_cand_cache(btf_mod->btf); + btf_put(btf_mod->btf); + kfree(btf_mod->sysfs_attr); + kfree(btf_mod); + break; + } + mutex_unlock(&btf_module_mutex); + break; + } +out: + return notifier_from_errno(err); +} + +static struct notifier_block btf_module_nb = { + .notifier_call = btf_module_notify, +}; + +static int __init btf_module_init(void) +{ + register_module_notifier(&btf_module_nb); + return 0; +} + +fs_initcall(btf_module_init); +#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ + +struct module *btf_try_get_module(const struct btf *btf) +{ + struct module *res = NULL; +#ifdef CONFIG_DEBUG_INFO_BTF_MODULES + struct btf_module *btf_mod, *tmp; + + mutex_lock(&btf_module_mutex); + list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { + if (btf_mod->btf != btf) + continue; + + /* We must only consider module whose __init routine has + * finished, hence we must check for BTF_MODULE_F_LIVE flag, + * which is set from the notifier callback for + * MODULE_STATE_LIVE. + */ + if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) + res = btf_mod->module; + + break; + } + mutex_unlock(&btf_module_mutex); +#endif + + return res; +} + +/* Returns struct btf corresponding to the struct module. + * This function can return NULL or ERR_PTR. + */ +static struct btf *btf_get_module_btf(const struct module *module) +{ +#ifdef CONFIG_DEBUG_INFO_BTF_MODULES + struct btf_module *btf_mod, *tmp; +#endif + struct btf *btf = NULL; + + if (!module) { + btf = bpf_get_btf_vmlinux(); + if (!IS_ERR_OR_NULL(btf)) + btf_get(btf); + return btf; + } + +#ifdef CONFIG_DEBUG_INFO_BTF_MODULES + mutex_lock(&btf_module_mutex); + list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { + if (btf_mod->module != module) + continue; + + btf_get(btf_mod->btf); + btf = btf_mod->btf; + break; + } + mutex_unlock(&btf_module_mutex); +#endif + + return btf; +} + +static int check_btf_kconfigs(const struct module *module, const char *feature) +{ + if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { + pr_err("missing vmlinux BTF, cannot register %s\n", feature); + return -ENOENT; + } + if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) + pr_warn("missing module BTF, cannot register %s\n", feature); + return 0; +} + +BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) +{ + struct btf *btf = NULL; + int btf_obj_fd = 0; + long ret; + + if (flags) + return -EINVAL; + + if (name_sz <= 1 || name[name_sz - 1]) + return -EINVAL; + + ret = bpf_find_btf_id(name, kind, &btf); + if (ret > 0 && btf_is_module(btf)) { + btf_obj_fd = __btf_new_fd(btf); + if (btf_obj_fd < 0) { + btf_put(btf); + return btf_obj_fd; + } + return ret | (((u64)btf_obj_fd) << 32); + } + if (ret > 0) + btf_put(btf); + return ret; +} + +const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { + .func = bpf_btf_find_by_name_kind, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, + .arg2_type = ARG_CONST_SIZE, + .arg3_type = ARG_ANYTHING, + .arg4_type = ARG_ANYTHING, +}; + +BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) +#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) +BTF_TRACING_TYPE_xxx +#undef BTF_TRACING_TYPE + +/* Validate well-formedness of iter argument type. + * On success, return positive BTF ID of iter state's STRUCT type. + * On error, negative error is returned. + */ +int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx) +{ + const struct btf_param *arg; + const struct btf_type *t; + const char *name; + int btf_id; + + if (btf_type_vlen(func) <= arg_idx) + return -EINVAL; + + arg = &btf_params(func)[arg_idx]; + t = btf_type_skip_modifiers(btf, arg->type, NULL); + if (!t || !btf_type_is_ptr(t)) + return -EINVAL; + t = btf_type_skip_modifiers(btf, t->type, &btf_id); + if (!t || !__btf_type_is_struct(t)) + return -EINVAL; + + name = btf_name_by_offset(btf, t->name_off); + if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) + return -EINVAL; + + return btf_id; +} + +static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, + const struct btf_type *func, u32 func_flags) +{ + u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); + const char *sfx, *iter_name; + const struct btf_type *t; + char exp_name[128]; + u32 nr_args; + int btf_id; + + /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ + if (!flags || (flags & (flags - 1))) + return -EINVAL; + + /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ + nr_args = btf_type_vlen(func); + if (nr_args < 1) + return -EINVAL; + + btf_id = btf_check_iter_arg(btf, func, 0); + if (btf_id < 0) + return btf_id; + + /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to + * fit nicely in stack slots + */ + t = btf_type_by_id(btf, btf_id); + if (t->size == 0 || (t->size % 8)) + return -EINVAL; + + /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) + * naming pattern + */ + iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1; + if (flags & KF_ITER_NEW) + sfx = "new"; + else if (flags & KF_ITER_NEXT) + sfx = "next"; + else /* (flags & KF_ITER_DESTROY) */ + sfx = "destroy"; + + snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); + if (strcmp(func_name, exp_name)) + return -EINVAL; + + /* only iter constructor should have extra arguments */ + if (!(flags & KF_ITER_NEW) && nr_args != 1) + return -EINVAL; + + if (flags & KF_ITER_NEXT) { + /* bpf_iter_<type>_next() should return pointer */ + t = btf_type_skip_modifiers(btf, func->type, NULL); + if (!t || !btf_type_is_ptr(t)) + return -EINVAL; + } + + if (flags & KF_ITER_DESTROY) { + /* bpf_iter_<type>_destroy() should return void */ + t = btf_type_by_id(btf, func->type); + if (!t || !btf_type_is_void(t)) + return -EINVAL; + } + + return 0; +} + +static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) +{ + const struct btf_type *func; + const char *func_name; + int err; + + /* any kfunc should be FUNC -> FUNC_PROTO */ + func = btf_type_by_id(btf, func_id); + if (!func || !btf_type_is_func(func)) + return -EINVAL; + + /* sanity check kfunc name */ + func_name = btf_name_by_offset(btf, func->name_off); + if (!func_name || !func_name[0]) + return -EINVAL; + + func = btf_type_by_id(btf, func->type); + if (!func || !btf_type_is_func_proto(func)) + return -EINVAL; + + if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { + err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); + if (err) + return err; + } + + return 0; +} + +/* Kernel Function (kfunc) BTF ID set registration API */ + +static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, + const struct btf_kfunc_id_set *kset) +{ + struct btf_kfunc_hook_filter *hook_filter; + struct btf_id_set8 *add_set = kset->set; + bool vmlinux_set = !btf_is_module(btf); + bool add_filter = !!kset->filter; + struct btf_kfunc_set_tab *tab; + struct btf_id_set8 *set; + u32 set_cnt, i; + int ret; + + if (hook >= BTF_KFUNC_HOOK_MAX) { + ret = -EINVAL; + goto end; + } + + if (!add_set->cnt) + return 0; + + tab = btf->kfunc_set_tab; + + if (tab && add_filter) { + u32 i; + + hook_filter = &tab->hook_filters[hook]; + for (i = 0; i < hook_filter->nr_filters; i++) { + if (hook_filter->filters[i] == kset->filter) { + add_filter = false; + break; + } + } + + if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { + ret = -E2BIG; + goto end; + } + } + + if (!tab) { + tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); + if (!tab) + return -ENOMEM; + btf->kfunc_set_tab = tab; + } + + set = tab->sets[hook]; + /* Warn when register_btf_kfunc_id_set is called twice for the same hook + * for module sets. + */ + if (WARN_ON_ONCE(set && !vmlinux_set)) { + ret = -EINVAL; + goto end; + } + + /* In case of vmlinux sets, there may be more than one set being + * registered per hook. To create a unified set, we allocate a new set + * and concatenate all individual sets being registered. While each set + * is individually sorted, they may become unsorted when concatenated, + * hence re-sorting the final set again is required to make binary + * searching the set using btf_id_set8_contains function work. + * + * For module sets, we need to allocate as we may need to relocate + * BTF ids. + */ + set_cnt = set ? set->cnt : 0; + + if (set_cnt > U32_MAX - add_set->cnt) { + ret = -EOVERFLOW; + goto end; + } + + if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { + ret = -E2BIG; + goto end; + } + + /* Grow set */ + set = krealloc(tab->sets[hook], + struct_size(set, pairs, set_cnt + add_set->cnt), + GFP_KERNEL | __GFP_NOWARN); + if (!set) { + ret = -ENOMEM; + goto end; + } + + /* For newly allocated set, initialize set->cnt to 0 */ + if (!tab->sets[hook]) + set->cnt = 0; + tab->sets[hook] = set; + + /* Concatenate the two sets */ + memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); + /* Now that the set is copied, update with relocated BTF ids */ + for (i = set->cnt; i < set->cnt + add_set->cnt; i++) + set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id); + + set->cnt += add_set->cnt; + + sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); + + if (add_filter) { + hook_filter = &tab->hook_filters[hook]; + hook_filter->filters[hook_filter->nr_filters++] = kset->filter; + } + return 0; +end: + btf_free_kfunc_set_tab(btf); + return ret; +} + +static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, + enum btf_kfunc_hook hook, + u32 kfunc_btf_id, + const struct bpf_prog *prog) +{ + struct btf_kfunc_hook_filter *hook_filter; + struct btf_id_set8 *set; + u32 *id, i; + + if (hook >= BTF_KFUNC_HOOK_MAX) + return NULL; + if (!btf->kfunc_set_tab) + return NULL; + hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; + for (i = 0; i < hook_filter->nr_filters; i++) { + if (hook_filter->filters[i](prog, kfunc_btf_id)) + return NULL; + } + set = btf->kfunc_set_tab->sets[hook]; + if (!set) + return NULL; + id = btf_id_set8_contains(set, kfunc_btf_id); + if (!id) + return NULL; + /* The flags for BTF ID are located next to it */ + return id + 1; +} + +static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) +{ + switch (prog_type) { + case BPF_PROG_TYPE_UNSPEC: + return BTF_KFUNC_HOOK_COMMON; + case BPF_PROG_TYPE_XDP: + return BTF_KFUNC_HOOK_XDP; + case BPF_PROG_TYPE_SCHED_CLS: + return BTF_KFUNC_HOOK_TC; + case BPF_PROG_TYPE_STRUCT_OPS: + return BTF_KFUNC_HOOK_STRUCT_OPS; + case BPF_PROG_TYPE_TRACING: + case BPF_PROG_TYPE_TRACEPOINT: + case BPF_PROG_TYPE_PERF_EVENT: + case BPF_PROG_TYPE_LSM: + return BTF_KFUNC_HOOK_TRACING; + case BPF_PROG_TYPE_SYSCALL: + return BTF_KFUNC_HOOK_SYSCALL; + case BPF_PROG_TYPE_CGROUP_SKB: + case BPF_PROG_TYPE_CGROUP_SOCK: + case BPF_PROG_TYPE_CGROUP_DEVICE: + case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: + case BPF_PROG_TYPE_CGROUP_SOCKOPT: + case BPF_PROG_TYPE_CGROUP_SYSCTL: + case BPF_PROG_TYPE_SOCK_OPS: + return BTF_KFUNC_HOOK_CGROUP; + case BPF_PROG_TYPE_SCHED_ACT: + return BTF_KFUNC_HOOK_SCHED_ACT; + case BPF_PROG_TYPE_SK_SKB: + return BTF_KFUNC_HOOK_SK_SKB; + case BPF_PROG_TYPE_SOCKET_FILTER: + return BTF_KFUNC_HOOK_SOCKET_FILTER; + case BPF_PROG_TYPE_LWT_OUT: + case BPF_PROG_TYPE_LWT_IN: + case BPF_PROG_TYPE_LWT_XMIT: + case BPF_PROG_TYPE_LWT_SEG6LOCAL: + return BTF_KFUNC_HOOK_LWT; + case BPF_PROG_TYPE_NETFILTER: + return BTF_KFUNC_HOOK_NETFILTER; + case BPF_PROG_TYPE_KPROBE: + return BTF_KFUNC_HOOK_KPROBE; + default: + return BTF_KFUNC_HOOK_MAX; + } +} + +/* Caution: + * Reference to the module (obtained using btf_try_get_module) corresponding to + * the struct btf *MUST* be held when calling this function from verifier + * context. This is usually true as we stash references in prog's kfunc_btf_tab; + * keeping the reference for the duration of the call provides the necessary + * protection for looking up a well-formed btf->kfunc_set_tab. + */ +u32 *btf_kfunc_id_set_contains(const struct btf *btf, + u32 kfunc_btf_id, + const struct bpf_prog *prog) +{ + enum bpf_prog_type prog_type = resolve_prog_type(prog); + enum btf_kfunc_hook hook; + u32 *kfunc_flags; + + kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); + if (kfunc_flags) + return kfunc_flags; + + hook = bpf_prog_type_to_kfunc_hook(prog_type); + return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); +} + +u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, + const struct bpf_prog *prog) +{ + return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); +} + +static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, + const struct btf_kfunc_id_set *kset) +{ + struct btf *btf; + int ret, i; + + btf = btf_get_module_btf(kset->owner); + if (!btf) + return check_btf_kconfigs(kset->owner, "kfunc"); + if (IS_ERR(btf)) + return PTR_ERR(btf); + + for (i = 0; i < kset->set->cnt; i++) { + ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id), + kset->set->pairs[i].flags); + if (ret) + goto err_out; + } + + ret = btf_populate_kfunc_set(btf, hook, kset); + +err_out: + btf_put(btf); + return ret; +} + +/* This function must be invoked only from initcalls/module init functions */ +int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, + const struct btf_kfunc_id_set *kset) +{ + enum btf_kfunc_hook hook; + + /* All kfuncs need to be tagged as such in BTF. + * WARN() for initcall registrations that do not check errors. + */ + if (!(kset->set->flags & BTF_SET8_KFUNCS)) { + WARN_ON(!kset->owner); + return -EINVAL; + } + + hook = bpf_prog_type_to_kfunc_hook(prog_type); + return __register_btf_kfunc_id_set(hook, kset); +} +EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); + +/* This function must be invoked only from initcalls/module init functions */ +int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) +{ + return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); +} +EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); + +s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) +{ + struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; + struct btf_id_dtor_kfunc *dtor; + + if (!tab) + return -ENOENT; + /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need + * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. + */ + BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); + dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); + if (!dtor) + return -ENOENT; + return dtor->kfunc_btf_id; +} + +static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) +{ + const struct btf_type *dtor_func, *dtor_func_proto, *t; + const struct btf_param *args; + s32 dtor_btf_id; + u32 nr_args, i; + + for (i = 0; i < cnt; i++) { + dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id); + + dtor_func = btf_type_by_id(btf, dtor_btf_id); + if (!dtor_func || !btf_type_is_func(dtor_func)) + return -EINVAL; + + dtor_func_proto = btf_type_by_id(btf, dtor_func->type); + if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) + return -EINVAL; + + /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ + t = btf_type_by_id(btf, dtor_func_proto->type); + if (!t || !btf_type_is_void(t)) + return -EINVAL; + + nr_args = btf_type_vlen(dtor_func_proto); + if (nr_args != 1) + return -EINVAL; + args = btf_params(dtor_func_proto); + t = btf_type_by_id(btf, args[0].type); + /* Allow any pointer type, as width on targets Linux supports + * will be same for all pointer types (i.e. sizeof(void *)) + */ + if (!t || !btf_type_is_ptr(t)) + return -EINVAL; + } + return 0; +} + +/* This function must be invoked only from initcalls/module init functions */ +int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, + struct module *owner) +{ + struct btf_id_dtor_kfunc_tab *tab; + struct btf *btf; + u32 tab_cnt, i; + int ret; + + btf = btf_get_module_btf(owner); + if (!btf) + return check_btf_kconfigs(owner, "dtor kfuncs"); + if (IS_ERR(btf)) + return PTR_ERR(btf); + + if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { + pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); + ret = -E2BIG; + goto end; + } + + /* Ensure that the prototype of dtor kfuncs being registered is sane */ + ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); + if (ret < 0) + goto end; + + tab = btf->dtor_kfunc_tab; + /* Only one call allowed for modules */ + if (WARN_ON_ONCE(tab && btf_is_module(btf))) { + ret = -EINVAL; + goto end; + } + + tab_cnt = tab ? tab->cnt : 0; + if (tab_cnt > U32_MAX - add_cnt) { + ret = -EOVERFLOW; + goto end; + } + if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { + pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); + ret = -E2BIG; + goto end; + } + + tab = krealloc(btf->dtor_kfunc_tab, + struct_size(tab, dtors, tab_cnt + add_cnt), + GFP_KERNEL | __GFP_NOWARN); + if (!tab) { + ret = -ENOMEM; + goto end; + } + + if (!btf->dtor_kfunc_tab) + tab->cnt = 0; + btf->dtor_kfunc_tab = tab; + + memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); + + /* remap BTF ids based on BTF relocation (if any) */ + for (i = tab_cnt; i < tab_cnt + add_cnt; i++) { + tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id); + tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id); + } + + tab->cnt += add_cnt; + + sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); + +end: + if (ret) + btf_free_dtor_kfunc_tab(btf); + btf_put(btf); + return ret; +} +EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); + +#define MAX_TYPES_ARE_COMPAT_DEPTH 2 + +/* Check local and target types for compatibility. This check is used for + * type-based CO-RE relocations and follow slightly different rules than + * field-based relocations. This function assumes that root types were already + * checked for name match. Beyond that initial root-level name check, names + * are completely ignored. Compatibility rules are as follows: + * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but + * kind should match for local and target types (i.e., STRUCT is not + * compatible with UNION); + * - for ENUMs/ENUM64s, the size is ignored; + * - for INT, size and signedness are ignored; + * - for ARRAY, dimensionality is ignored, element types are checked for + * compatibility recursively; + * - CONST/VOLATILE/RESTRICT modifiers are ignored; + * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; + * - FUNC_PROTOs are compatible if they have compatible signature: same + * number of input args and compatible return and argument types. + * These rules are not set in stone and probably will be adjusted as we get + * more experience with using BPF CO-RE relocations. + */ +int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, + const struct btf *targ_btf, __u32 targ_id) +{ + return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, + MAX_TYPES_ARE_COMPAT_DEPTH); +} + +#define MAX_TYPES_MATCH_DEPTH 2 + +int bpf_core_types_match(const struct btf *local_btf, u32 local_id, + const struct btf *targ_btf, u32 targ_id) +{ + return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, + MAX_TYPES_MATCH_DEPTH); +} + +static bool bpf_core_is_flavor_sep(const char *s) +{ + /* check X___Y name pattern, where X and Y are not underscores */ + return s[0] != '_' && /* X */ + s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ + s[4] != '_'; /* Y */ +} + +size_t bpf_core_essential_name_len(const char *name) +{ + size_t n = strlen(name); + int i; + + for (i = n - 5; i >= 0; i--) { + if (bpf_core_is_flavor_sep(name + i)) + return i + 1; + } + return n; +} + +static void bpf_free_cands(struct bpf_cand_cache *cands) +{ + if (!cands->cnt) + /* empty candidate array was allocated on stack */ + return; + kfree(cands); +} + +static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) +{ + kfree(cands->name); + kfree(cands); +} + +#define VMLINUX_CAND_CACHE_SIZE 31 +static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; + +#define MODULE_CAND_CACHE_SIZE 31 +static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; + +static void __print_cand_cache(struct bpf_verifier_log *log, + struct bpf_cand_cache **cache, + int cache_size) +{ + struct bpf_cand_cache *cc; + int i, j; + + for (i = 0; i < cache_size; i++) { + cc = cache[i]; + if (!cc) + continue; + bpf_log(log, "[%d]%s(", i, cc->name); + for (j = 0; j < cc->cnt; j++) { + bpf_log(log, "%d", cc->cands[j].id); + if (j < cc->cnt - 1) + bpf_log(log, " "); + } + bpf_log(log, "), "); + } +} + +static void print_cand_cache(struct bpf_verifier_log *log) +{ + mutex_lock(&cand_cache_mutex); + bpf_log(log, "vmlinux_cand_cache:"); + __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); + bpf_log(log, "\nmodule_cand_cache:"); + __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); + bpf_log(log, "\n"); + mutex_unlock(&cand_cache_mutex); +} + +static u32 hash_cands(struct bpf_cand_cache *cands) +{ + return jhash(cands->name, cands->name_len, 0); +} + +static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, + struct bpf_cand_cache **cache, + int cache_size) +{ + struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; + + if (cc && cc->name_len == cands->name_len && + !strncmp(cc->name, cands->name, cands->name_len)) + return cc; + return NULL; +} + +static size_t sizeof_cands(int cnt) +{ + return offsetof(struct bpf_cand_cache, cands[cnt]); +} + +static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, + struct bpf_cand_cache **cache, + int cache_size) +{ + struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; + + if (*cc) { + bpf_free_cands_from_cache(*cc); + *cc = NULL; + } + new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL_ACCOUNT); + if (!new_cands) { + bpf_free_cands(cands); + return ERR_PTR(-ENOMEM); + } + /* strdup the name, since it will stay in cache. + * the cands->name points to strings in prog's BTF and the prog can be unloaded. + */ + new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL_ACCOUNT); + bpf_free_cands(cands); + if (!new_cands->name) { + kfree(new_cands); + return ERR_PTR(-ENOMEM); + } + *cc = new_cands; + return new_cands; +} + +#ifdef CONFIG_DEBUG_INFO_BTF_MODULES +static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, + int cache_size) +{ + struct bpf_cand_cache *cc; + int i, j; + + for (i = 0; i < cache_size; i++) { + cc = cache[i]; + if (!cc) + continue; + if (!btf) { + /* when new module is loaded purge all of module_cand_cache, + * since new module might have candidates with the name + * that matches cached cands. + */ + bpf_free_cands_from_cache(cc); + cache[i] = NULL; + continue; + } + /* when module is unloaded purge cache entries + * that match module's btf + */ + for (j = 0; j < cc->cnt; j++) + if (cc->cands[j].btf == btf) { + bpf_free_cands_from_cache(cc); + cache[i] = NULL; + break; + } + } + +} + +static void purge_cand_cache(struct btf *btf) +{ + mutex_lock(&cand_cache_mutex); + __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); + mutex_unlock(&cand_cache_mutex); +} +#endif + +static struct bpf_cand_cache * +bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, + int targ_start_id) +{ + struct bpf_cand_cache *new_cands; + const struct btf_type *t; + const char *targ_name; + size_t targ_essent_len; + int n, i; + + n = btf_nr_types(targ_btf); + for (i = targ_start_id; i < n; i++) { + t = btf_type_by_id(targ_btf, i); + if (btf_kind(t) != cands->kind) + continue; + + targ_name = btf_name_by_offset(targ_btf, t->name_off); + if (!targ_name) + continue; + + /* the resched point is before strncmp to make sure that search + * for non-existing name will have a chance to schedule(). + */ + cond_resched(); + + if (strncmp(cands->name, targ_name, cands->name_len) != 0) + continue; + + targ_essent_len = bpf_core_essential_name_len(targ_name); + if (targ_essent_len != cands->name_len) + continue; + + /* most of the time there is only one candidate for a given kind+name pair */ + new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL_ACCOUNT); + if (!new_cands) { + bpf_free_cands(cands); + return ERR_PTR(-ENOMEM); + } + + memcpy(new_cands, cands, sizeof_cands(cands->cnt)); + bpf_free_cands(cands); + cands = new_cands; + cands->cands[cands->cnt].btf = targ_btf; + cands->cands[cands->cnt].id = i; + cands->cnt++; + } + return cands; +} + +static struct bpf_cand_cache * +bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) +{ + struct bpf_cand_cache *cands, *cc, local_cand = {}; + const struct btf *local_btf = ctx->btf; + const struct btf_type *local_type; + const struct btf *main_btf; + size_t local_essent_len; + struct btf *mod_btf; + const char *name; + int id; + + main_btf = bpf_get_btf_vmlinux(); + if (IS_ERR(main_btf)) + return ERR_CAST(main_btf); + if (!main_btf) + return ERR_PTR(-EINVAL); + + local_type = btf_type_by_id(local_btf, local_type_id); + if (!local_type) + return ERR_PTR(-EINVAL); + + name = btf_name_by_offset(local_btf, local_type->name_off); + if (str_is_empty(name)) + return ERR_PTR(-EINVAL); + local_essent_len = bpf_core_essential_name_len(name); + + cands = &local_cand; + cands->name = name; + cands->kind = btf_kind(local_type); + cands->name_len = local_essent_len; + + cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); + /* cands is a pointer to stack here */ + if (cc) { + if (cc->cnt) + return cc; + goto check_modules; + } + + /* Attempt to find target candidates in vmlinux BTF first */ + cands = bpf_core_add_cands(cands, main_btf, 1); + if (IS_ERR(cands)) + return ERR_CAST(cands); + + /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ + + /* populate cache even when cands->cnt == 0 */ + cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); + if (IS_ERR(cc)) + return ERR_CAST(cc); + + /* if vmlinux BTF has any candidate, don't go for module BTFs */ + if (cc->cnt) + return cc; + +check_modules: + /* cands is a pointer to stack here and cands->cnt == 0 */ + cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); + if (cc) + /* if cache has it return it even if cc->cnt == 0 */ + return cc; + + /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ + spin_lock_bh(&btf_idr_lock); + idr_for_each_entry(&btf_idr, mod_btf, id) { + if (!btf_is_module(mod_btf)) + continue; + /* linear search could be slow hence unlock/lock + * the IDR to avoiding holding it for too long + */ + btf_get(mod_btf); + spin_unlock_bh(&btf_idr_lock); + cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); + btf_put(mod_btf); + if (IS_ERR(cands)) + return ERR_CAST(cands); + spin_lock_bh(&btf_idr_lock); + } + spin_unlock_bh(&btf_idr_lock); + /* cands is a pointer to kmalloced memory here if cands->cnt > 0 + * or pointer to stack if cands->cnd == 0. + * Copy it into the cache even when cands->cnt == 0 and + * return the result. + */ + return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); +} + +int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, + int relo_idx, void *insn) +{ + bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; + struct bpf_core_cand_list cands = {}; + struct bpf_core_relo_res targ_res; + struct bpf_core_spec *specs; + const struct btf_type *type; + int err; + + /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" + * into arrays of btf_ids of struct fields and array indices. + */ + specs = kcalloc(3, sizeof(*specs), GFP_KERNEL_ACCOUNT); + if (!specs) + return -ENOMEM; + + type = btf_type_by_id(ctx->btf, relo->type_id); + if (!type) { + bpf_log(ctx->log, "relo #%u: bad type id %u\n", + relo_idx, relo->type_id); + kfree(specs); + return -EINVAL; + } + + if (need_cands) { + struct bpf_cand_cache *cc; + int i; + + mutex_lock(&cand_cache_mutex); + cc = bpf_core_find_cands(ctx, relo->type_id); + if (IS_ERR(cc)) { + bpf_log(ctx->log, "target candidate search failed for %d\n", + relo->type_id); + err = PTR_ERR(cc); + goto out; + } + if (cc->cnt) { + cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL_ACCOUNT); + if (!cands.cands) { + err = -ENOMEM; + goto out; + } + } + for (i = 0; i < cc->cnt; i++) { + bpf_log(ctx->log, + "CO-RE relocating %s %s: found target candidate [%d]\n", + btf_kind_str[cc->kind], cc->name, cc->cands[i].id); + cands.cands[i].btf = cc->cands[i].btf; + cands.cands[i].id = cc->cands[i].id; + } + cands.len = cc->cnt; + /* cand_cache_mutex needs to span the cache lookup and + * copy of btf pointer into bpf_core_cand_list, + * since module can be unloaded while bpf_core_calc_relo_insn + * is working with module's btf. + */ + } + + err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, + &targ_res); + if (err) + goto out; + + err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, + &targ_res); + +out: + kfree(specs); + if (need_cands) { + kfree(cands.cands); + mutex_unlock(&cand_cache_mutex); + if (ctx->log->level & BPF_LOG_LEVEL2) + print_cand_cache(ctx->log); + } + return err; +} + +bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, + const struct bpf_reg_state *reg, + const char *field_name, u32 btf_id, const char *suffix) +{ + struct btf *btf = reg->btf; + const struct btf_type *walk_type, *safe_type; + const char *tname; + char safe_tname[64]; + long ret, safe_id; + const struct btf_member *member; + u32 i; + + walk_type = btf_type_by_id(btf, reg->btf_id); + if (!walk_type) + return false; + + tname = btf_name_by_offset(btf, walk_type->name_off); + + ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); + if (ret >= sizeof(safe_tname)) + return false; + + safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); + if (safe_id < 0) + return false; + + safe_type = btf_type_by_id(btf, safe_id); + if (!safe_type) + return false; + + for_each_member(i, safe_type, member) { + const char *m_name = __btf_name_by_offset(btf, member->name_off); + const struct btf_type *mtype = btf_type_by_id(btf, member->type); + u32 id; + + if (!btf_type_is_ptr(mtype)) + continue; + + btf_type_skip_modifiers(btf, mtype->type, &id); + /* If we match on both type and name, the field is considered trusted. */ + if (btf_id == id && !strcmp(field_name, m_name)) + return true; + } + + return false; +} + +bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, + const struct btf *reg_btf, u32 reg_id, + const struct btf *arg_btf, u32 arg_id) +{ + const char *reg_name, *arg_name, *search_needle; + const struct btf_type *reg_type, *arg_type; + int reg_len, arg_len, cmp_len; + size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); + + reg_type = btf_type_by_id(reg_btf, reg_id); + if (!reg_type) + return false; + + arg_type = btf_type_by_id(arg_btf, arg_id); + if (!arg_type) + return false; + + reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); + arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); + + reg_len = strlen(reg_name); + arg_len = strlen(arg_name); + + /* Exactly one of the two type names may be suffixed with ___init, so + * if the strings are the same size, they can't possibly be no-cast + * aliases of one another. If you have two of the same type names, e.g. + * they're both nf_conn___init, it would be improper to return true + * because they are _not_ no-cast aliases, they are the same type. + */ + if (reg_len == arg_len) + return false; + + /* Either of the two names must be the other name, suffixed with ___init. */ + if ((reg_len != arg_len + pattern_len) && + (arg_len != reg_len + pattern_len)) + return false; + + if (reg_len < arg_len) { + search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); + cmp_len = reg_len; + } else { + search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); + cmp_len = arg_len; + } + + if (!search_needle) + return false; + + /* ___init suffix must come at the end of the name */ + if (*(search_needle + pattern_len) != '\0') + return false; + + return !strncmp(reg_name, arg_name, cmp_len); +} + +#ifdef CONFIG_BPF_JIT +static int +btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops, + struct bpf_verifier_log *log) +{ + struct btf_struct_ops_tab *tab, *new_tab; + int i, err; + + tab = btf->struct_ops_tab; + if (!tab) { + tab = kzalloc(struct_size(tab, ops, 4), GFP_KERNEL); + if (!tab) + return -ENOMEM; + tab->capacity = 4; + btf->struct_ops_tab = tab; + } + + for (i = 0; i < tab->cnt; i++) + if (tab->ops[i].st_ops == st_ops) + return -EEXIST; + + if (tab->cnt == tab->capacity) { + new_tab = krealloc(tab, + struct_size(tab, ops, tab->capacity * 2), + GFP_KERNEL); + if (!new_tab) + return -ENOMEM; + tab = new_tab; + tab->capacity *= 2; + btf->struct_ops_tab = tab; + } + + tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops; + + err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log); + if (err) + return err; + + btf->struct_ops_tab->cnt++; + + return 0; +} + +const struct bpf_struct_ops_desc * +bpf_struct_ops_find_value(struct btf *btf, u32 value_id) +{ + const struct bpf_struct_ops_desc *st_ops_list; + unsigned int i; + u32 cnt; + + if (!value_id) + return NULL; + if (!btf->struct_ops_tab) + return NULL; + + cnt = btf->struct_ops_tab->cnt; + st_ops_list = btf->struct_ops_tab->ops; + for (i = 0; i < cnt; i++) { + if (st_ops_list[i].value_id == value_id) + return &st_ops_list[i]; + } + + return NULL; +} + +const struct bpf_struct_ops_desc * +bpf_struct_ops_find(struct btf *btf, u32 type_id) +{ + const struct bpf_struct_ops_desc *st_ops_list; + unsigned int i; + u32 cnt; + + if (!type_id) + return NULL; + if (!btf->struct_ops_tab) + return NULL; + + cnt = btf->struct_ops_tab->cnt; + st_ops_list = btf->struct_ops_tab->ops; + for (i = 0; i < cnt; i++) { + if (st_ops_list[i].type_id == type_id) + return &st_ops_list[i]; + } + + return NULL; +} + +int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops) +{ + struct bpf_verifier_log *log; + struct btf *btf; + int err = 0; + + btf = btf_get_module_btf(st_ops->owner); + if (!btf) + return check_btf_kconfigs(st_ops->owner, "struct_ops"); + if (IS_ERR(btf)) + return PTR_ERR(btf); + + log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN); + if (!log) { + err = -ENOMEM; + goto errout; + } + + log->level = BPF_LOG_KERNEL; + + err = btf_add_struct_ops(btf, st_ops, log); + +errout: + kfree(log); + btf_put(btf); + + return err; +} +EXPORT_SYMBOL_GPL(__register_bpf_struct_ops); +#endif + +bool btf_param_match_suffix(const struct btf *btf, + const struct btf_param *arg, + const char *suffix) +{ + int suffix_len = strlen(suffix), len; + const char *param_name; + + /* In the future, this can be ported to use BTF tagging */ + param_name = btf_name_by_offset(btf, arg->name_off); + if (str_is_empty(param_name)) + return false; + len = strlen(param_name); + if (len <= suffix_len) + return false; + param_name += len - suffix_len; + return !strncmp(param_name, suffix, suffix_len); +} diff --git a/kernel/bpf/btf_iter.c b/kernel/bpf/btf_iter.c new file mode 100644 index 000000000000..0e2c66a52df9 --- /dev/null +++ b/kernel/bpf/btf_iter.c @@ -0,0 +1,2 @@ +// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) +#include "../../tools/lib/bpf/btf_iter.c" diff --git a/kernel/bpf/btf_relocate.c b/kernel/bpf/btf_relocate.c new file mode 100644 index 000000000000..c12ccbf66507 --- /dev/null +++ b/kernel/bpf/btf_relocate.c @@ -0,0 +1,2 @@ +// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) +#include "../../tools/lib/bpf/btf_relocate.c" diff --git a/kernel/bpf/cgroup.c b/kernel/bpf/cgroup.c new file mode 100644 index 000000000000..69988af44b37 --- /dev/null +++ b/kernel/bpf/cgroup.c @@ -0,0 +1,2761 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Functions to manage eBPF programs attached to cgroups + * + * Copyright (c) 2016 Daniel Mack + */ + +#include <linux/kernel.h> +#include <linux/atomic.h> +#include <linux/cgroup.h> +#include <linux/filter.h> +#include <linux/slab.h> +#include <linux/sysctl.h> +#include <linux/string.h> +#include <linux/bpf.h> +#include <linux/bpf-cgroup.h> +#include <linux/bpf_lsm.h> +#include <linux/bpf_verifier.h> +#include <net/sock.h> +#include <net/bpf_sk_storage.h> + +#include "../cgroup/cgroup-internal.h" + +DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE); +EXPORT_SYMBOL(cgroup_bpf_enabled_key); + +/* + * cgroup bpf destruction makes heavy use of work items and there can be a lot + * of concurrent destructions. Use a separate workqueue so that cgroup bpf + * destruction work items don't end up filling up max_active of system_percpu_wq + * which may lead to deadlock. + */ +static struct workqueue_struct *cgroup_bpf_destroy_wq; + +static int __init cgroup_bpf_wq_init(void) +{ + cgroup_bpf_destroy_wq = alloc_workqueue("cgroup_bpf_destroy", + WQ_PERCPU, 1); + if (!cgroup_bpf_destroy_wq) + panic("Failed to alloc workqueue for cgroup bpf destroy.\n"); + return 0; +} +core_initcall(cgroup_bpf_wq_init); + +static int cgroup_bpf_lifetime_notify(struct notifier_block *nb, + unsigned long action, void *data); + +static struct notifier_block cgroup_bpf_lifetime_nb = { + .notifier_call = cgroup_bpf_lifetime_notify, +}; + +void __init cgroup_bpf_lifetime_notifier_init(void) +{ + BUG_ON(blocking_notifier_chain_register(&cgroup_lifetime_notifier, + &cgroup_bpf_lifetime_nb)); +} + +/* __always_inline is necessary to prevent indirect call through run_prog + * function pointer. + */ +static __always_inline int +bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp, + enum cgroup_bpf_attach_type atype, + const void *ctx, bpf_prog_run_fn run_prog, + int retval, u32 *ret_flags) +{ + const struct bpf_prog_array_item *item; + const struct bpf_prog *prog; + const struct bpf_prog_array *array; + struct bpf_run_ctx *old_run_ctx; + struct bpf_cg_run_ctx run_ctx; + u32 func_ret; + + run_ctx.retval = retval; + rcu_read_lock_dont_migrate(); + array = rcu_dereference(cgrp->effective[atype]); + item = &array->items[0]; + old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); + while ((prog = READ_ONCE(item->prog))) { + run_ctx.prog_item = item; + func_ret = run_prog(prog, ctx); + if (ret_flags) { + *(ret_flags) |= (func_ret >> 1); + func_ret &= 1; + } + if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval)) + run_ctx.retval = -EPERM; + item++; + } + bpf_reset_run_ctx(old_run_ctx); + rcu_read_unlock_migrate(); + return run_ctx.retval; +} + +unsigned int __cgroup_bpf_run_lsm_sock(const void *ctx, + const struct bpf_insn *insn) +{ + const struct bpf_prog *shim_prog; + struct sock *sk; + struct cgroup *cgrp; + int ret = 0; + u64 *args; + + args = (u64 *)ctx; + sk = (void *)(unsigned long)args[0]; + /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ + shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); + + cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); + if (likely(cgrp)) + ret = bpf_prog_run_array_cg(&cgrp->bpf, + shim_prog->aux->cgroup_atype, + ctx, bpf_prog_run, 0, NULL); + return ret; +} + +unsigned int __cgroup_bpf_run_lsm_socket(const void *ctx, + const struct bpf_insn *insn) +{ + const struct bpf_prog *shim_prog; + struct socket *sock; + struct cgroup *cgrp; + int ret = 0; + u64 *args; + + args = (u64 *)ctx; + sock = (void *)(unsigned long)args[0]; + /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ + shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); + + cgrp = sock_cgroup_ptr(&sock->sk->sk_cgrp_data); + if (likely(cgrp)) + ret = bpf_prog_run_array_cg(&cgrp->bpf, + shim_prog->aux->cgroup_atype, + ctx, bpf_prog_run, 0, NULL); + return ret; +} + +unsigned int __cgroup_bpf_run_lsm_current(const void *ctx, + const struct bpf_insn *insn) +{ + const struct bpf_prog *shim_prog; + struct cgroup *cgrp; + int ret = 0; + + /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/ + shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi)); + + /* We rely on trampoline's __bpf_prog_enter_lsm_cgroup to grab RCU read lock. */ + cgrp = task_dfl_cgroup(current); + if (likely(cgrp)) + ret = bpf_prog_run_array_cg(&cgrp->bpf, + shim_prog->aux->cgroup_atype, + ctx, bpf_prog_run, 0, NULL); + return ret; +} + +#ifdef CONFIG_BPF_LSM +struct cgroup_lsm_atype { + u32 attach_btf_id; + int refcnt; +}; + +static struct cgroup_lsm_atype cgroup_lsm_atype[CGROUP_LSM_NUM]; + +static enum cgroup_bpf_attach_type +bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) +{ + int i; + + lockdep_assert_held(&cgroup_mutex); + + if (attach_type != BPF_LSM_CGROUP) + return to_cgroup_bpf_attach_type(attach_type); + + for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) + if (cgroup_lsm_atype[i].attach_btf_id == attach_btf_id) + return CGROUP_LSM_START + i; + + for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++) + if (cgroup_lsm_atype[i].attach_btf_id == 0) + return CGROUP_LSM_START + i; + + return -E2BIG; + +} + +void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) +{ + int i = cgroup_atype - CGROUP_LSM_START; + + lockdep_assert_held(&cgroup_mutex); + + WARN_ON_ONCE(cgroup_lsm_atype[i].attach_btf_id && + cgroup_lsm_atype[i].attach_btf_id != attach_btf_id); + + cgroup_lsm_atype[i].attach_btf_id = attach_btf_id; + cgroup_lsm_atype[i].refcnt++; +} + +void bpf_cgroup_atype_put(int cgroup_atype) +{ + int i = cgroup_atype - CGROUP_LSM_START; + + cgroup_lock(); + if (--cgroup_lsm_atype[i].refcnt <= 0) + cgroup_lsm_atype[i].attach_btf_id = 0; + WARN_ON_ONCE(cgroup_lsm_atype[i].refcnt < 0); + cgroup_unlock(); +} +#else +static enum cgroup_bpf_attach_type +bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id) +{ + if (attach_type != BPF_LSM_CGROUP) + return to_cgroup_bpf_attach_type(attach_type); + return -EOPNOTSUPP; +} +#endif /* CONFIG_BPF_LSM */ + +static void cgroup_bpf_offline(struct cgroup *cgrp) +{ + cgroup_get(cgrp); + percpu_ref_kill(&cgrp->bpf.refcnt); +} + +static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[]) +{ + enum bpf_cgroup_storage_type stype; + + for_each_cgroup_storage_type(stype) + bpf_cgroup_storage_free(storages[stype]); +} + +static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[], + struct bpf_cgroup_storage *new_storages[], + enum bpf_attach_type type, + struct bpf_prog *prog, + struct cgroup *cgrp) +{ + enum bpf_cgroup_storage_type stype; + struct bpf_cgroup_storage_key key; + struct bpf_map *map; + + key.cgroup_inode_id = cgroup_id(cgrp); + key.attach_type = type; + + for_each_cgroup_storage_type(stype) { + map = prog->aux->cgroup_storage[stype]; + if (!map) + continue; + + storages[stype] = cgroup_storage_lookup((void *)map, &key, false); + if (storages[stype]) + continue; + + storages[stype] = bpf_cgroup_storage_alloc(prog, stype); + if (IS_ERR(storages[stype])) { + bpf_cgroup_storages_free(new_storages); + return -ENOMEM; + } + + new_storages[stype] = storages[stype]; + } + + return 0; +} + +static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[], + struct bpf_cgroup_storage *src[]) +{ + enum bpf_cgroup_storage_type stype; + + for_each_cgroup_storage_type(stype) + dst[stype] = src[stype]; +} + +static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[], + struct cgroup *cgrp, + enum bpf_attach_type attach_type) +{ + enum bpf_cgroup_storage_type stype; + + for_each_cgroup_storage_type(stype) + bpf_cgroup_storage_link(storages[stype], cgrp, attach_type); +} + +/* Called when bpf_cgroup_link is auto-detached from dying cgroup. + * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It + * doesn't free link memory, which will eventually be done by bpf_link's + * release() callback, when its last FD is closed. + */ +static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link) +{ + cgroup_put(link->cgroup); + link->cgroup = NULL; +} + +/** + * cgroup_bpf_release() - put references of all bpf programs and + * release all cgroup bpf data + * @work: work structure embedded into the cgroup to modify + */ +static void cgroup_bpf_release(struct work_struct *work) +{ + struct cgroup *p, *cgrp = container_of(work, struct cgroup, + bpf.release_work); + struct bpf_prog_array *old_array; + struct list_head *storages = &cgrp->bpf.storages; + struct bpf_cgroup_storage *storage, *stmp; + + unsigned int atype; + + cgroup_lock(); + + for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) { + struct hlist_head *progs = &cgrp->bpf.progs[atype]; + struct bpf_prog_list *pl; + struct hlist_node *pltmp; + + hlist_for_each_entry_safe(pl, pltmp, progs, node) { + hlist_del(&pl->node); + if (pl->prog) { + if (pl->prog->expected_attach_type == BPF_LSM_CGROUP) + bpf_trampoline_unlink_cgroup_shim(pl->prog); + bpf_prog_put(pl->prog); + } + if (pl->link) { + if (pl->link->link.prog->expected_attach_type == BPF_LSM_CGROUP) + bpf_trampoline_unlink_cgroup_shim(pl->link->link.prog); + bpf_cgroup_link_auto_detach(pl->link); + } + kfree(pl); + static_branch_dec(&cgroup_bpf_enabled_key[atype]); + } + old_array = rcu_dereference_protected( + cgrp->bpf.effective[atype], + lockdep_is_held(&cgroup_mutex)); + bpf_prog_array_free(old_array); + } + + list_for_each_entry_safe(storage, stmp, storages, list_cg) { + bpf_cgroup_storage_unlink(storage); + bpf_cgroup_storage_free(storage); + } + + cgroup_unlock(); + + for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) + cgroup_bpf_put(p); + + percpu_ref_exit(&cgrp->bpf.refcnt); + cgroup_put(cgrp); +} + +/** + * cgroup_bpf_release_fn() - callback used to schedule releasing + * of bpf cgroup data + * @ref: percpu ref counter structure + */ +static void cgroup_bpf_release_fn(struct percpu_ref *ref) +{ + struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt); + + INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release); + queue_work(cgroup_bpf_destroy_wq, &cgrp->bpf.release_work); +} + +/* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through + * link or direct prog. + */ +static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl) +{ + if (pl->prog) + return pl->prog; + if (pl->link) + return pl->link->link.prog; + return NULL; +} + +/* count number of elements in the list. + * it's slow but the list cannot be long + */ +static u32 prog_list_length(struct hlist_head *head, int *preorder_cnt) +{ + struct bpf_prog_list *pl; + u32 cnt = 0; + + hlist_for_each_entry(pl, head, node) { + if (!prog_list_prog(pl)) + continue; + if (preorder_cnt && (pl->flags & BPF_F_PREORDER)) + (*preorder_cnt)++; + cnt++; + } + return cnt; +} + +/* if parent has non-overridable prog attached, + * disallow attaching new programs to the descendent cgroup. + * if parent has overridable or multi-prog, allow attaching + */ +static bool hierarchy_allows_attach(struct cgroup *cgrp, + enum cgroup_bpf_attach_type atype) +{ + struct cgroup *p; + + p = cgroup_parent(cgrp); + if (!p) + return true; + do { + u32 flags = p->bpf.flags[atype]; + u32 cnt; + + if (flags & BPF_F_ALLOW_MULTI) + return true; + cnt = prog_list_length(&p->bpf.progs[atype], NULL); + WARN_ON_ONCE(cnt > 1); + if (cnt == 1) + return !!(flags & BPF_F_ALLOW_OVERRIDE); + p = cgroup_parent(p); + } while (p); + return true; +} + +/* compute a chain of effective programs for a given cgroup: + * start from the list of programs in this cgroup and add + * all parent programs. + * Note that parent's F_ALLOW_OVERRIDE-type program is yielding + * to programs in this cgroup + */ +static int compute_effective_progs(struct cgroup *cgrp, + enum cgroup_bpf_attach_type atype, + struct bpf_prog_array **array) +{ + struct bpf_prog_array_item *item; + struct bpf_prog_array *progs; + struct bpf_prog_list *pl; + struct cgroup *p = cgrp; + int i, j, cnt = 0, preorder_cnt = 0, fstart, bstart, init_bstart; + + /* count number of effective programs by walking parents */ + do { + if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) + cnt += prog_list_length(&p->bpf.progs[atype], &preorder_cnt); + p = cgroup_parent(p); + } while (p); + + progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); + if (!progs) + return -ENOMEM; + + /* populate the array with effective progs */ + cnt = 0; + p = cgrp; + fstart = preorder_cnt; + bstart = preorder_cnt - 1; + do { + if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) + continue; + + init_bstart = bstart; + hlist_for_each_entry(pl, &p->bpf.progs[atype], node) { + if (!prog_list_prog(pl)) + continue; + + if (pl->flags & BPF_F_PREORDER) { + item = &progs->items[bstart]; + bstart--; + } else { + item = &progs->items[fstart]; + fstart++; + } + item->prog = prog_list_prog(pl); + bpf_cgroup_storages_assign(item->cgroup_storage, + pl->storage); + cnt++; + } + + /* reverse pre-ordering progs at this cgroup level */ + for (i = bstart + 1, j = init_bstart; i < j; i++, j--) + swap(progs->items[i], progs->items[j]); + + } while ((p = cgroup_parent(p))); + + *array = progs; + return 0; +} + +static void activate_effective_progs(struct cgroup *cgrp, + enum cgroup_bpf_attach_type atype, + struct bpf_prog_array *old_array) +{ + old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array, + lockdep_is_held(&cgroup_mutex)); + /* free prog array after grace period, since __cgroup_bpf_run_*() + * might be still walking the array + */ + bpf_prog_array_free(old_array); +} + +/** + * cgroup_bpf_inherit() - inherit effective programs from parent + * @cgrp: the cgroup to modify + */ +static int cgroup_bpf_inherit(struct cgroup *cgrp) +{ +/* has to use marco instead of const int, since compiler thinks + * that array below is variable length + */ +#define NR ARRAY_SIZE(cgrp->bpf.effective) + struct bpf_prog_array *arrays[NR] = {}; + struct cgroup *p; + int ret, i; + + ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0, + GFP_KERNEL); + if (ret) + return ret; + + for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) + cgroup_bpf_get(p); + + for (i = 0; i < NR; i++) + INIT_HLIST_HEAD(&cgrp->bpf.progs[i]); + + INIT_LIST_HEAD(&cgrp->bpf.storages); + + for (i = 0; i < NR; i++) + if (compute_effective_progs(cgrp, i, &arrays[i])) + goto cleanup; + + for (i = 0; i < NR; i++) + activate_effective_progs(cgrp, i, arrays[i]); + + return 0; +cleanup: + for (i = 0; i < NR; i++) + bpf_prog_array_free(arrays[i]); + + for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) + cgroup_bpf_put(p); + + percpu_ref_exit(&cgrp->bpf.refcnt); + + return -ENOMEM; +} + +static int cgroup_bpf_lifetime_notify(struct notifier_block *nb, + unsigned long action, void *data) +{ + struct cgroup *cgrp = data; + int ret = 0; + + if (cgrp->root != &cgrp_dfl_root) + return NOTIFY_OK; + + switch (action) { + case CGROUP_LIFETIME_ONLINE: + ret = cgroup_bpf_inherit(cgrp); + break; + case CGROUP_LIFETIME_OFFLINE: + cgroup_bpf_offline(cgrp); + break; + } + + return notifier_from_errno(ret); +} + +static int update_effective_progs(struct cgroup *cgrp, + enum cgroup_bpf_attach_type atype) +{ + struct cgroup_subsys_state *css; + int err; + + /* allocate and recompute effective prog arrays */ + css_for_each_descendant_pre(css, &cgrp->self) { + struct cgroup *desc = container_of(css, struct cgroup, self); + + if (percpu_ref_is_zero(&desc->bpf.refcnt)) + continue; + + err = compute_effective_progs(desc, atype, &desc->bpf.inactive); + if (err) + goto cleanup; + } + + /* all allocations were successful. Activate all prog arrays */ + css_for_each_descendant_pre(css, &cgrp->self) { + struct cgroup *desc = container_of(css, struct cgroup, self); + + if (percpu_ref_is_zero(&desc->bpf.refcnt)) { + if (unlikely(desc->bpf.inactive)) { + bpf_prog_array_free(desc->bpf.inactive); + desc->bpf.inactive = NULL; + } + continue; + } + + activate_effective_progs(desc, atype, desc->bpf.inactive); + desc->bpf.inactive = NULL; + } + + return 0; + +cleanup: + /* oom while computing effective. Free all computed effective arrays + * since they were not activated + */ + css_for_each_descendant_pre(css, &cgrp->self) { + struct cgroup *desc = container_of(css, struct cgroup, self); + + bpf_prog_array_free(desc->bpf.inactive); + desc->bpf.inactive = NULL; + } + + return err; +} + +#define BPF_CGROUP_MAX_PROGS 64 + +static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs, + struct bpf_prog *prog, + struct bpf_cgroup_link *link, + struct bpf_prog *replace_prog, + bool allow_multi) +{ + struct bpf_prog_list *pl; + + /* single-attach case */ + if (!allow_multi) { + if (hlist_empty(progs)) + return NULL; + return hlist_entry(progs->first, typeof(*pl), node); + } + + hlist_for_each_entry(pl, progs, node) { + if (prog && pl->prog == prog && prog != replace_prog) + /* disallow attaching the same prog twice */ + return ERR_PTR(-EINVAL); + if (link && pl->link == link) + /* disallow attaching the same link twice */ + return ERR_PTR(-EINVAL); + } + + /* direct prog multi-attach w/ replacement case */ + if (replace_prog) { + hlist_for_each_entry(pl, progs, node) { + if (pl->prog == replace_prog) + /* a match found */ + return pl; + } + /* prog to replace not found for cgroup */ + return ERR_PTR(-ENOENT); + } + + return NULL; +} + +static struct bpf_link *bpf_get_anchor_link(u32 flags, u32 id_or_fd) +{ + struct bpf_link *link = ERR_PTR(-EINVAL); + + if (flags & BPF_F_ID) + link = bpf_link_by_id(id_or_fd); + else if (id_or_fd) + link = bpf_link_get_from_fd(id_or_fd); + return link; +} + +static struct bpf_prog *bpf_get_anchor_prog(u32 flags, u32 id_or_fd) +{ + struct bpf_prog *prog = ERR_PTR(-EINVAL); + + if (flags & BPF_F_ID) + prog = bpf_prog_by_id(id_or_fd); + else if (id_or_fd) + prog = bpf_prog_get(id_or_fd); + return prog; +} + +static struct bpf_prog_list *get_prog_list(struct hlist_head *progs, struct bpf_prog *prog, + struct bpf_cgroup_link *link, u32 flags, u32 id_or_fd) +{ + bool is_link = flags & BPF_F_LINK, is_id = flags & BPF_F_ID; + struct bpf_prog_list *pltmp, *pl = ERR_PTR(-EINVAL); + bool preorder = flags & BPF_F_PREORDER; + struct bpf_link *anchor_link = NULL; + struct bpf_prog *anchor_prog = NULL; + bool is_before, is_after; + + is_before = flags & BPF_F_BEFORE; + is_after = flags & BPF_F_AFTER; + if (is_link || is_id || id_or_fd) { + /* flags must have either BPF_F_BEFORE or BPF_F_AFTER */ + if (is_before == is_after) + return ERR_PTR(-EINVAL); + if ((is_link && !link) || (!is_link && !prog)) + return ERR_PTR(-EINVAL); + } else if (!hlist_empty(progs)) { + /* flags cannot have both BPF_F_BEFORE and BPF_F_AFTER */ + if (is_before && is_after) + return ERR_PTR(-EINVAL); + } + + if (is_link) { + anchor_link = bpf_get_anchor_link(flags, id_or_fd); + if (IS_ERR(anchor_link)) + return ERR_CAST(anchor_link); + } else if (is_id || id_or_fd) { + anchor_prog = bpf_get_anchor_prog(flags, id_or_fd); + if (IS_ERR(anchor_prog)) + return ERR_CAST(anchor_prog); + } + + if (!anchor_prog && !anchor_link) { + /* if there is no anchor_prog/anchor_link, then BPF_F_PREORDER + * doesn't matter since either prepend or append to a combined + * list of progs will end up with correct result. + */ + hlist_for_each_entry(pltmp, progs, node) { + if (is_before) + return pltmp; + if (pltmp->node.next) + continue; + return pltmp; + } + return NULL; + } + + hlist_for_each_entry(pltmp, progs, node) { + if ((anchor_prog && anchor_prog == pltmp->prog) || + (anchor_link && anchor_link == &pltmp->link->link)) { + if (!!(pltmp->flags & BPF_F_PREORDER) != preorder) + goto out; + pl = pltmp; + goto out; + } + } + + pl = ERR_PTR(-ENOENT); +out: + if (anchor_link) + bpf_link_put(anchor_link); + else + bpf_prog_put(anchor_prog); + return pl; +} + +static int insert_pl_to_hlist(struct bpf_prog_list *pl, struct hlist_head *progs, + struct bpf_prog *prog, struct bpf_cgroup_link *link, + u32 flags, u32 id_or_fd) +{ + struct bpf_prog_list *pltmp; + + pltmp = get_prog_list(progs, prog, link, flags, id_or_fd); + if (IS_ERR(pltmp)) + return PTR_ERR(pltmp); + + if (!pltmp) + hlist_add_head(&pl->node, progs); + else if (flags & BPF_F_BEFORE) + hlist_add_before(&pl->node, &pltmp->node); + else + hlist_add_behind(&pl->node, &pltmp->node); + + return 0; +} + +/** + * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and + * propagate the change to descendants + * @cgrp: The cgroup which descendants to traverse + * @prog: A program to attach + * @link: A link to attach + * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set + * @type: Type of attach operation + * @flags: Option flags + * @id_or_fd: Relative prog id or fd + * @revision: bpf_prog_list revision + * + * Exactly one of @prog or @link can be non-null. + * Must be called with cgroup_mutex held. + */ +static int __cgroup_bpf_attach(struct cgroup *cgrp, + struct bpf_prog *prog, struct bpf_prog *replace_prog, + struct bpf_cgroup_link *link, + enum bpf_attach_type type, u32 flags, u32 id_or_fd, + u64 revision) +{ + u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI)); + struct bpf_prog *old_prog = NULL; + struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; + struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; + struct bpf_prog *new_prog = prog ? : link->link.prog; + enum cgroup_bpf_attach_type atype; + struct bpf_prog_list *pl; + struct hlist_head *progs; + int err; + + if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) || + ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI))) + /* invalid combination */ + return -EINVAL; + if ((flags & BPF_F_REPLACE) && (flags & (BPF_F_BEFORE | BPF_F_AFTER))) + /* only either replace or insertion with before/after */ + return -EINVAL; + if (link && (prog || replace_prog)) + /* only either link or prog/replace_prog can be specified */ + return -EINVAL; + if (!!replace_prog != !!(flags & BPF_F_REPLACE)) + /* replace_prog implies BPF_F_REPLACE, and vice versa */ + return -EINVAL; + + atype = bpf_cgroup_atype_find(type, new_prog->aux->attach_btf_id); + if (atype < 0) + return -EINVAL; + if (revision && revision != cgrp->bpf.revisions[atype]) + return -ESTALE; + + progs = &cgrp->bpf.progs[atype]; + + if (!hierarchy_allows_attach(cgrp, atype)) + return -EPERM; + + if (!hlist_empty(progs) && cgrp->bpf.flags[atype] != saved_flags) + /* Disallow attaching non-overridable on top + * of existing overridable in this cgroup. + * Disallow attaching multi-prog if overridable or none + */ + return -EPERM; + + if (prog_list_length(progs, NULL) >= BPF_CGROUP_MAX_PROGS) + return -E2BIG; + + pl = find_attach_entry(progs, prog, link, replace_prog, + flags & BPF_F_ALLOW_MULTI); + if (IS_ERR(pl)) + return PTR_ERR(pl); + + if (bpf_cgroup_storages_alloc(storage, new_storage, type, + prog ? : link->link.prog, cgrp)) + return -ENOMEM; + + if (pl) { + old_prog = pl->prog; + } else { + pl = kmalloc(sizeof(*pl), GFP_KERNEL); + if (!pl) { + bpf_cgroup_storages_free(new_storage); + return -ENOMEM; + } + + err = insert_pl_to_hlist(pl, progs, prog, link, flags, id_or_fd); + if (err) { + kfree(pl); + bpf_cgroup_storages_free(new_storage); + return err; + } + } + + pl->prog = prog; + pl->link = link; + pl->flags = flags; + bpf_cgroup_storages_assign(pl->storage, storage); + cgrp->bpf.flags[atype] = saved_flags; + + if (type == BPF_LSM_CGROUP) { + err = bpf_trampoline_link_cgroup_shim(new_prog, atype, type); + if (err) + goto cleanup; + } + + err = update_effective_progs(cgrp, atype); + if (err) + goto cleanup_trampoline; + + cgrp->bpf.revisions[atype] += 1; + if (old_prog) { + if (type == BPF_LSM_CGROUP) + bpf_trampoline_unlink_cgroup_shim(old_prog); + bpf_prog_put(old_prog); + } else { + static_branch_inc(&cgroup_bpf_enabled_key[atype]); + } + bpf_cgroup_storages_link(new_storage, cgrp, type); + return 0; + +cleanup_trampoline: + if (type == BPF_LSM_CGROUP) + bpf_trampoline_unlink_cgroup_shim(new_prog); + +cleanup: + if (old_prog) { + pl->prog = old_prog; + pl->link = NULL; + } + bpf_cgroup_storages_free(new_storage); + if (!old_prog) { + hlist_del(&pl->node); + kfree(pl); + } + return err; +} + +static int cgroup_bpf_attach(struct cgroup *cgrp, + struct bpf_prog *prog, struct bpf_prog *replace_prog, + struct bpf_cgroup_link *link, + enum bpf_attach_type type, + u32 flags, u32 id_or_fd, u64 revision) +{ + int ret; + + cgroup_lock(); + ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags, + id_or_fd, revision); + cgroup_unlock(); + return ret; +} + +/* Swap updated BPF program for given link in effective program arrays across + * all descendant cgroups. This function is guaranteed to succeed. + */ +static void replace_effective_prog(struct cgroup *cgrp, + enum cgroup_bpf_attach_type atype, + struct bpf_cgroup_link *link) +{ + struct bpf_prog_array_item *item; + struct cgroup_subsys_state *css; + struct bpf_prog_array *progs; + struct bpf_prog_list *pl; + struct hlist_head *head; + struct cgroup *cg; + int pos; + + css_for_each_descendant_pre(css, &cgrp->self) { + struct cgroup *desc = container_of(css, struct cgroup, self); + + if (percpu_ref_is_zero(&desc->bpf.refcnt)) + continue; + + /* find position of link in effective progs array */ + for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { + if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) + continue; + + head = &cg->bpf.progs[atype]; + hlist_for_each_entry(pl, head, node) { + if (!prog_list_prog(pl)) + continue; + if (pl->link == link) + goto found; + pos++; + } + } +found: + BUG_ON(!cg); + progs = rcu_dereference_protected( + desc->bpf.effective[atype], + lockdep_is_held(&cgroup_mutex)); + item = &progs->items[pos]; + WRITE_ONCE(item->prog, link->link.prog); + } +} + +/** + * __cgroup_bpf_replace() - Replace link's program and propagate the change + * to descendants + * @cgrp: The cgroup which descendants to traverse + * @link: A link for which to replace BPF program + * @new_prog: &struct bpf_prog for the target BPF program with its refcnt + * incremented + * + * Must be called with cgroup_mutex held. + */ +static int __cgroup_bpf_replace(struct cgroup *cgrp, + struct bpf_cgroup_link *link, + struct bpf_prog *new_prog) +{ + enum cgroup_bpf_attach_type atype; + struct bpf_prog *old_prog; + struct bpf_prog_list *pl; + struct hlist_head *progs; + bool found = false; + + atype = bpf_cgroup_atype_find(link->link.attach_type, new_prog->aux->attach_btf_id); + if (atype < 0) + return -EINVAL; + + progs = &cgrp->bpf.progs[atype]; + + if (link->link.prog->type != new_prog->type) + return -EINVAL; + + hlist_for_each_entry(pl, progs, node) { + if (pl->link == link) { + found = true; + break; + } + } + if (!found) + return -ENOENT; + + cgrp->bpf.revisions[atype] += 1; + old_prog = xchg(&link->link.prog, new_prog); + replace_effective_prog(cgrp, atype, link); + bpf_prog_put(old_prog); + return 0; +} + +static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog, + struct bpf_prog *old_prog) +{ + struct bpf_cgroup_link *cg_link; + int ret; + + cg_link = container_of(link, struct bpf_cgroup_link, link); + + cgroup_lock(); + /* link might have been auto-released by dying cgroup, so fail */ + if (!cg_link->cgroup) { + ret = -ENOLINK; + goto out_unlock; + } + if (old_prog && link->prog != old_prog) { + ret = -EPERM; + goto out_unlock; + } + ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog); +out_unlock: + cgroup_unlock(); + return ret; +} + +static struct bpf_prog_list *find_detach_entry(struct hlist_head *progs, + struct bpf_prog *prog, + struct bpf_cgroup_link *link, + bool allow_multi) +{ + struct bpf_prog_list *pl; + + if (!allow_multi) { + if (hlist_empty(progs)) + /* report error when trying to detach and nothing is attached */ + return ERR_PTR(-ENOENT); + + /* to maintain backward compatibility NONE and OVERRIDE cgroups + * allow detaching with invalid FD (prog==NULL) in legacy mode + */ + return hlist_entry(progs->first, typeof(*pl), node); + } + + if (!prog && !link) + /* to detach MULTI prog the user has to specify valid FD + * of the program or link to be detached + */ + return ERR_PTR(-EINVAL); + + /* find the prog or link and detach it */ + hlist_for_each_entry(pl, progs, node) { + if (pl->prog == prog && pl->link == link) + return pl; + } + return ERR_PTR(-ENOENT); +} + +/** + * purge_effective_progs() - After compute_effective_progs fails to alloc new + * cgrp->bpf.inactive table we can recover by + * recomputing the array in place. + * + * @cgrp: The cgroup which descendants to travers + * @prog: A program to detach or NULL + * @link: A link to detach or NULL + * @atype: Type of detach operation + */ +static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog, + struct bpf_cgroup_link *link, + enum cgroup_bpf_attach_type atype) +{ + struct cgroup_subsys_state *css; + struct bpf_prog_array *progs; + struct bpf_prog_list *pl; + struct hlist_head *head; + struct cgroup *cg; + int pos; + + /* recompute effective prog array in place */ + css_for_each_descendant_pre(css, &cgrp->self) { + struct cgroup *desc = container_of(css, struct cgroup, self); + + if (percpu_ref_is_zero(&desc->bpf.refcnt)) + continue; + + /* find position of link or prog in effective progs array */ + for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) { + if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI)) + continue; + + head = &cg->bpf.progs[atype]; + hlist_for_each_entry(pl, head, node) { + if (!prog_list_prog(pl)) + continue; + if (pl->prog == prog && pl->link == link) + goto found; + pos++; + } + } + + /* no link or prog match, skip the cgroup of this layer */ + continue; +found: + progs = rcu_dereference_protected( + desc->bpf.effective[atype], + lockdep_is_held(&cgroup_mutex)); + + /* Remove the program from the array */ + WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos), + "Failed to purge a prog from array at index %d", pos); + } +} + +/** + * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and + * propagate the change to descendants + * @cgrp: The cgroup which descendants to traverse + * @prog: A program to detach or NULL + * @link: A link to detach or NULL + * @type: Type of detach operation + * @revision: bpf_prog_list revision + * + * At most one of @prog or @link can be non-NULL. + * Must be called with cgroup_mutex held. + */ +static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, + struct bpf_cgroup_link *link, enum bpf_attach_type type, + u64 revision) +{ + enum cgroup_bpf_attach_type atype; + struct bpf_prog *old_prog; + struct bpf_prog_list *pl; + struct hlist_head *progs; + u32 attach_btf_id = 0; + u32 flags; + + if (prog) + attach_btf_id = prog->aux->attach_btf_id; + if (link) + attach_btf_id = link->link.prog->aux->attach_btf_id; + + atype = bpf_cgroup_atype_find(type, attach_btf_id); + if (atype < 0) + return -EINVAL; + + if (revision && revision != cgrp->bpf.revisions[atype]) + return -ESTALE; + + progs = &cgrp->bpf.progs[atype]; + flags = cgrp->bpf.flags[atype]; + + if (prog && link) + /* only one of prog or link can be specified */ + return -EINVAL; + + pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI); + if (IS_ERR(pl)) + return PTR_ERR(pl); + + /* mark it deleted, so it's ignored while recomputing effective */ + old_prog = pl->prog; + pl->prog = NULL; + pl->link = NULL; + + if (update_effective_progs(cgrp, atype)) { + /* if update effective array failed replace the prog with a dummy prog*/ + pl->prog = old_prog; + pl->link = link; + purge_effective_progs(cgrp, old_prog, link, atype); + } + + /* now can actually delete it from this cgroup list */ + hlist_del(&pl->node); + cgrp->bpf.revisions[atype] += 1; + + kfree(pl); + if (hlist_empty(progs)) + /* last program was detached, reset flags to zero */ + cgrp->bpf.flags[atype] = 0; + if (old_prog) { + if (type == BPF_LSM_CGROUP) + bpf_trampoline_unlink_cgroup_shim(old_prog); + bpf_prog_put(old_prog); + } + static_branch_dec(&cgroup_bpf_enabled_key[atype]); + return 0; +} + +static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, + enum bpf_attach_type type, u64 revision) +{ + int ret; + + cgroup_lock(); + ret = __cgroup_bpf_detach(cgrp, prog, NULL, type, revision); + cgroup_unlock(); + return ret; +} + +/* Must be called with cgroup_mutex held to avoid races. */ +static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + __u32 __user *prog_attach_flags = u64_to_user_ptr(attr->query.prog_attach_flags); + bool effective_query = attr->query.query_flags & BPF_F_QUERY_EFFECTIVE; + __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); + enum bpf_attach_type type = attr->query.attach_type; + enum cgroup_bpf_attach_type from_atype, to_atype; + enum cgroup_bpf_attach_type atype; + struct bpf_prog_array *effective; + int cnt, ret = 0, i; + int total_cnt = 0; + u64 revision = 0; + u32 flags; + + if (effective_query && prog_attach_flags) + return -EINVAL; + + if (type == BPF_LSM_CGROUP) { + if (!effective_query && attr->query.prog_cnt && + prog_ids && !prog_attach_flags) + return -EINVAL; + + from_atype = CGROUP_LSM_START; + to_atype = CGROUP_LSM_END; + flags = 0; + } else { + from_atype = to_cgroup_bpf_attach_type(type); + if (from_atype < 0) + return -EINVAL; + to_atype = from_atype; + flags = cgrp->bpf.flags[from_atype]; + } + + for (atype = from_atype; atype <= to_atype; atype++) { + if (effective_query) { + effective = rcu_dereference_protected(cgrp->bpf.effective[atype], + lockdep_is_held(&cgroup_mutex)); + total_cnt += bpf_prog_array_length(effective); + } else { + total_cnt += prog_list_length(&cgrp->bpf.progs[atype], NULL); + } + } + + /* always output uattr->query.attach_flags as 0 during effective query */ + flags = effective_query ? 0 : flags; + if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) + return -EFAULT; + if (copy_to_user(&uattr->query.prog_cnt, &total_cnt, sizeof(total_cnt))) + return -EFAULT; + if (!effective_query && from_atype == to_atype) + revision = cgrp->bpf.revisions[from_atype]; + if (copy_to_user(&uattr->query.revision, &revision, sizeof(revision))) + return -EFAULT; + if (attr->query.prog_cnt == 0 || !prog_ids || !total_cnt) + /* return early if user requested only program count + flags */ + return 0; + + if (attr->query.prog_cnt < total_cnt) { + total_cnt = attr->query.prog_cnt; + ret = -ENOSPC; + } + + for (atype = from_atype; atype <= to_atype && total_cnt; atype++) { + if (effective_query) { + effective = rcu_dereference_protected(cgrp->bpf.effective[atype], + lockdep_is_held(&cgroup_mutex)); + cnt = min_t(int, bpf_prog_array_length(effective), total_cnt); + ret = bpf_prog_array_copy_to_user(effective, prog_ids, cnt); + } else { + struct hlist_head *progs; + struct bpf_prog_list *pl; + struct bpf_prog *prog; + u32 id; + + progs = &cgrp->bpf.progs[atype]; + cnt = min_t(int, prog_list_length(progs, NULL), total_cnt); + i = 0; + hlist_for_each_entry(pl, progs, node) { + prog = prog_list_prog(pl); + id = prog->aux->id; + if (copy_to_user(prog_ids + i, &id, sizeof(id))) + return -EFAULT; + if (++i == cnt) + break; + } + + if (prog_attach_flags) { + flags = cgrp->bpf.flags[atype]; + + for (i = 0; i < cnt; i++) + if (copy_to_user(prog_attach_flags + i, + &flags, sizeof(flags))) + return -EFAULT; + prog_attach_flags += cnt; + } + } + + prog_ids += cnt; + total_cnt -= cnt; + } + return ret; +} + +static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + int ret; + + cgroup_lock(); + ret = __cgroup_bpf_query(cgrp, attr, uattr); + cgroup_unlock(); + return ret; +} + +int cgroup_bpf_prog_attach(const union bpf_attr *attr, + enum bpf_prog_type ptype, struct bpf_prog *prog) +{ + struct bpf_prog *replace_prog = NULL; + struct cgroup *cgrp; + int ret; + + cgrp = cgroup_get_from_fd(attr->target_fd); + if (IS_ERR(cgrp)) + return PTR_ERR(cgrp); + + if ((attr->attach_flags & BPF_F_ALLOW_MULTI) && + (attr->attach_flags & BPF_F_REPLACE)) { + replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype); + if (IS_ERR(replace_prog)) { + cgroup_put(cgrp); + return PTR_ERR(replace_prog); + } + } + + ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL, + attr->attach_type, attr->attach_flags, + attr->relative_fd, attr->expected_revision); + + if (replace_prog) + bpf_prog_put(replace_prog); + cgroup_put(cgrp); + return ret; +} + +int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) +{ + struct bpf_prog *prog; + struct cgroup *cgrp; + int ret; + + cgrp = cgroup_get_from_fd(attr->target_fd); + if (IS_ERR(cgrp)) + return PTR_ERR(cgrp); + + prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); + if (IS_ERR(prog)) + prog = NULL; + + ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, attr->expected_revision); + if (prog) + bpf_prog_put(prog); + + cgroup_put(cgrp); + return ret; +} + +static void bpf_cgroup_link_release(struct bpf_link *link) +{ + struct bpf_cgroup_link *cg_link = + container_of(link, struct bpf_cgroup_link, link); + struct cgroup *cg; + + /* link might have been auto-detached by dying cgroup already, + * in that case our work is done here + */ + if (!cg_link->cgroup) + return; + + cgroup_lock(); + + /* re-check cgroup under lock again */ + if (!cg_link->cgroup) { + cgroup_unlock(); + return; + } + + WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link, + link->attach_type, 0)); + if (link->attach_type == BPF_LSM_CGROUP) + bpf_trampoline_unlink_cgroup_shim(cg_link->link.prog); + + cg = cg_link->cgroup; + cg_link->cgroup = NULL; + + cgroup_unlock(); + + cgroup_put(cg); +} + +static void bpf_cgroup_link_dealloc(struct bpf_link *link) +{ + struct bpf_cgroup_link *cg_link = + container_of(link, struct bpf_cgroup_link, link); + + kfree(cg_link); +} + +static int bpf_cgroup_link_detach(struct bpf_link *link) +{ + bpf_cgroup_link_release(link); + + return 0; +} + +static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link, + struct seq_file *seq) +{ + struct bpf_cgroup_link *cg_link = + container_of(link, struct bpf_cgroup_link, link); + u64 cg_id = 0; + + cgroup_lock(); + if (cg_link->cgroup) + cg_id = cgroup_id(cg_link->cgroup); + cgroup_unlock(); + + seq_printf(seq, + "cgroup_id:\t%llu\n" + "attach_type:\t%d\n", + cg_id, + link->attach_type); +} + +static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link, + struct bpf_link_info *info) +{ + struct bpf_cgroup_link *cg_link = + container_of(link, struct bpf_cgroup_link, link); + u64 cg_id = 0; + + cgroup_lock(); + if (cg_link->cgroup) + cg_id = cgroup_id(cg_link->cgroup); + cgroup_unlock(); + + info->cgroup.cgroup_id = cg_id; + info->cgroup.attach_type = link->attach_type; + return 0; +} + +static const struct bpf_link_ops bpf_cgroup_link_lops = { + .release = bpf_cgroup_link_release, + .dealloc = bpf_cgroup_link_dealloc, + .detach = bpf_cgroup_link_detach, + .update_prog = cgroup_bpf_replace, + .show_fdinfo = bpf_cgroup_link_show_fdinfo, + .fill_link_info = bpf_cgroup_link_fill_link_info, +}; + +#define BPF_F_LINK_ATTACH_MASK \ + (BPF_F_ID | \ + BPF_F_BEFORE | \ + BPF_F_AFTER | \ + BPF_F_PREORDER | \ + BPF_F_LINK) + +int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) +{ + struct bpf_link_primer link_primer; + struct bpf_cgroup_link *link; + struct cgroup *cgrp; + int err; + + if (attr->link_create.flags & (~BPF_F_LINK_ATTACH_MASK)) + return -EINVAL; + + cgrp = cgroup_get_from_fd(attr->link_create.target_fd); + if (IS_ERR(cgrp)) + return PTR_ERR(cgrp); + + link = kzalloc(sizeof(*link), GFP_USER); + if (!link) { + err = -ENOMEM; + goto out_put_cgroup; + } + bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops, + prog, attr->link_create.attach_type); + link->cgroup = cgrp; + + err = bpf_link_prime(&link->link, &link_primer); + if (err) { + kfree(link); + goto out_put_cgroup; + } + + err = cgroup_bpf_attach(cgrp, NULL, NULL, link, + link->link.attach_type, BPF_F_ALLOW_MULTI | attr->link_create.flags, + attr->link_create.cgroup.relative_fd, + attr->link_create.cgroup.expected_revision); + if (err) { + bpf_link_cleanup(&link_primer); + goto out_put_cgroup; + } + + return bpf_link_settle(&link_primer); + +out_put_cgroup: + cgroup_put(cgrp); + return err; +} + +int cgroup_bpf_prog_query(const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + struct cgroup *cgrp; + int ret; + + cgrp = cgroup_get_from_fd(attr->query.target_fd); + if (IS_ERR(cgrp)) + return PTR_ERR(cgrp); + + ret = cgroup_bpf_query(cgrp, attr, uattr); + + cgroup_put(cgrp); + return ret; +} + +/** + * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering + * @sk: The socket sending or receiving traffic + * @skb: The skb that is being sent or received + * @atype: The type of program to be executed + * + * If no socket is passed, or the socket is not of type INET or INET6, + * this function does nothing and returns 0. + * + * The program type passed in via @type must be suitable for network + * filtering. No further check is performed to assert that. + * + * For egress packets, this function can return: + * NET_XMIT_SUCCESS (0) - continue with packet output + * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr + * NET_XMIT_CN (2) - continue with packet output and notify TCP + * to call cwr + * -err - drop packet + * + * For ingress packets, this function will return -EPERM if any + * attached program was found and if it returned != 1 during execution. + * Otherwise 0 is returned. + */ +int __cgroup_bpf_run_filter_skb(struct sock *sk, + struct sk_buff *skb, + enum cgroup_bpf_attach_type atype) +{ + unsigned int offset = -skb_network_offset(skb); + struct sock *save_sk; + void *saved_data_end; + struct cgroup *cgrp; + int ret; + + if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) + return 0; + + cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); + save_sk = skb->sk; + skb->sk = sk; + __skb_push(skb, offset); + + /* compute pointers for the bpf prog */ + bpf_compute_and_save_data_end(skb, &saved_data_end); + + if (atype == CGROUP_INET_EGRESS) { + u32 flags = 0; + bool cn; + + ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb, + __bpf_prog_run_save_cb, 0, &flags); + + /* Return values of CGROUP EGRESS BPF programs are: + * 0: drop packet + * 1: keep packet + * 2: drop packet and cn + * 3: keep packet and cn + * + * The returned value is then converted to one of the NET_XMIT + * or an error code that is then interpreted as drop packet + * (and no cn): + * 0: NET_XMIT_SUCCESS skb should be transmitted + * 1: NET_XMIT_DROP skb should be dropped and cn + * 2: NET_XMIT_CN skb should be transmitted and cn + * 3: -err skb should be dropped + */ + + cn = flags & BPF_RET_SET_CN; + if (ret && !IS_ERR_VALUE((long)ret)) + ret = -EFAULT; + if (!ret) + ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS); + else + ret = (cn ? NET_XMIT_DROP : ret); + } else { + ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, + skb, __bpf_prog_run_save_cb, 0, + NULL); + if (ret && !IS_ERR_VALUE((long)ret)) + ret = -EFAULT; + } + bpf_restore_data_end(skb, saved_data_end); + __skb_pull(skb, offset); + skb->sk = save_sk; + + return ret; +} +EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); + +/** + * __cgroup_bpf_run_filter_sk() - Run a program on a sock + * @sk: sock structure to manipulate + * @atype: The type of program to be executed + * + * socket is passed is expected to be of type INET or INET6. + * + * The program type passed in via @type must be suitable for sock + * filtering. No further check is performed to assert that. + * + * This function will return %-EPERM if any if an attached program was found + * and if it returned != 1 during execution. In all other cases, 0 is returned. + */ +int __cgroup_bpf_run_filter_sk(struct sock *sk, + enum cgroup_bpf_attach_type atype) +{ + struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); + + return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0, + NULL); +} +EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); + +/** + * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and + * provided by user sockaddr + * @sk: sock struct that will use sockaddr + * @uaddr: sockaddr struct provided by user + * @uaddrlen: Pointer to the size of the sockaddr struct provided by user. It is + * read-only for AF_INET[6] uaddr but can be modified for AF_UNIX + * uaddr. + * @atype: The type of program to be executed + * @t_ctx: Pointer to attach type specific context + * @flags: Pointer to u32 which contains higher bits of BPF program + * return value (OR'ed together). + * + * socket is expected to be of type INET, INET6 or UNIX. + * + * This function will return %-EPERM if an attached program is found and + * returned value != 1 during execution. In all other cases, 0 is returned. + */ +int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, + struct sockaddr_unsized *uaddr, + int *uaddrlen, + enum cgroup_bpf_attach_type atype, + void *t_ctx, + u32 *flags) +{ + struct bpf_sock_addr_kern ctx = { + .sk = sk, + .uaddr = uaddr, + .t_ctx = t_ctx, + }; + struct sockaddr_storage storage; + struct cgroup *cgrp; + int ret; + + /* Check socket family since not all sockets represent network + * endpoint (e.g. AF_UNIX). + */ + if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6 && + sk->sk_family != AF_UNIX) + return 0; + + if (!ctx.uaddr) { + memset(&storage, 0, sizeof(storage)); + ctx.uaddr = (struct sockaddr_unsized *)&storage; + ctx.uaddrlen = 0; + } else { + ctx.uaddrlen = *uaddrlen; + } + + cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); + ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, + 0, flags); + + if (!ret && uaddr) + *uaddrlen = ctx.uaddrlen; + + return ret; +} +EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); + +/** + * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock + * @sk: socket to get cgroup from + * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains + * sk with connection information (IP addresses, etc.) May not contain + * cgroup info if it is a req sock. + * @atype: The type of program to be executed + * + * socket passed is expected to be of type INET or INET6. + * + * The program type passed in via @type must be suitable for sock_ops + * filtering. No further check is performed to assert that. + * + * This function will return %-EPERM if any if an attached program was found + * and if it returned != 1 during execution. In all other cases, 0 is returned. + */ +int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, + struct bpf_sock_ops_kern *sock_ops, + enum cgroup_bpf_attach_type atype) +{ + struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); + + return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run, + 0, NULL); +} +EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); + +int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, + short access, enum cgroup_bpf_attach_type atype) +{ + struct cgroup *cgrp; + struct bpf_cgroup_dev_ctx ctx = { + .access_type = (access << 16) | dev_type, + .major = major, + .minor = minor, + }; + int ret; + + rcu_read_lock(); + cgrp = task_dfl_cgroup(current); + ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, + NULL); + rcu_read_unlock(); + + return ret; +} + +BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) +{ + /* flags argument is not used now, + * but provides an ability to extend the API. + * verifier checks that its value is correct. + */ + enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); + struct bpf_cgroup_storage *storage; + struct bpf_cg_run_ctx *ctx; + void *ptr; + + /* get current cgroup storage from BPF run context */ + ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); + storage = ctx->prog_item->cgroup_storage[stype]; + + if (stype == BPF_CGROUP_STORAGE_SHARED) + ptr = &READ_ONCE(storage->buf)->data[0]; + else + ptr = this_cpu_ptr(storage->percpu_buf); + + return (unsigned long)ptr; +} + +const struct bpf_func_proto bpf_get_local_storage_proto = { + .func = bpf_get_local_storage, + .gpl_only = false, + .ret_type = RET_PTR_TO_MAP_VALUE, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_ANYTHING, +}; + +BPF_CALL_0(bpf_get_retval) +{ + struct bpf_cg_run_ctx *ctx = + container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); + + return ctx->retval; +} + +const struct bpf_func_proto bpf_get_retval_proto = { + .func = bpf_get_retval, + .gpl_only = false, + .ret_type = RET_INTEGER, +}; + +BPF_CALL_1(bpf_set_retval, int, retval) +{ + struct bpf_cg_run_ctx *ctx = + container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); + + ctx->retval = retval; + return 0; +} + +const struct bpf_func_proto bpf_set_retval_proto = { + .func = bpf_set_retval, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_ANYTHING, +}; + +static const struct bpf_func_proto * +cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) +{ + const struct bpf_func_proto *func_proto; + + func_proto = cgroup_common_func_proto(func_id, prog); + if (func_proto) + return func_proto; + + switch (func_id) { + case BPF_FUNC_perf_event_output: + return &bpf_event_output_data_proto; + default: + return bpf_base_func_proto(func_id, prog); + } +} + +static bool cgroup_dev_is_valid_access(int off, int size, + enum bpf_access_type type, + const struct bpf_prog *prog, + struct bpf_insn_access_aux *info) +{ + const int size_default = sizeof(__u32); + + if (type == BPF_WRITE) + return false; + + if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) + return false; + /* The verifier guarantees that size > 0. */ + if (off % size != 0) + return false; + + switch (off) { + case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): + bpf_ctx_record_field_size(info, size_default); + if (!bpf_ctx_narrow_access_ok(off, size, size_default)) + return false; + break; + default: + if (size != size_default) + return false; + } + + return true; +} + +const struct bpf_prog_ops cg_dev_prog_ops = { +}; + +const struct bpf_verifier_ops cg_dev_verifier_ops = { + .get_func_proto = cgroup_dev_func_proto, + .is_valid_access = cgroup_dev_is_valid_access, +}; + +/** + * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl + * + * @head: sysctl table header + * @table: sysctl table + * @write: sysctl is being read (= 0) or written (= 1) + * @buf: pointer to buffer (in and out) + * @pcount: value-result argument: value is size of buffer pointed to by @buf, + * result is size of @new_buf if program set new value, initial value + * otherwise + * @ppos: value-result argument: value is position at which read from or write + * to sysctl is happening, result is new position if program overrode it, + * initial value otherwise + * @atype: type of program to be executed + * + * Program is run when sysctl is being accessed, either read or written, and + * can allow or deny such access. + * + * This function will return %-EPERM if an attached program is found and + * returned value != 1 during execution. In all other cases 0 is returned. + */ +int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, + const struct ctl_table *table, int write, + char **buf, size_t *pcount, loff_t *ppos, + enum cgroup_bpf_attach_type atype) +{ + struct bpf_sysctl_kern ctx = { + .head = head, + .table = table, + .write = write, + .ppos = ppos, + .cur_val = NULL, + .cur_len = PAGE_SIZE, + .new_val = NULL, + .new_len = 0, + .new_updated = 0, + }; + struct cgroup *cgrp; + loff_t pos = 0; + int ret; + + ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL); + if (!ctx.cur_val || + table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) { + /* Let BPF program decide how to proceed. */ + ctx.cur_len = 0; + } + + if (write && *buf && *pcount) { + /* BPF program should be able to override new value with a + * buffer bigger than provided by user. + */ + ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL); + ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount); + if (ctx.new_val) { + memcpy(ctx.new_val, *buf, ctx.new_len); + } else { + /* Let BPF program decide how to proceed. */ + ctx.new_len = 0; + } + } + + rcu_read_lock(); + cgrp = task_dfl_cgroup(current); + ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0, + NULL); + rcu_read_unlock(); + + kfree(ctx.cur_val); + + if (ret == 1 && ctx.new_updated) { + kfree(*buf); + *buf = ctx.new_val; + *pcount = ctx.new_len; + } else { + kfree(ctx.new_val); + } + + return ret; +} + +#ifdef CONFIG_NET +static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen, + struct bpf_sockopt_buf *buf) +{ + if (unlikely(max_optlen < 0)) + return -EINVAL; + + if (unlikely(max_optlen > PAGE_SIZE)) { + /* We don't expose optvals that are greater than PAGE_SIZE + * to the BPF program. + */ + max_optlen = PAGE_SIZE; + } + + if (max_optlen <= sizeof(buf->data)) { + /* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE + * bytes avoid the cost of kzalloc. + */ + ctx->optval = buf->data; + ctx->optval_end = ctx->optval + max_optlen; + return max_optlen; + } + + ctx->optval = kzalloc(max_optlen, GFP_USER); + if (!ctx->optval) + return -ENOMEM; + + ctx->optval_end = ctx->optval + max_optlen; + + return max_optlen; +} + +static void sockopt_free_buf(struct bpf_sockopt_kern *ctx, + struct bpf_sockopt_buf *buf) +{ + if (ctx->optval == buf->data) + return; + kfree(ctx->optval); +} + +static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx, + struct bpf_sockopt_buf *buf) +{ + return ctx->optval != buf->data; +} + +int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, + int *optname, sockptr_t optval, + int *optlen, char **kernel_optval) +{ + struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); + struct bpf_sockopt_buf buf = {}; + struct bpf_sockopt_kern ctx = { + .sk = sk, + .level = *level, + .optname = *optname, + }; + int ret, max_optlen; + + /* Allocate a bit more than the initial user buffer for + * BPF program. The canonical use case is overriding + * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic). + */ + max_optlen = max_t(int, 16, *optlen); + max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); + if (max_optlen < 0) + return max_optlen; + + ctx.optlen = *optlen; + + if (copy_from_sockptr(ctx.optval, optval, + min(*optlen, max_optlen))) { + ret = -EFAULT; + goto out; + } + + lock_sock(sk); + ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT, + &ctx, bpf_prog_run, 0, NULL); + release_sock(sk); + + if (ret) + goto out; + + if (ctx.optlen == -1) { + /* optlen set to -1, bypass kernel */ + ret = 1; + } else if (ctx.optlen > max_optlen || ctx.optlen < -1) { + /* optlen is out of bounds */ + if (*optlen > PAGE_SIZE && ctx.optlen >= 0) { + pr_info_once("bpf setsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n", + ctx.optlen, max_optlen); + ret = 0; + goto out; + } + ret = -EFAULT; + } else { + /* optlen within bounds, run kernel handler */ + ret = 0; + + /* export any potential modifications */ + *level = ctx.level; + *optname = ctx.optname; + + /* optlen == 0 from BPF indicates that we should + * use original userspace data. + */ + if (ctx.optlen != 0) { + *optlen = ctx.optlen; + /* We've used bpf_sockopt_kern->buf as an intermediary + * storage, but the BPF program indicates that we need + * to pass this data to the kernel setsockopt handler. + * No way to export on-stack buf, have to allocate a + * new buffer. + */ + if (!sockopt_buf_allocated(&ctx, &buf)) { + void *p = kmalloc(ctx.optlen, GFP_USER); + + if (!p) { + ret = -ENOMEM; + goto out; + } + memcpy(p, ctx.optval, ctx.optlen); + *kernel_optval = p; + } else { + *kernel_optval = ctx.optval; + } + /* export and don't free sockopt buf */ + return 0; + } + } + +out: + sockopt_free_buf(&ctx, &buf); + return ret; +} + +int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, + int optname, sockptr_t optval, + sockptr_t optlen, int max_optlen, + int retval) +{ + struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); + struct bpf_sockopt_buf buf = {}; + struct bpf_sockopt_kern ctx = { + .sk = sk, + .level = level, + .optname = optname, + .current_task = current, + }; + int orig_optlen; + int ret; + + orig_optlen = max_optlen; + ctx.optlen = max_optlen; + max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf); + if (max_optlen < 0) + return max_optlen; + + if (!retval) { + /* If kernel getsockopt finished successfully, + * copy whatever was returned to the user back + * into our temporary buffer. Set optlen to the + * one that kernel returned as well to let + * BPF programs inspect the value. + */ + if (copy_from_sockptr(&ctx.optlen, optlen, + sizeof(ctx.optlen))) { + ret = -EFAULT; + goto out; + } + + if (ctx.optlen < 0) { + ret = -EFAULT; + goto out; + } + orig_optlen = ctx.optlen; + + if (copy_from_sockptr(ctx.optval, optval, + min(ctx.optlen, max_optlen))) { + ret = -EFAULT; + goto out; + } + } + + lock_sock(sk); + ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, + &ctx, bpf_prog_run, retval, NULL); + release_sock(sk); + + if (ret < 0) + goto out; + + if (!sockptr_is_null(optval) && + (ctx.optlen > max_optlen || ctx.optlen < 0)) { + if (orig_optlen > PAGE_SIZE && ctx.optlen >= 0) { + pr_info_once("bpf getsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n", + ctx.optlen, max_optlen); + ret = retval; + goto out; + } + ret = -EFAULT; + goto out; + } + + if (ctx.optlen != 0) { + if (!sockptr_is_null(optval) && + copy_to_sockptr(optval, ctx.optval, ctx.optlen)) { + ret = -EFAULT; + goto out; + } + if (copy_to_sockptr(optlen, &ctx.optlen, sizeof(ctx.optlen))) { + ret = -EFAULT; + goto out; + } + } + +out: + sockopt_free_buf(&ctx, &buf); + return ret; +} + +int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level, + int optname, void *optval, + int *optlen, int retval) +{ + struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); + struct bpf_sockopt_kern ctx = { + .sk = sk, + .level = level, + .optname = optname, + .optlen = *optlen, + .optval = optval, + .optval_end = optval + *optlen, + .current_task = current, + }; + int ret; + + /* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy + * user data back into BPF buffer when reval != 0. This is + * done as an optimization to avoid extra copy, assuming + * kernel won't populate the data in case of an error. + * Here we always pass the data and memset() should + * be called if that data shouldn't be "exported". + */ + + ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT, + &ctx, bpf_prog_run, retval, NULL); + if (ret < 0) + return ret; + + if (ctx.optlen > *optlen) + return -EFAULT; + + /* BPF programs can shrink the buffer, export the modifications. + */ + if (ctx.optlen != 0) + *optlen = ctx.optlen; + + return ret; +} +#endif + +static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, + size_t *lenp) +{ + ssize_t tmp_ret = 0, ret; + + if (dir->header.parent) { + tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp); + if (tmp_ret < 0) + return tmp_ret; + } + + ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp); + if (ret < 0) + return ret; + *bufp += ret; + *lenp -= ret; + ret += tmp_ret; + + /* Avoid leading slash. */ + if (!ret) + return ret; + + tmp_ret = strscpy(*bufp, "/", *lenp); + if (tmp_ret < 0) + return tmp_ret; + *bufp += tmp_ret; + *lenp -= tmp_ret; + + return ret + tmp_ret; +} + +BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, + size_t, buf_len, u64, flags) +{ + ssize_t tmp_ret = 0, ret; + + if (!buf) + return -EINVAL; + + if (!(flags & BPF_F_SYSCTL_BASE_NAME)) { + if (!ctx->head) + return -EINVAL; + tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len); + if (tmp_ret < 0) + return tmp_ret; + } + + ret = strscpy(buf, ctx->table->procname, buf_len); + + return ret < 0 ? ret : tmp_ret + ret; +} + +static const struct bpf_func_proto bpf_sysctl_get_name_proto = { + .func = bpf_sysctl_get_name, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_CTX, + .arg2_type = ARG_PTR_TO_MEM | MEM_WRITE, + .arg3_type = ARG_CONST_SIZE, + .arg4_type = ARG_ANYTHING, +}; + +static int copy_sysctl_value(char *dst, size_t dst_len, char *src, + size_t src_len) +{ + if (!dst) + return -EINVAL; + + if (!dst_len) + return -E2BIG; + + if (!src || !src_len) { + memset(dst, 0, dst_len); + return -EINVAL; + } + + memcpy(dst, src, min(dst_len, src_len)); + + if (dst_len > src_len) { + memset(dst + src_len, '\0', dst_len - src_len); + return src_len; + } + + dst[dst_len - 1] = '\0'; + + return -E2BIG; +} + +BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, + char *, buf, size_t, buf_len) +{ + return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len); +} + +static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = { + .func = bpf_sysctl_get_current_value, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_CTX, + .arg2_type = ARG_PTR_TO_UNINIT_MEM, + .arg3_type = ARG_CONST_SIZE, +}; + +BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, + size_t, buf_len) +{ + if (!ctx->write) { + if (buf && buf_len) + memset(buf, '\0', buf_len); + return -EINVAL; + } + return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len); +} + +static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = { + .func = bpf_sysctl_get_new_value, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_CTX, + .arg2_type = ARG_PTR_TO_UNINIT_MEM, + .arg3_type = ARG_CONST_SIZE, +}; + +BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, + const char *, buf, size_t, buf_len) +{ + if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len) + return -EINVAL; + + if (buf_len > PAGE_SIZE - 1) + return -E2BIG; + + memcpy(ctx->new_val, buf, buf_len); + ctx->new_len = buf_len; + ctx->new_updated = 1; + + return 0; +} + +static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = { + .func = bpf_sysctl_set_new_value, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_CTX, + .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, + .arg3_type = ARG_CONST_SIZE, +}; + +static const struct bpf_func_proto * +sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) +{ + const struct bpf_func_proto *func_proto; + + func_proto = cgroup_common_func_proto(func_id, prog); + if (func_proto) + return func_proto; + + switch (func_id) { + case BPF_FUNC_sysctl_get_name: + return &bpf_sysctl_get_name_proto; + case BPF_FUNC_sysctl_get_current_value: + return &bpf_sysctl_get_current_value_proto; + case BPF_FUNC_sysctl_get_new_value: + return &bpf_sysctl_get_new_value_proto; + case BPF_FUNC_sysctl_set_new_value: + return &bpf_sysctl_set_new_value_proto; + case BPF_FUNC_ktime_get_coarse_ns: + return &bpf_ktime_get_coarse_ns_proto; + case BPF_FUNC_perf_event_output: + return &bpf_event_output_data_proto; + default: + return bpf_base_func_proto(func_id, prog); + } +} + +static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type, + const struct bpf_prog *prog, + struct bpf_insn_access_aux *info) +{ + const int size_default = sizeof(__u32); + + if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size) + return false; + + switch (off) { + case bpf_ctx_range(struct bpf_sysctl, write): + if (type != BPF_READ) + return false; + bpf_ctx_record_field_size(info, size_default); + return bpf_ctx_narrow_access_ok(off, size, size_default); + case bpf_ctx_range(struct bpf_sysctl, file_pos): + if (type == BPF_READ) { + bpf_ctx_record_field_size(info, size_default); + return bpf_ctx_narrow_access_ok(off, size, size_default); + } else { + return size == size_default; + } + default: + return false; + } +} + +static u32 sysctl_convert_ctx_access(enum bpf_access_type type, + const struct bpf_insn *si, + struct bpf_insn *insn_buf, + struct bpf_prog *prog, u32 *target_size) +{ + struct bpf_insn *insn = insn_buf; + u32 read_size; + + switch (si->off) { + case offsetof(struct bpf_sysctl, write): + *insn++ = BPF_LDX_MEM( + BPF_SIZE(si->code), si->dst_reg, si->src_reg, + bpf_target_off(struct bpf_sysctl_kern, write, + sizeof_field(struct bpf_sysctl_kern, + write), + target_size)); + break; + case offsetof(struct bpf_sysctl, file_pos): + /* ppos is a pointer so it should be accessed via indirect + * loads and stores. Also for stores additional temporary + * register is used since neither src_reg nor dst_reg can be + * overridden. + */ + if (type == BPF_WRITE) { + int treg = BPF_REG_9; + + if (si->src_reg == treg || si->dst_reg == treg) + --treg; + if (si->src_reg == treg || si->dst_reg == treg) + --treg; + *insn++ = BPF_STX_MEM( + BPF_DW, si->dst_reg, treg, + offsetof(struct bpf_sysctl_kern, tmp_reg)); + *insn++ = BPF_LDX_MEM( + BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), + treg, si->dst_reg, + offsetof(struct bpf_sysctl_kern, ppos)); + *insn++ = BPF_RAW_INSN( + BPF_CLASS(si->code) | BPF_MEM | BPF_SIZEOF(u32), + treg, si->src_reg, + bpf_ctx_narrow_access_offset( + 0, sizeof(u32), sizeof(loff_t)), + si->imm); + *insn++ = BPF_LDX_MEM( + BPF_DW, treg, si->dst_reg, + offsetof(struct bpf_sysctl_kern, tmp_reg)); + } else { + *insn++ = BPF_LDX_MEM( + BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), + si->dst_reg, si->src_reg, + offsetof(struct bpf_sysctl_kern, ppos)); + read_size = bpf_size_to_bytes(BPF_SIZE(si->code)); + *insn++ = BPF_LDX_MEM( + BPF_SIZE(si->code), si->dst_reg, si->dst_reg, + bpf_ctx_narrow_access_offset( + 0, read_size, sizeof(loff_t))); + } + *target_size = sizeof(u32); + break; + } + + return insn - insn_buf; +} + +const struct bpf_verifier_ops cg_sysctl_verifier_ops = { + .get_func_proto = sysctl_func_proto, + .is_valid_access = sysctl_is_valid_access, + .convert_ctx_access = sysctl_convert_ctx_access, +}; + +const struct bpf_prog_ops cg_sysctl_prog_ops = { +}; + +#ifdef CONFIG_NET +BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx) +{ + const struct net *net = ctx ? sock_net(ctx->sk) : &init_net; + + return net->net_cookie; +} + +static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = { + .func = bpf_get_netns_cookie_sockopt, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_CTX_OR_NULL, +}; +#endif + +static const struct bpf_func_proto * +cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) +{ + const struct bpf_func_proto *func_proto; + + func_proto = cgroup_common_func_proto(func_id, prog); + if (func_proto) + return func_proto; + + switch (func_id) { +#ifdef CONFIG_NET + case BPF_FUNC_get_netns_cookie: + return &bpf_get_netns_cookie_sockopt_proto; + case BPF_FUNC_sk_storage_get: + return &bpf_sk_storage_get_proto; + case BPF_FUNC_sk_storage_delete: + return &bpf_sk_storage_delete_proto; + case BPF_FUNC_setsockopt: + if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) + return &bpf_sk_setsockopt_proto; + return NULL; + case BPF_FUNC_getsockopt: + if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT) + return &bpf_sk_getsockopt_proto; + return NULL; +#endif +#ifdef CONFIG_INET + case BPF_FUNC_tcp_sock: + return &bpf_tcp_sock_proto; +#endif + case BPF_FUNC_perf_event_output: + return &bpf_event_output_data_proto; + default: + return bpf_base_func_proto(func_id, prog); + } +} + +static bool cg_sockopt_is_valid_access(int off, int size, + enum bpf_access_type type, + const struct bpf_prog *prog, + struct bpf_insn_access_aux *info) +{ + const int size_default = sizeof(__u32); + + if (off < 0 || off >= sizeof(struct bpf_sockopt)) + return false; + + if (off % size != 0) + return false; + + if (type == BPF_WRITE) { + switch (off) { + case offsetof(struct bpf_sockopt, retval): + if (size != size_default) + return false; + return prog->expected_attach_type == + BPF_CGROUP_GETSOCKOPT; + case offsetof(struct bpf_sockopt, optname): + fallthrough; + case offsetof(struct bpf_sockopt, level): + if (size != size_default) + return false; + return prog->expected_attach_type == + BPF_CGROUP_SETSOCKOPT; + case offsetof(struct bpf_sockopt, optlen): + return size == size_default; + default: + return false; + } + } + + switch (off) { + case bpf_ctx_range_ptr(struct bpf_sockopt, sk): + if (size != sizeof(__u64)) + return false; + info->reg_type = PTR_TO_SOCKET; + break; + case bpf_ctx_range_ptr(struct bpf_sockopt, optval): + if (size != sizeof(__u64)) + return false; + info->reg_type = PTR_TO_PACKET; + break; + case bpf_ctx_range_ptr(struct bpf_sockopt, optval_end): + if (size != sizeof(__u64)) + return false; + info->reg_type = PTR_TO_PACKET_END; + break; + case bpf_ctx_range(struct bpf_sockopt, retval): + if (size != size_default) + return false; + return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT; + default: + if (size != size_default) + return false; + break; + } + return true; +} + +#define CG_SOCKOPT_READ_FIELD(F) \ + BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \ + si->dst_reg, si->src_reg, \ + offsetof(struct bpf_sockopt_kern, F)) + +#define CG_SOCKOPT_WRITE_FIELD(F) \ + BPF_RAW_INSN((BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F) | \ + BPF_MEM | BPF_CLASS(si->code)), \ + si->dst_reg, si->src_reg, \ + offsetof(struct bpf_sockopt_kern, F), \ + si->imm) + +static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type, + const struct bpf_insn *si, + struct bpf_insn *insn_buf, + struct bpf_prog *prog, + u32 *target_size) +{ + struct bpf_insn *insn = insn_buf; + + switch (si->off) { + case offsetof(struct bpf_sockopt, sk): + *insn++ = CG_SOCKOPT_READ_FIELD(sk); + break; + case offsetof(struct bpf_sockopt, level): + if (type == BPF_WRITE) + *insn++ = CG_SOCKOPT_WRITE_FIELD(level); + else + *insn++ = CG_SOCKOPT_READ_FIELD(level); + break; + case offsetof(struct bpf_sockopt, optname): + if (type == BPF_WRITE) + *insn++ = CG_SOCKOPT_WRITE_FIELD(optname); + else + *insn++ = CG_SOCKOPT_READ_FIELD(optname); + break; + case offsetof(struct bpf_sockopt, optlen): + if (type == BPF_WRITE) + *insn++ = CG_SOCKOPT_WRITE_FIELD(optlen); + else + *insn++ = CG_SOCKOPT_READ_FIELD(optlen); + break; + case offsetof(struct bpf_sockopt, retval): + BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0); + + if (type == BPF_WRITE) { + int treg = BPF_REG_9; + + if (si->src_reg == treg || si->dst_reg == treg) + --treg; + if (si->src_reg == treg || si->dst_reg == treg) + --treg; + *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg, + offsetof(struct bpf_sockopt_kern, tmp_reg)); + *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), + treg, si->dst_reg, + offsetof(struct bpf_sockopt_kern, current_task)); + *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), + treg, treg, + offsetof(struct task_struct, bpf_ctx)); + *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_MEM | + BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), + treg, si->src_reg, + offsetof(struct bpf_cg_run_ctx, retval), + si->imm); + *insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg, + offsetof(struct bpf_sockopt_kern, tmp_reg)); + } else { + *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task), + si->dst_reg, si->src_reg, + offsetof(struct bpf_sockopt_kern, current_task)); + *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx), + si->dst_reg, si->dst_reg, + offsetof(struct task_struct, bpf_ctx)); + *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval), + si->dst_reg, si->dst_reg, + offsetof(struct bpf_cg_run_ctx, retval)); + } + break; + case offsetof(struct bpf_sockopt, optval): + *insn++ = CG_SOCKOPT_READ_FIELD(optval); + break; + case offsetof(struct bpf_sockopt, optval_end): + *insn++ = CG_SOCKOPT_READ_FIELD(optval_end); + break; + } + + return insn - insn_buf; +} + +static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf, + bool direct_write, + const struct bpf_prog *prog) +{ + /* Nothing to do for sockopt argument. The data is kzalloc'ated. + */ + return 0; +} + +const struct bpf_verifier_ops cg_sockopt_verifier_ops = { + .get_func_proto = cg_sockopt_func_proto, + .is_valid_access = cg_sockopt_is_valid_access, + .convert_ctx_access = cg_sockopt_convert_ctx_access, + .gen_prologue = cg_sockopt_get_prologue, +}; + +const struct bpf_prog_ops cg_sockopt_prog_ops = { +}; + +/* Common helpers for cgroup hooks. */ +const struct bpf_func_proto * +cgroup_common_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) +{ + switch (func_id) { + case BPF_FUNC_get_local_storage: + return &bpf_get_local_storage_proto; + case BPF_FUNC_get_retval: + switch (prog->expected_attach_type) { + case BPF_CGROUP_INET_INGRESS: + case BPF_CGROUP_INET_EGRESS: + case BPF_CGROUP_SOCK_OPS: + case BPF_CGROUP_UDP4_RECVMSG: + case BPF_CGROUP_UDP6_RECVMSG: + case BPF_CGROUP_UNIX_RECVMSG: + case BPF_CGROUP_INET4_GETPEERNAME: + case BPF_CGROUP_INET6_GETPEERNAME: + case BPF_CGROUP_UNIX_GETPEERNAME: + case BPF_CGROUP_INET4_GETSOCKNAME: + case BPF_CGROUP_INET6_GETSOCKNAME: + case BPF_CGROUP_UNIX_GETSOCKNAME: + return NULL; + default: + return &bpf_get_retval_proto; + } + case BPF_FUNC_set_retval: + switch (prog->expected_attach_type) { + case BPF_CGROUP_INET_INGRESS: + case BPF_CGROUP_INET_EGRESS: + case BPF_CGROUP_SOCK_OPS: + case BPF_CGROUP_UDP4_RECVMSG: + case BPF_CGROUP_UDP6_RECVMSG: + case BPF_CGROUP_UNIX_RECVMSG: + case BPF_CGROUP_INET4_GETPEERNAME: + case BPF_CGROUP_INET6_GETPEERNAME: + case BPF_CGROUP_UNIX_GETPEERNAME: + case BPF_CGROUP_INET4_GETSOCKNAME: + case BPF_CGROUP_INET6_GETSOCKNAME: + case BPF_CGROUP_UNIX_GETSOCKNAME: + return NULL; + default: + return &bpf_set_retval_proto; + } + default: + return NULL; + } +} diff --git a/kernel/bpf/cgroup_iter.c b/kernel/bpf/cgroup_iter.c new file mode 100644 index 000000000000..f04a468cf6a7 --- /dev/null +++ b/kernel/bpf/cgroup_iter.c @@ -0,0 +1,359 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2022 Google */ +#include <linux/bpf.h> +#include <linux/btf_ids.h> +#include <linux/cgroup.h> +#include <linux/kernel.h> +#include <linux/seq_file.h> + +#include "../cgroup/cgroup-internal.h" /* cgroup_mutex and cgroup_is_dead */ + +/* cgroup_iter provides four modes of traversal to the cgroup hierarchy. + * + * 1. Walk the descendants of a cgroup in pre-order. + * 2. Walk the descendants of a cgroup in post-order. + * 3. Walk the ancestors of a cgroup. + * 4. Show the given cgroup only. + * + * For walking descendants, cgroup_iter can walk in either pre-order or + * post-order. For walking ancestors, the iter walks up from a cgroup to + * the root. + * + * The iter program can terminate the walk early by returning 1. Walk + * continues if prog returns 0. + * + * The prog can check (seq->num == 0) to determine whether this is + * the first element. The prog may also be passed a NULL cgroup, + * which means the walk has completed and the prog has a chance to + * do post-processing, such as outputting an epilogue. + * + * Note: the iter_prog is called with cgroup_mutex held. + * + * Currently only one session is supported, which means, depending on the + * volume of data bpf program intends to send to user space, the number + * of cgroups that can be walked is limited. For example, given the current + * buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each + * cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can + * be walked is 512. This is a limitation of cgroup_iter. If the output data + * is larger than the kernel buffer size, after all data in the kernel buffer + * is consumed by user space, the subsequent read() syscall will signal + * EOPNOTSUPP. In order to work around, the user may have to update their + * program to reduce the volume of data sent to output. For example, skip + * some uninteresting cgroups. + */ + +struct bpf_iter__cgroup { + __bpf_md_ptr(struct bpf_iter_meta *, meta); + __bpf_md_ptr(struct cgroup *, cgroup); +}; + +struct cgroup_iter_priv { + struct cgroup_subsys_state *start_css; + bool visited_all; + bool terminate; + int order; +}; + +static void *cgroup_iter_seq_start(struct seq_file *seq, loff_t *pos) +{ + struct cgroup_iter_priv *p = seq->private; + + cgroup_lock(); + + /* cgroup_iter doesn't support read across multiple sessions. */ + if (*pos > 0) { + if (p->visited_all) + return NULL; + + /* Haven't visited all, but because cgroup_mutex has dropped, + * return -EOPNOTSUPP to indicate incomplete iteration. + */ + return ERR_PTR(-EOPNOTSUPP); + } + + ++*pos; + p->terminate = false; + p->visited_all = false; + if (p->order == BPF_CGROUP_ITER_DESCENDANTS_PRE) + return css_next_descendant_pre(NULL, p->start_css); + else if (p->order == BPF_CGROUP_ITER_DESCENDANTS_POST) + return css_next_descendant_post(NULL, p->start_css); + else /* BPF_CGROUP_ITER_SELF_ONLY and BPF_CGROUP_ITER_ANCESTORS_UP */ + return p->start_css; +} + +static int __cgroup_iter_seq_show(struct seq_file *seq, + struct cgroup_subsys_state *css, int in_stop); + +static void cgroup_iter_seq_stop(struct seq_file *seq, void *v) +{ + struct cgroup_iter_priv *p = seq->private; + + cgroup_unlock(); + + /* pass NULL to the prog for post-processing */ + if (!v) { + __cgroup_iter_seq_show(seq, NULL, true); + p->visited_all = true; + } +} + +static void *cgroup_iter_seq_next(struct seq_file *seq, void *v, loff_t *pos) +{ + struct cgroup_subsys_state *curr = (struct cgroup_subsys_state *)v; + struct cgroup_iter_priv *p = seq->private; + + ++*pos; + if (p->terminate) + return NULL; + + if (p->order == BPF_CGROUP_ITER_DESCENDANTS_PRE) + return css_next_descendant_pre(curr, p->start_css); + else if (p->order == BPF_CGROUP_ITER_DESCENDANTS_POST) + return css_next_descendant_post(curr, p->start_css); + else if (p->order == BPF_CGROUP_ITER_ANCESTORS_UP) + return curr->parent; + else /* BPF_CGROUP_ITER_SELF_ONLY */ + return NULL; +} + +static int __cgroup_iter_seq_show(struct seq_file *seq, + struct cgroup_subsys_state *css, int in_stop) +{ + struct cgroup_iter_priv *p = seq->private; + struct bpf_iter__cgroup ctx; + struct bpf_iter_meta meta; + struct bpf_prog *prog; + int ret = 0; + + /* cgroup is dead, skip this element */ + if (css && cgroup_is_dead(css->cgroup)) + return 0; + + ctx.meta = &meta; + ctx.cgroup = css ? css->cgroup : NULL; + meta.seq = seq; + prog = bpf_iter_get_info(&meta, in_stop); + if (prog) + ret = bpf_iter_run_prog(prog, &ctx); + + /* if prog returns > 0, terminate after this element. */ + if (ret != 0) + p->terminate = true; + + return 0; +} + +static int cgroup_iter_seq_show(struct seq_file *seq, void *v) +{ + return __cgroup_iter_seq_show(seq, (struct cgroup_subsys_state *)v, + false); +} + +static const struct seq_operations cgroup_iter_seq_ops = { + .start = cgroup_iter_seq_start, + .next = cgroup_iter_seq_next, + .stop = cgroup_iter_seq_stop, + .show = cgroup_iter_seq_show, +}; + +BTF_ID_LIST_GLOBAL_SINGLE(bpf_cgroup_btf_id, struct, cgroup) + +static int cgroup_iter_seq_init(void *priv, struct bpf_iter_aux_info *aux) +{ + struct cgroup_iter_priv *p = (struct cgroup_iter_priv *)priv; + struct cgroup *cgrp = aux->cgroup.start; + + /* bpf_iter_attach_cgroup() has already acquired an extra reference + * for the start cgroup, but the reference may be released after + * cgroup_iter_seq_init(), so acquire another reference for the + * start cgroup. + */ + p->start_css = &cgrp->self; + css_get(p->start_css); + p->terminate = false; + p->visited_all = false; + p->order = aux->cgroup.order; + return 0; +} + +static void cgroup_iter_seq_fini(void *priv) +{ + struct cgroup_iter_priv *p = (struct cgroup_iter_priv *)priv; + + css_put(p->start_css); +} + +static const struct bpf_iter_seq_info cgroup_iter_seq_info = { + .seq_ops = &cgroup_iter_seq_ops, + .init_seq_private = cgroup_iter_seq_init, + .fini_seq_private = cgroup_iter_seq_fini, + .seq_priv_size = sizeof(struct cgroup_iter_priv), +}; + +static int bpf_iter_attach_cgroup(struct bpf_prog *prog, + union bpf_iter_link_info *linfo, + struct bpf_iter_aux_info *aux) +{ + int fd = linfo->cgroup.cgroup_fd; + u64 id = linfo->cgroup.cgroup_id; + int order = linfo->cgroup.order; + struct cgroup *cgrp; + + if (order != BPF_CGROUP_ITER_DESCENDANTS_PRE && + order != BPF_CGROUP_ITER_DESCENDANTS_POST && + order != BPF_CGROUP_ITER_ANCESTORS_UP && + order != BPF_CGROUP_ITER_SELF_ONLY) + return -EINVAL; + + if (fd && id) + return -EINVAL; + + if (fd) + cgrp = cgroup_v1v2_get_from_fd(fd); + else if (id) + cgrp = cgroup_get_from_id(id); + else /* walk the entire hierarchy by default. */ + cgrp = cgroup_get_from_path("/"); + + if (IS_ERR(cgrp)) + return PTR_ERR(cgrp); + + aux->cgroup.start = cgrp; + aux->cgroup.order = order; + return 0; +} + +static void bpf_iter_detach_cgroup(struct bpf_iter_aux_info *aux) +{ + cgroup_put(aux->cgroup.start); +} + +static void bpf_iter_cgroup_show_fdinfo(const struct bpf_iter_aux_info *aux, + struct seq_file *seq) +{ + char *buf; + + buf = kzalloc(PATH_MAX, GFP_KERNEL); + if (!buf) { + seq_puts(seq, "cgroup_path:\t<unknown>\n"); + goto show_order; + } + + /* If cgroup_path_ns() fails, buf will be an empty string, cgroup_path + * will print nothing. + * + * Path is in the calling process's cgroup namespace. + */ + cgroup_path_ns(aux->cgroup.start, buf, PATH_MAX, + current->nsproxy->cgroup_ns); + seq_printf(seq, "cgroup_path:\t%s\n", buf); + kfree(buf); + +show_order: + if (aux->cgroup.order == BPF_CGROUP_ITER_DESCENDANTS_PRE) + seq_puts(seq, "order: descendants_pre\n"); + else if (aux->cgroup.order == BPF_CGROUP_ITER_DESCENDANTS_POST) + seq_puts(seq, "order: descendants_post\n"); + else if (aux->cgroup.order == BPF_CGROUP_ITER_ANCESTORS_UP) + seq_puts(seq, "order: ancestors_up\n"); + else /* BPF_CGROUP_ITER_SELF_ONLY */ + seq_puts(seq, "order: self_only\n"); +} + +static int bpf_iter_cgroup_fill_link_info(const struct bpf_iter_aux_info *aux, + struct bpf_link_info *info) +{ + info->iter.cgroup.order = aux->cgroup.order; + info->iter.cgroup.cgroup_id = cgroup_id(aux->cgroup.start); + return 0; +} + +DEFINE_BPF_ITER_FUNC(cgroup, struct bpf_iter_meta *meta, + struct cgroup *cgroup) + +static struct bpf_iter_reg bpf_cgroup_reg_info = { + .target = "cgroup", + .feature = BPF_ITER_RESCHED, + .attach_target = bpf_iter_attach_cgroup, + .detach_target = bpf_iter_detach_cgroup, + .show_fdinfo = bpf_iter_cgroup_show_fdinfo, + .fill_link_info = bpf_iter_cgroup_fill_link_info, + .ctx_arg_info_size = 1, + .ctx_arg_info = { + { offsetof(struct bpf_iter__cgroup, cgroup), + PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, + }, + .seq_info = &cgroup_iter_seq_info, +}; + +static int __init bpf_cgroup_iter_init(void) +{ + bpf_cgroup_reg_info.ctx_arg_info[0].btf_id = bpf_cgroup_btf_id[0]; + return bpf_iter_reg_target(&bpf_cgroup_reg_info); +} + +late_initcall(bpf_cgroup_iter_init); + +struct bpf_iter_css { + __u64 __opaque[3]; +} __attribute__((aligned(8))); + +struct bpf_iter_css_kern { + struct cgroup_subsys_state *start; + struct cgroup_subsys_state *pos; + unsigned int flags; +} __attribute__((aligned(8))); + +__bpf_kfunc_start_defs(); + +__bpf_kfunc int bpf_iter_css_new(struct bpf_iter_css *it, + struct cgroup_subsys_state *start, unsigned int flags) +{ + struct bpf_iter_css_kern *kit = (void *)it; + + BUILD_BUG_ON(sizeof(struct bpf_iter_css_kern) > sizeof(struct bpf_iter_css)); + BUILD_BUG_ON(__alignof__(struct bpf_iter_css_kern) != __alignof__(struct bpf_iter_css)); + + kit->start = NULL; + switch (flags) { + case BPF_CGROUP_ITER_DESCENDANTS_PRE: + case BPF_CGROUP_ITER_DESCENDANTS_POST: + case BPF_CGROUP_ITER_ANCESTORS_UP: + break; + default: + return -EINVAL; + } + + kit->start = start; + kit->pos = NULL; + kit->flags = flags; + return 0; +} + +__bpf_kfunc struct cgroup_subsys_state *bpf_iter_css_next(struct bpf_iter_css *it) +{ + struct bpf_iter_css_kern *kit = (void *)it; + + if (!kit->start) + return NULL; + + switch (kit->flags) { + case BPF_CGROUP_ITER_DESCENDANTS_PRE: + kit->pos = css_next_descendant_pre(kit->pos, kit->start); + break; + case BPF_CGROUP_ITER_DESCENDANTS_POST: + kit->pos = css_next_descendant_post(kit->pos, kit->start); + break; + case BPF_CGROUP_ITER_ANCESTORS_UP: + kit->pos = kit->pos ? kit->pos->parent : kit->start; + } + + return kit->pos; +} + +__bpf_kfunc void bpf_iter_css_destroy(struct bpf_iter_css *it) +{ +} + +__bpf_kfunc_end_defs(); diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c new file mode 100644 index 000000000000..c8ae6ab31651 --- /dev/null +++ b/kernel/bpf/core.c @@ -0,0 +1,3340 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Linux Socket Filter - Kernel level socket filtering + * + * Based on the design of the Berkeley Packet Filter. The new + * internal format has been designed by PLUMgrid: + * + * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com + * + * Authors: + * + * Jay Schulist <jschlst@samba.org> + * Alexei Starovoitov <ast@plumgrid.com> + * Daniel Borkmann <dborkman@redhat.com> + * + * Andi Kleen - Fix a few bad bugs and races. + * Kris Katterjohn - Added many additional checks in bpf_check_classic() + */ + +#include <uapi/linux/btf.h> +#include <crypto/sha1.h> +#include <linux/filter.h> +#include <linux/skbuff.h> +#include <linux/vmalloc.h> +#include <linux/prandom.h> +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/objtool.h> +#include <linux/overflow.h> +#include <linux/rbtree_latch.h> +#include <linux/kallsyms.h> +#include <linux/rcupdate.h> +#include <linux/perf_event.h> +#include <linux/extable.h> +#include <linux/log2.h> +#include <linux/bpf_verifier.h> +#include <linux/nodemask.h> +#include <linux/nospec.h> +#include <linux/bpf_mem_alloc.h> +#include <linux/memcontrol.h> +#include <linux/execmem.h> +#include <crypto/sha2.h> + +#include <asm/barrier.h> +#include <linux/unaligned.h> + +/* Registers */ +#define BPF_R0 regs[BPF_REG_0] +#define BPF_R1 regs[BPF_REG_1] +#define BPF_R2 regs[BPF_REG_2] +#define BPF_R3 regs[BPF_REG_3] +#define BPF_R4 regs[BPF_REG_4] +#define BPF_R5 regs[BPF_REG_5] +#define BPF_R6 regs[BPF_REG_6] +#define BPF_R7 regs[BPF_REG_7] +#define BPF_R8 regs[BPF_REG_8] +#define BPF_R9 regs[BPF_REG_9] +#define BPF_R10 regs[BPF_REG_10] + +/* Named registers */ +#define DST regs[insn->dst_reg] +#define SRC regs[insn->src_reg] +#define FP regs[BPF_REG_FP] +#define AX regs[BPF_REG_AX] +#define ARG1 regs[BPF_REG_ARG1] +#define CTX regs[BPF_REG_CTX] +#define OFF insn->off +#define IMM insn->imm + +struct bpf_mem_alloc bpf_global_ma; +bool bpf_global_ma_set; + +/* No hurry in this branch + * + * Exported for the bpf jit load helper. + */ +void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size) +{ + u8 *ptr = NULL; + + if (k >= SKF_NET_OFF) { + ptr = skb_network_header(skb) + k - SKF_NET_OFF; + } else if (k >= SKF_LL_OFF) { + if (unlikely(!skb_mac_header_was_set(skb))) + return NULL; + ptr = skb_mac_header(skb) + k - SKF_LL_OFF; + } + if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb)) + return ptr; + + return NULL; +} + +/* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */ +enum page_size_enum { + __PAGE_SIZE = PAGE_SIZE +}; + +struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags) +{ + gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags); + struct bpf_prog_aux *aux; + struct bpf_prog *fp; + + size = round_up(size, __PAGE_SIZE); + fp = __vmalloc(size, gfp_flags); + if (fp == NULL) + return NULL; + + aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags)); + if (aux == NULL) { + vfree(fp); + return NULL; + } + fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags)); + if (!fp->active) { + vfree(fp); + kfree(aux); + return NULL; + } + + fp->pages = size / PAGE_SIZE; + fp->aux = aux; + fp->aux->main_prog_aux = aux; + fp->aux->prog = fp; + fp->jit_requested = ebpf_jit_enabled(); + fp->blinding_requested = bpf_jit_blinding_enabled(fp); +#ifdef CONFIG_CGROUP_BPF + aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID; +#endif + + INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode); +#ifdef CONFIG_FINEIBT + INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode); +#endif + mutex_init(&fp->aux->used_maps_mutex); + mutex_init(&fp->aux->ext_mutex); + mutex_init(&fp->aux->dst_mutex); + +#ifdef CONFIG_BPF_SYSCALL + bpf_prog_stream_init(fp); +#endif + + return fp; +} + +struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags) +{ + gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags); + struct bpf_prog *prog; + int cpu; + + prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags); + if (!prog) + return NULL; + + prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags); + if (!prog->stats) { + free_percpu(prog->active); + kfree(prog->aux); + vfree(prog); + return NULL; + } + + for_each_possible_cpu(cpu) { + struct bpf_prog_stats *pstats; + + pstats = per_cpu_ptr(prog->stats, cpu); + u64_stats_init(&pstats->syncp); + } + return prog; +} +EXPORT_SYMBOL_GPL(bpf_prog_alloc); + +int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog) +{ + if (!prog->aux->nr_linfo || !prog->jit_requested) + return 0; + + prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo, + sizeof(*prog->aux->jited_linfo), + bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN)); + if (!prog->aux->jited_linfo) + return -ENOMEM; + + return 0; +} + +void bpf_prog_jit_attempt_done(struct bpf_prog *prog) +{ + if (prog->aux->jited_linfo && + (!prog->jited || !prog->aux->jited_linfo[0])) { + kvfree(prog->aux->jited_linfo); + prog->aux->jited_linfo = NULL; + } + + kfree(prog->aux->kfunc_tab); + prog->aux->kfunc_tab = NULL; +} + +/* The jit engine is responsible to provide an array + * for insn_off to the jited_off mapping (insn_to_jit_off). + * + * The idx to this array is the insn_off. Hence, the insn_off + * here is relative to the prog itself instead of the main prog. + * This array has one entry for each xlated bpf insn. + * + * jited_off is the byte off to the end of the jited insn. + * + * Hence, with + * insn_start: + * The first bpf insn off of the prog. The insn off + * here is relative to the main prog. + * e.g. if prog is a subprog, insn_start > 0 + * linfo_idx: + * The prog's idx to prog->aux->linfo and jited_linfo + * + * jited_linfo[linfo_idx] = prog->bpf_func + * + * For i > linfo_idx, + * + * jited_linfo[i] = prog->bpf_func + + * insn_to_jit_off[linfo[i].insn_off - insn_start - 1] + */ +void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, + const u32 *insn_to_jit_off) +{ + u32 linfo_idx, insn_start, insn_end, nr_linfo, i; + const struct bpf_line_info *linfo; + void **jited_linfo; + + if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt) + /* Userspace did not provide linfo */ + return; + + linfo_idx = prog->aux->linfo_idx; + linfo = &prog->aux->linfo[linfo_idx]; + insn_start = linfo[0].insn_off; + insn_end = insn_start + prog->len; + + jited_linfo = &prog->aux->jited_linfo[linfo_idx]; + jited_linfo[0] = prog->bpf_func; + + nr_linfo = prog->aux->nr_linfo - linfo_idx; + + for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++) + /* The verifier ensures that linfo[i].insn_off is + * strictly increasing + */ + jited_linfo[i] = prog->bpf_func + + insn_to_jit_off[linfo[i].insn_off - insn_start - 1]; +} + +struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, + gfp_t gfp_extra_flags) +{ + gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags); + struct bpf_prog *fp; + u32 pages; + + size = round_up(size, PAGE_SIZE); + pages = size / PAGE_SIZE; + if (pages <= fp_old->pages) + return fp_old; + + fp = __vmalloc(size, gfp_flags); + if (fp) { + memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE); + fp->pages = pages; + fp->aux->prog = fp; + + /* We keep fp->aux from fp_old around in the new + * reallocated structure. + */ + fp_old->aux = NULL; + fp_old->stats = NULL; + fp_old->active = NULL; + __bpf_prog_free(fp_old); + } + + return fp; +} + +void __bpf_prog_free(struct bpf_prog *fp) +{ + if (fp->aux) { + mutex_destroy(&fp->aux->used_maps_mutex); + mutex_destroy(&fp->aux->dst_mutex); + kfree(fp->aux->poke_tab); + kfree(fp->aux); + } + free_percpu(fp->stats); + free_percpu(fp->active); + vfree(fp); +} + +int bpf_prog_calc_tag(struct bpf_prog *fp) +{ + size_t size = bpf_prog_insn_size(fp); + struct bpf_insn *dst; + bool was_ld_map; + u32 i; + + dst = vmalloc(size); + if (!dst) + return -ENOMEM; + + /* We need to take out the map fd for the digest calculation + * since they are unstable from user space side. + */ + for (i = 0, was_ld_map = false; i < fp->len; i++) { + dst[i] = fp->insnsi[i]; + if (!was_ld_map && + dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) && + (dst[i].src_reg == BPF_PSEUDO_MAP_FD || + dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) { + was_ld_map = true; + dst[i].imm = 0; + } else if (was_ld_map && + dst[i].code == 0 && + dst[i].dst_reg == 0 && + dst[i].src_reg == 0 && + dst[i].off == 0) { + was_ld_map = false; + dst[i].imm = 0; + } else { + was_ld_map = false; + } + } + sha256((u8 *)dst, size, fp->digest); + vfree(dst); + return 0; +} + +static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old, + s32 end_new, s32 curr, const bool probe_pass) +{ + const s64 imm_min = S32_MIN, imm_max = S32_MAX; + s32 delta = end_new - end_old; + s64 imm = insn->imm; + + if (curr < pos && curr + imm + 1 >= end_old) + imm += delta; + else if (curr >= end_new && curr + imm + 1 < end_new) + imm -= delta; + if (imm < imm_min || imm > imm_max) + return -ERANGE; + if (!probe_pass) + insn->imm = imm; + return 0; +} + +static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old, + s32 end_new, s32 curr, const bool probe_pass) +{ + s64 off_min, off_max, off; + s32 delta = end_new - end_old; + + if (insn->code == (BPF_JMP32 | BPF_JA)) { + off = insn->imm; + off_min = S32_MIN; + off_max = S32_MAX; + } else { + off = insn->off; + off_min = S16_MIN; + off_max = S16_MAX; + } + + if (curr < pos && curr + off + 1 >= end_old) + off += delta; + else if (curr >= end_new && curr + off + 1 < end_new) + off -= delta; + if (off < off_min || off > off_max) + return -ERANGE; + if (!probe_pass) { + if (insn->code == (BPF_JMP32 | BPF_JA)) + insn->imm = off; + else + insn->off = off; + } + return 0; +} + +static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old, + s32 end_new, const bool probe_pass) +{ + u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0); + struct bpf_insn *insn = prog->insnsi; + int ret = 0; + + for (i = 0; i < insn_cnt; i++, insn++) { + u8 code; + + /* In the probing pass we still operate on the original, + * unpatched image in order to check overflows before we + * do any other adjustments. Therefore skip the patchlet. + */ + if (probe_pass && i == pos) { + i = end_new; + insn = prog->insnsi + end_old; + } + if (bpf_pseudo_func(insn)) { + ret = bpf_adj_delta_to_imm(insn, pos, end_old, + end_new, i, probe_pass); + if (ret) + return ret; + continue; + } + code = insn->code; + if ((BPF_CLASS(code) != BPF_JMP && + BPF_CLASS(code) != BPF_JMP32) || + BPF_OP(code) == BPF_EXIT) + continue; + /* Adjust offset of jmps if we cross patch boundaries. */ + if (BPF_OP(code) == BPF_CALL) { + if (insn->src_reg != BPF_PSEUDO_CALL) + continue; + ret = bpf_adj_delta_to_imm(insn, pos, end_old, + end_new, i, probe_pass); + } else { + ret = bpf_adj_delta_to_off(insn, pos, end_old, + end_new, i, probe_pass); + } + if (ret) + break; + } + + return ret; +} + +static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta) +{ + struct bpf_line_info *linfo; + u32 i, nr_linfo; + + nr_linfo = prog->aux->nr_linfo; + if (!nr_linfo || !delta) + return; + + linfo = prog->aux->linfo; + + for (i = 0; i < nr_linfo; i++) + if (off < linfo[i].insn_off) + break; + + /* Push all off < linfo[i].insn_off by delta */ + for (; i < nr_linfo; i++) + linfo[i].insn_off += delta; +} + +struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, + const struct bpf_insn *patch, u32 len) +{ + u32 insn_adj_cnt, insn_rest, insn_delta = len - 1; + const u32 cnt_max = S16_MAX; + struct bpf_prog *prog_adj; + int err; + + /* Since our patchlet doesn't expand the image, we're done. */ + if (insn_delta == 0) { + memcpy(prog->insnsi + off, patch, sizeof(*patch)); + return prog; + } + + insn_adj_cnt = prog->len + insn_delta; + + /* Reject anything that would potentially let the insn->off + * target overflow when we have excessive program expansions. + * We need to probe here before we do any reallocation where + * we afterwards may not fail anymore. + */ + if (insn_adj_cnt > cnt_max && + (err = bpf_adj_branches(prog, off, off + 1, off + len, true))) + return ERR_PTR(err); + + /* Several new instructions need to be inserted. Make room + * for them. Likely, there's no need for a new allocation as + * last page could have large enough tailroom. + */ + prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt), + GFP_USER); + if (!prog_adj) + return ERR_PTR(-ENOMEM); + + prog_adj->len = insn_adj_cnt; + + /* Patching happens in 3 steps: + * + * 1) Move over tail of insnsi from next instruction onwards, + * so we can patch the single target insn with one or more + * new ones (patching is always from 1 to n insns, n > 0). + * 2) Inject new instructions at the target location. + * 3) Adjust branch offsets if necessary. + */ + insn_rest = insn_adj_cnt - off - len; + + memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1, + sizeof(*patch) * insn_rest); + memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len); + + /* We are guaranteed to not fail at this point, otherwise + * the ship has sailed to reverse to the original state. An + * overflow cannot happen at this point. + */ + BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false)); + + bpf_adj_linfo(prog_adj, off, insn_delta); + + return prog_adj; +} + +int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt) +{ + int err; + + /* Branch offsets can't overflow when program is shrinking, no need + * to call bpf_adj_branches(..., true) here + */ + memmove(prog->insnsi + off, prog->insnsi + off + cnt, + sizeof(struct bpf_insn) * (prog->len - off - cnt)); + prog->len -= cnt; + + err = bpf_adj_branches(prog, off, off + cnt, off, false); + WARN_ON_ONCE(err); + return err; +} + +static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp) +{ + int i; + + for (i = 0; i < fp->aux->real_func_cnt; i++) + bpf_prog_kallsyms_del(fp->aux->func[i]); +} + +void bpf_prog_kallsyms_del_all(struct bpf_prog *fp) +{ + bpf_prog_kallsyms_del_subprogs(fp); + bpf_prog_kallsyms_del(fp); +} + +#ifdef CONFIG_BPF_JIT +/* All BPF JIT sysctl knobs here. */ +int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); +int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON); +int bpf_jit_harden __read_mostly; +long bpf_jit_limit __read_mostly; +long bpf_jit_limit_max __read_mostly; + +static void +bpf_prog_ksym_set_addr(struct bpf_prog *prog) +{ + WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog)); + + prog->aux->ksym.start = (unsigned long) prog->bpf_func; + prog->aux->ksym.end = prog->aux->ksym.start + prog->jited_len; +} + +static void +bpf_prog_ksym_set_name(struct bpf_prog *prog) +{ + char *sym = prog->aux->ksym.name; + const char *end = sym + KSYM_NAME_LEN; + const struct btf_type *type; + const char *func_name; + + BUILD_BUG_ON(sizeof("bpf_prog_") + + sizeof(prog->tag) * 2 + + /* name has been null terminated. + * We should need +1 for the '_' preceding + * the name. However, the null character + * is double counted between the name and the + * sizeof("bpf_prog_") above, so we omit + * the +1 here. + */ + sizeof(prog->aux->name) > KSYM_NAME_LEN); + + sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_"); + sym = bin2hex(sym, prog->tag, sizeof(prog->tag)); + + /* prog->aux->name will be ignored if full btf name is available */ + if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) { + type = btf_type_by_id(prog->aux->btf, + prog->aux->func_info[prog->aux->func_idx].type_id); + func_name = btf_name_by_offset(prog->aux->btf, type->name_off); + snprintf(sym, (size_t)(end - sym), "_%s", func_name); + return; + } + + if (prog->aux->name[0]) + snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name); + else + *sym = 0; +} + +static unsigned long bpf_get_ksym_start(struct latch_tree_node *n) +{ + return container_of(n, struct bpf_ksym, tnode)->start; +} + +static __always_inline bool bpf_tree_less(struct latch_tree_node *a, + struct latch_tree_node *b) +{ + return bpf_get_ksym_start(a) < bpf_get_ksym_start(b); +} + +static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n) +{ + unsigned long val = (unsigned long)key; + const struct bpf_ksym *ksym; + + ksym = container_of(n, struct bpf_ksym, tnode); + + if (val < ksym->start) + return -1; + /* Ensure that we detect return addresses as part of the program, when + * the final instruction is a call for a program part of the stack + * trace. Therefore, do val > ksym->end instead of val >= ksym->end. + */ + if (val > ksym->end) + return 1; + + return 0; +} + +static const struct latch_tree_ops bpf_tree_ops = { + .less = bpf_tree_less, + .comp = bpf_tree_comp, +}; + +static DEFINE_SPINLOCK(bpf_lock); +static LIST_HEAD(bpf_kallsyms); +static struct latch_tree_root bpf_tree __cacheline_aligned; + +void bpf_ksym_add(struct bpf_ksym *ksym) +{ + spin_lock_bh(&bpf_lock); + WARN_ON_ONCE(!list_empty(&ksym->lnode)); + list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms); + latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops); + spin_unlock_bh(&bpf_lock); +} + +static void __bpf_ksym_del(struct bpf_ksym *ksym) +{ + if (list_empty(&ksym->lnode)) + return; + + latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops); + list_del_rcu(&ksym->lnode); +} + +void bpf_ksym_del(struct bpf_ksym *ksym) +{ + spin_lock_bh(&bpf_lock); + __bpf_ksym_del(ksym); + spin_unlock_bh(&bpf_lock); +} + +static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp) +{ + return fp->jited && !bpf_prog_was_classic(fp); +} + +void bpf_prog_kallsyms_add(struct bpf_prog *fp) +{ + if (!bpf_prog_kallsyms_candidate(fp) || + !bpf_token_capable(fp->aux->token, CAP_BPF)) + return; + + bpf_prog_ksym_set_addr(fp); + bpf_prog_ksym_set_name(fp); + fp->aux->ksym.prog = true; + + bpf_ksym_add(&fp->aux->ksym); + +#ifdef CONFIG_FINEIBT + /* + * When FineIBT, code in the __cfi_foo() symbols can get executed + * and hence unwinder needs help. + */ + if (cfi_mode != CFI_FINEIBT) + return; + + snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN, + "__cfi_%s", fp->aux->ksym.name); + + fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16; + fp->aux->ksym_prefix.end = (unsigned long) fp->bpf_func; + + bpf_ksym_add(&fp->aux->ksym_prefix); +#endif +} + +void bpf_prog_kallsyms_del(struct bpf_prog *fp) +{ + if (!bpf_prog_kallsyms_candidate(fp)) + return; + + bpf_ksym_del(&fp->aux->ksym); +#ifdef CONFIG_FINEIBT + if (cfi_mode != CFI_FINEIBT) + return; + bpf_ksym_del(&fp->aux->ksym_prefix); +#endif +} + +static struct bpf_ksym *bpf_ksym_find(unsigned long addr) +{ + struct latch_tree_node *n; + + n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops); + return n ? container_of(n, struct bpf_ksym, tnode) : NULL; +} + +int __bpf_address_lookup(unsigned long addr, unsigned long *size, + unsigned long *off, char *sym) +{ + struct bpf_ksym *ksym; + int ret = 0; + + rcu_read_lock(); + ksym = bpf_ksym_find(addr); + if (ksym) { + unsigned long symbol_start = ksym->start; + unsigned long symbol_end = ksym->end; + + ret = strscpy(sym, ksym->name, KSYM_NAME_LEN); + + if (size) + *size = symbol_end - symbol_start; + if (off) + *off = addr - symbol_start; + } + rcu_read_unlock(); + + return ret; +} + +bool is_bpf_text_address(unsigned long addr) +{ + bool ret; + + rcu_read_lock(); + ret = bpf_ksym_find(addr) != NULL; + rcu_read_unlock(); + + return ret; +} + +struct bpf_prog *bpf_prog_ksym_find(unsigned long addr) +{ + struct bpf_ksym *ksym; + + WARN_ON_ONCE(!rcu_read_lock_held()); + ksym = bpf_ksym_find(addr); + + return ksym && ksym->prog ? + container_of(ksym, struct bpf_prog_aux, ksym)->prog : + NULL; +} + +const struct exception_table_entry *search_bpf_extables(unsigned long addr) +{ + const struct exception_table_entry *e = NULL; + struct bpf_prog *prog; + + rcu_read_lock(); + prog = bpf_prog_ksym_find(addr); + if (!prog) + goto out; + if (!prog->aux->num_exentries) + goto out; + + e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr); +out: + rcu_read_unlock(); + return e; +} + +int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, + char *sym) +{ + struct bpf_ksym *ksym; + unsigned int it = 0; + int ret = -ERANGE; + + if (!bpf_jit_kallsyms_enabled()) + return ret; + + rcu_read_lock(); + list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) { + if (it++ != symnum) + continue; + + strscpy(sym, ksym->name, KSYM_NAME_LEN); + + *value = ksym->start; + *type = BPF_SYM_ELF_TYPE; + + ret = 0; + break; + } + rcu_read_unlock(); + + return ret; +} + +int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, + struct bpf_jit_poke_descriptor *poke) +{ + struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; + static const u32 poke_tab_max = 1024; + u32 slot = prog->aux->size_poke_tab; + u32 size = slot + 1; + + if (size > poke_tab_max) + return -ENOSPC; + if (poke->tailcall_target || poke->tailcall_target_stable || + poke->tailcall_bypass || poke->adj_off || poke->bypass_addr) + return -EINVAL; + + switch (poke->reason) { + case BPF_POKE_REASON_TAIL_CALL: + if (!poke->tail_call.map) + return -EINVAL; + break; + default: + return -EINVAL; + } + + tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL); + if (!tab) + return -ENOMEM; + + memcpy(&tab[slot], poke, sizeof(*poke)); + prog->aux->size_poke_tab = size; + prog->aux->poke_tab = tab; + + return slot; +} + +/* + * BPF program pack allocator. + * + * Most BPF programs are pretty small. Allocating a hole page for each + * program is sometime a waste. Many small bpf program also adds pressure + * to instruction TLB. To solve this issue, we introduce a BPF program pack + * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86) + * to host BPF programs. + */ +#define BPF_PROG_CHUNK_SHIFT 6 +#define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT) +#define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1)) + +struct bpf_prog_pack { + struct list_head list; + void *ptr; + unsigned long bitmap[]; +}; + +void bpf_jit_fill_hole_with_zero(void *area, unsigned int size) +{ + memset(area, 0, size); +} + +#define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE) + +static DEFINE_MUTEX(pack_mutex); +static LIST_HEAD(pack_list); + +/* PMD_SIZE is not available in some special config, e.g. ARCH=arm with + * CONFIG_MMU=n. Use PAGE_SIZE in these cases. + */ +#ifdef PMD_SIZE +/* PMD_SIZE is really big for some archs. It doesn't make sense to + * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to + * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be + * greater than or equal to 2MB. + */ +#define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes()) +#else +#define BPF_PROG_PACK_SIZE PAGE_SIZE +#endif + +#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE) + +static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns) +{ + struct bpf_prog_pack *pack; + int err; + + pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)), + GFP_KERNEL); + if (!pack) + return NULL; + pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE); + if (!pack->ptr) + goto out; + bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE); + bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE); + + set_vm_flush_reset_perms(pack->ptr); + err = set_memory_rox((unsigned long)pack->ptr, + BPF_PROG_PACK_SIZE / PAGE_SIZE); + if (err) + goto out; + list_add_tail(&pack->list, &pack_list); + return pack; + +out: + bpf_jit_free_exec(pack->ptr); + kfree(pack); + return NULL; +} + +void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns) +{ + unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size); + struct bpf_prog_pack *pack; + unsigned long pos; + void *ptr = NULL; + + mutex_lock(&pack_mutex); + if (size > BPF_PROG_PACK_SIZE) { + size = round_up(size, PAGE_SIZE); + ptr = bpf_jit_alloc_exec(size); + if (ptr) { + int err; + + bpf_fill_ill_insns(ptr, size); + set_vm_flush_reset_perms(ptr); + err = set_memory_rox((unsigned long)ptr, + size / PAGE_SIZE); + if (err) { + bpf_jit_free_exec(ptr); + ptr = NULL; + } + } + goto out; + } + list_for_each_entry(pack, &pack_list, list) { + pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, + nbits, 0); + if (pos < BPF_PROG_CHUNK_COUNT) + goto found_free_area; + } + + pack = alloc_new_pack(bpf_fill_ill_insns); + if (!pack) + goto out; + + pos = 0; + +found_free_area: + bitmap_set(pack->bitmap, pos, nbits); + ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT); + +out: + mutex_unlock(&pack_mutex); + return ptr; +} + +void bpf_prog_pack_free(void *ptr, u32 size) +{ + struct bpf_prog_pack *pack = NULL, *tmp; + unsigned int nbits; + unsigned long pos; + + mutex_lock(&pack_mutex); + if (size > BPF_PROG_PACK_SIZE) { + bpf_jit_free_exec(ptr); + goto out; + } + + list_for_each_entry(tmp, &pack_list, list) { + if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) { + pack = tmp; + break; + } + } + + if (WARN_ONCE(!pack, "bpf_prog_pack bug\n")) + goto out; + + nbits = BPF_PROG_SIZE_TO_NBITS(size); + pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT; + + WARN_ONCE(bpf_arch_text_invalidate(ptr, size), + "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n"); + + bitmap_clear(pack->bitmap, pos, nbits); + if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0, + BPF_PROG_CHUNK_COUNT, 0) == 0) { + list_del(&pack->list); + bpf_jit_free_exec(pack->ptr); + kfree(pack); + } +out: + mutex_unlock(&pack_mutex); +} + +static atomic_long_t bpf_jit_current; + +/* Can be overridden by an arch's JIT compiler if it has a custom, + * dedicated BPF backend memory area, or if neither of the two + * below apply. + */ +u64 __weak bpf_jit_alloc_exec_limit(void) +{ +#if defined(MODULES_VADDR) + return MODULES_END - MODULES_VADDR; +#else + return VMALLOC_END - VMALLOC_START; +#endif +} + +static int __init bpf_jit_charge_init(void) +{ + /* Only used as heuristic here to derive limit. */ + bpf_jit_limit_max = bpf_jit_alloc_exec_limit(); + bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1, + PAGE_SIZE), LONG_MAX); + return 0; +} +pure_initcall(bpf_jit_charge_init); + +int bpf_jit_charge_modmem(u32 size) +{ + if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) { + if (!bpf_capable()) { + atomic_long_sub(size, &bpf_jit_current); + return -EPERM; + } + } + + return 0; +} + +void bpf_jit_uncharge_modmem(u32 size) +{ + atomic_long_sub(size, &bpf_jit_current); +} + +void *__weak bpf_jit_alloc_exec(unsigned long size) +{ + return execmem_alloc(EXECMEM_BPF, size); +} + +void __weak bpf_jit_free_exec(void *addr) +{ + execmem_free(addr); +} + +struct bpf_binary_header * +bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, + unsigned int alignment, + bpf_jit_fill_hole_t bpf_fill_ill_insns) +{ + struct bpf_binary_header *hdr; + u32 size, hole, start; + + WARN_ON_ONCE(!is_power_of_2(alignment) || + alignment > BPF_IMAGE_ALIGNMENT); + + /* Most of BPF filters are really small, but if some of them + * fill a page, allow at least 128 extra bytes to insert a + * random section of illegal instructions. + */ + size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE); + + if (bpf_jit_charge_modmem(size)) + return NULL; + hdr = bpf_jit_alloc_exec(size); + if (!hdr) { + bpf_jit_uncharge_modmem(size); + return NULL; + } + + /* Fill space with illegal/arch-dep instructions. */ + bpf_fill_ill_insns(hdr, size); + + hdr->size = size; + hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)), + PAGE_SIZE - sizeof(*hdr)); + start = get_random_u32_below(hole) & ~(alignment - 1); + + /* Leave a random number of instructions before BPF code. */ + *image_ptr = &hdr->image[start]; + + return hdr; +} + +void bpf_jit_binary_free(struct bpf_binary_header *hdr) +{ + u32 size = hdr->size; + + bpf_jit_free_exec(hdr); + bpf_jit_uncharge_modmem(size); +} + +/* Allocate jit binary from bpf_prog_pack allocator. + * Since the allocated memory is RO+X, the JIT engine cannot write directly + * to the memory. To solve this problem, a RW buffer is also allocated at + * as the same time. The JIT engine should calculate offsets based on the + * RO memory address, but write JITed program to the RW buffer. Once the + * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies + * the JITed program to the RO memory. + */ +struct bpf_binary_header * +bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr, + unsigned int alignment, + struct bpf_binary_header **rw_header, + u8 **rw_image, + bpf_jit_fill_hole_t bpf_fill_ill_insns) +{ + struct bpf_binary_header *ro_header; + u32 size, hole, start; + + WARN_ON_ONCE(!is_power_of_2(alignment) || + alignment > BPF_IMAGE_ALIGNMENT); + + /* add 16 bytes for a random section of illegal instructions */ + size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE); + + if (bpf_jit_charge_modmem(size)) + return NULL; + ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns); + if (!ro_header) { + bpf_jit_uncharge_modmem(size); + return NULL; + } + + *rw_header = kvmalloc(size, GFP_KERNEL); + if (!*rw_header) { + bpf_prog_pack_free(ro_header, size); + bpf_jit_uncharge_modmem(size); + return NULL; + } + + /* Fill space with illegal/arch-dep instructions. */ + bpf_fill_ill_insns(*rw_header, size); + (*rw_header)->size = size; + + hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)), + BPF_PROG_CHUNK_SIZE - sizeof(*ro_header)); + start = get_random_u32_below(hole) & ~(alignment - 1); + + *image_ptr = &ro_header->image[start]; + *rw_image = &(*rw_header)->image[start]; + + return ro_header; +} + +/* Copy JITed text from rw_header to its final location, the ro_header. */ +int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header, + struct bpf_binary_header *rw_header) +{ + void *ptr; + + ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size); + + kvfree(rw_header); + + if (IS_ERR(ptr)) { + bpf_prog_pack_free(ro_header, ro_header->size); + return PTR_ERR(ptr); + } + return 0; +} + +/* bpf_jit_binary_pack_free is called in two different scenarios: + * 1) when the program is freed after; + * 2) when the JIT engine fails (before bpf_jit_binary_pack_finalize). + * For case 2), we need to free both the RO memory and the RW buffer. + * + * bpf_jit_binary_pack_free requires proper ro_header->size. However, + * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size + * must be set with either bpf_jit_binary_pack_finalize (normal path) or + * bpf_arch_text_copy (when jit fails). + */ +void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, + struct bpf_binary_header *rw_header) +{ + u32 size = ro_header->size; + + bpf_prog_pack_free(ro_header, size); + kvfree(rw_header); + bpf_jit_uncharge_modmem(size); +} + +struct bpf_binary_header * +bpf_jit_binary_pack_hdr(const struct bpf_prog *fp) +{ + unsigned long real_start = (unsigned long)fp->bpf_func; + unsigned long addr; + + addr = real_start & BPF_PROG_CHUNK_MASK; + return (void *)addr; +} + +static inline struct bpf_binary_header * +bpf_jit_binary_hdr(const struct bpf_prog *fp) +{ + unsigned long real_start = (unsigned long)fp->bpf_func; + unsigned long addr; + + addr = real_start & PAGE_MASK; + return (void *)addr; +} + +/* This symbol is only overridden by archs that have different + * requirements than the usual eBPF JITs, f.e. when they only + * implement cBPF JIT, do not set images read-only, etc. + */ +void __weak bpf_jit_free(struct bpf_prog *fp) +{ + if (fp->jited) { + struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp); + + bpf_jit_binary_free(hdr); + WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp)); + } + + bpf_prog_unlock_free(fp); +} + +int bpf_jit_get_func_addr(const struct bpf_prog *prog, + const struct bpf_insn *insn, bool extra_pass, + u64 *func_addr, bool *func_addr_fixed) +{ + s16 off = insn->off; + s32 imm = insn->imm; + u8 *addr; + int err; + + *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL; + if (!*func_addr_fixed) { + /* Place-holder address till the last pass has collected + * all addresses for JITed subprograms in which case we + * can pick them up from prog->aux. + */ + if (!extra_pass) + addr = NULL; + else if (prog->aux->func && + off >= 0 && off < prog->aux->real_func_cnt) + addr = (u8 *)prog->aux->func[off]->bpf_func; + else + return -EINVAL; + } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && + bpf_jit_supports_far_kfunc_call()) { + err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr); + if (err) + return err; + } else { + /* Address of a BPF helper call. Since part of the core + * kernel, it's always at a fixed location. __bpf_call_base + * and the helper with imm relative to it are both in core + * kernel. + */ + addr = (u8 *)__bpf_call_base + imm; + } + + *func_addr = (unsigned long)addr; + return 0; +} + +const char *bpf_jit_get_prog_name(struct bpf_prog *prog) +{ + if (prog->aux->ksym.prog) + return prog->aux->ksym.name; + return prog->aux->name; +} + +static int bpf_jit_blind_insn(const struct bpf_insn *from, + const struct bpf_insn *aux, + struct bpf_insn *to_buff, + bool emit_zext) +{ + struct bpf_insn *to = to_buff; + u32 imm_rnd = get_random_u32(); + s16 off; + + BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG); + BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG); + + /* Constraints on AX register: + * + * AX register is inaccessible from user space. It is mapped in + * all JITs, and used here for constant blinding rewrites. It is + * typically "stateless" meaning its contents are only valid within + * the executed instruction, but not across several instructions. + * There are a few exceptions however which are further detailed + * below. + * + * Constant blinding is only used by JITs, not in the interpreter. + * The interpreter uses AX in some occasions as a local temporary + * register e.g. in DIV or MOD instructions. + * + * In restricted circumstances, the verifier can also use the AX + * register for rewrites as long as they do not interfere with + * the above cases! + */ + if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX) + goto out; + + if (from->imm == 0 && + (from->code == (BPF_ALU | BPF_MOV | BPF_K) || + from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) { + *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg); + goto out; + } + + switch (from->code) { + case BPF_ALU | BPF_ADD | BPF_K: + case BPF_ALU | BPF_SUB | BPF_K: + case BPF_ALU | BPF_AND | BPF_K: + case BPF_ALU | BPF_OR | BPF_K: + case BPF_ALU | BPF_XOR | BPF_K: + case BPF_ALU | BPF_MUL | BPF_K: + case BPF_ALU | BPF_MOV | BPF_K: + case BPF_ALU | BPF_DIV | BPF_K: + case BPF_ALU | BPF_MOD | BPF_K: + *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); + *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); + *to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off); + break; + + case BPF_ALU64 | BPF_ADD | BPF_K: + case BPF_ALU64 | BPF_SUB | BPF_K: + case BPF_ALU64 | BPF_AND | BPF_K: + case BPF_ALU64 | BPF_OR | BPF_K: + case BPF_ALU64 | BPF_XOR | BPF_K: + case BPF_ALU64 | BPF_MUL | BPF_K: + case BPF_ALU64 | BPF_MOV | BPF_K: + case BPF_ALU64 | BPF_DIV | BPF_K: + case BPF_ALU64 | BPF_MOD | BPF_K: + *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); + *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); + *to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off); + break; + + case BPF_JMP | BPF_JEQ | BPF_K: + case BPF_JMP | BPF_JNE | BPF_K: + case BPF_JMP | BPF_JGT | BPF_K: + case BPF_JMP | BPF_JLT | BPF_K: + case BPF_JMP | BPF_JGE | BPF_K: + case BPF_JMP | BPF_JLE | BPF_K: + case BPF_JMP | BPF_JSGT | BPF_K: + case BPF_JMP | BPF_JSLT | BPF_K: + case BPF_JMP | BPF_JSGE | BPF_K: + case BPF_JMP | BPF_JSLE | BPF_K: + case BPF_JMP | BPF_JSET | BPF_K: + /* Accommodate for extra offset in case of a backjump. */ + off = from->off; + if (off < 0) + off -= 2; + *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); + *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); + *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off); + break; + + case BPF_JMP32 | BPF_JEQ | BPF_K: + case BPF_JMP32 | BPF_JNE | BPF_K: + case BPF_JMP32 | BPF_JGT | BPF_K: + case BPF_JMP32 | BPF_JLT | BPF_K: + case BPF_JMP32 | BPF_JGE | BPF_K: + case BPF_JMP32 | BPF_JLE | BPF_K: + case BPF_JMP32 | BPF_JSGT | BPF_K: + case BPF_JMP32 | BPF_JSLT | BPF_K: + case BPF_JMP32 | BPF_JSGE | BPF_K: + case BPF_JMP32 | BPF_JSLE | BPF_K: + case BPF_JMP32 | BPF_JSET | BPF_K: + /* Accommodate for extra offset in case of a backjump. */ + off = from->off; + if (off < 0) + off -= 2; + *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); + *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); + *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX, + off); + break; + + case BPF_LD | BPF_IMM | BPF_DW: + *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm); + *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); + *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); + *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX); + break; + case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */ + *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm); + *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); + if (emit_zext) + *to++ = BPF_ZEXT_REG(BPF_REG_AX); + *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX); + break; + + case BPF_ST | BPF_MEM | BPF_DW: + case BPF_ST | BPF_MEM | BPF_W: + case BPF_ST | BPF_MEM | BPF_H: + case BPF_ST | BPF_MEM | BPF_B: + *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm); + *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd); + *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off); + break; + } +out: + return to - to_buff; +} + +static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other, + gfp_t gfp_extra_flags) +{ + gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags; + struct bpf_prog *fp; + + fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags); + if (fp != NULL) { + /* aux->prog still points to the fp_other one, so + * when promoting the clone to the real program, + * this still needs to be adapted. + */ + memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE); + } + + return fp; +} + +static void bpf_prog_clone_free(struct bpf_prog *fp) +{ + /* aux was stolen by the other clone, so we cannot free + * it from this path! It will be freed eventually by the + * other program on release. + * + * At this point, we don't need a deferred release since + * clone is guaranteed to not be locked. + */ + fp->aux = NULL; + fp->stats = NULL; + fp->active = NULL; + __bpf_prog_free(fp); +} + +void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other) +{ + /* We have to repoint aux->prog to self, as we don't + * know whether fp here is the clone or the original. + */ + fp->aux->prog = fp; + bpf_prog_clone_free(fp_other); +} + +static void adjust_insn_arrays(struct bpf_prog *prog, u32 off, u32 len) +{ +#ifdef CONFIG_BPF_SYSCALL + struct bpf_map *map; + int i; + + if (len <= 1) + return; + + for (i = 0; i < prog->aux->used_map_cnt; i++) { + map = prog->aux->used_maps[i]; + if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) + bpf_insn_array_adjust(map, off, len); + } +#endif +} + +struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog) +{ + struct bpf_insn insn_buff[16], aux[2]; + struct bpf_prog *clone, *tmp; + int insn_delta, insn_cnt; + struct bpf_insn *insn; + int i, rewritten; + + if (!prog->blinding_requested || prog->blinded) + return prog; + + clone = bpf_prog_clone_create(prog, GFP_USER); + if (!clone) + return ERR_PTR(-ENOMEM); + + insn_cnt = clone->len; + insn = clone->insnsi; + + for (i = 0; i < insn_cnt; i++, insn++) { + if (bpf_pseudo_func(insn)) { + /* ld_imm64 with an address of bpf subprog is not + * a user controlled constant. Don't randomize it, + * since it will conflict with jit_subprogs() logic. + */ + insn++; + i++; + continue; + } + + /* We temporarily need to hold the original ld64 insn + * so that we can still access the first part in the + * second blinding run. + */ + if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) && + insn[1].code == 0) + memcpy(aux, insn, sizeof(aux)); + + rewritten = bpf_jit_blind_insn(insn, aux, insn_buff, + clone->aux->verifier_zext); + if (!rewritten) + continue; + + tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten); + if (IS_ERR(tmp)) { + /* Patching may have repointed aux->prog during + * realloc from the original one, so we need to + * fix it up here on error. + */ + bpf_jit_prog_release_other(prog, clone); + return tmp; + } + + clone = tmp; + insn_delta = rewritten - 1; + + /* Instructions arrays must be updated using absolute xlated offsets */ + adjust_insn_arrays(clone, prog->aux->subprog_start + i, rewritten); + + /* Walk new program and skip insns we just inserted. */ + insn = clone->insnsi + i + insn_delta; + insn_cnt += insn_delta; + i += insn_delta; + } + + clone->blinded = 1; + return clone; +} +#endif /* CONFIG_BPF_JIT */ + +/* Base function for offset calculation. Needs to go into .text section, + * therefore keeping it non-static as well; will also be used by JITs + * anyway later on, so do not let the compiler omit it. This also needs + * to go into kallsyms for correlation from e.g. bpftool, so naming + * must not change. + */ +noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) +{ + return 0; +} +EXPORT_SYMBOL_GPL(__bpf_call_base); + +/* All UAPI available opcodes. */ +#define BPF_INSN_MAP(INSN_2, INSN_3) \ + /* 32 bit ALU operations. */ \ + /* Register based. */ \ + INSN_3(ALU, ADD, X), \ + INSN_3(ALU, SUB, X), \ + INSN_3(ALU, AND, X), \ + INSN_3(ALU, OR, X), \ + INSN_3(ALU, LSH, X), \ + INSN_3(ALU, RSH, X), \ + INSN_3(ALU, XOR, X), \ + INSN_3(ALU, MUL, X), \ + INSN_3(ALU, MOV, X), \ + INSN_3(ALU, ARSH, X), \ + INSN_3(ALU, DIV, X), \ + INSN_3(ALU, MOD, X), \ + INSN_2(ALU, NEG), \ + INSN_3(ALU, END, TO_BE), \ + INSN_3(ALU, END, TO_LE), \ + /* Immediate based. */ \ + INSN_3(ALU, ADD, K), \ + INSN_3(ALU, SUB, K), \ + INSN_3(ALU, AND, K), \ + INSN_3(ALU, OR, K), \ + INSN_3(ALU, LSH, K), \ + INSN_3(ALU, RSH, K), \ + INSN_3(ALU, XOR, K), \ + INSN_3(ALU, MUL, K), \ + INSN_3(ALU, MOV, K), \ + INSN_3(ALU, ARSH, K), \ + INSN_3(ALU, DIV, K), \ + INSN_3(ALU, MOD, K), \ + /* 64 bit ALU operations. */ \ + /* Register based. */ \ + INSN_3(ALU64, ADD, X), \ + INSN_3(ALU64, SUB, X), \ + INSN_3(ALU64, AND, X), \ + INSN_3(ALU64, OR, X), \ + INSN_3(ALU64, LSH, X), \ + INSN_3(ALU64, RSH, X), \ + INSN_3(ALU64, XOR, X), \ + INSN_3(ALU64, MUL, X), \ + INSN_3(ALU64, MOV, X), \ + INSN_3(ALU64, ARSH, X), \ + INSN_3(ALU64, DIV, X), \ + INSN_3(ALU64, MOD, X), \ + INSN_2(ALU64, NEG), \ + INSN_3(ALU64, END, TO_LE), \ + /* Immediate based. */ \ + INSN_3(ALU64, ADD, K), \ + INSN_3(ALU64, SUB, K), \ + INSN_3(ALU64, AND, K), \ + INSN_3(ALU64, OR, K), \ + INSN_3(ALU64, LSH, K), \ + INSN_3(ALU64, RSH, K), \ + INSN_3(ALU64, XOR, K), \ + INSN_3(ALU64, MUL, K), \ + INSN_3(ALU64, MOV, K), \ + INSN_3(ALU64, ARSH, K), \ + INSN_3(ALU64, DIV, K), \ + INSN_3(ALU64, MOD, K), \ + /* Call instruction. */ \ + INSN_2(JMP, CALL), \ + /* Exit instruction. */ \ + INSN_2(JMP, EXIT), \ + /* 32-bit Jump instructions. */ \ + /* Register based. */ \ + INSN_3(JMP32, JEQ, X), \ + INSN_3(JMP32, JNE, X), \ + INSN_3(JMP32, JGT, X), \ + INSN_3(JMP32, JLT, X), \ + INSN_3(JMP32, JGE, X), \ + INSN_3(JMP32, JLE, X), \ + INSN_3(JMP32, JSGT, X), \ + INSN_3(JMP32, JSLT, X), \ + INSN_3(JMP32, JSGE, X), \ + INSN_3(JMP32, JSLE, X), \ + INSN_3(JMP32, JSET, X), \ + /* Immediate based. */ \ + INSN_3(JMP32, JEQ, K), \ + INSN_3(JMP32, JNE, K), \ + INSN_3(JMP32, JGT, K), \ + INSN_3(JMP32, JLT, K), \ + INSN_3(JMP32, JGE, K), \ + INSN_3(JMP32, JLE, K), \ + INSN_3(JMP32, JSGT, K), \ + INSN_3(JMP32, JSLT, K), \ + INSN_3(JMP32, JSGE, K), \ + INSN_3(JMP32, JSLE, K), \ + INSN_3(JMP32, JSET, K), \ + /* Jump instructions. */ \ + /* Register based. */ \ + INSN_3(JMP, JEQ, X), \ + INSN_3(JMP, JNE, X), \ + INSN_3(JMP, JGT, X), \ + INSN_3(JMP, JLT, X), \ + INSN_3(JMP, JGE, X), \ + INSN_3(JMP, JLE, X), \ + INSN_3(JMP, JSGT, X), \ + INSN_3(JMP, JSLT, X), \ + INSN_3(JMP, JSGE, X), \ + INSN_3(JMP, JSLE, X), \ + INSN_3(JMP, JSET, X), \ + /* Immediate based. */ \ + INSN_3(JMP, JEQ, K), \ + INSN_3(JMP, JNE, K), \ + INSN_3(JMP, JGT, K), \ + INSN_3(JMP, JLT, K), \ + INSN_3(JMP, JGE, K), \ + INSN_3(JMP, JLE, K), \ + INSN_3(JMP, JSGT, K), \ + INSN_3(JMP, JSLT, K), \ + INSN_3(JMP, JSGE, K), \ + INSN_3(JMP, JSLE, K), \ + INSN_3(JMP, JSET, K), \ + INSN_2(JMP, JA), \ + INSN_2(JMP32, JA), \ + /* Atomic operations. */ \ + INSN_3(STX, ATOMIC, B), \ + INSN_3(STX, ATOMIC, H), \ + INSN_3(STX, ATOMIC, W), \ + INSN_3(STX, ATOMIC, DW), \ + /* Store instructions. */ \ + /* Register based. */ \ + INSN_3(STX, MEM, B), \ + INSN_3(STX, MEM, H), \ + INSN_3(STX, MEM, W), \ + INSN_3(STX, MEM, DW), \ + /* Immediate based. */ \ + INSN_3(ST, MEM, B), \ + INSN_3(ST, MEM, H), \ + INSN_3(ST, MEM, W), \ + INSN_3(ST, MEM, DW), \ + /* Load instructions. */ \ + /* Register based. */ \ + INSN_3(LDX, MEM, B), \ + INSN_3(LDX, MEM, H), \ + INSN_3(LDX, MEM, W), \ + INSN_3(LDX, MEM, DW), \ + INSN_3(LDX, MEMSX, B), \ + INSN_3(LDX, MEMSX, H), \ + INSN_3(LDX, MEMSX, W), \ + /* Immediate based. */ \ + INSN_3(LD, IMM, DW) + +bool bpf_opcode_in_insntable(u8 code) +{ +#define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true +#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true + static const bool public_insntable[256] = { + [0 ... 255] = false, + /* Now overwrite non-defaults ... */ + BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL), + /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */ + [BPF_LD | BPF_ABS | BPF_B] = true, + [BPF_LD | BPF_ABS | BPF_H] = true, + [BPF_LD | BPF_ABS | BPF_W] = true, + [BPF_LD | BPF_IND | BPF_B] = true, + [BPF_LD | BPF_IND | BPF_H] = true, + [BPF_LD | BPF_IND | BPF_W] = true, + [BPF_JMP | BPF_JA | BPF_X] = true, + [BPF_JMP | BPF_JCOND] = true, + }; +#undef BPF_INSN_3_TBL +#undef BPF_INSN_2_TBL + return public_insntable[code]; +} + +#ifndef CONFIG_BPF_JIT_ALWAYS_ON +/** + * ___bpf_prog_run - run eBPF program on a given context + * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers + * @insn: is the array of eBPF instructions + * + * Decode and execute eBPF instructions. + * + * Return: whatever value is in %BPF_R0 at program exit + */ +static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn) +{ +#define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y +#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z + static const void * const jumptable[256] __annotate_jump_table = { + [0 ... 255] = &&default_label, + /* Now overwrite non-defaults ... */ + BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL), + /* Non-UAPI available opcodes. */ + [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS, + [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL, + [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC, + [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B, + [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H, + [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W, + [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW, + [BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B, + [BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H, + [BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W, + }; +#undef BPF_INSN_3_LBL +#undef BPF_INSN_2_LBL + u32 tail_call_cnt = 0; + +#define CONT ({ insn++; goto select_insn; }) +#define CONT_JMP ({ insn++; goto select_insn; }) + +select_insn: + goto *jumptable[insn->code]; + + /* Explicitly mask the register-based shift amounts with 63 or 31 + * to avoid undefined behavior. Normally this won't affect the + * generated code, for example, in case of native 64 bit archs such + * as x86-64 or arm64, the compiler is optimizing the AND away for + * the interpreter. In case of JITs, each of the JIT backends compiles + * the BPF shift operations to machine instructions which produce + * implementation-defined results in such a case; the resulting + * contents of the register may be arbitrary, but program behaviour + * as a whole remains defined. In other words, in case of JIT backends, + * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation. + */ + /* ALU (shifts) */ +#define SHT(OPCODE, OP) \ + ALU64_##OPCODE##_X: \ + DST = DST OP (SRC & 63); \ + CONT; \ + ALU_##OPCODE##_X: \ + DST = (u32) DST OP ((u32) SRC & 31); \ + CONT; \ + ALU64_##OPCODE##_K: \ + DST = DST OP IMM; \ + CONT; \ + ALU_##OPCODE##_K: \ + DST = (u32) DST OP (u32) IMM; \ + CONT; + /* ALU (rest) */ +#define ALU(OPCODE, OP) \ + ALU64_##OPCODE##_X: \ + DST = DST OP SRC; \ + CONT; \ + ALU_##OPCODE##_X: \ + DST = (u32) DST OP (u32) SRC; \ + CONT; \ + ALU64_##OPCODE##_K: \ + DST = DST OP IMM; \ + CONT; \ + ALU_##OPCODE##_K: \ + DST = (u32) DST OP (u32) IMM; \ + CONT; + ALU(ADD, +) + ALU(SUB, -) + ALU(AND, &) + ALU(OR, |) + ALU(XOR, ^) + ALU(MUL, *) + SHT(LSH, <<) + SHT(RSH, >>) +#undef SHT +#undef ALU + ALU_NEG: + DST = (u32) -DST; + CONT; + ALU64_NEG: + DST = -DST; + CONT; + ALU_MOV_X: + switch (OFF) { + case 0: + DST = (u32) SRC; + break; + case 8: + DST = (u32)(s8) SRC; + break; + case 16: + DST = (u32)(s16) SRC; + break; + } + CONT; + ALU_MOV_K: + DST = (u32) IMM; + CONT; + ALU64_MOV_X: + switch (OFF) { + case 0: + DST = SRC; + break; + case 8: + DST = (s8) SRC; + break; + case 16: + DST = (s16) SRC; + break; + case 32: + DST = (s32) SRC; + break; + } + CONT; + ALU64_MOV_K: + DST = IMM; + CONT; + LD_IMM_DW: + DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32; + insn++; + CONT; + ALU_ARSH_X: + DST = (u64) (u32) (((s32) DST) >> (SRC & 31)); + CONT; + ALU_ARSH_K: + DST = (u64) (u32) (((s32) DST) >> IMM); + CONT; + ALU64_ARSH_X: + (*(s64 *) &DST) >>= (SRC & 63); + CONT; + ALU64_ARSH_K: + (*(s64 *) &DST) >>= IMM; + CONT; + ALU64_MOD_X: + switch (OFF) { + case 0: + div64_u64_rem(DST, SRC, &AX); + DST = AX; + break; + case 1: + AX = div64_s64(DST, SRC); + DST = DST - AX * SRC; + break; + } + CONT; + ALU_MOD_X: + switch (OFF) { + case 0: + AX = (u32) DST; + DST = do_div(AX, (u32) SRC); + break; + case 1: + AX = abs((s32)DST); + AX = do_div(AX, abs((s32)SRC)); + if ((s32)DST < 0) + DST = (u32)-AX; + else + DST = (u32)AX; + break; + } + CONT; + ALU64_MOD_K: + switch (OFF) { + case 0: + div64_u64_rem(DST, IMM, &AX); + DST = AX; + break; + case 1: + AX = div64_s64(DST, IMM); + DST = DST - AX * IMM; + break; + } + CONT; + ALU_MOD_K: + switch (OFF) { + case 0: + AX = (u32) DST; + DST = do_div(AX, (u32) IMM); + break; + case 1: + AX = abs((s32)DST); + AX = do_div(AX, abs((s32)IMM)); + if ((s32)DST < 0) + DST = (u32)-AX; + else + DST = (u32)AX; + break; + } + CONT; + ALU64_DIV_X: + switch (OFF) { + case 0: + DST = div64_u64(DST, SRC); + break; + case 1: + DST = div64_s64(DST, SRC); + break; + } + CONT; + ALU_DIV_X: + switch (OFF) { + case 0: + AX = (u32) DST; + do_div(AX, (u32) SRC); + DST = (u32) AX; + break; + case 1: + AX = abs((s32)DST); + do_div(AX, abs((s32)SRC)); + if (((s32)DST < 0) == ((s32)SRC < 0)) + DST = (u32)AX; + else + DST = (u32)-AX; + break; + } + CONT; + ALU64_DIV_K: + switch (OFF) { + case 0: + DST = div64_u64(DST, IMM); + break; + case 1: + DST = div64_s64(DST, IMM); + break; + } + CONT; + ALU_DIV_K: + switch (OFF) { + case 0: + AX = (u32) DST; + do_div(AX, (u32) IMM); + DST = (u32) AX; + break; + case 1: + AX = abs((s32)DST); + do_div(AX, abs((s32)IMM)); + if (((s32)DST < 0) == ((s32)IMM < 0)) + DST = (u32)AX; + else + DST = (u32)-AX; + break; + } + CONT; + ALU_END_TO_BE: + switch (IMM) { + case 16: + DST = (__force u16) cpu_to_be16(DST); + break; + case 32: + DST = (__force u32) cpu_to_be32(DST); + break; + case 64: + DST = (__force u64) cpu_to_be64(DST); + break; + } + CONT; + ALU_END_TO_LE: + switch (IMM) { + case 16: + DST = (__force u16) cpu_to_le16(DST); + break; + case 32: + DST = (__force u32) cpu_to_le32(DST); + break; + case 64: + DST = (__force u64) cpu_to_le64(DST); + break; + } + CONT; + ALU64_END_TO_LE: + switch (IMM) { + case 16: + DST = (__force u16) __swab16(DST); + break; + case 32: + DST = (__force u32) __swab32(DST); + break; + case 64: + DST = (__force u64) __swab64(DST); + break; + } + CONT; + + /* CALL */ + JMP_CALL: + /* Function call scratches BPF_R1-BPF_R5 registers, + * preserves BPF_R6-BPF_R9, and stores return value + * into BPF_R0. + */ + BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3, + BPF_R4, BPF_R5); + CONT; + + JMP_CALL_ARGS: + BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2, + BPF_R3, BPF_R4, + BPF_R5, + insn + insn->off + 1); + CONT; + + JMP_TAIL_CALL: { + struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2; + struct bpf_array *array = container_of(map, struct bpf_array, map); + struct bpf_prog *prog; + u32 index = BPF_R3; + + if (unlikely(index >= array->map.max_entries)) + goto out; + + if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT)) + goto out; + + tail_call_cnt++; + + prog = READ_ONCE(array->ptrs[index]); + if (!prog) + goto out; + + /* ARG1 at this point is guaranteed to point to CTX from + * the verifier side due to the fact that the tail call is + * handled like a helper, that is, bpf_tail_call_proto, + * where arg1_type is ARG_PTR_TO_CTX. + */ + insn = prog->insnsi; + goto select_insn; +out: + CONT; + } + JMP_JA: + insn += insn->off; + CONT; + JMP32_JA: + insn += insn->imm; + CONT; + JMP_EXIT: + return BPF_R0; + /* JMP */ +#define COND_JMP(SIGN, OPCODE, CMP_OP) \ + JMP_##OPCODE##_X: \ + if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \ + insn += insn->off; \ + CONT_JMP; \ + } \ + CONT; \ + JMP32_##OPCODE##_X: \ + if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \ + insn += insn->off; \ + CONT_JMP; \ + } \ + CONT; \ + JMP_##OPCODE##_K: \ + if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \ + insn += insn->off; \ + CONT_JMP; \ + } \ + CONT; \ + JMP32_##OPCODE##_K: \ + if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \ + insn += insn->off; \ + CONT_JMP; \ + } \ + CONT; + COND_JMP(u, JEQ, ==) + COND_JMP(u, JNE, !=) + COND_JMP(u, JGT, >) + COND_JMP(u, JLT, <) + COND_JMP(u, JGE, >=) + COND_JMP(u, JLE, <=) + COND_JMP(u, JSET, &) + COND_JMP(s, JSGT, >) + COND_JMP(s, JSLT, <) + COND_JMP(s, JSGE, >=) + COND_JMP(s, JSLE, <=) +#undef COND_JMP + /* ST, STX and LDX*/ + ST_NOSPEC: + /* Speculation barrier for mitigating Speculative Store Bypass, + * Bounds-Check Bypass and Type Confusion. In case of arm64, we + * rely on the firmware mitigation as controlled via the ssbd + * kernel parameter. Whenever the mitigation is enabled, it + * works for all of the kernel code with no need to provide any + * additional instructions here. In case of x86, we use 'lfence' + * insn for mitigation. We reuse preexisting logic from Spectre + * v1 mitigation that happens to produce the required code on + * x86 for v4 as well. + */ + barrier_nospec(); + CONT; +#define LDST(SIZEOP, SIZE) \ + STX_MEM_##SIZEOP: \ + *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \ + CONT; \ + ST_MEM_##SIZEOP: \ + *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \ + CONT; \ + LDX_MEM_##SIZEOP: \ + DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ + CONT; \ + LDX_PROBE_MEM_##SIZEOP: \ + bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \ + (const void *)(long) (SRC + insn->off)); \ + DST = *((SIZE *)&DST); \ + CONT; + + LDST(B, u8) + LDST(H, u16) + LDST(W, u32) + LDST(DW, u64) +#undef LDST + +#define LDSX(SIZEOP, SIZE) \ + LDX_MEMSX_##SIZEOP: \ + DST = *(SIZE *)(unsigned long) (SRC + insn->off); \ + CONT; \ + LDX_PROBE_MEMSX_##SIZEOP: \ + bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \ + (const void *)(long) (SRC + insn->off)); \ + DST = *((SIZE *)&DST); \ + CONT; + + LDSX(B, s8) + LDSX(H, s16) + LDSX(W, s32) +#undef LDSX + +#define ATOMIC_ALU_OP(BOP, KOP) \ + case BOP: \ + if (BPF_SIZE(insn->code) == BPF_W) \ + atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \ + (DST + insn->off)); \ + else if (BPF_SIZE(insn->code) == BPF_DW) \ + atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \ + (DST + insn->off)); \ + else \ + goto default_label; \ + break; \ + case BOP | BPF_FETCH: \ + if (BPF_SIZE(insn->code) == BPF_W) \ + SRC = (u32) atomic_fetch_##KOP( \ + (u32) SRC, \ + (atomic_t *)(unsigned long) (DST + insn->off)); \ + else if (BPF_SIZE(insn->code) == BPF_DW) \ + SRC = (u64) atomic64_fetch_##KOP( \ + (u64) SRC, \ + (atomic64_t *)(unsigned long) (DST + insn->off)); \ + else \ + goto default_label; \ + break; + + STX_ATOMIC_DW: + STX_ATOMIC_W: + STX_ATOMIC_H: + STX_ATOMIC_B: + switch (IMM) { + /* Atomic read-modify-write instructions support only W and DW + * size modifiers. + */ + ATOMIC_ALU_OP(BPF_ADD, add) + ATOMIC_ALU_OP(BPF_AND, and) + ATOMIC_ALU_OP(BPF_OR, or) + ATOMIC_ALU_OP(BPF_XOR, xor) +#undef ATOMIC_ALU_OP + + case BPF_XCHG: + if (BPF_SIZE(insn->code) == BPF_W) + SRC = (u32) atomic_xchg( + (atomic_t *)(unsigned long) (DST + insn->off), + (u32) SRC); + else if (BPF_SIZE(insn->code) == BPF_DW) + SRC = (u64) atomic64_xchg( + (atomic64_t *)(unsigned long) (DST + insn->off), + (u64) SRC); + else + goto default_label; + break; + case BPF_CMPXCHG: + if (BPF_SIZE(insn->code) == BPF_W) + BPF_R0 = (u32) atomic_cmpxchg( + (atomic_t *)(unsigned long) (DST + insn->off), + (u32) BPF_R0, (u32) SRC); + else if (BPF_SIZE(insn->code) == BPF_DW) + BPF_R0 = (u64) atomic64_cmpxchg( + (atomic64_t *)(unsigned long) (DST + insn->off), + (u64) BPF_R0, (u64) SRC); + else + goto default_label; + break; + /* Atomic load and store instructions support all size + * modifiers. + */ + case BPF_LOAD_ACQ: + switch (BPF_SIZE(insn->code)) { +#define LOAD_ACQUIRE(SIZEOP, SIZE) \ + case BPF_##SIZEOP: \ + DST = (SIZE)smp_load_acquire( \ + (SIZE *)(unsigned long)(SRC + insn->off)); \ + break; + LOAD_ACQUIRE(B, u8) + LOAD_ACQUIRE(H, u16) + LOAD_ACQUIRE(W, u32) +#ifdef CONFIG_64BIT + LOAD_ACQUIRE(DW, u64) +#endif +#undef LOAD_ACQUIRE + default: + goto default_label; + } + break; + case BPF_STORE_REL: + switch (BPF_SIZE(insn->code)) { +#define STORE_RELEASE(SIZEOP, SIZE) \ + case BPF_##SIZEOP: \ + smp_store_release( \ + (SIZE *)(unsigned long)(DST + insn->off), (SIZE)SRC); \ + break; + STORE_RELEASE(B, u8) + STORE_RELEASE(H, u16) + STORE_RELEASE(W, u32) +#ifdef CONFIG_64BIT + STORE_RELEASE(DW, u64) +#endif +#undef STORE_RELEASE + default: + goto default_label; + } + break; + + default: + goto default_label; + } + CONT; + + default_label: + /* If we ever reach this, we have a bug somewhere. Die hard here + * instead of just returning 0; we could be somewhere in a subprog, + * so execution could continue otherwise which we do /not/ want. + * + * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable(). + */ + pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n", + insn->code, insn->imm); + BUG_ON(1); + return 0; +} + +#define PROG_NAME(stack_size) __bpf_prog_run##stack_size +#define DEFINE_BPF_PROG_RUN(stack_size) \ +static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \ +{ \ + u64 stack[stack_size / sizeof(u64)]; \ + u64 regs[MAX_BPF_EXT_REG] = {}; \ +\ + kmsan_unpoison_memory(stack, sizeof(stack)); \ + FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ + ARG1 = (u64) (unsigned long) ctx; \ + return ___bpf_prog_run(regs, insn); \ +} + +#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size +#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \ +static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \ + const struct bpf_insn *insn) \ +{ \ + u64 stack[stack_size / sizeof(u64)]; \ + u64 regs[MAX_BPF_EXT_REG]; \ +\ + kmsan_unpoison_memory(stack, sizeof(stack)); \ + FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \ + BPF_R1 = r1; \ + BPF_R2 = r2; \ + BPF_R3 = r3; \ + BPF_R4 = r4; \ + BPF_R5 = r5; \ + return ___bpf_prog_run(regs, insn); \ +} + +#define EVAL1(FN, X) FN(X) +#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y) +#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y) +#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y) +#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y) +#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y) + +EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192); +EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384); +EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512); + +EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192); +EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384); +EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512); + +#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size), + +static unsigned int (*interpreters[])(const void *ctx, + const struct bpf_insn *insn) = { +EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) +EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) +EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) +}; +#undef PROG_NAME_LIST +#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size), +static __maybe_unused +u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, + const struct bpf_insn *insn) = { +EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192) +EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384) +EVAL4(PROG_NAME_LIST, 416, 448, 480, 512) +}; +#undef PROG_NAME_LIST + +#ifdef CONFIG_BPF_SYSCALL +void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth) +{ + stack_depth = max_t(u32, stack_depth, 1); + insn->off = (s16) insn->imm; + insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] - + __bpf_call_base_args; + insn->code = BPF_JMP | BPF_CALL_ARGS; +} +#endif +#endif + +static unsigned int __bpf_prog_ret0_warn(const void *ctx, + const struct bpf_insn *insn) +{ + /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON + * is not working properly, so warn about it! + */ + WARN_ON_ONCE(1); + return 0; +} + +static bool __bpf_prog_map_compatible(struct bpf_map *map, + const struct bpf_prog *fp) +{ + enum bpf_prog_type prog_type = resolve_prog_type(fp); + struct bpf_prog_aux *aux = fp->aux; + enum bpf_cgroup_storage_type i; + bool ret = false; + u64 cookie; + + if (fp->kprobe_override) + return ret; + + spin_lock(&map->owner_lock); + /* There's no owner yet where we could check for compatibility. */ + if (!map->owner) { + map->owner = bpf_map_owner_alloc(map); + if (!map->owner) + goto err; + map->owner->type = prog_type; + map->owner->jited = fp->jited; + map->owner->xdp_has_frags = aux->xdp_has_frags; + map->owner->expected_attach_type = fp->expected_attach_type; + map->owner->attach_func_proto = aux->attach_func_proto; + for_each_cgroup_storage_type(i) { + map->owner->storage_cookie[i] = + aux->cgroup_storage[i] ? + aux->cgroup_storage[i]->cookie : 0; + } + ret = true; + } else { + ret = map->owner->type == prog_type && + map->owner->jited == fp->jited && + map->owner->xdp_has_frags == aux->xdp_has_frags; + if (ret && + map->map_type == BPF_MAP_TYPE_PROG_ARRAY && + map->owner->expected_attach_type != fp->expected_attach_type) + ret = false; + for_each_cgroup_storage_type(i) { + if (!ret) + break; + cookie = aux->cgroup_storage[i] ? + aux->cgroup_storage[i]->cookie : 0; + ret = map->owner->storage_cookie[i] == cookie || + !cookie; + } + if (ret && + map->owner->attach_func_proto != aux->attach_func_proto) { + switch (prog_type) { + case BPF_PROG_TYPE_TRACING: + case BPF_PROG_TYPE_LSM: + case BPF_PROG_TYPE_EXT: + case BPF_PROG_TYPE_STRUCT_OPS: + ret = false; + break; + default: + break; + } + } + } +err: + spin_unlock(&map->owner_lock); + return ret; +} + +bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp) +{ + /* XDP programs inserted into maps are not guaranteed to run on + * a particular netdev (and can run outside driver context entirely + * in the case of devmap and cpumap). Until device checks + * are implemented, prohibit adding dev-bound programs to program maps. + */ + if (bpf_prog_is_dev_bound(fp->aux)) + return false; + + return __bpf_prog_map_compatible(map, fp); +} + +static int bpf_check_tail_call(const struct bpf_prog *fp) +{ + struct bpf_prog_aux *aux = fp->aux; + int i, ret = 0; + + mutex_lock(&aux->used_maps_mutex); + for (i = 0; i < aux->used_map_cnt; i++) { + struct bpf_map *map = aux->used_maps[i]; + + if (!map_type_contains_progs(map)) + continue; + + if (!__bpf_prog_map_compatible(map, fp)) { + ret = -EINVAL; + goto out; + } + } + +out: + mutex_unlock(&aux->used_maps_mutex); + return ret; +} + +static bool bpf_prog_select_interpreter(struct bpf_prog *fp) +{ + bool select_interpreter = false; +#ifndef CONFIG_BPF_JIT_ALWAYS_ON + u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1); + u32 idx = (round_up(stack_depth, 32) / 32) - 1; + + /* may_goto may cause stack size > 512, leading to idx out-of-bounds. + * But for non-JITed programs, we don't need bpf_func, so no bounds + * check needed. + */ + if (idx < ARRAY_SIZE(interpreters)) { + fp->bpf_func = interpreters[idx]; + select_interpreter = true; + } else { + fp->bpf_func = __bpf_prog_ret0_warn; + } +#else + fp->bpf_func = __bpf_prog_ret0_warn; +#endif + return select_interpreter; +} + +/** + * bpf_prog_select_runtime - select exec runtime for BPF program + * @fp: bpf_prog populated with BPF program + * @err: pointer to error variable + * + * Try to JIT eBPF program, if JIT is not available, use interpreter. + * The BPF program will be executed via bpf_prog_run() function. + * + * Return: the &fp argument along with &err set to 0 for success or + * a negative errno code on failure + */ +struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err) +{ + /* In case of BPF to BPF calls, verifier did all the prep + * work with regards to JITing, etc. + */ + bool jit_needed = false; + + if (fp->bpf_func) + goto finalize; + + if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) || + bpf_prog_has_kfunc_call(fp)) + jit_needed = true; + + if (!bpf_prog_select_interpreter(fp)) + jit_needed = true; + + /* eBPF JITs can rewrite the program in case constant + * blinding is active. However, in case of error during + * blinding, bpf_int_jit_compile() must always return a + * valid program, which in this case would simply not + * be JITed, but falls back to the interpreter. + */ + if (!bpf_prog_is_offloaded(fp->aux)) { + *err = bpf_prog_alloc_jited_linfo(fp); + if (*err) + return fp; + + fp = bpf_int_jit_compile(fp); + bpf_prog_jit_attempt_done(fp); + if (!fp->jited && jit_needed) { + *err = -ENOTSUPP; + return fp; + } + } else { + *err = bpf_prog_offload_compile(fp); + if (*err) + return fp; + } + +finalize: + *err = bpf_prog_lock_ro(fp); + if (*err) + return fp; + + /* The tail call compatibility check can only be done at + * this late stage as we need to determine, if we deal + * with JITed or non JITed program concatenations and not + * all eBPF JITs might immediately support all features. + */ + *err = bpf_check_tail_call(fp); + + return fp; +} +EXPORT_SYMBOL_GPL(bpf_prog_select_runtime); + +static unsigned int __bpf_prog_ret1(const void *ctx, + const struct bpf_insn *insn) +{ + return 1; +} + +static struct bpf_prog_dummy { + struct bpf_prog prog; +} dummy_bpf_prog = { + .prog = { + .bpf_func = __bpf_prog_ret1, + }, +}; + +struct bpf_empty_prog_array bpf_empty_prog_array = { + .null_prog = NULL, +}; +EXPORT_SYMBOL(bpf_empty_prog_array); + +struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags) +{ + struct bpf_prog_array *p; + + if (prog_cnt) + p = kzalloc(struct_size(p, items, prog_cnt + 1), flags); + else + p = &bpf_empty_prog_array.hdr; + + return p; +} + +void bpf_prog_array_free(struct bpf_prog_array *progs) +{ + if (!progs || progs == &bpf_empty_prog_array.hdr) + return; + kfree_rcu(progs, rcu); +} + +static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu) +{ + struct bpf_prog_array *progs; + + /* If RCU Tasks Trace grace period implies RCU grace period, there is + * no need to call kfree_rcu(), just call kfree() directly. + */ + progs = container_of(rcu, struct bpf_prog_array, rcu); + if (rcu_trace_implies_rcu_gp()) + kfree(progs); + else + kfree_rcu(progs, rcu); +} + +void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs) +{ + if (!progs || progs == &bpf_empty_prog_array.hdr) + return; + call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb); +} + +int bpf_prog_array_length(struct bpf_prog_array *array) +{ + struct bpf_prog_array_item *item; + u32 cnt = 0; + + for (item = array->items; item->prog; item++) + if (item->prog != &dummy_bpf_prog.prog) + cnt++; + return cnt; +} + +bool bpf_prog_array_is_empty(struct bpf_prog_array *array) +{ + struct bpf_prog_array_item *item; + + for (item = array->items; item->prog; item++) + if (item->prog != &dummy_bpf_prog.prog) + return false; + return true; +} + +static bool bpf_prog_array_copy_core(struct bpf_prog_array *array, + u32 *prog_ids, + u32 request_cnt) +{ + struct bpf_prog_array_item *item; + int i = 0; + + for (item = array->items; item->prog; item++) { + if (item->prog == &dummy_bpf_prog.prog) + continue; + prog_ids[i] = item->prog->aux->id; + if (++i == request_cnt) { + item++; + break; + } + } + + return !!(item->prog); +} + +int bpf_prog_array_copy_to_user(struct bpf_prog_array *array, + __u32 __user *prog_ids, u32 cnt) +{ + unsigned long err = 0; + bool nospc; + u32 *ids; + + /* users of this function are doing: + * cnt = bpf_prog_array_length(); + * if (cnt > 0) + * bpf_prog_array_copy_to_user(..., cnt); + * so below kcalloc doesn't need extra cnt > 0 check. + */ + ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN); + if (!ids) + return -ENOMEM; + nospc = bpf_prog_array_copy_core(array, ids, cnt); + err = copy_to_user(prog_ids, ids, cnt * sizeof(u32)); + kfree(ids); + if (err) + return -EFAULT; + if (nospc) + return -ENOSPC; + return 0; +} + +void bpf_prog_array_delete_safe(struct bpf_prog_array *array, + struct bpf_prog *old_prog) +{ + struct bpf_prog_array_item *item; + + for (item = array->items; item->prog; item++) + if (item->prog == old_prog) { + WRITE_ONCE(item->prog, &dummy_bpf_prog.prog); + break; + } +} + +/** + * bpf_prog_array_delete_safe_at() - Replaces the program at the given + * index into the program array with + * a dummy no-op program. + * @array: a bpf_prog_array + * @index: the index of the program to replace + * + * Skips over dummy programs, by not counting them, when calculating + * the position of the program to replace. + * + * Return: + * * 0 - Success + * * -EINVAL - Invalid index value. Must be a non-negative integer. + * * -ENOENT - Index out of range + */ +int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index) +{ + return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog); +} + +/** + * bpf_prog_array_update_at() - Updates the program at the given index + * into the program array. + * @array: a bpf_prog_array + * @index: the index of the program to update + * @prog: the program to insert into the array + * + * Skips over dummy programs, by not counting them, when calculating + * the position of the program to update. + * + * Return: + * * 0 - Success + * * -EINVAL - Invalid index value. Must be a non-negative integer. + * * -ENOENT - Index out of range + */ +int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, + struct bpf_prog *prog) +{ + struct bpf_prog_array_item *item; + + if (unlikely(index < 0)) + return -EINVAL; + + for (item = array->items; item->prog; item++) { + if (item->prog == &dummy_bpf_prog.prog) + continue; + if (!index) { + WRITE_ONCE(item->prog, prog); + return 0; + } + index--; + } + return -ENOENT; +} + +int bpf_prog_array_copy(struct bpf_prog_array *old_array, + struct bpf_prog *exclude_prog, + struct bpf_prog *include_prog, + u64 bpf_cookie, + struct bpf_prog_array **new_array) +{ + int new_prog_cnt, carry_prog_cnt = 0; + struct bpf_prog_array_item *existing, *new; + struct bpf_prog_array *array; + bool found_exclude = false; + + /* Figure out how many existing progs we need to carry over to + * the new array. + */ + if (old_array) { + existing = old_array->items; + for (; existing->prog; existing++) { + if (existing->prog == exclude_prog) { + found_exclude = true; + continue; + } + if (existing->prog != &dummy_bpf_prog.prog) + carry_prog_cnt++; + if (existing->prog == include_prog) + return -EEXIST; + } + } + + if (exclude_prog && !found_exclude) + return -ENOENT; + + /* How many progs (not NULL) will be in the new array? */ + new_prog_cnt = carry_prog_cnt; + if (include_prog) + new_prog_cnt += 1; + + /* Do we have any prog (not NULL) in the new array? */ + if (!new_prog_cnt) { + *new_array = NULL; + return 0; + } + + /* +1 as the end of prog_array is marked with NULL */ + array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL); + if (!array) + return -ENOMEM; + new = array->items; + + /* Fill in the new prog array */ + if (carry_prog_cnt) { + existing = old_array->items; + for (; existing->prog; existing++) { + if (existing->prog == exclude_prog || + existing->prog == &dummy_bpf_prog.prog) + continue; + + new->prog = existing->prog; + new->bpf_cookie = existing->bpf_cookie; + new++; + } + } + if (include_prog) { + new->prog = include_prog; + new->bpf_cookie = bpf_cookie; + new++; + } + new->prog = NULL; + *new_array = array; + return 0; +} + +int bpf_prog_array_copy_info(struct bpf_prog_array *array, + u32 *prog_ids, u32 request_cnt, + u32 *prog_cnt) +{ + u32 cnt = 0; + + if (array) + cnt = bpf_prog_array_length(array); + + *prog_cnt = cnt; + + /* return early if user requested only program count or nothing to copy */ + if (!request_cnt || !cnt) + return 0; + + /* this function is called under trace/bpf_trace.c: bpf_event_mutex */ + return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC + : 0; +} + +void __bpf_free_used_maps(struct bpf_prog_aux *aux, + struct bpf_map **used_maps, u32 len) +{ + struct bpf_map *map; + bool sleepable; + u32 i; + + sleepable = aux->prog->sleepable; + for (i = 0; i < len; i++) { + map = used_maps[i]; + if (map->ops->map_poke_untrack) + map->ops->map_poke_untrack(map, aux); + if (sleepable) + atomic64_dec(&map->sleepable_refcnt); + bpf_map_put(map); + } +} + +static void bpf_free_used_maps(struct bpf_prog_aux *aux) +{ + __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt); + kfree(aux->used_maps); +} + +void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len) +{ +#ifdef CONFIG_BPF_SYSCALL + struct btf_mod_pair *btf_mod; + u32 i; + + for (i = 0; i < len; i++) { + btf_mod = &used_btfs[i]; + if (btf_mod->module) + module_put(btf_mod->module); + btf_put(btf_mod->btf); + } +#endif +} + +static void bpf_free_used_btfs(struct bpf_prog_aux *aux) +{ + __bpf_free_used_btfs(aux->used_btfs, aux->used_btf_cnt); + kfree(aux->used_btfs); +} + +static void bpf_prog_free_deferred(struct work_struct *work) +{ + struct bpf_prog_aux *aux; + int i; + + aux = container_of(work, struct bpf_prog_aux, work); +#ifdef CONFIG_BPF_SYSCALL + bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab); + bpf_prog_stream_free(aux->prog); +#endif +#ifdef CONFIG_CGROUP_BPF + if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID) + bpf_cgroup_atype_put(aux->cgroup_atype); +#endif + bpf_free_used_maps(aux); + bpf_free_used_btfs(aux); + if (bpf_prog_is_dev_bound(aux)) + bpf_prog_dev_bound_destroy(aux->prog); +#ifdef CONFIG_PERF_EVENTS + if (aux->prog->has_callchain_buf) + put_callchain_buffers(); +#endif + if (aux->dst_trampoline) + bpf_trampoline_put(aux->dst_trampoline); + for (i = 0; i < aux->real_func_cnt; i++) { + /* We can just unlink the subprog poke descriptor table as + * it was originally linked to the main program and is also + * released along with it. + */ + aux->func[i]->aux->poke_tab = NULL; + bpf_jit_free(aux->func[i]); + } + if (aux->real_func_cnt) { + kfree(aux->func); + bpf_prog_unlock_free(aux->prog); + } else { + bpf_jit_free(aux->prog); + } +} + +void bpf_prog_free(struct bpf_prog *fp) +{ + struct bpf_prog_aux *aux = fp->aux; + + if (aux->dst_prog) + bpf_prog_put(aux->dst_prog); + bpf_token_put(aux->token); + INIT_WORK(&aux->work, bpf_prog_free_deferred); + schedule_work(&aux->work); +} +EXPORT_SYMBOL_GPL(bpf_prog_free); + +/* RNG for unprivileged user space with separated state from prandom_u32(). */ +static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state); + +void bpf_user_rnd_init_once(void) +{ + prandom_init_once(&bpf_user_rnd_state); +} + +BPF_CALL_0(bpf_user_rnd_u32) +{ + /* Should someone ever have the rather unwise idea to use some + * of the registers passed into this function, then note that + * this function is called from native eBPF and classic-to-eBPF + * transformations. Register assignments from both sides are + * different, f.e. classic always sets fn(ctx, A, X) here. + */ + struct rnd_state *state; + u32 res; + + state = &get_cpu_var(bpf_user_rnd_state); + res = prandom_u32_state(state); + put_cpu_var(bpf_user_rnd_state); + + return res; +} + +BPF_CALL_0(bpf_get_raw_cpu_id) +{ + return raw_smp_processor_id(); +} + +/* Weak definitions of helper functions in case we don't have bpf syscall. */ +const struct bpf_func_proto bpf_map_lookup_elem_proto __weak; +const struct bpf_func_proto bpf_map_update_elem_proto __weak; +const struct bpf_func_proto bpf_map_delete_elem_proto __weak; +const struct bpf_func_proto bpf_map_push_elem_proto __weak; +const struct bpf_func_proto bpf_map_pop_elem_proto __weak; +const struct bpf_func_proto bpf_map_peek_elem_proto __weak; +const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak; +const struct bpf_func_proto bpf_spin_lock_proto __weak; +const struct bpf_func_proto bpf_spin_unlock_proto __weak; +const struct bpf_func_proto bpf_jiffies64_proto __weak; + +const struct bpf_func_proto bpf_get_prandom_u32_proto __weak; +const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak; +const struct bpf_func_proto bpf_get_numa_node_id_proto __weak; +const struct bpf_func_proto bpf_ktime_get_ns_proto __weak; +const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak; +const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak; +const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak; + +const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak; +const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak; +const struct bpf_func_proto bpf_get_current_comm_proto __weak; +const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak; +const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak; +const struct bpf_func_proto bpf_get_local_storage_proto __weak; +const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak; +const struct bpf_func_proto bpf_snprintf_btf_proto __weak; +const struct bpf_func_proto bpf_seq_printf_btf_proto __weak; +const struct bpf_func_proto bpf_set_retval_proto __weak; +const struct bpf_func_proto bpf_get_retval_proto __weak; + +const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void) +{ + return NULL; +} + +const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void) +{ + return NULL; +} + +const struct bpf_func_proto * __weak bpf_get_perf_event_read_value_proto(void) +{ + return NULL; +} + +u64 __weak +bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, + void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy) +{ + return -ENOTSUPP; +} +EXPORT_SYMBOL_GPL(bpf_event_output); + +/* Always built-in helper functions. */ +const struct bpf_func_proto bpf_tail_call_proto = { + /* func is unused for tail_call, we set it to pass the + * get_helper_proto check + */ + .func = BPF_PTR_POISON, + .gpl_only = false, + .ret_type = RET_VOID, + .arg1_type = ARG_PTR_TO_CTX, + .arg2_type = ARG_CONST_MAP_PTR, + .arg3_type = ARG_ANYTHING, +}; + +/* Stub for JITs that only support cBPF. eBPF programs are interpreted. + * It is encouraged to implement bpf_int_jit_compile() instead, so that + * eBPF and implicitly also cBPF can get JITed! + */ +struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog) +{ + return prog; +} + +/* Stub for JITs that support eBPF. All cBPF code gets transformed into + * eBPF by the kernel and is later compiled by bpf_int_jit_compile(). + */ +void __weak bpf_jit_compile(struct bpf_prog *prog) +{ +} + +bool __weak bpf_helper_changes_pkt_data(enum bpf_func_id func_id) +{ + return false; +} + +/* Return TRUE if the JIT backend wants verifier to enable sub-register usage + * analysis code and wants explicit zero extension inserted by verifier. + * Otherwise, return FALSE. + * + * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if + * you don't override this. JITs that don't want these extra insns can detect + * them using insn_is_zext. + */ +bool __weak bpf_jit_needs_zext(void) +{ + return false; +} + +/* By default, enable the verifier's mitigations against Spectre v1 and v4 for + * all archs. The value returned must not change at runtime as there is + * currently no support for reloading programs that were loaded without + * mitigations. + */ +bool __weak bpf_jit_bypass_spec_v1(void) +{ + return false; +} + +bool __weak bpf_jit_bypass_spec_v4(void) +{ + return false; +} + +/* Return true if the JIT inlines the call to the helper corresponding to + * the imm. + * + * The verifier will not patch the insn->imm for the call to the helper if + * this returns true. + */ +bool __weak bpf_jit_inlines_helper_call(s32 imm) +{ + return false; +} + +/* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */ +bool __weak bpf_jit_supports_subprog_tailcalls(void) +{ + return false; +} + +bool __weak bpf_jit_supports_percpu_insn(void) +{ + return false; +} + +bool __weak bpf_jit_supports_kfunc_call(void) +{ + return false; +} + +bool __weak bpf_jit_supports_far_kfunc_call(void) +{ + return false; +} + +bool __weak bpf_jit_supports_arena(void) +{ + return false; +} + +bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena) +{ + return false; +} + +u64 __weak bpf_arch_uaddress_limit(void) +{ +#if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE) + return TASK_SIZE; +#else + return 0; +#endif +} + +/* Return TRUE if the JIT backend satisfies the following two conditions: + * 1) JIT backend supports atomic_xchg() on pointer-sized words. + * 2) Under the specific arch, the implementation of xchg() is the same + * as atomic_xchg() on pointer-sized words. + */ +bool __weak bpf_jit_supports_ptr_xchg(void) +{ + return false; +} + +/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call + * skb_copy_bits(), so provide a weak definition of it for NET-less config. + */ +int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to, + int len) +{ + return -EFAULT; +} + +int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t, + enum bpf_text_poke_type new_t, void *old_addr, + void *new_addr) +{ + return -ENOTSUPP; +} + +void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len) +{ + return ERR_PTR(-ENOTSUPP); +} + +int __weak bpf_arch_text_invalidate(void *dst, size_t len) +{ + return -ENOTSUPP; +} + +bool __weak bpf_jit_supports_exceptions(void) +{ + return false; +} + +bool __weak bpf_jit_supports_private_stack(void) +{ + return false; +} + +void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie) +{ +} + +bool __weak bpf_jit_supports_timed_may_goto(void) +{ + return false; +} + +u64 __weak arch_bpf_timed_may_goto(void) +{ + return 0; +} + +static noinline void bpf_prog_report_may_goto_violation(void) +{ +#ifdef CONFIG_BPF_SYSCALL + struct bpf_stream_stage ss; + struct bpf_prog *prog; + + prog = bpf_prog_find_from_stack(); + if (!prog) + return; + bpf_stream_stage(ss, prog, BPF_STDERR, ({ + bpf_stream_printk(ss, "ERROR: Timeout detected for may_goto instruction\n"); + bpf_stream_dump_stack(ss); + })); +#endif +} + +u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *p) +{ + u64 time = ktime_get_mono_fast_ns(); + + /* Populate the timestamp for this stack frame, and refresh count. */ + if (!p->timestamp) { + p->timestamp = time; + return BPF_MAX_TIMED_LOOPS; + } + /* Check if we've exhausted our time slice, and zero count. */ + if (unlikely(time - p->timestamp >= (NSEC_PER_SEC / 4))) { + bpf_prog_report_may_goto_violation(); + return 0; + } + /* Refresh the count for the stack frame. */ + return BPF_MAX_TIMED_LOOPS; +} + +/* for configs without MMU or 32-bit */ +__weak const struct bpf_map_ops arena_map_ops; +__weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena) +{ + return 0; +} +__weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena) +{ + return 0; +} + +#ifdef CONFIG_BPF_SYSCALL +static int __init bpf_global_ma_init(void) +{ + int ret; + + ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false); + bpf_global_ma_set = !ret; + return ret; +} +late_initcall(bpf_global_ma_init); +#endif + +DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key); +EXPORT_SYMBOL(bpf_stats_enabled_key); + +/* All definitions of tracepoints related to BPF. */ +#define CREATE_TRACE_POINTS +#include <linux/bpf_trace.h> + +EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception); +EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx); + +#ifdef CONFIG_BPF_SYSCALL + +int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep, + const char **linep, int *nump) +{ + int idx = -1, insn_start, insn_end, len; + struct bpf_line_info *linfo; + void **jited_linfo; + struct btf *btf; + int nr_linfo; + + btf = prog->aux->btf; + linfo = prog->aux->linfo; + jited_linfo = prog->aux->jited_linfo; + + if (!btf || !linfo || !jited_linfo) + return -EINVAL; + len = prog->aux->func ? prog->aux->func[prog->aux->func_idx]->len : prog->len; + + linfo = &prog->aux->linfo[prog->aux->linfo_idx]; + jited_linfo = &prog->aux->jited_linfo[prog->aux->linfo_idx]; + + insn_start = linfo[0].insn_off; + insn_end = insn_start + len; + nr_linfo = prog->aux->nr_linfo - prog->aux->linfo_idx; + + for (int i = 0; i < nr_linfo && + linfo[i].insn_off >= insn_start && linfo[i].insn_off < insn_end; i++) { + if (jited_linfo[i] >= (void *)ip) + break; + idx = i; + } + + if (idx == -1) + return -ENOENT; + + /* Get base component of the file path. */ + *filep = btf_name_by_offset(btf, linfo[idx].file_name_off); + *filep = kbasename(*filep); + /* Obtain the source line, and strip whitespace in prefix. */ + *linep = btf_name_by_offset(btf, linfo[idx].line_off); + while (isspace(**linep)) + *linep += 1; + *nump = BPF_LINE_INFO_LINE_NUM(linfo[idx].line_col); + return 0; +} + +struct walk_stack_ctx { + struct bpf_prog *prog; +}; + +static bool find_from_stack_cb(void *cookie, u64 ip, u64 sp, u64 bp) +{ + struct walk_stack_ctx *ctxp = cookie; + struct bpf_prog *prog; + + /* + * The RCU read lock is held to safely traverse the latch tree, but we + * don't need its protection when accessing the prog, since it has an + * active stack frame on the current stack trace, and won't disappear. + */ + rcu_read_lock(); + prog = bpf_prog_ksym_find(ip); + rcu_read_unlock(); + if (!prog) + return true; + /* Make sure we return the main prog if we found a subprog */ + ctxp->prog = prog->aux->main_prog_aux->prog; + return false; +} + +struct bpf_prog *bpf_prog_find_from_stack(void) +{ + struct walk_stack_ctx ctx = {}; + + arch_bpf_stack_walk(find_from_stack_cb, &ctx); + return ctx.prog; +} + +#endif diff --git a/kernel/bpf/cpumap.c b/kernel/bpf/cpumap.c new file mode 100644 index 000000000000..703e5df1f4ef --- /dev/null +++ b/kernel/bpf/cpumap.c @@ -0,0 +1,813 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* bpf/cpumap.c + * + * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. + */ + +/** + * DOC: cpu map + * The 'cpumap' is primarily used as a backend map for XDP BPF helper + * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'. + * + * Unlike devmap which redirects XDP frames out to another NIC device, + * this map type redirects raw XDP frames to another CPU. The remote + * CPU will do SKB-allocation and call the normal network stack. + */ +/* + * This is a scalability and isolation mechanism, that allow + * separating the early driver network XDP layer, from the rest of the + * netstack, and assigning dedicated CPUs for this stage. This + * basically allows for 10G wirespeed pre-filtering via bpf. + */ +#include <linux/bitops.h> +#include <linux/bpf.h> +#include <linux/filter.h> +#include <linux/ptr_ring.h> +#include <net/xdp.h> +#include <net/hotdata.h> + +#include <linux/sched.h> +#include <linux/workqueue.h> +#include <linux/kthread.h> +#include <linux/completion.h> +#include <trace/events/xdp.h> +#include <linux/btf_ids.h> + +#include <linux/netdevice.h> +#include <net/gro.h> + +/* General idea: XDP packets getting XDP redirected to another CPU, + * will maximum be stored/queued for one driver ->poll() call. It is + * guaranteed that queueing the frame and the flush operation happen on + * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr() + * which queue in bpf_cpu_map_entry contains packets. + */ + +#define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */ +struct bpf_cpu_map_entry; +struct bpf_cpu_map; + +struct xdp_bulk_queue { + void *q[CPU_MAP_BULK_SIZE]; + struct list_head flush_node; + struct bpf_cpu_map_entry *obj; + unsigned int count; +}; + +/* Struct for every remote "destination" CPU in map */ +struct bpf_cpu_map_entry { + u32 cpu; /* kthread CPU and map index */ + int map_id; /* Back reference to map */ + + /* XDP can run multiple RX-ring queues, need __percpu enqueue store */ + struct xdp_bulk_queue __percpu *bulkq; + + /* Queue with potential multi-producers, and single-consumer kthread */ + struct ptr_ring *queue; + struct task_struct *kthread; + + struct bpf_cpumap_val value; + struct bpf_prog *prog; + struct gro_node gro; + + struct completion kthread_running; + struct rcu_work free_work; +}; + +struct bpf_cpu_map { + struct bpf_map map; + /* Below members specific for map type */ + struct bpf_cpu_map_entry __rcu **cpu_map; +}; + +static struct bpf_map *cpu_map_alloc(union bpf_attr *attr) +{ + u32 value_size = attr->value_size; + struct bpf_cpu_map *cmap; + + /* check sanity of attributes */ + if (attr->max_entries == 0 || attr->key_size != 4 || + (value_size != offsetofend(struct bpf_cpumap_val, qsize) && + value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) || + attr->map_flags & ~BPF_F_NUMA_NODE) + return ERR_PTR(-EINVAL); + + /* Pre-limit array size based on NR_CPUS, not final CPU check */ + if (attr->max_entries > NR_CPUS) + return ERR_PTR(-E2BIG); + + cmap = bpf_map_area_alloc(sizeof(*cmap), NUMA_NO_NODE); + if (!cmap) + return ERR_PTR(-ENOMEM); + + bpf_map_init_from_attr(&cmap->map, attr); + + /* Alloc array for possible remote "destination" CPUs */ + cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries * + sizeof(struct bpf_cpu_map_entry *), + cmap->map.numa_node); + if (!cmap->cpu_map) { + bpf_map_area_free(cmap); + return ERR_PTR(-ENOMEM); + } + + return &cmap->map; +} + +static void __cpu_map_ring_cleanup(struct ptr_ring *ring) +{ + /* The tear-down procedure should have made sure that queue is + * empty. See __cpu_map_entry_replace() and work-queue + * invoked cpu_map_kthread_stop(). Catch any broken behaviour + * gracefully and warn once. + */ + void *ptr; + + while ((ptr = ptr_ring_consume(ring))) { + WARN_ON_ONCE(1); + if (unlikely(__ptr_test_bit(0, &ptr))) { + __ptr_clear_bit(0, &ptr); + kfree_skb(ptr); + continue; + } + xdp_return_frame(ptr); + } +} + +static u32 cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu, + void **skbs, u32 skb_n, + struct xdp_cpumap_stats *stats) +{ + struct xdp_buff xdp; + u32 act, pass = 0; + int err; + + for (u32 i = 0; i < skb_n; i++) { + struct sk_buff *skb = skbs[i]; + + act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog); + switch (act) { + case XDP_PASS: + skbs[pass++] = skb; + break; + case XDP_REDIRECT: + err = xdp_do_generic_redirect(skb->dev, skb, &xdp, + rcpu->prog); + if (unlikely(err)) { + kfree_skb(skb); + stats->drop++; + } else { + stats->redirect++; + } + break; + default: + bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); + fallthrough; + case XDP_ABORTED: + trace_xdp_exception(skb->dev, rcpu->prog, act); + fallthrough; + case XDP_DROP: + napi_consume_skb(skb, true); + stats->drop++; + break; + } + } + + stats->pass += pass; + + return pass; +} + +static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu, + void **frames, int n, + struct xdp_cpumap_stats *stats) +{ + struct xdp_rxq_info rxq = {}; + struct xdp_buff xdp; + int i, nframes = 0; + + xdp.rxq = &rxq; + + for (i = 0; i < n; i++) { + struct xdp_frame *xdpf = frames[i]; + u32 act; + int err; + + rxq.dev = xdpf->dev_rx; + rxq.mem.type = xdpf->mem_type; + /* TODO: report queue_index to xdp_rxq_info */ + + xdp_convert_frame_to_buff(xdpf, &xdp); + + act = bpf_prog_run_xdp(rcpu->prog, &xdp); + switch (act) { + case XDP_PASS: + err = xdp_update_frame_from_buff(&xdp, xdpf); + if (err < 0) { + xdp_return_frame(xdpf); + stats->drop++; + } else { + frames[nframes++] = xdpf; + } + break; + case XDP_REDIRECT: + err = xdp_do_redirect(xdpf->dev_rx, &xdp, + rcpu->prog); + if (unlikely(err)) { + xdp_return_frame(xdpf); + stats->drop++; + } else { + stats->redirect++; + } + break; + default: + bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act); + fallthrough; + case XDP_DROP: + xdp_return_frame(xdpf); + stats->drop++; + break; + } + } + + stats->pass += nframes; + + return nframes; +} + +#define CPUMAP_BATCH 8 + +struct cpu_map_ret { + u32 xdp_n; + u32 skb_n; +}; + +static void cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames, + void **skbs, struct cpu_map_ret *ret, + struct xdp_cpumap_stats *stats) +{ + struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; + + if (!rcpu->prog) + goto out; + + rcu_read_lock(); + bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); + xdp_set_return_frame_no_direct(); + + ret->xdp_n = cpu_map_bpf_prog_run_xdp(rcpu, frames, ret->xdp_n, stats); + if (unlikely(ret->skb_n)) + ret->skb_n = cpu_map_bpf_prog_run_skb(rcpu, skbs, ret->skb_n, + stats); + + if (stats->redirect) + xdp_do_flush(); + + xdp_clear_return_frame_no_direct(); + bpf_net_ctx_clear(bpf_net_ctx); + rcu_read_unlock(); + +out: + if (unlikely(ret->skb_n) && ret->xdp_n) + memmove(&skbs[ret->xdp_n], skbs, ret->skb_n * sizeof(*skbs)); +} + +static void cpu_map_gro_flush(struct bpf_cpu_map_entry *rcpu, bool empty) +{ + /* + * If the ring is not empty, there'll be a new iteration soon, and we + * only need to do a full flush if a tick is long (> 1 ms). + * If the ring is empty, to not hold GRO packets in the stack for too + * long, do a full flush. + * This is equivalent to how NAPI decides whether to perform a full + * flush. + */ + gro_flush_normal(&rcpu->gro, !empty && HZ >= 1000); +} + +static int cpu_map_kthread_run(void *data) +{ + struct bpf_cpu_map_entry *rcpu = data; + unsigned long last_qs = jiffies; + u32 packets = 0; + + complete(&rcpu->kthread_running); + set_current_state(TASK_INTERRUPTIBLE); + + /* When kthread gives stop order, then rcpu have been disconnected + * from map, thus no new packets can enter. Remaining in-flight + * per CPU stored packets are flushed to this queue. Wait honoring + * kthread_stop signal until queue is empty. + */ + while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) { + struct xdp_cpumap_stats stats = {}; /* zero stats */ + unsigned int kmem_alloc_drops = 0, sched = 0; + struct cpu_map_ret ret = { }; + void *frames[CPUMAP_BATCH]; + void *skbs[CPUMAP_BATCH]; + u32 i, n, m; + bool empty; + + /* Release CPU reschedule checks */ + if (__ptr_ring_empty(rcpu->queue)) { + set_current_state(TASK_INTERRUPTIBLE); + /* Recheck to avoid lost wake-up */ + if (__ptr_ring_empty(rcpu->queue)) { + schedule(); + sched = 1; + last_qs = jiffies; + } else { + __set_current_state(TASK_RUNNING); + } + } else { + rcu_softirq_qs_periodic(last_qs); + sched = cond_resched(); + } + + /* + * The bpf_cpu_map_entry is single consumer, with this + * kthread CPU pinned. Lockless access to ptr_ring + * consume side valid as no-resize allowed of queue. + */ + n = __ptr_ring_consume_batched(rcpu->queue, frames, + CPUMAP_BATCH); + for (i = 0; i < n; i++) { + void *f = frames[i]; + struct page *page; + + if (unlikely(__ptr_test_bit(0, &f))) { + struct sk_buff *skb = f; + + __ptr_clear_bit(0, &skb); + skbs[ret.skb_n++] = skb; + continue; + } + + frames[ret.xdp_n++] = f; + page = virt_to_page(f); + + /* Bring struct page memory area to curr CPU. Read by + * build_skb_around via page_is_pfmemalloc(), and when + * freed written by page_frag_free call. + */ + prefetchw(page); + } + + local_bh_disable(); + + /* Support running another XDP prog on this CPU */ + cpu_map_bpf_prog_run(rcpu, frames, skbs, &ret, &stats); + if (!ret.xdp_n) + goto stats; + + m = napi_skb_cache_get_bulk(skbs, ret.xdp_n); + if (unlikely(m < ret.xdp_n)) { + for (i = m; i < ret.xdp_n; i++) + xdp_return_frame(frames[i]); + + if (ret.skb_n) + memmove(&skbs[m], &skbs[ret.xdp_n], + ret.skb_n * sizeof(*skbs)); + + kmem_alloc_drops += ret.xdp_n - m; + ret.xdp_n = m; + } + + for (i = 0; i < ret.xdp_n; i++) { + struct xdp_frame *xdpf = frames[i]; + + /* Can fail only when !skb -- already handled above */ + __xdp_build_skb_from_frame(xdpf, skbs[i], xdpf->dev_rx); + } + +stats: + /* Feedback loop via tracepoint. + * NB: keep before recv to allow measuring enqueue/dequeue latency. + */ + trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops, + sched, &stats); + + for (i = 0; i < ret.xdp_n + ret.skb_n; i++) + gro_receive_skb(&rcpu->gro, skbs[i]); + + /* Flush either every 64 packets or in case of empty ring */ + packets += n; + empty = __ptr_ring_empty(rcpu->queue); + if (packets >= NAPI_POLL_WEIGHT || empty) { + cpu_map_gro_flush(rcpu, empty); + packets = 0; + } + + local_bh_enable(); /* resched point, may call do_softirq() */ + } + __set_current_state(TASK_RUNNING); + + return 0; +} + +static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, + struct bpf_map *map, int fd) +{ + struct bpf_prog *prog; + + prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); + if (IS_ERR(prog)) + return PTR_ERR(prog); + + if (prog->expected_attach_type != BPF_XDP_CPUMAP || + !bpf_prog_map_compatible(map, prog)) { + bpf_prog_put(prog); + return -EINVAL; + } + + rcpu->value.bpf_prog.id = prog->aux->id; + rcpu->prog = prog; + + return 0; +} + +static struct bpf_cpu_map_entry * +__cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value, + u32 cpu) +{ + int numa, err, i, fd = value->bpf_prog.fd; + gfp_t gfp = GFP_KERNEL | __GFP_NOWARN; + struct bpf_cpu_map_entry *rcpu; + struct xdp_bulk_queue *bq; + + /* Have map->numa_node, but choose node of redirect target CPU */ + numa = cpu_to_node(cpu); + + rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa); + if (!rcpu) + return NULL; + + /* Alloc percpu bulkq */ + rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq), + sizeof(void *), gfp); + if (!rcpu->bulkq) + goto free_rcu; + + for_each_possible_cpu(i) { + bq = per_cpu_ptr(rcpu->bulkq, i); + bq->obj = rcpu; + } + + /* Alloc queue */ + rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp, + numa); + if (!rcpu->queue) + goto free_bulkq; + + err = ptr_ring_init(rcpu->queue, value->qsize, gfp); + if (err) + goto free_queue; + + rcpu->cpu = cpu; + rcpu->map_id = map->id; + rcpu->value.qsize = value->qsize; + gro_init(&rcpu->gro); + + if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd)) + goto free_ptr_ring; + + /* Setup kthread */ + init_completion(&rcpu->kthread_running); + rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa, + "cpumap/%d/map:%d", cpu, + map->id); + if (IS_ERR(rcpu->kthread)) + goto free_prog; + + /* Make sure kthread runs on a single CPU */ + kthread_bind(rcpu->kthread, cpu); + wake_up_process(rcpu->kthread); + + /* Make sure kthread has been running, so kthread_stop() will not + * stop the kthread prematurely and all pending frames or skbs + * will be handled by the kthread before kthread_stop() returns. + */ + wait_for_completion(&rcpu->kthread_running); + + return rcpu; + +free_prog: + if (rcpu->prog) + bpf_prog_put(rcpu->prog); +free_ptr_ring: + gro_cleanup(&rcpu->gro); + ptr_ring_cleanup(rcpu->queue, NULL); +free_queue: + kfree(rcpu->queue); +free_bulkq: + free_percpu(rcpu->bulkq); +free_rcu: + kfree(rcpu); + return NULL; +} + +static void __cpu_map_entry_free(struct work_struct *work) +{ + struct bpf_cpu_map_entry *rcpu; + + /* This cpu_map_entry have been disconnected from map and one + * RCU grace-period have elapsed. Thus, XDP cannot queue any + * new packets and cannot change/set flush_needed that can + * find this entry. + */ + rcpu = container_of(to_rcu_work(work), struct bpf_cpu_map_entry, free_work); + + /* kthread_stop will wake_up_process and wait for it to complete. + * cpu_map_kthread_run() makes sure the pointer ring is empty + * before exiting. + */ + kthread_stop(rcpu->kthread); + + if (rcpu->prog) + bpf_prog_put(rcpu->prog); + gro_cleanup(&rcpu->gro); + /* The queue should be empty at this point */ + __cpu_map_ring_cleanup(rcpu->queue); + ptr_ring_cleanup(rcpu->queue, NULL); + kfree(rcpu->queue); + free_percpu(rcpu->bulkq); + kfree(rcpu); +} + +/* After the xchg of the bpf_cpu_map_entry pointer, we need to make sure the old + * entry is no longer in use before freeing. We use queue_rcu_work() to call + * __cpu_map_entry_free() in a separate workqueue after waiting for an RCU grace + * period. This means that (a) all pending enqueue and flush operations have + * completed (because of the RCU callback), and (b) we are in a workqueue + * context where we can stop the kthread and wait for it to exit before freeing + * everything. + */ +static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap, + u32 key_cpu, struct bpf_cpu_map_entry *rcpu) +{ + struct bpf_cpu_map_entry *old_rcpu; + + old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu))); + if (old_rcpu) { + INIT_RCU_WORK(&old_rcpu->free_work, __cpu_map_entry_free); + queue_rcu_work(system_percpu_wq, &old_rcpu->free_work); + } +} + +static long cpu_map_delete_elem(struct bpf_map *map, void *key) +{ + struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); + u32 key_cpu = *(u32 *)key; + + if (key_cpu >= map->max_entries) + return -EINVAL; + + /* notice caller map_delete_elem() uses rcu_read_lock() */ + __cpu_map_entry_replace(cmap, key_cpu, NULL); + return 0; +} + +static long cpu_map_update_elem(struct bpf_map *map, void *key, void *value, + u64 map_flags) +{ + struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); + struct bpf_cpumap_val cpumap_value = {}; + struct bpf_cpu_map_entry *rcpu; + /* Array index key correspond to CPU number */ + u32 key_cpu = *(u32 *)key; + + memcpy(&cpumap_value, value, map->value_size); + + if (unlikely(map_flags > BPF_EXIST)) + return -EINVAL; + if (unlikely(key_cpu >= cmap->map.max_entries)) + return -E2BIG; + if (unlikely(map_flags == BPF_NOEXIST)) + return -EEXIST; + if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */ + return -EOVERFLOW; + + /* Make sure CPU is a valid possible cpu */ + if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu)) + return -ENODEV; + + if (cpumap_value.qsize == 0) { + rcpu = NULL; /* Same as deleting */ + } else { + /* Updating qsize cause re-allocation of bpf_cpu_map_entry */ + rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu); + if (!rcpu) + return -ENOMEM; + } + rcu_read_lock(); + __cpu_map_entry_replace(cmap, key_cpu, rcpu); + rcu_read_unlock(); + return 0; +} + +static void cpu_map_free(struct bpf_map *map) +{ + struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); + u32 i; + + /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, + * so the bpf programs (can be more than one that used this map) were + * disconnected from events. Wait for outstanding critical sections in + * these programs to complete. synchronize_rcu() below not only + * guarantees no further "XDP/bpf-side" reads against + * bpf_cpu_map->cpu_map, but also ensure pending flush operations + * (if any) are completed. + */ + synchronize_rcu(); + + /* The only possible user of bpf_cpu_map_entry is + * cpu_map_kthread_run(). + */ + for (i = 0; i < cmap->map.max_entries; i++) { + struct bpf_cpu_map_entry *rcpu; + + rcpu = rcu_dereference_raw(cmap->cpu_map[i]); + if (!rcpu) + continue; + + /* Stop kthread and cleanup entry directly */ + __cpu_map_entry_free(&rcpu->free_work.work); + } + bpf_map_area_free(cmap->cpu_map); + bpf_map_area_free(cmap); +} + +/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or + * by local_bh_disable() (from XDP calls inside NAPI). The + * rcu_read_lock_bh_held() below makes lockdep accept both. + */ +static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key) +{ + struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); + struct bpf_cpu_map_entry *rcpu; + + if (key >= map->max_entries) + return NULL; + + rcpu = rcu_dereference_check(cmap->cpu_map[key], + rcu_read_lock_bh_held()); + return rcpu; +} + +static void *cpu_map_lookup_elem(struct bpf_map *map, void *key) +{ + struct bpf_cpu_map_entry *rcpu = + __cpu_map_lookup_elem(map, *(u32 *)key); + + return rcpu ? &rcpu->value : NULL; +} + +static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key) +{ + struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map); + u32 index = key ? *(u32 *)key : U32_MAX; + u32 *next = next_key; + + if (index >= cmap->map.max_entries) { + *next = 0; + return 0; + } + + if (index == cmap->map.max_entries - 1) + return -ENOENT; + *next = index + 1; + return 0; +} + +static long cpu_map_redirect(struct bpf_map *map, u64 index, u64 flags) +{ + return __bpf_xdp_redirect_map(map, index, flags, 0, + __cpu_map_lookup_elem); +} + +static u64 cpu_map_mem_usage(const struct bpf_map *map) +{ + u64 usage = sizeof(struct bpf_cpu_map); + + /* Currently the dynamically allocated elements are not counted */ + usage += (u64)map->max_entries * sizeof(struct bpf_cpu_map_entry *); + return usage; +} + +BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map) +const struct bpf_map_ops cpu_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc = cpu_map_alloc, + .map_free = cpu_map_free, + .map_delete_elem = cpu_map_delete_elem, + .map_update_elem = cpu_map_update_elem, + .map_lookup_elem = cpu_map_lookup_elem, + .map_get_next_key = cpu_map_get_next_key, + .map_check_btf = map_check_no_btf, + .map_mem_usage = cpu_map_mem_usage, + .map_btf_id = &cpu_map_btf_ids[0], + .map_redirect = cpu_map_redirect, +}; + +static void bq_flush_to_queue(struct xdp_bulk_queue *bq) +{ + struct bpf_cpu_map_entry *rcpu = bq->obj; + unsigned int processed = 0, drops = 0; + const int to_cpu = rcpu->cpu; + struct ptr_ring *q; + int i; + + if (unlikely(!bq->count)) + return; + + q = rcpu->queue; + spin_lock(&q->producer_lock); + + for (i = 0; i < bq->count; i++) { + struct xdp_frame *xdpf = bq->q[i]; + int err; + + err = __ptr_ring_produce(q, xdpf); + if (err) { + drops++; + xdp_return_frame_rx_napi(xdpf); + } + processed++; + } + bq->count = 0; + spin_unlock(&q->producer_lock); + + __list_del_clearprev(&bq->flush_node); + + /* Feedback loop via tracepoints */ + trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu); +} + +/* Runs under RCU-read-side, plus in softirq under NAPI protection. + * Thus, safe percpu variable access. + */ +static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf) +{ + struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq); + + if (unlikely(bq->count == CPU_MAP_BULK_SIZE)) + bq_flush_to_queue(bq); + + /* Notice, xdp_buff/page MUST be queued here, long enough for + * driver to code invoking us to finished, due to driver + * (e.g. ixgbe) recycle tricks based on page-refcnt. + * + * Thus, incoming xdp_frame is always queued here (else we race + * with another CPU on page-refcnt and remaining driver code). + * Queue time is very short, as driver will invoke flush + * operation, when completing napi->poll call. + */ + bq->q[bq->count++] = xdpf; + + if (!bq->flush_node.prev) { + struct list_head *flush_list = bpf_net_ctx_get_cpu_map_flush_list(); + + list_add(&bq->flush_node, flush_list); + } +} + +int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, + struct net_device *dev_rx) +{ + /* Info needed when constructing SKB on remote CPU */ + xdpf->dev_rx = dev_rx; + + bq_enqueue(rcpu, xdpf); + return 0; +} + +int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, + struct sk_buff *skb) +{ + int ret; + + __skb_pull(skb, skb->mac_len); + skb_set_redirected(skb, false); + __ptr_set_bit(0, &skb); + + ret = ptr_ring_produce(rcpu->queue, skb); + if (ret < 0) + goto trace; + + wake_up_process(rcpu->kthread); +trace: + trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu); + return ret; +} + +void __cpu_map_flush(struct list_head *flush_list) +{ + struct xdp_bulk_queue *bq, *tmp; + + list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { + bq_flush_to_queue(bq); + + /* If already running, costs spin_lock_irqsave + smb_mb */ + wake_up_process(bq->obj->kthread); + } +} diff --git a/kernel/bpf/cpumask.c b/kernel/bpf/cpumask.c new file mode 100644 index 000000000000..9876c5fe6c2a --- /dev/null +++ b/kernel/bpf/cpumask.c @@ -0,0 +1,534 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2023 Meta, Inc */ +#include <linux/bpf.h> +#include <linux/bpf_mem_alloc.h> +#include <linux/btf.h> +#include <linux/btf_ids.h> +#include <linux/cpumask.h> + +/** + * struct bpf_cpumask - refcounted BPF cpumask wrapper structure + * @cpumask: The actual cpumask embedded in the struct. + * @usage: Object reference counter. When the refcount goes to 0, the + * memory is released back to the BPF allocator, which provides + * RCU safety. + * + * Note that we explicitly embed a cpumask_t rather than a cpumask_var_t. This + * is done to avoid confusing the verifier due to the typedef of cpumask_var_t + * changing depending on whether CONFIG_CPUMASK_OFFSTACK is defined or not. See + * the details in <linux/cpumask.h>. The consequence is that this structure is + * likely a bit larger than it needs to be when CONFIG_CPUMASK_OFFSTACK is + * defined due to embedding the whole NR_CPUS-size bitmap, but the extra memory + * overhead is minimal. For the more typical case of CONFIG_CPUMASK_OFFSTACK + * not being defined, the structure is the same size regardless. + */ +struct bpf_cpumask { + cpumask_t cpumask; + refcount_t usage; +}; + +static struct bpf_mem_alloc bpf_cpumask_ma; + +static bool cpu_valid(u32 cpu) +{ + return cpu < nr_cpu_ids; +} + +__bpf_kfunc_start_defs(); + +/** + * bpf_cpumask_create() - Create a mutable BPF cpumask. + * + * Allocates a cpumask that can be queried, mutated, acquired, and released by + * a BPF program. The cpumask returned by this function must either be embedded + * in a map as a kptr, or freed with bpf_cpumask_release(). + * + * bpf_cpumask_create() allocates memory using the BPF memory allocator, and + * will not block. It may return NULL if no memory is available. + * + * Return: + * * A pointer to a new struct bpf_cpumask instance on success. + * * NULL if the BPF memory allocator is out of memory. + */ +__bpf_kfunc struct bpf_cpumask *bpf_cpumask_create(void) +{ + struct bpf_cpumask *cpumask; + + /* cpumask must be the first element so struct bpf_cpumask be cast to struct cpumask. */ + BUILD_BUG_ON(offsetof(struct bpf_cpumask, cpumask) != 0); + + cpumask = bpf_mem_cache_alloc(&bpf_cpumask_ma); + if (!cpumask) + return NULL; + + memset(cpumask, 0, sizeof(*cpumask)); + refcount_set(&cpumask->usage, 1); + + return cpumask; +} + +/** + * bpf_cpumask_acquire() - Acquire a reference to a BPF cpumask. + * @cpumask: The BPF cpumask being acquired. The cpumask must be a trusted + * pointer. + * + * Acquires a reference to a BPF cpumask. The cpumask returned by this function + * must either be embedded in a map as a kptr, or freed with + * bpf_cpumask_release(). + * + * Return: + * * The struct bpf_cpumask pointer passed to the function. + * + */ +__bpf_kfunc struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask) +{ + refcount_inc(&cpumask->usage); + return cpumask; +} + +/** + * bpf_cpumask_release() - Release a previously acquired BPF cpumask. + * @cpumask: The cpumask being released. + * + * Releases a previously acquired reference to a BPF cpumask. When the final + * reference of the BPF cpumask has been released, it is subsequently freed in + * an RCU callback in the BPF memory allocator. + */ +__bpf_kfunc void bpf_cpumask_release(struct bpf_cpumask *cpumask) +{ + if (!refcount_dec_and_test(&cpumask->usage)) + return; + + bpf_mem_cache_free_rcu(&bpf_cpumask_ma, cpumask); +} + +__bpf_kfunc void bpf_cpumask_release_dtor(void *cpumask) +{ + bpf_cpumask_release(cpumask); +} +CFI_NOSEAL(bpf_cpumask_release_dtor); + +/** + * bpf_cpumask_first() - Get the index of the first nonzero bit in the cpumask. + * @cpumask: The cpumask being queried. + * + * Find the index of the first nonzero bit of the cpumask. A struct bpf_cpumask + * pointer may be safely passed to this function. + * + * Return: + * * The index of the first nonzero bit in the struct cpumask. + */ +__bpf_kfunc u32 bpf_cpumask_first(const struct cpumask *cpumask) +{ + return cpumask_first(cpumask); +} + +/** + * bpf_cpumask_first_zero() - Get the index of the first unset bit in the + * cpumask. + * @cpumask: The cpumask being queried. + * + * Find the index of the first unset bit of the cpumask. A struct bpf_cpumask + * pointer may be safely passed to this function. + * + * Return: + * * The index of the first zero bit in the struct cpumask. + */ +__bpf_kfunc u32 bpf_cpumask_first_zero(const struct cpumask *cpumask) +{ + return cpumask_first_zero(cpumask); +} + +/** + * bpf_cpumask_first_and() - Return the index of the first nonzero bit from the + * AND of two cpumasks. + * @src1: The first cpumask. + * @src2: The second cpumask. + * + * Find the index of the first nonzero bit of the AND of two cpumasks. + * struct bpf_cpumask pointers may be safely passed to @src1 and @src2. + * + * Return: + * * The index of the first bit that is nonzero in both cpumask instances. + */ +__bpf_kfunc u32 bpf_cpumask_first_and(const struct cpumask *src1, + const struct cpumask *src2) +{ + return cpumask_first_and(src1, src2); +} + +/** + * bpf_cpumask_set_cpu() - Set a bit for a CPU in a BPF cpumask. + * @cpu: The CPU to be set in the cpumask. + * @cpumask: The BPF cpumask in which a bit is being set. + */ +__bpf_kfunc void bpf_cpumask_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) +{ + if (!cpu_valid(cpu)) + return; + + cpumask_set_cpu(cpu, (struct cpumask *)cpumask); +} + +/** + * bpf_cpumask_clear_cpu() - Clear a bit for a CPU in a BPF cpumask. + * @cpu: The CPU to be cleared from the cpumask. + * @cpumask: The BPF cpumask in which a bit is being cleared. + */ +__bpf_kfunc void bpf_cpumask_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) +{ + if (!cpu_valid(cpu)) + return; + + cpumask_clear_cpu(cpu, (struct cpumask *)cpumask); +} + +/** + * bpf_cpumask_test_cpu() - Test whether a CPU is set in a cpumask. + * @cpu: The CPU being queried for. + * @cpumask: The cpumask being queried for containing a CPU. + * + * Return: + * * true - @cpu is set in the cpumask + * * false - @cpu was not set in the cpumask, or @cpu is an invalid cpu. + */ +__bpf_kfunc bool bpf_cpumask_test_cpu(u32 cpu, const struct cpumask *cpumask) +{ + if (!cpu_valid(cpu)) + return false; + + return cpumask_test_cpu(cpu, (struct cpumask *)cpumask); +} + +/** + * bpf_cpumask_test_and_set_cpu() - Atomically test and set a CPU in a BPF cpumask. + * @cpu: The CPU being set and queried for. + * @cpumask: The BPF cpumask being set and queried for containing a CPU. + * + * Return: + * * true - @cpu is set in the cpumask + * * false - @cpu was not set in the cpumask, or @cpu is invalid. + */ +__bpf_kfunc bool bpf_cpumask_test_and_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) +{ + if (!cpu_valid(cpu)) + return false; + + return cpumask_test_and_set_cpu(cpu, (struct cpumask *)cpumask); +} + +/** + * bpf_cpumask_test_and_clear_cpu() - Atomically test and clear a CPU in a BPF + * cpumask. + * @cpu: The CPU being cleared and queried for. + * @cpumask: The BPF cpumask being cleared and queried for containing a CPU. + * + * Return: + * * true - @cpu is set in the cpumask + * * false - @cpu was not set in the cpumask, or @cpu is invalid. + */ +__bpf_kfunc bool bpf_cpumask_test_and_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) +{ + if (!cpu_valid(cpu)) + return false; + + return cpumask_test_and_clear_cpu(cpu, (struct cpumask *)cpumask); +} + +/** + * bpf_cpumask_setall() - Set all of the bits in a BPF cpumask. + * @cpumask: The BPF cpumask having all of its bits set. + */ +__bpf_kfunc void bpf_cpumask_setall(struct bpf_cpumask *cpumask) +{ + cpumask_setall((struct cpumask *)cpumask); +} + +/** + * bpf_cpumask_clear() - Clear all of the bits in a BPF cpumask. + * @cpumask: The BPF cpumask being cleared. + */ +__bpf_kfunc void bpf_cpumask_clear(struct bpf_cpumask *cpumask) +{ + cpumask_clear((struct cpumask *)cpumask); +} + +/** + * bpf_cpumask_and() - AND two cpumasks and store the result. + * @dst: The BPF cpumask where the result is being stored. + * @src1: The first input. + * @src2: The second input. + * + * Return: + * * true - @dst has at least one bit set following the operation + * * false - @dst is empty following the operation + * + * struct bpf_cpumask pointers may be safely passed to @src1 and @src2. + */ +__bpf_kfunc bool bpf_cpumask_and(struct bpf_cpumask *dst, + const struct cpumask *src1, + const struct cpumask *src2) +{ + return cpumask_and((struct cpumask *)dst, src1, src2); +} + +/** + * bpf_cpumask_or() - OR two cpumasks and store the result. + * @dst: The BPF cpumask where the result is being stored. + * @src1: The first input. + * @src2: The second input. + * + * struct bpf_cpumask pointers may be safely passed to @src1 and @src2. + */ +__bpf_kfunc void bpf_cpumask_or(struct bpf_cpumask *dst, + const struct cpumask *src1, + const struct cpumask *src2) +{ + cpumask_or((struct cpumask *)dst, src1, src2); +} + +/** + * bpf_cpumask_xor() - XOR two cpumasks and store the result. + * @dst: The BPF cpumask where the result is being stored. + * @src1: The first input. + * @src2: The second input. + * + * struct bpf_cpumask pointers may be safely passed to @src1 and @src2. + */ +__bpf_kfunc void bpf_cpumask_xor(struct bpf_cpumask *dst, + const struct cpumask *src1, + const struct cpumask *src2) +{ + cpumask_xor((struct cpumask *)dst, src1, src2); +} + +/** + * bpf_cpumask_equal() - Check two cpumasks for equality. + * @src1: The first input. + * @src2: The second input. + * + * Return: + * * true - @src1 and @src2 have the same bits set. + * * false - @src1 and @src2 differ in at least one bit. + * + * struct bpf_cpumask pointers may be safely passed to @src1 and @src2. + */ +__bpf_kfunc bool bpf_cpumask_equal(const struct cpumask *src1, const struct cpumask *src2) +{ + return cpumask_equal(src1, src2); +} + +/** + * bpf_cpumask_intersects() - Check two cpumasks for overlap. + * @src1: The first input. + * @src2: The second input. + * + * Return: + * * true - @src1 and @src2 have at least one of the same bits set. + * * false - @src1 and @src2 don't have any of the same bits set. + * + * struct bpf_cpumask pointers may be safely passed to @src1 and @src2. + */ +__bpf_kfunc bool bpf_cpumask_intersects(const struct cpumask *src1, const struct cpumask *src2) +{ + return cpumask_intersects(src1, src2); +} + +/** + * bpf_cpumask_subset() - Check if a cpumask is a subset of another. + * @src1: The first cpumask being checked as a subset. + * @src2: The second cpumask being checked as a superset. + * + * Return: + * * true - All of the bits of @src1 are set in @src2. + * * false - At least one bit in @src1 is not set in @src2. + * + * struct bpf_cpumask pointers may be safely passed to @src1 and @src2. + */ +__bpf_kfunc bool bpf_cpumask_subset(const struct cpumask *src1, const struct cpumask *src2) +{ + return cpumask_subset(src1, src2); +} + +/** + * bpf_cpumask_empty() - Check if a cpumask is empty. + * @cpumask: The cpumask being checked. + * + * Return: + * * true - None of the bits in @cpumask are set. + * * false - At least one bit in @cpumask is set. + * + * A struct bpf_cpumask pointer may be safely passed to @cpumask. + */ +__bpf_kfunc bool bpf_cpumask_empty(const struct cpumask *cpumask) +{ + return cpumask_empty(cpumask); +} + +/** + * bpf_cpumask_full() - Check if a cpumask has all bits set. + * @cpumask: The cpumask being checked. + * + * Return: + * * true - All of the bits in @cpumask are set. + * * false - At least one bit in @cpumask is cleared. + * + * A struct bpf_cpumask pointer may be safely passed to @cpumask. + */ +__bpf_kfunc bool bpf_cpumask_full(const struct cpumask *cpumask) +{ + return cpumask_full(cpumask); +} + +/** + * bpf_cpumask_copy() - Copy the contents of a cpumask into a BPF cpumask. + * @dst: The BPF cpumask being copied into. + * @src: The cpumask being copied. + * + * A struct bpf_cpumask pointer may be safely passed to @src. + */ +__bpf_kfunc void bpf_cpumask_copy(struct bpf_cpumask *dst, const struct cpumask *src) +{ + cpumask_copy((struct cpumask *)dst, src); +} + +/** + * bpf_cpumask_any_distribute() - Return a random set CPU from a cpumask. + * @cpumask: The cpumask being queried. + * + * Return: + * * A random set bit within [0, num_cpus) if at least one bit is set. + * * >= num_cpus if no bit is set. + * + * A struct bpf_cpumask pointer may be safely passed to @src. + */ +__bpf_kfunc u32 bpf_cpumask_any_distribute(const struct cpumask *cpumask) +{ + return cpumask_any_distribute(cpumask); +} + +/** + * bpf_cpumask_any_and_distribute() - Return a random set CPU from the AND of + * two cpumasks. + * @src1: The first cpumask. + * @src2: The second cpumask. + * + * Return: + * * A random set bit within [0, num_cpus) from the AND of two cpumasks, if at + * least one bit is set. + * * >= num_cpus if no bit is set. + * + * struct bpf_cpumask pointers may be safely passed to @src1 and @src2. + */ +__bpf_kfunc u32 bpf_cpumask_any_and_distribute(const struct cpumask *src1, + const struct cpumask *src2) +{ + return cpumask_any_and_distribute(src1, src2); +} + +/** + * bpf_cpumask_weight() - Return the number of bits in @cpumask. + * @cpumask: The cpumask being queried. + * + * Count the number of set bits in the given cpumask. + * + * Return: + * * The number of bits set in the mask. + */ +__bpf_kfunc u32 bpf_cpumask_weight(const struct cpumask *cpumask) +{ + return cpumask_weight(cpumask); +} + +/** + * bpf_cpumask_populate() - Populate the CPU mask from the contents of + * a BPF memory region. + * + * @cpumask: The cpumask being populated. + * @src: The BPF memory holding the bit pattern. + * @src__sz: Length of the BPF memory region in bytes. + * + * Return: + * * 0 if the struct cpumask * instance was populated successfully. + * * -EACCES if the memory region is too small to populate the cpumask. + * * -EINVAL if the memory region is not aligned to the size of a long + * and the architecture does not support efficient unaligned accesses. + */ +__bpf_kfunc int bpf_cpumask_populate(struct cpumask *cpumask, void *src, size_t src__sz) +{ + unsigned long source = (unsigned long)src; + + /* The memory region must be large enough to populate the entire CPU mask. */ + if (src__sz < bitmap_size(nr_cpu_ids)) + return -EACCES; + + /* If avoiding unaligned accesses, the input region must be aligned to the nearest long. */ + if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && + !IS_ALIGNED(source, sizeof(long))) + return -EINVAL; + + bitmap_copy(cpumask_bits(cpumask), src, nr_cpu_ids); + + return 0; +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(cpumask_kfunc_btf_ids) +BTF_ID_FLAGS(func, bpf_cpumask_create, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_cpumask_release, KF_RELEASE) +BTF_ID_FLAGS(func, bpf_cpumask_acquire, KF_ACQUIRE | KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_cpumask_first, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_first_zero, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_first_and, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_set_cpu, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_clear_cpu, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_test_cpu, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_test_and_set_cpu, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_test_and_clear_cpu, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_setall, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_clear, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_and, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_or, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_xor, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_equal, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_intersects, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_subset, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_empty, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_full, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_copy, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_any_distribute, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_any_and_distribute, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_weight, KF_RCU) +BTF_ID_FLAGS(func, bpf_cpumask_populate, KF_RCU) +BTF_KFUNCS_END(cpumask_kfunc_btf_ids) + +static const struct btf_kfunc_id_set cpumask_kfunc_set = { + .owner = THIS_MODULE, + .set = &cpumask_kfunc_btf_ids, +}; + +BTF_ID_LIST(cpumask_dtor_ids) +BTF_ID(struct, bpf_cpumask) +BTF_ID(func, bpf_cpumask_release_dtor) + +static int __init cpumask_kfunc_init(void) +{ + int ret; + const struct btf_id_dtor_kfunc cpumask_dtors[] = { + { + .btf_id = cpumask_dtor_ids[0], + .kfunc_btf_id = cpumask_dtor_ids[1] + }, + }; + + ret = bpf_mem_alloc_init(&bpf_cpumask_ma, sizeof(struct bpf_cpumask), false); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &cpumask_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &cpumask_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &cpumask_kfunc_set); + return ret ?: register_btf_id_dtor_kfuncs(cpumask_dtors, + ARRAY_SIZE(cpumask_dtors), + THIS_MODULE); +} + +late_initcall(cpumask_kfunc_init); diff --git a/kernel/bpf/crypto.c b/kernel/bpf/crypto.c new file mode 100644 index 000000000000..83c4d9943084 --- /dev/null +++ b/kernel/bpf/crypto.c @@ -0,0 +1,393 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2024 Meta, Inc */ +#include <linux/bpf.h> +#include <linux/bpf_crypto.h> +#include <linux/bpf_mem_alloc.h> +#include <linux/btf.h> +#include <linux/btf_ids.h> +#include <linux/filter.h> +#include <linux/scatterlist.h> +#include <linux/skbuff.h> +#include <crypto/skcipher.h> + +struct bpf_crypto_type_list { + const struct bpf_crypto_type *type; + struct list_head list; +}; + +/* BPF crypto initialization parameters struct */ +/** + * struct bpf_crypto_params - BPF crypto initialization parameters structure + * @type: The string of crypto operation type. + * @reserved: Reserved member, will be reused for more options in future + * Values: + * 0 + * @algo: The string of algorithm to initialize. + * @key: The cipher key used to init crypto algorithm. + * @key_len: The length of cipher key. + * @authsize: The length of authentication tag used by algorithm. + */ +struct bpf_crypto_params { + char type[14]; + u8 reserved[2]; + char algo[128]; + u8 key[256]; + u32 key_len; + u32 authsize; +}; + +static LIST_HEAD(bpf_crypto_types); +static DECLARE_RWSEM(bpf_crypto_types_sem); + +/** + * struct bpf_crypto_ctx - refcounted BPF crypto context structure + * @type: The pointer to bpf crypto type + * @tfm: The pointer to instance of crypto API struct. + * @siv_len: Size of IV and state storage for cipher + * @rcu: The RCU head used to free the crypto context with RCU safety. + * @usage: Object reference counter. When the refcount goes to 0, the + * memory is released back to the BPF allocator, which provides + * RCU safety. + */ +struct bpf_crypto_ctx { + const struct bpf_crypto_type *type; + void *tfm; + u32 siv_len; + struct rcu_head rcu; + refcount_t usage; +}; + +int bpf_crypto_register_type(const struct bpf_crypto_type *type) +{ + struct bpf_crypto_type_list *node; + int err = -EEXIST; + + down_write(&bpf_crypto_types_sem); + list_for_each_entry(node, &bpf_crypto_types, list) { + if (!strcmp(node->type->name, type->name)) + goto unlock; + } + + node = kmalloc(sizeof(*node), GFP_KERNEL); + err = -ENOMEM; + if (!node) + goto unlock; + + node->type = type; + list_add(&node->list, &bpf_crypto_types); + err = 0; + +unlock: + up_write(&bpf_crypto_types_sem); + + return err; +} +EXPORT_SYMBOL_GPL(bpf_crypto_register_type); + +int bpf_crypto_unregister_type(const struct bpf_crypto_type *type) +{ + struct bpf_crypto_type_list *node; + int err = -ENOENT; + + down_write(&bpf_crypto_types_sem); + list_for_each_entry(node, &bpf_crypto_types, list) { + if (strcmp(node->type->name, type->name)) + continue; + + list_del(&node->list); + kfree(node); + err = 0; + break; + } + up_write(&bpf_crypto_types_sem); + + return err; +} +EXPORT_SYMBOL_GPL(bpf_crypto_unregister_type); + +static const struct bpf_crypto_type *bpf_crypto_get_type(const char *name) +{ + const struct bpf_crypto_type *type = ERR_PTR(-ENOENT); + struct bpf_crypto_type_list *node; + + down_read(&bpf_crypto_types_sem); + list_for_each_entry(node, &bpf_crypto_types, list) { + if (strcmp(node->type->name, name)) + continue; + + if (try_module_get(node->type->owner)) + type = node->type; + break; + } + up_read(&bpf_crypto_types_sem); + + return type; +} + +__bpf_kfunc_start_defs(); + +/** + * bpf_crypto_ctx_create() - Create a mutable BPF crypto context. + * + * Allocates a crypto context that can be used, acquired, and released by + * a BPF program. The crypto context returned by this function must either + * be embedded in a map as a kptr, or freed with bpf_crypto_ctx_release(). + * As crypto API functions use GFP_KERNEL allocations, this function can + * only be used in sleepable BPF programs. + * + * bpf_crypto_ctx_create() allocates memory for crypto context. + * It may return NULL if no memory is available. + * @params: pointer to struct bpf_crypto_params which contains all the + * details needed to initialise crypto context. + * @params__sz: size of steuct bpf_crypto_params usef by bpf program + * @err: integer to store error code when NULL is returned. + */ +__bpf_kfunc struct bpf_crypto_ctx * +bpf_crypto_ctx_create(const struct bpf_crypto_params *params, u32 params__sz, + int *err) +{ + const struct bpf_crypto_type *type; + struct bpf_crypto_ctx *ctx; + + if (!params || params->reserved[0] || params->reserved[1] || + params__sz != sizeof(struct bpf_crypto_params)) { + *err = -EINVAL; + return NULL; + } + + type = bpf_crypto_get_type(params->type); + if (IS_ERR(type)) { + *err = PTR_ERR(type); + return NULL; + } + + if (!type->has_algo(params->algo)) { + *err = -EOPNOTSUPP; + goto err_module_put; + } + + if (!!params->authsize ^ !!type->setauthsize) { + *err = -EOPNOTSUPP; + goto err_module_put; + } + + if (!params->key_len || params->key_len > sizeof(params->key)) { + *err = -EINVAL; + goto err_module_put; + } + + ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); + if (!ctx) { + *err = -ENOMEM; + goto err_module_put; + } + + ctx->type = type; + ctx->tfm = type->alloc_tfm(params->algo); + if (IS_ERR(ctx->tfm)) { + *err = PTR_ERR(ctx->tfm); + goto err_free_ctx; + } + + if (params->authsize) { + *err = type->setauthsize(ctx->tfm, params->authsize); + if (*err) + goto err_free_tfm; + } + + *err = type->setkey(ctx->tfm, params->key, params->key_len); + if (*err) + goto err_free_tfm; + + if (type->get_flags(ctx->tfm) & CRYPTO_TFM_NEED_KEY) { + *err = -EINVAL; + goto err_free_tfm; + } + + ctx->siv_len = type->ivsize(ctx->tfm) + type->statesize(ctx->tfm); + + refcount_set(&ctx->usage, 1); + + return ctx; + +err_free_tfm: + type->free_tfm(ctx->tfm); +err_free_ctx: + kfree(ctx); +err_module_put: + module_put(type->owner); + + return NULL; +} + +static void crypto_free_cb(struct rcu_head *head) +{ + struct bpf_crypto_ctx *ctx; + + ctx = container_of(head, struct bpf_crypto_ctx, rcu); + ctx->type->free_tfm(ctx->tfm); + module_put(ctx->type->owner); + kfree(ctx); +} + +/** + * bpf_crypto_ctx_acquire() - Acquire a reference to a BPF crypto context. + * @ctx: The BPF crypto context being acquired. The ctx must be a trusted + * pointer. + * + * Acquires a reference to a BPF crypto context. The context returned by this function + * must either be embedded in a map as a kptr, or freed with + * bpf_crypto_ctx_release(). + */ +__bpf_kfunc struct bpf_crypto_ctx * +bpf_crypto_ctx_acquire(struct bpf_crypto_ctx *ctx) +{ + if (!refcount_inc_not_zero(&ctx->usage)) + return NULL; + return ctx; +} + +/** + * bpf_crypto_ctx_release() - Release a previously acquired BPF crypto context. + * @ctx: The crypto context being released. + * + * Releases a previously acquired reference to a BPF crypto context. When the final + * reference of the BPF crypto context has been released, its memory + * will be released. + */ +__bpf_kfunc void bpf_crypto_ctx_release(struct bpf_crypto_ctx *ctx) +{ + if (refcount_dec_and_test(&ctx->usage)) + call_rcu(&ctx->rcu, crypto_free_cb); +} + +static int bpf_crypto_crypt(const struct bpf_crypto_ctx *ctx, + const struct bpf_dynptr_kern *src, + const struct bpf_dynptr_kern *dst, + const struct bpf_dynptr_kern *siv, + bool decrypt) +{ + u32 src_len, dst_len, siv_len; + const u8 *psrc; + u8 *pdst, *piv; + int err; + + if (__bpf_dynptr_is_rdonly(dst)) + return -EINVAL; + + siv_len = siv ? __bpf_dynptr_size(siv) : 0; + src_len = __bpf_dynptr_size(src); + dst_len = __bpf_dynptr_size(dst); + if (!src_len || !dst_len || src_len > dst_len) + return -EINVAL; + + if (siv_len != ctx->siv_len) + return -EINVAL; + + psrc = __bpf_dynptr_data(src, src_len); + if (!psrc) + return -EINVAL; + pdst = __bpf_dynptr_data_rw(dst, dst_len); + if (!pdst) + return -EINVAL; + + piv = siv_len ? __bpf_dynptr_data_rw(siv, siv_len) : NULL; + if (siv_len && !piv) + return -EINVAL; + + err = decrypt ? ctx->type->decrypt(ctx->tfm, psrc, pdst, src_len, piv) + : ctx->type->encrypt(ctx->tfm, psrc, pdst, src_len, piv); + + return err; +} + +/** + * bpf_crypto_decrypt() - Decrypt buffer using configured context and IV provided. + * @ctx: The crypto context being used. The ctx must be a trusted pointer. + * @src: bpf_dynptr to the encrypted data. Must be a trusted pointer. + * @dst: bpf_dynptr to the buffer where to store the result. Must be a trusted pointer. + * @siv__nullable: bpf_dynptr to IV data and state data to be used by decryptor. May be NULL. + * + * Decrypts provided buffer using IV data and the crypto context. Crypto context must be configured. + */ +__bpf_kfunc int bpf_crypto_decrypt(struct bpf_crypto_ctx *ctx, + const struct bpf_dynptr *src, + const struct bpf_dynptr *dst, + const struct bpf_dynptr *siv__nullable) +{ + const struct bpf_dynptr_kern *src_kern = (struct bpf_dynptr_kern *)src; + const struct bpf_dynptr_kern *dst_kern = (struct bpf_dynptr_kern *)dst; + const struct bpf_dynptr_kern *siv_kern = (struct bpf_dynptr_kern *)siv__nullable; + + return bpf_crypto_crypt(ctx, src_kern, dst_kern, siv_kern, true); +} + +/** + * bpf_crypto_encrypt() - Encrypt buffer using configured context and IV provided. + * @ctx: The crypto context being used. The ctx must be a trusted pointer. + * @src: bpf_dynptr to the plain data. Must be a trusted pointer. + * @dst: bpf_dynptr to the buffer where to store the result. Must be a trusted pointer. + * @siv__nullable: bpf_dynptr to IV data and state data to be used by decryptor. May be NULL. + * + * Encrypts provided buffer using IV data and the crypto context. Crypto context must be configured. + */ +__bpf_kfunc int bpf_crypto_encrypt(struct bpf_crypto_ctx *ctx, + const struct bpf_dynptr *src, + const struct bpf_dynptr *dst, + const struct bpf_dynptr *siv__nullable) +{ + const struct bpf_dynptr_kern *src_kern = (struct bpf_dynptr_kern *)src; + const struct bpf_dynptr_kern *dst_kern = (struct bpf_dynptr_kern *)dst; + const struct bpf_dynptr_kern *siv_kern = (struct bpf_dynptr_kern *)siv__nullable; + + return bpf_crypto_crypt(ctx, src_kern, dst_kern, siv_kern, false); +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(crypt_init_kfunc_btf_ids) +BTF_ID_FLAGS(func, bpf_crypto_ctx_create, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_crypto_ctx_release, KF_RELEASE) +BTF_ID_FLAGS(func, bpf_crypto_ctx_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) +BTF_KFUNCS_END(crypt_init_kfunc_btf_ids) + +static const struct btf_kfunc_id_set crypt_init_kfunc_set = { + .owner = THIS_MODULE, + .set = &crypt_init_kfunc_btf_ids, +}; + +BTF_KFUNCS_START(crypt_kfunc_btf_ids) +BTF_ID_FLAGS(func, bpf_crypto_decrypt, KF_RCU) +BTF_ID_FLAGS(func, bpf_crypto_encrypt, KF_RCU) +BTF_KFUNCS_END(crypt_kfunc_btf_ids) + +static const struct btf_kfunc_id_set crypt_kfunc_set = { + .owner = THIS_MODULE, + .set = &crypt_kfunc_btf_ids, +}; + +BTF_ID_LIST(bpf_crypto_dtor_ids) +BTF_ID(struct, bpf_crypto_ctx) +BTF_ID(func, bpf_crypto_ctx_release) + +static int __init crypto_kfunc_init(void) +{ + int ret; + const struct btf_id_dtor_kfunc bpf_crypto_dtors[] = { + { + .btf_id = bpf_crypto_dtor_ids[0], + .kfunc_btf_id = bpf_crypto_dtor_ids[1] + }, + }; + + ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &crypt_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &crypt_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &crypt_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, + &crypt_init_kfunc_set); + return ret ?: register_btf_id_dtor_kfuncs(bpf_crypto_dtors, + ARRAY_SIZE(bpf_crypto_dtors), + THIS_MODULE); +} + +late_initcall(crypto_kfunc_init); diff --git a/kernel/bpf/devmap.c b/kernel/bpf/devmap.c new file mode 100644 index 000000000000..2625601de76e --- /dev/null +++ b/kernel/bpf/devmap.c @@ -0,0 +1,1170 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io + */ + +/* Devmaps primary use is as a backend map for XDP BPF helper call + * bpf_redirect_map(). Because XDP is mostly concerned with performance we + * spent some effort to ensure the datapath with redirect maps does not use + * any locking. This is a quick note on the details. + * + * We have three possible paths to get into the devmap control plane bpf + * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall + * will invoke an update, delete, or lookup operation. To ensure updates and + * deletes appear atomic from the datapath side xchg() is used to modify the + * netdev_map array. Then because the datapath does a lookup into the netdev_map + * array (read-only) from an RCU critical section we use call_rcu() to wait for + * an rcu grace period before free'ing the old data structures. This ensures the + * datapath always has a valid copy. However, the datapath does a "flush" + * operation that pushes any pending packets in the driver outside the RCU + * critical section. Each bpf_dtab_netdev tracks these pending operations using + * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until + * this list is empty, indicating outstanding flush operations have completed. + * + * BPF syscalls may race with BPF program calls on any of the update, delete + * or lookup operations. As noted above the xchg() operation also keep the + * netdev_map consistent in this case. From the devmap side BPF programs + * calling into these operations are the same as multiple user space threads + * making system calls. + * + * Finally, any of the above may race with a netdev_unregister notifier. The + * unregister notifier must search for net devices in the map structure that + * contain a reference to the net device and remove them. This is a two step + * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b) + * check to see if the ifindex is the same as the net_device being removed. + * When removing the dev a cmpxchg() is used to ensure the correct dev is + * removed, in the case of a concurrent update or delete operation it is + * possible that the initially referenced dev is no longer in the map. As the + * notifier hook walks the map we know that new dev references can not be + * added by the user because core infrastructure ensures dev_get_by_index() + * calls will fail at this point. + * + * The devmap_hash type is a map type which interprets keys as ifindexes and + * indexes these using a hashmap. This allows maps that use ifindex as key to be + * densely packed instead of having holes in the lookup array for unused + * ifindexes. The setup and packet enqueue/send code is shared between the two + * types of devmap; only the lookup and insertion is different. + */ +#include <linux/bpf.h> +#include <net/xdp.h> +#include <linux/filter.h> +#include <trace/events/xdp.h> +#include <linux/btf_ids.h> + +#define DEV_CREATE_FLAG_MASK \ + (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) + +struct xdp_dev_bulk_queue { + struct xdp_frame *q[DEV_MAP_BULK_SIZE]; + struct list_head flush_node; + struct net_device *dev; + struct net_device *dev_rx; + struct bpf_prog *xdp_prog; + unsigned int count; +}; + +struct bpf_dtab_netdev { + struct net_device *dev; /* must be first member, due to tracepoint */ + struct hlist_node index_hlist; + struct bpf_prog *xdp_prog; + struct rcu_head rcu; + unsigned int idx; + struct bpf_devmap_val val; +}; + +struct bpf_dtab { + struct bpf_map map; + struct bpf_dtab_netdev __rcu **netdev_map; /* DEVMAP type only */ + struct list_head list; + + /* these are only used for DEVMAP_HASH type maps */ + struct hlist_head *dev_index_head; + spinlock_t index_lock; + unsigned int items; + u32 n_buckets; +}; + +static DEFINE_SPINLOCK(dev_map_lock); +static LIST_HEAD(dev_map_list); + +static struct hlist_head *dev_map_create_hash(unsigned int entries, + int numa_node) +{ + int i; + struct hlist_head *hash; + + hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node); + if (hash != NULL) + for (i = 0; i < entries; i++) + INIT_HLIST_HEAD(&hash[i]); + + return hash; +} + +static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab, + int idx) +{ + return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)]; +} + +static int dev_map_alloc_check(union bpf_attr *attr) +{ + u32 valsize = attr->value_size; + + /* check sanity of attributes. 2 value sizes supported: + * 4 bytes: ifindex + * 8 bytes: ifindex + prog fd + */ + if (attr->max_entries == 0 || attr->key_size != 4 || + (valsize != offsetofend(struct bpf_devmap_val, ifindex) && + valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) || + attr->map_flags & ~DEV_CREATE_FLAG_MASK) + return -EINVAL; + + if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { + /* Hash table size must be power of 2; roundup_pow_of_two() + * can overflow into UB on 32-bit arches + */ + if (attr->max_entries > 1UL << 31) + return -EINVAL; + } + + return 0; +} + +static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr) +{ + /* Lookup returns a pointer straight to dev->ifindex, so make sure the + * verifier prevents writes from the BPF side + */ + attr->map_flags |= BPF_F_RDONLY_PROG; + bpf_map_init_from_attr(&dtab->map, attr); + + if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { + /* Hash table size must be power of 2 */ + dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries); + dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets, + dtab->map.numa_node); + if (!dtab->dev_index_head) + return -ENOMEM; + + spin_lock_init(&dtab->index_lock); + } else { + dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries * + sizeof(struct bpf_dtab_netdev *), + dtab->map.numa_node); + if (!dtab->netdev_map) + return -ENOMEM; + } + + return 0; +} + +static struct bpf_map *dev_map_alloc(union bpf_attr *attr) +{ + struct bpf_dtab *dtab; + int err; + + dtab = bpf_map_area_alloc(sizeof(*dtab), NUMA_NO_NODE); + if (!dtab) + return ERR_PTR(-ENOMEM); + + err = dev_map_init_map(dtab, attr); + if (err) { + bpf_map_area_free(dtab); + return ERR_PTR(err); + } + + spin_lock(&dev_map_lock); + list_add_tail_rcu(&dtab->list, &dev_map_list); + spin_unlock(&dev_map_lock); + + return &dtab->map; +} + +static void dev_map_free(struct bpf_map *map) +{ + struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); + u32 i; + + /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, + * so the programs (can be more than one that used this map) were + * disconnected from events. The following synchronize_rcu() guarantees + * both rcu read critical sections complete and waits for + * preempt-disable regions (NAPI being the relevant context here) so we + * are certain there will be no further reads against the netdev_map and + * all flush operations are complete. Flush operations can only be done + * from NAPI context for this reason. + */ + + spin_lock(&dev_map_lock); + list_del_rcu(&dtab->list); + spin_unlock(&dev_map_lock); + + /* bpf_redirect_info->map is assigned in __bpf_xdp_redirect_map() + * during NAPI callback and cleared after the XDP redirect. There is no + * explicit RCU read section which protects bpf_redirect_info->map but + * local_bh_disable() also marks the beginning an RCU section. This + * makes the complete softirq callback RCU protected. Thus after + * following synchronize_rcu() there no bpf_redirect_info->map == map + * assignment. + */ + synchronize_rcu(); + + /* Make sure prior __dev_map_entry_free() have completed. */ + rcu_barrier(); + + if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { + for (i = 0; i < dtab->n_buckets; i++) { + struct bpf_dtab_netdev *dev; + struct hlist_head *head; + struct hlist_node *next; + + head = dev_map_index_hash(dtab, i); + + hlist_for_each_entry_safe(dev, next, head, index_hlist) { + hlist_del_rcu(&dev->index_hlist); + if (dev->xdp_prog) + bpf_prog_put(dev->xdp_prog); + dev_put(dev->dev); + kfree(dev); + } + } + + bpf_map_area_free(dtab->dev_index_head); + } else { + for (i = 0; i < dtab->map.max_entries; i++) { + struct bpf_dtab_netdev *dev; + + dev = rcu_dereference_raw(dtab->netdev_map[i]); + if (!dev) + continue; + + if (dev->xdp_prog) + bpf_prog_put(dev->xdp_prog); + dev_put(dev->dev); + kfree(dev); + } + + bpf_map_area_free(dtab->netdev_map); + } + + bpf_map_area_free(dtab); +} + +static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key) +{ + struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); + u32 index = key ? *(u32 *)key : U32_MAX; + u32 *next = next_key; + + if (index >= dtab->map.max_entries) { + *next = 0; + return 0; + } + + if (index == dtab->map.max_entries - 1) + return -ENOENT; + *next = index + 1; + return 0; +} + +/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or + * by local_bh_disable() (from XDP calls inside NAPI). The + * rcu_read_lock_bh_held() below makes lockdep accept both. + */ +static void *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key) +{ + struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); + struct hlist_head *head = dev_map_index_hash(dtab, key); + struct bpf_dtab_netdev *dev; + + hlist_for_each_entry_rcu(dev, head, index_hlist, + lockdep_is_held(&dtab->index_lock)) + if (dev->idx == key) + return dev; + + return NULL; +} + +static int dev_map_hash_get_next_key(struct bpf_map *map, void *key, + void *next_key) +{ + struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); + u32 idx, *next = next_key; + struct bpf_dtab_netdev *dev, *next_dev; + struct hlist_head *head; + int i = 0; + + if (!key) + goto find_first; + + idx = *(u32 *)key; + + dev = __dev_map_hash_lookup_elem(map, idx); + if (!dev) + goto find_first; + + next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)), + struct bpf_dtab_netdev, index_hlist); + + if (next_dev) { + *next = next_dev->idx; + return 0; + } + + i = idx & (dtab->n_buckets - 1); + i++; + + find_first: + for (; i < dtab->n_buckets; i++) { + head = dev_map_index_hash(dtab, i); + + next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)), + struct bpf_dtab_netdev, + index_hlist); + if (next_dev) { + *next = next_dev->idx; + return 0; + } + } + + return -ENOENT; +} + +static int dev_map_bpf_prog_run(struct bpf_prog *xdp_prog, + struct xdp_frame **frames, int n, + struct net_device *tx_dev, + struct net_device *rx_dev) +{ + struct xdp_txq_info txq = { .dev = tx_dev }; + struct xdp_rxq_info rxq = { .dev = rx_dev }; + struct xdp_buff xdp; + int i, nframes = 0; + + for (i = 0; i < n; i++) { + struct xdp_frame *xdpf = frames[i]; + u32 act; + int err; + + xdp_convert_frame_to_buff(xdpf, &xdp); + xdp.txq = &txq; + xdp.rxq = &rxq; + + act = bpf_prog_run_xdp(xdp_prog, &xdp); + switch (act) { + case XDP_PASS: + err = xdp_update_frame_from_buff(&xdp, xdpf); + if (unlikely(err < 0)) + xdp_return_frame_rx_napi(xdpf); + else + frames[nframes++] = xdpf; + break; + default: + bpf_warn_invalid_xdp_action(NULL, xdp_prog, act); + fallthrough; + case XDP_ABORTED: + trace_xdp_exception(tx_dev, xdp_prog, act); + fallthrough; + case XDP_DROP: + xdp_return_frame_rx_napi(xdpf); + break; + } + } + return nframes; /* sent frames count */ +} + +static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags) +{ + struct net_device *dev = bq->dev; + unsigned int cnt = bq->count; + int sent = 0, err = 0; + int to_send = cnt; + int i; + + if (unlikely(!cnt)) + return; + + for (i = 0; i < cnt; i++) { + struct xdp_frame *xdpf = bq->q[i]; + + prefetch(xdpf); + } + + if (bq->xdp_prog) { + to_send = dev_map_bpf_prog_run(bq->xdp_prog, bq->q, cnt, dev, bq->dev_rx); + if (!to_send) + goto out; + } + + sent = dev->netdev_ops->ndo_xdp_xmit(dev, to_send, bq->q, flags); + if (sent < 0) { + /* If ndo_xdp_xmit fails with an errno, no frames have + * been xmit'ed. + */ + err = sent; + sent = 0; + } + + /* If not all frames have been transmitted, it is our + * responsibility to free them + */ + for (i = sent; unlikely(i < to_send); i++) + xdp_return_frame_rx_napi(bq->q[i]); + +out: + bq->count = 0; + trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, cnt - sent, err); +} + +/* __dev_flush is called from xdp_do_flush() which _must_ be signalled from the + * driver before returning from its napi->poll() routine. See the comment above + * xdp_do_flush() in filter.c. + */ +void __dev_flush(struct list_head *flush_list) +{ + struct xdp_dev_bulk_queue *bq, *tmp; + + list_for_each_entry_safe(bq, tmp, flush_list, flush_node) { + bq_xmit_all(bq, XDP_XMIT_FLUSH); + bq->dev_rx = NULL; + bq->xdp_prog = NULL; + __list_del_clearprev(&bq->flush_node); + } +} + +/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or + * by local_bh_disable() (from XDP calls inside NAPI). The + * rcu_read_lock_bh_held() below makes lockdep accept both. + */ +static void *__dev_map_lookup_elem(struct bpf_map *map, u32 key) +{ + struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); + struct bpf_dtab_netdev *obj; + + if (key >= map->max_entries) + return NULL; + + obj = rcu_dereference_check(dtab->netdev_map[key], + rcu_read_lock_bh_held()); + return obj; +} + +/* Runs in NAPI, i.e., softirq under local_bh_disable(). Thus, safe percpu + * variable access, and map elements stick around. See comment above + * xdp_do_flush() in filter.c. + */ +static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf, + struct net_device *dev_rx, struct bpf_prog *xdp_prog) +{ + struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq); + + if (unlikely(bq->count == DEV_MAP_BULK_SIZE)) + bq_xmit_all(bq, 0); + + /* Ingress dev_rx will be the same for all xdp_frame's in + * bulk_queue, because bq stored per-CPU and must be flushed + * from net_device drivers NAPI func end. + * + * Do the same with xdp_prog and flush_list since these fields + * are only ever modified together. + */ + if (!bq->dev_rx) { + struct list_head *flush_list = bpf_net_ctx_get_dev_flush_list(); + + bq->dev_rx = dev_rx; + bq->xdp_prog = xdp_prog; + list_add(&bq->flush_node, flush_list); + } + + bq->q[bq->count++] = xdpf; +} + +static inline int __xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, + struct net_device *dev_rx, + struct bpf_prog *xdp_prog) +{ + int err; + + if (!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) + return -EOPNOTSUPP; + + if (unlikely(!(dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && + xdp_frame_has_frags(xdpf))) + return -EOPNOTSUPP; + + err = xdp_ok_fwd_dev(dev, xdp_get_frame_len(xdpf)); + if (unlikely(err)) + return err; + + bq_enqueue(dev, xdpf, dev_rx, xdp_prog); + return 0; +} + +static u32 dev_map_bpf_prog_run_skb(struct sk_buff *skb, struct bpf_dtab_netdev *dst) +{ + struct xdp_txq_info txq = { .dev = dst->dev }; + struct xdp_buff xdp; + u32 act; + + if (!dst->xdp_prog) + return XDP_PASS; + + __skb_pull(skb, skb->mac_len); + xdp.txq = &txq; + + act = bpf_prog_run_generic_xdp(skb, &xdp, dst->xdp_prog); + switch (act) { + case XDP_PASS: + __skb_push(skb, skb->mac_len); + break; + default: + bpf_warn_invalid_xdp_action(NULL, dst->xdp_prog, act); + fallthrough; + case XDP_ABORTED: + trace_xdp_exception(dst->dev, dst->xdp_prog, act); + fallthrough; + case XDP_DROP: + kfree_skb(skb); + break; + } + + return act; +} + +int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, + struct net_device *dev_rx) +{ + return __xdp_enqueue(dev, xdpf, dev_rx, NULL); +} + +int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, + struct net_device *dev_rx) +{ + struct net_device *dev = dst->dev; + + return __xdp_enqueue(dev, xdpf, dev_rx, dst->xdp_prog); +} + +static bool is_valid_dst(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf) +{ + if (!obj) + return false; + + if (!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT)) + return false; + + if (unlikely(!(obj->dev->xdp_features & NETDEV_XDP_ACT_NDO_XMIT_SG) && + xdp_frame_has_frags(xdpf))) + return false; + + if (xdp_ok_fwd_dev(obj->dev, xdp_get_frame_len(xdpf))) + return false; + + return true; +} + +static int dev_map_enqueue_clone(struct bpf_dtab_netdev *obj, + struct net_device *dev_rx, + struct xdp_frame *xdpf) +{ + struct xdp_frame *nxdpf; + + nxdpf = xdpf_clone(xdpf); + if (!nxdpf) + return -ENOMEM; + + bq_enqueue(obj->dev, nxdpf, dev_rx, obj->xdp_prog); + + return 0; +} + +static inline bool is_ifindex_excluded(int *excluded, int num_excluded, int ifindex) +{ + while (num_excluded--) { + if (ifindex == excluded[num_excluded]) + return true; + } + return false; +} + +/* Get ifindex of each upper device. 'indexes' must be able to hold at + * least MAX_NEST_DEV elements. + * Returns the number of ifindexes added. + */ +static int get_upper_ifindexes(struct net_device *dev, int *indexes) +{ + struct net_device *upper; + struct list_head *iter; + int n = 0; + + netdev_for_each_upper_dev_rcu(dev, upper, iter) { + indexes[n++] = upper->ifindex; + } + return n; +} + +int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, + struct bpf_map *map, bool exclude_ingress) +{ + struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); + struct bpf_dtab_netdev *dst, *last_dst = NULL; + int excluded_devices[1+MAX_NEST_DEV]; + struct hlist_head *head; + int num_excluded = 0; + unsigned int i; + int err; + + if (exclude_ingress) { + num_excluded = get_upper_ifindexes(dev_rx, excluded_devices); + excluded_devices[num_excluded++] = dev_rx->ifindex; + } + + if (map->map_type == BPF_MAP_TYPE_DEVMAP) { + for (i = 0; i < map->max_entries; i++) { + dst = rcu_dereference_check(dtab->netdev_map[i], + rcu_read_lock_bh_held()); + if (!is_valid_dst(dst, xdpf)) + continue; + + if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) + continue; + + /* we only need n-1 clones; last_dst enqueued below */ + if (!last_dst) { + last_dst = dst; + continue; + } + + err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); + if (err) + return err; + + last_dst = dst; + } + } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ + for (i = 0; i < dtab->n_buckets; i++) { + head = dev_map_index_hash(dtab, i); + hlist_for_each_entry_rcu(dst, head, index_hlist, + lockdep_is_held(&dtab->index_lock)) { + if (!is_valid_dst(dst, xdpf)) + continue; + + if (is_ifindex_excluded(excluded_devices, num_excluded, + dst->dev->ifindex)) + continue; + + /* we only need n-1 clones; last_dst enqueued below */ + if (!last_dst) { + last_dst = dst; + continue; + } + + err = dev_map_enqueue_clone(last_dst, dev_rx, xdpf); + if (err) + return err; + + last_dst = dst; + } + } + } + + /* consume the last copy of the frame */ + if (last_dst) + bq_enqueue(last_dst->dev, xdpf, dev_rx, last_dst->xdp_prog); + else + xdp_return_frame_rx_napi(xdpf); /* dtab is empty */ + + return 0; +} + +int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, + const struct bpf_prog *xdp_prog) +{ + int err; + + err = xdp_ok_fwd_dev(dst->dev, skb->len); + if (unlikely(err)) + return err; + + /* Redirect has already succeeded semantically at this point, so we just + * return 0 even if packet is dropped. Helper below takes care of + * freeing skb. + */ + if (dev_map_bpf_prog_run_skb(skb, dst) != XDP_PASS) + return 0; + + skb->dev = dst->dev; + generic_xdp_tx(skb, xdp_prog); + + return 0; +} + +static int dev_map_redirect_clone(struct bpf_dtab_netdev *dst, + struct sk_buff *skb, + const struct bpf_prog *xdp_prog) +{ + struct sk_buff *nskb; + int err; + + nskb = skb_clone(skb, GFP_ATOMIC); + if (!nskb) + return -ENOMEM; + + err = dev_map_generic_redirect(dst, nskb, xdp_prog); + if (unlikely(err)) { + consume_skb(nskb); + return err; + } + + return 0; +} + +int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, + const struct bpf_prog *xdp_prog, + struct bpf_map *map, bool exclude_ingress) +{ + struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); + struct bpf_dtab_netdev *dst, *last_dst = NULL; + int excluded_devices[1+MAX_NEST_DEV]; + struct hlist_head *head; + struct hlist_node *next; + int num_excluded = 0; + unsigned int i; + int err; + + if (exclude_ingress) { + num_excluded = get_upper_ifindexes(dev, excluded_devices); + excluded_devices[num_excluded++] = dev->ifindex; + } + + if (map->map_type == BPF_MAP_TYPE_DEVMAP) { + for (i = 0; i < map->max_entries; i++) { + dst = rcu_dereference_check(dtab->netdev_map[i], + rcu_read_lock_bh_held()); + if (!dst) + continue; + + if (is_ifindex_excluded(excluded_devices, num_excluded, dst->dev->ifindex)) + continue; + + /* we only need n-1 clones; last_dst enqueued below */ + if (!last_dst) { + last_dst = dst; + continue; + } + + err = dev_map_redirect_clone(last_dst, skb, xdp_prog); + if (err) + return err; + + last_dst = dst; + + } + } else { /* BPF_MAP_TYPE_DEVMAP_HASH */ + for (i = 0; i < dtab->n_buckets; i++) { + head = dev_map_index_hash(dtab, i); + hlist_for_each_entry_safe(dst, next, head, index_hlist) { + if (is_ifindex_excluded(excluded_devices, num_excluded, + dst->dev->ifindex)) + continue; + + /* we only need n-1 clones; last_dst enqueued below */ + if (!last_dst) { + last_dst = dst; + continue; + } + + err = dev_map_redirect_clone(last_dst, skb, xdp_prog); + if (err) + return err; + + last_dst = dst; + } + } + } + + /* consume the first skb and return */ + if (last_dst) + return dev_map_generic_redirect(last_dst, skb, xdp_prog); + + /* dtab is empty */ + consume_skb(skb); + return 0; +} + +static void *dev_map_lookup_elem(struct bpf_map *map, void *key) +{ + struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key); + + return obj ? &obj->val : NULL; +} + +static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key) +{ + struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map, + *(u32 *)key); + return obj ? &obj->val : NULL; +} + +static void __dev_map_entry_free(struct rcu_head *rcu) +{ + struct bpf_dtab_netdev *dev; + + dev = container_of(rcu, struct bpf_dtab_netdev, rcu); + if (dev->xdp_prog) + bpf_prog_put(dev->xdp_prog); + dev_put(dev->dev); + kfree(dev); +} + +static long dev_map_delete_elem(struct bpf_map *map, void *key) +{ + struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); + struct bpf_dtab_netdev *old_dev; + u32 k = *(u32 *)key; + + if (k >= map->max_entries) + return -EINVAL; + + old_dev = unrcu_pointer(xchg(&dtab->netdev_map[k], NULL)); + if (old_dev) { + call_rcu(&old_dev->rcu, __dev_map_entry_free); + atomic_dec((atomic_t *)&dtab->items); + } + return 0; +} + +static long dev_map_hash_delete_elem(struct bpf_map *map, void *key) +{ + struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); + struct bpf_dtab_netdev *old_dev; + u32 k = *(u32 *)key; + unsigned long flags; + int ret = -ENOENT; + + spin_lock_irqsave(&dtab->index_lock, flags); + + old_dev = __dev_map_hash_lookup_elem(map, k); + if (old_dev) { + dtab->items--; + hlist_del_init_rcu(&old_dev->index_hlist); + call_rcu(&old_dev->rcu, __dev_map_entry_free); + ret = 0; + } + spin_unlock_irqrestore(&dtab->index_lock, flags); + + return ret; +} + +static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net, + struct bpf_dtab *dtab, + struct bpf_devmap_val *val, + unsigned int idx) +{ + struct bpf_prog *prog = NULL; + struct bpf_dtab_netdev *dev; + + dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev), + GFP_NOWAIT, + dtab->map.numa_node); + if (!dev) + return ERR_PTR(-ENOMEM); + + dev->dev = dev_get_by_index(net, val->ifindex); + if (!dev->dev) + goto err_out; + + if (val->bpf_prog.fd > 0) { + prog = bpf_prog_get_type_dev(val->bpf_prog.fd, + BPF_PROG_TYPE_XDP, false); + if (IS_ERR(prog)) + goto err_put_dev; + if (prog->expected_attach_type != BPF_XDP_DEVMAP || + !bpf_prog_map_compatible(&dtab->map, prog)) + goto err_put_prog; + } + + dev->idx = idx; + if (prog) { + dev->xdp_prog = prog; + dev->val.bpf_prog.id = prog->aux->id; + } else { + dev->xdp_prog = NULL; + dev->val.bpf_prog.id = 0; + } + dev->val.ifindex = val->ifindex; + + return dev; +err_put_prog: + bpf_prog_put(prog); +err_put_dev: + dev_put(dev->dev); +err_out: + kfree(dev); + return ERR_PTR(-EINVAL); +} + +static long __dev_map_update_elem(struct net *net, struct bpf_map *map, + void *key, void *value, u64 map_flags) +{ + struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); + struct bpf_dtab_netdev *dev, *old_dev; + struct bpf_devmap_val val = {}; + u32 i = *(u32 *)key; + + if (unlikely(map_flags > BPF_EXIST)) + return -EINVAL; + if (unlikely(i >= dtab->map.max_entries)) + return -E2BIG; + if (unlikely(map_flags == BPF_NOEXIST)) + return -EEXIST; + + /* already verified value_size <= sizeof val */ + memcpy(&val, value, map->value_size); + + if (!val.ifindex) { + dev = NULL; + /* can not specify fd if ifindex is 0 */ + if (val.bpf_prog.fd > 0) + return -EINVAL; + } else { + dev = __dev_map_alloc_node(net, dtab, &val, i); + if (IS_ERR(dev)) + return PTR_ERR(dev); + } + + /* Use call_rcu() here to ensure rcu critical sections have completed + * Remembering the driver side flush operation will happen before the + * net device is removed. + */ + old_dev = unrcu_pointer(xchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev))); + if (old_dev) + call_rcu(&old_dev->rcu, __dev_map_entry_free); + else + atomic_inc((atomic_t *)&dtab->items); + + return 0; +} + +static long dev_map_update_elem(struct bpf_map *map, void *key, void *value, + u64 map_flags) +{ + return __dev_map_update_elem(current->nsproxy->net_ns, + map, key, value, map_flags); +} + +static long __dev_map_hash_update_elem(struct net *net, struct bpf_map *map, + void *key, void *value, u64 map_flags) +{ + struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); + struct bpf_dtab_netdev *dev, *old_dev; + struct bpf_devmap_val val = {}; + u32 idx = *(u32 *)key; + unsigned long flags; + int err = -EEXIST; + + /* already verified value_size <= sizeof val */ + memcpy(&val, value, map->value_size); + + if (unlikely(map_flags > BPF_EXIST || !val.ifindex)) + return -EINVAL; + + spin_lock_irqsave(&dtab->index_lock, flags); + + old_dev = __dev_map_hash_lookup_elem(map, idx); + if (old_dev && (map_flags & BPF_NOEXIST)) + goto out_err; + + dev = __dev_map_alloc_node(net, dtab, &val, idx); + if (IS_ERR(dev)) { + err = PTR_ERR(dev); + goto out_err; + } + + if (old_dev) { + hlist_del_rcu(&old_dev->index_hlist); + } else { + if (dtab->items >= dtab->map.max_entries) { + spin_unlock_irqrestore(&dtab->index_lock, flags); + call_rcu(&dev->rcu, __dev_map_entry_free); + return -E2BIG; + } + dtab->items++; + } + + hlist_add_head_rcu(&dev->index_hlist, + dev_map_index_hash(dtab, idx)); + spin_unlock_irqrestore(&dtab->index_lock, flags); + + if (old_dev) + call_rcu(&old_dev->rcu, __dev_map_entry_free); + + return 0; + +out_err: + spin_unlock_irqrestore(&dtab->index_lock, flags); + return err; +} + +static long dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value, + u64 map_flags) +{ + return __dev_map_hash_update_elem(current->nsproxy->net_ns, + map, key, value, map_flags); +} + +static long dev_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) +{ + return __bpf_xdp_redirect_map(map, ifindex, flags, + BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, + __dev_map_lookup_elem); +} + +static long dev_hash_map_redirect(struct bpf_map *map, u64 ifindex, u64 flags) +{ + return __bpf_xdp_redirect_map(map, ifindex, flags, + BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS, + __dev_map_hash_lookup_elem); +} + +static u64 dev_map_mem_usage(const struct bpf_map *map) +{ + struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map); + u64 usage = sizeof(struct bpf_dtab); + + if (map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) + usage += (u64)dtab->n_buckets * sizeof(struct hlist_head); + else + usage += (u64)map->max_entries * sizeof(struct bpf_dtab_netdev *); + usage += atomic_read((atomic_t *)&dtab->items) * + (u64)sizeof(struct bpf_dtab_netdev); + return usage; +} + +BTF_ID_LIST_SINGLE(dev_map_btf_ids, struct, bpf_dtab) +const struct bpf_map_ops dev_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = dev_map_alloc_check, + .map_alloc = dev_map_alloc, + .map_free = dev_map_free, + .map_get_next_key = dev_map_get_next_key, + .map_lookup_elem = dev_map_lookup_elem, + .map_update_elem = dev_map_update_elem, + .map_delete_elem = dev_map_delete_elem, + .map_check_btf = map_check_no_btf, + .map_mem_usage = dev_map_mem_usage, + .map_btf_id = &dev_map_btf_ids[0], + .map_redirect = dev_map_redirect, +}; + +const struct bpf_map_ops dev_map_hash_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = dev_map_alloc_check, + .map_alloc = dev_map_alloc, + .map_free = dev_map_free, + .map_get_next_key = dev_map_hash_get_next_key, + .map_lookup_elem = dev_map_hash_lookup_elem, + .map_update_elem = dev_map_hash_update_elem, + .map_delete_elem = dev_map_hash_delete_elem, + .map_check_btf = map_check_no_btf, + .map_mem_usage = dev_map_mem_usage, + .map_btf_id = &dev_map_btf_ids[0], + .map_redirect = dev_hash_map_redirect, +}; + +static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab, + struct net_device *netdev) +{ + unsigned long flags; + u32 i; + + spin_lock_irqsave(&dtab->index_lock, flags); + for (i = 0; i < dtab->n_buckets; i++) { + struct bpf_dtab_netdev *dev; + struct hlist_head *head; + struct hlist_node *next; + + head = dev_map_index_hash(dtab, i); + + hlist_for_each_entry_safe(dev, next, head, index_hlist) { + if (netdev != dev->dev) + continue; + + dtab->items--; + hlist_del_rcu(&dev->index_hlist); + call_rcu(&dev->rcu, __dev_map_entry_free); + } + } + spin_unlock_irqrestore(&dtab->index_lock, flags); +} + +static int dev_map_notification(struct notifier_block *notifier, + ulong event, void *ptr) +{ + struct net_device *netdev = netdev_notifier_info_to_dev(ptr); + struct bpf_dtab *dtab; + int i, cpu; + + switch (event) { + case NETDEV_REGISTER: + if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq) + break; + + /* will be freed in free_netdev() */ + netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue); + if (!netdev->xdp_bulkq) + return NOTIFY_BAD; + + for_each_possible_cpu(cpu) + per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev; + break; + case NETDEV_UNREGISTER: + /* This rcu_read_lock/unlock pair is needed because + * dev_map_list is an RCU list AND to ensure a delete + * operation does not free a netdev_map entry while we + * are comparing it against the netdev being unregistered. + */ + rcu_read_lock(); + list_for_each_entry_rcu(dtab, &dev_map_list, list) { + if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) { + dev_map_hash_remove_netdev(dtab, netdev); + continue; + } + + for (i = 0; i < dtab->map.max_entries; i++) { + struct bpf_dtab_netdev *dev, *odev; + + dev = rcu_dereference(dtab->netdev_map[i]); + if (!dev || netdev != dev->dev) + continue; + odev = unrcu_pointer(cmpxchg(&dtab->netdev_map[i], RCU_INITIALIZER(dev), NULL)); + if (dev == odev) { + call_rcu(&dev->rcu, + __dev_map_entry_free); + atomic_dec((atomic_t *)&dtab->items); + } + } + } + rcu_read_unlock(); + break; + default: + break; + } + return NOTIFY_OK; +} + +static struct notifier_block dev_map_notifier = { + .notifier_call = dev_map_notification, +}; + +static int __init dev_map_init(void) +{ + /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */ + BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) != + offsetof(struct _bpf_dtab_netdev, dev)); + register_netdevice_notifier(&dev_map_notifier); + + return 0; +} + +subsys_initcall(dev_map_init); diff --git a/kernel/bpf/disasm.c b/kernel/bpf/disasm.c new file mode 100644 index 000000000000..f8a3c7eb451e --- /dev/null +++ b/kernel/bpf/disasm.c @@ -0,0 +1,393 @@ +// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com + * Copyright (c) 2016 Facebook + */ + +#include <linux/bpf.h> + +#include "disasm.h" + +#define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x) +static const char * const func_id_str[] = { + __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN) +}; +#undef __BPF_FUNC_STR_FN + +static const char *__func_get_name(const struct bpf_insn_cbs *cbs, + const struct bpf_insn *insn, + char *buff, size_t len) +{ + BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID); + + if (!insn->src_reg && + insn->imm >= 0 && insn->imm < __BPF_FUNC_MAX_ID && + func_id_str[insn->imm]) + return func_id_str[insn->imm]; + + if (cbs && cbs->cb_call) { + const char *res; + + res = cbs->cb_call(cbs->private_data, insn); + if (res) + return res; + } + + if (insn->src_reg == BPF_PSEUDO_CALL) + snprintf(buff, len, "%+d", insn->imm); + else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) + snprintf(buff, len, "kernel-function"); + + return buff; +} + +static const char *__func_imm_name(const struct bpf_insn_cbs *cbs, + const struct bpf_insn *insn, + u64 full_imm, char *buff, size_t len) +{ + if (cbs && cbs->cb_imm) + return cbs->cb_imm(cbs->private_data, insn, full_imm); + + snprintf(buff, len, "0x%llx", (unsigned long long)full_imm); + return buff; +} + +const char *func_id_name(int id) +{ + if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id]) + return func_id_str[id]; + else + return "unknown"; +} + +const char *const bpf_class_string[8] = { + [BPF_LD] = "ld", + [BPF_LDX] = "ldx", + [BPF_ST] = "st", + [BPF_STX] = "stx", + [BPF_ALU] = "alu", + [BPF_JMP] = "jmp", + [BPF_JMP32] = "jmp32", + [BPF_ALU64] = "alu64", +}; + +const char *const bpf_alu_string[16] = { + [BPF_ADD >> 4] = "+=", + [BPF_SUB >> 4] = "-=", + [BPF_MUL >> 4] = "*=", + [BPF_DIV >> 4] = "/=", + [BPF_OR >> 4] = "|=", + [BPF_AND >> 4] = "&=", + [BPF_LSH >> 4] = "<<=", + [BPF_RSH >> 4] = ">>=", + [BPF_NEG >> 4] = "neg", + [BPF_MOD >> 4] = "%=", + [BPF_XOR >> 4] = "^=", + [BPF_MOV >> 4] = "=", + [BPF_ARSH >> 4] = "s>>=", + [BPF_END >> 4] = "endian", +}; + +static const char *const bpf_alu_sign_string[16] = { + [BPF_DIV >> 4] = "s/=", + [BPF_MOD >> 4] = "s%=", +}; + +static const char *const bpf_movsx_string[4] = { + [0] = "(s8)", + [1] = "(s16)", + [3] = "(s32)", +}; + +static const char *const bpf_atomic_alu_string[16] = { + [BPF_ADD >> 4] = "add", + [BPF_AND >> 4] = "and", + [BPF_OR >> 4] = "or", + [BPF_XOR >> 4] = "xor", +}; + +static const char *const bpf_ldst_string[] = { + [BPF_W >> 3] = "u32", + [BPF_H >> 3] = "u16", + [BPF_B >> 3] = "u8", + [BPF_DW >> 3] = "u64", +}; + +static const char *const bpf_ldsx_string[] = { + [BPF_W >> 3] = "s32", + [BPF_H >> 3] = "s16", + [BPF_B >> 3] = "s8", +}; + +static const char *const bpf_jmp_string[16] = { + [BPF_JA >> 4] = "jmp", + [BPF_JEQ >> 4] = "==", + [BPF_JGT >> 4] = ">", + [BPF_JLT >> 4] = "<", + [BPF_JGE >> 4] = ">=", + [BPF_JLE >> 4] = "<=", + [BPF_JSET >> 4] = "&", + [BPF_JNE >> 4] = "!=", + [BPF_JSGT >> 4] = "s>", + [BPF_JSLT >> 4] = "s<", + [BPF_JSGE >> 4] = "s>=", + [BPF_JSLE >> 4] = "s<=", + [BPF_CALL >> 4] = "call", + [BPF_EXIT >> 4] = "exit", +}; + +static void print_bpf_end_insn(bpf_insn_print_t verbose, + void *private_data, + const struct bpf_insn *insn) +{ + verbose(private_data, "(%02x) r%d = %s%d r%d\n", + insn->code, insn->dst_reg, + BPF_SRC(insn->code) == BPF_TO_BE ? "be" : "le", + insn->imm, insn->dst_reg); +} + +static void print_bpf_bswap_insn(bpf_insn_print_t verbose, + void *private_data, + const struct bpf_insn *insn) +{ + verbose(private_data, "(%02x) r%d = bswap%d r%d\n", + insn->code, insn->dst_reg, + insn->imm, insn->dst_reg); +} + +static bool is_sdiv_smod(const struct bpf_insn *insn) +{ + return (BPF_OP(insn->code) == BPF_DIV || BPF_OP(insn->code) == BPF_MOD) && + insn->off == 1; +} + +static bool is_movsx(const struct bpf_insn *insn) +{ + return BPF_OP(insn->code) == BPF_MOV && + (insn->off == 8 || insn->off == 16 || insn->off == 32); +} + +static bool is_addr_space_cast(const struct bpf_insn *insn) +{ + return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && + insn->off == BPF_ADDR_SPACE_CAST; +} + +/* Special (internal-only) form of mov, used to resolve per-CPU addrs: + * dst_reg = src_reg + <percpu_base_off> + * BPF_ADDR_PERCPU is used as a special insn->off value. + */ +#define BPF_ADDR_PERCPU (-1) + +static inline bool is_mov_percpu_addr(const struct bpf_insn *insn) +{ + return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU; +} + +void print_bpf_insn(const struct bpf_insn_cbs *cbs, + const struct bpf_insn *insn, + bool allow_ptr_leaks) +{ + const bpf_insn_print_t verbose = cbs->cb_print; + u8 class = BPF_CLASS(insn->code); + + if (class == BPF_ALU || class == BPF_ALU64) { + if (BPF_OP(insn->code) == BPF_END) { + if (class == BPF_ALU64) + print_bpf_bswap_insn(verbose, cbs->private_data, insn); + else + print_bpf_end_insn(verbose, cbs->private_data, insn); + } else if (BPF_OP(insn->code) == BPF_NEG) { + verbose(cbs->private_data, "(%02x) %c%d = -%c%d\n", + insn->code, class == BPF_ALU ? 'w' : 'r', + insn->dst_reg, class == BPF_ALU ? 'w' : 'r', + insn->dst_reg); + } else if (is_addr_space_cast(insn)) { + verbose(cbs->private_data, "(%02x) r%d = addr_space_cast(r%d, %u, %u)\n", + insn->code, insn->dst_reg, + insn->src_reg, ((u32)insn->imm) >> 16, (u16)insn->imm); + } else if (is_mov_percpu_addr(insn)) { + verbose(cbs->private_data, "(%02x) r%d = &(void __percpu *)(r%d)\n", + insn->code, insn->dst_reg, insn->src_reg); + } else if (BPF_SRC(insn->code) == BPF_X) { + verbose(cbs->private_data, "(%02x) %c%d %s %s%c%d\n", + insn->code, class == BPF_ALU ? 'w' : 'r', + insn->dst_reg, + is_sdiv_smod(insn) ? bpf_alu_sign_string[BPF_OP(insn->code) >> 4] + : bpf_alu_string[BPF_OP(insn->code) >> 4], + is_movsx(insn) ? bpf_movsx_string[(insn->off >> 3) - 1] : "", + class == BPF_ALU ? 'w' : 'r', + insn->src_reg); + } else { + verbose(cbs->private_data, "(%02x) %c%d %s %d\n", + insn->code, class == BPF_ALU ? 'w' : 'r', + insn->dst_reg, + is_sdiv_smod(insn) ? bpf_alu_sign_string[BPF_OP(insn->code) >> 4] + : bpf_alu_string[BPF_OP(insn->code) >> 4], + insn->imm); + } + } else if (class == BPF_STX) { + if (BPF_MODE(insn->code) == BPF_MEM) + verbose(cbs->private_data, "(%02x) *(%s *)(r%d %+d) = r%d\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, + insn->off, insn->src_reg); + else if (BPF_MODE(insn->code) == BPF_ATOMIC && + (insn->imm == BPF_ADD || insn->imm == BPF_AND || + insn->imm == BPF_OR || insn->imm == BPF_XOR)) { + verbose(cbs->private_data, "(%02x) lock *(%s *)(r%d %+d) %s r%d\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, insn->off, + bpf_alu_string[BPF_OP(insn->imm) >> 4], + insn->src_reg); + } else if (BPF_MODE(insn->code) == BPF_ATOMIC && + (insn->imm == (BPF_ADD | BPF_FETCH) || + insn->imm == (BPF_AND | BPF_FETCH) || + insn->imm == (BPF_OR | BPF_FETCH) || + insn->imm == (BPF_XOR | BPF_FETCH))) { + verbose(cbs->private_data, "(%02x) r%d = atomic%s_fetch_%s((%s *)(r%d %+d), r%d)\n", + insn->code, insn->src_reg, + BPF_SIZE(insn->code) == BPF_DW ? "64" : "", + bpf_atomic_alu_string[BPF_OP(insn->imm) >> 4], + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, insn->off, insn->src_reg); + } else if (BPF_MODE(insn->code) == BPF_ATOMIC && + insn->imm == BPF_CMPXCHG) { + verbose(cbs->private_data, "(%02x) r0 = atomic%s_cmpxchg((%s *)(r%d %+d), r0, r%d)\n", + insn->code, + BPF_SIZE(insn->code) == BPF_DW ? "64" : "", + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, insn->off, + insn->src_reg); + } else if (BPF_MODE(insn->code) == BPF_ATOMIC && + insn->imm == BPF_XCHG) { + verbose(cbs->private_data, "(%02x) r%d = atomic%s_xchg((%s *)(r%d %+d), r%d)\n", + insn->code, insn->src_reg, + BPF_SIZE(insn->code) == BPF_DW ? "64" : "", + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, insn->off, insn->src_reg); + } else if (BPF_MODE(insn->code) == BPF_ATOMIC && + insn->imm == BPF_LOAD_ACQ) { + verbose(cbs->private_data, "(%02x) r%d = load_acquire((%s *)(r%d %+d))\n", + insn->code, insn->dst_reg, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->src_reg, insn->off); + } else if (BPF_MODE(insn->code) == BPF_ATOMIC && + insn->imm == BPF_STORE_REL) { + verbose(cbs->private_data, "(%02x) store_release((%s *)(r%d %+d), r%d)\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, insn->off, insn->src_reg); + } else { + verbose(cbs->private_data, "BUG_%02x\n", insn->code); + } + } else if (class == BPF_ST) { + if (BPF_MODE(insn->code) == BPF_MEM) { + verbose(cbs->private_data, "(%02x) *(%s *)(r%d %+d) = %d\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->dst_reg, + insn->off, insn->imm); + } else if (BPF_MODE(insn->code) == 0xc0 /* BPF_NOSPEC, no UAPI */) { + verbose(cbs->private_data, "(%02x) nospec\n", insn->code); + } else { + verbose(cbs->private_data, "BUG_st_%02x\n", insn->code); + } + } else if (class == BPF_LDX) { + if (BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) { + verbose(cbs->private_data, "BUG_ldx_%02x\n", insn->code); + return; + } + verbose(cbs->private_data, "(%02x) r%d = *(%s *)(r%d %+d)\n", + insn->code, insn->dst_reg, + BPF_MODE(insn->code) == BPF_MEM ? + bpf_ldst_string[BPF_SIZE(insn->code) >> 3] : + bpf_ldsx_string[BPF_SIZE(insn->code) >> 3], + insn->src_reg, insn->off); + } else if (class == BPF_LD) { + if (BPF_MODE(insn->code) == BPF_ABS) { + verbose(cbs->private_data, "(%02x) r0 = *(%s *)skb[%d]\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->imm); + } else if (BPF_MODE(insn->code) == BPF_IND) { + verbose(cbs->private_data, "(%02x) r0 = *(%s *)skb[r%d + %d]\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->src_reg, insn->imm); + } else if (BPF_MODE(insn->code) == BPF_IMM && + BPF_SIZE(insn->code) == BPF_DW) { + /* At this point, we already made sure that the second + * part of the ldimm64 insn is accessible. + */ + u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; + bool is_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD || + insn->src_reg == BPF_PSEUDO_MAP_VALUE; + char tmp[64]; + + if (is_ptr && !allow_ptr_leaks) + imm = 0; + + verbose(cbs->private_data, "(%02x) r%d = %s\n", + insn->code, insn->dst_reg, + __func_imm_name(cbs, insn, imm, + tmp, sizeof(tmp))); + } else { + verbose(cbs->private_data, "BUG_ld_%02x\n", insn->code); + return; + } + } else if (class == BPF_JMP32 || class == BPF_JMP) { + u8 opcode = BPF_OP(insn->code); + + if (opcode == BPF_CALL) { + char tmp[64]; + + if (insn->src_reg == BPF_PSEUDO_CALL) { + verbose(cbs->private_data, "(%02x) call pc%s\n", + insn->code, + __func_get_name(cbs, insn, + tmp, sizeof(tmp))); + } else { + strcpy(tmp, "unknown"); + verbose(cbs->private_data, "(%02x) call %s#%d\n", insn->code, + __func_get_name(cbs, insn, + tmp, sizeof(tmp)), + insn->imm); + } + } else if (insn->code == (BPF_JMP | BPF_JA)) { + verbose(cbs->private_data, "(%02x) goto pc%+d\n", + insn->code, insn->off); + } else if (insn->code == (BPF_JMP | BPF_JA | BPF_X)) { + verbose(cbs->private_data, "(%02x) gotox r%d\n", + insn->code, insn->dst_reg); + } else if (insn->code == (BPF_JMP | BPF_JCOND) && + insn->src_reg == BPF_MAY_GOTO) { + verbose(cbs->private_data, "(%02x) may_goto pc%+d\n", + insn->code, insn->off); + } else if (insn->code == (BPF_JMP32 | BPF_JA)) { + verbose(cbs->private_data, "(%02x) gotol pc%+d\n", + insn->code, insn->imm); + } else if (insn->code == (BPF_JMP | BPF_EXIT)) { + verbose(cbs->private_data, "(%02x) exit\n", insn->code); + } else if (BPF_SRC(insn->code) == BPF_X) { + verbose(cbs->private_data, + "(%02x) if %c%d %s %c%d goto pc%+d\n", + insn->code, class == BPF_JMP32 ? 'w' : 'r', + insn->dst_reg, + bpf_jmp_string[BPF_OP(insn->code) >> 4], + class == BPF_JMP32 ? 'w' : 'r', + insn->src_reg, insn->off); + } else { + verbose(cbs->private_data, + "(%02x) if %c%d %s 0x%x goto pc%+d\n", + insn->code, class == BPF_JMP32 ? 'w' : 'r', + insn->dst_reg, + bpf_jmp_string[BPF_OP(insn->code) >> 4], + (u32)insn->imm, insn->off); + } + } else { + verbose(cbs->private_data, "(%02x) %s\n", + insn->code, bpf_class_string[class]); + } +} diff --git a/kernel/bpf/disasm.h b/kernel/bpf/disasm.h new file mode 100644 index 000000000000..a4b040793f44 --- /dev/null +++ b/kernel/bpf/disasm.h @@ -0,0 +1,40 @@ +/* SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) */ +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com + * Copyright (c) 2016 Facebook + */ + +#ifndef __BPF_DISASM_H__ +#define __BPF_DISASM_H__ + +#include <linux/bpf.h> +#include <linux/kernel.h> +#include <linux/stringify.h> +#ifndef __KERNEL__ +#include <stdio.h> +#include <string.h> +#endif + +extern const char *const bpf_alu_string[16]; +extern const char *const bpf_class_string[8]; + +const char *func_id_name(int id); + +typedef __printf(2, 3) void (*bpf_insn_print_t)(void *private_data, + const char *, ...); +typedef const char *(*bpf_insn_revmap_call_t)(void *private_data, + const struct bpf_insn *insn); +typedef const char *(*bpf_insn_print_imm_t)(void *private_data, + const struct bpf_insn *insn, + __u64 full_imm); + +struct bpf_insn_cbs { + bpf_insn_print_t cb_print; + bpf_insn_revmap_call_t cb_call; + bpf_insn_print_imm_t cb_imm; + void *private_data; +}; + +void print_bpf_insn(const struct bpf_insn_cbs *cbs, + const struct bpf_insn *insn, + bool allow_ptr_leaks); +#endif diff --git a/kernel/bpf/dispatcher.c b/kernel/bpf/dispatcher.c new file mode 100644 index 000000000000..b77db7413f8c --- /dev/null +++ b/kernel/bpf/dispatcher.c @@ -0,0 +1,171 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright(c) 2019 Intel Corporation. */ + +#include <linux/hash.h> +#include <linux/bpf.h> +#include <linux/filter.h> +#include <linux/static_call.h> + +/* The BPF dispatcher is a multiway branch code generator. The + * dispatcher is a mechanism to avoid the performance penalty of an + * indirect call, which is expensive when retpolines are enabled. A + * dispatch client registers a BPF program into the dispatcher, and if + * there is available room in the dispatcher a direct call to the BPF + * program will be generated. All calls to the BPF programs called via + * the dispatcher will then be a direct call, instead of an + * indirect. The dispatcher hijacks a trampoline function it via the + * __fentry__ of the trampoline. The trampoline function has the + * following signature: + * + * unsigned int trampoline(const void *ctx, const struct bpf_insn *insnsi, + * unsigned int (*bpf_func)(const void *, + * const struct bpf_insn *)); + */ + +static struct bpf_dispatcher_prog *bpf_dispatcher_find_prog( + struct bpf_dispatcher *d, struct bpf_prog *prog) +{ + int i; + + for (i = 0; i < BPF_DISPATCHER_MAX; i++) { + if (prog == d->progs[i].prog) + return &d->progs[i]; + } + return NULL; +} + +static struct bpf_dispatcher_prog *bpf_dispatcher_find_free( + struct bpf_dispatcher *d) +{ + return bpf_dispatcher_find_prog(d, NULL); +} + +static bool bpf_dispatcher_add_prog(struct bpf_dispatcher *d, + struct bpf_prog *prog) +{ + struct bpf_dispatcher_prog *entry; + + if (!prog) + return false; + + entry = bpf_dispatcher_find_prog(d, prog); + if (entry) { + refcount_inc(&entry->users); + return false; + } + + entry = bpf_dispatcher_find_free(d); + if (!entry) + return false; + + bpf_prog_inc(prog); + entry->prog = prog; + refcount_set(&entry->users, 1); + d->num_progs++; + return true; +} + +static bool bpf_dispatcher_remove_prog(struct bpf_dispatcher *d, + struct bpf_prog *prog) +{ + struct bpf_dispatcher_prog *entry; + + if (!prog) + return false; + + entry = bpf_dispatcher_find_prog(d, prog); + if (!entry) + return false; + + if (refcount_dec_and_test(&entry->users)) { + entry->prog = NULL; + bpf_prog_put(prog); + d->num_progs--; + return true; + } + return false; +} + +int __weak arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs) +{ + return -ENOTSUPP; +} + +static int bpf_dispatcher_prepare(struct bpf_dispatcher *d, void *image, void *buf) +{ + s64 ips[BPF_DISPATCHER_MAX] = {}, *ipsp = &ips[0]; + int i; + + for (i = 0; i < BPF_DISPATCHER_MAX; i++) { + if (d->progs[i].prog) + *ipsp++ = (s64)(uintptr_t)d->progs[i].prog->bpf_func; + } + return arch_prepare_bpf_dispatcher(image, buf, &ips[0], d->num_progs); +} + +static void bpf_dispatcher_update(struct bpf_dispatcher *d, int prev_num_progs) +{ + void *new, *tmp; + u32 noff = 0; + + if (prev_num_progs) + noff = d->image_off ^ (PAGE_SIZE / 2); + + new = d->num_progs ? d->image + noff : NULL; + tmp = d->num_progs ? d->rw_image + noff : NULL; + if (new) { + /* Prepare the dispatcher in d->rw_image. Then use + * bpf_arch_text_copy to update d->image, which is RO+X. + */ + if (bpf_dispatcher_prepare(d, new, tmp)) + return; + if (IS_ERR(bpf_arch_text_copy(new, tmp, PAGE_SIZE / 2))) + return; + } + + __BPF_DISPATCHER_UPDATE(d, new ?: (void *)&bpf_dispatcher_nop_func); + + /* Make sure all the callers executing the previous/old half of the + * image leave it, so following update call can modify it safely. + */ + synchronize_rcu(); + + if (new) + d->image_off = noff; +} + +void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, + struct bpf_prog *to) +{ + bool changed = false; + int prev_num_progs; + + if (from == to) + return; + + mutex_lock(&d->mutex); + if (!d->image) { + d->image = bpf_prog_pack_alloc(PAGE_SIZE, bpf_jit_fill_hole_with_zero); + if (!d->image) + goto out; + d->rw_image = bpf_jit_alloc_exec(PAGE_SIZE); + if (!d->rw_image) { + bpf_prog_pack_free(d->image, PAGE_SIZE); + d->image = NULL; + goto out; + } + bpf_image_ksym_init(d->image, PAGE_SIZE, &d->ksym); + bpf_image_ksym_add(&d->ksym); + } + + prev_num_progs = d->num_progs; + changed |= bpf_dispatcher_remove_prog(d, from); + changed |= bpf_dispatcher_add_prog(d, to); + + if (!changed) + goto out; + + bpf_dispatcher_update(d, prev_num_progs); +out: + mutex_unlock(&d->mutex); +} diff --git a/kernel/bpf/dmabuf_iter.c b/kernel/bpf/dmabuf_iter.c new file mode 100644 index 000000000000..4dd7ef7c145c --- /dev/null +++ b/kernel/bpf/dmabuf_iter.c @@ -0,0 +1,150 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2025 Google LLC */ +#include <linux/bpf.h> +#include <linux/btf_ids.h> +#include <linux/dma-buf.h> +#include <linux/kernel.h> +#include <linux/seq_file.h> + +static void *dmabuf_iter_seq_start(struct seq_file *seq, loff_t *pos) +{ + if (*pos) + return NULL; + + return dma_buf_iter_begin(); +} + +static void *dmabuf_iter_seq_next(struct seq_file *seq, void *v, loff_t *pos) +{ + struct dma_buf *dmabuf = v; + + ++*pos; + + return dma_buf_iter_next(dmabuf); +} + +struct bpf_iter__dmabuf { + __bpf_md_ptr(struct bpf_iter_meta *, meta); + __bpf_md_ptr(struct dma_buf *, dmabuf); +}; + +static int __dmabuf_seq_show(struct seq_file *seq, void *v, bool in_stop) +{ + struct bpf_iter_meta meta = { + .seq = seq, + }; + struct bpf_iter__dmabuf ctx = { + .meta = &meta, + .dmabuf = v, + }; + struct bpf_prog *prog = bpf_iter_get_info(&meta, in_stop); + + if (prog) + return bpf_iter_run_prog(prog, &ctx); + + return 0; +} + +static int dmabuf_iter_seq_show(struct seq_file *seq, void *v) +{ + return __dmabuf_seq_show(seq, v, false); +} + +static void dmabuf_iter_seq_stop(struct seq_file *seq, void *v) +{ + struct dma_buf *dmabuf = v; + + if (dmabuf) + dma_buf_put(dmabuf); +} + +static const struct seq_operations dmabuf_iter_seq_ops = { + .start = dmabuf_iter_seq_start, + .next = dmabuf_iter_seq_next, + .stop = dmabuf_iter_seq_stop, + .show = dmabuf_iter_seq_show, +}; + +static void bpf_iter_dmabuf_show_fdinfo(const struct bpf_iter_aux_info *aux, + struct seq_file *seq) +{ + seq_puts(seq, "dmabuf iter\n"); +} + +static const struct bpf_iter_seq_info dmabuf_iter_seq_info = { + .seq_ops = &dmabuf_iter_seq_ops, + .init_seq_private = NULL, + .fini_seq_private = NULL, + .seq_priv_size = 0, +}; + +static struct bpf_iter_reg bpf_dmabuf_reg_info = { + .target = "dmabuf", + .feature = BPF_ITER_RESCHED, + .show_fdinfo = bpf_iter_dmabuf_show_fdinfo, + .ctx_arg_info_size = 1, + .ctx_arg_info = { + { offsetof(struct bpf_iter__dmabuf, dmabuf), + PTR_TO_BTF_ID_OR_NULL }, + }, + .seq_info = &dmabuf_iter_seq_info, +}; + +DEFINE_BPF_ITER_FUNC(dmabuf, struct bpf_iter_meta *meta, struct dma_buf *dmabuf) +BTF_ID_LIST_SINGLE(bpf_dmabuf_btf_id, struct, dma_buf) + +static int __init dmabuf_iter_init(void) +{ + bpf_dmabuf_reg_info.ctx_arg_info[0].btf_id = bpf_dmabuf_btf_id[0]; + return bpf_iter_reg_target(&bpf_dmabuf_reg_info); +} + +late_initcall(dmabuf_iter_init); + +struct bpf_iter_dmabuf { + /* + * opaque iterator state; having __u64 here allows to preserve correct + * alignment requirements in vmlinux.h, generated from BTF + */ + __u64 __opaque[1]; +} __aligned(8); + +/* Non-opaque version of bpf_iter_dmabuf */ +struct bpf_iter_dmabuf_kern { + struct dma_buf *dmabuf; +} __aligned(8); + +__bpf_kfunc_start_defs(); + +__bpf_kfunc int bpf_iter_dmabuf_new(struct bpf_iter_dmabuf *it) +{ + struct bpf_iter_dmabuf_kern *kit = (void *)it; + + BUILD_BUG_ON(sizeof(*kit) > sizeof(*it)); + BUILD_BUG_ON(__alignof__(*kit) != __alignof__(*it)); + + kit->dmabuf = NULL; + return 0; +} + +__bpf_kfunc struct dma_buf *bpf_iter_dmabuf_next(struct bpf_iter_dmabuf *it) +{ + struct bpf_iter_dmabuf_kern *kit = (void *)it; + + if (kit->dmabuf) + kit->dmabuf = dma_buf_iter_next(kit->dmabuf); + else + kit->dmabuf = dma_buf_iter_begin(); + + return kit->dmabuf; +} + +__bpf_kfunc void bpf_iter_dmabuf_destroy(struct bpf_iter_dmabuf *it) +{ + struct bpf_iter_dmabuf_kern *kit = (void *)it; + + if (kit->dmabuf) + dma_buf_put(kit->dmabuf); +} + +__bpf_kfunc_end_defs(); diff --git a/kernel/bpf/hashtab.c b/kernel/bpf/hashtab.c new file mode 100644 index 000000000000..c8a9b27f8663 --- /dev/null +++ b/kernel/bpf/hashtab.c @@ -0,0 +1,2620 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com + * Copyright (c) 2016 Facebook + */ +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/jhash.h> +#include <linux/filter.h> +#include <linux/rculist_nulls.h> +#include <linux/rcupdate_wait.h> +#include <linux/random.h> +#include <uapi/linux/btf.h> +#include <linux/rcupdate_trace.h> +#include <linux/btf_ids.h> +#include "percpu_freelist.h" +#include "bpf_lru_list.h" +#include "map_in_map.h" +#include <linux/bpf_mem_alloc.h> +#include <asm/rqspinlock.h> + +#define HTAB_CREATE_FLAG_MASK \ + (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ + BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) + +#define BATCH_OPS(_name) \ + .map_lookup_batch = \ + _name##_map_lookup_batch, \ + .map_lookup_and_delete_batch = \ + _name##_map_lookup_and_delete_batch, \ + .map_update_batch = \ + generic_map_update_batch, \ + .map_delete_batch = \ + generic_map_delete_batch + +/* + * The bucket lock has two protection scopes: + * + * 1) Serializing concurrent operations from BPF programs on different + * CPUs + * + * 2) Serializing concurrent operations from BPF programs and sys_bpf() + * + * BPF programs can execute in any context including perf, kprobes and + * tracing. As there are almost no limits where perf, kprobes and tracing + * can be invoked from the lock operations need to be protected against + * deadlocks. Deadlocks can be caused by recursion and by an invocation in + * the lock held section when functions which acquire this lock are invoked + * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU + * variable bpf_prog_active, which prevents BPF programs attached to perf + * events, kprobes and tracing to be invoked before the prior invocation + * from one of these contexts completed. sys_bpf() uses the same mechanism + * by pinning the task to the current CPU and incrementing the recursion + * protection across the map operation. + * + * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain + * operations like memory allocations (even with GFP_ATOMIC) from atomic + * contexts. This is required because even with GFP_ATOMIC the memory + * allocator calls into code paths which acquire locks with long held lock + * sections. To ensure the deterministic behaviour these locks are regular + * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only + * true atomic contexts on an RT kernel are the low level hardware + * handling, scheduling, low level interrupt handling, NMIs etc. None of + * these contexts should ever do memory allocations. + * + * As regular device interrupt handlers and soft interrupts are forced into + * thread context, the existing code which does + * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*(); + * just works. + * + * In theory the BPF locks could be converted to regular spinlocks as well, + * but the bucket locks and percpu_freelist locks can be taken from + * arbitrary contexts (perf, kprobes, tracepoints) which are required to be + * atomic contexts even on RT. Before the introduction of bpf_mem_alloc, + * it is only safe to use raw spinlock for preallocated hash map on a RT kernel, + * because there is no memory allocation within the lock held sections. However + * after hash map was fully converted to use bpf_mem_alloc, there will be + * non-synchronous memory allocation for non-preallocated hash map, so it is + * safe to always use raw spinlock for bucket lock. + */ +struct bucket { + struct hlist_nulls_head head; + rqspinlock_t raw_lock; +}; + +#define HASHTAB_MAP_LOCK_COUNT 8 +#define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1) + +struct bpf_htab { + struct bpf_map map; + struct bpf_mem_alloc ma; + struct bpf_mem_alloc pcpu_ma; + struct bucket *buckets; + void *elems; + union { + struct pcpu_freelist freelist; + struct bpf_lru lru; + }; + struct htab_elem *__percpu *extra_elems; + /* number of elements in non-preallocated hashtable are kept + * in either pcount or count + */ + struct percpu_counter pcount; + atomic_t count; + bool use_percpu_counter; + u32 n_buckets; /* number of hash buckets */ + u32 elem_size; /* size of each element in bytes */ + u32 hashrnd; +}; + +/* each htab element is struct htab_elem + key + value */ +struct htab_elem { + union { + struct hlist_nulls_node hash_node; + struct { + void *padding; + union { + struct pcpu_freelist_node fnode; + struct htab_elem *batch_flink; + }; + }; + }; + union { + /* pointer to per-cpu pointer */ + void *ptr_to_pptr; + struct bpf_lru_node lru_node; + }; + u32 hash; + char key[] __aligned(8); +}; + +static inline bool htab_is_prealloc(const struct bpf_htab *htab) +{ + return !(htab->map.map_flags & BPF_F_NO_PREALLOC); +} + +static void htab_init_buckets(struct bpf_htab *htab) +{ + unsigned int i; + + for (i = 0; i < htab->n_buckets; i++) { + INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); + raw_res_spin_lock_init(&htab->buckets[i].raw_lock); + cond_resched(); + } +} + +static inline int htab_lock_bucket(struct bucket *b, unsigned long *pflags) +{ + unsigned long flags; + int ret; + + ret = raw_res_spin_lock_irqsave(&b->raw_lock, flags); + if (ret) + return ret; + *pflags = flags; + return 0; +} + +static inline void htab_unlock_bucket(struct bucket *b, unsigned long flags) +{ + raw_res_spin_unlock_irqrestore(&b->raw_lock, flags); +} + +static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); + +static bool htab_is_lru(const struct bpf_htab *htab) +{ + return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || + htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; +} + +static bool htab_is_percpu(const struct bpf_htab *htab) +{ + return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || + htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; +} + +static inline bool is_fd_htab(const struct bpf_htab *htab) +{ + return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS; +} + +static inline void *htab_elem_value(struct htab_elem *l, u32 key_size) +{ + return l->key + round_up(key_size, 8); +} + +static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, + void __percpu *pptr) +{ + *(void __percpu **)htab_elem_value(l, key_size) = pptr; +} + +static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) +{ + return *(void __percpu **)htab_elem_value(l, key_size); +} + +static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) +{ + return *(void **)htab_elem_value(l, map->key_size); +} + +static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) +{ + return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size); +} + +/* Both percpu and fd htab support in-place update, so no need for + * extra elem. LRU itself can remove the least used element, so + * there is no need for an extra elem during map_update. + */ +static bool htab_has_extra_elems(struct bpf_htab *htab) +{ + return !htab_is_percpu(htab) && !htab_is_lru(htab) && !is_fd_htab(htab); +} + +static void htab_free_prealloced_internal_structs(struct bpf_htab *htab) +{ + u32 num_entries = htab->map.max_entries; + int i; + + if (htab_has_extra_elems(htab)) + num_entries += num_possible_cpus(); + + for (i = 0; i < num_entries; i++) { + struct htab_elem *elem; + + elem = get_htab_elem(htab, i); + bpf_map_free_internal_structs(&htab->map, + htab_elem_value(elem, htab->map.key_size)); + cond_resched(); + } +} + +static void htab_free_prealloced_fields(struct bpf_htab *htab) +{ + u32 num_entries = htab->map.max_entries; + int i; + + if (IS_ERR_OR_NULL(htab->map.record)) + return; + if (htab_has_extra_elems(htab)) + num_entries += num_possible_cpus(); + for (i = 0; i < num_entries; i++) { + struct htab_elem *elem; + + elem = get_htab_elem(htab, i); + if (htab_is_percpu(htab)) { + void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); + int cpu; + + for_each_possible_cpu(cpu) { + bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); + cond_resched(); + } + } else { + bpf_obj_free_fields(htab->map.record, + htab_elem_value(elem, htab->map.key_size)); + cond_resched(); + } + cond_resched(); + } +} + +static void htab_free_elems(struct bpf_htab *htab) +{ + int i; + + if (!htab_is_percpu(htab)) + goto free_elems; + + for (i = 0; i < htab->map.max_entries; i++) { + void __percpu *pptr; + + pptr = htab_elem_get_ptr(get_htab_elem(htab, i), + htab->map.key_size); + free_percpu(pptr); + cond_resched(); + } +free_elems: + bpf_map_area_free(htab->elems); +} + +/* The LRU list has a lock (lru_lock). Each htab bucket has a lock + * (bucket_lock). If both locks need to be acquired together, the lock + * order is always lru_lock -> bucket_lock and this only happens in + * bpf_lru_list.c logic. For example, certain code path of + * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), + * will acquire lru_lock first followed by acquiring bucket_lock. + * + * In hashtab.c, to avoid deadlock, lock acquisition of + * bucket_lock followed by lru_lock is not allowed. In such cases, + * bucket_lock needs to be released first before acquiring lru_lock. + */ +static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, + u32 hash) +{ + struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); + struct htab_elem *l; + + if (node) { + bpf_map_inc_elem_count(&htab->map); + l = container_of(node, struct htab_elem, lru_node); + memcpy(l->key, key, htab->map.key_size); + return l; + } + + return NULL; +} + +static int prealloc_init(struct bpf_htab *htab) +{ + u32 num_entries = htab->map.max_entries; + int err = -ENOMEM, i; + + if (htab_has_extra_elems(htab)) + num_entries += num_possible_cpus(); + + htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries, + htab->map.numa_node); + if (!htab->elems) + return -ENOMEM; + + if (!htab_is_percpu(htab)) + goto skip_percpu_elems; + + for (i = 0; i < num_entries; i++) { + u32 size = round_up(htab->map.value_size, 8); + void __percpu *pptr; + + pptr = bpf_map_alloc_percpu(&htab->map, size, 8, + GFP_USER | __GFP_NOWARN); + if (!pptr) + goto free_elems; + htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, + pptr); + cond_resched(); + } + +skip_percpu_elems: + if (htab_is_lru(htab)) + err = bpf_lru_init(&htab->lru, + htab->map.map_flags & BPF_F_NO_COMMON_LRU, + offsetof(struct htab_elem, hash) - + offsetof(struct htab_elem, lru_node), + htab_lru_map_delete_node, + htab); + else + err = pcpu_freelist_init(&htab->freelist); + + if (err) + goto free_elems; + + if (htab_is_lru(htab)) + bpf_lru_populate(&htab->lru, htab->elems, + offsetof(struct htab_elem, lru_node), + htab->elem_size, num_entries); + else + pcpu_freelist_populate(&htab->freelist, + htab->elems + offsetof(struct htab_elem, fnode), + htab->elem_size, num_entries); + + return 0; + +free_elems: + htab_free_elems(htab); + return err; +} + +static void prealloc_destroy(struct bpf_htab *htab) +{ + htab_free_elems(htab); + + if (htab_is_lru(htab)) + bpf_lru_destroy(&htab->lru); + else + pcpu_freelist_destroy(&htab->freelist); +} + +static int alloc_extra_elems(struct bpf_htab *htab) +{ + struct htab_elem *__percpu *pptr, *l_new; + struct pcpu_freelist_node *l; + int cpu; + + pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8, + GFP_USER | __GFP_NOWARN); + if (!pptr) + return -ENOMEM; + + for_each_possible_cpu(cpu) { + l = pcpu_freelist_pop(&htab->freelist); + /* pop will succeed, since prealloc_init() + * preallocated extra num_possible_cpus elements + */ + l_new = container_of(l, struct htab_elem, fnode); + *per_cpu_ptr(pptr, cpu) = l_new; + } + htab->extra_elems = pptr; + return 0; +} + +/* Called from syscall */ +static int htab_map_alloc_check(union bpf_attr *attr) +{ + bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || + attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); + bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || + attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); + /* percpu_lru means each cpu has its own LRU list. + * it is different from BPF_MAP_TYPE_PERCPU_HASH where + * the map's value itself is percpu. percpu_lru has + * nothing to do with the map's value. + */ + bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); + bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); + bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); + int numa_node = bpf_map_attr_numa_node(attr); + + BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != + offsetof(struct htab_elem, hash_node.pprev)); + + if (zero_seed && !capable(CAP_SYS_ADMIN)) + /* Guard against local DoS, and discourage production use. */ + return -EPERM; + + if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || + !bpf_map_flags_access_ok(attr->map_flags)) + return -EINVAL; + + if (!lru && percpu_lru) + return -EINVAL; + + if (lru && !prealloc) + return -ENOTSUPP; + + if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) + return -EINVAL; + + /* check sanity of attributes. + * value_size == 0 may be allowed in the future to use map as a set + */ + if (attr->max_entries == 0 || attr->key_size == 0 || + attr->value_size == 0) + return -EINVAL; + + if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE - + sizeof(struct htab_elem)) + /* if key_size + value_size is bigger, the user space won't be + * able to access the elements via bpf syscall. This check + * also makes sure that the elem_size doesn't overflow and it's + * kmalloc-able later in htab_map_update_elem() + */ + return -E2BIG; + /* percpu map value size is bound by PCPU_MIN_UNIT_SIZE */ + if (percpu && round_up(attr->value_size, 8) > PCPU_MIN_UNIT_SIZE) + return -E2BIG; + + return 0; +} + +static struct bpf_map *htab_map_alloc(union bpf_attr *attr) +{ + bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || + attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); + /* percpu_lru means each cpu has its own LRU list. + * it is different from BPF_MAP_TYPE_PERCPU_HASH where + * the map's value itself is percpu. percpu_lru has + * nothing to do with the map's value. + */ + bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); + bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); + struct bpf_htab *htab; + int err; + + htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE); + if (!htab) + return ERR_PTR(-ENOMEM); + + bpf_map_init_from_attr(&htab->map, attr); + + if (percpu_lru) { + /* ensure each CPU's lru list has >=1 elements. + * since we are at it, make each lru list has the same + * number of elements. + */ + htab->map.max_entries = roundup(attr->max_entries, + num_possible_cpus()); + if (htab->map.max_entries < attr->max_entries) + htab->map.max_entries = rounddown(attr->max_entries, + num_possible_cpus()); + } + + /* hash table size must be power of 2; roundup_pow_of_two() can overflow + * into UB on 32-bit arches, so check that first + */ + err = -E2BIG; + if (htab->map.max_entries > 1UL << 31) + goto free_htab; + + htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); + + htab->elem_size = sizeof(struct htab_elem) + + round_up(htab->map.key_size, 8); + if (percpu) + htab->elem_size += sizeof(void *); + else + htab->elem_size += round_up(htab->map.value_size, 8); + + /* check for u32 overflow */ + if (htab->n_buckets > U32_MAX / sizeof(struct bucket)) + goto free_htab; + + err = bpf_map_init_elem_count(&htab->map); + if (err) + goto free_htab; + + err = -ENOMEM; + htab->buckets = bpf_map_area_alloc(htab->n_buckets * + sizeof(struct bucket), + htab->map.numa_node); + if (!htab->buckets) + goto free_elem_count; + + if (htab->map.map_flags & BPF_F_ZERO_SEED) + htab->hashrnd = 0; + else + htab->hashrnd = get_random_u32(); + + htab_init_buckets(htab); + +/* compute_batch_value() computes batch value as num_online_cpus() * 2 + * and __percpu_counter_compare() needs + * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus() + * for percpu_counter to be faster than atomic_t. In practice the average bpf + * hash map size is 10k, which means that a system with 64 cpus will fill + * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore + * define our own batch count as 32 then 10k hash map can be filled up to 80%: + * 10k - 8k > 32 _batch_ * 64 _cpus_ + * and __percpu_counter_compare() will still be fast. At that point hash map + * collisions will dominate its performance anyway. Assume that hash map filled + * to 50+% isn't going to be O(1) and use the following formula to choose + * between percpu_counter and atomic_t. + */ +#define PERCPU_COUNTER_BATCH 32 + if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH) + htab->use_percpu_counter = true; + + if (htab->use_percpu_counter) { + err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL); + if (err) + goto free_map_locked; + } + + if (prealloc) { + err = prealloc_init(htab); + if (err) + goto free_map_locked; + + if (htab_has_extra_elems(htab)) { + err = alloc_extra_elems(htab); + if (err) + goto free_prealloc; + } + } else { + err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false); + if (err) + goto free_map_locked; + if (percpu) { + err = bpf_mem_alloc_init(&htab->pcpu_ma, + round_up(htab->map.value_size, 8), true); + if (err) + goto free_map_locked; + } + } + + return &htab->map; + +free_prealloc: + prealloc_destroy(htab); +free_map_locked: + if (htab->use_percpu_counter) + percpu_counter_destroy(&htab->pcount); + bpf_map_area_free(htab->buckets); + bpf_mem_alloc_destroy(&htab->pcpu_ma); + bpf_mem_alloc_destroy(&htab->ma); +free_elem_count: + bpf_map_free_elem_count(&htab->map); +free_htab: + bpf_map_area_free(htab); + return ERR_PTR(err); +} + +static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) +{ + if (likely(key_len % 4 == 0)) + return jhash2(key, key_len / 4, hashrnd); + return jhash(key, key_len, hashrnd); +} + +static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) +{ + return &htab->buckets[hash & (htab->n_buckets - 1)]; +} + +static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) +{ + return &__select_bucket(htab, hash)->head; +} + +/* this lookup function can only be called with bucket lock taken */ +static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, + void *key, u32 key_size) +{ + struct hlist_nulls_node *n; + struct htab_elem *l; + + hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) + if (l->hash == hash && !memcmp(&l->key, key, key_size)) + return l; + + return NULL; +} + +/* can be called without bucket lock. it will repeat the loop in + * the unlikely event when elements moved from one bucket into another + * while link list is being walked + */ +static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, + u32 hash, void *key, + u32 key_size, u32 n_buckets) +{ + struct hlist_nulls_node *n; + struct htab_elem *l; + +again: + hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) + if (l->hash == hash && !memcmp(&l->key, key, key_size)) + return l; + + if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) + goto again; + + return NULL; +} + +/* Called from syscall or from eBPF program directly, so + * arguments have to match bpf_map_lookup_elem() exactly. + * The return value is adjusted by BPF instructions + * in htab_map_gen_lookup(). + */ +static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + struct hlist_nulls_head *head; + struct htab_elem *l; + u32 hash, key_size; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + + key_size = map->key_size; + + hash = htab_map_hash(key, key_size, htab->hashrnd); + + head = select_bucket(htab, hash); + + l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); + + return l; +} + +static void *htab_map_lookup_elem(struct bpf_map *map, void *key) +{ + struct htab_elem *l = __htab_map_lookup_elem(map, key); + + if (l) + return htab_elem_value(l, map->key_size); + + return NULL; +} + +/* inline bpf_map_lookup_elem() call. + * Instead of: + * bpf_prog + * bpf_map_lookup_elem + * map->ops->map_lookup_elem + * htab_map_lookup_elem + * __htab_map_lookup_elem + * do: + * bpf_prog + * __htab_map_lookup_elem + */ +static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) +{ + struct bpf_insn *insn = insn_buf; + const int ret = BPF_REG_0; + + BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, + (void *(*)(struct bpf_map *map, void *key))NULL)); + *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); + *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); + *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, + offsetof(struct htab_elem, key) + + round_up(map->key_size, 8)); + return insn - insn_buf; +} + +static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, + void *key, const bool mark) +{ + struct htab_elem *l = __htab_map_lookup_elem(map, key); + + if (l) { + if (mark) + bpf_lru_node_set_ref(&l->lru_node); + return htab_elem_value(l, map->key_size); + } + + return NULL; +} + +static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) +{ + return __htab_lru_map_lookup_elem(map, key, true); +} + +static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) +{ + return __htab_lru_map_lookup_elem(map, key, false); +} + +static int htab_lru_map_gen_lookup(struct bpf_map *map, + struct bpf_insn *insn_buf) +{ + struct bpf_insn *insn = insn_buf; + const int ret = BPF_REG_0; + const int ref_reg = BPF_REG_1; + + BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, + (void *(*)(struct bpf_map *map, void *key))NULL)); + *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); + *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); + *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, + offsetof(struct htab_elem, lru_node) + + offsetof(struct bpf_lru_node, ref)); + *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); + *insn++ = BPF_ST_MEM(BPF_B, ret, + offsetof(struct htab_elem, lru_node) + + offsetof(struct bpf_lru_node, ref), + 1); + *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, + offsetof(struct htab_elem, key) + + round_up(map->key_size, 8)); + return insn - insn_buf; +} + +static void check_and_free_fields(struct bpf_htab *htab, + struct htab_elem *elem) +{ + if (IS_ERR_OR_NULL(htab->map.record)) + return; + + if (htab_is_percpu(htab)) { + void __percpu *pptr = htab_elem_get_ptr(elem, htab->map.key_size); + int cpu; + + for_each_possible_cpu(cpu) + bpf_obj_free_fields(htab->map.record, per_cpu_ptr(pptr, cpu)); + } else { + void *map_value = htab_elem_value(elem, htab->map.key_size); + + bpf_obj_free_fields(htab->map.record, map_value); + } +} + +/* It is called from the bpf_lru_list when the LRU needs to delete + * older elements from the htab. + */ +static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) +{ + struct bpf_htab *htab = arg; + struct htab_elem *l = NULL, *tgt_l; + struct hlist_nulls_head *head; + struct hlist_nulls_node *n; + unsigned long flags; + struct bucket *b; + int ret; + + tgt_l = container_of(node, struct htab_elem, lru_node); + b = __select_bucket(htab, tgt_l->hash); + head = &b->head; + + ret = htab_lock_bucket(b, &flags); + if (ret) + return false; + + hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) + if (l == tgt_l) { + hlist_nulls_del_rcu(&l->hash_node); + bpf_map_dec_elem_count(&htab->map); + break; + } + + htab_unlock_bucket(b, flags); + + if (l == tgt_l) + check_and_free_fields(htab, l); + return l == tgt_l; +} + +/* Called from syscall */ +static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + struct hlist_nulls_head *head; + struct htab_elem *l, *next_l; + u32 hash, key_size; + int i = 0; + + WARN_ON_ONCE(!rcu_read_lock_held()); + + key_size = map->key_size; + + if (!key) + goto find_first_elem; + + hash = htab_map_hash(key, key_size, htab->hashrnd); + + head = select_bucket(htab, hash); + + /* lookup the key */ + l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); + + if (!l) + goto find_first_elem; + + /* key was found, get next key in the same bucket */ + next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), + struct htab_elem, hash_node); + + if (next_l) { + /* if next elem in this hash list is non-zero, just return it */ + memcpy(next_key, next_l->key, key_size); + return 0; + } + + /* no more elements in this hash list, go to the next bucket */ + i = hash & (htab->n_buckets - 1); + i++; + +find_first_elem: + /* iterate over buckets */ + for (; i < htab->n_buckets; i++) { + head = select_bucket(htab, i); + + /* pick first element in the bucket */ + next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), + struct htab_elem, hash_node); + if (next_l) { + /* if it's not empty, just return it */ + memcpy(next_key, next_l->key, key_size); + return 0; + } + } + + /* iterated over all buckets and all elements */ + return -ENOENT; +} + +static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) +{ + check_and_free_fields(htab, l); + + if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) + bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr); + bpf_mem_cache_free(&htab->ma, l); +} + +static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) +{ + struct bpf_map *map = &htab->map; + void *ptr; + + if (map->ops->map_fd_put_ptr) { + ptr = fd_htab_map_get_ptr(map, l); + map->ops->map_fd_put_ptr(map, ptr, true); + } +} + +static bool is_map_full(struct bpf_htab *htab) +{ + if (htab->use_percpu_counter) + return __percpu_counter_compare(&htab->pcount, htab->map.max_entries, + PERCPU_COUNTER_BATCH) >= 0; + return atomic_read(&htab->count) >= htab->map.max_entries; +} + +static void inc_elem_count(struct bpf_htab *htab) +{ + bpf_map_inc_elem_count(&htab->map); + + if (htab->use_percpu_counter) + percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH); + else + atomic_inc(&htab->count); +} + +static void dec_elem_count(struct bpf_htab *htab) +{ + bpf_map_dec_elem_count(&htab->map); + + if (htab->use_percpu_counter) + percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH); + else + atomic_dec(&htab->count); +} + + +static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) +{ + htab_put_fd_value(htab, l); + + if (htab_is_prealloc(htab)) { + bpf_map_dec_elem_count(&htab->map); + check_and_free_fields(htab, l); + pcpu_freelist_push(&htab->freelist, &l->fnode); + } else { + dec_elem_count(htab); + htab_elem_free(htab, l); + } +} + +static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, + void *value, bool onallcpus) +{ + void *ptr; + + if (!onallcpus) { + /* copy true value_size bytes */ + ptr = this_cpu_ptr(pptr); + copy_map_value(&htab->map, ptr, value); + bpf_obj_free_fields(htab->map.record, ptr); + } else { + u32 size = round_up(htab->map.value_size, 8); + int off = 0, cpu; + + for_each_possible_cpu(cpu) { + ptr = per_cpu_ptr(pptr, cpu); + copy_map_value_long(&htab->map, ptr, value + off); + bpf_obj_free_fields(htab->map.record, ptr); + off += size; + } + } +} + +static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr, + void *value, bool onallcpus) +{ + /* When not setting the initial value on all cpus, zero-fill element + * values for other cpus. Otherwise, bpf program has no way to ensure + * known initial values for cpus other than current one + * (onallcpus=false always when coming from bpf prog). + */ + if (!onallcpus) { + int current_cpu = raw_smp_processor_id(); + int cpu; + + for_each_possible_cpu(cpu) { + if (cpu == current_cpu) + copy_map_value_long(&htab->map, per_cpu_ptr(pptr, cpu), value); + else /* Since elem is preallocated, we cannot touch special fields */ + zero_map_value(&htab->map, per_cpu_ptr(pptr, cpu)); + } + } else { + pcpu_copy_value(htab, pptr, value, onallcpus); + } +} + +static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) +{ + return is_fd_htab(htab) && BITS_PER_LONG == 64; +} + +static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, + void *value, u32 key_size, u32 hash, + bool percpu, bool onallcpus, + struct htab_elem *old_elem) +{ + u32 size = htab->map.value_size; + bool prealloc = htab_is_prealloc(htab); + struct htab_elem *l_new, **pl_new; + void __percpu *pptr; + + if (prealloc) { + if (old_elem) { + /* if we're updating the existing element, + * use per-cpu extra elems to avoid freelist_pop/push + */ + pl_new = this_cpu_ptr(htab->extra_elems); + l_new = *pl_new; + *pl_new = old_elem; + } else { + struct pcpu_freelist_node *l; + + l = __pcpu_freelist_pop(&htab->freelist); + if (!l) + return ERR_PTR(-E2BIG); + l_new = container_of(l, struct htab_elem, fnode); + bpf_map_inc_elem_count(&htab->map); + } + } else { + if (is_map_full(htab)) + if (!old_elem) + /* when map is full and update() is replacing + * old element, it's ok to allocate, since + * old element will be freed immediately. + * Otherwise return an error + */ + return ERR_PTR(-E2BIG); + inc_elem_count(htab); + l_new = bpf_mem_cache_alloc(&htab->ma); + if (!l_new) { + l_new = ERR_PTR(-ENOMEM); + goto dec_count; + } + } + + memcpy(l_new->key, key, key_size); + if (percpu) { + if (prealloc) { + pptr = htab_elem_get_ptr(l_new, key_size); + } else { + /* alloc_percpu zero-fills */ + void *ptr = bpf_mem_cache_alloc(&htab->pcpu_ma); + + if (!ptr) { + bpf_mem_cache_free(&htab->ma, l_new); + l_new = ERR_PTR(-ENOMEM); + goto dec_count; + } + l_new->ptr_to_pptr = ptr; + pptr = *(void __percpu **)ptr; + } + + pcpu_init_value(htab, pptr, value, onallcpus); + + if (!prealloc) + htab_elem_set_ptr(l_new, key_size, pptr); + } else if (fd_htab_map_needs_adjust(htab)) { + size = round_up(size, 8); + memcpy(htab_elem_value(l_new, key_size), value, size); + } else { + copy_map_value(&htab->map, htab_elem_value(l_new, key_size), value); + } + + l_new->hash = hash; + return l_new; +dec_count: + dec_elem_count(htab); + return l_new; +} + +static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, + u64 map_flags) +{ + if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) + /* elem already exists */ + return -EEXIST; + + if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) + /* elem doesn't exist, cannot update it */ + return -ENOENT; + + return 0; +} + +/* Called from syscall or from eBPF program */ +static long htab_map_update_elem(struct bpf_map *map, void *key, void *value, + u64 map_flags) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + struct htab_elem *l_new, *l_old; + struct hlist_nulls_head *head; + unsigned long flags; + struct bucket *b; + u32 key_size, hash; + int ret; + + if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) + /* unknown flags */ + return -EINVAL; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + + key_size = map->key_size; + + hash = htab_map_hash(key, key_size, htab->hashrnd); + + b = __select_bucket(htab, hash); + head = &b->head; + + if (unlikely(map_flags & BPF_F_LOCK)) { + if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK))) + return -EINVAL; + /* find an element without taking the bucket lock */ + l_old = lookup_nulls_elem_raw(head, hash, key, key_size, + htab->n_buckets); + ret = check_flags(htab, l_old, map_flags); + if (ret) + return ret; + if (l_old) { + /* grab the element lock and update value in place */ + copy_map_value_locked(map, + htab_elem_value(l_old, key_size), + value, false); + return 0; + } + /* fall through, grab the bucket lock and lookup again. + * 99.9% chance that the element won't be found, + * but second lookup under lock has to be done. + */ + } + + ret = htab_lock_bucket(b, &flags); + if (ret) + return ret; + + l_old = lookup_elem_raw(head, hash, key, key_size); + + ret = check_flags(htab, l_old, map_flags); + if (ret) + goto err; + + if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { + /* first lookup without the bucket lock didn't find the element, + * but second lookup with the bucket lock found it. + * This case is highly unlikely, but has to be dealt with: + * grab the element lock in addition to the bucket lock + * and update element in place + */ + copy_map_value_locked(map, + htab_elem_value(l_old, key_size), + value, false); + ret = 0; + goto err; + } + + l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, + l_old); + if (IS_ERR(l_new)) { + /* all pre-allocated elements are in use or memory exhausted */ + ret = PTR_ERR(l_new); + goto err; + } + + /* add new element to the head of the list, so that + * concurrent search will find it before old elem + */ + hlist_nulls_add_head_rcu(&l_new->hash_node, head); + if (l_old) { + hlist_nulls_del_rcu(&l_old->hash_node); + + /* l_old has already been stashed in htab->extra_elems, free + * its special fields before it is available for reuse. + */ + if (htab_is_prealloc(htab)) + check_and_free_fields(htab, l_old); + } + htab_unlock_bucket(b, flags); + if (l_old && !htab_is_prealloc(htab)) + free_htab_elem(htab, l_old); + return 0; +err: + htab_unlock_bucket(b, flags); + return ret; +} + +static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem) +{ + check_and_free_fields(htab, elem); + bpf_map_dec_elem_count(&htab->map); + bpf_lru_push_free(&htab->lru, &elem->lru_node); +} + +static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, + u64 map_flags) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + struct htab_elem *l_new, *l_old = NULL; + struct hlist_nulls_head *head; + unsigned long flags; + struct bucket *b; + u32 key_size, hash; + int ret; + + if (unlikely(map_flags > BPF_EXIST)) + /* unknown flags */ + return -EINVAL; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + + key_size = map->key_size; + + hash = htab_map_hash(key, key_size, htab->hashrnd); + + b = __select_bucket(htab, hash); + head = &b->head; + + /* For LRU, we need to alloc before taking bucket's + * spinlock because getting free nodes from LRU may need + * to remove older elements from htab and this removal + * operation will need a bucket lock. + */ + l_new = prealloc_lru_pop(htab, key, hash); + if (!l_new) + return -ENOMEM; + copy_map_value(&htab->map, htab_elem_value(l_new, map->key_size), value); + + ret = htab_lock_bucket(b, &flags); + if (ret) + goto err_lock_bucket; + + l_old = lookup_elem_raw(head, hash, key, key_size); + + ret = check_flags(htab, l_old, map_flags); + if (ret) + goto err; + + /* add new element to the head of the list, so that + * concurrent search will find it before old elem + */ + hlist_nulls_add_head_rcu(&l_new->hash_node, head); + if (l_old) { + bpf_lru_node_set_ref(&l_new->lru_node); + hlist_nulls_del_rcu(&l_old->hash_node); + } + ret = 0; + +err: + htab_unlock_bucket(b, flags); + +err_lock_bucket: + if (ret) + htab_lru_push_free(htab, l_new); + else if (l_old) + htab_lru_push_free(htab, l_old); + + return ret; +} + +static long htab_map_update_elem_in_place(struct bpf_map *map, void *key, + void *value, u64 map_flags, + bool percpu, bool onallcpus) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + struct htab_elem *l_new, *l_old; + struct hlist_nulls_head *head; + void *old_map_ptr = NULL; + unsigned long flags; + struct bucket *b; + u32 key_size, hash; + int ret; + + if (unlikely(map_flags > BPF_EXIST)) + /* unknown flags */ + return -EINVAL; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + + key_size = map->key_size; + + hash = htab_map_hash(key, key_size, htab->hashrnd); + + b = __select_bucket(htab, hash); + head = &b->head; + + ret = htab_lock_bucket(b, &flags); + if (ret) + return ret; + + l_old = lookup_elem_raw(head, hash, key, key_size); + + ret = check_flags(htab, l_old, map_flags); + if (ret) + goto err; + + if (l_old) { + /* Update value in-place */ + if (percpu) { + pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), + value, onallcpus); + } else { + void **inner_map_pptr = htab_elem_value(l_old, key_size); + + old_map_ptr = *inner_map_pptr; + WRITE_ONCE(*inner_map_pptr, *(void **)value); + } + } else { + l_new = alloc_htab_elem(htab, key, value, key_size, + hash, percpu, onallcpus, NULL); + if (IS_ERR(l_new)) { + ret = PTR_ERR(l_new); + goto err; + } + hlist_nulls_add_head_rcu(&l_new->hash_node, head); + } +err: + htab_unlock_bucket(b, flags); + if (old_map_ptr) + map->ops->map_fd_put_ptr(map, old_map_ptr, true); + return ret; +} + +static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, + void *value, u64 map_flags, + bool onallcpus) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + struct htab_elem *l_new = NULL, *l_old; + struct hlist_nulls_head *head; + unsigned long flags; + struct bucket *b; + u32 key_size, hash; + int ret; + + if (unlikely(map_flags > BPF_EXIST)) + /* unknown flags */ + return -EINVAL; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + + key_size = map->key_size; + + hash = htab_map_hash(key, key_size, htab->hashrnd); + + b = __select_bucket(htab, hash); + head = &b->head; + + /* For LRU, we need to alloc before taking bucket's + * spinlock because LRU's elem alloc may need + * to remove older elem from htab and this removal + * operation will need a bucket lock. + */ + if (map_flags != BPF_EXIST) { + l_new = prealloc_lru_pop(htab, key, hash); + if (!l_new) + return -ENOMEM; + } + + ret = htab_lock_bucket(b, &flags); + if (ret) + goto err_lock_bucket; + + l_old = lookup_elem_raw(head, hash, key, key_size); + + ret = check_flags(htab, l_old, map_flags); + if (ret) + goto err; + + if (l_old) { + bpf_lru_node_set_ref(&l_old->lru_node); + + /* per-cpu hash map can update value in-place */ + pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), + value, onallcpus); + } else { + pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size), + value, onallcpus); + hlist_nulls_add_head_rcu(&l_new->hash_node, head); + l_new = NULL; + } + ret = 0; +err: + htab_unlock_bucket(b, flags); +err_lock_bucket: + if (l_new) { + bpf_map_dec_elem_count(&htab->map); + bpf_lru_push_free(&htab->lru, &l_new->lru_node); + } + return ret; +} + +static long htab_percpu_map_update_elem(struct bpf_map *map, void *key, + void *value, u64 map_flags) +{ + return htab_map_update_elem_in_place(map, key, value, map_flags, true, false); +} + +static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, + void *value, u64 map_flags) +{ + return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, + false); +} + +/* Called from syscall or from eBPF program */ +static long htab_map_delete_elem(struct bpf_map *map, void *key) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + struct hlist_nulls_head *head; + struct bucket *b; + struct htab_elem *l; + unsigned long flags; + u32 hash, key_size; + int ret; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + + key_size = map->key_size; + + hash = htab_map_hash(key, key_size, htab->hashrnd); + b = __select_bucket(htab, hash); + head = &b->head; + + ret = htab_lock_bucket(b, &flags); + if (ret) + return ret; + + l = lookup_elem_raw(head, hash, key, key_size); + if (l) + hlist_nulls_del_rcu(&l->hash_node); + else + ret = -ENOENT; + + htab_unlock_bucket(b, flags); + + if (l) + free_htab_elem(htab, l); + return ret; +} + +static long htab_lru_map_delete_elem(struct bpf_map *map, void *key) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + struct hlist_nulls_head *head; + struct bucket *b; + struct htab_elem *l; + unsigned long flags; + u32 hash, key_size; + int ret; + + WARN_ON_ONCE(!bpf_rcu_lock_held()); + + key_size = map->key_size; + + hash = htab_map_hash(key, key_size, htab->hashrnd); + b = __select_bucket(htab, hash); + head = &b->head; + + ret = htab_lock_bucket(b, &flags); + if (ret) + return ret; + + l = lookup_elem_raw(head, hash, key, key_size); + + if (l) + hlist_nulls_del_rcu(&l->hash_node); + else + ret = -ENOENT; + + htab_unlock_bucket(b, flags); + if (l) + htab_lru_push_free(htab, l); + return ret; +} + +static void delete_all_elements(struct bpf_htab *htab) +{ + int i; + + /* It's called from a worker thread and migration has been disabled, + * therefore, it is OK to invoke bpf_mem_cache_free() directly. + */ + for (i = 0; i < htab->n_buckets; i++) { + struct hlist_nulls_head *head = select_bucket(htab, i); + struct hlist_nulls_node *n; + struct htab_elem *l; + + hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { + hlist_nulls_del_rcu(&l->hash_node); + htab_elem_free(htab, l); + } + cond_resched(); + } +} + +static void htab_free_malloced_internal_structs(struct bpf_htab *htab) +{ + int i; + + rcu_read_lock(); + for (i = 0; i < htab->n_buckets; i++) { + struct hlist_nulls_head *head = select_bucket(htab, i); + struct hlist_nulls_node *n; + struct htab_elem *l; + + hlist_nulls_for_each_entry(l, n, head, hash_node) { + /* We only free internal structs on uref dropping to zero */ + bpf_map_free_internal_structs(&htab->map, + htab_elem_value(l, htab->map.key_size)); + } + cond_resched_rcu(); + } + rcu_read_unlock(); +} + +static void htab_map_free_internal_structs(struct bpf_map *map) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + + /* We only free internal structs on uref dropping to zero */ + if (!bpf_map_has_internal_structs(map)) + return; + + if (htab_is_prealloc(htab)) + htab_free_prealloced_internal_structs(htab); + else + htab_free_malloced_internal_structs(htab); +} + +/* Called when map->refcnt goes to zero, either from workqueue or from syscall */ +static void htab_map_free(struct bpf_map *map) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + + /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. + * bpf_free_used_maps() is called after bpf prog is no longer executing. + * There is no need to synchronize_rcu() here to protect map elements. + */ + + /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it + * underneath and is responsible for waiting for callbacks to finish + * during bpf_mem_alloc_destroy(). + */ + if (!htab_is_prealloc(htab)) { + delete_all_elements(htab); + } else { + htab_free_prealloced_fields(htab); + prealloc_destroy(htab); + } + + bpf_map_free_elem_count(map); + free_percpu(htab->extra_elems); + bpf_map_area_free(htab->buckets); + bpf_mem_alloc_destroy(&htab->pcpu_ma); + bpf_mem_alloc_destroy(&htab->ma); + if (htab->use_percpu_counter) + percpu_counter_destroy(&htab->pcount); + bpf_map_area_free(htab); +} + +static void htab_map_seq_show_elem(struct bpf_map *map, void *key, + struct seq_file *m) +{ + void *value; + + rcu_read_lock(); + + value = htab_map_lookup_elem(map, key); + if (!value) { + rcu_read_unlock(); + return; + } + + btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); + seq_puts(m, ": "); + btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); + seq_putc(m, '\n'); + + rcu_read_unlock(); +} + +static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, + void *value, bool is_lru_map, + bool is_percpu, u64 flags) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + struct hlist_nulls_head *head; + unsigned long bflags; + struct htab_elem *l; + u32 hash, key_size; + struct bucket *b; + int ret; + + key_size = map->key_size; + + hash = htab_map_hash(key, key_size, htab->hashrnd); + b = __select_bucket(htab, hash); + head = &b->head; + + ret = htab_lock_bucket(b, &bflags); + if (ret) + return ret; + + l = lookup_elem_raw(head, hash, key, key_size); + if (!l) { + ret = -ENOENT; + goto out_unlock; + } + + if (is_percpu) { + u32 roundup_value_size = round_up(map->value_size, 8); + void __percpu *pptr; + int off = 0, cpu; + + pptr = htab_elem_get_ptr(l, key_size); + for_each_possible_cpu(cpu) { + copy_map_value_long(&htab->map, value + off, per_cpu_ptr(pptr, cpu)); + check_and_init_map_value(&htab->map, value + off); + off += roundup_value_size; + } + } else { + void *src = htab_elem_value(l, map->key_size); + + if (flags & BPF_F_LOCK) + copy_map_value_locked(map, value, src, true); + else + copy_map_value(map, value, src); + /* Zeroing special fields in the temp buffer */ + check_and_init_map_value(map, value); + } + hlist_nulls_del_rcu(&l->hash_node); + +out_unlock: + htab_unlock_bucket(b, bflags); + + if (l) { + if (is_lru_map) + htab_lru_push_free(htab, l); + else + free_htab_elem(htab, l); + } + + return ret; +} + +static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key, + void *value, u64 flags) +{ + return __htab_map_lookup_and_delete_elem(map, key, value, false, false, + flags); +} + +static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map, + void *key, void *value, + u64 flags) +{ + return __htab_map_lookup_and_delete_elem(map, key, value, false, true, + flags); +} + +static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key, + void *value, u64 flags) +{ + return __htab_map_lookup_and_delete_elem(map, key, value, true, false, + flags); +} + +static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map, + void *key, void *value, + u64 flags) +{ + return __htab_map_lookup_and_delete_elem(map, key, value, true, true, + flags); +} + +static int +__htab_map_lookup_and_delete_batch(struct bpf_map *map, + const union bpf_attr *attr, + union bpf_attr __user *uattr, + bool do_delete, bool is_lru_map, + bool is_percpu) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; + void __user *uvalues = u64_to_user_ptr(attr->batch.values); + void __user *ukeys = u64_to_user_ptr(attr->batch.keys); + void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); + u32 batch, max_count, size, bucket_size, map_id; + u32 bucket_cnt, total, key_size, value_size; + struct htab_elem *node_to_free = NULL; + u64 elem_map_flags, map_flags; + struct hlist_nulls_head *head; + struct hlist_nulls_node *n; + unsigned long flags = 0; + bool locked = false; + struct htab_elem *l; + struct bucket *b; + int ret = 0; + + elem_map_flags = attr->batch.elem_flags; + if ((elem_map_flags & ~BPF_F_LOCK) || + ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))) + return -EINVAL; + + map_flags = attr->batch.flags; + if (map_flags) + return -EINVAL; + + max_count = attr->batch.count; + if (!max_count) + return 0; + + if (put_user(0, &uattr->batch.count)) + return -EFAULT; + + batch = 0; + if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) + return -EFAULT; + + if (batch >= htab->n_buckets) + return -ENOENT; + + key_size = htab->map.key_size; + value_size = htab->map.value_size; + size = round_up(value_size, 8); + if (is_percpu) + value_size = size * num_possible_cpus(); + total = 0; + /* while experimenting with hash tables with sizes ranging from 10 to + * 1000, it was observed that a bucket can have up to 5 entries. + */ + bucket_size = 5; + +alloc: + /* We cannot do copy_from_user or copy_to_user inside + * the rcu_read_lock. Allocate enough space here. + */ + keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN); + values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN); + if (!keys || !values) { + ret = -ENOMEM; + goto after_loop; + } + +again: + bpf_disable_instrumentation(); + rcu_read_lock(); +again_nocopy: + dst_key = keys; + dst_val = values; + b = &htab->buckets[batch]; + head = &b->head; + /* do not grab the lock unless need it (bucket_cnt > 0). */ + if (locked) { + ret = htab_lock_bucket(b, &flags); + if (ret) { + rcu_read_unlock(); + bpf_enable_instrumentation(); + goto after_loop; + } + } + + bucket_cnt = 0; + hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) + bucket_cnt++; + + if (bucket_cnt && !locked) { + locked = true; + goto again_nocopy; + } + + if (bucket_cnt > (max_count - total)) { + if (total == 0) + ret = -ENOSPC; + /* Note that since bucket_cnt > 0 here, it is implicit + * that the locked was grabbed, so release it. + */ + htab_unlock_bucket(b, flags); + rcu_read_unlock(); + bpf_enable_instrumentation(); + goto after_loop; + } + + if (bucket_cnt > bucket_size) { + bucket_size = bucket_cnt; + /* Note that since bucket_cnt > 0 here, it is implicit + * that the locked was grabbed, so release it. + */ + htab_unlock_bucket(b, flags); + rcu_read_unlock(); + bpf_enable_instrumentation(); + kvfree(keys); + kvfree(values); + goto alloc; + } + + /* Next block is only safe to run if you have grabbed the lock */ + if (!locked) + goto next_batch; + + hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { + memcpy(dst_key, l->key, key_size); + + if (is_percpu) { + int off = 0, cpu; + void __percpu *pptr; + + pptr = htab_elem_get_ptr(l, map->key_size); + for_each_possible_cpu(cpu) { + copy_map_value_long(&htab->map, dst_val + off, per_cpu_ptr(pptr, cpu)); + check_and_init_map_value(&htab->map, dst_val + off); + off += size; + } + } else { + value = htab_elem_value(l, key_size); + if (is_fd_htab(htab)) { + struct bpf_map **inner_map = value; + + /* Actual value is the id of the inner map */ + map_id = map->ops->map_fd_sys_lookup_elem(*inner_map); + value = &map_id; + } + + if (elem_map_flags & BPF_F_LOCK) + copy_map_value_locked(map, dst_val, value, + true); + else + copy_map_value(map, dst_val, value); + /* Zeroing special fields in the temp buffer */ + check_and_init_map_value(map, dst_val); + } + if (do_delete) { + hlist_nulls_del_rcu(&l->hash_node); + + /* bpf_lru_push_free() will acquire lru_lock, which + * may cause deadlock. See comments in function + * prealloc_lru_pop(). Let us do bpf_lru_push_free() + * after releasing the bucket lock. + * + * For htab of maps, htab_put_fd_value() in + * free_htab_elem() may acquire a spinlock with bucket + * lock being held and it violates the lock rule, so + * invoke free_htab_elem() after unlock as well. + */ + l->batch_flink = node_to_free; + node_to_free = l; + } + dst_key += key_size; + dst_val += value_size; + } + + htab_unlock_bucket(b, flags); + locked = false; + + while (node_to_free) { + l = node_to_free; + node_to_free = node_to_free->batch_flink; + if (is_lru_map) + htab_lru_push_free(htab, l); + else + free_htab_elem(htab, l); + } + +next_batch: + /* If we are not copying data, we can go to next bucket and avoid + * unlocking the rcu. + */ + if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { + batch++; + goto again_nocopy; + } + + rcu_read_unlock(); + bpf_enable_instrumentation(); + if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, + key_size * bucket_cnt) || + copy_to_user(uvalues + total * value_size, values, + value_size * bucket_cnt))) { + ret = -EFAULT; + goto after_loop; + } + + total += bucket_cnt; + batch++; + if (batch >= htab->n_buckets) { + ret = -ENOENT; + goto after_loop; + } + goto again; + +after_loop: + if (ret == -EFAULT) + goto out; + + /* copy # of entries and next batch */ + ubatch = u64_to_user_ptr(attr->batch.out_batch); + if (copy_to_user(ubatch, &batch, sizeof(batch)) || + put_user(total, &uattr->batch.count)) + ret = -EFAULT; + +out: + kvfree(keys); + kvfree(values); + return ret; +} + +static int +htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, + false, true); +} + +static int +htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, + false, true); +} + +static int +htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, + false, false); +} + +static int +htab_map_lookup_and_delete_batch(struct bpf_map *map, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, + false, false); +} + +static int +htab_lru_percpu_map_lookup_batch(struct bpf_map *map, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, + true, true); +} + +static int +htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, + true, true); +} + +static int +htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, + true, false); +} + +static int +htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, + true, false); +} + +struct bpf_iter_seq_hash_map_info { + struct bpf_map *map; + struct bpf_htab *htab; + void *percpu_value_buf; // non-zero means percpu hash + u32 bucket_id; + u32 skip_elems; +}; + +static struct htab_elem * +bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, + struct htab_elem *prev_elem) +{ + const struct bpf_htab *htab = info->htab; + u32 skip_elems = info->skip_elems; + u32 bucket_id = info->bucket_id; + struct hlist_nulls_head *head; + struct hlist_nulls_node *n; + struct htab_elem *elem; + struct bucket *b; + u32 i, count; + + if (bucket_id >= htab->n_buckets) + return NULL; + + /* try to find next elem in the same bucket */ + if (prev_elem) { + /* no update/deletion on this bucket, prev_elem should be still valid + * and we won't skip elements. + */ + n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); + elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); + if (elem) + return elem; + + /* not found, unlock and go to the next bucket */ + b = &htab->buckets[bucket_id++]; + rcu_read_unlock(); + skip_elems = 0; + } + + for (i = bucket_id; i < htab->n_buckets; i++) { + b = &htab->buckets[i]; + rcu_read_lock(); + + count = 0; + head = &b->head; + hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { + if (count >= skip_elems) { + info->bucket_id = i; + info->skip_elems = count; + return elem; + } + count++; + } + + rcu_read_unlock(); + skip_elems = 0; + } + + info->bucket_id = i; + info->skip_elems = 0; + return NULL; +} + +static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) +{ + struct bpf_iter_seq_hash_map_info *info = seq->private; + struct htab_elem *elem; + + elem = bpf_hash_map_seq_find_next(info, NULL); + if (!elem) + return NULL; + + if (*pos == 0) + ++*pos; + return elem; +} + +static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) +{ + struct bpf_iter_seq_hash_map_info *info = seq->private; + + ++*pos; + ++info->skip_elems; + return bpf_hash_map_seq_find_next(info, v); +} + +static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) +{ + struct bpf_iter_seq_hash_map_info *info = seq->private; + struct bpf_iter__bpf_map_elem ctx = {}; + struct bpf_map *map = info->map; + struct bpf_iter_meta meta; + int ret = 0, off = 0, cpu; + u32 roundup_value_size; + struct bpf_prog *prog; + void __percpu *pptr; + + meta.seq = seq; + prog = bpf_iter_get_info(&meta, elem == NULL); + if (prog) { + ctx.meta = &meta; + ctx.map = info->map; + if (elem) { + ctx.key = elem->key; + if (!info->percpu_value_buf) { + ctx.value = htab_elem_value(elem, map->key_size); + } else { + roundup_value_size = round_up(map->value_size, 8); + pptr = htab_elem_get_ptr(elem, map->key_size); + for_each_possible_cpu(cpu) { + copy_map_value_long(map, info->percpu_value_buf + off, + per_cpu_ptr(pptr, cpu)); + check_and_init_map_value(map, info->percpu_value_buf + off); + off += roundup_value_size; + } + ctx.value = info->percpu_value_buf; + } + } + ret = bpf_iter_run_prog(prog, &ctx); + } + + return ret; +} + +static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) +{ + return __bpf_hash_map_seq_show(seq, v); +} + +static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) +{ + if (!v) + (void)__bpf_hash_map_seq_show(seq, NULL); + else + rcu_read_unlock(); +} + +static int bpf_iter_init_hash_map(void *priv_data, + struct bpf_iter_aux_info *aux) +{ + struct bpf_iter_seq_hash_map_info *seq_info = priv_data; + struct bpf_map *map = aux->map; + void *value_buf; + u32 buf_size; + + if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || + map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { + buf_size = round_up(map->value_size, 8) * num_possible_cpus(); + value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); + if (!value_buf) + return -ENOMEM; + + seq_info->percpu_value_buf = value_buf; + } + + bpf_map_inc_with_uref(map); + seq_info->map = map; + seq_info->htab = container_of(map, struct bpf_htab, map); + return 0; +} + +static void bpf_iter_fini_hash_map(void *priv_data) +{ + struct bpf_iter_seq_hash_map_info *seq_info = priv_data; + + bpf_map_put_with_uref(seq_info->map); + kfree(seq_info->percpu_value_buf); +} + +static const struct seq_operations bpf_hash_map_seq_ops = { + .start = bpf_hash_map_seq_start, + .next = bpf_hash_map_seq_next, + .stop = bpf_hash_map_seq_stop, + .show = bpf_hash_map_seq_show, +}; + +static const struct bpf_iter_seq_info iter_seq_info = { + .seq_ops = &bpf_hash_map_seq_ops, + .init_seq_private = bpf_iter_init_hash_map, + .fini_seq_private = bpf_iter_fini_hash_map, + .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), +}; + +static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn, + void *callback_ctx, u64 flags) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + struct hlist_nulls_head *head; + struct hlist_nulls_node *n; + struct htab_elem *elem; + int i, num_elems = 0; + void __percpu *pptr; + struct bucket *b; + void *key, *val; + bool is_percpu; + u64 ret = 0; + + cant_migrate(); + + if (flags != 0) + return -EINVAL; + + is_percpu = htab_is_percpu(htab); + + /* migration has been disabled, so percpu value prepared here will be + * the same as the one seen by the bpf program with + * bpf_map_lookup_elem(). + */ + for (i = 0; i < htab->n_buckets; i++) { + b = &htab->buckets[i]; + rcu_read_lock(); + head = &b->head; + hlist_nulls_for_each_entry_safe(elem, n, head, hash_node) { + key = elem->key; + if (is_percpu) { + /* current cpu value for percpu map */ + pptr = htab_elem_get_ptr(elem, map->key_size); + val = this_cpu_ptr(pptr); + } else { + val = htab_elem_value(elem, map->key_size); + } + num_elems++; + ret = callback_fn((u64)(long)map, (u64)(long)key, + (u64)(long)val, (u64)(long)callback_ctx, 0); + /* return value: 0 - continue, 1 - stop and return */ + if (ret) { + rcu_read_unlock(); + goto out; + } + } + rcu_read_unlock(); + } +out: + return num_elems; +} + +static u64 htab_map_mem_usage(const struct bpf_map *map) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + u32 value_size = round_up(htab->map.value_size, 8); + bool prealloc = htab_is_prealloc(htab); + bool percpu = htab_is_percpu(htab); + bool lru = htab_is_lru(htab); + u64 num_entries; + u64 usage = sizeof(struct bpf_htab); + + usage += sizeof(struct bucket) * htab->n_buckets; + usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT; + if (prealloc) { + num_entries = map->max_entries; + if (htab_has_extra_elems(htab)) + num_entries += num_possible_cpus(); + + usage += htab->elem_size * num_entries; + + if (percpu) + usage += value_size * num_possible_cpus() * num_entries; + else if (!lru) + usage += sizeof(struct htab_elem *) * num_possible_cpus(); + } else { +#define LLIST_NODE_SZ sizeof(struct llist_node) + + num_entries = htab->use_percpu_counter ? + percpu_counter_sum(&htab->pcount) : + atomic_read(&htab->count); + usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries; + if (percpu) { + usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries; + usage += value_size * num_possible_cpus() * num_entries; + } + } + return usage; +} + +BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab) +const struct bpf_map_ops htab_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = htab_map_alloc_check, + .map_alloc = htab_map_alloc, + .map_free = htab_map_free, + .map_get_next_key = htab_map_get_next_key, + .map_release_uref = htab_map_free_internal_structs, + .map_lookup_elem = htab_map_lookup_elem, + .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem, + .map_update_elem = htab_map_update_elem, + .map_delete_elem = htab_map_delete_elem, + .map_gen_lookup = htab_map_gen_lookup, + .map_seq_show_elem = htab_map_seq_show_elem, + .map_set_for_each_callback_args = map_set_for_each_callback_args, + .map_for_each_callback = bpf_for_each_hash_elem, + .map_mem_usage = htab_map_mem_usage, + BATCH_OPS(htab), + .map_btf_id = &htab_map_btf_ids[0], + .iter_seq_info = &iter_seq_info, +}; + +const struct bpf_map_ops htab_lru_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = htab_map_alloc_check, + .map_alloc = htab_map_alloc, + .map_free = htab_map_free, + .map_get_next_key = htab_map_get_next_key, + .map_release_uref = htab_map_free_internal_structs, + .map_lookup_elem = htab_lru_map_lookup_elem, + .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem, + .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, + .map_update_elem = htab_lru_map_update_elem, + .map_delete_elem = htab_lru_map_delete_elem, + .map_gen_lookup = htab_lru_map_gen_lookup, + .map_seq_show_elem = htab_map_seq_show_elem, + .map_set_for_each_callback_args = map_set_for_each_callback_args, + .map_for_each_callback = bpf_for_each_hash_elem, + .map_mem_usage = htab_map_mem_usage, + BATCH_OPS(htab_lru), + .map_btf_id = &htab_map_btf_ids[0], + .iter_seq_info = &iter_seq_info, +}; + +/* Called from eBPF program */ +static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) +{ + struct htab_elem *l = __htab_map_lookup_elem(map, key); + + if (l) + return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); + else + return NULL; +} + +/* inline bpf_map_lookup_elem() call for per-CPU hashmap */ +static int htab_percpu_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) +{ + struct bpf_insn *insn = insn_buf; + + if (!bpf_jit_supports_percpu_insn()) + return -EOPNOTSUPP; + + BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, + (void *(*)(struct bpf_map *map, void *key))NULL)); + *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); + *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3); + *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, + offsetof(struct htab_elem, key) + roundup(map->key_size, 8)); + *insn++ = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0); + *insn++ = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); + + return insn - insn_buf; +} + +static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) +{ + struct htab_elem *l; + + if (cpu >= nr_cpu_ids) + return NULL; + + l = __htab_map_lookup_elem(map, key); + if (l) + return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); + else + return NULL; +} + +static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) +{ + struct htab_elem *l = __htab_map_lookup_elem(map, key); + + if (l) { + bpf_lru_node_set_ref(&l->lru_node); + return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); + } + + return NULL; +} + +static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) +{ + struct htab_elem *l; + + if (cpu >= nr_cpu_ids) + return NULL; + + l = __htab_map_lookup_elem(map, key); + if (l) { + bpf_lru_node_set_ref(&l->lru_node); + return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu); + } + + return NULL; +} + +int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) +{ + struct htab_elem *l; + void __percpu *pptr; + int ret = -ENOENT; + int cpu, off = 0; + u32 size; + + /* per_cpu areas are zero-filled and bpf programs can only + * access 'value_size' of them, so copying rounded areas + * will not leak any kernel data + */ + size = round_up(map->value_size, 8); + rcu_read_lock(); + l = __htab_map_lookup_elem(map, key); + if (!l) + goto out; + /* We do not mark LRU map element here in order to not mess up + * eviction heuristics when user space does a map walk. + */ + pptr = htab_elem_get_ptr(l, map->key_size); + for_each_possible_cpu(cpu) { + copy_map_value_long(map, value + off, per_cpu_ptr(pptr, cpu)); + check_and_init_map_value(map, value + off); + off += size; + } + ret = 0; +out: + rcu_read_unlock(); + return ret; +} + +int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, + u64 map_flags) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + int ret; + + rcu_read_lock(); + if (htab_is_lru(htab)) + ret = __htab_lru_percpu_map_update_elem(map, key, value, + map_flags, true); + else + ret = htab_map_update_elem_in_place(map, key, value, map_flags, + true, true); + rcu_read_unlock(); + + return ret; +} + +static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, + struct seq_file *m) +{ + struct htab_elem *l; + void __percpu *pptr; + int cpu; + + rcu_read_lock(); + + l = __htab_map_lookup_elem(map, key); + if (!l) { + rcu_read_unlock(); + return; + } + + btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); + seq_puts(m, ": {\n"); + pptr = htab_elem_get_ptr(l, map->key_size); + for_each_possible_cpu(cpu) { + seq_printf(m, "\tcpu%d: ", cpu); + btf_type_seq_show(map->btf, map->btf_value_type_id, + per_cpu_ptr(pptr, cpu), m); + seq_putc(m, '\n'); + } + seq_puts(m, "}\n"); + + rcu_read_unlock(); +} + +const struct bpf_map_ops htab_percpu_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = htab_map_alloc_check, + .map_alloc = htab_map_alloc, + .map_free = htab_map_free, + .map_get_next_key = htab_map_get_next_key, + .map_lookup_elem = htab_percpu_map_lookup_elem, + .map_gen_lookup = htab_percpu_map_gen_lookup, + .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem, + .map_update_elem = htab_percpu_map_update_elem, + .map_delete_elem = htab_map_delete_elem, + .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem, + .map_seq_show_elem = htab_percpu_map_seq_show_elem, + .map_set_for_each_callback_args = map_set_for_each_callback_args, + .map_for_each_callback = bpf_for_each_hash_elem, + .map_mem_usage = htab_map_mem_usage, + BATCH_OPS(htab_percpu), + .map_btf_id = &htab_map_btf_ids[0], + .iter_seq_info = &iter_seq_info, +}; + +const struct bpf_map_ops htab_lru_percpu_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = htab_map_alloc_check, + .map_alloc = htab_map_alloc, + .map_free = htab_map_free, + .map_get_next_key = htab_map_get_next_key, + .map_lookup_elem = htab_lru_percpu_map_lookup_elem, + .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem, + .map_update_elem = htab_lru_percpu_map_update_elem, + .map_delete_elem = htab_lru_map_delete_elem, + .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem, + .map_seq_show_elem = htab_percpu_map_seq_show_elem, + .map_set_for_each_callback_args = map_set_for_each_callback_args, + .map_for_each_callback = bpf_for_each_hash_elem, + .map_mem_usage = htab_map_mem_usage, + BATCH_OPS(htab_lru_percpu), + .map_btf_id = &htab_map_btf_ids[0], + .iter_seq_info = &iter_seq_info, +}; + +static int fd_htab_map_alloc_check(union bpf_attr *attr) +{ + if (attr->value_size != sizeof(u32)) + return -EINVAL; + return htab_map_alloc_check(attr); +} + +static void fd_htab_map_free(struct bpf_map *map) +{ + struct bpf_htab *htab = container_of(map, struct bpf_htab, map); + struct hlist_nulls_node *n; + struct hlist_nulls_head *head; + struct htab_elem *l; + int i; + + for (i = 0; i < htab->n_buckets; i++) { + head = select_bucket(htab, i); + + hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { + void *ptr = fd_htab_map_get_ptr(map, l); + + map->ops->map_fd_put_ptr(map, ptr, false); + } + } + + htab_map_free(map); +} + +/* only called from syscall */ +int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) +{ + void **ptr; + int ret = 0; + + if (!map->ops->map_fd_sys_lookup_elem) + return -ENOTSUPP; + + rcu_read_lock(); + ptr = htab_map_lookup_elem(map, key); + if (ptr) + *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); + else + ret = -ENOENT; + rcu_read_unlock(); + + return ret; +} + +/* Only called from syscall */ +int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, + void *key, void *value, u64 map_flags) +{ + void *ptr; + int ret; + + ptr = map->ops->map_fd_get_ptr(map, map_file, *(int *)value); + if (IS_ERR(ptr)) + return PTR_ERR(ptr); + + /* The htab bucket lock is always held during update operations in fd + * htab map, and the following rcu_read_lock() is only used to avoid + * the WARN_ON_ONCE in htab_map_update_elem_in_place(). + */ + rcu_read_lock(); + ret = htab_map_update_elem_in_place(map, key, &ptr, map_flags, false, false); + rcu_read_unlock(); + if (ret) + map->ops->map_fd_put_ptr(map, ptr, false); + + return ret; +} + +static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) +{ + struct bpf_map *map, *inner_map_meta; + + inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); + if (IS_ERR(inner_map_meta)) + return inner_map_meta; + + map = htab_map_alloc(attr); + if (IS_ERR(map)) { + bpf_map_meta_free(inner_map_meta); + return map; + } + + map->inner_map_meta = inner_map_meta; + + return map; +} + +static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) +{ + struct bpf_map **inner_map = htab_map_lookup_elem(map, key); + + if (!inner_map) + return NULL; + + return READ_ONCE(*inner_map); +} + +static int htab_of_map_gen_lookup(struct bpf_map *map, + struct bpf_insn *insn_buf) +{ + struct bpf_insn *insn = insn_buf; + const int ret = BPF_REG_0; + + BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, + (void *(*)(struct bpf_map *map, void *key))NULL)); + *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem); + *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); + *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, + offsetof(struct htab_elem, key) + + round_up(map->key_size, 8)); + *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); + + return insn - insn_buf; +} + +static void htab_of_map_free(struct bpf_map *map) +{ + bpf_map_meta_free(map->inner_map_meta); + fd_htab_map_free(map); +} + +const struct bpf_map_ops htab_of_maps_map_ops = { + .map_alloc_check = fd_htab_map_alloc_check, + .map_alloc = htab_of_map_alloc, + .map_free = htab_of_map_free, + .map_get_next_key = htab_map_get_next_key, + .map_lookup_elem = htab_of_map_lookup_elem, + .map_delete_elem = htab_map_delete_elem, + .map_fd_get_ptr = bpf_map_fd_get_ptr, + .map_fd_put_ptr = bpf_map_fd_put_ptr, + .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, + .map_gen_lookup = htab_of_map_gen_lookup, + .map_check_btf = map_check_no_btf, + .map_mem_usage = htab_map_mem_usage, + BATCH_OPS(htab), + .map_btf_id = &htab_map_btf_ids[0], +}; diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c new file mode 100644 index 000000000000..db72b96f9c8c --- /dev/null +++ b/kernel/bpf/helpers.c @@ -0,0 +1,4610 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com + */ +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/bpf-cgroup.h> +#include <linux/cgroup.h> +#include <linux/rcupdate.h> +#include <linux/random.h> +#include <linux/smp.h> +#include <linux/topology.h> +#include <linux/ktime.h> +#include <linux/sched.h> +#include <linux/uidgid.h> +#include <linux/filter.h> +#include <linux/ctype.h> +#include <linux/jiffies.h> +#include <linux/pid_namespace.h> +#include <linux/poison.h> +#include <linux/proc_ns.h> +#include <linux/sched/task.h> +#include <linux/security.h> +#include <linux/btf_ids.h> +#include <linux/bpf_mem_alloc.h> +#include <linux/kasan.h> +#include <linux/bpf_verifier.h> +#include <linux/uaccess.h> +#include <linux/verification.h> +#include <linux/task_work.h> +#include <linux/irq_work.h> +#include <linux/buildid.h> + +#include "../../lib/kstrtox.h" + +/* If kernel subsystem is allowing eBPF programs to call this function, + * inside its own verifier_ops->get_func_proto() callback it should return + * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments + * + * Different map implementations will rely on rcu in map methods + * lookup/update/delete, therefore eBPF programs must run under rcu lock + * if program is allowed to access maps, so check rcu_read_lock_held() or + * rcu_read_lock_trace_held() in all three functions. + */ +BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) +{ + WARN_ON_ONCE(!bpf_rcu_lock_held()); + return (unsigned long) map->ops->map_lookup_elem(map, key); +} + +const struct bpf_func_proto bpf_map_lookup_elem_proto = { + .func = bpf_map_lookup_elem, + .gpl_only = false, + .pkt_access = true, + .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_MAP_KEY, +}; + +BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, + void *, value, u64, flags) +{ + WARN_ON_ONCE(!bpf_rcu_lock_held()); + return map->ops->map_update_elem(map, key, value, flags); +} + +const struct bpf_func_proto bpf_map_update_elem_proto = { + .func = bpf_map_update_elem, + .gpl_only = false, + .pkt_access = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_MAP_KEY, + .arg3_type = ARG_PTR_TO_MAP_VALUE, + .arg4_type = ARG_ANYTHING, +}; + +BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) +{ + WARN_ON_ONCE(!bpf_rcu_lock_held()); + return map->ops->map_delete_elem(map, key); +} + +const struct bpf_func_proto bpf_map_delete_elem_proto = { + .func = bpf_map_delete_elem, + .gpl_only = false, + .pkt_access = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_MAP_KEY, +}; + +BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) +{ + return map->ops->map_push_elem(map, value, flags); +} + +const struct bpf_func_proto bpf_map_push_elem_proto = { + .func = bpf_map_push_elem, + .gpl_only = false, + .pkt_access = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_MAP_VALUE, + .arg3_type = ARG_ANYTHING, +}; + +BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) +{ + return map->ops->map_pop_elem(map, value); +} + +const struct bpf_func_proto bpf_map_pop_elem_proto = { + .func = bpf_map_pop_elem, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, +}; + +BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) +{ + return map->ops->map_peek_elem(map, value); +} + +const struct bpf_func_proto bpf_map_peek_elem_proto = { + .func = bpf_map_peek_elem, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE, +}; + +BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) +{ + WARN_ON_ONCE(!bpf_rcu_lock_held()); + return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); +} + +const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { + .func = bpf_map_lookup_percpu_elem, + .gpl_only = false, + .pkt_access = true, + .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_MAP_KEY, + .arg3_type = ARG_ANYTHING, +}; + +const struct bpf_func_proto bpf_get_prandom_u32_proto = { + .func = bpf_user_rnd_u32, + .gpl_only = false, + .ret_type = RET_INTEGER, +}; + +BPF_CALL_0(bpf_get_smp_processor_id) +{ + return smp_processor_id(); +} + +const struct bpf_func_proto bpf_get_smp_processor_id_proto = { + .func = bpf_get_smp_processor_id, + .gpl_only = false, + .ret_type = RET_INTEGER, + .allow_fastcall = true, +}; + +BPF_CALL_0(bpf_get_numa_node_id) +{ + return numa_node_id(); +} + +const struct bpf_func_proto bpf_get_numa_node_id_proto = { + .func = bpf_get_numa_node_id, + .gpl_only = false, + .ret_type = RET_INTEGER, +}; + +BPF_CALL_0(bpf_ktime_get_ns) +{ + /* NMI safe access to clock monotonic */ + return ktime_get_mono_fast_ns(); +} + +const struct bpf_func_proto bpf_ktime_get_ns_proto = { + .func = bpf_ktime_get_ns, + .gpl_only = false, + .ret_type = RET_INTEGER, +}; + +BPF_CALL_0(bpf_ktime_get_boot_ns) +{ + /* NMI safe access to clock boottime */ + return ktime_get_boot_fast_ns(); +} + +const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { + .func = bpf_ktime_get_boot_ns, + .gpl_only = false, + .ret_type = RET_INTEGER, +}; + +BPF_CALL_0(bpf_ktime_get_coarse_ns) +{ + return ktime_get_coarse_ns(); +} + +const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { + .func = bpf_ktime_get_coarse_ns, + .gpl_only = false, + .ret_type = RET_INTEGER, +}; + +BPF_CALL_0(bpf_ktime_get_tai_ns) +{ + /* NMI safe access to clock tai */ + return ktime_get_tai_fast_ns(); +} + +const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { + .func = bpf_ktime_get_tai_ns, + .gpl_only = false, + .ret_type = RET_INTEGER, +}; + +BPF_CALL_0(bpf_get_current_pid_tgid) +{ + struct task_struct *task = current; + + if (unlikely(!task)) + return -EINVAL; + + return (u64) task->tgid << 32 | task->pid; +} + +const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { + .func = bpf_get_current_pid_tgid, + .gpl_only = false, + .ret_type = RET_INTEGER, +}; + +BPF_CALL_0(bpf_get_current_uid_gid) +{ + struct task_struct *task = current; + kuid_t uid; + kgid_t gid; + + if (unlikely(!task)) + return -EINVAL; + + current_uid_gid(&uid, &gid); + return (u64) from_kgid(&init_user_ns, gid) << 32 | + from_kuid(&init_user_ns, uid); +} + +const struct bpf_func_proto bpf_get_current_uid_gid_proto = { + .func = bpf_get_current_uid_gid, + .gpl_only = false, + .ret_type = RET_INTEGER, +}; + +BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) +{ + struct task_struct *task = current; + + if (unlikely(!task)) + goto err_clear; + + /* Verifier guarantees that size > 0 */ + strscpy_pad(buf, task->comm, size); + return 0; +err_clear: + memset(buf, 0, size); + return -EINVAL; +} + +const struct bpf_func_proto bpf_get_current_comm_proto = { + .func = bpf_get_current_comm, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_UNINIT_MEM, + .arg2_type = ARG_CONST_SIZE, +}; + +#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) + +static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) +{ + arch_spinlock_t *l = (void *)lock; + union { + __u32 val; + arch_spinlock_t lock; + } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; + + compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); + BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); + BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); + preempt_disable(); + arch_spin_lock(l); +} + +static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) +{ + arch_spinlock_t *l = (void *)lock; + + arch_spin_unlock(l); + preempt_enable(); +} + +#else + +static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) +{ + atomic_t *l = (void *)lock; + + BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); + do { + atomic_cond_read_relaxed(l, !VAL); + } while (atomic_xchg(l, 1)); +} + +static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) +{ + atomic_t *l = (void *)lock; + + atomic_set_release(l, 0); +} + +#endif + +static DEFINE_PER_CPU(unsigned long, irqsave_flags); + +static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) +{ + unsigned long flags; + + local_irq_save(flags); + __bpf_spin_lock(lock); + __this_cpu_write(irqsave_flags, flags); +} + +NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) +{ + __bpf_spin_lock_irqsave(lock); + return 0; +} + +const struct bpf_func_proto bpf_spin_lock_proto = { + .func = bpf_spin_lock, + .gpl_only = false, + .ret_type = RET_VOID, + .arg1_type = ARG_PTR_TO_SPIN_LOCK, + .arg1_btf_id = BPF_PTR_POISON, +}; + +static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) +{ + unsigned long flags; + + flags = __this_cpu_read(irqsave_flags); + __bpf_spin_unlock(lock); + local_irq_restore(flags); +} + +NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) +{ + __bpf_spin_unlock_irqrestore(lock); + return 0; +} + +const struct bpf_func_proto bpf_spin_unlock_proto = { + .func = bpf_spin_unlock, + .gpl_only = false, + .ret_type = RET_VOID, + .arg1_type = ARG_PTR_TO_SPIN_LOCK, + .arg1_btf_id = BPF_PTR_POISON, +}; + +void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, + bool lock_src) +{ + struct bpf_spin_lock *lock; + + if (lock_src) + lock = src + map->record->spin_lock_off; + else + lock = dst + map->record->spin_lock_off; + preempt_disable(); + __bpf_spin_lock_irqsave(lock); + copy_map_value(map, dst, src); + __bpf_spin_unlock_irqrestore(lock); + preempt_enable(); +} + +BPF_CALL_0(bpf_jiffies64) +{ + return get_jiffies_64(); +} + +const struct bpf_func_proto bpf_jiffies64_proto = { + .func = bpf_jiffies64, + .gpl_only = false, + .ret_type = RET_INTEGER, +}; + +#ifdef CONFIG_CGROUPS +BPF_CALL_0(bpf_get_current_cgroup_id) +{ + struct cgroup *cgrp; + u64 cgrp_id; + + rcu_read_lock(); + cgrp = task_dfl_cgroup(current); + cgrp_id = cgroup_id(cgrp); + rcu_read_unlock(); + + return cgrp_id; +} + +const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { + .func = bpf_get_current_cgroup_id, + .gpl_only = false, + .ret_type = RET_INTEGER, +}; + +BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) +{ + struct cgroup *cgrp; + struct cgroup *ancestor; + u64 cgrp_id; + + rcu_read_lock(); + cgrp = task_dfl_cgroup(current); + ancestor = cgroup_ancestor(cgrp, ancestor_level); + cgrp_id = ancestor ? cgroup_id(ancestor) : 0; + rcu_read_unlock(); + + return cgrp_id; +} + +const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { + .func = bpf_get_current_ancestor_cgroup_id, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_ANYTHING, +}; +#endif /* CONFIG_CGROUPS */ + +#define BPF_STRTOX_BASE_MASK 0x1F + +static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, + unsigned long long *res, bool *is_negative) +{ + unsigned int base = flags & BPF_STRTOX_BASE_MASK; + const char *cur_buf = buf; + size_t cur_len = buf_len; + unsigned int consumed; + size_t val_len; + char str[64]; + + if (!buf || !buf_len || !res || !is_negative) + return -EINVAL; + + if (base != 0 && base != 8 && base != 10 && base != 16) + return -EINVAL; + + if (flags & ~BPF_STRTOX_BASE_MASK) + return -EINVAL; + + while (cur_buf < buf + buf_len && isspace(*cur_buf)) + ++cur_buf; + + *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); + if (*is_negative) + ++cur_buf; + + consumed = cur_buf - buf; + cur_len -= consumed; + if (!cur_len) + return -EINVAL; + + cur_len = min(cur_len, sizeof(str) - 1); + memcpy(str, cur_buf, cur_len); + str[cur_len] = '\0'; + cur_buf = str; + + cur_buf = _parse_integer_fixup_radix(cur_buf, &base); + val_len = _parse_integer(cur_buf, base, res); + + if (val_len & KSTRTOX_OVERFLOW) + return -ERANGE; + + if (val_len == 0) + return -EINVAL; + + cur_buf += val_len; + consumed += cur_buf - str; + + return consumed; +} + +static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, + long long *res) +{ + unsigned long long _res; + bool is_negative; + int err; + + err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); + if (err < 0) + return err; + if (is_negative) { + if ((long long)-_res > 0) + return -ERANGE; + *res = -_res; + } else { + if ((long long)_res < 0) + return -ERANGE; + *res = _res; + } + return err; +} + +BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, + s64 *, res) +{ + long long _res; + int err; + + *res = 0; + err = __bpf_strtoll(buf, buf_len, flags, &_res); + if (err < 0) + return err; + *res = _res; + return err; +} + +const struct bpf_func_proto bpf_strtol_proto = { + .func = bpf_strtol, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, + .arg2_type = ARG_CONST_SIZE, + .arg3_type = ARG_ANYTHING, + .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, + .arg4_size = sizeof(s64), +}; + +BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, + u64 *, res) +{ + unsigned long long _res; + bool is_negative; + int err; + + *res = 0; + err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); + if (err < 0) + return err; + if (is_negative) + return -EINVAL; + *res = _res; + return err; +} + +const struct bpf_func_proto bpf_strtoul_proto = { + .func = bpf_strtoul, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, + .arg2_type = ARG_CONST_SIZE, + .arg3_type = ARG_ANYTHING, + .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, + .arg4_size = sizeof(u64), +}; + +BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) +{ + return strncmp(s1, s2, s1_sz); +} + +static const struct bpf_func_proto bpf_strncmp_proto = { + .func = bpf_strncmp, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, + .arg2_type = ARG_CONST_SIZE, + .arg3_type = ARG_PTR_TO_CONST_STR, +}; + +BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, + struct bpf_pidns_info *, nsdata, u32, size) +{ + struct task_struct *task = current; + struct pid_namespace *pidns; + int err = -EINVAL; + + if (unlikely(size != sizeof(struct bpf_pidns_info))) + goto clear; + + if (unlikely((u64)(dev_t)dev != dev)) + goto clear; + + if (unlikely(!task)) + goto clear; + + pidns = task_active_pid_ns(task); + if (unlikely(!pidns)) { + err = -ENOENT; + goto clear; + } + + if (!ns_match(&pidns->ns, (dev_t)dev, ino)) + goto clear; + + nsdata->pid = task_pid_nr_ns(task, pidns); + nsdata->tgid = task_tgid_nr_ns(task, pidns); + return 0; +clear: + memset((void *)nsdata, 0, (size_t) size); + return err; +} + +const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { + .func = bpf_get_ns_current_pid_tgid, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_ANYTHING, + .arg2_type = ARG_ANYTHING, + .arg3_type = ARG_PTR_TO_UNINIT_MEM, + .arg4_type = ARG_CONST_SIZE, +}; + +static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { + .func = bpf_get_raw_cpu_id, + .gpl_only = false, + .ret_type = RET_INTEGER, +}; + +BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, + u64, flags, void *, data, u64, size) +{ + if (unlikely(flags & ~(BPF_F_INDEX_MASK))) + return -EINVAL; + + return bpf_event_output(map, flags, data, size, NULL, 0, NULL); +} + +const struct bpf_func_proto bpf_event_output_data_proto = { + .func = bpf_event_output_data, + .gpl_only = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_CTX, + .arg2_type = ARG_CONST_MAP_PTR, + .arg3_type = ARG_ANYTHING, + .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, + .arg5_type = ARG_CONST_SIZE_OR_ZERO, +}; + +BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, + const void __user *, user_ptr) +{ + int ret = copy_from_user(dst, user_ptr, size); + + if (unlikely(ret)) { + memset(dst, 0, size); + ret = -EFAULT; + } + + return ret; +} + +const struct bpf_func_proto bpf_copy_from_user_proto = { + .func = bpf_copy_from_user, + .gpl_only = false, + .might_sleep = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_UNINIT_MEM, + .arg2_type = ARG_CONST_SIZE_OR_ZERO, + .arg3_type = ARG_ANYTHING, +}; + +BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, + const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) +{ + int ret; + + /* flags is not used yet */ + if (unlikely(flags)) + return -EINVAL; + + if (unlikely(!size)) + return 0; + + ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); + if (ret == size) + return 0; + + memset(dst, 0, size); + /* Return -EFAULT for partial read */ + return ret < 0 ? ret : -EFAULT; +} + +const struct bpf_func_proto bpf_copy_from_user_task_proto = { + .func = bpf_copy_from_user_task, + .gpl_only = true, + .might_sleep = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_UNINIT_MEM, + .arg2_type = ARG_CONST_SIZE_OR_ZERO, + .arg3_type = ARG_ANYTHING, + .arg4_type = ARG_PTR_TO_BTF_ID, + .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], + .arg5_type = ARG_ANYTHING +}; + +BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) +{ + if (cpu >= nr_cpu_ids) + return (unsigned long)NULL; + + return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu); +} + +const struct bpf_func_proto bpf_per_cpu_ptr_proto = { + .func = bpf_per_cpu_ptr, + .gpl_only = false, + .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, + .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, + .arg2_type = ARG_ANYTHING, +}; + +BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) +{ + return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr); +} + +const struct bpf_func_proto bpf_this_cpu_ptr_proto = { + .func = bpf_this_cpu_ptr, + .gpl_only = false, + .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, + .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, +}; + +static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, + size_t bufsz) +{ + void __user *user_ptr = (__force void __user *)unsafe_ptr; + + buf[0] = 0; + + switch (fmt_ptype) { + case 's': +#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE + if ((unsigned long)unsafe_ptr < TASK_SIZE) + return strncpy_from_user_nofault(buf, user_ptr, bufsz); + fallthrough; +#endif + case 'k': + return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); + case 'u': + return strncpy_from_user_nofault(buf, user_ptr, bufsz); + } + + return -EINVAL; +} + +/* Support executing three nested bprintf helper calls on a given CPU */ +#define MAX_BPRINTF_NEST_LEVEL 3 + +static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); +static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); + +int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs) +{ + int nest_level; + + preempt_disable(); + nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); + if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { + this_cpu_dec(bpf_bprintf_nest_level); + preempt_enable(); + return -EBUSY; + } + *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); + + return 0; +} + +void bpf_put_buffers(void) +{ + if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) + return; + this_cpu_dec(bpf_bprintf_nest_level); + preempt_enable(); +} + +void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) +{ + if (!data->bin_args && !data->buf) + return; + bpf_put_buffers(); +} + +/* + * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers + * + * Returns a negative value if fmt is an invalid format string or 0 otherwise. + * + * This can be used in two ways: + * - Format string verification only: when data->get_bin_args is false + * - Arguments preparation: in addition to the above verification, it writes in + * data->bin_args a binary representation of arguments usable by bstr_printf + * where pointers from BPF have been sanitized. + * + * In argument preparation mode, if 0 is returned, safe temporary buffers are + * allocated and bpf_bprintf_cleanup should be called to free them after use. + */ +int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args, + u32 num_args, struct bpf_bprintf_data *data) +{ + bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; + char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; + struct bpf_bprintf_buffers *buffers = NULL; + size_t sizeof_cur_arg, sizeof_cur_ip; + int err, i, num_spec = 0; + u64 cur_arg; + char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; + + fmt_end = strnchr(fmt, fmt_size, 0); + if (!fmt_end) + return -EINVAL; + fmt_size = fmt_end - fmt; + + if (get_buffers && bpf_try_get_buffers(&buffers)) + return -EBUSY; + + if (data->get_bin_args) { + if (num_args) + tmp_buf = buffers->bin_args; + tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; + data->bin_args = (u32 *)tmp_buf; + } + + if (data->get_buf) + data->buf = buffers->buf; + + for (i = 0; i < fmt_size; i++) { + if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { + err = -EINVAL; + goto out; + } + + if (fmt[i] != '%') + continue; + + if (fmt[i + 1] == '%') { + i++; + continue; + } + + if (num_spec >= num_args) { + err = -EINVAL; + goto out; + } + + /* The string is zero-terminated so if fmt[i] != 0, we can + * always access fmt[i + 1], in the worst case it will be a 0 + */ + i++; + + /* skip optional "[0 +-][num]" width formatting field */ + while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || + fmt[i] == ' ') + i++; + if (fmt[i] >= '1' && fmt[i] <= '9') { + i++; + while (fmt[i] >= '0' && fmt[i] <= '9') + i++; + } + + if (fmt[i] == 'p') { + sizeof_cur_arg = sizeof(long); + + if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || + ispunct(fmt[i + 1])) { + if (tmp_buf) + cur_arg = raw_args[num_spec]; + goto nocopy_fmt; + } + + if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && + fmt[i + 2] == 's') { + fmt_ptype = fmt[i + 1]; + i += 2; + goto fmt_str; + } + + if (fmt[i + 1] == 'K' || + fmt[i + 1] == 'x' || fmt[i + 1] == 's' || + fmt[i + 1] == 'S') { + if (tmp_buf) + cur_arg = raw_args[num_spec]; + i++; + goto nocopy_fmt; + } + + if (fmt[i + 1] == 'B') { + if (tmp_buf) { + err = snprintf(tmp_buf, + (tmp_buf_end - tmp_buf), + "%pB", + (void *)(long)raw_args[num_spec]); + tmp_buf += (err + 1); + } + + i++; + num_spec++; + continue; + } + + /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ + if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || + (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { + err = -EINVAL; + goto out; + } + + i += 2; + if (!tmp_buf) + goto nocopy_fmt; + + sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; + if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { + err = -ENOSPC; + goto out; + } + + unsafe_ptr = (char *)(long)raw_args[num_spec]; + err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, + sizeof_cur_ip); + if (err < 0) + memset(cur_ip, 0, sizeof_cur_ip); + + /* hack: bstr_printf expects IP addresses to be + * pre-formatted as strings, ironically, the easiest way + * to do that is to call snprintf. + */ + ip_spec[2] = fmt[i - 1]; + ip_spec[3] = fmt[i]; + err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, + ip_spec, &cur_ip); + + tmp_buf += err + 1; + num_spec++; + + continue; + } else if (fmt[i] == 's') { + fmt_ptype = fmt[i]; +fmt_str: + if (fmt[i + 1] != 0 && + !isspace(fmt[i + 1]) && + !ispunct(fmt[i + 1])) { + err = -EINVAL; + goto out; + } + + if (!tmp_buf) + goto nocopy_fmt; + + if (tmp_buf_end == tmp_buf) { + err = -ENOSPC; + goto out; + } + + unsafe_ptr = (char *)(long)raw_args[num_spec]; + err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, + fmt_ptype, + tmp_buf_end - tmp_buf); + if (err < 0) { + tmp_buf[0] = '\0'; + err = 1; + } + + tmp_buf += err; + num_spec++; + + continue; + } else if (fmt[i] == 'c') { + if (!tmp_buf) + goto nocopy_fmt; + + if (tmp_buf_end == tmp_buf) { + err = -ENOSPC; + goto out; + } + + *tmp_buf = raw_args[num_spec]; + tmp_buf++; + num_spec++; + + continue; + } + + sizeof_cur_arg = sizeof(int); + + if (fmt[i] == 'l') { + sizeof_cur_arg = sizeof(long); + i++; + } + if (fmt[i] == 'l') { + sizeof_cur_arg = sizeof(long long); + i++; + } + + if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && + fmt[i] != 'x' && fmt[i] != 'X') { + err = -EINVAL; + goto out; + } + + if (tmp_buf) + cur_arg = raw_args[num_spec]; +nocopy_fmt: + if (tmp_buf) { + tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); + if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { + err = -ENOSPC; + goto out; + } + + if (sizeof_cur_arg == 8) { + *(u32 *)tmp_buf = *(u32 *)&cur_arg; + *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); + } else { + *(u32 *)tmp_buf = (u32)(long)cur_arg; + } + tmp_buf += sizeof_cur_arg; + } + num_spec++; + } + + err = 0; +out: + if (err) + bpf_bprintf_cleanup(data); + return err; +} + +BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, + const void *, args, u32, data_len) +{ + struct bpf_bprintf_data data = { + .get_bin_args = true, + }; + int err, num_args; + + if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || + (data_len && !args)) + return -EINVAL; + num_args = data_len / 8; + + /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we + * can safely give an unbounded size. + */ + err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); + if (err < 0) + return err; + + err = bstr_printf(str, str_size, fmt, data.bin_args); + + bpf_bprintf_cleanup(&data); + + return err + 1; +} + +const struct bpf_func_proto bpf_snprintf_proto = { + .func = bpf_snprintf, + .gpl_only = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_MEM_OR_NULL, + .arg2_type = ARG_CONST_SIZE_OR_ZERO, + .arg3_type = ARG_PTR_TO_CONST_STR, + .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, + .arg5_type = ARG_CONST_SIZE_OR_ZERO, +}; + +static void *map_key_from_value(struct bpf_map *map, void *value, u32 *arr_idx) +{ + if (map->map_type == BPF_MAP_TYPE_ARRAY) { + struct bpf_array *array = container_of(map, struct bpf_array, map); + + *arr_idx = ((char *)value - array->value) / array->elem_size; + return arr_idx; + } + return (void *)value - round_up(map->key_size, 8); +} + +struct bpf_async_cb { + struct bpf_map *map; + struct bpf_prog *prog; + void __rcu *callback_fn; + void *value; + union { + struct rcu_head rcu; + struct work_struct delete_work; + }; + u64 flags; +}; + +/* BPF map elements can contain 'struct bpf_timer'. + * Such map owns all of its BPF timers. + * 'struct bpf_timer' is allocated as part of map element allocation + * and it's zero initialized. + * That space is used to keep 'struct bpf_async_kern'. + * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and + * remembers 'struct bpf_map *' pointer it's part of. + * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. + * bpf_timer_start() arms the timer. + * If user space reference to a map goes to zero at this point + * ops->map_release_uref callback is responsible for cancelling the timers, + * freeing their memory, and decrementing prog's refcnts. + * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. + * Inner maps can contain bpf timers as well. ops->map_release_uref is + * freeing the timers when inner map is replaced or deleted by user space. + */ +struct bpf_hrtimer { + struct bpf_async_cb cb; + struct hrtimer timer; + atomic_t cancelling; +}; + +struct bpf_work { + struct bpf_async_cb cb; + struct work_struct work; + struct work_struct delete_work; +}; + +/* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */ +struct bpf_async_kern { + union { + struct bpf_async_cb *cb; + struct bpf_hrtimer *timer; + struct bpf_work *work; + }; + /* bpf_spin_lock is used here instead of spinlock_t to make + * sure that it always fits into space reserved by struct bpf_timer + * regardless of LOCKDEP and spinlock debug flags. + */ + struct bpf_spin_lock lock; +} __attribute__((aligned(8))); + +enum bpf_async_type { + BPF_ASYNC_TYPE_TIMER = 0, + BPF_ASYNC_TYPE_WQ, +}; + +static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); + +static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) +{ + struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); + struct bpf_map *map = t->cb.map; + void *value = t->cb.value; + bpf_callback_t callback_fn; + void *key; + u32 idx; + + BTF_TYPE_EMIT(struct bpf_timer); + callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held()); + if (!callback_fn) + goto out; + + /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and + * cannot be preempted by another bpf_timer_cb() on the same cpu. + * Remember the timer this callback is servicing to prevent + * deadlock if callback_fn() calls bpf_timer_cancel() or + * bpf_map_delete_elem() on the same timer. + */ + this_cpu_write(hrtimer_running, t); + + key = map_key_from_value(map, value, &idx); + + callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); + /* The verifier checked that return value is zero. */ + + this_cpu_write(hrtimer_running, NULL); +out: + return HRTIMER_NORESTART; +} + +static void bpf_wq_work(struct work_struct *work) +{ + struct bpf_work *w = container_of(work, struct bpf_work, work); + struct bpf_async_cb *cb = &w->cb; + struct bpf_map *map = cb->map; + bpf_callback_t callback_fn; + void *value = cb->value; + void *key; + u32 idx; + + BTF_TYPE_EMIT(struct bpf_wq); + + callback_fn = READ_ONCE(cb->callback_fn); + if (!callback_fn) + return; + + key = map_key_from_value(map, value, &idx); + + rcu_read_lock_trace(); + migrate_disable(); + + callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); + + migrate_enable(); + rcu_read_unlock_trace(); +} + +static void bpf_async_cb_rcu_free(struct rcu_head *rcu) +{ + struct bpf_async_cb *cb = container_of(rcu, struct bpf_async_cb, rcu); + + kfree_nolock(cb); +} + +static void bpf_wq_delete_work(struct work_struct *work) +{ + struct bpf_work *w = container_of(work, struct bpf_work, delete_work); + + cancel_work_sync(&w->work); + + call_rcu(&w->cb.rcu, bpf_async_cb_rcu_free); +} + +static void bpf_timer_delete_work(struct work_struct *work) +{ + struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work); + + /* Cancel the timer and wait for callback to complete if it was running. + * If hrtimer_cancel() can be safely called it's safe to call + * call_rcu() right after for both preallocated and non-preallocated + * maps. The async->cb = NULL was already done and no code path can see + * address 't' anymore. Timer if armed for existing bpf_hrtimer before + * bpf_timer_cancel_and_free will have been cancelled. + */ + hrtimer_cancel(&t->timer); + call_rcu(&t->cb.rcu, bpf_async_cb_rcu_free); +} + +static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, + enum bpf_async_type type) +{ + struct bpf_async_cb *cb; + struct bpf_hrtimer *t; + struct bpf_work *w; + clockid_t clockid; + size_t size; + int ret = 0; + + if (in_nmi()) + return -EOPNOTSUPP; + + switch (type) { + case BPF_ASYNC_TYPE_TIMER: + size = sizeof(struct bpf_hrtimer); + break; + case BPF_ASYNC_TYPE_WQ: + size = sizeof(struct bpf_work); + break; + default: + return -EINVAL; + } + + __bpf_spin_lock_irqsave(&async->lock); + t = async->timer; + if (t) { + ret = -EBUSY; + goto out; + } + + cb = bpf_map_kmalloc_nolock(map, size, 0, map->numa_node); + if (!cb) { + ret = -ENOMEM; + goto out; + } + + switch (type) { + case BPF_ASYNC_TYPE_TIMER: + clockid = flags & (MAX_CLOCKS - 1); + t = (struct bpf_hrtimer *)cb; + + atomic_set(&t->cancelling, 0); + INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work); + hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT); + cb->value = (void *)async - map->record->timer_off; + break; + case BPF_ASYNC_TYPE_WQ: + w = (struct bpf_work *)cb; + + INIT_WORK(&w->work, bpf_wq_work); + INIT_WORK(&w->delete_work, bpf_wq_delete_work); + cb->value = (void *)async - map->record->wq_off; + break; + } + cb->map = map; + cb->prog = NULL; + cb->flags = flags; + rcu_assign_pointer(cb->callback_fn, NULL); + + WRITE_ONCE(async->cb, cb); + /* Guarantee the order between async->cb and map->usercnt. So + * when there are concurrent uref release and bpf timer init, either + * bpf_timer_cancel_and_free() called by uref release reads a no-NULL + * timer or atomic64_read() below returns a zero usercnt. + */ + smp_mb(); + if (!atomic64_read(&map->usercnt)) { + /* maps with timers must be either held by user space + * or pinned in bpffs. + */ + WRITE_ONCE(async->cb, NULL); + kfree_nolock(cb); + ret = -EPERM; + } +out: + __bpf_spin_unlock_irqrestore(&async->lock); + return ret; +} + +BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map, + u64, flags) +{ + clock_t clockid = flags & (MAX_CLOCKS - 1); + + BUILD_BUG_ON(MAX_CLOCKS != 16); + BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer)); + BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer)); + + if (flags >= MAX_CLOCKS || + /* similar to timerfd except _ALARM variants are not supported */ + (clockid != CLOCK_MONOTONIC && + clockid != CLOCK_REALTIME && + clockid != CLOCK_BOOTTIME)) + return -EINVAL; + + return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER); +} + +static const struct bpf_func_proto bpf_timer_init_proto = { + .func = bpf_timer_init, + .gpl_only = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_TIMER, + .arg2_type = ARG_CONST_MAP_PTR, + .arg3_type = ARG_ANYTHING, +}; + +static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn, + struct bpf_prog_aux *aux, unsigned int flags, + enum bpf_async_type type) +{ + struct bpf_prog *prev, *prog = aux->prog; + struct bpf_async_cb *cb; + int ret = 0; + + if (in_nmi()) + return -EOPNOTSUPP; + __bpf_spin_lock_irqsave(&async->lock); + cb = async->cb; + if (!cb) { + ret = -EINVAL; + goto out; + } + if (!atomic64_read(&cb->map->usercnt)) { + /* maps with timers must be either held by user space + * or pinned in bpffs. Otherwise timer might still be + * running even when bpf prog is detached and user space + * is gone, since map_release_uref won't ever be called. + */ + ret = -EPERM; + goto out; + } + prev = cb->prog; + if (prev != prog) { + /* Bump prog refcnt once. Every bpf_timer_set_callback() + * can pick different callback_fn-s within the same prog. + */ + prog = bpf_prog_inc_not_zero(prog); + if (IS_ERR(prog)) { + ret = PTR_ERR(prog); + goto out; + } + if (prev) + /* Drop prev prog refcnt when swapping with new prog */ + bpf_prog_put(prev); + cb->prog = prog; + } + rcu_assign_pointer(cb->callback_fn, callback_fn); +out: + __bpf_spin_unlock_irqrestore(&async->lock); + return ret; +} + +BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn, + struct bpf_prog_aux *, aux) +{ + return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER); +} + +static const struct bpf_func_proto bpf_timer_set_callback_proto = { + .func = bpf_timer_set_callback, + .gpl_only = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_TIMER, + .arg2_type = ARG_PTR_TO_FUNC, +}; + +BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags) +{ + struct bpf_hrtimer *t; + int ret = 0; + enum hrtimer_mode mode; + + if (in_nmi()) + return -EOPNOTSUPP; + if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN)) + return -EINVAL; + __bpf_spin_lock_irqsave(&timer->lock); + t = timer->timer; + if (!t || !t->cb.prog) { + ret = -EINVAL; + goto out; + } + + if (flags & BPF_F_TIMER_ABS) + mode = HRTIMER_MODE_ABS_SOFT; + else + mode = HRTIMER_MODE_REL_SOFT; + + if (flags & BPF_F_TIMER_CPU_PIN) + mode |= HRTIMER_MODE_PINNED; + + hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); +out: + __bpf_spin_unlock_irqrestore(&timer->lock); + return ret; +} + +static const struct bpf_func_proto bpf_timer_start_proto = { + .func = bpf_timer_start, + .gpl_only = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_TIMER, + .arg2_type = ARG_ANYTHING, + .arg3_type = ARG_ANYTHING, +}; + +static void drop_prog_refcnt(struct bpf_async_cb *async) +{ + struct bpf_prog *prog = async->prog; + + if (prog) { + bpf_prog_put(prog); + async->prog = NULL; + rcu_assign_pointer(async->callback_fn, NULL); + } +} + +BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) +{ + struct bpf_hrtimer *t, *cur_t; + bool inc = false; + int ret = 0; + + if (in_nmi()) + return -EOPNOTSUPP; + rcu_read_lock(); + __bpf_spin_lock_irqsave(&timer->lock); + t = timer->timer; + if (!t) { + ret = -EINVAL; + goto out; + } + + cur_t = this_cpu_read(hrtimer_running); + if (cur_t == t) { + /* If bpf callback_fn is trying to bpf_timer_cancel() + * its own timer the hrtimer_cancel() will deadlock + * since it waits for callback_fn to finish. + */ + ret = -EDEADLK; + goto out; + } + + /* Only account in-flight cancellations when invoked from a timer + * callback, since we want to avoid waiting only if other _callbacks_ + * are waiting on us, to avoid introducing lockups. Non-callback paths + * are ok, since nobody would synchronously wait for their completion. + */ + if (!cur_t) + goto drop; + atomic_inc(&t->cancelling); + /* Need full barrier after relaxed atomic_inc */ + smp_mb__after_atomic(); + inc = true; + if (atomic_read(&cur_t->cancelling)) { + /* We're cancelling timer t, while some other timer callback is + * attempting to cancel us. In such a case, it might be possible + * that timer t belongs to the other callback, or some other + * callback waiting upon it (creating transitive dependencies + * upon us), and we will enter a deadlock if we continue + * cancelling and waiting for it synchronously, since it might + * do the same. Bail! + */ + ret = -EDEADLK; + goto out; + } +drop: + drop_prog_refcnt(&t->cb); +out: + __bpf_spin_unlock_irqrestore(&timer->lock); + /* Cancel the timer and wait for associated callback to finish + * if it was running. + */ + ret = ret ?: hrtimer_cancel(&t->timer); + if (inc) + atomic_dec(&t->cancelling); + rcu_read_unlock(); + return ret; +} + +static const struct bpf_func_proto bpf_timer_cancel_proto = { + .func = bpf_timer_cancel, + .gpl_only = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_TIMER, +}; + +static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async) +{ + struct bpf_async_cb *cb; + + /* Performance optimization: read async->cb without lock first. */ + if (!READ_ONCE(async->cb)) + return NULL; + + __bpf_spin_lock_irqsave(&async->lock); + /* re-read it under lock */ + cb = async->cb; + if (!cb) + goto out; + drop_prog_refcnt(cb); + /* The subsequent bpf_timer_start/cancel() helpers won't be able to use + * this timer, since it won't be initialized. + */ + WRITE_ONCE(async->cb, NULL); +out: + __bpf_spin_unlock_irqrestore(&async->lock); + return cb; +} + +/* This function is called by map_delete/update_elem for individual element and + * by ops->map_release_uref when the user space reference to a map reaches zero. + */ +void bpf_timer_cancel_and_free(void *val) +{ + struct bpf_hrtimer *t; + + t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val); + + if (!t) + return; + /* We check that bpf_map_delete/update_elem() was called from timer + * callback_fn. In such case we don't call hrtimer_cancel() (since it + * will deadlock) and don't call hrtimer_try_to_cancel() (since it will + * just return -1). Though callback_fn is still running on this cpu it's + * safe to do kfree(t) because bpf_timer_cb() read everything it needed + * from 't'. The bpf subprog callback_fn won't be able to access 't', + * since async->cb = NULL was already done. The timer will be + * effectively cancelled because bpf_timer_cb() will return + * HRTIMER_NORESTART. + * + * However, it is possible the timer callback_fn calling us armed the + * timer _before_ calling us, such that failing to cancel it here will + * cause it to possibly use struct hrtimer after freeing bpf_hrtimer. + * Therefore, we _need_ to cancel any outstanding timers before we do + * call_rcu, even though no more timers can be armed. + * + * Moreover, we need to schedule work even if timer does not belong to + * the calling callback_fn, as on two different CPUs, we can end up in a + * situation where both sides run in parallel, try to cancel one + * another, and we end up waiting on both sides in hrtimer_cancel + * without making forward progress, since timer1 depends on time2 + * callback to finish, and vice versa. + * + * CPU 1 (timer1_cb) CPU 2 (timer2_cb) + * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1) + * + * To avoid these issues, punt to workqueue context when we are in a + * timer callback. + */ + if (this_cpu_read(hrtimer_running)) { + queue_work(system_dfl_wq, &t->cb.delete_work); + return; + } + + if (IS_ENABLED(CONFIG_PREEMPT_RT)) { + /* If the timer is running on other CPU, also use a kworker to + * wait for the completion of the timer instead of trying to + * acquire a sleepable lock in hrtimer_cancel() to wait for its + * completion. + */ + if (hrtimer_try_to_cancel(&t->timer) >= 0) + call_rcu(&t->cb.rcu, bpf_async_cb_rcu_free); + else + queue_work(system_dfl_wq, &t->cb.delete_work); + } else { + bpf_timer_delete_work(&t->cb.delete_work); + } +} + +/* This function is called by map_delete/update_elem for individual element and + * by ops->map_release_uref when the user space reference to a map reaches zero. + */ +void bpf_wq_cancel_and_free(void *val) +{ + struct bpf_work *work; + + BTF_TYPE_EMIT(struct bpf_wq); + + work = (struct bpf_work *)__bpf_async_cancel_and_free(val); + if (!work) + return; + /* Trigger cancel of the sleepable work, but *do not* wait for + * it to finish if it was running as we might not be in a + * sleepable context. + * kfree will be called once the work has finished. + */ + schedule_work(&work->delete_work); +} + +BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr) +{ + unsigned long *kptr = dst; + + /* This helper may be inlined by verifier. */ + return xchg(kptr, (unsigned long)ptr); +} + +/* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() + * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to + * denote type that verifier will determine. + */ +static const struct bpf_func_proto bpf_kptr_xchg_proto = { + .func = bpf_kptr_xchg, + .gpl_only = false, + .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, + .ret_btf_id = BPF_PTR_POISON, + .arg1_type = ARG_KPTR_XCHG_DEST, + .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, + .arg2_btf_id = BPF_PTR_POISON, +}; + +struct bpf_dynptr_file_impl { + struct freader freader; + /* 64 bit offset and size overriding 32 bit ones in bpf_dynptr_kern */ + u64 offset; + u64 size; +}; + +/* Since the upper 8 bits of dynptr->size is reserved, the + * maximum supported size is 2^24 - 1. + */ +#define DYNPTR_MAX_SIZE ((1UL << 24) - 1) +#define DYNPTR_TYPE_SHIFT 28 +#define DYNPTR_SIZE_MASK 0xFFFFFF +#define DYNPTR_RDONLY_BIT BIT(31) + +bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) +{ + return ptr->size & DYNPTR_RDONLY_BIT; +} + +void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) +{ + ptr->size |= DYNPTR_RDONLY_BIT; +} + +static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) +{ + ptr->size |= type << DYNPTR_TYPE_SHIFT; +} + +static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) +{ + return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; +} + +u64 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) +{ + if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) { + struct bpf_dynptr_file_impl *df = ptr->data; + + return df->size; + } + + return ptr->size & DYNPTR_SIZE_MASK; +} + +static void bpf_dynptr_advance_offset(struct bpf_dynptr_kern *ptr, u64 off) +{ + if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) { + struct bpf_dynptr_file_impl *df = ptr->data; + + df->offset += off; + return; + } + ptr->offset += off; +} + +static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u64 new_size) +{ + u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; + + if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) { + struct bpf_dynptr_file_impl *df = ptr->data; + + df->size = new_size; + return; + } + ptr->size = (u32)new_size | metadata; +} + +int bpf_dynptr_check_size(u64 size) +{ + return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; +} + +static int bpf_file_fetch_bytes(struct bpf_dynptr_file_impl *df, u64 offset, void *buf, u64 len) +{ + const void *ptr; + + if (!buf) + return -EINVAL; + + df->freader.buf = buf; + df->freader.buf_sz = len; + ptr = freader_fetch(&df->freader, offset + df->offset, len); + if (!ptr) + return df->freader.err; + + if (ptr != buf) /* Force copying into the buffer */ + memcpy(buf, ptr, len); + + return 0; +} + +void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, + enum bpf_dynptr_type type, u32 offset, u32 size) +{ + ptr->data = data; + ptr->offset = offset; + ptr->size = size; + bpf_dynptr_set_type(ptr, type); +} + +void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) +{ + memset(ptr, 0, sizeof(*ptr)); +} + +BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u64, size, u64, flags, struct bpf_dynptr_kern *, ptr) +{ + int err; + + BTF_TYPE_EMIT(struct bpf_dynptr); + + err = bpf_dynptr_check_size(size); + if (err) + goto error; + + /* flags is currently unsupported */ + if (flags) { + err = -EINVAL; + goto error; + } + + bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); + + return 0; + +error: + bpf_dynptr_set_null(ptr); + return err; +} + +static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { + .func = bpf_dynptr_from_mem, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_UNINIT_MEM, + .arg2_type = ARG_CONST_SIZE_OR_ZERO, + .arg3_type = ARG_ANYTHING, + .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE, +}; + +static int __bpf_dynptr_read(void *dst, u64 len, const struct bpf_dynptr_kern *src, + u64 offset, u64 flags) +{ + enum bpf_dynptr_type type; + int err; + + if (!src->data || flags) + return -EINVAL; + + err = bpf_dynptr_check_off_len(src, offset, len); + if (err) + return err; + + type = bpf_dynptr_get_type(src); + + switch (type) { + case BPF_DYNPTR_TYPE_LOCAL: + case BPF_DYNPTR_TYPE_RINGBUF: + /* Source and destination may possibly overlap, hence use memmove to + * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr + * pointing to overlapping PTR_TO_MAP_VALUE regions. + */ + memmove(dst, src->data + src->offset + offset, len); + return 0; + case BPF_DYNPTR_TYPE_SKB: + return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); + case BPF_DYNPTR_TYPE_XDP: + return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); + case BPF_DYNPTR_TYPE_SKB_META: + memmove(dst, bpf_skb_meta_pointer(src->data, src->offset + offset), len); + return 0; + case BPF_DYNPTR_TYPE_FILE: + return bpf_file_fetch_bytes(src->data, offset, dst, len); + default: + WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); + return -EFAULT; + } +} + +BPF_CALL_5(bpf_dynptr_read, void *, dst, u64, len, const struct bpf_dynptr_kern *, src, + u64, offset, u64, flags) +{ + return __bpf_dynptr_read(dst, len, src, offset, flags); +} + +static const struct bpf_func_proto bpf_dynptr_read_proto = { + .func = bpf_dynptr_read, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_UNINIT_MEM, + .arg2_type = ARG_CONST_SIZE_OR_ZERO, + .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, + .arg4_type = ARG_ANYTHING, + .arg5_type = ARG_ANYTHING, +}; + +int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u64 offset, void *src, + u64 len, u64 flags) +{ + enum bpf_dynptr_type type; + int err; + + if (!dst->data || __bpf_dynptr_is_rdonly(dst)) + return -EINVAL; + + err = bpf_dynptr_check_off_len(dst, offset, len); + if (err) + return err; + + type = bpf_dynptr_get_type(dst); + + switch (type) { + case BPF_DYNPTR_TYPE_LOCAL: + case BPF_DYNPTR_TYPE_RINGBUF: + if (flags) + return -EINVAL; + /* Source and destination may possibly overlap, hence use memmove to + * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr + * pointing to overlapping PTR_TO_MAP_VALUE regions. + */ + memmove(dst->data + dst->offset + offset, src, len); + return 0; + case BPF_DYNPTR_TYPE_SKB: + return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, + flags); + case BPF_DYNPTR_TYPE_XDP: + if (flags) + return -EINVAL; + return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); + case BPF_DYNPTR_TYPE_SKB_META: + return __bpf_skb_meta_store_bytes(dst->data, dst->offset + offset, src, + len, flags); + default: + WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); + return -EFAULT; + } +} + +BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u64, offset, void *, src, + u64, len, u64, flags) +{ + return __bpf_dynptr_write(dst, offset, src, len, flags); +} + +static const struct bpf_func_proto bpf_dynptr_write_proto = { + .func = bpf_dynptr_write, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, + .arg2_type = ARG_ANYTHING, + .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, + .arg4_type = ARG_CONST_SIZE_OR_ZERO, + .arg5_type = ARG_ANYTHING, +}; + +BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u64, offset, u64, len) +{ + enum bpf_dynptr_type type; + int err; + + if (!ptr->data) + return 0; + + err = bpf_dynptr_check_off_len(ptr, offset, len); + if (err) + return 0; + + if (__bpf_dynptr_is_rdonly(ptr)) + return 0; + + type = bpf_dynptr_get_type(ptr); + + switch (type) { + case BPF_DYNPTR_TYPE_LOCAL: + case BPF_DYNPTR_TYPE_RINGBUF: + return (unsigned long)(ptr->data + ptr->offset + offset); + case BPF_DYNPTR_TYPE_SKB: + case BPF_DYNPTR_TYPE_XDP: + case BPF_DYNPTR_TYPE_SKB_META: + /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ + return 0; + default: + WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); + return 0; + } +} + +static const struct bpf_func_proto bpf_dynptr_data_proto = { + .func = bpf_dynptr_data, + .gpl_only = false, + .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, + .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, + .arg2_type = ARG_ANYTHING, + .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, +}; + +const struct bpf_func_proto bpf_get_current_task_proto __weak; +const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; +const struct bpf_func_proto bpf_probe_read_user_proto __weak; +const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; +const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; +const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; +const struct bpf_func_proto bpf_task_pt_regs_proto __weak; +const struct bpf_func_proto bpf_perf_event_read_proto __weak; +const struct bpf_func_proto bpf_send_signal_proto __weak; +const struct bpf_func_proto bpf_send_signal_thread_proto __weak; +const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak; +const struct bpf_func_proto bpf_get_task_stack_proto __weak; +const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak; + +const struct bpf_func_proto * +bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) +{ + switch (func_id) { + case BPF_FUNC_map_lookup_elem: + return &bpf_map_lookup_elem_proto; + case BPF_FUNC_map_update_elem: + return &bpf_map_update_elem_proto; + case BPF_FUNC_map_delete_elem: + return &bpf_map_delete_elem_proto; + case BPF_FUNC_map_push_elem: + return &bpf_map_push_elem_proto; + case BPF_FUNC_map_pop_elem: + return &bpf_map_pop_elem_proto; + case BPF_FUNC_map_peek_elem: + return &bpf_map_peek_elem_proto; + case BPF_FUNC_map_lookup_percpu_elem: + return &bpf_map_lookup_percpu_elem_proto; + case BPF_FUNC_get_prandom_u32: + return &bpf_get_prandom_u32_proto; + case BPF_FUNC_get_smp_processor_id: + return &bpf_get_raw_smp_processor_id_proto; + case BPF_FUNC_get_numa_node_id: + return &bpf_get_numa_node_id_proto; + case BPF_FUNC_tail_call: + return &bpf_tail_call_proto; + case BPF_FUNC_ktime_get_ns: + return &bpf_ktime_get_ns_proto; + case BPF_FUNC_ktime_get_boot_ns: + return &bpf_ktime_get_boot_ns_proto; + case BPF_FUNC_ktime_get_tai_ns: + return &bpf_ktime_get_tai_ns_proto; + case BPF_FUNC_ringbuf_output: + return &bpf_ringbuf_output_proto; + case BPF_FUNC_ringbuf_reserve: + return &bpf_ringbuf_reserve_proto; + case BPF_FUNC_ringbuf_submit: + return &bpf_ringbuf_submit_proto; + case BPF_FUNC_ringbuf_discard: + return &bpf_ringbuf_discard_proto; + case BPF_FUNC_ringbuf_query: + return &bpf_ringbuf_query_proto; + case BPF_FUNC_strncmp: + return &bpf_strncmp_proto; + case BPF_FUNC_strtol: + return &bpf_strtol_proto; + case BPF_FUNC_strtoul: + return &bpf_strtoul_proto; + case BPF_FUNC_get_current_pid_tgid: + return &bpf_get_current_pid_tgid_proto; + case BPF_FUNC_get_ns_current_pid_tgid: + return &bpf_get_ns_current_pid_tgid_proto; + case BPF_FUNC_get_current_uid_gid: + return &bpf_get_current_uid_gid_proto; + default: + break; + } + + if (!bpf_token_capable(prog->aux->token, CAP_BPF)) + return NULL; + + switch (func_id) { + case BPF_FUNC_spin_lock: + return &bpf_spin_lock_proto; + case BPF_FUNC_spin_unlock: + return &bpf_spin_unlock_proto; + case BPF_FUNC_jiffies64: + return &bpf_jiffies64_proto; + case BPF_FUNC_per_cpu_ptr: + return &bpf_per_cpu_ptr_proto; + case BPF_FUNC_this_cpu_ptr: + return &bpf_this_cpu_ptr_proto; + case BPF_FUNC_timer_init: + return &bpf_timer_init_proto; + case BPF_FUNC_timer_set_callback: + return &bpf_timer_set_callback_proto; + case BPF_FUNC_timer_start: + return &bpf_timer_start_proto; + case BPF_FUNC_timer_cancel: + return &bpf_timer_cancel_proto; + case BPF_FUNC_kptr_xchg: + return &bpf_kptr_xchg_proto; + case BPF_FUNC_for_each_map_elem: + return &bpf_for_each_map_elem_proto; + case BPF_FUNC_loop: + return &bpf_loop_proto; + case BPF_FUNC_user_ringbuf_drain: + return &bpf_user_ringbuf_drain_proto; + case BPF_FUNC_ringbuf_reserve_dynptr: + return &bpf_ringbuf_reserve_dynptr_proto; + case BPF_FUNC_ringbuf_submit_dynptr: + return &bpf_ringbuf_submit_dynptr_proto; + case BPF_FUNC_ringbuf_discard_dynptr: + return &bpf_ringbuf_discard_dynptr_proto; + case BPF_FUNC_dynptr_from_mem: + return &bpf_dynptr_from_mem_proto; + case BPF_FUNC_dynptr_read: + return &bpf_dynptr_read_proto; + case BPF_FUNC_dynptr_write: + return &bpf_dynptr_write_proto; + case BPF_FUNC_dynptr_data: + return &bpf_dynptr_data_proto; +#ifdef CONFIG_CGROUPS + case BPF_FUNC_cgrp_storage_get: + return &bpf_cgrp_storage_get_proto; + case BPF_FUNC_cgrp_storage_delete: + return &bpf_cgrp_storage_delete_proto; + case BPF_FUNC_get_current_cgroup_id: + return &bpf_get_current_cgroup_id_proto; + case BPF_FUNC_get_current_ancestor_cgroup_id: + return &bpf_get_current_ancestor_cgroup_id_proto; + case BPF_FUNC_current_task_under_cgroup: + return &bpf_current_task_under_cgroup_proto; +#endif +#ifdef CONFIG_CGROUP_NET_CLASSID + case BPF_FUNC_get_cgroup_classid: + return &bpf_get_cgroup_classid_curr_proto; +#endif + case BPF_FUNC_task_storage_get: + if (bpf_prog_check_recur(prog)) + return &bpf_task_storage_get_recur_proto; + return &bpf_task_storage_get_proto; + case BPF_FUNC_task_storage_delete: + if (bpf_prog_check_recur(prog)) + return &bpf_task_storage_delete_recur_proto; + return &bpf_task_storage_delete_proto; + default: + break; + } + + if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) + return NULL; + + switch (func_id) { + case BPF_FUNC_trace_printk: + return bpf_get_trace_printk_proto(); + case BPF_FUNC_get_current_task: + return &bpf_get_current_task_proto; + case BPF_FUNC_get_current_task_btf: + return &bpf_get_current_task_btf_proto; + case BPF_FUNC_get_current_comm: + return &bpf_get_current_comm_proto; + case BPF_FUNC_probe_read_user: + return &bpf_probe_read_user_proto; + case BPF_FUNC_probe_read_kernel: + return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? + NULL : &bpf_probe_read_kernel_proto; + case BPF_FUNC_probe_read_user_str: + return &bpf_probe_read_user_str_proto; + case BPF_FUNC_probe_read_kernel_str: + return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? + NULL : &bpf_probe_read_kernel_str_proto; + case BPF_FUNC_copy_from_user: + return &bpf_copy_from_user_proto; + case BPF_FUNC_copy_from_user_task: + return &bpf_copy_from_user_task_proto; + case BPF_FUNC_snprintf_btf: + return &bpf_snprintf_btf_proto; + case BPF_FUNC_snprintf: + return &bpf_snprintf_proto; + case BPF_FUNC_task_pt_regs: + return &bpf_task_pt_regs_proto; + case BPF_FUNC_trace_vprintk: + return bpf_get_trace_vprintk_proto(); + case BPF_FUNC_perf_event_read_value: + return bpf_get_perf_event_read_value_proto(); + case BPF_FUNC_perf_event_read: + return &bpf_perf_event_read_proto; + case BPF_FUNC_send_signal: + return &bpf_send_signal_proto; + case BPF_FUNC_send_signal_thread: + return &bpf_send_signal_thread_proto; + case BPF_FUNC_get_task_stack: + return prog->sleepable ? &bpf_get_task_stack_sleepable_proto + : &bpf_get_task_stack_proto; + case BPF_FUNC_get_branch_snapshot: + return &bpf_get_branch_snapshot_proto; + case BPF_FUNC_find_vma: + return &bpf_find_vma_proto; + default: + return NULL; + } +} +EXPORT_SYMBOL_GPL(bpf_base_func_proto); + +void bpf_list_head_free(const struct btf_field *field, void *list_head, + struct bpf_spin_lock *spin_lock) +{ + struct list_head *head = list_head, *orig_head = list_head; + + BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); + BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); + + /* Do the actual list draining outside the lock to not hold the lock for + * too long, and also prevent deadlocks if tracing programs end up + * executing on entry/exit of functions called inside the critical + * section, and end up doing map ops that call bpf_list_head_free for + * the same map value again. + */ + __bpf_spin_lock_irqsave(spin_lock); + if (!head->next || list_empty(head)) + goto unlock; + head = head->next; +unlock: + INIT_LIST_HEAD(orig_head); + __bpf_spin_unlock_irqrestore(spin_lock); + + while (head != orig_head) { + void *obj = head; + + obj -= field->graph_root.node_offset; + head = head->next; + /* The contained type can also have resources, including a + * bpf_list_head which needs to be freed. + */ + __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); + } +} + +/* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are + * 'rb_node *', so field name of rb_node within containing struct is not + * needed. + * + * Since bpf_rb_tree's node type has a corresponding struct btf_field with + * graph_root.node_offset, it's not necessary to know field name + * or type of node struct + */ +#define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ + for (pos = rb_first_postorder(root); \ + pos && ({ n = rb_next_postorder(pos); 1; }); \ + pos = n) + +void bpf_rb_root_free(const struct btf_field *field, void *rb_root, + struct bpf_spin_lock *spin_lock) +{ + struct rb_root_cached orig_root, *root = rb_root; + struct rb_node *pos, *n; + void *obj; + + BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); + BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); + + __bpf_spin_lock_irqsave(spin_lock); + orig_root = *root; + *root = RB_ROOT_CACHED; + __bpf_spin_unlock_irqrestore(spin_lock); + + bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { + obj = pos; + obj -= field->graph_root.node_offset; + + + __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false); + } +} + +__bpf_kfunc_start_defs(); + +__bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) +{ + struct btf_struct_meta *meta = meta__ign; + u64 size = local_type_id__k; + void *p; + + p = bpf_mem_alloc(&bpf_global_ma, size); + if (!p) + return NULL; + if (meta) + bpf_obj_init(meta->record, p); + return p; +} + +__bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign) +{ + u64 size = local_type_id__k; + + /* The verifier has ensured that meta__ign must be NULL */ + return bpf_mem_alloc(&bpf_global_percpu_ma, size); +} + +/* Must be called under migrate_disable(), as required by bpf_mem_free */ +void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu) +{ + struct bpf_mem_alloc *ma; + + if (rec && rec->refcount_off >= 0 && + !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { + /* Object is refcounted and refcount_dec didn't result in 0 + * refcount. Return without freeing the object + */ + return; + } + + if (rec) + bpf_obj_free_fields(rec, p); + + if (percpu) + ma = &bpf_global_percpu_ma; + else + ma = &bpf_global_ma; + bpf_mem_free_rcu(ma, p); +} + +__bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) +{ + struct btf_struct_meta *meta = meta__ign; + void *p = p__alloc; + + __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false); +} + +__bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign) +{ + /* The verifier has ensured that meta__ign must be NULL */ + bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc); +} + +__bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) +{ + struct btf_struct_meta *meta = meta__ign; + struct bpf_refcount *ref; + + /* Could just cast directly to refcount_t *, but need some code using + * bpf_refcount type so that it is emitted in vmlinux BTF + */ + ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); + if (!refcount_inc_not_zero((refcount_t *)ref)) + return NULL; + + /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null + * in verifier.c + */ + return (void *)p__refcounted_kptr; +} + +static int __bpf_list_add(struct bpf_list_node_kern *node, + struct bpf_list_head *head, + bool tail, struct btf_record *rec, u64 off) +{ + struct list_head *n = &node->list_head, *h = (void *)head; + + /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't + * called on its fields, so init here + */ + if (unlikely(!h->next)) + INIT_LIST_HEAD(h); + + /* node->owner != NULL implies !list_empty(n), no need to separately + * check the latter + */ + if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { + /* Only called from BPF prog, no need to migrate_disable */ + __bpf_obj_drop_impl((void *)n - off, rec, false); + return -EINVAL; + } + + tail ? list_add_tail(n, h) : list_add(n, h); + WRITE_ONCE(node->owner, head); + + return 0; +} + +__bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, + struct bpf_list_node *node, + void *meta__ign, u64 off) +{ + struct bpf_list_node_kern *n = (void *)node; + struct btf_struct_meta *meta = meta__ign; + + return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); +} + +__bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, + struct bpf_list_node *node, + void *meta__ign, u64 off) +{ + struct bpf_list_node_kern *n = (void *)node; + struct btf_struct_meta *meta = meta__ign; + + return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); +} + +static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) +{ + struct list_head *n, *h = (void *)head; + struct bpf_list_node_kern *node; + + /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't + * called on its fields, so init here + */ + if (unlikely(!h->next)) + INIT_LIST_HEAD(h); + if (list_empty(h)) + return NULL; + + n = tail ? h->prev : h->next; + node = container_of(n, struct bpf_list_node_kern, list_head); + if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) + return NULL; + + list_del_init(n); + WRITE_ONCE(node->owner, NULL); + return (struct bpf_list_node *)n; +} + +__bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) +{ + return __bpf_list_del(head, false); +} + +__bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) +{ + return __bpf_list_del(head, true); +} + +__bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head) +{ + struct list_head *h = (struct list_head *)head; + + if (list_empty(h) || unlikely(!h->next)) + return NULL; + + return (struct bpf_list_node *)h->next; +} + +__bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head) +{ + struct list_head *h = (struct list_head *)head; + + if (list_empty(h) || unlikely(!h->next)) + return NULL; + + return (struct bpf_list_node *)h->prev; +} + +__bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, + struct bpf_rb_node *node) +{ + struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; + struct rb_root_cached *r = (struct rb_root_cached *)root; + struct rb_node *n = &node_internal->rb_node; + + /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or + * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) + */ + if (READ_ONCE(node_internal->owner) != root) + return NULL; + + rb_erase_cached(n, r); + RB_CLEAR_NODE(n); + WRITE_ONCE(node_internal->owner, NULL); + return (struct bpf_rb_node *)n; +} + +/* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF + * program + */ +static int __bpf_rbtree_add(struct bpf_rb_root *root, + struct bpf_rb_node_kern *node, + void *less, struct btf_record *rec, u64 off) +{ + struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; + struct rb_node *parent = NULL, *n = &node->rb_node; + bpf_callback_t cb = (bpf_callback_t)less; + bool leftmost = true; + + /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately + * check the latter + */ + if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { + /* Only called from BPF prog, no need to migrate_disable */ + __bpf_obj_drop_impl((void *)n - off, rec, false); + return -EINVAL; + } + + while (*link) { + parent = *link; + if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { + link = &parent->rb_left; + } else { + link = &parent->rb_right; + leftmost = false; + } + } + + rb_link_node(n, parent, link); + rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); + WRITE_ONCE(node->owner, root); + return 0; +} + +__bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, + bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), + void *meta__ign, u64 off) +{ + struct btf_struct_meta *meta = meta__ign; + struct bpf_rb_node_kern *n = (void *)node; + + return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); +} + +__bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) +{ + struct rb_root_cached *r = (struct rb_root_cached *)root; + + return (struct bpf_rb_node *)rb_first_cached(r); +} + +__bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root) +{ + struct rb_root_cached *r = (struct rb_root_cached *)root; + + return (struct bpf_rb_node *)r->rb_root.rb_node; +} + +__bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node) +{ + struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; + + if (READ_ONCE(node_internal->owner) != root) + return NULL; + + return (struct bpf_rb_node *)node_internal->rb_node.rb_left; +} + +__bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node) +{ + struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; + + if (READ_ONCE(node_internal->owner) != root) + return NULL; + + return (struct bpf_rb_node *)node_internal->rb_node.rb_right; +} + +/** + * bpf_task_acquire - Acquire a reference to a task. A task acquired by this + * kfunc which is not stored in a map as a kptr, must be released by calling + * bpf_task_release(). + * @p: The task on which a reference is being acquired. + */ +__bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) +{ + if (refcount_inc_not_zero(&p->rcu_users)) + return p; + return NULL; +} + +/** + * bpf_task_release - Release the reference acquired on a task. + * @p: The task on which a reference is being released. + */ +__bpf_kfunc void bpf_task_release(struct task_struct *p) +{ + put_task_struct_rcu_user(p); +} + +__bpf_kfunc void bpf_task_release_dtor(void *p) +{ + put_task_struct_rcu_user(p); +} +CFI_NOSEAL(bpf_task_release_dtor); + +#ifdef CONFIG_CGROUPS +/** + * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by + * this kfunc which is not stored in a map as a kptr, must be released by + * calling bpf_cgroup_release(). + * @cgrp: The cgroup on which a reference is being acquired. + */ +__bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) +{ + return cgroup_tryget(cgrp) ? cgrp : NULL; +} + +/** + * bpf_cgroup_release - Release the reference acquired on a cgroup. + * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to + * not be freed until the current grace period has ended, even if its refcount + * drops to 0. + * @cgrp: The cgroup on which a reference is being released. + */ +__bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) +{ + cgroup_put(cgrp); +} + +__bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp) +{ + cgroup_put(cgrp); +} +CFI_NOSEAL(bpf_cgroup_release_dtor); + +/** + * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor + * array. A cgroup returned by this kfunc which is not subsequently stored in a + * map, must be released by calling bpf_cgroup_release(). + * @cgrp: The cgroup for which we're performing a lookup. + * @level: The level of ancestor to look up. + */ +__bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) +{ + struct cgroup *ancestor; + + if (level > cgrp->level || level < 0) + return NULL; + + /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ + ancestor = cgrp->ancestors[level]; + if (!cgroup_tryget(ancestor)) + return NULL; + return ancestor; +} + +/** + * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this + * kfunc which is not subsequently stored in a map, must be released by calling + * bpf_cgroup_release(). + * @cgid: cgroup id. + */ +__bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) +{ + struct cgroup *cgrp; + + cgrp = __cgroup_get_from_id(cgid); + if (IS_ERR(cgrp)) + return NULL; + return cgrp; +} + +/** + * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test + * task's membership of cgroup ancestry. + * @task: the task to be tested + * @ancestor: possible ancestor of @task's cgroup + * + * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. + * It follows all the same rules as cgroup_is_descendant, and only applies + * to the default hierarchy. + */ +__bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, + struct cgroup *ancestor) +{ + long ret; + + rcu_read_lock(); + ret = task_under_cgroup_hierarchy(task, ancestor); + rcu_read_unlock(); + return ret; +} + +BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx) +{ + struct bpf_array *array = container_of(map, struct bpf_array, map); + struct cgroup *cgrp; + + if (unlikely(idx >= array->map.max_entries)) + return -E2BIG; + + cgrp = READ_ONCE(array->ptrs[idx]); + if (unlikely(!cgrp)) + return -EAGAIN; + + return task_under_cgroup_hierarchy(current, cgrp); +} + +const struct bpf_func_proto bpf_current_task_under_cgroup_proto = { + .func = bpf_current_task_under_cgroup, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_ANYTHING, +}; + +/** + * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a + * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its + * hierarchy ID. + * @task: The target task + * @hierarchy_id: The ID of a cgroup1 hierarchy + * + * On success, the cgroup is returen. On failure, NULL is returned. + */ +__bpf_kfunc struct cgroup * +bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id) +{ + struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id); + + if (IS_ERR(cgrp)) + return NULL; + return cgrp; +} +#endif /* CONFIG_CGROUPS */ + +/** + * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up + * in the root pid namespace idr. If a task is returned, it must either be + * stored in a map, or released with bpf_task_release(). + * @pid: The pid of the task being looked up. + */ +__bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) +{ + struct task_struct *p; + + rcu_read_lock(); + p = find_task_by_pid_ns(pid, &init_pid_ns); + if (p) + p = bpf_task_acquire(p); + rcu_read_unlock(); + + return p; +} + +/** + * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up + * in the pid namespace of the current task. If a task is returned, it must + * either be stored in a map, or released with bpf_task_release(). + * @vpid: The vpid of the task being looked up. + */ +__bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid) +{ + struct task_struct *p; + + rcu_read_lock(); + p = find_task_by_vpid(vpid); + if (p) + p = bpf_task_acquire(p); + rcu_read_unlock(); + + return p; +} + +/** + * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. + * @p: The dynptr whose data slice to retrieve + * @offset: Offset into the dynptr + * @buffer__opt: User-provided buffer to copy contents into. May be NULL + * @buffer__szk: Size (in bytes) of the buffer if present. This is the + * length of the requested slice. This must be a constant. + * + * For non-skb and non-xdp type dynptrs, there is no difference between + * bpf_dynptr_slice and bpf_dynptr_data. + * + * If buffer__opt is NULL, the call will fail if buffer_opt was needed. + * + * If the intention is to write to the data slice, please use + * bpf_dynptr_slice_rdwr. + * + * The user must check that the returned pointer is not null before using it. + * + * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice + * does not change the underlying packet data pointers, so a call to + * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in + * the bpf program. + * + * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only + * data slice (can be either direct pointer to the data or a pointer to the user + * provided buffer, with its contents containing the data, if unable to obtain + * direct pointer) + */ +__bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u64 offset, + void *buffer__opt, u64 buffer__szk) +{ + const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + enum bpf_dynptr_type type; + u64 len = buffer__szk; + int err; + + if (!ptr->data) + return NULL; + + err = bpf_dynptr_check_off_len(ptr, offset, len); + if (err) + return NULL; + + type = bpf_dynptr_get_type(ptr); + + switch (type) { + case BPF_DYNPTR_TYPE_LOCAL: + case BPF_DYNPTR_TYPE_RINGBUF: + return ptr->data + ptr->offset + offset; + case BPF_DYNPTR_TYPE_SKB: + if (buffer__opt) + return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); + else + return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); + case BPF_DYNPTR_TYPE_XDP: + { + void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); + if (!IS_ERR_OR_NULL(xdp_ptr)) + return xdp_ptr; + + if (!buffer__opt) + return NULL; + bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); + return buffer__opt; + } + case BPF_DYNPTR_TYPE_SKB_META: + return bpf_skb_meta_pointer(ptr->data, ptr->offset + offset); + case BPF_DYNPTR_TYPE_FILE: + err = bpf_file_fetch_bytes(ptr->data, offset, buffer__opt, buffer__szk); + return err ? NULL : buffer__opt; + default: + WARN_ONCE(true, "unknown dynptr type %d\n", type); + return NULL; + } +} + +/** + * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. + * @p: The dynptr whose data slice to retrieve + * @offset: Offset into the dynptr + * @buffer__opt: User-provided buffer to copy contents into. May be NULL + * @buffer__szk: Size (in bytes) of the buffer if present. This is the + * length of the requested slice. This must be a constant. + * + * For non-skb and non-xdp type dynptrs, there is no difference between + * bpf_dynptr_slice and bpf_dynptr_data. + * + * If buffer__opt is NULL, the call will fail if buffer_opt was needed. + * + * The returned pointer is writable and may point to either directly the dynptr + * data at the requested offset or to the buffer if unable to obtain a direct + * data pointer to (example: the requested slice is to the paged area of an skb + * packet). In the case where the returned pointer is to the buffer, the user + * is responsible for persisting writes through calling bpf_dynptr_write(). This + * usually looks something like this pattern: + * + * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); + * if (!eth) + * return TC_ACT_SHOT; + * + * // mutate eth header // + * + * if (eth == buffer) + * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); + * + * Please note that, as in the example above, the user must check that the + * returned pointer is not null before using it. + * + * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr + * does not change the underlying packet data pointers, so a call to + * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in + * the bpf program. + * + * Return: NULL if the call failed (eg invalid dynptr), pointer to a + * data slice (can be either direct pointer to the data or a pointer to the user + * provided buffer, with its contents containing the data, if unable to obtain + * direct pointer) + */ +__bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u64 offset, + void *buffer__opt, u64 buffer__szk) +{ + const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + + if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) + return NULL; + + /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. + * + * For skb-type dynptrs, it is safe to write into the returned pointer + * if the bpf program allows skb data writes. There are two possibilities + * that may occur when calling bpf_dynptr_slice_rdwr: + * + * 1) The requested slice is in the head of the skb. In this case, the + * returned pointer is directly to skb data, and if the skb is cloned, the + * verifier will have uncloned it (see bpf_unclone_prologue()) already. + * The pointer can be directly written into. + * + * 2) Some portion of the requested slice is in the paged buffer area. + * In this case, the requested data will be copied out into the buffer + * and the returned pointer will be a pointer to the buffer. The skb + * will not be pulled. To persist the write, the user will need to call + * bpf_dynptr_write(), which will pull the skb and commit the write. + * + * Similarly for xdp programs, if the requested slice is not across xdp + * fragments, then a direct pointer will be returned, otherwise the data + * will be copied out into the buffer and the user will need to call + * bpf_dynptr_write() to commit changes. + */ + return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk); +} + +__bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u64 start, u64 end) +{ + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + u64 size; + + if (!ptr->data || start > end) + return -EINVAL; + + size = __bpf_dynptr_size(ptr); + + if (start > size || end > size) + return -ERANGE; + + bpf_dynptr_advance_offset(ptr, start); + bpf_dynptr_set_size(ptr, end - start); + + return 0; +} + +__bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p) +{ + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + + return !ptr->data; +} + +__bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p) +{ + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + + if (!ptr->data) + return false; + + return __bpf_dynptr_is_rdonly(ptr); +} + +__bpf_kfunc u64 bpf_dynptr_size(const struct bpf_dynptr *p) +{ + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + + if (!ptr->data) + return -EINVAL; + + return __bpf_dynptr_size(ptr); +} + +__bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p, + struct bpf_dynptr *clone__uninit) +{ + struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit; + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + + if (!ptr->data) { + bpf_dynptr_set_null(clone); + return -EINVAL; + } + + *clone = *ptr; + + return 0; +} + +/** + * bpf_dynptr_copy() - Copy data from one dynptr to another. + * @dst_ptr: Destination dynptr - where data should be copied to + * @dst_off: Offset into the destination dynptr + * @src_ptr: Source dynptr - where data should be copied from + * @src_off: Offset into the source dynptr + * @size: Length of the data to copy from source to destination + * + * Copies data from source dynptr to destination dynptr. + * Returns 0 on success; negative error, otherwise. + */ +__bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u64 dst_off, + struct bpf_dynptr *src_ptr, u64 src_off, u64 size) +{ + struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr; + struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr; + void *src_slice, *dst_slice; + char buf[256]; + u64 off; + + src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size); + dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size); + + if (src_slice && dst_slice) { + memmove(dst_slice, src_slice, size); + return 0; + } + + if (src_slice) + return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0); + + if (dst_slice) + return __bpf_dynptr_read(dst_slice, size, src, src_off, 0); + + if (bpf_dynptr_check_off_len(dst, dst_off, size) || + bpf_dynptr_check_off_len(src, src_off, size)) + return -E2BIG; + + off = 0; + while (off < size) { + u64 chunk_sz = min_t(u64, sizeof(buf), size - off); + int err; + + err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0); + if (err) + return err; + err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0); + if (err) + return err; + + off += chunk_sz; + } + return 0; +} + +/** + * bpf_dynptr_memset() - Fill dynptr memory with a constant byte. + * @p: Destination dynptr - where data will be filled + * @offset: Offset into the dynptr to start filling from + * @size: Number of bytes to fill + * @val: Constant byte to fill the memory with + * + * Fills the @size bytes of the memory area pointed to by @p + * at @offset with the constant byte @val. + * Returns 0 on success; negative error, otherwise. + */ +__bpf_kfunc int bpf_dynptr_memset(struct bpf_dynptr *p, u64 offset, u64 size, u8 val) +{ + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p; + u64 chunk_sz, write_off; + char buf[256]; + void* slice; + int err; + + slice = bpf_dynptr_slice_rdwr(p, offset, NULL, size); + if (likely(slice)) { + memset(slice, val, size); + return 0; + } + + if (__bpf_dynptr_is_rdonly(ptr)) + return -EINVAL; + + err = bpf_dynptr_check_off_len(ptr, offset, size); + if (err) + return err; + + /* Non-linear data under the dynptr, write from a local buffer */ + chunk_sz = min_t(u64, sizeof(buf), size); + memset(buf, val, chunk_sz); + + for (write_off = 0; write_off < size; write_off += chunk_sz) { + chunk_sz = min_t(u64, sizeof(buf), size - write_off); + err = __bpf_dynptr_write(ptr, offset + write_off, buf, chunk_sz, 0); + if (err) + return err; + } + + return 0; +} + +__bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) +{ + return obj; +} + +__bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k) +{ + return (void *)obj__ign; +} + +__bpf_kfunc void bpf_rcu_read_lock(void) +{ + rcu_read_lock(); +} + +__bpf_kfunc void bpf_rcu_read_unlock(void) +{ + rcu_read_unlock(); +} + +struct bpf_throw_ctx { + struct bpf_prog_aux *aux; + u64 sp; + u64 bp; + int cnt; +}; + +static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp) +{ + struct bpf_throw_ctx *ctx = cookie; + struct bpf_prog *prog; + + /* + * The RCU read lock is held to safely traverse the latch tree, but we + * don't need its protection when accessing the prog, since it has an + * active stack frame on the current stack trace, and won't disappear. + */ + rcu_read_lock(); + prog = bpf_prog_ksym_find(ip); + rcu_read_unlock(); + if (!prog) + return !ctx->cnt; + ctx->cnt++; + if (bpf_is_subprog(prog)) + return true; + ctx->aux = prog->aux; + ctx->sp = sp; + ctx->bp = bp; + return false; +} + +__bpf_kfunc void bpf_throw(u64 cookie) +{ + struct bpf_throw_ctx ctx = {}; + + arch_bpf_stack_walk(bpf_stack_walker, &ctx); + WARN_ON_ONCE(!ctx.aux); + if (ctx.aux) + WARN_ON_ONCE(!ctx.aux->exception_boundary); + WARN_ON_ONCE(!ctx.bp); + WARN_ON_ONCE(!ctx.cnt); + /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning + * deeper stack depths than ctx.sp as we do not return from bpf_throw, + * which skips compiler generated instrumentation to do the same. + */ + kasan_unpoison_task_stack_below((void *)(long)ctx.sp); + ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0); + WARN(1, "A call to BPF exception callback should never return\n"); +} + +__bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags) +{ + struct bpf_async_kern *async = (struct bpf_async_kern *)wq; + struct bpf_map *map = p__map; + + BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq)); + BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq)); + + if (flags) + return -EINVAL; + + return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ); +} + +__bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags) +{ + struct bpf_async_kern *async = (struct bpf_async_kern *)wq; + struct bpf_work *w; + + if (in_nmi()) + return -EOPNOTSUPP; + if (flags) + return -EINVAL; + w = READ_ONCE(async->work); + if (!w || !READ_ONCE(w->cb.prog)) + return -EINVAL; + + schedule_work(&w->work); + return 0; +} + +__bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq, + int (callback_fn)(void *map, int *key, void *value), + unsigned int flags, + void *aux__prog) +{ + struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog; + struct bpf_async_kern *async = (struct bpf_async_kern *)wq; + + if (flags) + return -EINVAL; + + return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ); +} + +__bpf_kfunc void bpf_preempt_disable(void) +{ + preempt_disable(); +} + +__bpf_kfunc void bpf_preempt_enable(void) +{ + preempt_enable(); +} + +struct bpf_iter_bits { + __u64 __opaque[2]; +} __aligned(8); + +#define BITS_ITER_NR_WORDS_MAX 511 + +struct bpf_iter_bits_kern { + union { + __u64 *bits; + __u64 bits_copy; + }; + int nr_bits; + int bit; +} __aligned(8); + +/* On 64-bit hosts, unsigned long and u64 have the same size, so passing + * a u64 pointer and an unsigned long pointer to find_next_bit() will + * return the same result, as both point to the same 8-byte area. + * + * For 32-bit little-endian hosts, using a u64 pointer or unsigned long + * pointer also makes no difference. This is because the first iterated + * unsigned long is composed of bits 0-31 of the u64 and the second unsigned + * long is composed of bits 32-63 of the u64. + * + * However, for 32-bit big-endian hosts, this is not the case. The first + * iterated unsigned long will be bits 32-63 of the u64, so swap these two + * ulong values within the u64. + */ +static void swap_ulong_in_u64(u64 *bits, unsigned int nr) +{ +#if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN) + unsigned int i; + + for (i = 0; i < nr; i++) + bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32); +#endif +} + +/** + * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area + * @it: The new bpf_iter_bits to be created + * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over + * @nr_words: The size of the specified memory area, measured in 8-byte units. + * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be + * further reduced by the BPF memory allocator implementation. + * + * This function initializes a new bpf_iter_bits structure for iterating over + * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It + * copies the data of the memory area to the newly created bpf_iter_bits @it for + * subsequent iteration operations. + * + * On success, 0 is returned. On failure, ERR is returned. + */ +__bpf_kfunc int +bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words) +{ + struct bpf_iter_bits_kern *kit = (void *)it; + u32 nr_bytes = nr_words * sizeof(u64); + u32 nr_bits = BYTES_TO_BITS(nr_bytes); + int err; + + BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits)); + BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) != + __alignof__(struct bpf_iter_bits)); + + kit->nr_bits = 0; + kit->bits_copy = 0; + kit->bit = -1; + + if (!unsafe_ptr__ign || !nr_words) + return -EINVAL; + if (nr_words > BITS_ITER_NR_WORDS_MAX) + return -E2BIG; + + /* Optimization for u64 mask */ + if (nr_bits == 64) { + err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign); + if (err) + return -EFAULT; + + swap_ulong_in_u64(&kit->bits_copy, nr_words); + + kit->nr_bits = nr_bits; + return 0; + } + + if (bpf_mem_alloc_check_size(false, nr_bytes)) + return -E2BIG; + + /* Fallback to memalloc */ + kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes); + if (!kit->bits) + return -ENOMEM; + + err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign); + if (err) { + bpf_mem_free(&bpf_global_ma, kit->bits); + return err; + } + + swap_ulong_in_u64(kit->bits, nr_words); + + kit->nr_bits = nr_bits; + return 0; +} + +/** + * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits + * @it: The bpf_iter_bits to be checked + * + * This function returns a pointer to a number representing the value of the + * next bit in the bits. + * + * If there are no further bits available, it returns NULL. + */ +__bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it) +{ + struct bpf_iter_bits_kern *kit = (void *)it; + int bit = kit->bit, nr_bits = kit->nr_bits; + const void *bits; + + if (!nr_bits || bit >= nr_bits) + return NULL; + + bits = nr_bits == 64 ? &kit->bits_copy : kit->bits; + bit = find_next_bit(bits, nr_bits, bit + 1); + if (bit >= nr_bits) { + kit->bit = bit; + return NULL; + } + + kit->bit = bit; + return &kit->bit; +} + +/** + * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits + * @it: The bpf_iter_bits to be destroyed + * + * Destroy the resource associated with the bpf_iter_bits. + */ +__bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it) +{ + struct bpf_iter_bits_kern *kit = (void *)it; + + if (kit->nr_bits <= 64) + return; + bpf_mem_free(&bpf_global_ma, kit->bits); +} + +/** + * bpf_copy_from_user_str() - Copy a string from an unsafe user address + * @dst: Destination address, in kernel space. This buffer must be + * at least @dst__sz bytes long. + * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL. + * @unsafe_ptr__ign: Source address, in user space. + * @flags: The only supported flag is BPF_F_PAD_ZEROS + * + * Copies a NUL-terminated string from userspace to BPF space. If user string is + * too long this will still ensure zero termination in the dst buffer unless + * buffer size is 0. + * + * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and + * memset all of @dst on failure. + */ +__bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags) +{ + int ret; + + if (unlikely(flags & ~BPF_F_PAD_ZEROS)) + return -EINVAL; + + if (unlikely(!dst__sz)) + return 0; + + ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1); + if (ret < 0) { + if (flags & BPF_F_PAD_ZEROS) + memset((char *)dst, 0, dst__sz); + + return ret; + } + + if (flags & BPF_F_PAD_ZEROS) + memset((char *)dst + ret, 0, dst__sz - ret); + else + ((char *)dst)[ret] = '\0'; + + return ret + 1; +} + +/** + * bpf_copy_from_user_task_str() - Copy a string from an task's address space + * @dst: Destination address, in kernel space. This buffer must be + * at least @dst__sz bytes long. + * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL. + * @unsafe_ptr__ign: Source address in the task's address space. + * @tsk: The task whose address space will be used + * @flags: The only supported flag is BPF_F_PAD_ZEROS + * + * Copies a NUL terminated string from a task's address space to @dst__sz + * buffer. If user string is too long this will still ensure zero termination + * in the @dst__sz buffer unless buffer size is 0. + * + * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success + * and memset all of @dst__sz on failure. + * + * Return: The number of copied bytes on success including the NUL terminator. + * A negative error code on failure. + */ +__bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz, + const void __user *unsafe_ptr__ign, + struct task_struct *tsk, u64 flags) +{ + int ret; + + if (unlikely(flags & ~BPF_F_PAD_ZEROS)) + return -EINVAL; + + if (unlikely(dst__sz == 0)) + return 0; + + ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0); + if (ret < 0) { + if (flags & BPF_F_PAD_ZEROS) + memset(dst, 0, dst__sz); + return ret; + } + + if (flags & BPF_F_PAD_ZEROS) + memset(dst + ret, 0, dst__sz - ret); + + return ret + 1; +} + +/* Keep unsinged long in prototype so that kfunc is usable when emitted to + * vmlinux.h in BPF programs directly, but note that while in BPF prog, the + * unsigned long always points to 8-byte region on stack, the kernel may only + * read and write the 4-bytes on 32-bit. + */ +__bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag) +{ + local_irq_save(*flags__irq_flag); +} + +__bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag) +{ + local_irq_restore(*flags__irq_flag); +} + +__bpf_kfunc void __bpf_trap(void) +{ +} + +/* + * Kfuncs for string operations. + * + * Since strings are not necessarily %NUL-terminated, we cannot directly call + * in-kernel implementations. Instead, we open-code the implementations using + * __get_kernel_nofault instead of plain dereference to make them safe. + */ + +static int __bpf_strcasecmp(const char *s1, const char *s2, bool ignore_case) +{ + char c1, c2; + int i; + + if (!copy_from_kernel_nofault_allowed(s1, 1) || + !copy_from_kernel_nofault_allowed(s2, 1)) { + return -ERANGE; + } + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&c1, s1, char, err_out); + __get_kernel_nofault(&c2, s2, char, err_out); + if (ignore_case) { + c1 = tolower(c1); + c2 = tolower(c2); + } + if (c1 != c2) + return c1 < c2 ? -1 : 1; + if (c1 == '\0') + return 0; + s1++; + s2++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strcmp - Compare two strings + * @s1__ign: One string + * @s2__ign: Another string + * + * Return: + * * %0 - Strings are equal + * * %-1 - @s1__ign is smaller + * * %1 - @s2__ign is smaller + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of strings is too large + * * %-ERANGE - One of strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign) +{ + return __bpf_strcasecmp(s1__ign, s2__ign, false); +} + +/** + * bpf_strcasecmp - Compare two strings, ignoring the case of the characters + * @s1__ign: One string + * @s2__ign: Another string + * + * Return: + * * %0 - Strings are equal + * * %-1 - @s1__ign is smaller + * * %1 - @s2__ign is smaller + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of strings is too large + * * %-ERANGE - One of strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strcasecmp(const char *s1__ign, const char *s2__ign) +{ + return __bpf_strcasecmp(s1__ign, s2__ign, true); +} + +/** + * bpf_strnchr - Find a character in a length limited string + * @s__ign: The string to be searched + * @count: The number of characters to be searched + * @c: The character to search for + * + * Note that the %NUL-terminator is considered part of the string, and can + * be searched for. + * + * Return: + * * >=0 - Index of the first occurrence of @c within @s__ign + * * %-ENOENT - @c not found in the first @count characters of @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c) +{ + char sc; + int i; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1)) + return -ERANGE; + + guard(pagefault)(); + for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&sc, s__ign, char, err_out); + if (sc == c) + return i; + if (sc == '\0') + return -ENOENT; + s__ign++; + } + return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT; +err_out: + return -EFAULT; +} + +/** + * bpf_strchr - Find the first occurrence of a character in a string + * @s__ign: The string to be searched + * @c: The character to search for + * + * Note that the %NUL-terminator is considered part of the string, and can + * be searched for. + * + * Return: + * * >=0 - The index of the first occurrence of @c within @s__ign + * * %-ENOENT - @c not found in @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strchr(const char *s__ign, char c) +{ + return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c); +} + +/** + * bpf_strchrnul - Find and return a character in a string, or end of string + * @s__ign: The string to be searched + * @c: The character to search for + * + * Return: + * * >=0 - Index of the first occurrence of @c within @s__ign or index of + * the null byte at the end of @s__ign when @c is not found + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strchrnul(const char *s__ign, char c) +{ + char sc; + int i; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1)) + return -ERANGE; + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&sc, s__ign, char, err_out); + if (sc == '\0' || sc == c) + return i; + s__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strrchr - Find the last occurrence of a character in a string + * @s__ign: The string to be searched + * @c: The character to search for + * + * Return: + * * >=0 - Index of the last occurrence of @c within @s__ign + * * %-ENOENT - @c not found in @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strrchr(const char *s__ign, int c) +{ + char sc; + int i, last = -ENOENT; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1)) + return -ERANGE; + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&sc, s__ign, char, err_out); + if (sc == c) + last = i; + if (sc == '\0') + return last; + s__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strnlen - Calculate the length of a length-limited string + * @s__ign: The string + * @count: The maximum number of characters to count + * + * Return: + * * >=0 - The length of @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count) +{ + char c; + int i; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1)) + return -ERANGE; + + guard(pagefault)(); + for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&c, s__ign, char, err_out); + if (c == '\0') + return i; + s__ign++; + } + return i == XATTR_SIZE_MAX ? -E2BIG : i; +err_out: + return -EFAULT; +} + +/** + * bpf_strlen - Calculate the length of a string + * @s__ign: The string + * + * Return: + * * >=0 - The length of @s__ign + * * %-EFAULT - Cannot read @s__ign + * * %-E2BIG - @s__ign is too large + * * %-ERANGE - @s__ign is outside of kernel address space + */ +__bpf_kfunc int bpf_strlen(const char *s__ign) +{ + return bpf_strnlen(s__ign, XATTR_SIZE_MAX); +} + +/** + * bpf_strspn - Calculate the length of the initial substring of @s__ign which + * only contains letters in @accept__ign + * @s__ign: The string to be searched + * @accept__ign: The string to search for + * + * Return: + * * >=0 - The length of the initial substring of @s__ign which only + * contains letters from @accept__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign) +{ + char cs, ca; + int i, j; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1) || + !copy_from_kernel_nofault_allowed(accept__ign, 1)) { + return -ERANGE; + } + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&cs, s__ign, char, err_out); + if (cs == '\0') + return i; + for (j = 0; j < XATTR_SIZE_MAX; j++) { + __get_kernel_nofault(&ca, accept__ign + j, char, err_out); + if (cs == ca || ca == '\0') + break; + } + if (j == XATTR_SIZE_MAX) + return -E2BIG; + if (ca == '\0') + return i; + s__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strcspn - Calculate the length of the initial substring of @s__ign which + * does not contain letters in @reject__ign + * @s__ign: The string to be searched + * @reject__ign: The string to search for + * + * Return: + * * >=0 - The length of the initial substring of @s__ign which does not + * contain letters from @reject__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign) +{ + char cs, cr; + int i, j; + + if (!copy_from_kernel_nofault_allowed(s__ign, 1) || + !copy_from_kernel_nofault_allowed(reject__ign, 1)) { + return -ERANGE; + } + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + __get_kernel_nofault(&cs, s__ign, char, err_out); + if (cs == '\0') + return i; + for (j = 0; j < XATTR_SIZE_MAX; j++) { + __get_kernel_nofault(&cr, reject__ign + j, char, err_out); + if (cs == cr || cr == '\0') + break; + } + if (j == XATTR_SIZE_MAX) + return -E2BIG; + if (cr != '\0') + return i; + s__ign++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +static int __bpf_strnstr(const char *s1, const char *s2, size_t len, + bool ignore_case) +{ + char c1, c2; + int i, j; + + if (!copy_from_kernel_nofault_allowed(s1, 1) || + !copy_from_kernel_nofault_allowed(s2, 1)) { + return -ERANGE; + } + + guard(pagefault)(); + for (i = 0; i < XATTR_SIZE_MAX; i++) { + for (j = 0; i + j <= len && j < XATTR_SIZE_MAX; j++) { + __get_kernel_nofault(&c2, s2 + j, char, err_out); + if (c2 == '\0') + return i; + /* + * We allow reading an extra byte from s2 (note the + * `i + j <= len` above) to cover the case when s2 is + * a suffix of the first len chars of s1. + */ + if (i + j == len) + break; + __get_kernel_nofault(&c1, s1 + j, char, err_out); + + if (ignore_case) { + c1 = tolower(c1); + c2 = tolower(c2); + } + + if (c1 == '\0') + return -ENOENT; + if (c1 != c2) + break; + } + if (j == XATTR_SIZE_MAX) + return -E2BIG; + if (i + j == len) + return -ENOENT; + s1++; + } + return -E2BIG; +err_out: + return -EFAULT; +} + +/** + * bpf_strstr - Find the first substring in a string + * @s1__ign: The string to be searched + * @s2__ign: The string to search for + * + * Return: + * * >=0 - Index of the first character of the first occurrence of @s2__ign + * within @s1__ign + * * %-ENOENT - @s2__ign is not a substring of @s1__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign) +{ + return __bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX, false); +} + +/** + * bpf_strcasestr - Find the first substring in a string, ignoring the case of + * the characters + * @s1__ign: The string to be searched + * @s2__ign: The string to search for + * + * Return: + * * >=0 - Index of the first character of the first occurrence of @s2__ign + * within @s1__ign + * * %-ENOENT - @s2__ign is not a substring of @s1__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strcasestr(const char *s1__ign, const char *s2__ign) +{ + return __bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX, true); +} + +/** + * bpf_strnstr - Find the first substring in a length-limited string + * @s1__ign: The string to be searched + * @s2__ign: The string to search for + * @len: the maximum number of characters to search + * + * Return: + * * >=0 - Index of the first character of the first occurrence of @s2__ign + * within the first @len characters of @s1__ign + * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign, + size_t len) +{ + return __bpf_strnstr(s1__ign, s2__ign, len, false); +} + +/** + * bpf_strncasestr - Find the first substring in a length-limited string, + * ignoring the case of the characters + * @s1__ign: The string to be searched + * @s2__ign: The string to search for + * @len: the maximum number of characters to search + * + * Return: + * * >=0 - Index of the first character of the first occurrence of @s2__ign + * within the first @len characters of @s1__ign + * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign + * * %-EFAULT - Cannot read one of the strings + * * %-E2BIG - One of the strings is too large + * * %-ERANGE - One of the strings is outside of kernel address space + */ +__bpf_kfunc int bpf_strncasestr(const char *s1__ign, const char *s2__ign, + size_t len) +{ + return __bpf_strnstr(s1__ign, s2__ign, len, true); +} + +#ifdef CONFIG_KEYS +/** + * bpf_lookup_user_key - lookup a key by its serial + * @serial: key handle serial number + * @flags: lookup-specific flags + * + * Search a key with a given *serial* and the provided *flags*. + * If found, increment the reference count of the key by one, and + * return it in the bpf_key structure. + * + * The bpf_key structure must be passed to bpf_key_put() when done + * with it, so that the key reference count is decremented and the + * bpf_key structure is freed. + * + * Permission checks are deferred to the time the key is used by + * one of the available key-specific kfuncs. + * + * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested + * special keyring (e.g. session keyring), if it doesn't yet exist. + * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting + * for the key construction, and to retrieve uninstantiated keys (keys + * without data attached to them). + * + * Return: a bpf_key pointer with a valid key pointer if the key is found, a + * NULL pointer otherwise. + */ +__bpf_kfunc struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags) +{ + key_ref_t key_ref; + struct bpf_key *bkey; + + if (flags & ~KEY_LOOKUP_ALL) + return NULL; + + /* + * Permission check is deferred until the key is used, as the + * intent of the caller is unknown here. + */ + key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK); + if (IS_ERR(key_ref)) + return NULL; + + bkey = kmalloc(sizeof(*bkey), GFP_KERNEL); + if (!bkey) { + key_put(key_ref_to_ptr(key_ref)); + return NULL; + } + + bkey->key = key_ref_to_ptr(key_ref); + bkey->has_ref = true; + + return bkey; +} + +/** + * bpf_lookup_system_key - lookup a key by a system-defined ID + * @id: key ID + * + * Obtain a bpf_key structure with a key pointer set to the passed key ID. + * The key pointer is marked as invalid, to prevent bpf_key_put() from + * attempting to decrement the key reference count on that pointer. The key + * pointer set in such way is currently understood only by + * verify_pkcs7_signature(). + * + * Set *id* to one of the values defined in include/linux/verification.h: + * 0 for the primary keyring (immutable keyring of system keys); + * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring + * (where keys can be added only if they are vouched for by existing keys + * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform + * keyring (primarily used by the integrity subsystem to verify a kexec'ed + * kerned image and, possibly, the initramfs signature). + * + * Return: a bpf_key pointer with an invalid key pointer set from the + * pre-determined ID on success, a NULL pointer otherwise + */ +__bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id) +{ + struct bpf_key *bkey; + + if (system_keyring_id_check(id) < 0) + return NULL; + + bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC); + if (!bkey) + return NULL; + + bkey->key = (struct key *)(unsigned long)id; + bkey->has_ref = false; + + return bkey; +} + +/** + * bpf_key_put - decrement key reference count if key is valid and free bpf_key + * @bkey: bpf_key structure + * + * Decrement the reference count of the key inside *bkey*, if the pointer + * is valid, and free *bkey*. + */ +__bpf_kfunc void bpf_key_put(struct bpf_key *bkey) +{ + if (bkey->has_ref) + key_put(bkey->key); + + kfree(bkey); +} + +/** + * bpf_verify_pkcs7_signature - verify a PKCS#7 signature + * @data_p: data to verify + * @sig_p: signature of the data + * @trusted_keyring: keyring with keys trusted for signature verification + * + * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr* + * with keys in a keyring referenced by *trusted_keyring*. + * + * Return: 0 on success, a negative value on error. + */ +__bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p, + struct bpf_dynptr *sig_p, + struct bpf_key *trusted_keyring) +{ +#ifdef CONFIG_SYSTEM_DATA_VERIFICATION + struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p; + struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p; + const void *data, *sig; + u32 data_len, sig_len; + int ret; + + if (trusted_keyring->has_ref) { + /* + * Do the permission check deferred in bpf_lookup_user_key(). + * See bpf_lookup_user_key() for more details. + * + * A call to key_task_permission() here would be redundant, as + * it is already done by keyring_search() called by + * find_asymmetric_key(). + */ + ret = key_validate(trusted_keyring->key); + if (ret < 0) + return ret; + } + + data_len = __bpf_dynptr_size(data_ptr); + data = __bpf_dynptr_data(data_ptr, data_len); + sig_len = __bpf_dynptr_size(sig_ptr); + sig = __bpf_dynptr_data(sig_ptr, sig_len); + + return verify_pkcs7_signature(data, data_len, sig, sig_len, + trusted_keyring->key, + VERIFYING_BPF_SIGNATURE, NULL, + NULL); +#else + return -EOPNOTSUPP; +#endif /* CONFIG_SYSTEM_DATA_VERIFICATION */ +} +#endif /* CONFIG_KEYS */ + +typedef int (*bpf_task_work_callback_t)(struct bpf_map *map, void *key, void *value); + +enum bpf_task_work_state { + /* bpf_task_work is ready to be used */ + BPF_TW_STANDBY = 0, + /* irq work scheduling in progress */ + BPF_TW_PENDING, + /* task work scheduling in progress */ + BPF_TW_SCHEDULING, + /* task work is scheduled successfully */ + BPF_TW_SCHEDULED, + /* callback is running */ + BPF_TW_RUNNING, + /* associated BPF map value is deleted */ + BPF_TW_FREED, +}; + +struct bpf_task_work_ctx { + enum bpf_task_work_state state; + refcount_t refcnt; + struct callback_head work; + struct irq_work irq_work; + /* bpf_prog that schedules task work */ + struct bpf_prog *prog; + /* task for which callback is scheduled */ + struct task_struct *task; + /* the map and map value associated with this context */ + struct bpf_map *map; + void *map_val; + enum task_work_notify_mode mode; + bpf_task_work_callback_t callback_fn; + struct rcu_head rcu; +} __aligned(8); + +/* Actual type for struct bpf_task_work */ +struct bpf_task_work_kern { + struct bpf_task_work_ctx *ctx; +}; + +static void bpf_task_work_ctx_reset(struct bpf_task_work_ctx *ctx) +{ + if (ctx->prog) { + bpf_prog_put(ctx->prog); + ctx->prog = NULL; + } + if (ctx->task) { + bpf_task_release(ctx->task); + ctx->task = NULL; + } +} + +static bool bpf_task_work_ctx_tryget(struct bpf_task_work_ctx *ctx) +{ + return refcount_inc_not_zero(&ctx->refcnt); +} + +static void bpf_task_work_ctx_put(struct bpf_task_work_ctx *ctx) +{ + if (!refcount_dec_and_test(&ctx->refcnt)) + return; + + bpf_task_work_ctx_reset(ctx); + + /* bpf_mem_free expects migration to be disabled */ + migrate_disable(); + bpf_mem_free(&bpf_global_ma, ctx); + migrate_enable(); +} + +static void bpf_task_work_cancel(struct bpf_task_work_ctx *ctx) +{ + /* + * Scheduled task_work callback holds ctx ref, so if we successfully + * cancelled, we put that ref on callback's behalf. If we couldn't + * cancel, callback will inevitably run or has already completed + * running, and it would have taken care of its ctx ref itself. + */ + if (task_work_cancel(ctx->task, &ctx->work)) + bpf_task_work_ctx_put(ctx); +} + +static void bpf_task_work_callback(struct callback_head *cb) +{ + struct bpf_task_work_ctx *ctx = container_of(cb, struct bpf_task_work_ctx, work); + enum bpf_task_work_state state; + u32 idx; + void *key; + + /* Read lock is needed to protect ctx and map key/value access */ + guard(rcu_tasks_trace)(); + /* + * This callback may start running before bpf_task_work_irq() switched to + * SCHEDULED state, so handle both transition variants SCHEDULING|SCHEDULED -> RUNNING. + */ + state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_RUNNING); + if (state == BPF_TW_SCHEDULED) + state = cmpxchg(&ctx->state, BPF_TW_SCHEDULED, BPF_TW_RUNNING); + if (state == BPF_TW_FREED) { + bpf_task_work_ctx_put(ctx); + return; + } + + key = (void *)map_key_from_value(ctx->map, ctx->map_val, &idx); + + migrate_disable(); + ctx->callback_fn(ctx->map, key, ctx->map_val); + migrate_enable(); + + bpf_task_work_ctx_reset(ctx); + (void)cmpxchg(&ctx->state, BPF_TW_RUNNING, BPF_TW_STANDBY); + + bpf_task_work_ctx_put(ctx); +} + +static void bpf_task_work_irq(struct irq_work *irq_work) +{ + struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work); + enum bpf_task_work_state state; + int err; + + guard(rcu_tasks_trace)(); + + if (cmpxchg(&ctx->state, BPF_TW_PENDING, BPF_TW_SCHEDULING) != BPF_TW_PENDING) { + bpf_task_work_ctx_put(ctx); + return; + } + + err = task_work_add(ctx->task, &ctx->work, ctx->mode); + if (err) { + bpf_task_work_ctx_reset(ctx); + /* + * try to switch back to STANDBY for another task_work reuse, but we might have + * gone to FREED already, which is fine as we already cleaned up after ourselves + */ + (void)cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_STANDBY); + bpf_task_work_ctx_put(ctx); + return; + } + + /* + * It's technically possible for just scheduled task_work callback to + * complete running by now, going SCHEDULING -> RUNNING and then + * dropping its ctx refcount. Instead of capturing extra ref just to + * protected below ctx->state access, we rely on RCU protection to + * perform below SCHEDULING -> SCHEDULED attempt. + */ + state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_SCHEDULED); + if (state == BPF_TW_FREED) + bpf_task_work_cancel(ctx); /* clean up if we switched into FREED state */ +} + +static struct bpf_task_work_ctx *bpf_task_work_fetch_ctx(struct bpf_task_work *tw, + struct bpf_map *map) +{ + struct bpf_task_work_kern *twk = (void *)tw; + struct bpf_task_work_ctx *ctx, *old_ctx; + + ctx = READ_ONCE(twk->ctx); + if (ctx) + return ctx; + + ctx = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_task_work_ctx)); + if (!ctx) + return ERR_PTR(-ENOMEM); + + memset(ctx, 0, sizeof(*ctx)); + refcount_set(&ctx->refcnt, 1); /* map's own ref */ + ctx->state = BPF_TW_STANDBY; + + old_ctx = cmpxchg(&twk->ctx, NULL, ctx); + if (old_ctx) { + /* + * tw->ctx is set by concurrent BPF program, release allocated + * memory and try to reuse already set context. + */ + bpf_mem_free(&bpf_global_ma, ctx); + return old_ctx; + } + + return ctx; /* Success */ +} + +static struct bpf_task_work_ctx *bpf_task_work_acquire_ctx(struct bpf_task_work *tw, + struct bpf_map *map) +{ + struct bpf_task_work_ctx *ctx; + + ctx = bpf_task_work_fetch_ctx(tw, map); + if (IS_ERR(ctx)) + return ctx; + + /* try to get ref for task_work callback to hold */ + if (!bpf_task_work_ctx_tryget(ctx)) + return ERR_PTR(-EBUSY); + + if (cmpxchg(&ctx->state, BPF_TW_STANDBY, BPF_TW_PENDING) != BPF_TW_STANDBY) { + /* lost acquiring race or map_release_uref() stole it from us, put ref and bail */ + bpf_task_work_ctx_put(ctx); + return ERR_PTR(-EBUSY); + } + + /* + * If no process or bpffs is holding a reference to the map, no new callbacks should be + * scheduled. This does not address any race or correctness issue, but rather is a policy + * choice: dropping user references should stop everything. + */ + if (!atomic64_read(&map->usercnt)) { + /* drop ref we just got for task_work callback itself */ + bpf_task_work_ctx_put(ctx); + /* transfer map's ref into cancel_and_free() */ + bpf_task_work_cancel_and_free(tw); + return ERR_PTR(-EBUSY); + } + + return ctx; +} + +static int bpf_task_work_schedule(struct task_struct *task, struct bpf_task_work *tw, + struct bpf_map *map, bpf_task_work_callback_t callback_fn, + struct bpf_prog_aux *aux, enum task_work_notify_mode mode) +{ + struct bpf_prog *prog; + struct bpf_task_work_ctx *ctx; + int err; + + BTF_TYPE_EMIT(struct bpf_task_work); + + prog = bpf_prog_inc_not_zero(aux->prog); + if (IS_ERR(prog)) + return -EBADF; + task = bpf_task_acquire(task); + if (!task) { + err = -EBADF; + goto release_prog; + } + + ctx = bpf_task_work_acquire_ctx(tw, map); + if (IS_ERR(ctx)) { + err = PTR_ERR(ctx); + goto release_all; + } + + ctx->task = task; + ctx->callback_fn = callback_fn; + ctx->prog = prog; + ctx->mode = mode; + ctx->map = map; + ctx->map_val = (void *)tw - map->record->task_work_off; + init_task_work(&ctx->work, bpf_task_work_callback); + init_irq_work(&ctx->irq_work, bpf_task_work_irq); + + irq_work_queue(&ctx->irq_work); + return 0; + +release_all: + bpf_task_release(task); +release_prog: + bpf_prog_put(prog); + return err; +} + +/** + * bpf_task_work_schedule_signal_impl - Schedule BPF callback using task_work_add with TWA_SIGNAL + * mode + * @task: Task struct for which callback should be scheduled + * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping + * @map__map: bpf_map that embeds struct bpf_task_work in the values + * @callback: pointer to BPF subprogram to call + * @aux__prog: user should pass NULL + * + * Return: 0 if task work has been scheduled successfully, negative error code otherwise + */ +__bpf_kfunc int bpf_task_work_schedule_signal_impl(struct task_struct *task, + struct bpf_task_work *tw, void *map__map, + bpf_task_work_callback_t callback, + void *aux__prog) +{ + return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_SIGNAL); +} + +/** + * bpf_task_work_schedule_resume_impl - Schedule BPF callback using task_work_add with TWA_RESUME + * mode + * @task: Task struct for which callback should be scheduled + * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping + * @map__map: bpf_map that embeds struct bpf_task_work in the values + * @callback: pointer to BPF subprogram to call + * @aux__prog: user should pass NULL + * + * Return: 0 if task work has been scheduled successfully, negative error code otherwise + */ +__bpf_kfunc int bpf_task_work_schedule_resume_impl(struct task_struct *task, + struct bpf_task_work *tw, void *map__map, + bpf_task_work_callback_t callback, + void *aux__prog) +{ + return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_RESUME); +} + +static int make_file_dynptr(struct file *file, u32 flags, bool may_sleep, + struct bpf_dynptr_kern *ptr) +{ + struct bpf_dynptr_file_impl *state; + + /* flags is currently unsupported */ + if (flags) { + bpf_dynptr_set_null(ptr); + return -EINVAL; + } + + state = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_dynptr_file_impl)); + if (!state) { + bpf_dynptr_set_null(ptr); + return -ENOMEM; + } + state->offset = 0; + state->size = U64_MAX; /* Don't restrict size, as file may change anyways */ + freader_init_from_file(&state->freader, NULL, 0, file, may_sleep); + bpf_dynptr_init(ptr, state, BPF_DYNPTR_TYPE_FILE, 0, 0); + bpf_dynptr_set_rdonly(ptr); + return 0; +} + +__bpf_kfunc int bpf_dynptr_from_file(struct file *file, u32 flags, struct bpf_dynptr *ptr__uninit) +{ + return make_file_dynptr(file, flags, false, (struct bpf_dynptr_kern *)ptr__uninit); +} + +int bpf_dynptr_from_file_sleepable(struct file *file, u32 flags, struct bpf_dynptr *ptr__uninit) +{ + return make_file_dynptr(file, flags, true, (struct bpf_dynptr_kern *)ptr__uninit); +} + +__bpf_kfunc int bpf_dynptr_file_discard(struct bpf_dynptr *dynptr) +{ + struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)dynptr; + struct bpf_dynptr_file_impl *df = ptr->data; + + if (!df) + return 0; + + freader_cleanup(&df->freader); + bpf_mem_free(&bpf_global_ma, df); + bpf_dynptr_set_null(ptr); + return 0; +} + +__bpf_kfunc_end_defs(); + +static void bpf_task_work_cancel_scheduled(struct irq_work *irq_work) +{ + struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work); + + bpf_task_work_cancel(ctx); /* this might put task_work callback's ref */ + bpf_task_work_ctx_put(ctx); /* and here we put map's own ref that was transferred to us */ +} + +void bpf_task_work_cancel_and_free(void *val) +{ + struct bpf_task_work_kern *twk = val; + struct bpf_task_work_ctx *ctx; + enum bpf_task_work_state state; + + ctx = xchg(&twk->ctx, NULL); + if (!ctx) + return; + + state = xchg(&ctx->state, BPF_TW_FREED); + if (state == BPF_TW_SCHEDULED) { + /* run in irq_work to avoid locks in NMI */ + init_irq_work(&ctx->irq_work, bpf_task_work_cancel_scheduled); + irq_work_queue(&ctx->irq_work); + return; + } + + bpf_task_work_ctx_put(ctx); /* put bpf map's ref */ +} + +BTF_KFUNCS_START(generic_btf_ids) +#ifdef CONFIG_CRASH_DUMP +BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) +#endif +BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) +BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE) +BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU) +BTF_ID_FLAGS(func, bpf_list_push_front_impl) +BTF_ID_FLAGS(func, bpf_list_push_back_impl) +BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) +BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_rbtree_add_impl) +BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL) + +#ifdef CONFIG_CGROUPS +BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) +BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) +BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL) +#endif +BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_throw) +#ifdef CONFIG_BPF_EVENTS +BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS) +#endif +#ifdef CONFIG_KEYS +BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE) +#ifdef CONFIG_SYSTEM_DATA_VERIFICATION +BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE) +#endif +#endif +BTF_KFUNCS_END(generic_btf_ids) + +static const struct btf_kfunc_id_set generic_kfunc_set = { + .owner = THIS_MODULE, + .set = &generic_btf_ids, +}; + + +BTF_ID_LIST(generic_dtor_ids) +BTF_ID(struct, task_struct) +BTF_ID(func, bpf_task_release_dtor) +#ifdef CONFIG_CGROUPS +BTF_ID(struct, cgroup) +BTF_ID(func, bpf_cgroup_release_dtor) +#endif + +BTF_KFUNCS_START(common_btf_ids) +BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL) +BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL) +BTF_ID_FLAGS(func, bpf_rcu_read_lock) +BTF_ID_FLAGS(func, bpf_rcu_read_unlock) +BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) +BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) +BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU) +BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY) +#ifdef CONFIG_CGROUPS +BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY) +BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) +BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY) +#endif +BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED) +BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY) +BTF_ID_FLAGS(func, bpf_dynptr_adjust) +BTF_ID_FLAGS(func, bpf_dynptr_is_null) +BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) +BTF_ID_FLAGS(func, bpf_dynptr_size) +BTF_ID_FLAGS(func, bpf_dynptr_clone) +BTF_ID_FLAGS(func, bpf_dynptr_copy) +BTF_ID_FLAGS(func, bpf_dynptr_memset) +#ifdef CONFIG_NET +BTF_ID_FLAGS(func, bpf_modify_return_test_tp) +#endif +BTF_ID_FLAGS(func, bpf_wq_init) +BTF_ID_FLAGS(func, bpf_wq_set_callback_impl) +BTF_ID_FLAGS(func, bpf_wq_start) +BTF_ID_FLAGS(func, bpf_preempt_disable) +BTF_ID_FLAGS(func, bpf_preempt_enable) +BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW) +BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY) +BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_get_kmem_cache) +BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_local_irq_save) +BTF_ID_FLAGS(func, bpf_local_irq_restore) +#ifdef CONFIG_BPF_EVENTS +BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr) +BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr) +BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr) +BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr) +BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS) +#endif +#ifdef CONFIG_DMA_SHARED_BUFFER +BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE) +BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE) +#endif +BTF_ID_FLAGS(func, __bpf_trap) +BTF_ID_FLAGS(func, bpf_strcmp); +BTF_ID_FLAGS(func, bpf_strcasecmp); +BTF_ID_FLAGS(func, bpf_strchr); +BTF_ID_FLAGS(func, bpf_strchrnul); +BTF_ID_FLAGS(func, bpf_strnchr); +BTF_ID_FLAGS(func, bpf_strrchr); +BTF_ID_FLAGS(func, bpf_strlen); +BTF_ID_FLAGS(func, bpf_strnlen); +BTF_ID_FLAGS(func, bpf_strspn); +BTF_ID_FLAGS(func, bpf_strcspn); +BTF_ID_FLAGS(func, bpf_strstr); +BTF_ID_FLAGS(func, bpf_strcasestr); +BTF_ID_FLAGS(func, bpf_strnstr); +BTF_ID_FLAGS(func, bpf_strncasestr); +#if defined(CONFIG_BPF_LSM) && defined(CONFIG_CGROUPS) +BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU) +#endif +BTF_ID_FLAGS(func, bpf_stream_vprintk_impl, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_task_work_schedule_signal_impl, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_task_work_schedule_resume_impl, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_dynptr_from_file, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, bpf_dynptr_file_discard) +BTF_KFUNCS_END(common_btf_ids) + +static const struct btf_kfunc_id_set common_kfunc_set = { + .owner = THIS_MODULE, + .set = &common_btf_ids, +}; + +static int __init kfunc_init(void) +{ + int ret; + const struct btf_id_dtor_kfunc generic_dtors[] = { + { + .btf_id = generic_dtor_ids[0], + .kfunc_btf_id = generic_dtor_ids[1] + }, +#ifdef CONFIG_CGROUPS + { + .btf_id = generic_dtor_ids[2], + .kfunc_btf_id = generic_dtor_ids[3] + }, +#endif + }; + + ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set); + ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set); + ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, + ARRAY_SIZE(generic_dtors), + THIS_MODULE); + return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); +} + +late_initcall(kfunc_init); + +/* Get a pointer to dynptr data up to len bytes for read only access. If + * the dynptr doesn't have continuous data up to len bytes, return NULL. + */ +const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u64 len) +{ + const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr; + + return bpf_dynptr_slice(p, 0, NULL, len); +} + +/* Get a pointer to dynptr data up to len bytes for read write access. If + * the dynptr doesn't have continuous data up to len bytes, or the dynptr + * is read only, return NULL. + */ +void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u64 len) +{ + if (__bpf_dynptr_is_rdonly(ptr)) + return NULL; + return (void *)__bpf_dynptr_data(ptr, len); +} + +void bpf_map_free_internal_structs(struct bpf_map *map, void *val) +{ + if (btf_record_has_field(map->record, BPF_TIMER)) + bpf_obj_free_timer(map->record, val); + if (btf_record_has_field(map->record, BPF_WORKQUEUE)) + bpf_obj_free_workqueue(map->record, val); + if (btf_record_has_field(map->record, BPF_TASK_WORK)) + bpf_obj_free_task_work(map->record, val); +} diff --git a/kernel/bpf/inode.c b/kernel/bpf/inode.c new file mode 100644 index 000000000000..9f866a010dad --- /dev/null +++ b/kernel/bpf/inode.c @@ -0,0 +1,1105 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Minimal file system backend for holding eBPF maps and programs, + * used by bpf(2) object pinning. + * + * Authors: + * + * Daniel Borkmann <daniel@iogearbox.net> + */ + +#include <linux/init.h> +#include <linux/magic.h> +#include <linux/major.h> +#include <linux/mount.h> +#include <linux/namei.h> +#include <linux/fs.h> +#include <linux/fs_context.h> +#include <linux/fs_parser.h> +#include <linux/kdev_t.h> +#include <linux/filter.h> +#include <linux/bpf.h> +#include <linux/bpf_trace.h> +#include <linux/kstrtox.h> +#include "preload/bpf_preload.h" + +enum bpf_type { + BPF_TYPE_UNSPEC = 0, + BPF_TYPE_PROG, + BPF_TYPE_MAP, + BPF_TYPE_LINK, +}; + +static void *bpf_any_get(void *raw, enum bpf_type type) +{ + switch (type) { + case BPF_TYPE_PROG: + bpf_prog_inc(raw); + break; + case BPF_TYPE_MAP: + bpf_map_inc_with_uref(raw); + break; + case BPF_TYPE_LINK: + bpf_link_inc(raw); + break; + default: + WARN_ON_ONCE(1); + break; + } + + return raw; +} + +static void bpf_any_put(void *raw, enum bpf_type type) +{ + switch (type) { + case BPF_TYPE_PROG: + bpf_prog_put(raw); + break; + case BPF_TYPE_MAP: + bpf_map_put_with_uref(raw); + break; + case BPF_TYPE_LINK: + bpf_link_put(raw); + break; + default: + WARN_ON_ONCE(1); + break; + } +} + +static void *bpf_fd_probe_obj(u32 ufd, enum bpf_type *type) +{ + void *raw; + + raw = bpf_map_get_with_uref(ufd); + if (!IS_ERR(raw)) { + *type = BPF_TYPE_MAP; + return raw; + } + + raw = bpf_prog_get(ufd); + if (!IS_ERR(raw)) { + *type = BPF_TYPE_PROG; + return raw; + } + + raw = bpf_link_get_from_fd(ufd); + if (!IS_ERR(raw)) { + *type = BPF_TYPE_LINK; + return raw; + } + + return ERR_PTR(-EINVAL); +} + +static const struct inode_operations bpf_dir_iops; + +static const struct inode_operations bpf_prog_iops = { }; +static const struct inode_operations bpf_map_iops = { }; +static const struct inode_operations bpf_link_iops = { }; + +struct inode *bpf_get_inode(struct super_block *sb, + const struct inode *dir, + umode_t mode) +{ + struct inode *inode; + + switch (mode & S_IFMT) { + case S_IFDIR: + case S_IFREG: + case S_IFLNK: + break; + default: + return ERR_PTR(-EINVAL); + } + + inode = new_inode(sb); + if (!inode) + return ERR_PTR(-ENOSPC); + + inode->i_ino = get_next_ino(); + simple_inode_init_ts(inode); + + inode_init_owner(&nop_mnt_idmap, inode, dir, mode); + + return inode; +} + +static int bpf_inode_type(const struct inode *inode, enum bpf_type *type) +{ + *type = BPF_TYPE_UNSPEC; + if (inode->i_op == &bpf_prog_iops) + *type = BPF_TYPE_PROG; + else if (inode->i_op == &bpf_map_iops) + *type = BPF_TYPE_MAP; + else if (inode->i_op == &bpf_link_iops) + *type = BPF_TYPE_LINK; + else + return -EACCES; + + return 0; +} + +static void bpf_dentry_finalize(struct dentry *dentry, struct inode *inode, + struct inode *dir) +{ + d_make_persistent(dentry, inode); + + inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); +} + +static struct dentry *bpf_mkdir(struct mnt_idmap *idmap, struct inode *dir, + struct dentry *dentry, umode_t mode) +{ + struct inode *inode; + + inode = bpf_get_inode(dir->i_sb, dir, mode | S_IFDIR); + if (IS_ERR(inode)) + return ERR_CAST(inode); + + inode->i_op = &bpf_dir_iops; + inode->i_fop = &simple_dir_operations; + + inc_nlink(inode); + inc_nlink(dir); + + bpf_dentry_finalize(dentry, inode, dir); + return NULL; +} + +struct map_iter { + void *key; + bool done; +}; + +static struct map_iter *map_iter(struct seq_file *m) +{ + return m->private; +} + +static struct bpf_map *seq_file_to_map(struct seq_file *m) +{ + return file_inode(m->file)->i_private; +} + +static void map_iter_free(struct map_iter *iter) +{ + if (iter) { + kfree(iter->key); + kfree(iter); + } +} + +static struct map_iter *map_iter_alloc(struct bpf_map *map) +{ + struct map_iter *iter; + + iter = kzalloc(sizeof(*iter), GFP_KERNEL | __GFP_NOWARN); + if (!iter) + goto error; + + iter->key = kzalloc(map->key_size, GFP_KERNEL | __GFP_NOWARN); + if (!iter->key) + goto error; + + return iter; + +error: + map_iter_free(iter); + return NULL; +} + +static void *map_seq_next(struct seq_file *m, void *v, loff_t *pos) +{ + struct bpf_map *map = seq_file_to_map(m); + void *key = map_iter(m)->key; + void *prev_key; + + (*pos)++; + if (map_iter(m)->done) + return NULL; + + if (unlikely(v == SEQ_START_TOKEN)) + prev_key = NULL; + else + prev_key = key; + + rcu_read_lock(); + if (map->ops->map_get_next_key(map, prev_key, key)) { + map_iter(m)->done = true; + key = NULL; + } + rcu_read_unlock(); + return key; +} + +static void *map_seq_start(struct seq_file *m, loff_t *pos) +{ + if (map_iter(m)->done) + return NULL; + + return *pos ? map_iter(m)->key : SEQ_START_TOKEN; +} + +static void map_seq_stop(struct seq_file *m, void *v) +{ +} + +static int map_seq_show(struct seq_file *m, void *v) +{ + struct bpf_map *map = seq_file_to_map(m); + void *key = map_iter(m)->key; + + if (unlikely(v == SEQ_START_TOKEN)) { + seq_puts(m, "# WARNING!! The output is for debug purpose only\n"); + seq_puts(m, "# WARNING!! The output format will change\n"); + } else { + map->ops->map_seq_show_elem(map, key, m); + } + + return 0; +} + +static const struct seq_operations bpffs_map_seq_ops = { + .start = map_seq_start, + .next = map_seq_next, + .show = map_seq_show, + .stop = map_seq_stop, +}; + +static int bpffs_map_open(struct inode *inode, struct file *file) +{ + struct bpf_map *map = inode->i_private; + struct map_iter *iter; + struct seq_file *m; + int err; + + iter = map_iter_alloc(map); + if (!iter) + return -ENOMEM; + + err = seq_open(file, &bpffs_map_seq_ops); + if (err) { + map_iter_free(iter); + return err; + } + + m = file->private_data; + m->private = iter; + + return 0; +} + +static int bpffs_map_release(struct inode *inode, struct file *file) +{ + struct seq_file *m = file->private_data; + + map_iter_free(map_iter(m)); + + return seq_release(inode, file); +} + +/* bpffs_map_fops should only implement the basic + * read operation for a BPF map. The purpose is to + * provide a simple user intuitive way to do + * "cat bpffs/pathto/a-pinned-map". + * + * Other operations (e.g. write, lookup...) should be realized by + * the userspace tools (e.g. bpftool) through the + * BPF_OBJ_GET_INFO_BY_FD and the map's lookup/update + * interface. + */ +static const struct file_operations bpffs_map_fops = { + .open = bpffs_map_open, + .read = seq_read, + .release = bpffs_map_release, +}; + +static int bpffs_obj_open(struct inode *inode, struct file *file) +{ + return -EIO; +} + +static const struct file_operations bpffs_obj_fops = { + .open = bpffs_obj_open, +}; + +static int bpf_mkobj_ops(struct dentry *dentry, umode_t mode, void *raw, + const struct inode_operations *iops, + const struct file_operations *fops) +{ + struct inode *dir = dentry->d_parent->d_inode; + struct inode *inode = bpf_get_inode(dir->i_sb, dir, mode); + if (IS_ERR(inode)) + return PTR_ERR(inode); + + inode->i_op = iops; + inode->i_fop = fops; + inode->i_private = raw; + + bpf_dentry_finalize(dentry, inode, dir); + return 0; +} + +static int bpf_mkprog(struct dentry *dentry, umode_t mode, void *arg) +{ + return bpf_mkobj_ops(dentry, mode, arg, &bpf_prog_iops, + &bpffs_obj_fops); +} + +static int bpf_mkmap(struct dentry *dentry, umode_t mode, void *arg) +{ + struct bpf_map *map = arg; + + return bpf_mkobj_ops(dentry, mode, arg, &bpf_map_iops, + bpf_map_support_seq_show(map) ? + &bpffs_map_fops : &bpffs_obj_fops); +} + +static int bpf_mklink(struct dentry *dentry, umode_t mode, void *arg) +{ + struct bpf_link *link = arg; + + return bpf_mkobj_ops(dentry, mode, arg, &bpf_link_iops, + bpf_link_is_iter(link) ? + &bpf_iter_fops : &bpffs_obj_fops); +} + +static struct dentry * +bpf_lookup(struct inode *dir, struct dentry *dentry, unsigned flags) +{ + /* Dots in names (e.g. "/sys/fs/bpf/foo.bar") are reserved for future + * extensions. That allows popoulate_bpffs() create special files. + */ + if ((dir->i_mode & S_IALLUGO) && + strchr(dentry->d_name.name, '.')) + return ERR_PTR(-EPERM); + + return simple_lookup(dir, dentry, flags); +} + +static int bpf_symlink(struct mnt_idmap *idmap, struct inode *dir, + struct dentry *dentry, const char *target) +{ + char *link = kstrdup(target, GFP_USER | __GFP_NOWARN); + struct inode *inode; + + if (!link) + return -ENOMEM; + + inode = bpf_get_inode(dir->i_sb, dir, S_IRWXUGO | S_IFLNK); + if (IS_ERR(inode)) { + kfree(link); + return PTR_ERR(inode); + } + + inode->i_op = &simple_symlink_inode_operations; + inode->i_link = link; + + bpf_dentry_finalize(dentry, inode, dir); + return 0; +} + +static const struct inode_operations bpf_dir_iops = { + .lookup = bpf_lookup, + .mkdir = bpf_mkdir, + .symlink = bpf_symlink, + .rmdir = simple_rmdir, + .rename = simple_rename, + .link = simple_link, + .unlink = simple_unlink, +}; + +/* pin iterator link into bpffs */ +static int bpf_iter_link_pin_kernel(struct dentry *parent, + const char *name, struct bpf_link *link) +{ + umode_t mode = S_IFREG | S_IRUSR; + struct dentry *dentry; + int ret; + + dentry = simple_start_creating(parent, name); + if (IS_ERR(dentry)) + return PTR_ERR(dentry); + ret = bpf_mkobj_ops(dentry, mode, link, &bpf_link_iops, + &bpf_iter_fops); + simple_done_creating(dentry); + return ret; +} + +static int bpf_obj_do_pin(int path_fd, const char __user *pathname, void *raw, + enum bpf_type type) +{ + struct dentry *dentry; + struct inode *dir; + struct path path; + umode_t mode; + int ret; + + dentry = start_creating_user_path(path_fd, pathname, &path, 0); + if (IS_ERR(dentry)) + return PTR_ERR(dentry); + + dir = d_inode(path.dentry); + if (dir->i_op != &bpf_dir_iops) { + ret = -EPERM; + goto out; + } + + mode = S_IFREG | ((S_IRUSR | S_IWUSR) & ~current_umask()); + ret = security_path_mknod(&path, dentry, mode, 0); + if (ret) + goto out; + + switch (type) { + case BPF_TYPE_PROG: + ret = vfs_mkobj(dentry, mode, bpf_mkprog, raw); + break; + case BPF_TYPE_MAP: + ret = vfs_mkobj(dentry, mode, bpf_mkmap, raw); + break; + case BPF_TYPE_LINK: + ret = vfs_mkobj(dentry, mode, bpf_mklink, raw); + break; + default: + ret = -EPERM; + } +out: + end_creating_path(&path, dentry); + return ret; +} + +int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname) +{ + enum bpf_type type; + void *raw; + int ret; + + raw = bpf_fd_probe_obj(ufd, &type); + if (IS_ERR(raw)) + return PTR_ERR(raw); + + ret = bpf_obj_do_pin(path_fd, pathname, raw, type); + if (ret != 0) + bpf_any_put(raw, type); + + return ret; +} + +static void *bpf_obj_do_get(int path_fd, const char __user *pathname, + enum bpf_type *type, int flags) +{ + struct inode *inode; + struct path path; + void *raw; + int ret; + + ret = user_path_at(path_fd, pathname, LOOKUP_FOLLOW, &path); + if (ret) + return ERR_PTR(ret); + + inode = d_backing_inode(path.dentry); + ret = path_permission(&path, ACC_MODE(flags)); + if (ret) + goto out; + + ret = bpf_inode_type(inode, type); + if (ret) + goto out; + + raw = bpf_any_get(inode->i_private, *type); + if (!IS_ERR(raw)) + touch_atime(&path); + + path_put(&path); + return raw; +out: + path_put(&path); + return ERR_PTR(ret); +} + +int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags) +{ + enum bpf_type type = BPF_TYPE_UNSPEC; + int f_flags; + void *raw; + int ret; + + f_flags = bpf_get_file_flag(flags); + if (f_flags < 0) + return f_flags; + + raw = bpf_obj_do_get(path_fd, pathname, &type, f_flags); + if (IS_ERR(raw)) + return PTR_ERR(raw); + + if (type == BPF_TYPE_PROG) + ret = bpf_prog_new_fd(raw); + else if (type == BPF_TYPE_MAP) + ret = bpf_map_new_fd(raw, f_flags); + else if (type == BPF_TYPE_LINK) + ret = (f_flags != O_RDWR) ? -EINVAL : bpf_link_new_fd(raw); + else + return -ENOENT; + + if (ret < 0) + bpf_any_put(raw, type); + return ret; +} + +static struct bpf_prog *__get_prog_inode(struct inode *inode, enum bpf_prog_type type) +{ + struct bpf_prog *prog; + int ret = inode_permission(&nop_mnt_idmap, inode, MAY_READ); + if (ret) + return ERR_PTR(ret); + + if (inode->i_op == &bpf_map_iops) + return ERR_PTR(-EINVAL); + if (inode->i_op == &bpf_link_iops) + return ERR_PTR(-EINVAL); + if (inode->i_op != &bpf_prog_iops) + return ERR_PTR(-EACCES); + + prog = inode->i_private; + + ret = security_bpf_prog(prog); + if (ret < 0) + return ERR_PTR(ret); + + if (!bpf_prog_get_ok(prog, &type, false)) + return ERR_PTR(-EINVAL); + + bpf_prog_inc(prog); + return prog; +} + +struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type) +{ + struct bpf_prog *prog; + struct path path; + int ret = kern_path(name, LOOKUP_FOLLOW, &path); + if (ret) + return ERR_PTR(ret); + prog = __get_prog_inode(d_backing_inode(path.dentry), type); + if (!IS_ERR(prog)) + touch_atime(&path); + path_put(&path); + return prog; +} +EXPORT_SYMBOL(bpf_prog_get_type_path); + +struct bpffs_btf_enums { + const struct btf *btf; + const struct btf_type *cmd_t; + const struct btf_type *map_t; + const struct btf_type *prog_t; + const struct btf_type *attach_t; +}; + +static int find_bpffs_btf_enums(struct bpffs_btf_enums *info) +{ + const struct btf *btf; + const struct btf_type *t; + const char *name; + int i, n; + + memset(info, 0, sizeof(*info)); + + btf = bpf_get_btf_vmlinux(); + if (IS_ERR(btf)) + return PTR_ERR(btf); + if (!btf) + return -ENOENT; + + info->btf = btf; + + for (i = 1, n = btf_nr_types(btf); i < n; i++) { + t = btf_type_by_id(btf, i); + if (!btf_type_is_enum(t)) + continue; + + name = btf_name_by_offset(btf, t->name_off); + if (!name) + continue; + + if (strcmp(name, "bpf_cmd") == 0) + info->cmd_t = t; + else if (strcmp(name, "bpf_map_type") == 0) + info->map_t = t; + else if (strcmp(name, "bpf_prog_type") == 0) + info->prog_t = t; + else if (strcmp(name, "bpf_attach_type") == 0) + info->attach_t = t; + else + continue; + + if (info->cmd_t && info->map_t && info->prog_t && info->attach_t) + return 0; + } + + return -ESRCH; +} + +static bool find_btf_enum_const(const struct btf *btf, const struct btf_type *enum_t, + const char *prefix, const char *str, int *value) +{ + const struct btf_enum *e; + const char *name; + int i, n, pfx_len = strlen(prefix); + + *value = 0; + + if (!btf || !enum_t) + return false; + + for (i = 0, n = btf_vlen(enum_t); i < n; i++) { + e = &btf_enum(enum_t)[i]; + + name = btf_name_by_offset(btf, e->name_off); + if (!name || strncasecmp(name, prefix, pfx_len) != 0) + continue; + + /* match symbolic name case insensitive and ignoring prefix */ + if (strcasecmp(name + pfx_len, str) == 0) { + *value = e->val; + return true; + } + } + + return false; +} + +static void seq_print_delegate_opts(struct seq_file *m, + const char *opt_name, + const struct btf *btf, + const struct btf_type *enum_t, + const char *prefix, + u64 delegate_msk, u64 any_msk) +{ + const struct btf_enum *e; + bool first = true; + const char *name; + u64 msk; + int i, n, pfx_len = strlen(prefix); + + delegate_msk &= any_msk; /* clear unknown bits */ + + if (delegate_msk == 0) + return; + + seq_printf(m, ",%s", opt_name); + if (delegate_msk == any_msk) { + seq_printf(m, "=any"); + return; + } + + if (btf && enum_t) { + for (i = 0, n = btf_vlen(enum_t); i < n; i++) { + e = &btf_enum(enum_t)[i]; + name = btf_name_by_offset(btf, e->name_off); + if (!name || strncasecmp(name, prefix, pfx_len) != 0) + continue; + msk = 1ULL << e->val; + if (delegate_msk & msk) { + /* emit lower-case name without prefix */ + seq_putc(m, first ? '=' : ':'); + name += pfx_len; + while (*name) { + seq_putc(m, tolower(*name)); + name++; + } + + delegate_msk &= ~msk; + first = false; + } + } + } + if (delegate_msk) + seq_printf(m, "%c0x%llx", first ? '=' : ':', delegate_msk); +} + +/* + * Display the mount options in /proc/mounts. + */ +static int bpf_show_options(struct seq_file *m, struct dentry *root) +{ + struct inode *inode = d_inode(root); + umode_t mode = inode->i_mode & S_IALLUGO & ~S_ISVTX; + struct bpf_mount_opts *opts = root->d_sb->s_fs_info; + u64 mask; + + if (!uid_eq(inode->i_uid, GLOBAL_ROOT_UID)) + seq_printf(m, ",uid=%u", + from_kuid_munged(&init_user_ns, inode->i_uid)); + if (!gid_eq(inode->i_gid, GLOBAL_ROOT_GID)) + seq_printf(m, ",gid=%u", + from_kgid_munged(&init_user_ns, inode->i_gid)); + if (mode != S_IRWXUGO) + seq_printf(m, ",mode=%o", mode); + + if (opts->delegate_cmds || opts->delegate_maps || + opts->delegate_progs || opts->delegate_attachs) { + struct bpffs_btf_enums info; + + /* ignore errors, fallback to hex */ + (void)find_bpffs_btf_enums(&info); + + mask = (1ULL << __MAX_BPF_CMD) - 1; + seq_print_delegate_opts(m, "delegate_cmds", + info.btf, info.cmd_t, "BPF_", + opts->delegate_cmds, mask); + + mask = (1ULL << __MAX_BPF_MAP_TYPE) - 1; + seq_print_delegate_opts(m, "delegate_maps", + info.btf, info.map_t, "BPF_MAP_TYPE_", + opts->delegate_maps, mask); + + mask = (1ULL << __MAX_BPF_PROG_TYPE) - 1; + seq_print_delegate_opts(m, "delegate_progs", + info.btf, info.prog_t, "BPF_PROG_TYPE_", + opts->delegate_progs, mask); + + mask = (1ULL << __MAX_BPF_ATTACH_TYPE) - 1; + seq_print_delegate_opts(m, "delegate_attachs", + info.btf, info.attach_t, "BPF_", + opts->delegate_attachs, mask); + } + + return 0; +} + +static void bpf_destroy_inode(struct inode *inode) +{ + enum bpf_type type; + + if (S_ISLNK(inode->i_mode)) + kfree(inode->i_link); + if (!bpf_inode_type(inode, &type)) + bpf_any_put(inode->i_private, type); + free_inode_nonrcu(inode); +} + +const struct super_operations bpf_super_ops = { + .statfs = simple_statfs, + .drop_inode = inode_just_drop, + .show_options = bpf_show_options, + .destroy_inode = bpf_destroy_inode, +}; + +enum { + OPT_UID, + OPT_GID, + OPT_MODE, + OPT_DELEGATE_CMDS, + OPT_DELEGATE_MAPS, + OPT_DELEGATE_PROGS, + OPT_DELEGATE_ATTACHS, +}; + +static const struct fs_parameter_spec bpf_fs_parameters[] = { + fsparam_u32 ("uid", OPT_UID), + fsparam_u32 ("gid", OPT_GID), + fsparam_u32oct ("mode", OPT_MODE), + fsparam_string ("delegate_cmds", OPT_DELEGATE_CMDS), + fsparam_string ("delegate_maps", OPT_DELEGATE_MAPS), + fsparam_string ("delegate_progs", OPT_DELEGATE_PROGS), + fsparam_string ("delegate_attachs", OPT_DELEGATE_ATTACHS), + {} +}; + +static int bpf_parse_param(struct fs_context *fc, struct fs_parameter *param) +{ + struct bpf_mount_opts *opts = fc->s_fs_info; + struct fs_parse_result result; + kuid_t uid; + kgid_t gid; + int opt, err; + + opt = fs_parse(fc, bpf_fs_parameters, param, &result); + if (opt < 0) { + /* We might like to report bad mount options here, but + * traditionally we've ignored all mount options, so we'd + * better continue to ignore non-existing options for bpf. + */ + if (opt == -ENOPARAM) { + opt = vfs_parse_fs_param_source(fc, param); + if (opt != -ENOPARAM) + return opt; + + return 0; + } + + if (opt < 0) + return opt; + } + + switch (opt) { + case OPT_UID: + uid = make_kuid(current_user_ns(), result.uint_32); + if (!uid_valid(uid)) + goto bad_value; + + /* + * The requested uid must be representable in the + * filesystem's idmapping. + */ + if (!kuid_has_mapping(fc->user_ns, uid)) + goto bad_value; + + opts->uid = uid; + break; + case OPT_GID: + gid = make_kgid(current_user_ns(), result.uint_32); + if (!gid_valid(gid)) + goto bad_value; + + /* + * The requested gid must be representable in the + * filesystem's idmapping. + */ + if (!kgid_has_mapping(fc->user_ns, gid)) + goto bad_value; + + opts->gid = gid; + break; + case OPT_MODE: + opts->mode = result.uint_32 & S_IALLUGO; + break; + case OPT_DELEGATE_CMDS: + case OPT_DELEGATE_MAPS: + case OPT_DELEGATE_PROGS: + case OPT_DELEGATE_ATTACHS: { + struct bpffs_btf_enums info; + const struct btf_type *enum_t; + const char *enum_pfx; + u64 *delegate_msk, msk = 0; + char *p, *str; + int val; + + /* ignore errors, fallback to hex */ + (void)find_bpffs_btf_enums(&info); + + switch (opt) { + case OPT_DELEGATE_CMDS: + delegate_msk = &opts->delegate_cmds; + enum_t = info.cmd_t; + enum_pfx = "BPF_"; + break; + case OPT_DELEGATE_MAPS: + delegate_msk = &opts->delegate_maps; + enum_t = info.map_t; + enum_pfx = "BPF_MAP_TYPE_"; + break; + case OPT_DELEGATE_PROGS: + delegate_msk = &opts->delegate_progs; + enum_t = info.prog_t; + enum_pfx = "BPF_PROG_TYPE_"; + break; + case OPT_DELEGATE_ATTACHS: + delegate_msk = &opts->delegate_attachs; + enum_t = info.attach_t; + enum_pfx = "BPF_"; + break; + default: + return -EINVAL; + } + + str = param->string; + while ((p = strsep(&str, ":"))) { + if (strcmp(p, "any") == 0) { + msk |= ~0ULL; + } else if (find_btf_enum_const(info.btf, enum_t, enum_pfx, p, &val)) { + msk |= 1ULL << val; + } else { + err = kstrtou64(p, 0, &msk); + if (err) + return err; + } + } + + /* Setting delegation mount options requires privileges */ + if (msk && !capable(CAP_SYS_ADMIN)) + return -EPERM; + + *delegate_msk |= msk; + break; + } + default: + /* ignore unknown mount options */ + break; + } + + return 0; +bad_value: + return invalfc(fc, "Bad value for '%s'", param->key); +} + +struct bpf_preload_ops *bpf_preload_ops; +EXPORT_SYMBOL_GPL(bpf_preload_ops); + +static bool bpf_preload_mod_get(void) +{ + /* If bpf_preload.ko wasn't loaded earlier then load it now. + * When bpf_preload is built into vmlinux the module's __init + * function will populate it. + */ + if (!bpf_preload_ops) { + request_module("bpf_preload"); + if (!bpf_preload_ops) + return false; + } + /* And grab the reference, so the module doesn't disappear while the + * kernel is interacting with the kernel module and its UMD. + */ + if (!try_module_get(bpf_preload_ops->owner)) { + pr_err("bpf_preload module get failed.\n"); + return false; + } + return true; +} + +static void bpf_preload_mod_put(void) +{ + if (bpf_preload_ops) + /* now user can "rmmod bpf_preload" if necessary */ + module_put(bpf_preload_ops->owner); +} + +static DEFINE_MUTEX(bpf_preload_lock); + +static int populate_bpffs(struct dentry *parent) +{ + struct bpf_preload_info objs[BPF_PRELOAD_LINKS] = {}; + int err = 0, i; + + /* grab the mutex to make sure the kernel interactions with bpf_preload + * are serialized + */ + mutex_lock(&bpf_preload_lock); + + /* if bpf_preload.ko wasn't built into vmlinux then load it */ + if (!bpf_preload_mod_get()) + goto out; + + err = bpf_preload_ops->preload(objs); + if (err) + goto out_put; + for (i = 0; i < BPF_PRELOAD_LINKS; i++) { + bpf_link_inc(objs[i].link); + err = bpf_iter_link_pin_kernel(parent, + objs[i].link_name, objs[i].link); + if (err) { + bpf_link_put(objs[i].link); + goto out_put; + } + } +out_put: + bpf_preload_mod_put(); +out: + mutex_unlock(&bpf_preload_lock); + return err; +} + +static int bpf_fill_super(struct super_block *sb, struct fs_context *fc) +{ + static const struct tree_descr bpf_rfiles[] = { { "" } }; + struct bpf_mount_opts *opts = sb->s_fs_info; + struct inode *inode; + int ret; + + /* Mounting an instance of BPF FS requires privileges */ + if (fc->user_ns != &init_user_ns && !capable(CAP_SYS_ADMIN)) + return -EPERM; + + ret = simple_fill_super(sb, BPF_FS_MAGIC, bpf_rfiles); + if (ret) + return ret; + + sb->s_op = &bpf_super_ops; + + inode = sb->s_root->d_inode; + inode->i_uid = opts->uid; + inode->i_gid = opts->gid; + inode->i_op = &bpf_dir_iops; + inode->i_mode &= ~S_IALLUGO; + populate_bpffs(sb->s_root); + inode->i_mode |= S_ISVTX | opts->mode; + return 0; +} + +static int bpf_get_tree(struct fs_context *fc) +{ + return get_tree_nodev(fc, bpf_fill_super); +} + +static void bpf_free_fc(struct fs_context *fc) +{ + kfree(fc->s_fs_info); +} + +static const struct fs_context_operations bpf_context_ops = { + .free = bpf_free_fc, + .parse_param = bpf_parse_param, + .get_tree = bpf_get_tree, +}; + +/* + * Set up the filesystem mount context. + */ +static int bpf_init_fs_context(struct fs_context *fc) +{ + struct bpf_mount_opts *opts; + + opts = kzalloc(sizeof(struct bpf_mount_opts), GFP_KERNEL); + if (!opts) + return -ENOMEM; + + opts->mode = S_IRWXUGO; + opts->uid = current_fsuid(); + opts->gid = current_fsgid(); + + /* start out with no BPF token delegation enabled */ + opts->delegate_cmds = 0; + opts->delegate_maps = 0; + opts->delegate_progs = 0; + opts->delegate_attachs = 0; + + fc->s_fs_info = opts; + fc->ops = &bpf_context_ops; + return 0; +} + +static void bpf_kill_super(struct super_block *sb) +{ + struct bpf_mount_opts *opts = sb->s_fs_info; + + kill_anon_super(sb); + kfree(opts); +} + +static struct file_system_type bpf_fs_type = { + .owner = THIS_MODULE, + .name = "bpf", + .init_fs_context = bpf_init_fs_context, + .parameters = bpf_fs_parameters, + .kill_sb = bpf_kill_super, + .fs_flags = FS_USERNS_MOUNT, +}; + +static int __init bpf_init(void) +{ + int ret; + + ret = sysfs_create_mount_point(fs_kobj, "bpf"); + if (ret) + return ret; + + ret = register_filesystem(&bpf_fs_type); + if (ret) + sysfs_remove_mount_point(fs_kobj, "bpf"); + + return ret; +} +fs_initcall(bpf_init); diff --git a/kernel/bpf/kmem_cache_iter.c b/kernel/bpf/kmem_cache_iter.c new file mode 100644 index 000000000000..3ae2158d767f --- /dev/null +++ b/kernel/bpf/kmem_cache_iter.c @@ -0,0 +1,238 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2024 Google */ +#include <linux/bpf.h> +#include <linux/btf_ids.h> +#include <linux/slab.h> +#include <linux/kernel.h> +#include <linux/seq_file.h> + +#include "../../mm/slab.h" /* kmem_cache, slab_caches and slab_mutex */ + +/* open-coded version */ +struct bpf_iter_kmem_cache { + __u64 __opaque[1]; +} __attribute__((aligned(8))); + +struct bpf_iter_kmem_cache_kern { + struct kmem_cache *pos; +} __attribute__((aligned(8))); + +#define KMEM_CACHE_POS_START ((void *)1L) + +__bpf_kfunc_start_defs(); + +__bpf_kfunc int bpf_iter_kmem_cache_new(struct bpf_iter_kmem_cache *it) +{ + struct bpf_iter_kmem_cache_kern *kit = (void *)it; + + BUILD_BUG_ON(sizeof(*kit) > sizeof(*it)); + BUILD_BUG_ON(__alignof__(*kit) != __alignof__(*it)); + + kit->pos = KMEM_CACHE_POS_START; + return 0; +} + +__bpf_kfunc struct kmem_cache *bpf_iter_kmem_cache_next(struct bpf_iter_kmem_cache *it) +{ + struct bpf_iter_kmem_cache_kern *kit = (void *)it; + struct kmem_cache *prev = kit->pos; + struct kmem_cache *next; + bool destroy = false; + + if (!prev) + return NULL; + + mutex_lock(&slab_mutex); + + if (list_empty(&slab_caches)) { + mutex_unlock(&slab_mutex); + return NULL; + } + + if (prev == KMEM_CACHE_POS_START) + next = list_first_entry(&slab_caches, struct kmem_cache, list); + else if (list_last_entry(&slab_caches, struct kmem_cache, list) == prev) + next = NULL; + else + next = list_next_entry(prev, list); + + /* boot_caches have negative refcount, don't touch them */ + if (next && next->refcount > 0) + next->refcount++; + + /* Skip kmem_cache_destroy() for active entries */ + if (prev && prev != KMEM_CACHE_POS_START) { + if (prev->refcount > 1) + prev->refcount--; + else if (prev->refcount == 1) + destroy = true; + } + + mutex_unlock(&slab_mutex); + + if (destroy) + kmem_cache_destroy(prev); + + kit->pos = next; + return next; +} + +__bpf_kfunc void bpf_iter_kmem_cache_destroy(struct bpf_iter_kmem_cache *it) +{ + struct bpf_iter_kmem_cache_kern *kit = (void *)it; + struct kmem_cache *s = kit->pos; + bool destroy = false; + + if (s == NULL || s == KMEM_CACHE_POS_START) + return; + + mutex_lock(&slab_mutex); + + /* Skip kmem_cache_destroy() for active entries */ + if (s->refcount > 1) + s->refcount--; + else if (s->refcount == 1) + destroy = true; + + mutex_unlock(&slab_mutex); + + if (destroy) + kmem_cache_destroy(s); +} + +__bpf_kfunc_end_defs(); + +struct bpf_iter__kmem_cache { + __bpf_md_ptr(struct bpf_iter_meta *, meta); + __bpf_md_ptr(struct kmem_cache *, s); +}; + +union kmem_cache_iter_priv { + struct bpf_iter_kmem_cache it; + struct bpf_iter_kmem_cache_kern kit; +}; + +static void *kmem_cache_iter_seq_start(struct seq_file *seq, loff_t *pos) +{ + loff_t cnt = 0; + bool found = false; + struct kmem_cache *s; + union kmem_cache_iter_priv *p = seq->private; + + mutex_lock(&slab_mutex); + + /* Find an entry at the given position in the slab_caches list instead + * of keeping a reference (of the last visited entry, if any) out of + * slab_mutex. It might miss something if one is deleted in the middle + * while it releases the lock. But it should be rare and there's not + * much we can do about it. + */ + list_for_each_entry(s, &slab_caches, list) { + if (cnt == *pos) { + /* Make sure this entry remains in the list by getting + * a new reference count. Note that boot_cache entries + * have a negative refcount, so don't touch them. + */ + if (s->refcount > 0) + s->refcount++; + found = true; + break; + } + cnt++; + } + mutex_unlock(&slab_mutex); + + if (!found) + s = NULL; + + p->kit.pos = s; + return s; +} + +static void kmem_cache_iter_seq_stop(struct seq_file *seq, void *v) +{ + struct bpf_iter_meta meta; + struct bpf_iter__kmem_cache ctx = { + .meta = &meta, + .s = v, + }; + union kmem_cache_iter_priv *p = seq->private; + struct bpf_prog *prog; + + meta.seq = seq; + prog = bpf_iter_get_info(&meta, true); + if (prog && !ctx.s) + bpf_iter_run_prog(prog, &ctx); + + bpf_iter_kmem_cache_destroy(&p->it); +} + +static void *kmem_cache_iter_seq_next(struct seq_file *seq, void *v, loff_t *pos) +{ + union kmem_cache_iter_priv *p = seq->private; + + ++*pos; + + return bpf_iter_kmem_cache_next(&p->it); +} + +static int kmem_cache_iter_seq_show(struct seq_file *seq, void *v) +{ + struct bpf_iter_meta meta; + struct bpf_iter__kmem_cache ctx = { + .meta = &meta, + .s = v, + }; + struct bpf_prog *prog; + int ret = 0; + + meta.seq = seq; + prog = bpf_iter_get_info(&meta, false); + if (prog) + ret = bpf_iter_run_prog(prog, &ctx); + + return ret; +} + +static const struct seq_operations kmem_cache_iter_seq_ops = { + .start = kmem_cache_iter_seq_start, + .next = kmem_cache_iter_seq_next, + .stop = kmem_cache_iter_seq_stop, + .show = kmem_cache_iter_seq_show, +}; + +BTF_ID_LIST_GLOBAL_SINGLE(bpf_kmem_cache_btf_id, struct, kmem_cache) + +static const struct bpf_iter_seq_info kmem_cache_iter_seq_info = { + .seq_ops = &kmem_cache_iter_seq_ops, + .seq_priv_size = sizeof(union kmem_cache_iter_priv), +}; + +static void bpf_iter_kmem_cache_show_fdinfo(const struct bpf_iter_aux_info *aux, + struct seq_file *seq) +{ + seq_puts(seq, "kmem_cache iter\n"); +} + +DEFINE_BPF_ITER_FUNC(kmem_cache, struct bpf_iter_meta *meta, + struct kmem_cache *s) + +static struct bpf_iter_reg bpf_kmem_cache_reg_info = { + .target = "kmem_cache", + .feature = BPF_ITER_RESCHED, + .show_fdinfo = bpf_iter_kmem_cache_show_fdinfo, + .ctx_arg_info_size = 1, + .ctx_arg_info = { + { offsetof(struct bpf_iter__kmem_cache, s), + PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, + }, + .seq_info = &kmem_cache_iter_seq_info, +}; + +static int __init bpf_kmem_cache_iter_init(void) +{ + bpf_kmem_cache_reg_info.ctx_arg_info[0].btf_id = bpf_kmem_cache_btf_id[0]; + return bpf_iter_reg_target(&bpf_kmem_cache_reg_info); +} + +late_initcall(bpf_kmem_cache_iter_init); diff --git a/kernel/bpf/link_iter.c b/kernel/bpf/link_iter.c new file mode 100644 index 000000000000..8158e9c1af7b --- /dev/null +++ b/kernel/bpf/link_iter.c @@ -0,0 +1,106 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2022 Red Hat, Inc. */ +#include <linux/bpf.h> +#include <linux/fs.h> +#include <linux/filter.h> +#include <linux/kernel.h> +#include <linux/btf_ids.h> + +struct bpf_iter_seq_link_info { + u32 link_id; +}; + +static void *bpf_link_seq_start(struct seq_file *seq, loff_t *pos) +{ + struct bpf_iter_seq_link_info *info = seq->private; + struct bpf_link *link; + + link = bpf_link_get_curr_or_next(&info->link_id); + if (!link) + return NULL; + + if (*pos == 0) + ++*pos; + return link; +} + +static void *bpf_link_seq_next(struct seq_file *seq, void *v, loff_t *pos) +{ + struct bpf_iter_seq_link_info *info = seq->private; + + ++*pos; + ++info->link_id; + bpf_link_put((struct bpf_link *)v); + return bpf_link_get_curr_or_next(&info->link_id); +} + +struct bpf_iter__bpf_link { + __bpf_md_ptr(struct bpf_iter_meta *, meta); + __bpf_md_ptr(struct bpf_link *, link); +}; + +DEFINE_BPF_ITER_FUNC(bpf_link, struct bpf_iter_meta *meta, struct bpf_link *link) + +static int __bpf_link_seq_show(struct seq_file *seq, void *v, bool in_stop) +{ + struct bpf_iter__bpf_link ctx; + struct bpf_iter_meta meta; + struct bpf_prog *prog; + int ret = 0; + + ctx.meta = &meta; + ctx.link = v; + meta.seq = seq; + prog = bpf_iter_get_info(&meta, in_stop); + if (prog) + ret = bpf_iter_run_prog(prog, &ctx); + + return ret; +} + +static int bpf_link_seq_show(struct seq_file *seq, void *v) +{ + return __bpf_link_seq_show(seq, v, false); +} + +static void bpf_link_seq_stop(struct seq_file *seq, void *v) +{ + if (!v) + (void)__bpf_link_seq_show(seq, v, true); + else + bpf_link_put((struct bpf_link *)v); +} + +static const struct seq_operations bpf_link_seq_ops = { + .start = bpf_link_seq_start, + .next = bpf_link_seq_next, + .stop = bpf_link_seq_stop, + .show = bpf_link_seq_show, +}; + +BTF_ID_LIST_SINGLE(btf_bpf_link_id, struct, bpf_link) + +static const struct bpf_iter_seq_info bpf_link_seq_info = { + .seq_ops = &bpf_link_seq_ops, + .init_seq_private = NULL, + .fini_seq_private = NULL, + .seq_priv_size = sizeof(struct bpf_iter_seq_link_info), +}; + +static struct bpf_iter_reg bpf_link_reg_info = { + .target = "bpf_link", + .ctx_arg_info_size = 1, + .ctx_arg_info = { + { offsetof(struct bpf_iter__bpf_link, link), + PTR_TO_BTF_ID_OR_NULL }, + }, + .seq_info = &bpf_link_seq_info, +}; + +static int __init bpf_link_iter_init(void) +{ + bpf_link_reg_info.ctx_arg_info[0].btf_id = *btf_bpf_link_id; + return bpf_iter_reg_target(&bpf_link_reg_info); +} + +late_initcall(bpf_link_iter_init); diff --git a/kernel/bpf/liveness.c b/kernel/bpf/liveness.c new file mode 100644 index 000000000000..60db5d655495 --- /dev/null +++ b/kernel/bpf/liveness.c @@ -0,0 +1,753 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2025 Meta Platforms, Inc. and affiliates. */ + +#include <linux/bpf_verifier.h> +#include <linux/hashtable.h> +#include <linux/jhash.h> +#include <linux/slab.h> + +/* + * This file implements live stack slots analysis. After accumulating + * stack usage data, the analysis answers queries about whether a + * particular stack slot may be read by an instruction or any of it's + * successors. This data is consumed by the verifier states caching + * mechanism to decide which stack slots are important when looking for a + * visited state corresponding to the current state. + * + * The analysis is call chain sensitive, meaning that data is collected + * and queried for tuples (call chain, subprogram instruction index). + * Such sensitivity allows identifying if some subprogram call always + * leads to writes in the caller's stack. + * + * The basic idea is as follows: + * - As the verifier accumulates a set of visited states, the analysis instance + * accumulates a conservative estimate of stack slots that can be read + * or must be written for each visited tuple (call chain, instruction index). + * - If several states happen to visit the same instruction with the same + * call chain, stack usage information for the corresponding tuple is joined: + * - "may_read" set represents a union of all possibly read slots + * (any slot in "may_read" set might be read at or after the instruction); + * - "must_write" set represents an intersection of all possibly written slots + * (any slot in "must_write" set is guaranteed to be written by the instruction). + * - The analysis is split into two phases: + * - read and write marks accumulation; + * - read and write marks propagation. + * - The propagation phase is a textbook live variable data flow analysis: + * + * state[cc, i].live_after = U [state[cc, s].live_before for s in bpf_insn_successors(i)] + * state[cc, i].live_before = + * (state[cc, i].live_after / state[cc, i].must_write) U state[i].may_read + * + * Where: + * - `U` stands for set union + * - `/` stands for set difference; + * - `cc` stands for a call chain; + * - `i` and `s` are instruction indexes; + * + * The above equations are computed for each call chain and instruction + * index until state stops changing. + * - Additionally, in order to transfer "must_write" information from a + * subprogram to call instructions invoking this subprogram, + * the "must_write_acc" set is tracked for each (cc, i) tuple. + * A set of stack slots that are guaranteed to be written by this + * instruction or any of its successors (within the subprogram). + * The equation for "must_write_acc" propagation looks as follows: + * + * state[cc, i].must_write_acc = + * ∩ [state[cc, s].must_write_acc for s in bpf_insn_successors(i)] + * U state[cc, i].must_write + * + * (An intersection of all "must_write_acc" for instruction successors + * plus all "must_write" slots for the instruction itself). + * - After the propagation phase completes for a subprogram, information from + * (cc, 0) tuple (subprogram entry) is transferred to the caller's call chain: + * - "must_write_acc" set is intersected with the call site's "must_write" set; + * - "may_read" set is added to the call site's "may_read" set. + * - Any live stack queries must be taken after the propagation phase. + * - Accumulation and propagation phases can be entered multiple times, + * at any point in time: + * - "may_read" set only grows; + * - "must_write" set only shrinks; + * - for each visited verifier state with zero branches, all relevant + * read and write marks are already recorded by the analysis instance. + * + * Technically, the analysis is facilitated by the following data structures: + * - Call chain: for given verifier state, the call chain is a tuple of call + * instruction indexes leading to the current subprogram plus the subprogram + * entry point index. + * - Function instance: for a given call chain, for each instruction in + * the current subprogram, a mapping between instruction index and a + * set of "may_read", "must_write" and other marks accumulated for this + * instruction. + * - A hash table mapping call chains to function instances. + */ + +struct callchain { + u32 callsites[MAX_CALL_FRAMES]; /* instruction pointer for each frame */ + /* cached subprog_info[*].start for functions owning the frames: + * - sp_starts[curframe] used to get insn relative index within current function; + * - sp_starts[0..current-1] used for fast callchain_frame_up(). + */ + u32 sp_starts[MAX_CALL_FRAMES]; + u32 curframe; /* depth of callsites and sp_starts arrays */ +}; + +struct per_frame_masks { + u64 may_read; /* stack slots that may be read by this instruction */ + u64 must_write; /* stack slots written by this instruction */ + u64 must_write_acc; /* stack slots written by this instruction and its successors */ + u64 live_before; /* stack slots that may be read by this insn and its successors */ +}; + +/* + * A function instance created for a specific callchain. + * Encapsulates read and write marks for each instruction in the function. + * Marks are tracked for each frame in the callchain. + */ +struct func_instance { + struct hlist_node hl_node; + struct callchain callchain; + u32 insn_cnt; /* cached number of insns in the function */ + bool updated; + bool must_write_dropped; + /* Per frame, per instruction masks, frames allocated lazily. */ + struct per_frame_masks *frames[MAX_CALL_FRAMES]; + /* For each instruction a flag telling if "must_write" had been initialized for it. */ + bool *must_write_set; +}; + +struct live_stack_query { + struct func_instance *instances[MAX_CALL_FRAMES]; /* valid in range [0..curframe] */ + u32 curframe; + u32 insn_idx; +}; + +struct bpf_liveness { + DECLARE_HASHTABLE(func_instances, 8); /* maps callchain to func_instance */ + struct live_stack_query live_stack_query; /* cache to avoid repetitive ht lookups */ + /* Cached instance corresponding to env->cur_state, avoids per-instruction ht lookup */ + struct func_instance *cur_instance; + /* + * Below fields are used to accumulate stack write marks for instruction at + * @write_insn_idx before submitting the marks to @cur_instance. + */ + u64 write_masks_acc[MAX_CALL_FRAMES]; + u32 write_insn_idx; +}; + +/* Compute callchain corresponding to state @st at depth @frameno */ +static void compute_callchain(struct bpf_verifier_env *env, struct bpf_verifier_state *st, + struct callchain *callchain, u32 frameno) +{ + struct bpf_subprog_info *subprog_info = env->subprog_info; + u32 i; + + memset(callchain, 0, sizeof(*callchain)); + for (i = 0; i <= frameno; i++) { + callchain->sp_starts[i] = subprog_info[st->frame[i]->subprogno].start; + if (i < st->curframe) + callchain->callsites[i] = st->frame[i + 1]->callsite; + } + callchain->curframe = frameno; + callchain->callsites[callchain->curframe] = callchain->sp_starts[callchain->curframe]; +} + +static u32 hash_callchain(struct callchain *callchain) +{ + return jhash2(callchain->callsites, callchain->curframe, 0); +} + +static bool same_callsites(struct callchain *a, struct callchain *b) +{ + int i; + + if (a->curframe != b->curframe) + return false; + for (i = a->curframe; i >= 0; i--) + if (a->callsites[i] != b->callsites[i]) + return false; + return true; +} + +/* + * Find existing or allocate new function instance corresponding to @callchain. + * Instances are accumulated in env->liveness->func_instances and persist + * until the end of the verification process. + */ +static struct func_instance *__lookup_instance(struct bpf_verifier_env *env, + struct callchain *callchain) +{ + struct bpf_liveness *liveness = env->liveness; + struct bpf_subprog_info *subprog; + struct func_instance *result; + u32 subprog_sz, size, key; + + key = hash_callchain(callchain); + hash_for_each_possible(liveness->func_instances, result, hl_node, key) + if (same_callsites(&result->callchain, callchain)) + return result; + + subprog = bpf_find_containing_subprog(env, callchain->sp_starts[callchain->curframe]); + subprog_sz = (subprog + 1)->start - subprog->start; + size = sizeof(struct func_instance); + result = kvzalloc(size, GFP_KERNEL_ACCOUNT); + if (!result) + return ERR_PTR(-ENOMEM); + result->must_write_set = kvcalloc(subprog_sz, sizeof(*result->must_write_set), + GFP_KERNEL_ACCOUNT); + if (!result->must_write_set) { + kvfree(result); + return ERR_PTR(-ENOMEM); + } + memcpy(&result->callchain, callchain, sizeof(*callchain)); + result->insn_cnt = subprog_sz; + hash_add(liveness->func_instances, &result->hl_node, key); + return result; +} + +static struct func_instance *lookup_instance(struct bpf_verifier_env *env, + struct bpf_verifier_state *st, + u32 frameno) +{ + struct callchain callchain; + + compute_callchain(env, st, &callchain, frameno); + return __lookup_instance(env, &callchain); +} + +int bpf_stack_liveness_init(struct bpf_verifier_env *env) +{ + env->liveness = kvzalloc(sizeof(*env->liveness), GFP_KERNEL_ACCOUNT); + if (!env->liveness) + return -ENOMEM; + hash_init(env->liveness->func_instances); + return 0; +} + +void bpf_stack_liveness_free(struct bpf_verifier_env *env) +{ + struct func_instance *instance; + struct hlist_node *tmp; + int bkt, i; + + if (!env->liveness) + return; + hash_for_each_safe(env->liveness->func_instances, bkt, tmp, instance, hl_node) { + for (i = 0; i <= instance->callchain.curframe; i++) + kvfree(instance->frames[i]); + kvfree(instance->must_write_set); + kvfree(instance); + } + kvfree(env->liveness); +} + +/* + * Convert absolute instruction index @insn_idx to an index relative + * to start of the function corresponding to @instance. + */ +static int relative_idx(struct func_instance *instance, u32 insn_idx) +{ + return insn_idx - instance->callchain.sp_starts[instance->callchain.curframe]; +} + +static struct per_frame_masks *get_frame_masks(struct func_instance *instance, + u32 frame, u32 insn_idx) +{ + if (!instance->frames[frame]) + return NULL; + + return &instance->frames[frame][relative_idx(instance, insn_idx)]; +} + +static struct per_frame_masks *alloc_frame_masks(struct bpf_verifier_env *env, + struct func_instance *instance, + u32 frame, u32 insn_idx) +{ + struct per_frame_masks *arr; + + if (!instance->frames[frame]) { + arr = kvcalloc(instance->insn_cnt, sizeof(*arr), GFP_KERNEL_ACCOUNT); + instance->frames[frame] = arr; + if (!arr) + return ERR_PTR(-ENOMEM); + } + return get_frame_masks(instance, frame, insn_idx); +} + +void bpf_reset_live_stack_callchain(struct bpf_verifier_env *env) +{ + env->liveness->cur_instance = NULL; +} + +/* If @env->liveness->cur_instance is null, set it to instance corresponding to @env->cur_state. */ +static int ensure_cur_instance(struct bpf_verifier_env *env) +{ + struct bpf_liveness *liveness = env->liveness; + struct func_instance *instance; + + if (liveness->cur_instance) + return 0; + + instance = lookup_instance(env, env->cur_state, env->cur_state->curframe); + if (IS_ERR(instance)) + return PTR_ERR(instance); + + liveness->cur_instance = instance; + return 0; +} + +/* Accumulate may_read masks for @frame at @insn_idx */ +static int mark_stack_read(struct bpf_verifier_env *env, + struct func_instance *instance, u32 frame, u32 insn_idx, u64 mask) +{ + struct per_frame_masks *masks; + u64 new_may_read; + + masks = alloc_frame_masks(env, instance, frame, insn_idx); + if (IS_ERR(masks)) + return PTR_ERR(masks); + new_may_read = masks->may_read | mask; + if (new_may_read != masks->may_read && + ((new_may_read | masks->live_before) != masks->live_before)) + instance->updated = true; + masks->may_read |= mask; + return 0; +} + +int bpf_mark_stack_read(struct bpf_verifier_env *env, u32 frame, u32 insn_idx, u64 mask) +{ + int err; + + err = ensure_cur_instance(env); + err = err ?: mark_stack_read(env, env->liveness->cur_instance, frame, insn_idx, mask); + return err; +} + +static void reset_stack_write_marks(struct bpf_verifier_env *env, + struct func_instance *instance, u32 insn_idx) +{ + struct bpf_liveness *liveness = env->liveness; + int i; + + liveness->write_insn_idx = insn_idx; + for (i = 0; i <= instance->callchain.curframe; i++) + liveness->write_masks_acc[i] = 0; +} + +int bpf_reset_stack_write_marks(struct bpf_verifier_env *env, u32 insn_idx) +{ + struct bpf_liveness *liveness = env->liveness; + int err; + + err = ensure_cur_instance(env); + if (err) + return err; + + reset_stack_write_marks(env, liveness->cur_instance, insn_idx); + return 0; +} + +void bpf_mark_stack_write(struct bpf_verifier_env *env, u32 frame, u64 mask) +{ + env->liveness->write_masks_acc[frame] |= mask; +} + +static int commit_stack_write_marks(struct bpf_verifier_env *env, + struct func_instance *instance) +{ + struct bpf_liveness *liveness = env->liveness; + u32 idx, frame, curframe, old_must_write; + struct per_frame_masks *masks; + u64 mask; + + if (!instance) + return 0; + + curframe = instance->callchain.curframe; + idx = relative_idx(instance, liveness->write_insn_idx); + for (frame = 0; frame <= curframe; frame++) { + mask = liveness->write_masks_acc[frame]; + /* avoid allocating frames for zero masks */ + if (mask == 0 && !instance->must_write_set[idx]) + continue; + masks = alloc_frame_masks(env, instance, frame, liveness->write_insn_idx); + if (IS_ERR(masks)) + return PTR_ERR(masks); + old_must_write = masks->must_write; + /* + * If instruction at this callchain is seen for a first time, set must_write equal + * to @mask. Otherwise take intersection with the previous value. + */ + if (instance->must_write_set[idx]) + mask &= old_must_write; + if (old_must_write != mask) { + masks->must_write = mask; + instance->updated = true; + } + if (old_must_write & ~mask) + instance->must_write_dropped = true; + } + instance->must_write_set[idx] = true; + liveness->write_insn_idx = 0; + return 0; +} + +/* + * Merge stack writes marks in @env->liveness->write_masks_acc + * with information already in @env->liveness->cur_instance. + */ +int bpf_commit_stack_write_marks(struct bpf_verifier_env *env) +{ + return commit_stack_write_marks(env, env->liveness->cur_instance); +} + +static char *fmt_callchain(struct bpf_verifier_env *env, struct callchain *callchain) +{ + char *buf_end = env->tmp_str_buf + sizeof(env->tmp_str_buf); + char *buf = env->tmp_str_buf; + int i; + + buf += snprintf(buf, buf_end - buf, "("); + for (i = 0; i <= callchain->curframe; i++) + buf += snprintf(buf, buf_end - buf, "%s%d", i ? "," : "", callchain->callsites[i]); + snprintf(buf, buf_end - buf, ")"); + return env->tmp_str_buf; +} + +static void log_mask_change(struct bpf_verifier_env *env, struct callchain *callchain, + char *pfx, u32 frame, u32 insn_idx, u64 old, u64 new) +{ + u64 changed_bits = old ^ new; + u64 new_ones = new & changed_bits; + u64 new_zeros = ~new & changed_bits; + + if (!changed_bits) + return; + bpf_log(&env->log, "%s frame %d insn %d ", fmt_callchain(env, callchain), frame, insn_idx); + if (new_ones) { + bpf_fmt_stack_mask(env->tmp_str_buf, sizeof(env->tmp_str_buf), new_ones); + bpf_log(&env->log, "+%s %s ", pfx, env->tmp_str_buf); + } + if (new_zeros) { + bpf_fmt_stack_mask(env->tmp_str_buf, sizeof(env->tmp_str_buf), new_zeros); + bpf_log(&env->log, "-%s %s", pfx, env->tmp_str_buf); + } + bpf_log(&env->log, "\n"); +} + +int bpf_jmp_offset(struct bpf_insn *insn) +{ + u8 code = insn->code; + + if (code == (BPF_JMP32 | BPF_JA)) + return insn->imm; + return insn->off; +} + +__diag_push(); +__diag_ignore_all("-Woverride-init", "Allow field initialization overrides for opcode_info_tbl"); + +/* + * Returns an array of instructions succ, with succ->items[0], ..., + * succ->items[n-1] with successor instructions, where n=succ->cnt + */ +inline struct bpf_iarray * +bpf_insn_successors(struct bpf_verifier_env *env, u32 idx) +{ + static const struct opcode_info { + bool can_jump; + bool can_fallthrough; + } opcode_info_tbl[256] = { + [0 ... 255] = {.can_jump = false, .can_fallthrough = true}, + #define _J(code, ...) \ + [BPF_JMP | code] = __VA_ARGS__, \ + [BPF_JMP32 | code] = __VA_ARGS__ + + _J(BPF_EXIT, {.can_jump = false, .can_fallthrough = false}), + _J(BPF_JA, {.can_jump = true, .can_fallthrough = false}), + _J(BPF_JEQ, {.can_jump = true, .can_fallthrough = true}), + _J(BPF_JNE, {.can_jump = true, .can_fallthrough = true}), + _J(BPF_JLT, {.can_jump = true, .can_fallthrough = true}), + _J(BPF_JLE, {.can_jump = true, .can_fallthrough = true}), + _J(BPF_JGT, {.can_jump = true, .can_fallthrough = true}), + _J(BPF_JGE, {.can_jump = true, .can_fallthrough = true}), + _J(BPF_JSGT, {.can_jump = true, .can_fallthrough = true}), + _J(BPF_JSGE, {.can_jump = true, .can_fallthrough = true}), + _J(BPF_JSLT, {.can_jump = true, .can_fallthrough = true}), + _J(BPF_JSLE, {.can_jump = true, .can_fallthrough = true}), + _J(BPF_JCOND, {.can_jump = true, .can_fallthrough = true}), + _J(BPF_JSET, {.can_jump = true, .can_fallthrough = true}), + #undef _J + }; + struct bpf_prog *prog = env->prog; + struct bpf_insn *insn = &prog->insnsi[idx]; + const struct opcode_info *opcode_info; + struct bpf_iarray *succ, *jt; + int insn_sz; + + jt = env->insn_aux_data[idx].jt; + if (unlikely(jt)) + return jt; + + /* pre-allocated array of size up to 2; reset cnt, as it may have been used already */ + succ = env->succ; + succ->cnt = 0; + + opcode_info = &opcode_info_tbl[BPF_CLASS(insn->code) | BPF_OP(insn->code)]; + insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; + if (opcode_info->can_fallthrough) + succ->items[succ->cnt++] = idx + insn_sz; + + if (opcode_info->can_jump) + succ->items[succ->cnt++] = idx + bpf_jmp_offset(insn) + 1; + + return succ; +} + +__diag_pop(); + +static struct func_instance *get_outer_instance(struct bpf_verifier_env *env, + struct func_instance *instance) +{ + struct callchain callchain = instance->callchain; + + /* Adjust @callchain to represent callchain one frame up */ + callchain.callsites[callchain.curframe] = 0; + callchain.sp_starts[callchain.curframe] = 0; + callchain.curframe--; + callchain.callsites[callchain.curframe] = callchain.sp_starts[callchain.curframe]; + return __lookup_instance(env, &callchain); +} + +static u32 callchain_subprog_start(struct callchain *callchain) +{ + return callchain->sp_starts[callchain->curframe]; +} + +/* + * Transfer @may_read and @must_write_acc marks from the first instruction of @instance, + * to the call instruction in function instance calling @instance. + */ +static int propagate_to_outer_instance(struct bpf_verifier_env *env, + struct func_instance *instance) +{ + struct callchain *callchain = &instance->callchain; + u32 this_subprog_start, callsite, frame; + struct func_instance *outer_instance; + struct per_frame_masks *insn; + int err; + + this_subprog_start = callchain_subprog_start(callchain); + outer_instance = get_outer_instance(env, instance); + if (IS_ERR(outer_instance)) + return PTR_ERR(outer_instance); + callsite = callchain->callsites[callchain->curframe - 1]; + + reset_stack_write_marks(env, outer_instance, callsite); + for (frame = 0; frame < callchain->curframe; frame++) { + insn = get_frame_masks(instance, frame, this_subprog_start); + if (!insn) + continue; + bpf_mark_stack_write(env, frame, insn->must_write_acc); + err = mark_stack_read(env, outer_instance, frame, callsite, insn->live_before); + if (err) + return err; + } + commit_stack_write_marks(env, outer_instance); + return 0; +} + +static inline bool update_insn(struct bpf_verifier_env *env, + struct func_instance *instance, u32 frame, u32 insn_idx) +{ + struct bpf_insn_aux_data *aux = env->insn_aux_data; + u64 new_before, new_after, must_write_acc; + struct per_frame_masks *insn, *succ_insn; + struct bpf_iarray *succ; + u32 s; + bool changed; + + succ = bpf_insn_successors(env, insn_idx); + if (succ->cnt == 0) + return false; + + changed = false; + insn = get_frame_masks(instance, frame, insn_idx); + new_before = 0; + new_after = 0; + /* + * New "must_write_acc" is an intersection of all "must_write_acc" + * of successors plus all "must_write" slots of instruction itself. + */ + must_write_acc = U64_MAX; + for (s = 0; s < succ->cnt; ++s) { + succ_insn = get_frame_masks(instance, frame, succ->items[s]); + new_after |= succ_insn->live_before; + must_write_acc &= succ_insn->must_write_acc; + } + must_write_acc |= insn->must_write; + /* + * New "live_before" is a union of all "live_before" of successors + * minus slots written by instruction plus slots read by instruction. + */ + new_before = (new_after & ~insn->must_write) | insn->may_read; + changed |= new_before != insn->live_before; + changed |= must_write_acc != insn->must_write_acc; + if (unlikely(env->log.level & BPF_LOG_LEVEL2) && + (insn->may_read || insn->must_write || + insn_idx == callchain_subprog_start(&instance->callchain) || + aux[insn_idx].prune_point)) { + log_mask_change(env, &instance->callchain, "live", + frame, insn_idx, insn->live_before, new_before); + log_mask_change(env, &instance->callchain, "written", + frame, insn_idx, insn->must_write_acc, must_write_acc); + } + insn->live_before = new_before; + insn->must_write_acc = must_write_acc; + return changed; +} + +/* Fixed-point computation of @live_before and @must_write_acc marks */ +static int update_instance(struct bpf_verifier_env *env, struct func_instance *instance) +{ + u32 i, frame, po_start, po_end, cnt, this_subprog_start; + struct callchain *callchain = &instance->callchain; + int *insn_postorder = env->cfg.insn_postorder; + struct bpf_subprog_info *subprog; + struct per_frame_masks *insn; + bool changed; + int err; + + this_subprog_start = callchain_subprog_start(callchain); + /* + * If must_write marks were updated must_write_acc needs to be reset + * (to account for the case when new must_write sets became smaller). + */ + if (instance->must_write_dropped) { + for (frame = 0; frame <= callchain->curframe; frame++) { + if (!instance->frames[frame]) + continue; + + for (i = 0; i < instance->insn_cnt; i++) { + insn = get_frame_masks(instance, frame, this_subprog_start + i); + insn->must_write_acc = 0; + } + } + } + + subprog = bpf_find_containing_subprog(env, this_subprog_start); + po_start = subprog->postorder_start; + po_end = (subprog + 1)->postorder_start; + cnt = 0; + /* repeat until fixed point is reached */ + do { + cnt++; + changed = false; + for (frame = 0; frame <= instance->callchain.curframe; frame++) { + if (!instance->frames[frame]) + continue; + + for (i = po_start; i < po_end; i++) + changed |= update_insn(env, instance, frame, insn_postorder[i]); + } + } while (changed); + + if (env->log.level & BPF_LOG_LEVEL2) + bpf_log(&env->log, "%s live stack update done in %d iterations\n", + fmt_callchain(env, callchain), cnt); + + /* transfer marks accumulated for outer frames to outer func instance (caller) */ + if (callchain->curframe > 0) { + err = propagate_to_outer_instance(env, instance); + if (err) + return err; + } + + return 0; +} + +/* + * Prepare all callchains within @env->cur_state for querying. + * This function should be called after each verifier.c:pop_stack() + * and whenever verifier.c:do_check_insn() processes subprogram exit. + * This would guarantee that visited verifier states with zero branches + * have their bpf_mark_stack_{read,write}() effects propagated in + * @env->liveness. + */ +int bpf_update_live_stack(struct bpf_verifier_env *env) +{ + struct func_instance *instance; + int err, frame; + + bpf_reset_live_stack_callchain(env); + for (frame = env->cur_state->curframe; frame >= 0; --frame) { + instance = lookup_instance(env, env->cur_state, frame); + if (IS_ERR(instance)) + return PTR_ERR(instance); + + if (instance->updated) { + err = update_instance(env, instance); + if (err) + return err; + instance->updated = false; + instance->must_write_dropped = false; + } + } + return 0; +} + +static bool is_live_before(struct func_instance *instance, u32 insn_idx, u32 frameno, u32 spi) +{ + struct per_frame_masks *masks; + + masks = get_frame_masks(instance, frameno, insn_idx); + return masks && (masks->live_before & BIT(spi)); +} + +int bpf_live_stack_query_init(struct bpf_verifier_env *env, struct bpf_verifier_state *st) +{ + struct live_stack_query *q = &env->liveness->live_stack_query; + struct func_instance *instance; + u32 frame; + + memset(q, 0, sizeof(*q)); + for (frame = 0; frame <= st->curframe; frame++) { + instance = lookup_instance(env, st, frame); + if (IS_ERR(instance)) + return PTR_ERR(instance); + q->instances[frame] = instance; + } + q->curframe = st->curframe; + q->insn_idx = st->insn_idx; + return 0; +} + +bool bpf_stack_slot_alive(struct bpf_verifier_env *env, u32 frameno, u32 spi) +{ + /* + * Slot is alive if it is read before q->st->insn_idx in current func instance, + * or if for some outer func instance: + * - alive before callsite if callsite calls callback, otherwise + * - alive after callsite + */ + struct live_stack_query *q = &env->liveness->live_stack_query; + struct func_instance *instance, *curframe_instance; + u32 i, callsite; + bool alive; + + curframe_instance = q->instances[q->curframe]; + if (is_live_before(curframe_instance, q->insn_idx, frameno, spi)) + return true; + + for (i = frameno; i < q->curframe; i++) { + callsite = curframe_instance->callchain.callsites[i]; + instance = q->instances[i]; + alive = bpf_calls_callback(env, callsite) + ? is_live_before(instance, callsite, frameno, spi) + : is_live_before(instance, callsite + 1, frameno, spi); + if (alive) + return true; + } + + return false; +} diff --git a/kernel/bpf/local_storage.c b/kernel/bpf/local_storage.c new file mode 100644 index 000000000000..c93a756e035c --- /dev/null +++ b/kernel/bpf/local_storage.c @@ -0,0 +1,607 @@ +// SPDX-License-Identifier: GPL-2.0 +#include <linux/bpf-cgroup.h> +#include <linux/bpf.h> +#include <linux/bpf_local_storage.h> +#include <linux/btf.h> +#include <linux/bug.h> +#include <linux/filter.h> +#include <linux/mm.h> +#include <linux/rbtree.h> +#include <linux/slab.h> +#include <uapi/linux/btf.h> +#include <linux/btf_ids.h> + +#ifdef CONFIG_CGROUP_BPF + +#include "../cgroup/cgroup-internal.h" + +#define LOCAL_STORAGE_CREATE_FLAG_MASK \ + (BPF_F_NUMA_NODE | BPF_F_ACCESS_MASK) + +struct bpf_cgroup_storage_map { + struct bpf_map map; + + spinlock_t lock; + struct rb_root root; + struct list_head list; +}; + +static struct bpf_cgroup_storage_map *map_to_storage(struct bpf_map *map) +{ + return container_of(map, struct bpf_cgroup_storage_map, map); +} + +static bool attach_type_isolated(const struct bpf_map *map) +{ + return map->key_size == sizeof(struct bpf_cgroup_storage_key); +} + +static int bpf_cgroup_storage_key_cmp(const struct bpf_cgroup_storage_map *map, + const void *_key1, const void *_key2) +{ + if (attach_type_isolated(&map->map)) { + const struct bpf_cgroup_storage_key *key1 = _key1; + const struct bpf_cgroup_storage_key *key2 = _key2; + + if (key1->cgroup_inode_id < key2->cgroup_inode_id) + return -1; + else if (key1->cgroup_inode_id > key2->cgroup_inode_id) + return 1; + else if (key1->attach_type < key2->attach_type) + return -1; + else if (key1->attach_type > key2->attach_type) + return 1; + } else { + const __u64 *cgroup_inode_id1 = _key1; + const __u64 *cgroup_inode_id2 = _key2; + + if (*cgroup_inode_id1 < *cgroup_inode_id2) + return -1; + else if (*cgroup_inode_id1 > *cgroup_inode_id2) + return 1; + } + return 0; +} + +struct bpf_cgroup_storage * +cgroup_storage_lookup(struct bpf_cgroup_storage_map *map, + void *key, bool locked) +{ + struct rb_root *root = &map->root; + struct rb_node *node; + + if (!locked) + spin_lock_bh(&map->lock); + + node = root->rb_node; + while (node) { + struct bpf_cgroup_storage *storage; + + storage = container_of(node, struct bpf_cgroup_storage, node); + + switch (bpf_cgroup_storage_key_cmp(map, key, &storage->key)) { + case -1: + node = node->rb_left; + break; + case 1: + node = node->rb_right; + break; + default: + if (!locked) + spin_unlock_bh(&map->lock); + return storage; + } + } + + if (!locked) + spin_unlock_bh(&map->lock); + + return NULL; +} + +static int cgroup_storage_insert(struct bpf_cgroup_storage_map *map, + struct bpf_cgroup_storage *storage) +{ + struct rb_root *root = &map->root; + struct rb_node **new = &(root->rb_node), *parent = NULL; + + while (*new) { + struct bpf_cgroup_storage *this; + + this = container_of(*new, struct bpf_cgroup_storage, node); + + parent = *new; + switch (bpf_cgroup_storage_key_cmp(map, &storage->key, &this->key)) { + case -1: + new = &((*new)->rb_left); + break; + case 1: + new = &((*new)->rb_right); + break; + default: + return -EEXIST; + } + } + + rb_link_node(&storage->node, parent, new); + rb_insert_color(&storage->node, root); + + return 0; +} + +static void *cgroup_storage_lookup_elem(struct bpf_map *_map, void *key) +{ + struct bpf_cgroup_storage_map *map = map_to_storage(_map); + struct bpf_cgroup_storage *storage; + + storage = cgroup_storage_lookup(map, key, false); + if (!storage) + return NULL; + + return &READ_ONCE(storage->buf)->data[0]; +} + +static long cgroup_storage_update_elem(struct bpf_map *map, void *key, + void *value, u64 flags) +{ + struct bpf_cgroup_storage *storage; + struct bpf_storage_buffer *new; + + if (unlikely(flags & ~(BPF_F_LOCK | BPF_EXIST))) + return -EINVAL; + + if (unlikely((flags & BPF_F_LOCK) && + !btf_record_has_field(map->record, BPF_SPIN_LOCK))) + return -EINVAL; + + storage = cgroup_storage_lookup((struct bpf_cgroup_storage_map *)map, + key, false); + if (!storage) + return -ENOENT; + + if (flags & BPF_F_LOCK) { + copy_map_value_locked(map, storage->buf->data, value, false); + return 0; + } + + new = bpf_map_kmalloc_node(map, struct_size(new, data, map->value_size), + __GFP_ZERO | GFP_NOWAIT, + map->numa_node); + if (!new) + return -ENOMEM; + + memcpy(&new->data[0], value, map->value_size); + check_and_init_map_value(map, new->data); + + new = xchg(&storage->buf, new); + kfree_rcu(new, rcu); + + return 0; +} + +int bpf_percpu_cgroup_storage_copy(struct bpf_map *_map, void *key, + void *value) +{ + struct bpf_cgroup_storage_map *map = map_to_storage(_map); + struct bpf_cgroup_storage *storage; + int cpu, off = 0; + u32 size; + + rcu_read_lock(); + storage = cgroup_storage_lookup(map, key, false); + if (!storage) { + rcu_read_unlock(); + return -ENOENT; + } + + /* per_cpu areas are zero-filled and bpf programs can only + * access 'value_size' of them, so copying rounded areas + * will not leak any kernel data + */ + size = round_up(_map->value_size, 8); + for_each_possible_cpu(cpu) { + bpf_long_memcpy(value + off, + per_cpu_ptr(storage->percpu_buf, cpu), size); + off += size; + } + rcu_read_unlock(); + return 0; +} + +int bpf_percpu_cgroup_storage_update(struct bpf_map *_map, void *key, + void *value, u64 map_flags) +{ + struct bpf_cgroup_storage_map *map = map_to_storage(_map); + struct bpf_cgroup_storage *storage; + int cpu, off = 0; + u32 size; + + if (map_flags != BPF_ANY && map_flags != BPF_EXIST) + return -EINVAL; + + rcu_read_lock(); + storage = cgroup_storage_lookup(map, key, false); + if (!storage) { + rcu_read_unlock(); + return -ENOENT; + } + + /* the user space will provide round_up(value_size, 8) bytes that + * will be copied into per-cpu area. bpf programs can only access + * value_size of it. During lookup the same extra bytes will be + * returned or zeros which were zero-filled by percpu_alloc, + * so no kernel data leaks possible + */ + size = round_up(_map->value_size, 8); + for_each_possible_cpu(cpu) { + bpf_long_memcpy(per_cpu_ptr(storage->percpu_buf, cpu), + value + off, size); + off += size; + } + rcu_read_unlock(); + return 0; +} + +static int cgroup_storage_get_next_key(struct bpf_map *_map, void *key, + void *_next_key) +{ + struct bpf_cgroup_storage_map *map = map_to_storage(_map); + struct bpf_cgroup_storage *storage; + + spin_lock_bh(&map->lock); + + if (list_empty(&map->list)) + goto enoent; + + if (key) { + storage = cgroup_storage_lookup(map, key, true); + if (!storage) + goto enoent; + + storage = list_next_entry(storage, list_map); + if (!storage) + goto enoent; + } else { + storage = list_first_entry(&map->list, + struct bpf_cgroup_storage, list_map); + } + + spin_unlock_bh(&map->lock); + + if (attach_type_isolated(&map->map)) { + struct bpf_cgroup_storage_key *next = _next_key; + *next = storage->key; + } else { + __u64 *next = _next_key; + *next = storage->key.cgroup_inode_id; + } + return 0; + +enoent: + spin_unlock_bh(&map->lock); + return -ENOENT; +} + +static struct bpf_map *cgroup_storage_map_alloc(union bpf_attr *attr) +{ + __u32 max_value_size = BPF_LOCAL_STORAGE_MAX_VALUE_SIZE; + int numa_node = bpf_map_attr_numa_node(attr); + struct bpf_cgroup_storage_map *map; + + /* percpu is bound by PCPU_MIN_UNIT_SIZE, non-percu + * is the same as other local storages. + */ + if (attr->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) + max_value_size = min_t(__u32, max_value_size, + PCPU_MIN_UNIT_SIZE); + + if (attr->key_size != sizeof(struct bpf_cgroup_storage_key) && + attr->key_size != sizeof(__u64)) + return ERR_PTR(-EINVAL); + + if (attr->value_size == 0) + return ERR_PTR(-EINVAL); + + if (attr->value_size > max_value_size) + return ERR_PTR(-E2BIG); + + if (attr->map_flags & ~LOCAL_STORAGE_CREATE_FLAG_MASK || + !bpf_map_flags_access_ok(attr->map_flags)) + return ERR_PTR(-EINVAL); + + if (attr->max_entries) + /* max_entries is not used and enforced to be 0 */ + return ERR_PTR(-EINVAL); + + map = bpf_map_area_alloc(sizeof(struct bpf_cgroup_storage_map), numa_node); + if (!map) + return ERR_PTR(-ENOMEM); + + /* copy mandatory map attributes */ + bpf_map_init_from_attr(&map->map, attr); + + spin_lock_init(&map->lock); + map->root = RB_ROOT; + INIT_LIST_HEAD(&map->list); + + return &map->map; +} + +static void cgroup_storage_map_free(struct bpf_map *_map) +{ + struct bpf_cgroup_storage_map *map = map_to_storage(_map); + struct list_head *storages = &map->list; + struct bpf_cgroup_storage *storage, *stmp; + + cgroup_lock(); + + list_for_each_entry_safe(storage, stmp, storages, list_map) { + bpf_cgroup_storage_unlink(storage); + bpf_cgroup_storage_free(storage); + } + + cgroup_unlock(); + + WARN_ON(!RB_EMPTY_ROOT(&map->root)); + WARN_ON(!list_empty(&map->list)); + + bpf_map_area_free(map); +} + +static long cgroup_storage_delete_elem(struct bpf_map *map, void *key) +{ + return -EINVAL; +} + +static int cgroup_storage_check_btf(const struct bpf_map *map, + const struct btf *btf, + const struct btf_type *key_type, + const struct btf_type *value_type) +{ + if (attach_type_isolated(map)) { + struct btf_member *m; + u32 offset, size; + + /* Key is expected to be of struct bpf_cgroup_storage_key type, + * which is: + * struct bpf_cgroup_storage_key { + * __u64 cgroup_inode_id; + * __u32 attach_type; + * }; + */ + + /* + * Key_type must be a structure with two fields. + */ + if (BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT || + BTF_INFO_VLEN(key_type->info) != 2) + return -EINVAL; + + /* + * The first field must be a 64 bit integer at 0 offset. + */ + m = (struct btf_member *)(key_type + 1); + size = sizeof_field(struct bpf_cgroup_storage_key, cgroup_inode_id); + if (!btf_member_is_reg_int(btf, key_type, m, 0, size)) + return -EINVAL; + + /* + * The second field must be a 32 bit integer at 64 bit offset. + */ + m++; + offset = offsetof(struct bpf_cgroup_storage_key, attach_type); + size = sizeof_field(struct bpf_cgroup_storage_key, attach_type); + if (!btf_member_is_reg_int(btf, key_type, m, offset, size)) + return -EINVAL; + } else { + /* + * Key is expected to be u64, which stores the cgroup_inode_id + */ + if (!btf_type_is_i64(key_type)) + return -EINVAL; + } + + return 0; +} + +static void cgroup_storage_seq_show_elem(struct bpf_map *map, void *key, + struct seq_file *m) +{ + enum bpf_cgroup_storage_type stype; + struct bpf_cgroup_storage *storage; + int cpu; + + rcu_read_lock(); + storage = cgroup_storage_lookup(map_to_storage(map), key, false); + if (!storage) { + rcu_read_unlock(); + return; + } + + btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); + stype = cgroup_storage_type(map); + if (stype == BPF_CGROUP_STORAGE_SHARED) { + seq_puts(m, ": "); + btf_type_seq_show(map->btf, map->btf_value_type_id, + &READ_ONCE(storage->buf)->data[0], m); + seq_putc(m, '\n'); + } else { + seq_puts(m, ": {\n"); + for_each_possible_cpu(cpu) { + seq_printf(m, "\tcpu%d: ", cpu); + btf_type_seq_show(map->btf, map->btf_value_type_id, + per_cpu_ptr(storage->percpu_buf, cpu), + m); + seq_putc(m, '\n'); + } + seq_puts(m, "}\n"); + } + rcu_read_unlock(); +} + +static u64 cgroup_storage_map_usage(const struct bpf_map *map) +{ + /* Currently the dynamically allocated elements are not counted. */ + return sizeof(struct bpf_cgroup_storage_map); +} + +BTF_ID_LIST_SINGLE(cgroup_storage_map_btf_ids, struct, + bpf_cgroup_storage_map) +const struct bpf_map_ops cgroup_storage_map_ops = { + .map_alloc = cgroup_storage_map_alloc, + .map_free = cgroup_storage_map_free, + .map_get_next_key = cgroup_storage_get_next_key, + .map_lookup_elem = cgroup_storage_lookup_elem, + .map_update_elem = cgroup_storage_update_elem, + .map_delete_elem = cgroup_storage_delete_elem, + .map_check_btf = cgroup_storage_check_btf, + .map_seq_show_elem = cgroup_storage_seq_show_elem, + .map_mem_usage = cgroup_storage_map_usage, + .map_btf_id = &cgroup_storage_map_btf_ids[0], +}; + +int bpf_cgroup_storage_assign(struct bpf_prog_aux *aux, struct bpf_map *_map) +{ + enum bpf_cgroup_storage_type stype = cgroup_storage_type(_map); + + if (aux->cgroup_storage[stype] && + aux->cgroup_storage[stype] != _map) + return -EBUSY; + + aux->cgroup_storage[stype] = _map; + return 0; +} + +static size_t bpf_cgroup_storage_calculate_size(struct bpf_map *map, u32 *pages) +{ + size_t size; + + if (cgroup_storage_type(map) == BPF_CGROUP_STORAGE_SHARED) { + size = sizeof(struct bpf_storage_buffer) + map->value_size; + *pages = round_up(sizeof(struct bpf_cgroup_storage) + size, + PAGE_SIZE) >> PAGE_SHIFT; + } else { + size = map->value_size; + *pages = round_up(round_up(size, 8) * num_possible_cpus(), + PAGE_SIZE) >> PAGE_SHIFT; + } + + return size; +} + +struct bpf_cgroup_storage *bpf_cgroup_storage_alloc(struct bpf_prog *prog, + enum bpf_cgroup_storage_type stype) +{ + const gfp_t gfp = __GFP_ZERO | GFP_USER; + struct bpf_cgroup_storage *storage; + struct bpf_map *map; + size_t size; + u32 pages; + + map = prog->aux->cgroup_storage[stype]; + if (!map) + return NULL; + + size = bpf_cgroup_storage_calculate_size(map, &pages); + + storage = bpf_map_kmalloc_node(map, sizeof(struct bpf_cgroup_storage), + gfp, map->numa_node); + if (!storage) + goto enomem; + + if (stype == BPF_CGROUP_STORAGE_SHARED) { + storage->buf = bpf_map_kmalloc_node(map, size, gfp, + map->numa_node); + if (!storage->buf) + goto enomem; + check_and_init_map_value(map, storage->buf->data); + } else { + storage->percpu_buf = bpf_map_alloc_percpu(map, size, 8, gfp); + if (!storage->percpu_buf) + goto enomem; + } + + storage->map = (struct bpf_cgroup_storage_map *)map; + + return storage; + +enomem: + kfree(storage); + return ERR_PTR(-ENOMEM); +} + +static void free_shared_cgroup_storage_rcu(struct rcu_head *rcu) +{ + struct bpf_cgroup_storage *storage = + container_of(rcu, struct bpf_cgroup_storage, rcu); + + kfree(storage->buf); + kfree(storage); +} + +static void free_percpu_cgroup_storage_rcu(struct rcu_head *rcu) +{ + struct bpf_cgroup_storage *storage = + container_of(rcu, struct bpf_cgroup_storage, rcu); + + free_percpu(storage->percpu_buf); + kfree(storage); +} + +void bpf_cgroup_storage_free(struct bpf_cgroup_storage *storage) +{ + enum bpf_cgroup_storage_type stype; + struct bpf_map *map; + + if (!storage) + return; + + map = &storage->map->map; + stype = cgroup_storage_type(map); + if (stype == BPF_CGROUP_STORAGE_SHARED) + call_rcu(&storage->rcu, free_shared_cgroup_storage_rcu); + else + call_rcu(&storage->rcu, free_percpu_cgroup_storage_rcu); +} + +void bpf_cgroup_storage_link(struct bpf_cgroup_storage *storage, + struct cgroup *cgroup, + enum bpf_attach_type type) +{ + struct bpf_cgroup_storage_map *map; + + if (!storage) + return; + + storage->key.attach_type = type; + storage->key.cgroup_inode_id = cgroup_id(cgroup); + + map = storage->map; + + spin_lock_bh(&map->lock); + WARN_ON(cgroup_storage_insert(map, storage)); + list_add(&storage->list_map, &map->list); + list_add(&storage->list_cg, &cgroup->bpf.storages); + spin_unlock_bh(&map->lock); +} + +void bpf_cgroup_storage_unlink(struct bpf_cgroup_storage *storage) +{ + struct bpf_cgroup_storage_map *map; + struct rb_root *root; + + if (!storage) + return; + + map = storage->map; + + spin_lock_bh(&map->lock); + root = &map->root; + rb_erase(&storage->node, root); + + list_del(&storage->list_map); + list_del(&storage->list_cg); + spin_unlock_bh(&map->lock); +} + +#endif diff --git a/kernel/bpf/log.c b/kernel/bpf/log.c new file mode 100644 index 000000000000..a0c3b35de2ce --- /dev/null +++ b/kernel/bpf/log.c @@ -0,0 +1,865 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com + * Copyright (c) 2016 Facebook + * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io + */ +#include <uapi/linux/btf.h> +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/bpf.h> +#include <linux/bpf_verifier.h> +#include <linux/math64.h> +#include <linux/string.h> + +#define verbose(env, fmt, args...) bpf_verifier_log_write(env, fmt, ##args) + +static bool bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log) +{ + /* ubuf and len_total should both be specified (or not) together */ + if (!!log->ubuf != !!log->len_total) + return false; + /* log buf without log_level is meaningless */ + if (log->ubuf && log->level == 0) + return false; + if (log->level & ~BPF_LOG_MASK) + return false; + if (log->len_total > UINT_MAX >> 2) + return false; + return true; +} + +int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level, + char __user *log_buf, u32 log_size) +{ + log->level = log_level; + log->ubuf = log_buf; + log->len_total = log_size; + + /* log attributes have to be sane */ + if (!bpf_verifier_log_attr_valid(log)) + return -EINVAL; + + return 0; +} + +static void bpf_vlog_update_len_max(struct bpf_verifier_log *log, u32 add_len) +{ + /* add_len includes terminal \0, so no need for +1. */ + u64 len = log->end_pos + add_len; + + /* log->len_max could be larger than our current len due to + * bpf_vlog_reset() calls, so we maintain the max of any length at any + * previous point + */ + if (len > UINT_MAX) + log->len_max = UINT_MAX; + else if (len > log->len_max) + log->len_max = len; +} + +void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, + va_list args) +{ + u64 cur_pos; + u32 new_n, n; + + n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); + + if (log->level == BPF_LOG_KERNEL) { + bool newline = n > 0 && log->kbuf[n - 1] == '\n'; + + pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); + return; + } + + n += 1; /* include terminating zero */ + bpf_vlog_update_len_max(log, n); + + if (log->level & BPF_LOG_FIXED) { + /* check if we have at least something to put into user buf */ + new_n = 0; + if (log->end_pos < log->len_total) { + new_n = min_t(u32, log->len_total - log->end_pos, n); + log->kbuf[new_n - 1] = '\0'; + } + + cur_pos = log->end_pos; + log->end_pos += n - 1; /* don't count terminating '\0' */ + + if (log->ubuf && new_n && + copy_to_user(log->ubuf + cur_pos, log->kbuf, new_n)) + goto fail; + } else { + u64 new_end, new_start; + u32 buf_start, buf_end; + + new_end = log->end_pos + n; + if (new_end - log->start_pos >= log->len_total) + new_start = new_end - log->len_total; + else + new_start = log->start_pos; + + log->start_pos = new_start; + log->end_pos = new_end - 1; /* don't count terminating '\0' */ + + if (!log->ubuf) + return; + + new_n = min(n, log->len_total); + cur_pos = new_end - new_n; + div_u64_rem(cur_pos, log->len_total, &buf_start); + div_u64_rem(new_end, log->len_total, &buf_end); + /* new_end and buf_end are exclusive indices, so if buf_end is + * exactly zero, then it actually points right to the end of + * ubuf and there is no wrap around + */ + if (buf_end == 0) + buf_end = log->len_total; + + /* if buf_start > buf_end, we wrapped around; + * if buf_start == buf_end, then we fill ubuf completely; we + * can't have buf_start == buf_end to mean that there is + * nothing to write, because we always write at least + * something, even if terminal '\0' + */ + if (buf_start < buf_end) { + /* message fits within contiguous chunk of ubuf */ + if (copy_to_user(log->ubuf + buf_start, + log->kbuf + n - new_n, + buf_end - buf_start)) + goto fail; + } else { + /* message wraps around the end of ubuf, copy in two chunks */ + if (copy_to_user(log->ubuf + buf_start, + log->kbuf + n - new_n, + log->len_total - buf_start)) + goto fail; + if (copy_to_user(log->ubuf, + log->kbuf + n - buf_end, + buf_end)) + goto fail; + } + } + + return; +fail: + log->ubuf = NULL; +} + +void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos) +{ + char zero = 0; + u32 pos; + + if (WARN_ON_ONCE(new_pos > log->end_pos)) + return; + + if (!bpf_verifier_log_needed(log) || log->level == BPF_LOG_KERNEL) + return; + + /* if position to which we reset is beyond current log window, + * then we didn't preserve any useful content and should adjust + * start_pos to end up with an empty log (start_pos == end_pos) + */ + log->end_pos = new_pos; + if (log->end_pos < log->start_pos) + log->start_pos = log->end_pos; + + if (!log->ubuf) + return; + + if (log->level & BPF_LOG_FIXED) + pos = log->end_pos + 1; + else + div_u64_rem(new_pos, log->len_total, &pos); + + if (pos < log->len_total && put_user(zero, log->ubuf + pos)) + log->ubuf = NULL; +} + +static void bpf_vlog_reverse_kbuf(char *buf, int len) +{ + int i, j; + + for (i = 0, j = len - 1; i < j; i++, j--) + swap(buf[i], buf[j]); +} + +static int bpf_vlog_reverse_ubuf(struct bpf_verifier_log *log, int start, int end) +{ + /* we split log->kbuf into two equal parts for both ends of array */ + int n = sizeof(log->kbuf) / 2, nn; + char *lbuf = log->kbuf, *rbuf = log->kbuf + n; + + /* Read ubuf's section [start, end) two chunks at a time, from left + * and right side; within each chunk, swap all the bytes; after that + * reverse the order of lbuf and rbuf and write result back to ubuf. + * This way we'll end up with swapped contents of specified + * [start, end) ubuf segment. + */ + while (end - start > 1) { + nn = min(n, (end - start ) / 2); + + if (copy_from_user(lbuf, log->ubuf + start, nn)) + return -EFAULT; + if (copy_from_user(rbuf, log->ubuf + end - nn, nn)) + return -EFAULT; + + bpf_vlog_reverse_kbuf(lbuf, nn); + bpf_vlog_reverse_kbuf(rbuf, nn); + + /* we write lbuf to the right end of ubuf, while rbuf to the + * left one to end up with properly reversed overall ubuf + */ + if (copy_to_user(log->ubuf + start, rbuf, nn)) + return -EFAULT; + if (copy_to_user(log->ubuf + end - nn, lbuf, nn)) + return -EFAULT; + + start += nn; + end -= nn; + } + + return 0; +} + +int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual) +{ + u32 sublen; + int err; + + *log_size_actual = 0; + if (!log || log->level == 0 || log->level == BPF_LOG_KERNEL) + return 0; + + if (!log->ubuf) + goto skip_log_rotate; + /* If we never truncated log, there is nothing to move around. */ + if (log->start_pos == 0) + goto skip_log_rotate; + + /* Otherwise we need to rotate log contents to make it start from the + * buffer beginning and be a continuous zero-terminated string. Note + * that if log->start_pos != 0 then we definitely filled up entire log + * buffer with no gaps, and we just need to shift buffer contents to + * the left by (log->start_pos % log->len_total) bytes. + * + * Unfortunately, user buffer could be huge and we don't want to + * allocate temporary kernel memory of the same size just to shift + * contents in a straightforward fashion. Instead, we'll be clever and + * do in-place array rotation. This is a leetcode-style problem, which + * could be solved by three rotations. + * + * Let's say we have log buffer that has to be shifted left by 7 bytes + * (spaces and vertical bar is just for demonstrative purposes): + * E F G H I J K | A B C D + * + * First, we reverse entire array: + * D C B A | K J I H G F E + * + * Then we rotate first 4 bytes (DCBA) and separately last 7 bytes + * (KJIHGFE), resulting in a properly rotated array: + * A B C D | E F G H I J K + * + * We'll utilize log->kbuf to read user memory chunk by chunk, swap + * bytes, and write them back. Doing it byte-by-byte would be + * unnecessarily inefficient. Altogether we are going to read and + * write each byte twice, for total 4 memory copies between kernel and + * user space. + */ + + /* length of the chopped off part that will be the beginning; + * len(ABCD) in the example above + */ + div_u64_rem(log->start_pos, log->len_total, &sublen); + sublen = log->len_total - sublen; + + err = bpf_vlog_reverse_ubuf(log, 0, log->len_total); + err = err ?: bpf_vlog_reverse_ubuf(log, 0, sublen); + err = err ?: bpf_vlog_reverse_ubuf(log, sublen, log->len_total); + if (err) + log->ubuf = NULL; + +skip_log_rotate: + *log_size_actual = log->len_max; + + /* properly initialized log has either both ubuf!=NULL and len_total>0 + * or ubuf==NULL and len_total==0, so if this condition doesn't hold, + * we got a fault somewhere along the way, so report it back + */ + if (!!log->ubuf != !!log->len_total) + return -EFAULT; + + /* did truncation actually happen? */ + if (log->ubuf && log->len_max > log->len_total) + return -ENOSPC; + + return 0; +} + +/* log_level controls verbosity level of eBPF verifier. + * bpf_verifier_log_write() is used to dump the verification trace to the log, + * so the user can figure out what's wrong with the program + */ +__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, + const char *fmt, ...) +{ + va_list args; + + if (!bpf_verifier_log_needed(&env->log)) + return; + + va_start(args, fmt); + bpf_verifier_vlog(&env->log, fmt, args); + va_end(args); +} +EXPORT_SYMBOL_GPL(bpf_verifier_log_write); + +__printf(2, 3) void bpf_log(struct bpf_verifier_log *log, + const char *fmt, ...) +{ + va_list args; + + if (!bpf_verifier_log_needed(log)) + return; + + va_start(args, fmt); + bpf_verifier_vlog(log, fmt, args); + va_end(args); +} +EXPORT_SYMBOL_GPL(bpf_log); + +static const struct bpf_line_info * +find_linfo(const struct bpf_verifier_env *env, u32 insn_off) +{ + const struct bpf_line_info *linfo; + const struct bpf_prog *prog; + u32 nr_linfo; + int l, r, m; + + prog = env->prog; + nr_linfo = prog->aux->nr_linfo; + + if (!nr_linfo || insn_off >= prog->len) + return NULL; + + linfo = prog->aux->linfo; + /* Loop invariant: linfo[l].insn_off <= insns_off. + * linfo[0].insn_off == 0 which always satisfies above condition. + * Binary search is searching for rightmost linfo entry that satisfies + * the above invariant, giving us the desired record that covers given + * instruction offset. + */ + l = 0; + r = nr_linfo - 1; + while (l < r) { + /* (r - l + 1) / 2 means we break a tie to the right, so if: + * l=1, r=2, linfo[l].insn_off <= insn_off, linfo[r].insn_off > insn_off, + * then m=2, we see that linfo[m].insn_off > insn_off, and so + * r becomes 1 and we exit the loop with correct l==1. + * If the tie was broken to the left, m=1 would end us up in + * an endless loop where l and m stay at 1 and r stays at 2. + */ + m = l + (r - l + 1) / 2; + if (linfo[m].insn_off <= insn_off) + l = m; + else + r = m - 1; + } + + return &linfo[l]; +} + +static const char *ltrim(const char *s) +{ + while (isspace(*s)) + s++; + + return s; +} + +__printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env, + u32 insn_off, + const char *prefix_fmt, ...) +{ + const struct bpf_line_info *linfo, *prev_linfo; + const struct btf *btf; + const char *s, *fname; + + if (!bpf_verifier_log_needed(&env->log)) + return; + + prev_linfo = env->prev_linfo; + linfo = find_linfo(env, insn_off); + if (!linfo || linfo == prev_linfo) + return; + + /* It often happens that two separate linfo records point to the same + * source code line, but have differing column numbers. Given verifier + * log doesn't emit column information, from user perspective we just + * end up emitting the same source code line twice unnecessarily. + * So instead check that previous and current linfo record point to + * the same file (file_name_offs match) and the same line number, and + * avoid emitting duplicated source code line in such case. + */ + if (prev_linfo && linfo->file_name_off == prev_linfo->file_name_off && + BPF_LINE_INFO_LINE_NUM(linfo->line_col) == BPF_LINE_INFO_LINE_NUM(prev_linfo->line_col)) + return; + + if (prefix_fmt) { + va_list args; + + va_start(args, prefix_fmt); + bpf_verifier_vlog(&env->log, prefix_fmt, args); + va_end(args); + } + + btf = env->prog->aux->btf; + s = ltrim(btf_name_by_offset(btf, linfo->line_off)); + verbose(env, "%s", s); /* source code line */ + + s = btf_name_by_offset(btf, linfo->file_name_off); + /* leave only file name */ + fname = strrchr(s, '/'); + fname = fname ? fname + 1 : s; + verbose(env, " @ %s:%u\n", fname, BPF_LINE_INFO_LINE_NUM(linfo->line_col)); + + env->prev_linfo = linfo; +} + +static const char *btf_type_name(const struct btf *btf, u32 id) +{ + return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); +} + +/* string representation of 'enum bpf_reg_type' + * + * Note that reg_type_str() can not appear more than once in a single verbose() + * statement. + */ +const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type) +{ + char postfix[16] = {0}, prefix[64] = {0}; + static const char * const str[] = { + [NOT_INIT] = "?", + [SCALAR_VALUE] = "scalar", + [PTR_TO_CTX] = "ctx", + [CONST_PTR_TO_MAP] = "map_ptr", + [PTR_TO_MAP_VALUE] = "map_value", + [PTR_TO_STACK] = "fp", + [PTR_TO_PACKET] = "pkt", + [PTR_TO_PACKET_META] = "pkt_meta", + [PTR_TO_PACKET_END] = "pkt_end", + [PTR_TO_FLOW_KEYS] = "flow_keys", + [PTR_TO_SOCKET] = "sock", + [PTR_TO_SOCK_COMMON] = "sock_common", + [PTR_TO_TCP_SOCK] = "tcp_sock", + [PTR_TO_TP_BUFFER] = "tp_buffer", + [PTR_TO_XDP_SOCK] = "xdp_sock", + [PTR_TO_BTF_ID] = "ptr_", + [PTR_TO_MEM] = "mem", + [PTR_TO_ARENA] = "arena", + [PTR_TO_BUF] = "buf", + [PTR_TO_FUNC] = "func", + [PTR_TO_INSN] = "insn", + [PTR_TO_MAP_KEY] = "map_key", + [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", + }; + + if (type & PTR_MAYBE_NULL) { + if (base_type(type) == PTR_TO_BTF_ID) + strscpy(postfix, "or_null_"); + else + strscpy(postfix, "_or_null"); + } + + snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", + type & MEM_RDONLY ? "rdonly_" : "", + type & MEM_RINGBUF ? "ringbuf_" : "", + type & MEM_USER ? "user_" : "", + type & MEM_PERCPU ? "percpu_" : "", + type & MEM_RCU ? "rcu_" : "", + type & PTR_UNTRUSTED ? "untrusted_" : "", + type & PTR_TRUSTED ? "trusted_" : "" + ); + + snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", + prefix, str[base_type(type)], postfix); + return env->tmp_str_buf; +} + +const char *dynptr_type_str(enum bpf_dynptr_type type) +{ + switch (type) { + case BPF_DYNPTR_TYPE_LOCAL: + return "local"; + case BPF_DYNPTR_TYPE_RINGBUF: + return "ringbuf"; + case BPF_DYNPTR_TYPE_SKB: + return "skb"; + case BPF_DYNPTR_TYPE_XDP: + return "xdp"; + case BPF_DYNPTR_TYPE_SKB_META: + return "skb_meta"; + case BPF_DYNPTR_TYPE_FILE: + return "file"; + case BPF_DYNPTR_TYPE_INVALID: + return "<invalid>"; + default: + WARN_ONCE(1, "unknown dynptr type %d\n", type); + return "<unknown>"; + } +} + +const char *iter_type_str(const struct btf *btf, u32 btf_id) +{ + if (!btf || btf_id == 0) + return "<invalid>"; + + /* we already validated that type is valid and has conforming name */ + return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; +} + +const char *iter_state_str(enum bpf_iter_state state) +{ + switch (state) { + case BPF_ITER_STATE_ACTIVE: + return "active"; + case BPF_ITER_STATE_DRAINED: + return "drained"; + case BPF_ITER_STATE_INVALID: + return "<invalid>"; + default: + WARN_ONCE(1, "unknown iter state %d\n", state); + return "<unknown>"; + } +} + +static char slot_type_char[] = { + [STACK_INVALID] = '?', + [STACK_SPILL] = 'r', + [STACK_MISC] = 'm', + [STACK_ZERO] = '0', + [STACK_DYNPTR] = 'd', + [STACK_ITER] = 'i', + [STACK_IRQ_FLAG] = 'f' +}; + +#define UNUM_MAX_DECIMAL U16_MAX +#define SNUM_MAX_DECIMAL S16_MAX +#define SNUM_MIN_DECIMAL S16_MIN + +static bool is_unum_decimal(u64 num) +{ + return num <= UNUM_MAX_DECIMAL; +} + +static bool is_snum_decimal(s64 num) +{ + return num >= SNUM_MIN_DECIMAL && num <= SNUM_MAX_DECIMAL; +} + +static void verbose_unum(struct bpf_verifier_env *env, u64 num) +{ + if (is_unum_decimal(num)) + verbose(env, "%llu", num); + else + verbose(env, "%#llx", num); +} + +static void verbose_snum(struct bpf_verifier_env *env, s64 num) +{ + if (is_snum_decimal(num)) + verbose(env, "%lld", num); + else + verbose(env, "%#llx", num); +} + +int tnum_strn(char *str, size_t size, struct tnum a) +{ + /* print as a constant, if tnum is fully known */ + if (a.mask == 0) { + if (is_unum_decimal(a.value)) + return snprintf(str, size, "%llu", a.value); + else + return snprintf(str, size, "%#llx", a.value); + } + return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask); +} +EXPORT_SYMBOL_GPL(tnum_strn); + +static void print_scalar_ranges(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, + const char **sep) +{ + /* For signed ranges, we want to unify 64-bit and 32-bit values in the + * output as much as possible, but there is a bit of a complication. + * If we choose to print values as decimals, this is natural to do, + * because negative 64-bit and 32-bit values >= -S32_MIN have the same + * representation due to sign extension. But if we choose to print + * them in hex format (see is_snum_decimal()), then sign extension is + * misleading. + * E.g., smin=-2 and smin32=-2 are exactly the same in decimal, but in + * hex they will be smin=0xfffffffffffffffe and smin32=0xfffffffe, two + * very different numbers. + * So we avoid sign extension if we choose to print values in hex. + */ + struct { + const char *name; + u64 val; + bool omit; + } minmaxs[] = { + {"smin", reg->smin_value, reg->smin_value == S64_MIN}, + {"smax", reg->smax_value, reg->smax_value == S64_MAX}, + {"umin", reg->umin_value, reg->umin_value == 0}, + {"umax", reg->umax_value, reg->umax_value == U64_MAX}, + {"smin32", + is_snum_decimal((s64)reg->s32_min_value) + ? (s64)reg->s32_min_value + : (u32)reg->s32_min_value, reg->s32_min_value == S32_MIN}, + {"smax32", + is_snum_decimal((s64)reg->s32_max_value) + ? (s64)reg->s32_max_value + : (u32)reg->s32_max_value, reg->s32_max_value == S32_MAX}, + {"umin32", reg->u32_min_value, reg->u32_min_value == 0}, + {"umax32", reg->u32_max_value, reg->u32_max_value == U32_MAX}, + }, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)]; + bool neg1, neg2; + + for (m1 = &minmaxs[0]; m1 < mend; m1++) { + if (m1->omit) + continue; + + neg1 = m1->name[0] == 's' && (s64)m1->val < 0; + + verbose(env, "%s%s=", *sep, m1->name); + *sep = ","; + + for (m2 = m1 + 2; m2 < mend; m2 += 2) { + if (m2->omit || m2->val != m1->val) + continue; + /* don't mix negatives with positives */ + neg2 = m2->name[0] == 's' && (s64)m2->val < 0; + if (neg2 != neg1) + continue; + m2->omit = true; + verbose(env, "%s=", m2->name); + } + + if (m1->name[0] == 's') + verbose_snum(env, m1->val); + else + verbose_unum(env, m1->val); + } +} + +static bool type_is_map_ptr(enum bpf_reg_type t) { + switch (base_type(t)) { + case CONST_PTR_TO_MAP: + case PTR_TO_MAP_KEY: + case PTR_TO_MAP_VALUE: + return true; + default: + return false; + } +} + +/* + * _a stands for append, was shortened to avoid multiline statements below. + * This macro is used to output a comma separated list of attributes. + */ +#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, ##__VA_ARGS__); sep = ","; }) + +static void print_reg_state(struct bpf_verifier_env *env, + const struct bpf_func_state *state, + const struct bpf_reg_state *reg) +{ + enum bpf_reg_type t; + const char *sep = ""; + + t = reg->type; + if (t == SCALAR_VALUE && reg->precise) + verbose(env, "P"); + if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) { + verbose_snum(env, reg->var_off.value); + return; + } + + verbose(env, "%s", reg_type_str(env, t)); + if (t == PTR_TO_ARENA) + return; + if (t == PTR_TO_STACK) { + if (state->frameno != reg->frameno) + verbose(env, "[%d]", reg->frameno); + if (tnum_is_const(reg->var_off)) { + verbose_snum(env, reg->var_off.value + reg->off); + return; + } + } + if (base_type(t) == PTR_TO_BTF_ID) + verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); + verbose(env, "("); + if (reg->id) + verbose_a("id=%d", reg->id & ~BPF_ADD_CONST); + if (reg->id & BPF_ADD_CONST) + verbose(env, "%+d", reg->off); + if (reg->ref_obj_id) + verbose_a("ref_obj_id=%d", reg->ref_obj_id); + if (type_is_non_owning_ref(reg->type)) + verbose_a("%s", "non_own_ref"); + if (type_is_map_ptr(t)) { + if (reg->map_ptr->name[0]) + verbose_a("map=%s", reg->map_ptr->name); + verbose_a("ks=%d,vs=%d", + reg->map_ptr->key_size, + reg->map_ptr->value_size); + } + if (t != SCALAR_VALUE && reg->off) { + verbose_a("off="); + verbose_snum(env, reg->off); + } + if (type_is_pkt_pointer(t)) { + verbose_a("r="); + verbose_unum(env, reg->range); + } + if (base_type(t) == PTR_TO_MEM) { + verbose_a("sz="); + verbose_unum(env, reg->mem_size); + } + if (t == CONST_PTR_TO_DYNPTR) + verbose_a("type=%s", dynptr_type_str(reg->dynptr.type)); + if (tnum_is_const(reg->var_off)) { + /* a pointer register with fixed offset */ + if (reg->var_off.value) { + verbose_a("imm="); + verbose_snum(env, reg->var_off.value); + } + } else { + print_scalar_ranges(env, reg, &sep); + if (!tnum_is_unknown(reg->var_off)) { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose_a("var_off=%s", tn_buf); + } + } + verbose(env, ")"); +} + +void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate, + u32 frameno, bool print_all) +{ + const struct bpf_func_state *state = vstate->frame[frameno]; + const struct bpf_reg_state *reg; + int i; + + if (state->frameno) + verbose(env, " frame%d:", state->frameno); + for (i = 0; i < MAX_BPF_REG; i++) { + reg = &state->regs[i]; + if (reg->type == NOT_INIT) + continue; + if (!print_all && !reg_scratched(env, i)) + continue; + verbose(env, " R%d", i); + verbose(env, "="); + print_reg_state(env, state, reg); + } + for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { + char types_buf[BPF_REG_SIZE + 1]; + const char *sep = ""; + bool valid = false; + u8 slot_type; + int j; + + if (!print_all && !stack_slot_scratched(env, i)) + continue; + + for (j = 0; j < BPF_REG_SIZE; j++) { + slot_type = state->stack[i].slot_type[j]; + if (slot_type != STACK_INVALID) + valid = true; + types_buf[j] = slot_type_char[slot_type]; + } + types_buf[BPF_REG_SIZE] = 0; + if (!valid) + continue; + + reg = &state->stack[i].spilled_ptr; + switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { + case STACK_SPILL: + /* print MISC/ZERO/INVALID slots above subreg spill */ + for (j = 0; j < BPF_REG_SIZE; j++) + if (state->stack[i].slot_type[j] == STACK_SPILL) + break; + types_buf[j] = '\0'; + + verbose(env, " fp%d=%s", (-i - 1) * BPF_REG_SIZE, types_buf); + print_reg_state(env, state, reg); + break; + case STACK_DYNPTR: + /* skip to main dynptr slot */ + i += BPF_DYNPTR_NR_SLOTS - 1; + reg = &state->stack[i].spilled_ptr; + + verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); + verbose(env, "=dynptr_%s(", dynptr_type_str(reg->dynptr.type)); + if (reg->id) + verbose_a("id=%d", reg->id); + if (reg->ref_obj_id) + verbose_a("ref_id=%d", reg->ref_obj_id); + if (reg->dynptr_id) + verbose_a("dynptr_id=%d", reg->dynptr_id); + verbose(env, ")"); + break; + case STACK_ITER: + /* only main slot has ref_obj_id set; skip others */ + if (!reg->ref_obj_id) + continue; + + verbose(env, " fp%d=iter_%s(ref_id=%d,state=%s,depth=%u)", + (-i - 1) * BPF_REG_SIZE, + iter_type_str(reg->iter.btf, reg->iter.btf_id), + reg->ref_obj_id, iter_state_str(reg->iter.state), + reg->iter.depth); + break; + case STACK_MISC: + case STACK_ZERO: + default: + verbose(env, " fp%d=%s", (-i - 1) * BPF_REG_SIZE, types_buf); + break; + } + } + if (vstate->acquired_refs && vstate->refs[0].id) { + verbose(env, " refs=%d", vstate->refs[0].id); + for (i = 1; i < vstate->acquired_refs; i++) + if (vstate->refs[i].id) + verbose(env, ",%d", vstate->refs[i].id); + } + if (state->in_callback_fn) + verbose(env, " cb"); + if (state->in_async_callback_fn) + verbose(env, " async_cb"); + verbose(env, "\n"); + if (!print_all) + mark_verifier_state_clean(env); +} + +static inline u32 vlog_alignment(u32 pos) +{ + return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), + BPF_LOG_MIN_ALIGNMENT) - pos - 1; +} + +void print_insn_state(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate, + u32 frameno) +{ + if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { + /* remove new line character */ + bpf_vlog_reset(&env->log, env->prev_log_pos - 1); + verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); + } else { + verbose(env, "%d:", env->insn_idx); + } + print_verifier_state(env, vstate, frameno, false); +} diff --git a/kernel/bpf/lpm_trie.c b/kernel/bpf/lpm_trie.c new file mode 100644 index 000000000000..be66d7e520e0 --- /dev/null +++ b/kernel/bpf/lpm_trie.c @@ -0,0 +1,789 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Longest prefix match list implementation + * + * Copyright (c) 2016,2017 Daniel Mack + * Copyright (c) 2016 David Herrmann + */ + +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/err.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/vmalloc.h> +#include <net/ipv6.h> +#include <uapi/linux/btf.h> +#include <linux/btf_ids.h> +#include <asm/rqspinlock.h> +#include <linux/bpf_mem_alloc.h> + +/* Intermediate node */ +#define LPM_TREE_NODE_FLAG_IM BIT(0) + +struct lpm_trie_node; + +struct lpm_trie_node { + struct lpm_trie_node __rcu *child[2]; + u32 prefixlen; + u32 flags; + u8 data[]; +}; + +struct lpm_trie { + struct bpf_map map; + struct lpm_trie_node __rcu *root; + struct bpf_mem_alloc ma; + size_t n_entries; + size_t max_prefixlen; + size_t data_size; + rqspinlock_t lock; +}; + +/* This trie implements a longest prefix match algorithm that can be used to + * match IP addresses to a stored set of ranges. + * + * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is + * interpreted as big endian, so data[0] stores the most significant byte. + * + * Match ranges are internally stored in instances of struct lpm_trie_node + * which each contain their prefix length as well as two pointers that may + * lead to more nodes containing more specific matches. Each node also stores + * a value that is defined by and returned to userspace via the update_elem + * and lookup functions. + * + * For instance, let's start with a trie that was created with a prefix length + * of 32, so it can be used for IPv4 addresses, and one single element that + * matches 192.168.0.0/16. The data array would hence contain + * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will + * stick to IP-address notation for readability though. + * + * As the trie is empty initially, the new node (1) will be places as root + * node, denoted as (R) in the example below. As there are no other node, both + * child pointers are %NULL. + * + * +----------------+ + * | (1) (R) | + * | 192.168.0.0/16 | + * | value: 1 | + * | [0] [1] | + * +----------------+ + * + * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already + * a node with the same data and a smaller prefix (ie, a less specific one), + * node (2) will become a child of (1). In child index depends on the next bit + * that is outside of what (1) matches, and that bit is 0, so (2) will be + * child[0] of (1): + * + * +----------------+ + * | (1) (R) | + * | 192.168.0.0/16 | + * | value: 1 | + * | [0] [1] | + * +----------------+ + * | + * +----------------+ + * | (2) | + * | 192.168.0.0/24 | + * | value: 2 | + * | [0] [1] | + * +----------------+ + * + * The child[1] slot of (1) could be filled with another node which has bit #17 + * (the next bit after the ones that (1) matches on) set to 1. For instance, + * 192.168.128.0/24: + * + * +----------------+ + * | (1) (R) | + * | 192.168.0.0/16 | + * | value: 1 | + * | [0] [1] | + * +----------------+ + * | | + * +----------------+ +------------------+ + * | (2) | | (3) | + * | 192.168.0.0/24 | | 192.168.128.0/24 | + * | value: 2 | | value: 3 | + * | [0] [1] | | [0] [1] | + * +----------------+ +------------------+ + * + * Let's add another node (4) to the game for 192.168.1.0/24. In order to place + * it, node (1) is looked at first, and because (4) of the semantics laid out + * above (bit #17 is 0), it would normally be attached to (1) as child[0]. + * However, that slot is already allocated, so a new node is needed in between. + * That node does not have a value attached to it and it will never be + * returned to users as result of a lookup. It is only there to differentiate + * the traversal further. It will get a prefix as wide as necessary to + * distinguish its two children: + * + * +----------------+ + * | (1) (R) | + * | 192.168.0.0/16 | + * | value: 1 | + * | [0] [1] | + * +----------------+ + * | | + * +----------------+ +------------------+ + * | (4) (I) | | (3) | + * | 192.168.0.0/23 | | 192.168.128.0/24 | + * | value: --- | | value: 3 | + * | [0] [1] | | [0] [1] | + * +----------------+ +------------------+ + * | | + * +----------------+ +----------------+ + * | (2) | | (5) | + * | 192.168.0.0/24 | | 192.168.1.0/24 | + * | value: 2 | | value: 5 | + * | [0] [1] | | [0] [1] | + * +----------------+ +----------------+ + * + * 192.168.1.1/32 would be a child of (5) etc. + * + * An intermediate node will be turned into a 'real' node on demand. In the + * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie. + * + * A fully populated trie would have a height of 32 nodes, as the trie was + * created with a prefix length of 32. + * + * The lookup starts at the root node. If the current node matches and if there + * is a child that can be used to become more specific, the trie is traversed + * downwards. The last node in the traversal that is a non-intermediate one is + * returned. + */ + +static inline int extract_bit(const u8 *data, size_t index) +{ + return !!(data[index / 8] & (1 << (7 - (index % 8)))); +} + +/** + * __longest_prefix_match() - determine the longest prefix + * @trie: The trie to get internal sizes from + * @node: The node to operate on + * @key: The key to compare to @node + * + * Determine the longest prefix of @node that matches the bits in @key. + */ +static __always_inline +size_t __longest_prefix_match(const struct lpm_trie *trie, + const struct lpm_trie_node *node, + const struct bpf_lpm_trie_key_u8 *key) +{ + u32 limit = min(node->prefixlen, key->prefixlen); + u32 prefixlen = 0, i = 0; + + BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32)); + BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key_u8, data) % sizeof(u32)); + +#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT) + + /* data_size >= 16 has very small probability. + * We do not use a loop for optimal code generation. + */ + if (trie->data_size >= 8) { + u64 diff = be64_to_cpu(*(__be64 *)node->data ^ + *(__be64 *)key->data); + + prefixlen = 64 - fls64(diff); + if (prefixlen >= limit) + return limit; + if (diff) + return prefixlen; + i = 8; + } +#endif + + while (trie->data_size >= i + 4) { + u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^ + *(__be32 *)&key->data[i]); + + prefixlen += 32 - fls(diff); + if (prefixlen >= limit) + return limit; + if (diff) + return prefixlen; + i += 4; + } + + if (trie->data_size >= i + 2) { + u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^ + *(__be16 *)&key->data[i]); + + prefixlen += 16 - fls(diff); + if (prefixlen >= limit) + return limit; + if (diff) + return prefixlen; + i += 2; + } + + if (trie->data_size >= i + 1) { + prefixlen += 8 - fls(node->data[i] ^ key->data[i]); + + if (prefixlen >= limit) + return limit; + } + + return prefixlen; +} + +static size_t longest_prefix_match(const struct lpm_trie *trie, + const struct lpm_trie_node *node, + const struct bpf_lpm_trie_key_u8 *key) +{ + return __longest_prefix_match(trie, node, key); +} + +/* Called from syscall or from eBPF program */ +static void *trie_lookup_elem(struct bpf_map *map, void *_key) +{ + struct lpm_trie *trie = container_of(map, struct lpm_trie, map); + struct lpm_trie_node *node, *found = NULL; + struct bpf_lpm_trie_key_u8 *key = _key; + + if (key->prefixlen > trie->max_prefixlen) + return NULL; + + /* Start walking the trie from the root node ... */ + + for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held()); + node;) { + unsigned int next_bit; + size_t matchlen; + + /* Determine the longest prefix of @node that matches @key. + * If it's the maximum possible prefix for this trie, we have + * an exact match and can return it directly. + */ + matchlen = __longest_prefix_match(trie, node, key); + if (matchlen == trie->max_prefixlen) { + found = node; + break; + } + + /* If the number of bits that match is smaller than the prefix + * length of @node, bail out and return the node we have seen + * last in the traversal (ie, the parent). + */ + if (matchlen < node->prefixlen) + break; + + /* Consider this node as return candidate unless it is an + * artificially added intermediate one. + */ + if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) + found = node; + + /* If the node match is fully satisfied, let's see if we can + * become more specific. Determine the next bit in the key and + * traverse down. + */ + next_bit = extract_bit(key->data, node->prefixlen); + node = rcu_dereference_check(node->child[next_bit], + rcu_read_lock_bh_held()); + } + + if (!found) + return NULL; + + return found->data + trie->data_size; +} + +static struct lpm_trie_node *lpm_trie_node_alloc(struct lpm_trie *trie, + const void *value) +{ + struct lpm_trie_node *node; + + node = bpf_mem_cache_alloc(&trie->ma); + + if (!node) + return NULL; + + node->flags = 0; + + if (value) + memcpy(node->data + trie->data_size, value, + trie->map.value_size); + + return node; +} + +static int trie_check_add_elem(struct lpm_trie *trie, u64 flags) +{ + if (flags == BPF_EXIST) + return -ENOENT; + if (trie->n_entries == trie->map.max_entries) + return -ENOSPC; + trie->n_entries++; + return 0; +} + +/* Called from syscall or from eBPF program */ +static long trie_update_elem(struct bpf_map *map, + void *_key, void *value, u64 flags) +{ + struct lpm_trie *trie = container_of(map, struct lpm_trie, map); + struct lpm_trie_node *node, *im_node, *new_node; + struct lpm_trie_node *free_node = NULL; + struct lpm_trie_node __rcu **slot; + struct bpf_lpm_trie_key_u8 *key = _key; + unsigned long irq_flags; + unsigned int next_bit; + size_t matchlen = 0; + int ret = 0; + + if (unlikely(flags > BPF_EXIST)) + return -EINVAL; + + if (key->prefixlen > trie->max_prefixlen) + return -EINVAL; + + /* Allocate and fill a new node */ + new_node = lpm_trie_node_alloc(trie, value); + if (!new_node) + return -ENOMEM; + + ret = raw_res_spin_lock_irqsave(&trie->lock, irq_flags); + if (ret) + goto out_free; + + new_node->prefixlen = key->prefixlen; + RCU_INIT_POINTER(new_node->child[0], NULL); + RCU_INIT_POINTER(new_node->child[1], NULL); + memcpy(new_node->data, key->data, trie->data_size); + + /* Now find a slot to attach the new node. To do that, walk the tree + * from the root and match as many bits as possible for each node until + * we either find an empty slot or a slot that needs to be replaced by + * an intermediate node. + */ + slot = &trie->root; + + while ((node = rcu_dereference(*slot))) { + matchlen = longest_prefix_match(trie, node, key); + + if (node->prefixlen != matchlen || + node->prefixlen == key->prefixlen) + break; + + next_bit = extract_bit(key->data, node->prefixlen); + slot = &node->child[next_bit]; + } + + /* If the slot is empty (a free child pointer or an empty root), + * simply assign the @new_node to that slot and be done. + */ + if (!node) { + ret = trie_check_add_elem(trie, flags); + if (ret) + goto out; + + rcu_assign_pointer(*slot, new_node); + goto out; + } + + /* If the slot we picked already exists, replace it with @new_node + * which already has the correct data array set. + */ + if (node->prefixlen == matchlen) { + if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) { + if (flags == BPF_NOEXIST) { + ret = -EEXIST; + goto out; + } + } else { + ret = trie_check_add_elem(trie, flags); + if (ret) + goto out; + } + + new_node->child[0] = node->child[0]; + new_node->child[1] = node->child[1]; + + rcu_assign_pointer(*slot, new_node); + free_node = node; + + goto out; + } + + ret = trie_check_add_elem(trie, flags); + if (ret) + goto out; + + /* If the new node matches the prefix completely, it must be inserted + * as an ancestor. Simply insert it between @node and *@slot. + */ + if (matchlen == key->prefixlen) { + next_bit = extract_bit(node->data, matchlen); + rcu_assign_pointer(new_node->child[next_bit], node); + rcu_assign_pointer(*slot, new_node); + goto out; + } + + im_node = lpm_trie_node_alloc(trie, NULL); + if (!im_node) { + trie->n_entries--; + ret = -ENOMEM; + goto out; + } + + im_node->prefixlen = matchlen; + im_node->flags |= LPM_TREE_NODE_FLAG_IM; + memcpy(im_node->data, node->data, trie->data_size); + + /* Now determine which child to install in which slot */ + if (extract_bit(key->data, matchlen)) { + rcu_assign_pointer(im_node->child[0], node); + rcu_assign_pointer(im_node->child[1], new_node); + } else { + rcu_assign_pointer(im_node->child[0], new_node); + rcu_assign_pointer(im_node->child[1], node); + } + + /* Finally, assign the intermediate node to the determined slot */ + rcu_assign_pointer(*slot, im_node); + +out: + raw_res_spin_unlock_irqrestore(&trie->lock, irq_flags); +out_free: + if (ret) + bpf_mem_cache_free(&trie->ma, new_node); + bpf_mem_cache_free_rcu(&trie->ma, free_node); + + return ret; +} + +/* Called from syscall or from eBPF program */ +static long trie_delete_elem(struct bpf_map *map, void *_key) +{ + struct lpm_trie *trie = container_of(map, struct lpm_trie, map); + struct lpm_trie_node *free_node = NULL, *free_parent = NULL; + struct bpf_lpm_trie_key_u8 *key = _key; + struct lpm_trie_node __rcu **trim, **trim2; + struct lpm_trie_node *node, *parent; + unsigned long irq_flags; + unsigned int next_bit; + size_t matchlen = 0; + int ret = 0; + + if (key->prefixlen > trie->max_prefixlen) + return -EINVAL; + + ret = raw_res_spin_lock_irqsave(&trie->lock, irq_flags); + if (ret) + return ret; + + /* Walk the tree looking for an exact key/length match and keeping + * track of the path we traverse. We will need to know the node + * we wish to delete, and the slot that points to the node we want + * to delete. We may also need to know the nodes parent and the + * slot that contains it. + */ + trim = &trie->root; + trim2 = trim; + parent = NULL; + while ((node = rcu_dereference(*trim))) { + matchlen = longest_prefix_match(trie, node, key); + + if (node->prefixlen != matchlen || + node->prefixlen == key->prefixlen) + break; + + parent = node; + trim2 = trim; + next_bit = extract_bit(key->data, node->prefixlen); + trim = &node->child[next_bit]; + } + + if (!node || node->prefixlen != key->prefixlen || + node->prefixlen != matchlen || + (node->flags & LPM_TREE_NODE_FLAG_IM)) { + ret = -ENOENT; + goto out; + } + + trie->n_entries--; + + /* If the node we are removing has two children, simply mark it + * as intermediate and we are done. + */ + if (rcu_access_pointer(node->child[0]) && + rcu_access_pointer(node->child[1])) { + node->flags |= LPM_TREE_NODE_FLAG_IM; + goto out; + } + + /* If the parent of the node we are about to delete is an intermediate + * node, and the deleted node doesn't have any children, we can delete + * the intermediate parent as well and promote its other child + * up the tree. Doing this maintains the invariant that all + * intermediate nodes have exactly 2 children and that there are no + * unnecessary intermediate nodes in the tree. + */ + if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) && + !node->child[0] && !node->child[1]) { + if (node == rcu_access_pointer(parent->child[0])) + rcu_assign_pointer( + *trim2, rcu_access_pointer(parent->child[1])); + else + rcu_assign_pointer( + *trim2, rcu_access_pointer(parent->child[0])); + free_parent = parent; + free_node = node; + goto out; + } + + /* The node we are removing has either zero or one child. If there + * is a child, move it into the removed node's slot then delete + * the node. Otherwise just clear the slot and delete the node. + */ + if (node->child[0]) + rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0])); + else if (node->child[1]) + rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1])); + else + RCU_INIT_POINTER(*trim, NULL); + free_node = node; + +out: + raw_res_spin_unlock_irqrestore(&trie->lock, irq_flags); + + bpf_mem_cache_free_rcu(&trie->ma, free_parent); + bpf_mem_cache_free_rcu(&trie->ma, free_node); + + return ret; +} + +#define LPM_DATA_SIZE_MAX 256 +#define LPM_DATA_SIZE_MIN 1 + +#define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \ + sizeof(struct lpm_trie_node)) +#define LPM_VAL_SIZE_MIN 1 + +#define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key_u8) + (X)) +#define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX) +#define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN) + +#define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \ + BPF_F_ACCESS_MASK) + +static struct bpf_map *trie_alloc(union bpf_attr *attr) +{ + struct lpm_trie *trie; + size_t leaf_size; + int err; + + /* check sanity of attributes */ + if (attr->max_entries == 0 || + !(attr->map_flags & BPF_F_NO_PREALLOC) || + attr->map_flags & ~LPM_CREATE_FLAG_MASK || + !bpf_map_flags_access_ok(attr->map_flags) || + attr->key_size < LPM_KEY_SIZE_MIN || + attr->key_size > LPM_KEY_SIZE_MAX || + attr->value_size < LPM_VAL_SIZE_MIN || + attr->value_size > LPM_VAL_SIZE_MAX) + return ERR_PTR(-EINVAL); + + trie = bpf_map_area_alloc(sizeof(*trie), NUMA_NO_NODE); + if (!trie) + return ERR_PTR(-ENOMEM); + + /* copy mandatory map attributes */ + bpf_map_init_from_attr(&trie->map, attr); + trie->data_size = attr->key_size - + offsetof(struct bpf_lpm_trie_key_u8, data); + trie->max_prefixlen = trie->data_size * 8; + + raw_res_spin_lock_init(&trie->lock); + + /* Allocate intermediate and leaf nodes from the same allocator */ + leaf_size = sizeof(struct lpm_trie_node) + trie->data_size + + trie->map.value_size; + err = bpf_mem_alloc_init(&trie->ma, leaf_size, false); + if (err) + goto free_out; + return &trie->map; + +free_out: + bpf_map_area_free(trie); + return ERR_PTR(err); +} + +static void trie_free(struct bpf_map *map) +{ + struct lpm_trie *trie = container_of(map, struct lpm_trie, map); + struct lpm_trie_node __rcu **slot; + struct lpm_trie_node *node; + + /* Always start at the root and walk down to a node that has no + * children. Then free that node, nullify its reference in the parent + * and start over. + */ + + for (;;) { + slot = &trie->root; + + for (;;) { + node = rcu_dereference_protected(*slot, 1); + if (!node) + goto out; + + if (rcu_access_pointer(node->child[0])) { + slot = &node->child[0]; + continue; + } + + if (rcu_access_pointer(node->child[1])) { + slot = &node->child[1]; + continue; + } + + /* No bpf program may access the map, so freeing the + * node without waiting for the extra RCU GP. + */ + bpf_mem_cache_raw_free(node); + RCU_INIT_POINTER(*slot, NULL); + break; + } + } + +out: + bpf_mem_alloc_destroy(&trie->ma); + bpf_map_area_free(trie); +} + +static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key) +{ + struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root; + struct lpm_trie *trie = container_of(map, struct lpm_trie, map); + struct bpf_lpm_trie_key_u8 *key = _key, *next_key = _next_key; + struct lpm_trie_node **node_stack = NULL; + int err = 0, stack_ptr = -1; + unsigned int next_bit; + size_t matchlen = 0; + + /* The get_next_key follows postorder. For the 4 node example in + * the top of this file, the trie_get_next_key() returns the following + * one after another: + * 192.168.0.0/24 + * 192.168.1.0/24 + * 192.168.128.0/24 + * 192.168.0.0/16 + * + * The idea is to return more specific keys before less specific ones. + */ + + /* Empty trie */ + search_root = rcu_dereference(trie->root); + if (!search_root) + return -ENOENT; + + /* For invalid key, find the leftmost node in the trie */ + if (!key || key->prefixlen > trie->max_prefixlen) + goto find_leftmost; + + node_stack = kmalloc_array(trie->max_prefixlen + 1, + sizeof(struct lpm_trie_node *), + GFP_ATOMIC | __GFP_NOWARN); + if (!node_stack) + return -ENOMEM; + + /* Try to find the exact node for the given key */ + for (node = search_root; node;) { + node_stack[++stack_ptr] = node; + matchlen = longest_prefix_match(trie, node, key); + if (node->prefixlen != matchlen || + node->prefixlen == key->prefixlen) + break; + + next_bit = extract_bit(key->data, node->prefixlen); + node = rcu_dereference(node->child[next_bit]); + } + if (!node || node->prefixlen != matchlen || + (node->flags & LPM_TREE_NODE_FLAG_IM)) + goto find_leftmost; + + /* The node with the exactly-matching key has been found, + * find the first node in postorder after the matched node. + */ + node = node_stack[stack_ptr]; + while (stack_ptr > 0) { + parent = node_stack[stack_ptr - 1]; + if (rcu_dereference(parent->child[0]) == node) { + search_root = rcu_dereference(parent->child[1]); + if (search_root) + goto find_leftmost; + } + if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) { + next_node = parent; + goto do_copy; + } + + node = parent; + stack_ptr--; + } + + /* did not find anything */ + err = -ENOENT; + goto free_stack; + +find_leftmost: + /* Find the leftmost non-intermediate node, all intermediate nodes + * have exact two children, so this function will never return NULL. + */ + for (node = search_root; node;) { + if (node->flags & LPM_TREE_NODE_FLAG_IM) { + node = rcu_dereference(node->child[0]); + } else { + next_node = node; + node = rcu_dereference(node->child[0]); + if (!node) + node = rcu_dereference(next_node->child[1]); + } + } +do_copy: + next_key->prefixlen = next_node->prefixlen; + memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key_u8, data), + next_node->data, trie->data_size); +free_stack: + kfree(node_stack); + return err; +} + +static int trie_check_btf(const struct bpf_map *map, + const struct btf *btf, + const struct btf_type *key_type, + const struct btf_type *value_type) +{ + /* Keys must have struct bpf_lpm_trie_key_u8 embedded. */ + return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ? + -EINVAL : 0; +} + +static u64 trie_mem_usage(const struct bpf_map *map) +{ + struct lpm_trie *trie = container_of(map, struct lpm_trie, map); + u64 elem_size; + + elem_size = sizeof(struct lpm_trie_node) + trie->data_size + + trie->map.value_size; + return elem_size * READ_ONCE(trie->n_entries); +} + +BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie) +const struct bpf_map_ops trie_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc = trie_alloc, + .map_free = trie_free, + .map_get_next_key = trie_get_next_key, + .map_lookup_elem = trie_lookup_elem, + .map_update_elem = trie_update_elem, + .map_delete_elem = trie_delete_elem, + .map_lookup_batch = generic_map_lookup_batch, + .map_update_batch = generic_map_update_batch, + .map_delete_batch = generic_map_delete_batch, + .map_check_btf = trie_check_btf, + .map_mem_usage = trie_mem_usage, + .map_btf_id = &trie_map_btf_ids[0], +}; diff --git a/kernel/bpf/map_in_map.c b/kernel/bpf/map_in_map.c new file mode 100644 index 000000000000..645bd30bc9a9 --- /dev/null +++ b/kernel/bpf/map_in_map.c @@ -0,0 +1,134 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2017 Facebook + */ +#include <linux/slab.h> +#include <linux/bpf.h> +#include <linux/btf.h> + +#include "map_in_map.h" + +struct bpf_map *bpf_map_meta_alloc(int inner_map_ufd) +{ + struct bpf_map *inner_map, *inner_map_meta; + u32 inner_map_meta_size; + CLASS(fd, f)(inner_map_ufd); + + inner_map = __bpf_map_get(f); + if (IS_ERR(inner_map)) + return inner_map; + + /* Does not support >1 level map-in-map */ + if (inner_map->inner_map_meta) + return ERR_PTR(-EINVAL); + + if (!inner_map->ops->map_meta_equal) + return ERR_PTR(-ENOTSUPP); + + inner_map_meta_size = sizeof(*inner_map_meta); + /* In some cases verifier needs to access beyond just base map. */ + if (inner_map->ops == &array_map_ops || inner_map->ops == &percpu_array_map_ops) + inner_map_meta_size = sizeof(struct bpf_array); + + inner_map_meta = kzalloc(inner_map_meta_size, GFP_USER); + if (!inner_map_meta) + return ERR_PTR(-ENOMEM); + + inner_map_meta->map_type = inner_map->map_type; + inner_map_meta->key_size = inner_map->key_size; + inner_map_meta->value_size = inner_map->value_size; + inner_map_meta->map_flags = inner_map->map_flags; + inner_map_meta->max_entries = inner_map->max_entries; + + inner_map_meta->record = btf_record_dup(inner_map->record); + if (IS_ERR(inner_map_meta->record)) { + /* btf_record_dup returns NULL or valid pointer in case of + * invalid/empty/valid, but ERR_PTR in case of errors. During + * equality NULL or IS_ERR is equivalent. + */ + struct bpf_map *ret = ERR_CAST(inner_map_meta->record); + kfree(inner_map_meta); + return ret; + } + /* Note: We must use the same BTF, as we also used btf_record_dup above + * which relies on BTF being same for both maps, as some members like + * record->fields.list_head have pointers like value_rec pointing into + * inner_map->btf. + */ + if (inner_map->btf) { + btf_get(inner_map->btf); + inner_map_meta->btf = inner_map->btf; + } + + /* Misc members not needed in bpf_map_meta_equal() check. */ + inner_map_meta->ops = inner_map->ops; + if (inner_map->ops == &array_map_ops || inner_map->ops == &percpu_array_map_ops) { + struct bpf_array *inner_array_meta = + container_of(inner_map_meta, struct bpf_array, map); + struct bpf_array *inner_array = container_of(inner_map, struct bpf_array, map); + + inner_array_meta->index_mask = inner_array->index_mask; + inner_array_meta->elem_size = inner_array->elem_size; + inner_map_meta->bypass_spec_v1 = inner_map->bypass_spec_v1; + } + return inner_map_meta; +} + +void bpf_map_meta_free(struct bpf_map *map_meta) +{ + bpf_map_free_record(map_meta); + btf_put(map_meta->btf); + kfree(map_meta); +} + +bool bpf_map_meta_equal(const struct bpf_map *meta0, + const struct bpf_map *meta1) +{ + /* No need to compare ops because it is covered by map_type */ + return meta0->map_type == meta1->map_type && + meta0->key_size == meta1->key_size && + meta0->value_size == meta1->value_size && + meta0->map_flags == meta1->map_flags && + btf_record_equal(meta0->record, meta1->record); +} + +void *bpf_map_fd_get_ptr(struct bpf_map *map, + struct file *map_file /* not used */, + int ufd) +{ + struct bpf_map *inner_map, *inner_map_meta; + CLASS(fd, f)(ufd); + + inner_map = __bpf_map_get(f); + if (IS_ERR(inner_map)) + return inner_map; + + inner_map_meta = map->inner_map_meta; + if (inner_map_meta->ops->map_meta_equal(inner_map_meta, inner_map)) + bpf_map_inc(inner_map); + else + inner_map = ERR_PTR(-EINVAL); + + return inner_map; +} + +void bpf_map_fd_put_ptr(struct bpf_map *map, void *ptr, bool need_defer) +{ + struct bpf_map *inner_map = ptr; + + /* Defer the freeing of inner map according to the sleepable attribute + * of bpf program which owns the outer map, so unnecessary waiting for + * RCU tasks trace grace period can be avoided. + */ + if (need_defer) { + if (atomic64_read(&map->sleepable_refcnt)) + WRITE_ONCE(inner_map->free_after_mult_rcu_gp, true); + else + WRITE_ONCE(inner_map->free_after_rcu_gp, true); + } + bpf_map_put(inner_map); +} + +u32 bpf_map_fd_sys_lookup_elem(void *ptr) +{ + return ((struct bpf_map *)ptr)->id; +} diff --git a/kernel/bpf/map_in_map.h b/kernel/bpf/map_in_map.h new file mode 100644 index 000000000000..7d61602354de --- /dev/null +++ b/kernel/bpf/map_in_map.h @@ -0,0 +1,19 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* Copyright (c) 2017 Facebook + */ +#ifndef __MAP_IN_MAP_H__ +#define __MAP_IN_MAP_H__ + +#include <linux/types.h> + +struct file; +struct bpf_map; + +struct bpf_map *bpf_map_meta_alloc(int inner_map_ufd); +void bpf_map_meta_free(struct bpf_map *map_meta); +void *bpf_map_fd_get_ptr(struct bpf_map *map, struct file *map_file, + int ufd); +void bpf_map_fd_put_ptr(struct bpf_map *map, void *ptr, bool need_defer); +u32 bpf_map_fd_sys_lookup_elem(void *ptr); + +#endif diff --git a/kernel/bpf/map_iter.c b/kernel/bpf/map_iter.c new file mode 100644 index 000000000000..9575314f40a6 --- /dev/null +++ b/kernel/bpf/map_iter.c @@ -0,0 +1,229 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2020 Facebook */ +#include <linux/bpf.h> +#include <linux/fs.h> +#include <linux/filter.h> +#include <linux/kernel.h> +#include <linux/btf_ids.h> + +struct bpf_iter_seq_map_info { + u32 map_id; +}; + +static void *bpf_map_seq_start(struct seq_file *seq, loff_t *pos) +{ + struct bpf_iter_seq_map_info *info = seq->private; + struct bpf_map *map; + + map = bpf_map_get_curr_or_next(&info->map_id); + if (!map) + return NULL; + + if (*pos == 0) + ++*pos; + return map; +} + +static void *bpf_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) +{ + struct bpf_iter_seq_map_info *info = seq->private; + + ++*pos; + ++info->map_id; + bpf_map_put((struct bpf_map *)v); + return bpf_map_get_curr_or_next(&info->map_id); +} + +struct bpf_iter__bpf_map { + __bpf_md_ptr(struct bpf_iter_meta *, meta); + __bpf_md_ptr(struct bpf_map *, map); +}; + +DEFINE_BPF_ITER_FUNC(bpf_map, struct bpf_iter_meta *meta, struct bpf_map *map) + +static int __bpf_map_seq_show(struct seq_file *seq, void *v, bool in_stop) +{ + struct bpf_iter__bpf_map ctx; + struct bpf_iter_meta meta; + struct bpf_prog *prog; + int ret = 0; + + ctx.meta = &meta; + ctx.map = v; + meta.seq = seq; + prog = bpf_iter_get_info(&meta, in_stop); + if (prog) + ret = bpf_iter_run_prog(prog, &ctx); + + return ret; +} + +static int bpf_map_seq_show(struct seq_file *seq, void *v) +{ + return __bpf_map_seq_show(seq, v, false); +} + +static void bpf_map_seq_stop(struct seq_file *seq, void *v) +{ + if (!v) + (void)__bpf_map_seq_show(seq, v, true); + else + bpf_map_put((struct bpf_map *)v); +} + +static const struct seq_operations bpf_map_seq_ops = { + .start = bpf_map_seq_start, + .next = bpf_map_seq_next, + .stop = bpf_map_seq_stop, + .show = bpf_map_seq_show, +}; + +BTF_ID_LIST_GLOBAL_SINGLE(btf_bpf_map_id, struct, bpf_map) + +static const struct bpf_iter_seq_info bpf_map_seq_info = { + .seq_ops = &bpf_map_seq_ops, + .init_seq_private = NULL, + .fini_seq_private = NULL, + .seq_priv_size = sizeof(struct bpf_iter_seq_map_info), +}; + +static struct bpf_iter_reg bpf_map_reg_info = { + .target = "bpf_map", + .ctx_arg_info_size = 1, + .ctx_arg_info = { + { offsetof(struct bpf_iter__bpf_map, map), + PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, + }, + .seq_info = &bpf_map_seq_info, +}; + +static int bpf_iter_attach_map(struct bpf_prog *prog, + union bpf_iter_link_info *linfo, + struct bpf_iter_aux_info *aux) +{ + u32 key_acc_size, value_acc_size, key_size, value_size; + struct bpf_map *map; + bool is_percpu = false; + int err = -EINVAL; + + if (!linfo->map.map_fd) + return -EBADF; + + map = bpf_map_get_with_uref(linfo->map.map_fd); + if (IS_ERR(map)) + return PTR_ERR(map); + + if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || + map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH || + map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) + is_percpu = true; + else if (map->map_type != BPF_MAP_TYPE_HASH && + map->map_type != BPF_MAP_TYPE_LRU_HASH && + map->map_type != BPF_MAP_TYPE_ARRAY) + goto put_map; + + key_acc_size = prog->aux->max_rdonly_access; + value_acc_size = prog->aux->max_rdwr_access; + key_size = map->key_size; + if (!is_percpu) + value_size = map->value_size; + else + value_size = round_up(map->value_size, 8) * num_possible_cpus(); + + if (key_acc_size > key_size || value_acc_size > value_size) { + err = -EACCES; + goto put_map; + } + + aux->map = map; + return 0; + +put_map: + bpf_map_put_with_uref(map); + return err; +} + +static void bpf_iter_detach_map(struct bpf_iter_aux_info *aux) +{ + bpf_map_put_with_uref(aux->map); +} + +void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, + struct seq_file *seq) +{ + seq_printf(seq, "map_id:\t%u\n", aux->map->id); +} + +int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, + struct bpf_link_info *info) +{ + info->iter.map.map_id = aux->map->id; + return 0; +} + +DEFINE_BPF_ITER_FUNC(bpf_map_elem, struct bpf_iter_meta *meta, + struct bpf_map *map, void *key, void *value) + +static const struct bpf_iter_reg bpf_map_elem_reg_info = { + .target = "bpf_map_elem", + .attach_target = bpf_iter_attach_map, + .detach_target = bpf_iter_detach_map, + .show_fdinfo = bpf_iter_map_show_fdinfo, + .fill_link_info = bpf_iter_map_fill_link_info, + .ctx_arg_info_size = 2, + .ctx_arg_info = { + { offsetof(struct bpf_iter__bpf_map_elem, key), + PTR_TO_BUF | PTR_MAYBE_NULL | MEM_RDONLY }, + { offsetof(struct bpf_iter__bpf_map_elem, value), + PTR_TO_BUF | PTR_MAYBE_NULL }, + }, +}; + +static int __init bpf_map_iter_init(void) +{ + int ret; + + bpf_map_reg_info.ctx_arg_info[0].btf_id = *btf_bpf_map_id; + ret = bpf_iter_reg_target(&bpf_map_reg_info); + if (ret) + return ret; + + return bpf_iter_reg_target(&bpf_map_elem_reg_info); +} + +late_initcall(bpf_map_iter_init); + +__bpf_kfunc_start_defs(); + +__bpf_kfunc s64 bpf_map_sum_elem_count(const struct bpf_map *map) +{ + s64 *pcount; + s64 ret = 0; + int cpu; + + if (!map || !map->elem_count) + return 0; + + for_each_possible_cpu(cpu) { + pcount = per_cpu_ptr(map->elem_count, cpu); + ret += READ_ONCE(*pcount); + } + return ret; +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(bpf_map_iter_kfunc_ids) +BTF_ID_FLAGS(func, bpf_map_sum_elem_count, KF_TRUSTED_ARGS) +BTF_KFUNCS_END(bpf_map_iter_kfunc_ids) + +static const struct btf_kfunc_id_set bpf_map_iter_kfunc_set = { + .owner = THIS_MODULE, + .set = &bpf_map_iter_kfunc_ids, +}; + +static int init_subsystem(void) +{ + return register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &bpf_map_iter_kfunc_set); +} +late_initcall(init_subsystem); diff --git a/kernel/bpf/memalloc.c b/kernel/bpf/memalloc.c new file mode 100644 index 000000000000..bd45dda9dc35 --- /dev/null +++ b/kernel/bpf/memalloc.c @@ -0,0 +1,1016 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ +#include <linux/mm.h> +#include <linux/llist.h> +#include <linux/bpf.h> +#include <linux/irq_work.h> +#include <linux/bpf_mem_alloc.h> +#include <linux/memcontrol.h> +#include <asm/local.h> + +/* Any context (including NMI) BPF specific memory allocator. + * + * Tracing BPF programs can attach to kprobe and fentry. Hence they + * run in unknown context where calling plain kmalloc() might not be safe. + * + * Front-end kmalloc() with per-cpu per-bucket cache of free elements. + * Refill this cache asynchronously from irq_work. + * + * CPU_0 buckets + * 16 32 64 96 128 196 256 512 1024 2048 4096 + * ... + * CPU_N buckets + * 16 32 64 96 128 196 256 512 1024 2048 4096 + * + * The buckets are prefilled at the start. + * BPF programs always run with migration disabled. + * It's safe to allocate from cache of the current cpu with irqs disabled. + * Free-ing is always done into bucket of the current cpu as well. + * irq_work trims extra free elements from buckets with kfree + * and refills them with kmalloc, so global kmalloc logic takes care + * of freeing objects allocated by one cpu and freed on another. + * + * Every allocated objected is padded with extra 8 bytes that contains + * struct llist_node. + */ +#define LLIST_NODE_SZ sizeof(struct llist_node) + +#define BPF_MEM_ALLOC_SIZE_MAX 4096 + +/* similar to kmalloc, but sizeof == 8 bucket is gone */ +static u8 size_index[24] __ro_after_init = { + 3, /* 8 */ + 3, /* 16 */ + 4, /* 24 */ + 4, /* 32 */ + 5, /* 40 */ + 5, /* 48 */ + 5, /* 56 */ + 5, /* 64 */ + 1, /* 72 */ + 1, /* 80 */ + 1, /* 88 */ + 1, /* 96 */ + 6, /* 104 */ + 6, /* 112 */ + 6, /* 120 */ + 6, /* 128 */ + 2, /* 136 */ + 2, /* 144 */ + 2, /* 152 */ + 2, /* 160 */ + 2, /* 168 */ + 2, /* 176 */ + 2, /* 184 */ + 2 /* 192 */ +}; + +static int bpf_mem_cache_idx(size_t size) +{ + if (!size || size > BPF_MEM_ALLOC_SIZE_MAX) + return -1; + + if (size <= 192) + return size_index[(size - 1) / 8] - 1; + + return fls(size - 1) - 2; +} + +#define NUM_CACHES 11 + +struct bpf_mem_cache { + /* per-cpu list of free objects of size 'unit_size'. + * All accesses are done with interrupts disabled and 'active' counter + * protection with __llist_add() and __llist_del_first(). + */ + struct llist_head free_llist; + local_t active; + + /* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill + * are sequenced by per-cpu 'active' counter. But unit_free() cannot + * fail. When 'active' is busy the unit_free() will add an object to + * free_llist_extra. + */ + struct llist_head free_llist_extra; + + struct irq_work refill_work; + struct obj_cgroup *objcg; + int unit_size; + /* count of objects in free_llist */ + int free_cnt; + int low_watermark, high_watermark, batch; + int percpu_size; + bool draining; + struct bpf_mem_cache *tgt; + + /* list of objects to be freed after RCU GP */ + struct llist_head free_by_rcu; + struct llist_node *free_by_rcu_tail; + struct llist_head waiting_for_gp; + struct llist_node *waiting_for_gp_tail; + struct rcu_head rcu; + atomic_t call_rcu_in_progress; + struct llist_head free_llist_extra_rcu; + + /* list of objects to be freed after RCU tasks trace GP */ + struct llist_head free_by_rcu_ttrace; + struct llist_head waiting_for_gp_ttrace; + struct rcu_head rcu_ttrace; + atomic_t call_rcu_ttrace_in_progress; +}; + +struct bpf_mem_caches { + struct bpf_mem_cache cache[NUM_CACHES]; +}; + +static const u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}; + +static struct llist_node notrace *__llist_del_first(struct llist_head *head) +{ + struct llist_node *entry, *next; + + entry = head->first; + if (!entry) + return NULL; + next = entry->next; + head->first = next; + return entry; +} + +static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags) +{ + if (c->percpu_size) { + void __percpu **obj = kmalloc_node(c->percpu_size, flags, node); + void __percpu *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags); + + if (!obj || !pptr) { + free_percpu(pptr); + kfree(obj); + return NULL; + } + obj[1] = pptr; + return obj; + } + + return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node); +} + +static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c) +{ +#ifdef CONFIG_MEMCG + if (c->objcg) + return get_mem_cgroup_from_objcg(c->objcg); + return root_mem_cgroup; +#else + return NULL; +#endif +} + +static void inc_active(struct bpf_mem_cache *c, unsigned long *flags) +{ + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + /* In RT irq_work runs in per-cpu kthread, so disable + * interrupts to avoid preemption and interrupts and + * reduce the chance of bpf prog executing on this cpu + * when active counter is busy. + */ + local_irq_save(*flags); + /* alloc_bulk runs from irq_work which will not preempt a bpf + * program that does unit_alloc/unit_free since IRQs are + * disabled there. There is no race to increment 'active' + * counter. It protects free_llist from corruption in case NMI + * bpf prog preempted this loop. + */ + WARN_ON_ONCE(local_inc_return(&c->active) != 1); +} + +static void dec_active(struct bpf_mem_cache *c, unsigned long *flags) +{ + local_dec(&c->active); + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + local_irq_restore(*flags); +} + +static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj) +{ + unsigned long flags; + + inc_active(c, &flags); + __llist_add(obj, &c->free_llist); + c->free_cnt++; + dec_active(c, &flags); +} + +/* Mostly runs from irq_work except __init phase. */ +static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic) +{ + struct mem_cgroup *memcg = NULL, *old_memcg; + gfp_t gfp; + void *obj; + int i; + + gfp = __GFP_NOWARN | __GFP_ACCOUNT; + gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL; + + for (i = 0; i < cnt; i++) { + /* + * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is + * done only by one CPU == current CPU. Other CPUs might + * llist_add() and llist_del_all() in parallel. + */ + obj = llist_del_first(&c->free_by_rcu_ttrace); + if (!obj) + break; + add_obj_to_free_list(c, obj); + } + if (i >= cnt) + return; + + for (; i < cnt; i++) { + obj = llist_del_first(&c->waiting_for_gp_ttrace); + if (!obj) + break; + add_obj_to_free_list(c, obj); + } + if (i >= cnt) + return; + + memcg = get_memcg(c); + old_memcg = set_active_memcg(memcg); + for (; i < cnt; i++) { + /* Allocate, but don't deplete atomic reserves that typical + * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc + * will allocate from the current numa node which is what we + * want here. + */ + obj = __alloc(c, node, gfp); + if (!obj) + break; + add_obj_to_free_list(c, obj); + } + set_active_memcg(old_memcg); + mem_cgroup_put(memcg); +} + +static void free_one(void *obj, bool percpu) +{ + if (percpu) + free_percpu(((void __percpu **)obj)[1]); + + kfree(obj); +} + +static int free_all(struct llist_node *llnode, bool percpu) +{ + struct llist_node *pos, *t; + int cnt = 0; + + llist_for_each_safe(pos, t, llnode) { + free_one(pos, percpu); + cnt++; + } + return cnt; +} + +static void __free_rcu(struct rcu_head *head) +{ + struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace); + + free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size); + atomic_set(&c->call_rcu_ttrace_in_progress, 0); +} + +static void __free_rcu_tasks_trace(struct rcu_head *head) +{ + /* If RCU Tasks Trace grace period implies RCU grace period, + * there is no need to invoke call_rcu(). + */ + if (rcu_trace_implies_rcu_gp()) + __free_rcu(head); + else + call_rcu(head, __free_rcu); +} + +static void enque_to_free(struct bpf_mem_cache *c, void *obj) +{ + struct llist_node *llnode = obj; + + /* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work. + * Nothing races to add to free_by_rcu_ttrace list. + */ + llist_add(llnode, &c->free_by_rcu_ttrace); +} + +static void do_call_rcu_ttrace(struct bpf_mem_cache *c) +{ + struct llist_node *llnode, *t; + + if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) { + if (unlikely(READ_ONCE(c->draining))) { + llnode = llist_del_all(&c->free_by_rcu_ttrace); + free_all(llnode, !!c->percpu_size); + } + return; + } + + WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); + llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace)) + llist_add(llnode, &c->waiting_for_gp_ttrace); + + if (unlikely(READ_ONCE(c->draining))) { + __free_rcu(&c->rcu_ttrace); + return; + } + + /* Use call_rcu_tasks_trace() to wait for sleepable progs to finish. + * If RCU Tasks Trace grace period implies RCU grace period, free + * these elements directly, else use call_rcu() to wait for normal + * progs to finish and finally do free_one() on each element. + */ + call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace); +} + +static void free_bulk(struct bpf_mem_cache *c) +{ + struct bpf_mem_cache *tgt = c->tgt; + struct llist_node *llnode, *t; + unsigned long flags; + int cnt; + + WARN_ON_ONCE(tgt->unit_size != c->unit_size); + WARN_ON_ONCE(tgt->percpu_size != c->percpu_size); + + do { + inc_active(c, &flags); + llnode = __llist_del_first(&c->free_llist); + if (llnode) + cnt = --c->free_cnt; + else + cnt = 0; + dec_active(c, &flags); + if (llnode) + enque_to_free(tgt, llnode); + } while (cnt > (c->high_watermark + c->low_watermark) / 2); + + /* and drain free_llist_extra */ + llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra)) + enque_to_free(tgt, llnode); + do_call_rcu_ttrace(tgt); +} + +static void __free_by_rcu(struct rcu_head *head) +{ + struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); + struct bpf_mem_cache *tgt = c->tgt; + struct llist_node *llnode; + + WARN_ON_ONCE(tgt->unit_size != c->unit_size); + WARN_ON_ONCE(tgt->percpu_size != c->percpu_size); + + llnode = llist_del_all(&c->waiting_for_gp); + if (!llnode) + goto out; + + llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace); + + /* Objects went through regular RCU GP. Send them to RCU tasks trace */ + do_call_rcu_ttrace(tgt); +out: + atomic_set(&c->call_rcu_in_progress, 0); +} + +static void check_free_by_rcu(struct bpf_mem_cache *c) +{ + struct llist_node *llnode, *t; + unsigned long flags; + + /* drain free_llist_extra_rcu */ + if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) { + inc_active(c, &flags); + llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu)) + if (__llist_add(llnode, &c->free_by_rcu)) + c->free_by_rcu_tail = llnode; + dec_active(c, &flags); + } + + if (llist_empty(&c->free_by_rcu)) + return; + + if (atomic_xchg(&c->call_rcu_in_progress, 1)) { + /* + * Instead of kmalloc-ing new rcu_head and triggering 10k + * call_rcu() to hit rcutree.qhimark and force RCU to notice + * the overload just ask RCU to hurry up. There could be many + * objects in free_by_rcu list. + * This hint reduces memory consumption for an artificial + * benchmark from 2 Gbyte to 150 Mbyte. + */ + rcu_request_urgent_qs_task(current); + return; + } + + WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); + + inc_active(c, &flags); + WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu)); + c->waiting_for_gp_tail = c->free_by_rcu_tail; + dec_active(c, &flags); + + if (unlikely(READ_ONCE(c->draining))) { + free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size); + atomic_set(&c->call_rcu_in_progress, 0); + } else { + call_rcu_hurry(&c->rcu, __free_by_rcu); + } +} + +static void bpf_mem_refill(struct irq_work *work) +{ + struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work); + int cnt; + + /* Racy access to free_cnt. It doesn't need to be 100% accurate */ + cnt = c->free_cnt; + if (cnt < c->low_watermark) + /* irq_work runs on this cpu and kmalloc will allocate + * from the current numa node which is what we want here. + */ + alloc_bulk(c, c->batch, NUMA_NO_NODE, true); + else if (cnt > c->high_watermark) + free_bulk(c); + + check_free_by_rcu(c); +} + +static void notrace irq_work_raise(struct bpf_mem_cache *c) +{ + irq_work_queue(&c->refill_work); +} + +/* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket + * the freelist cache will be elem_size * 64 (or less) on each cpu. + * + * For bpf programs that don't have statically known allocation sizes and + * assuming (low_mark + high_mark) / 2 as an average number of elements per + * bucket and all buckets are used the total amount of memory in freelists + * on each cpu will be: + * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096 + * == ~ 116 Kbyte using below heuristic. + * Initialized, but unused bpf allocator (not bpf map specific one) will + * consume ~ 11 Kbyte per cpu. + * Typical case will be between 11K and 116K closer to 11K. + * bpf progs can and should share bpf_mem_cache when possible. + * + * Percpu allocation is typically rare. To avoid potential unnecessary large + * memory consumption, set low_mark = 1 and high_mark = 3, resulting in c->batch = 1. + */ +static void init_refill_work(struct bpf_mem_cache *c) +{ + init_irq_work(&c->refill_work, bpf_mem_refill); + if (c->percpu_size) { + c->low_watermark = 1; + c->high_watermark = 3; + } else if (c->unit_size <= 256) { + c->low_watermark = 32; + c->high_watermark = 96; + } else { + /* When page_size == 4k, order-0 cache will have low_mark == 2 + * and high_mark == 6 with batch alloc of 3 individual pages at + * a time. + * 8k allocs and above low == 1, high == 3, batch == 1. + */ + c->low_watermark = max(32 * 256 / c->unit_size, 1); + c->high_watermark = max(96 * 256 / c->unit_size, 3); + } + c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1); +} + +static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu) +{ + int cnt = 1; + + /* To avoid consuming memory, for non-percpu allocation, assume that + * 1st run of bpf prog won't be doing more than 4 map_update_elem from + * irq disabled region if unit size is less than or equal to 256. + * For all other cases, let us just do one allocation. + */ + if (!c->percpu_size && c->unit_size <= 256) + cnt = 4; + alloc_bulk(c, cnt, cpu_to_node(cpu), false); +} + +/* When size != 0 bpf_mem_cache for each cpu. + * This is typical bpf hash map use case when all elements have equal size. + * + * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on + * kmalloc/kfree. Max allocation size is 4096 in this case. + * This is bpf_dynptr and bpf_kptr use case. + */ +int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu) +{ + struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc; + struct bpf_mem_cache *c; struct bpf_mem_cache __percpu *pc; + struct obj_cgroup *objcg = NULL; + int cpu, i, unit_size, percpu_size = 0; + + if (percpu && size == 0) + return -EINVAL; + + /* room for llist_node and per-cpu pointer */ + if (percpu) + percpu_size = LLIST_NODE_SZ + sizeof(void *); + ma->percpu = percpu; + + if (size) { + pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL); + if (!pc) + return -ENOMEM; + + if (!percpu) + size += LLIST_NODE_SZ; /* room for llist_node */ + unit_size = size; + +#ifdef CONFIG_MEMCG + if (memcg_bpf_enabled()) + objcg = get_obj_cgroup_from_current(); +#endif + ma->objcg = objcg; + + for_each_possible_cpu(cpu) { + c = per_cpu_ptr(pc, cpu); + c->unit_size = unit_size; + c->objcg = objcg; + c->percpu_size = percpu_size; + c->tgt = c; + init_refill_work(c); + prefill_mem_cache(c, cpu); + } + ma->cache = pc; + return 0; + } + + pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL); + if (!pcc) + return -ENOMEM; +#ifdef CONFIG_MEMCG + objcg = get_obj_cgroup_from_current(); +#endif + ma->objcg = objcg; + for_each_possible_cpu(cpu) { + cc = per_cpu_ptr(pcc, cpu); + for (i = 0; i < NUM_CACHES; i++) { + c = &cc->cache[i]; + c->unit_size = sizes[i]; + c->objcg = objcg; + c->percpu_size = percpu_size; + c->tgt = c; + + init_refill_work(c); + prefill_mem_cache(c, cpu); + } + } + + ma->caches = pcc; + return 0; +} + +int bpf_mem_alloc_percpu_init(struct bpf_mem_alloc *ma, struct obj_cgroup *objcg) +{ + struct bpf_mem_caches __percpu *pcc; + + pcc = __alloc_percpu_gfp(sizeof(struct bpf_mem_caches), 8, GFP_KERNEL); + if (!pcc) + return -ENOMEM; + + ma->caches = pcc; + ma->objcg = objcg; + ma->percpu = true; + return 0; +} + +int bpf_mem_alloc_percpu_unit_init(struct bpf_mem_alloc *ma, int size) +{ + struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc; + int cpu, i, unit_size, percpu_size; + struct obj_cgroup *objcg; + struct bpf_mem_cache *c; + + i = bpf_mem_cache_idx(size); + if (i < 0) + return -EINVAL; + + /* room for llist_node and per-cpu pointer */ + percpu_size = LLIST_NODE_SZ + sizeof(void *); + + unit_size = sizes[i]; + objcg = ma->objcg; + pcc = ma->caches; + + for_each_possible_cpu(cpu) { + cc = per_cpu_ptr(pcc, cpu); + c = &cc->cache[i]; + if (c->unit_size) + break; + + c->unit_size = unit_size; + c->objcg = objcg; + c->percpu_size = percpu_size; + c->tgt = c; + + init_refill_work(c); + prefill_mem_cache(c, cpu); + } + + return 0; +} + +static void drain_mem_cache(struct bpf_mem_cache *c) +{ + bool percpu = !!c->percpu_size; + + /* No progs are using this bpf_mem_cache, but htab_map_free() called + * bpf_mem_cache_free() for all remaining elements and they can be in + * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now. + * + * Except for waiting_for_gp_ttrace list, there are no concurrent operations + * on these lists, so it is safe to use __llist_del_all(). + */ + free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu); + free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu); + free_all(__llist_del_all(&c->free_llist), percpu); + free_all(__llist_del_all(&c->free_llist_extra), percpu); + free_all(__llist_del_all(&c->free_by_rcu), percpu); + free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu); + free_all(llist_del_all(&c->waiting_for_gp), percpu); +} + +static void check_mem_cache(struct bpf_mem_cache *c) +{ + WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace)); + WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); + WARN_ON_ONCE(!llist_empty(&c->free_llist)); + WARN_ON_ONCE(!llist_empty(&c->free_llist_extra)); + WARN_ON_ONCE(!llist_empty(&c->free_by_rcu)); + WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu)); + WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); +} + +static void check_leaked_objs(struct bpf_mem_alloc *ma) +{ + struct bpf_mem_caches *cc; + struct bpf_mem_cache *c; + int cpu, i; + + if (ma->cache) { + for_each_possible_cpu(cpu) { + c = per_cpu_ptr(ma->cache, cpu); + check_mem_cache(c); + } + } + if (ma->caches) { + for_each_possible_cpu(cpu) { + cc = per_cpu_ptr(ma->caches, cpu); + for (i = 0; i < NUM_CACHES; i++) { + c = &cc->cache[i]; + check_mem_cache(c); + } + } + } +} + +static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma) +{ + check_leaked_objs(ma); + free_percpu(ma->cache); + free_percpu(ma->caches); + ma->cache = NULL; + ma->caches = NULL; +} + +static void free_mem_alloc(struct bpf_mem_alloc *ma) +{ + /* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks + * might still execute. Wait for them. + * + * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(), + * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used + * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(), + * so if call_rcu(head, __free_rcu) is skipped due to + * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by + * using rcu_trace_implies_rcu_gp() as well. + */ + rcu_barrier(); /* wait for __free_by_rcu */ + rcu_barrier_tasks_trace(); /* wait for __free_rcu */ + if (!rcu_trace_implies_rcu_gp()) + rcu_barrier(); + free_mem_alloc_no_barrier(ma); +} + +static void free_mem_alloc_deferred(struct work_struct *work) +{ + struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work); + + free_mem_alloc(ma); + kfree(ma); +} + +static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress) +{ + struct bpf_mem_alloc *copy; + + if (!rcu_in_progress) { + /* Fast path. No callbacks are pending, hence no need to do + * rcu_barrier-s. + */ + free_mem_alloc_no_barrier(ma); + return; + } + + copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL); + if (!copy) { + /* Slow path with inline barrier-s */ + free_mem_alloc(ma); + return; + } + + /* Defer barriers into worker to let the rest of map memory to be freed */ + memset(ma, 0, sizeof(*ma)); + INIT_WORK(©->work, free_mem_alloc_deferred); + queue_work(system_dfl_wq, ©->work); +} + +void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma) +{ + struct bpf_mem_caches *cc; + struct bpf_mem_cache *c; + int cpu, i, rcu_in_progress; + + if (ma->cache) { + rcu_in_progress = 0; + for_each_possible_cpu(cpu) { + c = per_cpu_ptr(ma->cache, cpu); + WRITE_ONCE(c->draining, true); + irq_work_sync(&c->refill_work); + drain_mem_cache(c); + rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); + rcu_in_progress += atomic_read(&c->call_rcu_in_progress); + } + obj_cgroup_put(ma->objcg); + destroy_mem_alloc(ma, rcu_in_progress); + } + if (ma->caches) { + rcu_in_progress = 0; + for_each_possible_cpu(cpu) { + cc = per_cpu_ptr(ma->caches, cpu); + for (i = 0; i < NUM_CACHES; i++) { + c = &cc->cache[i]; + WRITE_ONCE(c->draining, true); + irq_work_sync(&c->refill_work); + drain_mem_cache(c); + rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); + rcu_in_progress += atomic_read(&c->call_rcu_in_progress); + } + } + obj_cgroup_put(ma->objcg); + destroy_mem_alloc(ma, rcu_in_progress); + } +} + +/* notrace is necessary here and in other functions to make sure + * bpf programs cannot attach to them and cause llist corruptions. + */ +static void notrace *unit_alloc(struct bpf_mem_cache *c) +{ + struct llist_node *llnode = NULL; + unsigned long flags; + int cnt = 0; + + /* Disable irqs to prevent the following race for majority of prog types: + * prog_A + * bpf_mem_alloc + * preemption or irq -> prog_B + * bpf_mem_alloc + * + * but prog_B could be a perf_event NMI prog. + * Use per-cpu 'active' counter to order free_list access between + * unit_alloc/unit_free/bpf_mem_refill. + */ + local_irq_save(flags); + if (local_inc_return(&c->active) == 1) { + llnode = __llist_del_first(&c->free_llist); + if (llnode) { + cnt = --c->free_cnt; + *(struct bpf_mem_cache **)llnode = c; + } + } + local_dec(&c->active); + + WARN_ON(cnt < 0); + + if (cnt < c->low_watermark) + irq_work_raise(c); + /* Enable IRQ after the enqueue of irq work completes, so irq work + * will run after IRQ is enabled and free_llist may be refilled by + * irq work before other task preempts current task. + */ + local_irq_restore(flags); + + return llnode; +} + +/* Though 'ptr' object could have been allocated on a different cpu + * add it to the free_llist of the current cpu. + * Let kfree() logic deal with it when it's later called from irq_work. + */ +static void notrace unit_free(struct bpf_mem_cache *c, void *ptr) +{ + struct llist_node *llnode = ptr - LLIST_NODE_SZ; + unsigned long flags; + int cnt = 0; + + BUILD_BUG_ON(LLIST_NODE_SZ > 8); + + /* + * Remember bpf_mem_cache that allocated this object. + * The hint is not accurate. + */ + c->tgt = *(struct bpf_mem_cache **)llnode; + + local_irq_save(flags); + if (local_inc_return(&c->active) == 1) { + __llist_add(llnode, &c->free_llist); + cnt = ++c->free_cnt; + } else { + /* unit_free() cannot fail. Therefore add an object to atomic + * llist. free_bulk() will drain it. Though free_llist_extra is + * a per-cpu list we have to use atomic llist_add here, since + * it also can be interrupted by bpf nmi prog that does another + * unit_free() into the same free_llist_extra. + */ + llist_add(llnode, &c->free_llist_extra); + } + local_dec(&c->active); + + if (cnt > c->high_watermark) + /* free few objects from current cpu into global kmalloc pool */ + irq_work_raise(c); + /* Enable IRQ after irq_work_raise() completes, otherwise when current + * task is preempted by task which does unit_alloc(), unit_alloc() may + * return NULL unexpectedly because irq work is already pending but can + * not been triggered and free_llist can not be refilled timely. + */ + local_irq_restore(flags); +} + +static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr) +{ + struct llist_node *llnode = ptr - LLIST_NODE_SZ; + unsigned long flags; + + c->tgt = *(struct bpf_mem_cache **)llnode; + + local_irq_save(flags); + if (local_inc_return(&c->active) == 1) { + if (__llist_add(llnode, &c->free_by_rcu)) + c->free_by_rcu_tail = llnode; + } else { + llist_add(llnode, &c->free_llist_extra_rcu); + } + local_dec(&c->active); + + if (!atomic_read(&c->call_rcu_in_progress)) + irq_work_raise(c); + local_irq_restore(flags); +} + +/* Called from BPF program or from sys_bpf syscall. + * In both cases migration is disabled. + */ +void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size) +{ + int idx; + void *ret; + + if (!size) + return NULL; + + if (!ma->percpu) + size += LLIST_NODE_SZ; + idx = bpf_mem_cache_idx(size); + if (idx < 0) + return NULL; + + ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx); + return !ret ? NULL : ret + LLIST_NODE_SZ; +} + +void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr) +{ + struct bpf_mem_cache *c; + int idx; + + if (!ptr) + return; + + c = *(void **)(ptr - LLIST_NODE_SZ); + idx = bpf_mem_cache_idx(c->unit_size); + if (WARN_ON_ONCE(idx < 0)) + return; + + unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr); +} + +void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr) +{ + struct bpf_mem_cache *c; + int idx; + + if (!ptr) + return; + + c = *(void **)(ptr - LLIST_NODE_SZ); + idx = bpf_mem_cache_idx(c->unit_size); + if (WARN_ON_ONCE(idx < 0)) + return; + + unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr); +} + +void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma) +{ + void *ret; + + ret = unit_alloc(this_cpu_ptr(ma->cache)); + return !ret ? NULL : ret + LLIST_NODE_SZ; +} + +void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr) +{ + if (!ptr) + return; + + unit_free(this_cpu_ptr(ma->cache), ptr); +} + +void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr) +{ + if (!ptr) + return; + + unit_free_rcu(this_cpu_ptr(ma->cache), ptr); +} + +/* Directly does a kfree() without putting 'ptr' back to the free_llist + * for reuse and without waiting for a rcu_tasks_trace gp. + * The caller must first go through the rcu_tasks_trace gp for 'ptr' + * before calling bpf_mem_cache_raw_free(). + * It could be used when the rcu_tasks_trace callback does not have + * a hold on the original bpf_mem_alloc object that allocated the + * 'ptr'. This should only be used in the uncommon code path. + * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled + * and may affect performance. + */ +void bpf_mem_cache_raw_free(void *ptr) +{ + if (!ptr) + return; + + kfree(ptr - LLIST_NODE_SZ); +} + +/* When flags == GFP_KERNEL, it signals that the caller will not cause + * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use + * kmalloc if the free_llist is empty. + */ +void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags) +{ + struct bpf_mem_cache *c; + void *ret; + + c = this_cpu_ptr(ma->cache); + + ret = unit_alloc(c); + if (!ret && flags == GFP_KERNEL) { + struct mem_cgroup *memcg, *old_memcg; + + memcg = get_memcg(c); + old_memcg = set_active_memcg(memcg); + ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT); + if (ret) + *(struct bpf_mem_cache **)ret = c; + set_active_memcg(old_memcg); + mem_cgroup_put(memcg); + } + + return !ret ? NULL : ret + LLIST_NODE_SZ; +} + +int bpf_mem_alloc_check_size(bool percpu, size_t size) +{ + /* The size of percpu allocation doesn't have LLIST_NODE_SZ overhead */ + if ((percpu && size > BPF_MEM_ALLOC_SIZE_MAX) || + (!percpu && size > BPF_MEM_ALLOC_SIZE_MAX - LLIST_NODE_SZ)) + return -E2BIG; + + return 0; +} diff --git a/kernel/bpf/mmap_unlock_work.h b/kernel/bpf/mmap_unlock_work.h new file mode 100644 index 000000000000..5d18d7d85bef --- /dev/null +++ b/kernel/bpf/mmap_unlock_work.h @@ -0,0 +1,65 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* Copyright (c) 2021 Facebook + */ + +#ifndef __MMAP_UNLOCK_WORK_H__ +#define __MMAP_UNLOCK_WORK_H__ +#include <linux/irq_work.h> + +/* irq_work to run mmap_read_unlock() in irq_work */ +struct mmap_unlock_irq_work { + struct irq_work irq_work; + struct mm_struct *mm; +}; + +DECLARE_PER_CPU(struct mmap_unlock_irq_work, mmap_unlock_work); + +/* + * We cannot do mmap_read_unlock() when the irq is disabled, because of + * risk to deadlock with rq_lock. To look up vma when the irqs are + * disabled, we need to run mmap_read_unlock() in irq_work. We use a + * percpu variable to do the irq_work. If the irq_work is already used + * by another lookup, we fall over. + */ +static inline bool bpf_mmap_unlock_get_irq_work(struct mmap_unlock_irq_work **work_ptr) +{ + struct mmap_unlock_irq_work *work = NULL; + bool irq_work_busy = false; + + if (irqs_disabled()) { + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { + work = this_cpu_ptr(&mmap_unlock_work); + if (irq_work_is_busy(&work->irq_work)) { + /* cannot queue more up_read, fallback */ + irq_work_busy = true; + } + } else { + /* + * PREEMPT_RT does not allow to trylock mmap sem in + * interrupt disabled context. Force the fallback code. + */ + irq_work_busy = true; + } + } + + *work_ptr = work; + return irq_work_busy; +} + +static inline void bpf_mmap_unlock_mm(struct mmap_unlock_irq_work *work, struct mm_struct *mm) +{ + if (!work) { + mmap_read_unlock(mm); + } else { + work->mm = mm; + + /* The lock will be released once we're out of interrupt + * context. Tell lockdep that we've released it now so + * it doesn't complain that we forgot to release it. + */ + rwsem_release(&mm->mmap_lock.dep_map, _RET_IP_); + irq_work_queue(&work->irq_work); + } +} + +#endif /* __MMAP_UNLOCK_WORK_H__ */ diff --git a/kernel/bpf/mprog.c b/kernel/bpf/mprog.c new file mode 100644 index 000000000000..1394168062e8 --- /dev/null +++ b/kernel/bpf/mprog.c @@ -0,0 +1,452 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (c) 2023 Isovalent */ + +#include <linux/bpf.h> +#include <linux/bpf_mprog.h> + +static int bpf_mprog_link(struct bpf_tuple *tuple, + u32 id_or_fd, u32 flags, + enum bpf_prog_type type) +{ + struct bpf_link *link = ERR_PTR(-EINVAL); + bool id = flags & BPF_F_ID; + + if (id) + link = bpf_link_by_id(id_or_fd); + else if (id_or_fd) + link = bpf_link_get_from_fd(id_or_fd); + if (IS_ERR(link)) + return PTR_ERR(link); + if (type && link->prog->type != type) { + bpf_link_put(link); + return -EINVAL; + } + + tuple->link = link; + tuple->prog = link->prog; + return 0; +} + +static int bpf_mprog_prog(struct bpf_tuple *tuple, + u32 id_or_fd, u32 flags, + enum bpf_prog_type type) +{ + struct bpf_prog *prog = ERR_PTR(-EINVAL); + bool id = flags & BPF_F_ID; + + if (id) + prog = bpf_prog_by_id(id_or_fd); + else if (id_or_fd) + prog = bpf_prog_get(id_or_fd); + if (IS_ERR(prog)) + return PTR_ERR(prog); + if (type && prog->type != type) { + bpf_prog_put(prog); + return -EINVAL; + } + + tuple->link = NULL; + tuple->prog = prog; + return 0; +} + +static int bpf_mprog_tuple_relative(struct bpf_tuple *tuple, + u32 id_or_fd, u32 flags, + enum bpf_prog_type type) +{ + bool link = flags & BPF_F_LINK; + bool id = flags & BPF_F_ID; + + memset(tuple, 0, sizeof(*tuple)); + if (link) + return bpf_mprog_link(tuple, id_or_fd, flags, type); + /* If no relevant flag is set and no id_or_fd was passed, then + * tuple link/prog is just NULLed. This is the case when before/ + * after selects first/last position without passing fd. + */ + if (!id && !id_or_fd) + return 0; + return bpf_mprog_prog(tuple, id_or_fd, flags, type); +} + +static void bpf_mprog_tuple_put(struct bpf_tuple *tuple) +{ + if (tuple->link) + bpf_link_put(tuple->link); + else if (tuple->prog) + bpf_prog_put(tuple->prog); +} + +/* The bpf_mprog_{replace,delete}() operate on exact idx position with the + * one exception that for deletion we support delete from front/back. In + * case of front idx is -1, in case of back idx is bpf_mprog_total(entry). + * Adjustment to first and last entry is trivial. The bpf_mprog_insert() + * we have to deal with the following cases: + * + * idx + before: + * + * Insert P4 before P3: idx for old array is 1, idx for new array is 2, + * hence we adjust target idx for the new array, so that memmove copies + * P1 and P2 to the new entry, and we insert P4 into idx 2. Inserting + * before P1 would have old idx -1 and new idx 0. + * + * +--+--+--+ +--+--+--+--+ +--+--+--+--+ + * |P1|P2|P3| ==> |P1|P2| |P3| ==> |P1|P2|P4|P3| + * +--+--+--+ +--+--+--+--+ +--+--+--+--+ + * + * idx + after: + * + * Insert P4 after P2: idx for old array is 2, idx for new array is 2. + * Again, memmove copies P1 and P2 to the new entry, and we insert P4 + * into idx 2. Inserting after P3 would have both old/new idx at 4 aka + * bpf_mprog_total(entry). + * + * +--+--+--+ +--+--+--+--+ +--+--+--+--+ + * |P1|P2|P3| ==> |P1|P2| |P3| ==> |P1|P2|P4|P3| + * +--+--+--+ +--+--+--+--+ +--+--+--+--+ + */ +static int bpf_mprog_replace(struct bpf_mprog_entry *entry, + struct bpf_mprog_entry **entry_new, + struct bpf_tuple *ntuple, int idx) +{ + struct bpf_mprog_fp *fp; + struct bpf_mprog_cp *cp; + struct bpf_prog *oprog; + + bpf_mprog_read(entry, idx, &fp, &cp); + oprog = READ_ONCE(fp->prog); + bpf_mprog_write(fp, cp, ntuple); + if (!ntuple->link) { + WARN_ON_ONCE(cp->link); + bpf_prog_put(oprog); + } + *entry_new = entry; + return 0; +} + +static int bpf_mprog_insert(struct bpf_mprog_entry *entry, + struct bpf_mprog_entry **entry_new, + struct bpf_tuple *ntuple, int idx, u32 flags) +{ + int total = bpf_mprog_total(entry); + struct bpf_mprog_entry *peer; + struct bpf_mprog_fp *fp; + struct bpf_mprog_cp *cp; + + peer = bpf_mprog_peer(entry); + bpf_mprog_entry_copy(peer, entry); + if (idx == total) + goto insert; + else if (flags & BPF_F_BEFORE) + idx += 1; + bpf_mprog_entry_grow(peer, idx); +insert: + bpf_mprog_read(peer, idx, &fp, &cp); + bpf_mprog_write(fp, cp, ntuple); + bpf_mprog_inc(peer); + *entry_new = peer; + return 0; +} + +static int bpf_mprog_delete(struct bpf_mprog_entry *entry, + struct bpf_mprog_entry **entry_new, + struct bpf_tuple *dtuple, int idx) +{ + int total = bpf_mprog_total(entry); + struct bpf_mprog_entry *peer; + + peer = bpf_mprog_peer(entry); + bpf_mprog_entry_copy(peer, entry); + if (idx == -1) + idx = 0; + else if (idx == total) + idx = total - 1; + bpf_mprog_entry_shrink(peer, idx); + bpf_mprog_dec(peer); + bpf_mprog_mark_for_release(peer, dtuple); + *entry_new = peer; + return 0; +} + +/* In bpf_mprog_pos_*() we evaluate the target position for the BPF + * program/link that needs to be replaced, inserted or deleted for + * each "rule" independently. If all rules agree on that position + * or existing element, then enact replacement, addition or deletion. + * If this is not the case, then the request cannot be satisfied and + * we bail out with an error. + */ +static int bpf_mprog_pos_exact(struct bpf_mprog_entry *entry, + struct bpf_tuple *tuple) +{ + struct bpf_mprog_fp *fp; + struct bpf_mprog_cp *cp; + int i; + + for (i = 0; i < bpf_mprog_total(entry); i++) { + bpf_mprog_read(entry, i, &fp, &cp); + if (tuple->prog == READ_ONCE(fp->prog)) + return tuple->link == cp->link ? i : -EBUSY; + } + return -ENOENT; +} + +static int bpf_mprog_pos_before(struct bpf_mprog_entry *entry, + struct bpf_tuple *tuple) +{ + struct bpf_mprog_fp *fp; + struct bpf_mprog_cp *cp; + int i; + + for (i = 0; i < bpf_mprog_total(entry); i++) { + bpf_mprog_read(entry, i, &fp, &cp); + if (tuple->prog == READ_ONCE(fp->prog) && + (!tuple->link || tuple->link == cp->link)) + return i - 1; + } + return tuple->prog ? -ENOENT : -1; +} + +static int bpf_mprog_pos_after(struct bpf_mprog_entry *entry, + struct bpf_tuple *tuple) +{ + struct bpf_mprog_fp *fp; + struct bpf_mprog_cp *cp; + int i; + + for (i = 0; i < bpf_mprog_total(entry); i++) { + bpf_mprog_read(entry, i, &fp, &cp); + if (tuple->prog == READ_ONCE(fp->prog) && + (!tuple->link || tuple->link == cp->link)) + return i + 1; + } + return tuple->prog ? -ENOENT : bpf_mprog_total(entry); +} + +int bpf_mprog_attach(struct bpf_mprog_entry *entry, + struct bpf_mprog_entry **entry_new, + struct bpf_prog *prog_new, struct bpf_link *link, + struct bpf_prog *prog_old, + u32 flags, u32 id_or_fd, u64 revision) +{ + struct bpf_tuple rtuple, ntuple = { + .prog = prog_new, + .link = link, + }, otuple = { + .prog = prog_old, + .link = link, + }; + int ret, idx = -ERANGE, tidx; + + if (revision && revision != bpf_mprog_revision(entry)) + return -ESTALE; + if (bpf_mprog_exists(entry, prog_new)) + return -EEXIST; + ret = bpf_mprog_tuple_relative(&rtuple, id_or_fd, + flags & ~BPF_F_REPLACE, + prog_new->type); + if (ret) + return ret; + if (flags & BPF_F_REPLACE) { + tidx = bpf_mprog_pos_exact(entry, &otuple); + if (tidx < 0) { + ret = tidx; + goto out; + } + idx = tidx; + } else if (bpf_mprog_total(entry) == bpf_mprog_max()) { + ret = -ERANGE; + goto out; + } + if (flags & BPF_F_BEFORE) { + tidx = bpf_mprog_pos_before(entry, &rtuple); + if (tidx < -1 || (idx >= -1 && tidx != idx)) { + ret = tidx < -1 ? tidx : -ERANGE; + goto out; + } + idx = tidx; + } + if (flags & BPF_F_AFTER) { + tidx = bpf_mprog_pos_after(entry, &rtuple); + if (tidx < -1 || (idx >= -1 && tidx != idx)) { + ret = tidx < 0 ? tidx : -ERANGE; + goto out; + } + idx = tidx; + } + if (idx < -1) { + if (rtuple.prog || flags) { + ret = -EINVAL; + goto out; + } + idx = bpf_mprog_total(entry); + flags = BPF_F_AFTER; + } + if (idx >= bpf_mprog_max()) { + ret = -ERANGE; + goto out; + } + if (flags & BPF_F_REPLACE) + ret = bpf_mprog_replace(entry, entry_new, &ntuple, idx); + else + ret = bpf_mprog_insert(entry, entry_new, &ntuple, idx, flags); +out: + bpf_mprog_tuple_put(&rtuple); + return ret; +} + +static int bpf_mprog_fetch(struct bpf_mprog_entry *entry, + struct bpf_tuple *tuple, int idx) +{ + int total = bpf_mprog_total(entry); + struct bpf_mprog_cp *cp; + struct bpf_mprog_fp *fp; + struct bpf_prog *prog; + struct bpf_link *link; + + if (idx == -1) + idx = 0; + else if (idx == total) + idx = total - 1; + bpf_mprog_read(entry, idx, &fp, &cp); + prog = READ_ONCE(fp->prog); + link = cp->link; + /* The deletion request can either be without filled tuple in which + * case it gets populated here based on idx, or with filled tuple + * where the only thing we end up doing is the WARN_ON_ONCE() assert. + * If we hit a BPF link at the given index, it must not be removed + * from opts path. + */ + if (link && !tuple->link) + return -EBUSY; + WARN_ON_ONCE(tuple->prog && tuple->prog != prog); + WARN_ON_ONCE(tuple->link && tuple->link != link); + tuple->prog = prog; + tuple->link = link; + return 0; +} + +int bpf_mprog_detach(struct bpf_mprog_entry *entry, + struct bpf_mprog_entry **entry_new, + struct bpf_prog *prog, struct bpf_link *link, + u32 flags, u32 id_or_fd, u64 revision) +{ + struct bpf_tuple rtuple, dtuple = { + .prog = prog, + .link = link, + }; + int ret, idx = -ERANGE, tidx; + + if (flags & BPF_F_REPLACE) + return -EINVAL; + if (revision && revision != bpf_mprog_revision(entry)) + return -ESTALE; + if (!bpf_mprog_total(entry)) + return -ENOENT; + ret = bpf_mprog_tuple_relative(&rtuple, id_or_fd, flags, + prog ? prog->type : + BPF_PROG_TYPE_UNSPEC); + if (ret) + return ret; + if (dtuple.prog) { + tidx = bpf_mprog_pos_exact(entry, &dtuple); + if (tidx < 0) { + ret = tidx; + goto out; + } + idx = tidx; + } + if (flags & BPF_F_BEFORE) { + tidx = bpf_mprog_pos_before(entry, &rtuple); + if (tidx < -1 || (idx >= -1 && tidx != idx)) { + ret = tidx < -1 ? tidx : -ERANGE; + goto out; + } + idx = tidx; + } + if (flags & BPF_F_AFTER) { + tidx = bpf_mprog_pos_after(entry, &rtuple); + if (tidx < -1 || (idx >= -1 && tidx != idx)) { + ret = tidx < 0 ? tidx : -ERANGE; + goto out; + } + idx = tidx; + } + if (idx < -1) { + if (rtuple.prog || flags) { + ret = -EINVAL; + goto out; + } + idx = bpf_mprog_total(entry); + flags = BPF_F_AFTER; + } + if (idx >= bpf_mprog_max()) { + ret = -ERANGE; + goto out; + } + ret = bpf_mprog_fetch(entry, &dtuple, idx); + if (ret) + goto out; + ret = bpf_mprog_delete(entry, entry_new, &dtuple, idx); +out: + bpf_mprog_tuple_put(&rtuple); + return ret; +} + +int bpf_mprog_query(const union bpf_attr *attr, union bpf_attr __user *uattr, + struct bpf_mprog_entry *entry) +{ + u32 __user *uprog_flags, *ulink_flags; + u32 __user *uprog_id, *ulink_id; + struct bpf_mprog_fp *fp; + struct bpf_mprog_cp *cp; + struct bpf_prog *prog; + const u32 flags = 0; + u32 id, count = 0; + u64 revision = 1; + int i, ret = 0; + + if (attr->query.query_flags || attr->query.attach_flags) + return -EINVAL; + if (entry) { + revision = bpf_mprog_revision(entry); + count = bpf_mprog_total(entry); + } + if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) + return -EFAULT; + if (copy_to_user(&uattr->query.revision, &revision, sizeof(revision))) + return -EFAULT; + if (copy_to_user(&uattr->query.count, &count, sizeof(count))) + return -EFAULT; + uprog_id = u64_to_user_ptr(attr->query.prog_ids); + uprog_flags = u64_to_user_ptr(attr->query.prog_attach_flags); + ulink_id = u64_to_user_ptr(attr->query.link_ids); + ulink_flags = u64_to_user_ptr(attr->query.link_attach_flags); + if (attr->query.count == 0 || !uprog_id || !count) + return 0; + if (attr->query.count < count) { + count = attr->query.count; + ret = -ENOSPC; + } + for (i = 0; i < bpf_mprog_max(); i++) { + bpf_mprog_read(entry, i, &fp, &cp); + prog = READ_ONCE(fp->prog); + if (!prog) + break; + id = prog->aux->id; + if (copy_to_user(uprog_id + i, &id, sizeof(id))) + return -EFAULT; + if (uprog_flags && + copy_to_user(uprog_flags + i, &flags, sizeof(flags))) + return -EFAULT; + id = cp->link ? cp->link->id : 0; + if (ulink_id && + copy_to_user(ulink_id + i, &id, sizeof(id))) + return -EFAULT; + if (ulink_flags && + copy_to_user(ulink_flags + i, &flags, sizeof(flags))) + return -EFAULT; + if (i + 1 == count) + break; + } + return ret; +} diff --git a/kernel/bpf/net_namespace.c b/kernel/bpf/net_namespace.c new file mode 100644 index 000000000000..8e88201c98bf --- /dev/null +++ b/kernel/bpf/net_namespace.c @@ -0,0 +1,565 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include <linux/bpf.h> +#include <linux/bpf-netns.h> +#include <linux/filter.h> +#include <net/net_namespace.h> + +/* + * Functions to manage BPF programs attached to netns + */ + +struct bpf_netns_link { + struct bpf_link link; + + /* We don't hold a ref to net in order to auto-detach the link + * when netns is going away. Instead we rely on pernet + * pre_exit callback to clear this pointer. Must be accessed + * with netns_bpf_mutex held. + */ + struct net *net; + struct list_head node; /* node in list of links attached to net */ + enum netns_bpf_attach_type netns_type; +}; + +/* Protects updates to netns_bpf */ +DEFINE_MUTEX(netns_bpf_mutex); + +static void netns_bpf_attach_type_unneed(enum netns_bpf_attach_type type) +{ + switch (type) { +#ifdef CONFIG_INET + case NETNS_BPF_SK_LOOKUP: + static_branch_dec(&bpf_sk_lookup_enabled); + break; +#endif + default: + break; + } +} + +static void netns_bpf_attach_type_need(enum netns_bpf_attach_type type) +{ + switch (type) { +#ifdef CONFIG_INET + case NETNS_BPF_SK_LOOKUP: + static_branch_inc(&bpf_sk_lookup_enabled); + break; +#endif + default: + break; + } +} + +/* Must be called with netns_bpf_mutex held. */ +static void netns_bpf_run_array_detach(struct net *net, + enum netns_bpf_attach_type type) +{ + struct bpf_prog_array *run_array; + + run_array = rcu_replace_pointer(net->bpf.run_array[type], NULL, + lockdep_is_held(&netns_bpf_mutex)); + bpf_prog_array_free(run_array); +} + +static int link_index(struct net *net, enum netns_bpf_attach_type type, + struct bpf_netns_link *link) +{ + struct bpf_netns_link *pos; + int i = 0; + + list_for_each_entry(pos, &net->bpf.links[type], node) { + if (pos == link) + return i; + i++; + } + return -ENOENT; +} + +static int link_count(struct net *net, enum netns_bpf_attach_type type) +{ + struct list_head *pos; + int i = 0; + + list_for_each(pos, &net->bpf.links[type]) + i++; + return i; +} + +static void fill_prog_array(struct net *net, enum netns_bpf_attach_type type, + struct bpf_prog_array *prog_array) +{ + struct bpf_netns_link *pos; + unsigned int i = 0; + + list_for_each_entry(pos, &net->bpf.links[type], node) { + prog_array->items[i].prog = pos->link.prog; + i++; + } +} + +static void bpf_netns_link_release(struct bpf_link *link) +{ + struct bpf_netns_link *net_link = + container_of(link, struct bpf_netns_link, link); + enum netns_bpf_attach_type type = net_link->netns_type; + struct bpf_prog_array *old_array, *new_array; + struct net *net; + int cnt, idx; + + mutex_lock(&netns_bpf_mutex); + + /* We can race with cleanup_net, but if we see a non-NULL + * struct net pointer, pre_exit has not run yet and wait for + * netns_bpf_mutex. + */ + net = net_link->net; + if (!net) + goto out_unlock; + + /* Mark attach point as unused */ + netns_bpf_attach_type_unneed(type); + + /* Remember link position in case of safe delete */ + idx = link_index(net, type, net_link); + list_del(&net_link->node); + + cnt = link_count(net, type); + if (!cnt) { + netns_bpf_run_array_detach(net, type); + goto out_unlock; + } + + old_array = rcu_dereference_protected(net->bpf.run_array[type], + lockdep_is_held(&netns_bpf_mutex)); + new_array = bpf_prog_array_alloc(cnt, GFP_KERNEL); + if (!new_array) { + WARN_ON(bpf_prog_array_delete_safe_at(old_array, idx)); + goto out_unlock; + } + fill_prog_array(net, type, new_array); + rcu_assign_pointer(net->bpf.run_array[type], new_array); + bpf_prog_array_free(old_array); + +out_unlock: + net_link->net = NULL; + mutex_unlock(&netns_bpf_mutex); +} + +static int bpf_netns_link_detach(struct bpf_link *link) +{ + bpf_netns_link_release(link); + return 0; +} + +static void bpf_netns_link_dealloc(struct bpf_link *link) +{ + struct bpf_netns_link *net_link = + container_of(link, struct bpf_netns_link, link); + + kfree(net_link); +} + +static int bpf_netns_link_update_prog(struct bpf_link *link, + struct bpf_prog *new_prog, + struct bpf_prog *old_prog) +{ + struct bpf_netns_link *net_link = + container_of(link, struct bpf_netns_link, link); + enum netns_bpf_attach_type type = net_link->netns_type; + struct bpf_prog_array *run_array; + struct net *net; + int idx, ret; + + if (old_prog && old_prog != link->prog) + return -EPERM; + if (new_prog->type != link->prog->type) + return -EINVAL; + + mutex_lock(&netns_bpf_mutex); + + net = net_link->net; + if (!net || !check_net(net)) { + /* Link auto-detached or netns dying */ + ret = -ENOLINK; + goto out_unlock; + } + + run_array = rcu_dereference_protected(net->bpf.run_array[type], + lockdep_is_held(&netns_bpf_mutex)); + idx = link_index(net, type, net_link); + ret = bpf_prog_array_update_at(run_array, idx, new_prog); + if (ret) + goto out_unlock; + + old_prog = xchg(&link->prog, new_prog); + bpf_prog_put(old_prog); + +out_unlock: + mutex_unlock(&netns_bpf_mutex); + return ret; +} + +static int bpf_netns_link_fill_info(const struct bpf_link *link, + struct bpf_link_info *info) +{ + const struct bpf_netns_link *net_link = + container_of(link, struct bpf_netns_link, link); + unsigned int inum = 0; + struct net *net; + + mutex_lock(&netns_bpf_mutex); + net = net_link->net; + if (net && check_net(net)) + inum = net->ns.inum; + mutex_unlock(&netns_bpf_mutex); + + info->netns.netns_ino = inum; + info->netns.attach_type = link->attach_type; + return 0; +} + +static void bpf_netns_link_show_fdinfo(const struct bpf_link *link, + struct seq_file *seq) +{ + struct bpf_link_info info = {}; + + bpf_netns_link_fill_info(link, &info); + seq_printf(seq, + "netns_ino:\t%u\n" + "attach_type:\t%u\n", + info.netns.netns_ino, + link->attach_type); +} + +static const struct bpf_link_ops bpf_netns_link_ops = { + .release = bpf_netns_link_release, + .dealloc = bpf_netns_link_dealloc, + .detach = bpf_netns_link_detach, + .update_prog = bpf_netns_link_update_prog, + .fill_link_info = bpf_netns_link_fill_info, + .show_fdinfo = bpf_netns_link_show_fdinfo, +}; + +/* Must be called with netns_bpf_mutex held. */ +static int __netns_bpf_prog_query(const union bpf_attr *attr, + union bpf_attr __user *uattr, + struct net *net, + enum netns_bpf_attach_type type) +{ + __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); + struct bpf_prog_array *run_array; + u32 prog_cnt = 0, flags = 0; + + run_array = rcu_dereference_protected(net->bpf.run_array[type], + lockdep_is_held(&netns_bpf_mutex)); + if (run_array) + prog_cnt = bpf_prog_array_length(run_array); + + if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) + return -EFAULT; + if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt))) + return -EFAULT; + if (!attr->query.prog_cnt || !prog_ids || !prog_cnt) + return 0; + + return bpf_prog_array_copy_to_user(run_array, prog_ids, + attr->query.prog_cnt); +} + +int netns_bpf_prog_query(const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + enum netns_bpf_attach_type type; + struct net *net; + int ret; + + if (attr->query.query_flags) + return -EINVAL; + + type = to_netns_bpf_attach_type(attr->query.attach_type); + if (type < 0) + return -EINVAL; + + net = get_net_ns_by_fd(attr->query.target_fd); + if (IS_ERR(net)) + return PTR_ERR(net); + + mutex_lock(&netns_bpf_mutex); + ret = __netns_bpf_prog_query(attr, uattr, net, type); + mutex_unlock(&netns_bpf_mutex); + + put_net(net); + return ret; +} + +int netns_bpf_prog_attach(const union bpf_attr *attr, struct bpf_prog *prog) +{ + struct bpf_prog_array *run_array; + enum netns_bpf_attach_type type; + struct bpf_prog *attached; + struct net *net; + int ret; + + if (attr->target_fd || attr->attach_flags || attr->replace_bpf_fd) + return -EINVAL; + + type = to_netns_bpf_attach_type(attr->attach_type); + if (type < 0) + return -EINVAL; + + net = current->nsproxy->net_ns; + mutex_lock(&netns_bpf_mutex); + + /* Attaching prog directly is not compatible with links */ + if (!list_empty(&net->bpf.links[type])) { + ret = -EEXIST; + goto out_unlock; + } + + switch (type) { + case NETNS_BPF_FLOW_DISSECTOR: + ret = flow_dissector_bpf_prog_attach_check(net, prog); + break; + default: + ret = -EINVAL; + break; + } + if (ret) + goto out_unlock; + + attached = net->bpf.progs[type]; + if (attached == prog) { + /* The same program cannot be attached twice */ + ret = -EINVAL; + goto out_unlock; + } + + run_array = rcu_dereference_protected(net->bpf.run_array[type], + lockdep_is_held(&netns_bpf_mutex)); + if (run_array) { + WRITE_ONCE(run_array->items[0].prog, prog); + } else { + run_array = bpf_prog_array_alloc(1, GFP_KERNEL); + if (!run_array) { + ret = -ENOMEM; + goto out_unlock; + } + run_array->items[0].prog = prog; + rcu_assign_pointer(net->bpf.run_array[type], run_array); + } + + net->bpf.progs[type] = prog; + if (attached) + bpf_prog_put(attached); + +out_unlock: + mutex_unlock(&netns_bpf_mutex); + + return ret; +} + +/* Must be called with netns_bpf_mutex held. */ +static int __netns_bpf_prog_detach(struct net *net, + enum netns_bpf_attach_type type, + struct bpf_prog *old) +{ + struct bpf_prog *attached; + + /* Progs attached via links cannot be detached */ + if (!list_empty(&net->bpf.links[type])) + return -EINVAL; + + attached = net->bpf.progs[type]; + if (!attached || attached != old) + return -ENOENT; + netns_bpf_run_array_detach(net, type); + net->bpf.progs[type] = NULL; + bpf_prog_put(attached); + return 0; +} + +int netns_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) +{ + enum netns_bpf_attach_type type; + struct bpf_prog *prog; + int ret; + + if (attr->target_fd) + return -EINVAL; + + type = to_netns_bpf_attach_type(attr->attach_type); + if (type < 0) + return -EINVAL; + + prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); + if (IS_ERR(prog)) + return PTR_ERR(prog); + + mutex_lock(&netns_bpf_mutex); + ret = __netns_bpf_prog_detach(current->nsproxy->net_ns, type, prog); + mutex_unlock(&netns_bpf_mutex); + + bpf_prog_put(prog); + + return ret; +} + +static int netns_bpf_max_progs(enum netns_bpf_attach_type type) +{ + switch (type) { + case NETNS_BPF_FLOW_DISSECTOR: + return 1; + case NETNS_BPF_SK_LOOKUP: + return 64; + default: + return 0; + } +} + +static int netns_bpf_link_attach(struct net *net, struct bpf_link *link, + enum netns_bpf_attach_type type) +{ + struct bpf_netns_link *net_link = + container_of(link, struct bpf_netns_link, link); + struct bpf_prog_array *run_array; + int cnt, err; + + mutex_lock(&netns_bpf_mutex); + + cnt = link_count(net, type); + if (cnt >= netns_bpf_max_progs(type)) { + err = -E2BIG; + goto out_unlock; + } + /* Links are not compatible with attaching prog directly */ + if (net->bpf.progs[type]) { + err = -EEXIST; + goto out_unlock; + } + + switch (type) { + case NETNS_BPF_FLOW_DISSECTOR: + err = flow_dissector_bpf_prog_attach_check(net, link->prog); + break; + case NETNS_BPF_SK_LOOKUP: + err = 0; /* nothing to check */ + break; + default: + err = -EINVAL; + break; + } + if (err) + goto out_unlock; + + run_array = bpf_prog_array_alloc(cnt + 1, GFP_KERNEL); + if (!run_array) { + err = -ENOMEM; + goto out_unlock; + } + + list_add_tail(&net_link->node, &net->bpf.links[type]); + + fill_prog_array(net, type, run_array); + run_array = rcu_replace_pointer(net->bpf.run_array[type], run_array, + lockdep_is_held(&netns_bpf_mutex)); + bpf_prog_array_free(run_array); + + /* Mark attach point as used */ + netns_bpf_attach_type_need(type); + +out_unlock: + mutex_unlock(&netns_bpf_mutex); + return err; +} + +int netns_bpf_link_create(const union bpf_attr *attr, struct bpf_prog *prog) +{ + enum netns_bpf_attach_type netns_type; + struct bpf_link_primer link_primer; + struct bpf_netns_link *net_link; + enum bpf_attach_type type; + struct net *net; + int err; + + if (attr->link_create.flags) + return -EINVAL; + + type = attr->link_create.attach_type; + netns_type = to_netns_bpf_attach_type(type); + if (netns_type < 0) + return -EINVAL; + + net = get_net_ns_by_fd(attr->link_create.target_fd); + if (IS_ERR(net)) + return PTR_ERR(net); + + net_link = kzalloc(sizeof(*net_link), GFP_USER); + if (!net_link) { + err = -ENOMEM; + goto out_put_net; + } + bpf_link_init(&net_link->link, BPF_LINK_TYPE_NETNS, + &bpf_netns_link_ops, prog, type); + net_link->net = net; + net_link->netns_type = netns_type; + + err = bpf_link_prime(&net_link->link, &link_primer); + if (err) { + kfree(net_link); + goto out_put_net; + } + + err = netns_bpf_link_attach(net, &net_link->link, netns_type); + if (err) { + bpf_link_cleanup(&link_primer); + goto out_put_net; + } + + put_net(net); + return bpf_link_settle(&link_primer); + +out_put_net: + put_net(net); + return err; +} + +static int __net_init netns_bpf_pernet_init(struct net *net) +{ + int type; + + for (type = 0; type < MAX_NETNS_BPF_ATTACH_TYPE; type++) + INIT_LIST_HEAD(&net->bpf.links[type]); + + return 0; +} + +static void __net_exit netns_bpf_pernet_pre_exit(struct net *net) +{ + enum netns_bpf_attach_type type; + struct bpf_netns_link *net_link; + + mutex_lock(&netns_bpf_mutex); + for (type = 0; type < MAX_NETNS_BPF_ATTACH_TYPE; type++) { + netns_bpf_run_array_detach(net, type); + list_for_each_entry(net_link, &net->bpf.links[type], node) { + net_link->net = NULL; /* auto-detach link */ + netns_bpf_attach_type_unneed(type); + } + if (net->bpf.progs[type]) + bpf_prog_put(net->bpf.progs[type]); + } + mutex_unlock(&netns_bpf_mutex); +} + +static struct pernet_operations netns_bpf_pernet_ops __net_initdata = { + .init = netns_bpf_pernet_init, + .pre_exit = netns_bpf_pernet_pre_exit, +}; + +static int __init netns_bpf_init(void) +{ + return register_pernet_subsys(&netns_bpf_pernet_ops); +} + +subsys_initcall(netns_bpf_init); diff --git a/kernel/bpf/offload.c b/kernel/bpf/offload.c new file mode 100644 index 000000000000..42ae8d595c2c --- /dev/null +++ b/kernel/bpf/offload.c @@ -0,0 +1,878 @@ +/* + * Copyright (C) 2017-2018 Netronome Systems, Inc. + * + * This software is licensed under the GNU General License Version 2, + * June 1991 as shown in the file COPYING in the top-level directory of this + * source tree. + * + * THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" + * WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, + * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE + * OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME + * THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + */ + +#include <linux/bpf.h> +#include <linux/bpf_verifier.h> +#include <linux/bug.h> +#include <linux/kdev_t.h> +#include <linux/list.h> +#include <linux/lockdep.h> +#include <linux/netdevice.h> +#include <linux/printk.h> +#include <linux/proc_ns.h> +#include <linux/rhashtable.h> +#include <linux/rtnetlink.h> +#include <linux/rwsem.h> +#include <net/netdev_lock.h> +#include <net/xdp.h> + +/* Protects offdevs, members of bpf_offload_netdev and offload members + * of all progs. + * RTNL lock cannot be taken when holding this lock. + */ +static DECLARE_RWSEM(bpf_devs_lock); + +struct bpf_offload_dev { + const struct bpf_prog_offload_ops *ops; + struct list_head netdevs; + void *priv; +}; + +struct bpf_offload_netdev { + struct rhash_head l; + struct net_device *netdev; + struct bpf_offload_dev *offdev; /* NULL when bound-only */ + struct list_head progs; + struct list_head maps; + struct list_head offdev_netdevs; +}; + +static const struct rhashtable_params offdevs_params = { + .nelem_hint = 4, + .key_len = sizeof(struct net_device *), + .key_offset = offsetof(struct bpf_offload_netdev, netdev), + .head_offset = offsetof(struct bpf_offload_netdev, l), + .automatic_shrinking = true, +}; + +static struct rhashtable offdevs; + +static int bpf_dev_offload_check(struct net_device *netdev) +{ + if (!netdev) + return -EINVAL; + if (!netdev->netdev_ops->ndo_bpf) + return -EOPNOTSUPP; + return 0; +} + +static struct bpf_offload_netdev * +bpf_offload_find_netdev(struct net_device *netdev) +{ + lockdep_assert_held(&bpf_devs_lock); + + return rhashtable_lookup_fast(&offdevs, &netdev, offdevs_params); +} + +static int __bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, + struct net_device *netdev) +{ + struct bpf_offload_netdev *ondev; + int err; + + ondev = kzalloc(sizeof(*ondev), GFP_KERNEL); + if (!ondev) + return -ENOMEM; + + ondev->netdev = netdev; + ondev->offdev = offdev; + INIT_LIST_HEAD(&ondev->progs); + INIT_LIST_HEAD(&ondev->maps); + + err = rhashtable_insert_fast(&offdevs, &ondev->l, offdevs_params); + if (err) { + netdev_warn(netdev, "failed to register for BPF offload\n"); + goto err_free; + } + + if (offdev) + list_add(&ondev->offdev_netdevs, &offdev->netdevs); + return 0; + +err_free: + kfree(ondev); + return err; +} + +static void __bpf_prog_offload_destroy(struct bpf_prog *prog) +{ + struct bpf_prog_offload *offload = prog->aux->offload; + + if (offload->dev_state) + offload->offdev->ops->destroy(prog); + + list_del_init(&offload->offloads); + kfree(offload); + prog->aux->offload = NULL; +} + +static int bpf_map_offload_ndo(struct bpf_offloaded_map *offmap, + enum bpf_netdev_command cmd) +{ + struct netdev_bpf data = {}; + struct net_device *netdev; + + ASSERT_RTNL(); + + data.command = cmd; + data.offmap = offmap; + /* Caller must make sure netdev is valid */ + netdev = offmap->netdev; + + return netdev->netdev_ops->ndo_bpf(netdev, &data); +} + +static void __bpf_map_offload_destroy(struct bpf_offloaded_map *offmap) +{ + WARN_ON(bpf_map_offload_ndo(offmap, BPF_OFFLOAD_MAP_FREE)); + /* Make sure BPF_MAP_GET_NEXT_ID can't find this dead map */ + bpf_map_free_id(&offmap->map); + list_del_init(&offmap->offloads); + offmap->netdev = NULL; +} + +static void __bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, + struct net_device *netdev) +{ + struct bpf_offload_netdev *ondev, *altdev = NULL; + struct bpf_offloaded_map *offmap, *mtmp; + struct bpf_prog_offload *offload, *ptmp; + + ASSERT_RTNL(); + + ondev = rhashtable_lookup_fast(&offdevs, &netdev, offdevs_params); + if (WARN_ON(!ondev)) + return; + + WARN_ON(rhashtable_remove_fast(&offdevs, &ondev->l, offdevs_params)); + + /* Try to move the objects to another netdev of the device */ + if (offdev) { + list_del(&ondev->offdev_netdevs); + altdev = list_first_entry_or_null(&offdev->netdevs, + struct bpf_offload_netdev, + offdev_netdevs); + } + + if (altdev) { + list_for_each_entry(offload, &ondev->progs, offloads) + offload->netdev = altdev->netdev; + list_splice_init(&ondev->progs, &altdev->progs); + + list_for_each_entry(offmap, &ondev->maps, offloads) + offmap->netdev = altdev->netdev; + list_splice_init(&ondev->maps, &altdev->maps); + } else { + list_for_each_entry_safe(offload, ptmp, &ondev->progs, offloads) + __bpf_prog_offload_destroy(offload->prog); + list_for_each_entry_safe(offmap, mtmp, &ondev->maps, offloads) + __bpf_map_offload_destroy(offmap); + } + + WARN_ON(!list_empty(&ondev->progs)); + WARN_ON(!list_empty(&ondev->maps)); + kfree(ondev); +} + +static int __bpf_prog_dev_bound_init(struct bpf_prog *prog, struct net_device *netdev) +{ + struct bpf_offload_netdev *ondev; + struct bpf_prog_offload *offload; + int err; + + offload = kzalloc(sizeof(*offload), GFP_USER); + if (!offload) + return -ENOMEM; + + offload->prog = prog; + offload->netdev = netdev; + + ondev = bpf_offload_find_netdev(offload->netdev); + /* When program is offloaded require presence of "true" + * bpf_offload_netdev, avoid the one created for !ondev case below. + */ + if (bpf_prog_is_offloaded(prog->aux) && (!ondev || !ondev->offdev)) { + err = -EINVAL; + goto err_free; + } + if (!ondev) { + /* When only binding to the device, explicitly + * create an entry in the hashtable. + */ + err = __bpf_offload_dev_netdev_register(NULL, offload->netdev); + if (err) + goto err_free; + ondev = bpf_offload_find_netdev(offload->netdev); + } + offload->offdev = ondev->offdev; + prog->aux->offload = offload; + list_add_tail(&offload->offloads, &ondev->progs); + + return 0; +err_free: + kfree(offload); + return err; +} + +int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr) +{ + struct net_device *netdev; + int err; + + if (attr->prog_type != BPF_PROG_TYPE_SCHED_CLS && + attr->prog_type != BPF_PROG_TYPE_XDP) + return -EINVAL; + + if (attr->prog_flags & ~(BPF_F_XDP_DEV_BOUND_ONLY | BPF_F_XDP_HAS_FRAGS)) + return -EINVAL; + + /* Frags are allowed only if program is dev-bound-only, but not + * if it is requesting bpf offload. + */ + if (attr->prog_flags & BPF_F_XDP_HAS_FRAGS && + !(attr->prog_flags & BPF_F_XDP_DEV_BOUND_ONLY)) + return -EINVAL; + + if (attr->prog_type == BPF_PROG_TYPE_SCHED_CLS && + attr->prog_flags & BPF_F_XDP_DEV_BOUND_ONLY) + return -EINVAL; + + netdev = dev_get_by_index(current->nsproxy->net_ns, attr->prog_ifindex); + if (!netdev) + return -EINVAL; + + err = bpf_dev_offload_check(netdev); + if (err) + goto out; + + prog->aux->offload_requested = !(attr->prog_flags & BPF_F_XDP_DEV_BOUND_ONLY); + + down_write(&bpf_devs_lock); + err = __bpf_prog_dev_bound_init(prog, netdev); + up_write(&bpf_devs_lock); + +out: + dev_put(netdev); + return err; +} + +int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog) +{ + int err; + + if (!bpf_prog_is_dev_bound(old_prog->aux)) + return 0; + + if (bpf_prog_is_offloaded(old_prog->aux)) + return -EINVAL; + + new_prog->aux->dev_bound = old_prog->aux->dev_bound; + new_prog->aux->offload_requested = old_prog->aux->offload_requested; + + down_write(&bpf_devs_lock); + if (!old_prog->aux->offload) { + err = -EINVAL; + goto out; + } + + err = __bpf_prog_dev_bound_init(new_prog, old_prog->aux->offload->netdev); + +out: + up_write(&bpf_devs_lock); + return err; +} + +int bpf_prog_offload_verifier_prep(struct bpf_prog *prog) +{ + struct bpf_prog_offload *offload; + int ret = -ENODEV; + + down_read(&bpf_devs_lock); + offload = prog->aux->offload; + if (offload) { + ret = offload->offdev->ops->prepare(prog); + offload->dev_state = !ret; + } + up_read(&bpf_devs_lock); + + return ret; +} + +int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, + int insn_idx, int prev_insn_idx) +{ + struct bpf_prog_offload *offload; + int ret = -ENODEV; + + down_read(&bpf_devs_lock); + offload = env->prog->aux->offload; + if (offload) + ret = offload->offdev->ops->insn_hook(env, insn_idx, + prev_insn_idx); + up_read(&bpf_devs_lock); + + return ret; +} + +int bpf_prog_offload_finalize(struct bpf_verifier_env *env) +{ + struct bpf_prog_offload *offload; + int ret = -ENODEV; + + down_read(&bpf_devs_lock); + offload = env->prog->aux->offload; + if (offload) { + if (offload->offdev->ops->finalize) + ret = offload->offdev->ops->finalize(env); + else + ret = 0; + } + up_read(&bpf_devs_lock); + + return ret; +} + +void +bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, + struct bpf_insn *insn) +{ + const struct bpf_prog_offload_ops *ops; + struct bpf_prog_offload *offload; + int ret = -EOPNOTSUPP; + + down_read(&bpf_devs_lock); + offload = env->prog->aux->offload; + if (offload) { + ops = offload->offdev->ops; + if (!offload->opt_failed && ops->replace_insn) + ret = ops->replace_insn(env, off, insn); + offload->opt_failed |= ret; + } + up_read(&bpf_devs_lock); +} + +void +bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) +{ + struct bpf_prog_offload *offload; + int ret = -EOPNOTSUPP; + + down_read(&bpf_devs_lock); + offload = env->prog->aux->offload; + if (offload) { + if (!offload->opt_failed && offload->offdev->ops->remove_insns) + ret = offload->offdev->ops->remove_insns(env, off, cnt); + offload->opt_failed |= ret; + } + up_read(&bpf_devs_lock); +} + +void bpf_prog_dev_bound_destroy(struct bpf_prog *prog) +{ + struct bpf_offload_netdev *ondev; + struct net_device *netdev; + + rtnl_lock(); + down_write(&bpf_devs_lock); + if (prog->aux->offload) { + list_del_init(&prog->aux->offload->offloads); + + netdev = prog->aux->offload->netdev; + __bpf_prog_offload_destroy(prog); + + ondev = bpf_offload_find_netdev(netdev); + if (!ondev->offdev && list_empty(&ondev->progs)) + __bpf_offload_dev_netdev_unregister(NULL, netdev); + } + up_write(&bpf_devs_lock); + rtnl_unlock(); +} + +static int bpf_prog_offload_translate(struct bpf_prog *prog) +{ + struct bpf_prog_offload *offload; + int ret = -ENODEV; + + down_read(&bpf_devs_lock); + offload = prog->aux->offload; + if (offload) + ret = offload->offdev->ops->translate(prog); + up_read(&bpf_devs_lock); + + return ret; +} + +static unsigned int bpf_prog_warn_on_exec(const void *ctx, + const struct bpf_insn *insn) +{ + WARN(1, "attempt to execute device eBPF program on the host!"); + return 0; +} + +int bpf_prog_offload_compile(struct bpf_prog *prog) +{ + prog->bpf_func = bpf_prog_warn_on_exec; + + return bpf_prog_offload_translate(prog); +} + +struct ns_get_path_bpf_prog_args { + struct bpf_prog *prog; + struct bpf_prog_info *info; +}; + +static struct ns_common *bpf_prog_offload_info_fill_ns(void *private_data) +{ + struct ns_get_path_bpf_prog_args *args = private_data; + struct bpf_prog_aux *aux = args->prog->aux; + struct ns_common *ns; + struct net *net; + + rtnl_lock(); + down_read(&bpf_devs_lock); + + if (aux->offload) { + args->info->ifindex = aux->offload->netdev->ifindex; + net = dev_net(aux->offload->netdev); + get_net(net); + ns = &net->ns; + } else { + args->info->ifindex = 0; + ns = NULL; + } + + up_read(&bpf_devs_lock); + rtnl_unlock(); + + return ns; +} + +int bpf_prog_offload_info_fill(struct bpf_prog_info *info, + struct bpf_prog *prog) +{ + struct ns_get_path_bpf_prog_args args = { + .prog = prog, + .info = info, + }; + struct bpf_prog_aux *aux = prog->aux; + struct inode *ns_inode; + struct path ns_path; + char __user *uinsns; + int res; + u32 ulen; + + res = ns_get_path_cb(&ns_path, bpf_prog_offload_info_fill_ns, &args); + if (res) { + if (!info->ifindex) + return -ENODEV; + return res; + } + + down_read(&bpf_devs_lock); + + if (!aux->offload) { + up_read(&bpf_devs_lock); + return -ENODEV; + } + + ulen = info->jited_prog_len; + info->jited_prog_len = aux->offload->jited_len; + if (info->jited_prog_len && ulen) { + uinsns = u64_to_user_ptr(info->jited_prog_insns); + ulen = min_t(u32, info->jited_prog_len, ulen); + if (copy_to_user(uinsns, aux->offload->jited_image, ulen)) { + up_read(&bpf_devs_lock); + return -EFAULT; + } + } + + up_read(&bpf_devs_lock); + + ns_inode = ns_path.dentry->d_inode; + info->netns_dev = new_encode_dev(ns_inode->i_sb->s_dev); + info->netns_ino = ns_inode->i_ino; + path_put(&ns_path); + + return 0; +} + +const struct bpf_prog_ops bpf_offload_prog_ops = { +}; + +struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) +{ + struct net *net = current->nsproxy->net_ns; + struct bpf_offload_netdev *ondev; + struct bpf_offloaded_map *offmap; + int err; + + if (!capable(CAP_SYS_ADMIN)) + return ERR_PTR(-EPERM); + if (attr->map_type != BPF_MAP_TYPE_ARRAY && + attr->map_type != BPF_MAP_TYPE_HASH) + return ERR_PTR(-EINVAL); + + offmap = bpf_map_area_alloc(sizeof(*offmap), NUMA_NO_NODE); + if (!offmap) + return ERR_PTR(-ENOMEM); + + bpf_map_init_from_attr(&offmap->map, attr); + rtnl_lock(); + offmap->netdev = __dev_get_by_index(net, attr->map_ifindex); + err = bpf_dev_offload_check(offmap->netdev); + if (err) + goto err_unlock_rtnl; + + netdev_lock_ops(offmap->netdev); + down_write(&bpf_devs_lock); + + ondev = bpf_offload_find_netdev(offmap->netdev); + if (!ondev) { + err = -EINVAL; + goto err_unlock; + } + + err = bpf_map_offload_ndo(offmap, BPF_OFFLOAD_MAP_ALLOC); + if (err) + goto err_unlock; + + list_add_tail(&offmap->offloads, &ondev->maps); + up_write(&bpf_devs_lock); + netdev_unlock_ops(offmap->netdev); + rtnl_unlock(); + + return &offmap->map; + +err_unlock: + up_write(&bpf_devs_lock); + netdev_unlock_ops(offmap->netdev); +err_unlock_rtnl: + rtnl_unlock(); + bpf_map_area_free(offmap); + return ERR_PTR(err); +} + +void bpf_map_offload_map_free(struct bpf_map *map) +{ + struct bpf_offloaded_map *offmap = map_to_offmap(map); + + rtnl_lock(); + down_write(&bpf_devs_lock); + if (offmap->netdev) + __bpf_map_offload_destroy(offmap); + up_write(&bpf_devs_lock); + rtnl_unlock(); + + bpf_map_area_free(offmap); +} + +u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) +{ + /* The memory dynamically allocated in netdev dev_ops is not counted */ + return sizeof(struct bpf_offloaded_map); +} + +int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value) +{ + struct bpf_offloaded_map *offmap = map_to_offmap(map); + int ret = -ENODEV; + + down_read(&bpf_devs_lock); + if (offmap->netdev) + ret = offmap->dev_ops->map_lookup_elem(offmap, key, value); + up_read(&bpf_devs_lock); + + return ret; +} + +int bpf_map_offload_update_elem(struct bpf_map *map, + void *key, void *value, u64 flags) +{ + struct bpf_offloaded_map *offmap = map_to_offmap(map); + int ret = -ENODEV; + + if (unlikely(flags > BPF_EXIST)) + return -EINVAL; + + down_read(&bpf_devs_lock); + if (offmap->netdev) + ret = offmap->dev_ops->map_update_elem(offmap, key, value, + flags); + up_read(&bpf_devs_lock); + + return ret; +} + +int bpf_map_offload_delete_elem(struct bpf_map *map, void *key) +{ + struct bpf_offloaded_map *offmap = map_to_offmap(map); + int ret = -ENODEV; + + down_read(&bpf_devs_lock); + if (offmap->netdev) + ret = offmap->dev_ops->map_delete_elem(offmap, key); + up_read(&bpf_devs_lock); + + return ret; +} + +int bpf_map_offload_get_next_key(struct bpf_map *map, void *key, void *next_key) +{ + struct bpf_offloaded_map *offmap = map_to_offmap(map); + int ret = -ENODEV; + + down_read(&bpf_devs_lock); + if (offmap->netdev) + ret = offmap->dev_ops->map_get_next_key(offmap, key, next_key); + up_read(&bpf_devs_lock); + + return ret; +} + +struct ns_get_path_bpf_map_args { + struct bpf_offloaded_map *offmap; + struct bpf_map_info *info; +}; + +static struct ns_common *bpf_map_offload_info_fill_ns(void *private_data) +{ + struct ns_get_path_bpf_map_args *args = private_data; + struct ns_common *ns; + struct net *net; + + rtnl_lock(); + down_read(&bpf_devs_lock); + + if (args->offmap->netdev) { + args->info->ifindex = args->offmap->netdev->ifindex; + net = dev_net(args->offmap->netdev); + get_net(net); + ns = &net->ns; + } else { + args->info->ifindex = 0; + ns = NULL; + } + + up_read(&bpf_devs_lock); + rtnl_unlock(); + + return ns; +} + +int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map) +{ + struct ns_get_path_bpf_map_args args = { + .offmap = map_to_offmap(map), + .info = info, + }; + struct inode *ns_inode; + struct path ns_path; + int res; + + res = ns_get_path_cb(&ns_path, bpf_map_offload_info_fill_ns, &args); + if (res) { + if (!info->ifindex) + return -ENODEV; + return res; + } + + ns_inode = ns_path.dentry->d_inode; + info->netns_dev = new_encode_dev(ns_inode->i_sb->s_dev); + info->netns_ino = ns_inode->i_ino; + path_put(&ns_path); + + return 0; +} + +static bool __bpf_offload_dev_match(struct bpf_prog *prog, + struct net_device *netdev) +{ + struct bpf_offload_netdev *ondev1, *ondev2; + struct bpf_prog_offload *offload; + + if (!bpf_prog_is_dev_bound(prog->aux)) + return false; + + offload = prog->aux->offload; + if (!offload) + return false; + if (offload->netdev == netdev) + return true; + + ondev1 = bpf_offload_find_netdev(offload->netdev); + ondev2 = bpf_offload_find_netdev(netdev); + + return ondev1 && ondev2 && ondev1->offdev == ondev2->offdev; +} + +bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev) +{ + bool ret; + + down_read(&bpf_devs_lock); + ret = __bpf_offload_dev_match(prog, netdev); + up_read(&bpf_devs_lock); + + return ret; +} +EXPORT_SYMBOL_GPL(bpf_offload_dev_match); + +bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) +{ + bool ret; + + if (bpf_prog_is_offloaded(lhs->aux) != bpf_prog_is_offloaded(rhs->aux)) + return false; + + down_read(&bpf_devs_lock); + ret = lhs->aux->offload && rhs->aux->offload && + lhs->aux->offload->netdev && + lhs->aux->offload->netdev == rhs->aux->offload->netdev; + up_read(&bpf_devs_lock); + + return ret; +} + +bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map) +{ + struct bpf_offloaded_map *offmap; + bool ret; + + if (!bpf_map_is_offloaded(map)) + return bpf_map_offload_neutral(map); + offmap = map_to_offmap(map); + + down_read(&bpf_devs_lock); + ret = __bpf_offload_dev_match(prog, offmap->netdev); + up_read(&bpf_devs_lock); + + return ret; +} + +int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, + struct net_device *netdev) +{ + int err; + + down_write(&bpf_devs_lock); + err = __bpf_offload_dev_netdev_register(offdev, netdev); + up_write(&bpf_devs_lock); + return err; +} +EXPORT_SYMBOL_GPL(bpf_offload_dev_netdev_register); + +void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, + struct net_device *netdev) +{ + down_write(&bpf_devs_lock); + __bpf_offload_dev_netdev_unregister(offdev, netdev); + up_write(&bpf_devs_lock); +} +EXPORT_SYMBOL_GPL(bpf_offload_dev_netdev_unregister); + +struct bpf_offload_dev * +bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv) +{ + struct bpf_offload_dev *offdev; + + offdev = kzalloc(sizeof(*offdev), GFP_KERNEL); + if (!offdev) + return ERR_PTR(-ENOMEM); + + offdev->ops = ops; + offdev->priv = priv; + INIT_LIST_HEAD(&offdev->netdevs); + + return offdev; +} +EXPORT_SYMBOL_GPL(bpf_offload_dev_create); + +void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev) +{ + WARN_ON(!list_empty(&offdev->netdevs)); + kfree(offdev); +} +EXPORT_SYMBOL_GPL(bpf_offload_dev_destroy); + +void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev) +{ + return offdev->priv; +} +EXPORT_SYMBOL_GPL(bpf_offload_dev_priv); + +void bpf_dev_bound_netdev_unregister(struct net_device *dev) +{ + struct bpf_offload_netdev *ondev; + + ASSERT_RTNL(); + + down_write(&bpf_devs_lock); + ondev = bpf_offload_find_netdev(dev); + if (ondev && !ondev->offdev) + __bpf_offload_dev_netdev_unregister(NULL, ondev->netdev); + up_write(&bpf_devs_lock); +} + +int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, + struct bpf_prog_aux *prog_aux) +{ + if (!bpf_prog_is_dev_bound(prog_aux)) { + bpf_log(log, "metadata kfuncs require device-bound program\n"); + return -EINVAL; + } + + if (bpf_prog_is_offloaded(prog_aux)) { + bpf_log(log, "metadata kfuncs can't be offloaded\n"); + return -EINVAL; + } + + return 0; +} + +void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id) +{ + const struct xdp_metadata_ops *ops; + void *p = NULL; + + /* We don't hold bpf_devs_lock while resolving several + * kfuncs and can race with the unregister_netdevice(). + * We rely on bpf_dev_bound_match() check at attach + * to render this program unusable. + */ + down_read(&bpf_devs_lock); + if (!prog->aux->offload) + goto out; + + ops = prog->aux->offload->netdev->xdp_metadata_ops; + if (!ops) + goto out; + +#define XDP_METADATA_KFUNC(name, _, __, xmo) \ + if (func_id == bpf_xdp_metadata_kfunc_id(name)) p = ops->xmo; + XDP_METADATA_KFUNC_xxx +#undef XDP_METADATA_KFUNC + +out: + up_read(&bpf_devs_lock); + + return p; +} + +static int __init bpf_offload_init(void) +{ + return rhashtable_init(&offdevs, &offdevs_params); +} + +core_initcall(bpf_offload_init); diff --git a/kernel/bpf/percpu_freelist.c b/kernel/bpf/percpu_freelist.c new file mode 100644 index 000000000000..632762b57299 --- /dev/null +++ b/kernel/bpf/percpu_freelist.c @@ -0,0 +1,137 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2016 Facebook + */ +#include "percpu_freelist.h" + +int pcpu_freelist_init(struct pcpu_freelist *s) +{ + int cpu; + + s->freelist = alloc_percpu(struct pcpu_freelist_head); + if (!s->freelist) + return -ENOMEM; + + for_each_possible_cpu(cpu) { + struct pcpu_freelist_head *head = per_cpu_ptr(s->freelist, cpu); + + raw_res_spin_lock_init(&head->lock); + head->first = NULL; + } + return 0; +} + +void pcpu_freelist_destroy(struct pcpu_freelist *s) +{ + free_percpu(s->freelist); +} + +static inline void pcpu_freelist_push_node(struct pcpu_freelist_head *head, + struct pcpu_freelist_node *node) +{ + node->next = head->first; + WRITE_ONCE(head->first, node); +} + +static inline bool ___pcpu_freelist_push(struct pcpu_freelist_head *head, + struct pcpu_freelist_node *node) +{ + if (raw_res_spin_lock(&head->lock)) + return false; + pcpu_freelist_push_node(head, node); + raw_res_spin_unlock(&head->lock); + return true; +} + +void __pcpu_freelist_push(struct pcpu_freelist *s, + struct pcpu_freelist_node *node) +{ + struct pcpu_freelist_head *head; + int cpu; + + if (___pcpu_freelist_push(this_cpu_ptr(s->freelist), node)) + return; + + while (true) { + for_each_cpu_wrap(cpu, cpu_possible_mask, raw_smp_processor_id()) { + if (cpu == raw_smp_processor_id()) + continue; + head = per_cpu_ptr(s->freelist, cpu); + if (raw_res_spin_lock(&head->lock)) + continue; + pcpu_freelist_push_node(head, node); + raw_res_spin_unlock(&head->lock); + return; + } + } +} + +void pcpu_freelist_push(struct pcpu_freelist *s, + struct pcpu_freelist_node *node) +{ + unsigned long flags; + + local_irq_save(flags); + __pcpu_freelist_push(s, node); + local_irq_restore(flags); +} + +void pcpu_freelist_populate(struct pcpu_freelist *s, void *buf, u32 elem_size, + u32 nr_elems) +{ + struct pcpu_freelist_head *head; + unsigned int cpu, cpu_idx, i, j, n, m; + + n = nr_elems / num_possible_cpus(); + m = nr_elems % num_possible_cpus(); + + cpu_idx = 0; + for_each_possible_cpu(cpu) { + head = per_cpu_ptr(s->freelist, cpu); + j = n + (cpu_idx < m ? 1 : 0); + for (i = 0; i < j; i++) { + /* No locking required as this is not visible yet. */ + pcpu_freelist_push_node(head, buf); + buf += elem_size; + } + cpu_idx++; + } +} + +static struct pcpu_freelist_node *___pcpu_freelist_pop(struct pcpu_freelist *s) +{ + struct pcpu_freelist_node *node = NULL; + struct pcpu_freelist_head *head; + int cpu; + + for_each_cpu_wrap(cpu, cpu_possible_mask, raw_smp_processor_id()) { + head = per_cpu_ptr(s->freelist, cpu); + if (!READ_ONCE(head->first)) + continue; + if (raw_res_spin_lock(&head->lock)) + continue; + node = head->first; + if (node) { + WRITE_ONCE(head->first, node->next); + raw_res_spin_unlock(&head->lock); + return node; + } + raw_res_spin_unlock(&head->lock); + } + return node; +} + +struct pcpu_freelist_node *__pcpu_freelist_pop(struct pcpu_freelist *s) +{ + return ___pcpu_freelist_pop(s); +} + +struct pcpu_freelist_node *pcpu_freelist_pop(struct pcpu_freelist *s) +{ + struct pcpu_freelist_node *ret; + unsigned long flags; + + local_irq_save(flags); + ret = __pcpu_freelist_pop(s); + local_irq_restore(flags); + return ret; +} diff --git a/kernel/bpf/percpu_freelist.h b/kernel/bpf/percpu_freelist.h new file mode 100644 index 000000000000..914798b74967 --- /dev/null +++ b/kernel/bpf/percpu_freelist.h @@ -0,0 +1,33 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* Copyright (c) 2016 Facebook + */ +#ifndef __PERCPU_FREELIST_H__ +#define __PERCPU_FREELIST_H__ +#include <linux/spinlock.h> +#include <linux/percpu.h> +#include <asm/rqspinlock.h> + +struct pcpu_freelist_head { + struct pcpu_freelist_node *first; + rqspinlock_t lock; +}; + +struct pcpu_freelist { + struct pcpu_freelist_head __percpu *freelist; +}; + +struct pcpu_freelist_node { + struct pcpu_freelist_node *next; +}; + +/* pcpu_freelist_* do spin_lock_irqsave. */ +void pcpu_freelist_push(struct pcpu_freelist *, struct pcpu_freelist_node *); +struct pcpu_freelist_node *pcpu_freelist_pop(struct pcpu_freelist *); +/* __pcpu_freelist_* do spin_lock only. caller must disable irqs. */ +void __pcpu_freelist_push(struct pcpu_freelist *, struct pcpu_freelist_node *); +struct pcpu_freelist_node *__pcpu_freelist_pop(struct pcpu_freelist *); +void pcpu_freelist_populate(struct pcpu_freelist *s, void *buf, u32 elem_size, + u32 nr_elems); +int pcpu_freelist_init(struct pcpu_freelist *); +void pcpu_freelist_destroy(struct pcpu_freelist *s); +#endif diff --git a/kernel/bpf/preload/.gitignore b/kernel/bpf/preload/.gitignore new file mode 100644 index 000000000000..9452322902a5 --- /dev/null +++ b/kernel/bpf/preload/.gitignore @@ -0,0 +1,2 @@ +/libbpf +/bpf_preload_umd diff --git a/kernel/bpf/preload/Kconfig b/kernel/bpf/preload/Kconfig new file mode 100644 index 000000000000..aef7b0bc96d6 --- /dev/null +++ b/kernel/bpf/preload/Kconfig @@ -0,0 +1,21 @@ +# SPDX-License-Identifier: GPL-2.0-only +menuconfig BPF_PRELOAD + bool "Preload BPF file system with kernel specific program and map iterators" + depends on BPF + depends on BPF_SYSCALL + # The dependency on !COMPILE_TEST prevents it from being enabled + # in allmodconfig or allyesconfig configurations + depends on !COMPILE_TEST + help + This builds kernel module with several embedded BPF programs that are + pinned into BPF FS mount point as human readable files that are + useful in debugging and introspection of BPF programs and maps. + +if BPF_PRELOAD +config BPF_PRELOAD_UMD + tristate "bpf_preload kernel module" + default m + help + This builds bpf_preload kernel module with embedded BPF programs for + introspection in bpffs. +endif diff --git a/kernel/bpf/preload/Makefile b/kernel/bpf/preload/Makefile new file mode 100644 index 000000000000..20f89cc0a0a6 --- /dev/null +++ b/kernel/bpf/preload/Makefile @@ -0,0 +1,7 @@ +# SPDX-License-Identifier: GPL-2.0 + +LIBBPF_INCLUDE = $(srctree)/tools/lib + +obj-$(CONFIG_BPF_PRELOAD_UMD) += bpf_preload.o +CFLAGS_bpf_preload_kern.o += -I$(LIBBPF_INCLUDE) +bpf_preload-objs += bpf_preload_kern.o diff --git a/kernel/bpf/preload/bpf_preload.h b/kernel/bpf/preload/bpf_preload.h new file mode 100644 index 000000000000..f065c91213a0 --- /dev/null +++ b/kernel/bpf/preload/bpf_preload.h @@ -0,0 +1,16 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _BPF_PRELOAD_H +#define _BPF_PRELOAD_H + +struct bpf_preload_info { + char link_name[16]; + struct bpf_link *link; +}; + +struct bpf_preload_ops { + int (*preload)(struct bpf_preload_info *); + struct module *owner; +}; +extern struct bpf_preload_ops *bpf_preload_ops; +#define BPF_PRELOAD_LINKS 2 +#endif diff --git a/kernel/bpf/preload/bpf_preload_kern.c b/kernel/bpf/preload/bpf_preload_kern.c new file mode 100644 index 000000000000..774e5a538811 --- /dev/null +++ b/kernel/bpf/preload/bpf_preload_kern.c @@ -0,0 +1,94 @@ +// SPDX-License-Identifier: GPL-2.0 +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt +#include <linux/init.h> +#include <linux/module.h> +#include "bpf_preload.h" +#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ +#include "iterators/iterators.lskel-little-endian.h" +#else +#include "iterators/iterators.lskel-big-endian.h" +#endif + +static struct bpf_link *maps_link, *progs_link; +static struct iterators_bpf *skel; + +static void free_links_and_skel(void) +{ + if (!IS_ERR_OR_NULL(maps_link)) + bpf_link_put(maps_link); + if (!IS_ERR_OR_NULL(progs_link)) + bpf_link_put(progs_link); + iterators_bpf__destroy(skel); +} + +static int preload(struct bpf_preload_info *obj) +{ + strscpy(obj[0].link_name, "maps.debug", sizeof(obj[0].link_name)); + obj[0].link = maps_link; + strscpy(obj[1].link_name, "progs.debug", sizeof(obj[1].link_name)); + obj[1].link = progs_link; + return 0; +} + +static struct bpf_preload_ops ops = { + .preload = preload, + .owner = THIS_MODULE, +}; + +static int load_skel(void) +{ + int err; + + skel = iterators_bpf__open(); + if (!skel) + return -ENOMEM; + err = iterators_bpf__load(skel); + if (err) + goto out; + err = iterators_bpf__attach(skel); + if (err) + goto out; + maps_link = bpf_link_get_from_fd(skel->links.dump_bpf_map_fd); + if (IS_ERR(maps_link)) { + err = PTR_ERR(maps_link); + goto out; + } + progs_link = bpf_link_get_from_fd(skel->links.dump_bpf_prog_fd); + if (IS_ERR(progs_link)) { + err = PTR_ERR(progs_link); + goto out; + } + /* Avoid taking over stdin/stdout/stderr of init process. Zeroing out + * makes skel_closenz() a no-op later in iterators_bpf__destroy(). + */ + close_fd(skel->links.dump_bpf_map_fd); + skel->links.dump_bpf_map_fd = 0; + close_fd(skel->links.dump_bpf_prog_fd); + skel->links.dump_bpf_prog_fd = 0; + return 0; +out: + free_links_and_skel(); + return err; +} + +static int __init load(void) +{ + int err; + + err = load_skel(); + if (err) + return err; + bpf_preload_ops = &ops; + return err; +} + +static void __exit fini(void) +{ + bpf_preload_ops = NULL; + free_links_and_skel(); +} +late_initcall(load); +module_exit(fini); +MODULE_IMPORT_NS("BPF_INTERNAL"); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Embedded BPF programs for introspection in bpffs"); diff --git a/kernel/bpf/preload/iterators/.gitignore b/kernel/bpf/preload/iterators/.gitignore new file mode 100644 index 000000000000..ffdb70230c8b --- /dev/null +++ b/kernel/bpf/preload/iterators/.gitignore @@ -0,0 +1,2 @@ +# SPDX-License-Identifier: GPL-2.0-only +/.output diff --git a/kernel/bpf/preload/iterators/Makefile b/kernel/bpf/preload/iterators/Makefile new file mode 100644 index 000000000000..b83c2f5e9be1 --- /dev/null +++ b/kernel/bpf/preload/iterators/Makefile @@ -0,0 +1,67 @@ +# SPDX-License-Identifier: GPL-2.0 +OUTPUT := .output +abs_out := $(abspath $(OUTPUT)) + +CLANG ?= clang +LLC ?= llc +LLVM_STRIP ?= llvm-strip + +TOOLS_PATH := $(abspath ../../../../tools) +BPFTOOL_SRC := $(TOOLS_PATH)/bpf/bpftool +BPFTOOL_OUTPUT := $(abs_out)/bpftool +DEFAULT_BPFTOOL := $(BPFTOOL_OUTPUT)/bootstrap/bpftool +BPFTOOL ?= $(DEFAULT_BPFTOOL) + +LIBBPF_SRC := $(TOOLS_PATH)/lib/bpf +LIBBPF_OUTPUT := $(abs_out)/libbpf +LIBBPF_DESTDIR := $(LIBBPF_OUTPUT) +LIBBPF_INCLUDE := $(LIBBPF_DESTDIR)/include +BPFOBJ := $(LIBBPF_OUTPUT)/libbpf.a + +INCLUDES := -I$(OUTPUT) -I$(LIBBPF_INCLUDE) -I$(TOOLS_PATH)/include/uapi +CFLAGS := -g -Wall + +ifeq ($(V),1) +Q = +msg = +else +Q = @ +msg = @printf ' %-8s %s%s\n' "$(1)" "$(notdir $(2))" "$(if $(3), $(3))"; +MAKEFLAGS += --no-print-directory +submake_extras := feature_display=0 +endif + +.DELETE_ON_ERROR: + +.PHONY: all clean + +all: iterators.lskel-little-endian.h + +big: iterators.lskel-big-endian.h + +clean: + $(call msg,CLEAN) + $(Q)rm -rf $(OUTPUT) iterators + +iterators.lskel-%.h: $(OUTPUT)/%/iterators.bpf.o | $(BPFTOOL) + $(call msg,GEN-SKEL,$@) + $(Q)$(BPFTOOL) gen skeleton -L $< > $@ + +$(OUTPUT)/%/iterators.bpf.o: iterators.bpf.c $(BPFOBJ) | $(OUTPUT) + $(call msg,BPF,$@) + $(Q)mkdir -p $(@D) + $(Q)$(CLANG) -g -O2 --target=bpf -m$* $(INCLUDES) \ + -c $(filter %.c,$^) -o $@ && \ + $(LLVM_STRIP) -g $@ + +$(OUTPUT) $(LIBBPF_OUTPUT) $(BPFTOOL_OUTPUT): + $(call msg,MKDIR,$@) + $(Q)mkdir -p $@ + +$(BPFOBJ): $(wildcard $(LIBBPF_SRC)/*.[ch] $(LIBBPF_SRC)/Makefile) | $(LIBBPF_OUTPUT) + $(Q)$(MAKE) $(submake_extras) -C $(LIBBPF_SRC) \ + OUTPUT=$(abspath $(dir $@))/ prefix= \ + DESTDIR=$(LIBBPF_DESTDIR) $(abspath $@) install_headers + +$(DEFAULT_BPFTOOL): | $(BPFTOOL_OUTPUT) + $(Q)$(MAKE) $(submake_extras) -C $(BPFTOOL_SRC) OUTPUT=$(BPFTOOL_OUTPUT)/ bootstrap diff --git a/kernel/bpf/preload/iterators/README b/kernel/bpf/preload/iterators/README new file mode 100644 index 000000000000..98e7c90ea012 --- /dev/null +++ b/kernel/bpf/preload/iterators/README @@ -0,0 +1,7 @@ +WARNING: +If you change "iterators.bpf.c" do "make -j" in this directory to +rebuild "iterators.lskel-little-endian.h". Then, on a big-endian +machine, do "make -j big" in this directory to rebuild +"iterators.lskel-big-endian.h". Commit both resulting headers. +Make sure to have clang 10 installed. +See Documentation/bpf/bpf_devel_QA.rst diff --git a/kernel/bpf/preload/iterators/iterators.bpf.c b/kernel/bpf/preload/iterators/iterators.bpf.c new file mode 100644 index 000000000000..b78968b63fab --- /dev/null +++ b/kernel/bpf/preload/iterators/iterators.bpf.c @@ -0,0 +1,118 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (c) 2020 Facebook */ +#include <linux/bpf.h> +#include <bpf/bpf_helpers.h> +#include <bpf/bpf_core_read.h> + +#pragma clang attribute push (__attribute__((preserve_access_index)), apply_to = record) +struct seq_file; +struct bpf_iter_meta { + struct seq_file *seq; + __u64 session_id; + __u64 seq_num; +}; + +struct bpf_map { + __u32 id; + char name[16]; + __u32 max_entries; +}; + +struct bpf_iter__bpf_map { + struct bpf_iter_meta *meta; + struct bpf_map *map; +}; + +struct btf_type { + __u32 name_off; +}; + +struct btf_header { + __u32 str_len; +}; + +struct btf { + const char *strings; + struct btf_type **types; + struct btf_header hdr; +}; + +struct bpf_prog_aux { + __u32 id; + char name[16]; + const char *attach_func_name; + struct bpf_prog *dst_prog; + struct bpf_func_info *func_info; + struct btf *btf; +}; + +struct bpf_prog { + struct bpf_prog_aux *aux; +}; + +struct bpf_iter__bpf_prog { + struct bpf_iter_meta *meta; + struct bpf_prog *prog; +}; +#pragma clang attribute pop + +static const char *get_name(struct btf *btf, long btf_id, const char *fallback) +{ + struct btf_type **types, *t; + unsigned int name_off; + const char *str; + + if (!btf) + return fallback; + str = btf->strings; + types = btf->types; + bpf_probe_read_kernel(&t, sizeof(t), types + btf_id); + name_off = BPF_CORE_READ(t, name_off); + if (name_off >= btf->hdr.str_len) + return fallback; + return str + name_off; +} + +__s64 bpf_map_sum_elem_count(struct bpf_map *map) __ksym; + +SEC("iter/bpf_map") +int dump_bpf_map(struct bpf_iter__bpf_map *ctx) +{ + struct seq_file *seq = ctx->meta->seq; + __u64 seq_num = ctx->meta->seq_num; + struct bpf_map *map = ctx->map; + + if (!map) + return 0; + + if (seq_num == 0) + BPF_SEQ_PRINTF(seq, " id name max_entries cur_entries\n"); + + BPF_SEQ_PRINTF(seq, "%4u %-16s %10d %10lld\n", + map->id, map->name, map->max_entries, + bpf_map_sum_elem_count(map)); + + return 0; +} + +SEC("iter/bpf_prog") +int dump_bpf_prog(struct bpf_iter__bpf_prog *ctx) +{ + struct seq_file *seq = ctx->meta->seq; + __u64 seq_num = ctx->meta->seq_num; + struct bpf_prog *prog = ctx->prog; + struct bpf_prog_aux *aux; + + if (!prog) + return 0; + + aux = prog->aux; + if (seq_num == 0) + BPF_SEQ_PRINTF(seq, " id name attached\n"); + + BPF_SEQ_PRINTF(seq, "%4u %-16s %s %s\n", aux->id, + get_name(aux->btf, aux->func_info[0].type_id, aux->name), + aux->attach_func_name, aux->dst_prog->aux->name); + return 0; +} +char LICENSE[] SEC("license") = "GPL"; diff --git a/kernel/bpf/preload/iterators/iterators.lskel-big-endian.h b/kernel/bpf/preload/iterators/iterators.lskel-big-endian.h new file mode 100644 index 000000000000..49b1d515a847 --- /dev/null +++ b/kernel/bpf/preload/iterators/iterators.lskel-big-endian.h @@ -0,0 +1,437 @@ +/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ +/* THIS FILE IS AUTOGENERATED BY BPFTOOL! */ +#ifndef __ITERATORS_BPF_SKEL_H__ +#define __ITERATORS_BPF_SKEL_H__ + +#include <bpf/skel_internal.h> + +struct iterators_bpf { + struct bpf_loader_ctx ctx; + struct { + struct bpf_map_desc rodata; + } maps; + struct { + struct bpf_prog_desc dump_bpf_map; + struct bpf_prog_desc dump_bpf_prog; + } progs; + struct { + int dump_bpf_map_fd; + int dump_bpf_prog_fd; + } links; +}; + +static inline int +iterators_bpf__dump_bpf_map__attach(struct iterators_bpf *skel) +{ + int prog_fd = skel->progs.dump_bpf_map.prog_fd; + int fd = skel_link_create(prog_fd, 0, BPF_TRACE_ITER); + + if (fd > 0) + skel->links.dump_bpf_map_fd = fd; + return fd; +} + +static inline int +iterators_bpf__dump_bpf_prog__attach(struct iterators_bpf *skel) +{ + int prog_fd = skel->progs.dump_bpf_prog.prog_fd; + int fd = skel_link_create(prog_fd, 0, BPF_TRACE_ITER); + + if (fd > 0) + skel->links.dump_bpf_prog_fd = fd; + return fd; +} + +static inline int +iterators_bpf__attach(struct iterators_bpf *skel) +{ + int ret = 0; + + ret = ret < 0 ? ret : iterators_bpf__dump_bpf_map__attach(skel); + ret = ret < 0 ? ret : iterators_bpf__dump_bpf_prog__attach(skel); + return ret < 0 ? ret : 0; +} + +static inline void +iterators_bpf__detach(struct iterators_bpf *skel) +{ + skel_closenz(skel->links.dump_bpf_map_fd); + skel_closenz(skel->links.dump_bpf_prog_fd); +} +static void +iterators_bpf__destroy(struct iterators_bpf *skel) +{ + if (!skel) + return; + iterators_bpf__detach(skel); + skel_closenz(skel->progs.dump_bpf_map.prog_fd); + skel_closenz(skel->progs.dump_bpf_prog.prog_fd); + skel_closenz(skel->maps.rodata.map_fd); + skel_free(skel); +} +static inline struct iterators_bpf * +iterators_bpf__open(void) +{ + struct iterators_bpf *skel; + + skel = skel_alloc(sizeof(*skel)); + if (!skel) + goto cleanup; + skel->ctx.sz = (void *)&skel->links - (void *)skel; + return skel; +cleanup: + iterators_bpf__destroy(skel); + return NULL; +} + +static inline int +iterators_bpf__load(struct iterators_bpf *skel) +{ + struct bpf_load_and_run_opts opts = {}; + int err; + static const char opts_data[] __attribute__((__aligned__(8))) = "\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\xeb\x9f\x01\0\ +\0\0\0\x18\0\0\0\0\0\0\x04\x80\0\0\x04\x80\0\0\x05\x44\0\0\0\0\x02\0\0\0\0\0\0\ +\x02\0\0\0\x01\x04\0\0\x02\0\0\0\x10\0\0\0\x13\0\0\0\x03\0\0\0\0\0\0\0\x18\0\0\ +\0\x04\0\0\0\x40\0\0\0\0\x02\0\0\0\0\0\0\x08\0\0\0\0\x02\0\0\0\0\0\0\x0d\0\0\0\ +\0\x0d\0\0\x01\0\0\0\x06\0\0\0\x1c\0\0\0\x01\0\0\0\x20\x01\0\0\0\0\0\0\x04\x01\ +\0\0\x20\0\0\0\x24\x0c\0\0\x01\0\0\0\x05\0\0\0\xc3\x04\0\0\x03\0\0\0\x18\0\0\0\ +\xd1\0\0\0\x09\0\0\0\0\0\0\0\xd5\0\0\0\x0b\0\0\0\x40\0\0\0\xe0\0\0\0\x0b\0\0\0\ +\x80\0\0\0\0\x02\0\0\0\0\0\0\x0a\0\0\0\xe8\x07\0\0\0\0\0\0\0\0\0\0\xf1\x08\0\0\ +\0\0\0\0\x0c\0\0\0\xf7\x01\0\0\0\0\0\0\x08\0\0\0\x40\0\0\x01\xc1\x04\0\0\x03\0\ +\0\0\x18\0\0\x01\xc9\0\0\0\x0e\0\0\0\0\0\0\x01\xcc\0\0\0\x11\0\0\0\x20\0\0\x01\ +\xd1\0\0\0\x0e\0\0\0\xa0\0\0\x01\xdd\x08\0\0\0\0\0\0\x0f\0\0\x01\xe3\x01\0\0\0\ +\0\0\0\x04\0\0\0\x20\0\0\x01\xf0\x01\0\0\0\0\0\0\x01\x01\0\0\x08\0\0\0\0\x03\0\ +\0\0\0\0\0\0\0\0\0\x10\0\0\0\x12\0\0\0\x10\0\0\x01\xf5\x01\0\0\0\0\0\0\x04\0\0\ +\0\x20\0\0\0\0\x0d\0\0\x01\0\0\0\x14\0\0\x05\x39\0\0\0\x04\0\0\x02\x3e\x08\0\0\ +\0\0\0\0\x15\0\0\x02\x44\x01\0\0\0\0\0\0\x08\x01\0\0\x40\0\0\x02\x4e\x0c\0\0\ +\x01\0\0\0\x13\0\0\0\0\x02\0\0\0\0\0\0\x18\0\0\x02\x65\x04\0\0\x02\0\0\0\x10\0\ +\0\0\x13\0\0\0\x03\0\0\0\0\0\0\x02\x78\0\0\0\x19\0\0\0\x40\0\0\0\0\x02\0\0\0\0\ +\0\0\x1c\0\0\0\0\x0d\0\0\x01\0\0\0\x06\0\0\0\x1c\0\0\0\x17\0\0\x02\x7d\x0c\0\0\ +\x01\0\0\0\x1a\0\0\x02\xc9\x04\0\0\x01\0\0\0\x08\0\0\x02\xd2\0\0\0\x1d\0\0\0\0\ +\0\0\0\0\x02\0\0\0\0\0\0\x1e\0\0\x03\x23\x04\0\0\x06\0\0\0\x38\0\0\x01\xc9\0\0\ +\0\x0e\0\0\0\0\0\0\x01\xcc\0\0\0\x11\0\0\0\x20\0\0\x03\x30\0\0\0\x1f\0\0\0\xc0\ +\0\0\x03\x41\0\0\0\x19\0\0\x01\0\0\0\x03\x4a\0\0\0\x21\0\0\x01\x40\0\0\x03\x54\ +\0\0\0\x22\0\0\x01\x80\0\0\0\0\x02\0\0\0\0\0\0\x20\0\0\0\0\x0a\0\0\0\0\0\0\x10\ +\0\0\0\0\x02\0\0\0\0\0\0\x23\0\0\0\0\x02\0\0\0\0\0\0\x24\0\0\x03\x9e\x04\0\0\ +\x02\0\0\0\x08\0\0\x03\xac\0\0\0\x0e\0\0\0\0\0\0\x03\xb5\0\0\0\x0e\0\0\0\x20\0\ +\0\x03\x54\x04\0\0\x03\0\0\0\x18\0\0\x03\xbf\0\0\0\x1f\0\0\0\0\0\0\x03\xc7\0\0\ +\0\x25\0\0\0\x40\0\0\x03\xcd\0\0\0\x27\0\0\0\x80\0\0\0\0\x02\0\0\0\0\0\0\x26\0\ +\0\0\0\x02\0\0\0\0\0\0\x28\0\0\x03\xd1\x04\0\0\x01\0\0\0\x04\0\0\x03\xdc\0\0\0\ +\x0e\0\0\0\0\0\0\x04\x45\x04\0\0\x01\0\0\0\x04\0\0\x04\x4e\0\0\0\x0e\0\0\0\0\0\ +\0\0\0\x03\0\0\0\0\0\0\0\0\0\0\x20\0\0\0\x12\0\0\0\x30\0\0\x04\xc4\x0e\0\0\0\0\ +\0\0\x29\0\0\0\0\0\0\0\0\x03\0\0\0\0\0\0\0\0\0\0\x20\0\0\0\x12\0\0\0\x1a\0\0\ +\x04\xd8\x0e\0\0\0\0\0\0\x2b\0\0\0\0\0\0\0\0\x03\0\0\0\0\0\0\0\0\0\0\x20\0\0\0\ +\x12\0\0\0\x20\0\0\x04\xee\x0e\0\0\0\0\0\0\x2d\0\0\0\0\0\0\0\0\x03\0\0\0\0\0\0\ +\0\0\0\0\x20\0\0\0\x12\0\0\0\x11\0\0\x05\x03\x0e\0\0\0\0\0\0\x2f\0\0\0\0\0\0\0\ +\0\x03\0\0\0\0\0\0\0\0\0\0\x10\0\0\0\x12\0\0\0\x04\0\0\x05\x1a\x0e\0\0\0\0\0\0\ +\x31\0\0\0\x01\0\0\x05\x22\x0f\0\0\x01\0\0\0\x04\0\0\0\x36\0\0\0\0\0\0\0\x04\0\ +\0\x05\x29\x0f\0\0\x04\0\0\0\x7b\0\0\0\x2a\0\0\0\0\0\0\0\x30\0\0\0\x2c\0\0\0\ +\x30\0\0\0\x1a\0\0\0\x2e\0\0\0\x4a\0\0\0\x20\0\0\0\x30\0\0\0\x6a\0\0\0\x11\0\0\ +\x05\x31\x0f\0\0\x01\0\0\0\x04\0\0\0\x32\0\0\0\0\0\0\0\x04\0\0\x05\x39\x0e\0\0\ +\0\0\0\0\x06\0\0\0\x01\0\x62\x70\x66\x5f\x69\x74\x65\x72\x5f\x5f\x62\x70\x66\ +\x5f\x6d\x61\x70\0\x6d\x65\x74\x61\0\x6d\x61\x70\0\x63\x74\x78\0\x69\x6e\x74\0\ +\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x6d\x61\x70\0\x69\x74\x65\x72\x2f\x62\x70\ +\x66\x5f\x6d\x61\x70\0\x30\x3a\x30\0\x2f\x68\x6f\x6d\x65\x32\x2f\x69\x69\x69\ +\x2f\x6c\x69\x6e\x75\x78\x2d\x6b\x65\x72\x6e\x65\x6c\x2d\x74\x6f\x6f\x6c\x63\ +\x68\x61\x69\x6e\x2f\x73\x72\x63\x2f\x6c\x69\x6e\x75\x78\x2f\x6b\x65\x72\x6e\ +\x65\x6c\x2f\x62\x70\x66\x2f\x70\x72\x65\x6c\x6f\x61\x64\x2f\x69\x74\x65\x72\ +\x61\x74\x6f\x72\x73\x2f\x69\x74\x65\x72\x61\x74\x6f\x72\x73\x2e\x62\x70\x66\ +\x2e\x63\0\x09\x73\x74\x72\x75\x63\x74\x20\x73\x65\x71\x5f\x66\x69\x6c\x65\x20\ +\x2a\x73\x65\x71\x20\x3d\x20\x63\x74\x78\x2d\x3e\x6d\x65\x74\x61\x2d\x3e\x73\ +\x65\x71\x3b\0\x62\x70\x66\x5f\x69\x74\x65\x72\x5f\x6d\x65\x74\x61\0\x73\x65\ +\x71\0\x73\x65\x73\x73\x69\x6f\x6e\x5f\x69\x64\0\x73\x65\x71\x5f\x6e\x75\x6d\0\ +\x73\x65\x71\x5f\x66\x69\x6c\x65\0\x5f\x5f\x75\x36\x34\0\x75\x6e\x73\x69\x67\ +\x6e\x65\x64\x20\x6c\x6f\x6e\x67\x20\x6c\x6f\x6e\x67\0\x30\x3a\x31\0\x09\x73\ +\x74\x72\x75\x63\x74\x20\x62\x70\x66\x5f\x6d\x61\x70\x20\x2a\x6d\x61\x70\x20\ +\x3d\x20\x63\x74\x78\x2d\x3e\x6d\x61\x70\x3b\0\x09\x69\x66\x20\x28\x21\x6d\x61\ +\x70\x29\0\x30\x3a\x32\0\x09\x5f\x5f\x75\x36\x34\x20\x73\x65\x71\x5f\x6e\x75\ +\x6d\x20\x3d\x20\x63\x74\x78\x2d\x3e\x6d\x65\x74\x61\x2d\x3e\x73\x65\x71\x5f\ +\x6e\x75\x6d\x3b\0\x09\x69\x66\x20\x28\x73\x65\x71\x5f\x6e\x75\x6d\x20\x3d\x3d\ +\x20\x30\x29\0\x09\x09\x42\x50\x46\x5f\x53\x45\x51\x5f\x50\x52\x49\x4e\x54\x46\ +\x28\x73\x65\x71\x2c\x20\x22\x20\x20\x69\x64\x20\x6e\x61\x6d\x65\x20\x20\x20\ +\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x6d\x61\x78\x5f\x65\x6e\x74\x72\x69\ +\x65\x73\x20\x20\x63\x75\x72\x5f\x65\x6e\x74\x72\x69\x65\x73\x5c\x6e\x22\x29\ +\x3b\0\x62\x70\x66\x5f\x6d\x61\x70\0\x69\x64\0\x6e\x61\x6d\x65\0\x6d\x61\x78\ +\x5f\x65\x6e\x74\x72\x69\x65\x73\0\x5f\x5f\x75\x33\x32\0\x75\x6e\x73\x69\x67\ +\x6e\x65\x64\x20\x69\x6e\x74\0\x63\x68\x61\x72\0\x5f\x5f\x41\x52\x52\x41\x59\ +\x5f\x53\x49\x5a\x45\x5f\x54\x59\x50\x45\x5f\x5f\0\x09\x42\x50\x46\x5f\x53\x45\ +\x51\x5f\x50\x52\x49\x4e\x54\x46\x28\x73\x65\x71\x2c\x20\x22\x25\x34\x75\x20\ +\x25\x2d\x31\x36\x73\x20\x20\x25\x31\x30\x64\x20\x20\x20\x25\x31\x30\x6c\x6c\ +\x64\x5c\x6e\x22\x2c\0\x7d\0\x5f\x5f\x73\x36\x34\0\x6c\x6f\x6e\x67\x20\x6c\x6f\ +\x6e\x67\0\x62\x70\x66\x5f\x6d\x61\x70\x5f\x73\x75\x6d\x5f\x65\x6c\x65\x6d\x5f\ +\x63\x6f\x75\x6e\x74\0\x62\x70\x66\x5f\x69\x74\x65\x72\x5f\x5f\x62\x70\x66\x5f\ +\x70\x72\x6f\x67\0\x70\x72\x6f\x67\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x70\ +\x72\x6f\x67\0\x69\x74\x65\x72\x2f\x62\x70\x66\x5f\x70\x72\x6f\x67\0\x09\x73\ +\x74\x72\x75\x63\x74\x20\x62\x70\x66\x5f\x70\x72\x6f\x67\x20\x2a\x70\x72\x6f\ +\x67\x20\x3d\x20\x63\x74\x78\x2d\x3e\x70\x72\x6f\x67\x3b\0\x09\x69\x66\x20\x28\ +\x21\x70\x72\x6f\x67\x29\0\x62\x70\x66\x5f\x70\x72\x6f\x67\0\x61\x75\x78\0\x09\ +\x61\x75\x78\x20\x3d\x20\x70\x72\x6f\x67\x2d\x3e\x61\x75\x78\x3b\0\x09\x09\x42\ +\x50\x46\x5f\x53\x45\x51\x5f\x50\x52\x49\x4e\x54\x46\x28\x73\x65\x71\x2c\x20\ +\x22\x20\x20\x69\x64\x20\x6e\x61\x6d\x65\x20\x20\x20\x20\x20\x20\x20\x20\x20\ +\x20\x20\x20\x20\x61\x74\x74\x61\x63\x68\x65\x64\x5c\x6e\x22\x29\x3b\0\x62\x70\ +\x66\x5f\x70\x72\x6f\x67\x5f\x61\x75\x78\0\x61\x74\x74\x61\x63\x68\x5f\x66\x75\ +\x6e\x63\x5f\x6e\x61\x6d\x65\0\x64\x73\x74\x5f\x70\x72\x6f\x67\0\x66\x75\x6e\ +\x63\x5f\x69\x6e\x66\x6f\0\x62\x74\x66\0\x09\x42\x50\x46\x5f\x53\x45\x51\x5f\ +\x50\x52\x49\x4e\x54\x46\x28\x73\x65\x71\x2c\x20\x22\x25\x34\x75\x20\x25\x2d\ +\x31\x36\x73\x20\x25\x73\x20\x25\x73\x5c\x6e\x22\x2c\x20\x61\x75\x78\x2d\x3e\ +\x69\x64\x2c\0\x30\x3a\x34\0\x30\x3a\x35\0\x09\x69\x66\x20\x28\x21\x62\x74\x66\ +\x29\0\x62\x70\x66\x5f\x66\x75\x6e\x63\x5f\x69\x6e\x66\x6f\0\x69\x6e\x73\x6e\ +\x5f\x6f\x66\x66\0\x74\x79\x70\x65\x5f\x69\x64\0\x30\0\x73\x74\x72\x69\x6e\x67\ +\x73\0\x74\x79\x70\x65\x73\0\x68\x64\x72\0\x62\x74\x66\x5f\x68\x65\x61\x64\x65\ +\x72\0\x73\x74\x72\x5f\x6c\x65\x6e\0\x09\x74\x79\x70\x65\x73\x20\x3d\x20\x62\ +\x74\x66\x2d\x3e\x74\x79\x70\x65\x73\x3b\0\x09\x62\x70\x66\x5f\x70\x72\x6f\x62\ +\x65\x5f\x72\x65\x61\x64\x5f\x6b\x65\x72\x6e\x65\x6c\x28\x26\x74\x2c\x20\x73\ +\x69\x7a\x65\x6f\x66\x28\x74\x29\x2c\x20\x74\x79\x70\x65\x73\x20\x2b\x20\x62\ +\x74\x66\x5f\x69\x64\x29\x3b\0\x09\x73\x74\x72\x20\x3d\x20\x62\x74\x66\x2d\x3e\ +\x73\x74\x72\x69\x6e\x67\x73\x3b\0\x62\x74\x66\x5f\x74\x79\x70\x65\0\x6e\x61\ +\x6d\x65\x5f\x6f\x66\x66\0\x09\x6e\x61\x6d\x65\x5f\x6f\x66\x66\x20\x3d\x20\x42\ +\x50\x46\x5f\x43\x4f\x52\x45\x5f\x52\x45\x41\x44\x28\x74\x2c\x20\x6e\x61\x6d\ +\x65\x5f\x6f\x66\x66\x29\x3b\0\x30\x3a\x32\x3a\x30\0\x09\x69\x66\x20\x28\x6e\ +\x61\x6d\x65\x5f\x6f\x66\x66\x20\x3e\x3d\x20\x62\x74\x66\x2d\x3e\x68\x64\x72\ +\x2e\x73\x74\x72\x5f\x6c\x65\x6e\x29\0\x09\x72\x65\x74\x75\x72\x6e\x20\x73\x74\ +\x72\x20\x2b\x20\x6e\x61\x6d\x65\x5f\x6f\x66\x66\x3b\0\x30\x3a\x33\0\x64\x75\ +\x6d\x70\x5f\x62\x70\x66\x5f\x6d\x61\x70\x2e\x5f\x5f\x5f\x66\x6d\x74\0\x64\x75\ +\x6d\x70\x5f\x62\x70\x66\x5f\x6d\x61\x70\x2e\x5f\x5f\x5f\x66\x6d\x74\x2e\x31\0\ +\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x70\x72\x6f\x67\x2e\x5f\x5f\x5f\x66\x6d\ +\x74\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x70\x72\x6f\x67\x2e\x5f\x5f\x5f\x66\ +\x6d\x74\x2e\x32\0\x4c\x49\x43\x45\x4e\x53\x45\0\x2e\x6b\x73\x79\x6d\x73\0\x2e\ +\x72\x6f\x64\x61\x74\x61\0\x6c\x69\x63\x65\x6e\x73\x65\0\x64\x75\x6d\x6d\x79\ +\x5f\x6b\x73\x79\x6d\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x09\xdc\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\x02\0\0\0\x04\0\0\0\x7b\0\0\0\x01\0\0\0\x80\0\0\0\0\ +\0\0\0\0\x69\x74\x65\x72\x61\x74\x6f\x72\x2e\x72\x6f\x64\x61\x74\x61\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\x34\0\0\0\0\0\0\0\0\0\0\0\0\x20\x20\x69\x64\x20\x6e\x61\ +\x6d\x65\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x6d\x61\x78\x5f\ +\x65\x6e\x74\x72\x69\x65\x73\x20\x20\x63\x75\x72\x5f\x65\x6e\x74\x72\x69\x65\ +\x73\x0a\0\x25\x34\x75\x20\x25\x2d\x31\x36\x73\x20\x20\x25\x31\x30\x64\x20\x20\ +\x20\x25\x31\x30\x6c\x6c\x64\x0a\0\x20\x20\x69\x64\x20\x6e\x61\x6d\x65\x20\x20\ +\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x61\x74\x74\x61\x63\x68\x65\x64\ +\x0a\0\x25\x34\x75\x20\x25\x2d\x31\x36\x73\x20\x25\x73\x20\x25\x73\x0a\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\x47\x50\x4c\0\0\0\0\0\x79\x21\0\0\0\0\0\0\x79\x62\0\0\0\ +\0\0\0\x79\x71\0\x08\0\0\0\0\x15\x70\0\x1d\0\0\0\0\x79\x12\0\x10\0\0\0\0\x55\ +\x10\0\x08\0\0\0\0\xbf\x4a\0\0\0\0\0\0\x07\x40\0\0\xff\xff\xff\xe0\xbf\x16\0\0\ +\0\0\0\0\x18\x26\0\0\0\0\0\0\0\0\0\0\0\0\0\0\xb4\x30\0\0\0\0\0\x30\xb4\x50\0\0\ +\0\0\0\0\x85\0\0\0\0\0\0\x7e\x61\x17\0\0\0\0\0\0\x7b\xa1\xff\xe0\0\0\0\0\xb7\ +\x10\0\0\0\0\0\x04\xbf\x27\0\0\0\0\0\0\x0f\x21\0\0\0\0\0\0\x7b\xa2\xff\xe8\0\0\ +\0\0\x61\x17\0\x14\0\0\0\0\x7b\xa1\xff\xf0\0\0\0\0\xbf\x17\0\0\0\0\0\0\x85\x02\ +\0\0\0\0\0\0\x7b\xa0\xff\xf8\0\0\0\0\xbf\x4a\0\0\0\0\0\0\x07\x40\0\0\xff\xff\ +\xff\xe0\xbf\x16\0\0\0\0\0\0\x18\x26\0\0\0\0\0\0\0\0\0\0\0\0\0\x30\xb4\x30\0\0\ +\0\0\0\x1a\xb4\x50\0\0\0\0\0\x20\x85\0\0\0\0\0\0\x7e\xb4\0\0\0\0\0\0\0\x95\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\x07\0\0\0\0\0\0\0\x42\0\0\0\x9b\0\x01\x44\x1e\0\0\0\ +\x01\0\0\0\x42\0\0\0\x9b\0\x01\x44\x24\0\0\0\x02\0\0\0\x42\0\0\x01\x0e\0\x01\ +\x4c\x1d\0\0\0\x03\0\0\0\x42\0\0\x01\x2f\0\x01\x54\x06\0\0\0\x04\0\0\0\x42\0\0\ +\x01\x3e\0\x01\x48\x1d\0\0\0\x05\0\0\0\x42\0\0\x01\x63\0\x01\x60\x0e\0\0\0\x08\ +\0\0\0\x42\0\0\x01\x76\0\x01\x64\x03\0\0\0\x0e\0\0\0\x42\0\0\x02\x09\0\x01\x6c\ +\x02\0\0\0\x21\0\0\0\x42\0\0\x02\x3c\0\x01\x80\x01\0\0\0\0\0\0\0\x02\0\0\0\x3e\ +\0\0\0\0\0\0\0\x08\0\0\0\x08\0\0\0\x3e\0\0\0\0\0\0\0\x10\0\0\0\x02\0\0\x01\x0a\ +\0\0\0\0\0\0\0\x20\0\0\0\x08\0\0\x01\x3a\0\0\0\0\0\0\0\x70\0\0\0\x0d\0\0\0\x3e\ +\0\0\0\0\0\0\0\x80\0\0\0\x0d\0\0\x01\x0a\0\0\0\0\0\0\0\xa0\0\0\0\x0d\0\0\x01\ +\x3a\0\0\0\0\0\0\0\x1a\0\0\0\x23\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x6d\x61\ +\x70\0\0\0\0\0\0\0\0\0\0\0\x1c\0\0\0\0\0\0\0\x08\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\ +\0\x10\0\0\0\0\0\0\0\0\0\0\0\x09\0\0\0\x01\0\0\0\0\0\0\0\x07\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\x10\0\0\0\0\x62\x70\x66\x5f\x69\x74\x65\x72\x5f\x62\x70\ +\x66\x5f\x6d\x61\x70\0\0\0\0\0\0\0\0\x62\x70\x66\x5f\x6d\x61\x70\x5f\x73\x75\ +\x6d\x5f\x65\x6c\x65\x6d\x5f\x63\x6f\x75\x6e\x74\0\0\x47\x50\x4c\0\0\0\0\0\x79\ +\x21\0\0\0\0\0\0\x79\x62\0\0\0\0\0\0\x79\x11\0\x08\0\0\0\0\x15\x10\0\x3b\0\0\0\ +\0\x79\x71\0\0\0\0\0\0\x79\x12\0\x10\0\0\0\0\x55\x10\0\x08\0\0\0\0\xbf\x4a\0\0\ +\0\0\0\0\x07\x40\0\0\xff\xff\xff\xd0\xbf\x16\0\0\0\0\0\0\x18\x26\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\x4a\xb4\x30\0\0\0\0\0\x20\xb4\x50\0\0\0\0\0\0\x85\0\0\0\0\0\0\x7e\ +\x7b\xa6\xff\xc8\0\0\0\0\x61\x17\0\0\0\0\0\0\x7b\xa1\xff\xd0\0\0\0\0\xb7\x30\0\ +\0\0\0\0\x04\xbf\x97\0\0\0\0\0\0\x0f\x93\0\0\0\0\0\0\x79\x17\0\x28\0\0\0\0\x79\ +\x87\0\x30\0\0\0\0\x15\x80\0\x18\0\0\0\0\xb7\x20\0\0\0\0\0\0\x0f\x12\0\0\0\0\0\ +\0\x61\x11\0\x04\0\0\0\0\x79\x38\0\x08\0\0\0\0\x67\x10\0\0\0\0\0\x03\x0f\x31\0\ +\0\0\0\0\0\x79\x68\0\0\0\0\0\0\xbf\x1a\0\0\0\0\0\0\x07\x10\0\0\xff\xff\xff\xf8\ +\xb4\x20\0\0\0\0\0\x08\x85\0\0\0\0\0\0\x71\xb7\x10\0\0\0\0\0\0\x79\x3a\xff\xf8\ +\0\0\0\0\x0f\x31\0\0\0\0\0\0\xbf\x1a\0\0\0\0\0\0\x07\x10\0\0\xff\xff\xff\xf4\ +\xb4\x20\0\0\0\0\0\x04\x85\0\0\0\0\0\0\x71\xb7\x30\0\0\0\0\0\x04\x61\x1a\xff\ +\xf4\0\0\0\0\x61\x28\0\x10\0\0\0\0\x3e\x12\0\x02\0\0\0\0\x0f\x61\0\0\0\0\0\0\ +\xbf\x96\0\0\0\0\0\0\x7b\xa9\xff\xd8\0\0\0\0\x79\x17\0\x18\0\0\0\0\x7b\xa1\xff\ +\xe0\0\0\0\0\x79\x17\0\x20\0\0\0\0\x79\x11\0\0\0\0\0\0\x0f\x13\0\0\0\0\0\0\x7b\ +\xa1\xff\xe8\0\0\0\0\xbf\x4a\0\0\0\0\0\0\x07\x40\0\0\xff\xff\xff\xd0\x79\x1a\ +\xff\xc8\0\0\0\0\x18\x26\0\0\0\0\0\0\0\0\0\0\0\0\0\x6a\xb4\x30\0\0\0\0\0\x11\ +\xb4\x50\0\0\0\0\0\x20\x85\0\0\0\0\0\0\x7e\xb4\0\0\0\0\0\0\0\x95\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\x1b\0\0\0\0\0\0\0\x42\0\0\0\x9b\0\x01\x94\x1e\0\0\0\x01\0\0\0\ +\x42\0\0\0\x9b\0\x01\x94\x24\0\0\0\x02\0\0\0\x42\0\0\x02\x99\0\x01\x9c\x1f\0\0\ +\0\x03\0\0\0\x42\0\0\x02\xbd\0\x01\xa8\x06\0\0\0\x04\0\0\0\x42\0\0\x02\xd6\0\ +\x01\xb4\x0e\0\0\0\x05\0\0\0\x42\0\0\x01\x3e\0\x01\x98\x1d\0\0\0\x06\0\0\0\x42\ +\0\0\x01\x63\0\x01\xb8\x0e\0\0\0\x09\0\0\0\x42\0\0\x02\xe8\0\x01\xbc\x03\0\0\0\ +\x10\0\0\0\x42\0\0\x03\x58\0\x01\xc4\x02\0\0\0\x17\0\0\0\x42\0\0\x03\x93\0\x01\ +\x04\x06\0\0\0\x1a\0\0\0\x42\0\0\x03\x58\0\x01\xc4\x02\0\0\0\x1b\0\0\0\x42\0\0\ +\x03\xe4\0\x01\x10\x0f\0\0\0\x1c\0\0\0\x42\0\0\x03\xf9\0\x01\x14\x2d\0\0\0\x1e\ +\0\0\0\x42\0\0\x04\x30\0\x01\x0c\x0d\0\0\0\x21\0\0\0\x42\0\0\x03\xf9\0\x01\x14\ +\x02\0\0\0\x24\0\0\0\x42\0\0\x04\x57\0\x01\x18\x0d\0\0\0\x2b\0\0\0\x42\0\0\x04\ +\x57\0\x01\x18\x0d\0\0\0\x2c\0\0\0\x42\0\0\x04\x85\0\x01\x1c\x1b\0\0\0\x2d\0\0\ +\0\x42\0\0\x04\x85\0\x01\x1c\x0f\0\0\0\x2e\0\0\0\x42\0\0\x04\xa8\0\x01\x24\x0d\ +\0\0\0\x30\0\0\0\x42\0\0\x03\x58\0\x01\xc4\x02\0\0\0\x3f\0\0\0\x42\0\0\x02\x3c\ +\0\x01\xd4\x01\0\0\0\0\0\0\0\x18\0\0\0\x3e\0\0\0\0\0\0\0\x08\0\0\0\x08\0\0\0\ +\x3e\0\0\0\0\0\0\0\x10\0\0\0\x18\0\0\x01\x0a\0\0\0\0\0\0\0\x20\0\0\0\x1c\0\0\0\ +\x3e\0\0\0\0\0\0\0\x28\0\0\0\x08\0\0\x01\x3a\0\0\0\0\0\0\0\x80\0\0\0\x1e\0\0\0\ +\x3e\0\0\0\0\0\0\0\x90\0\0\0\x1e\0\0\x01\x0a\0\0\0\0\0\0\0\xa8\0\0\0\x1e\0\0\ +\x03\x8b\0\0\0\0\0\0\0\xb0\0\0\0\x1e\0\0\x03\x8f\0\0\0\0\0\0\0\xc0\0\0\0\x23\0\ +\0\x03\xbd\0\0\0\0\0\0\0\xd8\0\0\0\x24\0\0\x01\x0a\0\0\0\0\0\0\0\xf0\0\0\0\x24\ +\0\0\0\x3e\0\0\0\0\0\0\x01\x18\0\0\0\x28\0\0\0\x3e\0\0\0\0\0\0\x01\x50\0\0\0\ +\x1e\0\0\x01\x0a\0\0\0\0\0\0\x01\x60\0\0\0\x24\0\0\x04\x7f\0\0\0\0\0\0\x01\x88\ +\0\0\0\x1e\0\0\x01\x3a\0\0\0\0\0\0\x01\x98\0\0\0\x1e\0\0\x04\xc0\0\0\0\0\0\0\ +\x01\xa0\0\0\0\x1c\0\0\0\x3e\0\0\0\0\0\0\0\x1a\0\0\0\x41\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x64\x75\x6d\x70\x5f\ +\x62\x70\x66\x5f\x70\x72\x6f\x67\0\0\0\0\0\0\0\0\0\0\x1c\0\0\0\0\0\0\0\x08\0\0\ +\0\0\0\0\0\0\0\0\0\x01\0\0\0\x10\0\0\0\0\0\0\0\0\0\0\0\x16\0\0\0\x01\0\0\0\0\0\ +\0\0\x12\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x10\0\0\0\0\x62\x70\x66\x5f\x69\ +\x74\x65\x72\x5f\x62\x70\x66\x5f\x70\x72\x6f\x67\0\0\0\0\0\0\0"; + static const char opts_insn[] __attribute__((__aligned__(8))) = "\ +\xbf\x61\0\0\0\0\0\0\xbf\x1a\0\0\0\0\0\0\x07\x10\0\0\xff\xff\xff\x78\xb7\x20\0\ +\0\0\0\0\x88\xb7\x30\0\0\0\0\0\0\x85\0\0\0\0\0\0\x71\x05\0\0\x14\0\0\0\0\x61\ +\x1a\xff\x78\0\0\0\0\xd5\x10\0\x01\0\0\0\0\x85\0\0\0\0\0\0\xa8\x61\x1a\xff\x7c\ +\0\0\0\0\xd5\x10\0\x01\0\0\0\0\x85\0\0\0\0\0\0\xa8\x61\x1a\xff\x80\0\0\0\0\xd5\ +\x10\0\x01\0\0\0\0\x85\0\0\0\0\0\0\xa8\x61\x1a\xff\x84\0\0\0\0\xd5\x10\0\x01\0\ +\0\0\0\x85\0\0\0\0\0\0\xa8\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x61\x10\0\0\0\0\ +\0\0\xd5\x10\0\x02\0\0\0\0\xbf\x91\0\0\0\0\0\0\x85\0\0\0\0\0\0\xa8\xbf\x07\0\0\ +\0\0\0\0\x95\0\0\0\0\0\0\0\x61\x06\0\x08\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\ +\0\x0e\xf8\x63\x10\0\0\0\0\0\0\x61\x06\0\x0c\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\ +\0\0\0\x0e\xf4\x63\x10\0\0\0\0\0\0\x79\x06\0\x10\0\0\0\0\x18\x16\0\0\0\0\0\0\0\ +\0\0\0\0\0\x0e\xe8\x7b\x10\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x05\0\ +\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x0e\xe0\x7b\x10\0\0\0\0\0\0\xb7\x10\0\0\0\0\0\ +\x12\x18\x26\0\0\0\0\0\0\0\0\0\0\0\0\x0e\xe0\xb7\x30\0\0\0\0\0\x1c\x85\0\0\0\0\ +\0\0\xa6\xbf\x70\0\0\0\0\0\0\xc5\x70\xff\xd4\0\0\0\0\x63\xa7\xff\x78\0\0\0\0\ +\x61\x0a\xff\x78\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x0f\x30\x63\x10\0\0\0\ +\0\0\0\x61\x06\0\x1c\0\0\0\0\x15\0\0\x03\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\ +\0\x0f\x0c\x63\x10\0\0\0\0\0\0\xb7\x10\0\0\0\0\0\0\x18\x26\0\0\0\0\0\0\0\0\0\0\ +\0\0\x0f\0\xb7\x30\0\0\0\0\0\x48\x85\0\0\0\0\0\0\xa6\xbf\x70\0\0\0\0\0\0\xc5\ +\x70\xff\xc3\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x63\x17\0\0\0\0\0\0\ +\x79\x36\0\x20\0\0\0\0\x15\x30\0\x08\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\ +\x0f\x48\xb7\x20\0\0\0\0\0\x7b\x61\x06\0\x04\0\0\0\0\x45\0\0\x02\0\0\0\x01\x85\ +\0\0\0\0\0\0\x94\x05\0\0\x01\0\0\0\0\x85\0\0\0\0\0\0\x71\x18\x26\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\x61\x02\0\0\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x0f\xd0\x63\ +\x10\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x0f\xc8\x18\x16\0\0\0\0\0\0\0\ +\0\0\0\0\0\x0f\xd8\x7b\x10\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x0f\x48\ +\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x0f\xe0\x7b\x10\0\0\0\0\0\0\xb7\x10\0\0\0\0\0\ +\x02\x18\x26\0\0\0\0\0\0\0\0\0\0\0\0\x0f\xd0\xb7\x30\0\0\0\0\0\x20\x85\0\0\0\0\ +\0\0\xa6\xbf\x70\0\0\0\0\0\0\xc5\x70\xff\x9f\0\0\0\0\x18\x26\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\x61\x02\0\0\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x0f\xf0\x63\x10\ +\0\0\0\0\0\0\xb7\x10\0\0\0\0\0\x16\x18\x26\0\0\0\0\0\0\0\0\0\0\0\0\x0f\xf0\xb7\ +\x30\0\0\0\0\0\x04\x85\0\0\0\0\0\0\xa6\xbf\x70\0\0\0\0\0\0\xc5\x70\xff\x92\0\0\ +\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x0f\xf8\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\ +\x12\x30\x7b\x10\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x10\0\x18\x16\0\0\ +\0\0\0\0\0\0\0\0\0\0\x12\x28\x7b\x10\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\ +\0\x11\x18\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x12\x70\x7b\x10\0\0\0\0\0\0\x18\x06\ +\0\0\0\0\0\0\0\0\0\0\0\0\x11\x20\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x12\x80\x7b\ +\x10\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x11\xb0\x18\x16\0\0\0\0\0\0\0\ +\0\0\0\0\0\x12\xa0\x7b\x10\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x18\ +\x16\0\0\0\0\0\0\0\0\0\0\0\0\x12\x98\x7b\x10\0\0\0\0\0\0\x61\x06\0\x08\0\0\0\0\ +\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x12\x38\x63\x10\0\0\0\0\0\0\x61\x06\0\x0c\0\0\ +\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x12\x3c\x63\x10\0\0\0\0\0\0\x79\x06\0\x10\ +\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x12\x40\x7b\x10\0\0\0\0\0\0\x61\x0a\ +\xff\x78\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x12\x68\x63\x10\0\0\0\0\0\0\ +\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x12\xb0\xb7\x20\0\0\0\0\0\x11\xb7\x30\0\0\0\0\ +\0\x0c\xb7\x40\0\0\0\0\0\0\x85\0\0\0\0\0\0\xa7\xbf\x70\0\0\0\0\0\0\xc5\x70\xff\ +\x5c\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x12\x20\x63\x07\0\x6c\0\0\0\0\x77\ +\x70\0\0\0\0\0\x20\x63\x07\0\x70\0\0\0\0\x18\x86\0\0\0\0\0\0\0\0\0\0\0\0\x10\ +\xb8\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x12\xc8\xb7\x20\0\0\0\0\0\x17\xb7\x30\0\0\ +\0\0\0\x0c\xb7\x40\0\0\0\0\0\0\x85\0\0\0\0\0\0\xa7\xbf\x70\0\0\0\0\0\0\xc5\x70\ +\xff\x4d\0\0\0\0\x75\x70\0\x03\0\0\0\0\x62\x80\0\x04\0\0\0\0\x6a\x80\0\x02\0\0\ +\0\0\x05\0\0\x0a\0\0\0\0\x63\x87\0\x04\0\0\0\0\xbf\x97\0\0\0\0\0\0\x77\x90\0\0\ +\0\0\0\x20\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x01\0\x63\x09\0\0\0\0\0\0\x55\x90\0\ +\x02\0\0\0\0\x6a\x80\0\x02\0\0\0\0\x05\0\0\x01\0\0\0\0\x6a\x80\0\x02\0\0\0\x40\ +\xb7\x10\0\0\0\0\0\x05\x18\x26\0\0\0\0\0\0\0\0\0\0\0\0\x12\x20\xb7\x30\0\0\0\0\ +\0\x8c\x85\0\0\0\0\0\0\xa6\xbf\x70\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\ +\x01\0\x61\x10\0\0\0\0\0\0\xd5\x10\0\x02\0\0\0\0\xbf\x91\0\0\0\0\0\0\x85\0\0\0\ +\0\0\0\xa8\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x12\x90\x61\x10\0\0\0\0\0\0\xd5\x10\ +\0\x02\0\0\0\0\xbf\x91\0\0\0\0\0\0\x85\0\0\0\0\0\0\xa8\xc5\x70\xff\x2c\0\0\0\0\ +\x63\xa7\xff\x80\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x12\xe0\x18\x16\0\0\0\ +\0\0\0\0\0\0\0\0\0\x17\x88\x7b\x10\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\ +\x12\xe8\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x17\x80\x7b\x10\0\0\0\0\0\0\x18\x06\0\ +\0\0\0\0\0\0\0\0\0\0\0\x14\xf0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x17\xc8\x7b\x10\ +\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x14\xf8\x18\x16\0\0\0\0\0\0\0\0\0\ +\0\0\0\x17\xd8\x7b\x10\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x16\x58\x18\ +\x16\0\0\0\0\0\0\0\0\0\0\0\0\x17\xf8\x7b\x10\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x17\xf0\x7b\x10\0\0\0\0\0\0\x61\ +\x06\0\x08\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x17\x90\x63\x10\0\0\0\0\0\0\ +\x61\x06\0\x0c\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x17\x94\x63\x10\0\0\0\0\ +\0\0\x79\x06\0\x10\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x17\x98\x7b\x10\0\0\ +\0\0\0\0\x61\x0a\xff\x78\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x17\xc0\x63\ +\x10\0\0\0\0\0\0\x18\x16\0\0\0\0\0\0\0\0\0\0\0\0\x18\x08\xb7\x20\0\0\0\0\0\x12\ +\xb7\x30\0\0\0\0\0\x0c\xb7\x40\0\0\0\0\0\0\x85\0\0\0\0\0\0\xa7\xbf\x70\0\0\0\0\ +\0\0\xc5\x70\xfe\xf5\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x17\x78\x63\x07\0\ +\x6c\0\0\0\0\x77\x70\0\0\0\0\0\x20\x63\x07\0\x70\0\0\0\0\xb7\x10\0\0\0\0\0\x05\ +\x18\x26\0\0\0\0\0\0\0\0\0\0\0\0\x17\x78\xb7\x30\0\0\0\0\0\x8c\x85\0\0\0\0\0\0\ +\xa6\xbf\x70\0\0\0\0\0\0\x18\x06\0\0\0\0\0\0\0\0\0\0\0\0\x17\xe8\x61\x10\0\0\0\ +\0\0\0\xd5\x10\0\x02\0\0\0\0\xbf\x91\0\0\0\0\0\0\x85\0\0\0\0\0\0\xa8\xc5\x70\ +\xfe\xe3\0\0\0\0\x63\xa7\xff\x84\0\0\0\0\x61\x1a\xff\x78\0\0\0\0\xd5\x10\0\x02\ +\0\0\0\0\xbf\x91\0\0\0\0\0\0\x85\0\0\0\0\0\0\xa8\x61\x0a\xff\x80\0\0\0\0\x63\ +\x60\0\x28\0\0\0\0\x61\x0a\xff\x84\0\0\0\0\x63\x60\0\x2c\0\0\0\0\x18\x16\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\x61\x01\0\0\0\0\0\0\x63\x60\0\x18\0\0\0\0\xb7\0\0\0\0\0\ +\0\0\x95\0\0\0\0\0\0\0"; + + opts.ctx = (struct bpf_loader_ctx *)skel; + opts.data_sz = sizeof(opts_data) - 1; + opts.data = (void *)opts_data; + opts.insns_sz = sizeof(opts_insn) - 1; + opts.insns = (void *)opts_insn; + + err = bpf_load_and_run(&opts); + if (err < 0) + return err; + return 0; +} + +static inline struct iterators_bpf * +iterators_bpf__open_and_load(void) +{ + struct iterators_bpf *skel; + + skel = iterators_bpf__open(); + if (!skel) + return NULL; + if (iterators_bpf__load(skel)) { + iterators_bpf__destroy(skel); + return NULL; + } + return skel; +} + +__attribute__((unused)) static void +iterators_bpf__assert(struct iterators_bpf *s __attribute__((unused))) +{ +#ifdef __cplusplus +#define _Static_assert static_assert +#endif +#ifdef __cplusplus +#undef _Static_assert +#endif +} + +#endif /* __ITERATORS_BPF_SKEL_H__ */ diff --git a/kernel/bpf/preload/iterators/iterators.lskel-little-endian.h b/kernel/bpf/preload/iterators/iterators.lskel-little-endian.h new file mode 100644 index 000000000000..5b98ab02025e --- /dev/null +++ b/kernel/bpf/preload/iterators/iterators.lskel-little-endian.h @@ -0,0 +1,435 @@ +/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ +/* THIS FILE IS AUTOGENERATED BY BPFTOOL! */ +#ifndef __ITERATORS_BPF_SKEL_H__ +#define __ITERATORS_BPF_SKEL_H__ + +#include <bpf/skel_internal.h> + +struct iterators_bpf { + struct bpf_loader_ctx ctx; + struct { + struct bpf_map_desc rodata; + } maps; + struct { + struct bpf_prog_desc dump_bpf_map; + struct bpf_prog_desc dump_bpf_prog; + } progs; + struct { + int dump_bpf_map_fd; + int dump_bpf_prog_fd; + } links; +}; + +static inline int +iterators_bpf__dump_bpf_map__attach(struct iterators_bpf *skel) +{ + int prog_fd = skel->progs.dump_bpf_map.prog_fd; + int fd = skel_link_create(prog_fd, 0, BPF_TRACE_ITER); + + if (fd > 0) + skel->links.dump_bpf_map_fd = fd; + return fd; +} + +static inline int +iterators_bpf__dump_bpf_prog__attach(struct iterators_bpf *skel) +{ + int prog_fd = skel->progs.dump_bpf_prog.prog_fd; + int fd = skel_link_create(prog_fd, 0, BPF_TRACE_ITER); + + if (fd > 0) + skel->links.dump_bpf_prog_fd = fd; + return fd; +} + +static inline int +iterators_bpf__attach(struct iterators_bpf *skel) +{ + int ret = 0; + + ret = ret < 0 ? ret : iterators_bpf__dump_bpf_map__attach(skel); + ret = ret < 0 ? ret : iterators_bpf__dump_bpf_prog__attach(skel); + return ret < 0 ? ret : 0; +} + +static inline void +iterators_bpf__detach(struct iterators_bpf *skel) +{ + skel_closenz(skel->links.dump_bpf_map_fd); + skel_closenz(skel->links.dump_bpf_prog_fd); +} +static void +iterators_bpf__destroy(struct iterators_bpf *skel) +{ + if (!skel) + return; + iterators_bpf__detach(skel); + skel_closenz(skel->progs.dump_bpf_map.prog_fd); + skel_closenz(skel->progs.dump_bpf_prog.prog_fd); + skel_closenz(skel->maps.rodata.map_fd); + skel_free(skel); +} +static inline struct iterators_bpf * +iterators_bpf__open(void) +{ + struct iterators_bpf *skel; + + skel = skel_alloc(sizeof(*skel)); + if (!skel) + goto cleanup; + skel->ctx.sz = (void *)&skel->links - (void *)skel; + return skel; +cleanup: + iterators_bpf__destroy(skel); + return NULL; +} + +static inline int +iterators_bpf__load(struct iterators_bpf *skel) +{ + struct bpf_load_and_run_opts opts = {}; + int err; + + opts.ctx = (struct bpf_loader_ctx *)skel; + opts.data_sz = 6208; + opts.data = (void *)"\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x9f\xeb\x01\0\ +\x18\0\0\0\0\0\0\0\x80\x04\0\0\x80\x04\0\0\x31\x05\0\0\0\0\0\0\0\0\0\x02\x02\0\ +\0\0\x01\0\0\0\x02\0\0\x04\x10\0\0\0\x13\0\0\0\x03\0\0\0\0\0\0\0\x18\0\0\0\x04\ +\0\0\0\x40\0\0\0\0\0\0\0\0\0\0\x02\x08\0\0\0\0\0\0\0\0\0\0\x02\x0d\0\0\0\0\0\0\ +\0\x01\0\0\x0d\x06\0\0\0\x1c\0\0\0\x01\0\0\0\x20\0\0\0\0\0\0\x01\x04\0\0\0\x20\ +\0\0\x01\x24\0\0\0\x01\0\0\x0c\x05\0\0\0\xb0\0\0\0\x03\0\0\x04\x18\0\0\0\xbe\0\ +\0\0\x09\0\0\0\0\0\0\0\xc2\0\0\0\x0b\0\0\0\x40\0\0\0\xcd\0\0\0\x0b\0\0\0\x80\0\ +\0\0\0\0\0\0\0\0\0\x02\x0a\0\0\0\xd5\0\0\0\0\0\0\x07\0\0\0\0\xde\0\0\0\0\0\0\ +\x08\x0c\0\0\0\xe4\0\0\0\0\0\0\x01\x08\0\0\0\x40\0\0\0\xae\x01\0\0\x03\0\0\x04\ +\x18\0\0\0\xb6\x01\0\0\x0e\0\0\0\0\0\0\0\xb9\x01\0\0\x11\0\0\0\x20\0\0\0\xbe\ +\x01\0\0\x0e\0\0\0\xa0\0\0\0\xca\x01\0\0\0\0\0\x08\x0f\0\0\0\xd0\x01\0\0\0\0\0\ +\x01\x04\0\0\0\x20\0\0\0\xdd\x01\0\0\0\0\0\x01\x01\0\0\0\x08\0\0\x01\0\0\0\0\0\ +\0\0\x03\0\0\0\0\x10\0\0\0\x12\0\0\0\x10\0\0\0\xe2\x01\0\0\0\0\0\x01\x04\0\0\0\ +\x20\0\0\0\0\0\0\0\x01\0\0\x0d\x14\0\0\0\x26\x05\0\0\x04\0\0\0\x2b\x02\0\0\0\0\ +\0\x08\x15\0\0\0\x31\x02\0\0\0\0\0\x01\x08\0\0\0\x40\0\0\x01\x3b\x02\0\0\x01\0\ +\0\x0c\x13\0\0\0\0\0\0\0\0\0\0\x02\x18\0\0\0\x52\x02\0\0\x02\0\0\x04\x10\0\0\0\ +\x13\0\0\0\x03\0\0\0\0\0\0\0\x65\x02\0\0\x19\0\0\0\x40\0\0\0\0\0\0\0\0\0\0\x02\ +\x1c\0\0\0\0\0\0\0\x01\0\0\x0d\x06\0\0\0\x1c\0\0\0\x17\0\0\0\x6a\x02\0\0\x01\0\ +\0\x0c\x1a\0\0\0\xb6\x02\0\0\x01\0\0\x04\x08\0\0\0\xbf\x02\0\0\x1d\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\x02\x1e\0\0\0\x10\x03\0\0\x06\0\0\x04\x38\0\0\0\xb6\x01\0\0\ +\x0e\0\0\0\0\0\0\0\xb9\x01\0\0\x11\0\0\0\x20\0\0\0\x1d\x03\0\0\x1f\0\0\0\xc0\0\ +\0\0\x2e\x03\0\0\x19\0\0\0\0\x01\0\0\x37\x03\0\0\x21\0\0\0\x40\x01\0\0\x41\x03\ +\0\0\x22\0\0\0\x80\x01\0\0\0\0\0\0\0\0\0\x02\x20\0\0\0\0\0\0\0\0\0\0\x0a\x10\0\ +\0\0\0\0\0\0\0\0\0\x02\x23\0\0\0\0\0\0\0\0\0\0\x02\x24\0\0\0\x8b\x03\0\0\x02\0\ +\0\x04\x08\0\0\0\x99\x03\0\0\x0e\0\0\0\0\0\0\0\xa2\x03\0\0\x0e\0\0\0\x20\0\0\0\ +\x41\x03\0\0\x03\0\0\x04\x18\0\0\0\xac\x03\0\0\x1f\0\0\0\0\0\0\0\xb4\x03\0\0\ +\x25\0\0\0\x40\0\0\0\xba\x03\0\0\x27\0\0\0\x80\0\0\0\0\0\0\0\0\0\0\x02\x26\0\0\ +\0\0\0\0\0\0\0\0\x02\x28\0\0\0\xbe\x03\0\0\x01\0\0\x04\x04\0\0\0\xc9\x03\0\0\ +\x0e\0\0\0\0\0\0\0\x32\x04\0\0\x01\0\0\x04\x04\0\0\0\x3b\x04\0\0\x0e\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\x03\0\0\0\0\x20\0\0\0\x12\0\0\0\x30\0\0\0\xb1\x04\0\0\0\0\0\ +\x0e\x29\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x03\0\0\0\0\x20\0\0\0\x12\0\0\0\x1a\0\0\0\ +\xc5\x04\0\0\0\0\0\x0e\x2b\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x03\0\0\0\0\x20\0\0\0\ +\x12\0\0\0\x20\0\0\0\xdb\x04\0\0\0\0\0\x0e\x2d\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x03\ +\0\0\0\0\x20\0\0\0\x12\0\0\0\x11\0\0\0\xf0\x04\0\0\0\0\0\x0e\x2f\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\x03\0\0\0\0\x10\0\0\0\x12\0\0\0\x04\0\0\0\x07\x05\0\0\0\0\0\x0e\ +\x31\0\0\0\x01\0\0\0\x0f\x05\0\0\x01\0\0\x0f\x04\0\0\0\x36\0\0\0\0\0\0\0\x04\0\ +\0\0\x16\x05\0\0\x04\0\0\x0f\x7b\0\0\0\x2a\0\0\0\0\0\0\0\x30\0\0\0\x2c\0\0\0\ +\x30\0\0\0\x1a\0\0\0\x2e\0\0\0\x4a\0\0\0\x20\0\0\0\x30\0\0\0\x6a\0\0\0\x11\0\0\ +\0\x1e\x05\0\0\x01\0\0\x0f\x04\0\0\0\x32\0\0\0\0\0\0\0\x04\0\0\0\x26\x05\0\0\0\ +\0\0\x0e\x06\0\0\0\x01\0\0\0\0\x62\x70\x66\x5f\x69\x74\x65\x72\x5f\x5f\x62\x70\ +\x66\x5f\x6d\x61\x70\0\x6d\x65\x74\x61\0\x6d\x61\x70\0\x63\x74\x78\0\x69\x6e\ +\x74\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x6d\x61\x70\0\x69\x74\x65\x72\x2f\ +\x62\x70\x66\x5f\x6d\x61\x70\0\x30\x3a\x30\0\x2f\x68\x6f\x6d\x65\x2f\x61\x73\ +\x70\x73\x6b\x2f\x73\x72\x63\x2f\x62\x70\x66\x2d\x6e\x65\x78\x74\x2f\x6b\x65\ +\x72\x6e\x65\x6c\x2f\x62\x70\x66\x2f\x70\x72\x65\x6c\x6f\x61\x64\x2f\x69\x74\ +\x65\x72\x61\x74\x6f\x72\x73\x2f\x69\x74\x65\x72\x61\x74\x6f\x72\x73\x2e\x62\ +\x70\x66\x2e\x63\0\x09\x73\x74\x72\x75\x63\x74\x20\x73\x65\x71\x5f\x66\x69\x6c\ +\x65\x20\x2a\x73\x65\x71\x20\x3d\x20\x63\x74\x78\x2d\x3e\x6d\x65\x74\x61\x2d\ +\x3e\x73\x65\x71\x3b\0\x62\x70\x66\x5f\x69\x74\x65\x72\x5f\x6d\x65\x74\x61\0\ +\x73\x65\x71\0\x73\x65\x73\x73\x69\x6f\x6e\x5f\x69\x64\0\x73\x65\x71\x5f\x6e\ +\x75\x6d\0\x73\x65\x71\x5f\x66\x69\x6c\x65\0\x5f\x5f\x75\x36\x34\0\x75\x6e\x73\ +\x69\x67\x6e\x65\x64\x20\x6c\x6f\x6e\x67\x20\x6c\x6f\x6e\x67\0\x30\x3a\x31\0\ +\x09\x73\x74\x72\x75\x63\x74\x20\x62\x70\x66\x5f\x6d\x61\x70\x20\x2a\x6d\x61\ +\x70\x20\x3d\x20\x63\x74\x78\x2d\x3e\x6d\x61\x70\x3b\0\x09\x69\x66\x20\x28\x21\ +\x6d\x61\x70\x29\0\x30\x3a\x32\0\x09\x5f\x5f\x75\x36\x34\x20\x73\x65\x71\x5f\ +\x6e\x75\x6d\x20\x3d\x20\x63\x74\x78\x2d\x3e\x6d\x65\x74\x61\x2d\x3e\x73\x65\ +\x71\x5f\x6e\x75\x6d\x3b\0\x09\x69\x66\x20\x28\x73\x65\x71\x5f\x6e\x75\x6d\x20\ +\x3d\x3d\x20\x30\x29\0\x09\x09\x42\x50\x46\x5f\x53\x45\x51\x5f\x50\x52\x49\x4e\ +\x54\x46\x28\x73\x65\x71\x2c\x20\x22\x20\x20\x69\x64\x20\x6e\x61\x6d\x65\x20\ +\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x6d\x61\x78\x5f\x65\x6e\x74\ +\x72\x69\x65\x73\x20\x20\x63\x75\x72\x5f\x65\x6e\x74\x72\x69\x65\x73\x5c\x6e\ +\x22\x29\x3b\0\x62\x70\x66\x5f\x6d\x61\x70\0\x69\x64\0\x6e\x61\x6d\x65\0\x6d\ +\x61\x78\x5f\x65\x6e\x74\x72\x69\x65\x73\0\x5f\x5f\x75\x33\x32\0\x75\x6e\x73\ +\x69\x67\x6e\x65\x64\x20\x69\x6e\x74\0\x63\x68\x61\x72\0\x5f\x5f\x41\x52\x52\ +\x41\x59\x5f\x53\x49\x5a\x45\x5f\x54\x59\x50\x45\x5f\x5f\0\x09\x42\x50\x46\x5f\ +\x53\x45\x51\x5f\x50\x52\x49\x4e\x54\x46\x28\x73\x65\x71\x2c\x20\x22\x25\x34\ +\x75\x20\x25\x2d\x31\x36\x73\x20\x20\x25\x31\x30\x64\x20\x20\x20\x25\x31\x30\ +\x6c\x6c\x64\x5c\x6e\x22\x2c\0\x7d\0\x5f\x5f\x73\x36\x34\0\x6c\x6f\x6e\x67\x20\ +\x6c\x6f\x6e\x67\0\x62\x70\x66\x5f\x6d\x61\x70\x5f\x73\x75\x6d\x5f\x65\x6c\x65\ +\x6d\x5f\x63\x6f\x75\x6e\x74\0\x62\x70\x66\x5f\x69\x74\x65\x72\x5f\x5f\x62\x70\ +\x66\x5f\x70\x72\x6f\x67\0\x70\x72\x6f\x67\0\x64\x75\x6d\x70\x5f\x62\x70\x66\ +\x5f\x70\x72\x6f\x67\0\x69\x74\x65\x72\x2f\x62\x70\x66\x5f\x70\x72\x6f\x67\0\ +\x09\x73\x74\x72\x75\x63\x74\x20\x62\x70\x66\x5f\x70\x72\x6f\x67\x20\x2a\x70\ +\x72\x6f\x67\x20\x3d\x20\x63\x74\x78\x2d\x3e\x70\x72\x6f\x67\x3b\0\x09\x69\x66\ +\x20\x28\x21\x70\x72\x6f\x67\x29\0\x62\x70\x66\x5f\x70\x72\x6f\x67\0\x61\x75\ +\x78\0\x09\x61\x75\x78\x20\x3d\x20\x70\x72\x6f\x67\x2d\x3e\x61\x75\x78\x3b\0\ +\x09\x09\x42\x50\x46\x5f\x53\x45\x51\x5f\x50\x52\x49\x4e\x54\x46\x28\x73\x65\ +\x71\x2c\x20\x22\x20\x20\x69\x64\x20\x6e\x61\x6d\x65\x20\x20\x20\x20\x20\x20\ +\x20\x20\x20\x20\x20\x20\x20\x61\x74\x74\x61\x63\x68\x65\x64\x5c\x6e\x22\x29\ +\x3b\0\x62\x70\x66\x5f\x70\x72\x6f\x67\x5f\x61\x75\x78\0\x61\x74\x74\x61\x63\ +\x68\x5f\x66\x75\x6e\x63\x5f\x6e\x61\x6d\x65\0\x64\x73\x74\x5f\x70\x72\x6f\x67\ +\0\x66\x75\x6e\x63\x5f\x69\x6e\x66\x6f\0\x62\x74\x66\0\x09\x42\x50\x46\x5f\x53\ +\x45\x51\x5f\x50\x52\x49\x4e\x54\x46\x28\x73\x65\x71\x2c\x20\x22\x25\x34\x75\ +\x20\x25\x2d\x31\x36\x73\x20\x25\x73\x20\x25\x73\x5c\x6e\x22\x2c\x20\x61\x75\ +\x78\x2d\x3e\x69\x64\x2c\0\x30\x3a\x34\0\x30\x3a\x35\0\x09\x69\x66\x20\x28\x21\ +\x62\x74\x66\x29\0\x62\x70\x66\x5f\x66\x75\x6e\x63\x5f\x69\x6e\x66\x6f\0\x69\ +\x6e\x73\x6e\x5f\x6f\x66\x66\0\x74\x79\x70\x65\x5f\x69\x64\0\x30\0\x73\x74\x72\ +\x69\x6e\x67\x73\0\x74\x79\x70\x65\x73\0\x68\x64\x72\0\x62\x74\x66\x5f\x68\x65\ +\x61\x64\x65\x72\0\x73\x74\x72\x5f\x6c\x65\x6e\0\x09\x74\x79\x70\x65\x73\x20\ +\x3d\x20\x62\x74\x66\x2d\x3e\x74\x79\x70\x65\x73\x3b\0\x09\x62\x70\x66\x5f\x70\ +\x72\x6f\x62\x65\x5f\x72\x65\x61\x64\x5f\x6b\x65\x72\x6e\x65\x6c\x28\x26\x74\ +\x2c\x20\x73\x69\x7a\x65\x6f\x66\x28\x74\x29\x2c\x20\x74\x79\x70\x65\x73\x20\ +\x2b\x20\x62\x74\x66\x5f\x69\x64\x29\x3b\0\x09\x73\x74\x72\x20\x3d\x20\x62\x74\ +\x66\x2d\x3e\x73\x74\x72\x69\x6e\x67\x73\x3b\0\x62\x74\x66\x5f\x74\x79\x70\x65\ +\0\x6e\x61\x6d\x65\x5f\x6f\x66\x66\0\x09\x6e\x61\x6d\x65\x5f\x6f\x66\x66\x20\ +\x3d\x20\x42\x50\x46\x5f\x43\x4f\x52\x45\x5f\x52\x45\x41\x44\x28\x74\x2c\x20\ +\x6e\x61\x6d\x65\x5f\x6f\x66\x66\x29\x3b\0\x30\x3a\x32\x3a\x30\0\x09\x69\x66\ +\x20\x28\x6e\x61\x6d\x65\x5f\x6f\x66\x66\x20\x3e\x3d\x20\x62\x74\x66\x2d\x3e\ +\x68\x64\x72\x2e\x73\x74\x72\x5f\x6c\x65\x6e\x29\0\x09\x72\x65\x74\x75\x72\x6e\ +\x20\x73\x74\x72\x20\x2b\x20\x6e\x61\x6d\x65\x5f\x6f\x66\x66\x3b\0\x30\x3a\x33\ +\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x6d\x61\x70\x2e\x5f\x5f\x5f\x66\x6d\x74\ +\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x6d\x61\x70\x2e\x5f\x5f\x5f\x66\x6d\x74\ +\x2e\x31\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x70\x72\x6f\x67\x2e\x5f\x5f\x5f\ +\x66\x6d\x74\0\x64\x75\x6d\x70\x5f\x62\x70\x66\x5f\x70\x72\x6f\x67\x2e\x5f\x5f\ +\x5f\x66\x6d\x74\x2e\x32\0\x4c\x49\x43\x45\x4e\x53\x45\0\x2e\x6b\x73\x79\x6d\ +\x73\0\x2e\x72\x6f\x64\x61\x74\x61\0\x6c\x69\x63\x65\x6e\x73\x65\0\x64\x75\x6d\ +\x6d\x79\x5f\x6b\x73\x79\x6d\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\xc9\x09\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x02\0\0\0\x04\0\0\0\x7b\0\0\0\x01\0\0\0\ +\x80\0\0\0\0\0\0\0\0\0\0\0\x69\x74\x65\x72\x61\x74\x6f\x72\x2e\x72\x6f\x64\x61\ +\x74\x61\0\0\0\0\0\0\0\0\0\0\0\0\0\x34\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x20\x20\ +\x69\x64\x20\x6e\x61\x6d\x65\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\ +\x20\x6d\x61\x78\x5f\x65\x6e\x74\x72\x69\x65\x73\x20\x20\x63\x75\x72\x5f\x65\ +\x6e\x74\x72\x69\x65\x73\x0a\0\x25\x34\x75\x20\x25\x2d\x31\x36\x73\x20\x20\x25\ +\x31\x30\x64\x20\x20\x20\x25\x31\x30\x6c\x6c\x64\x0a\0\x20\x20\x69\x64\x20\x6e\ +\x61\x6d\x65\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x61\x74\x74\ +\x61\x63\x68\x65\x64\x0a\0\x25\x34\x75\x20\x25\x2d\x31\x36\x73\x20\x25\x73\x20\ +\x25\x73\x0a\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x47\x50\x4c\0\0\0\0\0\x79\x12\0\0\0\ +\0\0\0\x79\x26\0\0\0\0\0\0\x79\x17\x08\0\0\0\0\0\x15\x07\x1d\0\0\0\0\0\x79\x21\ +\x10\0\0\0\0\0\x55\x01\x08\0\0\0\0\0\xbf\xa4\0\0\0\0\0\0\x07\x04\0\0\xe0\xff\ +\xff\xff\xbf\x61\0\0\0\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\0\0\0\0\xb7\x03\0\0\ +\x30\0\0\0\xb7\x05\0\0\0\0\0\0\x85\0\0\0\x7e\0\0\0\x61\x71\0\0\0\0\0\0\x7b\x1a\ +\xe0\xff\0\0\0\0\xb7\x01\0\0\x04\0\0\0\xbf\x72\0\0\0\0\0\0\x0f\x12\0\0\0\0\0\0\ +\x7b\x2a\xe8\xff\0\0\0\0\x61\x71\x14\0\0\0\0\0\x7b\x1a\xf0\xff\0\0\0\0\xbf\x71\ +\0\0\0\0\0\0\x85\x20\0\0\0\0\0\0\x7b\x0a\xf8\xff\0\0\0\0\xbf\xa4\0\0\0\0\0\0\ +\x07\x04\0\0\xe0\xff\xff\xff\xbf\x61\0\0\0\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\ +\x30\0\0\0\xb7\x03\0\0\x1a\0\0\0\xb7\x05\0\0\x20\0\0\0\x85\0\0\0\x7e\0\0\0\xb7\ +\0\0\0\0\0\0\0\x95\0\0\0\0\0\0\0\0\0\0\0\x07\0\0\0\0\0\0\0\x42\0\0\0\x88\0\0\0\ +\x1e\x44\x01\0\x01\0\0\0\x42\0\0\0\x88\0\0\0\x24\x44\x01\0\x02\0\0\0\x42\0\0\0\ +\xfb\0\0\0\x1d\x4c\x01\0\x03\0\0\0\x42\0\0\0\x1c\x01\0\0\x06\x54\x01\0\x04\0\0\ +\0\x42\0\0\0\x2b\x01\0\0\x1d\x48\x01\0\x05\0\0\0\x42\0\0\0\x50\x01\0\0\x06\x60\ +\x01\0\x07\0\0\0\x42\0\0\0\x63\x01\0\0\x03\x64\x01\0\x0e\0\0\0\x42\0\0\0\xf6\ +\x01\0\0\x02\x6c\x01\0\x21\0\0\0\x42\0\0\0\x29\x02\0\0\x01\x80\x01\0\0\0\0\0\ +\x02\0\0\0\x3e\0\0\0\0\0\0\0\x08\0\0\0\x08\0\0\0\x3e\0\0\0\0\0\0\0\x10\0\0\0\ +\x02\0\0\0\xf7\0\0\0\0\0\0\0\x20\0\0\0\x08\0\0\0\x27\x01\0\0\0\0\0\0\x70\0\0\0\ +\x0d\0\0\0\x3e\0\0\0\0\0\0\0\x80\0\0\0\x0d\0\0\0\xf7\0\0\0\0\0\0\0\xa0\0\0\0\ +\x0d\0\0\0\x27\x01\0\0\0\0\0\0\x1a\0\0\0\x23\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x64\x75\x6d\x70\x5f\x62\ +\x70\x66\x5f\x6d\x61\x70\0\0\0\0\0\0\0\0\x1c\0\0\0\0\0\0\0\x08\0\0\0\0\0\0\0\0\ +\0\0\0\x01\0\0\0\x10\0\0\0\0\0\0\0\0\0\0\0\x09\0\0\0\x01\0\0\0\0\0\0\0\x07\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x10\0\0\0\0\0\0\0\x62\x70\x66\x5f\x69\x74\ +\x65\x72\x5f\x62\x70\x66\x5f\x6d\x61\x70\0\0\0\0\0\0\0\0\x62\x70\x66\x5f\x6d\ +\x61\x70\x5f\x73\x75\x6d\x5f\x65\x6c\x65\x6d\x5f\x63\x6f\x75\x6e\x74\0\0\x47\ +\x50\x4c\0\0\0\0\0\x79\x12\0\0\0\0\0\0\x79\x26\0\0\0\0\0\0\x79\x11\x08\0\0\0\0\ +\0\x15\x01\x3b\0\0\0\0\0\x79\x17\0\0\0\0\0\0\x79\x21\x10\0\0\0\0\0\x55\x01\x08\ +\0\0\0\0\0\xbf\xa4\0\0\0\0\0\0\x07\x04\0\0\xd0\xff\xff\xff\xbf\x61\0\0\0\0\0\0\ +\x18\x62\0\0\0\0\0\0\0\0\0\0\x4a\0\0\0\xb7\x03\0\0\x20\0\0\0\xb7\x05\0\0\0\0\0\ +\0\x85\0\0\0\x7e\0\0\0\x7b\x6a\xc8\xff\0\0\0\0\x61\x71\0\0\0\0\0\0\x7b\x1a\xd0\ +\xff\0\0\0\0\xb7\x03\0\0\x04\0\0\0\xbf\x79\0\0\0\0\0\0\x0f\x39\0\0\0\0\0\0\x79\ +\x71\x28\0\0\0\0\0\x79\x78\x30\0\0\0\0\0\x15\x08\x18\0\0\0\0\0\xb7\x02\0\0\0\0\ +\0\0\x0f\x21\0\0\0\0\0\0\x61\x11\x04\0\0\0\0\0\x79\x83\x08\0\0\0\0\0\x67\x01\0\ +\0\x03\0\0\0\x0f\x13\0\0\0\0\0\0\x79\x86\0\0\0\0\0\0\xbf\xa1\0\0\0\0\0\0\x07\ +\x01\0\0\xf8\xff\xff\xff\xb7\x02\0\0\x08\0\0\0\x85\0\0\0\x71\0\0\0\xb7\x01\0\0\ +\0\0\0\0\x79\xa3\xf8\xff\0\0\0\0\x0f\x13\0\0\0\0\0\0\xbf\xa1\0\0\0\0\0\0\x07\ +\x01\0\0\xf4\xff\xff\xff\xb7\x02\0\0\x04\0\0\0\x85\0\0\0\x71\0\0\0\xb7\x03\0\0\ +\x04\0\0\0\x61\xa1\xf4\xff\0\0\0\0\x61\x82\x10\0\0\0\0\0\x3d\x21\x02\0\0\0\0\0\ +\x0f\x16\0\0\0\0\0\0\xbf\x69\0\0\0\0\0\0\x7b\x9a\xd8\xff\0\0\0\0\x79\x71\x18\0\ +\0\0\0\0\x7b\x1a\xe0\xff\0\0\0\0\x79\x71\x20\0\0\0\0\0\x79\x11\0\0\0\0\0\0\x0f\ +\x31\0\0\0\0\0\0\x7b\x1a\xe8\xff\0\0\0\0\xbf\xa4\0\0\0\0\0\0\x07\x04\0\0\xd0\ +\xff\xff\xff\x79\xa1\xc8\xff\0\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\x6a\0\0\0\xb7\ +\x03\0\0\x11\0\0\0\xb7\x05\0\0\x20\0\0\0\x85\0\0\0\x7e\0\0\0\xb7\0\0\0\0\0\0\0\ +\x95\0\0\0\0\0\0\0\0\0\0\0\x1b\0\0\0\0\0\0\0\x42\0\0\0\x88\0\0\0\x1e\x94\x01\0\ +\x01\0\0\0\x42\0\0\0\x88\0\0\0\x24\x94\x01\0\x02\0\0\0\x42\0\0\0\x86\x02\0\0\ +\x1f\x9c\x01\0\x03\0\0\0\x42\0\0\0\xaa\x02\0\0\x06\xa8\x01\0\x04\0\0\0\x42\0\0\ +\0\xc3\x02\0\0\x0e\xb4\x01\0\x05\0\0\0\x42\0\0\0\x2b\x01\0\0\x1d\x98\x01\0\x06\ +\0\0\0\x42\0\0\0\x50\x01\0\0\x06\xb8\x01\0\x08\0\0\0\x42\0\0\0\xd5\x02\0\0\x03\ +\xbc\x01\0\x10\0\0\0\x42\0\0\0\x45\x03\0\0\x02\xc4\x01\0\x17\0\0\0\x42\0\0\0\ +\x80\x03\0\0\x06\x04\x01\0\x1a\0\0\0\x42\0\0\0\x45\x03\0\0\x02\xc4\x01\0\x1b\0\ +\0\0\x42\0\0\0\xd1\x03\0\0\x0f\x10\x01\0\x1c\0\0\0\x42\0\0\0\xe6\x03\0\0\x2d\ +\x14\x01\0\x1e\0\0\0\x42\0\0\0\x1d\x04\0\0\x0d\x0c\x01\0\x20\0\0\0\x42\0\0\0\ +\x45\x03\0\0\x02\xc4\x01\0\x21\0\0\0\x42\0\0\0\xe6\x03\0\0\x02\x14\x01\0\x24\0\ +\0\0\x42\0\0\0\x44\x04\0\0\x0d\x18\x01\0\x27\0\0\0\x42\0\0\0\x45\x03\0\0\x02\ +\xc4\x01\0\x28\0\0\0\x42\0\0\0\x44\x04\0\0\x0d\x18\x01\0\x2b\0\0\0\x42\0\0\0\ +\x44\x04\0\0\x0d\x18\x01\0\x2c\0\0\0\x42\0\0\0\x72\x04\0\0\x1b\x1c\x01\0\x2d\0\ +\0\0\x42\0\0\0\x72\x04\0\0\x06\x1c\x01\0\x2e\0\0\0\x42\0\0\0\x95\x04\0\0\x0d\ +\x24\x01\0\x30\0\0\0\x42\0\0\0\x45\x03\0\0\x02\xc4\x01\0\x3f\0\0\0\x42\0\0\0\ +\x29\x02\0\0\x01\xd4\x01\0\0\0\0\0\x18\0\0\0\x3e\0\0\0\0\0\0\0\x08\0\0\0\x08\0\ +\0\0\x3e\0\0\0\0\0\0\0\x10\0\0\0\x18\0\0\0\xf7\0\0\0\0\0\0\0\x20\0\0\0\x1c\0\0\ +\0\x3e\0\0\0\0\0\0\0\x28\0\0\0\x08\0\0\0\x27\x01\0\0\0\0\0\0\x80\0\0\0\x1e\0\0\ +\0\x3e\0\0\0\0\0\0\0\x90\0\0\0\x1e\0\0\0\xf7\0\0\0\0\0\0\0\xa8\0\0\0\x1e\0\0\0\ +\x78\x03\0\0\0\0\0\0\xb0\0\0\0\x1e\0\0\0\x7c\x03\0\0\0\0\0\0\xc0\0\0\0\x23\0\0\ +\0\xaa\x03\0\0\0\0\0\0\xd8\0\0\0\x24\0\0\0\xf7\0\0\0\0\0\0\0\xf0\0\0\0\x24\0\0\ +\0\x3e\0\0\0\0\0\0\0\x18\x01\0\0\x28\0\0\0\x3e\0\0\0\0\0\0\0\x50\x01\0\0\x1e\0\ +\0\0\xf7\0\0\0\0\0\0\0\x60\x01\0\0\x24\0\0\0\x6c\x04\0\0\0\0\0\0\x88\x01\0\0\ +\x1e\0\0\0\x27\x01\0\0\0\0\0\0\x98\x01\0\0\x1e\0\0\0\xad\x04\0\0\0\0\0\0\xa0\ +\x01\0\0\x1c\0\0\0\x3e\0\0\0\0\0\0\0\x1a\0\0\0\x41\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x64\x75\x6d\x70\x5f\ +\x62\x70\x66\x5f\x70\x72\x6f\x67\0\0\0\0\0\0\0\x1c\0\0\0\0\0\0\0\x08\0\0\0\0\0\ +\0\0\0\0\0\0\x01\0\0\0\x10\0\0\0\0\0\0\0\0\0\0\0\x19\0\0\0\x01\0\0\0\0\0\0\0\ +\x12\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x10\0\0\0\0\0\0\0\x62\x70\x66\x5f\ +\x69\x74\x65\x72\x5f\x62\x70\x66\x5f\x70\x72\x6f\x67\0\0\0\0\0\0\0"; + opts.insns_sz = 2456; + opts.insns = (void *)"\ +\xbf\x16\0\0\0\0\0\0\xbf\xa1\0\0\0\0\0\0\x07\x01\0\0\x78\xff\xff\xff\xb7\x02\0\ +\0\x88\0\0\0\xb7\x03\0\0\0\0\0\0\x85\0\0\0\x71\0\0\0\x05\0\x14\0\0\0\0\0\x61\ +\xa1\x78\xff\0\0\0\0\xd5\x01\x01\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\x61\xa1\x7c\xff\ +\0\0\0\0\xd5\x01\x01\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\x61\xa1\x80\xff\0\0\0\0\xd5\ +\x01\x01\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\x61\xa1\x84\xff\0\0\0\0\xd5\x01\x01\0\0\ +\0\0\0\x85\0\0\0\xa8\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x61\x01\0\0\0\0\ +\0\0\xd5\x01\x02\0\0\0\0\0\xbf\x19\0\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\xbf\x70\0\0\ +\0\0\0\0\x95\0\0\0\0\0\0\0\x61\x60\x08\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\ +\xe8\x0e\0\0\x63\x01\0\0\0\0\0\0\x61\x60\x0c\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\ +\0\0\xe4\x0e\0\0\x63\x01\0\0\0\0\0\0\x79\x60\x10\0\0\0\0\0\x18\x61\0\0\0\0\0\0\ +\0\0\0\0\xd8\x0e\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\0\x05\0\0\ +\x18\x61\0\0\0\0\0\0\0\0\0\0\xd0\x0e\0\0\x7b\x01\0\0\0\0\0\0\xb7\x01\0\0\x12\0\ +\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\xd0\x0e\0\0\xb7\x03\0\0\x1c\0\0\0\x85\0\0\0\ +\xa6\0\0\0\xbf\x07\0\0\0\0\0\0\xc5\x07\xd4\xff\0\0\0\0\x63\x7a\x78\xff\0\0\0\0\ +\x61\xa0\x78\xff\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x20\x0f\0\0\x63\x01\0\0\0\ +\0\0\0\x61\x60\x1c\0\0\0\0\0\x15\0\x03\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\ +\xfc\x0e\0\0\x63\x01\0\0\0\0\0\0\xb7\x01\0\0\0\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\ +\0\xf0\x0e\0\0\xb7\x03\0\0\x48\0\0\0\x85\0\0\0\xa6\0\0\0\xbf\x07\0\0\0\0\0\0\ +\xc5\x07\xc3\xff\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x63\x71\0\0\0\0\0\ +\0\x79\x63\x20\0\0\0\0\0\x15\x03\x08\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x38\ +\x0f\0\0\xb7\x02\0\0\x7b\0\0\0\x61\x60\x04\0\0\0\0\0\x45\0\x02\0\x01\0\0\0\x85\ +\0\0\0\x94\0\0\0\x05\0\x01\0\0\0\0\0\x85\0\0\0\x71\0\0\0\x18\x62\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\0\x61\x20\0\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xc0\x0f\0\0\x63\ +\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\xb8\x0f\0\0\x18\x61\0\0\0\0\0\0\0\ +\0\0\0\xc8\x0f\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x38\x0f\0\0\ +\x18\x61\0\0\0\0\0\0\0\0\0\0\xd0\x0f\0\0\x7b\x01\0\0\0\0\0\0\xb7\x01\0\0\x02\0\ +\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\xc0\x0f\0\0\xb7\x03\0\0\x20\0\0\0\x85\0\0\0\ +\xa6\0\0\0\xbf\x07\0\0\0\0\0\0\xc5\x07\x9f\xff\0\0\0\0\x18\x62\0\0\0\0\0\0\0\0\ +\0\0\0\0\0\0\x61\x20\0\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xe0\x0f\0\0\x63\ +\x01\0\0\0\0\0\0\xb7\x01\0\0\x16\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\xe0\x0f\0\0\ +\xb7\x03\0\0\x04\0\0\0\x85\0\0\0\xa6\0\0\0\xbf\x07\0\0\0\0\0\0\xc5\x07\x92\xff\ +\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\xe8\x0f\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\ +\x20\x12\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\xf0\x0f\0\0\x18\ +\x61\0\0\0\0\0\0\0\0\0\0\x18\x12\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\ +\0\0\0\x08\x11\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x60\x12\0\0\x7b\x01\0\0\0\0\0\0\ +\x18\x60\0\0\0\0\0\0\0\0\0\0\x10\x11\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x70\x12\0\ +\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\xa0\x11\0\0\x18\x61\0\0\0\0\ +\0\0\0\0\0\0\x90\x12\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\0\0\0\ +\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x88\x12\0\0\x7b\x01\0\0\0\0\0\0\x61\x60\x08\0\0\ +\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x28\x12\0\0\x63\x01\0\0\0\0\0\0\x61\x60\x0c\ +\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x2c\x12\0\0\x63\x01\0\0\0\0\0\0\x79\x60\ +\x10\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x30\x12\0\0\x7b\x01\0\0\0\0\0\0\x61\ +\xa0\x78\xff\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x58\x12\0\0\x63\x01\0\0\0\0\0\ +\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xa0\x12\0\0\xb7\x02\0\0\x11\0\0\0\xb7\x03\0\0\ +\x0c\0\0\0\xb7\x04\0\0\0\0\0\0\x85\0\0\0\xa7\0\0\0\xbf\x07\0\0\0\0\0\0\xc5\x07\ +\x5c\xff\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x10\x12\0\0\x63\x70\x6c\0\0\0\0\0\ +\x77\x07\0\0\x20\0\0\0\x63\x70\x70\0\0\0\0\0\x18\x68\0\0\0\0\0\0\0\0\0\0\xa8\ +\x10\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xb8\x12\0\0\xb7\x02\0\0\x17\0\0\0\xb7\x03\ +\0\0\x0c\0\0\0\xb7\x04\0\0\0\0\0\0\x85\0\0\0\xa7\0\0\0\xbf\x07\0\0\0\0\0\0\xc5\ +\x07\x4d\xff\0\0\0\0\x75\x07\x03\0\0\0\0\0\x62\x08\x04\0\0\0\0\0\x6a\x08\x02\0\ +\0\0\0\0\x05\0\x0a\0\0\0\0\0\x63\x78\x04\0\0\0\0\0\xbf\x79\0\0\0\0\0\0\x77\x09\ +\0\0\x20\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\x63\x90\0\0\0\0\0\0\x55\ +\x09\x02\0\0\0\0\0\x6a\x08\x02\0\0\0\0\0\x05\0\x01\0\0\0\0\0\x6a\x08\x02\0\x40\ +\0\0\0\xb7\x01\0\0\x05\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\x10\x12\0\0\xb7\x03\0\ +\0\x8c\0\0\0\x85\0\0\0\xa6\0\0\0\xbf\x07\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\ +\0\0\x01\0\0\x61\x01\0\0\0\0\0\0\xd5\x01\x02\0\0\0\0\0\xbf\x19\0\0\0\0\0\0\x85\ +\0\0\0\xa8\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x80\x12\0\0\x61\x01\0\0\0\0\0\0\ +\xd5\x01\x02\0\0\0\0\0\xbf\x19\0\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\xc5\x07\x2c\xff\ +\0\0\0\0\x63\x7a\x80\xff\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\xd0\x12\0\0\x18\ +\x61\0\0\0\0\0\0\0\0\0\0\xa8\x17\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\ +\0\0\0\xd8\x12\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xa0\x17\0\0\x7b\x01\0\0\0\0\0\0\ +\x18\x60\0\0\0\0\0\0\0\0\0\0\xe0\x14\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xe8\x17\0\ +\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\xe8\x14\0\0\x18\x61\0\0\0\0\ +\0\0\0\0\0\0\xf8\x17\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x78\ +\x16\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x18\x18\0\0\x7b\x01\0\0\0\0\0\0\x18\x60\0\ +\0\0\0\0\0\0\0\0\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x10\x18\0\0\x7b\x01\0\0\ +\0\0\0\0\x61\x60\x08\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xb0\x17\0\0\x63\x01\ +\0\0\0\0\0\0\x61\x60\x0c\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xb4\x17\0\0\x63\ +\x01\0\0\0\0\0\0\x79\x60\x10\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xb8\x17\0\0\ +\x7b\x01\0\0\0\0\0\0\x61\xa0\x78\xff\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\xe0\ +\x17\0\0\x63\x01\0\0\0\0\0\0\x18\x61\0\0\0\0\0\0\0\0\0\0\x28\x18\0\0\xb7\x02\0\ +\0\x12\0\0\0\xb7\x03\0\0\x0c\0\0\0\xb7\x04\0\0\0\0\0\0\x85\0\0\0\xa7\0\0\0\xbf\ +\x07\0\0\0\0\0\0\xc5\x07\xf5\xfe\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x98\x17\0\ +\0\x63\x70\x6c\0\0\0\0\0\x77\x07\0\0\x20\0\0\0\x63\x70\x70\0\0\0\0\0\xb7\x01\0\ +\0\x05\0\0\0\x18\x62\0\0\0\0\0\0\0\0\0\0\x98\x17\0\0\xb7\x03\0\0\x8c\0\0\0\x85\ +\0\0\0\xa6\0\0\0\xbf\x07\0\0\0\0\0\0\x18\x60\0\0\0\0\0\0\0\0\0\0\x08\x18\0\0\ +\x61\x01\0\0\0\0\0\0\xd5\x01\x02\0\0\0\0\0\xbf\x19\0\0\0\0\0\0\x85\0\0\0\xa8\0\ +\0\0\xc5\x07\xe3\xfe\0\0\0\0\x63\x7a\x84\xff\0\0\0\0\x61\xa1\x78\xff\0\0\0\0\ +\xd5\x01\x02\0\0\0\0\0\xbf\x19\0\0\0\0\0\0\x85\0\0\0\xa8\0\0\0\x61\xa0\x80\xff\ +\0\0\0\0\x63\x06\x28\0\0\0\0\0\x61\xa0\x84\xff\0\0\0\0\x63\x06\x2c\0\0\0\0\0\ +\x18\x61\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x61\x10\0\0\0\0\0\0\x63\x06\x18\0\0\0\0\0\ +\xb7\0\0\0\0\0\0\0\x95\0\0\0\0\0\0\0"; + err = bpf_load_and_run(&opts); + if (err < 0) + return err; + return 0; +} + +static inline struct iterators_bpf * +iterators_bpf__open_and_load(void) +{ + struct iterators_bpf *skel; + + skel = iterators_bpf__open(); + if (!skel) + return NULL; + if (iterators_bpf__load(skel)) { + iterators_bpf__destroy(skel); + return NULL; + } + return skel; +} + +__attribute__((unused)) static void +iterators_bpf__assert(struct iterators_bpf *s __attribute__((unused))) +{ +#ifdef __cplusplus +#define _Static_assert static_assert +#endif +#ifdef __cplusplus +#undef _Static_assert +#endif +} + +#endif /* __ITERATORS_BPF_SKEL_H__ */ diff --git a/kernel/bpf/prog_iter.c b/kernel/bpf/prog_iter.c new file mode 100644 index 000000000000..85d8fcb56fb7 --- /dev/null +++ b/kernel/bpf/prog_iter.c @@ -0,0 +1,106 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2020 Facebook */ +#include <linux/bpf.h> +#include <linux/fs.h> +#include <linux/filter.h> +#include <linux/kernel.h> +#include <linux/btf_ids.h> + +struct bpf_iter_seq_prog_info { + u32 prog_id; +}; + +static void *bpf_prog_seq_start(struct seq_file *seq, loff_t *pos) +{ + struct bpf_iter_seq_prog_info *info = seq->private; + struct bpf_prog *prog; + + prog = bpf_prog_get_curr_or_next(&info->prog_id); + if (!prog) + return NULL; + + if (*pos == 0) + ++*pos; + return prog; +} + +static void *bpf_prog_seq_next(struct seq_file *seq, void *v, loff_t *pos) +{ + struct bpf_iter_seq_prog_info *info = seq->private; + + ++*pos; + ++info->prog_id; + bpf_prog_put((struct bpf_prog *)v); + return bpf_prog_get_curr_or_next(&info->prog_id); +} + +struct bpf_iter__bpf_prog { + __bpf_md_ptr(struct bpf_iter_meta *, meta); + __bpf_md_ptr(struct bpf_prog *, prog); +}; + +DEFINE_BPF_ITER_FUNC(bpf_prog, struct bpf_iter_meta *meta, struct bpf_prog *prog) + +static int __bpf_prog_seq_show(struct seq_file *seq, void *v, bool in_stop) +{ + struct bpf_iter__bpf_prog ctx; + struct bpf_iter_meta meta; + struct bpf_prog *prog; + int ret = 0; + + ctx.meta = &meta; + ctx.prog = v; + meta.seq = seq; + prog = bpf_iter_get_info(&meta, in_stop); + if (prog) + ret = bpf_iter_run_prog(prog, &ctx); + + return ret; +} + +static int bpf_prog_seq_show(struct seq_file *seq, void *v) +{ + return __bpf_prog_seq_show(seq, v, false); +} + +static void bpf_prog_seq_stop(struct seq_file *seq, void *v) +{ + if (!v) + (void)__bpf_prog_seq_show(seq, v, true); + else + bpf_prog_put((struct bpf_prog *)v); +} + +static const struct seq_operations bpf_prog_seq_ops = { + .start = bpf_prog_seq_start, + .next = bpf_prog_seq_next, + .stop = bpf_prog_seq_stop, + .show = bpf_prog_seq_show, +}; + +BTF_ID_LIST_SINGLE(btf_bpf_prog_id, struct, bpf_prog) + +static const struct bpf_iter_seq_info bpf_prog_seq_info = { + .seq_ops = &bpf_prog_seq_ops, + .init_seq_private = NULL, + .fini_seq_private = NULL, + .seq_priv_size = sizeof(struct bpf_iter_seq_prog_info), +}; + +static struct bpf_iter_reg bpf_prog_reg_info = { + .target = "bpf_prog", + .ctx_arg_info_size = 1, + .ctx_arg_info = { + { offsetof(struct bpf_iter__bpf_prog, prog), + PTR_TO_BTF_ID_OR_NULL }, + }, + .seq_info = &bpf_prog_seq_info, +}; + +static int __init bpf_prog_iter_init(void) +{ + bpf_prog_reg_info.ctx_arg_info[0].btf_id = *btf_bpf_prog_id; + return bpf_iter_reg_target(&bpf_prog_reg_info); +} + +late_initcall(bpf_prog_iter_init); diff --git a/kernel/bpf/queue_stack_maps.c b/kernel/bpf/queue_stack_maps.c new file mode 100644 index 000000000000..9a5f94371e50 --- /dev/null +++ b/kernel/bpf/queue_stack_maps.c @@ -0,0 +1,288 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * queue_stack_maps.c: BPF queue and stack maps + * + * Copyright (c) 2018 Politecnico di Torino + */ +#include <linux/bpf.h> +#include <linux/list.h> +#include <linux/slab.h> +#include <linux/btf_ids.h> +#include "percpu_freelist.h" +#include <asm/rqspinlock.h> + +#define QUEUE_STACK_CREATE_FLAG_MASK \ + (BPF_F_NUMA_NODE | BPF_F_ACCESS_MASK) + +struct bpf_queue_stack { + struct bpf_map map; + rqspinlock_t lock; + u32 head, tail; + u32 size; /* max_entries + 1 */ + + char elements[] __aligned(8); +}; + +static struct bpf_queue_stack *bpf_queue_stack(struct bpf_map *map) +{ + return container_of(map, struct bpf_queue_stack, map); +} + +static bool queue_stack_map_is_empty(struct bpf_queue_stack *qs) +{ + return qs->head == qs->tail; +} + +static bool queue_stack_map_is_full(struct bpf_queue_stack *qs) +{ + u32 head = qs->head + 1; + + if (unlikely(head >= qs->size)) + head = 0; + + return head == qs->tail; +} + +/* Called from syscall */ +static int queue_stack_map_alloc_check(union bpf_attr *attr) +{ + /* check sanity of attributes */ + if (attr->max_entries == 0 || attr->key_size != 0 || + attr->value_size == 0 || + attr->map_flags & ~QUEUE_STACK_CREATE_FLAG_MASK || + !bpf_map_flags_access_ok(attr->map_flags)) + return -EINVAL; + + if (attr->value_size > KMALLOC_MAX_SIZE) + /* if value_size is bigger, the user space won't be able to + * access the elements. + */ + return -E2BIG; + + return 0; +} + +static struct bpf_map *queue_stack_map_alloc(union bpf_attr *attr) +{ + int numa_node = bpf_map_attr_numa_node(attr); + struct bpf_queue_stack *qs; + u64 size, queue_size; + + size = (u64) attr->max_entries + 1; + queue_size = sizeof(*qs) + size * attr->value_size; + + qs = bpf_map_area_alloc(queue_size, numa_node); + if (!qs) + return ERR_PTR(-ENOMEM); + + bpf_map_init_from_attr(&qs->map, attr); + + qs->size = size; + + raw_res_spin_lock_init(&qs->lock); + + return &qs->map; +} + +/* Called when map->refcnt goes to zero, either from workqueue or from syscall */ +static void queue_stack_map_free(struct bpf_map *map) +{ + struct bpf_queue_stack *qs = bpf_queue_stack(map); + + bpf_map_area_free(qs); +} + +static long __queue_map_get(struct bpf_map *map, void *value, bool delete) +{ + struct bpf_queue_stack *qs = bpf_queue_stack(map); + unsigned long flags; + int err = 0; + void *ptr; + + if (raw_res_spin_lock_irqsave(&qs->lock, flags)) + return -EBUSY; + + if (queue_stack_map_is_empty(qs)) { + memset(value, 0, qs->map.value_size); + err = -ENOENT; + goto out; + } + + ptr = &qs->elements[qs->tail * qs->map.value_size]; + memcpy(value, ptr, qs->map.value_size); + + if (delete) { + if (unlikely(++qs->tail >= qs->size)) + qs->tail = 0; + } + +out: + raw_res_spin_unlock_irqrestore(&qs->lock, flags); + return err; +} + + +static long __stack_map_get(struct bpf_map *map, void *value, bool delete) +{ + struct bpf_queue_stack *qs = bpf_queue_stack(map); + unsigned long flags; + int err = 0; + void *ptr; + u32 index; + + if (raw_res_spin_lock_irqsave(&qs->lock, flags)) + return -EBUSY; + + if (queue_stack_map_is_empty(qs)) { + memset(value, 0, qs->map.value_size); + err = -ENOENT; + goto out; + } + + index = qs->head - 1; + if (unlikely(index >= qs->size)) + index = qs->size - 1; + + ptr = &qs->elements[index * qs->map.value_size]; + memcpy(value, ptr, qs->map.value_size); + + if (delete) + qs->head = index; + +out: + raw_res_spin_unlock_irqrestore(&qs->lock, flags); + return err; +} + +/* Called from syscall or from eBPF program */ +static long queue_map_peek_elem(struct bpf_map *map, void *value) +{ + return __queue_map_get(map, value, false); +} + +/* Called from syscall or from eBPF program */ +static long stack_map_peek_elem(struct bpf_map *map, void *value) +{ + return __stack_map_get(map, value, false); +} + +/* Called from syscall or from eBPF program */ +static long queue_map_pop_elem(struct bpf_map *map, void *value) +{ + return __queue_map_get(map, value, true); +} + +/* Called from syscall or from eBPF program */ +static long stack_map_pop_elem(struct bpf_map *map, void *value) +{ + return __stack_map_get(map, value, true); +} + +/* Called from syscall or from eBPF program */ +static long queue_stack_map_push_elem(struct bpf_map *map, void *value, + u64 flags) +{ + struct bpf_queue_stack *qs = bpf_queue_stack(map); + unsigned long irq_flags; + int err = 0; + void *dst; + + /* BPF_EXIST is used to force making room for a new element in case the + * map is full + */ + bool replace = (flags & BPF_EXIST); + + /* Check supported flags for queue and stack maps */ + if (flags & BPF_NOEXIST || flags > BPF_EXIST) + return -EINVAL; + + if (raw_res_spin_lock_irqsave(&qs->lock, irq_flags)) + return -EBUSY; + + if (queue_stack_map_is_full(qs)) { + if (!replace) { + err = -E2BIG; + goto out; + } + /* advance tail pointer to overwrite oldest element */ + if (unlikely(++qs->tail >= qs->size)) + qs->tail = 0; + } + + dst = &qs->elements[qs->head * qs->map.value_size]; + memcpy(dst, value, qs->map.value_size); + + if (unlikely(++qs->head >= qs->size)) + qs->head = 0; + +out: + raw_res_spin_unlock_irqrestore(&qs->lock, irq_flags); + return err; +} + +/* Called from syscall or from eBPF program */ +static void *queue_stack_map_lookup_elem(struct bpf_map *map, void *key) +{ + return NULL; +} + +/* Called from syscall or from eBPF program */ +static long queue_stack_map_update_elem(struct bpf_map *map, void *key, + void *value, u64 flags) +{ + return -EINVAL; +} + +/* Called from syscall or from eBPF program */ +static long queue_stack_map_delete_elem(struct bpf_map *map, void *key) +{ + return -EINVAL; +} + +/* Called from syscall */ +static int queue_stack_map_get_next_key(struct bpf_map *map, void *key, + void *next_key) +{ + return -EINVAL; +} + +static u64 queue_stack_map_mem_usage(const struct bpf_map *map) +{ + u64 usage = sizeof(struct bpf_queue_stack); + + usage += ((u64)map->max_entries + 1) * map->value_size; + return usage; +} + +BTF_ID_LIST_SINGLE(queue_map_btf_ids, struct, bpf_queue_stack) +const struct bpf_map_ops queue_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = queue_stack_map_alloc_check, + .map_alloc = queue_stack_map_alloc, + .map_free = queue_stack_map_free, + .map_lookup_elem = queue_stack_map_lookup_elem, + .map_update_elem = queue_stack_map_update_elem, + .map_delete_elem = queue_stack_map_delete_elem, + .map_push_elem = queue_stack_map_push_elem, + .map_pop_elem = queue_map_pop_elem, + .map_peek_elem = queue_map_peek_elem, + .map_get_next_key = queue_stack_map_get_next_key, + .map_mem_usage = queue_stack_map_mem_usage, + .map_btf_id = &queue_map_btf_ids[0], +}; + +const struct bpf_map_ops stack_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = queue_stack_map_alloc_check, + .map_alloc = queue_stack_map_alloc, + .map_free = queue_stack_map_free, + .map_lookup_elem = queue_stack_map_lookup_elem, + .map_update_elem = queue_stack_map_update_elem, + .map_delete_elem = queue_stack_map_delete_elem, + .map_push_elem = queue_stack_map_push_elem, + .map_pop_elem = stack_map_pop_elem, + .map_peek_elem = stack_map_peek_elem, + .map_get_next_key = queue_stack_map_get_next_key, + .map_mem_usage = queue_stack_map_mem_usage, + .map_btf_id = &queue_map_btf_ids[0], +}; diff --git a/kernel/bpf/range_tree.c b/kernel/bpf/range_tree.c new file mode 100644 index 000000000000..99c63d982c5d --- /dev/null +++ b/kernel/bpf/range_tree.c @@ -0,0 +1,261 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */ +#include <linux/interval_tree_generic.h> +#include <linux/slab.h> +#include <linux/bpf.h> +#include "range_tree.h" + +/* + * struct range_tree is a data structure used to allocate contiguous memory + * ranges in bpf arena. It's a large bitmap. The contiguous sequence of bits is + * represented by struct range_node or 'rn' for short. + * rn->rn_rbnode links it into an interval tree while + * rn->rb_range_size links it into a second rbtree sorted by size of the range. + * __find_range() performs binary search and best fit algorithm to find the + * range less or equal requested size. + * range_tree_clear/set() clears or sets a range of bits in this bitmap. The + * adjacent ranges are merged or split at the same time. + * + * The split/merge logic is based/borrowed from XFS's xbitmap32 added + * in commit 6772fcc8890a ("xfs: convert xbitmap to interval tree"). + * + * The implementation relies on external lock to protect rbtree-s. + * The alloc/free of range_node-s is done via kmalloc_nolock(). + * + * bpf arena is using range_tree to represent unallocated slots. + * At init time: + * range_tree_set(rt, 0, max); + * Then: + * start = range_tree_find(rt, len); + * if (start >= 0) + * range_tree_clear(rt, start, len); + * to find free range and mark slots as allocated and later: + * range_tree_set(rt, start, len); + * to mark as unallocated after use. + */ +struct range_node { + struct rb_node rn_rbnode; + struct rb_node rb_range_size; + u32 rn_start; + u32 rn_last; /* inclusive */ + u32 __rn_subtree_last; +}; + +static struct range_node *rb_to_range_node(struct rb_node *rb) +{ + return rb_entry(rb, struct range_node, rb_range_size); +} + +static u32 rn_size(struct range_node *rn) +{ + return rn->rn_last - rn->rn_start + 1; +} + +/* Find range that fits best to requested size */ +static inline struct range_node *__find_range(struct range_tree *rt, u32 len) +{ + struct rb_node *rb = rt->range_size_root.rb_root.rb_node; + struct range_node *best = NULL; + + while (rb) { + struct range_node *rn = rb_to_range_node(rb); + + if (len <= rn_size(rn)) { + best = rn; + rb = rb->rb_right; + } else { + rb = rb->rb_left; + } + } + + return best; +} + +s64 range_tree_find(struct range_tree *rt, u32 len) +{ + struct range_node *rn; + + rn = __find_range(rt, len); + if (!rn) + return -ENOENT; + return rn->rn_start; +} + +/* Insert the range into rbtree sorted by the range size */ +static inline void __range_size_insert(struct range_node *rn, + struct rb_root_cached *root) +{ + struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; + u64 size = rn_size(rn); + bool leftmost = true; + + while (*link) { + rb = *link; + if (size > rn_size(rb_to_range_node(rb))) { + link = &rb->rb_left; + } else { + link = &rb->rb_right; + leftmost = false; + } + } + + rb_link_node(&rn->rb_range_size, rb, link); + rb_insert_color_cached(&rn->rb_range_size, root, leftmost); +} + +#define START(node) ((node)->rn_start) +#define LAST(node) ((node)->rn_last) + +INTERVAL_TREE_DEFINE(struct range_node, rn_rbnode, u32, + __rn_subtree_last, START, LAST, + static inline __maybe_unused, + __range_it) + +static inline __maybe_unused void +range_it_insert(struct range_node *rn, struct range_tree *rt) +{ + __range_size_insert(rn, &rt->range_size_root); + __range_it_insert(rn, &rt->it_root); +} + +static inline __maybe_unused void +range_it_remove(struct range_node *rn, struct range_tree *rt) +{ + rb_erase_cached(&rn->rb_range_size, &rt->range_size_root); + RB_CLEAR_NODE(&rn->rb_range_size); + __range_it_remove(rn, &rt->it_root); +} + +static inline __maybe_unused struct range_node * +range_it_iter_first(struct range_tree *rt, u32 start, u32 last) +{ + return __range_it_iter_first(&rt->it_root, start, last); +} + +/* Clear the range in this range tree */ +int range_tree_clear(struct range_tree *rt, u32 start, u32 len) +{ + u32 last = start + len - 1; + struct range_node *new_rn; + struct range_node *rn; + + while ((rn = range_it_iter_first(rt, start, last))) { + if (rn->rn_start < start && rn->rn_last > last) { + u32 old_last = rn->rn_last; + + /* Overlaps with the entire clearing range */ + range_it_remove(rn, rt); + rn->rn_last = start - 1; + range_it_insert(rn, rt); + + /* Add a range */ + new_rn = kmalloc_nolock(sizeof(struct range_node), 0, NUMA_NO_NODE); + if (!new_rn) + return -ENOMEM; + new_rn->rn_start = last + 1; + new_rn->rn_last = old_last; + range_it_insert(new_rn, rt); + } else if (rn->rn_start < start) { + /* Overlaps with the left side of the clearing range */ + range_it_remove(rn, rt); + rn->rn_last = start - 1; + range_it_insert(rn, rt); + } else if (rn->rn_last > last) { + /* Overlaps with the right side of the clearing range */ + range_it_remove(rn, rt); + rn->rn_start = last + 1; + range_it_insert(rn, rt); + break; + } else { + /* in the middle of the clearing range */ + range_it_remove(rn, rt); + kfree_nolock(rn); + } + } + return 0; +} + +/* Is the whole range set ? */ +int is_range_tree_set(struct range_tree *rt, u32 start, u32 len) +{ + u32 last = start + len - 1; + struct range_node *left; + + /* Is this whole range set ? */ + left = range_it_iter_first(rt, start, last); + if (left && left->rn_start <= start && left->rn_last >= last) + return 0; + return -ESRCH; +} + +/* Set the range in this range tree */ +int range_tree_set(struct range_tree *rt, u32 start, u32 len) +{ + u32 last = start + len - 1; + struct range_node *right; + struct range_node *left; + int err; + + /* Is this whole range already set ? */ + left = range_it_iter_first(rt, start, last); + if (left && left->rn_start <= start && left->rn_last >= last) + return 0; + + /* Clear out everything in the range we want to set. */ + err = range_tree_clear(rt, start, len); + if (err) + return err; + + /* Do we have a left-adjacent range ? */ + left = range_it_iter_first(rt, start - 1, start - 1); + if (left && left->rn_last + 1 != start) + return -EFAULT; + + /* Do we have a right-adjacent range ? */ + right = range_it_iter_first(rt, last + 1, last + 1); + if (right && right->rn_start != last + 1) + return -EFAULT; + + if (left && right) { + /* Combine left and right adjacent ranges */ + range_it_remove(left, rt); + range_it_remove(right, rt); + left->rn_last = right->rn_last; + range_it_insert(left, rt); + kfree_nolock(right); + } else if (left) { + /* Combine with the left range */ + range_it_remove(left, rt); + left->rn_last = last; + range_it_insert(left, rt); + } else if (right) { + /* Combine with the right range */ + range_it_remove(right, rt); + right->rn_start = start; + range_it_insert(right, rt); + } else { + left = kmalloc_nolock(sizeof(struct range_node), 0, NUMA_NO_NODE); + if (!left) + return -ENOMEM; + left->rn_start = start; + left->rn_last = last; + range_it_insert(left, rt); + } + return 0; +} + +void range_tree_destroy(struct range_tree *rt) +{ + struct range_node *rn; + + while ((rn = range_it_iter_first(rt, 0, -1U))) { + range_it_remove(rn, rt); + kfree_nolock(rn); + } +} + +void range_tree_init(struct range_tree *rt) +{ + rt->it_root = RB_ROOT_CACHED; + rt->range_size_root = RB_ROOT_CACHED; +} diff --git a/kernel/bpf/range_tree.h b/kernel/bpf/range_tree.h new file mode 100644 index 000000000000..ff0b9110eb71 --- /dev/null +++ b/kernel/bpf/range_tree.h @@ -0,0 +1,21 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */ +#ifndef _RANGE_TREE_H +#define _RANGE_TREE_H 1 + +struct range_tree { + /* root of interval tree */ + struct rb_root_cached it_root; + /* root of rbtree of interval sizes */ + struct rb_root_cached range_size_root; +}; + +void range_tree_init(struct range_tree *rt); +void range_tree_destroy(struct range_tree *rt); + +int range_tree_clear(struct range_tree *rt, u32 start, u32 len); +int range_tree_set(struct range_tree *rt, u32 start, u32 len); +int is_range_tree_set(struct range_tree *rt, u32 start, u32 len); +s64 range_tree_find(struct range_tree *rt, u32 len); + +#endif diff --git a/kernel/bpf/relo_core.c b/kernel/bpf/relo_core.c new file mode 100644 index 000000000000..aa822c9fcfde --- /dev/null +++ b/kernel/bpf/relo_core.c @@ -0,0 +1,2 @@ +// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) +#include "../../tools/lib/bpf/relo_core.c" diff --git a/kernel/bpf/reuseport_array.c b/kernel/bpf/reuseport_array.c new file mode 100644 index 000000000000..49b8e5a0c6b4 --- /dev/null +++ b/kernel/bpf/reuseport_array.c @@ -0,0 +1,353 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2018 Facebook + */ +#include <linux/bpf.h> +#include <linux/err.h> +#include <linux/sock_diag.h> +#include <net/sock_reuseport.h> +#include <linux/btf_ids.h> + +struct reuseport_array { + struct bpf_map map; + struct sock __rcu *ptrs[]; +}; + +static struct reuseport_array *reuseport_array(struct bpf_map *map) +{ + return (struct reuseport_array *)map; +} + +/* The caller must hold the reuseport_lock */ +void bpf_sk_reuseport_detach(struct sock *sk) +{ + struct sock __rcu **socks; + + write_lock_bh(&sk->sk_callback_lock); + socks = __locked_read_sk_user_data_with_flags(sk, SK_USER_DATA_BPF); + if (socks) { + WRITE_ONCE(sk->sk_user_data, NULL); + /* + * Do not move this NULL assignment outside of + * sk->sk_callback_lock because there is + * a race with reuseport_array_free() + * which does not hold the reuseport_lock. + */ + RCU_INIT_POINTER(*socks, NULL); + } + write_unlock_bh(&sk->sk_callback_lock); +} + +static int reuseport_array_alloc_check(union bpf_attr *attr) +{ + if (attr->value_size != sizeof(u32) && + attr->value_size != sizeof(u64)) + return -EINVAL; + + return array_map_alloc_check(attr); +} + +static void *reuseport_array_lookup_elem(struct bpf_map *map, void *key) +{ + struct reuseport_array *array = reuseport_array(map); + u32 index = *(u32 *)key; + + if (unlikely(index >= array->map.max_entries)) + return NULL; + + return rcu_dereference(array->ptrs[index]); +} + +/* Called from syscall only */ +static long reuseport_array_delete_elem(struct bpf_map *map, void *key) +{ + struct reuseport_array *array = reuseport_array(map); + u32 index = *(u32 *)key; + struct sock *sk; + int err; + + if (index >= map->max_entries) + return -E2BIG; + + if (!rcu_access_pointer(array->ptrs[index])) + return -ENOENT; + + spin_lock_bh(&reuseport_lock); + + sk = rcu_dereference_protected(array->ptrs[index], + lockdep_is_held(&reuseport_lock)); + if (sk) { + write_lock_bh(&sk->sk_callback_lock); + WRITE_ONCE(sk->sk_user_data, NULL); + RCU_INIT_POINTER(array->ptrs[index], NULL); + write_unlock_bh(&sk->sk_callback_lock); + err = 0; + } else { + err = -ENOENT; + } + + spin_unlock_bh(&reuseport_lock); + + return err; +} + +static void reuseport_array_free(struct bpf_map *map) +{ + struct reuseport_array *array = reuseport_array(map); + struct sock *sk; + u32 i; + + /* + * ops->map_*_elem() will not be able to access this + * array now. Hence, this function only races with + * bpf_sk_reuseport_detach() which was triggered by + * close() or disconnect(). + * + * This function and bpf_sk_reuseport_detach() are + * both removing sk from "array". Who removes it + * first does not matter. + * + * The only concern here is bpf_sk_reuseport_detach() + * may access "array" which is being freed here. + * bpf_sk_reuseport_detach() access this "array" + * through sk->sk_user_data _and_ with sk->sk_callback_lock + * held which is enough because this "array" is not freed + * until all sk->sk_user_data has stopped referencing this "array". + * + * Hence, due to the above, taking "reuseport_lock" is not + * needed here. + */ + + /* + * Since reuseport_lock is not taken, sk is accessed under + * rcu_read_lock() + */ + rcu_read_lock(); + for (i = 0; i < map->max_entries; i++) { + sk = rcu_dereference(array->ptrs[i]); + if (sk) { + write_lock_bh(&sk->sk_callback_lock); + /* + * No need for WRITE_ONCE(). At this point, + * no one is reading it without taking the + * sk->sk_callback_lock. + */ + sk->sk_user_data = NULL; + write_unlock_bh(&sk->sk_callback_lock); + RCU_INIT_POINTER(array->ptrs[i], NULL); + } + } + rcu_read_unlock(); + + /* + * Once reaching here, all sk->sk_user_data is not + * referencing this "array". "array" can be freed now. + */ + bpf_map_area_free(array); +} + +static struct bpf_map *reuseport_array_alloc(union bpf_attr *attr) +{ + int numa_node = bpf_map_attr_numa_node(attr); + struct reuseport_array *array; + + /* allocate all map elements and zero-initialize them */ + array = bpf_map_area_alloc(struct_size(array, ptrs, attr->max_entries), numa_node); + if (!array) + return ERR_PTR(-ENOMEM); + + /* copy mandatory map attributes */ + bpf_map_init_from_attr(&array->map, attr); + + return &array->map; +} + +int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, + void *value) +{ + struct sock *sk; + int err; + + if (map->value_size != sizeof(u64)) + return -ENOSPC; + + rcu_read_lock(); + sk = reuseport_array_lookup_elem(map, key); + if (sk) { + *(u64 *)value = __sock_gen_cookie(sk); + err = 0; + } else { + err = -ENOENT; + } + rcu_read_unlock(); + + return err; +} + +static int +reuseport_array_update_check(const struct reuseport_array *array, + const struct sock *nsk, + const struct sock *osk, + const struct sock_reuseport *nsk_reuse, + u32 map_flags) +{ + if (osk && map_flags == BPF_NOEXIST) + return -EEXIST; + + if (!osk && map_flags == BPF_EXIST) + return -ENOENT; + + if (nsk->sk_protocol != IPPROTO_UDP && nsk->sk_protocol != IPPROTO_TCP) + return -ENOTSUPP; + + if (nsk->sk_family != AF_INET && nsk->sk_family != AF_INET6) + return -ENOTSUPP; + + if (nsk->sk_type != SOCK_STREAM && nsk->sk_type != SOCK_DGRAM) + return -ENOTSUPP; + + /* + * sk must be hashed (i.e. listening in the TCP case or binded + * in the UDP case) and + * it must also be a SO_REUSEPORT sk (i.e. reuse cannot be NULL). + * + * Also, sk will be used in bpf helper that is protected by + * rcu_read_lock(). + */ + if (!sock_flag(nsk, SOCK_RCU_FREE) || !sk_hashed(nsk) || !nsk_reuse) + return -EINVAL; + + /* READ_ONCE because the sk->sk_callback_lock may not be held here */ + if (READ_ONCE(nsk->sk_user_data)) + return -EBUSY; + + return 0; +} + +/* + * Called from syscall only. + * The "nsk" in the fd refcnt. + * The "osk" and "reuse" are protected by reuseport_lock. + */ +int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, + void *value, u64 map_flags) +{ + struct reuseport_array *array = reuseport_array(map); + struct sock *free_osk = NULL, *osk, *nsk; + struct sock_reuseport *reuse; + u32 index = *(u32 *)key; + uintptr_t sk_user_data; + struct socket *socket; + int err, fd; + + if (map_flags > BPF_EXIST) + return -EINVAL; + + if (index >= map->max_entries) + return -E2BIG; + + if (map->value_size == sizeof(u64)) { + u64 fd64 = *(u64 *)value; + + if (fd64 > S32_MAX) + return -EINVAL; + fd = fd64; + } else { + fd = *(int *)value; + } + + socket = sockfd_lookup(fd, &err); + if (!socket) + return err; + + nsk = socket->sk; + if (!nsk) { + err = -EINVAL; + goto put_file; + } + + /* Quick checks before taking reuseport_lock */ + err = reuseport_array_update_check(array, nsk, + rcu_access_pointer(array->ptrs[index]), + rcu_access_pointer(nsk->sk_reuseport_cb), + map_flags); + if (err) + goto put_file; + + spin_lock_bh(&reuseport_lock); + /* + * Some of the checks only need reuseport_lock + * but it is done under sk_callback_lock also + * for simplicity reason. + */ + write_lock_bh(&nsk->sk_callback_lock); + + osk = rcu_dereference_protected(array->ptrs[index], + lockdep_is_held(&reuseport_lock)); + reuse = rcu_dereference_protected(nsk->sk_reuseport_cb, + lockdep_is_held(&reuseport_lock)); + err = reuseport_array_update_check(array, nsk, osk, reuse, map_flags); + if (err) + goto put_file_unlock; + + sk_user_data = (uintptr_t)&array->ptrs[index] | SK_USER_DATA_NOCOPY | + SK_USER_DATA_BPF; + WRITE_ONCE(nsk->sk_user_data, (void *)sk_user_data); + rcu_assign_pointer(array->ptrs[index], nsk); + free_osk = osk; + err = 0; + +put_file_unlock: + write_unlock_bh(&nsk->sk_callback_lock); + + if (free_osk) { + write_lock_bh(&free_osk->sk_callback_lock); + WRITE_ONCE(free_osk->sk_user_data, NULL); + write_unlock_bh(&free_osk->sk_callback_lock); + } + + spin_unlock_bh(&reuseport_lock); +put_file: + sockfd_put(socket); + return err; +} + +/* Called from syscall */ +static int reuseport_array_get_next_key(struct bpf_map *map, void *key, + void *next_key) +{ + struct reuseport_array *array = reuseport_array(map); + u32 index = key ? *(u32 *)key : U32_MAX; + u32 *next = (u32 *)next_key; + + if (index >= array->map.max_entries) { + *next = 0; + return 0; + } + + if (index == array->map.max_entries - 1) + return -ENOENT; + + *next = index + 1; + return 0; +} + +static u64 reuseport_array_mem_usage(const struct bpf_map *map) +{ + struct reuseport_array *array; + + return struct_size(array, ptrs, map->max_entries); +} + +BTF_ID_LIST_SINGLE(reuseport_array_map_btf_ids, struct, reuseport_array) +const struct bpf_map_ops reuseport_array_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc_check = reuseport_array_alloc_check, + .map_alloc = reuseport_array_alloc, + .map_free = reuseport_array_free, + .map_lookup_elem = reuseport_array_lookup_elem, + .map_get_next_key = reuseport_array_get_next_key, + .map_delete_elem = reuseport_array_delete_elem, + .map_mem_usage = reuseport_array_mem_usage, + .map_btf_id = &reuseport_array_map_btf_ids[0], +}; diff --git a/kernel/bpf/ringbuf.c b/kernel/bpf/ringbuf.c new file mode 100644 index 000000000000..f6a075ffac63 --- /dev/null +++ b/kernel/bpf/ringbuf.c @@ -0,0 +1,879 @@ +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/err.h> +#include <linux/irq_work.h> +#include <linux/slab.h> +#include <linux/filter.h> +#include <linux/mm.h> +#include <linux/vmalloc.h> +#include <linux/wait.h> +#include <linux/poll.h> +#include <linux/kmemleak.h> +#include <uapi/linux/btf.h> +#include <linux/btf_ids.h> +#include <asm/rqspinlock.h> + +#define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE | BPF_F_RB_OVERWRITE) + +/* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ +#define RINGBUF_PGOFF \ + (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) +/* consumer page and producer page */ +#define RINGBUF_POS_PAGES 2 +#define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES) + +#define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) + +struct bpf_ringbuf { + wait_queue_head_t waitq; + struct irq_work work; + u64 mask; + struct page **pages; + int nr_pages; + bool overwrite_mode; + rqspinlock_t spinlock ____cacheline_aligned_in_smp; + /* For user-space producer ring buffers, an atomic_t busy bit is used + * to synchronize access to the ring buffers in the kernel, rather than + * the spinlock that is used for kernel-producer ring buffers. This is + * done because the ring buffer must hold a lock across a BPF program's + * callback: + * + * __bpf_user_ringbuf_peek() // lock acquired + * -> program callback_fn() + * -> __bpf_user_ringbuf_sample_release() // lock released + * + * It is unsafe and incorrect to hold an IRQ spinlock across what could + * be a long execution window, so we instead simply disallow concurrent + * access to the ring buffer by kernel consumers, and return -EBUSY from + * __bpf_user_ringbuf_peek() if the busy bit is held by another task. + */ + atomic_t busy ____cacheline_aligned_in_smp; + /* Consumer and producer counters are put into separate pages to + * allow each position to be mapped with different permissions. + * This prevents a user-space application from modifying the + * position and ruining in-kernel tracking. The permissions of the + * pages depend on who is producing samples: user-space or the + * kernel. Note that the pending counter is placed in the same + * page as the producer, so that it shares the same cache line. + * + * Kernel-producer + * --------------- + * The producer position and data pages are mapped as r/o in + * userspace. For this approach, bits in the header of samples are + * used to signal to user-space, and to other producers, whether a + * sample is currently being written. + * + * User-space producer + * ------------------- + * Only the page containing the consumer position is mapped r/o in + * user-space. User-space producers also use bits of the header to + * communicate to the kernel, but the kernel must carefully check and + * validate each sample to ensure that they're correctly formatted, and + * fully contained within the ring buffer. + */ + unsigned long consumer_pos __aligned(PAGE_SIZE); + unsigned long producer_pos __aligned(PAGE_SIZE); + unsigned long pending_pos; + unsigned long overwrite_pos; /* position after the last overwritten record */ + char data[] __aligned(PAGE_SIZE); +}; + +struct bpf_ringbuf_map { + struct bpf_map map; + struct bpf_ringbuf *rb; +}; + +/* 8-byte ring buffer record header structure */ +struct bpf_ringbuf_hdr { + u32 len; + u32 pg_off; +}; + +static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) +{ + const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | + __GFP_NOWARN | __GFP_ZERO; + int nr_meta_pages = RINGBUF_NR_META_PAGES; + int nr_data_pages = data_sz >> PAGE_SHIFT; + int nr_pages = nr_meta_pages + nr_data_pages; + struct page **pages, *page; + struct bpf_ringbuf *rb; + size_t array_size; + int i; + + /* Each data page is mapped twice to allow "virtual" + * continuous read of samples wrapping around the end of ring + * buffer area: + * ------------------------------------------------------ + * | meta pages | real data pages | same data pages | + * ------------------------------------------------------ + * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | + * ------------------------------------------------------ + * | | TA DA | TA DA | + * ------------------------------------------------------ + * ^^^^^^^ + * | + * Here, no need to worry about special handling of wrapped-around + * data due to double-mapped data pages. This works both in kernel and + * when mmap()'ed in user-space, simplifying both kernel and + * user-space implementations significantly. + */ + array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); + pages = bpf_map_area_alloc(array_size, numa_node); + if (!pages) + return NULL; + + for (i = 0; i < nr_pages; i++) { + page = alloc_pages_node(numa_node, flags, 0); + if (!page) { + nr_pages = i; + goto err_free_pages; + } + pages[i] = page; + if (i >= nr_meta_pages) + pages[nr_data_pages + i] = page; + } + + rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, + VM_MAP | VM_USERMAP, PAGE_KERNEL); + if (rb) { + kmemleak_not_leak(pages); + rb->pages = pages; + rb->nr_pages = nr_pages; + return rb; + } + +err_free_pages: + for (i = 0; i < nr_pages; i++) + __free_page(pages[i]); + bpf_map_area_free(pages); + return NULL; +} + +static void bpf_ringbuf_notify(struct irq_work *work) +{ + struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); + + wake_up_all(&rb->waitq); +} + +/* Maximum size of ring buffer area is limited by 32-bit page offset within + * record header, counted in pages. Reserve 8 bits for extensibility, and + * take into account few extra pages for consumer/producer pages and + * non-mmap()'able parts, the current maximum size would be: + * + * (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) + * + * This gives 64GB limit, which seems plenty for single ring buffer. Now + * considering that the maximum value of data_sz is (4GB - 1), there + * will be no overflow, so just note the size limit in the comments. + */ +static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node, bool overwrite_mode) +{ + struct bpf_ringbuf *rb; + + rb = bpf_ringbuf_area_alloc(data_sz, numa_node); + if (!rb) + return NULL; + + raw_res_spin_lock_init(&rb->spinlock); + atomic_set(&rb->busy, 0); + init_waitqueue_head(&rb->waitq); + init_irq_work(&rb->work, bpf_ringbuf_notify); + + rb->mask = data_sz - 1; + rb->consumer_pos = 0; + rb->producer_pos = 0; + rb->pending_pos = 0; + rb->overwrite_mode = overwrite_mode; + + return rb; +} + +static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) +{ + bool overwrite_mode = false; + struct bpf_ringbuf_map *rb_map; + + if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) + return ERR_PTR(-EINVAL); + + if (attr->map_flags & BPF_F_RB_OVERWRITE) { + if (attr->map_type != BPF_MAP_TYPE_RINGBUF) + return ERR_PTR(-EINVAL); + overwrite_mode = true; + } + + if (attr->key_size || attr->value_size || + !is_power_of_2(attr->max_entries) || + !PAGE_ALIGNED(attr->max_entries)) + return ERR_PTR(-EINVAL); + + rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE); + if (!rb_map) + return ERR_PTR(-ENOMEM); + + bpf_map_init_from_attr(&rb_map->map, attr); + + rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node, overwrite_mode); + if (!rb_map->rb) { + bpf_map_area_free(rb_map); + return ERR_PTR(-ENOMEM); + } + + return &rb_map->map; +} + +static void bpf_ringbuf_free(struct bpf_ringbuf *rb) +{ + irq_work_sync(&rb->work); + + /* copy pages pointer and nr_pages to local variable, as we are going + * to unmap rb itself with vunmap() below + */ + struct page **pages = rb->pages; + int i, nr_pages = rb->nr_pages; + + vunmap(rb); + for (i = 0; i < nr_pages; i++) + __free_page(pages[i]); + bpf_map_area_free(pages); +} + +static void ringbuf_map_free(struct bpf_map *map) +{ + struct bpf_ringbuf_map *rb_map; + + rb_map = container_of(map, struct bpf_ringbuf_map, map); + bpf_ringbuf_free(rb_map->rb); + bpf_map_area_free(rb_map); +} + +static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) +{ + return ERR_PTR(-ENOTSUPP); +} + +static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, + u64 flags) +{ + return -ENOTSUPP; +} + +static long ringbuf_map_delete_elem(struct bpf_map *map, void *key) +{ + return -ENOTSUPP; +} + +static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, + void *next_key) +{ + return -ENOTSUPP; +} + +static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma) +{ + struct bpf_ringbuf_map *rb_map; + + rb_map = container_of(map, struct bpf_ringbuf_map, map); + + if (vma->vm_flags & VM_WRITE) { + /* allow writable mapping for the consumer_pos only */ + if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) + return -EPERM; + } + /* remap_vmalloc_range() checks size and offset constraints */ + return remap_vmalloc_range(vma, rb_map->rb, + vma->vm_pgoff + RINGBUF_PGOFF); +} + +static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma) +{ + struct bpf_ringbuf_map *rb_map; + + rb_map = container_of(map, struct bpf_ringbuf_map, map); + + if (vma->vm_flags & VM_WRITE) { + if (vma->vm_pgoff == 0) + /* Disallow writable mappings to the consumer pointer, + * and allow writable mappings to both the producer + * position, and the ring buffer data itself. + */ + return -EPERM; + } + /* remap_vmalloc_range() checks size and offset constraints */ + return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); +} + +/* + * Return an estimate of the available data in the ring buffer. + * Note: the returned value can exceed the actual ring buffer size because the + * function is not synchronized with the producer. The producer acquires the + * ring buffer's spinlock, but this function does not. + */ +static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) +{ + unsigned long cons_pos, prod_pos, over_pos; + + cons_pos = smp_load_acquire(&rb->consumer_pos); + + if (unlikely(rb->overwrite_mode)) { + over_pos = smp_load_acquire(&rb->overwrite_pos); + prod_pos = smp_load_acquire(&rb->producer_pos); + return prod_pos - max(cons_pos, over_pos); + } else { + prod_pos = smp_load_acquire(&rb->producer_pos); + return prod_pos - cons_pos; + } +} + +static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb) +{ + return rb->mask + 1; +} + +static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp, + struct poll_table_struct *pts) +{ + struct bpf_ringbuf_map *rb_map; + + rb_map = container_of(map, struct bpf_ringbuf_map, map); + poll_wait(filp, &rb_map->rb->waitq, pts); + + if (ringbuf_avail_data_sz(rb_map->rb)) + return EPOLLIN | EPOLLRDNORM; + return 0; +} + +static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp, + struct poll_table_struct *pts) +{ + struct bpf_ringbuf_map *rb_map; + + rb_map = container_of(map, struct bpf_ringbuf_map, map); + poll_wait(filp, &rb_map->rb->waitq, pts); + + if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb)) + return EPOLLOUT | EPOLLWRNORM; + return 0; +} + +static u64 ringbuf_map_mem_usage(const struct bpf_map *map) +{ + struct bpf_ringbuf *rb; + int nr_data_pages; + int nr_meta_pages; + u64 usage = sizeof(struct bpf_ringbuf_map); + + rb = container_of(map, struct bpf_ringbuf_map, map)->rb; + usage += (u64)rb->nr_pages << PAGE_SHIFT; + nr_meta_pages = RINGBUF_NR_META_PAGES; + nr_data_pages = map->max_entries >> PAGE_SHIFT; + usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *); + return usage; +} + +BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map) +const struct bpf_map_ops ringbuf_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc = ringbuf_map_alloc, + .map_free = ringbuf_map_free, + .map_mmap = ringbuf_map_mmap_kern, + .map_poll = ringbuf_map_poll_kern, + .map_lookup_elem = ringbuf_map_lookup_elem, + .map_update_elem = ringbuf_map_update_elem, + .map_delete_elem = ringbuf_map_delete_elem, + .map_get_next_key = ringbuf_map_get_next_key, + .map_mem_usage = ringbuf_map_mem_usage, + .map_btf_id = &ringbuf_map_btf_ids[0], +}; + +BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map) +const struct bpf_map_ops user_ringbuf_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc = ringbuf_map_alloc, + .map_free = ringbuf_map_free, + .map_mmap = ringbuf_map_mmap_user, + .map_poll = ringbuf_map_poll_user, + .map_lookup_elem = ringbuf_map_lookup_elem, + .map_update_elem = ringbuf_map_update_elem, + .map_delete_elem = ringbuf_map_delete_elem, + .map_get_next_key = ringbuf_map_get_next_key, + .map_mem_usage = ringbuf_map_mem_usage, + .map_btf_id = &user_ringbuf_map_btf_ids[0], +}; + +/* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, + * calculate offset from record metadata to ring buffer in pages, rounded + * down. This page offset is stored as part of record metadata and allows to + * restore struct bpf_ringbuf * from record pointer. This page offset is + * stored at offset 4 of record metadata header. + */ +static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, + struct bpf_ringbuf_hdr *hdr) +{ + return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; +} + +/* Given pointer to ring buffer record header, restore pointer to struct + * bpf_ringbuf itself by using page offset stored at offset 4 + */ +static struct bpf_ringbuf * +bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) +{ + unsigned long addr = (unsigned long)(void *)hdr; + unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; + + return (void*)((addr & PAGE_MASK) - off); +} + +static bool bpf_ringbuf_has_space(const struct bpf_ringbuf *rb, + unsigned long new_prod_pos, + unsigned long cons_pos, + unsigned long pend_pos) +{ + /* + * No space if oldest not yet committed record until the newest + * record span more than (ringbuf_size - 1). + */ + if (new_prod_pos - pend_pos > rb->mask) + return false; + + /* Ok, we have space in overwrite mode */ + if (unlikely(rb->overwrite_mode)) + return true; + + /* + * No space if producer position advances more than (ringbuf_size - 1) + * ahead of consumer position when not in overwrite mode. + */ + if (new_prod_pos - cons_pos > rb->mask) + return false; + + return true; +} + +static u32 bpf_ringbuf_round_up_hdr_len(u32 hdr_len) +{ + hdr_len &= ~BPF_RINGBUF_DISCARD_BIT; + return round_up(hdr_len + BPF_RINGBUF_HDR_SZ, 8); +} + +static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) +{ + unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, over_pos, flags; + struct bpf_ringbuf_hdr *hdr; + u32 len, pg_off, hdr_len; + + if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) + return NULL; + + len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); + if (len > ringbuf_total_data_sz(rb)) + return NULL; + + cons_pos = smp_load_acquire(&rb->consumer_pos); + + if (raw_res_spin_lock_irqsave(&rb->spinlock, flags)) + return NULL; + + pend_pos = rb->pending_pos; + prod_pos = rb->producer_pos; + new_prod_pos = prod_pos + len; + + while (pend_pos < prod_pos) { + hdr = (void *)rb->data + (pend_pos & rb->mask); + hdr_len = READ_ONCE(hdr->len); + if (hdr_len & BPF_RINGBUF_BUSY_BIT) + break; + pend_pos += bpf_ringbuf_round_up_hdr_len(hdr_len); + } + rb->pending_pos = pend_pos; + + if (!bpf_ringbuf_has_space(rb, new_prod_pos, cons_pos, pend_pos)) { + raw_res_spin_unlock_irqrestore(&rb->spinlock, flags); + return NULL; + } + + /* + * In overwrite mode, advance overwrite_pos when the ring buffer is full. + * The key points are to stay on record boundaries and consume enough records + * to fit the new one. + */ + if (unlikely(rb->overwrite_mode)) { + over_pos = rb->overwrite_pos; + while (new_prod_pos - over_pos > rb->mask) { + hdr = (void *)rb->data + (over_pos & rb->mask); + hdr_len = READ_ONCE(hdr->len); + /* + * The bpf_ringbuf_has_space() check above ensures we won’t + * step over a record currently being worked on by another + * producer. + */ + over_pos += bpf_ringbuf_round_up_hdr_len(hdr_len); + } + /* + * smp_store_release(&rb->producer_pos, new_prod_pos) at + * the end of the function ensures that when consumer sees + * the updated rb->producer_pos, it always sees the updated + * rb->overwrite_pos, so when consumer reads overwrite_pos + * after smp_load_acquire(r->producer_pos), the overwrite_pos + * will always be valid. + */ + WRITE_ONCE(rb->overwrite_pos, over_pos); + } + + hdr = (void *)rb->data + (prod_pos & rb->mask); + pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); + hdr->len = size | BPF_RINGBUF_BUSY_BIT; + hdr->pg_off = pg_off; + + /* pairs with consumer's smp_load_acquire() */ + smp_store_release(&rb->producer_pos, new_prod_pos); + + raw_res_spin_unlock_irqrestore(&rb->spinlock, flags); + + return (void *)hdr + BPF_RINGBUF_HDR_SZ; +} + +BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) +{ + struct bpf_ringbuf_map *rb_map; + + if (unlikely(flags)) + return 0; + + rb_map = container_of(map, struct bpf_ringbuf_map, map); + return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); +} + +const struct bpf_func_proto bpf_ringbuf_reserve_proto = { + .func = bpf_ringbuf_reserve, + .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, + .arg3_type = ARG_ANYTHING, +}; + +static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) +{ + unsigned long rec_pos, cons_pos; + struct bpf_ringbuf_hdr *hdr; + struct bpf_ringbuf *rb; + u32 new_len; + + hdr = sample - BPF_RINGBUF_HDR_SZ; + rb = bpf_ringbuf_restore_from_rec(hdr); + new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; + if (discard) + new_len |= BPF_RINGBUF_DISCARD_BIT; + + /* update record header with correct final size prefix */ + xchg(&hdr->len, new_len); + + /* if consumer caught up and is waiting for our record, notify about + * new data availability + */ + rec_pos = (void *)hdr - (void *)rb->data; + cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; + + if (flags & BPF_RB_FORCE_WAKEUP) + irq_work_queue(&rb->work); + else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) + irq_work_queue(&rb->work); +} + +BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) +{ + bpf_ringbuf_commit(sample, flags, false /* discard */); + return 0; +} + +const struct bpf_func_proto bpf_ringbuf_submit_proto = { + .func = bpf_ringbuf_submit, + .ret_type = RET_VOID, + .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, + .arg2_type = ARG_ANYTHING, +}; + +BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) +{ + bpf_ringbuf_commit(sample, flags, true /* discard */); + return 0; +} + +const struct bpf_func_proto bpf_ringbuf_discard_proto = { + .func = bpf_ringbuf_discard, + .ret_type = RET_VOID, + .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, + .arg2_type = ARG_ANYTHING, +}; + +BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, + u64, flags) +{ + struct bpf_ringbuf_map *rb_map; + void *rec; + + if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) + return -EINVAL; + + rb_map = container_of(map, struct bpf_ringbuf_map, map); + rec = __bpf_ringbuf_reserve(rb_map->rb, size); + if (!rec) + return -EAGAIN; + + memcpy(rec, data, size); + bpf_ringbuf_commit(rec, flags, false /* discard */); + return 0; +} + +const struct bpf_func_proto bpf_ringbuf_output_proto = { + .func = bpf_ringbuf_output, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, + .arg3_type = ARG_CONST_SIZE_OR_ZERO, + .arg4_type = ARG_ANYTHING, +}; + +BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) +{ + struct bpf_ringbuf *rb; + + rb = container_of(map, struct bpf_ringbuf_map, map)->rb; + + switch (flags) { + case BPF_RB_AVAIL_DATA: + return ringbuf_avail_data_sz(rb); + case BPF_RB_RING_SIZE: + return ringbuf_total_data_sz(rb); + case BPF_RB_CONS_POS: + return smp_load_acquire(&rb->consumer_pos); + case BPF_RB_PROD_POS: + return smp_load_acquire(&rb->producer_pos); + case BPF_RB_OVERWRITE_POS: + return smp_load_acquire(&rb->overwrite_pos); + default: + return 0; + } +} + +const struct bpf_func_proto bpf_ringbuf_query_proto = { + .func = bpf_ringbuf_query, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_ANYTHING, +}; + +BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags, + struct bpf_dynptr_kern *, ptr) +{ + struct bpf_ringbuf_map *rb_map; + void *sample; + int err; + + if (unlikely(flags)) { + bpf_dynptr_set_null(ptr); + return -EINVAL; + } + + err = bpf_dynptr_check_size(size); + if (err) { + bpf_dynptr_set_null(ptr); + return err; + } + + rb_map = container_of(map, struct bpf_ringbuf_map, map); + + sample = __bpf_ringbuf_reserve(rb_map->rb, size); + if (!sample) { + bpf_dynptr_set_null(ptr); + return -EINVAL; + } + + bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size); + + return 0; +} + +const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = { + .func = bpf_ringbuf_reserve_dynptr, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_ANYTHING, + .arg3_type = ARG_ANYTHING, + .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE, +}; + +BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) +{ + if (!ptr->data) + return 0; + + bpf_ringbuf_commit(ptr->data, flags, false /* discard */); + + bpf_dynptr_set_null(ptr); + + return 0; +} + +const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = { + .func = bpf_ringbuf_submit_dynptr, + .ret_type = RET_VOID, + .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, + .arg2_type = ARG_ANYTHING, +}; + +BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) +{ + if (!ptr->data) + return 0; + + bpf_ringbuf_commit(ptr->data, flags, true /* discard */); + + bpf_dynptr_set_null(ptr); + + return 0; +} + +const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = { + .func = bpf_ringbuf_discard_dynptr, + .ret_type = RET_VOID, + .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, + .arg2_type = ARG_ANYTHING, +}; + +static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size) +{ + int err; + u32 hdr_len, sample_len, total_len, flags, *hdr; + u64 cons_pos, prod_pos; + + /* Synchronizes with smp_store_release() in user-space producer. */ + prod_pos = smp_load_acquire(&rb->producer_pos); + if (prod_pos % 8) + return -EINVAL; + + /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */ + cons_pos = smp_load_acquire(&rb->consumer_pos); + if (cons_pos >= prod_pos) + return -ENODATA; + + hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask)); + /* Synchronizes with smp_store_release() in user-space producer. */ + hdr_len = smp_load_acquire(hdr); + flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT); + sample_len = hdr_len & ~flags; + total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8); + + /* The sample must fit within the region advertised by the producer position. */ + if (total_len > prod_pos - cons_pos) + return -EINVAL; + + /* The sample must fit within the data region of the ring buffer. */ + if (total_len > ringbuf_total_data_sz(rb)) + return -E2BIG; + + /* The sample must fit into a struct bpf_dynptr. */ + err = bpf_dynptr_check_size(sample_len); + if (err) + return -E2BIG; + + if (flags & BPF_RINGBUF_DISCARD_BIT) { + /* If the discard bit is set, the sample should be skipped. + * + * Update the consumer pos, and return -EAGAIN so the caller + * knows to skip this sample and try to read the next one. + */ + smp_store_release(&rb->consumer_pos, cons_pos + total_len); + return -EAGAIN; + } + + if (flags & BPF_RINGBUF_BUSY_BIT) + return -ENODATA; + + *sample = (void *)((uintptr_t)rb->data + + (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask)); + *size = sample_len; + return 0; +} + +static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags) +{ + u64 consumer_pos; + u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8); + + /* Using smp_load_acquire() is unnecessary here, as the busy-bit + * prevents another task from writing to consumer_pos after it was read + * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek(). + */ + consumer_pos = rb->consumer_pos; + /* Synchronizes with smp_load_acquire() in user-space producer. */ + smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size); +} + +BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map, + void *, callback_fn, void *, callback_ctx, u64, flags) +{ + struct bpf_ringbuf *rb; + long samples, discarded_samples = 0, ret = 0; + bpf_callback_t callback = (bpf_callback_t)callback_fn; + u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP; + int busy = 0; + + if (unlikely(flags & ~wakeup_flags)) + return -EINVAL; + + rb = container_of(map, struct bpf_ringbuf_map, map)->rb; + + /* If another consumer is already consuming a sample, wait for them to finish. */ + if (!atomic_try_cmpxchg(&rb->busy, &busy, 1)) + return -EBUSY; + + for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) { + int err; + u32 size; + void *sample; + struct bpf_dynptr_kern dynptr; + + err = __bpf_user_ringbuf_peek(rb, &sample, &size); + if (err) { + if (err == -ENODATA) { + break; + } else if (err == -EAGAIN) { + discarded_samples++; + continue; + } else { + ret = err; + goto schedule_work_return; + } + } + + bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size); + ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0); + __bpf_user_ringbuf_sample_release(rb, size, flags); + } + ret = samples - discarded_samples; + +schedule_work_return: + /* Prevent the clearing of the busy-bit from being reordered before the + * storing of any rb consumer or producer positions. + */ + atomic_set_release(&rb->busy, 0); + + if (flags & BPF_RB_FORCE_WAKEUP) + irq_work_queue(&rb->work); + else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0) + irq_work_queue(&rb->work); + return ret; +} + +const struct bpf_func_proto bpf_user_ringbuf_drain_proto = { + .func = bpf_user_ringbuf_drain, + .ret_type = RET_INTEGER, + .arg1_type = ARG_CONST_MAP_PTR, + .arg2_type = ARG_PTR_TO_FUNC, + .arg3_type = ARG_PTR_TO_STACK_OR_NULL, + .arg4_type = ARG_ANYTHING, +}; diff --git a/kernel/bpf/rqspinlock.c b/kernel/bpf/rqspinlock.c new file mode 100644 index 000000000000..f7d0c8d4644e --- /dev/null +++ b/kernel/bpf/rqspinlock.c @@ -0,0 +1,762 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Resilient Queued Spin Lock + * + * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P. + * (C) Copyright 2013-2014,2018 Red Hat, Inc. + * (C) Copyright 2015 Intel Corp. + * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP + * (C) Copyright 2024-2025 Meta Platforms, Inc. and affiliates. + * + * Authors: Waiman Long <longman@redhat.com> + * Peter Zijlstra <peterz@infradead.org> + * Kumar Kartikeya Dwivedi <memxor@gmail.com> + */ + +#include <linux/smp.h> +#include <linux/bug.h> +#include <linux/bpf.h> +#include <linux/err.h> +#include <linux/cpumask.h> +#include <linux/percpu.h> +#include <linux/hardirq.h> +#include <linux/mutex.h> +#include <linux/prefetch.h> +#include <asm/byteorder.h> +#ifdef CONFIG_QUEUED_SPINLOCKS +#include <asm/qspinlock.h> +#endif +#include <trace/events/lock.h> +#include <asm/rqspinlock.h> +#include <linux/timekeeping.h> + +/* + * Include queued spinlock definitions and statistics code + */ +#ifdef CONFIG_QUEUED_SPINLOCKS +#include "../locking/qspinlock.h" +#include "../locking/lock_events.h" +#include "rqspinlock.h" +#include "../locking/mcs_spinlock.h" +#endif + +/* + * The basic principle of a queue-based spinlock can best be understood + * by studying a classic queue-based spinlock implementation called the + * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable + * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and + * Scott") is available at + * + * https://bugzilla.kernel.org/show_bug.cgi?id=206115 + * + * This queued spinlock implementation is based on the MCS lock, however to + * make it fit the 4 bytes we assume spinlock_t to be, and preserve its + * existing API, we must modify it somehow. + * + * In particular; where the traditional MCS lock consists of a tail pointer + * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to + * unlock the next pending (next->locked), we compress both these: {tail, + * next->locked} into a single u32 value. + * + * Since a spinlock disables recursion of its own context and there is a limit + * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there + * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now + * we can encode the tail by combining the 2-bit nesting level with the cpu + * number. With one byte for the lock value and 3 bytes for the tail, only a + * 32-bit word is now needed. Even though we only need 1 bit for the lock, + * we extend it to a full byte to achieve better performance for architectures + * that support atomic byte write. + * + * We also change the first spinner to spin on the lock bit instead of its + * node; whereby avoiding the need to carry a node from lock to unlock, and + * preserving existing lock API. This also makes the unlock code simpler and + * faster. + * + * N.B. The current implementation only supports architectures that allow + * atomic operations on smaller 8-bit and 16-bit data types. + * + */ + +struct rqspinlock_timeout { + u64 timeout_end; + u64 duration; + u64 cur; + u16 spin; +}; + +#define RES_TIMEOUT_VAL 2 + +DEFINE_PER_CPU_ALIGNED(struct rqspinlock_held, rqspinlock_held_locks); +EXPORT_SYMBOL_GPL(rqspinlock_held_locks); + +static bool is_lock_released(rqspinlock_t *lock, u32 mask) +{ + if (!(atomic_read_acquire(&lock->val) & (mask))) + return true; + return false; +} + +static noinline int check_deadlock_AA(rqspinlock_t *lock) +{ + struct rqspinlock_held *rqh = this_cpu_ptr(&rqspinlock_held_locks); + int cnt = min(RES_NR_HELD, rqh->cnt); + + /* + * Return an error if we hold the lock we are attempting to acquire. + * We'll iterate over max 32 locks; no need to do is_lock_released. + */ + for (int i = 0; i < cnt - 1; i++) { + if (rqh->locks[i] == lock) + return -EDEADLK; + } + return 0; +} + +/* + * This focuses on the most common case of ABBA deadlocks (or ABBA involving + * more locks, which reduce to ABBA). This is not exhaustive, and we rely on + * timeouts as the final line of defense. + */ +static noinline int check_deadlock_ABBA(rqspinlock_t *lock, u32 mask) +{ + struct rqspinlock_held *rqh = this_cpu_ptr(&rqspinlock_held_locks); + int rqh_cnt = min(RES_NR_HELD, rqh->cnt); + void *remote_lock; + int cpu; + + /* + * Find the CPU holding the lock that we want to acquire. If there is a + * deadlock scenario, we will read a stable set on the remote CPU and + * find the target. This would be a constant time operation instead of + * O(NR_CPUS) if we could determine the owning CPU from a lock value, but + * that requires increasing the size of the lock word. + */ + for_each_possible_cpu(cpu) { + struct rqspinlock_held *rqh_cpu = per_cpu_ptr(&rqspinlock_held_locks, cpu); + int real_cnt = READ_ONCE(rqh_cpu->cnt); + int cnt = min(RES_NR_HELD, real_cnt); + + /* + * Let's ensure to break out of this loop if the lock is available for + * us to potentially acquire. + */ + if (is_lock_released(lock, mask)) + return 0; + + /* + * Skip ourselves, and CPUs whose count is less than 2, as they need at + * least one held lock and one acquisition attempt (reflected as top + * most entry) to participate in an ABBA deadlock. + * + * If cnt is more than RES_NR_HELD, it means the current lock being + * acquired won't appear in the table, and other locks in the table are + * already held, so we can't determine ABBA. + */ + if (cpu == smp_processor_id() || real_cnt < 2 || real_cnt > RES_NR_HELD) + continue; + + /* + * Obtain the entry at the top, this corresponds to the lock the + * remote CPU is attempting to acquire in a deadlock situation, + * and would be one of the locks we hold on the current CPU. + */ + remote_lock = READ_ONCE(rqh_cpu->locks[cnt - 1]); + /* + * If it is NULL, we've raced and cannot determine a deadlock + * conclusively, skip this CPU. + */ + if (!remote_lock) + continue; + /* + * Find if the lock we're attempting to acquire is held by this CPU. + * Don't consider the topmost entry, as that must be the latest lock + * being held or acquired. For a deadlock, the target CPU must also + * attempt to acquire a lock we hold, so for this search only 'cnt - 1' + * entries are important. + */ + for (int i = 0; i < cnt - 1; i++) { + if (READ_ONCE(rqh_cpu->locks[i]) != lock) + continue; + /* + * We found our lock as held on the remote CPU. Is the + * acquisition attempt on the remote CPU for a lock held + * by us? If so, we have a deadlock situation, and need + * to recover. + */ + for (int i = 0; i < rqh_cnt - 1; i++) { + if (rqh->locks[i] == remote_lock) + return -EDEADLK; + } + /* + * Inconclusive; retry again later. + */ + return 0; + } + } + return 0; +} + +static noinline int check_timeout(rqspinlock_t *lock, u32 mask, + struct rqspinlock_timeout *ts) +{ + u64 prev = ts->cur; + u64 time; + + if (!ts->timeout_end) { + if (check_deadlock_AA(lock)) + return -EDEADLK; + ts->cur = ktime_get_mono_fast_ns(); + ts->timeout_end = ts->cur + ts->duration; + return 0; + } + + time = ktime_get_mono_fast_ns(); + if (time > ts->timeout_end) + return -ETIMEDOUT; + + /* + * A millisecond interval passed from last time? Trigger deadlock + * checks. + */ + if (prev + NSEC_PER_MSEC < time) { + ts->cur = time; + return check_deadlock_ABBA(lock, mask); + } + + return 0; +} + +/* + * Do not amortize with spins when res_smp_cond_load_acquire is defined, + * as the macro does internal amortization for us. + */ +#ifndef res_smp_cond_load_acquire +#define RES_CHECK_TIMEOUT(ts, ret, mask) \ + ({ \ + if (!(ts).spin++) \ + (ret) = check_timeout((lock), (mask), &(ts)); \ + (ret); \ + }) +#else +#define RES_CHECK_TIMEOUT(ts, ret, mask) \ + ({ (ret) = check_timeout((lock), (mask), &(ts)); }) +#endif + +/* + * Initialize the 'spin' member. + * Set spin member to 0 to trigger AA/ABBA checks immediately. + */ +#define RES_INIT_TIMEOUT(ts) ({ (ts).spin = 0; }) + +/* + * We only need to reset 'timeout_end', 'spin' will just wrap around as necessary. + * Duration is defined for each spin attempt, so set it here. + */ +#define RES_RESET_TIMEOUT(ts, _duration) ({ (ts).timeout_end = 0; (ts).duration = _duration; }) + +/* + * Provide a test-and-set fallback for cases when queued spin lock support is + * absent from the architecture. + */ +int __lockfunc resilient_tas_spin_lock(rqspinlock_t *lock) +{ + struct rqspinlock_timeout ts; + int val, ret = 0; + + RES_INIT_TIMEOUT(ts); + /* + * The fast path is not invoked for the TAS fallback, so we must grab + * the deadlock detection entry here. + */ + grab_held_lock_entry(lock); + + /* + * Since the waiting loop's time is dependent on the amount of + * contention, a short timeout unlike rqspinlock waiting loops + * isn't enough. Choose a second as the timeout value. + */ + RES_RESET_TIMEOUT(ts, NSEC_PER_SEC); +retry: + val = atomic_read(&lock->val); + + if (val || !atomic_try_cmpxchg(&lock->val, &val, 1)) { + if (RES_CHECK_TIMEOUT(ts, ret, ~0u)) + goto out; + cpu_relax(); + goto retry; + } + + return 0; +out: + release_held_lock_entry(); + return ret; +} +EXPORT_SYMBOL_GPL(resilient_tas_spin_lock); + +#ifdef CONFIG_QUEUED_SPINLOCKS + +/* + * Per-CPU queue node structures; we can never have more than 4 nested + * contexts: task, softirq, hardirq, nmi. + * + * Exactly fits one 64-byte cacheline on a 64-bit architecture. + */ +static DEFINE_PER_CPU_ALIGNED(struct qnode, rqnodes[_Q_MAX_NODES]); + +#ifndef res_smp_cond_load_acquire +#define res_smp_cond_load_acquire(v, c) smp_cond_load_acquire(v, c) +#endif + +#define res_atomic_cond_read_acquire(v, c) res_smp_cond_load_acquire(&(v)->counter, (c)) + +/** + * resilient_queued_spin_lock_slowpath - acquire the queued spinlock + * @lock: Pointer to queued spinlock structure + * @val: Current value of the queued spinlock 32-bit word + * + * Return: + * * 0 - Lock was acquired successfully. + * * -EDEADLK - Lock acquisition failed because of AA/ABBA deadlock. + * * -ETIMEDOUT - Lock acquisition failed because of timeout. + * + * (queue tail, pending bit, lock value) + * + * fast : slow : unlock + * : : + * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0) + * : | ^--------.------. / : + * : v \ \ | : + * pending : (0,1,1) +--> (0,1,0) \ | : + * : | ^--' | | : + * : v | | : + * uncontended : (n,x,y) +--> (n,0,0) --' | : + * queue : | ^--' | : + * : v | : + * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' : + * queue : ^--' : + */ +int __lockfunc resilient_queued_spin_lock_slowpath(rqspinlock_t *lock, u32 val) +{ + struct mcs_spinlock *prev, *next, *node; + struct rqspinlock_timeout ts; + int idx, ret = 0; + u32 old, tail; + + BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS)); + + if (resilient_virt_spin_lock_enabled()) + return resilient_virt_spin_lock(lock); + + RES_INIT_TIMEOUT(ts); + + /* + * Wait for in-progress pending->locked hand-overs with a bounded + * number of spins so that we guarantee forward progress. + * + * 0,1,0 -> 0,0,1 + */ + if (val == _Q_PENDING_VAL) { + int cnt = _Q_PENDING_LOOPS; + val = atomic_cond_read_relaxed(&lock->val, + (VAL != _Q_PENDING_VAL) || !cnt--); + } + + /* + * If we observe any contention; queue. + */ + if (val & ~_Q_LOCKED_MASK) + goto queue; + + /* + * trylock || pending + * + * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock + */ + val = queued_fetch_set_pending_acquire(lock); + + /* + * If we observe contention, there is a concurrent locker. + * + * Undo and queue; our setting of PENDING might have made the + * n,0,0 -> 0,0,0 transition fail and it will now be waiting + * on @next to become !NULL. + */ + if (unlikely(val & ~_Q_LOCKED_MASK)) { + + /* Undo PENDING if we set it. */ + if (!(val & _Q_PENDING_MASK)) + clear_pending(lock); + + goto queue; + } + + /* Deadlock detection entry already held after failing fast path. */ + + /* + * We're pending, wait for the owner to go away. + * + * 0,1,1 -> *,1,0 + * + * this wait loop must be a load-acquire such that we match the + * store-release that clears the locked bit and create lock + * sequentiality; this is because not all + * clear_pending_set_locked() implementations imply full + * barriers. + */ + if (val & _Q_LOCKED_MASK) { + RES_RESET_TIMEOUT(ts, RES_DEF_TIMEOUT); + res_smp_cond_load_acquire(&lock->locked, !VAL || RES_CHECK_TIMEOUT(ts, ret, _Q_LOCKED_MASK)); + } + + if (ret) { + /* + * We waited for the locked bit to go back to 0, as the pending + * waiter, but timed out. We need to clear the pending bit since + * we own it. Once a stuck owner has been recovered, the lock + * must be restored to a valid state, hence removing the pending + * bit is necessary. + * + * *,1,* -> *,0,* + */ + clear_pending(lock); + lockevent_inc(rqspinlock_lock_timeout); + goto err_release_entry; + } + + /* + * take ownership and clear the pending bit. + * + * 0,1,0 -> 0,0,1 + */ + clear_pending_set_locked(lock); + lockevent_inc(lock_pending); + return 0; + + /* + * End of pending bit optimistic spinning and beginning of MCS + * queuing. + */ +queue: + /* + * Do not queue if we're a waiter and someone is attempting this lock on + * the same CPU. In case of NMIs, this prevents long timeouts where we + * interrupt the pending waiter, and the owner, that will eventually + * signal the head of our queue, both of which are logically but not + * physically part of the queue, hence outside the scope of the idx > 0 + * check above for the trylock fallback. + */ + if (check_deadlock_AA(lock)) { + ret = -EDEADLK; + goto err_release_entry; + } + + lockevent_inc(lock_slowpath); + /* Deadlock detection entry already held after failing fast path. */ + node = this_cpu_ptr(&rqnodes[0].mcs); + idx = node->count++; + tail = encode_tail(smp_processor_id(), idx); + + trace_contention_begin(lock, LCB_F_SPIN); + + /* + * 4 nodes are allocated based on the assumption that there will + * not be nested NMIs taking spinlocks. That may not be true in + * some architectures even though the chance of needing more than + * 4 nodes will still be extremely unlikely. When that happens, + * we fall back to attempting a trylock operation without using + * any MCS node. Unlike qspinlock which cannot fail, we have the + * option of failing the slow path, and under contention, such a + * trylock spinning will likely be treated unfairly due to lack of + * queueing, hence do not spin. + */ + if (unlikely(idx >= _Q_MAX_NODES || (in_nmi() && idx > 0))) { + lockevent_inc(lock_no_node); + if (!queued_spin_trylock(lock)) { + ret = -EDEADLK; + goto err_release_node; + } + goto release; + } + + node = grab_mcs_node(node, idx); + + /* + * Keep counts of non-zero index values: + */ + lockevent_cond_inc(lock_use_node2 + idx - 1, idx); + + /* + * Ensure that we increment the head node->count before initialising + * the actual node. If the compiler is kind enough to reorder these + * stores, then an IRQ could overwrite our assignments. + */ + barrier(); + + node->locked = 0; + node->next = NULL; + + /* + * We touched a (possibly) cold cacheline in the per-cpu queue node; + * attempt the trylock once more in the hope someone let go while we + * weren't watching. + */ + if (queued_spin_trylock(lock)) + goto release; + + /* + * Ensure that the initialisation of @node is complete before we + * publish the updated tail via xchg_tail() and potentially link + * @node into the waitqueue via WRITE_ONCE(prev->next, node) below. + */ + smp_wmb(); + + /* + * Publish the updated tail. + * We have already touched the queueing cacheline; don't bother with + * pending stuff. + * + * p,*,* -> n,*,* + */ + old = xchg_tail(lock, tail); + next = NULL; + + /* + * if there was a previous node; link it and wait until reaching the + * head of the waitqueue. + */ + if (old & _Q_TAIL_MASK) { + int val; + + prev = decode_tail(old, rqnodes); + + /* Link @node into the waitqueue. */ + WRITE_ONCE(prev->next, node); + + val = arch_mcs_spin_lock_contended(&node->locked); + if (val == RES_TIMEOUT_VAL) { + ret = -ETIMEDOUT; + goto waitq_timeout; + } + + /* + * While waiting for the MCS lock, the next pointer may have + * been set by another lock waiter. We optimistically load + * the next pointer & prefetch the cacheline for writing + * to reduce latency in the upcoming MCS unlock operation. + */ + next = READ_ONCE(node->next); + if (next) + prefetchw(next); + } + + /* + * we're at the head of the waitqueue, wait for the owner & pending to + * go away. + * + * *,x,y -> *,0,0 + * + * this wait loop must use a load-acquire such that we match the + * store-release that clears the locked bit and create lock + * sequentiality; this is because the set_locked() function below + * does not imply a full barrier. + * + * We use RES_DEF_TIMEOUT * 2 as the duration, as RES_DEF_TIMEOUT is + * meant to span maximum allowed time per critical section, and we may + * have both the owner of the lock and the pending bit waiter ahead of + * us. + */ + RES_RESET_TIMEOUT(ts, RES_DEF_TIMEOUT * 2); + val = res_atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK) || + RES_CHECK_TIMEOUT(ts, ret, _Q_LOCKED_PENDING_MASK)); + + /* Disable queue destruction when we detect deadlocks. */ + if (ret == -EDEADLK) { + if (!next) + next = smp_cond_load_relaxed(&node->next, (VAL)); + arch_mcs_spin_unlock_contended(&next->locked); + goto err_release_node; + } + +waitq_timeout: + if (ret) { + /* + * If the tail is still pointing to us, then we are the final waiter, + * and are responsible for resetting the tail back to 0. Otherwise, if + * the cmpxchg operation fails, we signal the next waiter to take exit + * and try the same. For a waiter with tail node 'n': + * + * n,*,* -> 0,*,* + * + * When performing cmpxchg for the whole word (NR_CPUS > 16k), it is + * possible locked/pending bits keep changing and we see failures even + * when we remain the head of wait queue. However, eventually, + * pending bit owner will unset the pending bit, and new waiters + * will queue behind us. This will leave the lock owner in + * charge, and it will eventually either set locked bit to 0, or + * leave it as 1, allowing us to make progress. + * + * We terminate the whole wait queue for two reasons. Firstly, + * we eschew per-waiter timeouts with one applied at the head of + * the wait queue. This allows everyone to break out faster + * once we've seen the owner / pending waiter not responding for + * the timeout duration from the head. Secondly, it avoids + * complicated synchronization, because when not leaving in FIFO + * order, prev's next pointer needs to be fixed up etc. + */ + if (!try_cmpxchg_tail(lock, tail, 0)) { + next = smp_cond_load_relaxed(&node->next, VAL); + WRITE_ONCE(next->locked, RES_TIMEOUT_VAL); + } + lockevent_inc(rqspinlock_lock_timeout); + goto err_release_node; + } + + /* + * claim the lock: + * + * n,0,0 -> 0,0,1 : lock, uncontended + * *,*,0 -> *,*,1 : lock, contended + * + * If the queue head is the only one in the queue (lock value == tail) + * and nobody is pending, clear the tail code and grab the lock. + * Otherwise, we only need to grab the lock. + */ + + /* + * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the + * above wait condition, therefore any concurrent setting of + * PENDING will make the uncontended transition fail. + */ + if ((val & _Q_TAIL_MASK) == tail) { + if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL)) + goto release; /* No contention */ + } + + /* + * Either somebody is queued behind us or _Q_PENDING_VAL got set + * which will then detect the remaining tail and queue behind us + * ensuring we'll see a @next. + */ + set_locked(lock); + + /* + * contended path; wait for next if not observed yet, release. + */ + if (!next) + next = smp_cond_load_relaxed(&node->next, (VAL)); + + arch_mcs_spin_unlock_contended(&next->locked); + +release: + trace_contention_end(lock, 0); + + /* + * release the node + */ + __this_cpu_dec(rqnodes[0].mcs.count); + return ret; +err_release_node: + trace_contention_end(lock, ret); + __this_cpu_dec(rqnodes[0].mcs.count); +err_release_entry: + release_held_lock_entry(); + return ret; +} +EXPORT_SYMBOL_GPL(resilient_queued_spin_lock_slowpath); + +#endif /* CONFIG_QUEUED_SPINLOCKS */ + +__bpf_kfunc_start_defs(); + +static void bpf_prog_report_rqspinlock_violation(const char *str, void *lock, bool irqsave) +{ + struct rqspinlock_held *rqh = this_cpu_ptr(&rqspinlock_held_locks); + struct bpf_stream_stage ss; + struct bpf_prog *prog; + + prog = bpf_prog_find_from_stack(); + if (!prog) + return; + bpf_stream_stage(ss, prog, BPF_STDERR, ({ + bpf_stream_printk(ss, "ERROR: %s for bpf_res_spin_lock%s\n", str, irqsave ? "_irqsave" : ""); + bpf_stream_printk(ss, "Attempted lock = 0x%px\n", lock); + bpf_stream_printk(ss, "Total held locks = %d\n", rqh->cnt); + for (int i = 0; i < min(RES_NR_HELD, rqh->cnt); i++) + bpf_stream_printk(ss, "Held lock[%2d] = 0x%px\n", i, rqh->locks[i]); + bpf_stream_dump_stack(ss); + })); +} + +#define REPORT_STR(ret) ({ (ret) == -ETIMEDOUT ? "Timeout detected" : "AA or ABBA deadlock detected"; }) + +__bpf_kfunc int bpf_res_spin_lock(struct bpf_res_spin_lock *lock) +{ + int ret; + + BUILD_BUG_ON(sizeof(rqspinlock_t) != sizeof(struct bpf_res_spin_lock)); + BUILD_BUG_ON(__alignof__(rqspinlock_t) != __alignof__(struct bpf_res_spin_lock)); + + preempt_disable(); + ret = res_spin_lock((rqspinlock_t *)lock); + if (unlikely(ret)) { + bpf_prog_report_rqspinlock_violation(REPORT_STR(ret), lock, false); + preempt_enable(); + return ret; + } + return 0; +} + +__bpf_kfunc void bpf_res_spin_unlock(struct bpf_res_spin_lock *lock) +{ + res_spin_unlock((rqspinlock_t *)lock); + preempt_enable(); +} + +__bpf_kfunc int bpf_res_spin_lock_irqsave(struct bpf_res_spin_lock *lock, unsigned long *flags__irq_flag) +{ + u64 *ptr = (u64 *)flags__irq_flag; + unsigned long flags; + int ret; + + preempt_disable(); + local_irq_save(flags); + ret = res_spin_lock((rqspinlock_t *)lock); + if (unlikely(ret)) { + bpf_prog_report_rqspinlock_violation(REPORT_STR(ret), lock, true); + local_irq_restore(flags); + preempt_enable(); + return ret; + } + *ptr = flags; + return 0; +} + +__bpf_kfunc void bpf_res_spin_unlock_irqrestore(struct bpf_res_spin_lock *lock, unsigned long *flags__irq_flag) +{ + u64 *ptr = (u64 *)flags__irq_flag; + unsigned long flags = *ptr; + + res_spin_unlock((rqspinlock_t *)lock); + local_irq_restore(flags); + preempt_enable(); +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(rqspinlock_kfunc_ids) +BTF_ID_FLAGS(func, bpf_res_spin_lock, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_res_spin_unlock) +BTF_ID_FLAGS(func, bpf_res_spin_lock_irqsave, KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_res_spin_unlock_irqrestore) +BTF_KFUNCS_END(rqspinlock_kfunc_ids) + +static const struct btf_kfunc_id_set rqspinlock_kfunc_set = { + .owner = THIS_MODULE, + .set = &rqspinlock_kfunc_ids, +}; + +static __init int rqspinlock_register_kfuncs(void) +{ + return register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &rqspinlock_kfunc_set); +} +late_initcall(rqspinlock_register_kfuncs); diff --git a/kernel/bpf/rqspinlock.h b/kernel/bpf/rqspinlock.h new file mode 100644 index 000000000000..5d8cb1b1aab4 --- /dev/null +++ b/kernel/bpf/rqspinlock.h @@ -0,0 +1,48 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Resilient Queued Spin Lock defines + * + * (C) Copyright 2024-2025 Meta Platforms, Inc. and affiliates. + * + * Authors: Kumar Kartikeya Dwivedi <memxor@gmail.com> + */ +#ifndef __LINUX_RQSPINLOCK_H +#define __LINUX_RQSPINLOCK_H + +#include "../locking/qspinlock.h" + +/* + * try_cmpxchg_tail - Return result of cmpxchg of tail word with a new value + * @lock: Pointer to queued spinlock structure + * @tail: The tail to compare against + * @new_tail: The new queue tail code word + * Return: Bool to indicate whether the cmpxchg operation succeeded + * + * This is used by the head of the wait queue to clean up the queue. + * Provides relaxed ordering, since observers only rely on initialized + * state of the node which was made visible through the xchg_tail operation, + * i.e. through the smp_wmb preceding xchg_tail. + * + * We avoid using 16-bit cmpxchg, which is not available on all architectures. + */ +static __always_inline bool try_cmpxchg_tail(struct qspinlock *lock, u32 tail, u32 new_tail) +{ + u32 old, new; + + old = atomic_read(&lock->val); + do { + /* + * Is the tail part we compare to already stale? Fail. + */ + if ((old & _Q_TAIL_MASK) != tail) + return false; + /* + * Encode latest locked/pending state for new tail. + */ + new = (old & _Q_LOCKED_PENDING_MASK) | new_tail; + } while (!atomic_try_cmpxchg_relaxed(&lock->val, &old, new)); + + return true; +} + +#endif /* __LINUX_RQSPINLOCK_H */ diff --git a/kernel/bpf/stackmap.c b/kernel/bpf/stackmap.c new file mode 100644 index 000000000000..da3d328f5c15 --- /dev/null +++ b/kernel/bpf/stackmap.c @@ -0,0 +1,792 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2016 Facebook + */ +#include <linux/bpf.h> +#include <linux/jhash.h> +#include <linux/filter.h> +#include <linux/kernel.h> +#include <linux/stacktrace.h> +#include <linux/perf_event.h> +#include <linux/btf_ids.h> +#include <linux/buildid.h> +#include "percpu_freelist.h" +#include "mmap_unlock_work.h" + +#define STACK_CREATE_FLAG_MASK \ + (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY | \ + BPF_F_STACK_BUILD_ID) + +struct stack_map_bucket { + struct pcpu_freelist_node fnode; + u32 hash; + u32 nr; + u64 data[]; +}; + +struct bpf_stack_map { + struct bpf_map map; + void *elems; + struct pcpu_freelist freelist; + u32 n_buckets; + struct stack_map_bucket *buckets[] __counted_by(n_buckets); +}; + +static inline bool stack_map_use_build_id(struct bpf_map *map) +{ + return (map->map_flags & BPF_F_STACK_BUILD_ID); +} + +static inline int stack_map_data_size(struct bpf_map *map) +{ + return stack_map_use_build_id(map) ? + sizeof(struct bpf_stack_build_id) : sizeof(u64); +} + +/** + * stack_map_calculate_max_depth - Calculate maximum allowed stack trace depth + * @size: Size of the buffer/map value in bytes + * @elem_size: Size of each stack trace element + * @flags: BPF stack trace flags (BPF_F_USER_STACK, BPF_F_USER_BUILD_ID, ...) + * + * Return: Maximum number of stack trace entries that can be safely stored + */ +static u32 stack_map_calculate_max_depth(u32 size, u32 elem_size, u64 flags) +{ + u32 skip = flags & BPF_F_SKIP_FIELD_MASK; + u32 max_depth; + u32 curr_sysctl_max_stack = READ_ONCE(sysctl_perf_event_max_stack); + + max_depth = size / elem_size; + max_depth += skip; + if (max_depth > curr_sysctl_max_stack) + return curr_sysctl_max_stack; + + return max_depth; +} + +static int prealloc_elems_and_freelist(struct bpf_stack_map *smap) +{ + u64 elem_size = sizeof(struct stack_map_bucket) + + (u64)smap->map.value_size; + int err; + + smap->elems = bpf_map_area_alloc(elem_size * smap->map.max_entries, + smap->map.numa_node); + if (!smap->elems) + return -ENOMEM; + + err = pcpu_freelist_init(&smap->freelist); + if (err) + goto free_elems; + + pcpu_freelist_populate(&smap->freelist, smap->elems, elem_size, + smap->map.max_entries); + return 0; + +free_elems: + bpf_map_area_free(smap->elems); + return err; +} + +/* Called from syscall */ +static struct bpf_map *stack_map_alloc(union bpf_attr *attr) +{ + u32 value_size = attr->value_size; + struct bpf_stack_map *smap; + u64 cost, n_buckets; + int err; + + if (attr->map_flags & ~STACK_CREATE_FLAG_MASK) + return ERR_PTR(-EINVAL); + + /* check sanity of attributes */ + if (attr->max_entries == 0 || attr->key_size != 4 || + value_size < 8 || value_size % 8) + return ERR_PTR(-EINVAL); + + BUILD_BUG_ON(sizeof(struct bpf_stack_build_id) % sizeof(u64)); + if (attr->map_flags & BPF_F_STACK_BUILD_ID) { + if (value_size % sizeof(struct bpf_stack_build_id) || + value_size / sizeof(struct bpf_stack_build_id) + > sysctl_perf_event_max_stack) + return ERR_PTR(-EINVAL); + } else if (value_size / 8 > sysctl_perf_event_max_stack) + return ERR_PTR(-EINVAL); + + /* hash table size must be power of 2; roundup_pow_of_two() can overflow + * into UB on 32-bit arches, so check that first + */ + if (attr->max_entries > 1UL << 31) + return ERR_PTR(-E2BIG); + + n_buckets = roundup_pow_of_two(attr->max_entries); + + cost = n_buckets * sizeof(struct stack_map_bucket *) + sizeof(*smap); + smap = bpf_map_area_alloc(cost, bpf_map_attr_numa_node(attr)); + if (!smap) + return ERR_PTR(-ENOMEM); + + bpf_map_init_from_attr(&smap->map, attr); + smap->n_buckets = n_buckets; + + err = get_callchain_buffers(sysctl_perf_event_max_stack); + if (err) + goto free_smap; + + err = prealloc_elems_and_freelist(smap); + if (err) + goto put_buffers; + + return &smap->map; + +put_buffers: + put_callchain_buffers(); +free_smap: + bpf_map_area_free(smap); + return ERR_PTR(err); +} + +static int fetch_build_id(struct vm_area_struct *vma, unsigned char *build_id, bool may_fault) +{ + return may_fault ? build_id_parse(vma, build_id, NULL) + : build_id_parse_nofault(vma, build_id, NULL); +} + +/* + * Expects all id_offs[i].ip values to be set to correct initial IPs. + * They will be subsequently: + * - either adjusted in place to a file offset, if build ID fetching + * succeeds; in this case id_offs[i].build_id is set to correct build ID, + * and id_offs[i].status is set to BPF_STACK_BUILD_ID_VALID; + * - or IP will be kept intact, if build ID fetching failed; in this case + * id_offs[i].build_id is zeroed out and id_offs[i].status is set to + * BPF_STACK_BUILD_ID_IP. + */ +static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs, + u32 trace_nr, bool user, bool may_fault) +{ + int i; + struct mmap_unlock_irq_work *work = NULL; + bool irq_work_busy = bpf_mmap_unlock_get_irq_work(&work); + struct vm_area_struct *vma, *prev_vma = NULL; + const char *prev_build_id; + + /* If the irq_work is in use, fall back to report ips. Same + * fallback is used for kernel stack (!user) on a stackmap with + * build_id. + */ + if (!user || !current || !current->mm || irq_work_busy || + !mmap_read_trylock(current->mm)) { + /* cannot access current->mm, fall back to ips */ + for (i = 0; i < trace_nr; i++) { + id_offs[i].status = BPF_STACK_BUILD_ID_IP; + memset(id_offs[i].build_id, 0, BUILD_ID_SIZE_MAX); + } + return; + } + + for (i = 0; i < trace_nr; i++) { + u64 ip = READ_ONCE(id_offs[i].ip); + + if (range_in_vma(prev_vma, ip, ip)) { + vma = prev_vma; + memcpy(id_offs[i].build_id, prev_build_id, BUILD_ID_SIZE_MAX); + goto build_id_valid; + } + vma = find_vma(current->mm, ip); + if (!vma || fetch_build_id(vma, id_offs[i].build_id, may_fault)) { + /* per entry fall back to ips */ + id_offs[i].status = BPF_STACK_BUILD_ID_IP; + memset(id_offs[i].build_id, 0, BUILD_ID_SIZE_MAX); + continue; + } +build_id_valid: + id_offs[i].offset = (vma->vm_pgoff << PAGE_SHIFT) + ip - vma->vm_start; + id_offs[i].status = BPF_STACK_BUILD_ID_VALID; + prev_vma = vma; + prev_build_id = id_offs[i].build_id; + } + bpf_mmap_unlock_mm(work, current->mm); +} + +static struct perf_callchain_entry * +get_callchain_entry_for_task(struct task_struct *task, u32 max_depth) +{ +#ifdef CONFIG_STACKTRACE + struct perf_callchain_entry *entry; + int rctx; + + entry = get_callchain_entry(&rctx); + + if (!entry) + return NULL; + + entry->nr = stack_trace_save_tsk(task, (unsigned long *)entry->ip, + max_depth, 0); + + /* stack_trace_save_tsk() works on unsigned long array, while + * perf_callchain_entry uses u64 array. For 32-bit systems, it is + * necessary to fix this mismatch. + */ + if (__BITS_PER_LONG != 64) { + unsigned long *from = (unsigned long *) entry->ip; + u64 *to = entry->ip; + int i; + + /* copy data from the end to avoid using extra buffer */ + for (i = entry->nr - 1; i >= 0; i--) + to[i] = (u64)(from[i]); + } + + put_callchain_entry(rctx); + + return entry; +#else /* CONFIG_STACKTRACE */ + return NULL; +#endif +} + +static long __bpf_get_stackid(struct bpf_map *map, + struct perf_callchain_entry *trace, u64 flags) +{ + struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); + struct stack_map_bucket *bucket, *new_bucket, *old_bucket; + u32 hash, id, trace_nr, trace_len, i, max_depth; + u32 skip = flags & BPF_F_SKIP_FIELD_MASK; + bool user = flags & BPF_F_USER_STACK; + u64 *ips; + bool hash_matches; + + if (trace->nr <= skip) + /* skipping more than usable stack trace */ + return -EFAULT; + + max_depth = stack_map_calculate_max_depth(map->value_size, stack_map_data_size(map), flags); + trace_nr = min_t(u32, trace->nr - skip, max_depth - skip); + trace_len = trace_nr * sizeof(u64); + ips = trace->ip + skip; + hash = jhash2((u32 *)ips, trace_len / sizeof(u32), 0); + id = hash & (smap->n_buckets - 1); + bucket = READ_ONCE(smap->buckets[id]); + + hash_matches = bucket && bucket->hash == hash; + /* fast cmp */ + if (hash_matches && flags & BPF_F_FAST_STACK_CMP) + return id; + + if (stack_map_use_build_id(map)) { + struct bpf_stack_build_id *id_offs; + + /* for build_id+offset, pop a bucket before slow cmp */ + new_bucket = (struct stack_map_bucket *) + pcpu_freelist_pop(&smap->freelist); + if (unlikely(!new_bucket)) + return -ENOMEM; + new_bucket->nr = trace_nr; + id_offs = (struct bpf_stack_build_id *)new_bucket->data; + for (i = 0; i < trace_nr; i++) + id_offs[i].ip = ips[i]; + stack_map_get_build_id_offset(id_offs, trace_nr, user, false /* !may_fault */); + trace_len = trace_nr * sizeof(struct bpf_stack_build_id); + if (hash_matches && bucket->nr == trace_nr && + memcmp(bucket->data, new_bucket->data, trace_len) == 0) { + pcpu_freelist_push(&smap->freelist, &new_bucket->fnode); + return id; + } + if (bucket && !(flags & BPF_F_REUSE_STACKID)) { + pcpu_freelist_push(&smap->freelist, &new_bucket->fnode); + return -EEXIST; + } + } else { + if (hash_matches && bucket->nr == trace_nr && + memcmp(bucket->data, ips, trace_len) == 0) + return id; + if (bucket && !(flags & BPF_F_REUSE_STACKID)) + return -EEXIST; + + new_bucket = (struct stack_map_bucket *) + pcpu_freelist_pop(&smap->freelist); + if (unlikely(!new_bucket)) + return -ENOMEM; + memcpy(new_bucket->data, ips, trace_len); + } + + new_bucket->hash = hash; + new_bucket->nr = trace_nr; + + old_bucket = xchg(&smap->buckets[id], new_bucket); + if (old_bucket) + pcpu_freelist_push(&smap->freelist, &old_bucket->fnode); + return id; +} + +BPF_CALL_3(bpf_get_stackid, struct pt_regs *, regs, struct bpf_map *, map, + u64, flags) +{ + u32 elem_size = stack_map_data_size(map); + bool user = flags & BPF_F_USER_STACK; + struct perf_callchain_entry *trace; + bool kernel = !user; + u32 max_depth; + + if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK | + BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID))) + return -EINVAL; + + max_depth = stack_map_calculate_max_depth(map->value_size, elem_size, flags); + trace = get_perf_callchain(regs, kernel, user, max_depth, + false, false, 0); + + if (unlikely(!trace)) + /* couldn't fetch the stack trace */ + return -EFAULT; + + return __bpf_get_stackid(map, trace, flags); +} + +const struct bpf_func_proto bpf_get_stackid_proto = { + .func = bpf_get_stackid, + .gpl_only = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_CTX, + .arg2_type = ARG_CONST_MAP_PTR, + .arg3_type = ARG_ANYTHING, +}; + +static __u64 count_kernel_ip(struct perf_callchain_entry *trace) +{ + __u64 nr_kernel = 0; + + while (nr_kernel < trace->nr) { + if (trace->ip[nr_kernel] == PERF_CONTEXT_USER) + break; + nr_kernel++; + } + return nr_kernel; +} + +BPF_CALL_3(bpf_get_stackid_pe, struct bpf_perf_event_data_kern *, ctx, + struct bpf_map *, map, u64, flags) +{ + struct perf_event *event = ctx->event; + struct perf_callchain_entry *trace; + bool kernel, user; + __u64 nr_kernel; + int ret; + + /* perf_sample_data doesn't have callchain, use bpf_get_stackid */ + if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) + return bpf_get_stackid((unsigned long)(ctx->regs), + (unsigned long) map, flags, 0, 0); + + if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK | + BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID))) + return -EINVAL; + + user = flags & BPF_F_USER_STACK; + kernel = !user; + + trace = ctx->data->callchain; + if (unlikely(!trace)) + return -EFAULT; + + nr_kernel = count_kernel_ip(trace); + __u64 nr = trace->nr; /* save original */ + + if (kernel) { + trace->nr = nr_kernel; + ret = __bpf_get_stackid(map, trace, flags); + } else { /* user */ + u64 skip = flags & BPF_F_SKIP_FIELD_MASK; + + skip += nr_kernel; + if (skip > BPF_F_SKIP_FIELD_MASK) + return -EFAULT; + + flags = (flags & ~BPF_F_SKIP_FIELD_MASK) | skip; + ret = __bpf_get_stackid(map, trace, flags); + } + + /* restore nr */ + trace->nr = nr; + + return ret; +} + +const struct bpf_func_proto bpf_get_stackid_proto_pe = { + .func = bpf_get_stackid_pe, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_CTX, + .arg2_type = ARG_CONST_MAP_PTR, + .arg3_type = ARG_ANYTHING, +}; + +static long __bpf_get_stack(struct pt_regs *regs, struct task_struct *task, + struct perf_callchain_entry *trace_in, + void *buf, u32 size, u64 flags, bool may_fault) +{ + u32 trace_nr, copy_len, elem_size, max_depth; + bool user_build_id = flags & BPF_F_USER_BUILD_ID; + bool crosstask = task && task != current; + u32 skip = flags & BPF_F_SKIP_FIELD_MASK; + bool user = flags & BPF_F_USER_STACK; + struct perf_callchain_entry *trace; + bool kernel = !user; + int err = -EINVAL; + u64 *ips; + + if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK | + BPF_F_USER_BUILD_ID))) + goto clear; + if (kernel && user_build_id) + goto clear; + + elem_size = user_build_id ? sizeof(struct bpf_stack_build_id) : sizeof(u64); + if (unlikely(size % elem_size)) + goto clear; + + /* cannot get valid user stack for task without user_mode regs */ + if (task && user && !user_mode(regs)) + goto err_fault; + + /* get_perf_callchain does not support crosstask user stack walking + * but returns an empty stack instead of NULL. + */ + if (crosstask && user) { + err = -EOPNOTSUPP; + goto clear; + } + + max_depth = stack_map_calculate_max_depth(size, elem_size, flags); + + if (may_fault) + rcu_read_lock(); /* need RCU for perf's callchain below */ + + if (trace_in) { + trace = trace_in; + trace->nr = min_t(u32, trace->nr, max_depth); + } else if (kernel && task) { + trace = get_callchain_entry_for_task(task, max_depth); + } else { + trace = get_perf_callchain(regs, kernel, user, max_depth, + crosstask, false, 0); + } + + if (unlikely(!trace) || trace->nr < skip) { + if (may_fault) + rcu_read_unlock(); + goto err_fault; + } + + trace_nr = trace->nr - skip; + copy_len = trace_nr * elem_size; + + ips = trace->ip + skip; + if (user_build_id) { + struct bpf_stack_build_id *id_offs = buf; + u32 i; + + for (i = 0; i < trace_nr; i++) + id_offs[i].ip = ips[i]; + } else { + memcpy(buf, ips, copy_len); + } + + /* trace/ips should not be dereferenced after this point */ + if (may_fault) + rcu_read_unlock(); + + if (user_build_id) + stack_map_get_build_id_offset(buf, trace_nr, user, may_fault); + + if (size > copy_len) + memset(buf + copy_len, 0, size - copy_len); + return copy_len; + +err_fault: + err = -EFAULT; +clear: + memset(buf, 0, size); + return err; +} + +BPF_CALL_4(bpf_get_stack, struct pt_regs *, regs, void *, buf, u32, size, + u64, flags) +{ + return __bpf_get_stack(regs, NULL, NULL, buf, size, flags, false /* !may_fault */); +} + +const struct bpf_func_proto bpf_get_stack_proto = { + .func = bpf_get_stack, + .gpl_only = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_CTX, + .arg2_type = ARG_PTR_TO_UNINIT_MEM, + .arg3_type = ARG_CONST_SIZE_OR_ZERO, + .arg4_type = ARG_ANYTHING, +}; + +BPF_CALL_4(bpf_get_stack_sleepable, struct pt_regs *, regs, void *, buf, u32, size, + u64, flags) +{ + return __bpf_get_stack(regs, NULL, NULL, buf, size, flags, true /* may_fault */); +} + +const struct bpf_func_proto bpf_get_stack_sleepable_proto = { + .func = bpf_get_stack_sleepable, + .gpl_only = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_CTX, + .arg2_type = ARG_PTR_TO_UNINIT_MEM, + .arg3_type = ARG_CONST_SIZE_OR_ZERO, + .arg4_type = ARG_ANYTHING, +}; + +static long __bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, + u64 flags, bool may_fault) +{ + struct pt_regs *regs; + long res = -EINVAL; + + if (!try_get_task_stack(task)) + return -EFAULT; + + regs = task_pt_regs(task); + if (regs) + res = __bpf_get_stack(regs, task, NULL, buf, size, flags, may_fault); + put_task_stack(task); + + return res; +} + +BPF_CALL_4(bpf_get_task_stack, struct task_struct *, task, void *, buf, + u32, size, u64, flags) +{ + return __bpf_get_task_stack(task, buf, size, flags, false /* !may_fault */); +} + +const struct bpf_func_proto bpf_get_task_stack_proto = { + .func = bpf_get_task_stack, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_BTF_ID, + .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], + .arg2_type = ARG_PTR_TO_UNINIT_MEM, + .arg3_type = ARG_CONST_SIZE_OR_ZERO, + .arg4_type = ARG_ANYTHING, +}; + +BPF_CALL_4(bpf_get_task_stack_sleepable, struct task_struct *, task, void *, buf, + u32, size, u64, flags) +{ + return __bpf_get_task_stack(task, buf, size, flags, true /* !may_fault */); +} + +const struct bpf_func_proto bpf_get_task_stack_sleepable_proto = { + .func = bpf_get_task_stack_sleepable, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_BTF_ID, + .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], + .arg2_type = ARG_PTR_TO_UNINIT_MEM, + .arg3_type = ARG_CONST_SIZE_OR_ZERO, + .arg4_type = ARG_ANYTHING, +}; + +BPF_CALL_4(bpf_get_stack_pe, struct bpf_perf_event_data_kern *, ctx, + void *, buf, u32, size, u64, flags) +{ + struct pt_regs *regs = (struct pt_regs *)(ctx->regs); + struct perf_event *event = ctx->event; + struct perf_callchain_entry *trace; + bool kernel, user; + int err = -EINVAL; + __u64 nr_kernel; + + if (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) + return __bpf_get_stack(regs, NULL, NULL, buf, size, flags, false /* !may_fault */); + + if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK | + BPF_F_USER_BUILD_ID))) + goto clear; + + user = flags & BPF_F_USER_STACK; + kernel = !user; + + err = -EFAULT; + trace = ctx->data->callchain; + if (unlikely(!trace)) + goto clear; + + nr_kernel = count_kernel_ip(trace); + + if (kernel) { + __u64 nr = trace->nr; + + trace->nr = nr_kernel; + err = __bpf_get_stack(regs, NULL, trace, buf, size, flags, false /* !may_fault */); + + /* restore nr */ + trace->nr = nr; + } else { /* user */ + u64 skip = flags & BPF_F_SKIP_FIELD_MASK; + + skip += nr_kernel; + if (skip > BPF_F_SKIP_FIELD_MASK) + goto clear; + + flags = (flags & ~BPF_F_SKIP_FIELD_MASK) | skip; + err = __bpf_get_stack(regs, NULL, trace, buf, size, flags, false /* !may_fault */); + } + return err; + +clear: + memset(buf, 0, size); + return err; + +} + +const struct bpf_func_proto bpf_get_stack_proto_pe = { + .func = bpf_get_stack_pe, + .gpl_only = true, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_CTX, + .arg2_type = ARG_PTR_TO_UNINIT_MEM, + .arg3_type = ARG_CONST_SIZE_OR_ZERO, + .arg4_type = ARG_ANYTHING, +}; + +/* Called from eBPF program */ +static void *stack_map_lookup_elem(struct bpf_map *map, void *key) +{ + return ERR_PTR(-EOPNOTSUPP); +} + +/* Called from syscall */ +static int stack_map_lookup_and_delete_elem(struct bpf_map *map, void *key, + void *value, u64 flags) +{ + return bpf_stackmap_extract(map, key, value, true); +} + +/* Called from syscall */ +int bpf_stackmap_extract(struct bpf_map *map, void *key, void *value, + bool delete) +{ + struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); + struct stack_map_bucket *bucket, *old_bucket; + u32 id = *(u32 *)key, trace_len; + + if (unlikely(id >= smap->n_buckets)) + return -ENOENT; + + bucket = xchg(&smap->buckets[id], NULL); + if (!bucket) + return -ENOENT; + + trace_len = bucket->nr * stack_map_data_size(map); + memcpy(value, bucket->data, trace_len); + memset(value + trace_len, 0, map->value_size - trace_len); + + if (delete) + old_bucket = bucket; + else + old_bucket = xchg(&smap->buckets[id], bucket); + if (old_bucket) + pcpu_freelist_push(&smap->freelist, &old_bucket->fnode); + return 0; +} + +static int stack_map_get_next_key(struct bpf_map *map, void *key, + void *next_key) +{ + struct bpf_stack_map *smap = container_of(map, + struct bpf_stack_map, map); + u32 id; + + WARN_ON_ONCE(!rcu_read_lock_held()); + + if (!key) { + id = 0; + } else { + id = *(u32 *)key; + if (id >= smap->n_buckets || !smap->buckets[id]) + id = 0; + else + id++; + } + + while (id < smap->n_buckets && !smap->buckets[id]) + id++; + + if (id >= smap->n_buckets) + return -ENOENT; + + *(u32 *)next_key = id; + return 0; +} + +static long stack_map_update_elem(struct bpf_map *map, void *key, void *value, + u64 map_flags) +{ + return -EINVAL; +} + +/* Called from syscall or from eBPF program */ +static long stack_map_delete_elem(struct bpf_map *map, void *key) +{ + struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); + struct stack_map_bucket *old_bucket; + u32 id = *(u32 *)key; + + if (unlikely(id >= smap->n_buckets)) + return -E2BIG; + + old_bucket = xchg(&smap->buckets[id], NULL); + if (old_bucket) { + pcpu_freelist_push(&smap->freelist, &old_bucket->fnode); + return 0; + } else { + return -ENOENT; + } +} + +/* Called when map->refcnt goes to zero, either from workqueue or from syscall */ +static void stack_map_free(struct bpf_map *map) +{ + struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); + + bpf_map_area_free(smap->elems); + pcpu_freelist_destroy(&smap->freelist); + bpf_map_area_free(smap); + put_callchain_buffers(); +} + +static u64 stack_map_mem_usage(const struct bpf_map *map) +{ + struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); + u64 value_size = map->value_size; + u64 n_buckets = smap->n_buckets; + u64 enties = map->max_entries; + u64 usage = sizeof(*smap); + + usage += n_buckets * sizeof(struct stack_map_bucket *); + usage += enties * (sizeof(struct stack_map_bucket) + value_size); + return usage; +} + +BTF_ID_LIST_SINGLE(stack_trace_map_btf_ids, struct, bpf_stack_map) +const struct bpf_map_ops stack_trace_map_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc = stack_map_alloc, + .map_free = stack_map_free, + .map_get_next_key = stack_map_get_next_key, + .map_lookup_elem = stack_map_lookup_elem, + .map_lookup_and_delete_elem = stack_map_lookup_and_delete_elem, + .map_update_elem = stack_map_update_elem, + .map_delete_elem = stack_map_delete_elem, + .map_check_btf = map_check_no_btf, + .map_mem_usage = stack_map_mem_usage, + .map_btf_id = &stack_trace_map_btf_ids[0], +}; diff --git a/kernel/bpf/stream.c b/kernel/bpf/stream.c new file mode 100644 index 000000000000..0b6bc3f30335 --- /dev/null +++ b/kernel/bpf/stream.c @@ -0,0 +1,384 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2025 Meta Platforms, Inc. and affiliates. */ + +#include <linux/bpf.h> +#include <linux/filter.h> +#include <linux/bpf_mem_alloc.h> +#include <linux/gfp.h> +#include <linux/memory.h> +#include <linux/mutex.h> + +static void bpf_stream_elem_init(struct bpf_stream_elem *elem, int len) +{ + init_llist_node(&elem->node); + elem->total_len = len; + elem->consumed_len = 0; +} + +static struct bpf_stream_elem *bpf_stream_elem_alloc(int len) +{ + const int max_len = ARRAY_SIZE((struct bpf_bprintf_buffers){}.buf); + struct bpf_stream_elem *elem; + size_t alloc_size; + + /* + * Length denotes the amount of data to be written as part of stream element, + * thus includes '\0' byte. We're capped by how much bpf_bprintf_buffers can + * accomodate, therefore deny allocations that won't fit into them. + */ + if (len < 0 || len > max_len) + return NULL; + + alloc_size = offsetof(struct bpf_stream_elem, str[len]); + elem = kmalloc_nolock(alloc_size, __GFP_ZERO, -1); + if (!elem) + return NULL; + + bpf_stream_elem_init(elem, len); + + return elem; +} + +static int __bpf_stream_push_str(struct llist_head *log, const char *str, int len) +{ + struct bpf_stream_elem *elem = NULL; + + /* + * Allocate a bpf_prog_stream_elem and push it to the bpf_prog_stream + * log, elements will be popped at once and reversed to print the log. + */ + elem = bpf_stream_elem_alloc(len); + if (!elem) + return -ENOMEM; + + memcpy(elem->str, str, len); + llist_add(&elem->node, log); + + return 0; +} + +static int bpf_stream_consume_capacity(struct bpf_stream *stream, int len) +{ + if (atomic_read(&stream->capacity) >= BPF_STREAM_MAX_CAPACITY) + return -ENOSPC; + if (atomic_add_return(len, &stream->capacity) >= BPF_STREAM_MAX_CAPACITY) { + atomic_sub(len, &stream->capacity); + return -ENOSPC; + } + return 0; +} + +static void bpf_stream_release_capacity(struct bpf_stream *stream, struct bpf_stream_elem *elem) +{ + int len = elem->total_len; + + atomic_sub(len, &stream->capacity); +} + +static int bpf_stream_push_str(struct bpf_stream *stream, const char *str, int len) +{ + int ret = bpf_stream_consume_capacity(stream, len); + + return ret ?: __bpf_stream_push_str(&stream->log, str, len); +} + +static struct bpf_stream *bpf_stream_get(enum bpf_stream_id stream_id, struct bpf_prog_aux *aux) +{ + if (stream_id != BPF_STDOUT && stream_id != BPF_STDERR) + return NULL; + return &aux->stream[stream_id - 1]; +} + +static void bpf_stream_free_elem(struct bpf_stream_elem *elem) +{ + kfree_nolock(elem); +} + +static void bpf_stream_free_list(struct llist_node *list) +{ + struct bpf_stream_elem *elem, *tmp; + + llist_for_each_entry_safe(elem, tmp, list, node) + bpf_stream_free_elem(elem); +} + +static struct llist_node *bpf_stream_backlog_peek(struct bpf_stream *stream) +{ + return stream->backlog_head; +} + +static struct llist_node *bpf_stream_backlog_pop(struct bpf_stream *stream) +{ + struct llist_node *node; + + node = stream->backlog_head; + if (stream->backlog_head == stream->backlog_tail) + stream->backlog_head = stream->backlog_tail = NULL; + else + stream->backlog_head = node->next; + return node; +} + +static void bpf_stream_backlog_fill(struct bpf_stream *stream) +{ + struct llist_node *head, *tail; + + if (llist_empty(&stream->log)) + return; + tail = llist_del_all(&stream->log); + if (!tail) + return; + head = llist_reverse_order(tail); + + if (!stream->backlog_head) { + stream->backlog_head = head; + stream->backlog_tail = tail; + } else { + stream->backlog_tail->next = head; + stream->backlog_tail = tail; + } + + return; +} + +static bool bpf_stream_consume_elem(struct bpf_stream_elem *elem, int *len) +{ + int rem = elem->total_len - elem->consumed_len; + int used = min(rem, *len); + + elem->consumed_len += used; + *len -= used; + + return elem->consumed_len == elem->total_len; +} + +static int bpf_stream_read(struct bpf_stream *stream, void __user *buf, int len) +{ + int rem_len = len, cons_len, ret = 0; + struct bpf_stream_elem *elem = NULL; + struct llist_node *node; + + mutex_lock(&stream->lock); + + while (rem_len) { + int pos = len - rem_len; + bool cont; + + node = bpf_stream_backlog_peek(stream); + if (!node) { + bpf_stream_backlog_fill(stream); + node = bpf_stream_backlog_peek(stream); + } + if (!node) + break; + elem = container_of(node, typeof(*elem), node); + + cons_len = elem->consumed_len; + cont = bpf_stream_consume_elem(elem, &rem_len) == false; + + ret = copy_to_user(buf + pos, elem->str + cons_len, + elem->consumed_len - cons_len); + /* Restore in case of error. */ + if (ret) { + ret = -EFAULT; + elem->consumed_len = cons_len; + break; + } + + if (cont) + continue; + bpf_stream_backlog_pop(stream); + bpf_stream_release_capacity(stream, elem); + bpf_stream_free_elem(elem); + } + + mutex_unlock(&stream->lock); + return ret ? ret : len - rem_len; +} + +int bpf_prog_stream_read(struct bpf_prog *prog, enum bpf_stream_id stream_id, void __user *buf, int len) +{ + struct bpf_stream *stream; + + stream = bpf_stream_get(stream_id, prog->aux); + if (!stream) + return -ENOENT; + return bpf_stream_read(stream, buf, len); +} + +__bpf_kfunc_start_defs(); + +/* + * Avoid using enum bpf_stream_id so that kfunc users don't have to pull in the + * enum in headers. + */ +__bpf_kfunc int bpf_stream_vprintk_impl(int stream_id, const char *fmt__str, const void *args, + u32 len__sz, void *aux__prog) +{ + struct bpf_bprintf_data data = { + .get_bin_args = true, + .get_buf = true, + }; + struct bpf_prog_aux *aux = aux__prog; + u32 fmt_size = strlen(fmt__str) + 1; + struct bpf_stream *stream; + u32 data_len = len__sz; + int ret, num_args; + + stream = bpf_stream_get(stream_id, aux); + if (!stream) + return -ENOENT; + + if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 || + (data_len && !args)) + return -EINVAL; + num_args = data_len / 8; + + ret = bpf_bprintf_prepare(fmt__str, fmt_size, args, num_args, &data); + if (ret < 0) + return ret; + + ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt__str, data.bin_args); + /* Exclude NULL byte during push. */ + ret = bpf_stream_push_str(stream, data.buf, ret); + bpf_bprintf_cleanup(&data); + + return ret; +} + +__bpf_kfunc_end_defs(); + +/* Added kfunc to common_btf_ids */ + +void bpf_prog_stream_init(struct bpf_prog *prog) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(prog->aux->stream); i++) { + atomic_set(&prog->aux->stream[i].capacity, 0); + init_llist_head(&prog->aux->stream[i].log); + mutex_init(&prog->aux->stream[i].lock); + prog->aux->stream[i].backlog_head = NULL; + prog->aux->stream[i].backlog_tail = NULL; + } +} + +void bpf_prog_stream_free(struct bpf_prog *prog) +{ + struct llist_node *list; + int i; + + for (i = 0; i < ARRAY_SIZE(prog->aux->stream); i++) { + list = llist_del_all(&prog->aux->stream[i].log); + bpf_stream_free_list(list); + bpf_stream_free_list(prog->aux->stream[i].backlog_head); + } +} + +void bpf_stream_stage_init(struct bpf_stream_stage *ss) +{ + init_llist_head(&ss->log); + ss->len = 0; +} + +void bpf_stream_stage_free(struct bpf_stream_stage *ss) +{ + struct llist_node *node; + + node = llist_del_all(&ss->log); + bpf_stream_free_list(node); +} + +int bpf_stream_stage_printk(struct bpf_stream_stage *ss, const char *fmt, ...) +{ + struct bpf_bprintf_buffers *buf; + va_list args; + int ret; + + if (bpf_try_get_buffers(&buf)) + return -EBUSY; + + va_start(args, fmt); + ret = vsnprintf(buf->buf, ARRAY_SIZE(buf->buf), fmt, args); + va_end(args); + ss->len += ret; + /* Exclude NULL byte during push. */ + ret = __bpf_stream_push_str(&ss->log, buf->buf, ret); + bpf_put_buffers(); + return ret; +} + +int bpf_stream_stage_commit(struct bpf_stream_stage *ss, struct bpf_prog *prog, + enum bpf_stream_id stream_id) +{ + struct llist_node *list, *head, *tail; + struct bpf_stream *stream; + int ret; + + stream = bpf_stream_get(stream_id, prog->aux); + if (!stream) + return -EINVAL; + + ret = bpf_stream_consume_capacity(stream, ss->len); + if (ret) + return ret; + + list = llist_del_all(&ss->log); + head = tail = list; + + if (!list) + return 0; + while (llist_next(list)) { + tail = llist_next(list); + list = tail; + } + llist_add_batch(head, tail, &stream->log); + return 0; +} + +struct dump_stack_ctx { + struct bpf_stream_stage *ss; + int err; +}; + +static bool dump_stack_cb(void *cookie, u64 ip, u64 sp, u64 bp) +{ + struct dump_stack_ctx *ctxp = cookie; + const char *file = "", *line = ""; + struct bpf_prog *prog; + int num, ret; + + rcu_read_lock(); + prog = bpf_prog_ksym_find(ip); + rcu_read_unlock(); + if (prog) { + ret = bpf_prog_get_file_line(prog, ip, &file, &line, &num); + if (ret < 0) + goto end; + ctxp->err = bpf_stream_stage_printk(ctxp->ss, "%pS\n %s @ %s:%d\n", + (void *)(long)ip, line, file, num); + return !ctxp->err; + } +end: + ctxp->err = bpf_stream_stage_printk(ctxp->ss, "%pS\n", (void *)(long)ip); + return !ctxp->err; +} + +int bpf_stream_stage_dump_stack(struct bpf_stream_stage *ss) +{ + struct dump_stack_ctx ctx = { .ss = ss }; + int ret; + + ret = bpf_stream_stage_printk(ss, "CPU: %d UID: %d PID: %d Comm: %s\n", + raw_smp_processor_id(), __kuid_val(current_real_cred()->euid), + current->pid, current->comm); + if (ret) + return ret; + ret = bpf_stream_stage_printk(ss, "Call trace:\n"); + if (ret) + return ret; + arch_bpf_stack_walk(dump_stack_cb, &ctx); + if (ctx.err) + return ctx.err; + return bpf_stream_stage_printk(ss, "\n"); +} diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c new file mode 100644 index 000000000000..4ff82144f885 --- /dev/null +++ b/kernel/bpf/syscall.c @@ -0,0 +1,6528 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com + */ +#include <crypto/sha2.h> +#include <linux/bpf.h> +#include <linux/bpf-cgroup.h> +#include <linux/bpf_trace.h> +#include <linux/bpf_lirc.h> +#include <linux/bpf_verifier.h> +#include <linux/bsearch.h> +#include <linux/btf.h> +#include <linux/syscalls.h> +#include <linux/slab.h> +#include <linux/sched/signal.h> +#include <linux/vmalloc.h> +#include <linux/mmzone.h> +#include <linux/anon_inodes.h> +#include <linux/fdtable.h> +#include <linux/file.h> +#include <linux/fs.h> +#include <linux/license.h> +#include <linux/filter.h> +#include <linux/kernel.h> +#include <linux/idr.h> +#include <linux/cred.h> +#include <linux/timekeeping.h> +#include <linux/ctype.h> +#include <linux/nospec.h> +#include <linux/audit.h> +#include <uapi/linux/btf.h> +#include <linux/pgtable.h> +#include <linux/bpf_lsm.h> +#include <linux/poll.h> +#include <linux/sort.h> +#include <linux/bpf-netns.h> +#include <linux/rcupdate_trace.h> +#include <linux/memcontrol.h> +#include <linux/trace_events.h> +#include <linux/tracepoint.h> +#include <linux/overflow.h> +#include <linux/cookie.h> +#include <linux/verification.h> + +#include <net/netfilter/nf_bpf_link.h> +#include <net/netkit.h> +#include <net/tcx.h> + +#define IS_FD_ARRAY(map) ((map)->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY || \ + (map)->map_type == BPF_MAP_TYPE_CGROUP_ARRAY || \ + (map)->map_type == BPF_MAP_TYPE_ARRAY_OF_MAPS) +#define IS_FD_PROG_ARRAY(map) ((map)->map_type == BPF_MAP_TYPE_PROG_ARRAY) +#define IS_FD_HASH(map) ((map)->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) +#define IS_FD_MAP(map) (IS_FD_ARRAY(map) || IS_FD_PROG_ARRAY(map) || \ + IS_FD_HASH(map)) + +#define BPF_OBJ_FLAG_MASK (BPF_F_RDONLY | BPF_F_WRONLY) + +DEFINE_PER_CPU(int, bpf_prog_active); +DEFINE_COOKIE(bpf_map_cookie); +static DEFINE_IDR(prog_idr); +static DEFINE_SPINLOCK(prog_idr_lock); +static DEFINE_IDR(map_idr); +static DEFINE_SPINLOCK(map_idr_lock); +static DEFINE_IDR(link_idr); +static DEFINE_SPINLOCK(link_idr_lock); + +int sysctl_unprivileged_bpf_disabled __read_mostly = + IS_BUILTIN(CONFIG_BPF_UNPRIV_DEFAULT_OFF) ? 2 : 0; + +static const struct bpf_map_ops * const bpf_map_types[] = { +#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) +#define BPF_MAP_TYPE(_id, _ops) \ + [_id] = &_ops, +#define BPF_LINK_TYPE(_id, _name) +#include <linux/bpf_types.h> +#undef BPF_PROG_TYPE +#undef BPF_MAP_TYPE +#undef BPF_LINK_TYPE +}; + +/* + * If we're handed a bigger struct than we know of, ensure all the unknown bits + * are 0 - i.e. new user-space does not rely on any kernel feature extensions + * we don't know about yet. + * + * There is a ToCToU between this function call and the following + * copy_from_user() call. However, this is not a concern since this function is + * meant to be a future-proofing of bits. + */ +int bpf_check_uarg_tail_zero(bpfptr_t uaddr, + size_t expected_size, + size_t actual_size) +{ + int res; + + if (unlikely(actual_size > PAGE_SIZE)) /* silly large */ + return -E2BIG; + + if (actual_size <= expected_size) + return 0; + + if (uaddr.is_kernel) + res = memchr_inv(uaddr.kernel + expected_size, 0, + actual_size - expected_size) == NULL; + else + res = check_zeroed_user(uaddr.user + expected_size, + actual_size - expected_size); + if (res < 0) + return res; + return res ? 0 : -E2BIG; +} + +const struct bpf_map_ops bpf_map_offload_ops = { + .map_meta_equal = bpf_map_meta_equal, + .map_alloc = bpf_map_offload_map_alloc, + .map_free = bpf_map_offload_map_free, + .map_check_btf = map_check_no_btf, + .map_mem_usage = bpf_map_offload_map_mem_usage, +}; + +static void bpf_map_write_active_inc(struct bpf_map *map) +{ + atomic64_inc(&map->writecnt); +} + +static void bpf_map_write_active_dec(struct bpf_map *map) +{ + atomic64_dec(&map->writecnt); +} + +bool bpf_map_write_active(const struct bpf_map *map) +{ + return atomic64_read(&map->writecnt) != 0; +} + +static u32 bpf_map_value_size(const struct bpf_map *map) +{ + if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || + map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH || + map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY || + map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) + return round_up(map->value_size, 8) * num_possible_cpus(); + else if (IS_FD_MAP(map)) + return sizeof(u32); + else + return map->value_size; +} + +static void maybe_wait_bpf_programs(struct bpf_map *map) +{ + /* Wait for any running non-sleepable BPF programs to complete so that + * userspace, when we return to it, knows that all non-sleepable + * programs that could be running use the new map value. For sleepable + * BPF programs, synchronize_rcu_tasks_trace() should be used to wait + * for the completions of these programs, but considering the waiting + * time can be very long and userspace may think it will hang forever, + * so don't handle sleepable BPF programs now. + */ + if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS || + map->map_type == BPF_MAP_TYPE_ARRAY_OF_MAPS) + synchronize_rcu_expedited(); +} + +static void unpin_uptr_kaddr(void *kaddr) +{ + if (kaddr) + unpin_user_page(virt_to_page(kaddr)); +} + +static void __bpf_obj_unpin_uptrs(struct btf_record *rec, u32 cnt, void *obj) +{ + const struct btf_field *field; + void **uptr_addr; + int i; + + for (i = 0, field = rec->fields; i < cnt; i++, field++) { + if (field->type != BPF_UPTR) + continue; + + uptr_addr = obj + field->offset; + unpin_uptr_kaddr(*uptr_addr); + } +} + +static void bpf_obj_unpin_uptrs(struct btf_record *rec, void *obj) +{ + if (!btf_record_has_field(rec, BPF_UPTR)) + return; + + __bpf_obj_unpin_uptrs(rec, rec->cnt, obj); +} + +static int bpf_obj_pin_uptrs(struct btf_record *rec, void *obj) +{ + const struct btf_field *field; + const struct btf_type *t; + unsigned long start, end; + struct page *page; + void **uptr_addr; + int i, err; + + if (!btf_record_has_field(rec, BPF_UPTR)) + return 0; + + for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) { + if (field->type != BPF_UPTR) + continue; + + uptr_addr = obj + field->offset; + start = *(unsigned long *)uptr_addr; + if (!start) + continue; + + t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); + /* t->size was checked for zero before */ + if (check_add_overflow(start, t->size - 1, &end)) { + err = -EFAULT; + goto unpin_all; + } + + /* The uptr's struct cannot span across two pages */ + if ((start & PAGE_MASK) != (end & PAGE_MASK)) { + err = -EOPNOTSUPP; + goto unpin_all; + } + + err = pin_user_pages_fast(start, 1, FOLL_LONGTERM | FOLL_WRITE, &page); + if (err != 1) + goto unpin_all; + + if (PageHighMem(page)) { + err = -EOPNOTSUPP; + unpin_user_page(page); + goto unpin_all; + } + + *uptr_addr = page_address(page) + offset_in_page(start); + } + + return 0; + +unpin_all: + __bpf_obj_unpin_uptrs(rec, i, obj); + return err; +} + +static int bpf_map_update_value(struct bpf_map *map, struct file *map_file, + void *key, void *value, __u64 flags) +{ + int err; + + /* Need to create a kthread, thus must support schedule */ + if (bpf_map_is_offloaded(map)) { + return bpf_map_offload_update_elem(map, key, value, flags); + } else if (map->map_type == BPF_MAP_TYPE_CPUMAP || + map->map_type == BPF_MAP_TYPE_ARENA || + map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { + return map->ops->map_update_elem(map, key, value, flags); + } else if (map->map_type == BPF_MAP_TYPE_SOCKHASH || + map->map_type == BPF_MAP_TYPE_SOCKMAP) { + return sock_map_update_elem_sys(map, key, value, flags); + } else if (IS_FD_PROG_ARRAY(map)) { + return bpf_fd_array_map_update_elem(map, map_file, key, value, + flags); + } + + bpf_disable_instrumentation(); + if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || + map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { + err = bpf_percpu_hash_update(map, key, value, flags); + } else if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { + err = bpf_percpu_array_update(map, key, value, flags); + } else if (map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) { + err = bpf_percpu_cgroup_storage_update(map, key, value, + flags); + } else if (IS_FD_ARRAY(map)) { + err = bpf_fd_array_map_update_elem(map, map_file, key, value, + flags); + } else if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) { + err = bpf_fd_htab_map_update_elem(map, map_file, key, value, + flags); + } else if (map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) { + /* rcu_read_lock() is not needed */ + err = bpf_fd_reuseport_array_update_elem(map, key, value, + flags); + } else if (map->map_type == BPF_MAP_TYPE_QUEUE || + map->map_type == BPF_MAP_TYPE_STACK || + map->map_type == BPF_MAP_TYPE_BLOOM_FILTER) { + err = map->ops->map_push_elem(map, value, flags); + } else { + err = bpf_obj_pin_uptrs(map->record, value); + if (!err) { + rcu_read_lock(); + err = map->ops->map_update_elem(map, key, value, flags); + rcu_read_unlock(); + if (err) + bpf_obj_unpin_uptrs(map->record, value); + } + } + bpf_enable_instrumentation(); + + return err; +} + +static int bpf_map_copy_value(struct bpf_map *map, void *key, void *value, + __u64 flags) +{ + void *ptr; + int err; + + if (bpf_map_is_offloaded(map)) + return bpf_map_offload_lookup_elem(map, key, value); + + bpf_disable_instrumentation(); + if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || + map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { + err = bpf_percpu_hash_copy(map, key, value); + } else if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { + err = bpf_percpu_array_copy(map, key, value); + } else if (map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) { + err = bpf_percpu_cgroup_storage_copy(map, key, value); + } else if (map->map_type == BPF_MAP_TYPE_STACK_TRACE) { + err = bpf_stackmap_extract(map, key, value, false); + } else if (IS_FD_ARRAY(map) || IS_FD_PROG_ARRAY(map)) { + err = bpf_fd_array_map_lookup_elem(map, key, value); + } else if (IS_FD_HASH(map)) { + err = bpf_fd_htab_map_lookup_elem(map, key, value); + } else if (map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) { + err = bpf_fd_reuseport_array_lookup_elem(map, key, value); + } else if (map->map_type == BPF_MAP_TYPE_QUEUE || + map->map_type == BPF_MAP_TYPE_STACK || + map->map_type == BPF_MAP_TYPE_BLOOM_FILTER) { + err = map->ops->map_peek_elem(map, value); + } else if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { + /* struct_ops map requires directly updating "value" */ + err = bpf_struct_ops_map_sys_lookup_elem(map, key, value); + } else { + rcu_read_lock(); + if (map->ops->map_lookup_elem_sys_only) + ptr = map->ops->map_lookup_elem_sys_only(map, key); + else + ptr = map->ops->map_lookup_elem(map, key); + if (IS_ERR(ptr)) { + err = PTR_ERR(ptr); + } else if (!ptr) { + err = -ENOENT; + } else { + err = 0; + if (flags & BPF_F_LOCK) + /* lock 'ptr' and copy everything but lock */ + copy_map_value_locked(map, value, ptr, true); + else + copy_map_value(map, value, ptr); + /* mask lock and timer, since value wasn't zero inited */ + check_and_init_map_value(map, value); + } + rcu_read_unlock(); + } + + bpf_enable_instrumentation(); + + return err; +} + +/* Please, do not use this function outside from the map creation path + * (e.g. in map update path) without taking care of setting the active + * memory cgroup (see at bpf_map_kmalloc_node() for example). + */ +static void *__bpf_map_area_alloc(u64 size, int numa_node, bool mmapable) +{ + /* We really just want to fail instead of triggering OOM killer + * under memory pressure, therefore we set __GFP_NORETRY to kmalloc, + * which is used for lower order allocation requests. + * + * It has been observed that higher order allocation requests done by + * vmalloc with __GFP_NORETRY being set might fail due to not trying + * to reclaim memory from the page cache, thus we set + * __GFP_RETRY_MAYFAIL to avoid such situations. + */ + + gfp_t gfp = bpf_memcg_flags(__GFP_NOWARN | __GFP_ZERO); + unsigned int flags = 0; + unsigned long align = 1; + void *area; + + if (size >= SIZE_MAX) + return NULL; + + /* kmalloc()'ed memory can't be mmap()'ed */ + if (mmapable) { + BUG_ON(!PAGE_ALIGNED(size)); + align = SHMLBA; + flags = VM_USERMAP; + } else if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) { + area = kmalloc_node(size, gfp | GFP_USER | __GFP_NORETRY, + numa_node); + if (area != NULL) + return area; + } + + return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, + gfp | GFP_KERNEL | __GFP_RETRY_MAYFAIL, PAGE_KERNEL, + flags, numa_node, __builtin_return_address(0)); +} + +void *bpf_map_area_alloc(u64 size, int numa_node) +{ + return __bpf_map_area_alloc(size, numa_node, false); +} + +void *bpf_map_area_mmapable_alloc(u64 size, int numa_node) +{ + return __bpf_map_area_alloc(size, numa_node, true); +} + +void bpf_map_area_free(void *area) +{ + kvfree(area); +} + +static u32 bpf_map_flags_retain_permanent(u32 flags) +{ + /* Some map creation flags are not tied to the map object but + * rather to the map fd instead, so they have no meaning upon + * map object inspection since multiple file descriptors with + * different (access) properties can exist here. Thus, given + * this has zero meaning for the map itself, lets clear these + * from here. + */ + return flags & ~(BPF_F_RDONLY | BPF_F_WRONLY); +} + +void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr) +{ + map->map_type = attr->map_type; + map->key_size = attr->key_size; + map->value_size = attr->value_size; + map->max_entries = attr->max_entries; + map->map_flags = bpf_map_flags_retain_permanent(attr->map_flags); + map->numa_node = bpf_map_attr_numa_node(attr); + map->map_extra = attr->map_extra; +} + +static int bpf_map_alloc_id(struct bpf_map *map) +{ + int id; + + idr_preload(GFP_KERNEL); + spin_lock_bh(&map_idr_lock); + id = idr_alloc_cyclic(&map_idr, map, 1, INT_MAX, GFP_ATOMIC); + if (id > 0) + map->id = id; + spin_unlock_bh(&map_idr_lock); + idr_preload_end(); + + if (WARN_ON_ONCE(!id)) + return -ENOSPC; + + return id > 0 ? 0 : id; +} + +void bpf_map_free_id(struct bpf_map *map) +{ + unsigned long flags; + + /* Offloaded maps are removed from the IDR store when their device + * disappears - even if someone holds an fd to them they are unusable, + * the memory is gone, all ops will fail; they are simply waiting for + * refcnt to drop to be freed. + */ + if (!map->id) + return; + + spin_lock_irqsave(&map_idr_lock, flags); + + idr_remove(&map_idr, map->id); + map->id = 0; + + spin_unlock_irqrestore(&map_idr_lock, flags); +} + +#ifdef CONFIG_MEMCG +static void bpf_map_save_memcg(struct bpf_map *map) +{ + /* Currently if a map is created by a process belonging to the root + * memory cgroup, get_obj_cgroup_from_current() will return NULL. + * So we have to check map->objcg for being NULL each time it's + * being used. + */ + if (memcg_bpf_enabled()) + map->objcg = get_obj_cgroup_from_current(); +} + +static void bpf_map_release_memcg(struct bpf_map *map) +{ + if (map->objcg) + obj_cgroup_put(map->objcg); +} + +static struct mem_cgroup *bpf_map_get_memcg(const struct bpf_map *map) +{ + if (map->objcg) + return get_mem_cgroup_from_objcg(map->objcg); + + return root_mem_cgroup; +} + +void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, + int node) +{ + struct mem_cgroup *memcg, *old_memcg; + void *ptr; + + memcg = bpf_map_get_memcg(map); + old_memcg = set_active_memcg(memcg); + ptr = kmalloc_node(size, flags | __GFP_ACCOUNT, node); + set_active_memcg(old_memcg); + mem_cgroup_put(memcg); + + return ptr; +} + +void *bpf_map_kmalloc_nolock(const struct bpf_map *map, size_t size, gfp_t flags, + int node) +{ + struct mem_cgroup *memcg, *old_memcg; + void *ptr; + + memcg = bpf_map_get_memcg(map); + old_memcg = set_active_memcg(memcg); + ptr = kmalloc_nolock(size, flags | __GFP_ACCOUNT, node); + set_active_memcg(old_memcg); + mem_cgroup_put(memcg); + + return ptr; +} + +void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) +{ + struct mem_cgroup *memcg, *old_memcg; + void *ptr; + + memcg = bpf_map_get_memcg(map); + old_memcg = set_active_memcg(memcg); + ptr = kzalloc(size, flags | __GFP_ACCOUNT); + set_active_memcg(old_memcg); + mem_cgroup_put(memcg); + + return ptr; +} + +void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, + gfp_t flags) +{ + struct mem_cgroup *memcg, *old_memcg; + void *ptr; + + memcg = bpf_map_get_memcg(map); + old_memcg = set_active_memcg(memcg); + ptr = kvcalloc(n, size, flags | __GFP_ACCOUNT); + set_active_memcg(old_memcg); + mem_cgroup_put(memcg); + + return ptr; +} + +void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, + size_t align, gfp_t flags) +{ + struct mem_cgroup *memcg, *old_memcg; + void __percpu *ptr; + + memcg = bpf_map_get_memcg(map); + old_memcg = set_active_memcg(memcg); + ptr = __alloc_percpu_gfp(size, align, flags | __GFP_ACCOUNT); + set_active_memcg(old_memcg); + mem_cgroup_put(memcg); + + return ptr; +} + +#else +static void bpf_map_save_memcg(struct bpf_map *map) +{ +} + +static void bpf_map_release_memcg(struct bpf_map *map) +{ +} +#endif + +static bool can_alloc_pages(void) +{ + return preempt_count() == 0 && !irqs_disabled() && + !IS_ENABLED(CONFIG_PREEMPT_RT); +} + +static struct page *__bpf_alloc_page(int nid) +{ + if (!can_alloc_pages()) + return alloc_pages_nolock(__GFP_ACCOUNT, nid, 0); + + return alloc_pages_node(nid, + GFP_KERNEL | __GFP_ZERO | __GFP_ACCOUNT + | __GFP_NOWARN, + 0); +} + +int bpf_map_alloc_pages(const struct bpf_map *map, int nid, + unsigned long nr_pages, struct page **pages) +{ + unsigned long i, j; + struct page *pg; + int ret = 0; +#ifdef CONFIG_MEMCG + struct mem_cgroup *memcg, *old_memcg; + + memcg = bpf_map_get_memcg(map); + old_memcg = set_active_memcg(memcg); +#endif + for (i = 0; i < nr_pages; i++) { + pg = __bpf_alloc_page(nid); + + if (pg) { + pages[i] = pg; + continue; + } + for (j = 0; j < i; j++) + free_pages_nolock(pages[j], 0); + ret = -ENOMEM; + break; + } + +#ifdef CONFIG_MEMCG + set_active_memcg(old_memcg); + mem_cgroup_put(memcg); +#endif + return ret; +} + + +static int btf_field_cmp(const void *a, const void *b) +{ + const struct btf_field *f1 = a, *f2 = b; + + if (f1->offset < f2->offset) + return -1; + else if (f1->offset > f2->offset) + return 1; + return 0; +} + +struct btf_field *btf_record_find(const struct btf_record *rec, u32 offset, + u32 field_mask) +{ + struct btf_field *field; + + if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & field_mask)) + return NULL; + field = bsearch(&offset, rec->fields, rec->cnt, sizeof(rec->fields[0]), btf_field_cmp); + if (!field || !(field->type & field_mask)) + return NULL; + return field; +} + +void btf_record_free(struct btf_record *rec) +{ + int i; + + if (IS_ERR_OR_NULL(rec)) + return; + for (i = 0; i < rec->cnt; i++) { + switch (rec->fields[i].type) { + case BPF_KPTR_UNREF: + case BPF_KPTR_REF: + case BPF_KPTR_PERCPU: + case BPF_UPTR: + if (rec->fields[i].kptr.module) + module_put(rec->fields[i].kptr.module); + if (btf_is_kernel(rec->fields[i].kptr.btf)) + btf_put(rec->fields[i].kptr.btf); + break; + case BPF_LIST_HEAD: + case BPF_LIST_NODE: + case BPF_RB_ROOT: + case BPF_RB_NODE: + case BPF_SPIN_LOCK: + case BPF_RES_SPIN_LOCK: + case BPF_TIMER: + case BPF_REFCOUNT: + case BPF_WORKQUEUE: + case BPF_TASK_WORK: + /* Nothing to release */ + break; + default: + WARN_ON_ONCE(1); + continue; + } + } + kfree(rec); +} + +void bpf_map_free_record(struct bpf_map *map) +{ + btf_record_free(map->record); + map->record = NULL; +} + +struct btf_record *btf_record_dup(const struct btf_record *rec) +{ + const struct btf_field *fields; + struct btf_record *new_rec; + int ret, size, i; + + if (IS_ERR_OR_NULL(rec)) + return NULL; + size = struct_size(rec, fields, rec->cnt); + new_rec = kmemdup(rec, size, GFP_KERNEL | __GFP_NOWARN); + if (!new_rec) + return ERR_PTR(-ENOMEM); + /* Do a deep copy of the btf_record */ + fields = rec->fields; + new_rec->cnt = 0; + for (i = 0; i < rec->cnt; i++) { + switch (fields[i].type) { + case BPF_KPTR_UNREF: + case BPF_KPTR_REF: + case BPF_KPTR_PERCPU: + case BPF_UPTR: + if (btf_is_kernel(fields[i].kptr.btf)) + btf_get(fields[i].kptr.btf); + if (fields[i].kptr.module && !try_module_get(fields[i].kptr.module)) { + ret = -ENXIO; + goto free; + } + break; + case BPF_LIST_HEAD: + case BPF_LIST_NODE: + case BPF_RB_ROOT: + case BPF_RB_NODE: + case BPF_SPIN_LOCK: + case BPF_RES_SPIN_LOCK: + case BPF_TIMER: + case BPF_REFCOUNT: + case BPF_WORKQUEUE: + case BPF_TASK_WORK: + /* Nothing to acquire */ + break; + default: + ret = -EFAULT; + WARN_ON_ONCE(1); + goto free; + } + new_rec->cnt++; + } + return new_rec; +free: + btf_record_free(new_rec); + return ERR_PTR(ret); +} + +bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b) +{ + bool a_has_fields = !IS_ERR_OR_NULL(rec_a), b_has_fields = !IS_ERR_OR_NULL(rec_b); + int size; + + if (!a_has_fields && !b_has_fields) + return true; + if (a_has_fields != b_has_fields) + return false; + if (rec_a->cnt != rec_b->cnt) + return false; + size = struct_size(rec_a, fields, rec_a->cnt); + /* btf_parse_fields uses kzalloc to allocate a btf_record, so unused + * members are zeroed out. So memcmp is safe to do without worrying + * about padding/unused fields. + * + * While spin_lock, timer, and kptr have no relation to map BTF, + * list_head metadata is specific to map BTF, the btf and value_rec + * members in particular. btf is the map BTF, while value_rec points to + * btf_record in that map BTF. + * + * So while by default, we don't rely on the map BTF (which the records + * were parsed from) matching for both records, which is not backwards + * compatible, in case list_head is part of it, we implicitly rely on + * that by way of depending on memcmp succeeding for it. + */ + return !memcmp(rec_a, rec_b, size); +} + +void bpf_obj_free_timer(const struct btf_record *rec, void *obj) +{ + if (WARN_ON_ONCE(!btf_record_has_field(rec, BPF_TIMER))) + return; + bpf_timer_cancel_and_free(obj + rec->timer_off); +} + +void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj) +{ + if (WARN_ON_ONCE(!btf_record_has_field(rec, BPF_WORKQUEUE))) + return; + bpf_wq_cancel_and_free(obj + rec->wq_off); +} + +void bpf_obj_free_task_work(const struct btf_record *rec, void *obj) +{ + if (WARN_ON_ONCE(!btf_record_has_field(rec, BPF_TASK_WORK))) + return; + bpf_task_work_cancel_and_free(obj + rec->task_work_off); +} + +void bpf_obj_free_fields(const struct btf_record *rec, void *obj) +{ + const struct btf_field *fields; + int i; + + if (IS_ERR_OR_NULL(rec)) + return; + fields = rec->fields; + for (i = 0; i < rec->cnt; i++) { + struct btf_struct_meta *pointee_struct_meta; + const struct btf_field *field = &fields[i]; + void *field_ptr = obj + field->offset; + void *xchgd_field; + + switch (fields[i].type) { + case BPF_SPIN_LOCK: + case BPF_RES_SPIN_LOCK: + break; + case BPF_TIMER: + bpf_timer_cancel_and_free(field_ptr); + break; + case BPF_WORKQUEUE: + bpf_wq_cancel_and_free(field_ptr); + break; + case BPF_TASK_WORK: + bpf_task_work_cancel_and_free(field_ptr); + break; + case BPF_KPTR_UNREF: + WRITE_ONCE(*(u64 *)field_ptr, 0); + break; + case BPF_KPTR_REF: + case BPF_KPTR_PERCPU: + xchgd_field = (void *)xchg((unsigned long *)field_ptr, 0); + if (!xchgd_field) + break; + + if (!btf_is_kernel(field->kptr.btf)) { + pointee_struct_meta = btf_find_struct_meta(field->kptr.btf, + field->kptr.btf_id); + __bpf_obj_drop_impl(xchgd_field, pointee_struct_meta ? + pointee_struct_meta->record : NULL, + fields[i].type == BPF_KPTR_PERCPU); + } else { + field->kptr.dtor(xchgd_field); + } + break; + case BPF_UPTR: + /* The caller ensured that no one is using the uptr */ + unpin_uptr_kaddr(*(void **)field_ptr); + break; + case BPF_LIST_HEAD: + if (WARN_ON_ONCE(rec->spin_lock_off < 0)) + continue; + bpf_list_head_free(field, field_ptr, obj + rec->spin_lock_off); + break; + case BPF_RB_ROOT: + if (WARN_ON_ONCE(rec->spin_lock_off < 0)) + continue; + bpf_rb_root_free(field, field_ptr, obj + rec->spin_lock_off); + break; + case BPF_LIST_NODE: + case BPF_RB_NODE: + case BPF_REFCOUNT: + break; + default: + WARN_ON_ONCE(1); + continue; + } + } +} + +static void bpf_map_free(struct bpf_map *map) +{ + struct btf_record *rec = map->record; + struct btf *btf = map->btf; + + /* implementation dependent freeing. Disabling migration to simplify + * the free of values or special fields allocated from bpf memory + * allocator. + */ + kfree(map->excl_prog_sha); + migrate_disable(); + map->ops->map_free(map); + migrate_enable(); + + /* Delay freeing of btf_record for maps, as map_free + * callback usually needs access to them. It is better to do it here + * than require each callback to do the free itself manually. + * + * Note that the btf_record stashed in map->inner_map_meta->record was + * already freed using the map_free callback for map in map case which + * eventually calls bpf_map_free_meta, since inner_map_meta is only a + * template bpf_map struct used during verification. + */ + btf_record_free(rec); + /* Delay freeing of btf for maps, as map_free callback may need + * struct_meta info which will be freed with btf_put(). + */ + btf_put(btf); +} + +/* called from workqueue */ +static void bpf_map_free_deferred(struct work_struct *work) +{ + struct bpf_map *map = container_of(work, struct bpf_map, work); + + security_bpf_map_free(map); + bpf_map_release_memcg(map); + bpf_map_owner_free(map); + bpf_map_free(map); +} + +static void bpf_map_put_uref(struct bpf_map *map) +{ + if (atomic64_dec_and_test(&map->usercnt)) { + if (map->ops->map_release_uref) + map->ops->map_release_uref(map); + } +} + +static void bpf_map_free_in_work(struct bpf_map *map) +{ + INIT_WORK(&map->work, bpf_map_free_deferred); + /* Avoid spawning kworkers, since they all might contend + * for the same mutex like slab_mutex. + */ + queue_work(system_dfl_wq, &map->work); +} + +static void bpf_map_free_rcu_gp(struct rcu_head *rcu) +{ + bpf_map_free_in_work(container_of(rcu, struct bpf_map, rcu)); +} + +static void bpf_map_free_mult_rcu_gp(struct rcu_head *rcu) +{ + if (rcu_trace_implies_rcu_gp()) + bpf_map_free_rcu_gp(rcu); + else + call_rcu(rcu, bpf_map_free_rcu_gp); +} + +/* decrement map refcnt and schedule it for freeing via workqueue + * (underlying map implementation ops->map_free() might sleep) + */ +void bpf_map_put(struct bpf_map *map) +{ + if (atomic64_dec_and_test(&map->refcnt)) { + /* bpf_map_free_id() must be called first */ + bpf_map_free_id(map); + + WARN_ON_ONCE(atomic64_read(&map->sleepable_refcnt)); + if (READ_ONCE(map->free_after_mult_rcu_gp)) + call_rcu_tasks_trace(&map->rcu, bpf_map_free_mult_rcu_gp); + else if (READ_ONCE(map->free_after_rcu_gp)) + call_rcu(&map->rcu, bpf_map_free_rcu_gp); + else + bpf_map_free_in_work(map); + } +} +EXPORT_SYMBOL_GPL(bpf_map_put); + +void bpf_map_put_with_uref(struct bpf_map *map) +{ + bpf_map_put_uref(map); + bpf_map_put(map); +} + +static int bpf_map_release(struct inode *inode, struct file *filp) +{ + struct bpf_map *map = filp->private_data; + + if (map->ops->map_release) + map->ops->map_release(map, filp); + + bpf_map_put_with_uref(map); + return 0; +} + +static fmode_t map_get_sys_perms(struct bpf_map *map, struct fd f) +{ + fmode_t mode = fd_file(f)->f_mode; + + /* Our file permissions may have been overridden by global + * map permissions facing syscall side. + */ + if (READ_ONCE(map->frozen)) + mode &= ~FMODE_CAN_WRITE; + return mode; +} + +#ifdef CONFIG_PROC_FS +/* Show the memory usage of a bpf map */ +static u64 bpf_map_memory_usage(const struct bpf_map *map) +{ + return map->ops->map_mem_usage(map); +} + +static void bpf_map_show_fdinfo(struct seq_file *m, struct file *filp) +{ + struct bpf_map *map = filp->private_data; + u32 type = 0, jited = 0; + + spin_lock(&map->owner_lock); + if (map->owner) { + type = map->owner->type; + jited = map->owner->jited; + } + spin_unlock(&map->owner_lock); + + seq_printf(m, + "map_type:\t%u\n" + "key_size:\t%u\n" + "value_size:\t%u\n" + "max_entries:\t%u\n" + "map_flags:\t%#x\n" + "map_extra:\t%#llx\n" + "memlock:\t%llu\n" + "map_id:\t%u\n" + "frozen:\t%u\n", + map->map_type, + map->key_size, + map->value_size, + map->max_entries, + map->map_flags, + (unsigned long long)map->map_extra, + bpf_map_memory_usage(map), + map->id, + READ_ONCE(map->frozen)); + if (type) { + seq_printf(m, "owner_prog_type:\t%u\n", type); + seq_printf(m, "owner_jited:\t%u\n", jited); + } +} +#endif + +static ssize_t bpf_dummy_read(struct file *filp, char __user *buf, size_t siz, + loff_t *ppos) +{ + /* We need this handler such that alloc_file() enables + * f_mode with FMODE_CAN_READ. + */ + return -EINVAL; +} + +static ssize_t bpf_dummy_write(struct file *filp, const char __user *buf, + size_t siz, loff_t *ppos) +{ + /* We need this handler such that alloc_file() enables + * f_mode with FMODE_CAN_WRITE. + */ + return -EINVAL; +} + +/* called for any extra memory-mapped regions (except initial) */ +static void bpf_map_mmap_open(struct vm_area_struct *vma) +{ + struct bpf_map *map = vma->vm_file->private_data; + + if (vma->vm_flags & VM_MAYWRITE) + bpf_map_write_active_inc(map); +} + +/* called for all unmapped memory region (including initial) */ +static void bpf_map_mmap_close(struct vm_area_struct *vma) +{ + struct bpf_map *map = vma->vm_file->private_data; + + if (vma->vm_flags & VM_MAYWRITE) + bpf_map_write_active_dec(map); +} + +static const struct vm_operations_struct bpf_map_default_vmops = { + .open = bpf_map_mmap_open, + .close = bpf_map_mmap_close, +}; + +static int bpf_map_mmap(struct file *filp, struct vm_area_struct *vma) +{ + struct bpf_map *map = filp->private_data; + int err = 0; + + if (!map->ops->map_mmap || !IS_ERR_OR_NULL(map->record)) + return -ENOTSUPP; + + if (!(vma->vm_flags & VM_SHARED)) + return -EINVAL; + + mutex_lock(&map->freeze_mutex); + + if (vma->vm_flags & VM_WRITE) { + if (map->frozen) { + err = -EPERM; + goto out; + } + /* map is meant to be read-only, so do not allow mapping as + * writable, because it's possible to leak a writable page + * reference and allows user-space to still modify it after + * freezing, while verifier will assume contents do not change + */ + if (map->map_flags & BPF_F_RDONLY_PROG) { + err = -EACCES; + goto out; + } + bpf_map_write_active_inc(map); + } +out: + mutex_unlock(&map->freeze_mutex); + if (err) + return err; + + /* set default open/close callbacks */ + vma->vm_ops = &bpf_map_default_vmops; + vma->vm_private_data = map; + vm_flags_clear(vma, VM_MAYEXEC); + /* If mapping is read-only, then disallow potentially re-mapping with + * PROT_WRITE by dropping VM_MAYWRITE flag. This VM_MAYWRITE clearing + * means that as far as BPF map's memory-mapped VMAs are concerned, + * VM_WRITE and VM_MAYWRITE and equivalent, if one of them is set, + * both should be set, so we can forget about VM_MAYWRITE and always + * check just VM_WRITE + */ + if (!(vma->vm_flags & VM_WRITE)) + vm_flags_clear(vma, VM_MAYWRITE); + + err = map->ops->map_mmap(map, vma); + if (err) { + if (vma->vm_flags & VM_WRITE) + bpf_map_write_active_dec(map); + } + + return err; +} + +static __poll_t bpf_map_poll(struct file *filp, struct poll_table_struct *pts) +{ + struct bpf_map *map = filp->private_data; + + if (map->ops->map_poll) + return map->ops->map_poll(map, filp, pts); + + return EPOLLERR; +} + +static unsigned long bpf_get_unmapped_area(struct file *filp, unsigned long addr, + unsigned long len, unsigned long pgoff, + unsigned long flags) +{ + struct bpf_map *map = filp->private_data; + + if (map->ops->map_get_unmapped_area) + return map->ops->map_get_unmapped_area(filp, addr, len, pgoff, flags); +#ifdef CONFIG_MMU + return mm_get_unmapped_area(filp, addr, len, pgoff, flags); +#else + return addr; +#endif +} + +const struct file_operations bpf_map_fops = { +#ifdef CONFIG_PROC_FS + .show_fdinfo = bpf_map_show_fdinfo, +#endif + .release = bpf_map_release, + .read = bpf_dummy_read, + .write = bpf_dummy_write, + .mmap = bpf_map_mmap, + .poll = bpf_map_poll, + .get_unmapped_area = bpf_get_unmapped_area, +}; + +int bpf_map_new_fd(struct bpf_map *map, int flags) +{ + int ret; + + ret = security_bpf_map(map, OPEN_FMODE(flags)); + if (ret < 0) + return ret; + + return anon_inode_getfd("bpf-map", &bpf_map_fops, map, + flags | O_CLOEXEC); +} + +int bpf_get_file_flag(int flags) +{ + if ((flags & BPF_F_RDONLY) && (flags & BPF_F_WRONLY)) + return -EINVAL; + if (flags & BPF_F_RDONLY) + return O_RDONLY; + if (flags & BPF_F_WRONLY) + return O_WRONLY; + return O_RDWR; +} + +/* helper macro to check that unused fields 'union bpf_attr' are zero */ +#define CHECK_ATTR(CMD) \ + memchr_inv((void *) &attr->CMD##_LAST_FIELD + \ + sizeof(attr->CMD##_LAST_FIELD), 0, \ + sizeof(*attr) - \ + offsetof(union bpf_attr, CMD##_LAST_FIELD) - \ + sizeof(attr->CMD##_LAST_FIELD)) != NULL + +/* dst and src must have at least "size" number of bytes. + * Return strlen on success and < 0 on error. + */ +int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size) +{ + const char *end = src + size; + const char *orig_src = src; + + memset(dst, 0, size); + /* Copy all isalnum(), '_' and '.' chars. */ + while (src < end && *src) { + if (!isalnum(*src) && + *src != '_' && *src != '.') + return -EINVAL; + *dst++ = *src++; + } + + /* No '\0' found in "size" number of bytes */ + if (src == end) + return -EINVAL; + + return src - orig_src; +} +EXPORT_SYMBOL_GPL(bpf_obj_name_cpy); + +int map_check_no_btf(const struct bpf_map *map, + const struct btf *btf, + const struct btf_type *key_type, + const struct btf_type *value_type) +{ + return -ENOTSUPP; +} + +static int map_check_btf(struct bpf_map *map, struct bpf_token *token, + const struct btf *btf, u32 btf_key_id, u32 btf_value_id) +{ + const struct btf_type *key_type, *value_type; + u32 key_size, value_size; + int ret = 0; + + /* Some maps allow key to be unspecified. */ + if (btf_key_id) { + key_type = btf_type_id_size(btf, &btf_key_id, &key_size); + if (!key_type || key_size != map->key_size) + return -EINVAL; + } else { + key_type = btf_type_by_id(btf, 0); + if (!map->ops->map_check_btf) + return -EINVAL; + } + + value_type = btf_type_id_size(btf, &btf_value_id, &value_size); + if (!value_type || value_size != map->value_size) + return -EINVAL; + + map->record = btf_parse_fields(btf, value_type, + BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK | BPF_TIMER | BPF_KPTR | BPF_LIST_HEAD | + BPF_RB_ROOT | BPF_REFCOUNT | BPF_WORKQUEUE | BPF_UPTR | + BPF_TASK_WORK, + map->value_size); + if (!IS_ERR_OR_NULL(map->record)) { + int i; + + if (!bpf_token_capable(token, CAP_BPF)) { + ret = -EPERM; + goto free_map_tab; + } + if (map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) { + ret = -EACCES; + goto free_map_tab; + } + for (i = 0; i < sizeof(map->record->field_mask) * 8; i++) { + switch (map->record->field_mask & (1 << i)) { + case 0: + continue; + case BPF_SPIN_LOCK: + case BPF_RES_SPIN_LOCK: + if (map->map_type != BPF_MAP_TYPE_HASH && + map->map_type != BPF_MAP_TYPE_ARRAY && + map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && + map->map_type != BPF_MAP_TYPE_SK_STORAGE && + map->map_type != BPF_MAP_TYPE_INODE_STORAGE && + map->map_type != BPF_MAP_TYPE_TASK_STORAGE && + map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) { + ret = -EOPNOTSUPP; + goto free_map_tab; + } + break; + case BPF_TIMER: + case BPF_WORKQUEUE: + case BPF_TASK_WORK: + if (map->map_type != BPF_MAP_TYPE_HASH && + map->map_type != BPF_MAP_TYPE_LRU_HASH && + map->map_type != BPF_MAP_TYPE_ARRAY) { + ret = -EOPNOTSUPP; + goto free_map_tab; + } + break; + case BPF_KPTR_UNREF: + case BPF_KPTR_REF: + case BPF_KPTR_PERCPU: + case BPF_REFCOUNT: + if (map->map_type != BPF_MAP_TYPE_HASH && + map->map_type != BPF_MAP_TYPE_PERCPU_HASH && + map->map_type != BPF_MAP_TYPE_LRU_HASH && + map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH && + map->map_type != BPF_MAP_TYPE_ARRAY && + map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && + map->map_type != BPF_MAP_TYPE_SK_STORAGE && + map->map_type != BPF_MAP_TYPE_INODE_STORAGE && + map->map_type != BPF_MAP_TYPE_TASK_STORAGE && + map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) { + ret = -EOPNOTSUPP; + goto free_map_tab; + } + break; + case BPF_UPTR: + if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) { + ret = -EOPNOTSUPP; + goto free_map_tab; + } + break; + case BPF_LIST_HEAD: + case BPF_RB_ROOT: + if (map->map_type != BPF_MAP_TYPE_HASH && + map->map_type != BPF_MAP_TYPE_LRU_HASH && + map->map_type != BPF_MAP_TYPE_ARRAY) { + ret = -EOPNOTSUPP; + goto free_map_tab; + } + break; + default: + /* Fail if map_type checks are missing for a field type */ + ret = -EOPNOTSUPP; + goto free_map_tab; + } + } + } + + ret = btf_check_and_fixup_fields(btf, map->record); + if (ret < 0) + goto free_map_tab; + + if (map->ops->map_check_btf) { + ret = map->ops->map_check_btf(map, btf, key_type, value_type); + if (ret < 0) + goto free_map_tab; + } + + return ret; +free_map_tab: + bpf_map_free_record(map); + return ret; +} + +static bool bpf_net_capable(void) +{ + return capable(CAP_NET_ADMIN) || capable(CAP_SYS_ADMIN); +} + +#define BPF_MAP_CREATE_LAST_FIELD excl_prog_hash_size +/* called via syscall */ +static int map_create(union bpf_attr *attr, bpfptr_t uattr) +{ + const struct bpf_map_ops *ops; + struct bpf_token *token = NULL; + int numa_node = bpf_map_attr_numa_node(attr); + u32 map_type = attr->map_type; + struct bpf_map *map; + bool token_flag; + int f_flags; + int err; + + err = CHECK_ATTR(BPF_MAP_CREATE); + if (err) + return -EINVAL; + + /* check BPF_F_TOKEN_FD flag, remember if it's set, and then clear it + * to avoid per-map type checks tripping on unknown flag + */ + token_flag = attr->map_flags & BPF_F_TOKEN_FD; + attr->map_flags &= ~BPF_F_TOKEN_FD; + + if (attr->btf_vmlinux_value_type_id) { + if (attr->map_type != BPF_MAP_TYPE_STRUCT_OPS || + attr->btf_key_type_id || attr->btf_value_type_id) + return -EINVAL; + } else if (attr->btf_key_type_id && !attr->btf_value_type_id) { + return -EINVAL; + } + + if (attr->map_type != BPF_MAP_TYPE_BLOOM_FILTER && + attr->map_type != BPF_MAP_TYPE_ARENA && + attr->map_extra != 0) + return -EINVAL; + + f_flags = bpf_get_file_flag(attr->map_flags); + if (f_flags < 0) + return f_flags; + + if (numa_node != NUMA_NO_NODE && + ((unsigned int)numa_node >= nr_node_ids || + !node_online(numa_node))) + return -EINVAL; + + /* find map type and init map: hashtable vs rbtree vs bloom vs ... */ + map_type = attr->map_type; + if (map_type >= ARRAY_SIZE(bpf_map_types)) + return -EINVAL; + map_type = array_index_nospec(map_type, ARRAY_SIZE(bpf_map_types)); + ops = bpf_map_types[map_type]; + if (!ops) + return -EINVAL; + + if (ops->map_alloc_check) { + err = ops->map_alloc_check(attr); + if (err) + return err; + } + if (attr->map_ifindex) + ops = &bpf_map_offload_ops; + if (!ops->map_mem_usage) + return -EINVAL; + + if (token_flag) { + token = bpf_token_get_from_fd(attr->map_token_fd); + if (IS_ERR(token)) + return PTR_ERR(token); + + /* if current token doesn't grant map creation permissions, + * then we can't use this token, so ignore it and rely on + * system-wide capabilities checks + */ + if (!bpf_token_allow_cmd(token, BPF_MAP_CREATE) || + !bpf_token_allow_map_type(token, attr->map_type)) { + bpf_token_put(token); + token = NULL; + } + } + + err = -EPERM; + + /* Intent here is for unprivileged_bpf_disabled to block BPF map + * creation for unprivileged users; other actions depend + * on fd availability and access to bpffs, so are dependent on + * object creation success. Even with unprivileged BPF disabled, + * capability checks are still carried out. + */ + if (sysctl_unprivileged_bpf_disabled && !bpf_token_capable(token, CAP_BPF)) + goto put_token; + + /* check privileged map type permissions */ + switch (map_type) { + case BPF_MAP_TYPE_ARRAY: + case BPF_MAP_TYPE_PERCPU_ARRAY: + case BPF_MAP_TYPE_PROG_ARRAY: + case BPF_MAP_TYPE_PERF_EVENT_ARRAY: + case BPF_MAP_TYPE_CGROUP_ARRAY: + case BPF_MAP_TYPE_ARRAY_OF_MAPS: + case BPF_MAP_TYPE_HASH: + case BPF_MAP_TYPE_PERCPU_HASH: + case BPF_MAP_TYPE_HASH_OF_MAPS: + case BPF_MAP_TYPE_RINGBUF: + case BPF_MAP_TYPE_USER_RINGBUF: + case BPF_MAP_TYPE_CGROUP_STORAGE: + case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: + /* unprivileged */ + break; + case BPF_MAP_TYPE_SK_STORAGE: + case BPF_MAP_TYPE_INODE_STORAGE: + case BPF_MAP_TYPE_TASK_STORAGE: + case BPF_MAP_TYPE_CGRP_STORAGE: + case BPF_MAP_TYPE_BLOOM_FILTER: + case BPF_MAP_TYPE_LPM_TRIE: + case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: + case BPF_MAP_TYPE_STACK_TRACE: + case BPF_MAP_TYPE_QUEUE: + case BPF_MAP_TYPE_STACK: + case BPF_MAP_TYPE_LRU_HASH: + case BPF_MAP_TYPE_LRU_PERCPU_HASH: + case BPF_MAP_TYPE_STRUCT_OPS: + case BPF_MAP_TYPE_CPUMAP: + case BPF_MAP_TYPE_ARENA: + case BPF_MAP_TYPE_INSN_ARRAY: + if (!bpf_token_capable(token, CAP_BPF)) + goto put_token; + break; + case BPF_MAP_TYPE_SOCKMAP: + case BPF_MAP_TYPE_SOCKHASH: + case BPF_MAP_TYPE_DEVMAP: + case BPF_MAP_TYPE_DEVMAP_HASH: + case BPF_MAP_TYPE_XSKMAP: + if (!bpf_token_capable(token, CAP_NET_ADMIN)) + goto put_token; + break; + default: + WARN(1, "unsupported map type %d", map_type); + goto put_token; + } + + map = ops->map_alloc(attr); + if (IS_ERR(map)) { + err = PTR_ERR(map); + goto put_token; + } + map->ops = ops; + map->map_type = map_type; + + err = bpf_obj_name_cpy(map->name, attr->map_name, + sizeof(attr->map_name)); + if (err < 0) + goto free_map; + + preempt_disable(); + map->cookie = gen_cookie_next(&bpf_map_cookie); + preempt_enable(); + + atomic64_set(&map->refcnt, 1); + atomic64_set(&map->usercnt, 1); + mutex_init(&map->freeze_mutex); + spin_lock_init(&map->owner_lock); + + if (attr->btf_key_type_id || attr->btf_value_type_id || + /* Even the map's value is a kernel's struct, + * the bpf_prog.o must have BTF to begin with + * to figure out the corresponding kernel's + * counter part. Thus, attr->btf_fd has + * to be valid also. + */ + attr->btf_vmlinux_value_type_id) { + struct btf *btf; + + btf = btf_get_by_fd(attr->btf_fd); + if (IS_ERR(btf)) { + err = PTR_ERR(btf); + goto free_map; + } + if (btf_is_kernel(btf)) { + btf_put(btf); + err = -EACCES; + goto free_map; + } + map->btf = btf; + + if (attr->btf_value_type_id) { + err = map_check_btf(map, token, btf, attr->btf_key_type_id, + attr->btf_value_type_id); + if (err) + goto free_map; + } + + map->btf_key_type_id = attr->btf_key_type_id; + map->btf_value_type_id = attr->btf_value_type_id; + map->btf_vmlinux_value_type_id = + attr->btf_vmlinux_value_type_id; + } + + if (attr->excl_prog_hash) { + bpfptr_t uprog_hash = make_bpfptr(attr->excl_prog_hash, uattr.is_kernel); + + if (attr->excl_prog_hash_size != SHA256_DIGEST_SIZE) { + err = -EINVAL; + goto free_map; + } + + map->excl_prog_sha = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); + if (!map->excl_prog_sha) { + err = -ENOMEM; + goto free_map; + } + + if (copy_from_bpfptr(map->excl_prog_sha, uprog_hash, SHA256_DIGEST_SIZE)) { + err = -EFAULT; + goto free_map; + } + } else if (attr->excl_prog_hash_size) { + err = -EINVAL; + goto free_map; + } + + err = security_bpf_map_create(map, attr, token, uattr.is_kernel); + if (err) + goto free_map_sec; + + err = bpf_map_alloc_id(map); + if (err) + goto free_map_sec; + + bpf_map_save_memcg(map); + bpf_token_put(token); + + err = bpf_map_new_fd(map, f_flags); + if (err < 0) { + /* failed to allocate fd. + * bpf_map_put_with_uref() is needed because the above + * bpf_map_alloc_id() has published the map + * to the userspace and the userspace may + * have refcnt-ed it through BPF_MAP_GET_FD_BY_ID. + */ + bpf_map_put_with_uref(map); + return err; + } + + return err; + +free_map_sec: + security_bpf_map_free(map); +free_map: + bpf_map_free(map); +put_token: + bpf_token_put(token); + return err; +} + +void bpf_map_inc(struct bpf_map *map) +{ + atomic64_inc(&map->refcnt); +} +EXPORT_SYMBOL_GPL(bpf_map_inc); + +void bpf_map_inc_with_uref(struct bpf_map *map) +{ + atomic64_inc(&map->refcnt); + atomic64_inc(&map->usercnt); +} +EXPORT_SYMBOL_GPL(bpf_map_inc_with_uref); + +struct bpf_map *bpf_map_get(u32 ufd) +{ + CLASS(fd, f)(ufd); + struct bpf_map *map = __bpf_map_get(f); + + if (!IS_ERR(map)) + bpf_map_inc(map); + + return map; +} +EXPORT_SYMBOL_NS(bpf_map_get, "BPF_INTERNAL"); + +struct bpf_map *bpf_map_get_with_uref(u32 ufd) +{ + CLASS(fd, f)(ufd); + struct bpf_map *map = __bpf_map_get(f); + + if (!IS_ERR(map)) + bpf_map_inc_with_uref(map); + + return map; +} + +/* map_idr_lock should have been held or the map should have been + * protected by rcu read lock. + */ +struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref) +{ + int refold; + + refold = atomic64_fetch_add_unless(&map->refcnt, 1, 0); + if (!refold) + return ERR_PTR(-ENOENT); + if (uref) + atomic64_inc(&map->usercnt); + + return map; +} + +struct bpf_map *bpf_map_inc_not_zero(struct bpf_map *map) +{ + lockdep_assert(rcu_read_lock_held()); + return __bpf_map_inc_not_zero(map, false); +} +EXPORT_SYMBOL_GPL(bpf_map_inc_not_zero); + +int __weak bpf_stackmap_extract(struct bpf_map *map, void *key, void *value, + bool delete) +{ + return -ENOTSUPP; +} + +static void *__bpf_copy_key(void __user *ukey, u64 key_size) +{ + if (key_size) + return vmemdup_user(ukey, key_size); + + if (ukey) + return ERR_PTR(-EINVAL); + + return NULL; +} + +static void *___bpf_copy_key(bpfptr_t ukey, u64 key_size) +{ + if (key_size) + return kvmemdup_bpfptr(ukey, key_size); + + if (!bpfptr_is_null(ukey)) + return ERR_PTR(-EINVAL); + + return NULL; +} + +/* last field in 'union bpf_attr' used by this command */ +#define BPF_MAP_LOOKUP_ELEM_LAST_FIELD flags + +static int map_lookup_elem(union bpf_attr *attr) +{ + void __user *ukey = u64_to_user_ptr(attr->key); + void __user *uvalue = u64_to_user_ptr(attr->value); + struct bpf_map *map; + void *key, *value; + u32 value_size; + int err; + + if (CHECK_ATTR(BPF_MAP_LOOKUP_ELEM)) + return -EINVAL; + + CLASS(fd, f)(attr->map_fd); + map = __bpf_map_get(f); + if (IS_ERR(map)) + return PTR_ERR(map); + if (!(map_get_sys_perms(map, f) & FMODE_CAN_READ)) + return -EPERM; + + err = bpf_map_check_op_flags(map, attr->flags, BPF_F_LOCK); + if (err) + return err; + + key = __bpf_copy_key(ukey, map->key_size); + if (IS_ERR(key)) + return PTR_ERR(key); + + value_size = bpf_map_value_size(map); + + err = -ENOMEM; + value = kvmalloc(value_size, GFP_USER | __GFP_NOWARN); + if (!value) + goto free_key; + + if (map->map_type == BPF_MAP_TYPE_BLOOM_FILTER) { + if (copy_from_user(value, uvalue, value_size)) + err = -EFAULT; + else + err = bpf_map_copy_value(map, key, value, attr->flags); + goto free_value; + } + + err = bpf_map_copy_value(map, key, value, attr->flags); + if (err) + goto free_value; + + err = -EFAULT; + if (copy_to_user(uvalue, value, value_size) != 0) + goto free_value; + + err = 0; + +free_value: + kvfree(value); +free_key: + kvfree(key); + return err; +} + + +#define BPF_MAP_UPDATE_ELEM_LAST_FIELD flags + +static int map_update_elem(union bpf_attr *attr, bpfptr_t uattr) +{ + bpfptr_t ukey = make_bpfptr(attr->key, uattr.is_kernel); + bpfptr_t uvalue = make_bpfptr(attr->value, uattr.is_kernel); + struct bpf_map *map; + void *key, *value; + u32 value_size; + int err; + + if (CHECK_ATTR(BPF_MAP_UPDATE_ELEM)) + return -EINVAL; + + CLASS(fd, f)(attr->map_fd); + map = __bpf_map_get(f); + if (IS_ERR(map)) + return PTR_ERR(map); + bpf_map_write_active_inc(map); + if (!(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) { + err = -EPERM; + goto err_put; + } + + err = bpf_map_check_op_flags(map, attr->flags, ~0); + if (err) + goto err_put; + + key = ___bpf_copy_key(ukey, map->key_size); + if (IS_ERR(key)) { + err = PTR_ERR(key); + goto err_put; + } + + value_size = bpf_map_value_size(map); + value = kvmemdup_bpfptr(uvalue, value_size); + if (IS_ERR(value)) { + err = PTR_ERR(value); + goto free_key; + } + + err = bpf_map_update_value(map, fd_file(f), key, value, attr->flags); + if (!err) + maybe_wait_bpf_programs(map); + + kvfree(value); +free_key: + kvfree(key); +err_put: + bpf_map_write_active_dec(map); + return err; +} + +#define BPF_MAP_DELETE_ELEM_LAST_FIELD key + +static int map_delete_elem(union bpf_attr *attr, bpfptr_t uattr) +{ + bpfptr_t ukey = make_bpfptr(attr->key, uattr.is_kernel); + struct bpf_map *map; + void *key; + int err; + + if (CHECK_ATTR(BPF_MAP_DELETE_ELEM)) + return -EINVAL; + + CLASS(fd, f)(attr->map_fd); + map = __bpf_map_get(f); + if (IS_ERR(map)) + return PTR_ERR(map); + bpf_map_write_active_inc(map); + if (!(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) { + err = -EPERM; + goto err_put; + } + + key = ___bpf_copy_key(ukey, map->key_size); + if (IS_ERR(key)) { + err = PTR_ERR(key); + goto err_put; + } + + if (bpf_map_is_offloaded(map)) { + err = bpf_map_offload_delete_elem(map, key); + goto out; + } else if (IS_FD_PROG_ARRAY(map) || + map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { + /* These maps require sleepable context */ + err = map->ops->map_delete_elem(map, key); + goto out; + } + + bpf_disable_instrumentation(); + rcu_read_lock(); + err = map->ops->map_delete_elem(map, key); + rcu_read_unlock(); + bpf_enable_instrumentation(); + if (!err) + maybe_wait_bpf_programs(map); +out: + kvfree(key); +err_put: + bpf_map_write_active_dec(map); + return err; +} + +/* last field in 'union bpf_attr' used by this command */ +#define BPF_MAP_GET_NEXT_KEY_LAST_FIELD next_key + +static int map_get_next_key(union bpf_attr *attr) +{ + void __user *ukey = u64_to_user_ptr(attr->key); + void __user *unext_key = u64_to_user_ptr(attr->next_key); + struct bpf_map *map; + void *key, *next_key; + int err; + + if (CHECK_ATTR(BPF_MAP_GET_NEXT_KEY)) + return -EINVAL; + + CLASS(fd, f)(attr->map_fd); + map = __bpf_map_get(f); + if (IS_ERR(map)) + return PTR_ERR(map); + if (!(map_get_sys_perms(map, f) & FMODE_CAN_READ)) + return -EPERM; + + if (ukey) { + key = __bpf_copy_key(ukey, map->key_size); + if (IS_ERR(key)) + return PTR_ERR(key); + } else { + key = NULL; + } + + err = -ENOMEM; + next_key = kvmalloc(map->key_size, GFP_USER); + if (!next_key) + goto free_key; + + if (bpf_map_is_offloaded(map)) { + err = bpf_map_offload_get_next_key(map, key, next_key); + goto out; + } + + rcu_read_lock(); + err = map->ops->map_get_next_key(map, key, next_key); + rcu_read_unlock(); +out: + if (err) + goto free_next_key; + + err = -EFAULT; + if (copy_to_user(unext_key, next_key, map->key_size) != 0) + goto free_next_key; + + err = 0; + +free_next_key: + kvfree(next_key); +free_key: + kvfree(key); + return err; +} + +int generic_map_delete_batch(struct bpf_map *map, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + void __user *keys = u64_to_user_ptr(attr->batch.keys); + u32 cp, max_count; + int err = 0; + void *key; + + if (attr->batch.elem_flags & ~BPF_F_LOCK) + return -EINVAL; + + if ((attr->batch.elem_flags & BPF_F_LOCK) && + !btf_record_has_field(map->record, BPF_SPIN_LOCK)) { + return -EINVAL; + } + + max_count = attr->batch.count; + if (!max_count) + return 0; + + if (put_user(0, &uattr->batch.count)) + return -EFAULT; + + key = kvmalloc(map->key_size, GFP_USER | __GFP_NOWARN); + if (!key) + return -ENOMEM; + + for (cp = 0; cp < max_count; cp++) { + err = -EFAULT; + if (copy_from_user(key, keys + cp * map->key_size, + map->key_size)) + break; + + if (bpf_map_is_offloaded(map)) { + err = bpf_map_offload_delete_elem(map, key); + break; + } + + bpf_disable_instrumentation(); + rcu_read_lock(); + err = map->ops->map_delete_elem(map, key); + rcu_read_unlock(); + bpf_enable_instrumentation(); + if (err) + break; + cond_resched(); + } + if (copy_to_user(&uattr->batch.count, &cp, sizeof(cp))) + err = -EFAULT; + + kvfree(key); + + return err; +} + +int generic_map_update_batch(struct bpf_map *map, struct file *map_file, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + void __user *values = u64_to_user_ptr(attr->batch.values); + void __user *keys = u64_to_user_ptr(attr->batch.keys); + u32 value_size, cp, max_count; + void *key, *value; + int err = 0; + + err = bpf_map_check_op_flags(map, attr->batch.elem_flags, BPF_F_LOCK); + if (err) + return err; + + value_size = bpf_map_value_size(map); + + max_count = attr->batch.count; + if (!max_count) + return 0; + + if (put_user(0, &uattr->batch.count)) + return -EFAULT; + + key = kvmalloc(map->key_size, GFP_USER | __GFP_NOWARN); + if (!key) + return -ENOMEM; + + value = kvmalloc(value_size, GFP_USER | __GFP_NOWARN); + if (!value) { + kvfree(key); + return -ENOMEM; + } + + for (cp = 0; cp < max_count; cp++) { + err = -EFAULT; + if (copy_from_user(key, keys + cp * map->key_size, + map->key_size) || + copy_from_user(value, values + cp * value_size, value_size)) + break; + + err = bpf_map_update_value(map, map_file, key, value, + attr->batch.elem_flags); + + if (err) + break; + cond_resched(); + } + + if (copy_to_user(&uattr->batch.count, &cp, sizeof(cp))) + err = -EFAULT; + + kvfree(value); + kvfree(key); + + return err; +} + +int generic_map_lookup_batch(struct bpf_map *map, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + void __user *uobatch = u64_to_user_ptr(attr->batch.out_batch); + void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch); + void __user *values = u64_to_user_ptr(attr->batch.values); + void __user *keys = u64_to_user_ptr(attr->batch.keys); + void *buf, *buf_prevkey, *prev_key, *key, *value; + u32 value_size, cp, max_count; + int err; + + err = bpf_map_check_op_flags(map, attr->batch.elem_flags, BPF_F_LOCK); + if (err) + return err; + + value_size = bpf_map_value_size(map); + + max_count = attr->batch.count; + if (!max_count) + return 0; + + if (put_user(0, &uattr->batch.count)) + return -EFAULT; + + buf_prevkey = kvmalloc(map->key_size, GFP_USER | __GFP_NOWARN); + if (!buf_prevkey) + return -ENOMEM; + + buf = kvmalloc(map->key_size + value_size, GFP_USER | __GFP_NOWARN); + if (!buf) { + kvfree(buf_prevkey); + return -ENOMEM; + } + + err = -EFAULT; + prev_key = NULL; + if (ubatch && copy_from_user(buf_prevkey, ubatch, map->key_size)) + goto free_buf; + key = buf; + value = key + map->key_size; + if (ubatch) + prev_key = buf_prevkey; + + for (cp = 0; cp < max_count;) { + rcu_read_lock(); + err = map->ops->map_get_next_key(map, prev_key, key); + rcu_read_unlock(); + if (err) + break; + err = bpf_map_copy_value(map, key, value, + attr->batch.elem_flags); + + if (err == -ENOENT) + goto next_key; + + if (err) + goto free_buf; + + if (copy_to_user(keys + cp * map->key_size, key, + map->key_size)) { + err = -EFAULT; + goto free_buf; + } + if (copy_to_user(values + cp * value_size, value, value_size)) { + err = -EFAULT; + goto free_buf; + } + + cp++; +next_key: + if (!prev_key) + prev_key = buf_prevkey; + + swap(prev_key, key); + cond_resched(); + } + + if (err == -EFAULT) + goto free_buf; + + if ((copy_to_user(&uattr->batch.count, &cp, sizeof(cp)) || + (cp && copy_to_user(uobatch, prev_key, map->key_size)))) + err = -EFAULT; + +free_buf: + kvfree(buf_prevkey); + kvfree(buf); + return err; +} + +#define BPF_MAP_LOOKUP_AND_DELETE_ELEM_LAST_FIELD flags + +static int map_lookup_and_delete_elem(union bpf_attr *attr) +{ + void __user *ukey = u64_to_user_ptr(attr->key); + void __user *uvalue = u64_to_user_ptr(attr->value); + struct bpf_map *map; + void *key, *value; + u32 value_size; + int err; + + if (CHECK_ATTR(BPF_MAP_LOOKUP_AND_DELETE_ELEM)) + return -EINVAL; + + if (attr->flags & ~BPF_F_LOCK) + return -EINVAL; + + CLASS(fd, f)(attr->map_fd); + map = __bpf_map_get(f); + if (IS_ERR(map)) + return PTR_ERR(map); + bpf_map_write_active_inc(map); + if (!(map_get_sys_perms(map, f) & FMODE_CAN_READ) || + !(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) { + err = -EPERM; + goto err_put; + } + + if (attr->flags && + (map->map_type == BPF_MAP_TYPE_QUEUE || + map->map_type == BPF_MAP_TYPE_STACK)) { + err = -EINVAL; + goto err_put; + } + + if ((attr->flags & BPF_F_LOCK) && + !btf_record_has_field(map->record, BPF_SPIN_LOCK)) { + err = -EINVAL; + goto err_put; + } + + key = __bpf_copy_key(ukey, map->key_size); + if (IS_ERR(key)) { + err = PTR_ERR(key); + goto err_put; + } + + value_size = bpf_map_value_size(map); + + err = -ENOMEM; + value = kvmalloc(value_size, GFP_USER | __GFP_NOWARN); + if (!value) + goto free_key; + + err = -ENOTSUPP; + if (map->map_type == BPF_MAP_TYPE_QUEUE || + map->map_type == BPF_MAP_TYPE_STACK) { + err = map->ops->map_pop_elem(map, value); + } else if (map->map_type == BPF_MAP_TYPE_HASH || + map->map_type == BPF_MAP_TYPE_PERCPU_HASH || + map->map_type == BPF_MAP_TYPE_LRU_HASH || + map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH || + map->map_type == BPF_MAP_TYPE_STACK_TRACE) { + if (!bpf_map_is_offloaded(map)) { + bpf_disable_instrumentation(); + rcu_read_lock(); + err = map->ops->map_lookup_and_delete_elem(map, key, value, attr->flags); + rcu_read_unlock(); + bpf_enable_instrumentation(); + } + } + + if (err) + goto free_value; + + if (copy_to_user(uvalue, value, value_size) != 0) { + err = -EFAULT; + goto free_value; + } + + err = 0; + +free_value: + kvfree(value); +free_key: + kvfree(key); +err_put: + bpf_map_write_active_dec(map); + return err; +} + +#define BPF_MAP_FREEZE_LAST_FIELD map_fd + +static int map_freeze(const union bpf_attr *attr) +{ + int err = 0; + struct bpf_map *map; + + if (CHECK_ATTR(BPF_MAP_FREEZE)) + return -EINVAL; + + CLASS(fd, f)(attr->map_fd); + map = __bpf_map_get(f); + if (IS_ERR(map)) + return PTR_ERR(map); + + if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS || !IS_ERR_OR_NULL(map->record)) + return -ENOTSUPP; + + if (!(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) + return -EPERM; + + mutex_lock(&map->freeze_mutex); + if (bpf_map_write_active(map)) { + err = -EBUSY; + goto err_put; + } + if (READ_ONCE(map->frozen)) { + err = -EBUSY; + goto err_put; + } + + WRITE_ONCE(map->frozen, true); +err_put: + mutex_unlock(&map->freeze_mutex); + return err; +} + +static const struct bpf_prog_ops * const bpf_prog_types[] = { +#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ + [_id] = & _name ## _prog_ops, +#define BPF_MAP_TYPE(_id, _ops) +#define BPF_LINK_TYPE(_id, _name) +#include <linux/bpf_types.h> +#undef BPF_PROG_TYPE +#undef BPF_MAP_TYPE +#undef BPF_LINK_TYPE +}; + +static int find_prog_type(enum bpf_prog_type type, struct bpf_prog *prog) +{ + const struct bpf_prog_ops *ops; + + if (type >= ARRAY_SIZE(bpf_prog_types)) + return -EINVAL; + type = array_index_nospec(type, ARRAY_SIZE(bpf_prog_types)); + ops = bpf_prog_types[type]; + if (!ops) + return -EINVAL; + + if (!bpf_prog_is_offloaded(prog->aux)) + prog->aux->ops = ops; + else + prog->aux->ops = &bpf_offload_prog_ops; + prog->type = type; + return 0; +} + +enum bpf_audit { + BPF_AUDIT_LOAD, + BPF_AUDIT_UNLOAD, + BPF_AUDIT_MAX, +}; + +static const char * const bpf_audit_str[BPF_AUDIT_MAX] = { + [BPF_AUDIT_LOAD] = "LOAD", + [BPF_AUDIT_UNLOAD] = "UNLOAD", +}; + +static void bpf_audit_prog(const struct bpf_prog *prog, unsigned int op) +{ + struct audit_context *ctx = NULL; + struct audit_buffer *ab; + + if (WARN_ON_ONCE(op >= BPF_AUDIT_MAX)) + return; + if (audit_enabled == AUDIT_OFF) + return; + if (!in_hardirq() && !irqs_disabled()) + ctx = audit_context(); + ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_BPF); + if (unlikely(!ab)) + return; + audit_log_format(ab, "prog-id=%u op=%s", + prog->aux->id, bpf_audit_str[op]); + audit_log_end(ab); +} + +static int bpf_prog_alloc_id(struct bpf_prog *prog) +{ + int id; + + idr_preload(GFP_KERNEL); + spin_lock_bh(&prog_idr_lock); + id = idr_alloc_cyclic(&prog_idr, prog, 1, INT_MAX, GFP_ATOMIC); + if (id > 0) + prog->aux->id = id; + spin_unlock_bh(&prog_idr_lock); + idr_preload_end(); + + /* id is in [1, INT_MAX) */ + if (WARN_ON_ONCE(!id)) + return -ENOSPC; + + return id > 0 ? 0 : id; +} + +void bpf_prog_free_id(struct bpf_prog *prog) +{ + unsigned long flags; + + /* cBPF to eBPF migrations are currently not in the idr store. + * Offloaded programs are removed from the store when their device + * disappears - even if someone grabs an fd to them they are unusable, + * simply waiting for refcnt to drop to be freed. + */ + if (!prog->aux->id) + return; + + spin_lock_irqsave(&prog_idr_lock, flags); + idr_remove(&prog_idr, prog->aux->id); + prog->aux->id = 0; + spin_unlock_irqrestore(&prog_idr_lock, flags); +} + +static void __bpf_prog_put_rcu(struct rcu_head *rcu) +{ + struct bpf_prog_aux *aux = container_of(rcu, struct bpf_prog_aux, rcu); + + kvfree(aux->func_info); + kfree(aux->func_info_aux); + free_uid(aux->user); + security_bpf_prog_free(aux->prog); + bpf_prog_free(aux->prog); +} + +static void __bpf_prog_put_noref(struct bpf_prog *prog, bool deferred) +{ + bpf_prog_kallsyms_del_all(prog); + btf_put(prog->aux->btf); + module_put(prog->aux->mod); + kvfree(prog->aux->jited_linfo); + kvfree(prog->aux->linfo); + kfree(prog->aux->kfunc_tab); + kfree(prog->aux->ctx_arg_info); + if (prog->aux->attach_btf) + btf_put(prog->aux->attach_btf); + + if (deferred) { + if (prog->sleepable) + call_rcu_tasks_trace(&prog->aux->rcu, __bpf_prog_put_rcu); + else + call_rcu(&prog->aux->rcu, __bpf_prog_put_rcu); + } else { + __bpf_prog_put_rcu(&prog->aux->rcu); + } +} + +static void bpf_prog_put_deferred(struct work_struct *work) +{ + struct bpf_prog_aux *aux; + struct bpf_prog *prog; + + aux = container_of(work, struct bpf_prog_aux, work); + prog = aux->prog; + perf_event_bpf_event(prog, PERF_BPF_EVENT_PROG_UNLOAD, 0); + bpf_audit_prog(prog, BPF_AUDIT_UNLOAD); + bpf_prog_free_id(prog); + __bpf_prog_put_noref(prog, true); +} + +static void __bpf_prog_put(struct bpf_prog *prog) +{ + struct bpf_prog_aux *aux = prog->aux; + + if (atomic64_dec_and_test(&aux->refcnt)) { + if (in_hardirq() || irqs_disabled()) { + INIT_WORK(&aux->work, bpf_prog_put_deferred); + schedule_work(&aux->work); + } else { + bpf_prog_put_deferred(&aux->work); + } + } +} + +void bpf_prog_put(struct bpf_prog *prog) +{ + __bpf_prog_put(prog); +} +EXPORT_SYMBOL_GPL(bpf_prog_put); + +static int bpf_prog_release(struct inode *inode, struct file *filp) +{ + struct bpf_prog *prog = filp->private_data; + + bpf_prog_put(prog); + return 0; +} + +struct bpf_prog_kstats { + u64 nsecs; + u64 cnt; + u64 misses; +}; + +void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog) +{ + struct bpf_prog_stats *stats; + unsigned int flags; + + if (unlikely(!prog->stats)) + return; + + stats = this_cpu_ptr(prog->stats); + flags = u64_stats_update_begin_irqsave(&stats->syncp); + u64_stats_inc(&stats->misses); + u64_stats_update_end_irqrestore(&stats->syncp, flags); +} + +static void bpf_prog_get_stats(const struct bpf_prog *prog, + struct bpf_prog_kstats *stats) +{ + u64 nsecs = 0, cnt = 0, misses = 0; + int cpu; + + for_each_possible_cpu(cpu) { + const struct bpf_prog_stats *st; + unsigned int start; + u64 tnsecs, tcnt, tmisses; + + st = per_cpu_ptr(prog->stats, cpu); + do { + start = u64_stats_fetch_begin(&st->syncp); + tnsecs = u64_stats_read(&st->nsecs); + tcnt = u64_stats_read(&st->cnt); + tmisses = u64_stats_read(&st->misses); + } while (u64_stats_fetch_retry(&st->syncp, start)); + nsecs += tnsecs; + cnt += tcnt; + misses += tmisses; + } + stats->nsecs = nsecs; + stats->cnt = cnt; + stats->misses = misses; +} + +#ifdef CONFIG_PROC_FS +static void bpf_prog_show_fdinfo(struct seq_file *m, struct file *filp) +{ + const struct bpf_prog *prog = filp->private_data; + char prog_tag[sizeof(prog->tag) * 2 + 1] = { }; + struct bpf_prog_kstats stats; + + bpf_prog_get_stats(prog, &stats); + bin2hex(prog_tag, prog->tag, sizeof(prog->tag)); + seq_printf(m, + "prog_type:\t%u\n" + "prog_jited:\t%u\n" + "prog_tag:\t%s\n" + "memlock:\t%llu\n" + "prog_id:\t%u\n" + "run_time_ns:\t%llu\n" + "run_cnt:\t%llu\n" + "recursion_misses:\t%llu\n" + "verified_insns:\t%u\n", + prog->type, + prog->jited, + prog_tag, + prog->pages * 1ULL << PAGE_SHIFT, + prog->aux->id, + stats.nsecs, + stats.cnt, + stats.misses, + prog->aux->verified_insns); +} +#endif + +const struct file_operations bpf_prog_fops = { +#ifdef CONFIG_PROC_FS + .show_fdinfo = bpf_prog_show_fdinfo, +#endif + .release = bpf_prog_release, + .read = bpf_dummy_read, + .write = bpf_dummy_write, +}; + +int bpf_prog_new_fd(struct bpf_prog *prog) +{ + int ret; + + ret = security_bpf_prog(prog); + if (ret < 0) + return ret; + + return anon_inode_getfd("bpf-prog", &bpf_prog_fops, prog, + O_RDWR | O_CLOEXEC); +} + +void bpf_prog_add(struct bpf_prog *prog, int i) +{ + atomic64_add(i, &prog->aux->refcnt); +} +EXPORT_SYMBOL_GPL(bpf_prog_add); + +void bpf_prog_sub(struct bpf_prog *prog, int i) +{ + /* Only to be used for undoing previous bpf_prog_add() in some + * error path. We still know that another entity in our call + * path holds a reference to the program, thus atomic_sub() can + * be safely used in such cases! + */ + WARN_ON(atomic64_sub_return(i, &prog->aux->refcnt) == 0); +} +EXPORT_SYMBOL_GPL(bpf_prog_sub); + +void bpf_prog_inc(struct bpf_prog *prog) +{ + atomic64_inc(&prog->aux->refcnt); +} +EXPORT_SYMBOL_GPL(bpf_prog_inc); + +/* prog_idr_lock should have been held */ +struct bpf_prog *bpf_prog_inc_not_zero(struct bpf_prog *prog) +{ + int refold; + + refold = atomic64_fetch_add_unless(&prog->aux->refcnt, 1, 0); + + if (!refold) + return ERR_PTR(-ENOENT); + + return prog; +} +EXPORT_SYMBOL_GPL(bpf_prog_inc_not_zero); + +bool bpf_prog_get_ok(struct bpf_prog *prog, + enum bpf_prog_type *attach_type, bool attach_drv) +{ + /* not an attachment, just a refcount inc, always allow */ + if (!attach_type) + return true; + + if (prog->type != *attach_type) + return false; + if (bpf_prog_is_offloaded(prog->aux) && !attach_drv) + return false; + + return true; +} + +static struct bpf_prog *__bpf_prog_get(u32 ufd, enum bpf_prog_type *attach_type, + bool attach_drv) +{ + CLASS(fd, f)(ufd); + struct bpf_prog *prog; + + if (fd_empty(f)) + return ERR_PTR(-EBADF); + if (fd_file(f)->f_op != &bpf_prog_fops) + return ERR_PTR(-EINVAL); + + prog = fd_file(f)->private_data; + if (!bpf_prog_get_ok(prog, attach_type, attach_drv)) + return ERR_PTR(-EINVAL); + + bpf_prog_inc(prog); + return prog; +} + +struct bpf_prog *bpf_prog_get(u32 ufd) +{ + return __bpf_prog_get(ufd, NULL, false); +} + +struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, + bool attach_drv) +{ + return __bpf_prog_get(ufd, &type, attach_drv); +} +EXPORT_SYMBOL_GPL(bpf_prog_get_type_dev); + +/* Initially all BPF programs could be loaded w/o specifying + * expected_attach_type. Later for some of them specifying expected_attach_type + * at load time became required so that program could be validated properly. + * Programs of types that are allowed to be loaded both w/ and w/o (for + * backward compatibility) expected_attach_type, should have the default attach + * type assigned to expected_attach_type for the latter case, so that it can be + * validated later at attach time. + * + * bpf_prog_load_fixup_attach_type() sets expected_attach_type in @attr if + * prog type requires it but has some attach types that have to be backward + * compatible. + */ +static void bpf_prog_load_fixup_attach_type(union bpf_attr *attr) +{ + switch (attr->prog_type) { + case BPF_PROG_TYPE_CGROUP_SOCK: + /* Unfortunately BPF_ATTACH_TYPE_UNSPEC enumeration doesn't + * exist so checking for non-zero is the way to go here. + */ + if (!attr->expected_attach_type) + attr->expected_attach_type = + BPF_CGROUP_INET_SOCK_CREATE; + break; + case BPF_PROG_TYPE_SK_REUSEPORT: + if (!attr->expected_attach_type) + attr->expected_attach_type = + BPF_SK_REUSEPORT_SELECT; + break; + } +} + +static int +bpf_prog_load_check_attach(enum bpf_prog_type prog_type, + enum bpf_attach_type expected_attach_type, + struct btf *attach_btf, u32 btf_id, + struct bpf_prog *dst_prog) +{ + if (btf_id) { + if (btf_id > BTF_MAX_TYPE) + return -EINVAL; + + if (!attach_btf && !dst_prog) + return -EINVAL; + + switch (prog_type) { + case BPF_PROG_TYPE_TRACING: + case BPF_PROG_TYPE_LSM: + case BPF_PROG_TYPE_STRUCT_OPS: + case BPF_PROG_TYPE_EXT: + break; + default: + return -EINVAL; + } + } + + if (attach_btf && (!btf_id || dst_prog)) + return -EINVAL; + + if (dst_prog && prog_type != BPF_PROG_TYPE_TRACING && + prog_type != BPF_PROG_TYPE_EXT) + return -EINVAL; + + switch (prog_type) { + case BPF_PROG_TYPE_CGROUP_SOCK: + switch (expected_attach_type) { + case BPF_CGROUP_INET_SOCK_CREATE: + case BPF_CGROUP_INET_SOCK_RELEASE: + case BPF_CGROUP_INET4_POST_BIND: + case BPF_CGROUP_INET6_POST_BIND: + return 0; + default: + return -EINVAL; + } + case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: + switch (expected_attach_type) { + case BPF_CGROUP_INET4_BIND: + case BPF_CGROUP_INET6_BIND: + case BPF_CGROUP_INET4_CONNECT: + case BPF_CGROUP_INET6_CONNECT: + case BPF_CGROUP_UNIX_CONNECT: + case BPF_CGROUP_INET4_GETPEERNAME: + case BPF_CGROUP_INET6_GETPEERNAME: + case BPF_CGROUP_UNIX_GETPEERNAME: + case BPF_CGROUP_INET4_GETSOCKNAME: + case BPF_CGROUP_INET6_GETSOCKNAME: + case BPF_CGROUP_UNIX_GETSOCKNAME: + case BPF_CGROUP_UDP4_SENDMSG: + case BPF_CGROUP_UDP6_SENDMSG: + case BPF_CGROUP_UNIX_SENDMSG: + case BPF_CGROUP_UDP4_RECVMSG: + case BPF_CGROUP_UDP6_RECVMSG: + case BPF_CGROUP_UNIX_RECVMSG: + return 0; + default: + return -EINVAL; + } + case BPF_PROG_TYPE_CGROUP_SKB: + switch (expected_attach_type) { + case BPF_CGROUP_INET_INGRESS: + case BPF_CGROUP_INET_EGRESS: + return 0; + default: + return -EINVAL; + } + case BPF_PROG_TYPE_CGROUP_SOCKOPT: + switch (expected_attach_type) { + case BPF_CGROUP_SETSOCKOPT: + case BPF_CGROUP_GETSOCKOPT: + return 0; + default: + return -EINVAL; + } + case BPF_PROG_TYPE_SK_LOOKUP: + if (expected_attach_type == BPF_SK_LOOKUP) + return 0; + return -EINVAL; + case BPF_PROG_TYPE_SK_REUSEPORT: + switch (expected_attach_type) { + case BPF_SK_REUSEPORT_SELECT: + case BPF_SK_REUSEPORT_SELECT_OR_MIGRATE: + return 0; + default: + return -EINVAL; + } + case BPF_PROG_TYPE_NETFILTER: + if (expected_attach_type == BPF_NETFILTER) + return 0; + return -EINVAL; + case BPF_PROG_TYPE_SYSCALL: + case BPF_PROG_TYPE_EXT: + if (expected_attach_type) + return -EINVAL; + fallthrough; + default: + return 0; + } +} + +static bool is_net_admin_prog_type(enum bpf_prog_type prog_type) +{ + switch (prog_type) { + case BPF_PROG_TYPE_SCHED_CLS: + case BPF_PROG_TYPE_SCHED_ACT: + case BPF_PROG_TYPE_XDP: + case BPF_PROG_TYPE_LWT_IN: + case BPF_PROG_TYPE_LWT_OUT: + case BPF_PROG_TYPE_LWT_XMIT: + case BPF_PROG_TYPE_LWT_SEG6LOCAL: + case BPF_PROG_TYPE_SK_SKB: + case BPF_PROG_TYPE_SK_MSG: + case BPF_PROG_TYPE_FLOW_DISSECTOR: + case BPF_PROG_TYPE_CGROUP_DEVICE: + case BPF_PROG_TYPE_CGROUP_SOCK: + case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: + case BPF_PROG_TYPE_CGROUP_SOCKOPT: + case BPF_PROG_TYPE_CGROUP_SYSCTL: + case BPF_PROG_TYPE_SOCK_OPS: + case BPF_PROG_TYPE_EXT: /* extends any prog */ + case BPF_PROG_TYPE_NETFILTER: + return true; + case BPF_PROG_TYPE_CGROUP_SKB: + /* always unpriv */ + case BPF_PROG_TYPE_SK_REUSEPORT: + /* equivalent to SOCKET_FILTER. need CAP_BPF only */ + default: + return false; + } +} + +static bool is_perfmon_prog_type(enum bpf_prog_type prog_type) +{ + switch (prog_type) { + case BPF_PROG_TYPE_KPROBE: + case BPF_PROG_TYPE_TRACEPOINT: + case BPF_PROG_TYPE_PERF_EVENT: + case BPF_PROG_TYPE_RAW_TRACEPOINT: + case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: + case BPF_PROG_TYPE_TRACING: + case BPF_PROG_TYPE_LSM: + case BPF_PROG_TYPE_STRUCT_OPS: /* has access to struct sock */ + case BPF_PROG_TYPE_EXT: /* extends any prog */ + return true; + default: + return false; + } +} + +static int bpf_prog_verify_signature(struct bpf_prog *prog, union bpf_attr *attr, + bool is_kernel) +{ + bpfptr_t usig = make_bpfptr(attr->signature, is_kernel); + struct bpf_dynptr_kern sig_ptr, insns_ptr; + struct bpf_key *key = NULL; + void *sig; + int err = 0; + + if (system_keyring_id_check(attr->keyring_id) == 0) + key = bpf_lookup_system_key(attr->keyring_id); + else + key = bpf_lookup_user_key(attr->keyring_id, 0); + + if (!key) + return -EINVAL; + + sig = kvmemdup_bpfptr(usig, attr->signature_size); + if (IS_ERR(sig)) { + bpf_key_put(key); + return -ENOMEM; + } + + bpf_dynptr_init(&sig_ptr, sig, BPF_DYNPTR_TYPE_LOCAL, 0, + attr->signature_size); + bpf_dynptr_init(&insns_ptr, prog->insnsi, BPF_DYNPTR_TYPE_LOCAL, 0, + prog->len * sizeof(struct bpf_insn)); + + err = bpf_verify_pkcs7_signature((struct bpf_dynptr *)&insns_ptr, + (struct bpf_dynptr *)&sig_ptr, key); + + bpf_key_put(key); + kvfree(sig); + return err; +} + +static int bpf_prog_mark_insn_arrays_ready(struct bpf_prog *prog) +{ + int err; + int i; + + for (i = 0; i < prog->aux->used_map_cnt; i++) { + if (prog->aux->used_maps[i]->map_type != BPF_MAP_TYPE_INSN_ARRAY) + continue; + + err = bpf_insn_array_ready(prog->aux->used_maps[i]); + if (err) + return err; + } + + return 0; +} + +/* last field in 'union bpf_attr' used by this command */ +#define BPF_PROG_LOAD_LAST_FIELD keyring_id + +static int bpf_prog_load(union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) +{ + enum bpf_prog_type type = attr->prog_type; + struct bpf_prog *prog, *dst_prog = NULL; + struct btf *attach_btf = NULL; + struct bpf_token *token = NULL; + bool bpf_cap; + int err; + char license[128]; + + if (CHECK_ATTR(BPF_PROG_LOAD)) + return -EINVAL; + + if (attr->prog_flags & ~(BPF_F_STRICT_ALIGNMENT | + BPF_F_ANY_ALIGNMENT | + BPF_F_TEST_STATE_FREQ | + BPF_F_SLEEPABLE | + BPF_F_TEST_RND_HI32 | + BPF_F_XDP_HAS_FRAGS | + BPF_F_XDP_DEV_BOUND_ONLY | + BPF_F_TEST_REG_INVARIANTS | + BPF_F_TOKEN_FD)) + return -EINVAL; + + bpf_prog_load_fixup_attach_type(attr); + + if (attr->prog_flags & BPF_F_TOKEN_FD) { + token = bpf_token_get_from_fd(attr->prog_token_fd); + if (IS_ERR(token)) + return PTR_ERR(token); + /* if current token doesn't grant prog loading permissions, + * then we can't use this token, so ignore it and rely on + * system-wide capabilities checks + */ + if (!bpf_token_allow_cmd(token, BPF_PROG_LOAD) || + !bpf_token_allow_prog_type(token, attr->prog_type, + attr->expected_attach_type)) { + bpf_token_put(token); + token = NULL; + } + } + + bpf_cap = bpf_token_capable(token, CAP_BPF); + err = -EPERM; + + if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && + (attr->prog_flags & BPF_F_ANY_ALIGNMENT) && + !bpf_cap) + goto put_token; + + /* Intent here is for unprivileged_bpf_disabled to block BPF program + * creation for unprivileged users; other actions depend + * on fd availability and access to bpffs, so are dependent on + * object creation success. Even with unprivileged BPF disabled, + * capability checks are still carried out for these + * and other operations. + */ + if (sysctl_unprivileged_bpf_disabled && !bpf_cap) + goto put_token; + + if (attr->insn_cnt == 0 || + attr->insn_cnt > (bpf_cap ? BPF_COMPLEXITY_LIMIT_INSNS : BPF_MAXINSNS)) { + err = -E2BIG; + goto put_token; + } + if (type != BPF_PROG_TYPE_SOCKET_FILTER && + type != BPF_PROG_TYPE_CGROUP_SKB && + !bpf_cap) + goto put_token; + + if (is_net_admin_prog_type(type) && !bpf_token_capable(token, CAP_NET_ADMIN)) + goto put_token; + if (is_perfmon_prog_type(type) && !bpf_token_capable(token, CAP_PERFMON)) + goto put_token; + + /* attach_prog_fd/attach_btf_obj_fd can specify fd of either bpf_prog + * or btf, we need to check which one it is + */ + if (attr->attach_prog_fd) { + dst_prog = bpf_prog_get(attr->attach_prog_fd); + if (IS_ERR(dst_prog)) { + dst_prog = NULL; + attach_btf = btf_get_by_fd(attr->attach_btf_obj_fd); + if (IS_ERR(attach_btf)) { + err = -EINVAL; + goto put_token; + } + if (!btf_is_kernel(attach_btf)) { + /* attaching through specifying bpf_prog's BTF + * objects directly might be supported eventually + */ + btf_put(attach_btf); + err = -ENOTSUPP; + goto put_token; + } + } + } else if (attr->attach_btf_id) { + /* fall back to vmlinux BTF, if BTF type ID is specified */ + attach_btf = bpf_get_btf_vmlinux(); + if (IS_ERR(attach_btf)) { + err = PTR_ERR(attach_btf); + goto put_token; + } + if (!attach_btf) { + err = -EINVAL; + goto put_token; + } + btf_get(attach_btf); + } + + if (bpf_prog_load_check_attach(type, attr->expected_attach_type, + attach_btf, attr->attach_btf_id, + dst_prog)) { + if (dst_prog) + bpf_prog_put(dst_prog); + if (attach_btf) + btf_put(attach_btf); + err = -EINVAL; + goto put_token; + } + + /* plain bpf_prog allocation */ + prog = bpf_prog_alloc(bpf_prog_size(attr->insn_cnt), GFP_USER); + if (!prog) { + if (dst_prog) + bpf_prog_put(dst_prog); + if (attach_btf) + btf_put(attach_btf); + err = -EINVAL; + goto put_token; + } + + prog->expected_attach_type = attr->expected_attach_type; + prog->sleepable = !!(attr->prog_flags & BPF_F_SLEEPABLE); + prog->aux->attach_btf = attach_btf; + prog->aux->attach_btf_id = attr->attach_btf_id; + prog->aux->dst_prog = dst_prog; + prog->aux->dev_bound = !!attr->prog_ifindex; + prog->aux->xdp_has_frags = attr->prog_flags & BPF_F_XDP_HAS_FRAGS; + + /* move token into prog->aux, reuse taken refcnt */ + prog->aux->token = token; + token = NULL; + + prog->aux->user = get_current_user(); + prog->len = attr->insn_cnt; + + err = -EFAULT; + if (copy_from_bpfptr(prog->insns, + make_bpfptr(attr->insns, uattr.is_kernel), + bpf_prog_insn_size(prog)) != 0) + goto free_prog; + /* copy eBPF program license from user space */ + if (strncpy_from_bpfptr(license, + make_bpfptr(attr->license, uattr.is_kernel), + sizeof(license) - 1) < 0) + goto free_prog; + license[sizeof(license) - 1] = 0; + + /* eBPF programs must be GPL compatible to use GPL-ed functions */ + prog->gpl_compatible = license_is_gpl_compatible(license) ? 1 : 0; + + if (attr->signature) { + err = bpf_prog_verify_signature(prog, attr, uattr.is_kernel); + if (err) + goto free_prog; + } + + prog->orig_prog = NULL; + prog->jited = 0; + + atomic64_set(&prog->aux->refcnt, 1); + + if (bpf_prog_is_dev_bound(prog->aux)) { + err = bpf_prog_dev_bound_init(prog, attr); + if (err) + goto free_prog; + } + + if (type == BPF_PROG_TYPE_EXT && dst_prog && + bpf_prog_is_dev_bound(dst_prog->aux)) { + err = bpf_prog_dev_bound_inherit(prog, dst_prog); + if (err) + goto free_prog; + } + + /* + * Bookkeeping for managing the program attachment chain. + * + * It might be tempting to set attach_tracing_prog flag at the attachment + * time, but this will not prevent from loading bunch of tracing prog + * first, then attach them one to another. + * + * The flag attach_tracing_prog is set for the whole program lifecycle, and + * doesn't have to be cleared in bpf_tracing_link_release, since tracing + * programs cannot change attachment target. + */ + if (type == BPF_PROG_TYPE_TRACING && dst_prog && + dst_prog->type == BPF_PROG_TYPE_TRACING) { + prog->aux->attach_tracing_prog = true; + } + + /* find program type: socket_filter vs tracing_filter */ + err = find_prog_type(type, prog); + if (err < 0) + goto free_prog; + + prog->aux->load_time = ktime_get_boottime_ns(); + err = bpf_obj_name_cpy(prog->aux->name, attr->prog_name, + sizeof(attr->prog_name)); + if (err < 0) + goto free_prog; + + err = security_bpf_prog_load(prog, attr, token, uattr.is_kernel); + if (err) + goto free_prog_sec; + + /* run eBPF verifier */ + err = bpf_check(&prog, attr, uattr, uattr_size); + if (err < 0) + goto free_used_maps; + + prog = bpf_prog_select_runtime(prog, &err); + if (err < 0) + goto free_used_maps; + + err = bpf_prog_mark_insn_arrays_ready(prog); + if (err < 0) + goto free_used_maps; + + err = bpf_prog_alloc_id(prog); + if (err) + goto free_used_maps; + + /* Upon success of bpf_prog_alloc_id(), the BPF prog is + * effectively publicly exposed. However, retrieving via + * bpf_prog_get_fd_by_id() will take another reference, + * therefore it cannot be gone underneath us. + * + * Only for the time /after/ successful bpf_prog_new_fd() + * and before returning to userspace, we might just hold + * one reference and any parallel close on that fd could + * rip everything out. Hence, below notifications must + * happen before bpf_prog_new_fd(). + * + * Also, any failure handling from this point onwards must + * be using bpf_prog_put() given the program is exposed. + */ + bpf_prog_kallsyms_add(prog); + perf_event_bpf_event(prog, PERF_BPF_EVENT_PROG_LOAD, 0); + bpf_audit_prog(prog, BPF_AUDIT_LOAD); + + err = bpf_prog_new_fd(prog); + if (err < 0) + bpf_prog_put(prog); + return err; + +free_used_maps: + /* In case we have subprogs, we need to wait for a grace + * period before we can tear down JIT memory since symbols + * are already exposed under kallsyms. + */ + __bpf_prog_put_noref(prog, prog->aux->real_func_cnt); + return err; + +free_prog_sec: + security_bpf_prog_free(prog); +free_prog: + free_uid(prog->aux->user); + if (prog->aux->attach_btf) + btf_put(prog->aux->attach_btf); + bpf_prog_free(prog); +put_token: + bpf_token_put(token); + return err; +} + +#define BPF_OBJ_LAST_FIELD path_fd + +static int bpf_obj_pin(const union bpf_attr *attr) +{ + int path_fd; + + if (CHECK_ATTR(BPF_OBJ) || attr->file_flags & ~BPF_F_PATH_FD) + return -EINVAL; + + /* path_fd has to be accompanied by BPF_F_PATH_FD flag */ + if (!(attr->file_flags & BPF_F_PATH_FD) && attr->path_fd) + return -EINVAL; + + path_fd = attr->file_flags & BPF_F_PATH_FD ? attr->path_fd : AT_FDCWD; + return bpf_obj_pin_user(attr->bpf_fd, path_fd, + u64_to_user_ptr(attr->pathname)); +} + +static int bpf_obj_get(const union bpf_attr *attr) +{ + int path_fd; + + if (CHECK_ATTR(BPF_OBJ) || attr->bpf_fd != 0 || + attr->file_flags & ~(BPF_OBJ_FLAG_MASK | BPF_F_PATH_FD)) + return -EINVAL; + + /* path_fd has to be accompanied by BPF_F_PATH_FD flag */ + if (!(attr->file_flags & BPF_F_PATH_FD) && attr->path_fd) + return -EINVAL; + + path_fd = attr->file_flags & BPF_F_PATH_FD ? attr->path_fd : AT_FDCWD; + return bpf_obj_get_user(path_fd, u64_to_user_ptr(attr->pathname), + attr->file_flags); +} + +/* bpf_link_init_sleepable() allows to specify whether BPF link itself has + * "sleepable" semantics, which normally would mean that BPF link's attach + * hook can dereference link or link's underlying program for some time after + * detachment due to RCU Tasks Trace-based lifetime protection scheme. + * BPF program itself can be non-sleepable, yet, because it's transitively + * reachable through BPF link, its freeing has to be delayed until after RCU + * Tasks Trace GP. + */ +void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, + const struct bpf_link_ops *ops, struct bpf_prog *prog, + enum bpf_attach_type attach_type, bool sleepable) +{ + WARN_ON(ops->dealloc && ops->dealloc_deferred); + atomic64_set(&link->refcnt, 1); + link->type = type; + link->sleepable = sleepable; + link->id = 0; + link->ops = ops; + link->prog = prog; + link->attach_type = attach_type; +} + +void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, + const struct bpf_link_ops *ops, struct bpf_prog *prog, + enum bpf_attach_type attach_type) +{ + bpf_link_init_sleepable(link, type, ops, prog, attach_type, false); +} + +static void bpf_link_free_id(int id) +{ + if (!id) + return; + + spin_lock_bh(&link_idr_lock); + idr_remove(&link_idr, id); + spin_unlock_bh(&link_idr_lock); +} + +/* Clean up bpf_link and corresponding anon_inode file and FD. After + * anon_inode is created, bpf_link can't be just kfree()'d due to deferred + * anon_inode's release() call. This helper marks bpf_link as + * defunct, releases anon_inode file and puts reserved FD. bpf_prog's refcnt + * is not decremented, it's the responsibility of a calling code that failed + * to complete bpf_link initialization. + * This helper eventually calls link's dealloc callback, but does not call + * link's release callback. + */ +void bpf_link_cleanup(struct bpf_link_primer *primer) +{ + primer->link->prog = NULL; + bpf_link_free_id(primer->id); + fput(primer->file); + put_unused_fd(primer->fd); +} + +void bpf_link_inc(struct bpf_link *link) +{ + atomic64_inc(&link->refcnt); +} + +static void bpf_link_dealloc(struct bpf_link *link) +{ + /* now that we know that bpf_link itself can't be reached, put underlying BPF program */ + if (link->prog) + bpf_prog_put(link->prog); + + /* free bpf_link and its containing memory */ + if (link->ops->dealloc_deferred) + link->ops->dealloc_deferred(link); + else + link->ops->dealloc(link); +} + +static void bpf_link_defer_dealloc_rcu_gp(struct rcu_head *rcu) +{ + struct bpf_link *link = container_of(rcu, struct bpf_link, rcu); + + bpf_link_dealloc(link); +} + +static void bpf_link_defer_dealloc_mult_rcu_gp(struct rcu_head *rcu) +{ + if (rcu_trace_implies_rcu_gp()) + bpf_link_defer_dealloc_rcu_gp(rcu); + else + call_rcu(rcu, bpf_link_defer_dealloc_rcu_gp); +} + +/* bpf_link_free is guaranteed to be called from process context */ +static void bpf_link_free(struct bpf_link *link) +{ + const struct bpf_link_ops *ops = link->ops; + + bpf_link_free_id(link->id); + /* detach BPF program, clean up used resources */ + if (link->prog) + ops->release(link); + if (ops->dealloc_deferred) { + /* Schedule BPF link deallocation, which will only then + * trigger putting BPF program refcount. + * If underlying BPF program is sleepable or BPF link's target + * attach hookpoint is sleepable or otherwise requires RCU GPs + * to ensure link and its underlying BPF program is not + * reachable anymore, we need to first wait for RCU tasks + * trace sync, and then go through "classic" RCU grace period + */ + if (link->sleepable || (link->prog && link->prog->sleepable)) + call_rcu_tasks_trace(&link->rcu, bpf_link_defer_dealloc_mult_rcu_gp); + else + call_rcu(&link->rcu, bpf_link_defer_dealloc_rcu_gp); + } else if (ops->dealloc) { + bpf_link_dealloc(link); + } +} + +static void bpf_link_put_deferred(struct work_struct *work) +{ + struct bpf_link *link = container_of(work, struct bpf_link, work); + + bpf_link_free(link); +} + +/* bpf_link_put might be called from atomic context. It needs to be called + * from sleepable context in order to acquire sleeping locks during the process. + */ +void bpf_link_put(struct bpf_link *link) +{ + if (!atomic64_dec_and_test(&link->refcnt)) + return; + + INIT_WORK(&link->work, bpf_link_put_deferred); + schedule_work(&link->work); +} +EXPORT_SYMBOL(bpf_link_put); + +static void bpf_link_put_direct(struct bpf_link *link) +{ + if (!atomic64_dec_and_test(&link->refcnt)) + return; + bpf_link_free(link); +} + +static int bpf_link_release(struct inode *inode, struct file *filp) +{ + struct bpf_link *link = filp->private_data; + + bpf_link_put_direct(link); + return 0; +} + +#ifdef CONFIG_PROC_FS +#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) +#define BPF_MAP_TYPE(_id, _ops) +#define BPF_LINK_TYPE(_id, _name) [_id] = #_name, +static const char *bpf_link_type_strs[] = { + [BPF_LINK_TYPE_UNSPEC] = "<invalid>", +#include <linux/bpf_types.h> +}; +#undef BPF_PROG_TYPE +#undef BPF_MAP_TYPE +#undef BPF_LINK_TYPE + +static void bpf_link_show_fdinfo(struct seq_file *m, struct file *filp) +{ + const struct bpf_link *link = filp->private_data; + const struct bpf_prog *prog = link->prog; + enum bpf_link_type type = link->type; + char prog_tag[sizeof(prog->tag) * 2 + 1] = { }; + + if (type < ARRAY_SIZE(bpf_link_type_strs) && bpf_link_type_strs[type]) { + if (link->type == BPF_LINK_TYPE_KPROBE_MULTI) + seq_printf(m, "link_type:\t%s\n", link->flags == BPF_F_KPROBE_MULTI_RETURN ? + "kretprobe_multi" : "kprobe_multi"); + else if (link->type == BPF_LINK_TYPE_UPROBE_MULTI) + seq_printf(m, "link_type:\t%s\n", link->flags == BPF_F_UPROBE_MULTI_RETURN ? + "uretprobe_multi" : "uprobe_multi"); + else + seq_printf(m, "link_type:\t%s\n", bpf_link_type_strs[type]); + } else { + WARN_ONCE(1, "missing BPF_LINK_TYPE(...) for link type %u\n", type); + seq_printf(m, "link_type:\t<%u>\n", type); + } + seq_printf(m, "link_id:\t%u\n", link->id); + + if (prog) { + bin2hex(prog_tag, prog->tag, sizeof(prog->tag)); + seq_printf(m, + "prog_tag:\t%s\n" + "prog_id:\t%u\n", + prog_tag, + prog->aux->id); + } + if (link->ops->show_fdinfo) + link->ops->show_fdinfo(link, m); +} +#endif + +static __poll_t bpf_link_poll(struct file *file, struct poll_table_struct *pts) +{ + struct bpf_link *link = file->private_data; + + return link->ops->poll(file, pts); +} + +static const struct file_operations bpf_link_fops = { +#ifdef CONFIG_PROC_FS + .show_fdinfo = bpf_link_show_fdinfo, +#endif + .release = bpf_link_release, + .read = bpf_dummy_read, + .write = bpf_dummy_write, +}; + +static const struct file_operations bpf_link_fops_poll = { +#ifdef CONFIG_PROC_FS + .show_fdinfo = bpf_link_show_fdinfo, +#endif + .release = bpf_link_release, + .read = bpf_dummy_read, + .write = bpf_dummy_write, + .poll = bpf_link_poll, +}; + +static int bpf_link_alloc_id(struct bpf_link *link) +{ + int id; + + idr_preload(GFP_KERNEL); + spin_lock_bh(&link_idr_lock); + id = idr_alloc_cyclic(&link_idr, link, 1, INT_MAX, GFP_ATOMIC); + spin_unlock_bh(&link_idr_lock); + idr_preload_end(); + + return id; +} + +/* Prepare bpf_link to be exposed to user-space by allocating anon_inode file, + * reserving unused FD and allocating ID from link_idr. This is to be paired + * with bpf_link_settle() to install FD and ID and expose bpf_link to + * user-space, if bpf_link is successfully attached. If not, bpf_link and + * pre-allocated resources are to be freed with bpf_cleanup() call. All the + * transient state is passed around in struct bpf_link_primer. + * This is preferred way to create and initialize bpf_link, especially when + * there are complicated and expensive operations in between creating bpf_link + * itself and attaching it to BPF hook. By using bpf_link_prime() and + * bpf_link_settle() kernel code using bpf_link doesn't have to perform + * expensive (and potentially failing) roll back operations in a rare case + * that file, FD, or ID can't be allocated. + */ +int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer) +{ + struct file *file; + int fd, id; + + fd = get_unused_fd_flags(O_CLOEXEC); + if (fd < 0) + return fd; + + + id = bpf_link_alloc_id(link); + if (id < 0) { + put_unused_fd(fd); + return id; + } + + file = anon_inode_getfile("bpf_link", + link->ops->poll ? &bpf_link_fops_poll : &bpf_link_fops, + link, O_CLOEXEC); + if (IS_ERR(file)) { + bpf_link_free_id(id); + put_unused_fd(fd); + return PTR_ERR(file); + } + + primer->link = link; + primer->file = file; + primer->fd = fd; + primer->id = id; + return 0; +} + +int bpf_link_settle(struct bpf_link_primer *primer) +{ + /* make bpf_link fetchable by ID */ + spin_lock_bh(&link_idr_lock); + primer->link->id = primer->id; + spin_unlock_bh(&link_idr_lock); + /* make bpf_link fetchable by FD */ + fd_install(primer->fd, primer->file); + /* pass through installed FD */ + return primer->fd; +} + +int bpf_link_new_fd(struct bpf_link *link) +{ + return anon_inode_getfd("bpf-link", + link->ops->poll ? &bpf_link_fops_poll : &bpf_link_fops, + link, O_CLOEXEC); +} + +struct bpf_link *bpf_link_get_from_fd(u32 ufd) +{ + CLASS(fd, f)(ufd); + struct bpf_link *link; + + if (fd_empty(f)) + return ERR_PTR(-EBADF); + if (fd_file(f)->f_op != &bpf_link_fops && fd_file(f)->f_op != &bpf_link_fops_poll) + return ERR_PTR(-EINVAL); + + link = fd_file(f)->private_data; + bpf_link_inc(link); + return link; +} +EXPORT_SYMBOL_NS(bpf_link_get_from_fd, "BPF_INTERNAL"); + +static void bpf_tracing_link_release(struct bpf_link *link) +{ + struct bpf_tracing_link *tr_link = + container_of(link, struct bpf_tracing_link, link.link); + + WARN_ON_ONCE(bpf_trampoline_unlink_prog(&tr_link->link, + tr_link->trampoline, + tr_link->tgt_prog)); + + bpf_trampoline_put(tr_link->trampoline); + + /* tgt_prog is NULL if target is a kernel function */ + if (tr_link->tgt_prog) + bpf_prog_put(tr_link->tgt_prog); +} + +static void bpf_tracing_link_dealloc(struct bpf_link *link) +{ + struct bpf_tracing_link *tr_link = + container_of(link, struct bpf_tracing_link, link.link); + + kfree(tr_link); +} + +static void bpf_tracing_link_show_fdinfo(const struct bpf_link *link, + struct seq_file *seq) +{ + struct bpf_tracing_link *tr_link = + container_of(link, struct bpf_tracing_link, link.link); + u32 target_btf_id, target_obj_id; + + bpf_trampoline_unpack_key(tr_link->trampoline->key, + &target_obj_id, &target_btf_id); + seq_printf(seq, + "attach_type:\t%d\n" + "target_obj_id:\t%u\n" + "target_btf_id:\t%u\n" + "cookie:\t%llu\n", + link->attach_type, + target_obj_id, + target_btf_id, + tr_link->link.cookie); +} + +static int bpf_tracing_link_fill_link_info(const struct bpf_link *link, + struct bpf_link_info *info) +{ + struct bpf_tracing_link *tr_link = + container_of(link, struct bpf_tracing_link, link.link); + + info->tracing.attach_type = link->attach_type; + info->tracing.cookie = tr_link->link.cookie; + bpf_trampoline_unpack_key(tr_link->trampoline->key, + &info->tracing.target_obj_id, + &info->tracing.target_btf_id); + + return 0; +} + +static const struct bpf_link_ops bpf_tracing_link_lops = { + .release = bpf_tracing_link_release, + .dealloc = bpf_tracing_link_dealloc, + .show_fdinfo = bpf_tracing_link_show_fdinfo, + .fill_link_info = bpf_tracing_link_fill_link_info, +}; + +static int bpf_tracing_prog_attach(struct bpf_prog *prog, + int tgt_prog_fd, + u32 btf_id, + u64 bpf_cookie, + enum bpf_attach_type attach_type) +{ + struct bpf_link_primer link_primer; + struct bpf_prog *tgt_prog = NULL; + struct bpf_trampoline *tr = NULL; + struct bpf_tracing_link *link; + u64 key = 0; + int err; + + switch (prog->type) { + case BPF_PROG_TYPE_TRACING: + if (prog->expected_attach_type != BPF_TRACE_FENTRY && + prog->expected_attach_type != BPF_TRACE_FEXIT && + prog->expected_attach_type != BPF_MODIFY_RETURN) { + err = -EINVAL; + goto out_put_prog; + } + break; + case BPF_PROG_TYPE_EXT: + if (prog->expected_attach_type != 0) { + err = -EINVAL; + goto out_put_prog; + } + break; + case BPF_PROG_TYPE_LSM: + if (prog->expected_attach_type != BPF_LSM_MAC) { + err = -EINVAL; + goto out_put_prog; + } + break; + default: + err = -EINVAL; + goto out_put_prog; + } + + if (!!tgt_prog_fd != !!btf_id) { + err = -EINVAL; + goto out_put_prog; + } + + if (tgt_prog_fd) { + /* + * For now we only allow new targets for BPF_PROG_TYPE_EXT. If this + * part would be changed to implement the same for + * BPF_PROG_TYPE_TRACING, do not forget to update the way how + * attach_tracing_prog flag is set. + */ + if (prog->type != BPF_PROG_TYPE_EXT) { + err = -EINVAL; + goto out_put_prog; + } + + tgt_prog = bpf_prog_get(tgt_prog_fd); + if (IS_ERR(tgt_prog)) { + err = PTR_ERR(tgt_prog); + tgt_prog = NULL; + goto out_put_prog; + } + + key = bpf_trampoline_compute_key(tgt_prog, NULL, btf_id); + } + + link = kzalloc(sizeof(*link), GFP_USER); + if (!link) { + err = -ENOMEM; + goto out_put_prog; + } + bpf_link_init(&link->link.link, BPF_LINK_TYPE_TRACING, + &bpf_tracing_link_lops, prog, attach_type); + + link->link.cookie = bpf_cookie; + + mutex_lock(&prog->aux->dst_mutex); + + /* There are a few possible cases here: + * + * - if prog->aux->dst_trampoline is set, the program was just loaded + * and not yet attached to anything, so we can use the values stored + * in prog->aux + * + * - if prog->aux->dst_trampoline is NULL, the program has already been + * attached to a target and its initial target was cleared (below) + * + * - if tgt_prog != NULL, the caller specified tgt_prog_fd + + * target_btf_id using the link_create API. + * + * - if tgt_prog == NULL when this function was called using the old + * raw_tracepoint_open API, and we need a target from prog->aux + * + * - if prog->aux->dst_trampoline and tgt_prog is NULL, the program + * was detached and is going for re-attachment. + * + * - if prog->aux->dst_trampoline is NULL and tgt_prog and prog->aux->attach_btf + * are NULL, then program was already attached and user did not provide + * tgt_prog_fd so we have no way to find out or create trampoline + */ + if (!prog->aux->dst_trampoline && !tgt_prog) { + /* + * Allow re-attach for TRACING and LSM programs. If it's + * currently linked, bpf_trampoline_link_prog will fail. + * EXT programs need to specify tgt_prog_fd, so they + * re-attach in separate code path. + */ + if (prog->type != BPF_PROG_TYPE_TRACING && + prog->type != BPF_PROG_TYPE_LSM) { + err = -EINVAL; + goto out_unlock; + } + /* We can allow re-attach only if we have valid attach_btf. */ + if (!prog->aux->attach_btf) { + err = -EINVAL; + goto out_unlock; + } + btf_id = prog->aux->attach_btf_id; + key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, btf_id); + } + + if (!prog->aux->dst_trampoline || + (key && key != prog->aux->dst_trampoline->key)) { + /* If there is no saved target, or the specified target is + * different from the destination specified at load time, we + * need a new trampoline and a check for compatibility + */ + struct bpf_attach_target_info tgt_info = {}; + + err = bpf_check_attach_target(NULL, prog, tgt_prog, btf_id, + &tgt_info); + if (err) + goto out_unlock; + + if (tgt_info.tgt_mod) { + module_put(prog->aux->mod); + prog->aux->mod = tgt_info.tgt_mod; + } + + tr = bpf_trampoline_get(key, &tgt_info); + if (!tr) { + err = -ENOMEM; + goto out_unlock; + } + } else { + /* The caller didn't specify a target, or the target was the + * same as the destination supplied during program load. This + * means we can reuse the trampoline and reference from program + * load time, and there is no need to allocate a new one. This + * can only happen once for any program, as the saved values in + * prog->aux are cleared below. + */ + tr = prog->aux->dst_trampoline; + tgt_prog = prog->aux->dst_prog; + } + + err = bpf_link_prime(&link->link.link, &link_primer); + if (err) + goto out_unlock; + + err = bpf_trampoline_link_prog(&link->link, tr, tgt_prog); + if (err) { + bpf_link_cleanup(&link_primer); + link = NULL; + goto out_unlock; + } + + link->tgt_prog = tgt_prog; + link->trampoline = tr; + + /* Always clear the trampoline and target prog from prog->aux to make + * sure the original attach destination is not kept alive after a + * program is (re-)attached to another target. + */ + if (prog->aux->dst_prog && + (tgt_prog_fd || tr != prog->aux->dst_trampoline)) + /* got extra prog ref from syscall, or attaching to different prog */ + bpf_prog_put(prog->aux->dst_prog); + if (prog->aux->dst_trampoline && tr != prog->aux->dst_trampoline) + /* we allocated a new trampoline, so free the old one */ + bpf_trampoline_put(prog->aux->dst_trampoline); + + prog->aux->dst_prog = NULL; + prog->aux->dst_trampoline = NULL; + mutex_unlock(&prog->aux->dst_mutex); + + return bpf_link_settle(&link_primer); +out_unlock: + if (tr && tr != prog->aux->dst_trampoline) + bpf_trampoline_put(tr); + mutex_unlock(&prog->aux->dst_mutex); + kfree(link); +out_put_prog: + if (tgt_prog_fd && tgt_prog) + bpf_prog_put(tgt_prog); + return err; +} + +static void bpf_raw_tp_link_release(struct bpf_link *link) +{ + struct bpf_raw_tp_link *raw_tp = + container_of(link, struct bpf_raw_tp_link, link); + + bpf_probe_unregister(raw_tp->btp, raw_tp); + bpf_put_raw_tracepoint(raw_tp->btp); +} + +static void bpf_raw_tp_link_dealloc(struct bpf_link *link) +{ + struct bpf_raw_tp_link *raw_tp = + container_of(link, struct bpf_raw_tp_link, link); + + kfree(raw_tp); +} + +static void bpf_raw_tp_link_show_fdinfo(const struct bpf_link *link, + struct seq_file *seq) +{ + struct bpf_raw_tp_link *raw_tp_link = + container_of(link, struct bpf_raw_tp_link, link); + + seq_printf(seq, + "tp_name:\t%s\n" + "cookie:\t%llu\n", + raw_tp_link->btp->tp->name, + raw_tp_link->cookie); +} + +static int bpf_copy_to_user(char __user *ubuf, const char *buf, u32 ulen, + u32 len) +{ + if (ulen >= len + 1) { + if (copy_to_user(ubuf, buf, len + 1)) + return -EFAULT; + } else { + char zero = '\0'; + + if (copy_to_user(ubuf, buf, ulen - 1)) + return -EFAULT; + if (put_user(zero, ubuf + ulen - 1)) + return -EFAULT; + return -ENOSPC; + } + + return 0; +} + +static int bpf_raw_tp_link_fill_link_info(const struct bpf_link *link, + struct bpf_link_info *info) +{ + struct bpf_raw_tp_link *raw_tp_link = + container_of(link, struct bpf_raw_tp_link, link); + char __user *ubuf = u64_to_user_ptr(info->raw_tracepoint.tp_name); + const char *tp_name = raw_tp_link->btp->tp->name; + u32 ulen = info->raw_tracepoint.tp_name_len; + size_t tp_len = strlen(tp_name); + + if (!ulen ^ !ubuf) + return -EINVAL; + + info->raw_tracepoint.tp_name_len = tp_len + 1; + info->raw_tracepoint.cookie = raw_tp_link->cookie; + + if (!ubuf) + return 0; + + return bpf_copy_to_user(ubuf, tp_name, ulen, tp_len); +} + +static const struct bpf_link_ops bpf_raw_tp_link_lops = { + .release = bpf_raw_tp_link_release, + .dealloc_deferred = bpf_raw_tp_link_dealloc, + .show_fdinfo = bpf_raw_tp_link_show_fdinfo, + .fill_link_info = bpf_raw_tp_link_fill_link_info, +}; + +#ifdef CONFIG_PERF_EVENTS +struct bpf_perf_link { + struct bpf_link link; + struct file *perf_file; +}; + +static void bpf_perf_link_release(struct bpf_link *link) +{ + struct bpf_perf_link *perf_link = container_of(link, struct bpf_perf_link, link); + struct perf_event *event = perf_link->perf_file->private_data; + + perf_event_free_bpf_prog(event); + fput(perf_link->perf_file); +} + +static void bpf_perf_link_dealloc(struct bpf_link *link) +{ + struct bpf_perf_link *perf_link = container_of(link, struct bpf_perf_link, link); + + kfree(perf_link); +} + +static int bpf_perf_link_fill_common(const struct perf_event *event, + char __user *uname, u32 *ulenp, + u64 *probe_offset, u64 *probe_addr, + u32 *fd_type, unsigned long *missed) +{ + const char *buf; + u32 prog_id, ulen; + size_t len; + int err; + + ulen = *ulenp; + if (!ulen ^ !uname) + return -EINVAL; + + err = bpf_get_perf_event_info(event, &prog_id, fd_type, &buf, + probe_offset, probe_addr, missed); + if (err) + return err; + + if (buf) { + len = strlen(buf); + *ulenp = len + 1; + } else { + *ulenp = 1; + } + if (!uname) + return 0; + + if (buf) { + err = bpf_copy_to_user(uname, buf, ulen, len); + if (err) + return err; + } else { + char zero = '\0'; + + if (put_user(zero, uname)) + return -EFAULT; + } + return 0; +} + +#ifdef CONFIG_KPROBE_EVENTS +static int bpf_perf_link_fill_kprobe(const struct perf_event *event, + struct bpf_link_info *info) +{ + unsigned long missed; + char __user *uname; + u64 addr, offset; + u32 ulen, type; + int err; + + uname = u64_to_user_ptr(info->perf_event.kprobe.func_name); + ulen = info->perf_event.kprobe.name_len; + err = bpf_perf_link_fill_common(event, uname, &ulen, &offset, &addr, + &type, &missed); + if (err) + return err; + if (type == BPF_FD_TYPE_KRETPROBE) + info->perf_event.type = BPF_PERF_EVENT_KRETPROBE; + else + info->perf_event.type = BPF_PERF_EVENT_KPROBE; + info->perf_event.kprobe.name_len = ulen; + info->perf_event.kprobe.offset = offset; + info->perf_event.kprobe.missed = missed; + if (!kallsyms_show_value(current_cred())) + addr = 0; + info->perf_event.kprobe.addr = addr; + info->perf_event.kprobe.cookie = event->bpf_cookie; + return 0; +} + +static void bpf_perf_link_fdinfo_kprobe(const struct perf_event *event, + struct seq_file *seq) +{ + const char *name; + int err; + u32 prog_id, type; + u64 offset, addr; + unsigned long missed; + + err = bpf_get_perf_event_info(event, &prog_id, &type, &name, + &offset, &addr, &missed); + if (err) + return; + + seq_printf(seq, + "name:\t%s\n" + "offset:\t%#llx\n" + "missed:\t%lu\n" + "addr:\t%#llx\n" + "event_type:\t%s\n" + "cookie:\t%llu\n", + name, offset, missed, addr, + type == BPF_FD_TYPE_KRETPROBE ? "kretprobe" : "kprobe", + event->bpf_cookie); +} +#endif + +#ifdef CONFIG_UPROBE_EVENTS +static int bpf_perf_link_fill_uprobe(const struct perf_event *event, + struct bpf_link_info *info) +{ + u64 ref_ctr_offset, offset; + char __user *uname; + u32 ulen, type; + int err; + + uname = u64_to_user_ptr(info->perf_event.uprobe.file_name); + ulen = info->perf_event.uprobe.name_len; + err = bpf_perf_link_fill_common(event, uname, &ulen, &offset, &ref_ctr_offset, + &type, NULL); + if (err) + return err; + + if (type == BPF_FD_TYPE_URETPROBE) + info->perf_event.type = BPF_PERF_EVENT_URETPROBE; + else + info->perf_event.type = BPF_PERF_EVENT_UPROBE; + info->perf_event.uprobe.name_len = ulen; + info->perf_event.uprobe.offset = offset; + info->perf_event.uprobe.cookie = event->bpf_cookie; + info->perf_event.uprobe.ref_ctr_offset = ref_ctr_offset; + return 0; +} + +static void bpf_perf_link_fdinfo_uprobe(const struct perf_event *event, + struct seq_file *seq) +{ + const char *name; + int err; + u32 prog_id, type; + u64 offset, ref_ctr_offset; + unsigned long missed; + + err = bpf_get_perf_event_info(event, &prog_id, &type, &name, + &offset, &ref_ctr_offset, &missed); + if (err) + return; + + seq_printf(seq, + "name:\t%s\n" + "offset:\t%#llx\n" + "ref_ctr_offset:\t%#llx\n" + "event_type:\t%s\n" + "cookie:\t%llu\n", + name, offset, ref_ctr_offset, + type == BPF_FD_TYPE_URETPROBE ? "uretprobe" : "uprobe", + event->bpf_cookie); +} +#endif + +static int bpf_perf_link_fill_probe(const struct perf_event *event, + struct bpf_link_info *info) +{ +#ifdef CONFIG_KPROBE_EVENTS + if (event->tp_event->flags & TRACE_EVENT_FL_KPROBE) + return bpf_perf_link_fill_kprobe(event, info); +#endif +#ifdef CONFIG_UPROBE_EVENTS + if (event->tp_event->flags & TRACE_EVENT_FL_UPROBE) + return bpf_perf_link_fill_uprobe(event, info); +#endif + return -EOPNOTSUPP; +} + +static int bpf_perf_link_fill_tracepoint(const struct perf_event *event, + struct bpf_link_info *info) +{ + char __user *uname; + u32 ulen; + int err; + + uname = u64_to_user_ptr(info->perf_event.tracepoint.tp_name); + ulen = info->perf_event.tracepoint.name_len; + err = bpf_perf_link_fill_common(event, uname, &ulen, NULL, NULL, NULL, NULL); + if (err) + return err; + + info->perf_event.type = BPF_PERF_EVENT_TRACEPOINT; + info->perf_event.tracepoint.name_len = ulen; + info->perf_event.tracepoint.cookie = event->bpf_cookie; + return 0; +} + +static int bpf_perf_link_fill_perf_event(const struct perf_event *event, + struct bpf_link_info *info) +{ + info->perf_event.event.type = event->attr.type; + info->perf_event.event.config = event->attr.config; + info->perf_event.event.cookie = event->bpf_cookie; + info->perf_event.type = BPF_PERF_EVENT_EVENT; + return 0; +} + +static int bpf_perf_link_fill_link_info(const struct bpf_link *link, + struct bpf_link_info *info) +{ + struct bpf_perf_link *perf_link; + const struct perf_event *event; + + perf_link = container_of(link, struct bpf_perf_link, link); + event = perf_get_event(perf_link->perf_file); + if (IS_ERR(event)) + return PTR_ERR(event); + + switch (event->prog->type) { + case BPF_PROG_TYPE_PERF_EVENT: + return bpf_perf_link_fill_perf_event(event, info); + case BPF_PROG_TYPE_TRACEPOINT: + return bpf_perf_link_fill_tracepoint(event, info); + case BPF_PROG_TYPE_KPROBE: + return bpf_perf_link_fill_probe(event, info); + default: + return -EOPNOTSUPP; + } +} + +static void bpf_perf_event_link_show_fdinfo(const struct perf_event *event, + struct seq_file *seq) +{ + seq_printf(seq, + "type:\t%u\n" + "config:\t%llu\n" + "event_type:\t%s\n" + "cookie:\t%llu\n", + event->attr.type, event->attr.config, + "event", event->bpf_cookie); +} + +static void bpf_tracepoint_link_show_fdinfo(const struct perf_event *event, + struct seq_file *seq) +{ + int err; + const char *name; + u32 prog_id; + + err = bpf_get_perf_event_info(event, &prog_id, NULL, &name, NULL, + NULL, NULL); + if (err) + return; + + seq_printf(seq, + "tp_name:\t%s\n" + "event_type:\t%s\n" + "cookie:\t%llu\n", + name, "tracepoint", event->bpf_cookie); +} + +static void bpf_probe_link_show_fdinfo(const struct perf_event *event, + struct seq_file *seq) +{ +#ifdef CONFIG_KPROBE_EVENTS + if (event->tp_event->flags & TRACE_EVENT_FL_KPROBE) + return bpf_perf_link_fdinfo_kprobe(event, seq); +#endif + +#ifdef CONFIG_UPROBE_EVENTS + if (event->tp_event->flags & TRACE_EVENT_FL_UPROBE) + return bpf_perf_link_fdinfo_uprobe(event, seq); +#endif +} + +static void bpf_perf_link_show_fdinfo(const struct bpf_link *link, + struct seq_file *seq) +{ + struct bpf_perf_link *perf_link; + const struct perf_event *event; + + perf_link = container_of(link, struct bpf_perf_link, link); + event = perf_get_event(perf_link->perf_file); + if (IS_ERR(event)) + return; + + switch (event->prog->type) { + case BPF_PROG_TYPE_PERF_EVENT: + return bpf_perf_event_link_show_fdinfo(event, seq); + case BPF_PROG_TYPE_TRACEPOINT: + return bpf_tracepoint_link_show_fdinfo(event, seq); + case BPF_PROG_TYPE_KPROBE: + return bpf_probe_link_show_fdinfo(event, seq); + default: + return; + } +} + +static const struct bpf_link_ops bpf_perf_link_lops = { + .release = bpf_perf_link_release, + .dealloc = bpf_perf_link_dealloc, + .fill_link_info = bpf_perf_link_fill_link_info, + .show_fdinfo = bpf_perf_link_show_fdinfo, +}; + +static int bpf_perf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) +{ + struct bpf_link_primer link_primer; + struct bpf_perf_link *link; + struct perf_event *event; + struct file *perf_file; + int err; + + if (attr->link_create.flags) + return -EINVAL; + + perf_file = perf_event_get(attr->link_create.target_fd); + if (IS_ERR(perf_file)) + return PTR_ERR(perf_file); + + link = kzalloc(sizeof(*link), GFP_USER); + if (!link) { + err = -ENOMEM; + goto out_put_file; + } + bpf_link_init(&link->link, BPF_LINK_TYPE_PERF_EVENT, &bpf_perf_link_lops, prog, + attr->link_create.attach_type); + link->perf_file = perf_file; + + err = bpf_link_prime(&link->link, &link_primer); + if (err) { + kfree(link); + goto out_put_file; + } + + event = perf_file->private_data; + err = perf_event_set_bpf_prog(event, prog, attr->link_create.perf_event.bpf_cookie); + if (err) { + bpf_link_cleanup(&link_primer); + goto out_put_file; + } + /* perf_event_set_bpf_prog() doesn't take its own refcnt on prog */ + bpf_prog_inc(prog); + + return bpf_link_settle(&link_primer); + +out_put_file: + fput(perf_file); + return err; +} +#else +static int bpf_perf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) +{ + return -EOPNOTSUPP; +} +#endif /* CONFIG_PERF_EVENTS */ + +static int bpf_raw_tp_link_attach(struct bpf_prog *prog, + const char __user *user_tp_name, u64 cookie, + enum bpf_attach_type attach_type) +{ + struct bpf_link_primer link_primer; + struct bpf_raw_tp_link *link; + struct bpf_raw_event_map *btp; + const char *tp_name; + char buf[128]; + int err; + + switch (prog->type) { + case BPF_PROG_TYPE_TRACING: + case BPF_PROG_TYPE_EXT: + case BPF_PROG_TYPE_LSM: + if (user_tp_name) + /* The attach point for this category of programs + * should be specified via btf_id during program load. + */ + return -EINVAL; + if (prog->type == BPF_PROG_TYPE_TRACING && + prog->expected_attach_type == BPF_TRACE_RAW_TP) { + tp_name = prog->aux->attach_func_name; + break; + } + return bpf_tracing_prog_attach(prog, 0, 0, 0, attach_type); + case BPF_PROG_TYPE_RAW_TRACEPOINT: + case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: + if (strncpy_from_user(buf, user_tp_name, sizeof(buf) - 1) < 0) + return -EFAULT; + buf[sizeof(buf) - 1] = 0; + tp_name = buf; + break; + default: + return -EINVAL; + } + + btp = bpf_get_raw_tracepoint(tp_name); + if (!btp) + return -ENOENT; + + link = kzalloc(sizeof(*link), GFP_USER); + if (!link) { + err = -ENOMEM; + goto out_put_btp; + } + bpf_link_init_sleepable(&link->link, BPF_LINK_TYPE_RAW_TRACEPOINT, + &bpf_raw_tp_link_lops, prog, attach_type, + tracepoint_is_faultable(btp->tp)); + link->btp = btp; + link->cookie = cookie; + + err = bpf_link_prime(&link->link, &link_primer); + if (err) { + kfree(link); + goto out_put_btp; + } + + err = bpf_probe_register(link->btp, link); + if (err) { + bpf_link_cleanup(&link_primer); + goto out_put_btp; + } + + return bpf_link_settle(&link_primer); + +out_put_btp: + bpf_put_raw_tracepoint(btp); + return err; +} + +#define BPF_RAW_TRACEPOINT_OPEN_LAST_FIELD raw_tracepoint.cookie + +static int bpf_raw_tracepoint_open(const union bpf_attr *attr) +{ + struct bpf_prog *prog; + void __user *tp_name; + __u64 cookie; + int fd; + + if (CHECK_ATTR(BPF_RAW_TRACEPOINT_OPEN)) + return -EINVAL; + + prog = bpf_prog_get(attr->raw_tracepoint.prog_fd); + if (IS_ERR(prog)) + return PTR_ERR(prog); + + tp_name = u64_to_user_ptr(attr->raw_tracepoint.name); + cookie = attr->raw_tracepoint.cookie; + fd = bpf_raw_tp_link_attach(prog, tp_name, cookie, prog->expected_attach_type); + if (fd < 0) + bpf_prog_put(prog); + return fd; +} + +static enum bpf_prog_type +attach_type_to_prog_type(enum bpf_attach_type attach_type) +{ + switch (attach_type) { + case BPF_CGROUP_INET_INGRESS: + case BPF_CGROUP_INET_EGRESS: + return BPF_PROG_TYPE_CGROUP_SKB; + case BPF_CGROUP_INET_SOCK_CREATE: + case BPF_CGROUP_INET_SOCK_RELEASE: + case BPF_CGROUP_INET4_POST_BIND: + case BPF_CGROUP_INET6_POST_BIND: + return BPF_PROG_TYPE_CGROUP_SOCK; + case BPF_CGROUP_INET4_BIND: + case BPF_CGROUP_INET6_BIND: + case BPF_CGROUP_INET4_CONNECT: + case BPF_CGROUP_INET6_CONNECT: + case BPF_CGROUP_UNIX_CONNECT: + case BPF_CGROUP_INET4_GETPEERNAME: + case BPF_CGROUP_INET6_GETPEERNAME: + case BPF_CGROUP_UNIX_GETPEERNAME: + case BPF_CGROUP_INET4_GETSOCKNAME: + case BPF_CGROUP_INET6_GETSOCKNAME: + case BPF_CGROUP_UNIX_GETSOCKNAME: + case BPF_CGROUP_UDP4_SENDMSG: + case BPF_CGROUP_UDP6_SENDMSG: + case BPF_CGROUP_UNIX_SENDMSG: + case BPF_CGROUP_UDP4_RECVMSG: + case BPF_CGROUP_UDP6_RECVMSG: + case BPF_CGROUP_UNIX_RECVMSG: + return BPF_PROG_TYPE_CGROUP_SOCK_ADDR; + case BPF_CGROUP_SOCK_OPS: + return BPF_PROG_TYPE_SOCK_OPS; + case BPF_CGROUP_DEVICE: + return BPF_PROG_TYPE_CGROUP_DEVICE; + case BPF_SK_MSG_VERDICT: + return BPF_PROG_TYPE_SK_MSG; + case BPF_SK_SKB_STREAM_PARSER: + case BPF_SK_SKB_STREAM_VERDICT: + case BPF_SK_SKB_VERDICT: + return BPF_PROG_TYPE_SK_SKB; + case BPF_LIRC_MODE2: + return BPF_PROG_TYPE_LIRC_MODE2; + case BPF_FLOW_DISSECTOR: + return BPF_PROG_TYPE_FLOW_DISSECTOR; + case BPF_CGROUP_SYSCTL: + return BPF_PROG_TYPE_CGROUP_SYSCTL; + case BPF_CGROUP_GETSOCKOPT: + case BPF_CGROUP_SETSOCKOPT: + return BPF_PROG_TYPE_CGROUP_SOCKOPT; + case BPF_TRACE_ITER: + case BPF_TRACE_RAW_TP: + case BPF_TRACE_FENTRY: + case BPF_TRACE_FEXIT: + case BPF_MODIFY_RETURN: + return BPF_PROG_TYPE_TRACING; + case BPF_LSM_MAC: + return BPF_PROG_TYPE_LSM; + case BPF_SK_LOOKUP: + return BPF_PROG_TYPE_SK_LOOKUP; + case BPF_XDP: + return BPF_PROG_TYPE_XDP; + case BPF_LSM_CGROUP: + return BPF_PROG_TYPE_LSM; + case BPF_TCX_INGRESS: + case BPF_TCX_EGRESS: + case BPF_NETKIT_PRIMARY: + case BPF_NETKIT_PEER: + return BPF_PROG_TYPE_SCHED_CLS; + default: + return BPF_PROG_TYPE_UNSPEC; + } +} + +static int bpf_prog_attach_check_attach_type(const struct bpf_prog *prog, + enum bpf_attach_type attach_type) +{ + enum bpf_prog_type ptype; + + switch (prog->type) { + case BPF_PROG_TYPE_CGROUP_SOCK: + case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: + case BPF_PROG_TYPE_CGROUP_SOCKOPT: + case BPF_PROG_TYPE_SK_LOOKUP: + return attach_type == prog->expected_attach_type ? 0 : -EINVAL; + case BPF_PROG_TYPE_CGROUP_SKB: + if (!bpf_token_capable(prog->aux->token, CAP_NET_ADMIN)) + /* cg-skb progs can be loaded by unpriv user. + * check permissions at attach time. + */ + return -EPERM; + + ptype = attach_type_to_prog_type(attach_type); + if (prog->type != ptype) + return -EINVAL; + + return prog->enforce_expected_attach_type && + prog->expected_attach_type != attach_type ? + -EINVAL : 0; + case BPF_PROG_TYPE_EXT: + return 0; + case BPF_PROG_TYPE_NETFILTER: + if (attach_type != BPF_NETFILTER) + return -EINVAL; + return 0; + case BPF_PROG_TYPE_PERF_EVENT: + case BPF_PROG_TYPE_TRACEPOINT: + if (attach_type != BPF_PERF_EVENT) + return -EINVAL; + return 0; + case BPF_PROG_TYPE_KPROBE: + if (prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI && + attach_type != BPF_TRACE_KPROBE_MULTI) + return -EINVAL; + if (prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION && + attach_type != BPF_TRACE_KPROBE_SESSION) + return -EINVAL; + if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI && + attach_type != BPF_TRACE_UPROBE_MULTI) + return -EINVAL; + if (prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION && + attach_type != BPF_TRACE_UPROBE_SESSION) + return -EINVAL; + if (attach_type != BPF_PERF_EVENT && + attach_type != BPF_TRACE_KPROBE_MULTI && + attach_type != BPF_TRACE_KPROBE_SESSION && + attach_type != BPF_TRACE_UPROBE_MULTI && + attach_type != BPF_TRACE_UPROBE_SESSION) + return -EINVAL; + return 0; + case BPF_PROG_TYPE_SCHED_CLS: + if (attach_type != BPF_TCX_INGRESS && + attach_type != BPF_TCX_EGRESS && + attach_type != BPF_NETKIT_PRIMARY && + attach_type != BPF_NETKIT_PEER) + return -EINVAL; + return 0; + default: + ptype = attach_type_to_prog_type(attach_type); + if (ptype == BPF_PROG_TYPE_UNSPEC || ptype != prog->type) + return -EINVAL; + return 0; + } +} + +static bool is_cgroup_prog_type(enum bpf_prog_type ptype, enum bpf_attach_type atype, + bool check_atype) +{ + switch (ptype) { + case BPF_PROG_TYPE_CGROUP_DEVICE: + case BPF_PROG_TYPE_CGROUP_SKB: + case BPF_PROG_TYPE_CGROUP_SOCK: + case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: + case BPF_PROG_TYPE_CGROUP_SOCKOPT: + case BPF_PROG_TYPE_CGROUP_SYSCTL: + case BPF_PROG_TYPE_SOCK_OPS: + return true; + case BPF_PROG_TYPE_LSM: + return check_atype ? atype == BPF_LSM_CGROUP : true; + default: + return false; + } +} + +#define BPF_PROG_ATTACH_LAST_FIELD expected_revision + +#define BPF_F_ATTACH_MASK_BASE \ + (BPF_F_ALLOW_OVERRIDE | \ + BPF_F_ALLOW_MULTI | \ + BPF_F_REPLACE | \ + BPF_F_PREORDER) + +#define BPF_F_ATTACH_MASK_MPROG \ + (BPF_F_REPLACE | \ + BPF_F_BEFORE | \ + BPF_F_AFTER | \ + BPF_F_ID | \ + BPF_F_LINK) + +static int bpf_prog_attach(const union bpf_attr *attr) +{ + enum bpf_prog_type ptype; + struct bpf_prog *prog; + int ret; + + if (CHECK_ATTR(BPF_PROG_ATTACH)) + return -EINVAL; + + ptype = attach_type_to_prog_type(attr->attach_type); + if (ptype == BPF_PROG_TYPE_UNSPEC) + return -EINVAL; + if (bpf_mprog_supported(ptype)) { + if (attr->attach_flags & ~BPF_F_ATTACH_MASK_MPROG) + return -EINVAL; + } else if (is_cgroup_prog_type(ptype, 0, false)) { + if (attr->attach_flags & ~(BPF_F_ATTACH_MASK_BASE | BPF_F_ATTACH_MASK_MPROG)) + return -EINVAL; + } else { + if (attr->attach_flags & ~BPF_F_ATTACH_MASK_BASE) + return -EINVAL; + if (attr->relative_fd || + attr->expected_revision) + return -EINVAL; + } + + prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); + if (IS_ERR(prog)) + return PTR_ERR(prog); + + if (bpf_prog_attach_check_attach_type(prog, attr->attach_type)) { + bpf_prog_put(prog); + return -EINVAL; + } + + if (is_cgroup_prog_type(ptype, prog->expected_attach_type, true)) { + ret = cgroup_bpf_prog_attach(attr, ptype, prog); + goto out; + } + + switch (ptype) { + case BPF_PROG_TYPE_SK_SKB: + case BPF_PROG_TYPE_SK_MSG: + ret = sock_map_get_from_fd(attr, prog); + break; + case BPF_PROG_TYPE_LIRC_MODE2: + ret = lirc_prog_attach(attr, prog); + break; + case BPF_PROG_TYPE_FLOW_DISSECTOR: + ret = netns_bpf_prog_attach(attr, prog); + break; + case BPF_PROG_TYPE_SCHED_CLS: + if (attr->attach_type == BPF_TCX_INGRESS || + attr->attach_type == BPF_TCX_EGRESS) + ret = tcx_prog_attach(attr, prog); + else + ret = netkit_prog_attach(attr, prog); + break; + default: + ret = -EINVAL; + } +out: + if (ret) + bpf_prog_put(prog); + return ret; +} + +#define BPF_PROG_DETACH_LAST_FIELD expected_revision + +static int bpf_prog_detach(const union bpf_attr *attr) +{ + struct bpf_prog *prog = NULL; + enum bpf_prog_type ptype; + int ret; + + if (CHECK_ATTR(BPF_PROG_DETACH)) + return -EINVAL; + + ptype = attach_type_to_prog_type(attr->attach_type); + if (bpf_mprog_supported(ptype)) { + if (ptype == BPF_PROG_TYPE_UNSPEC) + return -EINVAL; + if (attr->attach_flags & ~BPF_F_ATTACH_MASK_MPROG) + return -EINVAL; + if (attr->attach_bpf_fd) { + prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); + if (IS_ERR(prog)) + return PTR_ERR(prog); + } + } else if (is_cgroup_prog_type(ptype, 0, false)) { + if (attr->attach_flags || attr->relative_fd) + return -EINVAL; + } else if (attr->attach_flags || + attr->relative_fd || + attr->expected_revision) { + return -EINVAL; + } + + switch (ptype) { + case BPF_PROG_TYPE_SK_MSG: + case BPF_PROG_TYPE_SK_SKB: + ret = sock_map_prog_detach(attr, ptype); + break; + case BPF_PROG_TYPE_LIRC_MODE2: + ret = lirc_prog_detach(attr); + break; + case BPF_PROG_TYPE_FLOW_DISSECTOR: + ret = netns_bpf_prog_detach(attr, ptype); + break; + case BPF_PROG_TYPE_CGROUP_DEVICE: + case BPF_PROG_TYPE_CGROUP_SKB: + case BPF_PROG_TYPE_CGROUP_SOCK: + case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: + case BPF_PROG_TYPE_CGROUP_SOCKOPT: + case BPF_PROG_TYPE_CGROUP_SYSCTL: + case BPF_PROG_TYPE_SOCK_OPS: + case BPF_PROG_TYPE_LSM: + ret = cgroup_bpf_prog_detach(attr, ptype); + break; + case BPF_PROG_TYPE_SCHED_CLS: + if (attr->attach_type == BPF_TCX_INGRESS || + attr->attach_type == BPF_TCX_EGRESS) + ret = tcx_prog_detach(attr, prog); + else + ret = netkit_prog_detach(attr, prog); + break; + default: + ret = -EINVAL; + } + + if (prog) + bpf_prog_put(prog); + return ret; +} + +#define BPF_PROG_QUERY_LAST_FIELD query.revision + +static int bpf_prog_query(const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + if (!bpf_net_capable()) + return -EPERM; + if (CHECK_ATTR(BPF_PROG_QUERY)) + return -EINVAL; + if (attr->query.query_flags & ~BPF_F_QUERY_EFFECTIVE) + return -EINVAL; + + switch (attr->query.attach_type) { + case BPF_CGROUP_INET_INGRESS: + case BPF_CGROUP_INET_EGRESS: + case BPF_CGROUP_INET_SOCK_CREATE: + case BPF_CGROUP_INET_SOCK_RELEASE: + case BPF_CGROUP_INET4_BIND: + case BPF_CGROUP_INET6_BIND: + case BPF_CGROUP_INET4_POST_BIND: + case BPF_CGROUP_INET6_POST_BIND: + case BPF_CGROUP_INET4_CONNECT: + case BPF_CGROUP_INET6_CONNECT: + case BPF_CGROUP_UNIX_CONNECT: + case BPF_CGROUP_INET4_GETPEERNAME: + case BPF_CGROUP_INET6_GETPEERNAME: + case BPF_CGROUP_UNIX_GETPEERNAME: + case BPF_CGROUP_INET4_GETSOCKNAME: + case BPF_CGROUP_INET6_GETSOCKNAME: + case BPF_CGROUP_UNIX_GETSOCKNAME: + case BPF_CGROUP_UDP4_SENDMSG: + case BPF_CGROUP_UDP6_SENDMSG: + case BPF_CGROUP_UNIX_SENDMSG: + case BPF_CGROUP_UDP4_RECVMSG: + case BPF_CGROUP_UDP6_RECVMSG: + case BPF_CGROUP_UNIX_RECVMSG: + case BPF_CGROUP_SOCK_OPS: + case BPF_CGROUP_DEVICE: + case BPF_CGROUP_SYSCTL: + case BPF_CGROUP_GETSOCKOPT: + case BPF_CGROUP_SETSOCKOPT: + case BPF_LSM_CGROUP: + return cgroup_bpf_prog_query(attr, uattr); + case BPF_LIRC_MODE2: + return lirc_prog_query(attr, uattr); + case BPF_FLOW_DISSECTOR: + case BPF_SK_LOOKUP: + return netns_bpf_prog_query(attr, uattr); + case BPF_SK_SKB_STREAM_PARSER: + case BPF_SK_SKB_STREAM_VERDICT: + case BPF_SK_MSG_VERDICT: + case BPF_SK_SKB_VERDICT: + return sock_map_bpf_prog_query(attr, uattr); + case BPF_TCX_INGRESS: + case BPF_TCX_EGRESS: + return tcx_prog_query(attr, uattr); + case BPF_NETKIT_PRIMARY: + case BPF_NETKIT_PEER: + return netkit_prog_query(attr, uattr); + default: + return -EINVAL; + } +} + +#define BPF_PROG_TEST_RUN_LAST_FIELD test.batch_size + +static int bpf_prog_test_run(const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + struct bpf_prog *prog; + int ret = -ENOTSUPP; + + if (CHECK_ATTR(BPF_PROG_TEST_RUN)) + return -EINVAL; + + if ((attr->test.ctx_size_in && !attr->test.ctx_in) || + (!attr->test.ctx_size_in && attr->test.ctx_in)) + return -EINVAL; + + if ((attr->test.ctx_size_out && !attr->test.ctx_out) || + (!attr->test.ctx_size_out && attr->test.ctx_out)) + return -EINVAL; + + prog = bpf_prog_get(attr->test.prog_fd); + if (IS_ERR(prog)) + return PTR_ERR(prog); + + if (prog->aux->ops->test_run) + ret = prog->aux->ops->test_run(prog, attr, uattr); + + bpf_prog_put(prog); + return ret; +} + +#define BPF_OBJ_GET_NEXT_ID_LAST_FIELD next_id + +static int bpf_obj_get_next_id(const union bpf_attr *attr, + union bpf_attr __user *uattr, + struct idr *idr, + spinlock_t *lock) +{ + u32 next_id = attr->start_id; + int err = 0; + + if (CHECK_ATTR(BPF_OBJ_GET_NEXT_ID) || next_id >= INT_MAX) + return -EINVAL; + + if (!capable(CAP_SYS_ADMIN)) + return -EPERM; + + next_id++; + spin_lock_bh(lock); + if (!idr_get_next(idr, &next_id)) + err = -ENOENT; + spin_unlock_bh(lock); + + if (!err) + err = put_user(next_id, &uattr->next_id); + + return err; +} + +struct bpf_map *bpf_map_get_curr_or_next(u32 *id) +{ + struct bpf_map *map; + + spin_lock_bh(&map_idr_lock); +again: + map = idr_get_next(&map_idr, id); + if (map) { + map = __bpf_map_inc_not_zero(map, false); + if (IS_ERR(map)) { + (*id)++; + goto again; + } + } + spin_unlock_bh(&map_idr_lock); + + return map; +} + +struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id) +{ + struct bpf_prog *prog; + + spin_lock_bh(&prog_idr_lock); +again: + prog = idr_get_next(&prog_idr, id); + if (prog) { + prog = bpf_prog_inc_not_zero(prog); + if (IS_ERR(prog)) { + (*id)++; + goto again; + } + } + spin_unlock_bh(&prog_idr_lock); + + return prog; +} + +#define BPF_PROG_GET_FD_BY_ID_LAST_FIELD prog_id + +struct bpf_prog *bpf_prog_by_id(u32 id) +{ + struct bpf_prog *prog; + + if (!id) + return ERR_PTR(-ENOENT); + + spin_lock_bh(&prog_idr_lock); + prog = idr_find(&prog_idr, id); + if (prog) + prog = bpf_prog_inc_not_zero(prog); + else + prog = ERR_PTR(-ENOENT); + spin_unlock_bh(&prog_idr_lock); + return prog; +} + +static int bpf_prog_get_fd_by_id(const union bpf_attr *attr) +{ + struct bpf_prog *prog; + u32 id = attr->prog_id; + int fd; + + if (CHECK_ATTR(BPF_PROG_GET_FD_BY_ID)) + return -EINVAL; + + if (!capable(CAP_SYS_ADMIN)) + return -EPERM; + + prog = bpf_prog_by_id(id); + if (IS_ERR(prog)) + return PTR_ERR(prog); + + fd = bpf_prog_new_fd(prog); + if (fd < 0) + bpf_prog_put(prog); + + return fd; +} + +#define BPF_MAP_GET_FD_BY_ID_LAST_FIELD open_flags + +static int bpf_map_get_fd_by_id(const union bpf_attr *attr) +{ + struct bpf_map *map; + u32 id = attr->map_id; + int f_flags; + int fd; + + if (CHECK_ATTR(BPF_MAP_GET_FD_BY_ID) || + attr->open_flags & ~BPF_OBJ_FLAG_MASK) + return -EINVAL; + + if (!capable(CAP_SYS_ADMIN)) + return -EPERM; + + f_flags = bpf_get_file_flag(attr->open_flags); + if (f_flags < 0) + return f_flags; + + spin_lock_bh(&map_idr_lock); + map = idr_find(&map_idr, id); + if (map) + map = __bpf_map_inc_not_zero(map, true); + else + map = ERR_PTR(-ENOENT); + spin_unlock_bh(&map_idr_lock); + + if (IS_ERR(map)) + return PTR_ERR(map); + + fd = bpf_map_new_fd(map, f_flags); + if (fd < 0) + bpf_map_put_with_uref(map); + + return fd; +} + +static const struct bpf_map *bpf_map_from_imm(const struct bpf_prog *prog, + unsigned long addr, u32 *off, + u32 *type) +{ + const struct bpf_map *map; + int i; + + mutex_lock(&prog->aux->used_maps_mutex); + for (i = 0, *off = 0; i < prog->aux->used_map_cnt; i++) { + map = prog->aux->used_maps[i]; + if (map == (void *)addr) { + *type = BPF_PSEUDO_MAP_FD; + goto out; + } + if (!map->ops->map_direct_value_meta) + continue; + if (!map->ops->map_direct_value_meta(map, addr, off)) { + *type = BPF_PSEUDO_MAP_VALUE; + goto out; + } + } + map = NULL; + +out: + mutex_unlock(&prog->aux->used_maps_mutex); + return map; +} + +static struct bpf_insn *bpf_insn_prepare_dump(const struct bpf_prog *prog, + const struct cred *f_cred) +{ + const struct bpf_map *map; + struct bpf_insn *insns; + u32 off, type; + u64 imm; + u8 code; + int i; + + insns = kmemdup(prog->insnsi, bpf_prog_insn_size(prog), + GFP_USER); + if (!insns) + return insns; + + for (i = 0; i < prog->len; i++) { + code = insns[i].code; + + if (code == (BPF_JMP | BPF_TAIL_CALL)) { + insns[i].code = BPF_JMP | BPF_CALL; + insns[i].imm = BPF_FUNC_tail_call; + /* fall-through */ + } + if (code == (BPF_JMP | BPF_CALL) || + code == (BPF_JMP | BPF_CALL_ARGS)) { + if (code == (BPF_JMP | BPF_CALL_ARGS)) + insns[i].code = BPF_JMP | BPF_CALL; + if (!bpf_dump_raw_ok(f_cred)) + insns[i].imm = 0; + continue; + } + if (BPF_CLASS(code) == BPF_LDX && BPF_MODE(code) == BPF_PROBE_MEM) { + insns[i].code = BPF_LDX | BPF_SIZE(code) | BPF_MEM; + continue; + } + + if ((BPF_CLASS(code) == BPF_LDX || BPF_CLASS(code) == BPF_STX || + BPF_CLASS(code) == BPF_ST) && BPF_MODE(code) == BPF_PROBE_MEM32) { + insns[i].code = BPF_CLASS(code) | BPF_SIZE(code) | BPF_MEM; + continue; + } + + if (code != (BPF_LD | BPF_IMM | BPF_DW)) + continue; + + imm = ((u64)insns[i + 1].imm << 32) | (u32)insns[i].imm; + map = bpf_map_from_imm(prog, imm, &off, &type); + if (map) { + insns[i].src_reg = type; + insns[i].imm = map->id; + insns[i + 1].imm = off; + continue; + } + } + + return insns; +} + +static int set_info_rec_size(struct bpf_prog_info *info) +{ + /* + * Ensure info.*_rec_size is the same as kernel expected size + * + * or + * + * Only allow zero *_rec_size if both _rec_size and _cnt are + * zero. In this case, the kernel will set the expected + * _rec_size back to the info. + */ + + if ((info->nr_func_info || info->func_info_rec_size) && + info->func_info_rec_size != sizeof(struct bpf_func_info)) + return -EINVAL; + + if ((info->nr_line_info || info->line_info_rec_size) && + info->line_info_rec_size != sizeof(struct bpf_line_info)) + return -EINVAL; + + if ((info->nr_jited_line_info || info->jited_line_info_rec_size) && + info->jited_line_info_rec_size != sizeof(__u64)) + return -EINVAL; + + info->func_info_rec_size = sizeof(struct bpf_func_info); + info->line_info_rec_size = sizeof(struct bpf_line_info); + info->jited_line_info_rec_size = sizeof(__u64); + + return 0; +} + +static int bpf_prog_get_info_by_fd(struct file *file, + struct bpf_prog *prog, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + struct bpf_prog_info __user *uinfo = u64_to_user_ptr(attr->info.info); + struct btf *attach_btf = bpf_prog_get_target_btf(prog); + struct bpf_prog_info info; + u32 info_len = attr->info.info_len; + struct bpf_prog_kstats stats; + char __user *uinsns; + u32 ulen; + int err; + + err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(info), info_len); + if (err) + return err; + info_len = min_t(u32, sizeof(info), info_len); + + memset(&info, 0, sizeof(info)); + if (copy_from_user(&info, uinfo, info_len)) + return -EFAULT; + + info.type = prog->type; + info.id = prog->aux->id; + info.load_time = prog->aux->load_time; + info.created_by_uid = from_kuid_munged(current_user_ns(), + prog->aux->user->uid); + info.gpl_compatible = prog->gpl_compatible; + + memcpy(info.tag, prog->tag, sizeof(prog->tag)); + memcpy(info.name, prog->aux->name, sizeof(prog->aux->name)); + + mutex_lock(&prog->aux->used_maps_mutex); + ulen = info.nr_map_ids; + info.nr_map_ids = prog->aux->used_map_cnt; + ulen = min_t(u32, info.nr_map_ids, ulen); + if (ulen) { + u32 __user *user_map_ids = u64_to_user_ptr(info.map_ids); + u32 i; + + for (i = 0; i < ulen; i++) + if (put_user(prog->aux->used_maps[i]->id, + &user_map_ids[i])) { + mutex_unlock(&prog->aux->used_maps_mutex); + return -EFAULT; + } + } + mutex_unlock(&prog->aux->used_maps_mutex); + + err = set_info_rec_size(&info); + if (err) + return err; + + bpf_prog_get_stats(prog, &stats); + info.run_time_ns = stats.nsecs; + info.run_cnt = stats.cnt; + info.recursion_misses = stats.misses; + + info.verified_insns = prog->aux->verified_insns; + if (prog->aux->btf) + info.btf_id = btf_obj_id(prog->aux->btf); + + if (!bpf_capable()) { + info.jited_prog_len = 0; + info.xlated_prog_len = 0; + info.nr_jited_ksyms = 0; + info.nr_jited_func_lens = 0; + info.nr_func_info = 0; + info.nr_line_info = 0; + info.nr_jited_line_info = 0; + goto done; + } + + ulen = info.xlated_prog_len; + info.xlated_prog_len = bpf_prog_insn_size(prog); + if (info.xlated_prog_len && ulen) { + struct bpf_insn *insns_sanitized; + bool fault; + + if (!prog->blinded || bpf_dump_raw_ok(file->f_cred)) { + insns_sanitized = bpf_insn_prepare_dump(prog, file->f_cred); + if (!insns_sanitized) + return -ENOMEM; + uinsns = u64_to_user_ptr(info.xlated_prog_insns); + ulen = min_t(u32, info.xlated_prog_len, ulen); + fault = copy_to_user(uinsns, insns_sanitized, ulen); + kfree(insns_sanitized); + if (fault) + return -EFAULT; + } else { + info.xlated_prog_insns = 0; + } + } + + if (bpf_prog_is_offloaded(prog->aux)) { + err = bpf_prog_offload_info_fill(&info, prog); + if (err) + return err; + goto done; + } + + /* NOTE: the following code is supposed to be skipped for offload. + * bpf_prog_offload_info_fill() is the place to fill similar fields + * for offload. + */ + ulen = info.jited_prog_len; + if (prog->aux->func_cnt) { + u32 i; + + info.jited_prog_len = 0; + for (i = 0; i < prog->aux->func_cnt; i++) + info.jited_prog_len += prog->aux->func[i]->jited_len; + } else { + info.jited_prog_len = prog->jited_len; + } + + if (info.jited_prog_len && ulen) { + if (bpf_dump_raw_ok(file->f_cred)) { + uinsns = u64_to_user_ptr(info.jited_prog_insns); + ulen = min_t(u32, info.jited_prog_len, ulen); + + /* for multi-function programs, copy the JITed + * instructions for all the functions + */ + if (prog->aux->func_cnt) { + u32 len, free, i; + u8 *img; + + free = ulen; + for (i = 0; i < prog->aux->func_cnt; i++) { + len = prog->aux->func[i]->jited_len; + len = min_t(u32, len, free); + img = (u8 *) prog->aux->func[i]->bpf_func; + if (copy_to_user(uinsns, img, len)) + return -EFAULT; + uinsns += len; + free -= len; + if (!free) + break; + } + } else { + if (copy_to_user(uinsns, prog->bpf_func, ulen)) + return -EFAULT; + } + } else { + info.jited_prog_insns = 0; + } + } + + ulen = info.nr_jited_ksyms; + info.nr_jited_ksyms = prog->aux->func_cnt ? : 1; + if (ulen) { + if (bpf_dump_raw_ok(file->f_cred)) { + unsigned long ksym_addr; + u64 __user *user_ksyms; + u32 i; + + /* copy the address of the kernel symbol + * corresponding to each function + */ + ulen = min_t(u32, info.nr_jited_ksyms, ulen); + user_ksyms = u64_to_user_ptr(info.jited_ksyms); + if (prog->aux->func_cnt) { + for (i = 0; i < ulen; i++) { + ksym_addr = (unsigned long) + prog->aux->func[i]->bpf_func; + if (put_user((u64) ksym_addr, + &user_ksyms[i])) + return -EFAULT; + } + } else { + ksym_addr = (unsigned long) prog->bpf_func; + if (put_user((u64) ksym_addr, &user_ksyms[0])) + return -EFAULT; + } + } else { + info.jited_ksyms = 0; + } + } + + ulen = info.nr_jited_func_lens; + info.nr_jited_func_lens = prog->aux->func_cnt ? : 1; + if (ulen) { + if (bpf_dump_raw_ok(file->f_cred)) { + u32 __user *user_lens; + u32 func_len, i; + + /* copy the JITed image lengths for each function */ + ulen = min_t(u32, info.nr_jited_func_lens, ulen); + user_lens = u64_to_user_ptr(info.jited_func_lens); + if (prog->aux->func_cnt) { + for (i = 0; i < ulen; i++) { + func_len = + prog->aux->func[i]->jited_len; + if (put_user(func_len, &user_lens[i])) + return -EFAULT; + } + } else { + func_len = prog->jited_len; + if (put_user(func_len, &user_lens[0])) + return -EFAULT; + } + } else { + info.jited_func_lens = 0; + } + } + + info.attach_btf_id = prog->aux->attach_btf_id; + if (attach_btf) + info.attach_btf_obj_id = btf_obj_id(attach_btf); + + ulen = info.nr_func_info; + info.nr_func_info = prog->aux->func_info_cnt; + if (info.nr_func_info && ulen) { + char __user *user_finfo; + + user_finfo = u64_to_user_ptr(info.func_info); + ulen = min_t(u32, info.nr_func_info, ulen); + if (copy_to_user(user_finfo, prog->aux->func_info, + info.func_info_rec_size * ulen)) + return -EFAULT; + } + + ulen = info.nr_line_info; + info.nr_line_info = prog->aux->nr_linfo; + if (info.nr_line_info && ulen) { + __u8 __user *user_linfo; + + user_linfo = u64_to_user_ptr(info.line_info); + ulen = min_t(u32, info.nr_line_info, ulen); + if (copy_to_user(user_linfo, prog->aux->linfo, + info.line_info_rec_size * ulen)) + return -EFAULT; + } + + ulen = info.nr_jited_line_info; + if (prog->aux->jited_linfo) + info.nr_jited_line_info = prog->aux->nr_linfo; + else + info.nr_jited_line_info = 0; + if (info.nr_jited_line_info && ulen) { + if (bpf_dump_raw_ok(file->f_cred)) { + unsigned long line_addr; + __u64 __user *user_linfo; + u32 i; + + user_linfo = u64_to_user_ptr(info.jited_line_info); + ulen = min_t(u32, info.nr_jited_line_info, ulen); + for (i = 0; i < ulen; i++) { + line_addr = (unsigned long)prog->aux->jited_linfo[i]; + if (put_user((__u64)line_addr, &user_linfo[i])) + return -EFAULT; + } + } else { + info.jited_line_info = 0; + } + } + + ulen = info.nr_prog_tags; + info.nr_prog_tags = prog->aux->func_cnt ? : 1; + if (ulen) { + __u8 __user (*user_prog_tags)[BPF_TAG_SIZE]; + u32 i; + + user_prog_tags = u64_to_user_ptr(info.prog_tags); + ulen = min_t(u32, info.nr_prog_tags, ulen); + if (prog->aux->func_cnt) { + for (i = 0; i < ulen; i++) { + if (copy_to_user(user_prog_tags[i], + prog->aux->func[i]->tag, + BPF_TAG_SIZE)) + return -EFAULT; + } + } else { + if (copy_to_user(user_prog_tags[0], + prog->tag, BPF_TAG_SIZE)) + return -EFAULT; + } + } + +done: + if (copy_to_user(uinfo, &info, info_len) || + put_user(info_len, &uattr->info.info_len)) + return -EFAULT; + + return 0; +} + +static int bpf_map_get_info_by_fd(struct file *file, + struct bpf_map *map, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + struct bpf_map_info __user *uinfo = u64_to_user_ptr(attr->info.info); + struct bpf_map_info info; + u32 info_len = attr->info.info_len; + int err; + + err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(info), info_len); + if (err) + return err; + info_len = min_t(u32, sizeof(info), info_len); + + memset(&info, 0, sizeof(info)); + if (copy_from_user(&info, uinfo, info_len)) + return -EFAULT; + + info.type = map->map_type; + info.id = map->id; + info.key_size = map->key_size; + info.value_size = map->value_size; + info.max_entries = map->max_entries; + info.map_flags = map->map_flags; + info.map_extra = map->map_extra; + memcpy(info.name, map->name, sizeof(map->name)); + + if (map->btf) { + info.btf_id = btf_obj_id(map->btf); + info.btf_key_type_id = map->btf_key_type_id; + info.btf_value_type_id = map->btf_value_type_id; + } + info.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; + if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) + bpf_map_struct_ops_info_fill(&info, map); + + if (bpf_map_is_offloaded(map)) { + err = bpf_map_offload_info_fill(&info, map); + if (err) + return err; + } + + if (info.hash) { + char __user *uhash = u64_to_user_ptr(info.hash); + + if (!map->ops->map_get_hash) + return -EINVAL; + + if (info.hash_size != SHA256_DIGEST_SIZE) + return -EINVAL; + + err = map->ops->map_get_hash(map, SHA256_DIGEST_SIZE, map->sha); + if (err != 0) + return err; + + if (copy_to_user(uhash, map->sha, SHA256_DIGEST_SIZE) != 0) + return -EFAULT; + } else if (info.hash_size) { + return -EINVAL; + } + + if (copy_to_user(uinfo, &info, info_len) || + put_user(info_len, &uattr->info.info_len)) + return -EFAULT; + + return 0; +} + +static int bpf_btf_get_info_by_fd(struct file *file, + struct btf *btf, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + struct bpf_btf_info __user *uinfo = u64_to_user_ptr(attr->info.info); + u32 info_len = attr->info.info_len; + int err; + + err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(*uinfo), info_len); + if (err) + return err; + + return btf_get_info_by_fd(btf, attr, uattr); +} + +static int bpf_link_get_info_by_fd(struct file *file, + struct bpf_link *link, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + struct bpf_link_info __user *uinfo = u64_to_user_ptr(attr->info.info); + struct bpf_link_info info; + u32 info_len = attr->info.info_len; + int err; + + err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(info), info_len); + if (err) + return err; + info_len = min_t(u32, sizeof(info), info_len); + + memset(&info, 0, sizeof(info)); + if (copy_from_user(&info, uinfo, info_len)) + return -EFAULT; + + info.type = link->type; + info.id = link->id; + if (link->prog) + info.prog_id = link->prog->aux->id; + + if (link->ops->fill_link_info) { + err = link->ops->fill_link_info(link, &info); + if (err) + return err; + } + + if (copy_to_user(uinfo, &info, info_len) || + put_user(info_len, &uattr->info.info_len)) + return -EFAULT; + + return 0; +} + + +static int token_get_info_by_fd(struct file *file, + struct bpf_token *token, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + struct bpf_token_info __user *uinfo = u64_to_user_ptr(attr->info.info); + u32 info_len = attr->info.info_len; + int err; + + err = bpf_check_uarg_tail_zero(USER_BPFPTR(uinfo), sizeof(*uinfo), info_len); + if (err) + return err; + return bpf_token_get_info_by_fd(token, attr, uattr); +} + +#define BPF_OBJ_GET_INFO_BY_FD_LAST_FIELD info.info + +static int bpf_obj_get_info_by_fd(const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + if (CHECK_ATTR(BPF_OBJ_GET_INFO_BY_FD)) + return -EINVAL; + + CLASS(fd, f)(attr->info.bpf_fd); + if (fd_empty(f)) + return -EBADFD; + + if (fd_file(f)->f_op == &bpf_prog_fops) + return bpf_prog_get_info_by_fd(fd_file(f), fd_file(f)->private_data, attr, + uattr); + else if (fd_file(f)->f_op == &bpf_map_fops) + return bpf_map_get_info_by_fd(fd_file(f), fd_file(f)->private_data, attr, + uattr); + else if (fd_file(f)->f_op == &btf_fops) + return bpf_btf_get_info_by_fd(fd_file(f), fd_file(f)->private_data, attr, uattr); + else if (fd_file(f)->f_op == &bpf_link_fops || fd_file(f)->f_op == &bpf_link_fops_poll) + return bpf_link_get_info_by_fd(fd_file(f), fd_file(f)->private_data, + attr, uattr); + else if (fd_file(f)->f_op == &bpf_token_fops) + return token_get_info_by_fd(fd_file(f), fd_file(f)->private_data, + attr, uattr); + return -EINVAL; +} + +#define BPF_BTF_LOAD_LAST_FIELD btf_token_fd + +static int bpf_btf_load(const union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) +{ + struct bpf_token *token = NULL; + + if (CHECK_ATTR(BPF_BTF_LOAD)) + return -EINVAL; + + if (attr->btf_flags & ~BPF_F_TOKEN_FD) + return -EINVAL; + + if (attr->btf_flags & BPF_F_TOKEN_FD) { + token = bpf_token_get_from_fd(attr->btf_token_fd); + if (IS_ERR(token)) + return PTR_ERR(token); + if (!bpf_token_allow_cmd(token, BPF_BTF_LOAD)) { + bpf_token_put(token); + token = NULL; + } + } + + if (!bpf_token_capable(token, CAP_BPF)) { + bpf_token_put(token); + return -EPERM; + } + + bpf_token_put(token); + + return btf_new_fd(attr, uattr, uattr_size); +} + +#define BPF_BTF_GET_FD_BY_ID_LAST_FIELD fd_by_id_token_fd + +static int bpf_btf_get_fd_by_id(const union bpf_attr *attr) +{ + struct bpf_token *token = NULL; + + if (CHECK_ATTR(BPF_BTF_GET_FD_BY_ID)) + return -EINVAL; + + if (attr->open_flags & ~BPF_F_TOKEN_FD) + return -EINVAL; + + if (attr->open_flags & BPF_F_TOKEN_FD) { + token = bpf_token_get_from_fd(attr->fd_by_id_token_fd); + if (IS_ERR(token)) + return PTR_ERR(token); + if (!bpf_token_allow_cmd(token, BPF_BTF_GET_FD_BY_ID)) { + bpf_token_put(token); + token = NULL; + } + } + + if (!bpf_token_capable(token, CAP_SYS_ADMIN)) { + bpf_token_put(token); + return -EPERM; + } + + bpf_token_put(token); + + return btf_get_fd_by_id(attr->btf_id); +} + +static int bpf_task_fd_query_copy(const union bpf_attr *attr, + union bpf_attr __user *uattr, + u32 prog_id, u32 fd_type, + const char *buf, u64 probe_offset, + u64 probe_addr) +{ + char __user *ubuf = u64_to_user_ptr(attr->task_fd_query.buf); + u32 len = buf ? strlen(buf) : 0, input_len; + int err = 0; + + if (put_user(len, &uattr->task_fd_query.buf_len)) + return -EFAULT; + input_len = attr->task_fd_query.buf_len; + if (input_len && ubuf) { + if (!len) { + /* nothing to copy, just make ubuf NULL terminated */ + char zero = '\0'; + + if (put_user(zero, ubuf)) + return -EFAULT; + } else { + err = bpf_copy_to_user(ubuf, buf, input_len, len); + if (err == -EFAULT) + return err; + } + } + + if (put_user(prog_id, &uattr->task_fd_query.prog_id) || + put_user(fd_type, &uattr->task_fd_query.fd_type) || + put_user(probe_offset, &uattr->task_fd_query.probe_offset) || + put_user(probe_addr, &uattr->task_fd_query.probe_addr)) + return -EFAULT; + + return err; +} + +#define BPF_TASK_FD_QUERY_LAST_FIELD task_fd_query.probe_addr + +static int bpf_task_fd_query(const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + pid_t pid = attr->task_fd_query.pid; + u32 fd = attr->task_fd_query.fd; + const struct perf_event *event; + struct task_struct *task; + struct file *file; + int err; + + if (CHECK_ATTR(BPF_TASK_FD_QUERY)) + return -EINVAL; + + if (!capable(CAP_SYS_ADMIN)) + return -EPERM; + + if (attr->task_fd_query.flags != 0) + return -EINVAL; + + rcu_read_lock(); + task = get_pid_task(find_vpid(pid), PIDTYPE_PID); + rcu_read_unlock(); + if (!task) + return -ENOENT; + + err = 0; + file = fget_task(task, fd); + put_task_struct(task); + if (!file) + return -EBADF; + + if (file->f_op == &bpf_link_fops || file->f_op == &bpf_link_fops_poll) { + struct bpf_link *link = file->private_data; + + if (link->ops == &bpf_raw_tp_link_lops) { + struct bpf_raw_tp_link *raw_tp = + container_of(link, struct bpf_raw_tp_link, link); + struct bpf_raw_event_map *btp = raw_tp->btp; + + err = bpf_task_fd_query_copy(attr, uattr, + raw_tp->link.prog->aux->id, + BPF_FD_TYPE_RAW_TRACEPOINT, + btp->tp->name, 0, 0); + goto put_file; + } + goto out_not_supp; + } + + event = perf_get_event(file); + if (!IS_ERR(event)) { + u64 probe_offset, probe_addr; + u32 prog_id, fd_type; + const char *buf; + + err = bpf_get_perf_event_info(event, &prog_id, &fd_type, + &buf, &probe_offset, + &probe_addr, NULL); + if (!err) + err = bpf_task_fd_query_copy(attr, uattr, prog_id, + fd_type, buf, + probe_offset, + probe_addr); + goto put_file; + } + +out_not_supp: + err = -ENOTSUPP; +put_file: + fput(file); + return err; +} + +#define BPF_MAP_BATCH_LAST_FIELD batch.flags + +#define BPF_DO_BATCH(fn, ...) \ + do { \ + if (!fn) { \ + err = -ENOTSUPP; \ + goto err_put; \ + } \ + err = fn(__VA_ARGS__); \ + } while (0) + +static int bpf_map_do_batch(const union bpf_attr *attr, + union bpf_attr __user *uattr, + int cmd) +{ + bool has_read = cmd == BPF_MAP_LOOKUP_BATCH || + cmd == BPF_MAP_LOOKUP_AND_DELETE_BATCH; + bool has_write = cmd != BPF_MAP_LOOKUP_BATCH; + struct bpf_map *map; + int err; + + if (CHECK_ATTR(BPF_MAP_BATCH)) + return -EINVAL; + + CLASS(fd, f)(attr->batch.map_fd); + + map = __bpf_map_get(f); + if (IS_ERR(map)) + return PTR_ERR(map); + if (has_write) + bpf_map_write_active_inc(map); + if (has_read && !(map_get_sys_perms(map, f) & FMODE_CAN_READ)) { + err = -EPERM; + goto err_put; + } + if (has_write && !(map_get_sys_perms(map, f) & FMODE_CAN_WRITE)) { + err = -EPERM; + goto err_put; + } + + if (cmd == BPF_MAP_LOOKUP_BATCH) + BPF_DO_BATCH(map->ops->map_lookup_batch, map, attr, uattr); + else if (cmd == BPF_MAP_LOOKUP_AND_DELETE_BATCH) + BPF_DO_BATCH(map->ops->map_lookup_and_delete_batch, map, attr, uattr); + else if (cmd == BPF_MAP_UPDATE_BATCH) + BPF_DO_BATCH(map->ops->map_update_batch, map, fd_file(f), attr, uattr); + else + BPF_DO_BATCH(map->ops->map_delete_batch, map, attr, uattr); +err_put: + if (has_write) { + maybe_wait_bpf_programs(map); + bpf_map_write_active_dec(map); + } + return err; +} + +#define BPF_LINK_CREATE_LAST_FIELD link_create.uprobe_multi.pid +static int link_create(union bpf_attr *attr, bpfptr_t uattr) +{ + struct bpf_prog *prog; + int ret; + + if (CHECK_ATTR(BPF_LINK_CREATE)) + return -EINVAL; + + if (attr->link_create.attach_type == BPF_STRUCT_OPS) + return bpf_struct_ops_link_create(attr); + + prog = bpf_prog_get(attr->link_create.prog_fd); + if (IS_ERR(prog)) + return PTR_ERR(prog); + + ret = bpf_prog_attach_check_attach_type(prog, + attr->link_create.attach_type); + if (ret) + goto out; + + switch (prog->type) { + case BPF_PROG_TYPE_CGROUP_SKB: + case BPF_PROG_TYPE_CGROUP_SOCK: + case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: + case BPF_PROG_TYPE_SOCK_OPS: + case BPF_PROG_TYPE_CGROUP_DEVICE: + case BPF_PROG_TYPE_CGROUP_SYSCTL: + case BPF_PROG_TYPE_CGROUP_SOCKOPT: + ret = cgroup_bpf_link_attach(attr, prog); + break; + case BPF_PROG_TYPE_EXT: + ret = bpf_tracing_prog_attach(prog, + attr->link_create.target_fd, + attr->link_create.target_btf_id, + attr->link_create.tracing.cookie, + attr->link_create.attach_type); + break; + case BPF_PROG_TYPE_LSM: + case BPF_PROG_TYPE_TRACING: + if (attr->link_create.attach_type != prog->expected_attach_type) { + ret = -EINVAL; + goto out; + } + if (prog->expected_attach_type == BPF_TRACE_RAW_TP) + ret = bpf_raw_tp_link_attach(prog, NULL, attr->link_create.tracing.cookie, + attr->link_create.attach_type); + else if (prog->expected_attach_type == BPF_TRACE_ITER) + ret = bpf_iter_link_attach(attr, uattr, prog); + else if (prog->expected_attach_type == BPF_LSM_CGROUP) + ret = cgroup_bpf_link_attach(attr, prog); + else + ret = bpf_tracing_prog_attach(prog, + attr->link_create.target_fd, + attr->link_create.target_btf_id, + attr->link_create.tracing.cookie, + attr->link_create.attach_type); + break; + case BPF_PROG_TYPE_FLOW_DISSECTOR: + case BPF_PROG_TYPE_SK_LOOKUP: + ret = netns_bpf_link_create(attr, prog); + break; + case BPF_PROG_TYPE_SK_MSG: + case BPF_PROG_TYPE_SK_SKB: + ret = sock_map_link_create(attr, prog); + break; +#ifdef CONFIG_NET + case BPF_PROG_TYPE_XDP: + ret = bpf_xdp_link_attach(attr, prog); + break; + case BPF_PROG_TYPE_SCHED_CLS: + if (attr->link_create.attach_type == BPF_TCX_INGRESS || + attr->link_create.attach_type == BPF_TCX_EGRESS) + ret = tcx_link_attach(attr, prog); + else + ret = netkit_link_attach(attr, prog); + break; + case BPF_PROG_TYPE_NETFILTER: + ret = bpf_nf_link_attach(attr, prog); + break; +#endif + case BPF_PROG_TYPE_PERF_EVENT: + case BPF_PROG_TYPE_TRACEPOINT: + ret = bpf_perf_link_attach(attr, prog); + break; + case BPF_PROG_TYPE_KPROBE: + if (attr->link_create.attach_type == BPF_PERF_EVENT) + ret = bpf_perf_link_attach(attr, prog); + else if (attr->link_create.attach_type == BPF_TRACE_KPROBE_MULTI || + attr->link_create.attach_type == BPF_TRACE_KPROBE_SESSION) + ret = bpf_kprobe_multi_link_attach(attr, prog); + else if (attr->link_create.attach_type == BPF_TRACE_UPROBE_MULTI || + attr->link_create.attach_type == BPF_TRACE_UPROBE_SESSION) + ret = bpf_uprobe_multi_link_attach(attr, prog); + break; + default: + ret = -EINVAL; + } + +out: + if (ret < 0) + bpf_prog_put(prog); + return ret; +} + +static int link_update_map(struct bpf_link *link, union bpf_attr *attr) +{ + struct bpf_map *new_map, *old_map = NULL; + int ret; + + new_map = bpf_map_get(attr->link_update.new_map_fd); + if (IS_ERR(new_map)) + return PTR_ERR(new_map); + + if (attr->link_update.flags & BPF_F_REPLACE) { + old_map = bpf_map_get(attr->link_update.old_map_fd); + if (IS_ERR(old_map)) { + ret = PTR_ERR(old_map); + goto out_put; + } + } else if (attr->link_update.old_map_fd) { + ret = -EINVAL; + goto out_put; + } + + ret = link->ops->update_map(link, new_map, old_map); + + if (old_map) + bpf_map_put(old_map); +out_put: + bpf_map_put(new_map); + return ret; +} + +#define BPF_LINK_UPDATE_LAST_FIELD link_update.old_prog_fd + +static int link_update(union bpf_attr *attr) +{ + struct bpf_prog *old_prog = NULL, *new_prog; + struct bpf_link *link; + u32 flags; + int ret; + + if (CHECK_ATTR(BPF_LINK_UPDATE)) + return -EINVAL; + + flags = attr->link_update.flags; + if (flags & ~BPF_F_REPLACE) + return -EINVAL; + + link = bpf_link_get_from_fd(attr->link_update.link_fd); + if (IS_ERR(link)) + return PTR_ERR(link); + + if (link->ops->update_map) { + ret = link_update_map(link, attr); + goto out_put_link; + } + + new_prog = bpf_prog_get(attr->link_update.new_prog_fd); + if (IS_ERR(new_prog)) { + ret = PTR_ERR(new_prog); + goto out_put_link; + } + + if (flags & BPF_F_REPLACE) { + old_prog = bpf_prog_get(attr->link_update.old_prog_fd); + if (IS_ERR(old_prog)) { + ret = PTR_ERR(old_prog); + old_prog = NULL; + goto out_put_progs; + } + } else if (attr->link_update.old_prog_fd) { + ret = -EINVAL; + goto out_put_progs; + } + + if (link->ops->update_prog) + ret = link->ops->update_prog(link, new_prog, old_prog); + else + ret = -EINVAL; + +out_put_progs: + if (old_prog) + bpf_prog_put(old_prog); + if (ret) + bpf_prog_put(new_prog); +out_put_link: + bpf_link_put_direct(link); + return ret; +} + +#define BPF_LINK_DETACH_LAST_FIELD link_detach.link_fd + +static int link_detach(union bpf_attr *attr) +{ + struct bpf_link *link; + int ret; + + if (CHECK_ATTR(BPF_LINK_DETACH)) + return -EINVAL; + + link = bpf_link_get_from_fd(attr->link_detach.link_fd); + if (IS_ERR(link)) + return PTR_ERR(link); + + if (link->ops->detach) + ret = link->ops->detach(link); + else + ret = -EOPNOTSUPP; + + bpf_link_put_direct(link); + return ret; +} + +struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) +{ + return atomic64_fetch_add_unless(&link->refcnt, 1, 0) ? link : ERR_PTR(-ENOENT); +} +EXPORT_SYMBOL(bpf_link_inc_not_zero); + +struct bpf_link *bpf_link_by_id(u32 id) +{ + struct bpf_link *link; + + if (!id) + return ERR_PTR(-ENOENT); + + spin_lock_bh(&link_idr_lock); + /* before link is "settled", ID is 0, pretend it doesn't exist yet */ + link = idr_find(&link_idr, id); + if (link) { + if (link->id) + link = bpf_link_inc_not_zero(link); + else + link = ERR_PTR(-EAGAIN); + } else { + link = ERR_PTR(-ENOENT); + } + spin_unlock_bh(&link_idr_lock); + return link; +} + +struct bpf_link *bpf_link_get_curr_or_next(u32 *id) +{ + struct bpf_link *link; + + spin_lock_bh(&link_idr_lock); +again: + link = idr_get_next(&link_idr, id); + if (link) { + link = bpf_link_inc_not_zero(link); + if (IS_ERR(link)) { + (*id)++; + goto again; + } + } + spin_unlock_bh(&link_idr_lock); + + return link; +} + +#define BPF_LINK_GET_FD_BY_ID_LAST_FIELD link_id + +static int bpf_link_get_fd_by_id(const union bpf_attr *attr) +{ + struct bpf_link *link; + u32 id = attr->link_id; + int fd; + + if (CHECK_ATTR(BPF_LINK_GET_FD_BY_ID)) + return -EINVAL; + + if (!capable(CAP_SYS_ADMIN)) + return -EPERM; + + link = bpf_link_by_id(id); + if (IS_ERR(link)) + return PTR_ERR(link); + + fd = bpf_link_new_fd(link); + if (fd < 0) + bpf_link_put_direct(link); + + return fd; +} + +DEFINE_MUTEX(bpf_stats_enabled_mutex); + +static int bpf_stats_release(struct inode *inode, struct file *file) +{ + mutex_lock(&bpf_stats_enabled_mutex); + static_key_slow_dec(&bpf_stats_enabled_key.key); + mutex_unlock(&bpf_stats_enabled_mutex); + return 0; +} + +static const struct file_operations bpf_stats_fops = { + .release = bpf_stats_release, +}; + +static int bpf_enable_runtime_stats(void) +{ + int fd; + + mutex_lock(&bpf_stats_enabled_mutex); + + /* Set a very high limit to avoid overflow */ + if (static_key_count(&bpf_stats_enabled_key.key) > INT_MAX / 2) { + mutex_unlock(&bpf_stats_enabled_mutex); + return -EBUSY; + } + + fd = anon_inode_getfd("bpf-stats", &bpf_stats_fops, NULL, O_CLOEXEC); + if (fd >= 0) + static_key_slow_inc(&bpf_stats_enabled_key.key); + + mutex_unlock(&bpf_stats_enabled_mutex); + return fd; +} + +#define BPF_ENABLE_STATS_LAST_FIELD enable_stats.type + +static int bpf_enable_stats(union bpf_attr *attr) +{ + + if (CHECK_ATTR(BPF_ENABLE_STATS)) + return -EINVAL; + + if (!capable(CAP_SYS_ADMIN)) + return -EPERM; + + switch (attr->enable_stats.type) { + case BPF_STATS_RUN_TIME: + return bpf_enable_runtime_stats(); + default: + break; + } + return -EINVAL; +} + +#define BPF_ITER_CREATE_LAST_FIELD iter_create.flags + +static int bpf_iter_create(union bpf_attr *attr) +{ + struct bpf_link *link; + int err; + + if (CHECK_ATTR(BPF_ITER_CREATE)) + return -EINVAL; + + if (attr->iter_create.flags) + return -EINVAL; + + link = bpf_link_get_from_fd(attr->iter_create.link_fd); + if (IS_ERR(link)) + return PTR_ERR(link); + + err = bpf_iter_new_fd(link); + bpf_link_put_direct(link); + + return err; +} + +#define BPF_PROG_BIND_MAP_LAST_FIELD prog_bind_map.flags + +static int bpf_prog_bind_map(union bpf_attr *attr) +{ + struct bpf_prog *prog; + struct bpf_map *map; + struct bpf_map **used_maps_old, **used_maps_new; + int i, ret = 0; + + if (CHECK_ATTR(BPF_PROG_BIND_MAP)) + return -EINVAL; + + if (attr->prog_bind_map.flags) + return -EINVAL; + + prog = bpf_prog_get(attr->prog_bind_map.prog_fd); + if (IS_ERR(prog)) + return PTR_ERR(prog); + + map = bpf_map_get(attr->prog_bind_map.map_fd); + if (IS_ERR(map)) { + ret = PTR_ERR(map); + goto out_prog_put; + } + + mutex_lock(&prog->aux->used_maps_mutex); + + used_maps_old = prog->aux->used_maps; + + for (i = 0; i < prog->aux->used_map_cnt; i++) + if (used_maps_old[i] == map) { + bpf_map_put(map); + goto out_unlock; + } + + used_maps_new = kmalloc_array(prog->aux->used_map_cnt + 1, + sizeof(used_maps_new[0]), + GFP_KERNEL); + if (!used_maps_new) { + ret = -ENOMEM; + goto out_unlock; + } + + /* The bpf program will not access the bpf map, but for the sake of + * simplicity, increase sleepable_refcnt for sleepable program as well. + */ + if (prog->sleepable) + atomic64_inc(&map->sleepable_refcnt); + memcpy(used_maps_new, used_maps_old, + sizeof(used_maps_old[0]) * prog->aux->used_map_cnt); + used_maps_new[prog->aux->used_map_cnt] = map; + + prog->aux->used_map_cnt++; + prog->aux->used_maps = used_maps_new; + + kfree(used_maps_old); + +out_unlock: + mutex_unlock(&prog->aux->used_maps_mutex); + + if (ret) + bpf_map_put(map); +out_prog_put: + bpf_prog_put(prog); + return ret; +} + +#define BPF_TOKEN_CREATE_LAST_FIELD token_create.bpffs_fd + +static int token_create(union bpf_attr *attr) +{ + if (CHECK_ATTR(BPF_TOKEN_CREATE)) + return -EINVAL; + + /* no flags are supported yet */ + if (attr->token_create.flags) + return -EINVAL; + + return bpf_token_create(attr); +} + +#define BPF_PROG_STREAM_READ_BY_FD_LAST_FIELD prog_stream_read.prog_fd + +static int prog_stream_read(union bpf_attr *attr) +{ + char __user *buf = u64_to_user_ptr(attr->prog_stream_read.stream_buf); + u32 len = attr->prog_stream_read.stream_buf_len; + struct bpf_prog *prog; + int ret; + + if (CHECK_ATTR(BPF_PROG_STREAM_READ_BY_FD)) + return -EINVAL; + + prog = bpf_prog_get(attr->prog_stream_read.prog_fd); + if (IS_ERR(prog)) + return PTR_ERR(prog); + + ret = bpf_prog_stream_read(prog, attr->prog_stream_read.stream_id, buf, len); + bpf_prog_put(prog); + + return ret; +} + +static int __sys_bpf(enum bpf_cmd cmd, bpfptr_t uattr, unsigned int size) +{ + union bpf_attr attr; + int err; + + err = bpf_check_uarg_tail_zero(uattr, sizeof(attr), size); + if (err) + return err; + size = min_t(u32, size, sizeof(attr)); + + /* copy attributes from user space, may be less than sizeof(bpf_attr) */ + memset(&attr, 0, sizeof(attr)); + if (copy_from_bpfptr(&attr, uattr, size) != 0) + return -EFAULT; + + err = security_bpf(cmd, &attr, size, uattr.is_kernel); + if (err < 0) + return err; + + switch (cmd) { + case BPF_MAP_CREATE: + err = map_create(&attr, uattr); + break; + case BPF_MAP_LOOKUP_ELEM: + err = map_lookup_elem(&attr); + break; + case BPF_MAP_UPDATE_ELEM: + err = map_update_elem(&attr, uattr); + break; + case BPF_MAP_DELETE_ELEM: + err = map_delete_elem(&attr, uattr); + break; + case BPF_MAP_GET_NEXT_KEY: + err = map_get_next_key(&attr); + break; + case BPF_MAP_FREEZE: + err = map_freeze(&attr); + break; + case BPF_PROG_LOAD: + err = bpf_prog_load(&attr, uattr, size); + break; + case BPF_OBJ_PIN: + err = bpf_obj_pin(&attr); + break; + case BPF_OBJ_GET: + err = bpf_obj_get(&attr); + break; + case BPF_PROG_ATTACH: + err = bpf_prog_attach(&attr); + break; + case BPF_PROG_DETACH: + err = bpf_prog_detach(&attr); + break; + case BPF_PROG_QUERY: + err = bpf_prog_query(&attr, uattr.user); + break; + case BPF_PROG_TEST_RUN: + err = bpf_prog_test_run(&attr, uattr.user); + break; + case BPF_PROG_GET_NEXT_ID: + err = bpf_obj_get_next_id(&attr, uattr.user, + &prog_idr, &prog_idr_lock); + break; + case BPF_MAP_GET_NEXT_ID: + err = bpf_obj_get_next_id(&attr, uattr.user, + &map_idr, &map_idr_lock); + break; + case BPF_BTF_GET_NEXT_ID: + err = bpf_obj_get_next_id(&attr, uattr.user, + &btf_idr, &btf_idr_lock); + break; + case BPF_PROG_GET_FD_BY_ID: + err = bpf_prog_get_fd_by_id(&attr); + break; + case BPF_MAP_GET_FD_BY_ID: + err = bpf_map_get_fd_by_id(&attr); + break; + case BPF_OBJ_GET_INFO_BY_FD: + err = bpf_obj_get_info_by_fd(&attr, uattr.user); + break; + case BPF_RAW_TRACEPOINT_OPEN: + err = bpf_raw_tracepoint_open(&attr); + break; + case BPF_BTF_LOAD: + err = bpf_btf_load(&attr, uattr, size); + break; + case BPF_BTF_GET_FD_BY_ID: + err = bpf_btf_get_fd_by_id(&attr); + break; + case BPF_TASK_FD_QUERY: + err = bpf_task_fd_query(&attr, uattr.user); + break; + case BPF_MAP_LOOKUP_AND_DELETE_ELEM: + err = map_lookup_and_delete_elem(&attr); + break; + case BPF_MAP_LOOKUP_BATCH: + err = bpf_map_do_batch(&attr, uattr.user, BPF_MAP_LOOKUP_BATCH); + break; + case BPF_MAP_LOOKUP_AND_DELETE_BATCH: + err = bpf_map_do_batch(&attr, uattr.user, + BPF_MAP_LOOKUP_AND_DELETE_BATCH); + break; + case BPF_MAP_UPDATE_BATCH: + err = bpf_map_do_batch(&attr, uattr.user, BPF_MAP_UPDATE_BATCH); + break; + case BPF_MAP_DELETE_BATCH: + err = bpf_map_do_batch(&attr, uattr.user, BPF_MAP_DELETE_BATCH); + break; + case BPF_LINK_CREATE: + err = link_create(&attr, uattr); + break; + case BPF_LINK_UPDATE: + err = link_update(&attr); + break; + case BPF_LINK_GET_FD_BY_ID: + err = bpf_link_get_fd_by_id(&attr); + break; + case BPF_LINK_GET_NEXT_ID: + err = bpf_obj_get_next_id(&attr, uattr.user, + &link_idr, &link_idr_lock); + break; + case BPF_ENABLE_STATS: + err = bpf_enable_stats(&attr); + break; + case BPF_ITER_CREATE: + err = bpf_iter_create(&attr); + break; + case BPF_LINK_DETACH: + err = link_detach(&attr); + break; + case BPF_PROG_BIND_MAP: + err = bpf_prog_bind_map(&attr); + break; + case BPF_TOKEN_CREATE: + err = token_create(&attr); + break; + case BPF_PROG_STREAM_READ_BY_FD: + err = prog_stream_read(&attr); + break; + default: + err = -EINVAL; + break; + } + + return err; +} + +SYSCALL_DEFINE3(bpf, int, cmd, union bpf_attr __user *, uattr, unsigned int, size) +{ + return __sys_bpf(cmd, USER_BPFPTR(uattr), size); +} + +static bool syscall_prog_is_valid_access(int off, int size, + enum bpf_access_type type, + const struct bpf_prog *prog, + struct bpf_insn_access_aux *info) +{ + if (off < 0 || off >= U16_MAX) + return false; + if (off % size != 0) + return false; + return true; +} + +BPF_CALL_3(bpf_sys_bpf, int, cmd, union bpf_attr *, attr, u32, attr_size) +{ + switch (cmd) { + case BPF_MAP_CREATE: + case BPF_MAP_DELETE_ELEM: + case BPF_MAP_UPDATE_ELEM: + case BPF_MAP_FREEZE: + case BPF_MAP_GET_FD_BY_ID: + case BPF_PROG_LOAD: + case BPF_BTF_LOAD: + case BPF_LINK_CREATE: + case BPF_RAW_TRACEPOINT_OPEN: + break; + default: + return -EINVAL; + } + return __sys_bpf(cmd, KERNEL_BPFPTR(attr), attr_size); +} + + +/* To shut up -Wmissing-prototypes. + * This function is used by the kernel light skeleton + * to load bpf programs when modules are loaded or during kernel boot. + * See tools/lib/bpf/skel_internal.h + */ +int kern_sys_bpf(int cmd, union bpf_attr *attr, unsigned int size); + +int kern_sys_bpf(int cmd, union bpf_attr *attr, unsigned int size) +{ + struct bpf_prog * __maybe_unused prog; + struct bpf_tramp_run_ctx __maybe_unused run_ctx; + + switch (cmd) { +#ifdef CONFIG_BPF_JIT /* __bpf_prog_enter_sleepable used by trampoline and JIT */ + case BPF_PROG_TEST_RUN: + if (attr->test.data_in || attr->test.data_out || + attr->test.ctx_out || attr->test.duration || + attr->test.repeat || attr->test.flags) + return -EINVAL; + + prog = bpf_prog_get_type(attr->test.prog_fd, BPF_PROG_TYPE_SYSCALL); + if (IS_ERR(prog)) + return PTR_ERR(prog); + + if (attr->test.ctx_size_in < prog->aux->max_ctx_offset || + attr->test.ctx_size_in > U16_MAX) { + bpf_prog_put(prog); + return -EINVAL; + } + + run_ctx.bpf_cookie = 0; + if (!__bpf_prog_enter_sleepable_recur(prog, &run_ctx)) { + /* recursion detected */ + __bpf_prog_exit_sleepable_recur(prog, 0, &run_ctx); + bpf_prog_put(prog); + return -EBUSY; + } + attr->test.retval = bpf_prog_run(prog, (void *) (long) attr->test.ctx_in); + __bpf_prog_exit_sleepable_recur(prog, 0 /* bpf_prog_run does runtime stats */, + &run_ctx); + bpf_prog_put(prog); + return 0; +#endif + default: + return ____bpf_sys_bpf(cmd, attr, size); + } +} +EXPORT_SYMBOL_NS(kern_sys_bpf, "BPF_INTERNAL"); + +static const struct bpf_func_proto bpf_sys_bpf_proto = { + .func = bpf_sys_bpf, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_ANYTHING, + .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, + .arg3_type = ARG_CONST_SIZE, +}; + +const struct bpf_func_proto * __weak +tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) +{ + return bpf_base_func_proto(func_id, prog); +} + +BPF_CALL_1(bpf_sys_close, u32, fd) +{ + /* When bpf program calls this helper there should not be + * an fdget() without matching completed fdput(). + * This helper is allowed in the following callchain only: + * sys_bpf->prog_test_run->bpf_prog->bpf_sys_close + */ + return close_fd(fd); +} + +static const struct bpf_func_proto bpf_sys_close_proto = { + .func = bpf_sys_close, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_ANYTHING, +}; + +BPF_CALL_4(bpf_kallsyms_lookup_name, const char *, name, int, name_sz, int, flags, u64 *, res) +{ + *res = 0; + if (flags) + return -EINVAL; + + if (name_sz <= 1 || name[name_sz - 1]) + return -EINVAL; + + if (!bpf_dump_raw_ok(current_cred())) + return -EPERM; + + *res = kallsyms_lookup_name(name); + return *res ? 0 : -ENOENT; +} + +static const struct bpf_func_proto bpf_kallsyms_lookup_name_proto = { + .func = bpf_kallsyms_lookup_name, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_MEM, + .arg2_type = ARG_CONST_SIZE_OR_ZERO, + .arg3_type = ARG_ANYTHING, + .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED, + .arg4_size = sizeof(u64), +}; + +static const struct bpf_func_proto * +syscall_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) +{ + switch (func_id) { + case BPF_FUNC_sys_bpf: + return !bpf_token_capable(prog->aux->token, CAP_PERFMON) + ? NULL : &bpf_sys_bpf_proto; + case BPF_FUNC_btf_find_by_name_kind: + return &bpf_btf_find_by_name_kind_proto; + case BPF_FUNC_sys_close: + return &bpf_sys_close_proto; + case BPF_FUNC_kallsyms_lookup_name: + return &bpf_kallsyms_lookup_name_proto; + default: + return tracing_prog_func_proto(func_id, prog); + } +} + +const struct bpf_verifier_ops bpf_syscall_verifier_ops = { + .get_func_proto = syscall_prog_func_proto, + .is_valid_access = syscall_prog_is_valid_access, +}; + +const struct bpf_prog_ops bpf_syscall_prog_ops = { + .test_run = bpf_prog_test_run_syscall, +}; + +#ifdef CONFIG_SYSCTL +static int bpf_stats_handler(const struct ctl_table *table, int write, + void *buffer, size_t *lenp, loff_t *ppos) +{ + struct static_key *key = (struct static_key *)table->data; + static int saved_val; + int val, ret; + struct ctl_table tmp = { + .data = &val, + .maxlen = sizeof(val), + .mode = table->mode, + .extra1 = SYSCTL_ZERO, + .extra2 = SYSCTL_ONE, + }; + + if (write && !capable(CAP_SYS_ADMIN)) + return -EPERM; + + mutex_lock(&bpf_stats_enabled_mutex); + val = saved_val; + ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); + if (write && !ret && val != saved_val) { + if (val) + static_key_slow_inc(key); + else + static_key_slow_dec(key); + saved_val = val; + } + mutex_unlock(&bpf_stats_enabled_mutex); + return ret; +} + +void __weak unpriv_ebpf_notify(int new_state) +{ +} + +static int bpf_unpriv_handler(const struct ctl_table *table, int write, + void *buffer, size_t *lenp, loff_t *ppos) +{ + int ret, unpriv_enable = *(int *)table->data; + bool locked_state = unpriv_enable == 1; + struct ctl_table tmp = *table; + + if (write && !capable(CAP_SYS_ADMIN)) + return -EPERM; + + tmp.data = &unpriv_enable; + ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); + if (write && !ret) { + if (locked_state && unpriv_enable != 1) + return -EPERM; + *(int *)table->data = unpriv_enable; + } + + if (write) + unpriv_ebpf_notify(unpriv_enable); + + return ret; +} + +static const struct ctl_table bpf_syscall_table[] = { + { + .procname = "unprivileged_bpf_disabled", + .data = &sysctl_unprivileged_bpf_disabled, + .maxlen = sizeof(sysctl_unprivileged_bpf_disabled), + .mode = 0644, + .proc_handler = bpf_unpriv_handler, + .extra1 = SYSCTL_ZERO, + .extra2 = SYSCTL_TWO, + }, + { + .procname = "bpf_stats_enabled", + .data = &bpf_stats_enabled_key.key, + .mode = 0644, + .proc_handler = bpf_stats_handler, + }, +}; + +static int __init bpf_syscall_sysctl_init(void) +{ + register_sysctl_init("kernel", bpf_syscall_table); + return 0; +} +late_initcall(bpf_syscall_sysctl_init); +#endif /* CONFIG_SYSCTL */ diff --git a/kernel/bpf/sysfs_btf.c b/kernel/bpf/sysfs_btf.c new file mode 100644 index 000000000000..9cbe15ce3540 --- /dev/null +++ b/kernel/bpf/sysfs_btf.c @@ -0,0 +1,69 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Provide kernel BTF information for introspection and use by eBPF tools. + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/kobject.h> +#include <linux/init.h> +#include <linux/sysfs.h> +#include <linux/mm.h> +#include <linux/io.h> +#include <linux/btf.h> + +/* See scripts/link-vmlinux.sh, gen_btf() func for details */ +extern char __start_BTF[]; +extern char __stop_BTF[]; + +static int btf_sysfs_vmlinux_mmap(struct file *filp, struct kobject *kobj, + const struct bin_attribute *attr, + struct vm_area_struct *vma) +{ + unsigned long pages = PAGE_ALIGN(attr->size) >> PAGE_SHIFT; + size_t vm_size = vma->vm_end - vma->vm_start; + phys_addr_t addr = __pa_symbol(__start_BTF); + unsigned long pfn = addr >> PAGE_SHIFT; + + if (attr->private != __start_BTF || !PAGE_ALIGNED(addr)) + return -EINVAL; + + if (vma->vm_pgoff) + return -EINVAL; + + if (vma->vm_flags & (VM_WRITE | VM_EXEC | VM_MAYSHARE)) + return -EACCES; + + if (pfn + pages < pfn) + return -EINVAL; + + if ((vm_size >> PAGE_SHIFT) > pages) + return -EINVAL; + + vm_flags_mod(vma, VM_DONTDUMP, VM_MAYEXEC | VM_MAYWRITE); + return remap_pfn_range(vma, vma->vm_start, pfn, vm_size, vma->vm_page_prot); +} + +static struct bin_attribute bin_attr_btf_vmlinux __ro_after_init = { + .attr = { .name = "vmlinux", .mode = 0444, }, + .read = sysfs_bin_attr_simple_read, + .mmap = btf_sysfs_vmlinux_mmap, +}; + +struct kobject *btf_kobj; + +static int __init btf_vmlinux_init(void) +{ + bin_attr_btf_vmlinux.private = __start_BTF; + bin_attr_btf_vmlinux.size = __stop_BTF - __start_BTF; + + if (bin_attr_btf_vmlinux.size == 0) + return 0; + + btf_kobj = kobject_create_and_add("btf", kernel_kobj); + if (!btf_kobj) + return -ENOMEM; + + return sysfs_create_bin_file(btf_kobj, &bin_attr_btf_vmlinux); +} + +subsys_initcall(btf_vmlinux_init); diff --git a/kernel/bpf/task_iter.c b/kernel/bpf/task_iter.c new file mode 100644 index 000000000000..98d9b4c0daff --- /dev/null +++ b/kernel/bpf/task_iter.c @@ -0,0 +1,1070 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2020 Facebook */ + +#include <linux/init.h> +#include <linux/namei.h> +#include <linux/pid_namespace.h> +#include <linux/fs.h> +#include <linux/filter.h> +#include <linux/bpf_mem_alloc.h> +#include <linux/btf_ids.h> +#include <linux/mm_types.h> +#include "mmap_unlock_work.h" + +static const char * const iter_task_type_names[] = { + "ALL", + "TID", + "PID", +}; + +struct bpf_iter_seq_task_common { + struct pid_namespace *ns; + enum bpf_iter_task_type type; + u32 pid; + u32 pid_visiting; +}; + +struct bpf_iter_seq_task_info { + /* The first field must be struct bpf_iter_seq_task_common. + * this is assumed by {init, fini}_seq_pidns() callback functions. + */ + struct bpf_iter_seq_task_common common; + u32 tid; +}; + +static struct task_struct *task_group_seq_get_next(struct bpf_iter_seq_task_common *common, + u32 *tid, + bool skip_if_dup_files) +{ + struct task_struct *task; + struct pid *pid; + u32 next_tid; + + if (!*tid) { + /* The first time, the iterator calls this function. */ + pid = find_pid_ns(common->pid, common->ns); + task = get_pid_task(pid, PIDTYPE_TGID); + if (!task) + return NULL; + + *tid = common->pid; + common->pid_visiting = common->pid; + + return task; + } + + /* If the control returns to user space and comes back to the + * kernel again, *tid and common->pid_visiting should be the + * same for task_seq_start() to pick up the correct task. + */ + if (*tid == common->pid_visiting) { + pid = find_pid_ns(common->pid_visiting, common->ns); + task = get_pid_task(pid, PIDTYPE_PID); + + return task; + } + + task = find_task_by_pid_ns(common->pid_visiting, common->ns); + if (!task) + return NULL; + +retry: + task = __next_thread(task); + if (!task) + return NULL; + + next_tid = __task_pid_nr_ns(task, PIDTYPE_PID, common->ns); + if (!next_tid) + goto retry; + + if (skip_if_dup_files && task->files == task->group_leader->files) + goto retry; + + *tid = common->pid_visiting = next_tid; + get_task_struct(task); + return task; +} + +static struct task_struct *task_seq_get_next(struct bpf_iter_seq_task_common *common, + u32 *tid, + bool skip_if_dup_files) +{ + struct task_struct *task = NULL; + struct pid *pid; + + if (common->type == BPF_TASK_ITER_TID) { + if (*tid && *tid != common->pid) + return NULL; + rcu_read_lock(); + pid = find_pid_ns(common->pid, common->ns); + if (pid) { + task = get_pid_task(pid, PIDTYPE_PID); + *tid = common->pid; + } + rcu_read_unlock(); + + return task; + } + + if (common->type == BPF_TASK_ITER_TGID) { + rcu_read_lock(); + task = task_group_seq_get_next(common, tid, skip_if_dup_files); + rcu_read_unlock(); + + return task; + } + + rcu_read_lock(); +retry: + pid = find_ge_pid(*tid, common->ns); + if (pid) { + *tid = pid_nr_ns(pid, common->ns); + task = get_pid_task(pid, PIDTYPE_PID); + if (!task) { + ++*tid; + goto retry; + } else if (skip_if_dup_files && !thread_group_leader(task) && + task->files == task->group_leader->files) { + put_task_struct(task); + task = NULL; + ++*tid; + goto retry; + } + } + rcu_read_unlock(); + + return task; +} + +static void *task_seq_start(struct seq_file *seq, loff_t *pos) +{ + struct bpf_iter_seq_task_info *info = seq->private; + struct task_struct *task; + + task = task_seq_get_next(&info->common, &info->tid, false); + if (!task) + return NULL; + + if (*pos == 0) + ++*pos; + return task; +} + +static void *task_seq_next(struct seq_file *seq, void *v, loff_t *pos) +{ + struct bpf_iter_seq_task_info *info = seq->private; + struct task_struct *task; + + ++*pos; + ++info->tid; + put_task_struct((struct task_struct *)v); + task = task_seq_get_next(&info->common, &info->tid, false); + if (!task) + return NULL; + + return task; +} + +struct bpf_iter__task { + __bpf_md_ptr(struct bpf_iter_meta *, meta); + __bpf_md_ptr(struct task_struct *, task); +}; + +DEFINE_BPF_ITER_FUNC(task, struct bpf_iter_meta *meta, struct task_struct *task) + +static int __task_seq_show(struct seq_file *seq, struct task_struct *task, + bool in_stop) +{ + struct bpf_iter_meta meta; + struct bpf_iter__task ctx; + struct bpf_prog *prog; + + meta.seq = seq; + prog = bpf_iter_get_info(&meta, in_stop); + if (!prog) + return 0; + + ctx.meta = &meta; + ctx.task = task; + return bpf_iter_run_prog(prog, &ctx); +} + +static int task_seq_show(struct seq_file *seq, void *v) +{ + return __task_seq_show(seq, v, false); +} + +static void task_seq_stop(struct seq_file *seq, void *v) +{ + if (!v) + (void)__task_seq_show(seq, v, true); + else + put_task_struct((struct task_struct *)v); +} + +static int bpf_iter_attach_task(struct bpf_prog *prog, + union bpf_iter_link_info *linfo, + struct bpf_iter_aux_info *aux) +{ + unsigned int flags; + struct pid *pid; + pid_t tgid; + + if ((!!linfo->task.tid + !!linfo->task.pid + !!linfo->task.pid_fd) > 1) + return -EINVAL; + + aux->task.type = BPF_TASK_ITER_ALL; + if (linfo->task.tid != 0) { + aux->task.type = BPF_TASK_ITER_TID; + aux->task.pid = linfo->task.tid; + } + if (linfo->task.pid != 0) { + aux->task.type = BPF_TASK_ITER_TGID; + aux->task.pid = linfo->task.pid; + } + if (linfo->task.pid_fd != 0) { + aux->task.type = BPF_TASK_ITER_TGID; + + pid = pidfd_get_pid(linfo->task.pid_fd, &flags); + if (IS_ERR(pid)) + return PTR_ERR(pid); + + tgid = pid_nr_ns(pid, task_active_pid_ns(current)); + aux->task.pid = tgid; + put_pid(pid); + } + + return 0; +} + +static const struct seq_operations task_seq_ops = { + .start = task_seq_start, + .next = task_seq_next, + .stop = task_seq_stop, + .show = task_seq_show, +}; + +struct bpf_iter_seq_task_file_info { + /* The first field must be struct bpf_iter_seq_task_common. + * this is assumed by {init, fini}_seq_pidns() callback functions. + */ + struct bpf_iter_seq_task_common common; + struct task_struct *task; + u32 tid; + u32 fd; +}; + +static struct file * +task_file_seq_get_next(struct bpf_iter_seq_task_file_info *info) +{ + u32 saved_tid = info->tid; + struct task_struct *curr_task; + unsigned int curr_fd = info->fd; + struct file *f; + + /* If this function returns a non-NULL file object, + * it held a reference to the task/file. + * Otherwise, it does not hold any reference. + */ +again: + if (info->task) { + curr_task = info->task; + curr_fd = info->fd; + } else { + curr_task = task_seq_get_next(&info->common, &info->tid, true); + if (!curr_task) { + info->task = NULL; + return NULL; + } + + /* set info->task */ + info->task = curr_task; + if (saved_tid == info->tid) + curr_fd = info->fd; + else + curr_fd = 0; + } + + f = fget_task_next(curr_task, &curr_fd); + if (f) { + /* set info->fd */ + info->fd = curr_fd; + return f; + } + + /* the current task is done, go to the next task */ + put_task_struct(curr_task); + + if (info->common.type == BPF_TASK_ITER_TID) { + info->task = NULL; + return NULL; + } + + info->task = NULL; + info->fd = 0; + saved_tid = ++(info->tid); + goto again; +} + +static void *task_file_seq_start(struct seq_file *seq, loff_t *pos) +{ + struct bpf_iter_seq_task_file_info *info = seq->private; + struct file *file; + + info->task = NULL; + file = task_file_seq_get_next(info); + if (file && *pos == 0) + ++*pos; + + return file; +} + +static void *task_file_seq_next(struct seq_file *seq, void *v, loff_t *pos) +{ + struct bpf_iter_seq_task_file_info *info = seq->private; + + ++*pos; + ++info->fd; + fput((struct file *)v); + return task_file_seq_get_next(info); +} + +struct bpf_iter__task_file { + __bpf_md_ptr(struct bpf_iter_meta *, meta); + __bpf_md_ptr(struct task_struct *, task); + u32 fd __aligned(8); + __bpf_md_ptr(struct file *, file); +}; + +DEFINE_BPF_ITER_FUNC(task_file, struct bpf_iter_meta *meta, + struct task_struct *task, u32 fd, + struct file *file) + +static int __task_file_seq_show(struct seq_file *seq, struct file *file, + bool in_stop) +{ + struct bpf_iter_seq_task_file_info *info = seq->private; + struct bpf_iter__task_file ctx; + struct bpf_iter_meta meta; + struct bpf_prog *prog; + + meta.seq = seq; + prog = bpf_iter_get_info(&meta, in_stop); + if (!prog) + return 0; + + ctx.meta = &meta; + ctx.task = info->task; + ctx.fd = info->fd; + ctx.file = file; + return bpf_iter_run_prog(prog, &ctx); +} + +static int task_file_seq_show(struct seq_file *seq, void *v) +{ + return __task_file_seq_show(seq, v, false); +} + +static void task_file_seq_stop(struct seq_file *seq, void *v) +{ + struct bpf_iter_seq_task_file_info *info = seq->private; + + if (!v) { + (void)__task_file_seq_show(seq, v, true); + } else { + fput((struct file *)v); + put_task_struct(info->task); + info->task = NULL; + } +} + +static int init_seq_pidns(void *priv_data, struct bpf_iter_aux_info *aux) +{ + struct bpf_iter_seq_task_common *common = priv_data; + + common->ns = get_pid_ns(task_active_pid_ns(current)); + common->type = aux->task.type; + common->pid = aux->task.pid; + + return 0; +} + +static void fini_seq_pidns(void *priv_data) +{ + struct bpf_iter_seq_task_common *common = priv_data; + + put_pid_ns(common->ns); +} + +static const struct seq_operations task_file_seq_ops = { + .start = task_file_seq_start, + .next = task_file_seq_next, + .stop = task_file_seq_stop, + .show = task_file_seq_show, +}; + +struct bpf_iter_seq_task_vma_info { + /* The first field must be struct bpf_iter_seq_task_common. + * this is assumed by {init, fini}_seq_pidns() callback functions. + */ + struct bpf_iter_seq_task_common common; + struct task_struct *task; + struct mm_struct *mm; + struct vm_area_struct *vma; + u32 tid; + unsigned long prev_vm_start; + unsigned long prev_vm_end; +}; + +enum bpf_task_vma_iter_find_op { + task_vma_iter_first_vma, /* use find_vma() with addr 0 */ + task_vma_iter_next_vma, /* use vma_next() with curr_vma */ + task_vma_iter_find_vma, /* use find_vma() to find next vma */ +}; + +static struct vm_area_struct * +task_vma_seq_get_next(struct bpf_iter_seq_task_vma_info *info) +{ + enum bpf_task_vma_iter_find_op op; + struct vm_area_struct *curr_vma; + struct task_struct *curr_task; + struct mm_struct *curr_mm; + u32 saved_tid = info->tid; + + /* If this function returns a non-NULL vma, it holds a reference to + * the task_struct, holds a refcount on mm->mm_users, and holds + * read lock on vma->mm->mmap_lock. + * If this function returns NULL, it does not hold any reference or + * lock. + */ + if (info->task) { + curr_task = info->task; + curr_vma = info->vma; + curr_mm = info->mm; + /* In case of lock contention, drop mmap_lock to unblock + * the writer. + * + * After relock, call find(mm, prev_vm_end - 1) to find + * new vma to process. + * + * +------+------+-----------+ + * | VMA1 | VMA2 | VMA3 | + * +------+------+-----------+ + * | | | | + * 4k 8k 16k 400k + * + * For example, curr_vma == VMA2. Before unlock, we set + * + * prev_vm_start = 8k + * prev_vm_end = 16k + * + * There are a few cases: + * + * 1) VMA2 is freed, but VMA3 exists. + * + * find_vma() will return VMA3, just process VMA3. + * + * 2) VMA2 still exists. + * + * find_vma() will return VMA2, process VMA2->next. + * + * 3) no more vma in this mm. + * + * Process the next task. + * + * 4) find_vma() returns a different vma, VMA2'. + * + * 4.1) If VMA2 covers same range as VMA2', skip VMA2', + * because we already covered the range; + * 4.2) VMA2 and VMA2' covers different ranges, process + * VMA2'. + */ + if (mmap_lock_is_contended(curr_mm)) { + info->prev_vm_start = curr_vma->vm_start; + info->prev_vm_end = curr_vma->vm_end; + op = task_vma_iter_find_vma; + mmap_read_unlock(curr_mm); + if (mmap_read_lock_killable(curr_mm)) { + mmput(curr_mm); + goto finish; + } + } else { + op = task_vma_iter_next_vma; + } + } else { +again: + curr_task = task_seq_get_next(&info->common, &info->tid, true); + if (!curr_task) { + info->tid++; + goto finish; + } + + if (saved_tid != info->tid) { + /* new task, process the first vma */ + op = task_vma_iter_first_vma; + } else { + /* Found the same tid, which means the user space + * finished data in previous buffer and read more. + * We dropped mmap_lock before returning to user + * space, so it is necessary to use find_vma() to + * find the next vma to process. + */ + op = task_vma_iter_find_vma; + } + + curr_mm = get_task_mm(curr_task); + if (!curr_mm) + goto next_task; + + if (mmap_read_lock_killable(curr_mm)) { + mmput(curr_mm); + goto finish; + } + } + + switch (op) { + case task_vma_iter_first_vma: + curr_vma = find_vma(curr_mm, 0); + break; + case task_vma_iter_next_vma: + curr_vma = find_vma(curr_mm, curr_vma->vm_end); + break; + case task_vma_iter_find_vma: + /* We dropped mmap_lock so it is necessary to use find_vma + * to find the next vma. This is similar to the mechanism + * in show_smaps_rollup(). + */ + curr_vma = find_vma(curr_mm, info->prev_vm_end - 1); + /* case 1) and 4.2) above just use curr_vma */ + + /* check for case 2) or case 4.1) above */ + if (curr_vma && + curr_vma->vm_start == info->prev_vm_start && + curr_vma->vm_end == info->prev_vm_end) + curr_vma = find_vma(curr_mm, curr_vma->vm_end); + break; + } + if (!curr_vma) { + /* case 3) above, or case 2) 4.1) with vma->next == NULL */ + mmap_read_unlock(curr_mm); + mmput(curr_mm); + goto next_task; + } + info->task = curr_task; + info->vma = curr_vma; + info->mm = curr_mm; + return curr_vma; + +next_task: + if (info->common.type == BPF_TASK_ITER_TID) + goto finish; + + put_task_struct(curr_task); + info->task = NULL; + info->mm = NULL; + info->tid++; + goto again; + +finish: + if (curr_task) + put_task_struct(curr_task); + info->task = NULL; + info->vma = NULL; + info->mm = NULL; + return NULL; +} + +static void *task_vma_seq_start(struct seq_file *seq, loff_t *pos) +{ + struct bpf_iter_seq_task_vma_info *info = seq->private; + struct vm_area_struct *vma; + + vma = task_vma_seq_get_next(info); + if (vma && *pos == 0) + ++*pos; + + return vma; +} + +static void *task_vma_seq_next(struct seq_file *seq, void *v, loff_t *pos) +{ + struct bpf_iter_seq_task_vma_info *info = seq->private; + + ++*pos; + return task_vma_seq_get_next(info); +} + +struct bpf_iter__task_vma { + __bpf_md_ptr(struct bpf_iter_meta *, meta); + __bpf_md_ptr(struct task_struct *, task); + __bpf_md_ptr(struct vm_area_struct *, vma); +}; + +DEFINE_BPF_ITER_FUNC(task_vma, struct bpf_iter_meta *meta, + struct task_struct *task, struct vm_area_struct *vma) + +static int __task_vma_seq_show(struct seq_file *seq, bool in_stop) +{ + struct bpf_iter_seq_task_vma_info *info = seq->private; + struct bpf_iter__task_vma ctx; + struct bpf_iter_meta meta; + struct bpf_prog *prog; + + meta.seq = seq; + prog = bpf_iter_get_info(&meta, in_stop); + if (!prog) + return 0; + + ctx.meta = &meta; + ctx.task = info->task; + ctx.vma = info->vma; + return bpf_iter_run_prog(prog, &ctx); +} + +static int task_vma_seq_show(struct seq_file *seq, void *v) +{ + return __task_vma_seq_show(seq, false); +} + +static void task_vma_seq_stop(struct seq_file *seq, void *v) +{ + struct bpf_iter_seq_task_vma_info *info = seq->private; + + if (!v) { + (void)__task_vma_seq_show(seq, true); + } else { + /* info->vma has not been seen by the BPF program. If the + * user space reads more, task_vma_seq_get_next should + * return this vma again. Set prev_vm_start to ~0UL, + * so that we don't skip the vma returned by the next + * find_vma() (case task_vma_iter_find_vma in + * task_vma_seq_get_next()). + */ + info->prev_vm_start = ~0UL; + info->prev_vm_end = info->vma->vm_end; + mmap_read_unlock(info->mm); + mmput(info->mm); + info->mm = NULL; + put_task_struct(info->task); + info->task = NULL; + } +} + +static const struct seq_operations task_vma_seq_ops = { + .start = task_vma_seq_start, + .next = task_vma_seq_next, + .stop = task_vma_seq_stop, + .show = task_vma_seq_show, +}; + +static const struct bpf_iter_seq_info task_seq_info = { + .seq_ops = &task_seq_ops, + .init_seq_private = init_seq_pidns, + .fini_seq_private = fini_seq_pidns, + .seq_priv_size = sizeof(struct bpf_iter_seq_task_info), +}; + +static int bpf_iter_fill_link_info(const struct bpf_iter_aux_info *aux, struct bpf_link_info *info) +{ + switch (aux->task.type) { + case BPF_TASK_ITER_TID: + info->iter.task.tid = aux->task.pid; + break; + case BPF_TASK_ITER_TGID: + info->iter.task.pid = aux->task.pid; + break; + default: + break; + } + return 0; +} + +static void bpf_iter_task_show_fdinfo(const struct bpf_iter_aux_info *aux, struct seq_file *seq) +{ + seq_printf(seq, "task_type:\t%s\n", iter_task_type_names[aux->task.type]); + if (aux->task.type == BPF_TASK_ITER_TID) + seq_printf(seq, "tid:\t%u\n", aux->task.pid); + else if (aux->task.type == BPF_TASK_ITER_TGID) + seq_printf(seq, "pid:\t%u\n", aux->task.pid); +} + +static struct bpf_iter_reg task_reg_info = { + .target = "task", + .attach_target = bpf_iter_attach_task, + .feature = BPF_ITER_RESCHED, + .ctx_arg_info_size = 1, + .ctx_arg_info = { + { offsetof(struct bpf_iter__task, task), + PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, + }, + .seq_info = &task_seq_info, + .fill_link_info = bpf_iter_fill_link_info, + .show_fdinfo = bpf_iter_task_show_fdinfo, +}; + +static const struct bpf_iter_seq_info task_file_seq_info = { + .seq_ops = &task_file_seq_ops, + .init_seq_private = init_seq_pidns, + .fini_seq_private = fini_seq_pidns, + .seq_priv_size = sizeof(struct bpf_iter_seq_task_file_info), +}; + +static struct bpf_iter_reg task_file_reg_info = { + .target = "task_file", + .attach_target = bpf_iter_attach_task, + .feature = BPF_ITER_RESCHED, + .ctx_arg_info_size = 2, + .ctx_arg_info = { + { offsetof(struct bpf_iter__task_file, task), + PTR_TO_BTF_ID_OR_NULL }, + { offsetof(struct bpf_iter__task_file, file), + PTR_TO_BTF_ID_OR_NULL }, + }, + .seq_info = &task_file_seq_info, + .fill_link_info = bpf_iter_fill_link_info, + .show_fdinfo = bpf_iter_task_show_fdinfo, +}; + +static const struct bpf_iter_seq_info task_vma_seq_info = { + .seq_ops = &task_vma_seq_ops, + .init_seq_private = init_seq_pidns, + .fini_seq_private = fini_seq_pidns, + .seq_priv_size = sizeof(struct bpf_iter_seq_task_vma_info), +}; + +static struct bpf_iter_reg task_vma_reg_info = { + .target = "task_vma", + .attach_target = bpf_iter_attach_task, + .feature = BPF_ITER_RESCHED, + .ctx_arg_info_size = 2, + .ctx_arg_info = { + { offsetof(struct bpf_iter__task_vma, task), + PTR_TO_BTF_ID_OR_NULL }, + { offsetof(struct bpf_iter__task_vma, vma), + PTR_TO_BTF_ID_OR_NULL }, + }, + .seq_info = &task_vma_seq_info, + .fill_link_info = bpf_iter_fill_link_info, + .show_fdinfo = bpf_iter_task_show_fdinfo, +}; + +BPF_CALL_5(bpf_find_vma, struct task_struct *, task, u64, start, + bpf_callback_t, callback_fn, void *, callback_ctx, u64, flags) +{ + struct mmap_unlock_irq_work *work = NULL; + struct vm_area_struct *vma; + bool irq_work_busy = false; + struct mm_struct *mm; + int ret = -ENOENT; + + if (flags) + return -EINVAL; + + if (!task) + return -ENOENT; + + mm = task->mm; + if (!mm) + return -ENOENT; + + irq_work_busy = bpf_mmap_unlock_get_irq_work(&work); + + if (irq_work_busy || !mmap_read_trylock(mm)) + return -EBUSY; + + vma = find_vma(mm, start); + + if (vma && vma->vm_start <= start && vma->vm_end > start) { + callback_fn((u64)(long)task, (u64)(long)vma, + (u64)(long)callback_ctx, 0, 0); + ret = 0; + } + bpf_mmap_unlock_mm(work, mm); + return ret; +} + +const struct bpf_func_proto bpf_find_vma_proto = { + .func = bpf_find_vma, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_BTF_ID, + .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], + .arg2_type = ARG_ANYTHING, + .arg3_type = ARG_PTR_TO_FUNC, + .arg4_type = ARG_PTR_TO_STACK_OR_NULL, + .arg5_type = ARG_ANYTHING, +}; + +struct bpf_iter_task_vma_kern_data { + struct task_struct *task; + struct mm_struct *mm; + struct mmap_unlock_irq_work *work; + struct vma_iterator vmi; +}; + +struct bpf_iter_task_vma { + /* opaque iterator state; having __u64 here allows to preserve correct + * alignment requirements in vmlinux.h, generated from BTF + */ + __u64 __opaque[1]; +} __attribute__((aligned(8))); + +/* Non-opaque version of bpf_iter_task_vma */ +struct bpf_iter_task_vma_kern { + struct bpf_iter_task_vma_kern_data *data; +} __attribute__((aligned(8))); + +__bpf_kfunc_start_defs(); + +__bpf_kfunc int bpf_iter_task_vma_new(struct bpf_iter_task_vma *it, + struct task_struct *task, u64 addr) +{ + struct bpf_iter_task_vma_kern *kit = (void *)it; + bool irq_work_busy = false; + int err; + + BUILD_BUG_ON(sizeof(struct bpf_iter_task_vma_kern) != sizeof(struct bpf_iter_task_vma)); + BUILD_BUG_ON(__alignof__(struct bpf_iter_task_vma_kern) != __alignof__(struct bpf_iter_task_vma)); + + /* is_iter_reg_valid_uninit guarantees that kit hasn't been initialized + * before, so non-NULL kit->data doesn't point to previously + * bpf_mem_alloc'd bpf_iter_task_vma_kern_data + */ + kit->data = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_iter_task_vma_kern_data)); + if (!kit->data) + return -ENOMEM; + + kit->data->task = get_task_struct(task); + kit->data->mm = task->mm; + if (!kit->data->mm) { + err = -ENOENT; + goto err_cleanup_iter; + } + + /* kit->data->work == NULL is valid after bpf_mmap_unlock_get_irq_work */ + irq_work_busy = bpf_mmap_unlock_get_irq_work(&kit->data->work); + if (irq_work_busy || !mmap_read_trylock(kit->data->mm)) { + err = -EBUSY; + goto err_cleanup_iter; + } + + vma_iter_init(&kit->data->vmi, kit->data->mm, addr); + return 0; + +err_cleanup_iter: + if (kit->data->task) + put_task_struct(kit->data->task); + bpf_mem_free(&bpf_global_ma, kit->data); + /* NULL kit->data signals failed bpf_iter_task_vma initialization */ + kit->data = NULL; + return err; +} + +__bpf_kfunc struct vm_area_struct *bpf_iter_task_vma_next(struct bpf_iter_task_vma *it) +{ + struct bpf_iter_task_vma_kern *kit = (void *)it; + + if (!kit->data) /* bpf_iter_task_vma_new failed */ + return NULL; + return vma_next(&kit->data->vmi); +} + +__bpf_kfunc void bpf_iter_task_vma_destroy(struct bpf_iter_task_vma *it) +{ + struct bpf_iter_task_vma_kern *kit = (void *)it; + + if (kit->data) { + bpf_mmap_unlock_mm(kit->data->work, kit->data->mm); + put_task_struct(kit->data->task); + bpf_mem_free(&bpf_global_ma, kit->data); + } +} + +__bpf_kfunc_end_defs(); + +#ifdef CONFIG_CGROUPS + +struct bpf_iter_css_task { + __u64 __opaque[1]; +} __attribute__((aligned(8))); + +struct bpf_iter_css_task_kern { + struct css_task_iter *css_it; +} __attribute__((aligned(8))); + +__bpf_kfunc_start_defs(); + +__bpf_kfunc int bpf_iter_css_task_new(struct bpf_iter_css_task *it, + struct cgroup_subsys_state *css, unsigned int flags) +{ + struct bpf_iter_css_task_kern *kit = (void *)it; + + BUILD_BUG_ON(sizeof(struct bpf_iter_css_task_kern) != sizeof(struct bpf_iter_css_task)); + BUILD_BUG_ON(__alignof__(struct bpf_iter_css_task_kern) != + __alignof__(struct bpf_iter_css_task)); + kit->css_it = NULL; + switch (flags) { + case CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED: + case CSS_TASK_ITER_PROCS: + case 0: + break; + default: + return -EINVAL; + } + + kit->css_it = bpf_mem_alloc(&bpf_global_ma, sizeof(struct css_task_iter)); + if (!kit->css_it) + return -ENOMEM; + css_task_iter_start(css, flags, kit->css_it); + return 0; +} + +__bpf_kfunc struct task_struct *bpf_iter_css_task_next(struct bpf_iter_css_task *it) +{ + struct bpf_iter_css_task_kern *kit = (void *)it; + + if (!kit->css_it) + return NULL; + return css_task_iter_next(kit->css_it); +} + +__bpf_kfunc void bpf_iter_css_task_destroy(struct bpf_iter_css_task *it) +{ + struct bpf_iter_css_task_kern *kit = (void *)it; + + if (!kit->css_it) + return; + css_task_iter_end(kit->css_it); + bpf_mem_free(&bpf_global_ma, kit->css_it); +} + +__bpf_kfunc_end_defs(); + +#endif /* CONFIG_CGROUPS */ + +struct bpf_iter_task { + __u64 __opaque[3]; +} __attribute__((aligned(8))); + +struct bpf_iter_task_kern { + struct task_struct *task; + struct task_struct *pos; + unsigned int flags; +} __attribute__((aligned(8))); + +enum { + /* all process in the system */ + BPF_TASK_ITER_ALL_PROCS, + /* all threads in the system */ + BPF_TASK_ITER_ALL_THREADS, + /* all threads of a specific process */ + BPF_TASK_ITER_PROC_THREADS +}; + +__bpf_kfunc_start_defs(); + +__bpf_kfunc int bpf_iter_task_new(struct bpf_iter_task *it, + struct task_struct *task__nullable, unsigned int flags) +{ + struct bpf_iter_task_kern *kit = (void *)it; + + BUILD_BUG_ON(sizeof(struct bpf_iter_task_kern) > sizeof(struct bpf_iter_task)); + BUILD_BUG_ON(__alignof__(struct bpf_iter_task_kern) != + __alignof__(struct bpf_iter_task)); + + kit->pos = NULL; + + switch (flags) { + case BPF_TASK_ITER_ALL_THREADS: + case BPF_TASK_ITER_ALL_PROCS: + break; + case BPF_TASK_ITER_PROC_THREADS: + if (!task__nullable) + return -EINVAL; + break; + default: + return -EINVAL; + } + + if (flags == BPF_TASK_ITER_PROC_THREADS) + kit->task = task__nullable; + else + kit->task = &init_task; + kit->pos = kit->task; + kit->flags = flags; + return 0; +} + +__bpf_kfunc struct task_struct *bpf_iter_task_next(struct bpf_iter_task *it) +{ + struct bpf_iter_task_kern *kit = (void *)it; + struct task_struct *pos; + unsigned int flags; + + flags = kit->flags; + pos = kit->pos; + + if (!pos) + return pos; + + if (flags == BPF_TASK_ITER_ALL_PROCS) + goto get_next_task; + + kit->pos = __next_thread(kit->pos); + if (kit->pos || flags == BPF_TASK_ITER_PROC_THREADS) + return pos; + +get_next_task: + kit->task = next_task(kit->task); + if (kit->task == &init_task) + kit->pos = NULL; + else + kit->pos = kit->task; + + return pos; +} + +__bpf_kfunc void bpf_iter_task_destroy(struct bpf_iter_task *it) +{ +} + +__bpf_kfunc_end_defs(); + +DEFINE_PER_CPU(struct mmap_unlock_irq_work, mmap_unlock_work); + +static void do_mmap_read_unlock(struct irq_work *entry) +{ + struct mmap_unlock_irq_work *work; + + if (WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_RT))) + return; + + work = container_of(entry, struct mmap_unlock_irq_work, irq_work); + mmap_read_unlock_non_owner(work->mm); +} + +static int __init task_iter_init(void) +{ + struct mmap_unlock_irq_work *work; + int ret, cpu; + + for_each_possible_cpu(cpu) { + work = per_cpu_ptr(&mmap_unlock_work, cpu); + init_irq_work(&work->irq_work, do_mmap_read_unlock); + } + + task_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK]; + ret = bpf_iter_reg_target(&task_reg_info); + if (ret) + return ret; + + task_file_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK]; + task_file_reg_info.ctx_arg_info[1].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_FILE]; + ret = bpf_iter_reg_target(&task_file_reg_info); + if (ret) + return ret; + + task_vma_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK]; + task_vma_reg_info.ctx_arg_info[1].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; + return bpf_iter_reg_target(&task_vma_reg_info); +} +late_initcall(task_iter_init); diff --git a/kernel/bpf/tcx.c b/kernel/bpf/tcx.c new file mode 100644 index 000000000000..efd987ea6872 --- /dev/null +++ b/kernel/bpf/tcx.c @@ -0,0 +1,346 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (c) 2023 Isovalent */ + +#include <linux/bpf.h> +#include <linux/bpf_mprog.h> +#include <linux/netdevice.h> + +#include <net/tcx.h> + +int tcx_prog_attach(const union bpf_attr *attr, struct bpf_prog *prog) +{ + bool created, ingress = attr->attach_type == BPF_TCX_INGRESS; + struct net *net = current->nsproxy->net_ns; + struct bpf_mprog_entry *entry, *entry_new; + struct bpf_prog *replace_prog = NULL; + struct net_device *dev; + int ret; + + rtnl_lock(); + dev = __dev_get_by_index(net, attr->target_ifindex); + if (!dev) { + ret = -ENODEV; + goto out; + } + if (attr->attach_flags & BPF_F_REPLACE) { + replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, + prog->type); + if (IS_ERR(replace_prog)) { + ret = PTR_ERR(replace_prog); + replace_prog = NULL; + goto out; + } + } + entry = tcx_entry_fetch_or_create(dev, ingress, &created); + if (!entry) { + ret = -ENOMEM; + goto out; + } + ret = bpf_mprog_attach(entry, &entry_new, prog, NULL, replace_prog, + attr->attach_flags, attr->relative_fd, + attr->expected_revision); + if (!ret) { + if (entry != entry_new) { + tcx_entry_update(dev, entry_new, ingress); + tcx_entry_sync(); + tcx_skeys_inc(ingress); + } + bpf_mprog_commit(entry); + } else if (created) { + tcx_entry_free(entry); + } +out: + if (replace_prog) + bpf_prog_put(replace_prog); + rtnl_unlock(); + return ret; +} + +int tcx_prog_detach(const union bpf_attr *attr, struct bpf_prog *prog) +{ + bool ingress = attr->attach_type == BPF_TCX_INGRESS; + struct net *net = current->nsproxy->net_ns; + struct bpf_mprog_entry *entry, *entry_new; + struct net_device *dev; + int ret; + + rtnl_lock(); + dev = __dev_get_by_index(net, attr->target_ifindex); + if (!dev) { + ret = -ENODEV; + goto out; + } + entry = tcx_entry_fetch(dev, ingress); + if (!entry) { + ret = -ENOENT; + goto out; + } + ret = bpf_mprog_detach(entry, &entry_new, prog, NULL, attr->attach_flags, + attr->relative_fd, attr->expected_revision); + if (!ret) { + if (!tcx_entry_is_active(entry_new)) + entry_new = NULL; + tcx_entry_update(dev, entry_new, ingress); + tcx_entry_sync(); + tcx_skeys_dec(ingress); + bpf_mprog_commit(entry); + if (!entry_new) + tcx_entry_free(entry); + } +out: + rtnl_unlock(); + return ret; +} + +void tcx_uninstall(struct net_device *dev, bool ingress) +{ + struct bpf_mprog_entry *entry, *entry_new = NULL; + struct bpf_tuple tuple = {}; + struct bpf_mprog_fp *fp; + struct bpf_mprog_cp *cp; + bool active; + + entry = tcx_entry_fetch(dev, ingress); + if (!entry) + return; + active = tcx_entry(entry)->miniq_active; + if (active) + bpf_mprog_clear_all(entry, &entry_new); + tcx_entry_update(dev, entry_new, ingress); + tcx_entry_sync(); + bpf_mprog_foreach_tuple(entry, fp, cp, tuple) { + if (tuple.link) + tcx_link(tuple.link)->dev = NULL; + else + bpf_prog_put(tuple.prog); + tcx_skeys_dec(ingress); + } + if (!active) + tcx_entry_free(entry); +} + +int tcx_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr) +{ + bool ingress = attr->query.attach_type == BPF_TCX_INGRESS; + struct net *net = current->nsproxy->net_ns; + struct net_device *dev; + int ret; + + rtnl_lock(); + dev = __dev_get_by_index(net, attr->query.target_ifindex); + if (!dev) { + ret = -ENODEV; + goto out; + } + ret = bpf_mprog_query(attr, uattr, tcx_entry_fetch(dev, ingress)); +out: + rtnl_unlock(); + return ret; +} + +static int tcx_link_prog_attach(struct bpf_link *link, u32 flags, u32 id_or_fd, + u64 revision) +{ + struct tcx_link *tcx = tcx_link(link); + bool created, ingress = link->attach_type == BPF_TCX_INGRESS; + struct bpf_mprog_entry *entry, *entry_new; + struct net_device *dev = tcx->dev; + int ret; + + ASSERT_RTNL(); + entry = tcx_entry_fetch_or_create(dev, ingress, &created); + if (!entry) + return -ENOMEM; + ret = bpf_mprog_attach(entry, &entry_new, link->prog, link, NULL, flags, + id_or_fd, revision); + if (!ret) { + if (entry != entry_new) { + tcx_entry_update(dev, entry_new, ingress); + tcx_entry_sync(); + tcx_skeys_inc(ingress); + } + bpf_mprog_commit(entry); + } else if (created) { + tcx_entry_free(entry); + } + return ret; +} + +static void tcx_link_release(struct bpf_link *link) +{ + struct tcx_link *tcx = tcx_link(link); + bool ingress = link->attach_type == BPF_TCX_INGRESS; + struct bpf_mprog_entry *entry, *entry_new; + struct net_device *dev; + int ret = 0; + + rtnl_lock(); + dev = tcx->dev; + if (!dev) + goto out; + entry = tcx_entry_fetch(dev, ingress); + if (!entry) { + ret = -ENOENT; + goto out; + } + ret = bpf_mprog_detach(entry, &entry_new, link->prog, link, 0, 0, 0); + if (!ret) { + if (!tcx_entry_is_active(entry_new)) + entry_new = NULL; + tcx_entry_update(dev, entry_new, ingress); + tcx_entry_sync(); + tcx_skeys_dec(ingress); + bpf_mprog_commit(entry); + if (!entry_new) + tcx_entry_free(entry); + tcx->dev = NULL; + } +out: + WARN_ON_ONCE(ret); + rtnl_unlock(); +} + +static int tcx_link_update(struct bpf_link *link, struct bpf_prog *nprog, + struct bpf_prog *oprog) +{ + struct tcx_link *tcx = tcx_link(link); + bool ingress = link->attach_type == BPF_TCX_INGRESS; + struct bpf_mprog_entry *entry, *entry_new; + struct net_device *dev; + int ret = 0; + + rtnl_lock(); + dev = tcx->dev; + if (!dev) { + ret = -ENOLINK; + goto out; + } + if (oprog && link->prog != oprog) { + ret = -EPERM; + goto out; + } + oprog = link->prog; + if (oprog == nprog) { + bpf_prog_put(nprog); + goto out; + } + entry = tcx_entry_fetch(dev, ingress); + if (!entry) { + ret = -ENOENT; + goto out; + } + ret = bpf_mprog_attach(entry, &entry_new, nprog, link, oprog, + BPF_F_REPLACE | BPF_F_ID, + link->prog->aux->id, 0); + if (!ret) { + WARN_ON_ONCE(entry != entry_new); + oprog = xchg(&link->prog, nprog); + bpf_prog_put(oprog); + bpf_mprog_commit(entry); + } +out: + rtnl_unlock(); + return ret; +} + +static void tcx_link_dealloc(struct bpf_link *link) +{ + kfree(tcx_link(link)); +} + +static void tcx_link_fdinfo(const struct bpf_link *link, struct seq_file *seq) +{ + const struct tcx_link *tcx = tcx_link(link); + u32 ifindex = 0; + + rtnl_lock(); + if (tcx->dev) + ifindex = tcx->dev->ifindex; + rtnl_unlock(); + + seq_printf(seq, "ifindex:\t%u\n", ifindex); + seq_printf(seq, "attach_type:\t%u (%s)\n", + link->attach_type, + link->attach_type == BPF_TCX_INGRESS ? "ingress" : "egress"); +} + +static int tcx_link_fill_info(const struct bpf_link *link, + struct bpf_link_info *info) +{ + const struct tcx_link *tcx = tcx_link(link); + u32 ifindex = 0; + + rtnl_lock(); + if (tcx->dev) + ifindex = tcx->dev->ifindex; + rtnl_unlock(); + + info->tcx.ifindex = ifindex; + info->tcx.attach_type = link->attach_type; + return 0; +} + +static int tcx_link_detach(struct bpf_link *link) +{ + tcx_link_release(link); + return 0; +} + +static const struct bpf_link_ops tcx_link_lops = { + .release = tcx_link_release, + .detach = tcx_link_detach, + .dealloc = tcx_link_dealloc, + .update_prog = tcx_link_update, + .show_fdinfo = tcx_link_fdinfo, + .fill_link_info = tcx_link_fill_info, +}; + +static int tcx_link_init(struct tcx_link *tcx, + struct bpf_link_primer *link_primer, + const union bpf_attr *attr, + struct net_device *dev, + struct bpf_prog *prog) +{ + bpf_link_init(&tcx->link, BPF_LINK_TYPE_TCX, &tcx_link_lops, prog, + attr->link_create.attach_type); + tcx->dev = dev; + return bpf_link_prime(&tcx->link, link_primer); +} + +int tcx_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) +{ + struct net *net = current->nsproxy->net_ns; + struct bpf_link_primer link_primer; + struct net_device *dev; + struct tcx_link *tcx; + int ret; + + rtnl_lock(); + dev = __dev_get_by_index(net, attr->link_create.target_ifindex); + if (!dev) { + ret = -ENODEV; + goto out; + } + tcx = kzalloc(sizeof(*tcx), GFP_USER); + if (!tcx) { + ret = -ENOMEM; + goto out; + } + ret = tcx_link_init(tcx, &link_primer, attr, dev, prog); + if (ret) { + kfree(tcx); + goto out; + } + ret = tcx_link_prog_attach(&tcx->link, attr->link_create.flags, + attr->link_create.tcx.relative_fd, + attr->link_create.tcx.expected_revision); + if (ret) { + tcx->dev = NULL; + bpf_link_cleanup(&link_primer); + goto out; + } + ret = bpf_link_settle(&link_primer); +out: + rtnl_unlock(); + return ret; +} diff --git a/kernel/bpf/tnum.c b/kernel/bpf/tnum.c new file mode 100644 index 000000000000..f8e70e9c3998 --- /dev/null +++ b/kernel/bpf/tnum.c @@ -0,0 +1,255 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* tnum: tracked (or tristate) numbers + * + * A tnum tracks knowledge about the bits of a value. Each bit can be either + * known (0 or 1), or unknown (x). Arithmetic operations on tnums will + * propagate the unknown bits such that the tnum result represents all the + * possible results for possible values of the operands. + */ +#include <linux/kernel.h> +#include <linux/tnum.h> + +#define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m} +/* A completely unknown value */ +const struct tnum tnum_unknown = { .value = 0, .mask = -1 }; + +struct tnum tnum_const(u64 value) +{ + return TNUM(value, 0); +} + +struct tnum tnum_range(u64 min, u64 max) +{ + u64 chi = min ^ max, delta; + u8 bits = fls64(chi); + + /* special case, needed because 1ULL << 64 is undefined */ + if (bits > 63) + return tnum_unknown; + /* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7. + * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return + * constant min (since min == max). + */ + delta = (1ULL << bits) - 1; + return TNUM(min & ~delta, delta); +} + +struct tnum tnum_lshift(struct tnum a, u8 shift) +{ + return TNUM(a.value << shift, a.mask << shift); +} + +struct tnum tnum_rshift(struct tnum a, u8 shift) +{ + return TNUM(a.value >> shift, a.mask >> shift); +} + +struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness) +{ + /* if a.value is negative, arithmetic shifting by minimum shift + * will have larger negative offset compared to more shifting. + * If a.value is nonnegative, arithmetic shifting by minimum shift + * will have larger positive offset compare to more shifting. + */ + if (insn_bitness == 32) + return TNUM((u32)(((s32)a.value) >> min_shift), + (u32)(((s32)a.mask) >> min_shift)); + else + return TNUM((s64)a.value >> min_shift, + (s64)a.mask >> min_shift); +} + +struct tnum tnum_add(struct tnum a, struct tnum b) +{ + u64 sm, sv, sigma, chi, mu; + + sm = a.mask + b.mask; + sv = a.value + b.value; + sigma = sm + sv; + chi = sigma ^ sv; + mu = chi | a.mask | b.mask; + return TNUM(sv & ~mu, mu); +} + +struct tnum tnum_sub(struct tnum a, struct tnum b) +{ + u64 dv, alpha, beta, chi, mu; + + dv = a.value - b.value; + alpha = dv + a.mask; + beta = dv - b.mask; + chi = alpha ^ beta; + mu = chi | a.mask | b.mask; + return TNUM(dv & ~mu, mu); +} + +struct tnum tnum_neg(struct tnum a) +{ + return tnum_sub(TNUM(0, 0), a); +} + +struct tnum tnum_and(struct tnum a, struct tnum b) +{ + u64 alpha, beta, v; + + alpha = a.value | a.mask; + beta = b.value | b.mask; + v = a.value & b.value; + return TNUM(v, alpha & beta & ~v); +} + +struct tnum tnum_or(struct tnum a, struct tnum b) +{ + u64 v, mu; + + v = a.value | b.value; + mu = a.mask | b.mask; + return TNUM(v, mu & ~v); +} + +struct tnum tnum_xor(struct tnum a, struct tnum b) +{ + u64 v, mu; + + v = a.value ^ b.value; + mu = a.mask | b.mask; + return TNUM(v & ~mu, mu); +} + +/* Perform long multiplication, iterating through the bits in a using rshift: + * - if LSB(a) is a known 0, keep current accumulator + * - if LSB(a) is a known 1, add b to current accumulator + * - if LSB(a) is unknown, take a union of the above cases. + * + * For example: + * + * acc_0: acc_1: + * + * 11 * -> 11 * -> 11 * -> union(0011, 1001) == x0x1 + * x1 01 11 + * ------ ------ ------ + * 11 11 11 + * xx 00 11 + * ------ ------ ------ + * ???? 0011 1001 + */ +struct tnum tnum_mul(struct tnum a, struct tnum b) +{ + struct tnum acc = TNUM(0, 0); + + while (a.value || a.mask) { + /* LSB of tnum a is a certain 1 */ + if (a.value & 1) + acc = tnum_add(acc, b); + /* LSB of tnum a is uncertain */ + else if (a.mask & 1) { + /* acc = tnum_union(acc_0, acc_1), where acc_0 and + * acc_1 are partial accumulators for cases + * LSB(a) = certain 0 and LSB(a) = certain 1. + * acc_0 = acc + 0 * b = acc. + * acc_1 = acc + 1 * b = tnum_add(acc, b). + */ + + acc = tnum_union(acc, tnum_add(acc, b)); + } + /* Note: no case for LSB is certain 0 */ + a = tnum_rshift(a, 1); + b = tnum_lshift(b, 1); + } + return acc; +} + +bool tnum_overlap(struct tnum a, struct tnum b) +{ + u64 mu; + + mu = ~a.mask & ~b.mask; + return (a.value & mu) == (b.value & mu); +} + +/* Note that if a and b disagree - i.e. one has a 'known 1' where the other has + * a 'known 0' - this will return a 'known 1' for that bit. + */ +struct tnum tnum_intersect(struct tnum a, struct tnum b) +{ + u64 v, mu; + + v = a.value | b.value; + mu = a.mask & b.mask; + return TNUM(v & ~mu, mu); +} + +/* Returns a tnum with the uncertainty from both a and b, and in addition, new + * uncertainty at any position that a and b disagree. This represents a + * superset of the union of the concrete sets of both a and b. Despite the + * overapproximation, it is optimal. + */ +struct tnum tnum_union(struct tnum a, struct tnum b) +{ + u64 v = a.value & b.value; + u64 mu = (a.value ^ b.value) | a.mask | b.mask; + + return TNUM(v & ~mu, mu); +} + +struct tnum tnum_cast(struct tnum a, u8 size) +{ + a.value &= (1ULL << (size * 8)) - 1; + a.mask &= (1ULL << (size * 8)) - 1; + return a; +} + +bool tnum_is_aligned(struct tnum a, u64 size) +{ + if (!size) + return true; + return !((a.value | a.mask) & (size - 1)); +} + +bool tnum_in(struct tnum a, struct tnum b) +{ + if (b.mask & ~a.mask) + return false; + b.value &= ~a.mask; + return a.value == b.value; +} + +int tnum_sbin(char *str, size_t size, struct tnum a) +{ + size_t n; + + for (n = 64; n; n--) { + if (n < size) { + if (a.mask & 1) + str[n - 1] = 'x'; + else if (a.value & 1) + str[n - 1] = '1'; + else + str[n - 1] = '0'; + } + a.mask >>= 1; + a.value >>= 1; + } + str[min(size - 1, (size_t)64)] = 0; + return 64; +} + +struct tnum tnum_subreg(struct tnum a) +{ + return tnum_cast(a, 4); +} + +struct tnum tnum_clear_subreg(struct tnum a) +{ + return tnum_lshift(tnum_rshift(a, 32), 32); +} + +struct tnum tnum_with_subreg(struct tnum reg, struct tnum subreg) +{ + return tnum_or(tnum_clear_subreg(reg), tnum_subreg(subreg)); +} + +struct tnum tnum_const_subreg(struct tnum a, u32 value) +{ + return tnum_with_subreg(a, tnum_const(value)); +} diff --git a/kernel/bpf/token.c b/kernel/bpf/token.c new file mode 100644 index 000000000000..feecd8f4dbf9 --- /dev/null +++ b/kernel/bpf/token.c @@ -0,0 +1,261 @@ +#include <linux/bpf.h> +#include <linux/vmalloc.h> +#include <linux/file.h> +#include <linux/fs.h> +#include <linux/kernel.h> +#include <linux/idr.h> +#include <linux/namei.h> +#include <linux/user_namespace.h> +#include <linux/security.h> + +static bool bpf_ns_capable(struct user_namespace *ns, int cap) +{ + return ns_capable(ns, cap) || (cap != CAP_SYS_ADMIN && ns_capable(ns, CAP_SYS_ADMIN)); +} + +bool bpf_token_capable(const struct bpf_token *token, int cap) +{ + struct user_namespace *userns; + + /* BPF token allows ns_capable() level of capabilities */ + userns = token ? token->userns : &init_user_ns; + if (!bpf_ns_capable(userns, cap)) + return false; + if (token && security_bpf_token_capable(token, cap) < 0) + return false; + return true; +} + +void bpf_token_inc(struct bpf_token *token) +{ + atomic64_inc(&token->refcnt); +} + +static void bpf_token_free(struct bpf_token *token) +{ + security_bpf_token_free(token); + put_user_ns(token->userns); + kfree(token); +} + +static void bpf_token_put_deferred(struct work_struct *work) +{ + struct bpf_token *token = container_of(work, struct bpf_token, work); + + bpf_token_free(token); +} + +void bpf_token_put(struct bpf_token *token) +{ + if (!token) + return; + + if (!atomic64_dec_and_test(&token->refcnt)) + return; + + INIT_WORK(&token->work, bpf_token_put_deferred); + schedule_work(&token->work); +} + +static int bpf_token_release(struct inode *inode, struct file *filp) +{ + struct bpf_token *token = filp->private_data; + + bpf_token_put(token); + return 0; +} + +static void bpf_token_show_fdinfo(struct seq_file *m, struct file *filp) +{ + struct bpf_token *token = filp->private_data; + u64 mask; + + BUILD_BUG_ON(__MAX_BPF_CMD >= 64); + mask = BIT_ULL(__MAX_BPF_CMD) - 1; + if ((token->allowed_cmds & mask) == mask) + seq_printf(m, "allowed_cmds:\tany\n"); + else + seq_printf(m, "allowed_cmds:\t0x%llx\n", token->allowed_cmds); + + BUILD_BUG_ON(__MAX_BPF_MAP_TYPE >= 64); + mask = BIT_ULL(__MAX_BPF_MAP_TYPE) - 1; + if ((token->allowed_maps & mask) == mask) + seq_printf(m, "allowed_maps:\tany\n"); + else + seq_printf(m, "allowed_maps:\t0x%llx\n", token->allowed_maps); + + BUILD_BUG_ON(__MAX_BPF_PROG_TYPE >= 64); + mask = BIT_ULL(__MAX_BPF_PROG_TYPE) - 1; + if ((token->allowed_progs & mask) == mask) + seq_printf(m, "allowed_progs:\tany\n"); + else + seq_printf(m, "allowed_progs:\t0x%llx\n", token->allowed_progs); + + BUILD_BUG_ON(__MAX_BPF_ATTACH_TYPE >= 64); + mask = BIT_ULL(__MAX_BPF_ATTACH_TYPE) - 1; + if ((token->allowed_attachs & mask) == mask) + seq_printf(m, "allowed_attachs:\tany\n"); + else + seq_printf(m, "allowed_attachs:\t0x%llx\n", token->allowed_attachs); +} + +#define BPF_TOKEN_INODE_NAME "bpf-token" + +static const struct inode_operations bpf_token_iops = { }; + +const struct file_operations bpf_token_fops = { + .release = bpf_token_release, + .show_fdinfo = bpf_token_show_fdinfo, +}; + +int bpf_token_create(union bpf_attr *attr) +{ + struct bpf_token *token __free(kfree) = NULL; + struct bpf_mount_opts *mnt_opts; + struct user_namespace *userns; + struct inode *inode; + CLASS(fd, f)(attr->token_create.bpffs_fd); + struct path path; + struct super_block *sb; + umode_t mode; + int err; + + if (fd_empty(f)) + return -EBADF; + + path = fd_file(f)->f_path; + sb = path.dentry->d_sb; + + if (path.dentry != sb->s_root) + return -EINVAL; + if (sb->s_op != &bpf_super_ops) + return -EINVAL; + err = path_permission(&path, MAY_ACCESS); + if (err) + return err; + + userns = sb->s_user_ns; + /* + * Enforce that creators of BPF tokens are in the same user + * namespace as the BPF FS instance. This makes reasoning about + * permissions a lot easier and we can always relax this later. + */ + if (current_user_ns() != userns) + return -EPERM; + if (!ns_capable(userns, CAP_BPF)) + return -EPERM; + + /* Creating BPF token in init_user_ns doesn't make much sense. */ + if (current_user_ns() == &init_user_ns) + return -EOPNOTSUPP; + + mnt_opts = sb->s_fs_info; + if (mnt_opts->delegate_cmds == 0 && + mnt_opts->delegate_maps == 0 && + mnt_opts->delegate_progs == 0 && + mnt_opts->delegate_attachs == 0) + return -ENOENT; /* no BPF token delegation is set up */ + + mode = S_IFREG | ((S_IRUSR | S_IWUSR) & ~current_umask()); + inode = bpf_get_inode(sb, NULL, mode); + if (IS_ERR(inode)) + return PTR_ERR(inode); + + inode->i_op = &bpf_token_iops; + inode->i_fop = &bpf_token_fops; + clear_nlink(inode); /* make sure it is unlinked */ + + FD_PREPARE(fdf, O_CLOEXEC, + alloc_file_pseudo(inode, path.mnt, BPF_TOKEN_INODE_NAME, + O_RDWR, &bpf_token_fops)); + if (fdf.err) + return fdf.err; + + token = kzalloc(sizeof(*token), GFP_USER); + if (!token) + return -ENOMEM; + + atomic64_set(&token->refcnt, 1); + + /* remember bpffs owning userns for future ns_capable() checks. */ + token->userns = userns; + token->allowed_cmds = mnt_opts->delegate_cmds; + token->allowed_maps = mnt_opts->delegate_maps; + token->allowed_progs = mnt_opts->delegate_progs; + token->allowed_attachs = mnt_opts->delegate_attachs; + + err = security_bpf_token_create(token, attr, &path); + if (err) + return err; + + get_user_ns(token->userns); + fd_prepare_file(fdf)->private_data = no_free_ptr(token); + return fd_publish(fdf); +} + +int bpf_token_get_info_by_fd(struct bpf_token *token, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + struct bpf_token_info __user *uinfo = u64_to_user_ptr(attr->info.info); + struct bpf_token_info info; + u32 info_len = attr->info.info_len; + + info_len = min_t(u32, info_len, sizeof(info)); + memset(&info, 0, sizeof(info)); + + info.allowed_cmds = token->allowed_cmds; + info.allowed_maps = token->allowed_maps; + info.allowed_progs = token->allowed_progs; + info.allowed_attachs = token->allowed_attachs; + + if (copy_to_user(uinfo, &info, info_len) || + put_user(info_len, &uattr->info.info_len)) + return -EFAULT; + + return 0; +} + +struct bpf_token *bpf_token_get_from_fd(u32 ufd) +{ + CLASS(fd, f)(ufd); + struct bpf_token *token; + + if (fd_empty(f)) + return ERR_PTR(-EBADF); + if (fd_file(f)->f_op != &bpf_token_fops) + return ERR_PTR(-EINVAL); + + token = fd_file(f)->private_data; + bpf_token_inc(token); + + return token; +} + +bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd) +{ + if (!token) + return false; + if (!(token->allowed_cmds & BIT_ULL(cmd))) + return false; + return security_bpf_token_cmd(token, cmd) == 0; +} + +bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type) +{ + if (!token || type >= __MAX_BPF_MAP_TYPE) + return false; + + return token->allowed_maps & BIT_ULL(type); +} + +bool bpf_token_allow_prog_type(const struct bpf_token *token, + enum bpf_prog_type prog_type, + enum bpf_attach_type attach_type) +{ + if (!token || prog_type >= __MAX_BPF_PROG_TYPE || attach_type >= __MAX_BPF_ATTACH_TYPE) + return false; + + return (token->allowed_progs & BIT_ULL(prog_type)) && + (token->allowed_attachs & BIT_ULL(attach_type)); +} diff --git a/kernel/bpf/trampoline.c b/kernel/bpf/trampoline.c new file mode 100644 index 000000000000..976d89011b15 --- /dev/null +++ b/kernel/bpf/trampoline.c @@ -0,0 +1,1185 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2019 Facebook */ +#include <linux/hash.h> +#include <linux/bpf.h> +#include <linux/filter.h> +#include <linux/ftrace.h> +#include <linux/rbtree_latch.h> +#include <linux/perf_event.h> +#include <linux/btf.h> +#include <linux/rcupdate_trace.h> +#include <linux/rcupdate_wait.h> +#include <linux/static_call.h> +#include <linux/bpf_verifier.h> +#include <linux/bpf_lsm.h> +#include <linux/delay.h> + +/* dummy _ops. The verifier will operate on target program's ops. */ +const struct bpf_verifier_ops bpf_extension_verifier_ops = { +}; +const struct bpf_prog_ops bpf_extension_prog_ops = { +}; + +/* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */ +#define TRAMPOLINE_HASH_BITS 10 +#define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS) + +static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE]; + +/* serializes access to trampoline_table */ +static DEFINE_MUTEX(trampoline_mutex); + +#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS +static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex); + +static int bpf_tramp_ftrace_ops_func(struct ftrace_ops *ops, enum ftrace_ops_cmd cmd) +{ + struct bpf_trampoline *tr = ops->private; + int ret = 0; + + if (cmd == FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF) { + /* This is called inside register_ftrace_direct_multi(), so + * tr->mutex is already locked. + */ + lockdep_assert_held_once(&tr->mutex); + + /* Instead of updating the trampoline here, we propagate + * -EAGAIN to register_ftrace_direct(). Then we can + * retry register_ftrace_direct() after updating the + * trampoline. + */ + if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) && + !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) { + if (WARN_ON_ONCE(tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY)) + return -EBUSY; + + tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY; + return -EAGAIN; + } + + return 0; + } + + /* The normal locking order is + * tr->mutex => direct_mutex (ftrace.c) => ftrace_lock (ftrace.c) + * + * The following two commands are called from + * + * prepare_direct_functions_for_ipmodify + * cleanup_direct_functions_after_ipmodify + * + * In both cases, direct_mutex is already locked. Use + * mutex_trylock(&tr->mutex) to avoid deadlock in race condition + * (something else is making changes to this same trampoline). + */ + if (!mutex_trylock(&tr->mutex)) { + /* sleep 1 ms to make sure whatever holding tr->mutex makes + * some progress. + */ + msleep(1); + return -EAGAIN; + } + + switch (cmd) { + case FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER: + tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY; + + if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) && + !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) + ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */); + break; + case FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER: + tr->flags &= ~BPF_TRAMP_F_SHARE_IPMODIFY; + + if (tr->flags & BPF_TRAMP_F_ORIG_STACK) + ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */); + break; + default: + ret = -EINVAL; + break; + } + + mutex_unlock(&tr->mutex); + return ret; +} +#endif + +bool bpf_prog_has_trampoline(const struct bpf_prog *prog) +{ + enum bpf_attach_type eatype = prog->expected_attach_type; + enum bpf_prog_type ptype = prog->type; + + return (ptype == BPF_PROG_TYPE_TRACING && + (eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT || + eatype == BPF_MODIFY_RETURN)) || + (ptype == BPF_PROG_TYPE_LSM && eatype == BPF_LSM_MAC); +} + +void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym) +{ + ksym->start = (unsigned long) data; + ksym->end = ksym->start + size; +} + +void bpf_image_ksym_add(struct bpf_ksym *ksym) +{ + bpf_ksym_add(ksym); + perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start, + PAGE_SIZE, false, ksym->name); +} + +void bpf_image_ksym_del(struct bpf_ksym *ksym) +{ + bpf_ksym_del(ksym); + perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start, + PAGE_SIZE, true, ksym->name); +} + +static struct bpf_trampoline *bpf_trampoline_lookup(u64 key) +{ + struct bpf_trampoline *tr; + struct hlist_head *head; + int i; + + mutex_lock(&trampoline_mutex); + head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)]; + hlist_for_each_entry(tr, head, hlist) { + if (tr->key == key) { + refcount_inc(&tr->refcnt); + goto out; + } + } + tr = kzalloc(sizeof(*tr), GFP_KERNEL); + if (!tr) + goto out; +#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS + tr->fops = kzalloc(sizeof(struct ftrace_ops), GFP_KERNEL); + if (!tr->fops) { + kfree(tr); + tr = NULL; + goto out; + } + tr->fops->private = tr; + tr->fops->ops_func = bpf_tramp_ftrace_ops_func; +#endif + + tr->key = key; + INIT_HLIST_NODE(&tr->hlist); + hlist_add_head(&tr->hlist, head); + refcount_set(&tr->refcnt, 1); + mutex_init(&tr->mutex); + for (i = 0; i < BPF_TRAMP_MAX; i++) + INIT_HLIST_HEAD(&tr->progs_hlist[i]); +out: + mutex_unlock(&trampoline_mutex); + return tr; +} + +static int bpf_trampoline_update_fentry(struct bpf_trampoline *tr, u32 orig_flags, + void *old_addr, void *new_addr) +{ + enum bpf_text_poke_type new_t = BPF_MOD_CALL, old_t = BPF_MOD_CALL; + void *ip = tr->func.addr; + + if (!new_addr) + new_t = BPF_MOD_NOP; + else if (bpf_trampoline_use_jmp(tr->flags)) + new_t = BPF_MOD_JUMP; + + if (!old_addr) + old_t = BPF_MOD_NOP; + else if (bpf_trampoline_use_jmp(orig_flags)) + old_t = BPF_MOD_JUMP; + + return bpf_arch_text_poke(ip, old_t, new_t, old_addr, new_addr); +} + +static int unregister_fentry(struct bpf_trampoline *tr, u32 orig_flags, + void *old_addr) +{ + int ret; + + if (tr->func.ftrace_managed) + ret = unregister_ftrace_direct(tr->fops, (long)old_addr, false); + else + ret = bpf_trampoline_update_fentry(tr, orig_flags, old_addr, NULL); + + return ret; +} + +static int modify_fentry(struct bpf_trampoline *tr, u32 orig_flags, + void *old_addr, void *new_addr, + bool lock_direct_mutex) +{ + int ret; + + if (tr->func.ftrace_managed) { + if (lock_direct_mutex) + ret = modify_ftrace_direct(tr->fops, (long)new_addr); + else + ret = modify_ftrace_direct_nolock(tr->fops, (long)new_addr); + } else { + ret = bpf_trampoline_update_fentry(tr, orig_flags, old_addr, + new_addr); + } + return ret; +} + +/* first time registering */ +static int register_fentry(struct bpf_trampoline *tr, void *new_addr) +{ + void *ip = tr->func.addr; + unsigned long faddr; + int ret; + + faddr = ftrace_location((unsigned long)ip); + if (faddr) { + if (!tr->fops) + return -ENOTSUPP; + tr->func.ftrace_managed = true; + } + + if (tr->func.ftrace_managed) { + ret = ftrace_set_filter_ip(tr->fops, (unsigned long)ip, 0, 1); + if (ret) + return ret; + ret = register_ftrace_direct(tr->fops, (long)new_addr); + } else { + ret = bpf_trampoline_update_fentry(tr, 0, NULL, new_addr); + } + + return ret; +} + +static struct bpf_tramp_links * +bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg) +{ + struct bpf_tramp_link *link; + struct bpf_tramp_links *tlinks; + struct bpf_tramp_link **links; + int kind; + + *total = 0; + tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL); + if (!tlinks) + return ERR_PTR(-ENOMEM); + + for (kind = 0; kind < BPF_TRAMP_MAX; kind++) { + tlinks[kind].nr_links = tr->progs_cnt[kind]; + *total += tr->progs_cnt[kind]; + links = tlinks[kind].links; + + hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) { + *ip_arg |= link->link.prog->call_get_func_ip; + *links++ = link; + } + } + return tlinks; +} + +static void bpf_tramp_image_free(struct bpf_tramp_image *im) +{ + bpf_image_ksym_del(&im->ksym); + arch_free_bpf_trampoline(im->image, im->size); + bpf_jit_uncharge_modmem(im->size); + percpu_ref_exit(&im->pcref); + kfree_rcu(im, rcu); +} + +static void __bpf_tramp_image_put_deferred(struct work_struct *work) +{ + struct bpf_tramp_image *im; + + im = container_of(work, struct bpf_tramp_image, work); + bpf_tramp_image_free(im); +} + +/* callback, fexit step 3 or fentry step 2 */ +static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu) +{ + struct bpf_tramp_image *im; + + im = container_of(rcu, struct bpf_tramp_image, rcu); + INIT_WORK(&im->work, __bpf_tramp_image_put_deferred); + schedule_work(&im->work); +} + +/* callback, fexit step 2. Called after percpu_ref_kill confirms. */ +static void __bpf_tramp_image_release(struct percpu_ref *pcref) +{ + struct bpf_tramp_image *im; + + im = container_of(pcref, struct bpf_tramp_image, pcref); + call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu); +} + +/* callback, fexit or fentry step 1 */ +static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu) +{ + struct bpf_tramp_image *im; + + im = container_of(rcu, struct bpf_tramp_image, rcu); + if (im->ip_after_call) + /* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */ + percpu_ref_kill(&im->pcref); + else + /* the case of fentry trampoline */ + call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu); +} + +static void bpf_tramp_image_put(struct bpf_tramp_image *im) +{ + /* The trampoline image that calls original function is using: + * rcu_read_lock_trace to protect sleepable bpf progs + * rcu_read_lock to protect normal bpf progs + * percpu_ref to protect trampoline itself + * rcu tasks to protect trampoline asm not covered by percpu_ref + * (which are few asm insns before __bpf_tramp_enter and + * after __bpf_tramp_exit) + * + * The trampoline is unreachable before bpf_tramp_image_put(). + * + * First, patch the trampoline to avoid calling into fexit progs. + * The progs will be freed even if the original function is still + * executing or sleeping. + * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on + * first few asm instructions to execute and call into + * __bpf_tramp_enter->percpu_ref_get. + * Then use percpu_ref_kill to wait for the trampoline and the original + * function to finish. + * Then use call_rcu_tasks() to make sure few asm insns in + * the trampoline epilogue are done as well. + * + * In !PREEMPT case the task that got interrupted in the first asm + * insns won't go through an RCU quiescent state which the + * percpu_ref_kill will be waiting for. Hence the first + * call_rcu_tasks() is not necessary. + */ + if (im->ip_after_call) { + int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_NOP, + BPF_MOD_JUMP, NULL, + im->ip_epilogue); + WARN_ON(err); + if (IS_ENABLED(CONFIG_TASKS_RCU)) + call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks); + else + percpu_ref_kill(&im->pcref); + return; + } + + /* The trampoline without fexit and fmod_ret progs doesn't call original + * function and doesn't use percpu_ref. + * Use call_rcu_tasks_trace() to wait for sleepable progs to finish. + * Then use call_rcu_tasks() to wait for the rest of trampoline asm + * and normal progs. + */ + call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks); +} + +static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, int size) +{ + struct bpf_tramp_image *im; + struct bpf_ksym *ksym; + void *image; + int err = -ENOMEM; + + im = kzalloc(sizeof(*im), GFP_KERNEL); + if (!im) + goto out; + + err = bpf_jit_charge_modmem(size); + if (err) + goto out_free_im; + im->size = size; + + err = -ENOMEM; + im->image = image = arch_alloc_bpf_trampoline(size); + if (!image) + goto out_uncharge; + + err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL); + if (err) + goto out_free_image; + + ksym = &im->ksym; + INIT_LIST_HEAD_RCU(&ksym->lnode); + snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu", key); + bpf_image_ksym_init(image, size, ksym); + bpf_image_ksym_add(ksym); + return im; + +out_free_image: + arch_free_bpf_trampoline(im->image, im->size); +out_uncharge: + bpf_jit_uncharge_modmem(size); +out_free_im: + kfree(im); +out: + return ERR_PTR(err); +} + +static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex) +{ + struct bpf_tramp_image *im; + struct bpf_tramp_links *tlinks; + u32 orig_flags = tr->flags; + bool ip_arg = false; + int err, total, size; + + tlinks = bpf_trampoline_get_progs(tr, &total, &ip_arg); + if (IS_ERR(tlinks)) + return PTR_ERR(tlinks); + + if (total == 0) { + err = unregister_fentry(tr, orig_flags, tr->cur_image->image); + bpf_tramp_image_put(tr->cur_image); + tr->cur_image = NULL; + goto out; + } + + /* clear all bits except SHARE_IPMODIFY and TAIL_CALL_CTX */ + tr->flags &= (BPF_TRAMP_F_SHARE_IPMODIFY | BPF_TRAMP_F_TAIL_CALL_CTX); + + if (tlinks[BPF_TRAMP_FEXIT].nr_links || + tlinks[BPF_TRAMP_MODIFY_RETURN].nr_links) { + /* NOTE: BPF_TRAMP_F_RESTORE_REGS and BPF_TRAMP_F_SKIP_FRAME + * should not be set together. + */ + tr->flags |= BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME; + } else { + tr->flags |= BPF_TRAMP_F_RESTORE_REGS; + } + + if (ip_arg) + tr->flags |= BPF_TRAMP_F_IP_ARG; + +#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS +again: + if (tr->flags & BPF_TRAMP_F_CALL_ORIG) { + if (tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY) { + /* The BPF_TRAMP_F_SKIP_FRAME can be cleared in the + * first try, reset it in the second try. + */ + tr->flags |= BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SKIP_FRAME; + } else if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_JMP)) { + /* Use "jmp" instead of "call" for the trampoline + * in the origin call case, and we don't need to + * skip the frame. + */ + tr->flags &= ~BPF_TRAMP_F_SKIP_FRAME; + } + } +#endif + + size = arch_bpf_trampoline_size(&tr->func.model, tr->flags, + tlinks, tr->func.addr); + if (size < 0) { + err = size; + goto out; + } + + if (size > PAGE_SIZE) { + err = -E2BIG; + goto out; + } + + im = bpf_tramp_image_alloc(tr->key, size); + if (IS_ERR(im)) { + err = PTR_ERR(im); + goto out; + } + + err = arch_prepare_bpf_trampoline(im, im->image, im->image + size, + &tr->func.model, tr->flags, tlinks, + tr->func.addr); + if (err < 0) + goto out_free; + + err = arch_protect_bpf_trampoline(im->image, im->size); + if (err) + goto out_free; + +#ifdef CONFIG_DYNAMIC_FTRACE_WITH_JMP + if (bpf_trampoline_use_jmp(tr->flags)) + tr->fops->flags |= FTRACE_OPS_FL_JMP; + else + tr->fops->flags &= ~FTRACE_OPS_FL_JMP; +#endif + + WARN_ON(tr->cur_image && total == 0); + if (tr->cur_image) + /* progs already running at this address */ + err = modify_fentry(tr, orig_flags, tr->cur_image->image, + im->image, lock_direct_mutex); + else + /* first time registering */ + err = register_fentry(tr, im->image); + +#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS + if (err == -EAGAIN) { + /* -EAGAIN from bpf_tramp_ftrace_ops_func. Now + * BPF_TRAMP_F_SHARE_IPMODIFY is set, we can generate the + * trampoline again, and retry register. + */ + bpf_tramp_image_free(im); + goto again; + } +#endif + if (err) + goto out_free; + + if (tr->cur_image) + bpf_tramp_image_put(tr->cur_image); + tr->cur_image = im; +out: + /* If any error happens, restore previous flags */ + if (err) { + tr->flags = orig_flags; +#ifdef CONFIG_DYNAMIC_FTRACE_WITH_JMP + if (bpf_trampoline_use_jmp(tr->flags)) + tr->fops->flags |= FTRACE_OPS_FL_JMP; + else + tr->fops->flags &= ~FTRACE_OPS_FL_JMP; +#endif + } + kfree(tlinks); + return err; + +out_free: + bpf_tramp_image_free(im); + goto out; +} + +static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog) +{ + switch (prog->expected_attach_type) { + case BPF_TRACE_FENTRY: + return BPF_TRAMP_FENTRY; + case BPF_MODIFY_RETURN: + return BPF_TRAMP_MODIFY_RETURN; + case BPF_TRACE_FEXIT: + return BPF_TRAMP_FEXIT; + case BPF_LSM_MAC: + if (!prog->aux->attach_func_proto->type) + /* The function returns void, we cannot modify its + * return value. + */ + return BPF_TRAMP_FEXIT; + else + return BPF_TRAMP_MODIFY_RETURN; + default: + return BPF_TRAMP_REPLACE; + } +} + +static int bpf_freplace_check_tgt_prog(struct bpf_prog *tgt_prog) +{ + struct bpf_prog_aux *aux = tgt_prog->aux; + + guard(mutex)(&aux->ext_mutex); + if (aux->prog_array_member_cnt) + /* Program extensions can not extend target prog when the target + * prog has been updated to any prog_array map as tail callee. + * It's to prevent a potential infinite loop like: + * tgt prog entry -> tgt prog subprog -> freplace prog entry + * --tailcall-> tgt prog entry. + */ + return -EBUSY; + + aux->is_extended = true; + return 0; +} + +static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, + struct bpf_trampoline *tr, + struct bpf_prog *tgt_prog) +{ + enum bpf_tramp_prog_type kind; + struct bpf_tramp_link *link_exiting; + int err = 0; + int cnt = 0, i; + + kind = bpf_attach_type_to_tramp(link->link.prog); + if (tr->extension_prog) + /* cannot attach fentry/fexit if extension prog is attached. + * cannot overwrite extension prog either. + */ + return -EBUSY; + + for (i = 0; i < BPF_TRAMP_MAX; i++) + cnt += tr->progs_cnt[i]; + + if (kind == BPF_TRAMP_REPLACE) { + /* Cannot attach extension if fentry/fexit are in use. */ + if (cnt) + return -EBUSY; + err = bpf_freplace_check_tgt_prog(tgt_prog); + if (err) + return err; + tr->extension_prog = link->link.prog; + return bpf_arch_text_poke(tr->func.addr, BPF_MOD_NOP, + BPF_MOD_JUMP, NULL, + link->link.prog->bpf_func); + } + if (cnt >= BPF_MAX_TRAMP_LINKS) + return -E2BIG; + if (!hlist_unhashed(&link->tramp_hlist)) + /* prog already linked */ + return -EBUSY; + hlist_for_each_entry(link_exiting, &tr->progs_hlist[kind], tramp_hlist) { + if (link_exiting->link.prog != link->link.prog) + continue; + /* prog already linked */ + return -EBUSY; + } + + hlist_add_head(&link->tramp_hlist, &tr->progs_hlist[kind]); + tr->progs_cnt[kind]++; + err = bpf_trampoline_update(tr, true /* lock_direct_mutex */); + if (err) { + hlist_del_init(&link->tramp_hlist); + tr->progs_cnt[kind]--; + } + return err; +} + +int bpf_trampoline_link_prog(struct bpf_tramp_link *link, + struct bpf_trampoline *tr, + struct bpf_prog *tgt_prog) +{ + int err; + + mutex_lock(&tr->mutex); + err = __bpf_trampoline_link_prog(link, tr, tgt_prog); + mutex_unlock(&tr->mutex); + return err; +} + +static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, + struct bpf_trampoline *tr, + struct bpf_prog *tgt_prog) +{ + enum bpf_tramp_prog_type kind; + int err; + + kind = bpf_attach_type_to_tramp(link->link.prog); + if (kind == BPF_TRAMP_REPLACE) { + WARN_ON_ONCE(!tr->extension_prog); + err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, + BPF_MOD_NOP, + tr->extension_prog->bpf_func, NULL); + tr->extension_prog = NULL; + guard(mutex)(&tgt_prog->aux->ext_mutex); + tgt_prog->aux->is_extended = false; + return err; + } + hlist_del_init(&link->tramp_hlist); + tr->progs_cnt[kind]--; + return bpf_trampoline_update(tr, true /* lock_direct_mutex */); +} + +/* bpf_trampoline_unlink_prog() should never fail. */ +int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, + struct bpf_trampoline *tr, + struct bpf_prog *tgt_prog) +{ + int err; + + mutex_lock(&tr->mutex); + err = __bpf_trampoline_unlink_prog(link, tr, tgt_prog); + mutex_unlock(&tr->mutex); + return err; +} + +#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) +static void bpf_shim_tramp_link_release(struct bpf_link *link) +{ + struct bpf_shim_tramp_link *shim_link = + container_of(link, struct bpf_shim_tramp_link, link.link); + + /* paired with 'shim_link->trampoline = tr' in bpf_trampoline_link_cgroup_shim */ + if (!shim_link->trampoline) + return; + + WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline, NULL)); + bpf_trampoline_put(shim_link->trampoline); +} + +static void bpf_shim_tramp_link_dealloc(struct bpf_link *link) +{ + struct bpf_shim_tramp_link *shim_link = + container_of(link, struct bpf_shim_tramp_link, link.link); + + kfree(shim_link); +} + +static const struct bpf_link_ops bpf_shim_tramp_link_lops = { + .release = bpf_shim_tramp_link_release, + .dealloc = bpf_shim_tramp_link_dealloc, +}; + +static struct bpf_shim_tramp_link *cgroup_shim_alloc(const struct bpf_prog *prog, + bpf_func_t bpf_func, + int cgroup_atype, + enum bpf_attach_type attach_type) +{ + struct bpf_shim_tramp_link *shim_link = NULL; + struct bpf_prog *p; + + shim_link = kzalloc(sizeof(*shim_link), GFP_USER); + if (!shim_link) + return NULL; + + p = bpf_prog_alloc(1, 0); + if (!p) { + kfree(shim_link); + return NULL; + } + + p->jited = false; + p->bpf_func = bpf_func; + + p->aux->cgroup_atype = cgroup_atype; + p->aux->attach_func_proto = prog->aux->attach_func_proto; + p->aux->attach_btf_id = prog->aux->attach_btf_id; + p->aux->attach_btf = prog->aux->attach_btf; + btf_get(p->aux->attach_btf); + p->type = BPF_PROG_TYPE_LSM; + p->expected_attach_type = BPF_LSM_MAC; + bpf_prog_inc(p); + bpf_link_init(&shim_link->link.link, BPF_LINK_TYPE_UNSPEC, + &bpf_shim_tramp_link_lops, p, attach_type); + bpf_cgroup_atype_get(p->aux->attach_btf_id, cgroup_atype); + + return shim_link; +} + +static struct bpf_shim_tramp_link *cgroup_shim_find(struct bpf_trampoline *tr, + bpf_func_t bpf_func) +{ + struct bpf_tramp_link *link; + int kind; + + for (kind = 0; kind < BPF_TRAMP_MAX; kind++) { + hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) { + struct bpf_prog *p = link->link.prog; + + if (p->bpf_func == bpf_func) + return container_of(link, struct bpf_shim_tramp_link, link); + } + } + + return NULL; +} + +int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, + int cgroup_atype, + enum bpf_attach_type attach_type) +{ + struct bpf_shim_tramp_link *shim_link = NULL; + struct bpf_attach_target_info tgt_info = {}; + struct bpf_trampoline *tr; + bpf_func_t bpf_func; + u64 key; + int err; + + err = bpf_check_attach_target(NULL, prog, NULL, + prog->aux->attach_btf_id, + &tgt_info); + if (err) + return err; + + key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, + prog->aux->attach_btf_id); + + bpf_lsm_find_cgroup_shim(prog, &bpf_func); + tr = bpf_trampoline_get(key, &tgt_info); + if (!tr) + return -ENOMEM; + + mutex_lock(&tr->mutex); + + shim_link = cgroup_shim_find(tr, bpf_func); + if (shim_link) { + /* Reusing existing shim attached by the other program. */ + bpf_link_inc(&shim_link->link.link); + + mutex_unlock(&tr->mutex); + bpf_trampoline_put(tr); /* bpf_trampoline_get above */ + return 0; + } + + /* Allocate and install new shim. */ + + shim_link = cgroup_shim_alloc(prog, bpf_func, cgroup_atype, attach_type); + if (!shim_link) { + err = -ENOMEM; + goto err; + } + + err = __bpf_trampoline_link_prog(&shim_link->link, tr, NULL); + if (err) + goto err; + + shim_link->trampoline = tr; + /* note, we're still holding tr refcnt from above */ + + mutex_unlock(&tr->mutex); + + return 0; +err: + mutex_unlock(&tr->mutex); + + if (shim_link) + bpf_link_put(&shim_link->link.link); + + /* have to release tr while _not_ holding its mutex */ + bpf_trampoline_put(tr); /* bpf_trampoline_get above */ + + return err; +} + +void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) +{ + struct bpf_shim_tramp_link *shim_link = NULL; + struct bpf_trampoline *tr; + bpf_func_t bpf_func; + u64 key; + + key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf, + prog->aux->attach_btf_id); + + bpf_lsm_find_cgroup_shim(prog, &bpf_func); + tr = bpf_trampoline_lookup(key); + if (WARN_ON_ONCE(!tr)) + return; + + mutex_lock(&tr->mutex); + shim_link = cgroup_shim_find(tr, bpf_func); + mutex_unlock(&tr->mutex); + + if (shim_link) + bpf_link_put(&shim_link->link.link); + + bpf_trampoline_put(tr); /* bpf_trampoline_lookup above */ +} +#endif + +struct bpf_trampoline *bpf_trampoline_get(u64 key, + struct bpf_attach_target_info *tgt_info) +{ + struct bpf_trampoline *tr; + + tr = bpf_trampoline_lookup(key); + if (!tr) + return NULL; + + mutex_lock(&tr->mutex); + if (tr->func.addr) + goto out; + + memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel)); + tr->func.addr = (void *)tgt_info->tgt_addr; +out: + mutex_unlock(&tr->mutex); + return tr; +} + +void bpf_trampoline_put(struct bpf_trampoline *tr) +{ + int i; + + if (!tr) + return; + mutex_lock(&trampoline_mutex); + if (!refcount_dec_and_test(&tr->refcnt)) + goto out; + WARN_ON_ONCE(mutex_is_locked(&tr->mutex)); + + for (i = 0; i < BPF_TRAMP_MAX; i++) + if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[i]))) + goto out; + + /* This code will be executed even when the last bpf_tramp_image + * is alive. All progs are detached from the trampoline and the + * trampoline image is patched with jmp into epilogue to skip + * fexit progs. The fentry-only trampoline will be freed via + * multiple rcu callbacks. + */ + hlist_del(&tr->hlist); + if (tr->fops) { + ftrace_free_filter(tr->fops); + kfree(tr->fops); + } + kfree(tr); +out: + mutex_unlock(&trampoline_mutex); +} + +#define NO_START_TIME 1 +static __always_inline u64 notrace bpf_prog_start_time(void) +{ + u64 start = NO_START_TIME; + + if (static_branch_unlikely(&bpf_stats_enabled_key)) { + start = sched_clock(); + if (unlikely(!start)) + start = NO_START_TIME; + } + return start; +} + +/* The logic is similar to bpf_prog_run(), but with an explicit + * rcu_read_lock() and migrate_disable() which are required + * for the trampoline. The macro is split into + * call __bpf_prog_enter + * call prog->bpf_func + * call __bpf_prog_exit + * + * __bpf_prog_enter returns: + * 0 - skip execution of the bpf prog + * 1 - execute bpf prog + * [2..MAX_U64] - execute bpf prog and record execution time. + * This is start time. + */ +static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx) + __acquires(RCU) +{ + rcu_read_lock_dont_migrate(); + + run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); + + if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { + bpf_prog_inc_misses_counter(prog); + if (prog->aux->recursion_detected) + prog->aux->recursion_detected(prog); + return 0; + } + return bpf_prog_start_time(); +} + +static void notrace __update_prog_stats(struct bpf_prog *prog, u64 start) +{ + struct bpf_prog_stats *stats; + unsigned long flags; + u64 duration; + + /* + * static_key could be enabled in __bpf_prog_enter* and disabled in + * __bpf_prog_exit*. And vice versa. Check that 'start' is valid. + */ + if (start <= NO_START_TIME) + return; + + duration = sched_clock() - start; + stats = this_cpu_ptr(prog->stats); + flags = u64_stats_update_begin_irqsave(&stats->syncp); + u64_stats_inc(&stats->cnt); + u64_stats_add(&stats->nsecs, duration); + u64_stats_update_end_irqrestore(&stats->syncp, flags); +} + +static __always_inline void notrace update_prog_stats(struct bpf_prog *prog, + u64 start) +{ + if (static_branch_unlikely(&bpf_stats_enabled_key)) + __update_prog_stats(prog, start); +} + +static void notrace __bpf_prog_exit_recur(struct bpf_prog *prog, u64 start, + struct bpf_tramp_run_ctx *run_ctx) + __releases(RCU) +{ + bpf_reset_run_ctx(run_ctx->saved_run_ctx); + + update_prog_stats(prog, start); + this_cpu_dec(*(prog->active)); + rcu_read_unlock_migrate(); +} + +static u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog, + struct bpf_tramp_run_ctx *run_ctx) + __acquires(RCU) +{ + /* Runtime stats are exported via actual BPF_LSM_CGROUP + * programs, not the shims. + */ + rcu_read_lock_dont_migrate(); + + run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); + + return NO_START_TIME; +} + +static void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start, + struct bpf_tramp_run_ctx *run_ctx) + __releases(RCU) +{ + bpf_reset_run_ctx(run_ctx->saved_run_ctx); + + rcu_read_unlock_migrate(); +} + +u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, + struct bpf_tramp_run_ctx *run_ctx) +{ + rcu_read_lock_trace(); + migrate_disable(); + might_fault(); + + run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); + + if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) { + bpf_prog_inc_misses_counter(prog); + if (prog->aux->recursion_detected) + prog->aux->recursion_detected(prog); + return 0; + } + return bpf_prog_start_time(); +} + +void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, + struct bpf_tramp_run_ctx *run_ctx) +{ + bpf_reset_run_ctx(run_ctx->saved_run_ctx); + + update_prog_stats(prog, start); + this_cpu_dec(*(prog->active)); + migrate_enable(); + rcu_read_unlock_trace(); +} + +static u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog, + struct bpf_tramp_run_ctx *run_ctx) +{ + rcu_read_lock_trace(); + migrate_disable(); + might_fault(); + + run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); + + return bpf_prog_start_time(); +} + +static void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start, + struct bpf_tramp_run_ctx *run_ctx) +{ + bpf_reset_run_ctx(run_ctx->saved_run_ctx); + + update_prog_stats(prog, start); + migrate_enable(); + rcu_read_unlock_trace(); +} + +static u64 notrace __bpf_prog_enter(struct bpf_prog *prog, + struct bpf_tramp_run_ctx *run_ctx) + __acquires(RCU) +{ + rcu_read_lock_dont_migrate(); + + run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx); + + return bpf_prog_start_time(); +} + +static void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start, + struct bpf_tramp_run_ctx *run_ctx) + __releases(RCU) +{ + bpf_reset_run_ctx(run_ctx->saved_run_ctx); + + update_prog_stats(prog, start); + rcu_read_unlock_migrate(); +} + +void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr) +{ + percpu_ref_get(&tr->pcref); +} + +void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr) +{ + percpu_ref_put(&tr->pcref); +} + +bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog) +{ + bool sleepable = prog->sleepable; + + if (bpf_prog_check_recur(prog)) + return sleepable ? __bpf_prog_enter_sleepable_recur : + __bpf_prog_enter_recur; + + if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM && + prog->expected_attach_type == BPF_LSM_CGROUP) + return __bpf_prog_enter_lsm_cgroup; + + return sleepable ? __bpf_prog_enter_sleepable : __bpf_prog_enter; +} + +bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog) +{ + bool sleepable = prog->sleepable; + + if (bpf_prog_check_recur(prog)) + return sleepable ? __bpf_prog_exit_sleepable_recur : + __bpf_prog_exit_recur; + + if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM && + prog->expected_attach_type == BPF_LSM_CGROUP) + return __bpf_prog_exit_lsm_cgroup; + + return sleepable ? __bpf_prog_exit_sleepable : __bpf_prog_exit; +} + +int __weak +arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, + const struct btf_func_model *m, u32 flags, + struct bpf_tramp_links *tlinks, + void *func_addr) +{ + return -ENOTSUPP; +} + +void * __weak arch_alloc_bpf_trampoline(unsigned int size) +{ + void *image; + + if (WARN_ON_ONCE(size > PAGE_SIZE)) + return NULL; + image = bpf_jit_alloc_exec(PAGE_SIZE); + if (image) + set_vm_flush_reset_perms(image); + return image; +} + +void __weak arch_free_bpf_trampoline(void *image, unsigned int size) +{ + WARN_ON_ONCE(size > PAGE_SIZE); + /* bpf_jit_free_exec doesn't need "size", but + * bpf_prog_pack_free() needs it. + */ + bpf_jit_free_exec(image); +} + +int __weak arch_protect_bpf_trampoline(void *image, unsigned int size) +{ + WARN_ON_ONCE(size > PAGE_SIZE); + return set_memory_rox((long)image, 1); +} + +int __weak arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, + struct bpf_tramp_links *tlinks, void *func_addr) +{ + return -ENOTSUPP; +} + +static int __init init_trampolines(void) +{ + int i; + + for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++) + INIT_HLIST_HEAD(&trampoline_table[i]); + return 0; +} +late_initcall(init_trampolines); diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c new file mode 100644 index 000000000000..f0ca69f888fa --- /dev/null +++ b/kernel/bpf/verifier.c @@ -0,0 +1,25398 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com + * Copyright (c) 2016 Facebook + * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io + */ +#include <uapi/linux/btf.h> +#include <linux/bpf-cgroup.h> +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/slab.h> +#include <linux/bpf.h> +#include <linux/btf.h> +#include <linux/bpf_verifier.h> +#include <linux/filter.h> +#include <net/netlink.h> +#include <linux/file.h> +#include <linux/vmalloc.h> +#include <linux/stringify.h> +#include <linux/bsearch.h> +#include <linux/sort.h> +#include <linux/perf_event.h> +#include <linux/ctype.h> +#include <linux/error-injection.h> +#include <linux/bpf_lsm.h> +#include <linux/btf_ids.h> +#include <linux/poison.h> +#include <linux/module.h> +#include <linux/cpumask.h> +#include <linux/bpf_mem_alloc.h> +#include <net/xdp.h> +#include <linux/trace_events.h> +#include <linux/kallsyms.h> + +#include "disasm.h" + +static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { +#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ + [_id] = & _name ## _verifier_ops, +#define BPF_MAP_TYPE(_id, _ops) +#define BPF_LINK_TYPE(_id, _name) +#include <linux/bpf_types.h> +#undef BPF_PROG_TYPE +#undef BPF_MAP_TYPE +#undef BPF_LINK_TYPE +}; + +enum bpf_features { + BPF_FEAT_RDONLY_CAST_TO_VOID = 0, + BPF_FEAT_STREAMS = 1, + __MAX_BPF_FEAT, +}; + +struct bpf_mem_alloc bpf_global_percpu_ma; +static bool bpf_global_percpu_ma_set; + +/* bpf_check() is a static code analyzer that walks eBPF program + * instruction by instruction and updates register/stack state. + * All paths of conditional branches are analyzed until 'bpf_exit' insn. + * + * The first pass is depth-first-search to check that the program is a DAG. + * It rejects the following programs: + * - larger than BPF_MAXINSNS insns + * - if loop is present (detected via back-edge) + * - unreachable insns exist (shouldn't be a forest. program = one function) + * - out of bounds or malformed jumps + * The second pass is all possible path descent from the 1st insn. + * Since it's analyzing all paths through the program, the length of the + * analysis is limited to 64k insn, which may be hit even if total number of + * insn is less then 4K, but there are too many branches that change stack/regs. + * Number of 'branches to be analyzed' is limited to 1k + * + * On entry to each instruction, each register has a type, and the instruction + * changes the types of the registers depending on instruction semantics. + * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is + * copied to R1. + * + * All registers are 64-bit. + * R0 - return register + * R1-R5 argument passing registers + * R6-R9 callee saved registers + * R10 - frame pointer read-only + * + * At the start of BPF program the register R1 contains a pointer to bpf_context + * and has type PTR_TO_CTX. + * + * Verifier tracks arithmetic operations on pointers in case: + * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), + * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), + * 1st insn copies R10 (which has FRAME_PTR) type into R1 + * and 2nd arithmetic instruction is pattern matched to recognize + * that it wants to construct a pointer to some element within stack. + * So after 2nd insn, the register R1 has type PTR_TO_STACK + * (and -20 constant is saved for further stack bounds checking). + * Meaning that this reg is a pointer to stack plus known immediate constant. + * + * Most of the time the registers have SCALAR_VALUE type, which + * means the register has some value, but it's not a valid pointer. + * (like pointer plus pointer becomes SCALAR_VALUE type) + * + * When verifier sees load or store instructions the type of base register + * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are + * four pointer types recognized by check_mem_access() function. + * + * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' + * and the range of [ptr, ptr + map's value_size) is accessible. + * + * registers used to pass values to function calls are checked against + * function argument constraints. + * + * ARG_PTR_TO_MAP_KEY is one of such argument constraints. + * It means that the register type passed to this function must be + * PTR_TO_STACK and it will be used inside the function as + * 'pointer to map element key' + * + * For example the argument constraints for bpf_map_lookup_elem(): + * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, + * .arg1_type = ARG_CONST_MAP_PTR, + * .arg2_type = ARG_PTR_TO_MAP_KEY, + * + * ret_type says that this function returns 'pointer to map elem value or null' + * function expects 1st argument to be a const pointer to 'struct bpf_map' and + * 2nd argument should be a pointer to stack, which will be used inside + * the helper function as a pointer to map element key. + * + * On the kernel side the helper function looks like: + * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) + * { + * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; + * void *key = (void *) (unsigned long) r2; + * void *value; + * + * here kernel can access 'key' and 'map' pointers safely, knowing that + * [key, key + map->key_size) bytes are valid and were initialized on + * the stack of eBPF program. + * } + * + * Corresponding eBPF program may look like: + * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR + * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK + * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP + * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), + * here verifier looks at prototype of map_lookup_elem() and sees: + * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, + * Now verifier knows that this map has key of R1->map_ptr->key_size bytes + * + * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, + * Now verifier checks that [R2, R2 + map's key_size) are within stack limits + * and were initialized prior to this call. + * If it's ok, then verifier allows this BPF_CALL insn and looks at + * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets + * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function + * returns either pointer to map value or NULL. + * + * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' + * insn, the register holding that pointer in the true branch changes state to + * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false + * branch. See check_cond_jmp_op(). + * + * After the call R0 is set to return type of the function and registers R1-R5 + * are set to NOT_INIT to indicate that they are no longer readable. + * + * The following reference types represent a potential reference to a kernel + * resource which, after first being allocated, must be checked and freed by + * the BPF program: + * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET + * + * When the verifier sees a helper call return a reference type, it allocates a + * pointer id for the reference and stores it in the current function state. + * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into + * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type + * passes through a NULL-check conditional. For the branch wherein the state is + * changed to CONST_IMM, the verifier releases the reference. + * + * For each helper function that allocates a reference, such as + * bpf_sk_lookup_tcp(), there is a corresponding release function, such as + * bpf_sk_release(). When a reference type passes into the release function, + * the verifier also releases the reference. If any unchecked or unreleased + * reference remains at the end of the program, the verifier rejects it. + */ + +/* verifier_state + insn_idx are pushed to stack when branch is encountered */ +struct bpf_verifier_stack_elem { + /* verifier state is 'st' + * before processing instruction 'insn_idx' + * and after processing instruction 'prev_insn_idx' + */ + struct bpf_verifier_state st; + int insn_idx; + int prev_insn_idx; + struct bpf_verifier_stack_elem *next; + /* length of verifier log at the time this state was pushed on stack */ + u32 log_pos; +}; + +#define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 +#define BPF_COMPLEXITY_LIMIT_STATES 64 + +#define BPF_MAP_KEY_POISON (1ULL << 63) +#define BPF_MAP_KEY_SEEN (1ULL << 62) + +#define BPF_GLOBAL_PERCPU_MA_MAX_SIZE 512 + +#define BPF_PRIV_STACK_MIN_SIZE 64 + +static int acquire_reference(struct bpf_verifier_env *env, int insn_idx); +static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id); +static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); +static void invalidate_non_owning_refs(struct bpf_verifier_env *env); +static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); +static int ref_set_non_owning(struct bpf_verifier_env *env, + struct bpf_reg_state *reg); +static bool is_trusted_reg(const struct bpf_reg_state *reg); + +static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) +{ + return aux->map_ptr_state.poison; +} + +static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) +{ + return aux->map_ptr_state.unpriv; +} + +static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, + struct bpf_map *map, + bool unpriv, bool poison) +{ + unpriv |= bpf_map_ptr_unpriv(aux); + aux->map_ptr_state.unpriv = unpriv; + aux->map_ptr_state.poison = poison; + aux->map_ptr_state.map_ptr = map; +} + +static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) +{ + return aux->map_key_state & BPF_MAP_KEY_POISON; +} + +static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) +{ + return !(aux->map_key_state & BPF_MAP_KEY_SEEN); +} + +static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) +{ + return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); +} + +static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) +{ + bool poisoned = bpf_map_key_poisoned(aux); + + aux->map_key_state = state | BPF_MAP_KEY_SEEN | + (poisoned ? BPF_MAP_KEY_POISON : 0ULL); +} + +static bool bpf_helper_call(const struct bpf_insn *insn) +{ + return insn->code == (BPF_JMP | BPF_CALL) && + insn->src_reg == 0; +} + +static bool bpf_pseudo_call(const struct bpf_insn *insn) +{ + return insn->code == (BPF_JMP | BPF_CALL) && + insn->src_reg == BPF_PSEUDO_CALL; +} + +static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) +{ + return insn->code == (BPF_JMP | BPF_CALL) && + insn->src_reg == BPF_PSEUDO_KFUNC_CALL; +} + +struct bpf_call_arg_meta { + struct bpf_map *map_ptr; + bool raw_mode; + bool pkt_access; + u8 release_regno; + int regno; + int access_size; + int mem_size; + u64 msize_max_value; + int ref_obj_id; + int dynptr_id; + int map_uid; + int func_id; + struct btf *btf; + u32 btf_id; + struct btf *ret_btf; + u32 ret_btf_id; + u32 subprogno; + struct btf_field *kptr_field; + s64 const_map_key; +}; + +struct bpf_kfunc_call_arg_meta { + /* In parameters */ + struct btf *btf; + u32 func_id; + u32 kfunc_flags; + const struct btf_type *func_proto; + const char *func_name; + /* Out parameters */ + u32 ref_obj_id; + u8 release_regno; + bool r0_rdonly; + u32 ret_btf_id; + u64 r0_size; + u32 subprogno; + struct { + u64 value; + bool found; + } arg_constant; + + /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, + * generally to pass info about user-defined local kptr types to later + * verification logic + * bpf_obj_drop/bpf_percpu_obj_drop + * Record the local kptr type to be drop'd + * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) + * Record the local kptr type to be refcount_incr'd and use + * arg_owning_ref to determine whether refcount_acquire should be + * fallible + */ + struct btf *arg_btf; + u32 arg_btf_id; + bool arg_owning_ref; + bool arg_prog; + + struct { + struct btf_field *field; + } arg_list_head; + struct { + struct btf_field *field; + } arg_rbtree_root; + struct { + enum bpf_dynptr_type type; + u32 id; + u32 ref_obj_id; + } initialized_dynptr; + struct { + u8 spi; + u8 frameno; + } iter; + struct { + struct bpf_map *ptr; + int uid; + } map; + u64 mem_size; +}; + +struct btf *btf_vmlinux; + +static const char *btf_type_name(const struct btf *btf, u32 id) +{ + return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); +} + +static DEFINE_MUTEX(bpf_verifier_lock); +static DEFINE_MUTEX(bpf_percpu_ma_lock); + +__printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) +{ + struct bpf_verifier_env *env = private_data; + va_list args; + + if (!bpf_verifier_log_needed(&env->log)) + return; + + va_start(args, fmt); + bpf_verifier_vlog(&env->log, fmt, args); + va_end(args); +} + +static void verbose_invalid_scalar(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + struct bpf_retval_range range, const char *ctx, + const char *reg_name) +{ + bool unknown = true; + + verbose(env, "%s the register %s has", ctx, reg_name); + if (reg->smin_value > S64_MIN) { + verbose(env, " smin=%lld", reg->smin_value); + unknown = false; + } + if (reg->smax_value < S64_MAX) { + verbose(env, " smax=%lld", reg->smax_value); + unknown = false; + } + if (unknown) + verbose(env, " unknown scalar value"); + verbose(env, " should have been in [%d, %d]\n", range.minval, range.maxval); +} + +static bool reg_not_null(const struct bpf_reg_state *reg) +{ + enum bpf_reg_type type; + + type = reg->type; + if (type_may_be_null(type)) + return false; + + type = base_type(type); + return type == PTR_TO_SOCKET || + type == PTR_TO_TCP_SOCK || + type == PTR_TO_MAP_VALUE || + type == PTR_TO_MAP_KEY || + type == PTR_TO_SOCK_COMMON || + (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || + (type == PTR_TO_MEM && !(reg->type & PTR_UNTRUSTED)) || + type == CONST_PTR_TO_MAP; +} + +static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) +{ + struct btf_record *rec = NULL; + struct btf_struct_meta *meta; + + if (reg->type == PTR_TO_MAP_VALUE) { + rec = reg->map_ptr->record; + } else if (type_is_ptr_alloc_obj(reg->type)) { + meta = btf_find_struct_meta(reg->btf, reg->btf_id); + if (meta) + rec = meta->record; + } + return rec; +} + +static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) +{ + struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; + + return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; +} + +static const char *subprog_name(const struct bpf_verifier_env *env, int subprog) +{ + struct bpf_func_info *info; + + if (!env->prog->aux->func_info) + return ""; + + info = &env->prog->aux->func_info[subprog]; + return btf_type_name(env->prog->aux->btf, info->type_id); +} + +static void mark_subprog_exc_cb(struct bpf_verifier_env *env, int subprog) +{ + struct bpf_subprog_info *info = subprog_info(env, subprog); + + info->is_cb = true; + info->is_async_cb = true; + info->is_exception_cb = true; +} + +static bool subprog_is_exc_cb(struct bpf_verifier_env *env, int subprog) +{ + return subprog_info(env, subprog)->is_exception_cb; +} + +static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) +{ + return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK); +} + +static bool type_is_rdonly_mem(u32 type) +{ + return type & MEM_RDONLY; +} + +static bool is_acquire_function(enum bpf_func_id func_id, + const struct bpf_map *map) +{ + enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; + + if (func_id == BPF_FUNC_sk_lookup_tcp || + func_id == BPF_FUNC_sk_lookup_udp || + func_id == BPF_FUNC_skc_lookup_tcp || + func_id == BPF_FUNC_ringbuf_reserve || + func_id == BPF_FUNC_kptr_xchg) + return true; + + if (func_id == BPF_FUNC_map_lookup_elem && + (map_type == BPF_MAP_TYPE_SOCKMAP || + map_type == BPF_MAP_TYPE_SOCKHASH)) + return true; + + return false; +} + +static bool is_ptr_cast_function(enum bpf_func_id func_id) +{ + return func_id == BPF_FUNC_tcp_sock || + func_id == BPF_FUNC_sk_fullsock || + func_id == BPF_FUNC_skc_to_tcp_sock || + func_id == BPF_FUNC_skc_to_tcp6_sock || + func_id == BPF_FUNC_skc_to_udp6_sock || + func_id == BPF_FUNC_skc_to_mptcp_sock || + func_id == BPF_FUNC_skc_to_tcp_timewait_sock || + func_id == BPF_FUNC_skc_to_tcp_request_sock; +} + +static bool is_dynptr_ref_function(enum bpf_func_id func_id) +{ + return func_id == BPF_FUNC_dynptr_data; +} + +static bool is_sync_callback_calling_kfunc(u32 btf_id); +static bool is_async_callback_calling_kfunc(u32 btf_id); +static bool is_callback_calling_kfunc(u32 btf_id); +static bool is_bpf_throw_kfunc(struct bpf_insn *insn); + +static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id); +static bool is_task_work_add_kfunc(u32 func_id); + +static bool is_sync_callback_calling_function(enum bpf_func_id func_id) +{ + return func_id == BPF_FUNC_for_each_map_elem || + func_id == BPF_FUNC_find_vma || + func_id == BPF_FUNC_loop || + func_id == BPF_FUNC_user_ringbuf_drain; +} + +static bool is_async_callback_calling_function(enum bpf_func_id func_id) +{ + return func_id == BPF_FUNC_timer_set_callback; +} + +static bool is_callback_calling_function(enum bpf_func_id func_id) +{ + return is_sync_callback_calling_function(func_id) || + is_async_callback_calling_function(func_id); +} + +static bool is_sync_callback_calling_insn(struct bpf_insn *insn) +{ + return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || + (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); +} + +static bool is_async_callback_calling_insn(struct bpf_insn *insn) +{ + return (bpf_helper_call(insn) && is_async_callback_calling_function(insn->imm)) || + (bpf_pseudo_kfunc_call(insn) && is_async_callback_calling_kfunc(insn->imm)); +} + +static bool is_async_cb_sleepable(struct bpf_verifier_env *env, struct bpf_insn *insn) +{ + /* bpf_timer callbacks are never sleepable. */ + if (bpf_helper_call(insn) && insn->imm == BPF_FUNC_timer_set_callback) + return false; + + /* bpf_wq and bpf_task_work callbacks are always sleepable. */ + if (bpf_pseudo_kfunc_call(insn) && insn->off == 0 && + (is_bpf_wq_set_callback_impl_kfunc(insn->imm) || is_task_work_add_kfunc(insn->imm))) + return true; + + verifier_bug(env, "unhandled async callback in is_async_cb_sleepable"); + return false; +} + +static bool is_may_goto_insn(struct bpf_insn *insn) +{ + return insn->code == (BPF_JMP | BPF_JCOND) && insn->src_reg == BPF_MAY_GOTO; +} + +static bool is_may_goto_insn_at(struct bpf_verifier_env *env, int insn_idx) +{ + return is_may_goto_insn(&env->prog->insnsi[insn_idx]); +} + +static bool is_storage_get_function(enum bpf_func_id func_id) +{ + return func_id == BPF_FUNC_sk_storage_get || + func_id == BPF_FUNC_inode_storage_get || + func_id == BPF_FUNC_task_storage_get || + func_id == BPF_FUNC_cgrp_storage_get; +} + +static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, + const struct bpf_map *map) +{ + int ref_obj_uses = 0; + + if (is_ptr_cast_function(func_id)) + ref_obj_uses++; + if (is_acquire_function(func_id, map)) + ref_obj_uses++; + if (is_dynptr_ref_function(func_id)) + ref_obj_uses++; + + return ref_obj_uses > 1; +} + +static bool is_cmpxchg_insn(const struct bpf_insn *insn) +{ + return BPF_CLASS(insn->code) == BPF_STX && + BPF_MODE(insn->code) == BPF_ATOMIC && + insn->imm == BPF_CMPXCHG; +} + +static bool is_atomic_load_insn(const struct bpf_insn *insn) +{ + return BPF_CLASS(insn->code) == BPF_STX && + BPF_MODE(insn->code) == BPF_ATOMIC && + insn->imm == BPF_LOAD_ACQ; +} + +static int __get_spi(s32 off) +{ + return (-off - 1) / BPF_REG_SIZE; +} + +static struct bpf_func_state *func(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg) +{ + struct bpf_verifier_state *cur = env->cur_state; + + return cur->frame[reg->frameno]; +} + +static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) +{ + int allocated_slots = state->allocated_stack / BPF_REG_SIZE; + + /* We need to check that slots between [spi - nr_slots + 1, spi] are + * within [0, allocated_stack). + * + * Please note that the spi grows downwards. For example, a dynptr + * takes the size of two stack slots; the first slot will be at + * spi and the second slot will be at spi - 1. + */ + return spi - nr_slots + 1 >= 0 && spi < allocated_slots; +} + +static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + const char *obj_kind, int nr_slots) +{ + int off, spi; + + if (!tnum_is_const(reg->var_off)) { + verbose(env, "%s has to be at a constant offset\n", obj_kind); + return -EINVAL; + } + + off = reg->off + reg->var_off.value; + if (off % BPF_REG_SIZE) { + verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); + return -EINVAL; + } + + spi = __get_spi(off); + if (spi + 1 < nr_slots) { + verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); + return -EINVAL; + } + + if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) + return -ERANGE; + return spi; +} + +static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); +} + +static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) +{ + return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); +} + +static int irq_flag_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + return stack_slot_obj_get_spi(env, reg, "irq_flag", 1); +} + +static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) +{ + switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { + case DYNPTR_TYPE_LOCAL: + return BPF_DYNPTR_TYPE_LOCAL; + case DYNPTR_TYPE_RINGBUF: + return BPF_DYNPTR_TYPE_RINGBUF; + case DYNPTR_TYPE_SKB: + return BPF_DYNPTR_TYPE_SKB; + case DYNPTR_TYPE_XDP: + return BPF_DYNPTR_TYPE_XDP; + case DYNPTR_TYPE_SKB_META: + return BPF_DYNPTR_TYPE_SKB_META; + case DYNPTR_TYPE_FILE: + return BPF_DYNPTR_TYPE_FILE; + default: + return BPF_DYNPTR_TYPE_INVALID; + } +} + +static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) +{ + switch (type) { + case BPF_DYNPTR_TYPE_LOCAL: + return DYNPTR_TYPE_LOCAL; + case BPF_DYNPTR_TYPE_RINGBUF: + return DYNPTR_TYPE_RINGBUF; + case BPF_DYNPTR_TYPE_SKB: + return DYNPTR_TYPE_SKB; + case BPF_DYNPTR_TYPE_XDP: + return DYNPTR_TYPE_XDP; + case BPF_DYNPTR_TYPE_SKB_META: + return DYNPTR_TYPE_SKB_META; + case BPF_DYNPTR_TYPE_FILE: + return DYNPTR_TYPE_FILE; + default: + return 0; + } +} + +static bool dynptr_type_refcounted(enum bpf_dynptr_type type) +{ + return type == BPF_DYNPTR_TYPE_RINGBUF || type == BPF_DYNPTR_TYPE_FILE; +} + +static void __mark_dynptr_reg(struct bpf_reg_state *reg, + enum bpf_dynptr_type type, + bool first_slot, int dynptr_id); + +static void __mark_reg_not_init(const struct bpf_verifier_env *env, + struct bpf_reg_state *reg); + +static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, + struct bpf_reg_state *sreg1, + struct bpf_reg_state *sreg2, + enum bpf_dynptr_type type) +{ + int id = ++env->id_gen; + + __mark_dynptr_reg(sreg1, type, true, id); + __mark_dynptr_reg(sreg2, type, false, id); +} + +static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + enum bpf_dynptr_type type) +{ + __mark_dynptr_reg(reg, type, true, ++env->id_gen); +} + +static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, + struct bpf_func_state *state, int spi); + +static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) +{ + struct bpf_func_state *state = func(env, reg); + enum bpf_dynptr_type type; + int spi, i, err; + + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return spi; + + /* We cannot assume both spi and spi - 1 belong to the same dynptr, + * hence we need to call destroy_if_dynptr_stack_slot twice for both, + * to ensure that for the following example: + * [d1][d1][d2][d2] + * spi 3 2 1 0 + * So marking spi = 2 should lead to destruction of both d1 and d2. In + * case they do belong to same dynptr, second call won't see slot_type + * as STACK_DYNPTR and will simply skip destruction. + */ + err = destroy_if_dynptr_stack_slot(env, state, spi); + if (err) + return err; + err = destroy_if_dynptr_stack_slot(env, state, spi - 1); + if (err) + return err; + + for (i = 0; i < BPF_REG_SIZE; i++) { + state->stack[spi].slot_type[i] = STACK_DYNPTR; + state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; + } + + type = arg_to_dynptr_type(arg_type); + if (type == BPF_DYNPTR_TYPE_INVALID) + return -EINVAL; + + mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, + &state->stack[spi - 1].spilled_ptr, type); + + if (dynptr_type_refcounted(type)) { + /* The id is used to track proper releasing */ + int id; + + if (clone_ref_obj_id) + id = clone_ref_obj_id; + else + id = acquire_reference(env, insn_idx); + + if (id < 0) + return id; + + state->stack[spi].spilled_ptr.ref_obj_id = id; + state->stack[spi - 1].spilled_ptr.ref_obj_id = id; + } + + bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); + + return 0; +} + +static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) +{ + int i; + + for (i = 0; i < BPF_REG_SIZE; i++) { + state->stack[spi].slot_type[i] = STACK_INVALID; + state->stack[spi - 1].slot_type[i] = STACK_INVALID; + } + + __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); + __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); + + bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); +} + +static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + int spi, ref_obj_id, i; + + /* + * This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot + * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr + * is safe to do directly. + */ + if (reg->type == CONST_PTR_TO_DYNPTR) { + verifier_bug(env, "CONST_PTR_TO_DYNPTR cannot be released"); + return -EFAULT; + } + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return spi; + + if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { + invalidate_dynptr(env, state, spi); + return 0; + } + + ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; + + /* If the dynptr has a ref_obj_id, then we need to invalidate + * two things: + * + * 1) Any dynptrs with a matching ref_obj_id (clones) + * 2) Any slices derived from this dynptr. + */ + + /* Invalidate any slices associated with this dynptr */ + WARN_ON_ONCE(release_reference(env, ref_obj_id)); + + /* Invalidate any dynptr clones */ + for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { + if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) + continue; + + /* it should always be the case that if the ref obj id + * matches then the stack slot also belongs to a + * dynptr + */ + if (state->stack[i].slot_type[0] != STACK_DYNPTR) { + verifier_bug(env, "misconfigured ref_obj_id"); + return -EFAULT; + } + if (state->stack[i].spilled_ptr.dynptr.first_slot) + invalidate_dynptr(env, state, i); + } + + return 0; +} + +static void __mark_reg_unknown(const struct bpf_verifier_env *env, + struct bpf_reg_state *reg); + +static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + if (!env->allow_ptr_leaks) + __mark_reg_not_init(env, reg); + else + __mark_reg_unknown(env, reg); +} + +static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, + struct bpf_func_state *state, int spi) +{ + struct bpf_func_state *fstate; + struct bpf_reg_state *dreg; + int i, dynptr_id; + + /* We always ensure that STACK_DYNPTR is never set partially, + * hence just checking for slot_type[0] is enough. This is + * different for STACK_SPILL, where it may be only set for + * 1 byte, so code has to use is_spilled_reg. + */ + if (state->stack[spi].slot_type[0] != STACK_DYNPTR) + return 0; + + /* Reposition spi to first slot */ + if (!state->stack[spi].spilled_ptr.dynptr.first_slot) + spi = spi + 1; + + if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { + verbose(env, "cannot overwrite referenced dynptr\n"); + return -EINVAL; + } + + mark_stack_slot_scratched(env, spi); + mark_stack_slot_scratched(env, spi - 1); + + /* Writing partially to one dynptr stack slot destroys both. */ + for (i = 0; i < BPF_REG_SIZE; i++) { + state->stack[spi].slot_type[i] = STACK_INVALID; + state->stack[spi - 1].slot_type[i] = STACK_INVALID; + } + + dynptr_id = state->stack[spi].spilled_ptr.id; + /* Invalidate any slices associated with this dynptr */ + bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ + /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ + if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) + continue; + if (dreg->dynptr_id == dynptr_id) + mark_reg_invalid(env, dreg); + })); + + /* Do not release reference state, we are destroying dynptr on stack, + * not using some helper to release it. Just reset register. + */ + __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); + __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); + + bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi)); + + return 0; +} + +static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + int spi; + + if (reg->type == CONST_PTR_TO_DYNPTR) + return false; + + spi = dynptr_get_spi(env, reg); + + /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an + * error because this just means the stack state hasn't been updated yet. + * We will do check_mem_access to check and update stack bounds later. + */ + if (spi < 0 && spi != -ERANGE) + return false; + + /* We don't need to check if the stack slots are marked by previous + * dynptr initializations because we allow overwriting existing unreferenced + * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls + * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are + * touching are completely destructed before we reinitialize them for a new + * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early + * instead of delaying it until the end where the user will get "Unreleased + * reference" error. + */ + return true; +} + +static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + int i, spi; + + /* This already represents first slot of initialized bpf_dynptr. + * + * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to + * check_func_arg_reg_off's logic, so we don't need to check its + * offset and alignment. + */ + if (reg->type == CONST_PTR_TO_DYNPTR) + return true; + + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return false; + if (!state->stack[spi].spilled_ptr.dynptr.first_slot) + return false; + + for (i = 0; i < BPF_REG_SIZE; i++) { + if (state->stack[spi].slot_type[i] != STACK_DYNPTR || + state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) + return false; + } + + return true; +} + +static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + enum bpf_arg_type arg_type) +{ + struct bpf_func_state *state = func(env, reg); + enum bpf_dynptr_type dynptr_type; + int spi; + + /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ + if (arg_type == ARG_PTR_TO_DYNPTR) + return true; + + dynptr_type = arg_to_dynptr_type(arg_type); + if (reg->type == CONST_PTR_TO_DYNPTR) { + return reg->dynptr.type == dynptr_type; + } else { + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return false; + return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; + } +} + +static void __mark_reg_known_zero(struct bpf_reg_state *reg); + +static bool in_rcu_cs(struct bpf_verifier_env *env); + +static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); + +static int mark_stack_slots_iter(struct bpf_verifier_env *env, + struct bpf_kfunc_call_arg_meta *meta, + struct bpf_reg_state *reg, int insn_idx, + struct btf *btf, u32 btf_id, int nr_slots) +{ + struct bpf_func_state *state = func(env, reg); + int spi, i, j, id; + + spi = iter_get_spi(env, reg, nr_slots); + if (spi < 0) + return spi; + + id = acquire_reference(env, insn_idx); + if (id < 0) + return id; + + for (i = 0; i < nr_slots; i++) { + struct bpf_stack_state *slot = &state->stack[spi - i]; + struct bpf_reg_state *st = &slot->spilled_ptr; + + __mark_reg_known_zero(st); + st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ + if (is_kfunc_rcu_protected(meta)) { + if (in_rcu_cs(env)) + st->type |= MEM_RCU; + else + st->type |= PTR_UNTRUSTED; + } + st->ref_obj_id = i == 0 ? id : 0; + st->iter.btf = btf; + st->iter.btf_id = btf_id; + st->iter.state = BPF_ITER_STATE_ACTIVE; + st->iter.depth = 0; + + for (j = 0; j < BPF_REG_SIZE; j++) + slot->slot_type[j] = STACK_ITER; + + bpf_mark_stack_write(env, state->frameno, BIT(spi - i)); + mark_stack_slot_scratched(env, spi - i); + } + + return 0; +} + +static int unmark_stack_slots_iter(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, int nr_slots) +{ + struct bpf_func_state *state = func(env, reg); + int spi, i, j; + + spi = iter_get_spi(env, reg, nr_slots); + if (spi < 0) + return spi; + + for (i = 0; i < nr_slots; i++) { + struct bpf_stack_state *slot = &state->stack[spi - i]; + struct bpf_reg_state *st = &slot->spilled_ptr; + + if (i == 0) + WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); + + __mark_reg_not_init(env, st); + + for (j = 0; j < BPF_REG_SIZE; j++) + slot->slot_type[j] = STACK_INVALID; + + bpf_mark_stack_write(env, state->frameno, BIT(spi - i)); + mark_stack_slot_scratched(env, spi - i); + } + + return 0; +} + +static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, int nr_slots) +{ + struct bpf_func_state *state = func(env, reg); + int spi, i, j; + + /* For -ERANGE (i.e. spi not falling into allocated stack slots), we + * will do check_mem_access to check and update stack bounds later, so + * return true for that case. + */ + spi = iter_get_spi(env, reg, nr_slots); + if (spi == -ERANGE) + return true; + if (spi < 0) + return false; + + for (i = 0; i < nr_slots; i++) { + struct bpf_stack_state *slot = &state->stack[spi - i]; + + for (j = 0; j < BPF_REG_SIZE; j++) + if (slot->slot_type[j] == STACK_ITER) + return false; + } + + return true; +} + +static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + struct btf *btf, u32 btf_id, int nr_slots) +{ + struct bpf_func_state *state = func(env, reg); + int spi, i, j; + + spi = iter_get_spi(env, reg, nr_slots); + if (spi < 0) + return -EINVAL; + + for (i = 0; i < nr_slots; i++) { + struct bpf_stack_state *slot = &state->stack[spi - i]; + struct bpf_reg_state *st = &slot->spilled_ptr; + + if (st->type & PTR_UNTRUSTED) + return -EPROTO; + /* only main (first) slot has ref_obj_id set */ + if (i == 0 && !st->ref_obj_id) + return -EINVAL; + if (i != 0 && st->ref_obj_id) + return -EINVAL; + if (st->iter.btf != btf || st->iter.btf_id != btf_id) + return -EINVAL; + + for (j = 0; j < BPF_REG_SIZE; j++) + if (slot->slot_type[j] != STACK_ITER) + return -EINVAL; + } + + return 0; +} + +static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx); +static int release_irq_state(struct bpf_verifier_state *state, int id); + +static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env, + struct bpf_kfunc_call_arg_meta *meta, + struct bpf_reg_state *reg, int insn_idx, + int kfunc_class) +{ + struct bpf_func_state *state = func(env, reg); + struct bpf_stack_state *slot; + struct bpf_reg_state *st; + int spi, i, id; + + spi = irq_flag_get_spi(env, reg); + if (spi < 0) + return spi; + + id = acquire_irq_state(env, insn_idx); + if (id < 0) + return id; + + slot = &state->stack[spi]; + st = &slot->spilled_ptr; + + bpf_mark_stack_write(env, reg->frameno, BIT(spi)); + __mark_reg_known_zero(st); + st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ + st->ref_obj_id = id; + st->irq.kfunc_class = kfunc_class; + + for (i = 0; i < BPF_REG_SIZE; i++) + slot->slot_type[i] = STACK_IRQ_FLAG; + + mark_stack_slot_scratched(env, spi); + return 0; +} + +static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + int kfunc_class) +{ + struct bpf_func_state *state = func(env, reg); + struct bpf_stack_state *slot; + struct bpf_reg_state *st; + int spi, i, err; + + spi = irq_flag_get_spi(env, reg); + if (spi < 0) + return spi; + + slot = &state->stack[spi]; + st = &slot->spilled_ptr; + + if (st->irq.kfunc_class != kfunc_class) { + const char *flag_kfunc = st->irq.kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; + const char *used_kfunc = kfunc_class == IRQ_NATIVE_KFUNC ? "native" : "lock"; + + verbose(env, "irq flag acquired by %s kfuncs cannot be restored with %s kfuncs\n", + flag_kfunc, used_kfunc); + return -EINVAL; + } + + err = release_irq_state(env->cur_state, st->ref_obj_id); + WARN_ON_ONCE(err && err != -EACCES); + if (err) { + int insn_idx = 0; + + for (int i = 0; i < env->cur_state->acquired_refs; i++) { + if (env->cur_state->refs[i].id == env->cur_state->active_irq_id) { + insn_idx = env->cur_state->refs[i].insn_idx; + break; + } + } + + verbose(env, "cannot restore irq state out of order, expected id=%d acquired at insn_idx=%d\n", + env->cur_state->active_irq_id, insn_idx); + return err; + } + + __mark_reg_not_init(env, st); + + bpf_mark_stack_write(env, reg->frameno, BIT(spi)); + + for (i = 0; i < BPF_REG_SIZE; i++) + slot->slot_type[i] = STACK_INVALID; + + mark_stack_slot_scratched(env, spi); + return 0; +} + +static bool is_irq_flag_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + struct bpf_stack_state *slot; + int spi, i; + + /* For -ERANGE (i.e. spi not falling into allocated stack slots), we + * will do check_mem_access to check and update stack bounds later, so + * return true for that case. + */ + spi = irq_flag_get_spi(env, reg); + if (spi == -ERANGE) + return true; + if (spi < 0) + return false; + + slot = &state->stack[spi]; + + for (i = 0; i < BPF_REG_SIZE; i++) + if (slot->slot_type[i] == STACK_IRQ_FLAG) + return false; + return true; +} + +static int is_irq_flag_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + struct bpf_stack_state *slot; + struct bpf_reg_state *st; + int spi, i; + + spi = irq_flag_get_spi(env, reg); + if (spi < 0) + return -EINVAL; + + slot = &state->stack[spi]; + st = &slot->spilled_ptr; + + if (!st->ref_obj_id) + return -EINVAL; + + for (i = 0; i < BPF_REG_SIZE; i++) + if (slot->slot_type[i] != STACK_IRQ_FLAG) + return -EINVAL; + return 0; +} + +/* Check if given stack slot is "special": + * - spilled register state (STACK_SPILL); + * - dynptr state (STACK_DYNPTR); + * - iter state (STACK_ITER). + * - irq flag state (STACK_IRQ_FLAG) + */ +static bool is_stack_slot_special(const struct bpf_stack_state *stack) +{ + enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; + + switch (type) { + case STACK_SPILL: + case STACK_DYNPTR: + case STACK_ITER: + case STACK_IRQ_FLAG: + return true; + case STACK_INVALID: + case STACK_MISC: + case STACK_ZERO: + return false; + default: + WARN_ONCE(1, "unknown stack slot type %d\n", type); + return true; + } +} + +/* The reg state of a pointer or a bounded scalar was saved when + * it was spilled to the stack. + */ +static bool is_spilled_reg(const struct bpf_stack_state *stack) +{ + return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; +} + +static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) +{ + return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && + stack->spilled_ptr.type == SCALAR_VALUE; +} + +static bool is_spilled_scalar_reg64(const struct bpf_stack_state *stack) +{ + return stack->slot_type[0] == STACK_SPILL && + stack->spilled_ptr.type == SCALAR_VALUE; +} + +/* Mark stack slot as STACK_MISC, unless it is already STACK_INVALID, in which + * case they are equivalent, or it's STACK_ZERO, in which case we preserve + * more precise STACK_ZERO. + * Regardless of allow_ptr_leaks setting (i.e., privileged or unprivileged + * mode), we won't promote STACK_INVALID to STACK_MISC. In privileged case it is + * unnecessary as both are considered equivalent when loading data and pruning, + * in case of unprivileged mode it will be incorrect to allow reads of invalid + * slots. + */ +static void mark_stack_slot_misc(struct bpf_verifier_env *env, u8 *stype) +{ + if (*stype == STACK_ZERO) + return; + if (*stype == STACK_INVALID) + return; + *stype = STACK_MISC; +} + +static void scrub_spilled_slot(u8 *stype) +{ + if (*stype != STACK_INVALID) + *stype = STACK_MISC; +} + +/* copy array src of length n * size bytes to dst. dst is reallocated if it's too + * small to hold src. This is different from krealloc since we don't want to preserve + * the contents of dst. + * + * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could + * not be allocated. + */ +static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) +{ + size_t alloc_bytes; + void *orig = dst; + size_t bytes; + + if (ZERO_OR_NULL_PTR(src)) + goto out; + + if (unlikely(check_mul_overflow(n, size, &bytes))) + return NULL; + + alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); + dst = krealloc(orig, alloc_bytes, flags); + if (!dst) { + kfree(orig); + return NULL; + } + + memcpy(dst, src, bytes); +out: + return dst ? dst : ZERO_SIZE_PTR; +} + +/* resize an array from old_n items to new_n items. the array is reallocated if it's too + * small to hold new_n items. new items are zeroed out if the array grows. + * + * Contrary to krealloc_array, does not free arr if new_n is zero. + */ +static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) +{ + size_t alloc_size; + void *new_arr; + + if (!new_n || old_n == new_n) + goto out; + + alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); + new_arr = krealloc(arr, alloc_size, GFP_KERNEL_ACCOUNT); + if (!new_arr) { + kfree(arr); + return NULL; + } + arr = new_arr; + + if (new_n > old_n) + memset(arr + old_n * size, 0, (new_n - old_n) * size); + +out: + return arr ? arr : ZERO_SIZE_PTR; +} + +static int copy_reference_state(struct bpf_verifier_state *dst, const struct bpf_verifier_state *src) +{ + dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, + sizeof(struct bpf_reference_state), GFP_KERNEL_ACCOUNT); + if (!dst->refs) + return -ENOMEM; + + dst->acquired_refs = src->acquired_refs; + dst->active_locks = src->active_locks; + dst->active_preempt_locks = src->active_preempt_locks; + dst->active_rcu_locks = src->active_rcu_locks; + dst->active_irq_id = src->active_irq_id; + dst->active_lock_id = src->active_lock_id; + dst->active_lock_ptr = src->active_lock_ptr; + return 0; +} + +static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) +{ + size_t n = src->allocated_stack / BPF_REG_SIZE; + + dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), + GFP_KERNEL_ACCOUNT); + if (!dst->stack) + return -ENOMEM; + + dst->allocated_stack = src->allocated_stack; + return 0; +} + +static int resize_reference_state(struct bpf_verifier_state *state, size_t n) +{ + state->refs = realloc_array(state->refs, state->acquired_refs, n, + sizeof(struct bpf_reference_state)); + if (!state->refs) + return -ENOMEM; + + state->acquired_refs = n; + return 0; +} + +/* Possibly update state->allocated_stack to be at least size bytes. Also + * possibly update the function's high-water mark in its bpf_subprog_info. + */ +static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) +{ + size_t old_n = state->allocated_stack / BPF_REG_SIZE, n; + + /* The stack size is always a multiple of BPF_REG_SIZE. */ + size = round_up(size, BPF_REG_SIZE); + n = size / BPF_REG_SIZE; + + if (old_n >= n) + return 0; + + state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); + if (!state->stack) + return -ENOMEM; + + state->allocated_stack = size; + + /* update known max for given subprogram */ + if (env->subprog_info[state->subprogno].stack_depth < size) + env->subprog_info[state->subprogno].stack_depth = size; + + return 0; +} + +/* Acquire a pointer id from the env and update the state->refs to include + * this new pointer reference. + * On success, returns a valid pointer id to associate with the register + * On failure, returns a negative errno. + */ +static struct bpf_reference_state *acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) +{ + struct bpf_verifier_state *state = env->cur_state; + int new_ofs = state->acquired_refs; + int err; + + err = resize_reference_state(state, state->acquired_refs + 1); + if (err) + return NULL; + state->refs[new_ofs].insn_idx = insn_idx; + + return &state->refs[new_ofs]; +} + +static int acquire_reference(struct bpf_verifier_env *env, int insn_idx) +{ + struct bpf_reference_state *s; + + s = acquire_reference_state(env, insn_idx); + if (!s) + return -ENOMEM; + s->type = REF_TYPE_PTR; + s->id = ++env->id_gen; + return s->id; +} + +static int acquire_lock_state(struct bpf_verifier_env *env, int insn_idx, enum ref_state_type type, + int id, void *ptr) +{ + struct bpf_verifier_state *state = env->cur_state; + struct bpf_reference_state *s; + + s = acquire_reference_state(env, insn_idx); + if (!s) + return -ENOMEM; + s->type = type; + s->id = id; + s->ptr = ptr; + + state->active_locks++; + state->active_lock_id = id; + state->active_lock_ptr = ptr; + return 0; +} + +static int acquire_irq_state(struct bpf_verifier_env *env, int insn_idx) +{ + struct bpf_verifier_state *state = env->cur_state; + struct bpf_reference_state *s; + + s = acquire_reference_state(env, insn_idx); + if (!s) + return -ENOMEM; + s->type = REF_TYPE_IRQ; + s->id = ++env->id_gen; + + state->active_irq_id = s->id; + return s->id; +} + +static void release_reference_state(struct bpf_verifier_state *state, int idx) +{ + int last_idx; + size_t rem; + + /* IRQ state requires the relative ordering of elements remaining the + * same, since it relies on the refs array to behave as a stack, so that + * it can detect out-of-order IRQ restore. Hence use memmove to shift + * the array instead of swapping the final element into the deleted idx. + */ + last_idx = state->acquired_refs - 1; + rem = state->acquired_refs - idx - 1; + if (last_idx && idx != last_idx) + memmove(&state->refs[idx], &state->refs[idx + 1], sizeof(*state->refs) * rem); + memset(&state->refs[last_idx], 0, sizeof(*state->refs)); + state->acquired_refs--; + return; +} + +static bool find_reference_state(struct bpf_verifier_state *state, int ptr_id) +{ + int i; + + for (i = 0; i < state->acquired_refs; i++) + if (state->refs[i].id == ptr_id) + return true; + + return false; +} + +static int release_lock_state(struct bpf_verifier_state *state, int type, int id, void *ptr) +{ + void *prev_ptr = NULL; + u32 prev_id = 0; + int i; + + for (i = 0; i < state->acquired_refs; i++) { + if (state->refs[i].type == type && state->refs[i].id == id && + state->refs[i].ptr == ptr) { + release_reference_state(state, i); + state->active_locks--; + /* Reassign active lock (id, ptr). */ + state->active_lock_id = prev_id; + state->active_lock_ptr = prev_ptr; + return 0; + } + if (state->refs[i].type & REF_TYPE_LOCK_MASK) { + prev_id = state->refs[i].id; + prev_ptr = state->refs[i].ptr; + } + } + return -EINVAL; +} + +static int release_irq_state(struct bpf_verifier_state *state, int id) +{ + u32 prev_id = 0; + int i; + + if (id != state->active_irq_id) + return -EACCES; + + for (i = 0; i < state->acquired_refs; i++) { + if (state->refs[i].type != REF_TYPE_IRQ) + continue; + if (state->refs[i].id == id) { + release_reference_state(state, i); + state->active_irq_id = prev_id; + return 0; + } else { + prev_id = state->refs[i].id; + } + } + return -EINVAL; +} + +static struct bpf_reference_state *find_lock_state(struct bpf_verifier_state *state, enum ref_state_type type, + int id, void *ptr) +{ + int i; + + for (i = 0; i < state->acquired_refs; i++) { + struct bpf_reference_state *s = &state->refs[i]; + + if (!(s->type & type)) + continue; + + if (s->id == id && s->ptr == ptr) + return s; + } + return NULL; +} + +static void update_peak_states(struct bpf_verifier_env *env) +{ + u32 cur_states; + + cur_states = env->explored_states_size + env->free_list_size + env->num_backedges; + env->peak_states = max(env->peak_states, cur_states); +} + +static void free_func_state(struct bpf_func_state *state) +{ + if (!state) + return; + kfree(state->stack); + kfree(state); +} + +static void clear_jmp_history(struct bpf_verifier_state *state) +{ + kfree(state->jmp_history); + state->jmp_history = NULL; + state->jmp_history_cnt = 0; +} + +static void free_verifier_state(struct bpf_verifier_state *state, + bool free_self) +{ + int i; + + for (i = 0; i <= state->curframe; i++) { + free_func_state(state->frame[i]); + state->frame[i] = NULL; + } + kfree(state->refs); + clear_jmp_history(state); + if (free_self) + kfree(state); +} + +/* struct bpf_verifier_state->parent refers to states + * that are in either of env->{expored_states,free_list}. + * In both cases the state is contained in struct bpf_verifier_state_list. + */ +static struct bpf_verifier_state_list *state_parent_as_list(struct bpf_verifier_state *st) +{ + if (st->parent) + return container_of(st->parent, struct bpf_verifier_state_list, state); + return NULL; +} + +static bool incomplete_read_marks(struct bpf_verifier_env *env, + struct bpf_verifier_state *st); + +/* A state can be freed if it is no longer referenced: + * - is in the env->free_list; + * - has no children states; + */ +static void maybe_free_verifier_state(struct bpf_verifier_env *env, + struct bpf_verifier_state_list *sl) +{ + if (!sl->in_free_list + || sl->state.branches != 0 + || incomplete_read_marks(env, &sl->state)) + return; + list_del(&sl->node); + free_verifier_state(&sl->state, false); + kfree(sl); + env->free_list_size--; +} + +/* copy verifier state from src to dst growing dst stack space + * when necessary to accommodate larger src stack + */ +static int copy_func_state(struct bpf_func_state *dst, + const struct bpf_func_state *src) +{ + memcpy(dst, src, offsetof(struct bpf_func_state, stack)); + return copy_stack_state(dst, src); +} + +static int copy_verifier_state(struct bpf_verifier_state *dst_state, + const struct bpf_verifier_state *src) +{ + struct bpf_func_state *dst; + int i, err; + + dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, + src->jmp_history_cnt, sizeof(*dst_state->jmp_history), + GFP_KERNEL_ACCOUNT); + if (!dst_state->jmp_history) + return -ENOMEM; + dst_state->jmp_history_cnt = src->jmp_history_cnt; + + /* if dst has more stack frames then src frame, free them, this is also + * necessary in case of exceptional exits using bpf_throw. + */ + for (i = src->curframe + 1; i <= dst_state->curframe; i++) { + free_func_state(dst_state->frame[i]); + dst_state->frame[i] = NULL; + } + err = copy_reference_state(dst_state, src); + if (err) + return err; + dst_state->speculative = src->speculative; + dst_state->in_sleepable = src->in_sleepable; + dst_state->cleaned = src->cleaned; + dst_state->curframe = src->curframe; + dst_state->branches = src->branches; + dst_state->parent = src->parent; + dst_state->first_insn_idx = src->first_insn_idx; + dst_state->last_insn_idx = src->last_insn_idx; + dst_state->dfs_depth = src->dfs_depth; + dst_state->callback_unroll_depth = src->callback_unroll_depth; + dst_state->may_goto_depth = src->may_goto_depth; + dst_state->equal_state = src->equal_state; + for (i = 0; i <= src->curframe; i++) { + dst = dst_state->frame[i]; + if (!dst) { + dst = kzalloc(sizeof(*dst), GFP_KERNEL_ACCOUNT); + if (!dst) + return -ENOMEM; + dst_state->frame[i] = dst; + } + err = copy_func_state(dst, src->frame[i]); + if (err) + return err; + } + return 0; +} + +static u32 state_htab_size(struct bpf_verifier_env *env) +{ + return env->prog->len; +} + +static struct list_head *explored_state(struct bpf_verifier_env *env, int idx) +{ + struct bpf_verifier_state *cur = env->cur_state; + struct bpf_func_state *state = cur->frame[cur->curframe]; + + return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; +} + +static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) +{ + int fr; + + if (a->curframe != b->curframe) + return false; + + for (fr = a->curframe; fr >= 0; fr--) + if (a->frame[fr]->callsite != b->frame[fr]->callsite) + return false; + + return true; +} + +/* Return IP for a given frame in a call stack */ +static u32 frame_insn_idx(struct bpf_verifier_state *st, u32 frame) +{ + return frame == st->curframe + ? st->insn_idx + : st->frame[frame + 1]->callsite; +} + +/* For state @st look for a topmost frame with frame_insn_idx() in some SCC, + * if such frame exists form a corresponding @callchain as an array of + * call sites leading to this frame and SCC id. + * E.g.: + * + * void foo() { A: loop {... SCC#1 ...}; } + * void bar() { B: loop { C: foo(); ... SCC#2 ... } + * D: loop { E: foo(); ... SCC#3 ... } } + * void main() { F: bar(); } + * + * @callchain at (A) would be either (F,SCC#2) or (F,SCC#3) depending + * on @st frame call sites being (F,C,A) or (F,E,A). + */ +static bool compute_scc_callchain(struct bpf_verifier_env *env, + struct bpf_verifier_state *st, + struct bpf_scc_callchain *callchain) +{ + u32 i, scc, insn_idx; + + memset(callchain, 0, sizeof(*callchain)); + for (i = 0; i <= st->curframe; i++) { + insn_idx = frame_insn_idx(st, i); + scc = env->insn_aux_data[insn_idx].scc; + if (scc) { + callchain->scc = scc; + break; + } else if (i < st->curframe) { + callchain->callsites[i] = insn_idx; + } else { + return false; + } + } + return true; +} + +/* Check if bpf_scc_visit instance for @callchain exists. */ +static struct bpf_scc_visit *scc_visit_lookup(struct bpf_verifier_env *env, + struct bpf_scc_callchain *callchain) +{ + struct bpf_scc_info *info = env->scc_info[callchain->scc]; + struct bpf_scc_visit *visits = info->visits; + u32 i; + + if (!info) + return NULL; + for (i = 0; i < info->num_visits; i++) + if (memcmp(callchain, &visits[i].callchain, sizeof(*callchain)) == 0) + return &visits[i]; + return NULL; +} + +/* Allocate a new bpf_scc_visit instance corresponding to @callchain. + * Allocated instances are alive for a duration of the do_check_common() + * call and are freed by free_states(). + */ +static struct bpf_scc_visit *scc_visit_alloc(struct bpf_verifier_env *env, + struct bpf_scc_callchain *callchain) +{ + struct bpf_scc_visit *visit; + struct bpf_scc_info *info; + u32 scc, num_visits; + u64 new_sz; + + scc = callchain->scc; + info = env->scc_info[scc]; + num_visits = info ? info->num_visits : 0; + new_sz = sizeof(*info) + sizeof(struct bpf_scc_visit) * (num_visits + 1); + info = kvrealloc(env->scc_info[scc], new_sz, GFP_KERNEL_ACCOUNT); + if (!info) + return NULL; + env->scc_info[scc] = info; + info->num_visits = num_visits + 1; + visit = &info->visits[num_visits]; + memset(visit, 0, sizeof(*visit)); + memcpy(&visit->callchain, callchain, sizeof(*callchain)); + return visit; +} + +/* Form a string '(callsite#1,callsite#2,...,scc)' in env->tmp_str_buf */ +static char *format_callchain(struct bpf_verifier_env *env, struct bpf_scc_callchain *callchain) +{ + char *buf = env->tmp_str_buf; + int i, delta = 0; + + delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "("); + for (i = 0; i < ARRAY_SIZE(callchain->callsites); i++) { + if (!callchain->callsites[i]) + break; + delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u,", + callchain->callsites[i]); + } + delta += snprintf(buf + delta, TMP_STR_BUF_LEN - delta, "%u)", callchain->scc); + return env->tmp_str_buf; +} + +/* If callchain for @st exists (@st is in some SCC), ensure that + * bpf_scc_visit instance for this callchain exists. + * If instance does not exist or is empty, assign visit->entry_state to @st. + */ +static int maybe_enter_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) +{ + struct bpf_scc_callchain *callchain = &env->callchain_buf; + struct bpf_scc_visit *visit; + + if (!compute_scc_callchain(env, st, callchain)) + return 0; + visit = scc_visit_lookup(env, callchain); + visit = visit ?: scc_visit_alloc(env, callchain); + if (!visit) + return -ENOMEM; + if (!visit->entry_state) { + visit->entry_state = st; + if (env->log.level & BPF_LOG_LEVEL2) + verbose(env, "SCC enter %s\n", format_callchain(env, callchain)); + } + return 0; +} + +static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit); + +/* If callchain for @st exists (@st is in some SCC), make it empty: + * - set visit->entry_state to NULL; + * - flush accumulated backedges. + */ +static int maybe_exit_scc(struct bpf_verifier_env *env, struct bpf_verifier_state *st) +{ + struct bpf_scc_callchain *callchain = &env->callchain_buf; + struct bpf_scc_visit *visit; + + if (!compute_scc_callchain(env, st, callchain)) + return 0; + visit = scc_visit_lookup(env, callchain); + if (!visit) { + /* + * If path traversal stops inside an SCC, corresponding bpf_scc_visit + * must exist for non-speculative paths. For non-speculative paths + * traversal stops when: + * a. Verification error is found, maybe_exit_scc() is not called. + * b. Top level BPF_EXIT is reached. Top level BPF_EXIT is not a member + * of any SCC. + * c. A checkpoint is reached and matched. Checkpoints are created by + * is_state_visited(), which calls maybe_enter_scc(), which allocates + * bpf_scc_visit instances for checkpoints within SCCs. + * (c) is the only case that can reach this point. + */ + if (!st->speculative) { + verifier_bug(env, "scc exit: no visit info for call chain %s", + format_callchain(env, callchain)); + return -EFAULT; + } + return 0; + } + if (visit->entry_state != st) + return 0; + if (env->log.level & BPF_LOG_LEVEL2) + verbose(env, "SCC exit %s\n", format_callchain(env, callchain)); + visit->entry_state = NULL; + env->num_backedges -= visit->num_backedges; + visit->num_backedges = 0; + update_peak_states(env); + return propagate_backedges(env, visit); +} + +/* Lookup an bpf_scc_visit instance corresponding to @st callchain + * and add @backedge to visit->backedges. @st callchain must exist. + */ +static int add_scc_backedge(struct bpf_verifier_env *env, + struct bpf_verifier_state *st, + struct bpf_scc_backedge *backedge) +{ + struct bpf_scc_callchain *callchain = &env->callchain_buf; + struct bpf_scc_visit *visit; + + if (!compute_scc_callchain(env, st, callchain)) { + verifier_bug(env, "add backedge: no SCC in verification path, insn_idx %d", + st->insn_idx); + return -EFAULT; + } + visit = scc_visit_lookup(env, callchain); + if (!visit) { + verifier_bug(env, "add backedge: no visit info for call chain %s", + format_callchain(env, callchain)); + return -EFAULT; + } + if (env->log.level & BPF_LOG_LEVEL2) + verbose(env, "SCC backedge %s\n", format_callchain(env, callchain)); + backedge->next = visit->backedges; + visit->backedges = backedge; + visit->num_backedges++; + env->num_backedges++; + update_peak_states(env); + return 0; +} + +/* bpf_reg_state->live marks for registers in a state @st are incomplete, + * if state @st is in some SCC and not all execution paths starting at this + * SCC are fully explored. + */ +static bool incomplete_read_marks(struct bpf_verifier_env *env, + struct bpf_verifier_state *st) +{ + struct bpf_scc_callchain *callchain = &env->callchain_buf; + struct bpf_scc_visit *visit; + + if (!compute_scc_callchain(env, st, callchain)) + return false; + visit = scc_visit_lookup(env, callchain); + if (!visit) + return false; + return !!visit->backedges; +} + +static void free_backedges(struct bpf_scc_visit *visit) +{ + struct bpf_scc_backedge *backedge, *next; + + for (backedge = visit->backedges; backedge; backedge = next) { + free_verifier_state(&backedge->state, false); + next = backedge->next; + kfree(backedge); + } + visit->backedges = NULL; +} + +static int update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) +{ + struct bpf_verifier_state_list *sl = NULL, *parent_sl; + struct bpf_verifier_state *parent; + int err; + + while (st) { + u32 br = --st->branches; + + /* verifier_bug_if(br > 1, ...) technically makes sense here, + * but see comment in push_stack(), hence: + */ + verifier_bug_if((int)br < 0, env, "%s:branches_to_explore=%d", __func__, br); + if (br) + break; + err = maybe_exit_scc(env, st); + if (err) + return err; + parent = st->parent; + parent_sl = state_parent_as_list(st); + if (sl) + maybe_free_verifier_state(env, sl); + st = parent; + sl = parent_sl; + } + return 0; +} + +static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, + int *insn_idx, bool pop_log) +{ + struct bpf_verifier_state *cur = env->cur_state; + struct bpf_verifier_stack_elem *elem, *head = env->head; + int err; + + if (env->head == NULL) + return -ENOENT; + + if (cur) { + err = copy_verifier_state(cur, &head->st); + if (err) + return err; + } + if (pop_log) + bpf_vlog_reset(&env->log, head->log_pos); + if (insn_idx) + *insn_idx = head->insn_idx; + if (prev_insn_idx) + *prev_insn_idx = head->prev_insn_idx; + elem = head->next; + free_verifier_state(&head->st, false); + kfree(head); + env->head = elem; + env->stack_size--; + return 0; +} + +static bool error_recoverable_with_nospec(int err) +{ + /* Should only return true for non-fatal errors that are allowed to + * occur during speculative verification. For these we can insert a + * nospec and the program might still be accepted. Do not include + * something like ENOMEM because it is likely to re-occur for the next + * architectural path once it has been recovered-from in all speculative + * paths. + */ + return err == -EPERM || err == -EACCES || err == -EINVAL; +} + +static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, + int insn_idx, int prev_insn_idx, + bool speculative) +{ + struct bpf_verifier_state *cur = env->cur_state; + struct bpf_verifier_stack_elem *elem; + int err; + + elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); + if (!elem) + return ERR_PTR(-ENOMEM); + + elem->insn_idx = insn_idx; + elem->prev_insn_idx = prev_insn_idx; + elem->next = env->head; + elem->log_pos = env->log.end_pos; + env->head = elem; + env->stack_size++; + err = copy_verifier_state(&elem->st, cur); + if (err) + return ERR_PTR(-ENOMEM); + elem->st.speculative |= speculative; + if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { + verbose(env, "The sequence of %d jumps is too complex.\n", + env->stack_size); + return ERR_PTR(-E2BIG); + } + if (elem->st.parent) { + ++elem->st.parent->branches; + /* WARN_ON(branches > 2) technically makes sense here, + * but + * 1. speculative states will bump 'branches' for non-branch + * instructions + * 2. is_state_visited() heuristics may decide not to create + * a new state for a sequence of branches and all such current + * and cloned states will be pointing to a single parent state + * which might have large 'branches' count. + */ + } + return &elem->st; +} + +#define CALLER_SAVED_REGS 6 +static const int caller_saved[CALLER_SAVED_REGS] = { + BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 +}; + +/* This helper doesn't clear reg->id */ +static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) +{ + reg->var_off = tnum_const(imm); + reg->smin_value = (s64)imm; + reg->smax_value = (s64)imm; + reg->umin_value = imm; + reg->umax_value = imm; + + reg->s32_min_value = (s32)imm; + reg->s32_max_value = (s32)imm; + reg->u32_min_value = (u32)imm; + reg->u32_max_value = (u32)imm; +} + +/* Mark the unknown part of a register (variable offset or scalar value) as + * known to have the value @imm. + */ +static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) +{ + /* Clear off and union(map_ptr, range) */ + memset(((u8 *)reg) + sizeof(reg->type), 0, + offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); + reg->id = 0; + reg->ref_obj_id = 0; + ___mark_reg_known(reg, imm); +} + +static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) +{ + reg->var_off = tnum_const_subreg(reg->var_off, imm); + reg->s32_min_value = (s32)imm; + reg->s32_max_value = (s32)imm; + reg->u32_min_value = (u32)imm; + reg->u32_max_value = (u32)imm; +} + +/* Mark the 'variable offset' part of a register as zero. This should be + * used only on registers holding a pointer type. + */ +static void __mark_reg_known_zero(struct bpf_reg_state *reg) +{ + __mark_reg_known(reg, 0); +} + +static void __mark_reg_const_zero(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + __mark_reg_known(reg, 0); + reg->type = SCALAR_VALUE; + /* all scalars are assumed imprecise initially (unless unprivileged, + * in which case everything is forced to be precise) + */ + reg->precise = !env->bpf_capable; +} + +static void mark_reg_known_zero(struct bpf_verifier_env *env, + struct bpf_reg_state *regs, u32 regno) +{ + if (WARN_ON(regno >= MAX_BPF_REG)) { + verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); + /* Something bad happened, let's kill all regs */ + for (regno = 0; regno < MAX_BPF_REG; regno++) + __mark_reg_not_init(env, regs + regno); + return; + } + __mark_reg_known_zero(regs + regno); +} + +static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, + bool first_slot, int dynptr_id) +{ + /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for + * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply + * set it unconditionally as it is ignored for STACK_DYNPTR anyway. + */ + __mark_reg_known_zero(reg); + reg->type = CONST_PTR_TO_DYNPTR; + /* Give each dynptr a unique id to uniquely associate slices to it. */ + reg->id = dynptr_id; + reg->dynptr.type = type; + reg->dynptr.first_slot = first_slot; +} + +static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) +{ + if (base_type(reg->type) == PTR_TO_MAP_VALUE) { + const struct bpf_map *map = reg->map_ptr; + + if (map->inner_map_meta) { + reg->type = CONST_PTR_TO_MAP; + reg->map_ptr = map->inner_map_meta; + /* transfer reg's id which is unique for every map_lookup_elem + * as UID of the inner map. + */ + if (btf_record_has_field(map->inner_map_meta->record, + BPF_TIMER | BPF_WORKQUEUE | BPF_TASK_WORK)) { + reg->map_uid = reg->id; + } + } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { + reg->type = PTR_TO_XDP_SOCK; + } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || + map->map_type == BPF_MAP_TYPE_SOCKHASH) { + reg->type = PTR_TO_SOCKET; + } else { + reg->type = PTR_TO_MAP_VALUE; + } + return; + } + + reg->type &= ~PTR_MAYBE_NULL; +} + +static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, + struct btf_field_graph_root *ds_head) +{ + __mark_reg_known_zero(®s[regno]); + regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; + regs[regno].btf = ds_head->btf; + regs[regno].btf_id = ds_head->value_btf_id; + regs[regno].off = ds_head->node_offset; +} + +static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) +{ + return type_is_pkt_pointer(reg->type); +} + +static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) +{ + return reg_is_pkt_pointer(reg) || + reg->type == PTR_TO_PACKET_END; +} + +static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) +{ + return base_type(reg->type) == PTR_TO_MEM && + (reg->type & + (DYNPTR_TYPE_SKB | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META)); +} + +/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ +static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, + enum bpf_reg_type which) +{ + /* The register can already have a range from prior markings. + * This is fine as long as it hasn't been advanced from its + * origin. + */ + return reg->type == which && + reg->id == 0 && + reg->off == 0 && + tnum_equals_const(reg->var_off, 0); +} + +/* Reset the min/max bounds of a register */ +static void __mark_reg_unbounded(struct bpf_reg_state *reg) +{ + reg->smin_value = S64_MIN; + reg->smax_value = S64_MAX; + reg->umin_value = 0; + reg->umax_value = U64_MAX; + + reg->s32_min_value = S32_MIN; + reg->s32_max_value = S32_MAX; + reg->u32_min_value = 0; + reg->u32_max_value = U32_MAX; +} + +static void __mark_reg64_unbounded(struct bpf_reg_state *reg) +{ + reg->smin_value = S64_MIN; + reg->smax_value = S64_MAX; + reg->umin_value = 0; + reg->umax_value = U64_MAX; +} + +static void __mark_reg32_unbounded(struct bpf_reg_state *reg) +{ + reg->s32_min_value = S32_MIN; + reg->s32_max_value = S32_MAX; + reg->u32_min_value = 0; + reg->u32_max_value = U32_MAX; +} + +static void __update_reg32_bounds(struct bpf_reg_state *reg) +{ + struct tnum var32_off = tnum_subreg(reg->var_off); + + /* min signed is max(sign bit) | min(other bits) */ + reg->s32_min_value = max_t(s32, reg->s32_min_value, + var32_off.value | (var32_off.mask & S32_MIN)); + /* max signed is min(sign bit) | max(other bits) */ + reg->s32_max_value = min_t(s32, reg->s32_max_value, + var32_off.value | (var32_off.mask & S32_MAX)); + reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); + reg->u32_max_value = min(reg->u32_max_value, + (u32)(var32_off.value | var32_off.mask)); +} + +static void __update_reg64_bounds(struct bpf_reg_state *reg) +{ + /* min signed is max(sign bit) | min(other bits) */ + reg->smin_value = max_t(s64, reg->smin_value, + reg->var_off.value | (reg->var_off.mask & S64_MIN)); + /* max signed is min(sign bit) | max(other bits) */ + reg->smax_value = min_t(s64, reg->smax_value, + reg->var_off.value | (reg->var_off.mask & S64_MAX)); + reg->umin_value = max(reg->umin_value, reg->var_off.value); + reg->umax_value = min(reg->umax_value, + reg->var_off.value | reg->var_off.mask); +} + +static void __update_reg_bounds(struct bpf_reg_state *reg) +{ + __update_reg32_bounds(reg); + __update_reg64_bounds(reg); +} + +/* Uses signed min/max values to inform unsigned, and vice-versa */ +static void __reg32_deduce_bounds(struct bpf_reg_state *reg) +{ + /* If upper 32 bits of u64/s64 range don't change, we can use lower 32 + * bits to improve our u32/s32 boundaries. + * + * E.g., the case where we have upper 32 bits as zero ([10, 20] in + * u64) is pretty trivial, it's obvious that in u32 we'll also have + * [10, 20] range. But this property holds for any 64-bit range as + * long as upper 32 bits in that entire range of values stay the same. + * + * E.g., u64 range [0x10000000A, 0x10000000F] ([4294967306, 4294967311] + * in decimal) has the same upper 32 bits throughout all the values in + * that range. As such, lower 32 bits form a valid [0xA, 0xF] ([10, 15]) + * range. + * + * Note also, that [0xA, 0xF] is a valid range both in u32 and in s32, + * following the rules outlined below about u64/s64 correspondence + * (which equally applies to u32 vs s32 correspondence). In general it + * depends on actual hexadecimal values of 32-bit range. They can form + * only valid u32, or only valid s32 ranges in some cases. + * + * So we use all these insights to derive bounds for subregisters here. + */ + if ((reg->umin_value >> 32) == (reg->umax_value >> 32)) { + /* u64 to u32 casting preserves validity of low 32 bits as + * a range, if upper 32 bits are the same + */ + reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->umin_value); + reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->umax_value); + + if ((s32)reg->umin_value <= (s32)reg->umax_value) { + reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); + reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); + } + } + if ((reg->smin_value >> 32) == (reg->smax_value >> 32)) { + /* low 32 bits should form a proper u32 range */ + if ((u32)reg->smin_value <= (u32)reg->smax_value) { + reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)reg->smin_value); + reg->u32_max_value = min_t(u32, reg->u32_max_value, (u32)reg->smax_value); + } + /* low 32 bits should form a proper s32 range */ + if ((s32)reg->smin_value <= (s32)reg->smax_value) { + reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); + reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); + } + } + /* Special case where upper bits form a small sequence of two + * sequential numbers (in 32-bit unsigned space, so 0xffffffff to + * 0x00000000 is also valid), while lower bits form a proper s32 range + * going from negative numbers to positive numbers. E.g., let's say we + * have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]). + * Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff, + * 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits, + * we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]). + * Note that it doesn't have to be 0xffffffff going to 0x00000000 in + * upper 32 bits. As a random example, s64 range + * [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range + * [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister. + */ + if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) && + (s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) { + reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value); + reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value); + } + if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) && + (s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) { + reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value); + reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value); + } + /* if u32 range forms a valid s32 range (due to matching sign bit), + * try to learn from that + */ + if ((s32)reg->u32_min_value <= (s32)reg->u32_max_value) { + reg->s32_min_value = max_t(s32, reg->s32_min_value, reg->u32_min_value); + reg->s32_max_value = min_t(s32, reg->s32_max_value, reg->u32_max_value); + } + /* If we cannot cross the sign boundary, then signed and unsigned bounds + * are the same, so combine. This works even in the negative case, e.g. + * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. + */ + if ((u32)reg->s32_min_value <= (u32)reg->s32_max_value) { + reg->u32_min_value = max_t(u32, reg->s32_min_value, reg->u32_min_value); + reg->u32_max_value = min_t(u32, reg->s32_max_value, reg->u32_max_value); + } +} + +static void __reg64_deduce_bounds(struct bpf_reg_state *reg) +{ + /* If u64 range forms a valid s64 range (due to matching sign bit), + * try to learn from that. Let's do a bit of ASCII art to see when + * this is happening. Let's take u64 range first: + * + * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX + * |-------------------------------|--------------------------------| + * + * Valid u64 range is formed when umin and umax are anywhere in the + * range [0, U64_MAX], and umin <= umax. u64 case is simple and + * straightforward. Let's see how s64 range maps onto the same range + * of values, annotated below the line for comparison: + * + * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX + * |-------------------------------|--------------------------------| + * 0 S64_MAX S64_MIN -1 + * + * So s64 values basically start in the middle and they are logically + * contiguous to the right of it, wrapping around from -1 to 0, and + * then finishing as S64_MAX (0x7fffffffffffffff) right before + * S64_MIN. We can try drawing the continuity of u64 vs s64 values + * more visually as mapped to sign-agnostic range of hex values. + * + * u64 start u64 end + * _______________________________________________________________ + * / \ + * 0 0x7fffffffffffffff 0x8000000000000000 U64_MAX + * |-------------------------------|--------------------------------| + * 0 S64_MAX S64_MIN -1 + * / \ + * >------------------------------ -------------------------------> + * s64 continues... s64 end s64 start s64 "midpoint" + * + * What this means is that, in general, we can't always derive + * something new about u64 from any random s64 range, and vice versa. + * + * But we can do that in two particular cases. One is when entire + * u64/s64 range is *entirely* contained within left half of the above + * diagram or when it is *entirely* contained in the right half. I.e.: + * + * |-------------------------------|--------------------------------| + * ^ ^ ^ ^ + * A B C D + * + * [A, B] and [C, D] are contained entirely in their respective halves + * and form valid contiguous ranges as both u64 and s64 values. [A, B] + * will be non-negative both as u64 and s64 (and in fact it will be + * identical ranges no matter the signedness). [C, D] treated as s64 + * will be a range of negative values, while in u64 it will be + * non-negative range of values larger than 0x8000000000000000. + * + * Now, any other range here can't be represented in both u64 and s64 + * simultaneously. E.g., [A, C], [A, D], [B, C], [B, D] are valid + * contiguous u64 ranges, but they are discontinuous in s64. [B, C] + * in s64 would be properly presented as [S64_MIN, C] and [B, S64_MAX], + * for example. Similarly, valid s64 range [D, A] (going from negative + * to positive values), would be two separate [D, U64_MAX] and [0, A] + * ranges as u64. Currently reg_state can't represent two segments per + * numeric domain, so in such situations we can only derive maximal + * possible range ([0, U64_MAX] for u64, and [S64_MIN, S64_MAX] for s64). + * + * So we use these facts to derive umin/umax from smin/smax and vice + * versa only if they stay within the same "half". This is equivalent + * to checking sign bit: lower half will have sign bit as zero, upper + * half have sign bit 1. Below in code we simplify this by just + * casting umin/umax as smin/smax and checking if they form valid + * range, and vice versa. Those are equivalent checks. + */ + if ((s64)reg->umin_value <= (s64)reg->umax_value) { + reg->smin_value = max_t(s64, reg->smin_value, reg->umin_value); + reg->smax_value = min_t(s64, reg->smax_value, reg->umax_value); + } + /* If we cannot cross the sign boundary, then signed and unsigned bounds + * are the same, so combine. This works even in the negative case, e.g. + * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. + */ + if ((u64)reg->smin_value <= (u64)reg->smax_value) { + reg->umin_value = max_t(u64, reg->smin_value, reg->umin_value); + reg->umax_value = min_t(u64, reg->smax_value, reg->umax_value); + } else { + /* If the s64 range crosses the sign boundary, then it's split + * between the beginning and end of the U64 domain. In that + * case, we can derive new bounds if the u64 range overlaps + * with only one end of the s64 range. + * + * In the following example, the u64 range overlaps only with + * positive portion of the s64 range. + * + * 0 U64_MAX + * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] | + * |----------------------------|----------------------------| + * |xxxxx s64 range xxxxxxxxx] [xxxxxxx| + * 0 S64_MAX S64_MIN -1 + * + * We can thus derive the following new s64 and u64 ranges. + * + * 0 U64_MAX + * | [xxxxxx u64 range xxxxx] | + * |----------------------------|----------------------------| + * | [xxxxxx s64 range xxxxx] | + * 0 S64_MAX S64_MIN -1 + * + * If they overlap in two places, we can't derive anything + * because reg_state can't represent two ranges per numeric + * domain. + * + * 0 U64_MAX + * | [xxxxxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxxxxx] | + * |----------------------------|----------------------------| + * |xxxxx s64 range xxxxxxxxx] [xxxxxxxxxx| + * 0 S64_MAX S64_MIN -1 + * + * The first condition below corresponds to the first diagram + * above. + */ + if (reg->umax_value < (u64)reg->smin_value) { + reg->smin_value = (s64)reg->umin_value; + reg->umax_value = min_t(u64, reg->umax_value, reg->smax_value); + } else if ((u64)reg->smax_value < reg->umin_value) { + /* This second condition considers the case where the u64 range + * overlaps with the negative portion of the s64 range: + * + * 0 U64_MAX + * | [xxxxxxxxxxxxxx u64 range xxxxxxxxxxxxxx] | + * |----------------------------|----------------------------| + * |xxxxxxxxx] [xxxxxxxxxxxx s64 range | + * 0 S64_MAX S64_MIN -1 + */ + reg->smax_value = (s64)reg->umax_value; + reg->umin_value = max_t(u64, reg->umin_value, reg->smin_value); + } + } +} + +static void __reg_deduce_mixed_bounds(struct bpf_reg_state *reg) +{ + /* Try to tighten 64-bit bounds from 32-bit knowledge, using 32-bit + * values on both sides of 64-bit range in hope to have tighter range. + * E.g., if r1 is [0x1'00000000, 0x3'80000000], and we learn from + * 32-bit signed > 0 operation that s32 bounds are now [1; 0x7fffffff]. + * With this, we can substitute 1 as low 32-bits of _low_ 64-bit bound + * (0x100000000 -> 0x100000001) and 0x7fffffff as low 32-bits of + * _high_ 64-bit bound (0x380000000 -> 0x37fffffff) and arrive at a + * better overall bounds for r1 as [0x1'000000001; 0x3'7fffffff]. + * We just need to make sure that derived bounds we are intersecting + * with are well-formed ranges in respective s64 or u64 domain, just + * like we do with similar kinds of 32-to-64 or 64-to-32 adjustments. + */ + __u64 new_umin, new_umax; + __s64 new_smin, new_smax; + + /* u32 -> u64 tightening, it's always well-formed */ + new_umin = (reg->umin_value & ~0xffffffffULL) | reg->u32_min_value; + new_umax = (reg->umax_value & ~0xffffffffULL) | reg->u32_max_value; + reg->umin_value = max_t(u64, reg->umin_value, new_umin); + reg->umax_value = min_t(u64, reg->umax_value, new_umax); + /* u32 -> s64 tightening, u32 range embedded into s64 preserves range validity */ + new_smin = (reg->smin_value & ~0xffffffffULL) | reg->u32_min_value; + new_smax = (reg->smax_value & ~0xffffffffULL) | reg->u32_max_value; + reg->smin_value = max_t(s64, reg->smin_value, new_smin); + reg->smax_value = min_t(s64, reg->smax_value, new_smax); + + /* Here we would like to handle a special case after sign extending load, + * when upper bits for a 64-bit range are all 1s or all 0s. + * + * Upper bits are all 1s when register is in a range: + * [0xffff_ffff_0000_0000, 0xffff_ffff_ffff_ffff] + * Upper bits are all 0s when register is in a range: + * [0x0000_0000_0000_0000, 0x0000_0000_ffff_ffff] + * Together this forms are continuous range: + * [0xffff_ffff_0000_0000, 0x0000_0000_ffff_ffff] + * + * Now, suppose that register range is in fact tighter: + * [0xffff_ffff_8000_0000, 0x0000_0000_ffff_ffff] (R) + * Also suppose that it's 32-bit range is positive, + * meaning that lower 32-bits of the full 64-bit register + * are in the range: + * [0x0000_0000, 0x7fff_ffff] (W) + * + * If this happens, then any value in a range: + * [0xffff_ffff_0000_0000, 0xffff_ffff_7fff_ffff] + * is smaller than a lowest bound of the range (R): + * 0xffff_ffff_8000_0000 + * which means that upper bits of the full 64-bit register + * can't be all 1s, when lower bits are in range (W). + * + * Note that: + * - 0xffff_ffff_8000_0000 == (s64)S32_MIN + * - 0x0000_0000_7fff_ffff == (s64)S32_MAX + * These relations are used in the conditions below. + */ + if (reg->s32_min_value >= 0 && reg->smin_value >= S32_MIN && reg->smax_value <= S32_MAX) { + reg->smin_value = reg->s32_min_value; + reg->smax_value = reg->s32_max_value; + reg->umin_value = reg->s32_min_value; + reg->umax_value = reg->s32_max_value; + reg->var_off = tnum_intersect(reg->var_off, + tnum_range(reg->smin_value, reg->smax_value)); + } +} + +static void __reg_deduce_bounds(struct bpf_reg_state *reg) +{ + __reg32_deduce_bounds(reg); + __reg64_deduce_bounds(reg); + __reg_deduce_mixed_bounds(reg); +} + +/* Attempts to improve var_off based on unsigned min/max information */ +static void __reg_bound_offset(struct bpf_reg_state *reg) +{ + struct tnum var64_off = tnum_intersect(reg->var_off, + tnum_range(reg->umin_value, + reg->umax_value)); + struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), + tnum_range(reg->u32_min_value, + reg->u32_max_value)); + + reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); +} + +static void reg_bounds_sync(struct bpf_reg_state *reg) +{ + /* We might have learned new bounds from the var_off. */ + __update_reg_bounds(reg); + /* We might have learned something about the sign bit. */ + __reg_deduce_bounds(reg); + __reg_deduce_bounds(reg); + __reg_deduce_bounds(reg); + /* We might have learned some bits from the bounds. */ + __reg_bound_offset(reg); + /* Intersecting with the old var_off might have improved our bounds + * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), + * then new var_off is (0; 0x7f...fc) which improves our umax. + */ + __update_reg_bounds(reg); +} + +static int reg_bounds_sanity_check(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, const char *ctx) +{ + const char *msg; + + if (reg->umin_value > reg->umax_value || + reg->smin_value > reg->smax_value || + reg->u32_min_value > reg->u32_max_value || + reg->s32_min_value > reg->s32_max_value) { + msg = "range bounds violation"; + goto out; + } + + if (tnum_is_const(reg->var_off)) { + u64 uval = reg->var_off.value; + s64 sval = (s64)uval; + + if (reg->umin_value != uval || reg->umax_value != uval || + reg->smin_value != sval || reg->smax_value != sval) { + msg = "const tnum out of sync with range bounds"; + goto out; + } + } + + if (tnum_subreg_is_const(reg->var_off)) { + u32 uval32 = tnum_subreg(reg->var_off).value; + s32 sval32 = (s32)uval32; + + if (reg->u32_min_value != uval32 || reg->u32_max_value != uval32 || + reg->s32_min_value != sval32 || reg->s32_max_value != sval32) { + msg = "const subreg tnum out of sync with range bounds"; + goto out; + } + } + + return 0; +out: + verifier_bug(env, "REG INVARIANTS VIOLATION (%s): %s u64=[%#llx, %#llx] " + "s64=[%#llx, %#llx] u32=[%#x, %#x] s32=[%#x, %#x] var_off=(%#llx, %#llx)", + ctx, msg, reg->umin_value, reg->umax_value, + reg->smin_value, reg->smax_value, + reg->u32_min_value, reg->u32_max_value, + reg->s32_min_value, reg->s32_max_value, + reg->var_off.value, reg->var_off.mask); + if (env->test_reg_invariants) + return -EFAULT; + __mark_reg_unbounded(reg); + return 0; +} + +static bool __reg32_bound_s64(s32 a) +{ + return a >= 0 && a <= S32_MAX; +} + +static void __reg_assign_32_into_64(struct bpf_reg_state *reg) +{ + reg->umin_value = reg->u32_min_value; + reg->umax_value = reg->u32_max_value; + + /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must + * be positive otherwise set to worse case bounds and refine later + * from tnum. + */ + if (__reg32_bound_s64(reg->s32_min_value) && + __reg32_bound_s64(reg->s32_max_value)) { + reg->smin_value = reg->s32_min_value; + reg->smax_value = reg->s32_max_value; + } else { + reg->smin_value = 0; + reg->smax_value = U32_MAX; + } +} + +/* Mark a register as having a completely unknown (scalar) value. */ +static void __mark_reg_unknown_imprecise(struct bpf_reg_state *reg) +{ + /* + * Clear type, off, and union(map_ptr, range) and + * padding between 'type' and union + */ + memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); + reg->type = SCALAR_VALUE; + reg->id = 0; + reg->ref_obj_id = 0; + reg->var_off = tnum_unknown; + reg->frameno = 0; + reg->precise = false; + __mark_reg_unbounded(reg); +} + +/* Mark a register as having a completely unknown (scalar) value, + * initialize .precise as true when not bpf capable. + */ +static void __mark_reg_unknown(const struct bpf_verifier_env *env, + struct bpf_reg_state *reg) +{ + __mark_reg_unknown_imprecise(reg); + reg->precise = !env->bpf_capable; +} + +static void mark_reg_unknown(struct bpf_verifier_env *env, + struct bpf_reg_state *regs, u32 regno) +{ + if (WARN_ON(regno >= MAX_BPF_REG)) { + verbose(env, "mark_reg_unknown(regs, %u)\n", regno); + /* Something bad happened, let's kill all regs except FP */ + for (regno = 0; regno < BPF_REG_FP; regno++) + __mark_reg_not_init(env, regs + regno); + return; + } + __mark_reg_unknown(env, regs + regno); +} + +static int __mark_reg_s32_range(struct bpf_verifier_env *env, + struct bpf_reg_state *regs, + u32 regno, + s32 s32_min, + s32 s32_max) +{ + struct bpf_reg_state *reg = regs + regno; + + reg->s32_min_value = max_t(s32, reg->s32_min_value, s32_min); + reg->s32_max_value = min_t(s32, reg->s32_max_value, s32_max); + + reg->smin_value = max_t(s64, reg->smin_value, s32_min); + reg->smax_value = min_t(s64, reg->smax_value, s32_max); + + reg_bounds_sync(reg); + + return reg_bounds_sanity_check(env, reg, "s32_range"); +} + +static void __mark_reg_not_init(const struct bpf_verifier_env *env, + struct bpf_reg_state *reg) +{ + __mark_reg_unknown(env, reg); + reg->type = NOT_INIT; +} + +static void mark_reg_not_init(struct bpf_verifier_env *env, + struct bpf_reg_state *regs, u32 regno) +{ + if (WARN_ON(regno >= MAX_BPF_REG)) { + verbose(env, "mark_reg_not_init(regs, %u)\n", regno); + /* Something bad happened, let's kill all regs except FP */ + for (regno = 0; regno < BPF_REG_FP; regno++) + __mark_reg_not_init(env, regs + regno); + return; + } + __mark_reg_not_init(env, regs + regno); +} + +static int mark_btf_ld_reg(struct bpf_verifier_env *env, + struct bpf_reg_state *regs, u32 regno, + enum bpf_reg_type reg_type, + struct btf *btf, u32 btf_id, + enum bpf_type_flag flag) +{ + switch (reg_type) { + case SCALAR_VALUE: + mark_reg_unknown(env, regs, regno); + return 0; + case PTR_TO_BTF_ID: + mark_reg_known_zero(env, regs, regno); + regs[regno].type = PTR_TO_BTF_ID | flag; + regs[regno].btf = btf; + regs[regno].btf_id = btf_id; + if (type_may_be_null(flag)) + regs[regno].id = ++env->id_gen; + return 0; + case PTR_TO_MEM: + mark_reg_known_zero(env, regs, regno); + regs[regno].type = PTR_TO_MEM | flag; + regs[regno].mem_size = 0; + return 0; + default: + verifier_bug(env, "unexpected reg_type %d in %s\n", reg_type, __func__); + return -EFAULT; + } +} + +#define DEF_NOT_SUBREG (0) +static void init_reg_state(struct bpf_verifier_env *env, + struct bpf_func_state *state) +{ + struct bpf_reg_state *regs = state->regs; + int i; + + for (i = 0; i < MAX_BPF_REG; i++) { + mark_reg_not_init(env, regs, i); + regs[i].subreg_def = DEF_NOT_SUBREG; + } + + /* frame pointer */ + regs[BPF_REG_FP].type = PTR_TO_STACK; + mark_reg_known_zero(env, regs, BPF_REG_FP); + regs[BPF_REG_FP].frameno = state->frameno; +} + +static struct bpf_retval_range retval_range(s32 minval, s32 maxval) +{ + return (struct bpf_retval_range){ minval, maxval }; +} + +#define BPF_MAIN_FUNC (-1) +static void init_func_state(struct bpf_verifier_env *env, + struct bpf_func_state *state, + int callsite, int frameno, int subprogno) +{ + state->callsite = callsite; + state->frameno = frameno; + state->subprogno = subprogno; + state->callback_ret_range = retval_range(0, 0); + init_reg_state(env, state); + mark_verifier_state_scratched(env); +} + +/* Similar to push_stack(), but for async callbacks */ +static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, + int insn_idx, int prev_insn_idx, + int subprog, bool is_sleepable) +{ + struct bpf_verifier_stack_elem *elem; + struct bpf_func_state *frame; + + elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL_ACCOUNT); + if (!elem) + return ERR_PTR(-ENOMEM); + + elem->insn_idx = insn_idx; + elem->prev_insn_idx = prev_insn_idx; + elem->next = env->head; + elem->log_pos = env->log.end_pos; + env->head = elem; + env->stack_size++; + if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { + verbose(env, + "The sequence of %d jumps is too complex for async cb.\n", + env->stack_size); + return ERR_PTR(-E2BIG); + } + /* Unlike push_stack() do not copy_verifier_state(). + * The caller state doesn't matter. + * This is async callback. It starts in a fresh stack. + * Initialize it similar to do_check_common(). + */ + elem->st.branches = 1; + elem->st.in_sleepable = is_sleepable; + frame = kzalloc(sizeof(*frame), GFP_KERNEL_ACCOUNT); + if (!frame) + return ERR_PTR(-ENOMEM); + init_func_state(env, frame, + BPF_MAIN_FUNC /* callsite */, + 0 /* frameno within this callchain */, + subprog /* subprog number within this prog */); + elem->st.frame[0] = frame; + return &elem->st; +} + + +enum reg_arg_type { + SRC_OP, /* register is used as source operand */ + DST_OP, /* register is used as destination operand */ + DST_OP_NO_MARK /* same as above, check only, don't mark */ +}; + +static int cmp_subprogs(const void *a, const void *b) +{ + return ((struct bpf_subprog_info *)a)->start - + ((struct bpf_subprog_info *)b)->start; +} + +/* Find subprogram that contains instruction at 'off' */ +struct bpf_subprog_info *bpf_find_containing_subprog(struct bpf_verifier_env *env, int off) +{ + struct bpf_subprog_info *vals = env->subprog_info; + int l, r, m; + + if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0) + return NULL; + + l = 0; + r = env->subprog_cnt - 1; + while (l < r) { + m = l + (r - l + 1) / 2; + if (vals[m].start <= off) + l = m; + else + r = m - 1; + } + return &vals[l]; +} + +/* Find subprogram that starts exactly at 'off' */ +static int find_subprog(struct bpf_verifier_env *env, int off) +{ + struct bpf_subprog_info *p; + + p = bpf_find_containing_subprog(env, off); + if (!p || p->start != off) + return -ENOENT; + return p - env->subprog_info; +} + +static int add_subprog(struct bpf_verifier_env *env, int off) +{ + int insn_cnt = env->prog->len; + int ret; + + if (off >= insn_cnt || off < 0) { + verbose(env, "call to invalid destination\n"); + return -EINVAL; + } + ret = find_subprog(env, off); + if (ret >= 0) + return ret; + if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { + verbose(env, "too many subprograms\n"); + return -E2BIG; + } + /* determine subprog starts. The end is one before the next starts */ + env->subprog_info[env->subprog_cnt++].start = off; + sort(env->subprog_info, env->subprog_cnt, + sizeof(env->subprog_info[0]), cmp_subprogs, NULL); + return env->subprog_cnt - 1; +} + +static int bpf_find_exception_callback_insn_off(struct bpf_verifier_env *env) +{ + struct bpf_prog_aux *aux = env->prog->aux; + struct btf *btf = aux->btf; + const struct btf_type *t; + u32 main_btf_id, id; + const char *name; + int ret, i; + + /* Non-zero func_info_cnt implies valid btf */ + if (!aux->func_info_cnt) + return 0; + main_btf_id = aux->func_info[0].type_id; + + t = btf_type_by_id(btf, main_btf_id); + if (!t) { + verbose(env, "invalid btf id for main subprog in func_info\n"); + return -EINVAL; + } + + name = btf_find_decl_tag_value(btf, t, -1, "exception_callback:"); + if (IS_ERR(name)) { + ret = PTR_ERR(name); + /* If there is no tag present, there is no exception callback */ + if (ret == -ENOENT) + ret = 0; + else if (ret == -EEXIST) + verbose(env, "multiple exception callback tags for main subprog\n"); + return ret; + } + + ret = btf_find_by_name_kind(btf, name, BTF_KIND_FUNC); + if (ret < 0) { + verbose(env, "exception callback '%s' could not be found in BTF\n", name); + return ret; + } + id = ret; + t = btf_type_by_id(btf, id); + if (btf_func_linkage(t) != BTF_FUNC_GLOBAL) { + verbose(env, "exception callback '%s' must have global linkage\n", name); + return -EINVAL; + } + ret = 0; + for (i = 0; i < aux->func_info_cnt; i++) { + if (aux->func_info[i].type_id != id) + continue; + ret = aux->func_info[i].insn_off; + /* Further func_info and subprog checks will also happen + * later, so assume this is the right insn_off for now. + */ + if (!ret) { + verbose(env, "invalid exception callback insn_off in func_info: 0\n"); + ret = -EINVAL; + } + } + if (!ret) { + verbose(env, "exception callback type id not found in func_info\n"); + ret = -EINVAL; + } + return ret; +} + +#define MAX_KFUNC_DESCS 256 +#define MAX_KFUNC_BTFS 256 + +struct bpf_kfunc_desc { + struct btf_func_model func_model; + u32 func_id; + s32 imm; + u16 offset; + unsigned long addr; +}; + +struct bpf_kfunc_btf { + struct btf *btf; + struct module *module; + u16 offset; +}; + +struct bpf_kfunc_desc_tab { + /* Sorted by func_id (BTF ID) and offset (fd_array offset) during + * verification. JITs do lookups by bpf_insn, where func_id may not be + * available, therefore at the end of verification do_misc_fixups() + * sorts this by imm and offset. + */ + struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; + u32 nr_descs; +}; + +struct bpf_kfunc_btf_tab { + struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; + u32 nr_descs; +}; + +static int specialize_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc, + int insn_idx); + +static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) +{ + const struct bpf_kfunc_desc *d0 = a; + const struct bpf_kfunc_desc *d1 = b; + + /* func_id is not greater than BTF_MAX_TYPE */ + return d0->func_id - d1->func_id ?: d0->offset - d1->offset; +} + +static int kfunc_btf_cmp_by_off(const void *a, const void *b) +{ + const struct bpf_kfunc_btf *d0 = a; + const struct bpf_kfunc_btf *d1 = b; + + return d0->offset - d1->offset; +} + +static struct bpf_kfunc_desc * +find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) +{ + struct bpf_kfunc_desc desc = { + .func_id = func_id, + .offset = offset, + }; + struct bpf_kfunc_desc_tab *tab; + + tab = prog->aux->kfunc_tab; + return bsearch(&desc, tab->descs, tab->nr_descs, + sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); +} + +int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, + u16 btf_fd_idx, u8 **func_addr) +{ + const struct bpf_kfunc_desc *desc; + + desc = find_kfunc_desc(prog, func_id, btf_fd_idx); + if (!desc) + return -EFAULT; + + *func_addr = (u8 *)desc->addr; + return 0; +} + +static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, + s16 offset) +{ + struct bpf_kfunc_btf kf_btf = { .offset = offset }; + struct bpf_kfunc_btf_tab *tab; + struct bpf_kfunc_btf *b; + struct module *mod; + struct btf *btf; + int btf_fd; + + tab = env->prog->aux->kfunc_btf_tab; + b = bsearch(&kf_btf, tab->descs, tab->nr_descs, + sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); + if (!b) { + if (tab->nr_descs == MAX_KFUNC_BTFS) { + verbose(env, "too many different module BTFs\n"); + return ERR_PTR(-E2BIG); + } + + if (bpfptr_is_null(env->fd_array)) { + verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); + return ERR_PTR(-EPROTO); + } + + if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, + offset * sizeof(btf_fd), + sizeof(btf_fd))) + return ERR_PTR(-EFAULT); + + btf = btf_get_by_fd(btf_fd); + if (IS_ERR(btf)) { + verbose(env, "invalid module BTF fd specified\n"); + return btf; + } + + if (!btf_is_module(btf)) { + verbose(env, "BTF fd for kfunc is not a module BTF\n"); + btf_put(btf); + return ERR_PTR(-EINVAL); + } + + mod = btf_try_get_module(btf); + if (!mod) { + btf_put(btf); + return ERR_PTR(-ENXIO); + } + + b = &tab->descs[tab->nr_descs++]; + b->btf = btf; + b->module = mod; + b->offset = offset; + + /* sort() reorders entries by value, so b may no longer point + * to the right entry after this + */ + sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), + kfunc_btf_cmp_by_off, NULL); + } else { + btf = b->btf; + } + + return btf; +} + +void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) +{ + if (!tab) + return; + + while (tab->nr_descs--) { + module_put(tab->descs[tab->nr_descs].module); + btf_put(tab->descs[tab->nr_descs].btf); + } + kfree(tab); +} + +static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) +{ + if (offset) { + if (offset < 0) { + /* In the future, this can be allowed to increase limit + * of fd index into fd_array, interpreted as u16. + */ + verbose(env, "negative offset disallowed for kernel module function call\n"); + return ERR_PTR(-EINVAL); + } + + return __find_kfunc_desc_btf(env, offset); + } + return btf_vmlinux ?: ERR_PTR(-ENOENT); +} + +static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) +{ + const struct btf_type *func, *func_proto; + struct bpf_kfunc_btf_tab *btf_tab; + struct btf_func_model func_model; + struct bpf_kfunc_desc_tab *tab; + struct bpf_prog_aux *prog_aux; + struct bpf_kfunc_desc *desc; + const char *func_name; + struct btf *desc_btf; + unsigned long addr; + int err; + + prog_aux = env->prog->aux; + tab = prog_aux->kfunc_tab; + btf_tab = prog_aux->kfunc_btf_tab; + if (!tab) { + if (!btf_vmlinux) { + verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); + return -ENOTSUPP; + } + + if (!env->prog->jit_requested) { + verbose(env, "JIT is required for calling kernel function\n"); + return -ENOTSUPP; + } + + if (!bpf_jit_supports_kfunc_call()) { + verbose(env, "JIT does not support calling kernel function\n"); + return -ENOTSUPP; + } + + if (!env->prog->gpl_compatible) { + verbose(env, "cannot call kernel function from non-GPL compatible program\n"); + return -EINVAL; + } + + tab = kzalloc(sizeof(*tab), GFP_KERNEL_ACCOUNT); + if (!tab) + return -ENOMEM; + prog_aux->kfunc_tab = tab; + } + + /* func_id == 0 is always invalid, but instead of returning an error, be + * conservative and wait until the code elimination pass before returning + * error, so that invalid calls that get pruned out can be in BPF programs + * loaded from userspace. It is also required that offset be untouched + * for such calls. + */ + if (!func_id && !offset) + return 0; + + if (!btf_tab && offset) { + btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL_ACCOUNT); + if (!btf_tab) + return -ENOMEM; + prog_aux->kfunc_btf_tab = btf_tab; + } + + desc_btf = find_kfunc_desc_btf(env, offset); + if (IS_ERR(desc_btf)) { + verbose(env, "failed to find BTF for kernel function\n"); + return PTR_ERR(desc_btf); + } + + if (find_kfunc_desc(env->prog, func_id, offset)) + return 0; + + if (tab->nr_descs == MAX_KFUNC_DESCS) { + verbose(env, "too many different kernel function calls\n"); + return -E2BIG; + } + + func = btf_type_by_id(desc_btf, func_id); + if (!func || !btf_type_is_func(func)) { + verbose(env, "kernel btf_id %u is not a function\n", + func_id); + return -EINVAL; + } + func_proto = btf_type_by_id(desc_btf, func->type); + if (!func_proto || !btf_type_is_func_proto(func_proto)) { + verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", + func_id); + return -EINVAL; + } + + func_name = btf_name_by_offset(desc_btf, func->name_off); + addr = kallsyms_lookup_name(func_name); + if (!addr) { + verbose(env, "cannot find address for kernel function %s\n", + func_name); + return -EINVAL; + } + + if (bpf_dev_bound_kfunc_id(func_id)) { + err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); + if (err) + return err; + } + + err = btf_distill_func_proto(&env->log, desc_btf, + func_proto, func_name, + &func_model); + if (err) + return err; + + desc = &tab->descs[tab->nr_descs++]; + desc->func_id = func_id; + desc->offset = offset; + desc->addr = addr; + desc->func_model = func_model; + sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), + kfunc_desc_cmp_by_id_off, NULL); + return 0; +} + +static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) +{ + const struct bpf_kfunc_desc *d0 = a; + const struct bpf_kfunc_desc *d1 = b; + + if (d0->imm != d1->imm) + return d0->imm < d1->imm ? -1 : 1; + if (d0->offset != d1->offset) + return d0->offset < d1->offset ? -1 : 1; + return 0; +} + +static int set_kfunc_desc_imm(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc) +{ + unsigned long call_imm; + + if (bpf_jit_supports_far_kfunc_call()) { + call_imm = desc->func_id; + } else { + call_imm = BPF_CALL_IMM(desc->addr); + /* Check whether the relative offset overflows desc->imm */ + if ((unsigned long)(s32)call_imm != call_imm) { + verbose(env, "address of kernel func_id %u is out of range\n", + desc->func_id); + return -EINVAL; + } + } + desc->imm = call_imm; + return 0; +} + +static int sort_kfunc_descs_by_imm_off(struct bpf_verifier_env *env) +{ + struct bpf_kfunc_desc_tab *tab; + int i, err; + + tab = env->prog->aux->kfunc_tab; + if (!tab) + return 0; + + for (i = 0; i < tab->nr_descs; i++) { + err = set_kfunc_desc_imm(env, &tab->descs[i]); + if (err) + return err; + } + + sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), + kfunc_desc_cmp_by_imm_off, NULL); + return 0; +} + +bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) +{ + return !!prog->aux->kfunc_tab; +} + +const struct btf_func_model * +bpf_jit_find_kfunc_model(const struct bpf_prog *prog, + const struct bpf_insn *insn) +{ + const struct bpf_kfunc_desc desc = { + .imm = insn->imm, + .offset = insn->off, + }; + const struct bpf_kfunc_desc *res; + struct bpf_kfunc_desc_tab *tab; + + tab = prog->aux->kfunc_tab; + res = bsearch(&desc, tab->descs, tab->nr_descs, + sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); + + return res ? &res->func_model : NULL; +} + +static int add_kfunc_in_insns(struct bpf_verifier_env *env, + struct bpf_insn *insn, int cnt) +{ + int i, ret; + + for (i = 0; i < cnt; i++, insn++) { + if (bpf_pseudo_kfunc_call(insn)) { + ret = add_kfunc_call(env, insn->imm, insn->off); + if (ret < 0) + return ret; + } + } + return 0; +} + +static int add_subprog_and_kfunc(struct bpf_verifier_env *env) +{ + struct bpf_subprog_info *subprog = env->subprog_info; + int i, ret, insn_cnt = env->prog->len, ex_cb_insn; + struct bpf_insn *insn = env->prog->insnsi; + + /* Add entry function. */ + ret = add_subprog(env, 0); + if (ret) + return ret; + + for (i = 0; i < insn_cnt; i++, insn++) { + if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && + !bpf_pseudo_kfunc_call(insn)) + continue; + + if (!env->bpf_capable) { + verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); + return -EPERM; + } + + if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) + ret = add_subprog(env, i + insn->imm + 1); + else + ret = add_kfunc_call(env, insn->imm, insn->off); + + if (ret < 0) + return ret; + } + + ret = bpf_find_exception_callback_insn_off(env); + if (ret < 0) + return ret; + ex_cb_insn = ret; + + /* If ex_cb_insn > 0, this means that the main program has a subprog + * marked using BTF decl tag to serve as the exception callback. + */ + if (ex_cb_insn) { + ret = add_subprog(env, ex_cb_insn); + if (ret < 0) + return ret; + for (i = 1; i < env->subprog_cnt; i++) { + if (env->subprog_info[i].start != ex_cb_insn) + continue; + env->exception_callback_subprog = i; + mark_subprog_exc_cb(env, i); + break; + } + } + + /* Add a fake 'exit' subprog which could simplify subprog iteration + * logic. 'subprog_cnt' should not be increased. + */ + subprog[env->subprog_cnt].start = insn_cnt; + + if (env->log.level & BPF_LOG_LEVEL2) + for (i = 0; i < env->subprog_cnt; i++) + verbose(env, "func#%d @%d\n", i, subprog[i].start); + + return 0; +} + +static int check_subprogs(struct bpf_verifier_env *env) +{ + int i, subprog_start, subprog_end, off, cur_subprog = 0; + struct bpf_subprog_info *subprog = env->subprog_info; + struct bpf_insn *insn = env->prog->insnsi; + int insn_cnt = env->prog->len; + + /* now check that all jumps are within the same subprog */ + subprog_start = subprog[cur_subprog].start; + subprog_end = subprog[cur_subprog + 1].start; + for (i = 0; i < insn_cnt; i++) { + u8 code = insn[i].code; + + if (code == (BPF_JMP | BPF_CALL) && + insn[i].src_reg == 0 && + insn[i].imm == BPF_FUNC_tail_call) { + subprog[cur_subprog].has_tail_call = true; + subprog[cur_subprog].tail_call_reachable = true; + } + if (BPF_CLASS(code) == BPF_LD && + (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) + subprog[cur_subprog].has_ld_abs = true; + if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) + goto next; + if (BPF_OP(code) == BPF_CALL) + goto next; + if (BPF_OP(code) == BPF_EXIT) { + subprog[cur_subprog].exit_idx = i; + goto next; + } + off = i + bpf_jmp_offset(&insn[i]) + 1; + if (off < subprog_start || off >= subprog_end) { + verbose(env, "jump out of range from insn %d to %d\n", i, off); + return -EINVAL; + } +next: + if (i == subprog_end - 1) { + /* to avoid fall-through from one subprog into another + * the last insn of the subprog should be either exit + * or unconditional jump back or bpf_throw call + */ + if (code != (BPF_JMP | BPF_EXIT) && + code != (BPF_JMP32 | BPF_JA) && + code != (BPF_JMP | BPF_JA)) { + verbose(env, "last insn is not an exit or jmp\n"); + return -EINVAL; + } + subprog_start = subprog_end; + cur_subprog++; + if (cur_subprog < env->subprog_cnt) + subprog_end = subprog[cur_subprog + 1].start; + } + } + return 0; +} + +static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + int spi, int nr_slots) +{ + int err, i; + + for (i = 0; i < nr_slots; i++) { + err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi - i)); + if (err) + return err; + mark_stack_slot_scratched(env, spi - i); + } + return 0; +} + +static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + int spi; + + /* For CONST_PTR_TO_DYNPTR, it must have already been done by + * check_reg_arg in check_helper_call and mark_btf_func_reg_size in + * check_kfunc_call. + */ + if (reg->type == CONST_PTR_TO_DYNPTR) + return 0; + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return spi; + /* Caller ensures dynptr is valid and initialized, which means spi is in + * bounds and spi is the first dynptr slot. Simply mark stack slot as + * read. + */ + return mark_stack_slot_obj_read(env, reg, spi, BPF_DYNPTR_NR_SLOTS); +} + +static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + int spi, int nr_slots) +{ + return mark_stack_slot_obj_read(env, reg, spi, nr_slots); +} + +static int mark_irq_flag_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + int spi; + + spi = irq_flag_get_spi(env, reg); + if (spi < 0) + return spi; + return mark_stack_slot_obj_read(env, reg, spi, 1); +} + +/* This function is supposed to be used by the following 32-bit optimization + * code only. It returns TRUE if the source or destination register operates + * on 64-bit, otherwise return FALSE. + */ +static bool is_reg64(struct bpf_insn *insn, + u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) +{ + u8 code, class, op; + + code = insn->code; + class = BPF_CLASS(code); + op = BPF_OP(code); + if (class == BPF_JMP) { + /* BPF_EXIT for "main" will reach here. Return TRUE + * conservatively. + */ + if (op == BPF_EXIT) + return true; + if (op == BPF_CALL) { + /* BPF to BPF call will reach here because of marking + * caller saved clobber with DST_OP_NO_MARK for which we + * don't care the register def because they are anyway + * marked as NOT_INIT already. + */ + if (insn->src_reg == BPF_PSEUDO_CALL) + return false; + /* Helper call will reach here because of arg type + * check, conservatively return TRUE. + */ + if (t == SRC_OP) + return true; + + return false; + } + } + + if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) + return false; + + if (class == BPF_ALU64 || class == BPF_JMP || + (class == BPF_ALU && op == BPF_END && insn->imm == 64)) + return true; + + if (class == BPF_ALU || class == BPF_JMP32) + return false; + + if (class == BPF_LDX) { + if (t != SRC_OP) + return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; + /* LDX source must be ptr. */ + return true; + } + + if (class == BPF_STX) { + /* BPF_STX (including atomic variants) has one or more source + * operands, one of which is a ptr. Check whether the caller is + * asking about it. + */ + if (t == SRC_OP && reg->type != SCALAR_VALUE) + return true; + return BPF_SIZE(code) == BPF_DW; + } + + if (class == BPF_LD) { + u8 mode = BPF_MODE(code); + + /* LD_IMM64 */ + if (mode == BPF_IMM) + return true; + + /* Both LD_IND and LD_ABS return 32-bit data. */ + if (t != SRC_OP) + return false; + + /* Implicit ctx ptr. */ + if (regno == BPF_REG_6) + return true; + + /* Explicit source could be any width. */ + return true; + } + + if (class == BPF_ST) + /* The only source register for BPF_ST is a ptr. */ + return true; + + /* Conservatively return true at default. */ + return true; +} + +/* Return the regno defined by the insn, or -1. */ +static int insn_def_regno(const struct bpf_insn *insn) +{ + switch (BPF_CLASS(insn->code)) { + case BPF_JMP: + case BPF_JMP32: + case BPF_ST: + return -1; + case BPF_STX: + if (BPF_MODE(insn->code) == BPF_ATOMIC || + BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) { + if (insn->imm == BPF_CMPXCHG) + return BPF_REG_0; + else if (insn->imm == BPF_LOAD_ACQ) + return insn->dst_reg; + else if (insn->imm & BPF_FETCH) + return insn->src_reg; + } + return -1; + default: + return insn->dst_reg; + } +} + +/* Return TRUE if INSN has defined any 32-bit value explicitly. */ +static bool insn_has_def32(struct bpf_insn *insn) +{ + int dst_reg = insn_def_regno(insn); + + if (dst_reg == -1) + return false; + + return !is_reg64(insn, dst_reg, NULL, DST_OP); +} + +static void mark_insn_zext(struct bpf_verifier_env *env, + struct bpf_reg_state *reg) +{ + s32 def_idx = reg->subreg_def; + + if (def_idx == DEF_NOT_SUBREG) + return; + + env->insn_aux_data[def_idx - 1].zext_dst = true; + /* The dst will be zero extended, so won't be sub-register anymore. */ + reg->subreg_def = DEF_NOT_SUBREG; +} + +static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, + enum reg_arg_type t) +{ + struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; + struct bpf_reg_state *reg; + bool rw64; + + if (regno >= MAX_BPF_REG) { + verbose(env, "R%d is invalid\n", regno); + return -EINVAL; + } + + mark_reg_scratched(env, regno); + + reg = ®s[regno]; + rw64 = is_reg64(insn, regno, reg, t); + if (t == SRC_OP) { + /* check whether register used as source operand can be read */ + if (reg->type == NOT_INIT) { + verbose(env, "R%d !read_ok\n", regno); + return -EACCES; + } + /* We don't need to worry about FP liveness because it's read-only */ + if (regno == BPF_REG_FP) + return 0; + + if (rw64) + mark_insn_zext(env, reg); + + return 0; + } else { + /* check whether register used as dest operand can be written to */ + if (regno == BPF_REG_FP) { + verbose(env, "frame pointer is read only\n"); + return -EACCES; + } + reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; + if (t == DST_OP) + mark_reg_unknown(env, regs, regno); + } + return 0; +} + +static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, + enum reg_arg_type t) +{ + struct bpf_verifier_state *vstate = env->cur_state; + struct bpf_func_state *state = vstate->frame[vstate->curframe]; + + return __check_reg_arg(env, state->regs, regno, t); +} + +static int insn_stack_access_flags(int frameno, int spi) +{ + return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno; +} + +static int insn_stack_access_spi(int insn_flags) +{ + return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK; +} + +static int insn_stack_access_frameno(int insn_flags) +{ + return insn_flags & INSN_F_FRAMENO_MASK; +} + +static void mark_jmp_point(struct bpf_verifier_env *env, int idx) +{ + env->insn_aux_data[idx].jmp_point = true; +} + +static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) +{ + return env->insn_aux_data[insn_idx].jmp_point; +} + +#define LR_FRAMENO_BITS 3 +#define LR_SPI_BITS 6 +#define LR_ENTRY_BITS (LR_SPI_BITS + LR_FRAMENO_BITS + 1) +#define LR_SIZE_BITS 4 +#define LR_FRAMENO_MASK ((1ull << LR_FRAMENO_BITS) - 1) +#define LR_SPI_MASK ((1ull << LR_SPI_BITS) - 1) +#define LR_SIZE_MASK ((1ull << LR_SIZE_BITS) - 1) +#define LR_SPI_OFF LR_FRAMENO_BITS +#define LR_IS_REG_OFF (LR_SPI_BITS + LR_FRAMENO_BITS) +#define LINKED_REGS_MAX 6 + +struct linked_reg { + u8 frameno; + union { + u8 spi; + u8 regno; + }; + bool is_reg; +}; + +struct linked_regs { + int cnt; + struct linked_reg entries[LINKED_REGS_MAX]; +}; + +static struct linked_reg *linked_regs_push(struct linked_regs *s) +{ + if (s->cnt < LINKED_REGS_MAX) + return &s->entries[s->cnt++]; + + return NULL; +} + +/* Use u64 as a vector of 6 10-bit values, use first 4-bits to track + * number of elements currently in stack. + * Pack one history entry for linked registers as 10 bits in the following format: + * - 3-bits frameno + * - 6-bits spi_or_reg + * - 1-bit is_reg + */ +static u64 linked_regs_pack(struct linked_regs *s) +{ + u64 val = 0; + int i; + + for (i = 0; i < s->cnt; ++i) { + struct linked_reg *e = &s->entries[i]; + u64 tmp = 0; + + tmp |= e->frameno; + tmp |= e->spi << LR_SPI_OFF; + tmp |= (e->is_reg ? 1 : 0) << LR_IS_REG_OFF; + + val <<= LR_ENTRY_BITS; + val |= tmp; + } + val <<= LR_SIZE_BITS; + val |= s->cnt; + return val; +} + +static void linked_regs_unpack(u64 val, struct linked_regs *s) +{ + int i; + + s->cnt = val & LR_SIZE_MASK; + val >>= LR_SIZE_BITS; + + for (i = 0; i < s->cnt; ++i) { + struct linked_reg *e = &s->entries[i]; + + e->frameno = val & LR_FRAMENO_MASK; + e->spi = (val >> LR_SPI_OFF) & LR_SPI_MASK; + e->is_reg = (val >> LR_IS_REG_OFF) & 0x1; + val >>= LR_ENTRY_BITS; + } +} + +/* for any branch, call, exit record the history of jmps in the given state */ +static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur, + int insn_flags, u64 linked_regs) +{ + u32 cnt = cur->jmp_history_cnt; + struct bpf_jmp_history_entry *p; + size_t alloc_size; + + /* combine instruction flags if we already recorded this instruction */ + if (env->cur_hist_ent) { + /* atomic instructions push insn_flags twice, for READ and + * WRITE sides, but they should agree on stack slot + */ + verifier_bug_if((env->cur_hist_ent->flags & insn_flags) && + (env->cur_hist_ent->flags & insn_flags) != insn_flags, + env, "insn history: insn_idx %d cur flags %x new flags %x", + env->insn_idx, env->cur_hist_ent->flags, insn_flags); + env->cur_hist_ent->flags |= insn_flags; + verifier_bug_if(env->cur_hist_ent->linked_regs != 0, env, + "insn history: insn_idx %d linked_regs: %#llx", + env->insn_idx, env->cur_hist_ent->linked_regs); + env->cur_hist_ent->linked_regs = linked_regs; + return 0; + } + + cnt++; + alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); + p = krealloc(cur->jmp_history, alloc_size, GFP_KERNEL_ACCOUNT); + if (!p) + return -ENOMEM; + cur->jmp_history = p; + + p = &cur->jmp_history[cnt - 1]; + p->idx = env->insn_idx; + p->prev_idx = env->prev_insn_idx; + p->flags = insn_flags; + p->linked_regs = linked_regs; + cur->jmp_history_cnt = cnt; + env->cur_hist_ent = p; + + return 0; +} + +static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st, + u32 hist_end, int insn_idx) +{ + if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx) + return &st->jmp_history[hist_end - 1]; + return NULL; +} + +/* Backtrack one insn at a time. If idx is not at the top of recorded + * history then previous instruction came from straight line execution. + * Return -ENOENT if we exhausted all instructions within given state. + * + * It's legal to have a bit of a looping with the same starting and ending + * insn index within the same state, e.g.: 3->4->5->3, so just because current + * instruction index is the same as state's first_idx doesn't mean we are + * done. If there is still some jump history left, we should keep going. We + * need to take into account that we might have a jump history between given + * state's parent and itself, due to checkpointing. In this case, we'll have + * history entry recording a jump from last instruction of parent state and + * first instruction of given state. + */ +static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, + u32 *history) +{ + u32 cnt = *history; + + if (i == st->first_insn_idx) { + if (cnt == 0) + return -ENOENT; + if (cnt == 1 && st->jmp_history[0].idx == i) + return -ENOENT; + } + + if (cnt && st->jmp_history[cnt - 1].idx == i) { + i = st->jmp_history[cnt - 1].prev_idx; + (*history)--; + } else { + i--; + } + return i; +} + +static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) +{ + const struct btf_type *func; + struct btf *desc_btf; + + if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) + return NULL; + + desc_btf = find_kfunc_desc_btf(data, insn->off); + if (IS_ERR(desc_btf)) + return "<error>"; + + func = btf_type_by_id(desc_btf, insn->imm); + return btf_name_by_offset(desc_btf, func->name_off); +} + +static void verbose_insn(struct bpf_verifier_env *env, struct bpf_insn *insn) +{ + const struct bpf_insn_cbs cbs = { + .cb_call = disasm_kfunc_name, + .cb_print = verbose, + .private_data = env, + }; + + print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); +} + +static inline void bt_init(struct backtrack_state *bt, u32 frame) +{ + bt->frame = frame; +} + +static inline void bt_reset(struct backtrack_state *bt) +{ + struct bpf_verifier_env *env = bt->env; + + memset(bt, 0, sizeof(*bt)); + bt->env = env; +} + +static inline u32 bt_empty(struct backtrack_state *bt) +{ + u64 mask = 0; + int i; + + for (i = 0; i <= bt->frame; i++) + mask |= bt->reg_masks[i] | bt->stack_masks[i]; + + return mask == 0; +} + +static inline int bt_subprog_enter(struct backtrack_state *bt) +{ + if (bt->frame == MAX_CALL_FRAMES - 1) { + verifier_bug(bt->env, "subprog enter from frame %d", bt->frame); + return -EFAULT; + } + bt->frame++; + return 0; +} + +static inline int bt_subprog_exit(struct backtrack_state *bt) +{ + if (bt->frame == 0) { + verifier_bug(bt->env, "subprog exit from frame 0"); + return -EFAULT; + } + bt->frame--; + return 0; +} + +static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) +{ + bt->reg_masks[frame] |= 1 << reg; +} + +static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) +{ + bt->reg_masks[frame] &= ~(1 << reg); +} + +static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) +{ + bt_set_frame_reg(bt, bt->frame, reg); +} + +static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) +{ + bt_clear_frame_reg(bt, bt->frame, reg); +} + +static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) +{ + bt->stack_masks[frame] |= 1ull << slot; +} + +static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) +{ + bt->stack_masks[frame] &= ~(1ull << slot); +} + +static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) +{ + return bt->reg_masks[frame]; +} + +static inline u32 bt_reg_mask(struct backtrack_state *bt) +{ + return bt->reg_masks[bt->frame]; +} + +static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) +{ + return bt->stack_masks[frame]; +} + +static inline u64 bt_stack_mask(struct backtrack_state *bt) +{ + return bt->stack_masks[bt->frame]; +} + +static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) +{ + return bt->reg_masks[bt->frame] & (1 << reg); +} + +static inline bool bt_is_frame_reg_set(struct backtrack_state *bt, u32 frame, u32 reg) +{ + return bt->reg_masks[frame] & (1 << reg); +} + +static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot) +{ + return bt->stack_masks[frame] & (1ull << slot); +} + +/* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ +static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) +{ + DECLARE_BITMAP(mask, 64); + bool first = true; + int i, n; + + buf[0] = '\0'; + + bitmap_from_u64(mask, reg_mask); + for_each_set_bit(i, mask, 32) { + n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); + first = false; + buf += n; + buf_sz -= n; + if (buf_sz < 0) + break; + } +} +/* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ +void bpf_fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) +{ + DECLARE_BITMAP(mask, 64); + bool first = true; + int i, n; + + buf[0] = '\0'; + + bitmap_from_u64(mask, stack_mask); + for_each_set_bit(i, mask, 64) { + n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); + first = false; + buf += n; + buf_sz -= n; + if (buf_sz < 0) + break; + } +} + +/* If any register R in hist->linked_regs is marked as precise in bt, + * do bt_set_frame_{reg,slot}(bt, R) for all registers in hist->linked_regs. + */ +static void bt_sync_linked_regs(struct backtrack_state *bt, struct bpf_jmp_history_entry *hist) +{ + struct linked_regs linked_regs; + bool some_precise = false; + int i; + + if (!hist || hist->linked_regs == 0) + return; + + linked_regs_unpack(hist->linked_regs, &linked_regs); + for (i = 0; i < linked_regs.cnt; ++i) { + struct linked_reg *e = &linked_regs.entries[i]; + + if ((e->is_reg && bt_is_frame_reg_set(bt, e->frameno, e->regno)) || + (!e->is_reg && bt_is_frame_slot_set(bt, e->frameno, e->spi))) { + some_precise = true; + break; + } + } + + if (!some_precise) + return; + + for (i = 0; i < linked_regs.cnt; ++i) { + struct linked_reg *e = &linked_regs.entries[i]; + + if (e->is_reg) + bt_set_frame_reg(bt, e->frameno, e->regno); + else + bt_set_frame_slot(bt, e->frameno, e->spi); + } +} + +/* For given verifier state backtrack_insn() is called from the last insn to + * the first insn. Its purpose is to compute a bitmask of registers and + * stack slots that needs precision in the parent verifier state. + * + * @idx is an index of the instruction we are currently processing; + * @subseq_idx is an index of the subsequent instruction that: + * - *would be* executed next, if jump history is viewed in forward order; + * - *was* processed previously during backtracking. + */ +static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, + struct bpf_jmp_history_entry *hist, struct backtrack_state *bt) +{ + struct bpf_insn *insn = env->prog->insnsi + idx; + u8 class = BPF_CLASS(insn->code); + u8 opcode = BPF_OP(insn->code); + u8 mode = BPF_MODE(insn->code); + u32 dreg = insn->dst_reg; + u32 sreg = insn->src_reg; + u32 spi, i, fr; + + if (insn->code == 0) + return 0; + if (env->log.level & BPF_LOG_LEVEL2) { + fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); + verbose(env, "mark_precise: frame%d: regs=%s ", + bt->frame, env->tmp_str_buf); + bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); + verbose(env, "stack=%s before ", env->tmp_str_buf); + verbose(env, "%d: ", idx); + verbose_insn(env, insn); + } + + /* If there is a history record that some registers gained range at this insn, + * propagate precision marks to those registers, so that bt_is_reg_set() + * accounts for these registers. + */ + bt_sync_linked_regs(bt, hist); + + if (class == BPF_ALU || class == BPF_ALU64) { + if (!bt_is_reg_set(bt, dreg)) + return 0; + if (opcode == BPF_END || opcode == BPF_NEG) { + /* sreg is reserved and unused + * dreg still need precision before this insn + */ + return 0; + } else if (opcode == BPF_MOV) { + if (BPF_SRC(insn->code) == BPF_X) { + /* dreg = sreg or dreg = (s8, s16, s32)sreg + * dreg needs precision after this insn + * sreg needs precision before this insn + */ + bt_clear_reg(bt, dreg); + if (sreg != BPF_REG_FP) + bt_set_reg(bt, sreg); + } else { + /* dreg = K + * dreg needs precision after this insn. + * Corresponding register is already marked + * as precise=true in this verifier state. + * No further markings in parent are necessary + */ + bt_clear_reg(bt, dreg); + } + } else { + if (BPF_SRC(insn->code) == BPF_X) { + /* dreg += sreg + * both dreg and sreg need precision + * before this insn + */ + if (sreg != BPF_REG_FP) + bt_set_reg(bt, sreg); + } /* else dreg += K + * dreg still needs precision before this insn + */ + } + } else if (class == BPF_LDX || is_atomic_load_insn(insn)) { + if (!bt_is_reg_set(bt, dreg)) + return 0; + bt_clear_reg(bt, dreg); + + /* scalars can only be spilled into stack w/o losing precision. + * Load from any other memory can be zero extended. + * The desire to keep that precision is already indicated + * by 'precise' mark in corresponding register of this state. + * No further tracking necessary. + */ + if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) + return 0; + /* dreg = *(u64 *)[fp - off] was a fill from the stack. + * that [fp - off] slot contains scalar that needs to be + * tracked with precision + */ + spi = insn_stack_access_spi(hist->flags); + fr = insn_stack_access_frameno(hist->flags); + bt_set_frame_slot(bt, fr, spi); + } else if (class == BPF_STX || class == BPF_ST) { + if (bt_is_reg_set(bt, dreg)) + /* stx & st shouldn't be using _scalar_ dst_reg + * to access memory. It means backtracking + * encountered a case of pointer subtraction. + */ + return -ENOTSUPP; + /* scalars can only be spilled into stack */ + if (!hist || !(hist->flags & INSN_F_STACK_ACCESS)) + return 0; + spi = insn_stack_access_spi(hist->flags); + fr = insn_stack_access_frameno(hist->flags); + if (!bt_is_frame_slot_set(bt, fr, spi)) + return 0; + bt_clear_frame_slot(bt, fr, spi); + if (class == BPF_STX) + bt_set_reg(bt, sreg); + } else if (class == BPF_JMP || class == BPF_JMP32) { + if (bpf_pseudo_call(insn)) { + int subprog_insn_idx, subprog; + + subprog_insn_idx = idx + insn->imm + 1; + subprog = find_subprog(env, subprog_insn_idx); + if (subprog < 0) + return -EFAULT; + + if (subprog_is_global(env, subprog)) { + /* check that jump history doesn't have any + * extra instructions from subprog; the next + * instruction after call to global subprog + * should be literally next instruction in + * caller program + */ + verifier_bug_if(idx + 1 != subseq_idx, env, + "extra insn from subprog"); + /* r1-r5 are invalidated after subprog call, + * so for global func call it shouldn't be set + * anymore + */ + if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { + verifier_bug(env, "global subprog unexpected regs %x", + bt_reg_mask(bt)); + return -EFAULT; + } + /* global subprog always sets R0 */ + bt_clear_reg(bt, BPF_REG_0); + return 0; + } else { + /* static subprog call instruction, which + * means that we are exiting current subprog, + * so only r1-r5 could be still requested as + * precise, r0 and r6-r10 or any stack slot in + * the current frame should be zero by now + */ + if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { + verifier_bug(env, "static subprog unexpected regs %x", + bt_reg_mask(bt)); + return -EFAULT; + } + /* we are now tracking register spills correctly, + * so any instance of leftover slots is a bug + */ + if (bt_stack_mask(bt) != 0) { + verifier_bug(env, + "static subprog leftover stack slots %llx", + bt_stack_mask(bt)); + return -EFAULT; + } + /* propagate r1-r5 to the caller */ + for (i = BPF_REG_1; i <= BPF_REG_5; i++) { + if (bt_is_reg_set(bt, i)) { + bt_clear_reg(bt, i); + bt_set_frame_reg(bt, bt->frame - 1, i); + } + } + if (bt_subprog_exit(bt)) + return -EFAULT; + return 0; + } + } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { + /* exit from callback subprog to callback-calling helper or + * kfunc call. Use idx/subseq_idx check to discern it from + * straight line code backtracking. + * Unlike the subprog call handling above, we shouldn't + * propagate precision of r1-r5 (if any requested), as they are + * not actually arguments passed directly to callback subprogs + */ + if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { + verifier_bug(env, "callback unexpected regs %x", + bt_reg_mask(bt)); + return -EFAULT; + } + if (bt_stack_mask(bt) != 0) { + verifier_bug(env, "callback leftover stack slots %llx", + bt_stack_mask(bt)); + return -EFAULT; + } + /* clear r1-r5 in callback subprog's mask */ + for (i = BPF_REG_1; i <= BPF_REG_5; i++) + bt_clear_reg(bt, i); + if (bt_subprog_exit(bt)) + return -EFAULT; + return 0; + } else if (opcode == BPF_CALL) { + /* kfunc with imm==0 is invalid and fixup_kfunc_call will + * catch this error later. Make backtracking conservative + * with ENOTSUPP. + */ + if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) + return -ENOTSUPP; + /* regular helper call sets R0 */ + bt_clear_reg(bt, BPF_REG_0); + if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { + /* if backtracking was looking for registers R1-R5 + * they should have been found already. + */ + verifier_bug(env, "backtracking call unexpected regs %x", + bt_reg_mask(bt)); + return -EFAULT; + } + if (insn->src_reg == BPF_REG_0 && insn->imm == BPF_FUNC_tail_call + && subseq_idx - idx != 1) { + if (bt_subprog_enter(bt)) + return -EFAULT; + } + } else if (opcode == BPF_EXIT) { + bool r0_precise; + + /* Backtracking to a nested function call, 'idx' is a part of + * the inner frame 'subseq_idx' is a part of the outer frame. + * In case of a regular function call, instructions giving + * precision to registers R1-R5 should have been found already. + * In case of a callback, it is ok to have R1-R5 marked for + * backtracking, as these registers are set by the function + * invoking callback. + */ + if (subseq_idx >= 0 && bpf_calls_callback(env, subseq_idx)) + for (i = BPF_REG_1; i <= BPF_REG_5; i++) + bt_clear_reg(bt, i); + if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { + verifier_bug(env, "backtracking exit unexpected regs %x", + bt_reg_mask(bt)); + return -EFAULT; + } + + /* BPF_EXIT in subprog or callback always returns + * right after the call instruction, so by checking + * whether the instruction at subseq_idx-1 is subprog + * call or not we can distinguish actual exit from + * *subprog* from exit from *callback*. In the former + * case, we need to propagate r0 precision, if + * necessary. In the former we never do that. + */ + r0_precise = subseq_idx - 1 >= 0 && + bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && + bt_is_reg_set(bt, BPF_REG_0); + + bt_clear_reg(bt, BPF_REG_0); + if (bt_subprog_enter(bt)) + return -EFAULT; + + if (r0_precise) + bt_set_reg(bt, BPF_REG_0); + /* r6-r9 and stack slots will stay set in caller frame + * bitmasks until we return back from callee(s) + */ + return 0; + } else if (BPF_SRC(insn->code) == BPF_X) { + if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) + return 0; + /* dreg <cond> sreg + * Both dreg and sreg need precision before + * this insn. If only sreg was marked precise + * before it would be equally necessary to + * propagate it to dreg. + */ + if (!hist || !(hist->flags & INSN_F_SRC_REG_STACK)) + bt_set_reg(bt, sreg); + if (!hist || !(hist->flags & INSN_F_DST_REG_STACK)) + bt_set_reg(bt, dreg); + } else if (BPF_SRC(insn->code) == BPF_K) { + /* dreg <cond> K + * Only dreg still needs precision before + * this insn, so for the K-based conditional + * there is nothing new to be marked. + */ + } + } else if (class == BPF_LD) { + if (!bt_is_reg_set(bt, dreg)) + return 0; + bt_clear_reg(bt, dreg); + /* It's ld_imm64 or ld_abs or ld_ind. + * For ld_imm64 no further tracking of precision + * into parent is necessary + */ + if (mode == BPF_IND || mode == BPF_ABS) + /* to be analyzed */ + return -ENOTSUPP; + } + /* Propagate precision marks to linked registers, to account for + * registers marked as precise in this function. + */ + bt_sync_linked_regs(bt, hist); + return 0; +} + +/* the scalar precision tracking algorithm: + * . at the start all registers have precise=false. + * . scalar ranges are tracked as normal through alu and jmp insns. + * . once precise value of the scalar register is used in: + * . ptr + scalar alu + * . if (scalar cond K|scalar) + * . helper_call(.., scalar, ...) where ARG_CONST is expected + * backtrack through the verifier states and mark all registers and + * stack slots with spilled constants that these scalar registers + * should be precise. + * . during state pruning two registers (or spilled stack slots) + * are equivalent if both are not precise. + * + * Note the verifier cannot simply walk register parentage chain, + * since many different registers and stack slots could have been + * used to compute single precise scalar. + * + * The approach of starting with precise=true for all registers and then + * backtrack to mark a register as not precise when the verifier detects + * that program doesn't care about specific value (e.g., when helper + * takes register as ARG_ANYTHING parameter) is not safe. + * + * It's ok to walk single parentage chain of the verifier states. + * It's possible that this backtracking will go all the way till 1st insn. + * All other branches will be explored for needing precision later. + * + * The backtracking needs to deal with cases like: + * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) + * r9 -= r8 + * r5 = r9 + * if r5 > 0x79f goto pc+7 + * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) + * r5 += 1 + * ... + * call bpf_perf_event_output#25 + * where .arg5_type = ARG_CONST_SIZE_OR_ZERO + * + * and this case: + * r6 = 1 + * call foo // uses callee's r6 inside to compute r0 + * r0 += r6 + * if r0 == 0 goto + * + * to track above reg_mask/stack_mask needs to be independent for each frame. + * + * Also if parent's curframe > frame where backtracking started, + * the verifier need to mark registers in both frames, otherwise callees + * may incorrectly prune callers. This is similar to + * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") + * + * For now backtracking falls back into conservative marking. + */ +static void mark_all_scalars_precise(struct bpf_verifier_env *env, + struct bpf_verifier_state *st) +{ + struct bpf_func_state *func; + struct bpf_reg_state *reg; + int i, j; + + if (env->log.level & BPF_LOG_LEVEL2) { + verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", + st->curframe); + } + + /* big hammer: mark all scalars precise in this path. + * pop_stack may still get !precise scalars. + * We also skip current state and go straight to first parent state, + * because precision markings in current non-checkpointed state are + * not needed. See why in the comment in __mark_chain_precision below. + */ + for (st = st->parent; st; st = st->parent) { + for (i = 0; i <= st->curframe; i++) { + func = st->frame[i]; + for (j = 0; j < BPF_REG_FP; j++) { + reg = &func->regs[j]; + if (reg->type != SCALAR_VALUE || reg->precise) + continue; + reg->precise = true; + if (env->log.level & BPF_LOG_LEVEL2) { + verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", + i, j); + } + } + for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { + if (!is_spilled_reg(&func->stack[j])) + continue; + reg = &func->stack[j].spilled_ptr; + if (reg->type != SCALAR_VALUE || reg->precise) + continue; + reg->precise = true; + if (env->log.level & BPF_LOG_LEVEL2) { + verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", + i, -(j + 1) * 8); + } + } + } + } +} + +static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) +{ + struct bpf_func_state *func; + struct bpf_reg_state *reg; + int i, j; + + for (i = 0; i <= st->curframe; i++) { + func = st->frame[i]; + for (j = 0; j < BPF_REG_FP; j++) { + reg = &func->regs[j]; + if (reg->type != SCALAR_VALUE) + continue; + reg->precise = false; + } + for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { + if (!is_spilled_reg(&func->stack[j])) + continue; + reg = &func->stack[j].spilled_ptr; + if (reg->type != SCALAR_VALUE) + continue; + reg->precise = false; + } + } +} + +/* + * __mark_chain_precision() backtracks BPF program instruction sequence and + * chain of verifier states making sure that register *regno* (if regno >= 0) + * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked + * SCALARS, as well as any other registers and slots that contribute to + * a tracked state of given registers/stack slots, depending on specific BPF + * assembly instructions (see backtrack_insns() for exact instruction handling + * logic). This backtracking relies on recorded jmp_history and is able to + * traverse entire chain of parent states. This process ends only when all the + * necessary registers/slots and their transitive dependencies are marked as + * precise. + * + * One important and subtle aspect is that precise marks *do not matter* in + * the currently verified state (current state). It is important to understand + * why this is the case. + * + * First, note that current state is the state that is not yet "checkpointed", + * i.e., it is not yet put into env->explored_states, and it has no children + * states as well. It's ephemeral, and can end up either a) being discarded if + * compatible explored state is found at some point or BPF_EXIT instruction is + * reached or b) checkpointed and put into env->explored_states, branching out + * into one or more children states. + * + * In the former case, precise markings in current state are completely + * ignored by state comparison code (see regsafe() for details). Only + * checkpointed ("old") state precise markings are important, and if old + * state's register/slot is precise, regsafe() assumes current state's + * register/slot as precise and checks value ranges exactly and precisely. If + * states turn out to be compatible, current state's necessary precise + * markings and any required parent states' precise markings are enforced + * after the fact with propagate_precision() logic, after the fact. But it's + * important to realize that in this case, even after marking current state + * registers/slots as precise, we immediately discard current state. So what + * actually matters is any of the precise markings propagated into current + * state's parent states, which are always checkpointed (due to b) case above). + * As such, for scenario a) it doesn't matter if current state has precise + * markings set or not. + * + * Now, for the scenario b), checkpointing and forking into child(ren) + * state(s). Note that before current state gets to checkpointing step, any + * processed instruction always assumes precise SCALAR register/slot + * knowledge: if precise value or range is useful to prune jump branch, BPF + * verifier takes this opportunity enthusiastically. Similarly, when + * register's value is used to calculate offset or memory address, exact + * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to + * what we mentioned above about state comparison ignoring precise markings + * during state comparison, BPF verifier ignores and also assumes precise + * markings *at will* during instruction verification process. But as verifier + * assumes precision, it also propagates any precision dependencies across + * parent states, which are not yet finalized, so can be further restricted + * based on new knowledge gained from restrictions enforced by their children + * states. This is so that once those parent states are finalized, i.e., when + * they have no more active children state, state comparison logic in + * is_state_visited() would enforce strict and precise SCALAR ranges, if + * required for correctness. + * + * To build a bit more intuition, note also that once a state is checkpointed, + * the path we took to get to that state is not important. This is crucial + * property for state pruning. When state is checkpointed and finalized at + * some instruction index, it can be correctly and safely used to "short + * circuit" any *compatible* state that reaches exactly the same instruction + * index. I.e., if we jumped to that instruction from a completely different + * code path than original finalized state was derived from, it doesn't + * matter, current state can be discarded because from that instruction + * forward having a compatible state will ensure we will safely reach the + * exit. States describe preconditions for further exploration, but completely + * forget the history of how we got here. + * + * This also means that even if we needed precise SCALAR range to get to + * finalized state, but from that point forward *that same* SCALAR register is + * never used in a precise context (i.e., it's precise value is not needed for + * correctness), it's correct and safe to mark such register as "imprecise" + * (i.e., precise marking set to false). This is what we rely on when we do + * not set precise marking in current state. If no child state requires + * precision for any given SCALAR register, it's safe to dictate that it can + * be imprecise. If any child state does require this register to be precise, + * we'll mark it precise later retroactively during precise markings + * propagation from child state to parent states. + * + * Skipping precise marking setting in current state is a mild version of + * relying on the above observation. But we can utilize this property even + * more aggressively by proactively forgetting any precise marking in the + * current state (which we inherited from the parent state), right before we + * checkpoint it and branch off into new child state. This is done by + * mark_all_scalars_imprecise() to hopefully get more permissive and generic + * finalized states which help in short circuiting more future states. + */ +static int __mark_chain_precision(struct bpf_verifier_env *env, + struct bpf_verifier_state *starting_state, + int regno, + bool *changed) +{ + struct bpf_verifier_state *st = starting_state; + struct backtrack_state *bt = &env->bt; + int first_idx = st->first_insn_idx; + int last_idx = starting_state->insn_idx; + int subseq_idx = -1; + struct bpf_func_state *func; + bool tmp, skip_first = true; + struct bpf_reg_state *reg; + int i, fr, err; + + if (!env->bpf_capable) + return 0; + + changed = changed ?: &tmp; + /* set frame number from which we are starting to backtrack */ + bt_init(bt, starting_state->curframe); + + /* Do sanity checks against current state of register and/or stack + * slot, but don't set precise flag in current state, as precision + * tracking in the current state is unnecessary. + */ + func = st->frame[bt->frame]; + if (regno >= 0) { + reg = &func->regs[regno]; + if (reg->type != SCALAR_VALUE) { + verifier_bug(env, "backtracking misuse"); + return -EFAULT; + } + bt_set_reg(bt, regno); + } + + if (bt_empty(bt)) + return 0; + + for (;;) { + DECLARE_BITMAP(mask, 64); + u32 history = st->jmp_history_cnt; + struct bpf_jmp_history_entry *hist; + + if (env->log.level & BPF_LOG_LEVEL2) { + verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", + bt->frame, last_idx, first_idx, subseq_idx); + } + + if (last_idx < 0) { + /* we are at the entry into subprog, which + * is expected for global funcs, but only if + * requested precise registers are R1-R5 + * (which are global func's input arguments) + */ + if (st->curframe == 0 && + st->frame[0]->subprogno > 0 && + st->frame[0]->callsite == BPF_MAIN_FUNC && + bt_stack_mask(bt) == 0 && + (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { + bitmap_from_u64(mask, bt_reg_mask(bt)); + for_each_set_bit(i, mask, 32) { + reg = &st->frame[0]->regs[i]; + bt_clear_reg(bt, i); + if (reg->type == SCALAR_VALUE) { + reg->precise = true; + *changed = true; + } + } + return 0; + } + + verifier_bug(env, "backtracking func entry subprog %d reg_mask %x stack_mask %llx", + st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); + return -EFAULT; + } + + for (i = last_idx;;) { + if (skip_first) { + err = 0; + skip_first = false; + } else { + hist = get_jmp_hist_entry(st, history, i); + err = backtrack_insn(env, i, subseq_idx, hist, bt); + } + if (err == -ENOTSUPP) { + mark_all_scalars_precise(env, starting_state); + bt_reset(bt); + return 0; + } else if (err) { + return err; + } + if (bt_empty(bt)) + /* Found assignment(s) into tracked register in this state. + * Since this state is already marked, just return. + * Nothing to be tracked further in the parent state. + */ + return 0; + subseq_idx = i; + i = get_prev_insn_idx(st, i, &history); + if (i == -ENOENT) + break; + if (i >= env->prog->len) { + /* This can happen if backtracking reached insn 0 + * and there are still reg_mask or stack_mask + * to backtrack. + * It means the backtracking missed the spot where + * particular register was initialized with a constant. + */ + verifier_bug(env, "backtracking idx %d", i); + return -EFAULT; + } + } + st = st->parent; + if (!st) + break; + + for (fr = bt->frame; fr >= 0; fr--) { + func = st->frame[fr]; + bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); + for_each_set_bit(i, mask, 32) { + reg = &func->regs[i]; + if (reg->type != SCALAR_VALUE) { + bt_clear_frame_reg(bt, fr, i); + continue; + } + if (reg->precise) { + bt_clear_frame_reg(bt, fr, i); + } else { + reg->precise = true; + *changed = true; + } + } + + bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); + for_each_set_bit(i, mask, 64) { + if (verifier_bug_if(i >= func->allocated_stack / BPF_REG_SIZE, + env, "stack slot %d, total slots %d", + i, func->allocated_stack / BPF_REG_SIZE)) + return -EFAULT; + + if (!is_spilled_scalar_reg(&func->stack[i])) { + bt_clear_frame_slot(bt, fr, i); + continue; + } + reg = &func->stack[i].spilled_ptr; + if (reg->precise) { + bt_clear_frame_slot(bt, fr, i); + } else { + reg->precise = true; + *changed = true; + } + } + if (env->log.level & BPF_LOG_LEVEL2) { + fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, + bt_frame_reg_mask(bt, fr)); + verbose(env, "mark_precise: frame%d: parent state regs=%s ", + fr, env->tmp_str_buf); + bpf_fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, + bt_frame_stack_mask(bt, fr)); + verbose(env, "stack=%s: ", env->tmp_str_buf); + print_verifier_state(env, st, fr, true); + } + } + + if (bt_empty(bt)) + return 0; + + subseq_idx = first_idx; + last_idx = st->last_insn_idx; + first_idx = st->first_insn_idx; + } + + /* if we still have requested precise regs or slots, we missed + * something (e.g., stack access through non-r10 register), so + * fallback to marking all precise + */ + if (!bt_empty(bt)) { + mark_all_scalars_precise(env, starting_state); + bt_reset(bt); + } + + return 0; +} + +int mark_chain_precision(struct bpf_verifier_env *env, int regno) +{ + return __mark_chain_precision(env, env->cur_state, regno, NULL); +} + +/* mark_chain_precision_batch() assumes that env->bt is set in the caller to + * desired reg and stack masks across all relevant frames + */ +static int mark_chain_precision_batch(struct bpf_verifier_env *env, + struct bpf_verifier_state *starting_state) +{ + return __mark_chain_precision(env, starting_state, -1, NULL); +} + +static bool is_spillable_regtype(enum bpf_reg_type type) +{ + switch (base_type(type)) { + case PTR_TO_MAP_VALUE: + case PTR_TO_STACK: + case PTR_TO_CTX: + case PTR_TO_PACKET: + case PTR_TO_PACKET_META: + case PTR_TO_PACKET_END: + case PTR_TO_FLOW_KEYS: + case CONST_PTR_TO_MAP: + case PTR_TO_SOCKET: + case PTR_TO_SOCK_COMMON: + case PTR_TO_TCP_SOCK: + case PTR_TO_XDP_SOCK: + case PTR_TO_BTF_ID: + case PTR_TO_BUF: + case PTR_TO_MEM: + case PTR_TO_FUNC: + case PTR_TO_MAP_KEY: + case PTR_TO_ARENA: + return true; + default: + return false; + } +} + +/* Does this register contain a constant zero? */ +static bool register_is_null(struct bpf_reg_state *reg) +{ + return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); +} + +/* check if register is a constant scalar value */ +static bool is_reg_const(struct bpf_reg_state *reg, bool subreg32) +{ + return reg->type == SCALAR_VALUE && + tnum_is_const(subreg32 ? tnum_subreg(reg->var_off) : reg->var_off); +} + +/* assuming is_reg_const() is true, return constant value of a register */ +static u64 reg_const_value(struct bpf_reg_state *reg, bool subreg32) +{ + return subreg32 ? tnum_subreg(reg->var_off).value : reg->var_off.value; +} + +static bool __is_pointer_value(bool allow_ptr_leaks, + const struct bpf_reg_state *reg) +{ + if (allow_ptr_leaks) + return false; + + return reg->type != SCALAR_VALUE; +} + +static void assign_scalar_id_before_mov(struct bpf_verifier_env *env, + struct bpf_reg_state *src_reg) +{ + if (src_reg->type != SCALAR_VALUE) + return; + + if (src_reg->id & BPF_ADD_CONST) { + /* + * The verifier is processing rX = rY insn and + * rY->id has special linked register already. + * Cleared it, since multiple rX += const are not supported. + */ + src_reg->id = 0; + src_reg->off = 0; + } + + if (!src_reg->id && !tnum_is_const(src_reg->var_off)) + /* Ensure that src_reg has a valid ID that will be copied to + * dst_reg and then will be used by sync_linked_regs() to + * propagate min/max range. + */ + src_reg->id = ++env->id_gen; +} + +/* Copy src state preserving dst->parent and dst->live fields */ +static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) +{ + *dst = *src; +} + +static void save_register_state(struct bpf_verifier_env *env, + struct bpf_func_state *state, + int spi, struct bpf_reg_state *reg, + int size) +{ + int i; + + copy_register_state(&state->stack[spi].spilled_ptr, reg); + + for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) + state->stack[spi].slot_type[i - 1] = STACK_SPILL; + + /* size < 8 bytes spill */ + for (; i; i--) + mark_stack_slot_misc(env, &state->stack[spi].slot_type[i - 1]); +} + +static bool is_bpf_st_mem(struct bpf_insn *insn) +{ + return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; +} + +static int get_reg_width(struct bpf_reg_state *reg) +{ + return fls64(reg->umax_value); +} + +/* See comment for mark_fastcall_pattern_for_call() */ +static void check_fastcall_stack_contract(struct bpf_verifier_env *env, + struct bpf_func_state *state, int insn_idx, int off) +{ + struct bpf_subprog_info *subprog = &env->subprog_info[state->subprogno]; + struct bpf_insn_aux_data *aux = env->insn_aux_data; + int i; + + if (subprog->fastcall_stack_off <= off || aux[insn_idx].fastcall_pattern) + return; + /* access to the region [max_stack_depth .. fastcall_stack_off) + * from something that is not a part of the fastcall pattern, + * disable fastcall rewrites for current subprogram by setting + * fastcall_stack_off to a value smaller than any possible offset. + */ + subprog->fastcall_stack_off = S16_MIN; + /* reset fastcall aux flags within subprogram, + * happens at most once per subprogram + */ + for (i = subprog->start; i < (subprog + 1)->start; ++i) { + aux[i].fastcall_spills_num = 0; + aux[i].fastcall_pattern = 0; + } +} + +/* check_stack_{read,write}_fixed_off functions track spill/fill of registers, + * stack boundary and alignment are checked in check_mem_access() + */ +static int check_stack_write_fixed_off(struct bpf_verifier_env *env, + /* stack frame we're writing to */ + struct bpf_func_state *state, + int off, int size, int value_regno, + int insn_idx) +{ + struct bpf_func_state *cur; /* state of the current function */ + int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; + struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; + struct bpf_reg_state *reg = NULL; + int insn_flags = insn_stack_access_flags(state->frameno, spi); + + /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, + * so it's aligned access and [off, off + size) are within stack limits + */ + if (!env->allow_ptr_leaks && + is_spilled_reg(&state->stack[spi]) && + !is_spilled_scalar_reg(&state->stack[spi]) && + size != BPF_REG_SIZE) { + verbose(env, "attempt to corrupt spilled pointer on stack\n"); + return -EACCES; + } + + cur = env->cur_state->frame[env->cur_state->curframe]; + if (value_regno >= 0) + reg = &cur->regs[value_regno]; + if (!env->bypass_spec_v4) { + bool sanitize = reg && is_spillable_regtype(reg->type); + + for (i = 0; i < size; i++) { + u8 type = state->stack[spi].slot_type[i]; + + if (type != STACK_MISC && type != STACK_ZERO) { + sanitize = true; + break; + } + } + + if (sanitize) + env->insn_aux_data[insn_idx].nospec_result = true; + } + + err = destroy_if_dynptr_stack_slot(env, state, spi); + if (err) + return err; + + if (!(off % BPF_REG_SIZE) && size == BPF_REG_SIZE) { + /* only mark the slot as written if all 8 bytes were written + * otherwise read propagation may incorrectly stop too soon + * when stack slots are partially written. + * This heuristic means that read propagation will be + * conservative, since it will add reg_live_read marks + * to stack slots all the way to first state when programs + * writes+reads less than 8 bytes + */ + bpf_mark_stack_write(env, state->frameno, BIT(spi)); + } + + check_fastcall_stack_contract(env, state, insn_idx, off); + mark_stack_slot_scratched(env, spi); + if (reg && !(off % BPF_REG_SIZE) && reg->type == SCALAR_VALUE && env->bpf_capable) { + bool reg_value_fits; + + reg_value_fits = get_reg_width(reg) <= BITS_PER_BYTE * size; + /* Make sure that reg had an ID to build a relation on spill. */ + if (reg_value_fits) + assign_scalar_id_before_mov(env, reg); + save_register_state(env, state, spi, reg, size); + /* Break the relation on a narrowing spill. */ + if (!reg_value_fits) + state->stack[spi].spilled_ptr.id = 0; + } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && + env->bpf_capable) { + struct bpf_reg_state *tmp_reg = &env->fake_reg[0]; + + memset(tmp_reg, 0, sizeof(*tmp_reg)); + __mark_reg_known(tmp_reg, insn->imm); + tmp_reg->type = SCALAR_VALUE; + save_register_state(env, state, spi, tmp_reg, size); + } else if (reg && is_spillable_regtype(reg->type)) { + /* register containing pointer is being spilled into stack */ + if (size != BPF_REG_SIZE) { + verbose_linfo(env, insn_idx, "; "); + verbose(env, "invalid size of register spill\n"); + return -EACCES; + } + if (state != cur && reg->type == PTR_TO_STACK) { + verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); + return -EINVAL; + } + save_register_state(env, state, spi, reg, size); + } else { + u8 type = STACK_MISC; + + /* regular write of data into stack destroys any spilled ptr */ + state->stack[spi].spilled_ptr.type = NOT_INIT; + /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ + if (is_stack_slot_special(&state->stack[spi])) + for (i = 0; i < BPF_REG_SIZE; i++) + scrub_spilled_slot(&state->stack[spi].slot_type[i]); + + /* when we zero initialize stack slots mark them as such */ + if ((reg && register_is_null(reg)) || + (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { + /* STACK_ZERO case happened because register spill + * wasn't properly aligned at the stack slot boundary, + * so it's not a register spill anymore; force + * originating register to be precise to make + * STACK_ZERO correct for subsequent states + */ + err = mark_chain_precision(env, value_regno); + if (err) + return err; + type = STACK_ZERO; + } + + /* Mark slots affected by this stack write. */ + for (i = 0; i < size; i++) + state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type; + insn_flags = 0; /* not a register spill */ + } + + if (insn_flags) + return push_jmp_history(env, env->cur_state, insn_flags, 0); + return 0; +} + +/* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is + * known to contain a variable offset. + * This function checks whether the write is permitted and conservatively + * tracks the effects of the write, considering that each stack slot in the + * dynamic range is potentially written to. + * + * 'off' includes 'regno->off'. + * 'value_regno' can be -1, meaning that an unknown value is being written to + * the stack. + * + * Spilled pointers in range are not marked as written because we don't know + * what's going to be actually written. This means that read propagation for + * future reads cannot be terminated by this write. + * + * For privileged programs, uninitialized stack slots are considered + * initialized by this write (even though we don't know exactly what offsets + * are going to be written to). The idea is that we don't want the verifier to + * reject future reads that access slots written to through variable offsets. + */ +static int check_stack_write_var_off(struct bpf_verifier_env *env, + /* func where register points to */ + struct bpf_func_state *state, + int ptr_regno, int off, int size, + int value_regno, int insn_idx) +{ + struct bpf_func_state *cur; /* state of the current function */ + int min_off, max_off; + int i, err; + struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; + struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; + bool writing_zero = false; + /* set if the fact that we're writing a zero is used to let any + * stack slots remain STACK_ZERO + */ + bool zero_used = false; + + cur = env->cur_state->frame[env->cur_state->curframe]; + ptr_reg = &cur->regs[ptr_regno]; + min_off = ptr_reg->smin_value + off; + max_off = ptr_reg->smax_value + off + size; + if (value_regno >= 0) + value_reg = &cur->regs[value_regno]; + if ((value_reg && register_is_null(value_reg)) || + (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) + writing_zero = true; + + for (i = min_off; i < max_off; i++) { + int spi; + + spi = __get_spi(i); + err = destroy_if_dynptr_stack_slot(env, state, spi); + if (err) + return err; + } + + check_fastcall_stack_contract(env, state, insn_idx, min_off); + /* Variable offset writes destroy any spilled pointers in range. */ + for (i = min_off; i < max_off; i++) { + u8 new_type, *stype; + int slot, spi; + + slot = -i - 1; + spi = slot / BPF_REG_SIZE; + stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; + mark_stack_slot_scratched(env, spi); + + if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { + /* Reject the write if range we may write to has not + * been initialized beforehand. If we didn't reject + * here, the ptr status would be erased below (even + * though not all slots are actually overwritten), + * possibly opening the door to leaks. + * + * We do however catch STACK_INVALID case below, and + * only allow reading possibly uninitialized memory + * later for CAP_PERFMON, as the write may not happen to + * that slot. + */ + verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", + insn_idx, i); + return -EINVAL; + } + + /* If writing_zero and the spi slot contains a spill of value 0, + * maintain the spill type. + */ + if (writing_zero && *stype == STACK_SPILL && + is_spilled_scalar_reg(&state->stack[spi])) { + struct bpf_reg_state *spill_reg = &state->stack[spi].spilled_ptr; + + if (tnum_is_const(spill_reg->var_off) && spill_reg->var_off.value == 0) { + zero_used = true; + continue; + } + } + + /* Erase all other spilled pointers. */ + state->stack[spi].spilled_ptr.type = NOT_INIT; + + /* Update the slot type. */ + new_type = STACK_MISC; + if (writing_zero && *stype == STACK_ZERO) { + new_type = STACK_ZERO; + zero_used = true; + } + /* If the slot is STACK_INVALID, we check whether it's OK to + * pretend that it will be initialized by this write. The slot + * might not actually be written to, and so if we mark it as + * initialized future reads might leak uninitialized memory. + * For privileged programs, we will accept such reads to slots + * that may or may not be written because, if we're reject + * them, the error would be too confusing. + */ + if (*stype == STACK_INVALID && !env->allow_uninit_stack) { + verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", + insn_idx, i); + return -EINVAL; + } + *stype = new_type; + } + if (zero_used) { + /* backtracking doesn't work for STACK_ZERO yet. */ + err = mark_chain_precision(env, value_regno); + if (err) + return err; + } + return 0; +} + +/* When register 'dst_regno' is assigned some values from stack[min_off, + * max_off), we set the register's type according to the types of the + * respective stack slots. If all the stack values are known to be zeros, then + * so is the destination reg. Otherwise, the register is considered to be + * SCALAR. This function does not deal with register filling; the caller must + * ensure that all spilled registers in the stack range have been marked as + * read. + */ +static void mark_reg_stack_read(struct bpf_verifier_env *env, + /* func where src register points to */ + struct bpf_func_state *ptr_state, + int min_off, int max_off, int dst_regno) +{ + struct bpf_verifier_state *vstate = env->cur_state; + struct bpf_func_state *state = vstate->frame[vstate->curframe]; + int i, slot, spi; + u8 *stype; + int zeros = 0; + + for (i = min_off; i < max_off; i++) { + slot = -i - 1; + spi = slot / BPF_REG_SIZE; + mark_stack_slot_scratched(env, spi); + stype = ptr_state->stack[spi].slot_type; + if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) + break; + zeros++; + } + if (zeros == max_off - min_off) { + /* Any access_size read into register is zero extended, + * so the whole register == const_zero. + */ + __mark_reg_const_zero(env, &state->regs[dst_regno]); + } else { + /* have read misc data from the stack */ + mark_reg_unknown(env, state->regs, dst_regno); + } +} + +/* Read the stack at 'off' and put the results into the register indicated by + * 'dst_regno'. It handles reg filling if the addressed stack slot is a + * spilled reg. + * + * 'dst_regno' can be -1, meaning that the read value is not going to a + * register. + * + * The access is assumed to be within the current stack bounds. + */ +static int check_stack_read_fixed_off(struct bpf_verifier_env *env, + /* func where src register points to */ + struct bpf_func_state *reg_state, + int off, int size, int dst_regno) +{ + struct bpf_verifier_state *vstate = env->cur_state; + struct bpf_func_state *state = vstate->frame[vstate->curframe]; + int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; + struct bpf_reg_state *reg; + u8 *stype, type; + int insn_flags = insn_stack_access_flags(reg_state->frameno, spi); + int err; + + stype = reg_state->stack[spi].slot_type; + reg = ®_state->stack[spi].spilled_ptr; + + mark_stack_slot_scratched(env, spi); + check_fastcall_stack_contract(env, state, env->insn_idx, off); + err = bpf_mark_stack_read(env, reg_state->frameno, env->insn_idx, BIT(spi)); + if (err) + return err; + + if (is_spilled_reg(®_state->stack[spi])) { + u8 spill_size = 1; + + for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) + spill_size++; + + if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { + if (reg->type != SCALAR_VALUE) { + verbose_linfo(env, env->insn_idx, "; "); + verbose(env, "invalid size of register fill\n"); + return -EACCES; + } + + if (dst_regno < 0) + return 0; + + if (size <= spill_size && + bpf_stack_narrow_access_ok(off, size, spill_size)) { + /* The earlier check_reg_arg() has decided the + * subreg_def for this insn. Save it first. + */ + s32 subreg_def = state->regs[dst_regno].subreg_def; + + copy_register_state(&state->regs[dst_regno], reg); + state->regs[dst_regno].subreg_def = subreg_def; + + /* Break the relation on a narrowing fill. + * coerce_reg_to_size will adjust the boundaries. + */ + if (get_reg_width(reg) > size * BITS_PER_BYTE) + state->regs[dst_regno].id = 0; + } else { + int spill_cnt = 0, zero_cnt = 0; + + for (i = 0; i < size; i++) { + type = stype[(slot - i) % BPF_REG_SIZE]; + if (type == STACK_SPILL) { + spill_cnt++; + continue; + } + if (type == STACK_MISC) + continue; + if (type == STACK_ZERO) { + zero_cnt++; + continue; + } + if (type == STACK_INVALID && env->allow_uninit_stack) + continue; + verbose(env, "invalid read from stack off %d+%d size %d\n", + off, i, size); + return -EACCES; + } + + if (spill_cnt == size && + tnum_is_const(reg->var_off) && reg->var_off.value == 0) { + __mark_reg_const_zero(env, &state->regs[dst_regno]); + /* this IS register fill, so keep insn_flags */ + } else if (zero_cnt == size) { + /* similarly to mark_reg_stack_read(), preserve zeroes */ + __mark_reg_const_zero(env, &state->regs[dst_regno]); + insn_flags = 0; /* not restoring original register state */ + } else { + mark_reg_unknown(env, state->regs, dst_regno); + insn_flags = 0; /* not restoring original register state */ + } + } + } else if (dst_regno >= 0) { + /* restore register state from stack */ + copy_register_state(&state->regs[dst_regno], reg); + /* mark reg as written since spilled pointer state likely + * has its liveness marks cleared by is_state_visited() + * which resets stack/reg liveness for state transitions + */ + } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { + /* If dst_regno==-1, the caller is asking us whether + * it is acceptable to use this value as a SCALAR_VALUE + * (e.g. for XADD). + * We must not allow unprivileged callers to do that + * with spilled pointers. + */ + verbose(env, "leaking pointer from stack off %d\n", + off); + return -EACCES; + } + } else { + for (i = 0; i < size; i++) { + type = stype[(slot - i) % BPF_REG_SIZE]; + if (type == STACK_MISC) + continue; + if (type == STACK_ZERO) + continue; + if (type == STACK_INVALID && env->allow_uninit_stack) + continue; + verbose(env, "invalid read from stack off %d+%d size %d\n", + off, i, size); + return -EACCES; + } + if (dst_regno >= 0) + mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); + insn_flags = 0; /* we are not restoring spilled register */ + } + if (insn_flags) + return push_jmp_history(env, env->cur_state, insn_flags, 0); + return 0; +} + +enum bpf_access_src { + ACCESS_DIRECT = 1, /* the access is performed by an instruction */ + ACCESS_HELPER = 2, /* the access is performed by a helper */ +}; + +static int check_stack_range_initialized(struct bpf_verifier_env *env, + int regno, int off, int access_size, + bool zero_size_allowed, + enum bpf_access_type type, + struct bpf_call_arg_meta *meta); + +static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) +{ + return cur_regs(env) + regno; +} + +/* Read the stack at 'ptr_regno + off' and put the result into the register + * 'dst_regno'. + * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), + * but not its variable offset. + * 'size' is assumed to be <= reg size and the access is assumed to be aligned. + * + * As opposed to check_stack_read_fixed_off, this function doesn't deal with + * filling registers (i.e. reads of spilled register cannot be detected when + * the offset is not fixed). We conservatively mark 'dst_regno' as containing + * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable + * offset; for a fixed offset check_stack_read_fixed_off should be used + * instead. + */ +static int check_stack_read_var_off(struct bpf_verifier_env *env, + int ptr_regno, int off, int size, int dst_regno) +{ + /* The state of the source register. */ + struct bpf_reg_state *reg = reg_state(env, ptr_regno); + struct bpf_func_state *ptr_state = func(env, reg); + int err; + int min_off, max_off; + + /* Note that we pass a NULL meta, so raw access will not be permitted. + */ + err = check_stack_range_initialized(env, ptr_regno, off, size, + false, BPF_READ, NULL); + if (err) + return err; + + min_off = reg->smin_value + off; + max_off = reg->smax_value + off; + mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); + check_fastcall_stack_contract(env, ptr_state, env->insn_idx, min_off); + return 0; +} + +/* check_stack_read dispatches to check_stack_read_fixed_off or + * check_stack_read_var_off. + * + * The caller must ensure that the offset falls within the allocated stack + * bounds. + * + * 'dst_regno' is a register which will receive the value from the stack. It + * can be -1, meaning that the read value is not going to a register. + */ +static int check_stack_read(struct bpf_verifier_env *env, + int ptr_regno, int off, int size, + int dst_regno) +{ + struct bpf_reg_state *reg = reg_state(env, ptr_regno); + struct bpf_func_state *state = func(env, reg); + int err; + /* Some accesses are only permitted with a static offset. */ + bool var_off = !tnum_is_const(reg->var_off); + + /* The offset is required to be static when reads don't go to a + * register, in order to not leak pointers (see + * check_stack_read_fixed_off). + */ + if (dst_regno < 0 && var_off) { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", + tn_buf, off, size); + return -EACCES; + } + /* Variable offset is prohibited for unprivileged mode for simplicity + * since it requires corresponding support in Spectre masking for stack + * ALU. See also retrieve_ptr_limit(). The check in + * check_stack_access_for_ptr_arithmetic() called by + * adjust_ptr_min_max_vals() prevents users from creating stack pointers + * with variable offsets, therefore no check is required here. Further, + * just checking it here would be insufficient as speculative stack + * writes could still lead to unsafe speculative behaviour. + */ + if (!var_off) { + off += reg->var_off.value; + err = check_stack_read_fixed_off(env, state, off, size, + dst_regno); + } else { + /* Variable offset stack reads need more conservative handling + * than fixed offset ones. Note that dst_regno >= 0 on this + * branch. + */ + err = check_stack_read_var_off(env, ptr_regno, off, size, + dst_regno); + } + return err; +} + + +/* check_stack_write dispatches to check_stack_write_fixed_off or + * check_stack_write_var_off. + * + * 'ptr_regno' is the register used as a pointer into the stack. + * 'off' includes 'ptr_regno->off', but not its variable offset (if any). + * 'value_regno' is the register whose value we're writing to the stack. It can + * be -1, meaning that we're not writing from a register. + * + * The caller must ensure that the offset falls within the maximum stack size. + */ +static int check_stack_write(struct bpf_verifier_env *env, + int ptr_regno, int off, int size, + int value_regno, int insn_idx) +{ + struct bpf_reg_state *reg = reg_state(env, ptr_regno); + struct bpf_func_state *state = func(env, reg); + int err; + + if (tnum_is_const(reg->var_off)) { + off += reg->var_off.value; + err = check_stack_write_fixed_off(env, state, off, size, + value_regno, insn_idx); + } else { + /* Variable offset stack reads need more conservative handling + * than fixed offset ones. + */ + err = check_stack_write_var_off(env, state, + ptr_regno, off, size, + value_regno, insn_idx); + } + return err; +} + +static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, + int off, int size, enum bpf_access_type type) +{ + struct bpf_reg_state *regs = cur_regs(env); + struct bpf_map *map = regs[regno].map_ptr; + u32 cap = bpf_map_flags_to_cap(map); + + if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { + verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", + map->value_size, off, size); + return -EACCES; + } + + if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { + verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", + map->value_size, off, size); + return -EACCES; + } + + return 0; +} + +/* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ +static int __check_mem_access(struct bpf_verifier_env *env, int regno, + int off, int size, u32 mem_size, + bool zero_size_allowed) +{ + bool size_ok = size > 0 || (size == 0 && zero_size_allowed); + struct bpf_reg_state *reg; + + if (off >= 0 && size_ok && (u64)off + size <= mem_size) + return 0; + + reg = &cur_regs(env)[regno]; + switch (reg->type) { + case PTR_TO_MAP_KEY: + verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", + mem_size, off, size); + break; + case PTR_TO_MAP_VALUE: + verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", + mem_size, off, size); + break; + case PTR_TO_PACKET: + case PTR_TO_PACKET_META: + case PTR_TO_PACKET_END: + verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", + off, size, regno, reg->id, off, mem_size); + break; + case PTR_TO_MEM: + default: + verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", + mem_size, off, size); + } + + return -EACCES; +} + +/* check read/write into a memory region with possible variable offset */ +static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, + int off, int size, u32 mem_size, + bool zero_size_allowed) +{ + struct bpf_verifier_state *vstate = env->cur_state; + struct bpf_func_state *state = vstate->frame[vstate->curframe]; + struct bpf_reg_state *reg = &state->regs[regno]; + int err; + + /* We may have adjusted the register pointing to memory region, so we + * need to try adding each of min_value and max_value to off + * to make sure our theoretical access will be safe. + * + * The minimum value is only important with signed + * comparisons where we can't assume the floor of a + * value is 0. If we are using signed variables for our + * index'es we need to make sure that whatever we use + * will have a set floor within our range. + */ + if (reg->smin_value < 0 && + (reg->smin_value == S64_MIN || + (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || + reg->smin_value + off < 0)) { + verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", + regno); + return -EACCES; + } + err = __check_mem_access(env, regno, reg->smin_value + off, size, + mem_size, zero_size_allowed); + if (err) { + verbose(env, "R%d min value is outside of the allowed memory range\n", + regno); + return err; + } + + /* If we haven't set a max value then we need to bail since we can't be + * sure we won't do bad things. + * If reg->umax_value + off could overflow, treat that as unbounded too. + */ + if (reg->umax_value >= BPF_MAX_VAR_OFF) { + verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", + regno); + return -EACCES; + } + err = __check_mem_access(env, regno, reg->umax_value + off, size, + mem_size, zero_size_allowed); + if (err) { + verbose(env, "R%d max value is outside of the allowed memory range\n", + regno); + return err; + } + + return 0; +} + +static int __check_ptr_off_reg(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, int regno, + bool fixed_off_ok) +{ + /* Access to this pointer-typed register or passing it to a helper + * is only allowed in its original, unmodified form. + */ + + if (reg->off < 0) { + verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", + reg_type_str(env, reg->type), regno, reg->off); + return -EACCES; + } + + if (!fixed_off_ok && reg->off) { + verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", + reg_type_str(env, reg->type), regno, reg->off); + return -EACCES; + } + + if (!tnum_is_const(reg->var_off) || reg->var_off.value) { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "variable %s access var_off=%s disallowed\n", + reg_type_str(env, reg->type), tn_buf); + return -EACCES; + } + + return 0; +} + +static int check_ptr_off_reg(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, int regno) +{ + return __check_ptr_off_reg(env, reg, regno, false); +} + +static int map_kptr_match_type(struct bpf_verifier_env *env, + struct btf_field *kptr_field, + struct bpf_reg_state *reg, u32 regno) +{ + const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); + int perm_flags; + const char *reg_name = ""; + + if (btf_is_kernel(reg->btf)) { + perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; + + /* Only unreferenced case accepts untrusted pointers */ + if (kptr_field->type == BPF_KPTR_UNREF) + perm_flags |= PTR_UNTRUSTED; + } else { + perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; + if (kptr_field->type == BPF_KPTR_PERCPU) + perm_flags |= MEM_PERCPU; + } + + if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) + goto bad_type; + + /* We need to verify reg->type and reg->btf, before accessing reg->btf */ + reg_name = btf_type_name(reg->btf, reg->btf_id); + + /* For ref_ptr case, release function check should ensure we get one + * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the + * normal store of unreferenced kptr, we must ensure var_off is zero. + * Since ref_ptr cannot be accessed directly by BPF insns, checks for + * reg->off and reg->ref_obj_id are not needed here. + */ + if (__check_ptr_off_reg(env, reg, regno, true)) + return -EACCES; + + /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and + * we also need to take into account the reg->off. + * + * We want to support cases like: + * + * struct foo { + * struct bar br; + * struct baz bz; + * }; + * + * struct foo *v; + * v = func(); // PTR_TO_BTF_ID + * val->foo = v; // reg->off is zero, btf and btf_id match type + * val->bar = &v->br; // reg->off is still zero, but we need to retry with + * // first member type of struct after comparison fails + * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked + * // to match type + * + * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off + * is zero. We must also ensure that btf_struct_ids_match does not walk + * the struct to match type against first member of struct, i.e. reject + * second case from above. Hence, when type is BPF_KPTR_REF, we set + * strict mode to true for type match. + */ + if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, + kptr_field->kptr.btf, kptr_field->kptr.btf_id, + kptr_field->type != BPF_KPTR_UNREF)) + goto bad_type; + return 0; +bad_type: + verbose(env, "invalid kptr access, R%d type=%s%s ", regno, + reg_type_str(env, reg->type), reg_name); + verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); + if (kptr_field->type == BPF_KPTR_UNREF) + verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), + targ_name); + else + verbose(env, "\n"); + return -EINVAL; +} + +static bool in_sleepable(struct bpf_verifier_env *env) +{ + return env->cur_state->in_sleepable; +} + +/* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() + * can dereference RCU protected pointers and result is PTR_TRUSTED. + */ +static bool in_rcu_cs(struct bpf_verifier_env *env) +{ + return env->cur_state->active_rcu_locks || + env->cur_state->active_locks || + !in_sleepable(env); +} + +/* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ +BTF_SET_START(rcu_protected_types) +#ifdef CONFIG_NET +BTF_ID(struct, prog_test_ref_kfunc) +#endif +#ifdef CONFIG_CGROUPS +BTF_ID(struct, cgroup) +#endif +#ifdef CONFIG_BPF_JIT +BTF_ID(struct, bpf_cpumask) +#endif +BTF_ID(struct, task_struct) +#ifdef CONFIG_CRYPTO +BTF_ID(struct, bpf_crypto_ctx) +#endif +BTF_SET_END(rcu_protected_types) + +static bool rcu_protected_object(const struct btf *btf, u32 btf_id) +{ + if (!btf_is_kernel(btf)) + return true; + return btf_id_set_contains(&rcu_protected_types, btf_id); +} + +static struct btf_record *kptr_pointee_btf_record(struct btf_field *kptr_field) +{ + struct btf_struct_meta *meta; + + if (btf_is_kernel(kptr_field->kptr.btf)) + return NULL; + + meta = btf_find_struct_meta(kptr_field->kptr.btf, + kptr_field->kptr.btf_id); + + return meta ? meta->record : NULL; +} + +static bool rcu_safe_kptr(const struct btf_field *field) +{ + const struct btf_field_kptr *kptr = &field->kptr; + + return field->type == BPF_KPTR_PERCPU || + (field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id)); +} + +static u32 btf_ld_kptr_type(struct bpf_verifier_env *env, struct btf_field *kptr_field) +{ + struct btf_record *rec; + u32 ret; + + ret = PTR_MAYBE_NULL; + if (rcu_safe_kptr(kptr_field) && in_rcu_cs(env)) { + ret |= MEM_RCU; + if (kptr_field->type == BPF_KPTR_PERCPU) + ret |= MEM_PERCPU; + else if (!btf_is_kernel(kptr_field->kptr.btf)) + ret |= MEM_ALLOC; + + rec = kptr_pointee_btf_record(kptr_field); + if (rec && btf_record_has_field(rec, BPF_GRAPH_NODE)) + ret |= NON_OWN_REF; + } else { + ret |= PTR_UNTRUSTED; + } + + return ret; +} + +static int mark_uptr_ld_reg(struct bpf_verifier_env *env, u32 regno, + struct btf_field *field) +{ + struct bpf_reg_state *reg; + const struct btf_type *t; + + t = btf_type_by_id(field->kptr.btf, field->kptr.btf_id); + mark_reg_known_zero(env, cur_regs(env), regno); + reg = reg_state(env, regno); + reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; + reg->mem_size = t->size; + reg->id = ++env->id_gen; + + return 0; +} + +static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, + int value_regno, int insn_idx, + struct btf_field *kptr_field) +{ + struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; + int class = BPF_CLASS(insn->code); + struct bpf_reg_state *val_reg; + int ret; + + /* Things we already checked for in check_map_access and caller: + * - Reject cases where variable offset may touch kptr + * - size of access (must be BPF_DW) + * - tnum_is_const(reg->var_off) + * - kptr_field->offset == off + reg->var_off.value + */ + /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ + if (BPF_MODE(insn->code) != BPF_MEM) { + verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); + return -EACCES; + } + + /* We only allow loading referenced kptr, since it will be marked as + * untrusted, similar to unreferenced kptr. + */ + if (class != BPF_LDX && + (kptr_field->type == BPF_KPTR_REF || kptr_field->type == BPF_KPTR_PERCPU)) { + verbose(env, "store to referenced kptr disallowed\n"); + return -EACCES; + } + if (class != BPF_LDX && kptr_field->type == BPF_UPTR) { + verbose(env, "store to uptr disallowed\n"); + return -EACCES; + } + + if (class == BPF_LDX) { + if (kptr_field->type == BPF_UPTR) + return mark_uptr_ld_reg(env, value_regno, kptr_field); + + /* We can simply mark the value_regno receiving the pointer + * value from map as PTR_TO_BTF_ID, with the correct type. + */ + ret = mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, + kptr_field->kptr.btf, kptr_field->kptr.btf_id, + btf_ld_kptr_type(env, kptr_field)); + if (ret < 0) + return ret; + } else if (class == BPF_STX) { + val_reg = reg_state(env, value_regno); + if (!register_is_null(val_reg) && + map_kptr_match_type(env, kptr_field, val_reg, value_regno)) + return -EACCES; + } else if (class == BPF_ST) { + if (insn->imm) { + verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", + kptr_field->offset); + return -EACCES; + } + } else { + verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); + return -EACCES; + } + return 0; +} + +/* + * Return the size of the memory region accessible from a pointer to map value. + * For INSN_ARRAY maps whole bpf_insn_array->ips array is accessible. + */ +static u32 map_mem_size(const struct bpf_map *map) +{ + if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) + return map->max_entries * sizeof(long); + + return map->value_size; +} + +/* check read/write into a map element with possible variable offset */ +static int check_map_access(struct bpf_verifier_env *env, u32 regno, + int off, int size, bool zero_size_allowed, + enum bpf_access_src src) +{ + struct bpf_verifier_state *vstate = env->cur_state; + struct bpf_func_state *state = vstate->frame[vstate->curframe]; + struct bpf_reg_state *reg = &state->regs[regno]; + struct bpf_map *map = reg->map_ptr; + u32 mem_size = map_mem_size(map); + struct btf_record *rec; + int err, i; + + err = check_mem_region_access(env, regno, off, size, mem_size, zero_size_allowed); + if (err) + return err; + + if (IS_ERR_OR_NULL(map->record)) + return 0; + rec = map->record; + for (i = 0; i < rec->cnt; i++) { + struct btf_field *field = &rec->fields[i]; + u32 p = field->offset; + + /* If any part of a field can be touched by load/store, reject + * this program. To check that [x1, x2) overlaps with [y1, y2), + * it is sufficient to check x1 < y2 && y1 < x2. + */ + if (reg->smin_value + off < p + field->size && + p < reg->umax_value + off + size) { + switch (field->type) { + case BPF_KPTR_UNREF: + case BPF_KPTR_REF: + case BPF_KPTR_PERCPU: + case BPF_UPTR: + if (src != ACCESS_DIRECT) { + verbose(env, "%s cannot be accessed indirectly by helper\n", + btf_field_type_name(field->type)); + return -EACCES; + } + if (!tnum_is_const(reg->var_off)) { + verbose(env, "%s access cannot have variable offset\n", + btf_field_type_name(field->type)); + return -EACCES; + } + if (p != off + reg->var_off.value) { + verbose(env, "%s access misaligned expected=%u off=%llu\n", + btf_field_type_name(field->type), + p, off + reg->var_off.value); + return -EACCES; + } + if (size != bpf_size_to_bytes(BPF_DW)) { + verbose(env, "%s access size must be BPF_DW\n", + btf_field_type_name(field->type)); + return -EACCES; + } + break; + default: + verbose(env, "%s cannot be accessed directly by load/store\n", + btf_field_type_name(field->type)); + return -EACCES; + } + } + } + return 0; +} + +#define MAX_PACKET_OFF 0xffff + +static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, + const struct bpf_call_arg_meta *meta, + enum bpf_access_type t) +{ + enum bpf_prog_type prog_type = resolve_prog_type(env->prog); + + switch (prog_type) { + /* Program types only with direct read access go here! */ + case BPF_PROG_TYPE_LWT_IN: + case BPF_PROG_TYPE_LWT_OUT: + case BPF_PROG_TYPE_LWT_SEG6LOCAL: + case BPF_PROG_TYPE_SK_REUSEPORT: + case BPF_PROG_TYPE_FLOW_DISSECTOR: + case BPF_PROG_TYPE_CGROUP_SKB: + if (t == BPF_WRITE) + return false; + fallthrough; + + /* Program types with direct read + write access go here! */ + case BPF_PROG_TYPE_SCHED_CLS: + case BPF_PROG_TYPE_SCHED_ACT: + case BPF_PROG_TYPE_XDP: + case BPF_PROG_TYPE_LWT_XMIT: + case BPF_PROG_TYPE_SK_SKB: + case BPF_PROG_TYPE_SK_MSG: + if (meta) + return meta->pkt_access; + + env->seen_direct_write = true; + return true; + + case BPF_PROG_TYPE_CGROUP_SOCKOPT: + if (t == BPF_WRITE) + env->seen_direct_write = true; + + return true; + + default: + return false; + } +} + +static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, + int size, bool zero_size_allowed) +{ + struct bpf_reg_state *regs = cur_regs(env); + struct bpf_reg_state *reg = ®s[regno]; + int err; + + /* We may have added a variable offset to the packet pointer; but any + * reg->range we have comes after that. We are only checking the fixed + * offset. + */ + + /* We don't allow negative numbers, because we aren't tracking enough + * detail to prove they're safe. + */ + if (reg->smin_value < 0) { + verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", + regno); + return -EACCES; + } + + err = reg->range < 0 ? -EINVAL : + __check_mem_access(env, regno, off, size, reg->range, + zero_size_allowed); + if (err) { + verbose(env, "R%d offset is outside of the packet\n", regno); + return err; + } + + /* __check_mem_access has made sure "off + size - 1" is within u16. + * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, + * otherwise find_good_pkt_pointers would have refused to set range info + * that __check_mem_access would have rejected this pkt access. + * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. + */ + env->prog->aux->max_pkt_offset = + max_t(u32, env->prog->aux->max_pkt_offset, + off + reg->umax_value + size - 1); + + return err; +} + +/* check access to 'struct bpf_context' fields. Supports fixed offsets only */ +static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, + enum bpf_access_type t, struct bpf_insn_access_aux *info) +{ + if (env->ops->is_valid_access && + env->ops->is_valid_access(off, size, t, env->prog, info)) { + /* A non zero info.ctx_field_size indicates that this field is a + * candidate for later verifier transformation to load the whole + * field and then apply a mask when accessed with a narrower + * access than actual ctx access size. A zero info.ctx_field_size + * will only allow for whole field access and rejects any other + * type of narrower access. + */ + if (base_type(info->reg_type) == PTR_TO_BTF_ID) { + if (info->ref_obj_id && + !find_reference_state(env->cur_state, info->ref_obj_id)) { + verbose(env, "invalid bpf_context access off=%d. Reference may already be released\n", + off); + return -EACCES; + } + } else { + env->insn_aux_data[insn_idx].ctx_field_size = info->ctx_field_size; + } + /* remember the offset of last byte accessed in ctx */ + if (env->prog->aux->max_ctx_offset < off + size) + env->prog->aux->max_ctx_offset = off + size; + return 0; + } + + verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); + return -EACCES; +} + +static int check_flow_keys_access(struct bpf_verifier_env *env, int off, + int size) +{ + if (size < 0 || off < 0 || + (u64)off + size > sizeof(struct bpf_flow_keys)) { + verbose(env, "invalid access to flow keys off=%d size=%d\n", + off, size); + return -EACCES; + } + return 0; +} + +static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, + u32 regno, int off, int size, + enum bpf_access_type t) +{ + struct bpf_reg_state *regs = cur_regs(env); + struct bpf_reg_state *reg = ®s[regno]; + struct bpf_insn_access_aux info = {}; + bool valid; + + if (reg->smin_value < 0) { + verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", + regno); + return -EACCES; + } + + switch (reg->type) { + case PTR_TO_SOCK_COMMON: + valid = bpf_sock_common_is_valid_access(off, size, t, &info); + break; + case PTR_TO_SOCKET: + valid = bpf_sock_is_valid_access(off, size, t, &info); + break; + case PTR_TO_TCP_SOCK: + valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); + break; + case PTR_TO_XDP_SOCK: + valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); + break; + default: + valid = false; + } + + + if (valid) { + env->insn_aux_data[insn_idx].ctx_field_size = + info.ctx_field_size; + return 0; + } + + verbose(env, "R%d invalid %s access off=%d size=%d\n", + regno, reg_type_str(env, reg->type), off, size); + + return -EACCES; +} + +static bool is_pointer_value(struct bpf_verifier_env *env, int regno) +{ + return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); +} + +static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) +{ + const struct bpf_reg_state *reg = reg_state(env, regno); + + return reg->type == PTR_TO_CTX; +} + +static bool is_sk_reg(struct bpf_verifier_env *env, int regno) +{ + const struct bpf_reg_state *reg = reg_state(env, regno); + + return type_is_sk_pointer(reg->type); +} + +static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) +{ + const struct bpf_reg_state *reg = reg_state(env, regno); + + return type_is_pkt_pointer(reg->type); +} + +static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) +{ + const struct bpf_reg_state *reg = reg_state(env, regno); + + /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ + return reg->type == PTR_TO_FLOW_KEYS; +} + +static bool is_arena_reg(struct bpf_verifier_env *env, int regno) +{ + const struct bpf_reg_state *reg = reg_state(env, regno); + + return reg->type == PTR_TO_ARENA; +} + +/* Return false if @regno contains a pointer whose type isn't supported for + * atomic instruction @insn. + */ +static bool atomic_ptr_type_ok(struct bpf_verifier_env *env, int regno, + struct bpf_insn *insn) +{ + if (is_ctx_reg(env, regno)) + return false; + if (is_pkt_reg(env, regno)) + return false; + if (is_flow_key_reg(env, regno)) + return false; + if (is_sk_reg(env, regno)) + return false; + if (is_arena_reg(env, regno)) + return bpf_jit_supports_insn(insn, true); + + return true; +} + +static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { +#ifdef CONFIG_NET + [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], + [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], + [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], +#endif + [CONST_PTR_TO_MAP] = btf_bpf_map_id, +}; + +static bool is_trusted_reg(const struct bpf_reg_state *reg) +{ + /* A referenced register is always trusted. */ + if (reg->ref_obj_id) + return true; + + /* Types listed in the reg2btf_ids are always trusted */ + if (reg2btf_ids[base_type(reg->type)] && + !bpf_type_has_unsafe_modifiers(reg->type)) + return true; + + /* If a register is not referenced, it is trusted if it has the + * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the + * other type modifiers may be safe, but we elect to take an opt-in + * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are + * not. + * + * Eventually, we should make PTR_TRUSTED the single source of truth + * for whether a register is trusted. + */ + return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && + !bpf_type_has_unsafe_modifiers(reg->type); +} + +static bool is_rcu_reg(const struct bpf_reg_state *reg) +{ + return reg->type & MEM_RCU; +} + +static void clear_trusted_flags(enum bpf_type_flag *flag) +{ + *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); +} + +static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, + int off, int size, bool strict) +{ + struct tnum reg_off; + int ip_align; + + /* Byte size accesses are always allowed. */ + if (!strict || size == 1) + return 0; + + /* For platforms that do not have a Kconfig enabling + * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of + * NET_IP_ALIGN is universally set to '2'. And on platforms + * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get + * to this code only in strict mode where we want to emulate + * the NET_IP_ALIGN==2 checking. Therefore use an + * unconditional IP align value of '2'. + */ + ip_align = 2; + + reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); + if (!tnum_is_aligned(reg_off, size)) { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, + "misaligned packet access off %d+%s+%d+%d size %d\n", + ip_align, tn_buf, reg->off, off, size); + return -EACCES; + } + + return 0; +} + +static int check_generic_ptr_alignment(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, + const char *pointer_desc, + int off, int size, bool strict) +{ + struct tnum reg_off; + + /* Byte size accesses are always allowed. */ + if (!strict || size == 1) + return 0; + + reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); + if (!tnum_is_aligned(reg_off, size)) { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", + pointer_desc, tn_buf, reg->off, off, size); + return -EACCES; + } + + return 0; +} + +static int check_ptr_alignment(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, int off, + int size, bool strict_alignment_once) +{ + bool strict = env->strict_alignment || strict_alignment_once; + const char *pointer_desc = ""; + + switch (reg->type) { + case PTR_TO_PACKET: + case PTR_TO_PACKET_META: + /* Special case, because of NET_IP_ALIGN. Given metadata sits + * right in front, treat it the very same way. + */ + return check_pkt_ptr_alignment(env, reg, off, size, strict); + case PTR_TO_FLOW_KEYS: + pointer_desc = "flow keys "; + break; + case PTR_TO_MAP_KEY: + pointer_desc = "key "; + break; + case PTR_TO_MAP_VALUE: + pointer_desc = "value "; + if (reg->map_ptr->map_type == BPF_MAP_TYPE_INSN_ARRAY) + strict = true; + break; + case PTR_TO_CTX: + pointer_desc = "context "; + break; + case PTR_TO_STACK: + pointer_desc = "stack "; + /* The stack spill tracking logic in check_stack_write_fixed_off() + * and check_stack_read_fixed_off() relies on stack accesses being + * aligned. + */ + strict = true; + break; + case PTR_TO_SOCKET: + pointer_desc = "sock "; + break; + case PTR_TO_SOCK_COMMON: + pointer_desc = "sock_common "; + break; + case PTR_TO_TCP_SOCK: + pointer_desc = "tcp_sock "; + break; + case PTR_TO_XDP_SOCK: + pointer_desc = "xdp_sock "; + break; + case PTR_TO_ARENA: + return 0; + default: + break; + } + return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, + strict); +} + +static enum priv_stack_mode bpf_enable_priv_stack(struct bpf_prog *prog) +{ + if (!bpf_jit_supports_private_stack()) + return NO_PRIV_STACK; + + /* bpf_prog_check_recur() checks all prog types that use bpf trampoline + * while kprobe/tp/perf_event/raw_tp don't use trampoline hence checked + * explicitly. + */ + switch (prog->type) { + case BPF_PROG_TYPE_KPROBE: + case BPF_PROG_TYPE_TRACEPOINT: + case BPF_PROG_TYPE_PERF_EVENT: + case BPF_PROG_TYPE_RAW_TRACEPOINT: + return PRIV_STACK_ADAPTIVE; + case BPF_PROG_TYPE_TRACING: + case BPF_PROG_TYPE_LSM: + case BPF_PROG_TYPE_STRUCT_OPS: + if (prog->aux->priv_stack_requested || bpf_prog_check_recur(prog)) + return PRIV_STACK_ADAPTIVE; + fallthrough; + default: + break; + } + + return NO_PRIV_STACK; +} + +static int round_up_stack_depth(struct bpf_verifier_env *env, int stack_depth) +{ + if (env->prog->jit_requested) + return round_up(stack_depth, 16); + + /* round up to 32-bytes, since this is granularity + * of interpreter stack size + */ + return round_up(max_t(u32, stack_depth, 1), 32); +} + +/* starting from main bpf function walk all instructions of the function + * and recursively walk all callees that given function can call. + * Ignore jump and exit insns. + * Since recursion is prevented by check_cfg() this algorithm + * only needs a local stack of MAX_CALL_FRAMES to remember callsites + */ +static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx, + bool priv_stack_supported) +{ + struct bpf_subprog_info *subprog = env->subprog_info; + struct bpf_insn *insn = env->prog->insnsi; + int depth = 0, frame = 0, i, subprog_end, subprog_depth; + bool tail_call_reachable = false; + int ret_insn[MAX_CALL_FRAMES]; + int ret_prog[MAX_CALL_FRAMES]; + int j; + + i = subprog[idx].start; + if (!priv_stack_supported) + subprog[idx].priv_stack_mode = NO_PRIV_STACK; +process_func: + /* protect against potential stack overflow that might happen when + * bpf2bpf calls get combined with tailcalls. Limit the caller's stack + * depth for such case down to 256 so that the worst case scenario + * would result in 8k stack size (32 which is tailcall limit * 256 = + * 8k). + * + * To get the idea what might happen, see an example: + * func1 -> sub rsp, 128 + * subfunc1 -> sub rsp, 256 + * tailcall1 -> add rsp, 256 + * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) + * subfunc2 -> sub rsp, 64 + * subfunc22 -> sub rsp, 128 + * tailcall2 -> add rsp, 128 + * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) + * + * tailcall will unwind the current stack frame but it will not get rid + * of caller's stack as shown on the example above. + */ + if (idx && subprog[idx].has_tail_call && depth >= 256) { + verbose(env, + "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", + depth); + return -EACCES; + } + + subprog_depth = round_up_stack_depth(env, subprog[idx].stack_depth); + if (priv_stack_supported) { + /* Request private stack support only if the subprog stack + * depth is no less than BPF_PRIV_STACK_MIN_SIZE. This is to + * avoid jit penalty if the stack usage is small. + */ + if (subprog[idx].priv_stack_mode == PRIV_STACK_UNKNOWN && + subprog_depth >= BPF_PRIV_STACK_MIN_SIZE) + subprog[idx].priv_stack_mode = PRIV_STACK_ADAPTIVE; + } + + if (subprog[idx].priv_stack_mode == PRIV_STACK_ADAPTIVE) { + if (subprog_depth > MAX_BPF_STACK) { + verbose(env, "stack size of subprog %d is %d. Too large\n", + idx, subprog_depth); + return -EACCES; + } + } else { + depth += subprog_depth; + if (depth > MAX_BPF_STACK) { + verbose(env, "combined stack size of %d calls is %d. Too large\n", + frame + 1, depth); + return -EACCES; + } + } +continue_func: + subprog_end = subprog[idx + 1].start; + for (; i < subprog_end; i++) { + int next_insn, sidx; + + if (bpf_pseudo_kfunc_call(insn + i) && !insn[i].off) { + bool err = false; + + if (!is_bpf_throw_kfunc(insn + i)) + continue; + if (subprog[idx].is_cb) + err = true; + for (int c = 0; c < frame && !err; c++) { + if (subprog[ret_prog[c]].is_cb) { + err = true; + break; + } + } + if (!err) + continue; + verbose(env, + "bpf_throw kfunc (insn %d) cannot be called from callback subprog %d\n", + i, idx); + return -EINVAL; + } + + if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) + continue; + /* remember insn and function to return to */ + ret_insn[frame] = i + 1; + ret_prog[frame] = idx; + + /* find the callee */ + next_insn = i + insn[i].imm + 1; + sidx = find_subprog(env, next_insn); + if (verifier_bug_if(sidx < 0, env, "callee not found at insn %d", next_insn)) + return -EFAULT; + if (subprog[sidx].is_async_cb) { + if (subprog[sidx].has_tail_call) { + verifier_bug(env, "subprog has tail_call and async cb"); + return -EFAULT; + } + /* async callbacks don't increase bpf prog stack size unless called directly */ + if (!bpf_pseudo_call(insn + i)) + continue; + if (subprog[sidx].is_exception_cb) { + verbose(env, "insn %d cannot call exception cb directly", i); + return -EINVAL; + } + } + i = next_insn; + idx = sidx; + if (!priv_stack_supported) + subprog[idx].priv_stack_mode = NO_PRIV_STACK; + + if (subprog[idx].has_tail_call) + tail_call_reachable = true; + + frame++; + if (frame >= MAX_CALL_FRAMES) { + verbose(env, "the call stack of %d frames is too deep !\n", + frame); + return -E2BIG; + } + goto process_func; + } + /* if tail call got detected across bpf2bpf calls then mark each of the + * currently present subprog frames as tail call reachable subprogs; + * this info will be utilized by JIT so that we will be preserving the + * tail call counter throughout bpf2bpf calls combined with tailcalls + */ + if (tail_call_reachable) + for (j = 0; j < frame; j++) { + if (subprog[ret_prog[j]].is_exception_cb) { + verbose(env, "cannot tail call within exception cb\n"); + return -EINVAL; + } + subprog[ret_prog[j]].tail_call_reachable = true; + } + if (subprog[0].tail_call_reachable) + env->prog->aux->tail_call_reachable = true; + + /* end of for() loop means the last insn of the 'subprog' + * was reached. Doesn't matter whether it was JA or EXIT + */ + if (frame == 0) + return 0; + if (subprog[idx].priv_stack_mode != PRIV_STACK_ADAPTIVE) + depth -= round_up_stack_depth(env, subprog[idx].stack_depth); + frame--; + i = ret_insn[frame]; + idx = ret_prog[frame]; + goto continue_func; +} + +static int check_max_stack_depth(struct bpf_verifier_env *env) +{ + enum priv_stack_mode priv_stack_mode = PRIV_STACK_UNKNOWN; + struct bpf_subprog_info *si = env->subprog_info; + bool priv_stack_supported; + int ret; + + for (int i = 0; i < env->subprog_cnt; i++) { + if (si[i].has_tail_call) { + priv_stack_mode = NO_PRIV_STACK; + break; + } + } + + if (priv_stack_mode == PRIV_STACK_UNKNOWN) + priv_stack_mode = bpf_enable_priv_stack(env->prog); + + /* All async_cb subprogs use normal kernel stack. If a particular + * subprog appears in both main prog and async_cb subtree, that + * subprog will use normal kernel stack to avoid potential nesting. + * The reverse subprog traversal ensures when main prog subtree is + * checked, the subprogs appearing in async_cb subtrees are already + * marked as using normal kernel stack, so stack size checking can + * be done properly. + */ + for (int i = env->subprog_cnt - 1; i >= 0; i--) { + if (!i || si[i].is_async_cb) { + priv_stack_supported = !i && priv_stack_mode == PRIV_STACK_ADAPTIVE; + ret = check_max_stack_depth_subprog(env, i, priv_stack_supported); + if (ret < 0) + return ret; + } + } + + for (int i = 0; i < env->subprog_cnt; i++) { + if (si[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) { + env->prog->aux->jits_use_priv_stack = true; + break; + } + } + + return 0; +} + +#ifndef CONFIG_BPF_JIT_ALWAYS_ON +static int get_callee_stack_depth(struct bpf_verifier_env *env, + const struct bpf_insn *insn, int idx) +{ + int start = idx + insn->imm + 1, subprog; + + subprog = find_subprog(env, start); + if (verifier_bug_if(subprog < 0, env, "get stack depth: no program at insn %d", start)) + return -EFAULT; + return env->subprog_info[subprog].stack_depth; +} +#endif + +static int __check_buffer_access(struct bpf_verifier_env *env, + const char *buf_info, + const struct bpf_reg_state *reg, + int regno, int off, int size) +{ + if (off < 0) { + verbose(env, + "R%d invalid %s buffer access: off=%d, size=%d\n", + regno, buf_info, off, size); + return -EACCES; + } + if (!tnum_is_const(reg->var_off) || reg->var_off.value) { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, + "R%d invalid variable buffer offset: off=%d, var_off=%s\n", + regno, off, tn_buf); + return -EACCES; + } + + return 0; +} + +static int check_tp_buffer_access(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, + int regno, int off, int size) +{ + int err; + + err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); + if (err) + return err; + + if (off + size > env->prog->aux->max_tp_access) + env->prog->aux->max_tp_access = off + size; + + return 0; +} + +static int check_buffer_access(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, + int regno, int off, int size, + bool zero_size_allowed, + u32 *max_access) +{ + const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; + int err; + + err = __check_buffer_access(env, buf_info, reg, regno, off, size); + if (err) + return err; + + if (off + size > *max_access) + *max_access = off + size; + + return 0; +} + +/* BPF architecture zero extends alu32 ops into 64-bit registesr */ +static void zext_32_to_64(struct bpf_reg_state *reg) +{ + reg->var_off = tnum_subreg(reg->var_off); + __reg_assign_32_into_64(reg); +} + +/* truncate register to smaller size (in bytes) + * must be called with size < BPF_REG_SIZE + */ +static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) +{ + u64 mask; + + /* clear high bits in bit representation */ + reg->var_off = tnum_cast(reg->var_off, size); + + /* fix arithmetic bounds */ + mask = ((u64)1 << (size * 8)) - 1; + if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { + reg->umin_value &= mask; + reg->umax_value &= mask; + } else { + reg->umin_value = 0; + reg->umax_value = mask; + } + reg->smin_value = reg->umin_value; + reg->smax_value = reg->umax_value; + + /* If size is smaller than 32bit register the 32bit register + * values are also truncated so we push 64-bit bounds into + * 32-bit bounds. Above were truncated < 32-bits already. + */ + if (size < 4) + __mark_reg32_unbounded(reg); + + reg_bounds_sync(reg); +} + +static void set_sext64_default_val(struct bpf_reg_state *reg, int size) +{ + if (size == 1) { + reg->smin_value = reg->s32_min_value = S8_MIN; + reg->smax_value = reg->s32_max_value = S8_MAX; + } else if (size == 2) { + reg->smin_value = reg->s32_min_value = S16_MIN; + reg->smax_value = reg->s32_max_value = S16_MAX; + } else { + /* size == 4 */ + reg->smin_value = reg->s32_min_value = S32_MIN; + reg->smax_value = reg->s32_max_value = S32_MAX; + } + reg->umin_value = reg->u32_min_value = 0; + reg->umax_value = U64_MAX; + reg->u32_max_value = U32_MAX; + reg->var_off = tnum_unknown; +} + +static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) +{ + s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; + u64 top_smax_value, top_smin_value; + u64 num_bits = size * 8; + + if (tnum_is_const(reg->var_off)) { + u64_cval = reg->var_off.value; + if (size == 1) + reg->var_off = tnum_const((s8)u64_cval); + else if (size == 2) + reg->var_off = tnum_const((s16)u64_cval); + else + /* size == 4 */ + reg->var_off = tnum_const((s32)u64_cval); + + u64_cval = reg->var_off.value; + reg->smax_value = reg->smin_value = u64_cval; + reg->umax_value = reg->umin_value = u64_cval; + reg->s32_max_value = reg->s32_min_value = u64_cval; + reg->u32_max_value = reg->u32_min_value = u64_cval; + return; + } + + top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; + top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; + + if (top_smax_value != top_smin_value) + goto out; + + /* find the s64_min and s64_min after sign extension */ + if (size == 1) { + init_s64_max = (s8)reg->smax_value; + init_s64_min = (s8)reg->smin_value; + } else if (size == 2) { + init_s64_max = (s16)reg->smax_value; + init_s64_min = (s16)reg->smin_value; + } else { + init_s64_max = (s32)reg->smax_value; + init_s64_min = (s32)reg->smin_value; + } + + s64_max = max(init_s64_max, init_s64_min); + s64_min = min(init_s64_max, init_s64_min); + + /* both of s64_max/s64_min positive or negative */ + if ((s64_max >= 0) == (s64_min >= 0)) { + reg->s32_min_value = reg->smin_value = s64_min; + reg->s32_max_value = reg->smax_value = s64_max; + reg->u32_min_value = reg->umin_value = s64_min; + reg->u32_max_value = reg->umax_value = s64_max; + reg->var_off = tnum_range(s64_min, s64_max); + return; + } + +out: + set_sext64_default_val(reg, size); +} + +static void set_sext32_default_val(struct bpf_reg_state *reg, int size) +{ + if (size == 1) { + reg->s32_min_value = S8_MIN; + reg->s32_max_value = S8_MAX; + } else { + /* size == 2 */ + reg->s32_min_value = S16_MIN; + reg->s32_max_value = S16_MAX; + } + reg->u32_min_value = 0; + reg->u32_max_value = U32_MAX; + reg->var_off = tnum_subreg(tnum_unknown); +} + +static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) +{ + s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; + u32 top_smax_value, top_smin_value; + u32 num_bits = size * 8; + + if (tnum_is_const(reg->var_off)) { + u32_val = reg->var_off.value; + if (size == 1) + reg->var_off = tnum_const((s8)u32_val); + else + reg->var_off = tnum_const((s16)u32_val); + + u32_val = reg->var_off.value; + reg->s32_min_value = reg->s32_max_value = u32_val; + reg->u32_min_value = reg->u32_max_value = u32_val; + return; + } + + top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; + top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; + + if (top_smax_value != top_smin_value) + goto out; + + /* find the s32_min and s32_min after sign extension */ + if (size == 1) { + init_s32_max = (s8)reg->s32_max_value; + init_s32_min = (s8)reg->s32_min_value; + } else { + /* size == 2 */ + init_s32_max = (s16)reg->s32_max_value; + init_s32_min = (s16)reg->s32_min_value; + } + s32_max = max(init_s32_max, init_s32_min); + s32_min = min(init_s32_max, init_s32_min); + + if ((s32_min >= 0) == (s32_max >= 0)) { + reg->s32_min_value = s32_min; + reg->s32_max_value = s32_max; + reg->u32_min_value = (u32)s32_min; + reg->u32_max_value = (u32)s32_max; + reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); + return; + } + +out: + set_sext32_default_val(reg, size); +} + +static bool bpf_map_is_rdonly(const struct bpf_map *map) +{ + /* A map is considered read-only if the following condition are true: + * + * 1) BPF program side cannot change any of the map content. The + * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map + * and was set at map creation time. + * 2) The map value(s) have been initialized from user space by a + * loader and then "frozen", such that no new map update/delete + * operations from syscall side are possible for the rest of + * the map's lifetime from that point onwards. + * 3) Any parallel/pending map update/delete operations from syscall + * side have been completed. Only after that point, it's safe to + * assume that map value(s) are immutable. + */ + return (map->map_flags & BPF_F_RDONLY_PROG) && + READ_ONCE(map->frozen) && + !bpf_map_write_active(map); +} + +static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, + bool is_ldsx) +{ + void *ptr; + u64 addr; + int err; + + err = map->ops->map_direct_value_addr(map, &addr, off); + if (err) + return err; + ptr = (void *)(long)addr + off; + + switch (size) { + case sizeof(u8): + *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; + break; + case sizeof(u16): + *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; + break; + case sizeof(u32): + *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; + break; + case sizeof(u64): + *val = *(u64 *)ptr; + break; + default: + return -EINVAL; + } + return 0; +} + +#define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) +#define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) +#define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) +#define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) + +/* + * Allow list few fields as RCU trusted or full trusted. + * This logic doesn't allow mix tagging and will be removed once GCC supports + * btf_type_tag. + */ + +/* RCU trusted: these fields are trusted in RCU CS and never NULL */ +BTF_TYPE_SAFE_RCU(struct task_struct) { + const cpumask_t *cpus_ptr; + struct css_set __rcu *cgroups; + struct task_struct __rcu *real_parent; + struct task_struct *group_leader; +}; + +BTF_TYPE_SAFE_RCU(struct cgroup) { + /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ + struct kernfs_node *kn; +}; + +BTF_TYPE_SAFE_RCU(struct css_set) { + struct cgroup *dfl_cgrp; +}; + +BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state) { + struct cgroup *cgroup; +}; + +/* RCU trusted: these fields are trusted in RCU CS and can be NULL */ +BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { + struct file __rcu *exe_file; +#ifdef CONFIG_MEMCG + struct task_struct __rcu *owner; +#endif +}; + +/* skb->sk, req->sk are not RCU protected, but we mark them as such + * because bpf prog accessible sockets are SOCK_RCU_FREE. + */ +BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { + struct sock *sk; +}; + +BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { + struct sock *sk; +}; + +/* full trusted: these fields are trusted even outside of RCU CS and never NULL */ +BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { + struct seq_file *seq; +}; + +BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { + struct bpf_iter_meta *meta; + struct task_struct *task; +}; + +BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { + struct file *file; +}; + +BTF_TYPE_SAFE_TRUSTED(struct file) { + struct inode *f_inode; +}; + +BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry) { + struct inode *d_inode; +}; + +BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { + struct sock *sk; +}; + +BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct) { + struct mm_struct *vm_mm; + struct file *vm_file; +}; + +static bool type_is_rcu(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + const char *field_name, u32 btf_id) +{ + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup_subsys_state)); + + return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); +} + +static bool type_is_rcu_or_null(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + const char *field_name, u32 btf_id) +{ + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); + + return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); +} + +static bool type_is_trusted(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + const char *field_name, u32 btf_id) +{ + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); + + return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); +} + +static bool type_is_trusted_or_null(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + const char *field_name, u32 btf_id) +{ + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct dentry)); + BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct vm_area_struct)); + + return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, + "__safe_trusted_or_null"); +} + +static int check_ptr_to_btf_access(struct bpf_verifier_env *env, + struct bpf_reg_state *regs, + int regno, int off, int size, + enum bpf_access_type atype, + int value_regno) +{ + struct bpf_reg_state *reg = regs + regno; + const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); + const char *tname = btf_name_by_offset(reg->btf, t->name_off); + const char *field_name = NULL; + enum bpf_type_flag flag = 0; + u32 btf_id = 0; + int ret; + + if (!env->allow_ptr_leaks) { + verbose(env, + "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", + tname); + return -EPERM; + } + if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { + verbose(env, + "Cannot access kernel 'struct %s' from non-GPL compatible program\n", + tname); + return -EINVAL; + } + if (off < 0) { + verbose(env, + "R%d is ptr_%s invalid negative access: off=%d\n", + regno, tname, off); + return -EACCES; + } + if (!tnum_is_const(reg->var_off) || reg->var_off.value) { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, + "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", + regno, tname, off, tn_buf); + return -EACCES; + } + + if (reg->type & MEM_USER) { + verbose(env, + "R%d is ptr_%s access user memory: off=%d\n", + regno, tname, off); + return -EACCES; + } + + if (reg->type & MEM_PERCPU) { + verbose(env, + "R%d is ptr_%s access percpu memory: off=%d\n", + regno, tname, off); + return -EACCES; + } + + if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { + if (!btf_is_kernel(reg->btf)) { + verifier_bug(env, "reg->btf must be kernel btf"); + return -EFAULT; + } + ret = env->ops->btf_struct_access(&env->log, reg, off, size); + } else { + /* Writes are permitted with default btf_struct_access for + * program allocated objects (which always have ref_obj_id > 0), + * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. + */ + if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { + verbose(env, "only read is supported\n"); + return -EACCES; + } + + if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && + !(reg->type & MEM_RCU) && !reg->ref_obj_id) { + verifier_bug(env, "ref_obj_id for allocated object must be non-zero"); + return -EFAULT; + } + + ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); + } + + if (ret < 0) + return ret; + + if (ret != PTR_TO_BTF_ID) { + /* just mark; */ + + } else if (type_flag(reg->type) & PTR_UNTRUSTED) { + /* If this is an untrusted pointer, all pointers formed by walking it + * also inherit the untrusted flag. + */ + flag = PTR_UNTRUSTED; + + } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { + /* By default any pointer obtained from walking a trusted pointer is no + * longer trusted, unless the field being accessed has explicitly been + * marked as inheriting its parent's state of trust (either full or RCU). + * For example: + * 'cgroups' pointer is untrusted if task->cgroups dereference + * happened in a sleepable program outside of bpf_rcu_read_lock() + * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). + * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. + * + * A regular RCU-protected pointer with __rcu tag can also be deemed + * trusted if we are in an RCU CS. Such pointer can be NULL. + */ + if (type_is_trusted(env, reg, field_name, btf_id)) { + flag |= PTR_TRUSTED; + } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { + flag |= PTR_TRUSTED | PTR_MAYBE_NULL; + } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { + if (type_is_rcu(env, reg, field_name, btf_id)) { + /* ignore __rcu tag and mark it MEM_RCU */ + flag |= MEM_RCU; + } else if (flag & MEM_RCU || + type_is_rcu_or_null(env, reg, field_name, btf_id)) { + /* __rcu tagged pointers can be NULL */ + flag |= MEM_RCU | PTR_MAYBE_NULL; + + /* We always trust them */ + if (type_is_rcu_or_null(env, reg, field_name, btf_id) && + flag & PTR_UNTRUSTED) + flag &= ~PTR_UNTRUSTED; + } else if (flag & (MEM_PERCPU | MEM_USER)) { + /* keep as-is */ + } else { + /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ + clear_trusted_flags(&flag); + } + } else { + /* + * If not in RCU CS or MEM_RCU pointer can be NULL then + * aggressively mark as untrusted otherwise such + * pointers will be plain PTR_TO_BTF_ID without flags + * and will be allowed to be passed into helpers for + * compat reasons. + */ + flag = PTR_UNTRUSTED; + } + } else { + /* Old compat. Deprecated */ + clear_trusted_flags(&flag); + } + + if (atype == BPF_READ && value_regno >= 0) { + ret = mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); + if (ret < 0) + return ret; + } + + return 0; +} + +static int check_ptr_to_map_access(struct bpf_verifier_env *env, + struct bpf_reg_state *regs, + int regno, int off, int size, + enum bpf_access_type atype, + int value_regno) +{ + struct bpf_reg_state *reg = regs + regno; + struct bpf_map *map = reg->map_ptr; + struct bpf_reg_state map_reg; + enum bpf_type_flag flag = 0; + const struct btf_type *t; + const char *tname; + u32 btf_id; + int ret; + + if (!btf_vmlinux) { + verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); + return -ENOTSUPP; + } + + if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { + verbose(env, "map_ptr access not supported for map type %d\n", + map->map_type); + return -ENOTSUPP; + } + + t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); + tname = btf_name_by_offset(btf_vmlinux, t->name_off); + + if (!env->allow_ptr_leaks) { + verbose(env, + "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", + tname); + return -EPERM; + } + + if (off < 0) { + verbose(env, "R%d is %s invalid negative access: off=%d\n", + regno, tname, off); + return -EACCES; + } + + if (atype != BPF_READ) { + verbose(env, "only read from %s is supported\n", tname); + return -EACCES; + } + + /* Simulate access to a PTR_TO_BTF_ID */ + memset(&map_reg, 0, sizeof(map_reg)); + ret = mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, + btf_vmlinux, *map->ops->map_btf_id, 0); + if (ret < 0) + return ret; + ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); + if (ret < 0) + return ret; + + if (value_regno >= 0) { + ret = mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); + if (ret < 0) + return ret; + } + + return 0; +} + +/* Check that the stack access at the given offset is within bounds. The + * maximum valid offset is -1. + * + * The minimum valid offset is -MAX_BPF_STACK for writes, and + * -state->allocated_stack for reads. + */ +static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, + s64 off, + struct bpf_func_state *state, + enum bpf_access_type t) +{ + int min_valid_off; + + if (t == BPF_WRITE || env->allow_uninit_stack) + min_valid_off = -MAX_BPF_STACK; + else + min_valid_off = -state->allocated_stack; + + if (off < min_valid_off || off > -1) + return -EACCES; + return 0; +} + +/* Check that the stack access at 'regno + off' falls within the maximum stack + * bounds. + * + * 'off' includes `regno->offset`, but not its dynamic part (if any). + */ +static int check_stack_access_within_bounds( + struct bpf_verifier_env *env, + int regno, int off, int access_size, + enum bpf_access_type type) +{ + struct bpf_reg_state *regs = cur_regs(env); + struct bpf_reg_state *reg = regs + regno; + struct bpf_func_state *state = func(env, reg); + s64 min_off, max_off; + int err; + char *err_extra; + + if (type == BPF_READ) + err_extra = " read from"; + else + err_extra = " write to"; + + if (tnum_is_const(reg->var_off)) { + min_off = (s64)reg->var_off.value + off; + max_off = min_off + access_size; + } else { + if (reg->smax_value >= BPF_MAX_VAR_OFF || + reg->smin_value <= -BPF_MAX_VAR_OFF) { + verbose(env, "invalid unbounded variable-offset%s stack R%d\n", + err_extra, regno); + return -EACCES; + } + min_off = reg->smin_value + off; + max_off = reg->smax_value + off + access_size; + } + + err = check_stack_slot_within_bounds(env, min_off, state, type); + if (!err && max_off > 0) + err = -EINVAL; /* out of stack access into non-negative offsets */ + if (!err && access_size < 0) + /* access_size should not be negative (or overflow an int); others checks + * along the way should have prevented such an access. + */ + err = -EFAULT; /* invalid negative access size; integer overflow? */ + + if (err) { + if (tnum_is_const(reg->var_off)) { + verbose(env, "invalid%s stack R%d off=%d size=%d\n", + err_extra, regno, off, access_size); + } else { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "invalid variable-offset%s stack R%d var_off=%s off=%d size=%d\n", + err_extra, regno, tn_buf, off, access_size); + } + return err; + } + + /* Note that there is no stack access with offset zero, so the needed stack + * size is -min_off, not -min_off+1. + */ + return grow_stack_state(env, state, -min_off /* size */); +} + +static bool get_func_retval_range(struct bpf_prog *prog, + struct bpf_retval_range *range) +{ + if (prog->type == BPF_PROG_TYPE_LSM && + prog->expected_attach_type == BPF_LSM_MAC && + !bpf_lsm_get_retval_range(prog, range)) { + return true; + } + return false; +} + +/* check whether memory at (regno + off) is accessible for t = (read | write) + * if t==write, value_regno is a register which value is stored into memory + * if t==read, value_regno is a register which will receive the value from memory + * if t==write && value_regno==-1, some unknown value is stored into memory + * if t==read && value_regno==-1, don't care what we read from memory + */ +static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, + int off, int bpf_size, enum bpf_access_type t, + int value_regno, bool strict_alignment_once, bool is_ldsx) +{ + struct bpf_reg_state *regs = cur_regs(env); + struct bpf_reg_state *reg = regs + regno; + int size, err = 0; + + size = bpf_size_to_bytes(bpf_size); + if (size < 0) + return size; + + /* alignment checks will add in reg->off themselves */ + err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); + if (err) + return err; + + /* for access checks, reg->off is just part of off */ + off += reg->off; + + if (reg->type == PTR_TO_MAP_KEY) { + if (t == BPF_WRITE) { + verbose(env, "write to change key R%d not allowed\n", regno); + return -EACCES; + } + + err = check_mem_region_access(env, regno, off, size, + reg->map_ptr->key_size, false); + if (err) + return err; + if (value_regno >= 0) + mark_reg_unknown(env, regs, value_regno); + } else if (reg->type == PTR_TO_MAP_VALUE) { + struct btf_field *kptr_field = NULL; + + if (t == BPF_WRITE && value_regno >= 0 && + is_pointer_value(env, value_regno)) { + verbose(env, "R%d leaks addr into map\n", value_regno); + return -EACCES; + } + err = check_map_access_type(env, regno, off, size, t); + if (err) + return err; + err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); + if (err) + return err; + if (tnum_is_const(reg->var_off)) + kptr_field = btf_record_find(reg->map_ptr->record, + off + reg->var_off.value, BPF_KPTR | BPF_UPTR); + if (kptr_field) { + err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); + } else if (t == BPF_READ && value_regno >= 0) { + struct bpf_map *map = reg->map_ptr; + + /* + * If map is read-only, track its contents as scalars, + * unless it is an insn array (see the special case below) + */ + if (tnum_is_const(reg->var_off) && + bpf_map_is_rdonly(map) && + map->ops->map_direct_value_addr && + map->map_type != BPF_MAP_TYPE_INSN_ARRAY) { + int map_off = off + reg->var_off.value; + u64 val = 0; + + err = bpf_map_direct_read(map, map_off, size, + &val, is_ldsx); + if (err) + return err; + + regs[value_regno].type = SCALAR_VALUE; + __mark_reg_known(®s[value_regno], val); + } else if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) { + if (bpf_size != BPF_DW) { + verbose(env, "Invalid read of %d bytes from insn_array\n", + size); + return -EACCES; + } + copy_register_state(®s[value_regno], reg); + regs[value_regno].type = PTR_TO_INSN; + } else { + mark_reg_unknown(env, regs, value_regno); + } + } + } else if (base_type(reg->type) == PTR_TO_MEM) { + bool rdonly_mem = type_is_rdonly_mem(reg->type); + bool rdonly_untrusted = rdonly_mem && (reg->type & PTR_UNTRUSTED); + + if (type_may_be_null(reg->type)) { + verbose(env, "R%d invalid mem access '%s'\n", regno, + reg_type_str(env, reg->type)); + return -EACCES; + } + + if (t == BPF_WRITE && rdonly_mem) { + verbose(env, "R%d cannot write into %s\n", + regno, reg_type_str(env, reg->type)); + return -EACCES; + } + + if (t == BPF_WRITE && value_regno >= 0 && + is_pointer_value(env, value_regno)) { + verbose(env, "R%d leaks addr into mem\n", value_regno); + return -EACCES; + } + + /* + * Accesses to untrusted PTR_TO_MEM are done through probe + * instructions, hence no need to check bounds in that case. + */ + if (!rdonly_untrusted) + err = check_mem_region_access(env, regno, off, size, + reg->mem_size, false); + if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) + mark_reg_unknown(env, regs, value_regno); + } else if (reg->type == PTR_TO_CTX) { + struct bpf_retval_range range; + struct bpf_insn_access_aux info = { + .reg_type = SCALAR_VALUE, + .is_ldsx = is_ldsx, + .log = &env->log, + }; + + if (t == BPF_WRITE && value_regno >= 0 && + is_pointer_value(env, value_regno)) { + verbose(env, "R%d leaks addr into ctx\n", value_regno); + return -EACCES; + } + + err = check_ptr_off_reg(env, reg, regno); + if (err < 0) + return err; + + err = check_ctx_access(env, insn_idx, off, size, t, &info); + if (err) + verbose_linfo(env, insn_idx, "; "); + if (!err && t == BPF_READ && value_regno >= 0) { + /* ctx access returns either a scalar, or a + * PTR_TO_PACKET[_META,_END]. In the latter + * case, we know the offset is zero. + */ + if (info.reg_type == SCALAR_VALUE) { + if (info.is_retval && get_func_retval_range(env->prog, &range)) { + err = __mark_reg_s32_range(env, regs, value_regno, + range.minval, range.maxval); + if (err) + return err; + } else { + mark_reg_unknown(env, regs, value_regno); + } + } else { + mark_reg_known_zero(env, regs, + value_regno); + if (type_may_be_null(info.reg_type)) + regs[value_regno].id = ++env->id_gen; + /* A load of ctx field could have different + * actual load size with the one encoded in the + * insn. When the dst is PTR, it is for sure not + * a sub-register. + */ + regs[value_regno].subreg_def = DEF_NOT_SUBREG; + if (base_type(info.reg_type) == PTR_TO_BTF_ID) { + regs[value_regno].btf = info.btf; + regs[value_regno].btf_id = info.btf_id; + regs[value_regno].ref_obj_id = info.ref_obj_id; + } + } + regs[value_regno].type = info.reg_type; + } + + } else if (reg->type == PTR_TO_STACK) { + /* Basic bounds checks. */ + err = check_stack_access_within_bounds(env, regno, off, size, t); + if (err) + return err; + + if (t == BPF_READ) + err = check_stack_read(env, regno, off, size, + value_regno); + else + err = check_stack_write(env, regno, off, size, + value_regno, insn_idx); + } else if (reg_is_pkt_pointer(reg)) { + if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { + verbose(env, "cannot write into packet\n"); + return -EACCES; + } + if (t == BPF_WRITE && value_regno >= 0 && + is_pointer_value(env, value_regno)) { + verbose(env, "R%d leaks addr into packet\n", + value_regno); + return -EACCES; + } + err = check_packet_access(env, regno, off, size, false); + if (!err && t == BPF_READ && value_regno >= 0) + mark_reg_unknown(env, regs, value_regno); + } else if (reg->type == PTR_TO_FLOW_KEYS) { + if (t == BPF_WRITE && value_regno >= 0 && + is_pointer_value(env, value_regno)) { + verbose(env, "R%d leaks addr into flow keys\n", + value_regno); + return -EACCES; + } + + err = check_flow_keys_access(env, off, size); + if (!err && t == BPF_READ && value_regno >= 0) + mark_reg_unknown(env, regs, value_regno); + } else if (type_is_sk_pointer(reg->type)) { + if (t == BPF_WRITE) { + verbose(env, "R%d cannot write into %s\n", + regno, reg_type_str(env, reg->type)); + return -EACCES; + } + err = check_sock_access(env, insn_idx, regno, off, size, t); + if (!err && value_regno >= 0) + mark_reg_unknown(env, regs, value_regno); + } else if (reg->type == PTR_TO_TP_BUFFER) { + err = check_tp_buffer_access(env, reg, regno, off, size); + if (!err && t == BPF_READ && value_regno >= 0) + mark_reg_unknown(env, regs, value_regno); + } else if (base_type(reg->type) == PTR_TO_BTF_ID && + !type_may_be_null(reg->type)) { + err = check_ptr_to_btf_access(env, regs, regno, off, size, t, + value_regno); + } else if (reg->type == CONST_PTR_TO_MAP) { + err = check_ptr_to_map_access(env, regs, regno, off, size, t, + value_regno); + } else if (base_type(reg->type) == PTR_TO_BUF) { + bool rdonly_mem = type_is_rdonly_mem(reg->type); + u32 *max_access; + + if (rdonly_mem) { + if (t == BPF_WRITE) { + verbose(env, "R%d cannot write into %s\n", + regno, reg_type_str(env, reg->type)); + return -EACCES; + } + max_access = &env->prog->aux->max_rdonly_access; + } else { + max_access = &env->prog->aux->max_rdwr_access; + } + + err = check_buffer_access(env, reg, regno, off, size, false, + max_access); + + if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) + mark_reg_unknown(env, regs, value_regno); + } else if (reg->type == PTR_TO_ARENA) { + if (t == BPF_READ && value_regno >= 0) + mark_reg_unknown(env, regs, value_regno); + } else { + verbose(env, "R%d invalid mem access '%s'\n", regno, + reg_type_str(env, reg->type)); + return -EACCES; + } + + if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && + regs[value_regno].type == SCALAR_VALUE) { + if (!is_ldsx) + /* b/h/w load zero-extends, mark upper bits as known 0 */ + coerce_reg_to_size(®s[value_regno], size); + else + coerce_reg_to_size_sx(®s[value_regno], size); + } + return err; +} + +static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, + bool allow_trust_mismatch); + +static int check_load_mem(struct bpf_verifier_env *env, struct bpf_insn *insn, + bool strict_alignment_once, bool is_ldsx, + bool allow_trust_mismatch, const char *ctx) +{ + struct bpf_reg_state *regs = cur_regs(env); + enum bpf_reg_type src_reg_type; + int err; + + /* check src operand */ + err = check_reg_arg(env, insn->src_reg, SRC_OP); + if (err) + return err; + + /* check dst operand */ + err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); + if (err) + return err; + + src_reg_type = regs[insn->src_reg].type; + + /* Check if (src_reg + off) is readable. The state of dst_reg will be + * updated by this call. + */ + err = check_mem_access(env, env->insn_idx, insn->src_reg, insn->off, + BPF_SIZE(insn->code), BPF_READ, insn->dst_reg, + strict_alignment_once, is_ldsx); + err = err ?: save_aux_ptr_type(env, src_reg_type, + allow_trust_mismatch); + err = err ?: reg_bounds_sanity_check(env, ®s[insn->dst_reg], ctx); + + return err; +} + +static int check_store_reg(struct bpf_verifier_env *env, struct bpf_insn *insn, + bool strict_alignment_once) +{ + struct bpf_reg_state *regs = cur_regs(env); + enum bpf_reg_type dst_reg_type; + int err; + + /* check src1 operand */ + err = check_reg_arg(env, insn->src_reg, SRC_OP); + if (err) + return err; + + /* check src2 operand */ + err = check_reg_arg(env, insn->dst_reg, SRC_OP); + if (err) + return err; + + dst_reg_type = regs[insn->dst_reg].type; + + /* Check if (dst_reg + off) is writeable. */ + err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, + BPF_SIZE(insn->code), BPF_WRITE, insn->src_reg, + strict_alignment_once, false); + err = err ?: save_aux_ptr_type(env, dst_reg_type, false); + + return err; +} + +static int check_atomic_rmw(struct bpf_verifier_env *env, + struct bpf_insn *insn) +{ + int load_reg; + int err; + + if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { + verbose(env, "invalid atomic operand size\n"); + return -EINVAL; + } + + /* check src1 operand */ + err = check_reg_arg(env, insn->src_reg, SRC_OP); + if (err) + return err; + + /* check src2 operand */ + err = check_reg_arg(env, insn->dst_reg, SRC_OP); + if (err) + return err; + + if (insn->imm == BPF_CMPXCHG) { + /* Check comparison of R0 with memory location */ + const u32 aux_reg = BPF_REG_0; + + err = check_reg_arg(env, aux_reg, SRC_OP); + if (err) + return err; + + if (is_pointer_value(env, aux_reg)) { + verbose(env, "R%d leaks addr into mem\n", aux_reg); + return -EACCES; + } + } + + if (is_pointer_value(env, insn->src_reg)) { + verbose(env, "R%d leaks addr into mem\n", insn->src_reg); + return -EACCES; + } + + if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { + verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", + insn->dst_reg, + reg_type_str(env, reg_state(env, insn->dst_reg)->type)); + return -EACCES; + } + + if (insn->imm & BPF_FETCH) { + if (insn->imm == BPF_CMPXCHG) + load_reg = BPF_REG_0; + else + load_reg = insn->src_reg; + + /* check and record load of old value */ + err = check_reg_arg(env, load_reg, DST_OP); + if (err) + return err; + } else { + /* This instruction accesses a memory location but doesn't + * actually load it into a register. + */ + load_reg = -1; + } + + /* Check whether we can read the memory, with second call for fetch + * case to simulate the register fill. + */ + err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, + BPF_SIZE(insn->code), BPF_READ, -1, true, false); + if (!err && load_reg >= 0) + err = check_mem_access(env, env->insn_idx, insn->dst_reg, + insn->off, BPF_SIZE(insn->code), + BPF_READ, load_reg, true, false); + if (err) + return err; + + if (is_arena_reg(env, insn->dst_reg)) { + err = save_aux_ptr_type(env, PTR_TO_ARENA, false); + if (err) + return err; + } + /* Check whether we can write into the same memory. */ + err = check_mem_access(env, env->insn_idx, insn->dst_reg, insn->off, + BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); + if (err) + return err; + return 0; +} + +static int check_atomic_load(struct bpf_verifier_env *env, + struct bpf_insn *insn) +{ + int err; + + err = check_load_mem(env, insn, true, false, false, "atomic_load"); + if (err) + return err; + + if (!atomic_ptr_type_ok(env, insn->src_reg, insn)) { + verbose(env, "BPF_ATOMIC loads from R%d %s is not allowed\n", + insn->src_reg, + reg_type_str(env, reg_state(env, insn->src_reg)->type)); + return -EACCES; + } + + return 0; +} + +static int check_atomic_store(struct bpf_verifier_env *env, + struct bpf_insn *insn) +{ + int err; + + err = check_store_reg(env, insn, true); + if (err) + return err; + + if (!atomic_ptr_type_ok(env, insn->dst_reg, insn)) { + verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", + insn->dst_reg, + reg_type_str(env, reg_state(env, insn->dst_reg)->type)); + return -EACCES; + } + + return 0; +} + +static int check_atomic(struct bpf_verifier_env *env, struct bpf_insn *insn) +{ + switch (insn->imm) { + case BPF_ADD: + case BPF_ADD | BPF_FETCH: + case BPF_AND: + case BPF_AND | BPF_FETCH: + case BPF_OR: + case BPF_OR | BPF_FETCH: + case BPF_XOR: + case BPF_XOR | BPF_FETCH: + case BPF_XCHG: + case BPF_CMPXCHG: + return check_atomic_rmw(env, insn); + case BPF_LOAD_ACQ: + if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { + verbose(env, + "64-bit load-acquires are only supported on 64-bit arches\n"); + return -EOPNOTSUPP; + } + return check_atomic_load(env, insn); + case BPF_STORE_REL: + if (BPF_SIZE(insn->code) == BPF_DW && BITS_PER_LONG != 64) { + verbose(env, + "64-bit store-releases are only supported on 64-bit arches\n"); + return -EOPNOTSUPP; + } + return check_atomic_store(env, insn); + default: + verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", + insn->imm); + return -EINVAL; + } +} + +/* When register 'regno' is used to read the stack (either directly or through + * a helper function) make sure that it's within stack boundary and, depending + * on the access type and privileges, that all elements of the stack are + * initialized. + * + * 'off' includes 'regno->off', but not its dynamic part (if any). + * + * All registers that have been spilled on the stack in the slots within the + * read offsets are marked as read. + */ +static int check_stack_range_initialized( + struct bpf_verifier_env *env, int regno, int off, + int access_size, bool zero_size_allowed, + enum bpf_access_type type, struct bpf_call_arg_meta *meta) +{ + struct bpf_reg_state *reg = reg_state(env, regno); + struct bpf_func_state *state = func(env, reg); + int err, min_off, max_off, i, j, slot, spi; + /* Some accesses can write anything into the stack, others are + * read-only. + */ + bool clobber = false; + + if (access_size == 0 && !zero_size_allowed) { + verbose(env, "invalid zero-sized read\n"); + return -EACCES; + } + + if (type == BPF_WRITE) + clobber = true; + + err = check_stack_access_within_bounds(env, regno, off, access_size, type); + if (err) + return err; + + + if (tnum_is_const(reg->var_off)) { + min_off = max_off = reg->var_off.value + off; + } else { + /* Variable offset is prohibited for unprivileged mode for + * simplicity since it requires corresponding support in + * Spectre masking for stack ALU. + * See also retrieve_ptr_limit(). + */ + if (!env->bypass_spec_v1) { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", + regno, tn_buf); + return -EACCES; + } + /* Only initialized buffer on stack is allowed to be accessed + * with variable offset. With uninitialized buffer it's hard to + * guarantee that whole memory is marked as initialized on + * helper return since specific bounds are unknown what may + * cause uninitialized stack leaking. + */ + if (meta && meta->raw_mode) + meta = NULL; + + min_off = reg->smin_value + off; + max_off = reg->smax_value + off; + } + + if (meta && meta->raw_mode) { + /* Ensure we won't be overwriting dynptrs when simulating byte + * by byte access in check_helper_call using meta.access_size. + * This would be a problem if we have a helper in the future + * which takes: + * + * helper(uninit_mem, len, dynptr) + * + * Now, uninint_mem may overlap with dynptr pointer. Hence, it + * may end up writing to dynptr itself when touching memory from + * arg 1. This can be relaxed on a case by case basis for known + * safe cases, but reject due to the possibilitiy of aliasing by + * default. + */ + for (i = min_off; i < max_off + access_size; i++) { + int stack_off = -i - 1; + + spi = __get_spi(i); + /* raw_mode may write past allocated_stack */ + if (state->allocated_stack <= stack_off) + continue; + if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { + verbose(env, "potential write to dynptr at off=%d disallowed\n", i); + return -EACCES; + } + } + meta->access_size = access_size; + meta->regno = regno; + return 0; + } + + for (i = min_off; i < max_off + access_size; i++) { + u8 *stype; + + slot = -i - 1; + spi = slot / BPF_REG_SIZE; + if (state->allocated_stack <= slot) { + verbose(env, "allocated_stack too small\n"); + return -EFAULT; + } + + stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; + if (*stype == STACK_MISC) + goto mark; + if ((*stype == STACK_ZERO) || + (*stype == STACK_INVALID && env->allow_uninit_stack)) { + if (clobber) { + /* helper can write anything into the stack */ + *stype = STACK_MISC; + } + goto mark; + } + + if (is_spilled_reg(&state->stack[spi]) && + (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || + env->allow_ptr_leaks)) { + if (clobber) { + __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); + for (j = 0; j < BPF_REG_SIZE; j++) + scrub_spilled_slot(&state->stack[spi].slot_type[j]); + } + goto mark; + } + + if (tnum_is_const(reg->var_off)) { + verbose(env, "invalid read from stack R%d off %d+%d size %d\n", + regno, min_off, i - min_off, access_size); + } else { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "invalid read from stack R%d var_off %s+%d size %d\n", + regno, tn_buf, i - min_off, access_size); + } + return -EACCES; +mark: + /* reading any byte out of 8-byte 'spill_slot' will cause + * the whole slot to be marked as 'read' + */ + err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi)); + if (err) + return err; + /* We do not call bpf_mark_stack_write(), as we can not + * be sure that whether stack slot is written to or not. Hence, + * we must still conservatively propagate reads upwards even if + * helper may write to the entire memory range. + */ + } + return 0; +} + +static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, + int access_size, enum bpf_access_type access_type, + bool zero_size_allowed, + struct bpf_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + u32 *max_access; + + switch (base_type(reg->type)) { + case PTR_TO_PACKET: + case PTR_TO_PACKET_META: + return check_packet_access(env, regno, reg->off, access_size, + zero_size_allowed); + case PTR_TO_MAP_KEY: + if (access_type == BPF_WRITE) { + verbose(env, "R%d cannot write into %s\n", regno, + reg_type_str(env, reg->type)); + return -EACCES; + } + return check_mem_region_access(env, regno, reg->off, access_size, + reg->map_ptr->key_size, false); + case PTR_TO_MAP_VALUE: + if (check_map_access_type(env, regno, reg->off, access_size, access_type)) + return -EACCES; + return check_map_access(env, regno, reg->off, access_size, + zero_size_allowed, ACCESS_HELPER); + case PTR_TO_MEM: + if (type_is_rdonly_mem(reg->type)) { + if (access_type == BPF_WRITE) { + verbose(env, "R%d cannot write into %s\n", regno, + reg_type_str(env, reg->type)); + return -EACCES; + } + } + return check_mem_region_access(env, regno, reg->off, + access_size, reg->mem_size, + zero_size_allowed); + case PTR_TO_BUF: + if (type_is_rdonly_mem(reg->type)) { + if (access_type == BPF_WRITE) { + verbose(env, "R%d cannot write into %s\n", regno, + reg_type_str(env, reg->type)); + return -EACCES; + } + + max_access = &env->prog->aux->max_rdonly_access; + } else { + max_access = &env->prog->aux->max_rdwr_access; + } + return check_buffer_access(env, reg, regno, reg->off, + access_size, zero_size_allowed, + max_access); + case PTR_TO_STACK: + return check_stack_range_initialized( + env, + regno, reg->off, access_size, + zero_size_allowed, access_type, meta); + case PTR_TO_BTF_ID: + return check_ptr_to_btf_access(env, regs, regno, reg->off, + access_size, BPF_READ, -1); + case PTR_TO_CTX: + /* in case the function doesn't know how to access the context, + * (because we are in a program of type SYSCALL for example), we + * can not statically check its size. + * Dynamically check it now. + */ + if (!env->ops->convert_ctx_access) { + int offset = access_size - 1; + + /* Allow zero-byte read from PTR_TO_CTX */ + if (access_size == 0) + return zero_size_allowed ? 0 : -EACCES; + + return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, + access_type, -1, false, false); + } + + fallthrough; + default: /* scalar_value or invalid ptr */ + /* Allow zero-byte read from NULL, regardless of pointer type */ + if (zero_size_allowed && access_size == 0 && + register_is_null(reg)) + return 0; + + verbose(env, "R%d type=%s ", regno, + reg_type_str(env, reg->type)); + verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); + return -EACCES; + } +} + +/* verify arguments to helpers or kfuncs consisting of a pointer and an access + * size. + * + * @regno is the register containing the access size. regno-1 is the register + * containing the pointer. + */ +static int check_mem_size_reg(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + enum bpf_access_type access_type, + bool zero_size_allowed, + struct bpf_call_arg_meta *meta) +{ + int err; + + /* This is used to refine r0 return value bounds for helpers + * that enforce this value as an upper bound on return values. + * See do_refine_retval_range() for helpers that can refine + * the return value. C type of helper is u32 so we pull register + * bound from umax_value however, if negative verifier errors + * out. Only upper bounds can be learned because retval is an + * int type and negative retvals are allowed. + */ + meta->msize_max_value = reg->umax_value; + + /* The register is SCALAR_VALUE; the access check happens using + * its boundaries. For unprivileged variable accesses, disable + * raw mode so that the program is required to initialize all + * the memory that the helper could just partially fill up. + */ + if (!tnum_is_const(reg->var_off)) + meta = NULL; + + if (reg->smin_value < 0) { + verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", + regno); + return -EACCES; + } + + if (reg->umin_value == 0 && !zero_size_allowed) { + verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n", + regno, reg->umin_value, reg->umax_value); + return -EACCES; + } + + if (reg->umax_value >= BPF_MAX_VAR_SIZ) { + verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", + regno); + return -EACCES; + } + err = check_helper_mem_access(env, regno - 1, reg->umax_value, + access_type, zero_size_allowed, meta); + if (!err) + err = mark_chain_precision(env, regno); + return err; +} + +static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + u32 regno, u32 mem_size) +{ + bool may_be_null = type_may_be_null(reg->type); + struct bpf_reg_state saved_reg; + int err; + + if (register_is_null(reg)) + return 0; + + /* Assuming that the register contains a value check if the memory + * access is safe. Temporarily save and restore the register's state as + * the conversion shouldn't be visible to a caller. + */ + if (may_be_null) { + saved_reg = *reg; + mark_ptr_not_null_reg(reg); + } + + err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL); + err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL); + + if (may_be_null) + *reg = saved_reg; + + return err; +} + +static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, + u32 regno) +{ + struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; + bool may_be_null = type_may_be_null(mem_reg->type); + struct bpf_reg_state saved_reg; + struct bpf_call_arg_meta meta; + int err; + + WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); + + memset(&meta, 0, sizeof(meta)); + + if (may_be_null) { + saved_reg = *mem_reg; + mark_ptr_not_null_reg(mem_reg); + } + + err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta); + err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta); + + if (may_be_null) + *mem_reg = saved_reg; + + return err; +} + +enum { + PROCESS_SPIN_LOCK = (1 << 0), + PROCESS_RES_LOCK = (1 << 1), + PROCESS_LOCK_IRQ = (1 << 2), +}; + +/* Implementation details: + * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. + * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. + * Two bpf_map_lookups (even with the same key) will have different reg->id. + * Two separate bpf_obj_new will also have different reg->id. + * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier + * clears reg->id after value_or_null->value transition, since the verifier only + * cares about the range of access to valid map value pointer and doesn't care + * about actual address of the map element. + * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps + * reg->id > 0 after value_or_null->value transition. By doing so + * two bpf_map_lookups will be considered two different pointers that + * point to different bpf_spin_locks. Likewise for pointers to allocated objects + * returned from bpf_obj_new. + * The verifier allows taking only one bpf_spin_lock at a time to avoid + * dead-locks. + * Since only one bpf_spin_lock is allowed the checks are simpler than + * reg_is_refcounted() logic. The verifier needs to remember only + * one spin_lock instead of array of acquired_refs. + * env->cur_state->active_locks remembers which map value element or allocated + * object got locked and clears it after bpf_spin_unlock. + */ +static int process_spin_lock(struct bpf_verifier_env *env, int regno, int flags) +{ + bool is_lock = flags & PROCESS_SPIN_LOCK, is_res_lock = flags & PROCESS_RES_LOCK; + const char *lock_str = is_res_lock ? "bpf_res_spin" : "bpf_spin"; + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + struct bpf_verifier_state *cur = env->cur_state; + bool is_const = tnum_is_const(reg->var_off); + bool is_irq = flags & PROCESS_LOCK_IRQ; + u64 val = reg->var_off.value; + struct bpf_map *map = NULL; + struct btf *btf = NULL; + struct btf_record *rec; + u32 spin_lock_off; + int err; + + if (!is_const) { + verbose(env, + "R%d doesn't have constant offset. %s_lock has to be at the constant offset\n", + regno, lock_str); + return -EINVAL; + } + if (reg->type == PTR_TO_MAP_VALUE) { + map = reg->map_ptr; + if (!map->btf) { + verbose(env, + "map '%s' has to have BTF in order to use %s_lock\n", + map->name, lock_str); + return -EINVAL; + } + } else { + btf = reg->btf; + } + + rec = reg_btf_record(reg); + if (!btf_record_has_field(rec, is_res_lock ? BPF_RES_SPIN_LOCK : BPF_SPIN_LOCK)) { + verbose(env, "%s '%s' has no valid %s_lock\n", map ? "map" : "local", + map ? map->name : "kptr", lock_str); + return -EINVAL; + } + spin_lock_off = is_res_lock ? rec->res_spin_lock_off : rec->spin_lock_off; + if (spin_lock_off != val + reg->off) { + verbose(env, "off %lld doesn't point to 'struct %s_lock' that is at %d\n", + val + reg->off, lock_str, spin_lock_off); + return -EINVAL; + } + if (is_lock) { + void *ptr; + int type; + + if (map) + ptr = map; + else + ptr = btf; + + if (!is_res_lock && cur->active_locks) { + if (find_lock_state(env->cur_state, REF_TYPE_LOCK, 0, NULL)) { + verbose(env, + "Locking two bpf_spin_locks are not allowed\n"); + return -EINVAL; + } + } else if (is_res_lock && cur->active_locks) { + if (find_lock_state(env->cur_state, REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, reg->id, ptr)) { + verbose(env, "Acquiring the same lock again, AA deadlock detected\n"); + return -EINVAL; + } + } + + if (is_res_lock && is_irq) + type = REF_TYPE_RES_LOCK_IRQ; + else if (is_res_lock) + type = REF_TYPE_RES_LOCK; + else + type = REF_TYPE_LOCK; + err = acquire_lock_state(env, env->insn_idx, type, reg->id, ptr); + if (err < 0) { + verbose(env, "Failed to acquire lock state\n"); + return err; + } + } else { + void *ptr; + int type; + + if (map) + ptr = map; + else + ptr = btf; + + if (!cur->active_locks) { + verbose(env, "%s_unlock without taking a lock\n", lock_str); + return -EINVAL; + } + + if (is_res_lock && is_irq) + type = REF_TYPE_RES_LOCK_IRQ; + else if (is_res_lock) + type = REF_TYPE_RES_LOCK; + else + type = REF_TYPE_LOCK; + if (!find_lock_state(cur, type, reg->id, ptr)) { + verbose(env, "%s_unlock of different lock\n", lock_str); + return -EINVAL; + } + if (reg->id != cur->active_lock_id || ptr != cur->active_lock_ptr) { + verbose(env, "%s_unlock cannot be out of order\n", lock_str); + return -EINVAL; + } + if (release_lock_state(cur, type, reg->id, ptr)) { + verbose(env, "%s_unlock of different lock\n", lock_str); + return -EINVAL; + } + + invalidate_non_owning_refs(env); + } + return 0; +} + +/* Check if @regno is a pointer to a specific field in a map value */ +static int check_map_field_pointer(struct bpf_verifier_env *env, u32 regno, + enum btf_field_type field_type) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + bool is_const = tnum_is_const(reg->var_off); + struct bpf_map *map = reg->map_ptr; + u64 val = reg->var_off.value; + const char *struct_name = btf_field_type_name(field_type); + int field_off = -1; + + if (!is_const) { + verbose(env, + "R%d doesn't have constant offset. %s has to be at the constant offset\n", + regno, struct_name); + return -EINVAL; + } + if (!map->btf) { + verbose(env, "map '%s' has to have BTF in order to use %s\n", map->name, + struct_name); + return -EINVAL; + } + if (!btf_record_has_field(map->record, field_type)) { + verbose(env, "map '%s' has no valid %s\n", map->name, struct_name); + return -EINVAL; + } + switch (field_type) { + case BPF_TIMER: + field_off = map->record->timer_off; + break; + case BPF_TASK_WORK: + field_off = map->record->task_work_off; + break; + case BPF_WORKQUEUE: + field_off = map->record->wq_off; + break; + default: + verifier_bug(env, "unsupported BTF field type: %s\n", struct_name); + return -EINVAL; + } + if (field_off != val + reg->off) { + verbose(env, "off %lld doesn't point to 'struct %s' that is at %d\n", + val + reg->off, struct_name, field_off); + return -EINVAL; + } + return 0; +} + +static int process_timer_func(struct bpf_verifier_env *env, int regno, + struct bpf_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + struct bpf_map *map = reg->map_ptr; + int err; + + err = check_map_field_pointer(env, regno, BPF_TIMER); + if (err) + return err; + + if (meta->map_ptr) { + verifier_bug(env, "Two map pointers in a timer helper"); + return -EFAULT; + } + if (IS_ENABLED(CONFIG_PREEMPT_RT)) { + verbose(env, "bpf_timer cannot be used for PREEMPT_RT.\n"); + return -EOPNOTSUPP; + } + meta->map_uid = reg->map_uid; + meta->map_ptr = map; + return 0; +} + +static int process_wq_func(struct bpf_verifier_env *env, int regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + struct bpf_map *map = reg->map_ptr; + int err; + + err = check_map_field_pointer(env, regno, BPF_WORKQUEUE); + if (err) + return err; + + if (meta->map.ptr) { + verifier_bug(env, "Two map pointers in a bpf_wq helper"); + return -EFAULT; + } + + meta->map.uid = reg->map_uid; + meta->map.ptr = map; + return 0; +} + +static int process_task_work_func(struct bpf_verifier_env *env, int regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + struct bpf_map *map = reg->map_ptr; + int err; + + err = check_map_field_pointer(env, regno, BPF_TASK_WORK); + if (err) + return err; + + if (meta->map.ptr) { + verifier_bug(env, "Two map pointers in a bpf_task_work helper"); + return -EFAULT; + } + meta->map.uid = reg->map_uid; + meta->map.ptr = map; + return 0; +} + +static int process_kptr_func(struct bpf_verifier_env *env, int regno, + struct bpf_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + struct btf_field *kptr_field; + struct bpf_map *map_ptr; + struct btf_record *rec; + u32 kptr_off; + + if (type_is_ptr_alloc_obj(reg->type)) { + rec = reg_btf_record(reg); + } else { /* PTR_TO_MAP_VALUE */ + map_ptr = reg->map_ptr; + if (!map_ptr->btf) { + verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", + map_ptr->name); + return -EINVAL; + } + rec = map_ptr->record; + meta->map_ptr = map_ptr; + } + + if (!tnum_is_const(reg->var_off)) { + verbose(env, + "R%d doesn't have constant offset. kptr has to be at the constant offset\n", + regno); + return -EINVAL; + } + + if (!btf_record_has_field(rec, BPF_KPTR)) { + verbose(env, "R%d has no valid kptr\n", regno); + return -EINVAL; + } + + kptr_off = reg->off + reg->var_off.value; + kptr_field = btf_record_find(rec, kptr_off, BPF_KPTR); + if (!kptr_field) { + verbose(env, "off=%d doesn't point to kptr\n", kptr_off); + return -EACCES; + } + if (kptr_field->type != BPF_KPTR_REF && kptr_field->type != BPF_KPTR_PERCPU) { + verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); + return -EACCES; + } + meta->kptr_field = kptr_field; + return 0; +} + +/* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK + * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. + * + * In both cases we deal with the first 8 bytes, but need to mark the next 8 + * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of + * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. + * + * Mutability of bpf_dynptr is at two levels, one is at the level of struct + * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct + * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can + * mutate the view of the dynptr and also possibly destroy it. In the latter + * case, it cannot mutate the bpf_dynptr itself but it can still mutate the + * memory that dynptr points to. + * + * The verifier will keep track both levels of mutation (bpf_dynptr's in + * reg->type and the memory's in reg->dynptr.type), but there is no support for + * readonly dynptr view yet, hence only the first case is tracked and checked. + * + * This is consistent with how C applies the const modifier to a struct object, + * where the pointer itself inside bpf_dynptr becomes const but not what it + * points to. + * + * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument + * type, and declare it as 'const struct bpf_dynptr *' in their prototype. + */ +static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, + enum bpf_arg_type arg_type, int clone_ref_obj_id) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + int err; + + if (reg->type != PTR_TO_STACK && reg->type != CONST_PTR_TO_DYNPTR) { + verbose(env, + "arg#%d expected pointer to stack or const struct bpf_dynptr\n", + regno - 1); + return -EINVAL; + } + + /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an + * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): + */ + if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { + verifier_bug(env, "misconfigured dynptr helper type flags"); + return -EFAULT; + } + + /* MEM_UNINIT - Points to memory that is an appropriate candidate for + * constructing a mutable bpf_dynptr object. + * + * Currently, this is only possible with PTR_TO_STACK + * pointing to a region of at least 16 bytes which doesn't + * contain an existing bpf_dynptr. + * + * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be + * mutated or destroyed. However, the memory it points to + * may be mutated. + * + * None - Points to a initialized dynptr that can be mutated and + * destroyed, including mutation of the memory it points + * to. + */ + if (arg_type & MEM_UNINIT) { + int i; + + if (!is_dynptr_reg_valid_uninit(env, reg)) { + verbose(env, "Dynptr has to be an uninitialized dynptr\n"); + return -EINVAL; + } + + /* we write BPF_DW bits (8 bytes) at a time */ + for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { + err = check_mem_access(env, insn_idx, regno, + i, BPF_DW, BPF_WRITE, -1, false, false); + if (err) + return err; + } + + err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); + } else /* MEM_RDONLY and None case from above */ { + /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ + if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { + verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); + return -EINVAL; + } + + if (!is_dynptr_reg_valid_init(env, reg)) { + verbose(env, + "Expected an initialized dynptr as arg #%d\n", + regno - 1); + return -EINVAL; + } + + /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ + if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { + verbose(env, + "Expected a dynptr of type %s as arg #%d\n", + dynptr_type_str(arg_to_dynptr_type(arg_type)), regno - 1); + return -EINVAL; + } + + err = mark_dynptr_read(env, reg); + } + return err; +} + +static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) +{ + struct bpf_func_state *state = func(env, reg); + + return state->stack[spi].spilled_ptr.ref_obj_id; +} + +static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); +} + +static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_ITER_NEW; +} + +static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_ITER_NEXT; +} + +static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_ITER_DESTROY; +} + +static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg_idx, + const struct btf_param *arg) +{ + /* btf_check_iter_kfuncs() guarantees that first argument of any iter + * kfunc is iter state pointer + */ + if (is_iter_kfunc(meta)) + return arg_idx == 0; + + /* iter passed as an argument to a generic kfunc */ + return btf_param_match_suffix(meta->btf, arg, "__iter"); +} + +static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, + struct bpf_kfunc_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + const struct btf_type *t; + int spi, err, i, nr_slots, btf_id; + + if (reg->type != PTR_TO_STACK) { + verbose(env, "arg#%d expected pointer to an iterator on stack\n", regno - 1); + return -EINVAL; + } + + /* For iter_{new,next,destroy} functions, btf_check_iter_kfuncs() + * ensures struct convention, so we wouldn't need to do any BTF + * validation here. But given iter state can be passed as a parameter + * to any kfunc, if arg has "__iter" suffix, we need to be a bit more + * conservative here. + */ + btf_id = btf_check_iter_arg(meta->btf, meta->func_proto, regno - 1); + if (btf_id < 0) { + verbose(env, "expected valid iter pointer as arg #%d\n", regno - 1); + return -EINVAL; + } + t = btf_type_by_id(meta->btf, btf_id); + nr_slots = t->size / BPF_REG_SIZE; + + if (is_iter_new_kfunc(meta)) { + /* bpf_iter_<type>_new() expects pointer to uninit iter state */ + if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { + verbose(env, "expected uninitialized iter_%s as arg #%d\n", + iter_type_str(meta->btf, btf_id), regno - 1); + return -EINVAL; + } + + for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { + err = check_mem_access(env, insn_idx, regno, + i, BPF_DW, BPF_WRITE, -1, false, false); + if (err) + return err; + } + + err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); + if (err) + return err; + } else { + /* iter_next() or iter_destroy(), as well as any kfunc + * accepting iter argument, expect initialized iter state + */ + err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); + switch (err) { + case 0: + break; + case -EINVAL: + verbose(env, "expected an initialized iter_%s as arg #%d\n", + iter_type_str(meta->btf, btf_id), regno - 1); + return err; + case -EPROTO: + verbose(env, "expected an RCU CS when using %s\n", meta->func_name); + return err; + default: + return err; + } + + spi = iter_get_spi(env, reg, nr_slots); + if (spi < 0) + return spi; + + err = mark_iter_read(env, reg, spi, nr_slots); + if (err) + return err; + + /* remember meta->iter info for process_iter_next_call() */ + meta->iter.spi = spi; + meta->iter.frameno = reg->frameno; + meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); + + if (is_iter_destroy_kfunc(meta)) { + err = unmark_stack_slots_iter(env, reg, nr_slots); + if (err) + return err; + } + } + + return 0; +} + +/* Look for a previous loop entry at insn_idx: nearest parent state + * stopped at insn_idx with callsites matching those in cur->frame. + */ +static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, + struct bpf_verifier_state *cur, + int insn_idx) +{ + struct bpf_verifier_state_list *sl; + struct bpf_verifier_state *st; + struct list_head *pos, *head; + + /* Explored states are pushed in stack order, most recent states come first */ + head = explored_state(env, insn_idx); + list_for_each(pos, head) { + sl = container_of(pos, struct bpf_verifier_state_list, node); + /* If st->branches != 0 state is a part of current DFS verification path, + * hence cur & st for a loop. + */ + st = &sl->state; + if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && + st->dfs_depth < cur->dfs_depth) + return st; + } + + return NULL; +} + +static void reset_idmap_scratch(struct bpf_verifier_env *env); +static bool regs_exact(const struct bpf_reg_state *rold, + const struct bpf_reg_state *rcur, + struct bpf_idmap *idmap); + +static void maybe_widen_reg(struct bpf_verifier_env *env, + struct bpf_reg_state *rold, struct bpf_reg_state *rcur, + struct bpf_idmap *idmap) +{ + if (rold->type != SCALAR_VALUE) + return; + if (rold->type != rcur->type) + return; + if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) + return; + __mark_reg_unknown(env, rcur); +} + +static int widen_imprecise_scalars(struct bpf_verifier_env *env, + struct bpf_verifier_state *old, + struct bpf_verifier_state *cur) +{ + struct bpf_func_state *fold, *fcur; + int i, fr, num_slots; + + reset_idmap_scratch(env); + for (fr = old->curframe; fr >= 0; fr--) { + fold = old->frame[fr]; + fcur = cur->frame[fr]; + + for (i = 0; i < MAX_BPF_REG; i++) + maybe_widen_reg(env, + &fold->regs[i], + &fcur->regs[i], + &env->idmap_scratch); + + num_slots = min(fold->allocated_stack / BPF_REG_SIZE, + fcur->allocated_stack / BPF_REG_SIZE); + for (i = 0; i < num_slots; i++) { + if (!is_spilled_reg(&fold->stack[i]) || + !is_spilled_reg(&fcur->stack[i])) + continue; + + maybe_widen_reg(env, + &fold->stack[i].spilled_ptr, + &fcur->stack[i].spilled_ptr, + &env->idmap_scratch); + } + } + return 0; +} + +static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st, + struct bpf_kfunc_call_arg_meta *meta) +{ + int iter_frameno = meta->iter.frameno; + int iter_spi = meta->iter.spi; + + return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; +} + +/* process_iter_next_call() is called when verifier gets to iterator's next + * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer + * to it as just "iter_next()" in comments below. + * + * BPF verifier relies on a crucial contract for any iter_next() + * implementation: it should *eventually* return NULL, and once that happens + * it should keep returning NULL. That is, once iterator exhausts elements to + * iterate, it should never reset or spuriously return new elements. + * + * With the assumption of such contract, process_iter_next_call() simulates + * a fork in the verifier state to validate loop logic correctness and safety + * without having to simulate infinite amount of iterations. + * + * In current state, we first assume that iter_next() returned NULL and + * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such + * conditions we should not form an infinite loop and should eventually reach + * exit. + * + * Besides that, we also fork current state and enqueue it for later + * verification. In a forked state we keep iterator state as ACTIVE + * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We + * also bump iteration depth to prevent erroneous infinite loop detection + * later on (see iter_active_depths_differ() comment for details). In this + * state we assume that we'll eventually loop back to another iter_next() + * calls (it could be in exactly same location or in some other instruction, + * it doesn't matter, we don't make any unnecessary assumptions about this, + * everything revolves around iterator state in a stack slot, not which + * instruction is calling iter_next()). When that happens, we either will come + * to iter_next() with equivalent state and can conclude that next iteration + * will proceed in exactly the same way as we just verified, so it's safe to + * assume that loop converges. If not, we'll go on another iteration + * simulation with a different input state, until all possible starting states + * are validated or we reach maximum number of instructions limit. + * + * This way, we will either exhaustively discover all possible input states + * that iterator loop can start with and eventually will converge, or we'll + * effectively regress into bounded loop simulation logic and either reach + * maximum number of instructions if loop is not provably convergent, or there + * is some statically known limit on number of iterations (e.g., if there is + * an explicit `if n > 100 then break;` statement somewhere in the loop). + * + * Iteration convergence logic in is_state_visited() relies on exact + * states comparison, which ignores read and precision marks. + * This is necessary because read and precision marks are not finalized + * while in the loop. Exact comparison might preclude convergence for + * simple programs like below: + * + * i = 0; + * while(iter_next(&it)) + * i++; + * + * At each iteration step i++ would produce a new distinct state and + * eventually instruction processing limit would be reached. + * + * To avoid such behavior speculatively forget (widen) range for + * imprecise scalar registers, if those registers were not precise at the + * end of the previous iteration and do not match exactly. + * + * This is a conservative heuristic that allows to verify wide range of programs, + * however it precludes verification of programs that conjure an + * imprecise value on the first loop iteration and use it as precise on a second. + * For example, the following safe program would fail to verify: + * + * struct bpf_num_iter it; + * int arr[10]; + * int i = 0, a = 0; + * bpf_iter_num_new(&it, 0, 10); + * while (bpf_iter_num_next(&it)) { + * if (a == 0) { + * a = 1; + * i = 7; // Because i changed verifier would forget + * // it's range on second loop entry. + * } else { + * arr[i] = 42; // This would fail to verify. + * } + * } + * bpf_iter_num_destroy(&it); + */ +static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, + struct bpf_kfunc_call_arg_meta *meta) +{ + struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; + struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; + struct bpf_reg_state *cur_iter, *queued_iter; + + BTF_TYPE_EMIT(struct bpf_iter); + + cur_iter = get_iter_from_state(cur_st, meta); + + if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && + cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { + verifier_bug(env, "unexpected iterator state %d (%s)", + cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); + return -EFAULT; + } + + if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { + /* Because iter_next() call is a checkpoint is_state_visitied() + * should guarantee parent state with same call sites and insn_idx. + */ + if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || + !same_callsites(cur_st->parent, cur_st)) { + verifier_bug(env, "bad parent state for iter next call"); + return -EFAULT; + } + /* Note cur_st->parent in the call below, it is necessary to skip + * checkpoint created for cur_st by is_state_visited() + * right at this instruction. + */ + prev_st = find_prev_entry(env, cur_st->parent, insn_idx); + /* branch out active iter state */ + queued_st = push_stack(env, insn_idx + 1, insn_idx, false); + if (IS_ERR(queued_st)) + return PTR_ERR(queued_st); + + queued_iter = get_iter_from_state(queued_st, meta); + queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; + queued_iter->iter.depth++; + if (prev_st) + widen_imprecise_scalars(env, prev_st, queued_st); + + queued_fr = queued_st->frame[queued_st->curframe]; + mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); + } + + /* switch to DRAINED state, but keep the depth unchanged */ + /* mark current iter state as drained and assume returned NULL */ + cur_iter->iter.state = BPF_ITER_STATE_DRAINED; + __mark_reg_const_zero(env, &cur_fr->regs[BPF_REG_0]); + + return 0; +} + +static bool arg_type_is_mem_size(enum bpf_arg_type type) +{ + return type == ARG_CONST_SIZE || + type == ARG_CONST_SIZE_OR_ZERO; +} + +static bool arg_type_is_raw_mem(enum bpf_arg_type type) +{ + return base_type(type) == ARG_PTR_TO_MEM && + type & MEM_UNINIT; +} + +static bool arg_type_is_release(enum bpf_arg_type type) +{ + return type & OBJ_RELEASE; +} + +static bool arg_type_is_dynptr(enum bpf_arg_type type) +{ + return base_type(type) == ARG_PTR_TO_DYNPTR; +} + +static int resolve_map_arg_type(struct bpf_verifier_env *env, + const struct bpf_call_arg_meta *meta, + enum bpf_arg_type *arg_type) +{ + if (!meta->map_ptr) { + /* kernel subsystem misconfigured verifier */ + verifier_bug(env, "invalid map_ptr to access map->type"); + return -EFAULT; + } + + switch (meta->map_ptr->map_type) { + case BPF_MAP_TYPE_SOCKMAP: + case BPF_MAP_TYPE_SOCKHASH: + if (*arg_type == ARG_PTR_TO_MAP_VALUE) { + *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; + } else { + verbose(env, "invalid arg_type for sockmap/sockhash\n"); + return -EINVAL; + } + break; + case BPF_MAP_TYPE_BLOOM_FILTER: + if (meta->func_id == BPF_FUNC_map_peek_elem) + *arg_type = ARG_PTR_TO_MAP_VALUE; + break; + default: + break; + } + return 0; +} + +struct bpf_reg_types { + const enum bpf_reg_type types[10]; + u32 *btf_id; +}; + +static const struct bpf_reg_types sock_types = { + .types = { + PTR_TO_SOCK_COMMON, + PTR_TO_SOCKET, + PTR_TO_TCP_SOCK, + PTR_TO_XDP_SOCK, + }, +}; + +#ifdef CONFIG_NET +static const struct bpf_reg_types btf_id_sock_common_types = { + .types = { + PTR_TO_SOCK_COMMON, + PTR_TO_SOCKET, + PTR_TO_TCP_SOCK, + PTR_TO_XDP_SOCK, + PTR_TO_BTF_ID, + PTR_TO_BTF_ID | PTR_TRUSTED, + }, + .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], +}; +#endif + +static const struct bpf_reg_types mem_types = { + .types = { + PTR_TO_STACK, + PTR_TO_PACKET, + PTR_TO_PACKET_META, + PTR_TO_MAP_KEY, + PTR_TO_MAP_VALUE, + PTR_TO_MEM, + PTR_TO_MEM | MEM_RINGBUF, + PTR_TO_BUF, + PTR_TO_BTF_ID | PTR_TRUSTED, + }, +}; + +static const struct bpf_reg_types spin_lock_types = { + .types = { + PTR_TO_MAP_VALUE, + PTR_TO_BTF_ID | MEM_ALLOC, + } +}; + +static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; +static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; +static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; +static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; +static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; +static const struct bpf_reg_types btf_ptr_types = { + .types = { + PTR_TO_BTF_ID, + PTR_TO_BTF_ID | PTR_TRUSTED, + PTR_TO_BTF_ID | MEM_RCU, + }, +}; +static const struct bpf_reg_types percpu_btf_ptr_types = { + .types = { + PTR_TO_BTF_ID | MEM_PERCPU, + PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU, + PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, + } +}; +static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; +static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; +static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; +static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; +static const struct bpf_reg_types kptr_xchg_dest_types = { + .types = { + PTR_TO_MAP_VALUE, + PTR_TO_BTF_ID | MEM_ALLOC + } +}; +static const struct bpf_reg_types dynptr_types = { + .types = { + PTR_TO_STACK, + CONST_PTR_TO_DYNPTR, + } +}; + +static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { + [ARG_PTR_TO_MAP_KEY] = &mem_types, + [ARG_PTR_TO_MAP_VALUE] = &mem_types, + [ARG_CONST_SIZE] = &scalar_types, + [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, + [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, + [ARG_CONST_MAP_PTR] = &const_map_ptr_types, + [ARG_PTR_TO_CTX] = &context_types, + [ARG_PTR_TO_SOCK_COMMON] = &sock_types, +#ifdef CONFIG_NET + [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, +#endif + [ARG_PTR_TO_SOCKET] = &fullsock_types, + [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, + [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, + [ARG_PTR_TO_MEM] = &mem_types, + [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, + [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, + [ARG_PTR_TO_FUNC] = &func_ptr_types, + [ARG_PTR_TO_STACK] = &stack_ptr_types, + [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, + [ARG_PTR_TO_TIMER] = &timer_types, + [ARG_KPTR_XCHG_DEST] = &kptr_xchg_dest_types, + [ARG_PTR_TO_DYNPTR] = &dynptr_types, +}; + +static int check_reg_type(struct bpf_verifier_env *env, u32 regno, + enum bpf_arg_type arg_type, + const u32 *arg_btf_id, + struct bpf_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + enum bpf_reg_type expected, type = reg->type; + const struct bpf_reg_types *compatible; + int i, j; + + compatible = compatible_reg_types[base_type(arg_type)]; + if (!compatible) { + verifier_bug(env, "unsupported arg type %d", arg_type); + return -EFAULT; + } + + /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, + * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY + * + * Same for MAYBE_NULL: + * + * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, + * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL + * + * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. + * + * Therefore we fold these flags depending on the arg_type before comparison. + */ + if (arg_type & MEM_RDONLY) + type &= ~MEM_RDONLY; + if (arg_type & PTR_MAYBE_NULL) + type &= ~PTR_MAYBE_NULL; + if (base_type(arg_type) == ARG_PTR_TO_MEM) + type &= ~DYNPTR_TYPE_FLAG_MASK; + + /* Local kptr types are allowed as the source argument of bpf_kptr_xchg */ + if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type) && regno == BPF_REG_2) { + type &= ~MEM_ALLOC; + type &= ~MEM_PERCPU; + } + + for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { + expected = compatible->types[i]; + if (expected == NOT_INIT) + break; + + if (type == expected) + goto found; + } + + verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); + for (j = 0; j + 1 < i; j++) + verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); + verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); + return -EACCES; + +found: + if (base_type(reg->type) != PTR_TO_BTF_ID) + return 0; + + if (compatible == &mem_types) { + if (!(arg_type & MEM_RDONLY)) { + verbose(env, + "%s() may write into memory pointed by R%d type=%s\n", + func_id_name(meta->func_id), + regno, reg_type_str(env, reg->type)); + return -EACCES; + } + return 0; + } + + switch ((int)reg->type) { + case PTR_TO_BTF_ID: + case PTR_TO_BTF_ID | PTR_TRUSTED: + case PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL: + case PTR_TO_BTF_ID | MEM_RCU: + case PTR_TO_BTF_ID | PTR_MAYBE_NULL: + case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: + { + /* For bpf_sk_release, it needs to match against first member + * 'struct sock_common', hence make an exception for it. This + * allows bpf_sk_release to work for multiple socket types. + */ + bool strict_type_match = arg_type_is_release(arg_type) && + meta->func_id != BPF_FUNC_sk_release; + + if (type_may_be_null(reg->type) && + (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { + verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); + return -EACCES; + } + + if (!arg_btf_id) { + if (!compatible->btf_id) { + verifier_bug(env, "missing arg compatible BTF ID"); + return -EFAULT; + } + arg_btf_id = compatible->btf_id; + } + + if (meta->func_id == BPF_FUNC_kptr_xchg) { + if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) + return -EACCES; + } else { + if (arg_btf_id == BPF_PTR_POISON) { + verbose(env, "verifier internal error:"); + verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", + regno); + return -EACCES; + } + + if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, + btf_vmlinux, *arg_btf_id, + strict_type_match)) { + verbose(env, "R%d is of type %s but %s is expected\n", + regno, btf_type_name(reg->btf, reg->btf_id), + btf_type_name(btf_vmlinux, *arg_btf_id)); + return -EACCES; + } + } + break; + } + case PTR_TO_BTF_ID | MEM_ALLOC: + case PTR_TO_BTF_ID | MEM_PERCPU | MEM_ALLOC: + if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && + meta->func_id != BPF_FUNC_kptr_xchg) { + verifier_bug(env, "unimplemented handling of MEM_ALLOC"); + return -EFAULT; + } + /* Check if local kptr in src arg matches kptr in dst arg */ + if (meta->func_id == BPF_FUNC_kptr_xchg && regno == BPF_REG_2) { + if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) + return -EACCES; + } + break; + case PTR_TO_BTF_ID | MEM_PERCPU: + case PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU: + case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: + /* Handled by helper specific checks */ + break; + default: + verifier_bug(env, "invalid PTR_TO_BTF_ID register for type match"); + return -EFAULT; + } + return 0; +} + +static struct btf_field * +reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) +{ + struct btf_field *field; + struct btf_record *rec; + + rec = reg_btf_record(reg); + if (!rec) + return NULL; + + field = btf_record_find(rec, off, fields); + if (!field) + return NULL; + + return field; +} + +static int check_func_arg_reg_off(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, int regno, + enum bpf_arg_type arg_type) +{ + u32 type = reg->type; + + /* When referenced register is passed to release function, its fixed + * offset must be 0. + * + * We will check arg_type_is_release reg has ref_obj_id when storing + * meta->release_regno. + */ + if (arg_type_is_release(arg_type)) { + /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it + * may not directly point to the object being released, but to + * dynptr pointing to such object, which might be at some offset + * on the stack. In that case, we simply to fallback to the + * default handling. + */ + if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) + return 0; + + /* Doing check_ptr_off_reg check for the offset will catch this + * because fixed_off_ok is false, but checking here allows us + * to give the user a better error message. + */ + if (reg->off) { + verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", + regno); + return -EINVAL; + } + return __check_ptr_off_reg(env, reg, regno, false); + } + + switch (type) { + /* Pointer types where both fixed and variable offset is explicitly allowed: */ + case PTR_TO_STACK: + case PTR_TO_PACKET: + case PTR_TO_PACKET_META: + case PTR_TO_MAP_KEY: + case PTR_TO_MAP_VALUE: + case PTR_TO_MEM: + case PTR_TO_MEM | MEM_RDONLY: + case PTR_TO_MEM | MEM_RINGBUF: + case PTR_TO_BUF: + case PTR_TO_BUF | MEM_RDONLY: + case PTR_TO_ARENA: + case SCALAR_VALUE: + return 0; + /* All the rest must be rejected, except PTR_TO_BTF_ID which allows + * fixed offset. + */ + case PTR_TO_BTF_ID: + case PTR_TO_BTF_ID | MEM_ALLOC: + case PTR_TO_BTF_ID | PTR_TRUSTED: + case PTR_TO_BTF_ID | MEM_RCU: + case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: + case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: + /* When referenced PTR_TO_BTF_ID is passed to release function, + * its fixed offset must be 0. In the other cases, fixed offset + * can be non-zero. This was already checked above. So pass + * fixed_off_ok as true to allow fixed offset for all other + * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we + * still need to do checks instead of returning. + */ + return __check_ptr_off_reg(env, reg, regno, true); + default: + return __check_ptr_off_reg(env, reg, regno, false); + } +} + +static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, + const struct bpf_func_proto *fn, + struct bpf_reg_state *regs) +{ + struct bpf_reg_state *state = NULL; + int i; + + for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) + if (arg_type_is_dynptr(fn->arg_type[i])) { + if (state) { + verbose(env, "verifier internal error: multiple dynptr args\n"); + return NULL; + } + state = ®s[BPF_REG_1 + i]; + } + + if (!state) + verbose(env, "verifier internal error: no dynptr arg found\n"); + + return state; +} + +static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + int spi; + + if (reg->type == CONST_PTR_TO_DYNPTR) + return reg->id; + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return spi; + return state->stack[spi].spilled_ptr.id; +} + +static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + int spi; + + if (reg->type == CONST_PTR_TO_DYNPTR) + return reg->ref_obj_id; + spi = dynptr_get_spi(env, reg); + if (spi < 0) + return spi; + return state->stack[spi].spilled_ptr.ref_obj_id; +} + +static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, + struct bpf_reg_state *reg) +{ + struct bpf_func_state *state = func(env, reg); + int spi; + + if (reg->type == CONST_PTR_TO_DYNPTR) + return reg->dynptr.type; + + spi = __get_spi(reg->off); + if (spi < 0) { + verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); + return BPF_DYNPTR_TYPE_INVALID; + } + + return state->stack[spi].spilled_ptr.dynptr.type; +} + +static int check_reg_const_str(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno) +{ + struct bpf_map *map = reg->map_ptr; + int err; + int map_off; + u64 map_addr; + char *str_ptr; + + if (reg->type != PTR_TO_MAP_VALUE) + return -EINVAL; + + if (!bpf_map_is_rdonly(map)) { + verbose(env, "R%d does not point to a readonly map'\n", regno); + return -EACCES; + } + + if (!tnum_is_const(reg->var_off)) { + verbose(env, "R%d is not a constant address'\n", regno); + return -EACCES; + } + + if (!map->ops->map_direct_value_addr) { + verbose(env, "no direct value access support for this map type\n"); + return -EACCES; + } + + err = check_map_access(env, regno, reg->off, + map->value_size - reg->off, false, + ACCESS_HELPER); + if (err) + return err; + + map_off = reg->off + reg->var_off.value; + err = map->ops->map_direct_value_addr(map, &map_addr, map_off); + if (err) { + verbose(env, "direct value access on string failed\n"); + return err; + } + + str_ptr = (char *)(long)(map_addr); + if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { + verbose(env, "string is not zero-terminated\n"); + return -EINVAL; + } + return 0; +} + +/* Returns constant key value in `value` if possible, else negative error */ +static int get_constant_map_key(struct bpf_verifier_env *env, + struct bpf_reg_state *key, + u32 key_size, + s64 *value) +{ + struct bpf_func_state *state = func(env, key); + struct bpf_reg_state *reg; + int slot, spi, off; + int spill_size = 0; + int zero_size = 0; + int stack_off; + int i, err; + u8 *stype; + + if (!env->bpf_capable) + return -EOPNOTSUPP; + if (key->type != PTR_TO_STACK) + return -EOPNOTSUPP; + if (!tnum_is_const(key->var_off)) + return -EOPNOTSUPP; + + stack_off = key->off + key->var_off.value; + slot = -stack_off - 1; + spi = slot / BPF_REG_SIZE; + off = slot % BPF_REG_SIZE; + stype = state->stack[spi].slot_type; + + /* First handle precisely tracked STACK_ZERO */ + for (i = off; i >= 0 && stype[i] == STACK_ZERO; i--) + zero_size++; + if (zero_size >= key_size) { + *value = 0; + return 0; + } + + /* Check that stack contains a scalar spill of expected size */ + if (!is_spilled_scalar_reg(&state->stack[spi])) + return -EOPNOTSUPP; + for (i = off; i >= 0 && stype[i] == STACK_SPILL; i--) + spill_size++; + if (spill_size != key_size) + return -EOPNOTSUPP; + + reg = &state->stack[spi].spilled_ptr; + if (!tnum_is_const(reg->var_off)) + /* Stack value not statically known */ + return -EOPNOTSUPP; + + /* We are relying on a constant value. So mark as precise + * to prevent pruning on it. + */ + bt_set_frame_slot(&env->bt, key->frameno, spi); + err = mark_chain_precision_batch(env, env->cur_state); + if (err < 0) + return err; + + *value = reg->var_off.value; + return 0; +} + +static bool can_elide_value_nullness(enum bpf_map_type type); + +static int check_func_arg(struct bpf_verifier_env *env, u32 arg, + struct bpf_call_arg_meta *meta, + const struct bpf_func_proto *fn, + int insn_idx) +{ + u32 regno = BPF_REG_1 + arg; + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + enum bpf_arg_type arg_type = fn->arg_type[arg]; + enum bpf_reg_type type = reg->type; + u32 *arg_btf_id = NULL; + u32 key_size; + int err = 0; + + if (arg_type == ARG_DONTCARE) + return 0; + + err = check_reg_arg(env, regno, SRC_OP); + if (err) + return err; + + if (arg_type == ARG_ANYTHING) { + if (is_pointer_value(env, regno)) { + verbose(env, "R%d leaks addr into helper function\n", + regno); + return -EACCES; + } + return 0; + } + + if (type_is_pkt_pointer(type) && + !may_access_direct_pkt_data(env, meta, BPF_READ)) { + verbose(env, "helper access to the packet is not allowed\n"); + return -EACCES; + } + + if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { + err = resolve_map_arg_type(env, meta, &arg_type); + if (err) + return err; + } + + if (register_is_null(reg) && type_may_be_null(arg_type)) + /* A NULL register has a SCALAR_VALUE type, so skip + * type checking. + */ + goto skip_type_check; + + /* arg_btf_id and arg_size are in a union. */ + if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || + base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) + arg_btf_id = fn->arg_btf_id[arg]; + + err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); + if (err) + return err; + + err = check_func_arg_reg_off(env, reg, regno, arg_type); + if (err) + return err; + +skip_type_check: + if (arg_type_is_release(arg_type)) { + if (arg_type_is_dynptr(arg_type)) { + struct bpf_func_state *state = func(env, reg); + int spi; + + /* Only dynptr created on stack can be released, thus + * the get_spi and stack state checks for spilled_ptr + * should only be done before process_dynptr_func for + * PTR_TO_STACK. + */ + if (reg->type == PTR_TO_STACK) { + spi = dynptr_get_spi(env, reg); + if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { + verbose(env, "arg %d is an unacquired reference\n", regno); + return -EINVAL; + } + } else { + verbose(env, "cannot release unowned const bpf_dynptr\n"); + return -EINVAL; + } + } else if (!reg->ref_obj_id && !register_is_null(reg)) { + verbose(env, "R%d must be referenced when passed to release function\n", + regno); + return -EINVAL; + } + if (meta->release_regno) { + verifier_bug(env, "more than one release argument"); + return -EFAULT; + } + meta->release_regno = regno; + } + + if (reg->ref_obj_id && base_type(arg_type) != ARG_KPTR_XCHG_DEST) { + if (meta->ref_obj_id) { + verbose(env, "more than one arg with ref_obj_id R%d %u %u", + regno, reg->ref_obj_id, + meta->ref_obj_id); + return -EACCES; + } + meta->ref_obj_id = reg->ref_obj_id; + } + + switch (base_type(arg_type)) { + case ARG_CONST_MAP_PTR: + /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ + if (meta->map_ptr) { + /* Use map_uid (which is unique id of inner map) to reject: + * inner_map1 = bpf_map_lookup_elem(outer_map, key1) + * inner_map2 = bpf_map_lookup_elem(outer_map, key2) + * if (inner_map1 && inner_map2) { + * timer = bpf_map_lookup_elem(inner_map1); + * if (timer) + * // mismatch would have been allowed + * bpf_timer_init(timer, inner_map2); + * } + * + * Comparing map_ptr is enough to distinguish normal and outer maps. + */ + if (meta->map_ptr != reg->map_ptr || + meta->map_uid != reg->map_uid) { + verbose(env, + "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", + meta->map_uid, reg->map_uid); + return -EINVAL; + } + } + meta->map_ptr = reg->map_ptr; + meta->map_uid = reg->map_uid; + break; + case ARG_PTR_TO_MAP_KEY: + /* bpf_map_xxx(..., map_ptr, ..., key) call: + * check that [key, key + map->key_size) are within + * stack limits and initialized + */ + if (!meta->map_ptr) { + /* in function declaration map_ptr must come before + * map_key, so that it's verified and known before + * we have to check map_key here. Otherwise it means + * that kernel subsystem misconfigured verifier + */ + verifier_bug(env, "invalid map_ptr to access map->key"); + return -EFAULT; + } + key_size = meta->map_ptr->key_size; + err = check_helper_mem_access(env, regno, key_size, BPF_READ, false, NULL); + if (err) + return err; + if (can_elide_value_nullness(meta->map_ptr->map_type)) { + err = get_constant_map_key(env, reg, key_size, &meta->const_map_key); + if (err < 0) { + meta->const_map_key = -1; + if (err == -EOPNOTSUPP) + err = 0; + else + return err; + } + } + break; + case ARG_PTR_TO_MAP_VALUE: + if (type_may_be_null(arg_type) && register_is_null(reg)) + return 0; + + /* bpf_map_xxx(..., map_ptr, ..., value) call: + * check [value, value + map->value_size) validity + */ + if (!meta->map_ptr) { + /* kernel subsystem misconfigured verifier */ + verifier_bug(env, "invalid map_ptr to access map->value"); + return -EFAULT; + } + meta->raw_mode = arg_type & MEM_UNINIT; + err = check_helper_mem_access(env, regno, meta->map_ptr->value_size, + arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, + false, meta); + break; + case ARG_PTR_TO_PERCPU_BTF_ID: + if (!reg->btf_id) { + verbose(env, "Helper has invalid btf_id in R%d\n", regno); + return -EACCES; + } + meta->ret_btf = reg->btf; + meta->ret_btf_id = reg->btf_id; + break; + case ARG_PTR_TO_SPIN_LOCK: + if (in_rbtree_lock_required_cb(env)) { + verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); + return -EACCES; + } + if (meta->func_id == BPF_FUNC_spin_lock) { + err = process_spin_lock(env, regno, PROCESS_SPIN_LOCK); + if (err) + return err; + } else if (meta->func_id == BPF_FUNC_spin_unlock) { + err = process_spin_lock(env, regno, 0); + if (err) + return err; + } else { + verifier_bug(env, "spin lock arg on unexpected helper"); + return -EFAULT; + } + break; + case ARG_PTR_TO_TIMER: + err = process_timer_func(env, regno, meta); + if (err) + return err; + break; + case ARG_PTR_TO_FUNC: + meta->subprogno = reg->subprogno; + break; + case ARG_PTR_TO_MEM: + /* The access to this pointer is only checked when we hit the + * next is_mem_size argument below. + */ + meta->raw_mode = arg_type & MEM_UNINIT; + if (arg_type & MEM_FIXED_SIZE) { + err = check_helper_mem_access(env, regno, fn->arg_size[arg], + arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ, + false, meta); + if (err) + return err; + if (arg_type & MEM_ALIGNED) + err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true); + } + break; + case ARG_CONST_SIZE: + err = check_mem_size_reg(env, reg, regno, + fn->arg_type[arg - 1] & MEM_WRITE ? + BPF_WRITE : BPF_READ, + false, meta); + break; + case ARG_CONST_SIZE_OR_ZERO: + err = check_mem_size_reg(env, reg, regno, + fn->arg_type[arg - 1] & MEM_WRITE ? + BPF_WRITE : BPF_READ, + true, meta); + break; + case ARG_PTR_TO_DYNPTR: + err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); + if (err) + return err; + break; + case ARG_CONST_ALLOC_SIZE_OR_ZERO: + if (!tnum_is_const(reg->var_off)) { + verbose(env, "R%d is not a known constant'\n", + regno); + return -EACCES; + } + meta->mem_size = reg->var_off.value; + err = mark_chain_precision(env, regno); + if (err) + return err; + break; + case ARG_PTR_TO_CONST_STR: + { + err = check_reg_const_str(env, reg, regno); + if (err) + return err; + break; + } + case ARG_KPTR_XCHG_DEST: + err = process_kptr_func(env, regno, meta); + if (err) + return err; + break; + } + + return err; +} + +static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) +{ + enum bpf_attach_type eatype = env->prog->expected_attach_type; + enum bpf_prog_type type = resolve_prog_type(env->prog); + + if (func_id != BPF_FUNC_map_update_elem && + func_id != BPF_FUNC_map_delete_elem) + return false; + + /* It's not possible to get access to a locked struct sock in these + * contexts, so updating is safe. + */ + switch (type) { + case BPF_PROG_TYPE_TRACING: + if (eatype == BPF_TRACE_ITER) + return true; + break; + case BPF_PROG_TYPE_SOCK_OPS: + /* map_update allowed only via dedicated helpers with event type checks */ + if (func_id == BPF_FUNC_map_delete_elem) + return true; + break; + case BPF_PROG_TYPE_SOCKET_FILTER: + case BPF_PROG_TYPE_SCHED_CLS: + case BPF_PROG_TYPE_SCHED_ACT: + case BPF_PROG_TYPE_XDP: + case BPF_PROG_TYPE_SK_REUSEPORT: + case BPF_PROG_TYPE_FLOW_DISSECTOR: + case BPF_PROG_TYPE_SK_LOOKUP: + return true; + default: + break; + } + + verbose(env, "cannot update sockmap in this context\n"); + return false; +} + +static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) +{ + return env->prog->jit_requested && + bpf_jit_supports_subprog_tailcalls(); +} + +static int check_map_func_compatibility(struct bpf_verifier_env *env, + struct bpf_map *map, int func_id) +{ + if (!map) + return 0; + + /* We need a two way check, first is from map perspective ... */ + switch (map->map_type) { + case BPF_MAP_TYPE_PROG_ARRAY: + if (func_id != BPF_FUNC_tail_call) + goto error; + break; + case BPF_MAP_TYPE_PERF_EVENT_ARRAY: + if (func_id != BPF_FUNC_perf_event_read && + func_id != BPF_FUNC_perf_event_output && + func_id != BPF_FUNC_skb_output && + func_id != BPF_FUNC_perf_event_read_value && + func_id != BPF_FUNC_xdp_output) + goto error; + break; + case BPF_MAP_TYPE_RINGBUF: + if (func_id != BPF_FUNC_ringbuf_output && + func_id != BPF_FUNC_ringbuf_reserve && + func_id != BPF_FUNC_ringbuf_query && + func_id != BPF_FUNC_ringbuf_reserve_dynptr && + func_id != BPF_FUNC_ringbuf_submit_dynptr && + func_id != BPF_FUNC_ringbuf_discard_dynptr) + goto error; + break; + case BPF_MAP_TYPE_USER_RINGBUF: + if (func_id != BPF_FUNC_user_ringbuf_drain) + goto error; + break; + case BPF_MAP_TYPE_STACK_TRACE: + if (func_id != BPF_FUNC_get_stackid) + goto error; + break; + case BPF_MAP_TYPE_CGROUP_ARRAY: + if (func_id != BPF_FUNC_skb_under_cgroup && + func_id != BPF_FUNC_current_task_under_cgroup) + goto error; + break; + case BPF_MAP_TYPE_CGROUP_STORAGE: + case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: + if (func_id != BPF_FUNC_get_local_storage) + goto error; + break; + case BPF_MAP_TYPE_DEVMAP: + case BPF_MAP_TYPE_DEVMAP_HASH: + if (func_id != BPF_FUNC_redirect_map && + func_id != BPF_FUNC_map_lookup_elem) + goto error; + break; + /* Restrict bpf side of cpumap and xskmap, open when use-cases + * appear. + */ + case BPF_MAP_TYPE_CPUMAP: + if (func_id != BPF_FUNC_redirect_map) + goto error; + break; + case BPF_MAP_TYPE_XSKMAP: + if (func_id != BPF_FUNC_redirect_map && + func_id != BPF_FUNC_map_lookup_elem) + goto error; + break; + case BPF_MAP_TYPE_ARRAY_OF_MAPS: + case BPF_MAP_TYPE_HASH_OF_MAPS: + if (func_id != BPF_FUNC_map_lookup_elem) + goto error; + break; + case BPF_MAP_TYPE_SOCKMAP: + if (func_id != BPF_FUNC_sk_redirect_map && + func_id != BPF_FUNC_sock_map_update && + func_id != BPF_FUNC_msg_redirect_map && + func_id != BPF_FUNC_sk_select_reuseport && + func_id != BPF_FUNC_map_lookup_elem && + !may_update_sockmap(env, func_id)) + goto error; + break; + case BPF_MAP_TYPE_SOCKHASH: + if (func_id != BPF_FUNC_sk_redirect_hash && + func_id != BPF_FUNC_sock_hash_update && + func_id != BPF_FUNC_msg_redirect_hash && + func_id != BPF_FUNC_sk_select_reuseport && + func_id != BPF_FUNC_map_lookup_elem && + !may_update_sockmap(env, func_id)) + goto error; + break; + case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: + if (func_id != BPF_FUNC_sk_select_reuseport) + goto error; + break; + case BPF_MAP_TYPE_QUEUE: + case BPF_MAP_TYPE_STACK: + if (func_id != BPF_FUNC_map_peek_elem && + func_id != BPF_FUNC_map_pop_elem && + func_id != BPF_FUNC_map_push_elem) + goto error; + break; + case BPF_MAP_TYPE_SK_STORAGE: + if (func_id != BPF_FUNC_sk_storage_get && + func_id != BPF_FUNC_sk_storage_delete && + func_id != BPF_FUNC_kptr_xchg) + goto error; + break; + case BPF_MAP_TYPE_INODE_STORAGE: + if (func_id != BPF_FUNC_inode_storage_get && + func_id != BPF_FUNC_inode_storage_delete && + func_id != BPF_FUNC_kptr_xchg) + goto error; + break; + case BPF_MAP_TYPE_TASK_STORAGE: + if (func_id != BPF_FUNC_task_storage_get && + func_id != BPF_FUNC_task_storage_delete && + func_id != BPF_FUNC_kptr_xchg) + goto error; + break; + case BPF_MAP_TYPE_CGRP_STORAGE: + if (func_id != BPF_FUNC_cgrp_storage_get && + func_id != BPF_FUNC_cgrp_storage_delete && + func_id != BPF_FUNC_kptr_xchg) + goto error; + break; + case BPF_MAP_TYPE_BLOOM_FILTER: + if (func_id != BPF_FUNC_map_peek_elem && + func_id != BPF_FUNC_map_push_elem) + goto error; + break; + case BPF_MAP_TYPE_INSN_ARRAY: + goto error; + default: + break; + } + + /* ... and second from the function itself. */ + switch (func_id) { + case BPF_FUNC_tail_call: + if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) + goto error; + if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { + verbose(env, "mixing of tail_calls and bpf-to-bpf calls is not supported\n"); + return -EINVAL; + } + break; + case BPF_FUNC_perf_event_read: + case BPF_FUNC_perf_event_output: + case BPF_FUNC_perf_event_read_value: + case BPF_FUNC_skb_output: + case BPF_FUNC_xdp_output: + if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) + goto error; + break; + case BPF_FUNC_ringbuf_output: + case BPF_FUNC_ringbuf_reserve: + case BPF_FUNC_ringbuf_query: + case BPF_FUNC_ringbuf_reserve_dynptr: + case BPF_FUNC_ringbuf_submit_dynptr: + case BPF_FUNC_ringbuf_discard_dynptr: + if (map->map_type != BPF_MAP_TYPE_RINGBUF) + goto error; + break; + case BPF_FUNC_user_ringbuf_drain: + if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) + goto error; + break; + case BPF_FUNC_get_stackid: + if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) + goto error; + break; + case BPF_FUNC_current_task_under_cgroup: + case BPF_FUNC_skb_under_cgroup: + if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) + goto error; + break; + case BPF_FUNC_redirect_map: + if (map->map_type != BPF_MAP_TYPE_DEVMAP && + map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && + map->map_type != BPF_MAP_TYPE_CPUMAP && + map->map_type != BPF_MAP_TYPE_XSKMAP) + goto error; + break; + case BPF_FUNC_sk_redirect_map: + case BPF_FUNC_msg_redirect_map: + case BPF_FUNC_sock_map_update: + if (map->map_type != BPF_MAP_TYPE_SOCKMAP) + goto error; + break; + case BPF_FUNC_sk_redirect_hash: + case BPF_FUNC_msg_redirect_hash: + case BPF_FUNC_sock_hash_update: + if (map->map_type != BPF_MAP_TYPE_SOCKHASH) + goto error; + break; + case BPF_FUNC_get_local_storage: + if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && + map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) + goto error; + break; + case BPF_FUNC_sk_select_reuseport: + if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && + map->map_type != BPF_MAP_TYPE_SOCKMAP && + map->map_type != BPF_MAP_TYPE_SOCKHASH) + goto error; + break; + case BPF_FUNC_map_pop_elem: + if (map->map_type != BPF_MAP_TYPE_QUEUE && + map->map_type != BPF_MAP_TYPE_STACK) + goto error; + break; + case BPF_FUNC_map_peek_elem: + case BPF_FUNC_map_push_elem: + if (map->map_type != BPF_MAP_TYPE_QUEUE && + map->map_type != BPF_MAP_TYPE_STACK && + map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) + goto error; + break; + case BPF_FUNC_map_lookup_percpu_elem: + if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && + map->map_type != BPF_MAP_TYPE_PERCPU_HASH && + map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) + goto error; + break; + case BPF_FUNC_sk_storage_get: + case BPF_FUNC_sk_storage_delete: + if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) + goto error; + break; + case BPF_FUNC_inode_storage_get: + case BPF_FUNC_inode_storage_delete: + if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) + goto error; + break; + case BPF_FUNC_task_storage_get: + case BPF_FUNC_task_storage_delete: + if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) + goto error; + break; + case BPF_FUNC_cgrp_storage_get: + case BPF_FUNC_cgrp_storage_delete: + if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) + goto error; + break; + default: + break; + } + + return 0; +error: + verbose(env, "cannot pass map_type %d into func %s#%d\n", + map->map_type, func_id_name(func_id), func_id); + return -EINVAL; +} + +static bool check_raw_mode_ok(const struct bpf_func_proto *fn) +{ + int count = 0; + + if (arg_type_is_raw_mem(fn->arg1_type)) + count++; + if (arg_type_is_raw_mem(fn->arg2_type)) + count++; + if (arg_type_is_raw_mem(fn->arg3_type)) + count++; + if (arg_type_is_raw_mem(fn->arg4_type)) + count++; + if (arg_type_is_raw_mem(fn->arg5_type)) + count++; + + /* We only support one arg being in raw mode at the moment, + * which is sufficient for the helper functions we have + * right now. + */ + return count <= 1; +} + +static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) +{ + bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; + bool has_size = fn->arg_size[arg] != 0; + bool is_next_size = false; + + if (arg + 1 < ARRAY_SIZE(fn->arg_type)) + is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); + + if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) + return is_next_size; + + return has_size == is_next_size || is_next_size == is_fixed; +} + +static bool check_arg_pair_ok(const struct bpf_func_proto *fn) +{ + /* bpf_xxx(..., buf, len) call will access 'len' + * bytes from memory 'buf'. Both arg types need + * to be paired, so make sure there's no buggy + * helper function specification. + */ + if (arg_type_is_mem_size(fn->arg1_type) || + check_args_pair_invalid(fn, 0) || + check_args_pair_invalid(fn, 1) || + check_args_pair_invalid(fn, 2) || + check_args_pair_invalid(fn, 3) || + check_args_pair_invalid(fn, 4)) + return false; + + return true; +} + +static bool check_btf_id_ok(const struct bpf_func_proto *fn) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { + if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) + return !!fn->arg_btf_id[i]; + if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) + return fn->arg_btf_id[i] == BPF_PTR_POISON; + if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && + /* arg_btf_id and arg_size are in a union. */ + (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || + !(fn->arg_type[i] & MEM_FIXED_SIZE))) + return false; + } + + return true; +} + +static int check_func_proto(const struct bpf_func_proto *fn, int func_id) +{ + return check_raw_mode_ok(fn) && + check_arg_pair_ok(fn) && + check_btf_id_ok(fn) ? 0 : -EINVAL; +} + +/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] + * are now invalid, so turn them into unknown SCALAR_VALUE. + * + * This also applies to dynptr slices belonging to skb and xdp dynptrs, + * since these slices point to packet data. + */ +static void clear_all_pkt_pointers(struct bpf_verifier_env *env) +{ + struct bpf_func_state *state; + struct bpf_reg_state *reg; + + bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ + if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) + mark_reg_invalid(env, reg); + })); +} + +enum { + AT_PKT_END = -1, + BEYOND_PKT_END = -2, +}; + +static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) +{ + struct bpf_func_state *state = vstate->frame[vstate->curframe]; + struct bpf_reg_state *reg = &state->regs[regn]; + + if (reg->type != PTR_TO_PACKET) + /* PTR_TO_PACKET_META is not supported yet */ + return; + + /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. + * How far beyond pkt_end it goes is unknown. + * if (!range_open) it's the case of pkt >= pkt_end + * if (range_open) it's the case of pkt > pkt_end + * hence this pointer is at least 1 byte bigger than pkt_end + */ + if (range_open) + reg->range = BEYOND_PKT_END; + else + reg->range = AT_PKT_END; +} + +static int release_reference_nomark(struct bpf_verifier_state *state, int ref_obj_id) +{ + int i; + + for (i = 0; i < state->acquired_refs; i++) { + if (state->refs[i].type != REF_TYPE_PTR) + continue; + if (state->refs[i].id == ref_obj_id) { + release_reference_state(state, i); + return 0; + } + } + return -EINVAL; +} + +/* The pointer with the specified id has released its reference to kernel + * resources. Identify all copies of the same pointer and clear the reference. + * + * This is the release function corresponding to acquire_reference(). Idempotent. + */ +static int release_reference(struct bpf_verifier_env *env, int ref_obj_id) +{ + struct bpf_verifier_state *vstate = env->cur_state; + struct bpf_func_state *state; + struct bpf_reg_state *reg; + int err; + + err = release_reference_nomark(vstate, ref_obj_id); + if (err) + return err; + + bpf_for_each_reg_in_vstate(vstate, state, reg, ({ + if (reg->ref_obj_id == ref_obj_id) + mark_reg_invalid(env, reg); + })); + + return 0; +} + +static void invalidate_non_owning_refs(struct bpf_verifier_env *env) +{ + struct bpf_func_state *unused; + struct bpf_reg_state *reg; + + bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ + if (type_is_non_owning_ref(reg->type)) + mark_reg_invalid(env, reg); + })); +} + +static void clear_caller_saved_regs(struct bpf_verifier_env *env, + struct bpf_reg_state *regs) +{ + int i; + + /* after the call registers r0 - r5 were scratched */ + for (i = 0; i < CALLER_SAVED_REGS; i++) { + mark_reg_not_init(env, regs, caller_saved[i]); + __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); + } +} + +typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx); + +static int set_callee_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, int insn_idx); + +static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, + set_callee_state_fn set_callee_state_cb, + struct bpf_verifier_state *state) +{ + struct bpf_func_state *caller, *callee; + int err; + + if (state->curframe + 1 >= MAX_CALL_FRAMES) { + verbose(env, "the call stack of %d frames is too deep\n", + state->curframe + 2); + return -E2BIG; + } + + if (state->frame[state->curframe + 1]) { + verifier_bug(env, "Frame %d already allocated", state->curframe + 1); + return -EFAULT; + } + + caller = state->frame[state->curframe]; + callee = kzalloc(sizeof(*callee), GFP_KERNEL_ACCOUNT); + if (!callee) + return -ENOMEM; + state->frame[state->curframe + 1] = callee; + + /* callee cannot access r0, r6 - r9 for reading and has to write + * into its own stack before reading from it. + * callee can read/write into caller's stack + */ + init_func_state(env, callee, + /* remember the callsite, it will be used by bpf_exit */ + callsite, + state->curframe + 1 /* frameno within this callchain */, + subprog /* subprog number within this prog */); + err = set_callee_state_cb(env, caller, callee, callsite); + if (err) + goto err_out; + + /* only increment it after check_reg_arg() finished */ + state->curframe++; + + return 0; + +err_out: + free_func_state(callee); + state->frame[state->curframe + 1] = NULL; + return err; +} + +static int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, + const struct btf *btf, + struct bpf_reg_state *regs) +{ + struct bpf_subprog_info *sub = subprog_info(env, subprog); + struct bpf_verifier_log *log = &env->log; + u32 i; + int ret; + + ret = btf_prepare_func_args(env, subprog); + if (ret) + return ret; + + /* check that BTF function arguments match actual types that the + * verifier sees. + */ + for (i = 0; i < sub->arg_cnt; i++) { + u32 regno = i + 1; + struct bpf_reg_state *reg = ®s[regno]; + struct bpf_subprog_arg_info *arg = &sub->args[i]; + + if (arg->arg_type == ARG_ANYTHING) { + if (reg->type != SCALAR_VALUE) { + bpf_log(log, "R%d is not a scalar\n", regno); + return -EINVAL; + } + } else if (arg->arg_type & PTR_UNTRUSTED) { + /* + * Anything is allowed for untrusted arguments, as these are + * read-only and probe read instructions would protect against + * invalid memory access. + */ + } else if (arg->arg_type == ARG_PTR_TO_CTX) { + ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); + if (ret < 0) + return ret; + /* If function expects ctx type in BTF check that caller + * is passing PTR_TO_CTX. + */ + if (reg->type != PTR_TO_CTX) { + bpf_log(log, "arg#%d expects pointer to ctx\n", i); + return -EINVAL; + } + } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { + ret = check_func_arg_reg_off(env, reg, regno, ARG_DONTCARE); + if (ret < 0) + return ret; + if (check_mem_reg(env, reg, regno, arg->mem_size)) + return -EINVAL; + if (!(arg->arg_type & PTR_MAYBE_NULL) && (reg->type & PTR_MAYBE_NULL)) { + bpf_log(log, "arg#%d is expected to be non-NULL\n", i); + return -EINVAL; + } + } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { + /* + * Can pass any value and the kernel won't crash, but + * only PTR_TO_ARENA or SCALAR make sense. Everything + * else is a bug in the bpf program. Point it out to + * the user at the verification time instead of + * run-time debug nightmare. + */ + if (reg->type != PTR_TO_ARENA && reg->type != SCALAR_VALUE) { + bpf_log(log, "R%d is not a pointer to arena or scalar.\n", regno); + return -EINVAL; + } + } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { + ret = check_func_arg_reg_off(env, reg, regno, ARG_PTR_TO_DYNPTR); + if (ret) + return ret; + + ret = process_dynptr_func(env, regno, -1, arg->arg_type, 0); + if (ret) + return ret; + } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { + struct bpf_call_arg_meta meta; + int err; + + if (register_is_null(reg) && type_may_be_null(arg->arg_type)) + continue; + + memset(&meta, 0, sizeof(meta)); /* leave func_id as zero */ + err = check_reg_type(env, regno, arg->arg_type, &arg->btf_id, &meta); + err = err ?: check_func_arg_reg_off(env, reg, regno, arg->arg_type); + if (err) + return err; + } else { + verifier_bug(env, "unrecognized arg#%d type %d", i, arg->arg_type); + return -EFAULT; + } + } + + return 0; +} + +/* Compare BTF of a function call with given bpf_reg_state. + * Returns: + * EFAULT - there is a verifier bug. Abort verification. + * EINVAL - there is a type mismatch or BTF is not available. + * 0 - BTF matches with what bpf_reg_state expects. + * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. + */ +static int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, + struct bpf_reg_state *regs) +{ + struct bpf_prog *prog = env->prog; + struct btf *btf = prog->aux->btf; + u32 btf_id; + int err; + + if (!prog->aux->func_info) + return -EINVAL; + + btf_id = prog->aux->func_info[subprog].type_id; + if (!btf_id) + return -EFAULT; + + if (prog->aux->func_info_aux[subprog].unreliable) + return -EINVAL; + + err = btf_check_func_arg_match(env, subprog, btf, regs); + /* Compiler optimizations can remove arguments from static functions + * or mismatched type can be passed into a global function. + * In such cases mark the function as unreliable from BTF point of view. + */ + if (err) + prog->aux->func_info_aux[subprog].unreliable = true; + return err; +} + +static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, + int insn_idx, int subprog, + set_callee_state_fn set_callee_state_cb) +{ + struct bpf_verifier_state *state = env->cur_state, *callback_state; + struct bpf_func_state *caller, *callee; + int err; + + caller = state->frame[state->curframe]; + err = btf_check_subprog_call(env, subprog, caller->regs); + if (err == -EFAULT) + return err; + + /* set_callee_state is used for direct subprog calls, but we are + * interested in validating only BPF helpers that can call subprogs as + * callbacks + */ + env->subprog_info[subprog].is_cb = true; + if (bpf_pseudo_kfunc_call(insn) && + !is_callback_calling_kfunc(insn->imm)) { + verifier_bug(env, "kfunc %s#%d not marked as callback-calling", + func_id_name(insn->imm), insn->imm); + return -EFAULT; + } else if (!bpf_pseudo_kfunc_call(insn) && + !is_callback_calling_function(insn->imm)) { /* helper */ + verifier_bug(env, "helper %s#%d not marked as callback-calling", + func_id_name(insn->imm), insn->imm); + return -EFAULT; + } + + if (is_async_callback_calling_insn(insn)) { + struct bpf_verifier_state *async_cb; + + /* there is no real recursion here. timer and workqueue callbacks are async */ + env->subprog_info[subprog].is_async_cb = true; + async_cb = push_async_cb(env, env->subprog_info[subprog].start, + insn_idx, subprog, + is_async_cb_sleepable(env, insn)); + if (IS_ERR(async_cb)) + return PTR_ERR(async_cb); + callee = async_cb->frame[0]; + callee->async_entry_cnt = caller->async_entry_cnt + 1; + + /* Convert bpf_timer_set_callback() args into timer callback args */ + err = set_callee_state_cb(env, caller, callee, insn_idx); + if (err) + return err; + + return 0; + } + + /* for callback functions enqueue entry to callback and + * proceed with next instruction within current frame. + */ + callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); + if (IS_ERR(callback_state)) + return PTR_ERR(callback_state); + + err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, + callback_state); + if (err) + return err; + + callback_state->callback_unroll_depth++; + callback_state->frame[callback_state->curframe - 1]->callback_depth++; + caller->callback_depth = 0; + return 0; +} + +static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, + int *insn_idx) +{ + struct bpf_verifier_state *state = env->cur_state; + struct bpf_func_state *caller; + int err, subprog, target_insn; + + target_insn = *insn_idx + insn->imm + 1; + subprog = find_subprog(env, target_insn); + if (verifier_bug_if(subprog < 0, env, "target of func call at insn %d is not a program", + target_insn)) + return -EFAULT; + + caller = state->frame[state->curframe]; + err = btf_check_subprog_call(env, subprog, caller->regs); + if (err == -EFAULT) + return err; + if (subprog_is_global(env, subprog)) { + const char *sub_name = subprog_name(env, subprog); + + if (env->cur_state->active_locks) { + verbose(env, "global function calls are not allowed while holding a lock,\n" + "use static function instead\n"); + return -EINVAL; + } + + if (env->subprog_info[subprog].might_sleep && + (env->cur_state->active_rcu_locks || env->cur_state->active_preempt_locks || + env->cur_state->active_irq_id || !in_sleepable(env))) { + verbose(env, "global functions that may sleep are not allowed in non-sleepable context,\n" + "i.e., in a RCU/IRQ/preempt-disabled section, or in\n" + "a non-sleepable BPF program context\n"); + return -EINVAL; + } + + if (err) { + verbose(env, "Caller passes invalid args into func#%d ('%s')\n", + subprog, sub_name); + return err; + } + + if (env->log.level & BPF_LOG_LEVEL) + verbose(env, "Func#%d ('%s') is global and assumed valid.\n", + subprog, sub_name); + if (env->subprog_info[subprog].changes_pkt_data) + clear_all_pkt_pointers(env); + /* mark global subprog for verifying after main prog */ + subprog_aux(env, subprog)->called = true; + clear_caller_saved_regs(env, caller->regs); + + /* All global functions return a 64-bit SCALAR_VALUE */ + mark_reg_unknown(env, caller->regs, BPF_REG_0); + caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; + + /* continue with next insn after call */ + return 0; + } + + /* for regular function entry setup new frame and continue + * from that frame. + */ + err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); + if (err) + return err; + + clear_caller_saved_regs(env, caller->regs); + + /* and go analyze first insn of the callee */ + *insn_idx = env->subprog_info[subprog].start - 1; + + bpf_reset_live_stack_callchain(env); + + if (env->log.level & BPF_LOG_LEVEL) { + verbose(env, "caller:\n"); + print_verifier_state(env, state, caller->frameno, true); + verbose(env, "callee:\n"); + print_verifier_state(env, state, state->curframe, true); + } + + return 0; +} + +int map_set_for_each_callback_args(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee) +{ + /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, + * void *callback_ctx, u64 flags); + * callback_fn(struct bpf_map *map, void *key, void *value, + * void *callback_ctx); + */ + callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; + + callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; + __mark_reg_known_zero(&callee->regs[BPF_REG_2]); + callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; + + callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; + __mark_reg_known_zero(&callee->regs[BPF_REG_3]); + callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; + + /* pointer to stack or null */ + callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; + + /* unused */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + return 0; +} + +static int set_callee_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, int insn_idx) +{ + int i; + + /* copy r1 - r5 args that callee can access. The copy includes parent + * pointers, which connects us up to the liveness chain + */ + for (i = BPF_REG_1; i <= BPF_REG_5; i++) + callee->regs[i] = caller->regs[i]; + return 0; +} + +static int set_map_elem_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; + struct bpf_map *map; + int err; + + /* valid map_ptr and poison value does not matter */ + map = insn_aux->map_ptr_state.map_ptr; + if (!map->ops->map_set_for_each_callback_args || + !map->ops->map_for_each_callback) { + verbose(env, "callback function not allowed for map\n"); + return -ENOTSUPP; + } + + err = map->ops->map_set_for_each_callback_args(env, caller, callee); + if (err) + return err; + + callee->in_callback_fn = true; + callee->callback_ret_range = retval_range(0, 1); + return 0; +} + +static int set_loop_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, + * u64 flags); + * callback_fn(u64 index, void *callback_ctx); + */ + callee->regs[BPF_REG_1].type = SCALAR_VALUE; + callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; + + /* unused */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + + callee->in_callback_fn = true; + callee->callback_ret_range = retval_range(0, 1); + return 0; +} + +static int set_timer_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; + + /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); + * callback_fn(struct bpf_map *map, void *key, void *value); + */ + callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; + __mark_reg_known_zero(&callee->regs[BPF_REG_1]); + callee->regs[BPF_REG_1].map_ptr = map_ptr; + + callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; + __mark_reg_known_zero(&callee->regs[BPF_REG_2]); + callee->regs[BPF_REG_2].map_ptr = map_ptr; + + callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; + __mark_reg_known_zero(&callee->regs[BPF_REG_3]); + callee->regs[BPF_REG_3].map_ptr = map_ptr; + + /* unused */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + callee->in_async_callback_fn = true; + callee->callback_ret_range = retval_range(0, 0); + return 0; +} + +static int set_find_vma_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + /* bpf_find_vma(struct task_struct *task, u64 addr, + * void *callback_fn, void *callback_ctx, u64 flags) + * (callback_fn)(struct task_struct *task, + * struct vm_area_struct *vma, void *callback_ctx); + */ + callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; + + callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; + __mark_reg_known_zero(&callee->regs[BPF_REG_2]); + callee->regs[BPF_REG_2].btf = btf_vmlinux; + callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA]; + + /* pointer to stack or null */ + callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; + + /* unused */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + callee->in_callback_fn = true; + callee->callback_ret_range = retval_range(0, 1); + return 0; +} + +static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void + * callback_ctx, u64 flags); + * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); + */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); + mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); + callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; + + /* unused */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + + callee->in_callback_fn = true; + callee->callback_ret_range = retval_range(0, 1); + return 0; +} + +static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, + * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); + * + * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset + * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd + * by this point, so look at 'root' + */ + struct btf_field *field; + + field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, + BPF_RB_ROOT); + if (!field || !field->graph_root.value_btf_id) + return -EFAULT; + + mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); + ref_set_non_owning(env, &callee->regs[BPF_REG_1]); + mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); + ref_set_non_owning(env, &callee->regs[BPF_REG_2]); + + __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + callee->in_callback_fn = true; + callee->callback_ret_range = retval_range(0, 1); + return 0; +} + +static int set_task_work_schedule_callback_state(struct bpf_verifier_env *env, + struct bpf_func_state *caller, + struct bpf_func_state *callee, + int insn_idx) +{ + struct bpf_map *map_ptr = caller->regs[BPF_REG_3].map_ptr; + + /* + * callback_fn(struct bpf_map *map, void *key, void *value); + */ + callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; + __mark_reg_known_zero(&callee->regs[BPF_REG_1]); + callee->regs[BPF_REG_1].map_ptr = map_ptr; + + callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; + __mark_reg_known_zero(&callee->regs[BPF_REG_2]); + callee->regs[BPF_REG_2].map_ptr = map_ptr; + + callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; + __mark_reg_known_zero(&callee->regs[BPF_REG_3]); + callee->regs[BPF_REG_3].map_ptr = map_ptr; + + /* unused */ + __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); + __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); + callee->in_async_callback_fn = true; + callee->callback_ret_range = retval_range(S32_MIN, S32_MAX); + return 0; +} + +static bool is_rbtree_lock_required_kfunc(u32 btf_id); + +/* Are we currently verifying the callback for a rbtree helper that must + * be called with lock held? If so, no need to complain about unreleased + * lock + */ +static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) +{ + struct bpf_verifier_state *state = env->cur_state; + struct bpf_insn *insn = env->prog->insnsi; + struct bpf_func_state *callee; + int kfunc_btf_id; + + if (!state->curframe) + return false; + + callee = state->frame[state->curframe]; + + if (!callee->in_callback_fn) + return false; + + kfunc_btf_id = insn[callee->callsite].imm; + return is_rbtree_lock_required_kfunc(kfunc_btf_id); +} + +static bool retval_range_within(struct bpf_retval_range range, const struct bpf_reg_state *reg, + bool return_32bit) +{ + if (return_32bit) + return range.minval <= reg->s32_min_value && reg->s32_max_value <= range.maxval; + else + return range.minval <= reg->smin_value && reg->smax_value <= range.maxval; +} + +static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) +{ + struct bpf_verifier_state *state = env->cur_state, *prev_st; + struct bpf_func_state *caller, *callee; + struct bpf_reg_state *r0; + bool in_callback_fn; + int err; + + err = bpf_update_live_stack(env); + if (err) + return err; + + callee = state->frame[state->curframe]; + r0 = &callee->regs[BPF_REG_0]; + if (r0->type == PTR_TO_STACK) { + /* technically it's ok to return caller's stack pointer + * (or caller's caller's pointer) back to the caller, + * since these pointers are valid. Only current stack + * pointer will be invalid as soon as function exits, + * but let's be conservative + */ + verbose(env, "cannot return stack pointer to the caller\n"); + return -EINVAL; + } + + caller = state->frame[state->curframe - 1]; + if (callee->in_callback_fn) { + if (r0->type != SCALAR_VALUE) { + verbose(env, "R0 not a scalar value\n"); + return -EACCES; + } + + /* we are going to rely on register's precise value */ + err = mark_chain_precision(env, BPF_REG_0); + if (err) + return err; + + /* enforce R0 return value range, and bpf_callback_t returns 64bit */ + if (!retval_range_within(callee->callback_ret_range, r0, false)) { + verbose_invalid_scalar(env, r0, callee->callback_ret_range, + "At callback return", "R0"); + return -EINVAL; + } + if (!bpf_calls_callback(env, callee->callsite)) { + verifier_bug(env, "in callback at %d, callsite %d !calls_callback", + *insn_idx, callee->callsite); + return -EFAULT; + } + } else { + /* return to the caller whatever r0 had in the callee */ + caller->regs[BPF_REG_0] = *r0; + } + + /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, + * there function call logic would reschedule callback visit. If iteration + * converges is_state_visited() would prune that visit eventually. + */ + in_callback_fn = callee->in_callback_fn; + if (in_callback_fn) + *insn_idx = callee->callsite; + else + *insn_idx = callee->callsite + 1; + + if (env->log.level & BPF_LOG_LEVEL) { + verbose(env, "returning from callee:\n"); + print_verifier_state(env, state, callee->frameno, true); + verbose(env, "to caller at %d:\n", *insn_idx); + print_verifier_state(env, state, caller->frameno, true); + } + /* clear everything in the callee. In case of exceptional exits using + * bpf_throw, this will be done by copy_verifier_state for extra frames. */ + free_func_state(callee); + state->frame[state->curframe--] = NULL; + + /* for callbacks widen imprecise scalars to make programs like below verify: + * + * struct ctx { int i; } + * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } + * ... + * struct ctx = { .i = 0; } + * bpf_loop(100, cb, &ctx, 0); + * + * This is similar to what is done in process_iter_next_call() for open + * coded iterators. + */ + prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; + if (prev_st) { + err = widen_imprecise_scalars(env, prev_st, state); + if (err) + return err; + } + return 0; +} + +static int do_refine_retval_range(struct bpf_verifier_env *env, + struct bpf_reg_state *regs, int ret_type, + int func_id, + struct bpf_call_arg_meta *meta) +{ + struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; + + if (ret_type != RET_INTEGER) + return 0; + + switch (func_id) { + case BPF_FUNC_get_stack: + case BPF_FUNC_get_task_stack: + case BPF_FUNC_probe_read_str: + case BPF_FUNC_probe_read_kernel_str: + case BPF_FUNC_probe_read_user_str: + ret_reg->smax_value = meta->msize_max_value; + ret_reg->s32_max_value = meta->msize_max_value; + ret_reg->smin_value = -MAX_ERRNO; + ret_reg->s32_min_value = -MAX_ERRNO; + reg_bounds_sync(ret_reg); + break; + case BPF_FUNC_get_smp_processor_id: + ret_reg->umax_value = nr_cpu_ids - 1; + ret_reg->u32_max_value = nr_cpu_ids - 1; + ret_reg->smax_value = nr_cpu_ids - 1; + ret_reg->s32_max_value = nr_cpu_ids - 1; + ret_reg->umin_value = 0; + ret_reg->u32_min_value = 0; + ret_reg->smin_value = 0; + ret_reg->s32_min_value = 0; + reg_bounds_sync(ret_reg); + break; + } + + return reg_bounds_sanity_check(env, ret_reg, "retval"); +} + +static int +record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, + int func_id, int insn_idx) +{ + struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; + struct bpf_map *map = meta->map_ptr; + + if (func_id != BPF_FUNC_tail_call && + func_id != BPF_FUNC_map_lookup_elem && + func_id != BPF_FUNC_map_update_elem && + func_id != BPF_FUNC_map_delete_elem && + func_id != BPF_FUNC_map_push_elem && + func_id != BPF_FUNC_map_pop_elem && + func_id != BPF_FUNC_map_peek_elem && + func_id != BPF_FUNC_for_each_map_elem && + func_id != BPF_FUNC_redirect_map && + func_id != BPF_FUNC_map_lookup_percpu_elem) + return 0; + + if (map == NULL) { + verifier_bug(env, "expected map for helper call"); + return -EFAULT; + } + + /* In case of read-only, some additional restrictions + * need to be applied in order to prevent altering the + * state of the map from program side. + */ + if ((map->map_flags & BPF_F_RDONLY_PROG) && + (func_id == BPF_FUNC_map_delete_elem || + func_id == BPF_FUNC_map_update_elem || + func_id == BPF_FUNC_map_push_elem || + func_id == BPF_FUNC_map_pop_elem)) { + verbose(env, "write into map forbidden\n"); + return -EACCES; + } + + if (!aux->map_ptr_state.map_ptr) + bpf_map_ptr_store(aux, meta->map_ptr, + !meta->map_ptr->bypass_spec_v1, false); + else if (aux->map_ptr_state.map_ptr != meta->map_ptr) + bpf_map_ptr_store(aux, meta->map_ptr, + !meta->map_ptr->bypass_spec_v1, true); + return 0; +} + +static int +record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, + int func_id, int insn_idx) +{ + struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; + struct bpf_reg_state *regs = cur_regs(env), *reg; + struct bpf_map *map = meta->map_ptr; + u64 val, max; + int err; + + if (func_id != BPF_FUNC_tail_call) + return 0; + if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { + verbose(env, "expected prog array map for tail call"); + return -EINVAL; + } + + reg = ®s[BPF_REG_3]; + val = reg->var_off.value; + max = map->max_entries; + + if (!(is_reg_const(reg, false) && val < max)) { + bpf_map_key_store(aux, BPF_MAP_KEY_POISON); + return 0; + } + + err = mark_chain_precision(env, BPF_REG_3); + if (err) + return err; + if (bpf_map_key_unseen(aux)) + bpf_map_key_store(aux, val); + else if (!bpf_map_key_poisoned(aux) && + bpf_map_key_immediate(aux) != val) + bpf_map_key_store(aux, BPF_MAP_KEY_POISON); + return 0; +} + +static int check_reference_leak(struct bpf_verifier_env *env, bool exception_exit) +{ + struct bpf_verifier_state *state = env->cur_state; + enum bpf_prog_type type = resolve_prog_type(env->prog); + struct bpf_reg_state *reg = reg_state(env, BPF_REG_0); + bool refs_lingering = false; + int i; + + if (!exception_exit && cur_func(env)->frameno) + return 0; + + for (i = 0; i < state->acquired_refs; i++) { + if (state->refs[i].type != REF_TYPE_PTR) + continue; + /* Allow struct_ops programs to return a referenced kptr back to + * kernel. Type checks are performed later in check_return_code. + */ + if (type == BPF_PROG_TYPE_STRUCT_OPS && !exception_exit && + reg->ref_obj_id == state->refs[i].id) + continue; + verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", + state->refs[i].id, state->refs[i].insn_idx); + refs_lingering = true; + } + return refs_lingering ? -EINVAL : 0; +} + +static int check_resource_leak(struct bpf_verifier_env *env, bool exception_exit, bool check_lock, const char *prefix) +{ + int err; + + if (check_lock && env->cur_state->active_locks) { + verbose(env, "%s cannot be used inside bpf_spin_lock-ed region\n", prefix); + return -EINVAL; + } + + err = check_reference_leak(env, exception_exit); + if (err) { + verbose(env, "%s would lead to reference leak\n", prefix); + return err; + } + + if (check_lock && env->cur_state->active_irq_id) { + verbose(env, "%s cannot be used inside bpf_local_irq_save-ed region\n", prefix); + return -EINVAL; + } + + if (check_lock && env->cur_state->active_rcu_locks) { + verbose(env, "%s cannot be used inside bpf_rcu_read_lock-ed region\n", prefix); + return -EINVAL; + } + + if (check_lock && env->cur_state->active_preempt_locks) { + verbose(env, "%s cannot be used inside bpf_preempt_disable-ed region\n", prefix); + return -EINVAL; + } + + return 0; +} + +static int check_bpf_snprintf_call(struct bpf_verifier_env *env, + struct bpf_reg_state *regs) +{ + struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; + struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; + struct bpf_map *fmt_map = fmt_reg->map_ptr; + struct bpf_bprintf_data data = {}; + int err, fmt_map_off, num_args; + u64 fmt_addr; + char *fmt; + + /* data must be an array of u64 */ + if (data_len_reg->var_off.value % 8) + return -EINVAL; + num_args = data_len_reg->var_off.value / 8; + + /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const + * and map_direct_value_addr is set. + */ + fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; + err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, + fmt_map_off); + if (err) { + verbose(env, "failed to retrieve map value address\n"); + return -EFAULT; + } + fmt = (char *)(long)fmt_addr + fmt_map_off; + + /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we + * can focus on validating the format specifiers. + */ + err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); + if (err < 0) + verbose(env, "Invalid format string\n"); + + return err; +} + +static int check_get_func_ip(struct bpf_verifier_env *env) +{ + enum bpf_prog_type type = resolve_prog_type(env->prog); + int func_id = BPF_FUNC_get_func_ip; + + if (type == BPF_PROG_TYPE_TRACING) { + if (!bpf_prog_has_trampoline(env->prog)) { + verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", + func_id_name(func_id), func_id); + return -ENOTSUPP; + } + return 0; + } else if (type == BPF_PROG_TYPE_KPROBE) { + return 0; + } + + verbose(env, "func %s#%d not supported for program type %d\n", + func_id_name(func_id), func_id, type); + return -ENOTSUPP; +} + +static struct bpf_insn_aux_data *cur_aux(const struct bpf_verifier_env *env) +{ + return &env->insn_aux_data[env->insn_idx]; +} + +static bool loop_flag_is_zero(struct bpf_verifier_env *env) +{ + struct bpf_reg_state *regs = cur_regs(env); + struct bpf_reg_state *reg = ®s[BPF_REG_4]; + bool reg_is_null = register_is_null(reg); + + if (reg_is_null) + mark_chain_precision(env, BPF_REG_4); + + return reg_is_null; +} + +static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) +{ + struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; + + if (!state->initialized) { + state->initialized = 1; + state->fit_for_inline = loop_flag_is_zero(env); + state->callback_subprogno = subprogno; + return; + } + + if (!state->fit_for_inline) + return; + + state->fit_for_inline = (loop_flag_is_zero(env) && + state->callback_subprogno == subprogno); +} + +/* Returns whether or not the given map type can potentially elide + * lookup return value nullness check. This is possible if the key + * is statically known. + */ +static bool can_elide_value_nullness(enum bpf_map_type type) +{ + switch (type) { + case BPF_MAP_TYPE_ARRAY: + case BPF_MAP_TYPE_PERCPU_ARRAY: + return true; + default: + return false; + } +} + +static int get_helper_proto(struct bpf_verifier_env *env, int func_id, + const struct bpf_func_proto **ptr) +{ + if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) + return -ERANGE; + + if (!env->ops->get_func_proto) + return -EINVAL; + + *ptr = env->ops->get_func_proto(func_id, env->prog); + return *ptr && (*ptr)->func ? 0 : -EINVAL; +} + +/* Check if we're in a sleepable context. */ +static inline bool in_sleepable_context(struct bpf_verifier_env *env) +{ + return !env->cur_state->active_rcu_locks && + !env->cur_state->active_preempt_locks && + !env->cur_state->active_irq_id && + in_sleepable(env); +} + +static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, + int *insn_idx_p) +{ + enum bpf_prog_type prog_type = resolve_prog_type(env->prog); + bool returns_cpu_specific_alloc_ptr = false; + const struct bpf_func_proto *fn = NULL; + enum bpf_return_type ret_type; + enum bpf_type_flag ret_flag; + struct bpf_reg_state *regs; + struct bpf_call_arg_meta meta; + int insn_idx = *insn_idx_p; + bool changes_data; + int i, err, func_id; + + /* find function prototype */ + func_id = insn->imm; + err = get_helper_proto(env, insn->imm, &fn); + if (err == -ERANGE) { + verbose(env, "invalid func %s#%d\n", func_id_name(func_id), func_id); + return -EINVAL; + } + + if (err) { + verbose(env, "program of this type cannot use helper %s#%d\n", + func_id_name(func_id), func_id); + return err; + } + + /* eBPF programs must be GPL compatible to use GPL-ed functions */ + if (!env->prog->gpl_compatible && fn->gpl_only) { + verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); + return -EINVAL; + } + + if (fn->allowed && !fn->allowed(env->prog)) { + verbose(env, "helper call is not allowed in probe\n"); + return -EINVAL; + } + + if (!in_sleepable(env) && fn->might_sleep) { + verbose(env, "helper call might sleep in a non-sleepable prog\n"); + return -EINVAL; + } + + /* With LD_ABS/IND some JITs save/restore skb from r1. */ + changes_data = bpf_helper_changes_pkt_data(func_id); + if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { + verifier_bug(env, "func %s#%d: r1 != ctx", func_id_name(func_id), func_id); + return -EFAULT; + } + + memset(&meta, 0, sizeof(meta)); + meta.pkt_access = fn->pkt_access; + + err = check_func_proto(fn, func_id); + if (err) { + verifier_bug(env, "incorrect func proto %s#%d", func_id_name(func_id), func_id); + return err; + } + + if (env->cur_state->active_rcu_locks) { + if (fn->might_sleep) { + verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", + func_id_name(func_id), func_id); + return -EINVAL; + } + } + + if (env->cur_state->active_preempt_locks) { + if (fn->might_sleep) { + verbose(env, "sleepable helper %s#%d in non-preemptible region\n", + func_id_name(func_id), func_id); + return -EINVAL; + } + } + + if (env->cur_state->active_irq_id) { + if (fn->might_sleep) { + verbose(env, "sleepable helper %s#%d in IRQ-disabled region\n", + func_id_name(func_id), func_id); + return -EINVAL; + } + } + + /* Track non-sleepable context for helpers. */ + if (!in_sleepable_context(env)) + env->insn_aux_data[insn_idx].non_sleepable = true; + + meta.func_id = func_id; + /* check args */ + for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { + err = check_func_arg(env, i, &meta, fn, insn_idx); + if (err) + return err; + } + + err = record_func_map(env, &meta, func_id, insn_idx); + if (err) + return err; + + err = record_func_key(env, &meta, func_id, insn_idx); + if (err) + return err; + + /* Mark slots with STACK_MISC in case of raw mode, stack offset + * is inferred from register state. + */ + for (i = 0; i < meta.access_size; i++) { + err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, + BPF_WRITE, -1, false, false); + if (err) + return err; + } + + regs = cur_regs(env); + + if (meta.release_regno) { + err = -EINVAL; + if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { + err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); + } else if (func_id == BPF_FUNC_kptr_xchg && meta.ref_obj_id) { + u32 ref_obj_id = meta.ref_obj_id; + bool in_rcu = in_rcu_cs(env); + struct bpf_func_state *state; + struct bpf_reg_state *reg; + + err = release_reference_nomark(env->cur_state, ref_obj_id); + if (!err) { + bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ + if (reg->ref_obj_id == ref_obj_id) { + if (in_rcu && (reg->type & MEM_ALLOC) && (reg->type & MEM_PERCPU)) { + reg->ref_obj_id = 0; + reg->type &= ~MEM_ALLOC; + reg->type |= MEM_RCU; + } else { + mark_reg_invalid(env, reg); + } + } + })); + } + } else if (meta.ref_obj_id) { + err = release_reference(env, meta.ref_obj_id); + } else if (register_is_null(®s[meta.release_regno])) { + /* meta.ref_obj_id can only be 0 if register that is meant to be + * released is NULL, which must be > R0. + */ + err = 0; + } + if (err) { + verbose(env, "func %s#%d reference has not been acquired before\n", + func_id_name(func_id), func_id); + return err; + } + } + + switch (func_id) { + case BPF_FUNC_tail_call: + err = check_resource_leak(env, false, true, "tail_call"); + if (err) + return err; + break; + case BPF_FUNC_get_local_storage: + /* check that flags argument in get_local_storage(map, flags) is 0, + * this is required because get_local_storage() can't return an error. + */ + if (!register_is_null(®s[BPF_REG_2])) { + verbose(env, "get_local_storage() doesn't support non-zero flags\n"); + return -EINVAL; + } + break; + case BPF_FUNC_for_each_map_elem: + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_map_elem_callback_state); + break; + case BPF_FUNC_timer_set_callback: + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_timer_callback_state); + break; + case BPF_FUNC_find_vma: + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_find_vma_callback_state); + break; + case BPF_FUNC_snprintf: + err = check_bpf_snprintf_call(env, regs); + break; + case BPF_FUNC_loop: + update_loop_inline_state(env, meta.subprogno); + /* Verifier relies on R1 value to determine if bpf_loop() iteration + * is finished, thus mark it precise. + */ + err = mark_chain_precision(env, BPF_REG_1); + if (err) + return err; + if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_loop_callback_state); + } else { + cur_func(env)->callback_depth = 0; + if (env->log.level & BPF_LOG_LEVEL2) + verbose(env, "frame%d bpf_loop iteration limit reached\n", + env->cur_state->curframe); + } + break; + case BPF_FUNC_dynptr_from_mem: + if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { + verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", + reg_type_str(env, regs[BPF_REG_1].type)); + return -EACCES; + } + break; + case BPF_FUNC_set_retval: + if (prog_type == BPF_PROG_TYPE_LSM && + env->prog->expected_attach_type == BPF_LSM_CGROUP) { + if (!env->prog->aux->attach_func_proto->type) { + /* Make sure programs that attach to void + * hooks don't try to modify return value. + */ + verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); + return -EINVAL; + } + } + break; + case BPF_FUNC_dynptr_data: + { + struct bpf_reg_state *reg; + int id, ref_obj_id; + + reg = get_dynptr_arg_reg(env, fn, regs); + if (!reg) + return -EFAULT; + + + if (meta.dynptr_id) { + verifier_bug(env, "meta.dynptr_id already set"); + return -EFAULT; + } + if (meta.ref_obj_id) { + verifier_bug(env, "meta.ref_obj_id already set"); + return -EFAULT; + } + + id = dynptr_id(env, reg); + if (id < 0) { + verifier_bug(env, "failed to obtain dynptr id"); + return id; + } + + ref_obj_id = dynptr_ref_obj_id(env, reg); + if (ref_obj_id < 0) { + verifier_bug(env, "failed to obtain dynptr ref_obj_id"); + return ref_obj_id; + } + + meta.dynptr_id = id; + meta.ref_obj_id = ref_obj_id; + + break; + } + case BPF_FUNC_dynptr_write: + { + enum bpf_dynptr_type dynptr_type; + struct bpf_reg_state *reg; + + reg = get_dynptr_arg_reg(env, fn, regs); + if (!reg) + return -EFAULT; + + dynptr_type = dynptr_get_type(env, reg); + if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) + return -EFAULT; + + if (dynptr_type == BPF_DYNPTR_TYPE_SKB || + dynptr_type == BPF_DYNPTR_TYPE_SKB_META) + /* this will trigger clear_all_pkt_pointers(), which will + * invalidate all dynptr slices associated with the skb + */ + changes_data = true; + + break; + } + case BPF_FUNC_per_cpu_ptr: + case BPF_FUNC_this_cpu_ptr: + { + struct bpf_reg_state *reg = ®s[BPF_REG_1]; + const struct btf_type *type; + + if (reg->type & MEM_RCU) { + type = btf_type_by_id(reg->btf, reg->btf_id); + if (!type || !btf_type_is_struct(type)) { + verbose(env, "Helper has invalid btf/btf_id in R1\n"); + return -EFAULT; + } + returns_cpu_specific_alloc_ptr = true; + env->insn_aux_data[insn_idx].call_with_percpu_alloc_ptr = true; + } + break; + } + case BPF_FUNC_user_ringbuf_drain: + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_user_ringbuf_callback_state); + break; + } + + if (err) + return err; + + /* reset caller saved regs */ + for (i = 0; i < CALLER_SAVED_REGS; i++) { + mark_reg_not_init(env, regs, caller_saved[i]); + check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); + } + + /* helper call returns 64-bit value. */ + regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; + + /* update return register (already marked as written above) */ + ret_type = fn->ret_type; + ret_flag = type_flag(ret_type); + + switch (base_type(ret_type)) { + case RET_INTEGER: + /* sets type to SCALAR_VALUE */ + mark_reg_unknown(env, regs, BPF_REG_0); + break; + case RET_VOID: + regs[BPF_REG_0].type = NOT_INIT; + break; + case RET_PTR_TO_MAP_VALUE: + /* There is no offset yet applied, variable or fixed */ + mark_reg_known_zero(env, regs, BPF_REG_0); + /* remember map_ptr, so that check_map_access() + * can check 'value_size' boundary of memory access + * to map element returned from bpf_map_lookup_elem() + */ + if (meta.map_ptr == NULL) { + verifier_bug(env, "unexpected null map_ptr"); + return -EFAULT; + } + + if (func_id == BPF_FUNC_map_lookup_elem && + can_elide_value_nullness(meta.map_ptr->map_type) && + meta.const_map_key >= 0 && + meta.const_map_key < meta.map_ptr->max_entries) + ret_flag &= ~PTR_MAYBE_NULL; + + regs[BPF_REG_0].map_ptr = meta.map_ptr; + regs[BPF_REG_0].map_uid = meta.map_uid; + regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; + if (!type_may_be_null(ret_flag) && + btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { + regs[BPF_REG_0].id = ++env->id_gen; + } + break; + case RET_PTR_TO_SOCKET: + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; + break; + case RET_PTR_TO_SOCK_COMMON: + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; + break; + case RET_PTR_TO_TCP_SOCK: + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; + break; + case RET_PTR_TO_MEM: + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; + regs[BPF_REG_0].mem_size = meta.mem_size; + break; + case RET_PTR_TO_MEM_OR_BTF_ID: + { + const struct btf_type *t; + + mark_reg_known_zero(env, regs, BPF_REG_0); + t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); + if (!btf_type_is_struct(t)) { + u32 tsize; + const struct btf_type *ret; + const char *tname; + + /* resolve the type size of ksym. */ + ret = btf_resolve_size(meta.ret_btf, t, &tsize); + if (IS_ERR(ret)) { + tname = btf_name_by_offset(meta.ret_btf, t->name_off); + verbose(env, "unable to resolve the size of type '%s': %ld\n", + tname, PTR_ERR(ret)); + return -EINVAL; + } + regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; + regs[BPF_REG_0].mem_size = tsize; + } else { + if (returns_cpu_specific_alloc_ptr) { + regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC | MEM_RCU; + } else { + /* MEM_RDONLY may be carried from ret_flag, but it + * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise + * it will confuse the check of PTR_TO_BTF_ID in + * check_mem_access(). + */ + ret_flag &= ~MEM_RDONLY; + regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; + } + + regs[BPF_REG_0].btf = meta.ret_btf; + regs[BPF_REG_0].btf_id = meta.ret_btf_id; + } + break; + } + case RET_PTR_TO_BTF_ID: + { + struct btf *ret_btf; + int ret_btf_id; + + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; + if (func_id == BPF_FUNC_kptr_xchg) { + ret_btf = meta.kptr_field->kptr.btf; + ret_btf_id = meta.kptr_field->kptr.btf_id; + if (!btf_is_kernel(ret_btf)) { + regs[BPF_REG_0].type |= MEM_ALLOC; + if (meta.kptr_field->type == BPF_KPTR_PERCPU) + regs[BPF_REG_0].type |= MEM_PERCPU; + } + } else { + if (fn->ret_btf_id == BPF_PTR_POISON) { + verifier_bug(env, "func %s has non-overwritten BPF_PTR_POISON return type", + func_id_name(func_id)); + return -EFAULT; + } + ret_btf = btf_vmlinux; + ret_btf_id = *fn->ret_btf_id; + } + if (ret_btf_id == 0) { + verbose(env, "invalid return type %u of func %s#%d\n", + base_type(ret_type), func_id_name(func_id), + func_id); + return -EINVAL; + } + regs[BPF_REG_0].btf = ret_btf; + regs[BPF_REG_0].btf_id = ret_btf_id; + break; + } + default: + verbose(env, "unknown return type %u of func %s#%d\n", + base_type(ret_type), func_id_name(func_id), func_id); + return -EINVAL; + } + + if (type_may_be_null(regs[BPF_REG_0].type)) + regs[BPF_REG_0].id = ++env->id_gen; + + if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { + verifier_bug(env, "func %s#%d sets ref_obj_id more than once", + func_id_name(func_id), func_id); + return -EFAULT; + } + + if (is_dynptr_ref_function(func_id)) + regs[BPF_REG_0].dynptr_id = meta.dynptr_id; + + if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { + /* For release_reference() */ + regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; + } else if (is_acquire_function(func_id, meta.map_ptr)) { + int id = acquire_reference(env, insn_idx); + + if (id < 0) + return id; + /* For mark_ptr_or_null_reg() */ + regs[BPF_REG_0].id = id; + /* For release_reference() */ + regs[BPF_REG_0].ref_obj_id = id; + } + + err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta); + if (err) + return err; + + err = check_map_func_compatibility(env, meta.map_ptr, func_id); + if (err) + return err; + + if ((func_id == BPF_FUNC_get_stack || + func_id == BPF_FUNC_get_task_stack) && + !env->prog->has_callchain_buf) { + const char *err_str; + +#ifdef CONFIG_PERF_EVENTS + err = get_callchain_buffers(sysctl_perf_event_max_stack); + err_str = "cannot get callchain buffer for func %s#%d\n"; +#else + err = -ENOTSUPP; + err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; +#endif + if (err) { + verbose(env, err_str, func_id_name(func_id), func_id); + return err; + } + + env->prog->has_callchain_buf = true; + } + + if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) + env->prog->call_get_stack = true; + + if (func_id == BPF_FUNC_get_func_ip) { + if (check_get_func_ip(env)) + return -ENOTSUPP; + env->prog->call_get_func_ip = true; + } + + if (func_id == BPF_FUNC_tail_call) { + if (env->cur_state->curframe) { + struct bpf_verifier_state *branch; + + mark_reg_scratched(env, BPF_REG_0); + branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); + if (IS_ERR(branch)) + return PTR_ERR(branch); + clear_all_pkt_pointers(env); + mark_reg_unknown(env, regs, BPF_REG_0); + err = prepare_func_exit(env, &env->insn_idx); + if (err) + return err; + env->insn_idx--; + } else { + changes_data = false; + } + } + + if (changes_data) + clear_all_pkt_pointers(env); + return 0; +} + +/* mark_btf_func_reg_size() is used when the reg size is determined by + * the BTF func_proto's return value size and argument. + */ +static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_reg_state *regs, + u32 regno, size_t reg_size) +{ + struct bpf_reg_state *reg = ®s[regno]; + + if (regno == BPF_REG_0) { + /* Function return value */ + reg->subreg_def = reg_size == sizeof(u64) ? + DEF_NOT_SUBREG : env->insn_idx + 1; + } else if (reg_size == sizeof(u64)) { + /* Function argument */ + mark_insn_zext(env, reg); + } +} + +static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, + size_t reg_size) +{ + return __mark_btf_func_reg_size(env, cur_regs(env), regno, reg_size); +} + +static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_ACQUIRE; +} + +static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_RELEASE; +} + +static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) +{ + return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); +} + +static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_SLEEPABLE; +} + +static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_DESTRUCTIVE; +} + +static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_RCU; +} + +static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_RCU_PROTECTED; +} + +static bool is_kfunc_arg_mem_size(const struct btf *btf, + const struct btf_param *arg, + const struct bpf_reg_state *reg) +{ + const struct btf_type *t; + + t = btf_type_skip_modifiers(btf, arg->type, NULL); + if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) + return false; + + return btf_param_match_suffix(btf, arg, "__sz"); +} + +static bool is_kfunc_arg_const_mem_size(const struct btf *btf, + const struct btf_param *arg, + const struct bpf_reg_state *reg) +{ + const struct btf_type *t; + + t = btf_type_skip_modifiers(btf, arg->type, NULL); + if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) + return false; + + return btf_param_match_suffix(btf, arg, "__szk"); +} + +static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__opt"); +} + +static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__k"); +} + +static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__ign"); +} + +static bool is_kfunc_arg_map(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__map"); +} + +static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__alloc"); +} + +static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__uninit"); +} + +static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__refcounted_kptr"); +} + +static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__nullable"); +} + +static bool is_kfunc_arg_const_str(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__str"); +} + +static bool is_kfunc_arg_irq_flag(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__irq_flag"); +} + +static bool is_kfunc_arg_prog(const struct btf *btf, const struct btf_param *arg) +{ + return btf_param_match_suffix(btf, arg, "__prog"); +} + +static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, + const struct btf_param *arg, + const char *name) +{ + int len, target_len = strlen(name); + const char *param_name; + + param_name = btf_name_by_offset(btf, arg->name_off); + if (str_is_empty(param_name)) + return false; + len = strlen(param_name); + if (len != target_len) + return false; + if (strcmp(param_name, name)) + return false; + + return true; +} + +enum { + KF_ARG_DYNPTR_ID, + KF_ARG_LIST_HEAD_ID, + KF_ARG_LIST_NODE_ID, + KF_ARG_RB_ROOT_ID, + KF_ARG_RB_NODE_ID, + KF_ARG_WORKQUEUE_ID, + KF_ARG_RES_SPIN_LOCK_ID, + KF_ARG_TASK_WORK_ID, +}; + +BTF_ID_LIST(kf_arg_btf_ids) +BTF_ID(struct, bpf_dynptr) +BTF_ID(struct, bpf_list_head) +BTF_ID(struct, bpf_list_node) +BTF_ID(struct, bpf_rb_root) +BTF_ID(struct, bpf_rb_node) +BTF_ID(struct, bpf_wq) +BTF_ID(struct, bpf_res_spin_lock) +BTF_ID(struct, bpf_task_work) + +static bool __is_kfunc_ptr_arg_type(const struct btf *btf, + const struct btf_param *arg, int type) +{ + const struct btf_type *t; + u32 res_id; + + t = btf_type_skip_modifiers(btf, arg->type, NULL); + if (!t) + return false; + if (!btf_type_is_ptr(t)) + return false; + t = btf_type_skip_modifiers(btf, t->type, &res_id); + if (!t) + return false; + return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); +} + +static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); +} + +static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); +} + +static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); +} + +static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); +} + +static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); +} + +static bool is_kfunc_arg_wq(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_WORKQUEUE_ID); +} + +static bool is_kfunc_arg_task_work(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_TASK_WORK_ID); +} + +static bool is_kfunc_arg_res_spin_lock(const struct btf *btf, const struct btf_param *arg) +{ + return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RES_SPIN_LOCK_ID); +} + +static bool is_rbtree_node_type(const struct btf_type *t) +{ + return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_RB_NODE_ID]); +} + +static bool is_list_node_type(const struct btf_type *t) +{ + return t == btf_type_by_id(btf_vmlinux, kf_arg_btf_ids[KF_ARG_LIST_NODE_ID]); +} + +static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, + const struct btf_param *arg) +{ + const struct btf_type *t; + + t = btf_type_resolve_func_ptr(btf, arg->type, NULL); + if (!t) + return false; + + return true; +} + +/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ +static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, + const struct btf *btf, + const struct btf_type *t, int rec) +{ + const struct btf_type *member_type; + const struct btf_member *member; + u32 i; + + if (!btf_type_is_struct(t)) + return false; + + for_each_member(i, t, member) { + const struct btf_array *array; + + member_type = btf_type_skip_modifiers(btf, member->type, NULL); + if (btf_type_is_struct(member_type)) { + if (rec >= 3) { + verbose(env, "max struct nesting depth exceeded\n"); + return false; + } + if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) + return false; + continue; + } + if (btf_type_is_array(member_type)) { + array = btf_array(member_type); + if (!array->nelems) + return false; + member_type = btf_type_skip_modifiers(btf, array->type, NULL); + if (!btf_type_is_scalar(member_type)) + return false; + continue; + } + if (!btf_type_is_scalar(member_type)) + return false; + } + return true; +} + +enum kfunc_ptr_arg_type { + KF_ARG_PTR_TO_CTX, + KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ + KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ + KF_ARG_PTR_TO_DYNPTR, + KF_ARG_PTR_TO_ITER, + KF_ARG_PTR_TO_LIST_HEAD, + KF_ARG_PTR_TO_LIST_NODE, + KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ + KF_ARG_PTR_TO_MEM, + KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ + KF_ARG_PTR_TO_CALLBACK, + KF_ARG_PTR_TO_RB_ROOT, + KF_ARG_PTR_TO_RB_NODE, + KF_ARG_PTR_TO_NULL, + KF_ARG_PTR_TO_CONST_STR, + KF_ARG_PTR_TO_MAP, + KF_ARG_PTR_TO_WORKQUEUE, + KF_ARG_PTR_TO_IRQ_FLAG, + KF_ARG_PTR_TO_RES_SPIN_LOCK, + KF_ARG_PTR_TO_TASK_WORK, +}; + +enum special_kfunc_type { + KF_bpf_obj_new_impl, + KF_bpf_obj_drop_impl, + KF_bpf_refcount_acquire_impl, + KF_bpf_list_push_front_impl, + KF_bpf_list_push_back_impl, + KF_bpf_list_pop_front, + KF_bpf_list_pop_back, + KF_bpf_list_front, + KF_bpf_list_back, + KF_bpf_cast_to_kern_ctx, + KF_bpf_rdonly_cast, + KF_bpf_rcu_read_lock, + KF_bpf_rcu_read_unlock, + KF_bpf_rbtree_remove, + KF_bpf_rbtree_add_impl, + KF_bpf_rbtree_first, + KF_bpf_rbtree_root, + KF_bpf_rbtree_left, + KF_bpf_rbtree_right, + KF_bpf_dynptr_from_skb, + KF_bpf_dynptr_from_xdp, + KF_bpf_dynptr_from_skb_meta, + KF_bpf_xdp_pull_data, + KF_bpf_dynptr_slice, + KF_bpf_dynptr_slice_rdwr, + KF_bpf_dynptr_clone, + KF_bpf_percpu_obj_new_impl, + KF_bpf_percpu_obj_drop_impl, + KF_bpf_throw, + KF_bpf_wq_set_callback_impl, + KF_bpf_preempt_disable, + KF_bpf_preempt_enable, + KF_bpf_iter_css_task_new, + KF_bpf_session_cookie, + KF_bpf_get_kmem_cache, + KF_bpf_local_irq_save, + KF_bpf_local_irq_restore, + KF_bpf_iter_num_new, + KF_bpf_iter_num_next, + KF_bpf_iter_num_destroy, + KF_bpf_set_dentry_xattr, + KF_bpf_remove_dentry_xattr, + KF_bpf_res_spin_lock, + KF_bpf_res_spin_unlock, + KF_bpf_res_spin_lock_irqsave, + KF_bpf_res_spin_unlock_irqrestore, + KF_bpf_dynptr_from_file, + KF_bpf_dynptr_file_discard, + KF___bpf_trap, + KF_bpf_task_work_schedule_signal_impl, + KF_bpf_task_work_schedule_resume_impl, +}; + +BTF_ID_LIST(special_kfunc_list) +BTF_ID(func, bpf_obj_new_impl) +BTF_ID(func, bpf_obj_drop_impl) +BTF_ID(func, bpf_refcount_acquire_impl) +BTF_ID(func, bpf_list_push_front_impl) +BTF_ID(func, bpf_list_push_back_impl) +BTF_ID(func, bpf_list_pop_front) +BTF_ID(func, bpf_list_pop_back) +BTF_ID(func, bpf_list_front) +BTF_ID(func, bpf_list_back) +BTF_ID(func, bpf_cast_to_kern_ctx) +BTF_ID(func, bpf_rdonly_cast) +BTF_ID(func, bpf_rcu_read_lock) +BTF_ID(func, bpf_rcu_read_unlock) +BTF_ID(func, bpf_rbtree_remove) +BTF_ID(func, bpf_rbtree_add_impl) +BTF_ID(func, bpf_rbtree_first) +BTF_ID(func, bpf_rbtree_root) +BTF_ID(func, bpf_rbtree_left) +BTF_ID(func, bpf_rbtree_right) +#ifdef CONFIG_NET +BTF_ID(func, bpf_dynptr_from_skb) +BTF_ID(func, bpf_dynptr_from_xdp) +BTF_ID(func, bpf_dynptr_from_skb_meta) +BTF_ID(func, bpf_xdp_pull_data) +#else +BTF_ID_UNUSED +BTF_ID_UNUSED +BTF_ID_UNUSED +BTF_ID_UNUSED +#endif +BTF_ID(func, bpf_dynptr_slice) +BTF_ID(func, bpf_dynptr_slice_rdwr) +BTF_ID(func, bpf_dynptr_clone) +BTF_ID(func, bpf_percpu_obj_new_impl) +BTF_ID(func, bpf_percpu_obj_drop_impl) +BTF_ID(func, bpf_throw) +BTF_ID(func, bpf_wq_set_callback_impl) +BTF_ID(func, bpf_preempt_disable) +BTF_ID(func, bpf_preempt_enable) +#ifdef CONFIG_CGROUPS +BTF_ID(func, bpf_iter_css_task_new) +#else +BTF_ID_UNUSED +#endif +#ifdef CONFIG_BPF_EVENTS +BTF_ID(func, bpf_session_cookie) +#else +BTF_ID_UNUSED +#endif +BTF_ID(func, bpf_get_kmem_cache) +BTF_ID(func, bpf_local_irq_save) +BTF_ID(func, bpf_local_irq_restore) +BTF_ID(func, bpf_iter_num_new) +BTF_ID(func, bpf_iter_num_next) +BTF_ID(func, bpf_iter_num_destroy) +#ifdef CONFIG_BPF_LSM +BTF_ID(func, bpf_set_dentry_xattr) +BTF_ID(func, bpf_remove_dentry_xattr) +#else +BTF_ID_UNUSED +BTF_ID_UNUSED +#endif +BTF_ID(func, bpf_res_spin_lock) +BTF_ID(func, bpf_res_spin_unlock) +BTF_ID(func, bpf_res_spin_lock_irqsave) +BTF_ID(func, bpf_res_spin_unlock_irqrestore) +BTF_ID(func, bpf_dynptr_from_file) +BTF_ID(func, bpf_dynptr_file_discard) +BTF_ID(func, __bpf_trap) +BTF_ID(func, bpf_task_work_schedule_signal_impl) +BTF_ID(func, bpf_task_work_schedule_resume_impl) + +static bool is_task_work_add_kfunc(u32 func_id) +{ + return func_id == special_kfunc_list[KF_bpf_task_work_schedule_signal_impl] || + func_id == special_kfunc_list[KF_bpf_task_work_schedule_resume_impl]; +} + +static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) +{ + if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && + meta->arg_owning_ref) { + return false; + } + + return meta->kfunc_flags & KF_RET_NULL; +} + +static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; +} + +static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; +} + +static bool is_kfunc_bpf_preempt_disable(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->func_id == special_kfunc_list[KF_bpf_preempt_disable]; +} + +static bool is_kfunc_bpf_preempt_enable(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->func_id == special_kfunc_list[KF_bpf_preempt_enable]; +} + +static bool is_kfunc_pkt_changing(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->func_id == special_kfunc_list[KF_bpf_xdp_pull_data]; +} + +static enum kfunc_ptr_arg_type +get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, + struct bpf_kfunc_call_arg_meta *meta, + const struct btf_type *t, const struct btf_type *ref_t, + const char *ref_tname, const struct btf_param *args, + int argno, int nargs) +{ + u32 regno = argno + 1; + struct bpf_reg_state *regs = cur_regs(env); + struct bpf_reg_state *reg = ®s[regno]; + bool arg_mem_size = false; + + if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) + return KF_ARG_PTR_TO_CTX; + + /* In this function, we verify the kfunc's BTF as per the argument type, + * leaving the rest of the verification with respect to the register + * type to our caller. When a set of conditions hold in the BTF type of + * arguments, we resolve it to a known kfunc_ptr_arg_type. + */ + if (btf_is_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) + return KF_ARG_PTR_TO_CTX; + + if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) + return KF_ARG_PTR_TO_NULL; + + if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_ALLOC_BTF_ID; + + if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_REFCOUNTED_KPTR; + + if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_DYNPTR; + + if (is_kfunc_arg_iter(meta, argno, &args[argno])) + return KF_ARG_PTR_TO_ITER; + + if (is_kfunc_arg_list_head(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_LIST_HEAD; + + if (is_kfunc_arg_list_node(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_LIST_NODE; + + if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_RB_ROOT; + + if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_RB_NODE; + + if (is_kfunc_arg_const_str(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_CONST_STR; + + if (is_kfunc_arg_map(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_MAP; + + if (is_kfunc_arg_wq(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_WORKQUEUE; + + if (is_kfunc_arg_task_work(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_TASK_WORK; + + if (is_kfunc_arg_irq_flag(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_IRQ_FLAG; + + if (is_kfunc_arg_res_spin_lock(meta->btf, &args[argno])) + return KF_ARG_PTR_TO_RES_SPIN_LOCK; + + if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { + if (!btf_type_is_struct(ref_t)) { + verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", + meta->func_name, argno, btf_type_str(ref_t), ref_tname); + return -EINVAL; + } + return KF_ARG_PTR_TO_BTF_ID; + } + + if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) + return KF_ARG_PTR_TO_CALLBACK; + + if (argno + 1 < nargs && + (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || + is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) + arg_mem_size = true; + + /* This is the catch all argument type of register types supported by + * check_helper_mem_access. However, we only allow when argument type is + * pointer to scalar, or struct composed (recursively) of scalars. When + * arg_mem_size is true, the pointer can be void *. + */ + if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && + (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { + verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", + argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); + return -EINVAL; + } + return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; +} + +static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, + const struct btf_type *ref_t, + const char *ref_tname, u32 ref_id, + struct bpf_kfunc_call_arg_meta *meta, + int argno) +{ + const struct btf_type *reg_ref_t; + bool strict_type_match = false; + const struct btf *reg_btf; + const char *reg_ref_tname; + bool taking_projection; + bool struct_same; + u32 reg_ref_id; + + if (base_type(reg->type) == PTR_TO_BTF_ID) { + reg_btf = reg->btf; + reg_ref_id = reg->btf_id; + } else { + reg_btf = btf_vmlinux; + reg_ref_id = *reg2btf_ids[base_type(reg->type)]; + } + + /* Enforce strict type matching for calls to kfuncs that are acquiring + * or releasing a reference, or are no-cast aliases. We do _not_ + * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, + * as we want to enable BPF programs to pass types that are bitwise + * equivalent without forcing them to explicitly cast with something + * like bpf_cast_to_kern_ctx(). + * + * For example, say we had a type like the following: + * + * struct bpf_cpumask { + * cpumask_t cpumask; + * refcount_t usage; + * }; + * + * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed + * to a struct cpumask, so it would be safe to pass a struct + * bpf_cpumask * to a kfunc expecting a struct cpumask *. + * + * The philosophy here is similar to how we allow scalars of different + * types to be passed to kfuncs as long as the size is the same. The + * only difference here is that we're simply allowing + * btf_struct_ids_match() to walk the struct at the 0th offset, and + * resolve types. + */ + if ((is_kfunc_release(meta) && reg->ref_obj_id) || + btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) + strict_type_match = true; + + WARN_ON_ONCE(is_kfunc_release(meta) && + (reg->off || !tnum_is_const(reg->var_off) || + reg->var_off.value)); + + reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); + reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); + struct_same = btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match); + /* If kfunc is accepting a projection type (ie. __sk_buff), it cannot + * actually use it -- it must cast to the underlying type. So we allow + * caller to pass in the underlying type. + */ + taking_projection = btf_is_projection_of(ref_tname, reg_ref_tname); + if (!taking_projection && !struct_same) { + verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", + meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, + btf_type_str(reg_ref_t), reg_ref_tname); + return -EINVAL; + } + return 0; +} + +static int process_irq_flag(struct bpf_verifier_env *env, int regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; + int err, kfunc_class = IRQ_NATIVE_KFUNC; + bool irq_save; + + if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_save] || + meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) { + irq_save = true; + if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) + kfunc_class = IRQ_LOCK_KFUNC; + } else if (meta->func_id == special_kfunc_list[KF_bpf_local_irq_restore] || + meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) { + irq_save = false; + if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) + kfunc_class = IRQ_LOCK_KFUNC; + } else { + verifier_bug(env, "unknown irq flags kfunc"); + return -EFAULT; + } + + if (irq_save) { + if (!is_irq_flag_reg_valid_uninit(env, reg)) { + verbose(env, "expected uninitialized irq flag as arg#%d\n", regno - 1); + return -EINVAL; + } + + err = check_mem_access(env, env->insn_idx, regno, 0, BPF_DW, BPF_WRITE, -1, false, false); + if (err) + return err; + + err = mark_stack_slot_irq_flag(env, meta, reg, env->insn_idx, kfunc_class); + if (err) + return err; + } else { + err = is_irq_flag_reg_valid_init(env, reg); + if (err) { + verbose(env, "expected an initialized irq flag as arg#%d\n", regno - 1); + return err; + } + + err = mark_irq_flag_read(env, reg); + if (err) + return err; + + err = unmark_stack_slot_irq_flag(env, reg, kfunc_class); + if (err) + return err; + } + return 0; +} + + +static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct btf_record *rec = reg_btf_record(reg); + + if (!env->cur_state->active_locks) { + verifier_bug(env, "%s w/o active lock", __func__); + return -EFAULT; + } + + if (type_flag(reg->type) & NON_OWN_REF) { + verifier_bug(env, "NON_OWN_REF already set"); + return -EFAULT; + } + + reg->type |= NON_OWN_REF; + if (rec->refcount_off >= 0) + reg->type |= MEM_RCU; + + return 0; +} + +static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) +{ + struct bpf_verifier_state *state = env->cur_state; + struct bpf_func_state *unused; + struct bpf_reg_state *reg; + int i; + + if (!ref_obj_id) { + verifier_bug(env, "ref_obj_id is zero for owning -> non-owning conversion"); + return -EFAULT; + } + + for (i = 0; i < state->acquired_refs; i++) { + if (state->refs[i].id != ref_obj_id) + continue; + + /* Clear ref_obj_id here so release_reference doesn't clobber + * the whole reg + */ + bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ + if (reg->ref_obj_id == ref_obj_id) { + reg->ref_obj_id = 0; + ref_set_non_owning(env, reg); + } + })); + return 0; + } + + verifier_bug(env, "ref state missing for ref_obj_id"); + return -EFAULT; +} + +/* Implementation details: + * + * Each register points to some region of memory, which we define as an + * allocation. Each allocation may embed a bpf_spin_lock which protects any + * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same + * allocation. The lock and the data it protects are colocated in the same + * memory region. + * + * Hence, everytime a register holds a pointer value pointing to such + * allocation, the verifier preserves a unique reg->id for it. + * + * The verifier remembers the lock 'ptr' and the lock 'id' whenever + * bpf_spin_lock is called. + * + * To enable this, lock state in the verifier captures two values: + * active_lock.ptr = Register's type specific pointer + * active_lock.id = A unique ID for each register pointer value + * + * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two + * supported register types. + * + * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of + * allocated objects is the reg->btf pointer. + * + * The active_lock.id is non-unique for maps supporting direct_value_addr, as we + * can establish the provenance of the map value statically for each distinct + * lookup into such maps. They always contain a single map value hence unique + * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. + * + * So, in case of global variables, they use array maps with max_entries = 1, + * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point + * into the same map value as max_entries is 1, as described above). + * + * In case of inner map lookups, the inner map pointer has same map_ptr as the + * outer map pointer (in verifier context), but each lookup into an inner map + * assigns a fresh reg->id to the lookup, so while lookups into distinct inner + * maps from the same outer map share the same map_ptr as active_lock.ptr, they + * will get different reg->id assigned to each lookup, hence different + * active_lock.id. + * + * In case of allocated objects, active_lock.ptr is the reg->btf, and the + * reg->id is a unique ID preserved after the NULL pointer check on the pointer + * returned from bpf_obj_new. Each allocation receives a new reg->id. + */ +static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) +{ + struct bpf_reference_state *s; + void *ptr; + u32 id; + + switch ((int)reg->type) { + case PTR_TO_MAP_VALUE: + ptr = reg->map_ptr; + break; + case PTR_TO_BTF_ID | MEM_ALLOC: + ptr = reg->btf; + break; + default: + verifier_bug(env, "unknown reg type for lock check"); + return -EFAULT; + } + id = reg->id; + + if (!env->cur_state->active_locks) + return -EINVAL; + s = find_lock_state(env->cur_state, REF_TYPE_LOCK_MASK, id, ptr); + if (!s) { + verbose(env, "held lock and object are not in the same allocation\n"); + return -EINVAL; + } + return 0; +} + +static bool is_bpf_list_api_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || + btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || + btf_id == special_kfunc_list[KF_bpf_list_pop_front] || + btf_id == special_kfunc_list[KF_bpf_list_pop_back] || + btf_id == special_kfunc_list[KF_bpf_list_front] || + btf_id == special_kfunc_list[KF_bpf_list_back]; +} + +static bool is_bpf_rbtree_api_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || + btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || + btf_id == special_kfunc_list[KF_bpf_rbtree_first] || + btf_id == special_kfunc_list[KF_bpf_rbtree_root] || + btf_id == special_kfunc_list[KF_bpf_rbtree_left] || + btf_id == special_kfunc_list[KF_bpf_rbtree_right]; +} + +static bool is_bpf_iter_num_api_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_iter_num_new] || + btf_id == special_kfunc_list[KF_bpf_iter_num_next] || + btf_id == special_kfunc_list[KF_bpf_iter_num_destroy]; +} + +static bool is_bpf_graph_api_kfunc(u32 btf_id) +{ + return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || + btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; +} + +static bool is_bpf_res_spin_lock_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_res_spin_lock] || + btf_id == special_kfunc_list[KF_bpf_res_spin_unlock] || + btf_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || + btf_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]; +} + +static bool kfunc_spin_allowed(u32 btf_id) +{ + return is_bpf_graph_api_kfunc(btf_id) || is_bpf_iter_num_api_kfunc(btf_id) || + is_bpf_res_spin_lock_kfunc(btf_id); +} + +static bool is_sync_callback_calling_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; +} + +static bool is_async_callback_calling_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl] || + is_task_work_add_kfunc(btf_id); +} + +static bool is_bpf_throw_kfunc(struct bpf_insn *insn) +{ + return bpf_pseudo_kfunc_call(insn) && insn->off == 0 && + insn->imm == special_kfunc_list[KF_bpf_throw]; +} + +static bool is_bpf_wq_set_callback_impl_kfunc(u32 btf_id) +{ + return btf_id == special_kfunc_list[KF_bpf_wq_set_callback_impl]; +} + +static bool is_callback_calling_kfunc(u32 btf_id) +{ + return is_sync_callback_calling_kfunc(btf_id) || + is_async_callback_calling_kfunc(btf_id); +} + +static bool is_rbtree_lock_required_kfunc(u32 btf_id) +{ + return is_bpf_rbtree_api_kfunc(btf_id); +} + +static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, + enum btf_field_type head_field_type, + u32 kfunc_btf_id) +{ + bool ret; + + switch (head_field_type) { + case BPF_LIST_HEAD: + ret = is_bpf_list_api_kfunc(kfunc_btf_id); + break; + case BPF_RB_ROOT: + ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); + break; + default: + verbose(env, "verifier internal error: unexpected graph root argument type %s\n", + btf_field_type_name(head_field_type)); + return false; + } + + if (!ret) + verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", + btf_field_type_name(head_field_type)); + return ret; +} + +static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, + enum btf_field_type node_field_type, + u32 kfunc_btf_id) +{ + bool ret; + + switch (node_field_type) { + case BPF_LIST_NODE: + ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || + kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); + break; + case BPF_RB_NODE: + ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || + kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || + kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_left] || + kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_right]); + break; + default: + verbose(env, "verifier internal error: unexpected graph node argument type %s\n", + btf_field_type_name(node_field_type)); + return false; + } + + if (!ret) + verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", + btf_field_type_name(node_field_type)); + return ret; +} + +static int +__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + struct bpf_kfunc_call_arg_meta *meta, + enum btf_field_type head_field_type, + struct btf_field **head_field) +{ + const char *head_type_name; + struct btf_field *field; + struct btf_record *rec; + u32 head_off; + + if (meta->btf != btf_vmlinux) { + verifier_bug(env, "unexpected btf mismatch in kfunc call"); + return -EFAULT; + } + + if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) + return -EFAULT; + + head_type_name = btf_field_type_name(head_field_type); + if (!tnum_is_const(reg->var_off)) { + verbose(env, + "R%d doesn't have constant offset. %s has to be at the constant offset\n", + regno, head_type_name); + return -EINVAL; + } + + rec = reg_btf_record(reg); + head_off = reg->off + reg->var_off.value; + field = btf_record_find(rec, head_off, head_field_type); + if (!field) { + verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); + return -EINVAL; + } + + /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ + if (check_reg_allocation_locked(env, reg)) { + verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", + rec->spin_lock_off, head_type_name); + return -EINVAL; + } + + if (*head_field) { + verifier_bug(env, "repeating %s arg", head_type_name); + return -EFAULT; + } + *head_field = field; + return 0; +} + +static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, + &meta->arg_list_head.field); +} + +static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, + &meta->arg_rbtree_root.field); +} + +static int +__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + struct bpf_kfunc_call_arg_meta *meta, + enum btf_field_type head_field_type, + enum btf_field_type node_field_type, + struct btf_field **node_field) +{ + const char *node_type_name; + const struct btf_type *et, *t; + struct btf_field *field; + u32 node_off; + + if (meta->btf != btf_vmlinux) { + verifier_bug(env, "unexpected btf mismatch in kfunc call"); + return -EFAULT; + } + + if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) + return -EFAULT; + + node_type_name = btf_field_type_name(node_field_type); + if (!tnum_is_const(reg->var_off)) { + verbose(env, + "R%d doesn't have constant offset. %s has to be at the constant offset\n", + regno, node_type_name); + return -EINVAL; + } + + node_off = reg->off + reg->var_off.value; + field = reg_find_field_offset(reg, node_off, node_field_type); + if (!field) { + verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); + return -EINVAL; + } + + field = *node_field; + + et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); + t = btf_type_by_id(reg->btf, reg->btf_id); + if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, + field->graph_root.value_btf_id, true)) { + verbose(env, "operation on %s expects arg#1 %s at offset=%d " + "in struct %s, but arg is at offset=%d in struct %s\n", + btf_field_type_name(head_field_type), + btf_field_type_name(node_field_type), + field->graph_root.node_offset, + btf_name_by_offset(field->graph_root.btf, et->name_off), + node_off, btf_name_by_offset(reg->btf, t->name_off)); + return -EINVAL; + } + meta->arg_btf = reg->btf; + meta->arg_btf_id = reg->btf_id; + + if (node_off != field->graph_root.node_offset) { + verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", + node_off, btf_field_type_name(node_field_type), + field->graph_root.node_offset, + btf_name_by_offset(field->graph_root.btf, et->name_off)); + return -EINVAL; + } + + return 0; +} + +static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, + BPF_LIST_HEAD, BPF_LIST_NODE, + &meta->arg_list_head.field); +} + +static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, + struct bpf_reg_state *reg, u32 regno, + struct bpf_kfunc_call_arg_meta *meta) +{ + return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, + BPF_RB_ROOT, BPF_RB_NODE, + &meta->arg_rbtree_root.field); +} + +/* + * css_task iter allowlist is needed to avoid dead locking on css_set_lock. + * LSM hooks and iters (both sleepable and non-sleepable) are safe. + * Any sleepable progs are also safe since bpf_check_attach_target() enforce + * them can only be attached to some specific hook points. + */ +static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) +{ + enum bpf_prog_type prog_type = resolve_prog_type(env->prog); + + switch (prog_type) { + case BPF_PROG_TYPE_LSM: + return true; + case BPF_PROG_TYPE_TRACING: + if (env->prog->expected_attach_type == BPF_TRACE_ITER) + return true; + fallthrough; + default: + return in_sleepable(env); + } +} + +static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, + int insn_idx) +{ + const char *func_name = meta->func_name, *ref_tname; + const struct btf *btf = meta->btf; + const struct btf_param *args; + struct btf_record *rec; + u32 i, nargs; + int ret; + + args = (const struct btf_param *)(meta->func_proto + 1); + nargs = btf_type_vlen(meta->func_proto); + if (nargs > MAX_BPF_FUNC_REG_ARGS) { + verbose(env, "Function %s has %d > %d args\n", func_name, nargs, + MAX_BPF_FUNC_REG_ARGS); + return -EINVAL; + } + + /* Check that BTF function arguments match actual types that the + * verifier sees. + */ + for (i = 0; i < nargs; i++) { + struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; + const struct btf_type *t, *ref_t, *resolve_ret; + enum bpf_arg_type arg_type = ARG_DONTCARE; + u32 regno = i + 1, ref_id, type_size; + bool is_ret_buf_sz = false; + int kf_arg_type; + + t = btf_type_skip_modifiers(btf, args[i].type, NULL); + + if (is_kfunc_arg_ignore(btf, &args[i])) + continue; + + if (is_kfunc_arg_prog(btf, &args[i])) { + /* Used to reject repeated use of __prog. */ + if (meta->arg_prog) { + verifier_bug(env, "Only 1 prog->aux argument supported per-kfunc"); + return -EFAULT; + } + meta->arg_prog = true; + cur_aux(env)->arg_prog = regno; + continue; + } + + if (btf_type_is_scalar(t)) { + if (reg->type != SCALAR_VALUE) { + verbose(env, "R%d is not a scalar\n", regno); + return -EINVAL; + } + + if (is_kfunc_arg_constant(meta->btf, &args[i])) { + if (meta->arg_constant.found) { + verifier_bug(env, "only one constant argument permitted"); + return -EFAULT; + } + if (!tnum_is_const(reg->var_off)) { + verbose(env, "R%d must be a known constant\n", regno); + return -EINVAL; + } + ret = mark_chain_precision(env, regno); + if (ret < 0) + return ret; + meta->arg_constant.found = true; + meta->arg_constant.value = reg->var_off.value; + } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { + meta->r0_rdonly = true; + is_ret_buf_sz = true; + } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { + is_ret_buf_sz = true; + } + + if (is_ret_buf_sz) { + if (meta->r0_size) { + verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); + return -EINVAL; + } + + if (!tnum_is_const(reg->var_off)) { + verbose(env, "R%d is not a const\n", regno); + return -EINVAL; + } + + meta->r0_size = reg->var_off.value; + ret = mark_chain_precision(env, regno); + if (ret) + return ret; + } + continue; + } + + if (!btf_type_is_ptr(t)) { + verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); + return -EINVAL; + } + + if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && + (register_is_null(reg) || type_may_be_null(reg->type)) && + !is_kfunc_arg_nullable(meta->btf, &args[i])) { + verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); + return -EACCES; + } + + if (reg->ref_obj_id) { + if (is_kfunc_release(meta) && meta->ref_obj_id) { + verifier_bug(env, "more than one arg with ref_obj_id R%d %u %u", + regno, reg->ref_obj_id, + meta->ref_obj_id); + return -EFAULT; + } + meta->ref_obj_id = reg->ref_obj_id; + if (is_kfunc_release(meta)) + meta->release_regno = regno; + } + + ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); + ref_tname = btf_name_by_offset(btf, ref_t->name_off); + + kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); + if (kf_arg_type < 0) + return kf_arg_type; + + switch (kf_arg_type) { + case KF_ARG_PTR_TO_NULL: + continue; + case KF_ARG_PTR_TO_MAP: + if (!reg->map_ptr) { + verbose(env, "pointer in R%d isn't map pointer\n", regno); + return -EINVAL; + } + if (meta->map.ptr && (reg->map_ptr->record->wq_off >= 0 || + reg->map_ptr->record->task_work_off >= 0)) { + /* Use map_uid (which is unique id of inner map) to reject: + * inner_map1 = bpf_map_lookup_elem(outer_map, key1) + * inner_map2 = bpf_map_lookup_elem(outer_map, key2) + * if (inner_map1 && inner_map2) { + * wq = bpf_map_lookup_elem(inner_map1); + * if (wq) + * // mismatch would have been allowed + * bpf_wq_init(wq, inner_map2); + * } + * + * Comparing map_ptr is enough to distinguish normal and outer maps. + */ + if (meta->map.ptr != reg->map_ptr || + meta->map.uid != reg->map_uid) { + if (reg->map_ptr->record->task_work_off >= 0) { + verbose(env, + "bpf_task_work pointer in R2 map_uid=%d doesn't match map pointer in R3 map_uid=%d\n", + meta->map.uid, reg->map_uid); + return -EINVAL; + } + verbose(env, + "workqueue pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", + meta->map.uid, reg->map_uid); + return -EINVAL; + } + } + meta->map.ptr = reg->map_ptr; + meta->map.uid = reg->map_uid; + fallthrough; + case KF_ARG_PTR_TO_ALLOC_BTF_ID: + case KF_ARG_PTR_TO_BTF_ID: + if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) + break; + + if (!is_trusted_reg(reg)) { + if (!is_kfunc_rcu(meta)) { + verbose(env, "R%d must be referenced or trusted\n", regno); + return -EINVAL; + } + if (!is_rcu_reg(reg)) { + verbose(env, "R%d must be a rcu pointer\n", regno); + return -EINVAL; + } + } + fallthrough; + case KF_ARG_PTR_TO_CTX: + case KF_ARG_PTR_TO_DYNPTR: + case KF_ARG_PTR_TO_ITER: + case KF_ARG_PTR_TO_LIST_HEAD: + case KF_ARG_PTR_TO_LIST_NODE: + case KF_ARG_PTR_TO_RB_ROOT: + case KF_ARG_PTR_TO_RB_NODE: + case KF_ARG_PTR_TO_MEM: + case KF_ARG_PTR_TO_MEM_SIZE: + case KF_ARG_PTR_TO_CALLBACK: + case KF_ARG_PTR_TO_REFCOUNTED_KPTR: + case KF_ARG_PTR_TO_CONST_STR: + case KF_ARG_PTR_TO_WORKQUEUE: + case KF_ARG_PTR_TO_TASK_WORK: + case KF_ARG_PTR_TO_IRQ_FLAG: + case KF_ARG_PTR_TO_RES_SPIN_LOCK: + break; + default: + verifier_bug(env, "unknown kfunc arg type %d", kf_arg_type); + return -EFAULT; + } + + if (is_kfunc_release(meta) && reg->ref_obj_id) + arg_type |= OBJ_RELEASE; + ret = check_func_arg_reg_off(env, reg, regno, arg_type); + if (ret < 0) + return ret; + + switch (kf_arg_type) { + case KF_ARG_PTR_TO_CTX: + if (reg->type != PTR_TO_CTX) { + verbose(env, "arg#%d expected pointer to ctx, but got %s\n", + i, reg_type_str(env, reg->type)); + return -EINVAL; + } + + if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { + ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); + if (ret < 0) + return -EINVAL; + meta->ret_btf_id = ret; + } + break; + case KF_ARG_PTR_TO_ALLOC_BTF_ID: + if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC)) { + if (meta->func_id != special_kfunc_list[KF_bpf_obj_drop_impl]) { + verbose(env, "arg#%d expected for bpf_obj_drop_impl()\n", i); + return -EINVAL; + } + } else if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC | MEM_PERCPU)) { + if (meta->func_id != special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { + verbose(env, "arg#%d expected for bpf_percpu_obj_drop_impl()\n", i); + return -EINVAL; + } + } else { + verbose(env, "arg#%d expected pointer to allocated object\n", i); + return -EINVAL; + } + if (!reg->ref_obj_id) { + verbose(env, "allocated object must be referenced\n"); + return -EINVAL; + } + if (meta->btf == btf_vmlinux) { + meta->arg_btf = reg->btf; + meta->arg_btf_id = reg->btf_id; + } + break; + case KF_ARG_PTR_TO_DYNPTR: + { + enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; + int clone_ref_obj_id = 0; + + if (reg->type == CONST_PTR_TO_DYNPTR) + dynptr_arg_type |= MEM_RDONLY; + + if (is_kfunc_arg_uninit(btf, &args[i])) + dynptr_arg_type |= MEM_UNINIT; + + if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { + dynptr_arg_type |= DYNPTR_TYPE_SKB; + } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { + dynptr_arg_type |= DYNPTR_TYPE_XDP; + } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb_meta]) { + dynptr_arg_type |= DYNPTR_TYPE_SKB_META; + } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_file]) { + dynptr_arg_type |= DYNPTR_TYPE_FILE; + } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_file_discard]) { + dynptr_arg_type |= DYNPTR_TYPE_FILE; + meta->release_regno = regno; + } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && + (dynptr_arg_type & MEM_UNINIT)) { + enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; + + if (parent_type == BPF_DYNPTR_TYPE_INVALID) { + verifier_bug(env, "no dynptr type for parent of clone"); + return -EFAULT; + } + + dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); + clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; + if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { + verifier_bug(env, "missing ref obj id for parent of clone"); + return -EFAULT; + } + } + + ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); + if (ret < 0) + return ret; + + if (!(dynptr_arg_type & MEM_UNINIT)) { + int id = dynptr_id(env, reg); + + if (id < 0) { + verifier_bug(env, "failed to obtain dynptr id"); + return id; + } + meta->initialized_dynptr.id = id; + meta->initialized_dynptr.type = dynptr_get_type(env, reg); + meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); + } + + break; + } + case KF_ARG_PTR_TO_ITER: + if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { + if (!check_css_task_iter_allowlist(env)) { + verbose(env, "css_task_iter is only allowed in bpf_lsm, bpf_iter and sleepable progs\n"); + return -EINVAL; + } + } + ret = process_iter_arg(env, regno, insn_idx, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_LIST_HEAD: + if (reg->type != PTR_TO_MAP_VALUE && + reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { + verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); + return -EINVAL; + } + if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { + verbose(env, "allocated object must be referenced\n"); + return -EINVAL; + } + ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_RB_ROOT: + if (reg->type != PTR_TO_MAP_VALUE && + reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { + verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); + return -EINVAL; + } + if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { + verbose(env, "allocated object must be referenced\n"); + return -EINVAL; + } + ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_LIST_NODE: + if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { + verbose(env, "arg#%d expected pointer to allocated object\n", i); + return -EINVAL; + } + if (!reg->ref_obj_id) { + verbose(env, "allocated object must be referenced\n"); + return -EINVAL; + } + ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_RB_NODE: + if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { + if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { + verbose(env, "arg#%d expected pointer to allocated object\n", i); + return -EINVAL; + } + if (!reg->ref_obj_id) { + verbose(env, "allocated object must be referenced\n"); + return -EINVAL; + } + } else { + if (!type_is_non_owning_ref(reg->type) && !reg->ref_obj_id) { + verbose(env, "%s can only take non-owning or refcounted bpf_rb_node pointer\n", func_name); + return -EINVAL; + } + if (in_rbtree_lock_required_cb(env)) { + verbose(env, "%s not allowed in rbtree cb\n", func_name); + return -EINVAL; + } + } + + ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_MAP: + /* If argument has '__map' suffix expect 'struct bpf_map *' */ + ref_id = *reg2btf_ids[CONST_PTR_TO_MAP]; + ref_t = btf_type_by_id(btf_vmlinux, ref_id); + ref_tname = btf_name_by_offset(btf, ref_t->name_off); + fallthrough; + case KF_ARG_PTR_TO_BTF_ID: + /* Only base_type is checked, further checks are done here */ + if ((base_type(reg->type) != PTR_TO_BTF_ID || + (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && + !reg2btf_ids[base_type(reg->type)]) { + verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); + verbose(env, "expected %s or socket\n", + reg_type_str(env, base_type(reg->type) | + (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); + return -EINVAL; + } + ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_MEM: + resolve_ret = btf_resolve_size(btf, ref_t, &type_size); + if (IS_ERR(resolve_ret)) { + verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", + i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); + return -EINVAL; + } + ret = check_mem_reg(env, reg, regno, type_size); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_MEM_SIZE: + { + struct bpf_reg_state *buff_reg = ®s[regno]; + const struct btf_param *buff_arg = &args[i]; + struct bpf_reg_state *size_reg = ®s[regno + 1]; + const struct btf_param *size_arg = &args[i + 1]; + + if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { + ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); + if (ret < 0) { + verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); + return ret; + } + } + + if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { + if (meta->arg_constant.found) { + verifier_bug(env, "only one constant argument permitted"); + return -EFAULT; + } + if (!tnum_is_const(size_reg->var_off)) { + verbose(env, "R%d must be a known constant\n", regno + 1); + return -EINVAL; + } + meta->arg_constant.found = true; + meta->arg_constant.value = size_reg->var_off.value; + } + + /* Skip next '__sz' or '__szk' argument */ + i++; + break; + } + case KF_ARG_PTR_TO_CALLBACK: + if (reg->type != PTR_TO_FUNC) { + verbose(env, "arg%d expected pointer to func\n", i); + return -EINVAL; + } + meta->subprogno = reg->subprogno; + break; + case KF_ARG_PTR_TO_REFCOUNTED_KPTR: + if (!type_is_ptr_alloc_obj(reg->type)) { + verbose(env, "arg#%d is neither owning or non-owning ref\n", i); + return -EINVAL; + } + if (!type_is_non_owning_ref(reg->type)) + meta->arg_owning_ref = true; + + rec = reg_btf_record(reg); + if (!rec) { + verifier_bug(env, "Couldn't find btf_record"); + return -EFAULT; + } + + if (rec->refcount_off < 0) { + verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); + return -EINVAL; + } + + meta->arg_btf = reg->btf; + meta->arg_btf_id = reg->btf_id; + break; + case KF_ARG_PTR_TO_CONST_STR: + if (reg->type != PTR_TO_MAP_VALUE) { + verbose(env, "arg#%d doesn't point to a const string\n", i); + return -EINVAL; + } + ret = check_reg_const_str(env, reg, regno); + if (ret) + return ret; + break; + case KF_ARG_PTR_TO_WORKQUEUE: + if (reg->type != PTR_TO_MAP_VALUE) { + verbose(env, "arg#%d doesn't point to a map value\n", i); + return -EINVAL; + } + ret = process_wq_func(env, regno, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_TASK_WORK: + if (reg->type != PTR_TO_MAP_VALUE) { + verbose(env, "arg#%d doesn't point to a map value\n", i); + return -EINVAL; + } + ret = process_task_work_func(env, regno, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_IRQ_FLAG: + if (reg->type != PTR_TO_STACK) { + verbose(env, "arg#%d doesn't point to an irq flag on stack\n", i); + return -EINVAL; + } + ret = process_irq_flag(env, regno, meta); + if (ret < 0) + return ret; + break; + case KF_ARG_PTR_TO_RES_SPIN_LOCK: + { + int flags = PROCESS_RES_LOCK; + + if (reg->type != PTR_TO_MAP_VALUE && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { + verbose(env, "arg#%d doesn't point to map value or allocated object\n", i); + return -EINVAL; + } + + if (!is_bpf_res_spin_lock_kfunc(meta->func_id)) + return -EFAULT; + if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock] || + meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave]) + flags |= PROCESS_SPIN_LOCK; + if (meta->func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave] || + meta->func_id == special_kfunc_list[KF_bpf_res_spin_unlock_irqrestore]) + flags |= PROCESS_LOCK_IRQ; + ret = process_spin_lock(env, regno, flags); + if (ret < 0) + return ret; + break; + } + } + } + + if (is_kfunc_release(meta) && !meta->release_regno) { + verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", + func_name); + return -EINVAL; + } + + return 0; +} + +static int fetch_kfunc_meta(struct bpf_verifier_env *env, + struct bpf_insn *insn, + struct bpf_kfunc_call_arg_meta *meta, + const char **kfunc_name) +{ + const struct btf_type *func, *func_proto; + u32 func_id, *kfunc_flags; + const char *func_name; + struct btf *desc_btf; + + if (kfunc_name) + *kfunc_name = NULL; + + if (!insn->imm) + return -EINVAL; + + desc_btf = find_kfunc_desc_btf(env, insn->off); + if (IS_ERR(desc_btf)) + return PTR_ERR(desc_btf); + + func_id = insn->imm; + func = btf_type_by_id(desc_btf, func_id); + func_name = btf_name_by_offset(desc_btf, func->name_off); + if (kfunc_name) + *kfunc_name = func_name; + func_proto = btf_type_by_id(desc_btf, func->type); + + kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); + if (!kfunc_flags) { + return -EACCES; + } + + memset(meta, 0, sizeof(*meta)); + meta->btf = desc_btf; + meta->func_id = func_id; + meta->kfunc_flags = *kfunc_flags; + meta->func_proto = func_proto; + meta->func_name = func_name; + + return 0; +} + +/* check special kfuncs and return: + * 1 - not fall-through to 'else' branch, continue verification + * 0 - fall-through to 'else' branch + * < 0 - not fall-through to 'else' branch, return error + */ +static int check_special_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, + struct bpf_reg_state *regs, struct bpf_insn_aux_data *insn_aux, + const struct btf_type *ptr_type, struct btf *desc_btf) +{ + const struct btf_type *ret_t; + int err = 0; + + if (meta->btf != btf_vmlinux) + return 0; + + if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || + meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { + struct btf_struct_meta *struct_meta; + struct btf *ret_btf; + u32 ret_btf_id; + + if (meta->func_id == special_kfunc_list[KF_bpf_obj_new_impl] && !bpf_global_ma_set) + return -ENOMEM; + + if (((u64)(u32)meta->arg_constant.value) != meta->arg_constant.value) { + verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); + return -EINVAL; + } + + ret_btf = env->prog->aux->btf; + ret_btf_id = meta->arg_constant.value; + + /* This may be NULL due to user not supplying a BTF */ + if (!ret_btf) { + verbose(env, "bpf_obj_new/bpf_percpu_obj_new requires prog BTF\n"); + return -EINVAL; + } + + ret_t = btf_type_by_id(ret_btf, ret_btf_id); + if (!ret_t || !__btf_type_is_struct(ret_t)) { + verbose(env, "bpf_obj_new/bpf_percpu_obj_new type ID argument must be of a struct\n"); + return -EINVAL; + } + + if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { + if (ret_t->size > BPF_GLOBAL_PERCPU_MA_MAX_SIZE) { + verbose(env, "bpf_percpu_obj_new type size (%d) is greater than %d\n", + ret_t->size, BPF_GLOBAL_PERCPU_MA_MAX_SIZE); + return -EINVAL; + } + + if (!bpf_global_percpu_ma_set) { + mutex_lock(&bpf_percpu_ma_lock); + if (!bpf_global_percpu_ma_set) { + /* Charge memory allocated with bpf_global_percpu_ma to + * root memcg. The obj_cgroup for root memcg is NULL. + */ + err = bpf_mem_alloc_percpu_init(&bpf_global_percpu_ma, NULL); + if (!err) + bpf_global_percpu_ma_set = true; + } + mutex_unlock(&bpf_percpu_ma_lock); + if (err) + return err; + } + + mutex_lock(&bpf_percpu_ma_lock); + err = bpf_mem_alloc_percpu_unit_init(&bpf_global_percpu_ma, ret_t->size); + mutex_unlock(&bpf_percpu_ma_lock); + if (err) + return err; + } + + struct_meta = btf_find_struct_meta(ret_btf, ret_btf_id); + if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { + if (!__btf_type_is_scalar_struct(env, ret_btf, ret_t, 0)) { + verbose(env, "bpf_percpu_obj_new type ID argument must be of a struct of scalars\n"); + return -EINVAL; + } + + if (struct_meta) { + verbose(env, "bpf_percpu_obj_new type ID argument must not contain special fields\n"); + return -EINVAL; + } + } + + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; + regs[BPF_REG_0].btf = ret_btf; + regs[BPF_REG_0].btf_id = ret_btf_id; + if (meta->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) + regs[BPF_REG_0].type |= MEM_PERCPU; + + insn_aux->obj_new_size = ret_t->size; + insn_aux->kptr_struct_meta = struct_meta; + } else if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; + regs[BPF_REG_0].btf = meta->arg_btf; + regs[BPF_REG_0].btf_id = meta->arg_btf_id; + + insn_aux->kptr_struct_meta = + btf_find_struct_meta(meta->arg_btf, + meta->arg_btf_id); + } else if (is_list_node_type(ptr_type)) { + struct btf_field *field = meta->arg_list_head.field; + + mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); + } else if (is_rbtree_node_type(ptr_type)) { + struct btf_field *field = meta->arg_rbtree_root.field; + + mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); + } else if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; + regs[BPF_REG_0].btf = desc_btf; + regs[BPF_REG_0].btf_id = meta->ret_btf_id; + } else if (meta->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { + ret_t = btf_type_by_id(desc_btf, meta->arg_constant.value); + if (!ret_t) { + verbose(env, "Unknown type ID %lld passed to kfunc bpf_rdonly_cast\n", + meta->arg_constant.value); + return -EINVAL; + } else if (btf_type_is_struct(ret_t)) { + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; + regs[BPF_REG_0].btf = desc_btf; + regs[BPF_REG_0].btf_id = meta->arg_constant.value; + } else if (btf_type_is_void(ret_t)) { + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED; + regs[BPF_REG_0].mem_size = 0; + } else { + verbose(env, + "kfunc bpf_rdonly_cast type ID argument must be of a struct or void\n"); + return -EINVAL; + } + } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice] || + meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { + enum bpf_type_flag type_flag = get_dynptr_type_flag(meta->initialized_dynptr.type); + + mark_reg_known_zero(env, regs, BPF_REG_0); + + if (!meta->arg_constant.found) { + verifier_bug(env, "bpf_dynptr_slice(_rdwr) no constant size"); + return -EFAULT; + } + + regs[BPF_REG_0].mem_size = meta->arg_constant.value; + + /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ + regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; + + if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { + regs[BPF_REG_0].type |= MEM_RDONLY; + } else { + /* this will set env->seen_direct_write to true */ + if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { + verbose(env, "the prog does not allow writes to packet data\n"); + return -EINVAL; + } + } + + if (!meta->initialized_dynptr.id) { + verifier_bug(env, "no dynptr id"); + return -EFAULT; + } + regs[BPF_REG_0].dynptr_id = meta->initialized_dynptr.id; + + /* we don't need to set BPF_REG_0's ref obj id + * because packet slices are not refcounted (see + * dynptr_type_refcounted) + */ + } else { + return 0; + } + + return 1; +} + +static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name); + +static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, + int *insn_idx_p) +{ + bool sleepable, rcu_lock, rcu_unlock, preempt_disable, preempt_enable; + u32 i, nargs, ptr_type_id, release_ref_obj_id; + struct bpf_reg_state *regs = cur_regs(env); + const char *func_name, *ptr_type_name; + const struct btf_type *t, *ptr_type; + struct bpf_kfunc_call_arg_meta meta; + struct bpf_insn_aux_data *insn_aux; + int err, insn_idx = *insn_idx_p; + const struct btf_param *args; + struct btf *desc_btf; + + /* skip for now, but return error when we find this in fixup_kfunc_call */ + if (!insn->imm) + return 0; + + err = fetch_kfunc_meta(env, insn, &meta, &func_name); + if (err == -EACCES && func_name) + verbose(env, "calling kernel function %s is not allowed\n", func_name); + if (err) + return err; + desc_btf = meta.btf; + insn_aux = &env->insn_aux_data[insn_idx]; + + insn_aux->is_iter_next = is_iter_next_kfunc(&meta); + + if (!insn->off && + (insn->imm == special_kfunc_list[KF_bpf_res_spin_lock] || + insn->imm == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) { + struct bpf_verifier_state *branch; + struct bpf_reg_state *regs; + + branch = push_stack(env, env->insn_idx + 1, env->insn_idx, false); + if (IS_ERR(branch)) { + verbose(env, "failed to push state for failed lock acquisition\n"); + return PTR_ERR(branch); + } + + regs = branch->frame[branch->curframe]->regs; + + /* Clear r0-r5 registers in forked state */ + for (i = 0; i < CALLER_SAVED_REGS; i++) + mark_reg_not_init(env, regs, caller_saved[i]); + + mark_reg_unknown(env, regs, BPF_REG_0); + err = __mark_reg_s32_range(env, regs, BPF_REG_0, -MAX_ERRNO, -1); + if (err) { + verbose(env, "failed to mark s32 range for retval in forked state for lock\n"); + return err; + } + __mark_btf_func_reg_size(env, regs, BPF_REG_0, sizeof(u32)); + } else if (!insn->off && insn->imm == special_kfunc_list[KF___bpf_trap]) { + verbose(env, "unexpected __bpf_trap() due to uninitialized variable?\n"); + return -EFAULT; + } + + if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { + verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); + return -EACCES; + } + + sleepable = is_kfunc_sleepable(&meta); + if (sleepable && !in_sleepable(env)) { + verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); + return -EACCES; + } + + /* Track non-sleepable context for kfuncs, same as for helpers. */ + if (!in_sleepable_context(env)) + insn_aux->non_sleepable = true; + + /* Check the arguments */ + err = check_kfunc_args(env, &meta, insn_idx); + if (err < 0) + return err; + + if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_rbtree_add_callback_state); + if (err) { + verbose(env, "kfunc %s#%d failed callback verification\n", + func_name, meta.func_id); + return err; + } + } + + if (meta.func_id == special_kfunc_list[KF_bpf_session_cookie]) { + meta.r0_size = sizeof(u64); + meta.r0_rdonly = false; + } + + if (is_bpf_wq_set_callback_impl_kfunc(meta.func_id)) { + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_timer_callback_state); + if (err) { + verbose(env, "kfunc %s#%d failed callback verification\n", + func_name, meta.func_id); + return err; + } + } + + if (is_task_work_add_kfunc(meta.func_id)) { + err = push_callback_call(env, insn, insn_idx, meta.subprogno, + set_task_work_schedule_callback_state); + if (err) { + verbose(env, "kfunc %s#%d failed callback verification\n", + func_name, meta.func_id); + return err; + } + } + + rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); + rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); + + preempt_disable = is_kfunc_bpf_preempt_disable(&meta); + preempt_enable = is_kfunc_bpf_preempt_enable(&meta); + + if (rcu_lock) { + env->cur_state->active_rcu_locks++; + } else if (rcu_unlock) { + struct bpf_func_state *state; + struct bpf_reg_state *reg; + u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); + + if (env->cur_state->active_rcu_locks == 0) { + verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); + return -EINVAL; + } + if (--env->cur_state->active_rcu_locks == 0) { + bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ + if (reg->type & MEM_RCU) { + reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); + reg->type |= PTR_UNTRUSTED; + } + })); + } + } else if (sleepable && env->cur_state->active_rcu_locks) { + verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); + return -EACCES; + } + + if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { + verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); + return -EACCES; + } + + if (env->cur_state->active_preempt_locks) { + if (preempt_disable) { + env->cur_state->active_preempt_locks++; + } else if (preempt_enable) { + env->cur_state->active_preempt_locks--; + } else if (sleepable) { + verbose(env, "kernel func %s is sleepable within non-preemptible region\n", func_name); + return -EACCES; + } + } else if (preempt_disable) { + env->cur_state->active_preempt_locks++; + } else if (preempt_enable) { + verbose(env, "unmatched attempt to enable preemption (kernel function %s)\n", func_name); + return -EINVAL; + } + + if (env->cur_state->active_irq_id && sleepable) { + verbose(env, "kernel func %s is sleepable within IRQ-disabled region\n", func_name); + return -EACCES; + } + + if (is_kfunc_rcu_protected(&meta) && !in_rcu_cs(env)) { + verbose(env, "kernel func %s requires RCU critical section protection\n", func_name); + return -EACCES; + } + + /* In case of release function, we get register number of refcounted + * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. + */ + if (meta.release_regno) { + struct bpf_reg_state *reg = ®s[meta.release_regno]; + + if (meta.initialized_dynptr.ref_obj_id) { + err = unmark_stack_slots_dynptr(env, reg); + } else { + err = release_reference(env, reg->ref_obj_id); + if (err) + verbose(env, "kfunc %s#%d reference has not been acquired before\n", + func_name, meta.func_id); + } + if (err) + return err; + } + + if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || + meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || + meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { + release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; + insn_aux->insert_off = regs[BPF_REG_2].off; + insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); + err = ref_convert_owning_non_owning(env, release_ref_obj_id); + if (err) { + verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", + func_name, meta.func_id); + return err; + } + + err = release_reference(env, release_ref_obj_id); + if (err) { + verbose(env, "kfunc %s#%d reference has not been acquired before\n", + func_name, meta.func_id); + return err; + } + } + + if (meta.func_id == special_kfunc_list[KF_bpf_throw]) { + if (!bpf_jit_supports_exceptions()) { + verbose(env, "JIT does not support calling kfunc %s#%d\n", + func_name, meta.func_id); + return -ENOTSUPP; + } + env->seen_exception = true; + + /* In the case of the default callback, the cookie value passed + * to bpf_throw becomes the return value of the program. + */ + if (!env->exception_callback_subprog) { + err = check_return_code(env, BPF_REG_1, "R1"); + if (err < 0) + return err; + } + } + + for (i = 0; i < CALLER_SAVED_REGS; i++) + mark_reg_not_init(env, regs, caller_saved[i]); + + /* Check return type */ + t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); + + if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { + /* Only exception is bpf_obj_new_impl */ + if (meta.btf != btf_vmlinux || + (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && + meta.func_id != special_kfunc_list[KF_bpf_percpu_obj_new_impl] && + meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { + verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); + return -EINVAL; + } + } + + if (btf_type_is_scalar(t)) { + mark_reg_unknown(env, regs, BPF_REG_0); + if (meta.btf == btf_vmlinux && (meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock] || + meta.func_id == special_kfunc_list[KF_bpf_res_spin_lock_irqsave])) + __mark_reg_const_zero(env, ®s[BPF_REG_0]); + mark_btf_func_reg_size(env, BPF_REG_0, t->size); + } else if (btf_type_is_ptr(t)) { + ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); + err = check_special_kfunc(env, &meta, regs, insn_aux, ptr_type, desc_btf); + if (err) { + if (err < 0) + return err; + } else if (btf_type_is_void(ptr_type)) { + /* kfunc returning 'void *' is equivalent to returning scalar */ + mark_reg_unknown(env, regs, BPF_REG_0); + } else if (!__btf_type_is_struct(ptr_type)) { + if (!meta.r0_size) { + __u32 sz; + + if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { + meta.r0_size = sz; + meta.r0_rdonly = true; + } + } + if (!meta.r0_size) { + ptr_type_name = btf_name_by_offset(desc_btf, + ptr_type->name_off); + verbose(env, + "kernel function %s returns pointer type %s %s is not supported\n", + func_name, + btf_type_str(ptr_type), + ptr_type_name); + return -EINVAL; + } + + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].type = PTR_TO_MEM; + regs[BPF_REG_0].mem_size = meta.r0_size; + + if (meta.r0_rdonly) + regs[BPF_REG_0].type |= MEM_RDONLY; + + /* Ensures we don't access the memory after a release_reference() */ + if (meta.ref_obj_id) + regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; + + if (is_kfunc_rcu_protected(&meta)) + regs[BPF_REG_0].type |= MEM_RCU; + } else { + mark_reg_known_zero(env, regs, BPF_REG_0); + regs[BPF_REG_0].btf = desc_btf; + regs[BPF_REG_0].type = PTR_TO_BTF_ID; + regs[BPF_REG_0].btf_id = ptr_type_id; + + if (meta.func_id == special_kfunc_list[KF_bpf_get_kmem_cache]) + regs[BPF_REG_0].type |= PTR_UNTRUSTED; + else if (is_kfunc_rcu_protected(&meta)) + regs[BPF_REG_0].type |= MEM_RCU; + + if (is_iter_next_kfunc(&meta)) { + struct bpf_reg_state *cur_iter; + + cur_iter = get_iter_from_state(env->cur_state, &meta); + + if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */ + regs[BPF_REG_0].type |= MEM_RCU; + else + regs[BPF_REG_0].type |= PTR_TRUSTED; + } + } + + if (is_kfunc_ret_null(&meta)) { + regs[BPF_REG_0].type |= PTR_MAYBE_NULL; + /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ + regs[BPF_REG_0].id = ++env->id_gen; + } + mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); + if (is_kfunc_acquire(&meta)) { + int id = acquire_reference(env, insn_idx); + + if (id < 0) + return id; + if (is_kfunc_ret_null(&meta)) + regs[BPF_REG_0].id = id; + regs[BPF_REG_0].ref_obj_id = id; + } else if (is_rbtree_node_type(ptr_type) || is_list_node_type(ptr_type)) { + ref_set_non_owning(env, ®s[BPF_REG_0]); + } + + if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) + regs[BPF_REG_0].id = ++env->id_gen; + } else if (btf_type_is_void(t)) { + if (meta.btf == btf_vmlinux) { + if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || + meta.func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl]) { + insn_aux->kptr_struct_meta = + btf_find_struct_meta(meta.arg_btf, + meta.arg_btf_id); + } + } + } + + if (is_kfunc_pkt_changing(&meta)) + clear_all_pkt_pointers(env); + + nargs = btf_type_vlen(meta.func_proto); + args = (const struct btf_param *)(meta.func_proto + 1); + for (i = 0; i < nargs; i++) { + u32 regno = i + 1; + + t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); + if (btf_type_is_ptr(t)) + mark_btf_func_reg_size(env, regno, sizeof(void *)); + else + /* scalar. ensured by btf_check_kfunc_arg_match() */ + mark_btf_func_reg_size(env, regno, t->size); + } + + if (is_iter_next_kfunc(&meta)) { + err = process_iter_next_call(env, insn_idx, &meta); + if (err) + return err; + } + + return 0; +} + +static bool check_reg_sane_offset(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, + enum bpf_reg_type type) +{ + bool known = tnum_is_const(reg->var_off); + s64 val = reg->var_off.value; + s64 smin = reg->smin_value; + + if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { + verbose(env, "math between %s pointer and %lld is not allowed\n", + reg_type_str(env, type), val); + return false; + } + + if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { + verbose(env, "%s pointer offset %d is not allowed\n", + reg_type_str(env, type), reg->off); + return false; + } + + if (smin == S64_MIN) { + verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", + reg_type_str(env, type)); + return false; + } + + if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { + verbose(env, "value %lld makes %s pointer be out of bounds\n", + smin, reg_type_str(env, type)); + return false; + } + + return true; +} + +enum { + REASON_BOUNDS = -1, + REASON_TYPE = -2, + REASON_PATHS = -3, + REASON_LIMIT = -4, + REASON_STACK = -5, +}; + +static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, + u32 *alu_limit, bool mask_to_left) +{ + u32 max = 0, ptr_limit = 0; + + switch (ptr_reg->type) { + case PTR_TO_STACK: + /* Offset 0 is out-of-bounds, but acceptable start for the + * left direction, see BPF_REG_FP. Also, unknown scalar + * offset where we would need to deal with min/max bounds is + * currently prohibited for unprivileged. + */ + max = MAX_BPF_STACK + mask_to_left; + ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); + break; + case PTR_TO_MAP_VALUE: + max = ptr_reg->map_ptr->value_size; + ptr_limit = (mask_to_left ? + ptr_reg->smin_value : + ptr_reg->umax_value) + ptr_reg->off; + break; + default: + return REASON_TYPE; + } + + if (ptr_limit >= max) + return REASON_LIMIT; + *alu_limit = ptr_limit; + return 0; +} + +static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, + const struct bpf_insn *insn) +{ + return env->bypass_spec_v1 || + BPF_SRC(insn->code) == BPF_K || + cur_aux(env)->nospec; +} + +static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, + u32 alu_state, u32 alu_limit) +{ + /* If we arrived here from different branches with different + * state or limits to sanitize, then this won't work. + */ + if (aux->alu_state && + (aux->alu_state != alu_state || + aux->alu_limit != alu_limit)) + return REASON_PATHS; + + /* Corresponding fixup done in do_misc_fixups(). */ + aux->alu_state = alu_state; + aux->alu_limit = alu_limit; + return 0; +} + +static int sanitize_val_alu(struct bpf_verifier_env *env, + struct bpf_insn *insn) +{ + struct bpf_insn_aux_data *aux = cur_aux(env); + + if (can_skip_alu_sanitation(env, insn)) + return 0; + + return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); +} + +static bool sanitize_needed(u8 opcode) +{ + return opcode == BPF_ADD || opcode == BPF_SUB; +} + +struct bpf_sanitize_info { + struct bpf_insn_aux_data aux; + bool mask_to_left; +}; + +static int sanitize_speculative_path(struct bpf_verifier_env *env, + const struct bpf_insn *insn, + u32 next_idx, u32 curr_idx) +{ + struct bpf_verifier_state *branch; + struct bpf_reg_state *regs; + + branch = push_stack(env, next_idx, curr_idx, true); + if (!IS_ERR(branch) && insn) { + regs = branch->frame[branch->curframe]->regs; + if (BPF_SRC(insn->code) == BPF_K) { + mark_reg_unknown(env, regs, insn->dst_reg); + } else if (BPF_SRC(insn->code) == BPF_X) { + mark_reg_unknown(env, regs, insn->dst_reg); + mark_reg_unknown(env, regs, insn->src_reg); + } + } + return PTR_ERR_OR_ZERO(branch); +} + +static int sanitize_ptr_alu(struct bpf_verifier_env *env, + struct bpf_insn *insn, + const struct bpf_reg_state *ptr_reg, + const struct bpf_reg_state *off_reg, + struct bpf_reg_state *dst_reg, + struct bpf_sanitize_info *info, + const bool commit_window) +{ + struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; + struct bpf_verifier_state *vstate = env->cur_state; + bool off_is_imm = tnum_is_const(off_reg->var_off); + bool off_is_neg = off_reg->smin_value < 0; + bool ptr_is_dst_reg = ptr_reg == dst_reg; + u8 opcode = BPF_OP(insn->code); + u32 alu_state, alu_limit; + struct bpf_reg_state tmp; + int err; + + if (can_skip_alu_sanitation(env, insn)) + return 0; + + /* We already marked aux for masking from non-speculative + * paths, thus we got here in the first place. We only care + * to explore bad access from here. + */ + if (vstate->speculative) + goto do_sim; + + if (!commit_window) { + if (!tnum_is_const(off_reg->var_off) && + (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) + return REASON_BOUNDS; + + info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || + (opcode == BPF_SUB && !off_is_neg); + } + + err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); + if (err < 0) + return err; + + if (commit_window) { + /* In commit phase we narrow the masking window based on + * the observed pointer move after the simulated operation. + */ + alu_state = info->aux.alu_state; + alu_limit = abs(info->aux.alu_limit - alu_limit); + } else { + alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; + alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; + alu_state |= ptr_is_dst_reg ? + BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; + + /* Limit pruning on unknown scalars to enable deep search for + * potential masking differences from other program paths. + */ + if (!off_is_imm) + env->explore_alu_limits = true; + } + + err = update_alu_sanitation_state(aux, alu_state, alu_limit); + if (err < 0) + return err; +do_sim: + /* If we're in commit phase, we're done here given we already + * pushed the truncated dst_reg into the speculative verification + * stack. + * + * Also, when register is a known constant, we rewrite register-based + * operation to immediate-based, and thus do not need masking (and as + * a consequence, do not need to simulate the zero-truncation either). + */ + if (commit_window || off_is_imm) + return 0; + + /* Simulate and find potential out-of-bounds access under + * speculative execution from truncation as a result of + * masking when off was not within expected range. If off + * sits in dst, then we temporarily need to move ptr there + * to simulate dst (== 0) +/-= ptr. Needed, for example, + * for cases where we use K-based arithmetic in one direction + * and truncated reg-based in the other in order to explore + * bad access. + */ + if (!ptr_is_dst_reg) { + tmp = *dst_reg; + copy_register_state(dst_reg, ptr_reg); + } + err = sanitize_speculative_path(env, NULL, env->insn_idx + 1, env->insn_idx); + if (err < 0) + return REASON_STACK; + if (!ptr_is_dst_reg) + *dst_reg = tmp; + return 0; +} + +static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) +{ + struct bpf_verifier_state *vstate = env->cur_state; + + /* If we simulate paths under speculation, we don't update the + * insn as 'seen' such that when we verify unreachable paths in + * the non-speculative domain, sanitize_dead_code() can still + * rewrite/sanitize them. + */ + if (!vstate->speculative) + env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; +} + +static int sanitize_err(struct bpf_verifier_env *env, + const struct bpf_insn *insn, int reason, + const struct bpf_reg_state *off_reg, + const struct bpf_reg_state *dst_reg) +{ + static const char *err = "pointer arithmetic with it prohibited for !root"; + const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; + u32 dst = insn->dst_reg, src = insn->src_reg; + + switch (reason) { + case REASON_BOUNDS: + verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", + off_reg == dst_reg ? dst : src, err); + break; + case REASON_TYPE: + verbose(env, "R%d has pointer with unsupported alu operation, %s\n", + off_reg == dst_reg ? src : dst, err); + break; + case REASON_PATHS: + verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", + dst, op, err); + break; + case REASON_LIMIT: + verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", + dst, op, err); + break; + case REASON_STACK: + verbose(env, "R%d could not be pushed for speculative verification, %s\n", + dst, err); + return -ENOMEM; + default: + verifier_bug(env, "unknown reason (%d)", reason); + break; + } + + return -EACCES; +} + +/* check that stack access falls within stack limits and that 'reg' doesn't + * have a variable offset. + * + * Variable offset is prohibited for unprivileged mode for simplicity since it + * requires corresponding support in Spectre masking for stack ALU. See also + * retrieve_ptr_limit(). + * + * + * 'off' includes 'reg->off'. + */ +static int check_stack_access_for_ptr_arithmetic( + struct bpf_verifier_env *env, + int regno, + const struct bpf_reg_state *reg, + int off) +{ + if (!tnum_is_const(reg->var_off)) { + char tn_buf[48]; + + tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); + verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", + regno, tn_buf, off); + return -EACCES; + } + + if (off >= 0 || off < -MAX_BPF_STACK) { + verbose(env, "R%d stack pointer arithmetic goes out of range, " + "prohibited for !root; off=%d\n", regno, off); + return -EACCES; + } + + return 0; +} + +static int sanitize_check_bounds(struct bpf_verifier_env *env, + const struct bpf_insn *insn, + const struct bpf_reg_state *dst_reg) +{ + u32 dst = insn->dst_reg; + + /* For unprivileged we require that resulting offset must be in bounds + * in order to be able to sanitize access later on. + */ + if (env->bypass_spec_v1) + return 0; + + switch (dst_reg->type) { + case PTR_TO_STACK: + if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, + dst_reg->off + dst_reg->var_off.value)) + return -EACCES; + break; + case PTR_TO_MAP_VALUE: + if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { + verbose(env, "R%d pointer arithmetic of map value goes out of range, " + "prohibited for !root\n", dst); + return -EACCES; + } + break; + default: + return -EOPNOTSUPP; + } + + return 0; +} + +/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. + * Caller should also handle BPF_MOV case separately. + * If we return -EACCES, caller may want to try again treating pointer as a + * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. + */ +static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, + struct bpf_insn *insn, + const struct bpf_reg_state *ptr_reg, + const struct bpf_reg_state *off_reg) +{ + struct bpf_verifier_state *vstate = env->cur_state; + struct bpf_func_state *state = vstate->frame[vstate->curframe]; + struct bpf_reg_state *regs = state->regs, *dst_reg; + bool known = tnum_is_const(off_reg->var_off); + s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, + smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; + u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, + umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; + struct bpf_sanitize_info info = {}; + u8 opcode = BPF_OP(insn->code); + u32 dst = insn->dst_reg; + int ret, bounds_ret; + + dst_reg = ®s[dst]; + + if ((known && (smin_val != smax_val || umin_val != umax_val)) || + smin_val > smax_val || umin_val > umax_val) { + /* Taint dst register if offset had invalid bounds derived from + * e.g. dead branches. + */ + __mark_reg_unknown(env, dst_reg); + return 0; + } + + if (BPF_CLASS(insn->code) != BPF_ALU64) { + /* 32-bit ALU ops on pointers produce (meaningless) scalars */ + if (opcode == BPF_SUB && env->allow_ptr_leaks) { + __mark_reg_unknown(env, dst_reg); + return 0; + } + + verbose(env, + "R%d 32-bit pointer arithmetic prohibited\n", + dst); + return -EACCES; + } + + if (ptr_reg->type & PTR_MAYBE_NULL) { + verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", + dst, reg_type_str(env, ptr_reg->type)); + return -EACCES; + } + + /* + * Accesses to untrusted PTR_TO_MEM are done through probe + * instructions, hence no need to track offsets. + */ + if (base_type(ptr_reg->type) == PTR_TO_MEM && (ptr_reg->type & PTR_UNTRUSTED)) + return 0; + + switch (base_type(ptr_reg->type)) { + case PTR_TO_CTX: + case PTR_TO_MAP_VALUE: + case PTR_TO_MAP_KEY: + case PTR_TO_STACK: + case PTR_TO_PACKET_META: + case PTR_TO_PACKET: + case PTR_TO_TP_BUFFER: + case PTR_TO_BTF_ID: + case PTR_TO_MEM: + case PTR_TO_BUF: + case PTR_TO_FUNC: + case CONST_PTR_TO_DYNPTR: + break; + case PTR_TO_FLOW_KEYS: + if (known) + break; + fallthrough; + case CONST_PTR_TO_MAP: + /* smin_val represents the known value */ + if (known && smin_val == 0 && opcode == BPF_ADD) + break; + fallthrough; + default: + verbose(env, "R%d pointer arithmetic on %s prohibited\n", + dst, reg_type_str(env, ptr_reg->type)); + return -EACCES; + } + + /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. + * The id may be overwritten later if we create a new variable offset. + */ + dst_reg->type = ptr_reg->type; + dst_reg->id = ptr_reg->id; + + if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || + !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) + return -EINVAL; + + /* pointer types do not carry 32-bit bounds at the moment. */ + __mark_reg32_unbounded(dst_reg); + + if (sanitize_needed(opcode)) { + ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, + &info, false); + if (ret < 0) + return sanitize_err(env, insn, ret, off_reg, dst_reg); + } + + switch (opcode) { + case BPF_ADD: + /* We can take a fixed offset as long as it doesn't overflow + * the s32 'off' field + */ + if (known && (ptr_reg->off + smin_val == + (s64)(s32)(ptr_reg->off + smin_val))) { + /* pointer += K. Accumulate it into fixed offset */ + dst_reg->smin_value = smin_ptr; + dst_reg->smax_value = smax_ptr; + dst_reg->umin_value = umin_ptr; + dst_reg->umax_value = umax_ptr; + dst_reg->var_off = ptr_reg->var_off; + dst_reg->off = ptr_reg->off + smin_val; + dst_reg->raw = ptr_reg->raw; + break; + } + /* A new variable offset is created. Note that off_reg->off + * == 0, since it's a scalar. + * dst_reg gets the pointer type and since some positive + * integer value was added to the pointer, give it a new 'id' + * if it's a PTR_TO_PACKET. + * this creates a new 'base' pointer, off_reg (variable) gets + * added into the variable offset, and we copy the fixed offset + * from ptr_reg. + */ + if (check_add_overflow(smin_ptr, smin_val, &dst_reg->smin_value) || + check_add_overflow(smax_ptr, smax_val, &dst_reg->smax_value)) { + dst_reg->smin_value = S64_MIN; + dst_reg->smax_value = S64_MAX; + } + if (check_add_overflow(umin_ptr, umin_val, &dst_reg->umin_value) || + check_add_overflow(umax_ptr, umax_val, &dst_reg->umax_value)) { + dst_reg->umin_value = 0; + dst_reg->umax_value = U64_MAX; + } + dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); + dst_reg->off = ptr_reg->off; + dst_reg->raw = ptr_reg->raw; + if (reg_is_pkt_pointer(ptr_reg)) { + dst_reg->id = ++env->id_gen; + /* something was added to pkt_ptr, set range to zero */ + memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); + } + break; + case BPF_SUB: + if (dst_reg == off_reg) { + /* scalar -= pointer. Creates an unknown scalar */ + verbose(env, "R%d tried to subtract pointer from scalar\n", + dst); + return -EACCES; + } + /* We don't allow subtraction from FP, because (according to + * test_verifier.c test "invalid fp arithmetic", JITs might not + * be able to deal with it. + */ + if (ptr_reg->type == PTR_TO_STACK) { + verbose(env, "R%d subtraction from stack pointer prohibited\n", + dst); + return -EACCES; + } + if (known && (ptr_reg->off - smin_val == + (s64)(s32)(ptr_reg->off - smin_val))) { + /* pointer -= K. Subtract it from fixed offset */ + dst_reg->smin_value = smin_ptr; + dst_reg->smax_value = smax_ptr; + dst_reg->umin_value = umin_ptr; + dst_reg->umax_value = umax_ptr; + dst_reg->var_off = ptr_reg->var_off; + dst_reg->id = ptr_reg->id; + dst_reg->off = ptr_reg->off - smin_val; + dst_reg->raw = ptr_reg->raw; + break; + } + /* A new variable offset is created. If the subtrahend is known + * nonnegative, then any reg->range we had before is still good. + */ + if (check_sub_overflow(smin_ptr, smax_val, &dst_reg->smin_value) || + check_sub_overflow(smax_ptr, smin_val, &dst_reg->smax_value)) { + /* Overflow possible, we know nothing */ + dst_reg->smin_value = S64_MIN; + dst_reg->smax_value = S64_MAX; + } + if (umin_ptr < umax_val) { + /* Overflow possible, we know nothing */ + dst_reg->umin_value = 0; + dst_reg->umax_value = U64_MAX; + } else { + /* Cannot overflow (as long as bounds are consistent) */ + dst_reg->umin_value = umin_ptr - umax_val; + dst_reg->umax_value = umax_ptr - umin_val; + } + dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); + dst_reg->off = ptr_reg->off; + dst_reg->raw = ptr_reg->raw; + if (reg_is_pkt_pointer(ptr_reg)) { + dst_reg->id = ++env->id_gen; + /* something was added to pkt_ptr, set range to zero */ + if (smin_val < 0) + memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); + } + break; + case BPF_AND: + case BPF_OR: + case BPF_XOR: + /* bitwise ops on pointers are troublesome, prohibit. */ + verbose(env, "R%d bitwise operator %s on pointer prohibited\n", + dst, bpf_alu_string[opcode >> 4]); + return -EACCES; + default: + /* other operators (e.g. MUL,LSH) produce non-pointer results */ + verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", + dst, bpf_alu_string[opcode >> 4]); + return -EACCES; + } + + if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) + return -EINVAL; + reg_bounds_sync(dst_reg); + bounds_ret = sanitize_check_bounds(env, insn, dst_reg); + if (bounds_ret == -EACCES) + return bounds_ret; + if (sanitize_needed(opcode)) { + ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, + &info, true); + if (verifier_bug_if(!can_skip_alu_sanitation(env, insn) + && !env->cur_state->speculative + && bounds_ret + && !ret, + env, "Pointer type unsupported by sanitize_check_bounds() not rejected by retrieve_ptr_limit() as required")) { + return -EFAULT; + } + if (ret < 0) + return sanitize_err(env, insn, ret, off_reg, dst_reg); + } + + return 0; +} + +static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + s32 *dst_smin = &dst_reg->s32_min_value; + s32 *dst_smax = &dst_reg->s32_max_value; + u32 *dst_umin = &dst_reg->u32_min_value; + u32 *dst_umax = &dst_reg->u32_max_value; + u32 umin_val = src_reg->u32_min_value; + u32 umax_val = src_reg->u32_max_value; + bool min_overflow, max_overflow; + + if (check_add_overflow(*dst_smin, src_reg->s32_min_value, dst_smin) || + check_add_overflow(*dst_smax, src_reg->s32_max_value, dst_smax)) { + *dst_smin = S32_MIN; + *dst_smax = S32_MAX; + } + + /* If either all additions overflow or no additions overflow, then + * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = + * dst_umax + src_umax. Otherwise (some additions overflow), set + * the output bounds to unbounded. + */ + min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); + max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); + + if (!min_overflow && max_overflow) { + *dst_umin = 0; + *dst_umax = U32_MAX; + } +} + +static void scalar_min_max_add(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + s64 *dst_smin = &dst_reg->smin_value; + s64 *dst_smax = &dst_reg->smax_value; + u64 *dst_umin = &dst_reg->umin_value; + u64 *dst_umax = &dst_reg->umax_value; + u64 umin_val = src_reg->umin_value; + u64 umax_val = src_reg->umax_value; + bool min_overflow, max_overflow; + + if (check_add_overflow(*dst_smin, src_reg->smin_value, dst_smin) || + check_add_overflow(*dst_smax, src_reg->smax_value, dst_smax)) { + *dst_smin = S64_MIN; + *dst_smax = S64_MAX; + } + + /* If either all additions overflow or no additions overflow, then + * it is okay to set: dst_umin = dst_umin + src_umin, dst_umax = + * dst_umax + src_umax. Otherwise (some additions overflow), set + * the output bounds to unbounded. + */ + min_overflow = check_add_overflow(*dst_umin, umin_val, dst_umin); + max_overflow = check_add_overflow(*dst_umax, umax_val, dst_umax); + + if (!min_overflow && max_overflow) { + *dst_umin = 0; + *dst_umax = U64_MAX; + } +} + +static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + s32 *dst_smin = &dst_reg->s32_min_value; + s32 *dst_smax = &dst_reg->s32_max_value; + u32 *dst_umin = &dst_reg->u32_min_value; + u32 *dst_umax = &dst_reg->u32_max_value; + u32 umin_val = src_reg->u32_min_value; + u32 umax_val = src_reg->u32_max_value; + bool min_underflow, max_underflow; + + if (check_sub_overflow(*dst_smin, src_reg->s32_max_value, dst_smin) || + check_sub_overflow(*dst_smax, src_reg->s32_min_value, dst_smax)) { + /* Overflow possible, we know nothing */ + *dst_smin = S32_MIN; + *dst_smax = S32_MAX; + } + + /* If either all subtractions underflow or no subtractions + * underflow, it is okay to set: dst_umin = dst_umin - src_umax, + * dst_umax = dst_umax - src_umin. Otherwise (some subtractions + * underflow), set the output bounds to unbounded. + */ + min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); + max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); + + if (min_underflow && !max_underflow) { + *dst_umin = 0; + *dst_umax = U32_MAX; + } +} + +static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + s64 *dst_smin = &dst_reg->smin_value; + s64 *dst_smax = &dst_reg->smax_value; + u64 *dst_umin = &dst_reg->umin_value; + u64 *dst_umax = &dst_reg->umax_value; + u64 umin_val = src_reg->umin_value; + u64 umax_val = src_reg->umax_value; + bool min_underflow, max_underflow; + + if (check_sub_overflow(*dst_smin, src_reg->smax_value, dst_smin) || + check_sub_overflow(*dst_smax, src_reg->smin_value, dst_smax)) { + /* Overflow possible, we know nothing */ + *dst_smin = S64_MIN; + *dst_smax = S64_MAX; + } + + /* If either all subtractions underflow or no subtractions + * underflow, it is okay to set: dst_umin = dst_umin - src_umax, + * dst_umax = dst_umax - src_umin. Otherwise (some subtractions + * underflow), set the output bounds to unbounded. + */ + min_underflow = check_sub_overflow(*dst_umin, umax_val, dst_umin); + max_underflow = check_sub_overflow(*dst_umax, umin_val, dst_umax); + + if (min_underflow && !max_underflow) { + *dst_umin = 0; + *dst_umax = U64_MAX; + } +} + +static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + s32 *dst_smin = &dst_reg->s32_min_value; + s32 *dst_smax = &dst_reg->s32_max_value; + u32 *dst_umin = &dst_reg->u32_min_value; + u32 *dst_umax = &dst_reg->u32_max_value; + s32 tmp_prod[4]; + + if (check_mul_overflow(*dst_umax, src_reg->u32_max_value, dst_umax) || + check_mul_overflow(*dst_umin, src_reg->u32_min_value, dst_umin)) { + /* Overflow possible, we know nothing */ + *dst_umin = 0; + *dst_umax = U32_MAX; + } + if (check_mul_overflow(*dst_smin, src_reg->s32_min_value, &tmp_prod[0]) || + check_mul_overflow(*dst_smin, src_reg->s32_max_value, &tmp_prod[1]) || + check_mul_overflow(*dst_smax, src_reg->s32_min_value, &tmp_prod[2]) || + check_mul_overflow(*dst_smax, src_reg->s32_max_value, &tmp_prod[3])) { + /* Overflow possible, we know nothing */ + *dst_smin = S32_MIN; + *dst_smax = S32_MAX; + } else { + *dst_smin = min_array(tmp_prod, 4); + *dst_smax = max_array(tmp_prod, 4); + } +} + +static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + s64 *dst_smin = &dst_reg->smin_value; + s64 *dst_smax = &dst_reg->smax_value; + u64 *dst_umin = &dst_reg->umin_value; + u64 *dst_umax = &dst_reg->umax_value; + s64 tmp_prod[4]; + + if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) || + check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin)) { + /* Overflow possible, we know nothing */ + *dst_umin = 0; + *dst_umax = U64_MAX; + } + if (check_mul_overflow(*dst_smin, src_reg->smin_value, &tmp_prod[0]) || + check_mul_overflow(*dst_smin, src_reg->smax_value, &tmp_prod[1]) || + check_mul_overflow(*dst_smax, src_reg->smin_value, &tmp_prod[2]) || + check_mul_overflow(*dst_smax, src_reg->smax_value, &tmp_prod[3])) { + /* Overflow possible, we know nothing */ + *dst_smin = S64_MIN; + *dst_smax = S64_MAX; + } else { + *dst_smin = min_array(tmp_prod, 4); + *dst_smax = max_array(tmp_prod, 4); + } +} + +static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + bool src_known = tnum_subreg_is_const(src_reg->var_off); + bool dst_known = tnum_subreg_is_const(dst_reg->var_off); + struct tnum var32_off = tnum_subreg(dst_reg->var_off); + u32 umax_val = src_reg->u32_max_value; + + if (src_known && dst_known) { + __mark_reg32_known(dst_reg, var32_off.value); + return; + } + + /* We get our minimum from the var_off, since that's inherently + * bitwise. Our maximum is the minimum of the operands' maxima. + */ + dst_reg->u32_min_value = var32_off.value; + dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); + + /* Safe to set s32 bounds by casting u32 result into s32 when u32 + * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. + */ + if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { + dst_reg->s32_min_value = dst_reg->u32_min_value; + dst_reg->s32_max_value = dst_reg->u32_max_value; + } else { + dst_reg->s32_min_value = S32_MIN; + dst_reg->s32_max_value = S32_MAX; + } +} + +static void scalar_min_max_and(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + bool src_known = tnum_is_const(src_reg->var_off); + bool dst_known = tnum_is_const(dst_reg->var_off); + u64 umax_val = src_reg->umax_value; + + if (src_known && dst_known) { + __mark_reg_known(dst_reg, dst_reg->var_off.value); + return; + } + + /* We get our minimum from the var_off, since that's inherently + * bitwise. Our maximum is the minimum of the operands' maxima. + */ + dst_reg->umin_value = dst_reg->var_off.value; + dst_reg->umax_value = min(dst_reg->umax_value, umax_val); + + /* Safe to set s64 bounds by casting u64 result into s64 when u64 + * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. + */ + if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { + dst_reg->smin_value = dst_reg->umin_value; + dst_reg->smax_value = dst_reg->umax_value; + } else { + dst_reg->smin_value = S64_MIN; + dst_reg->smax_value = S64_MAX; + } + /* We may learn something more from the var_off */ + __update_reg_bounds(dst_reg); +} + +static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + bool src_known = tnum_subreg_is_const(src_reg->var_off); + bool dst_known = tnum_subreg_is_const(dst_reg->var_off); + struct tnum var32_off = tnum_subreg(dst_reg->var_off); + u32 umin_val = src_reg->u32_min_value; + + if (src_known && dst_known) { + __mark_reg32_known(dst_reg, var32_off.value); + return; + } + + /* We get our maximum from the var_off, and our minimum is the + * maximum of the operands' minima + */ + dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); + dst_reg->u32_max_value = var32_off.value | var32_off.mask; + + /* Safe to set s32 bounds by casting u32 result into s32 when u32 + * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. + */ + if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { + dst_reg->s32_min_value = dst_reg->u32_min_value; + dst_reg->s32_max_value = dst_reg->u32_max_value; + } else { + dst_reg->s32_min_value = S32_MIN; + dst_reg->s32_max_value = S32_MAX; + } +} + +static void scalar_min_max_or(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + bool src_known = tnum_is_const(src_reg->var_off); + bool dst_known = tnum_is_const(dst_reg->var_off); + u64 umin_val = src_reg->umin_value; + + if (src_known && dst_known) { + __mark_reg_known(dst_reg, dst_reg->var_off.value); + return; + } + + /* We get our maximum from the var_off, and our minimum is the + * maximum of the operands' minima + */ + dst_reg->umin_value = max(dst_reg->umin_value, umin_val); + dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; + + /* Safe to set s64 bounds by casting u64 result into s64 when u64 + * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. + */ + if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { + dst_reg->smin_value = dst_reg->umin_value; + dst_reg->smax_value = dst_reg->umax_value; + } else { + dst_reg->smin_value = S64_MIN; + dst_reg->smax_value = S64_MAX; + } + /* We may learn something more from the var_off */ + __update_reg_bounds(dst_reg); +} + +static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + bool src_known = tnum_subreg_is_const(src_reg->var_off); + bool dst_known = tnum_subreg_is_const(dst_reg->var_off); + struct tnum var32_off = tnum_subreg(dst_reg->var_off); + + if (src_known && dst_known) { + __mark_reg32_known(dst_reg, var32_off.value); + return; + } + + /* We get both minimum and maximum from the var32_off. */ + dst_reg->u32_min_value = var32_off.value; + dst_reg->u32_max_value = var32_off.value | var32_off.mask; + + /* Safe to set s32 bounds by casting u32 result into s32 when u32 + * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. + */ + if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { + dst_reg->s32_min_value = dst_reg->u32_min_value; + dst_reg->s32_max_value = dst_reg->u32_max_value; + } else { + dst_reg->s32_min_value = S32_MIN; + dst_reg->s32_max_value = S32_MAX; + } +} + +static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + bool src_known = tnum_is_const(src_reg->var_off); + bool dst_known = tnum_is_const(dst_reg->var_off); + + if (src_known && dst_known) { + /* dst_reg->var_off.value has been updated earlier */ + __mark_reg_known(dst_reg, dst_reg->var_off.value); + return; + } + + /* We get both minimum and maximum from the var_off. */ + dst_reg->umin_value = dst_reg->var_off.value; + dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; + + /* Safe to set s64 bounds by casting u64 result into s64 when u64 + * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. + */ + if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { + dst_reg->smin_value = dst_reg->umin_value; + dst_reg->smax_value = dst_reg->umax_value; + } else { + dst_reg->smin_value = S64_MIN; + dst_reg->smax_value = S64_MAX; + } + + __update_reg_bounds(dst_reg); +} + +static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, + u64 umin_val, u64 umax_val) +{ + /* We lose all sign bit information (except what we can pick + * up from var_off) + */ + dst_reg->s32_min_value = S32_MIN; + dst_reg->s32_max_value = S32_MAX; + /* If we might shift our top bit out, then we know nothing */ + if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { + dst_reg->u32_min_value = 0; + dst_reg->u32_max_value = U32_MAX; + } else { + dst_reg->u32_min_value <<= umin_val; + dst_reg->u32_max_value <<= umax_val; + } +} + +static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + u32 umax_val = src_reg->u32_max_value; + u32 umin_val = src_reg->u32_min_value; + /* u32 alu operation will zext upper bits */ + struct tnum subreg = tnum_subreg(dst_reg->var_off); + + __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); + dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); + /* Not required but being careful mark reg64 bounds as unknown so + * that we are forced to pick them up from tnum and zext later and + * if some path skips this step we are still safe. + */ + __mark_reg64_unbounded(dst_reg); + __update_reg32_bounds(dst_reg); +} + +static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, + u64 umin_val, u64 umax_val) +{ + /* Special case <<32 because it is a common compiler pattern to sign + * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are + * positive we know this shift will also be positive so we can track + * bounds correctly. Otherwise we lose all sign bit information except + * what we can pick up from var_off. Perhaps we can generalize this + * later to shifts of any length. + */ + if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) + dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; + else + dst_reg->smax_value = S64_MAX; + + if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) + dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; + else + dst_reg->smin_value = S64_MIN; + + /* If we might shift our top bit out, then we know nothing */ + if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { + dst_reg->umin_value = 0; + dst_reg->umax_value = U64_MAX; + } else { + dst_reg->umin_value <<= umin_val; + dst_reg->umax_value <<= umax_val; + } +} + +static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + u64 umax_val = src_reg->umax_value; + u64 umin_val = src_reg->umin_value; + + /* scalar64 calc uses 32bit unshifted bounds so must be called first */ + __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); + __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); + + dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); + /* We may learn something more from the var_off */ + __update_reg_bounds(dst_reg); +} + +static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + struct tnum subreg = tnum_subreg(dst_reg->var_off); + u32 umax_val = src_reg->u32_max_value; + u32 umin_val = src_reg->u32_min_value; + + /* BPF_RSH is an unsigned shift. If the value in dst_reg might + * be negative, then either: + * 1) src_reg might be zero, so the sign bit of the result is + * unknown, so we lose our signed bounds + * 2) it's known negative, thus the unsigned bounds capture the + * signed bounds + * 3) the signed bounds cross zero, so they tell us nothing + * about the result + * If the value in dst_reg is known nonnegative, then again the + * unsigned bounds capture the signed bounds. + * Thus, in all cases it suffices to blow away our signed bounds + * and rely on inferring new ones from the unsigned bounds and + * var_off of the result. + */ + dst_reg->s32_min_value = S32_MIN; + dst_reg->s32_max_value = S32_MAX; + + dst_reg->var_off = tnum_rshift(subreg, umin_val); + dst_reg->u32_min_value >>= umax_val; + dst_reg->u32_max_value >>= umin_val; + + __mark_reg64_unbounded(dst_reg); + __update_reg32_bounds(dst_reg); +} + +static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + u64 umax_val = src_reg->umax_value; + u64 umin_val = src_reg->umin_value; + + /* BPF_RSH is an unsigned shift. If the value in dst_reg might + * be negative, then either: + * 1) src_reg might be zero, so the sign bit of the result is + * unknown, so we lose our signed bounds + * 2) it's known negative, thus the unsigned bounds capture the + * signed bounds + * 3) the signed bounds cross zero, so they tell us nothing + * about the result + * If the value in dst_reg is known nonnegative, then again the + * unsigned bounds capture the signed bounds. + * Thus, in all cases it suffices to blow away our signed bounds + * and rely on inferring new ones from the unsigned bounds and + * var_off of the result. + */ + dst_reg->smin_value = S64_MIN; + dst_reg->smax_value = S64_MAX; + dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); + dst_reg->umin_value >>= umax_val; + dst_reg->umax_value >>= umin_val; + + /* Its not easy to operate on alu32 bounds here because it depends + * on bits being shifted in. Take easy way out and mark unbounded + * so we can recalculate later from tnum. + */ + __mark_reg32_unbounded(dst_reg); + __update_reg_bounds(dst_reg); +} + +static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + u64 umin_val = src_reg->u32_min_value; + + /* Upon reaching here, src_known is true and + * umax_val is equal to umin_val. + */ + dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); + dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); + + dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); + + /* blow away the dst_reg umin_value/umax_value and rely on + * dst_reg var_off to refine the result. + */ + dst_reg->u32_min_value = 0; + dst_reg->u32_max_value = U32_MAX; + + __mark_reg64_unbounded(dst_reg); + __update_reg32_bounds(dst_reg); +} + +static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg) +{ + u64 umin_val = src_reg->umin_value; + + /* Upon reaching here, src_known is true and umax_val is equal + * to umin_val. + */ + dst_reg->smin_value >>= umin_val; + dst_reg->smax_value >>= umin_val; + + dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); + + /* blow away the dst_reg umin_value/umax_value and rely on + * dst_reg var_off to refine the result. + */ + dst_reg->umin_value = 0; + dst_reg->umax_value = U64_MAX; + + /* Its not easy to operate on alu32 bounds here because it depends + * on bits being shifted in from upper 32-bits. Take easy way out + * and mark unbounded so we can recalculate later from tnum. + */ + __mark_reg32_unbounded(dst_reg); + __update_reg_bounds(dst_reg); +} + +static bool is_safe_to_compute_dst_reg_range(struct bpf_insn *insn, + const struct bpf_reg_state *src_reg) +{ + bool src_is_const = false; + u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; + + if (insn_bitness == 32) { + if (tnum_subreg_is_const(src_reg->var_off) + && src_reg->s32_min_value == src_reg->s32_max_value + && src_reg->u32_min_value == src_reg->u32_max_value) + src_is_const = true; + } else { + if (tnum_is_const(src_reg->var_off) + && src_reg->smin_value == src_reg->smax_value + && src_reg->umin_value == src_reg->umax_value) + src_is_const = true; + } + + switch (BPF_OP(insn->code)) { + case BPF_ADD: + case BPF_SUB: + case BPF_NEG: + case BPF_AND: + case BPF_XOR: + case BPF_OR: + case BPF_MUL: + return true; + + /* Shift operators range is only computable if shift dimension operand + * is a constant. Shifts greater than 31 or 63 are undefined. This + * includes shifts by a negative number. + */ + case BPF_LSH: + case BPF_RSH: + case BPF_ARSH: + return (src_is_const && src_reg->umax_value < insn_bitness); + default: + return false; + } +} + +/* WARNING: This function does calculations on 64-bit values, but the actual + * execution may occur on 32-bit values. Therefore, things like bitshifts + * need extra checks in the 32-bit case. + */ +static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, + struct bpf_insn *insn, + struct bpf_reg_state *dst_reg, + struct bpf_reg_state src_reg) +{ + u8 opcode = BPF_OP(insn->code); + bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); + int ret; + + if (!is_safe_to_compute_dst_reg_range(insn, &src_reg)) { + __mark_reg_unknown(env, dst_reg); + return 0; + } + + if (sanitize_needed(opcode)) { + ret = sanitize_val_alu(env, insn); + if (ret < 0) + return sanitize_err(env, insn, ret, NULL, NULL); + } + + /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. + * There are two classes of instructions: The first class we track both + * alu32 and alu64 sign/unsigned bounds independently this provides the + * greatest amount of precision when alu operations are mixed with jmp32 + * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, + * and BPF_OR. This is possible because these ops have fairly easy to + * understand and calculate behavior in both 32-bit and 64-bit alu ops. + * See alu32 verifier tests for examples. The second class of + * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy + * with regards to tracking sign/unsigned bounds because the bits may + * cross subreg boundaries in the alu64 case. When this happens we mark + * the reg unbounded in the subreg bound space and use the resulting + * tnum to calculate an approximation of the sign/unsigned bounds. + */ + switch (opcode) { + case BPF_ADD: + scalar32_min_max_add(dst_reg, &src_reg); + scalar_min_max_add(dst_reg, &src_reg); + dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); + break; + case BPF_SUB: + scalar32_min_max_sub(dst_reg, &src_reg); + scalar_min_max_sub(dst_reg, &src_reg); + dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); + break; + case BPF_NEG: + env->fake_reg[0] = *dst_reg; + __mark_reg_known(dst_reg, 0); + scalar32_min_max_sub(dst_reg, &env->fake_reg[0]); + scalar_min_max_sub(dst_reg, &env->fake_reg[0]); + dst_reg->var_off = tnum_neg(env->fake_reg[0].var_off); + break; + case BPF_MUL: + dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); + scalar32_min_max_mul(dst_reg, &src_reg); + scalar_min_max_mul(dst_reg, &src_reg); + break; + case BPF_AND: + dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); + scalar32_min_max_and(dst_reg, &src_reg); + scalar_min_max_and(dst_reg, &src_reg); + break; + case BPF_OR: + dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); + scalar32_min_max_or(dst_reg, &src_reg); + scalar_min_max_or(dst_reg, &src_reg); + break; + case BPF_XOR: + dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); + scalar32_min_max_xor(dst_reg, &src_reg); + scalar_min_max_xor(dst_reg, &src_reg); + break; + case BPF_LSH: + if (alu32) + scalar32_min_max_lsh(dst_reg, &src_reg); + else + scalar_min_max_lsh(dst_reg, &src_reg); + break; + case BPF_RSH: + if (alu32) + scalar32_min_max_rsh(dst_reg, &src_reg); + else + scalar_min_max_rsh(dst_reg, &src_reg); + break; + case BPF_ARSH: + if (alu32) + scalar32_min_max_arsh(dst_reg, &src_reg); + else + scalar_min_max_arsh(dst_reg, &src_reg); + break; + default: + break; + } + + /* ALU32 ops are zero extended into 64bit register */ + if (alu32) + zext_32_to_64(dst_reg); + reg_bounds_sync(dst_reg); + return 0; +} + +/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max + * and var_off. + */ +static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, + struct bpf_insn *insn) +{ + struct bpf_verifier_state *vstate = env->cur_state; + struct bpf_func_state *state = vstate->frame[vstate->curframe]; + struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; + struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; + bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); + u8 opcode = BPF_OP(insn->code); + int err; + + dst_reg = ®s[insn->dst_reg]; + src_reg = NULL; + + if (dst_reg->type == PTR_TO_ARENA) { + struct bpf_insn_aux_data *aux = cur_aux(env); + + if (BPF_CLASS(insn->code) == BPF_ALU64) + /* + * 32-bit operations zero upper bits automatically. + * 64-bit operations need to be converted to 32. + */ + aux->needs_zext = true; + + /* Any arithmetic operations are allowed on arena pointers */ + return 0; + } + + if (dst_reg->type != SCALAR_VALUE) + ptr_reg = dst_reg; + + if (BPF_SRC(insn->code) == BPF_X) { + src_reg = ®s[insn->src_reg]; + if (src_reg->type != SCALAR_VALUE) { + if (dst_reg->type != SCALAR_VALUE) { + /* Combining two pointers by any ALU op yields + * an arbitrary scalar. Disallow all math except + * pointer subtraction + */ + if (opcode == BPF_SUB && env->allow_ptr_leaks) { + mark_reg_unknown(env, regs, insn->dst_reg); + return 0; + } + verbose(env, "R%d pointer %s pointer prohibited\n", + insn->dst_reg, + bpf_alu_string[opcode >> 4]); + return -EACCES; + } else { + /* scalar += pointer + * This is legal, but we have to reverse our + * src/dest handling in computing the range + */ + err = mark_chain_precision(env, insn->dst_reg); + if (err) + return err; + return adjust_ptr_min_max_vals(env, insn, + src_reg, dst_reg); + } + } else if (ptr_reg) { + /* pointer += scalar */ + err = mark_chain_precision(env, insn->src_reg); + if (err) + return err; + return adjust_ptr_min_max_vals(env, insn, + dst_reg, src_reg); + } else if (dst_reg->precise) { + /* if dst_reg is precise, src_reg should be precise as well */ + err = mark_chain_precision(env, insn->src_reg); + if (err) + return err; + } + } else { + /* Pretend the src is a reg with a known value, since we only + * need to be able to read from this state. + */ + off_reg.type = SCALAR_VALUE; + __mark_reg_known(&off_reg, insn->imm); + src_reg = &off_reg; + if (ptr_reg) /* pointer += K */ + return adjust_ptr_min_max_vals(env, insn, + ptr_reg, src_reg); + } + + /* Got here implies adding two SCALAR_VALUEs */ + if (WARN_ON_ONCE(ptr_reg)) { + print_verifier_state(env, vstate, vstate->curframe, true); + verbose(env, "verifier internal error: unexpected ptr_reg\n"); + return -EFAULT; + } + if (WARN_ON(!src_reg)) { + print_verifier_state(env, vstate, vstate->curframe, true); + verbose(env, "verifier internal error: no src_reg\n"); + return -EFAULT; + } + err = adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); + if (err) + return err; + /* + * Compilers can generate the code + * r1 = r2 + * r1 += 0x1 + * if r2 < 1000 goto ... + * use r1 in memory access + * So for 64-bit alu remember constant delta between r2 and r1 and + * update r1 after 'if' condition. + */ + if (env->bpf_capable && + BPF_OP(insn->code) == BPF_ADD && !alu32 && + dst_reg->id && is_reg_const(src_reg, false)) { + u64 val = reg_const_value(src_reg, false); + + if ((dst_reg->id & BPF_ADD_CONST) || + /* prevent overflow in sync_linked_regs() later */ + val > (u32)S32_MAX) { + /* + * If the register already went through rX += val + * we cannot accumulate another val into rx->off. + */ + dst_reg->off = 0; + dst_reg->id = 0; + } else { + dst_reg->id |= BPF_ADD_CONST; + dst_reg->off = val; + } + } else { + /* + * Make sure ID is cleared otherwise dst_reg min/max could be + * incorrectly propagated into other registers by sync_linked_regs() + */ + dst_reg->id = 0; + } + return 0; +} + +/* check validity of 32-bit and 64-bit arithmetic operations */ +static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) +{ + struct bpf_reg_state *regs = cur_regs(env); + u8 opcode = BPF_OP(insn->code); + int err; + + if (opcode == BPF_END || opcode == BPF_NEG) { + if (opcode == BPF_NEG) { + if (BPF_SRC(insn->code) != BPF_K || + insn->src_reg != BPF_REG_0 || + insn->off != 0 || insn->imm != 0) { + verbose(env, "BPF_NEG uses reserved fields\n"); + return -EINVAL; + } + } else { + if (insn->src_reg != BPF_REG_0 || insn->off != 0 || + (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || + (BPF_CLASS(insn->code) == BPF_ALU64 && + BPF_SRC(insn->code) != BPF_TO_LE)) { + verbose(env, "BPF_END uses reserved fields\n"); + return -EINVAL; + } + } + + /* check src operand */ + err = check_reg_arg(env, insn->dst_reg, SRC_OP); + if (err) + return err; + + if (is_pointer_value(env, insn->dst_reg)) { + verbose(env, "R%d pointer arithmetic prohibited\n", + insn->dst_reg); + return -EACCES; + } + + /* check dest operand */ + if (opcode == BPF_NEG && + regs[insn->dst_reg].type == SCALAR_VALUE) { + err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); + err = err ?: adjust_scalar_min_max_vals(env, insn, + ®s[insn->dst_reg], + regs[insn->dst_reg]); + } else { + err = check_reg_arg(env, insn->dst_reg, DST_OP); + } + if (err) + return err; + + } else if (opcode == BPF_MOV) { + + if (BPF_SRC(insn->code) == BPF_X) { + if (BPF_CLASS(insn->code) == BPF_ALU) { + if ((insn->off != 0 && insn->off != 8 && insn->off != 16) || + insn->imm) { + verbose(env, "BPF_MOV uses reserved fields\n"); + return -EINVAL; + } + } else if (insn->off == BPF_ADDR_SPACE_CAST) { + if (insn->imm != 1 && insn->imm != 1u << 16) { + verbose(env, "addr_space_cast insn can only convert between address space 1 and 0\n"); + return -EINVAL; + } + if (!env->prog->aux->arena) { + verbose(env, "addr_space_cast insn can only be used in a program that has an associated arena\n"); + return -EINVAL; + } + } else { + if ((insn->off != 0 && insn->off != 8 && insn->off != 16 && + insn->off != 32) || insn->imm) { + verbose(env, "BPF_MOV uses reserved fields\n"); + return -EINVAL; + } + } + + /* check src operand */ + err = check_reg_arg(env, insn->src_reg, SRC_OP); + if (err) + return err; + } else { + if (insn->src_reg != BPF_REG_0 || insn->off != 0) { + verbose(env, "BPF_MOV uses reserved fields\n"); + return -EINVAL; + } + } + + /* check dest operand, mark as required later */ + err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); + if (err) + return err; + + if (BPF_SRC(insn->code) == BPF_X) { + struct bpf_reg_state *src_reg = regs + insn->src_reg; + struct bpf_reg_state *dst_reg = regs + insn->dst_reg; + + if (BPF_CLASS(insn->code) == BPF_ALU64) { + if (insn->imm) { + /* off == BPF_ADDR_SPACE_CAST */ + mark_reg_unknown(env, regs, insn->dst_reg); + if (insn->imm == 1) { /* cast from as(1) to as(0) */ + dst_reg->type = PTR_TO_ARENA; + /* PTR_TO_ARENA is 32-bit */ + dst_reg->subreg_def = env->insn_idx + 1; + } + } else if (insn->off == 0) { + /* case: R1 = R2 + * copy register state to dest reg + */ + assign_scalar_id_before_mov(env, src_reg); + copy_register_state(dst_reg, src_reg); + dst_reg->subreg_def = DEF_NOT_SUBREG; + } else { + /* case: R1 = (s8, s16 s32)R2 */ + if (is_pointer_value(env, insn->src_reg)) { + verbose(env, + "R%d sign-extension part of pointer\n", + insn->src_reg); + return -EACCES; + } else if (src_reg->type == SCALAR_VALUE) { + bool no_sext; + + no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); + if (no_sext) + assign_scalar_id_before_mov(env, src_reg); + copy_register_state(dst_reg, src_reg); + if (!no_sext) + dst_reg->id = 0; + coerce_reg_to_size_sx(dst_reg, insn->off >> 3); + dst_reg->subreg_def = DEF_NOT_SUBREG; + } else { + mark_reg_unknown(env, regs, insn->dst_reg); + } + } + } else { + /* R1 = (u32) R2 */ + if (is_pointer_value(env, insn->src_reg)) { + verbose(env, + "R%d partial copy of pointer\n", + insn->src_reg); + return -EACCES; + } else if (src_reg->type == SCALAR_VALUE) { + if (insn->off == 0) { + bool is_src_reg_u32 = get_reg_width(src_reg) <= 32; + + if (is_src_reg_u32) + assign_scalar_id_before_mov(env, src_reg); + copy_register_state(dst_reg, src_reg); + /* Make sure ID is cleared if src_reg is not in u32 + * range otherwise dst_reg min/max could be incorrectly + * propagated into src_reg by sync_linked_regs() + */ + if (!is_src_reg_u32) + dst_reg->id = 0; + dst_reg->subreg_def = env->insn_idx + 1; + } else { + /* case: W1 = (s8, s16)W2 */ + bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); + + if (no_sext) + assign_scalar_id_before_mov(env, src_reg); + copy_register_state(dst_reg, src_reg); + if (!no_sext) + dst_reg->id = 0; + dst_reg->subreg_def = env->insn_idx + 1; + coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); + } + } else { + mark_reg_unknown(env, regs, + insn->dst_reg); + } + zext_32_to_64(dst_reg); + reg_bounds_sync(dst_reg); + } + } else { + /* case: R = imm + * remember the value we stored into this reg + */ + /* clear any state __mark_reg_known doesn't set */ + mark_reg_unknown(env, regs, insn->dst_reg); + regs[insn->dst_reg].type = SCALAR_VALUE; + if (BPF_CLASS(insn->code) == BPF_ALU64) { + __mark_reg_known(regs + insn->dst_reg, + insn->imm); + } else { + __mark_reg_known(regs + insn->dst_reg, + (u32)insn->imm); + } + } + + } else if (opcode > BPF_END) { + verbose(env, "invalid BPF_ALU opcode %x\n", opcode); + return -EINVAL; + + } else { /* all other ALU ops: and, sub, xor, add, ... */ + + if (BPF_SRC(insn->code) == BPF_X) { + if (insn->imm != 0 || (insn->off != 0 && insn->off != 1) || + (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { + verbose(env, "BPF_ALU uses reserved fields\n"); + return -EINVAL; + } + /* check src1 operand */ + err = check_reg_arg(env, insn->src_reg, SRC_OP); + if (err) + return err; + } else { + if (insn->src_reg != BPF_REG_0 || (insn->off != 0 && insn->off != 1) || + (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { + verbose(env, "BPF_ALU uses reserved fields\n"); + return -EINVAL; + } + } + + /* check src2 operand */ + err = check_reg_arg(env, insn->dst_reg, SRC_OP); + if (err) + return err; + + if ((opcode == BPF_MOD || opcode == BPF_DIV) && + BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { + verbose(env, "div by zero\n"); + return -EINVAL; + } + + if ((opcode == BPF_LSH || opcode == BPF_RSH || + opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { + int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; + + if (insn->imm < 0 || insn->imm >= size) { + verbose(env, "invalid shift %d\n", insn->imm); + return -EINVAL; + } + } + + /* check dest operand */ + err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); + err = err ?: adjust_reg_min_max_vals(env, insn); + if (err) + return err; + } + + return reg_bounds_sanity_check(env, ®s[insn->dst_reg], "alu"); +} + +static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, + struct bpf_reg_state *dst_reg, + enum bpf_reg_type type, + bool range_right_open) +{ + struct bpf_func_state *state; + struct bpf_reg_state *reg; + int new_range; + + if (dst_reg->off < 0 || + (dst_reg->off == 0 && range_right_open)) + /* This doesn't give us any range */ + return; + + if (dst_reg->umax_value > MAX_PACKET_OFF || + dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) + /* Risk of overflow. For instance, ptr + (1<<63) may be less + * than pkt_end, but that's because it's also less than pkt. + */ + return; + + new_range = dst_reg->off; + if (range_right_open) + new_range++; + + /* Examples for register markings: + * + * pkt_data in dst register: + * + * r2 = r3; + * r2 += 8; + * if (r2 > pkt_end) goto <handle exception> + * <access okay> + * + * r2 = r3; + * r2 += 8; + * if (r2 < pkt_end) goto <access okay> + * <handle exception> + * + * Where: + * r2 == dst_reg, pkt_end == src_reg + * r2=pkt(id=n,off=8,r=0) + * r3=pkt(id=n,off=0,r=0) + * + * pkt_data in src register: + * + * r2 = r3; + * r2 += 8; + * if (pkt_end >= r2) goto <access okay> + * <handle exception> + * + * r2 = r3; + * r2 += 8; + * if (pkt_end <= r2) goto <handle exception> + * <access okay> + * + * Where: + * pkt_end == dst_reg, r2 == src_reg + * r2=pkt(id=n,off=8,r=0) + * r3=pkt(id=n,off=0,r=0) + * + * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) + * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) + * and [r3, r3 + 8-1) respectively is safe to access depending on + * the check. + */ + + /* If our ids match, then we must have the same max_value. And we + * don't care about the other reg's fixed offset, since if it's too big + * the range won't allow anything. + * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. + */ + bpf_for_each_reg_in_vstate(vstate, state, reg, ({ + if (reg->type == type && reg->id == dst_reg->id) + /* keep the maximum range already checked */ + reg->range = max(reg->range, new_range); + })); +} + +/* + * <reg1> <op> <reg2>, currently assuming reg2 is a constant + */ +static int is_scalar_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, + u8 opcode, bool is_jmp32) +{ + struct tnum t1 = is_jmp32 ? tnum_subreg(reg1->var_off) : reg1->var_off; + struct tnum t2 = is_jmp32 ? tnum_subreg(reg2->var_off) : reg2->var_off; + u64 umin1 = is_jmp32 ? (u64)reg1->u32_min_value : reg1->umin_value; + u64 umax1 = is_jmp32 ? (u64)reg1->u32_max_value : reg1->umax_value; + s64 smin1 = is_jmp32 ? (s64)reg1->s32_min_value : reg1->smin_value; + s64 smax1 = is_jmp32 ? (s64)reg1->s32_max_value : reg1->smax_value; + u64 umin2 = is_jmp32 ? (u64)reg2->u32_min_value : reg2->umin_value; + u64 umax2 = is_jmp32 ? (u64)reg2->u32_max_value : reg2->umax_value; + s64 smin2 = is_jmp32 ? (s64)reg2->s32_min_value : reg2->smin_value; + s64 smax2 = is_jmp32 ? (s64)reg2->s32_max_value : reg2->smax_value; + + if (reg1 == reg2) { + switch (opcode) { + case BPF_JGE: + case BPF_JLE: + case BPF_JSGE: + case BPF_JSLE: + case BPF_JEQ: + return 1; + case BPF_JGT: + case BPF_JLT: + case BPF_JSGT: + case BPF_JSLT: + case BPF_JNE: + return 0; + case BPF_JSET: + if (tnum_is_const(t1)) + return t1.value != 0; + else + return (smin1 <= 0 && smax1 >= 0) ? -1 : 1; + default: + return -1; + } + } + + switch (opcode) { + case BPF_JEQ: + /* constants, umin/umax and smin/smax checks would be + * redundant in this case because they all should match + */ + if (tnum_is_const(t1) && tnum_is_const(t2)) + return t1.value == t2.value; + if (!tnum_overlap(t1, t2)) + return 0; + /* non-overlapping ranges */ + if (umin1 > umax2 || umax1 < umin2) + return 0; + if (smin1 > smax2 || smax1 < smin2) + return 0; + if (!is_jmp32) { + /* if 64-bit ranges are inconclusive, see if we can + * utilize 32-bit subrange knowledge to eliminate + * branches that can't be taken a priori + */ + if (reg1->u32_min_value > reg2->u32_max_value || + reg1->u32_max_value < reg2->u32_min_value) + return 0; + if (reg1->s32_min_value > reg2->s32_max_value || + reg1->s32_max_value < reg2->s32_min_value) + return 0; + } + break; + case BPF_JNE: + /* constants, umin/umax and smin/smax checks would be + * redundant in this case because they all should match + */ + if (tnum_is_const(t1) && tnum_is_const(t2)) + return t1.value != t2.value; + if (!tnum_overlap(t1, t2)) + return 1; + /* non-overlapping ranges */ + if (umin1 > umax2 || umax1 < umin2) + return 1; + if (smin1 > smax2 || smax1 < smin2) + return 1; + if (!is_jmp32) { + /* if 64-bit ranges are inconclusive, see if we can + * utilize 32-bit subrange knowledge to eliminate + * branches that can't be taken a priori + */ + if (reg1->u32_min_value > reg2->u32_max_value || + reg1->u32_max_value < reg2->u32_min_value) + return 1; + if (reg1->s32_min_value > reg2->s32_max_value || + reg1->s32_max_value < reg2->s32_min_value) + return 1; + } + break; + case BPF_JSET: + if (!is_reg_const(reg2, is_jmp32)) { + swap(reg1, reg2); + swap(t1, t2); + } + if (!is_reg_const(reg2, is_jmp32)) + return -1; + if ((~t1.mask & t1.value) & t2.value) + return 1; + if (!((t1.mask | t1.value) & t2.value)) + return 0; + break; + case BPF_JGT: + if (umin1 > umax2) + return 1; + else if (umax1 <= umin2) + return 0; + break; + case BPF_JSGT: + if (smin1 > smax2) + return 1; + else if (smax1 <= smin2) + return 0; + break; + case BPF_JLT: + if (umax1 < umin2) + return 1; + else if (umin1 >= umax2) + return 0; + break; + case BPF_JSLT: + if (smax1 < smin2) + return 1; + else if (smin1 >= smax2) + return 0; + break; + case BPF_JGE: + if (umin1 >= umax2) + return 1; + else if (umax1 < umin2) + return 0; + break; + case BPF_JSGE: + if (smin1 >= smax2) + return 1; + else if (smax1 < smin2) + return 0; + break; + case BPF_JLE: + if (umax1 <= umin2) + return 1; + else if (umin1 > umax2) + return 0; + break; + case BPF_JSLE: + if (smax1 <= smin2) + return 1; + else if (smin1 > smax2) + return 0; + break; + } + + return -1; +} + +static int flip_opcode(u32 opcode) +{ + /* How can we transform "a <op> b" into "b <op> a"? */ + static const u8 opcode_flip[16] = { + /* these stay the same */ + [BPF_JEQ >> 4] = BPF_JEQ, + [BPF_JNE >> 4] = BPF_JNE, + [BPF_JSET >> 4] = BPF_JSET, + /* these swap "lesser" and "greater" (L and G in the opcodes) */ + [BPF_JGE >> 4] = BPF_JLE, + [BPF_JGT >> 4] = BPF_JLT, + [BPF_JLE >> 4] = BPF_JGE, + [BPF_JLT >> 4] = BPF_JGT, + [BPF_JSGE >> 4] = BPF_JSLE, + [BPF_JSGT >> 4] = BPF_JSLT, + [BPF_JSLE >> 4] = BPF_JSGE, + [BPF_JSLT >> 4] = BPF_JSGT + }; + return opcode_flip[opcode >> 4]; +} + +static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg, + u8 opcode) +{ + struct bpf_reg_state *pkt; + + if (src_reg->type == PTR_TO_PACKET_END) { + pkt = dst_reg; + } else if (dst_reg->type == PTR_TO_PACKET_END) { + pkt = src_reg; + opcode = flip_opcode(opcode); + } else { + return -1; + } + + if (pkt->range >= 0) + return -1; + + switch (opcode) { + case BPF_JLE: + /* pkt <= pkt_end */ + fallthrough; + case BPF_JGT: + /* pkt > pkt_end */ + if (pkt->range == BEYOND_PKT_END) + /* pkt has at last one extra byte beyond pkt_end */ + return opcode == BPF_JGT; + break; + case BPF_JLT: + /* pkt < pkt_end */ + fallthrough; + case BPF_JGE: + /* pkt >= pkt_end */ + if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) + return opcode == BPF_JGE; + break; + } + return -1; +} + +/* compute branch direction of the expression "if (<reg1> opcode <reg2>) goto target;" + * and return: + * 1 - branch will be taken and "goto target" will be executed + * 0 - branch will not be taken and fall-through to next insn + * -1 - unknown. Example: "if (reg1 < 5)" is unknown when register value + * range [0,10] + */ +static int is_branch_taken(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, + u8 opcode, bool is_jmp32) +{ + if (reg_is_pkt_pointer_any(reg1) && reg_is_pkt_pointer_any(reg2) && !is_jmp32) + return is_pkt_ptr_branch_taken(reg1, reg2, opcode); + + if (__is_pointer_value(false, reg1) || __is_pointer_value(false, reg2)) { + u64 val; + + /* arrange that reg2 is a scalar, and reg1 is a pointer */ + if (!is_reg_const(reg2, is_jmp32)) { + opcode = flip_opcode(opcode); + swap(reg1, reg2); + } + /* and ensure that reg2 is a constant */ + if (!is_reg_const(reg2, is_jmp32)) + return -1; + + if (!reg_not_null(reg1)) + return -1; + + /* If pointer is valid tests against zero will fail so we can + * use this to direct branch taken. + */ + val = reg_const_value(reg2, is_jmp32); + if (val != 0) + return -1; + + switch (opcode) { + case BPF_JEQ: + return 0; + case BPF_JNE: + return 1; + default: + return -1; + } + } + + /* now deal with two scalars, but not necessarily constants */ + return is_scalar_branch_taken(reg1, reg2, opcode, is_jmp32); +} + +/* Opcode that corresponds to a *false* branch condition. + * E.g., if r1 < r2, then reverse (false) condition is r1 >= r2 + */ +static u8 rev_opcode(u8 opcode) +{ + switch (opcode) { + case BPF_JEQ: return BPF_JNE; + case BPF_JNE: return BPF_JEQ; + /* JSET doesn't have it's reverse opcode in BPF, so add + * BPF_X flag to denote the reverse of that operation + */ + case BPF_JSET: return BPF_JSET | BPF_X; + case BPF_JSET | BPF_X: return BPF_JSET; + case BPF_JGE: return BPF_JLT; + case BPF_JGT: return BPF_JLE; + case BPF_JLE: return BPF_JGT; + case BPF_JLT: return BPF_JGE; + case BPF_JSGE: return BPF_JSLT; + case BPF_JSGT: return BPF_JSLE; + case BPF_JSLE: return BPF_JSGT; + case BPF_JSLT: return BPF_JSGE; + default: return 0; + } +} + +/* Refine range knowledge for <reg1> <op> <reg>2 conditional operation. */ +static void regs_refine_cond_op(struct bpf_reg_state *reg1, struct bpf_reg_state *reg2, + u8 opcode, bool is_jmp32) +{ + struct tnum t; + u64 val; + + /* In case of GE/GT/SGE/JST, reuse LE/LT/SLE/SLT logic from below */ + switch (opcode) { + case BPF_JGE: + case BPF_JGT: + case BPF_JSGE: + case BPF_JSGT: + opcode = flip_opcode(opcode); + swap(reg1, reg2); + break; + default: + break; + } + + switch (opcode) { + case BPF_JEQ: + if (is_jmp32) { + reg1->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); + reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); + reg1->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); + reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); + reg2->u32_min_value = reg1->u32_min_value; + reg2->u32_max_value = reg1->u32_max_value; + reg2->s32_min_value = reg1->s32_min_value; + reg2->s32_max_value = reg1->s32_max_value; + + t = tnum_intersect(tnum_subreg(reg1->var_off), tnum_subreg(reg2->var_off)); + reg1->var_off = tnum_with_subreg(reg1->var_off, t); + reg2->var_off = tnum_with_subreg(reg2->var_off, t); + } else { + reg1->umin_value = max(reg1->umin_value, reg2->umin_value); + reg1->umax_value = min(reg1->umax_value, reg2->umax_value); + reg1->smin_value = max(reg1->smin_value, reg2->smin_value); + reg1->smax_value = min(reg1->smax_value, reg2->smax_value); + reg2->umin_value = reg1->umin_value; + reg2->umax_value = reg1->umax_value; + reg2->smin_value = reg1->smin_value; + reg2->smax_value = reg1->smax_value; + + reg1->var_off = tnum_intersect(reg1->var_off, reg2->var_off); + reg2->var_off = reg1->var_off; + } + break; + case BPF_JNE: + if (!is_reg_const(reg2, is_jmp32)) + swap(reg1, reg2); + if (!is_reg_const(reg2, is_jmp32)) + break; + + /* try to recompute the bound of reg1 if reg2 is a const and + * is exactly the edge of reg1. + */ + val = reg_const_value(reg2, is_jmp32); + if (is_jmp32) { + /* u32_min_value is not equal to 0xffffffff at this point, + * because otherwise u32_max_value is 0xffffffff as well, + * in such a case both reg1 and reg2 would be constants, + * jump would be predicted and reg_set_min_max() won't + * be called. + * + * Same reasoning works for all {u,s}{min,max}{32,64} cases + * below. + */ + if (reg1->u32_min_value == (u32)val) + reg1->u32_min_value++; + if (reg1->u32_max_value == (u32)val) + reg1->u32_max_value--; + if (reg1->s32_min_value == (s32)val) + reg1->s32_min_value++; + if (reg1->s32_max_value == (s32)val) + reg1->s32_max_value--; + } else { + if (reg1->umin_value == (u64)val) + reg1->umin_value++; + if (reg1->umax_value == (u64)val) + reg1->umax_value--; + if (reg1->smin_value == (s64)val) + reg1->smin_value++; + if (reg1->smax_value == (s64)val) + reg1->smax_value--; + } + break; + case BPF_JSET: + if (!is_reg_const(reg2, is_jmp32)) + swap(reg1, reg2); + if (!is_reg_const(reg2, is_jmp32)) + break; + val = reg_const_value(reg2, is_jmp32); + /* BPF_JSET (i.e., TRUE branch, *not* BPF_JSET | BPF_X) + * requires single bit to learn something useful. E.g., if we + * know that `r1 & 0x3` is true, then which bits (0, 1, or both) + * are actually set? We can learn something definite only if + * it's a single-bit value to begin with. + * + * BPF_JSET | BPF_X (i.e., negation of BPF_JSET) doesn't have + * this restriction. I.e., !(r1 & 0x3) means neither bit 0 nor + * bit 1 is set, which we can readily use in adjustments. + */ + if (!is_power_of_2(val)) + break; + if (is_jmp32) { + t = tnum_or(tnum_subreg(reg1->var_off), tnum_const(val)); + reg1->var_off = tnum_with_subreg(reg1->var_off, t); + } else { + reg1->var_off = tnum_or(reg1->var_off, tnum_const(val)); + } + break; + case BPF_JSET | BPF_X: /* reverse of BPF_JSET, see rev_opcode() */ + if (!is_reg_const(reg2, is_jmp32)) + swap(reg1, reg2); + if (!is_reg_const(reg2, is_jmp32)) + break; + val = reg_const_value(reg2, is_jmp32); + /* Forget the ranges before narrowing tnums, to avoid invariant + * violations if we're on a dead branch. + */ + __mark_reg_unbounded(reg1); + if (is_jmp32) { + t = tnum_and(tnum_subreg(reg1->var_off), tnum_const(~val)); + reg1->var_off = tnum_with_subreg(reg1->var_off, t); + } else { + reg1->var_off = tnum_and(reg1->var_off, tnum_const(~val)); + } + break; + case BPF_JLE: + if (is_jmp32) { + reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value); + reg2->u32_min_value = max(reg1->u32_min_value, reg2->u32_min_value); + } else { + reg1->umax_value = min(reg1->umax_value, reg2->umax_value); + reg2->umin_value = max(reg1->umin_value, reg2->umin_value); + } + break; + case BPF_JLT: + if (is_jmp32) { + reg1->u32_max_value = min(reg1->u32_max_value, reg2->u32_max_value - 1); + reg2->u32_min_value = max(reg1->u32_min_value + 1, reg2->u32_min_value); + } else { + reg1->umax_value = min(reg1->umax_value, reg2->umax_value - 1); + reg2->umin_value = max(reg1->umin_value + 1, reg2->umin_value); + } + break; + case BPF_JSLE: + if (is_jmp32) { + reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value); + reg2->s32_min_value = max(reg1->s32_min_value, reg2->s32_min_value); + } else { + reg1->smax_value = min(reg1->smax_value, reg2->smax_value); + reg2->smin_value = max(reg1->smin_value, reg2->smin_value); + } + break; + case BPF_JSLT: + if (is_jmp32) { + reg1->s32_max_value = min(reg1->s32_max_value, reg2->s32_max_value - 1); + reg2->s32_min_value = max(reg1->s32_min_value + 1, reg2->s32_min_value); + } else { + reg1->smax_value = min(reg1->smax_value, reg2->smax_value - 1); + reg2->smin_value = max(reg1->smin_value + 1, reg2->smin_value); + } + break; + default: + return; + } +} + +/* Adjusts the register min/max values in the case that the dst_reg and + * src_reg are both SCALAR_VALUE registers (or we are simply doing a BPF_K + * check, in which case we have a fake SCALAR_VALUE representing insn->imm). + * Technically we can do similar adjustments for pointers to the same object, + * but we don't support that right now. + */ +static int reg_set_min_max(struct bpf_verifier_env *env, + struct bpf_reg_state *true_reg1, + struct bpf_reg_state *true_reg2, + struct bpf_reg_state *false_reg1, + struct bpf_reg_state *false_reg2, + u8 opcode, bool is_jmp32) +{ + int err; + + /* If either register is a pointer, we can't learn anything about its + * variable offset from the compare (unless they were a pointer into + * the same object, but we don't bother with that). + */ + if (false_reg1->type != SCALAR_VALUE || false_reg2->type != SCALAR_VALUE) + return 0; + + /* We compute branch direction for same SCALAR_VALUE registers in + * is_scalar_branch_taken(). For unknown branch directions (e.g., BPF_JSET) + * on the same registers, we don't need to adjust the min/max values. + */ + if (false_reg1 == false_reg2) + return 0; + + /* fallthrough (FALSE) branch */ + regs_refine_cond_op(false_reg1, false_reg2, rev_opcode(opcode), is_jmp32); + reg_bounds_sync(false_reg1); + reg_bounds_sync(false_reg2); + + /* jump (TRUE) branch */ + regs_refine_cond_op(true_reg1, true_reg2, opcode, is_jmp32); + reg_bounds_sync(true_reg1); + reg_bounds_sync(true_reg2); + + err = reg_bounds_sanity_check(env, true_reg1, "true_reg1"); + err = err ?: reg_bounds_sanity_check(env, true_reg2, "true_reg2"); + err = err ?: reg_bounds_sanity_check(env, false_reg1, "false_reg1"); + err = err ?: reg_bounds_sanity_check(env, false_reg2, "false_reg2"); + return err; +} + +static void mark_ptr_or_null_reg(struct bpf_func_state *state, + struct bpf_reg_state *reg, u32 id, + bool is_null) +{ + if (type_may_be_null(reg->type) && reg->id == id && + (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { + /* Old offset (both fixed and variable parts) should have been + * known-zero, because we don't allow pointer arithmetic on + * pointers that might be NULL. If we see this happening, don't + * convert the register. + * + * But in some cases, some helpers that return local kptrs + * advance offset for the returned pointer. In those cases, it + * is fine to expect to see reg->off. + */ + if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) + return; + if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && + WARN_ON_ONCE(reg->off)) + return; + + if (is_null) { + reg->type = SCALAR_VALUE; + /* We don't need id and ref_obj_id from this point + * onwards anymore, thus we should better reset it, + * so that state pruning has chances to take effect. + */ + reg->id = 0; + reg->ref_obj_id = 0; + + return; + } + + mark_ptr_not_null_reg(reg); + + if (!reg_may_point_to_spin_lock(reg)) { + /* For not-NULL ptr, reg->ref_obj_id will be reset + * in release_reference(). + * + * reg->id is still used by spin_lock ptr. Other + * than spin_lock ptr type, reg->id can be reset. + */ + reg->id = 0; + } + } +} + +/* The logic is similar to find_good_pkt_pointers(), both could eventually + * be folded together at some point. + */ +static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, + bool is_null) +{ + struct bpf_func_state *state = vstate->frame[vstate->curframe]; + struct bpf_reg_state *regs = state->regs, *reg; + u32 ref_obj_id = regs[regno].ref_obj_id; + u32 id = regs[regno].id; + + if (ref_obj_id && ref_obj_id == id && is_null) + /* regs[regno] is in the " == NULL" branch. + * No one could have freed the reference state before + * doing the NULL check. + */ + WARN_ON_ONCE(release_reference_nomark(vstate, id)); + + bpf_for_each_reg_in_vstate(vstate, state, reg, ({ + mark_ptr_or_null_reg(state, reg, id, is_null); + })); +} + +static bool try_match_pkt_pointers(const struct bpf_insn *insn, + struct bpf_reg_state *dst_reg, + struct bpf_reg_state *src_reg, + struct bpf_verifier_state *this_branch, + struct bpf_verifier_state *other_branch) +{ + if (BPF_SRC(insn->code) != BPF_X) + return false; + + /* Pointers are always 64-bit. */ + if (BPF_CLASS(insn->code) == BPF_JMP32) + return false; + + switch (BPF_OP(insn->code)) { + case BPF_JGT: + if ((dst_reg->type == PTR_TO_PACKET && + src_reg->type == PTR_TO_PACKET_END) || + (dst_reg->type == PTR_TO_PACKET_META && + reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { + /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ + find_good_pkt_pointers(this_branch, dst_reg, + dst_reg->type, false); + mark_pkt_end(other_branch, insn->dst_reg, true); + } else if ((dst_reg->type == PTR_TO_PACKET_END && + src_reg->type == PTR_TO_PACKET) || + (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && + src_reg->type == PTR_TO_PACKET_META)) { + /* pkt_end > pkt_data', pkt_data > pkt_meta' */ + find_good_pkt_pointers(other_branch, src_reg, + src_reg->type, true); + mark_pkt_end(this_branch, insn->src_reg, false); + } else { + return false; + } + break; + case BPF_JLT: + if ((dst_reg->type == PTR_TO_PACKET && + src_reg->type == PTR_TO_PACKET_END) || + (dst_reg->type == PTR_TO_PACKET_META && + reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { + /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ + find_good_pkt_pointers(other_branch, dst_reg, + dst_reg->type, true); + mark_pkt_end(this_branch, insn->dst_reg, false); + } else if ((dst_reg->type == PTR_TO_PACKET_END && + src_reg->type == PTR_TO_PACKET) || + (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && + src_reg->type == PTR_TO_PACKET_META)) { + /* pkt_end < pkt_data', pkt_data > pkt_meta' */ + find_good_pkt_pointers(this_branch, src_reg, + src_reg->type, false); + mark_pkt_end(other_branch, insn->src_reg, true); + } else { + return false; + } + break; + case BPF_JGE: + if ((dst_reg->type == PTR_TO_PACKET && + src_reg->type == PTR_TO_PACKET_END) || + (dst_reg->type == PTR_TO_PACKET_META && + reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { + /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ + find_good_pkt_pointers(this_branch, dst_reg, + dst_reg->type, true); + mark_pkt_end(other_branch, insn->dst_reg, false); + } else if ((dst_reg->type == PTR_TO_PACKET_END && + src_reg->type == PTR_TO_PACKET) || + (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && + src_reg->type == PTR_TO_PACKET_META)) { + /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ + find_good_pkt_pointers(other_branch, src_reg, + src_reg->type, false); + mark_pkt_end(this_branch, insn->src_reg, true); + } else { + return false; + } + break; + case BPF_JLE: + if ((dst_reg->type == PTR_TO_PACKET && + src_reg->type == PTR_TO_PACKET_END) || + (dst_reg->type == PTR_TO_PACKET_META && + reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { + /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ + find_good_pkt_pointers(other_branch, dst_reg, + dst_reg->type, false); + mark_pkt_end(this_branch, insn->dst_reg, true); + } else if ((dst_reg->type == PTR_TO_PACKET_END && + src_reg->type == PTR_TO_PACKET) || + (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && + src_reg->type == PTR_TO_PACKET_META)) { + /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ + find_good_pkt_pointers(this_branch, src_reg, + src_reg->type, true); + mark_pkt_end(other_branch, insn->src_reg, false); + } else { + return false; + } + break; + default: + return false; + } + + return true; +} + +static void __collect_linked_regs(struct linked_regs *reg_set, struct bpf_reg_state *reg, + u32 id, u32 frameno, u32 spi_or_reg, bool is_reg) +{ + struct linked_reg *e; + + if (reg->type != SCALAR_VALUE || (reg->id & ~BPF_ADD_CONST) != id) + return; + + e = linked_regs_push(reg_set); + if (e) { + e->frameno = frameno; + e->is_reg = is_reg; + e->regno = spi_or_reg; + } else { + reg->id = 0; + } +} + +/* For all R being scalar registers or spilled scalar registers + * in verifier state, save R in linked_regs if R->id == id. + * If there are too many Rs sharing same id, reset id for leftover Rs. + */ +static void collect_linked_regs(struct bpf_verifier_state *vstate, u32 id, + struct linked_regs *linked_regs) +{ + struct bpf_func_state *func; + struct bpf_reg_state *reg; + int i, j; + + id = id & ~BPF_ADD_CONST; + for (i = vstate->curframe; i >= 0; i--) { + func = vstate->frame[i]; + for (j = 0; j < BPF_REG_FP; j++) { + reg = &func->regs[j]; + __collect_linked_regs(linked_regs, reg, id, i, j, true); + } + for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { + if (!is_spilled_reg(&func->stack[j])) + continue; + reg = &func->stack[j].spilled_ptr; + __collect_linked_regs(linked_regs, reg, id, i, j, false); + } + } +} + +/* For all R in linked_regs, copy known_reg range into R + * if R->id == known_reg->id. + */ +static void sync_linked_regs(struct bpf_verifier_state *vstate, struct bpf_reg_state *known_reg, + struct linked_regs *linked_regs) +{ + struct bpf_reg_state fake_reg; + struct bpf_reg_state *reg; + struct linked_reg *e; + int i; + + for (i = 0; i < linked_regs->cnt; ++i) { + e = &linked_regs->entries[i]; + reg = e->is_reg ? &vstate->frame[e->frameno]->regs[e->regno] + : &vstate->frame[e->frameno]->stack[e->spi].spilled_ptr; + if (reg->type != SCALAR_VALUE || reg == known_reg) + continue; + if ((reg->id & ~BPF_ADD_CONST) != (known_reg->id & ~BPF_ADD_CONST)) + continue; + if ((!(reg->id & BPF_ADD_CONST) && !(known_reg->id & BPF_ADD_CONST)) || + reg->off == known_reg->off) { + s32 saved_subreg_def = reg->subreg_def; + + copy_register_state(reg, known_reg); + reg->subreg_def = saved_subreg_def; + } else { + s32 saved_subreg_def = reg->subreg_def; + s32 saved_off = reg->off; + + fake_reg.type = SCALAR_VALUE; + __mark_reg_known(&fake_reg, (s32)reg->off - (s32)known_reg->off); + + /* reg = known_reg; reg += delta */ + copy_register_state(reg, known_reg); + /* + * Must preserve off, id and add_const flag, + * otherwise another sync_linked_regs() will be incorrect. + */ + reg->off = saved_off; + reg->subreg_def = saved_subreg_def; + + scalar32_min_max_add(reg, &fake_reg); + scalar_min_max_add(reg, &fake_reg); + reg->var_off = tnum_add(reg->var_off, fake_reg.var_off); + } + } +} + +static int check_cond_jmp_op(struct bpf_verifier_env *env, + struct bpf_insn *insn, int *insn_idx) +{ + struct bpf_verifier_state *this_branch = env->cur_state; + struct bpf_verifier_state *other_branch; + struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; + struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; + struct bpf_reg_state *eq_branch_regs; + struct linked_regs linked_regs = {}; + u8 opcode = BPF_OP(insn->code); + int insn_flags = 0; + bool is_jmp32; + int pred = -1; + int err; + + /* Only conditional jumps are expected to reach here. */ + if (opcode == BPF_JA || opcode > BPF_JCOND) { + verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); + return -EINVAL; + } + + if (opcode == BPF_JCOND) { + struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; + int idx = *insn_idx; + + if (insn->code != (BPF_JMP | BPF_JCOND) || + insn->src_reg != BPF_MAY_GOTO || + insn->dst_reg || insn->imm) { + verbose(env, "invalid may_goto imm %d\n", insn->imm); + return -EINVAL; + } + prev_st = find_prev_entry(env, cur_st->parent, idx); + + /* branch out 'fallthrough' insn as a new state to explore */ + queued_st = push_stack(env, idx + 1, idx, false); + if (IS_ERR(queued_st)) + return PTR_ERR(queued_st); + + queued_st->may_goto_depth++; + if (prev_st) + widen_imprecise_scalars(env, prev_st, queued_st); + *insn_idx += insn->off; + return 0; + } + + /* check src2 operand */ + err = check_reg_arg(env, insn->dst_reg, SRC_OP); + if (err) + return err; + + dst_reg = ®s[insn->dst_reg]; + if (BPF_SRC(insn->code) == BPF_X) { + if (insn->imm != 0) { + verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); + return -EINVAL; + } + + /* check src1 operand */ + err = check_reg_arg(env, insn->src_reg, SRC_OP); + if (err) + return err; + + src_reg = ®s[insn->src_reg]; + if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && + is_pointer_value(env, insn->src_reg)) { + verbose(env, "R%d pointer comparison prohibited\n", + insn->src_reg); + return -EACCES; + } + + if (src_reg->type == PTR_TO_STACK) + insn_flags |= INSN_F_SRC_REG_STACK; + if (dst_reg->type == PTR_TO_STACK) + insn_flags |= INSN_F_DST_REG_STACK; + } else { + if (insn->src_reg != BPF_REG_0) { + verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); + return -EINVAL; + } + src_reg = &env->fake_reg[0]; + memset(src_reg, 0, sizeof(*src_reg)); + src_reg->type = SCALAR_VALUE; + __mark_reg_known(src_reg, insn->imm); + + if (dst_reg->type == PTR_TO_STACK) + insn_flags |= INSN_F_DST_REG_STACK; + } + + if (insn_flags) { + err = push_jmp_history(env, this_branch, insn_flags, 0); + if (err) + return err; + } + + is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; + pred = is_branch_taken(dst_reg, src_reg, opcode, is_jmp32); + if (pred >= 0) { + /* If we get here with a dst_reg pointer type it is because + * above is_branch_taken() special cased the 0 comparison. + */ + if (!__is_pointer_value(false, dst_reg)) + err = mark_chain_precision(env, insn->dst_reg); + if (BPF_SRC(insn->code) == BPF_X && !err && + !__is_pointer_value(false, src_reg)) + err = mark_chain_precision(env, insn->src_reg); + if (err) + return err; + } + + if (pred == 1) { + /* Only follow the goto, ignore fall-through. If needed, push + * the fall-through branch for simulation under speculative + * execution. + */ + if (!env->bypass_spec_v1) { + err = sanitize_speculative_path(env, insn, *insn_idx + 1, *insn_idx); + if (err < 0) + return err; + } + if (env->log.level & BPF_LOG_LEVEL) + print_insn_state(env, this_branch, this_branch->curframe); + *insn_idx += insn->off; + return 0; + } else if (pred == 0) { + /* Only follow the fall-through branch, since that's where the + * program will go. If needed, push the goto branch for + * simulation under speculative execution. + */ + if (!env->bypass_spec_v1) { + err = sanitize_speculative_path(env, insn, *insn_idx + insn->off + 1, + *insn_idx); + if (err < 0) + return err; + } + if (env->log.level & BPF_LOG_LEVEL) + print_insn_state(env, this_branch, this_branch->curframe); + return 0; + } + + /* Push scalar registers sharing same ID to jump history, + * do this before creating 'other_branch', so that both + * 'this_branch' and 'other_branch' share this history + * if parent state is created. + */ + if (BPF_SRC(insn->code) == BPF_X && src_reg->type == SCALAR_VALUE && src_reg->id) + collect_linked_regs(this_branch, src_reg->id, &linked_regs); + if (dst_reg->type == SCALAR_VALUE && dst_reg->id) + collect_linked_regs(this_branch, dst_reg->id, &linked_regs); + if (linked_regs.cnt > 1) { + err = push_jmp_history(env, this_branch, 0, linked_regs_pack(&linked_regs)); + if (err) + return err; + } + + other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, false); + if (IS_ERR(other_branch)) + return PTR_ERR(other_branch); + other_branch_regs = other_branch->frame[other_branch->curframe]->regs; + + if (BPF_SRC(insn->code) == BPF_X) { + err = reg_set_min_max(env, + &other_branch_regs[insn->dst_reg], + &other_branch_regs[insn->src_reg], + dst_reg, src_reg, opcode, is_jmp32); + } else /* BPF_SRC(insn->code) == BPF_K */ { + /* reg_set_min_max() can mangle the fake_reg. Make a copy + * so that these are two different memory locations. The + * src_reg is not used beyond here in context of K. + */ + memcpy(&env->fake_reg[1], &env->fake_reg[0], + sizeof(env->fake_reg[0])); + err = reg_set_min_max(env, + &other_branch_regs[insn->dst_reg], + &env->fake_reg[0], + dst_reg, &env->fake_reg[1], + opcode, is_jmp32); + } + if (err) + return err; + + if (BPF_SRC(insn->code) == BPF_X && + src_reg->type == SCALAR_VALUE && src_reg->id && + !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { + sync_linked_regs(this_branch, src_reg, &linked_regs); + sync_linked_regs(other_branch, &other_branch_regs[insn->src_reg], &linked_regs); + } + if (dst_reg->type == SCALAR_VALUE && dst_reg->id && + !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { + sync_linked_regs(this_branch, dst_reg, &linked_regs); + sync_linked_regs(other_branch, &other_branch_regs[insn->dst_reg], &linked_regs); + } + + /* if one pointer register is compared to another pointer + * register check if PTR_MAYBE_NULL could be lifted. + * E.g. register A - maybe null + * register B - not null + * for JNE A, B, ... - A is not null in the false branch; + * for JEQ A, B, ... - A is not null in the true branch. + * + * Since PTR_TO_BTF_ID points to a kernel struct that does + * not need to be null checked by the BPF program, i.e., + * could be null even without PTR_MAYBE_NULL marking, so + * only propagate nullness when neither reg is that type. + */ + if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && + __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && + type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && + base_type(src_reg->type) != PTR_TO_BTF_ID && + base_type(dst_reg->type) != PTR_TO_BTF_ID) { + eq_branch_regs = NULL; + switch (opcode) { + case BPF_JEQ: + eq_branch_regs = other_branch_regs; + break; + case BPF_JNE: + eq_branch_regs = regs; + break; + default: + /* do nothing */ + break; + } + if (eq_branch_regs) { + if (type_may_be_null(src_reg->type)) + mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); + else + mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); + } + } + + /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). + * NOTE: these optimizations below are related with pointer comparison + * which will never be JMP32. + */ + if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && + insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && + type_may_be_null(dst_reg->type)) { + /* Mark all identical registers in each branch as either + * safe or unknown depending R == 0 or R != 0 conditional. + */ + mark_ptr_or_null_regs(this_branch, insn->dst_reg, + opcode == BPF_JNE); + mark_ptr_or_null_regs(other_branch, insn->dst_reg, + opcode == BPF_JEQ); + } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], + this_branch, other_branch) && + is_pointer_value(env, insn->dst_reg)) { + verbose(env, "R%d pointer comparison prohibited\n", + insn->dst_reg); + return -EACCES; + } + if (env->log.level & BPF_LOG_LEVEL) + print_insn_state(env, this_branch, this_branch->curframe); + return 0; +} + +/* verify BPF_LD_IMM64 instruction */ +static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) +{ + struct bpf_insn_aux_data *aux = cur_aux(env); + struct bpf_reg_state *regs = cur_regs(env); + struct bpf_reg_state *dst_reg; + struct bpf_map *map; + int err; + + if (BPF_SIZE(insn->code) != BPF_DW) { + verbose(env, "invalid BPF_LD_IMM insn\n"); + return -EINVAL; + } + if (insn->off != 0) { + verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); + return -EINVAL; + } + + err = check_reg_arg(env, insn->dst_reg, DST_OP); + if (err) + return err; + + dst_reg = ®s[insn->dst_reg]; + if (insn->src_reg == 0) { + u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; + + dst_reg->type = SCALAR_VALUE; + __mark_reg_known(®s[insn->dst_reg], imm); + return 0; + } + + /* All special src_reg cases are listed below. From this point onwards + * we either succeed and assign a corresponding dst_reg->type after + * zeroing the offset, or fail and reject the program. + */ + mark_reg_known_zero(env, regs, insn->dst_reg); + + if (insn->src_reg == BPF_PSEUDO_BTF_ID) { + dst_reg->type = aux->btf_var.reg_type; + switch (base_type(dst_reg->type)) { + case PTR_TO_MEM: + dst_reg->mem_size = aux->btf_var.mem_size; + break; + case PTR_TO_BTF_ID: + dst_reg->btf = aux->btf_var.btf; + dst_reg->btf_id = aux->btf_var.btf_id; + break; + default: + verifier_bug(env, "pseudo btf id: unexpected dst reg type"); + return -EFAULT; + } + return 0; + } + + if (insn->src_reg == BPF_PSEUDO_FUNC) { + struct bpf_prog_aux *aux = env->prog->aux; + u32 subprogno = find_subprog(env, + env->insn_idx + insn->imm + 1); + + if (!aux->func_info) { + verbose(env, "missing btf func_info\n"); + return -EINVAL; + } + if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { + verbose(env, "callback function not static\n"); + return -EINVAL; + } + + dst_reg->type = PTR_TO_FUNC; + dst_reg->subprogno = subprogno; + return 0; + } + + map = env->used_maps[aux->map_index]; + dst_reg->map_ptr = map; + + if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || + insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { + if (map->map_type == BPF_MAP_TYPE_ARENA) { + __mark_reg_unknown(env, dst_reg); + return 0; + } + dst_reg->type = PTR_TO_MAP_VALUE; + dst_reg->off = aux->map_off; + WARN_ON_ONCE(map->map_type != BPF_MAP_TYPE_INSN_ARRAY && + map->max_entries != 1); + /* We want reg->id to be same (0) as map_value is not distinct */ + } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || + insn->src_reg == BPF_PSEUDO_MAP_IDX) { + dst_reg->type = CONST_PTR_TO_MAP; + } else { + verifier_bug(env, "unexpected src reg value for ldimm64"); + return -EFAULT; + } + + return 0; +} + +static bool may_access_skb(enum bpf_prog_type type) +{ + switch (type) { + case BPF_PROG_TYPE_SOCKET_FILTER: + case BPF_PROG_TYPE_SCHED_CLS: + case BPF_PROG_TYPE_SCHED_ACT: + return true; + default: + return false; + } +} + +/* verify safety of LD_ABS|LD_IND instructions: + * - they can only appear in the programs where ctx == skb + * - since they are wrappers of function calls, they scratch R1-R5 registers, + * preserve R6-R9, and store return value into R0 + * + * Implicit input: + * ctx == skb == R6 == CTX + * + * Explicit input: + * SRC == any register + * IMM == 32-bit immediate + * + * Output: + * R0 - 8/16/32-bit skb data converted to cpu endianness + */ +static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) +{ + struct bpf_reg_state *regs = cur_regs(env); + static const int ctx_reg = BPF_REG_6; + u8 mode = BPF_MODE(insn->code); + int i, err; + + if (!may_access_skb(resolve_prog_type(env->prog))) { + verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); + return -EINVAL; + } + + if (!env->ops->gen_ld_abs) { + verifier_bug(env, "gen_ld_abs is null"); + return -EFAULT; + } + + if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || + BPF_SIZE(insn->code) == BPF_DW || + (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { + verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); + return -EINVAL; + } + + /* check whether implicit source operand (register R6) is readable */ + err = check_reg_arg(env, ctx_reg, SRC_OP); + if (err) + return err; + + /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as + * gen_ld_abs() may terminate the program at runtime, leading to + * reference leak. + */ + err = check_resource_leak(env, false, true, "BPF_LD_[ABS|IND]"); + if (err) + return err; + + if (regs[ctx_reg].type != PTR_TO_CTX) { + verbose(env, + "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); + return -EINVAL; + } + + if (mode == BPF_IND) { + /* check explicit source operand */ + err = check_reg_arg(env, insn->src_reg, SRC_OP); + if (err) + return err; + } + + err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); + if (err < 0) + return err; + + /* reset caller saved regs to unreadable */ + for (i = 0; i < CALLER_SAVED_REGS; i++) { + mark_reg_not_init(env, regs, caller_saved[i]); + check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); + } + + /* mark destination R0 register as readable, since it contains + * the value fetched from the packet. + * Already marked as written above. + */ + mark_reg_unknown(env, regs, BPF_REG_0); + /* ld_abs load up to 32-bit skb data. */ + regs[BPF_REG_0].subreg_def = env->insn_idx + 1; + return 0; +} + +static int check_return_code(struct bpf_verifier_env *env, int regno, const char *reg_name) +{ + const char *exit_ctx = "At program exit"; + struct tnum enforce_attach_type_range = tnum_unknown; + const struct bpf_prog *prog = env->prog; + struct bpf_reg_state *reg = reg_state(env, regno); + struct bpf_retval_range range = retval_range(0, 1); + enum bpf_prog_type prog_type = resolve_prog_type(env->prog); + int err; + struct bpf_func_state *frame = env->cur_state->frame[0]; + const bool is_subprog = frame->subprogno; + bool return_32bit = false; + const struct btf_type *reg_type, *ret_type = NULL; + + /* LSM and struct_ops func-ptr's return type could be "void" */ + if (!is_subprog || frame->in_exception_callback_fn) { + switch (prog_type) { + case BPF_PROG_TYPE_LSM: + if (prog->expected_attach_type == BPF_LSM_CGROUP) + /* See below, can be 0 or 0-1 depending on hook. */ + break; + if (!prog->aux->attach_func_proto->type) + return 0; + break; + case BPF_PROG_TYPE_STRUCT_OPS: + if (!prog->aux->attach_func_proto->type) + return 0; + + if (frame->in_exception_callback_fn) + break; + + /* Allow a struct_ops program to return a referenced kptr if it + * matches the operator's return type and is in its unmodified + * form. A scalar zero (i.e., a null pointer) is also allowed. + */ + reg_type = reg->btf ? btf_type_by_id(reg->btf, reg->btf_id) : NULL; + ret_type = btf_type_resolve_ptr(prog->aux->attach_btf, + prog->aux->attach_func_proto->type, + NULL); + if (ret_type && ret_type == reg_type && reg->ref_obj_id) + return __check_ptr_off_reg(env, reg, regno, false); + break; + default: + break; + } + } + + /* eBPF calling convention is such that R0 is used + * to return the value from eBPF program. + * Make sure that it's readable at this time + * of bpf_exit, which means that program wrote + * something into it earlier + */ + err = check_reg_arg(env, regno, SRC_OP); + if (err) + return err; + + if (is_pointer_value(env, regno)) { + verbose(env, "R%d leaks addr as return value\n", regno); + return -EACCES; + } + + if (frame->in_async_callback_fn) { + exit_ctx = "At async callback return"; + range = frame->callback_ret_range; + goto enforce_retval; + } + + if (is_subprog && !frame->in_exception_callback_fn) { + if (reg->type != SCALAR_VALUE) { + verbose(env, "At subprogram exit the register R%d is not a scalar value (%s)\n", + regno, reg_type_str(env, reg->type)); + return -EINVAL; + } + return 0; + } + + switch (prog_type) { + case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: + if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || + env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || + env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || + env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || + env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || + env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || + env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || + env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || + env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) + range = retval_range(1, 1); + if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || + env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) + range = retval_range(0, 3); + break; + case BPF_PROG_TYPE_CGROUP_SKB: + if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { + range = retval_range(0, 3); + enforce_attach_type_range = tnum_range(2, 3); + } + break; + case BPF_PROG_TYPE_CGROUP_SOCK: + case BPF_PROG_TYPE_SOCK_OPS: + case BPF_PROG_TYPE_CGROUP_DEVICE: + case BPF_PROG_TYPE_CGROUP_SYSCTL: + case BPF_PROG_TYPE_CGROUP_SOCKOPT: + break; + case BPF_PROG_TYPE_RAW_TRACEPOINT: + if (!env->prog->aux->attach_btf_id) + return 0; + range = retval_range(0, 0); + break; + case BPF_PROG_TYPE_TRACING: + switch (env->prog->expected_attach_type) { + case BPF_TRACE_FENTRY: + case BPF_TRACE_FEXIT: + range = retval_range(0, 0); + break; + case BPF_TRACE_RAW_TP: + case BPF_MODIFY_RETURN: + return 0; + case BPF_TRACE_ITER: + break; + default: + return -ENOTSUPP; + } + break; + case BPF_PROG_TYPE_KPROBE: + switch (env->prog->expected_attach_type) { + case BPF_TRACE_KPROBE_SESSION: + case BPF_TRACE_UPROBE_SESSION: + range = retval_range(0, 1); + break; + default: + return 0; + } + break; + case BPF_PROG_TYPE_SK_LOOKUP: + range = retval_range(SK_DROP, SK_PASS); + break; + + case BPF_PROG_TYPE_LSM: + if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { + /* no range found, any return value is allowed */ + if (!get_func_retval_range(env->prog, &range)) + return 0; + /* no restricted range, any return value is allowed */ + if (range.minval == S32_MIN && range.maxval == S32_MAX) + return 0; + return_32bit = true; + } else if (!env->prog->aux->attach_func_proto->type) { + /* Make sure programs that attach to void + * hooks don't try to modify return value. + */ + range = retval_range(1, 1); + } + break; + + case BPF_PROG_TYPE_NETFILTER: + range = retval_range(NF_DROP, NF_ACCEPT); + break; + case BPF_PROG_TYPE_STRUCT_OPS: + if (!ret_type) + return 0; + range = retval_range(0, 0); + break; + case BPF_PROG_TYPE_EXT: + /* freplace program can return anything as its return value + * depends on the to-be-replaced kernel func or bpf program. + */ + default: + return 0; + } + +enforce_retval: + if (reg->type != SCALAR_VALUE) { + verbose(env, "%s the register R%d is not a known value (%s)\n", + exit_ctx, regno, reg_type_str(env, reg->type)); + return -EINVAL; + } + + err = mark_chain_precision(env, regno); + if (err) + return err; + + if (!retval_range_within(range, reg, return_32bit)) { + verbose_invalid_scalar(env, reg, range, exit_ctx, reg_name); + if (!is_subprog && + prog->expected_attach_type == BPF_LSM_CGROUP && + prog_type == BPF_PROG_TYPE_LSM && + !prog->aux->attach_func_proto->type) + verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); + return -EINVAL; + } + + if (!tnum_is_unknown(enforce_attach_type_range) && + tnum_in(enforce_attach_type_range, reg->var_off)) + env->prog->enforce_expected_attach_type = 1; + return 0; +} + +static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off) +{ + struct bpf_subprog_info *subprog; + + subprog = bpf_find_containing_subprog(env, off); + subprog->changes_pkt_data = true; +} + +static void mark_subprog_might_sleep(struct bpf_verifier_env *env, int off) +{ + struct bpf_subprog_info *subprog; + + subprog = bpf_find_containing_subprog(env, off); + subprog->might_sleep = true; +} + +/* 't' is an index of a call-site. + * 'w' is a callee entry point. + * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED. + * Rely on DFS traversal order and absence of recursive calls to guarantee that + * callee's change_pkt_data marks would be correct at that moment. + */ +static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w) +{ + struct bpf_subprog_info *caller, *callee; + + caller = bpf_find_containing_subprog(env, t); + callee = bpf_find_containing_subprog(env, w); + caller->changes_pkt_data |= callee->changes_pkt_data; + caller->might_sleep |= callee->might_sleep; +} + +/* non-recursive DFS pseudo code + * 1 procedure DFS-iterative(G,v): + * 2 label v as discovered + * 3 let S be a stack + * 4 S.push(v) + * 5 while S is not empty + * 6 t <- S.peek() + * 7 if t is what we're looking for: + * 8 return t + * 9 for all edges e in G.adjacentEdges(t) do + * 10 if edge e is already labelled + * 11 continue with the next edge + * 12 w <- G.adjacentVertex(t,e) + * 13 if vertex w is not discovered and not explored + * 14 label e as tree-edge + * 15 label w as discovered + * 16 S.push(w) + * 17 continue at 5 + * 18 else if vertex w is discovered + * 19 label e as back-edge + * 20 else + * 21 // vertex w is explored + * 22 label e as forward- or cross-edge + * 23 label t as explored + * 24 S.pop() + * + * convention: + * 0x10 - discovered + * 0x11 - discovered and fall-through edge labelled + * 0x12 - discovered and fall-through and branch edges labelled + * 0x20 - explored + */ + +enum { + DISCOVERED = 0x10, + EXPLORED = 0x20, + FALLTHROUGH = 1, + BRANCH = 2, +}; + +static void mark_prune_point(struct bpf_verifier_env *env, int idx) +{ + env->insn_aux_data[idx].prune_point = true; +} + +static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) +{ + return env->insn_aux_data[insn_idx].prune_point; +} + +static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) +{ + env->insn_aux_data[idx].force_checkpoint = true; +} + +static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) +{ + return env->insn_aux_data[insn_idx].force_checkpoint; +} + +static void mark_calls_callback(struct bpf_verifier_env *env, int idx) +{ + env->insn_aux_data[idx].calls_callback = true; +} + +bool bpf_calls_callback(struct bpf_verifier_env *env, int insn_idx) +{ + return env->insn_aux_data[insn_idx].calls_callback; +} + +enum { + DONE_EXPLORING = 0, + KEEP_EXPLORING = 1, +}; + +/* t, w, e - match pseudo-code above: + * t - index of current instruction + * w - next instruction + * e - edge + */ +static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) +{ + int *insn_stack = env->cfg.insn_stack; + int *insn_state = env->cfg.insn_state; + + if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) + return DONE_EXPLORING; + + if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) + return DONE_EXPLORING; + + if (w < 0 || w >= env->prog->len) { + verbose_linfo(env, t, "%d: ", t); + verbose(env, "jump out of range from insn %d to %d\n", t, w); + return -EINVAL; + } + + if (e == BRANCH) { + /* mark branch target for state pruning */ + mark_prune_point(env, w); + mark_jmp_point(env, w); + } + + if (insn_state[w] == 0) { + /* tree-edge */ + insn_state[t] = DISCOVERED | e; + insn_state[w] = DISCOVERED; + if (env->cfg.cur_stack >= env->prog->len) + return -E2BIG; + insn_stack[env->cfg.cur_stack++] = w; + return KEEP_EXPLORING; + } else if ((insn_state[w] & 0xF0) == DISCOVERED) { + if (env->bpf_capable) + return DONE_EXPLORING; + verbose_linfo(env, t, "%d: ", t); + verbose_linfo(env, w, "%d: ", w); + verbose(env, "back-edge from insn %d to %d\n", t, w); + return -EINVAL; + } else if (insn_state[w] == EXPLORED) { + /* forward- or cross-edge */ + insn_state[t] = DISCOVERED | e; + } else { + verifier_bug(env, "insn state internal bug"); + return -EFAULT; + } + return DONE_EXPLORING; +} + +static int visit_func_call_insn(int t, struct bpf_insn *insns, + struct bpf_verifier_env *env, + bool visit_callee) +{ + int ret, insn_sz; + int w; + + insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; + ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); + if (ret) + return ret; + + mark_prune_point(env, t + insn_sz); + /* when we exit from subprog, we need to record non-linear history */ + mark_jmp_point(env, t + insn_sz); + + if (visit_callee) { + w = t + insns[t].imm + 1; + mark_prune_point(env, t); + merge_callee_effects(env, t, w); + ret = push_insn(t, w, BRANCH, env); + } + return ret; +} + +/* Bitmask with 1s for all caller saved registers */ +#define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) + +/* True if do_misc_fixups() replaces calls to helper number 'imm', + * replacement patch is presumed to follow bpf_fastcall contract + * (see mark_fastcall_pattern_for_call() below). + */ +static bool verifier_inlines_helper_call(struct bpf_verifier_env *env, s32 imm) +{ + switch (imm) { +#ifdef CONFIG_X86_64 + case BPF_FUNC_get_smp_processor_id: + return env->prog->jit_requested && bpf_jit_supports_percpu_insn(); +#endif + default: + return false; + } +} + +struct call_summary { + u8 num_params; + bool is_void; + bool fastcall; +}; + +/* If @call is a kfunc or helper call, fills @cs and returns true, + * otherwise returns false. + */ +static bool get_call_summary(struct bpf_verifier_env *env, struct bpf_insn *call, + struct call_summary *cs) +{ + struct bpf_kfunc_call_arg_meta meta; + const struct bpf_func_proto *fn; + int i; + + if (bpf_helper_call(call)) { + + if (get_helper_proto(env, call->imm, &fn) < 0) + /* error would be reported later */ + return false; + cs->fastcall = fn->allow_fastcall && + (verifier_inlines_helper_call(env, call->imm) || + bpf_jit_inlines_helper_call(call->imm)); + cs->is_void = fn->ret_type == RET_VOID; + cs->num_params = 0; + for (i = 0; i < ARRAY_SIZE(fn->arg_type); ++i) { + if (fn->arg_type[i] == ARG_DONTCARE) + break; + cs->num_params++; + } + return true; + } + + if (bpf_pseudo_kfunc_call(call)) { + int err; + + err = fetch_kfunc_meta(env, call, &meta, NULL); + if (err < 0) + /* error would be reported later */ + return false; + cs->num_params = btf_type_vlen(meta.func_proto); + cs->fastcall = meta.kfunc_flags & KF_FASTCALL; + cs->is_void = btf_type_is_void(btf_type_by_id(meta.btf, meta.func_proto->type)); + return true; + } + + return false; +} + +/* LLVM define a bpf_fastcall function attribute. + * This attribute means that function scratches only some of + * the caller saved registers defined by ABI. + * For BPF the set of such registers could be defined as follows: + * - R0 is scratched only if function is non-void; + * - R1-R5 are scratched only if corresponding parameter type is defined + * in the function prototype. + * + * The contract between kernel and clang allows to simultaneously use + * such functions and maintain backwards compatibility with old + * kernels that don't understand bpf_fastcall calls: + * + * - for bpf_fastcall calls clang allocates registers as-if relevant r0-r5 + * registers are not scratched by the call; + * + * - as a post-processing step, clang visits each bpf_fastcall call and adds + * spill/fill for every live r0-r5; + * + * - stack offsets used for the spill/fill are allocated as lowest + * stack offsets in whole function and are not used for any other + * purposes; + * + * - when kernel loads a program, it looks for such patterns + * (bpf_fastcall function surrounded by spills/fills) and checks if + * spill/fill stack offsets are used exclusively in fastcall patterns; + * + * - if so, and if verifier or current JIT inlines the call to the + * bpf_fastcall function (e.g. a helper call), kernel removes unnecessary + * spill/fill pairs; + * + * - when old kernel loads a program, presence of spill/fill pairs + * keeps BPF program valid, albeit slightly less efficient. + * + * For example: + * + * r1 = 1; + * r2 = 2; + * *(u64 *)(r10 - 8) = r1; r1 = 1; + * *(u64 *)(r10 - 16) = r2; r2 = 2; + * call %[to_be_inlined] --> call %[to_be_inlined] + * r2 = *(u64 *)(r10 - 16); r0 = r1; + * r1 = *(u64 *)(r10 - 8); r0 += r2; + * r0 = r1; exit; + * r0 += r2; + * exit; + * + * The purpose of mark_fastcall_pattern_for_call is to: + * - look for such patterns; + * - mark spill and fill instructions in env->insn_aux_data[*].fastcall_pattern; + * - mark set env->insn_aux_data[*].fastcall_spills_num for call instruction; + * - update env->subprog_info[*]->fastcall_stack_off to find an offset + * at which bpf_fastcall spill/fill stack slots start; + * - update env->subprog_info[*]->keep_fastcall_stack. + * + * The .fastcall_pattern and .fastcall_stack_off are used by + * check_fastcall_stack_contract() to check if every stack access to + * fastcall spill/fill stack slot originates from spill/fill + * instructions, members of fastcall patterns. + * + * If such condition holds true for a subprogram, fastcall patterns could + * be rewritten by remove_fastcall_spills_fills(). + * Otherwise bpf_fastcall patterns are not changed in the subprogram + * (code, presumably, generated by an older clang version). + * + * For example, it is *not* safe to remove spill/fill below: + * + * r1 = 1; + * *(u64 *)(r10 - 8) = r1; r1 = 1; + * call %[to_be_inlined] --> call %[to_be_inlined] + * r1 = *(u64 *)(r10 - 8); r0 = *(u64 *)(r10 - 8); <---- wrong !!! + * r0 = *(u64 *)(r10 - 8); r0 += r1; + * r0 += r1; exit; + * exit; + */ +static void mark_fastcall_pattern_for_call(struct bpf_verifier_env *env, + struct bpf_subprog_info *subprog, + int insn_idx, s16 lowest_off) +{ + struct bpf_insn *insns = env->prog->insnsi, *stx, *ldx; + struct bpf_insn *call = &env->prog->insnsi[insn_idx]; + u32 clobbered_regs_mask; + struct call_summary cs; + u32 expected_regs_mask; + s16 off; + int i; + + if (!get_call_summary(env, call, &cs)) + return; + + /* A bitmask specifying which caller saved registers are clobbered + * by a call to a helper/kfunc *as if* this helper/kfunc follows + * bpf_fastcall contract: + * - includes R0 if function is non-void; + * - includes R1-R5 if corresponding parameter has is described + * in the function prototype. + */ + clobbered_regs_mask = GENMASK(cs.num_params, cs.is_void ? 1 : 0); + /* e.g. if helper call clobbers r{0,1}, expect r{2,3,4,5} in the pattern */ + expected_regs_mask = ~clobbered_regs_mask & ALL_CALLER_SAVED_REGS; + + /* match pairs of form: + * + * *(u64 *)(r10 - Y) = rX (where Y % 8 == 0) + * ... + * call %[to_be_inlined] + * ... + * rX = *(u64 *)(r10 - Y) + */ + for (i = 1, off = lowest_off; i <= ARRAY_SIZE(caller_saved); ++i, off += BPF_REG_SIZE) { + if (insn_idx - i < 0 || insn_idx + i >= env->prog->len) + break; + stx = &insns[insn_idx - i]; + ldx = &insns[insn_idx + i]; + /* must be a stack spill/fill pair */ + if (stx->code != (BPF_STX | BPF_MEM | BPF_DW) || + ldx->code != (BPF_LDX | BPF_MEM | BPF_DW) || + stx->dst_reg != BPF_REG_10 || + ldx->src_reg != BPF_REG_10) + break; + /* must be a spill/fill for the same reg */ + if (stx->src_reg != ldx->dst_reg) + break; + /* must be one of the previously unseen registers */ + if ((BIT(stx->src_reg) & expected_regs_mask) == 0) + break; + /* must be a spill/fill for the same expected offset, + * no need to check offset alignment, BPF_DW stack access + * is always 8-byte aligned. + */ + if (stx->off != off || ldx->off != off) + break; + expected_regs_mask &= ~BIT(stx->src_reg); + env->insn_aux_data[insn_idx - i].fastcall_pattern = 1; + env->insn_aux_data[insn_idx + i].fastcall_pattern = 1; + } + if (i == 1) + return; + + /* Conditionally set 'fastcall_spills_num' to allow forward + * compatibility when more helper functions are marked as + * bpf_fastcall at compile time than current kernel supports, e.g: + * + * 1: *(u64 *)(r10 - 8) = r1 + * 2: call A ;; assume A is bpf_fastcall for current kernel + * 3: r1 = *(u64 *)(r10 - 8) + * 4: *(u64 *)(r10 - 8) = r1 + * 5: call B ;; assume B is not bpf_fastcall for current kernel + * 6: r1 = *(u64 *)(r10 - 8) + * + * There is no need to block bpf_fastcall rewrite for such program. + * Set 'fastcall_pattern' for both calls to keep check_fastcall_stack_contract() happy, + * don't set 'fastcall_spills_num' for call B so that remove_fastcall_spills_fills() + * does not remove spill/fill pair {4,6}. + */ + if (cs.fastcall) + env->insn_aux_data[insn_idx].fastcall_spills_num = i - 1; + else + subprog->keep_fastcall_stack = 1; + subprog->fastcall_stack_off = min(subprog->fastcall_stack_off, off); +} + +static int mark_fastcall_patterns(struct bpf_verifier_env *env) +{ + struct bpf_subprog_info *subprog = env->subprog_info; + struct bpf_insn *insn; + s16 lowest_off; + int s, i; + + for (s = 0; s < env->subprog_cnt; ++s, ++subprog) { + /* find lowest stack spill offset used in this subprog */ + lowest_off = 0; + for (i = subprog->start; i < (subprog + 1)->start; ++i) { + insn = env->prog->insnsi + i; + if (insn->code != (BPF_STX | BPF_MEM | BPF_DW) || + insn->dst_reg != BPF_REG_10) + continue; + lowest_off = min(lowest_off, insn->off); + } + /* use this offset to find fastcall patterns */ + for (i = subprog->start; i < (subprog + 1)->start; ++i) { + insn = env->prog->insnsi + i; + if (insn->code != (BPF_JMP | BPF_CALL)) + continue; + mark_fastcall_pattern_for_call(env, subprog, i, lowest_off); + } + } + return 0; +} + +static struct bpf_iarray *iarray_realloc(struct bpf_iarray *old, size_t n_elem) +{ + size_t new_size = sizeof(struct bpf_iarray) + n_elem * sizeof(old->items[0]); + struct bpf_iarray *new; + + new = kvrealloc(old, new_size, GFP_KERNEL_ACCOUNT); + if (!new) { + /* this is what callers always want, so simplify the call site */ + kvfree(old); + return NULL; + } + + new->cnt = n_elem; + return new; +} + +static int copy_insn_array(struct bpf_map *map, u32 start, u32 end, u32 *items) +{ + struct bpf_insn_array_value *value; + u32 i; + + for (i = start; i <= end; i++) { + value = map->ops->map_lookup_elem(map, &i); + /* + * map_lookup_elem of an array map will never return an error, + * but not checking it makes some static analysers to worry + */ + if (IS_ERR(value)) + return PTR_ERR(value); + else if (!value) + return -EINVAL; + items[i - start] = value->xlated_off; + } + return 0; +} + +static int cmp_ptr_to_u32(const void *a, const void *b) +{ + return *(u32 *)a - *(u32 *)b; +} + +static int sort_insn_array_uniq(u32 *items, int cnt) +{ + int unique = 1; + int i; + + sort(items, cnt, sizeof(items[0]), cmp_ptr_to_u32, NULL); + + for (i = 1; i < cnt; i++) + if (items[i] != items[unique - 1]) + items[unique++] = items[i]; + + return unique; +} + +/* + * sort_unique({map[start], ..., map[end]}) into off + */ +static int copy_insn_array_uniq(struct bpf_map *map, u32 start, u32 end, u32 *off) +{ + u32 n = end - start + 1; + int err; + + err = copy_insn_array(map, start, end, off); + if (err) + return err; + + return sort_insn_array_uniq(off, n); +} + +/* + * Copy all unique offsets from the map + */ +static struct bpf_iarray *jt_from_map(struct bpf_map *map) +{ + struct bpf_iarray *jt; + int err; + int n; + + jt = iarray_realloc(NULL, map->max_entries); + if (!jt) + return ERR_PTR(-ENOMEM); + + n = copy_insn_array_uniq(map, 0, map->max_entries - 1, jt->items); + if (n < 0) { + err = n; + goto err_free; + } + if (n == 0) { + err = -EINVAL; + goto err_free; + } + jt->cnt = n; + return jt; + +err_free: + kvfree(jt); + return ERR_PTR(err); +} + +/* + * Find and collect all maps which fit in the subprog. Return the result as one + * combined jump table in jt->items (allocated with kvcalloc) + */ +static struct bpf_iarray *jt_from_subprog(struct bpf_verifier_env *env, + int subprog_start, int subprog_end) +{ + struct bpf_iarray *jt = NULL; + struct bpf_map *map; + struct bpf_iarray *jt_cur; + int i; + + for (i = 0; i < env->insn_array_map_cnt; i++) { + /* + * TODO (when needed): collect only jump tables, not static keys + * or maps for indirect calls + */ + map = env->insn_array_maps[i]; + + jt_cur = jt_from_map(map); + if (IS_ERR(jt_cur)) { + kvfree(jt); + return jt_cur; + } + + /* + * This is enough to check one element. The full table is + * checked to fit inside the subprog later in create_jt() + */ + if (jt_cur->items[0] >= subprog_start && jt_cur->items[0] < subprog_end) { + u32 old_cnt = jt ? jt->cnt : 0; + jt = iarray_realloc(jt, old_cnt + jt_cur->cnt); + if (!jt) { + kvfree(jt_cur); + return ERR_PTR(-ENOMEM); + } + memcpy(jt->items + old_cnt, jt_cur->items, jt_cur->cnt << 2); + } + + kvfree(jt_cur); + } + + if (!jt) { + verbose(env, "no jump tables found for subprog starting at %u\n", subprog_start); + return ERR_PTR(-EINVAL); + } + + jt->cnt = sort_insn_array_uniq(jt->items, jt->cnt); + return jt; +} + +static struct bpf_iarray * +create_jt(int t, struct bpf_verifier_env *env) +{ + static struct bpf_subprog_info *subprog; + int subprog_start, subprog_end; + struct bpf_iarray *jt; + int i; + + subprog = bpf_find_containing_subprog(env, t); + subprog_start = subprog->start; + subprog_end = (subprog + 1)->start; + jt = jt_from_subprog(env, subprog_start, subprog_end); + if (IS_ERR(jt)) + return jt; + + /* Check that the every element of the jump table fits within the given subprogram */ + for (i = 0; i < jt->cnt; i++) { + if (jt->items[i] < subprog_start || jt->items[i] >= subprog_end) { + verbose(env, "jump table for insn %d points outside of the subprog [%u,%u]\n", + t, subprog_start, subprog_end); + kvfree(jt); + return ERR_PTR(-EINVAL); + } + } + + return jt; +} + +/* "conditional jump with N edges" */ +static int visit_gotox_insn(int t, struct bpf_verifier_env *env) +{ + int *insn_stack = env->cfg.insn_stack; + int *insn_state = env->cfg.insn_state; + bool keep_exploring = false; + struct bpf_iarray *jt; + int i, w; + + jt = env->insn_aux_data[t].jt; + if (!jt) { + jt = create_jt(t, env); + if (IS_ERR(jt)) + return PTR_ERR(jt); + + env->insn_aux_data[t].jt = jt; + } + + mark_prune_point(env, t); + for (i = 0; i < jt->cnt; i++) { + w = jt->items[i]; + if (w < 0 || w >= env->prog->len) { + verbose(env, "indirect jump out of range from insn %d to %d\n", t, w); + return -EINVAL; + } + + mark_jmp_point(env, w); + + /* EXPLORED || DISCOVERED */ + if (insn_state[w]) + continue; + + if (env->cfg.cur_stack >= env->prog->len) + return -E2BIG; + + insn_stack[env->cfg.cur_stack++] = w; + insn_state[w] |= DISCOVERED; + keep_exploring = true; + } + + return keep_exploring ? KEEP_EXPLORING : DONE_EXPLORING; +} + +static int visit_tailcall_insn(struct bpf_verifier_env *env, int t) +{ + static struct bpf_subprog_info *subprog; + struct bpf_iarray *jt; + + if (env->insn_aux_data[t].jt) + return 0; + + jt = iarray_realloc(NULL, 2); + if (!jt) + return -ENOMEM; + + subprog = bpf_find_containing_subprog(env, t); + jt->items[0] = t + 1; + jt->items[1] = subprog->exit_idx; + env->insn_aux_data[t].jt = jt; + return 0; +} + +/* Visits the instruction at index t and returns one of the following: + * < 0 - an error occurred + * DONE_EXPLORING - the instruction was fully explored + * KEEP_EXPLORING - there is still work to be done before it is fully explored + */ +static int visit_insn(int t, struct bpf_verifier_env *env) +{ + struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; + int ret, off, insn_sz; + + if (bpf_pseudo_func(insn)) + return visit_func_call_insn(t, insns, env, true); + + /* All non-branch instructions have a single fall-through edge. */ + if (BPF_CLASS(insn->code) != BPF_JMP && + BPF_CLASS(insn->code) != BPF_JMP32) { + insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; + return push_insn(t, t + insn_sz, FALLTHROUGH, env); + } + + switch (BPF_OP(insn->code)) { + case BPF_EXIT: + return DONE_EXPLORING; + + case BPF_CALL: + if (is_async_callback_calling_insn(insn)) + /* Mark this call insn as a prune point to trigger + * is_state_visited() check before call itself is + * processed by __check_func_call(). Otherwise new + * async state will be pushed for further exploration. + */ + mark_prune_point(env, t); + /* For functions that invoke callbacks it is not known how many times + * callback would be called. Verifier models callback calling functions + * by repeatedly visiting callback bodies and returning to origin call + * instruction. + * In order to stop such iteration verifier needs to identify when a + * state identical some state from a previous iteration is reached. + * Check below forces creation of checkpoint before callback calling + * instruction to allow search for such identical states. + */ + if (is_sync_callback_calling_insn(insn)) { + mark_calls_callback(env, t); + mark_force_checkpoint(env, t); + mark_prune_point(env, t); + mark_jmp_point(env, t); + } + if (bpf_helper_call(insn)) { + const struct bpf_func_proto *fp; + + ret = get_helper_proto(env, insn->imm, &fp); + /* If called in a non-sleepable context program will be + * rejected anyway, so we should end up with precise + * sleepable marks on subprogs, except for dead code + * elimination. + */ + if (ret == 0 && fp->might_sleep) + mark_subprog_might_sleep(env, t); + if (bpf_helper_changes_pkt_data(insn->imm)) + mark_subprog_changes_pkt_data(env, t); + if (insn->imm == BPF_FUNC_tail_call) + visit_tailcall_insn(env, t); + } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { + struct bpf_kfunc_call_arg_meta meta; + + ret = fetch_kfunc_meta(env, insn, &meta, NULL); + if (ret == 0 && is_iter_next_kfunc(&meta)) { + mark_prune_point(env, t); + /* Checking and saving state checkpoints at iter_next() call + * is crucial for fast convergence of open-coded iterator loop + * logic, so we need to force it. If we don't do that, + * is_state_visited() might skip saving a checkpoint, causing + * unnecessarily long sequence of not checkpointed + * instructions and jumps, leading to exhaustion of jump + * history buffer, and potentially other undesired outcomes. + * It is expected that with correct open-coded iterators + * convergence will happen quickly, so we don't run a risk of + * exhausting memory. + */ + mark_force_checkpoint(env, t); + } + /* Same as helpers, if called in a non-sleepable context + * program will be rejected anyway, so we should end up + * with precise sleepable marks on subprogs, except for + * dead code elimination. + */ + if (ret == 0 && is_kfunc_sleepable(&meta)) + mark_subprog_might_sleep(env, t); + if (ret == 0 && is_kfunc_pkt_changing(&meta)) + mark_subprog_changes_pkt_data(env, t); + } + return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); + + case BPF_JA: + if (BPF_SRC(insn->code) == BPF_X) + return visit_gotox_insn(t, env); + + if (BPF_CLASS(insn->code) == BPF_JMP) + off = insn->off; + else + off = insn->imm; + + /* unconditional jump with single edge */ + ret = push_insn(t, t + off + 1, FALLTHROUGH, env); + if (ret) + return ret; + + mark_prune_point(env, t + off + 1); + mark_jmp_point(env, t + off + 1); + + return ret; + + default: + /* conditional jump with two edges */ + mark_prune_point(env, t); + if (is_may_goto_insn(insn)) + mark_force_checkpoint(env, t); + + ret = push_insn(t, t + 1, FALLTHROUGH, env); + if (ret) + return ret; + + return push_insn(t, t + insn->off + 1, BRANCH, env); + } +} + +/* non-recursive depth-first-search to detect loops in BPF program + * loop == back-edge in directed graph + */ +static int check_cfg(struct bpf_verifier_env *env) +{ + int insn_cnt = env->prog->len; + int *insn_stack, *insn_state; + int ex_insn_beg, i, ret = 0; + + insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); + if (!insn_state) + return -ENOMEM; + + insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); + if (!insn_stack) { + kvfree(insn_state); + return -ENOMEM; + } + + ex_insn_beg = env->exception_callback_subprog + ? env->subprog_info[env->exception_callback_subprog].start + : 0; + + insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ + insn_stack[0] = 0; /* 0 is the first instruction */ + env->cfg.cur_stack = 1; + +walk_cfg: + while (env->cfg.cur_stack > 0) { + int t = insn_stack[env->cfg.cur_stack - 1]; + + ret = visit_insn(t, env); + switch (ret) { + case DONE_EXPLORING: + insn_state[t] = EXPLORED; + env->cfg.cur_stack--; + break; + case KEEP_EXPLORING: + break; + default: + if (ret > 0) { + verifier_bug(env, "visit_insn internal bug"); + ret = -EFAULT; + } + goto err_free; + } + } + + if (env->cfg.cur_stack < 0) { + verifier_bug(env, "pop stack internal bug"); + ret = -EFAULT; + goto err_free; + } + + if (ex_insn_beg && insn_state[ex_insn_beg] != EXPLORED) { + insn_state[ex_insn_beg] = DISCOVERED; + insn_stack[0] = ex_insn_beg; + env->cfg.cur_stack = 1; + goto walk_cfg; + } + + for (i = 0; i < insn_cnt; i++) { + struct bpf_insn *insn = &env->prog->insnsi[i]; + + if (insn_state[i] != EXPLORED) { + verbose(env, "unreachable insn %d\n", i); + ret = -EINVAL; + goto err_free; + } + if (bpf_is_ldimm64(insn)) { + if (insn_state[i + 1] != 0) { + verbose(env, "jump into the middle of ldimm64 insn %d\n", i); + ret = -EINVAL; + goto err_free; + } + i++; /* skip second half of ldimm64 */ + } + } + ret = 0; /* cfg looks good */ + env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data; + env->prog->aux->might_sleep = env->subprog_info[0].might_sleep; + +err_free: + kvfree(insn_state); + kvfree(insn_stack); + env->cfg.insn_state = env->cfg.insn_stack = NULL; + return ret; +} + +/* + * For each subprogram 'i' fill array env->cfg.insn_subprogram sub-range + * [env->subprog_info[i].postorder_start, env->subprog_info[i+1].postorder_start) + * with indices of 'i' instructions in postorder. + */ +static int compute_postorder(struct bpf_verifier_env *env) +{ + u32 cur_postorder, i, top, stack_sz, s; + int *stack = NULL, *postorder = NULL, *state = NULL; + struct bpf_iarray *succ; + + postorder = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); + state = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); + stack = kvcalloc(env->prog->len, sizeof(int), GFP_KERNEL_ACCOUNT); + if (!postorder || !state || !stack) { + kvfree(postorder); + kvfree(state); + kvfree(stack); + return -ENOMEM; + } + cur_postorder = 0; + for (i = 0; i < env->subprog_cnt; i++) { + env->subprog_info[i].postorder_start = cur_postorder; + stack[0] = env->subprog_info[i].start; + stack_sz = 1; + do { + top = stack[stack_sz - 1]; + state[top] |= DISCOVERED; + if (state[top] & EXPLORED) { + postorder[cur_postorder++] = top; + stack_sz--; + continue; + } + succ = bpf_insn_successors(env, top); + for (s = 0; s < succ->cnt; ++s) { + if (!state[succ->items[s]]) { + stack[stack_sz++] = succ->items[s]; + state[succ->items[s]] |= DISCOVERED; + } + } + state[top] |= EXPLORED; + } while (stack_sz); + } + env->subprog_info[i].postorder_start = cur_postorder; + env->cfg.insn_postorder = postorder; + env->cfg.cur_postorder = cur_postorder; + kvfree(stack); + kvfree(state); + return 0; +} + +static int check_abnormal_return(struct bpf_verifier_env *env) +{ + int i; + + for (i = 1; i < env->subprog_cnt; i++) { + if (env->subprog_info[i].has_ld_abs) { + verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); + return -EINVAL; + } + if (env->subprog_info[i].has_tail_call) { + verbose(env, "tail_call is not allowed in subprogs without BTF\n"); + return -EINVAL; + } + } + return 0; +} + +/* The minimum supported BTF func info size */ +#define MIN_BPF_FUNCINFO_SIZE 8 +#define MAX_FUNCINFO_REC_SIZE 252 + +static int check_btf_func_early(struct bpf_verifier_env *env, + const union bpf_attr *attr, + bpfptr_t uattr) +{ + u32 krec_size = sizeof(struct bpf_func_info); + const struct btf_type *type, *func_proto; + u32 i, nfuncs, urec_size, min_size; + struct bpf_func_info *krecord; + struct bpf_prog *prog; + const struct btf *btf; + u32 prev_offset = 0; + bpfptr_t urecord; + int ret = -ENOMEM; + + nfuncs = attr->func_info_cnt; + if (!nfuncs) { + if (check_abnormal_return(env)) + return -EINVAL; + return 0; + } + + urec_size = attr->func_info_rec_size; + if (urec_size < MIN_BPF_FUNCINFO_SIZE || + urec_size > MAX_FUNCINFO_REC_SIZE || + urec_size % sizeof(u32)) { + verbose(env, "invalid func info rec size %u\n", urec_size); + return -EINVAL; + } + + prog = env->prog; + btf = prog->aux->btf; + + urecord = make_bpfptr(attr->func_info, uattr.is_kernel); + min_size = min_t(u32, krec_size, urec_size); + + krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL_ACCOUNT | __GFP_NOWARN); + if (!krecord) + return -ENOMEM; + + for (i = 0; i < nfuncs; i++) { + ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); + if (ret) { + if (ret == -E2BIG) { + verbose(env, "nonzero tailing record in func info"); + /* set the size kernel expects so loader can zero + * out the rest of the record. + */ + if (copy_to_bpfptr_offset(uattr, + offsetof(union bpf_attr, func_info_rec_size), + &min_size, sizeof(min_size))) + ret = -EFAULT; + } + goto err_free; + } + + if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { + ret = -EFAULT; + goto err_free; + } + + /* check insn_off */ + ret = -EINVAL; + if (i == 0) { + if (krecord[i].insn_off) { + verbose(env, + "nonzero insn_off %u for the first func info record", + krecord[i].insn_off); + goto err_free; + } + } else if (krecord[i].insn_off <= prev_offset) { + verbose(env, + "same or smaller insn offset (%u) than previous func info record (%u)", + krecord[i].insn_off, prev_offset); + goto err_free; + } + + /* check type_id */ + type = btf_type_by_id(btf, krecord[i].type_id); + if (!type || !btf_type_is_func(type)) { + verbose(env, "invalid type id %d in func info", + krecord[i].type_id); + goto err_free; + } + + func_proto = btf_type_by_id(btf, type->type); + if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) + /* btf_func_check() already verified it during BTF load */ + goto err_free; + + prev_offset = krecord[i].insn_off; + bpfptr_add(&urecord, urec_size); + } + + prog->aux->func_info = krecord; + prog->aux->func_info_cnt = nfuncs; + return 0; + +err_free: + kvfree(krecord); + return ret; +} + +static int check_btf_func(struct bpf_verifier_env *env, + const union bpf_attr *attr, + bpfptr_t uattr) +{ + const struct btf_type *type, *func_proto, *ret_type; + u32 i, nfuncs, urec_size; + struct bpf_func_info *krecord; + struct bpf_func_info_aux *info_aux = NULL; + struct bpf_prog *prog; + const struct btf *btf; + bpfptr_t urecord; + bool scalar_return; + int ret = -ENOMEM; + + nfuncs = attr->func_info_cnt; + if (!nfuncs) { + if (check_abnormal_return(env)) + return -EINVAL; + return 0; + } + if (nfuncs != env->subprog_cnt) { + verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); + return -EINVAL; + } + + urec_size = attr->func_info_rec_size; + + prog = env->prog; + btf = prog->aux->btf; + + urecord = make_bpfptr(attr->func_info, uattr.is_kernel); + + krecord = prog->aux->func_info; + info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL_ACCOUNT | __GFP_NOWARN); + if (!info_aux) + return -ENOMEM; + + for (i = 0; i < nfuncs; i++) { + /* check insn_off */ + ret = -EINVAL; + + if (env->subprog_info[i].start != krecord[i].insn_off) { + verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); + goto err_free; + } + + /* Already checked type_id */ + type = btf_type_by_id(btf, krecord[i].type_id); + info_aux[i].linkage = BTF_INFO_VLEN(type->info); + /* Already checked func_proto */ + func_proto = btf_type_by_id(btf, type->type); + + ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); + scalar_return = + btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); + if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { + verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); + goto err_free; + } + if (i && !scalar_return && env->subprog_info[i].has_tail_call) { + verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); + goto err_free; + } + + bpfptr_add(&urecord, urec_size); + } + + prog->aux->func_info_aux = info_aux; + return 0; + +err_free: + kfree(info_aux); + return ret; +} + +static void adjust_btf_func(struct bpf_verifier_env *env) +{ + struct bpf_prog_aux *aux = env->prog->aux; + int i; + + if (!aux->func_info) + return; + + /* func_info is not available for hidden subprogs */ + for (i = 0; i < env->subprog_cnt - env->hidden_subprog_cnt; i++) + aux->func_info[i].insn_off = env->subprog_info[i].start; +} + +#define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) +#define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE + +static int check_btf_line(struct bpf_verifier_env *env, + const union bpf_attr *attr, + bpfptr_t uattr) +{ + u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; + struct bpf_subprog_info *sub; + struct bpf_line_info *linfo; + struct bpf_prog *prog; + const struct btf *btf; + bpfptr_t ulinfo; + int err; + + nr_linfo = attr->line_info_cnt; + if (!nr_linfo) + return 0; + if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) + return -EINVAL; + + rec_size = attr->line_info_rec_size; + if (rec_size < MIN_BPF_LINEINFO_SIZE || + rec_size > MAX_LINEINFO_REC_SIZE || + rec_size & (sizeof(u32) - 1)) + return -EINVAL; + + /* Need to zero it in case the userspace may + * pass in a smaller bpf_line_info object. + */ + linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), + GFP_KERNEL_ACCOUNT | __GFP_NOWARN); + if (!linfo) + return -ENOMEM; + + prog = env->prog; + btf = prog->aux->btf; + + s = 0; + sub = env->subprog_info; + ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); + expected_size = sizeof(struct bpf_line_info); + ncopy = min_t(u32, expected_size, rec_size); + for (i = 0; i < nr_linfo; i++) { + err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); + if (err) { + if (err == -E2BIG) { + verbose(env, "nonzero tailing record in line_info"); + if (copy_to_bpfptr_offset(uattr, + offsetof(union bpf_attr, line_info_rec_size), + &expected_size, sizeof(expected_size))) + err = -EFAULT; + } + goto err_free; + } + + if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { + err = -EFAULT; + goto err_free; + } + + /* + * Check insn_off to ensure + * 1) strictly increasing AND + * 2) bounded by prog->len + * + * The linfo[0].insn_off == 0 check logically falls into + * the later "missing bpf_line_info for func..." case + * because the first linfo[0].insn_off must be the + * first sub also and the first sub must have + * subprog_info[0].start == 0. + */ + if ((i && linfo[i].insn_off <= prev_offset) || + linfo[i].insn_off >= prog->len) { + verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", + i, linfo[i].insn_off, prev_offset, + prog->len); + err = -EINVAL; + goto err_free; + } + + if (!prog->insnsi[linfo[i].insn_off].code) { + verbose(env, + "Invalid insn code at line_info[%u].insn_off\n", + i); + err = -EINVAL; + goto err_free; + } + + if (!btf_name_by_offset(btf, linfo[i].line_off) || + !btf_name_by_offset(btf, linfo[i].file_name_off)) { + verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); + err = -EINVAL; + goto err_free; + } + + if (s != env->subprog_cnt) { + if (linfo[i].insn_off == sub[s].start) { + sub[s].linfo_idx = i; + s++; + } else if (sub[s].start < linfo[i].insn_off) { + verbose(env, "missing bpf_line_info for func#%u\n", s); + err = -EINVAL; + goto err_free; + } + } + + prev_offset = linfo[i].insn_off; + bpfptr_add(&ulinfo, rec_size); + } + + if (s != env->subprog_cnt) { + verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", + env->subprog_cnt - s, s); + err = -EINVAL; + goto err_free; + } + + prog->aux->linfo = linfo; + prog->aux->nr_linfo = nr_linfo; + + return 0; + +err_free: + kvfree(linfo); + return err; +} + +#define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) +#define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE + +static int check_core_relo(struct bpf_verifier_env *env, + const union bpf_attr *attr, + bpfptr_t uattr) +{ + u32 i, nr_core_relo, ncopy, expected_size, rec_size; + struct bpf_core_relo core_relo = {}; + struct bpf_prog *prog = env->prog; + const struct btf *btf = prog->aux->btf; + struct bpf_core_ctx ctx = { + .log = &env->log, + .btf = btf, + }; + bpfptr_t u_core_relo; + int err; + + nr_core_relo = attr->core_relo_cnt; + if (!nr_core_relo) + return 0; + if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) + return -EINVAL; + + rec_size = attr->core_relo_rec_size; + if (rec_size < MIN_CORE_RELO_SIZE || + rec_size > MAX_CORE_RELO_SIZE || + rec_size % sizeof(u32)) + return -EINVAL; + + u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); + expected_size = sizeof(struct bpf_core_relo); + ncopy = min_t(u32, expected_size, rec_size); + + /* Unlike func_info and line_info, copy and apply each CO-RE + * relocation record one at a time. + */ + for (i = 0; i < nr_core_relo; i++) { + /* future proofing when sizeof(bpf_core_relo) changes */ + err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); + if (err) { + if (err == -E2BIG) { + verbose(env, "nonzero tailing record in core_relo"); + if (copy_to_bpfptr_offset(uattr, + offsetof(union bpf_attr, core_relo_rec_size), + &expected_size, sizeof(expected_size))) + err = -EFAULT; + } + break; + } + + if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { + err = -EFAULT; + break; + } + + if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { + verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", + i, core_relo.insn_off, prog->len); + err = -EINVAL; + break; + } + + err = bpf_core_apply(&ctx, &core_relo, i, + &prog->insnsi[core_relo.insn_off / 8]); + if (err) + break; + bpfptr_add(&u_core_relo, rec_size); + } + return err; +} + +static int check_btf_info_early(struct bpf_verifier_env *env, + const union bpf_attr *attr, + bpfptr_t uattr) +{ + struct btf *btf; + int err; + + if (!attr->func_info_cnt && !attr->line_info_cnt) { + if (check_abnormal_return(env)) + return -EINVAL; + return 0; + } + + btf = btf_get_by_fd(attr->prog_btf_fd); + if (IS_ERR(btf)) + return PTR_ERR(btf); + if (btf_is_kernel(btf)) { + btf_put(btf); + return -EACCES; + } + env->prog->aux->btf = btf; + + err = check_btf_func_early(env, attr, uattr); + if (err) + return err; + return 0; +} + +static int check_btf_info(struct bpf_verifier_env *env, + const union bpf_attr *attr, + bpfptr_t uattr) +{ + int err; + + if (!attr->func_info_cnt && !attr->line_info_cnt) { + if (check_abnormal_return(env)) + return -EINVAL; + return 0; + } + + err = check_btf_func(env, attr, uattr); + if (err) + return err; + + err = check_btf_line(env, attr, uattr); + if (err) + return err; + + err = check_core_relo(env, attr, uattr); + if (err) + return err; + + return 0; +} + +/* check %cur's range satisfies %old's */ +static bool range_within(const struct bpf_reg_state *old, + const struct bpf_reg_state *cur) +{ + return old->umin_value <= cur->umin_value && + old->umax_value >= cur->umax_value && + old->smin_value <= cur->smin_value && + old->smax_value >= cur->smax_value && + old->u32_min_value <= cur->u32_min_value && + old->u32_max_value >= cur->u32_max_value && + old->s32_min_value <= cur->s32_min_value && + old->s32_max_value >= cur->s32_max_value; +} + +/* If in the old state two registers had the same id, then they need to have + * the same id in the new state as well. But that id could be different from + * the old state, so we need to track the mapping from old to new ids. + * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent + * regs with old id 5 must also have new id 9 for the new state to be safe. But + * regs with a different old id could still have new id 9, we don't care about + * that. + * So we look through our idmap to see if this old id has been seen before. If + * so, we require the new id to match; otherwise, we add the id pair to the map. + */ +static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) +{ + struct bpf_id_pair *map = idmap->map; + unsigned int i; + + /* either both IDs should be set or both should be zero */ + if (!!old_id != !!cur_id) + return false; + + if (old_id == 0) /* cur_id == 0 as well */ + return true; + + for (i = 0; i < BPF_ID_MAP_SIZE; i++) { + if (!map[i].old) { + /* Reached an empty slot; haven't seen this id before */ + map[i].old = old_id; + map[i].cur = cur_id; + return true; + } + if (map[i].old == old_id) + return map[i].cur == cur_id; + if (map[i].cur == cur_id) + return false; + } + /* We ran out of idmap slots, which should be impossible */ + WARN_ON_ONCE(1); + return false; +} + +/* Similar to check_ids(), but allocate a unique temporary ID + * for 'old_id' or 'cur_id' of zero. + * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. + */ +static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) +{ + old_id = old_id ? old_id : ++idmap->tmp_id_gen; + cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; + + return check_ids(old_id, cur_id, idmap); +} + +static void clean_func_state(struct bpf_verifier_env *env, + struct bpf_func_state *st, + u32 ip) +{ + u16 live_regs = env->insn_aux_data[ip].live_regs_before; + int i, j; + + for (i = 0; i < BPF_REG_FP; i++) { + /* liveness must not touch this register anymore */ + if (!(live_regs & BIT(i))) + /* since the register is unused, clear its state + * to make further comparison simpler + */ + __mark_reg_not_init(env, &st->regs[i]); + } + + for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { + if (!bpf_stack_slot_alive(env, st->frameno, i)) { + __mark_reg_not_init(env, &st->stack[i].spilled_ptr); + for (j = 0; j < BPF_REG_SIZE; j++) + st->stack[i].slot_type[j] = STACK_INVALID; + } + } +} + +static void clean_verifier_state(struct bpf_verifier_env *env, + struct bpf_verifier_state *st) +{ + int i, ip; + + bpf_live_stack_query_init(env, st); + st->cleaned = true; + for (i = 0; i <= st->curframe; i++) { + ip = frame_insn_idx(st, i); + clean_func_state(env, st->frame[i], ip); + } +} + +/* the parentage chains form a tree. + * the verifier states are added to state lists at given insn and + * pushed into state stack for future exploration. + * when the verifier reaches bpf_exit insn some of the verifier states + * stored in the state lists have their final liveness state already, + * but a lot of states will get revised from liveness point of view when + * the verifier explores other branches. + * Example: + * 1: *(u64)(r10 - 8) = 1 + * 2: if r1 == 100 goto pc+1 + * 3: *(u64)(r10 - 8) = 2 + * 4: r0 = *(u64)(r10 - 8) + * 5: exit + * when the verifier reaches exit insn the stack slot -8 in the state list of + * insn 2 is not yet marked alive. Then the verifier pops the other_branch + * of insn 2 and goes exploring further. After the insn 4 read, liveness + * analysis would propagate read mark for -8 at insn 2. + * + * Since the verifier pushes the branch states as it sees them while exploring + * the program the condition of walking the branch instruction for the second + * time means that all states below this branch were already explored and + * their final liveness marks are already propagated. + * Hence when the verifier completes the search of state list in is_state_visited() + * we can call this clean_live_states() function to clear dead the registers and stack + * slots to simplify state merging. + * + * Important note here that walking the same branch instruction in the callee + * doesn't meant that the states are DONE. The verifier has to compare + * the callsites + */ +static void clean_live_states(struct bpf_verifier_env *env, int insn, + struct bpf_verifier_state *cur) +{ + struct bpf_verifier_state_list *sl; + struct list_head *pos, *head; + + head = explored_state(env, insn); + list_for_each(pos, head) { + sl = container_of(pos, struct bpf_verifier_state_list, node); + if (sl->state.branches) + continue; + if (sl->state.insn_idx != insn || + !same_callsites(&sl->state, cur)) + continue; + if (sl->state.cleaned) + /* all regs in this state in all frames were already marked */ + continue; + if (incomplete_read_marks(env, &sl->state)) + continue; + clean_verifier_state(env, &sl->state); + } +} + +static bool regs_exact(const struct bpf_reg_state *rold, + const struct bpf_reg_state *rcur, + struct bpf_idmap *idmap) +{ + return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && + check_ids(rold->id, rcur->id, idmap) && + check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); +} + +enum exact_level { + NOT_EXACT, + EXACT, + RANGE_WITHIN +}; + +/* Returns true if (rold safe implies rcur safe) */ +static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, + struct bpf_reg_state *rcur, struct bpf_idmap *idmap, + enum exact_level exact) +{ + if (exact == EXACT) + return regs_exact(rold, rcur, idmap); + + if (rold->type == NOT_INIT) { + if (exact == NOT_EXACT || rcur->type == NOT_INIT) + /* explored state can't have used this */ + return true; + } + + /* Enforce that register types have to match exactly, including their + * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general + * rule. + * + * One can make a point that using a pointer register as unbounded + * SCALAR would be technically acceptable, but this could lead to + * pointer leaks because scalars are allowed to leak while pointers + * are not. We could make this safe in special cases if root is + * calling us, but it's probably not worth the hassle. + * + * Also, register types that are *not* MAYBE_NULL could technically be + * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE + * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point + * to the same map). + * However, if the old MAYBE_NULL register then got NULL checked, + * doing so could have affected others with the same id, and we can't + * check for that because we lost the id when we converted to + * a non-MAYBE_NULL variant. + * So, as a general rule we don't allow mixing MAYBE_NULL and + * non-MAYBE_NULL registers as well. + */ + if (rold->type != rcur->type) + return false; + + switch (base_type(rold->type)) { + case SCALAR_VALUE: + if (env->explore_alu_limits) { + /* explore_alu_limits disables tnum_in() and range_within() + * logic and requires everything to be strict + */ + return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && + check_scalar_ids(rold->id, rcur->id, idmap); + } + if (!rold->precise && exact == NOT_EXACT) + return true; + if ((rold->id & BPF_ADD_CONST) != (rcur->id & BPF_ADD_CONST)) + return false; + if ((rold->id & BPF_ADD_CONST) && (rold->off != rcur->off)) + return false; + /* Why check_ids() for scalar registers? + * + * Consider the following BPF code: + * 1: r6 = ... unbound scalar, ID=a ... + * 2: r7 = ... unbound scalar, ID=b ... + * 3: if (r6 > r7) goto +1 + * 4: r6 = r7 + * 5: if (r6 > X) goto ... + * 6: ... memory operation using r7 ... + * + * First verification path is [1-6]: + * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; + * - at (5) r6 would be marked <= X, sync_linked_regs() would also mark + * r7 <= X, because r6 and r7 share same id. + * Next verification path is [1-4, 6]. + * + * Instruction (6) would be reached in two states: + * I. r6{.id=b}, r7{.id=b} via path 1-6; + * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. + * + * Use check_ids() to distinguish these states. + * --- + * Also verify that new value satisfies old value range knowledge. + */ + return range_within(rold, rcur) && + tnum_in(rold->var_off, rcur->var_off) && + check_scalar_ids(rold->id, rcur->id, idmap); + case PTR_TO_MAP_KEY: + case PTR_TO_MAP_VALUE: + case PTR_TO_MEM: + case PTR_TO_BUF: + case PTR_TO_TP_BUFFER: + /* If the new min/max/var_off satisfy the old ones and + * everything else matches, we are OK. + */ + return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && + range_within(rold, rcur) && + tnum_in(rold->var_off, rcur->var_off) && + check_ids(rold->id, rcur->id, idmap) && + check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); + case PTR_TO_PACKET_META: + case PTR_TO_PACKET: + /* We must have at least as much range as the old ptr + * did, so that any accesses which were safe before are + * still safe. This is true even if old range < old off, + * since someone could have accessed through (ptr - k), or + * even done ptr -= k in a register, to get a safe access. + */ + if (rold->range > rcur->range) + return false; + /* If the offsets don't match, we can't trust our alignment; + * nor can we be sure that we won't fall out of range. + */ + if (rold->off != rcur->off) + return false; + /* id relations must be preserved */ + if (!check_ids(rold->id, rcur->id, idmap)) + return false; + /* new val must satisfy old val knowledge */ + return range_within(rold, rcur) && + tnum_in(rold->var_off, rcur->var_off); + case PTR_TO_STACK: + /* two stack pointers are equal only if they're pointing to + * the same stack frame, since fp-8 in foo != fp-8 in bar + */ + return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; + case PTR_TO_ARENA: + return true; + case PTR_TO_INSN: + return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && + rold->off == rcur->off && range_within(rold, rcur) && + tnum_in(rold->var_off, rcur->var_off); + default: + return regs_exact(rold, rcur, idmap); + } +} + +static struct bpf_reg_state unbound_reg; + +static __init int unbound_reg_init(void) +{ + __mark_reg_unknown_imprecise(&unbound_reg); + return 0; +} +late_initcall(unbound_reg_init); + +static bool is_stack_all_misc(struct bpf_verifier_env *env, + struct bpf_stack_state *stack) +{ + u32 i; + + for (i = 0; i < ARRAY_SIZE(stack->slot_type); ++i) { + if ((stack->slot_type[i] == STACK_MISC) || + (stack->slot_type[i] == STACK_INVALID && env->allow_uninit_stack)) + continue; + return false; + } + + return true; +} + +static struct bpf_reg_state *scalar_reg_for_stack(struct bpf_verifier_env *env, + struct bpf_stack_state *stack) +{ + if (is_spilled_scalar_reg64(stack)) + return &stack->spilled_ptr; + + if (is_stack_all_misc(env, stack)) + return &unbound_reg; + + return NULL; +} + +static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, + struct bpf_func_state *cur, struct bpf_idmap *idmap, + enum exact_level exact) +{ + int i, spi; + + /* walk slots of the explored stack and ignore any additional + * slots in the current stack, since explored(safe) state + * didn't use them + */ + for (i = 0; i < old->allocated_stack; i++) { + struct bpf_reg_state *old_reg, *cur_reg; + + spi = i / BPF_REG_SIZE; + + if (exact != NOT_EXACT && + (i >= cur->allocated_stack || + old->stack[spi].slot_type[i % BPF_REG_SIZE] != + cur->stack[spi].slot_type[i % BPF_REG_SIZE])) + return false; + + if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) + continue; + + if (env->allow_uninit_stack && + old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) + continue; + + /* explored stack has more populated slots than current stack + * and these slots were used + */ + if (i >= cur->allocated_stack) + return false; + + /* 64-bit scalar spill vs all slots MISC and vice versa. + * Load from all slots MISC produces unbound scalar. + * Construct a fake register for such stack and call + * regsafe() to ensure scalar ids are compared. + */ + old_reg = scalar_reg_for_stack(env, &old->stack[spi]); + cur_reg = scalar_reg_for_stack(env, &cur->stack[spi]); + if (old_reg && cur_reg) { + if (!regsafe(env, old_reg, cur_reg, idmap, exact)) + return false; + i += BPF_REG_SIZE - 1; + continue; + } + + /* if old state was safe with misc data in the stack + * it will be safe with zero-initialized stack. + * The opposite is not true + */ + if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && + cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) + continue; + if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != + cur->stack[spi].slot_type[i % BPF_REG_SIZE]) + /* Ex: old explored (safe) state has STACK_SPILL in + * this stack slot, but current has STACK_MISC -> + * this verifier states are not equivalent, + * return false to continue verification of this path + */ + return false; + if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) + continue; + /* Both old and cur are having same slot_type */ + switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { + case STACK_SPILL: + /* when explored and current stack slot are both storing + * spilled registers, check that stored pointers types + * are the same as well. + * Ex: explored safe path could have stored + * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} + * but current path has stored: + * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} + * such verifier states are not equivalent. + * return false to continue verification of this path + */ + if (!regsafe(env, &old->stack[spi].spilled_ptr, + &cur->stack[spi].spilled_ptr, idmap, exact)) + return false; + break; + case STACK_DYNPTR: + old_reg = &old->stack[spi].spilled_ptr; + cur_reg = &cur->stack[spi].spilled_ptr; + if (old_reg->dynptr.type != cur_reg->dynptr.type || + old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || + !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) + return false; + break; + case STACK_ITER: + old_reg = &old->stack[spi].spilled_ptr; + cur_reg = &cur->stack[spi].spilled_ptr; + /* iter.depth is not compared between states as it + * doesn't matter for correctness and would otherwise + * prevent convergence; we maintain it only to prevent + * infinite loop check triggering, see + * iter_active_depths_differ() + */ + if (old_reg->iter.btf != cur_reg->iter.btf || + old_reg->iter.btf_id != cur_reg->iter.btf_id || + old_reg->iter.state != cur_reg->iter.state || + /* ignore {old_reg,cur_reg}->iter.depth, see above */ + !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) + return false; + break; + case STACK_IRQ_FLAG: + old_reg = &old->stack[spi].spilled_ptr; + cur_reg = &cur->stack[spi].spilled_ptr; + if (!check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap) || + old_reg->irq.kfunc_class != cur_reg->irq.kfunc_class) + return false; + break; + case STACK_MISC: + case STACK_ZERO: + case STACK_INVALID: + continue; + /* Ensure that new unhandled slot types return false by default */ + default: + return false; + } + } + return true; +} + +static bool refsafe(struct bpf_verifier_state *old, struct bpf_verifier_state *cur, + struct bpf_idmap *idmap) +{ + int i; + + if (old->acquired_refs != cur->acquired_refs) + return false; + + if (old->active_locks != cur->active_locks) + return false; + + if (old->active_preempt_locks != cur->active_preempt_locks) + return false; + + if (old->active_rcu_locks != cur->active_rcu_locks) + return false; + + if (!check_ids(old->active_irq_id, cur->active_irq_id, idmap)) + return false; + + if (!check_ids(old->active_lock_id, cur->active_lock_id, idmap) || + old->active_lock_ptr != cur->active_lock_ptr) + return false; + + for (i = 0; i < old->acquired_refs; i++) { + if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap) || + old->refs[i].type != cur->refs[i].type) + return false; + switch (old->refs[i].type) { + case REF_TYPE_PTR: + case REF_TYPE_IRQ: + break; + case REF_TYPE_LOCK: + case REF_TYPE_RES_LOCK: + case REF_TYPE_RES_LOCK_IRQ: + if (old->refs[i].ptr != cur->refs[i].ptr) + return false; + break; + default: + WARN_ONCE(1, "Unhandled enum type for reference state: %d\n", old->refs[i].type); + return false; + } + } + + return true; +} + +/* compare two verifier states + * + * all states stored in state_list are known to be valid, since + * verifier reached 'bpf_exit' instruction through them + * + * this function is called when verifier exploring different branches of + * execution popped from the state stack. If it sees an old state that has + * more strict register state and more strict stack state then this execution + * branch doesn't need to be explored further, since verifier already + * concluded that more strict state leads to valid finish. + * + * Therefore two states are equivalent if register state is more conservative + * and explored stack state is more conservative than the current one. + * Example: + * explored current + * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) + * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) + * + * In other words if current stack state (one being explored) has more + * valid slots than old one that already passed validation, it means + * the verifier can stop exploring and conclude that current state is valid too + * + * Similarly with registers. If explored state has register type as invalid + * whereas register type in current state is meaningful, it means that + * the current state will reach 'bpf_exit' instruction safely + */ +static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, + struct bpf_func_state *cur, u32 insn_idx, enum exact_level exact) +{ + u16 live_regs = env->insn_aux_data[insn_idx].live_regs_before; + u16 i; + + if (old->callback_depth > cur->callback_depth) + return false; + + for (i = 0; i < MAX_BPF_REG; i++) + if (((1 << i) & live_regs) && + !regsafe(env, &old->regs[i], &cur->regs[i], + &env->idmap_scratch, exact)) + return false; + + if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) + return false; + + return true; +} + +static void reset_idmap_scratch(struct bpf_verifier_env *env) +{ + env->idmap_scratch.tmp_id_gen = env->id_gen; + memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); +} + +static bool states_equal(struct bpf_verifier_env *env, + struct bpf_verifier_state *old, + struct bpf_verifier_state *cur, + enum exact_level exact) +{ + u32 insn_idx; + int i; + + if (old->curframe != cur->curframe) + return false; + + reset_idmap_scratch(env); + + /* Verification state from speculative execution simulation + * must never prune a non-speculative execution one. + */ + if (old->speculative && !cur->speculative) + return false; + + if (old->in_sleepable != cur->in_sleepable) + return false; + + if (!refsafe(old, cur, &env->idmap_scratch)) + return false; + + /* for states to be equal callsites have to be the same + * and all frame states need to be equivalent + */ + for (i = 0; i <= old->curframe; i++) { + insn_idx = frame_insn_idx(old, i); + if (old->frame[i]->callsite != cur->frame[i]->callsite) + return false; + if (!func_states_equal(env, old->frame[i], cur->frame[i], insn_idx, exact)) + return false; + } + return true; +} + +/* find precise scalars in the previous equivalent state and + * propagate them into the current state + */ +static int propagate_precision(struct bpf_verifier_env *env, + const struct bpf_verifier_state *old, + struct bpf_verifier_state *cur, + bool *changed) +{ + struct bpf_reg_state *state_reg; + struct bpf_func_state *state; + int i, err = 0, fr; + bool first; + + for (fr = old->curframe; fr >= 0; fr--) { + state = old->frame[fr]; + state_reg = state->regs; + first = true; + for (i = 0; i < BPF_REG_FP; i++, state_reg++) { + if (state_reg->type != SCALAR_VALUE || + !state_reg->precise) + continue; + if (env->log.level & BPF_LOG_LEVEL2) { + if (first) + verbose(env, "frame %d: propagating r%d", fr, i); + else + verbose(env, ",r%d", i); + } + bt_set_frame_reg(&env->bt, fr, i); + first = false; + } + + for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { + if (!is_spilled_reg(&state->stack[i])) + continue; + state_reg = &state->stack[i].spilled_ptr; + if (state_reg->type != SCALAR_VALUE || + !state_reg->precise) + continue; + if (env->log.level & BPF_LOG_LEVEL2) { + if (first) + verbose(env, "frame %d: propagating fp%d", + fr, (-i - 1) * BPF_REG_SIZE); + else + verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); + } + bt_set_frame_slot(&env->bt, fr, i); + first = false; + } + if (!first && (env->log.level & BPF_LOG_LEVEL2)) + verbose(env, "\n"); + } + + err = __mark_chain_precision(env, cur, -1, changed); + if (err < 0) + return err; + + return 0; +} + +#define MAX_BACKEDGE_ITERS 64 + +/* Propagate read and precision marks from visit->backedges[*].state->equal_state + * to corresponding parent states of visit->backedges[*].state until fixed point is reached, + * then free visit->backedges. + * After execution of this function incomplete_read_marks() will return false + * for all states corresponding to @visit->callchain. + */ +static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visit *visit) +{ + struct bpf_scc_backedge *backedge; + struct bpf_verifier_state *st; + bool changed; + int i, err; + + i = 0; + do { + if (i++ > MAX_BACKEDGE_ITERS) { + if (env->log.level & BPF_LOG_LEVEL2) + verbose(env, "%s: too many iterations\n", __func__); + for (backedge = visit->backedges; backedge; backedge = backedge->next) + mark_all_scalars_precise(env, &backedge->state); + break; + } + changed = false; + for (backedge = visit->backedges; backedge; backedge = backedge->next) { + st = &backedge->state; + err = propagate_precision(env, st->equal_state, st, &changed); + if (err) + return err; + } + } while (changed); + + free_backedges(visit); + return 0; +} + +static bool states_maybe_looping(struct bpf_verifier_state *old, + struct bpf_verifier_state *cur) +{ + struct bpf_func_state *fold, *fcur; + int i, fr = cur->curframe; + + if (old->curframe != fr) + return false; + + fold = old->frame[fr]; + fcur = cur->frame[fr]; + for (i = 0; i < MAX_BPF_REG; i++) + if (memcmp(&fold->regs[i], &fcur->regs[i], + offsetof(struct bpf_reg_state, frameno))) + return false; + return true; +} + +static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) +{ + return env->insn_aux_data[insn_idx].is_iter_next; +} + +/* is_state_visited() handles iter_next() (see process_iter_next_call() for + * terminology) calls specially: as opposed to bounded BPF loops, it *expects* + * states to match, which otherwise would look like an infinite loop. So while + * iter_next() calls are taken care of, we still need to be careful and + * prevent erroneous and too eager declaration of "infinite loop", when + * iterators are involved. + * + * Here's a situation in pseudo-BPF assembly form: + * + * 0: again: ; set up iter_next() call args + * 1: r1 = &it ; <CHECKPOINT HERE> + * 2: call bpf_iter_num_next ; this is iter_next() call + * 3: if r0 == 0 goto done + * 4: ... something useful here ... + * 5: goto again ; another iteration + * 6: done: + * 7: r1 = &it + * 8: call bpf_iter_num_destroy ; clean up iter state + * 9: exit + * + * This is a typical loop. Let's assume that we have a prune point at 1:, + * before we get to `call bpf_iter_num_next` (e.g., because of that `goto + * again`, assuming other heuristics don't get in a way). + * + * When we first time come to 1:, let's say we have some state X. We proceed + * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. + * Now we come back to validate that forked ACTIVE state. We proceed through + * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we + * are converging. But the problem is that we don't know that yet, as this + * convergence has to happen at iter_next() call site only. So if nothing is + * done, at 1: verifier will use bounded loop logic and declare infinite + * looping (and would be *technically* correct, if not for iterator's + * "eventual sticky NULL" contract, see process_iter_next_call()). But we + * don't want that. So what we do in process_iter_next_call() when we go on + * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's + * a different iteration. So when we suspect an infinite loop, we additionally + * check if any of the *ACTIVE* iterator states depths differ. If yes, we + * pretend we are not looping and wait for next iter_next() call. + * + * This only applies to ACTIVE state. In DRAINED state we don't expect to + * loop, because that would actually mean infinite loop, as DRAINED state is + * "sticky", and so we'll keep returning into the same instruction with the + * same state (at least in one of possible code paths). + * + * This approach allows to keep infinite loop heuristic even in the face of + * active iterator. E.g., C snippet below is and will be detected as + * infinitely looping: + * + * struct bpf_iter_num it; + * int *p, x; + * + * bpf_iter_num_new(&it, 0, 10); + * while ((p = bpf_iter_num_next(&t))) { + * x = p; + * while (x--) {} // <<-- infinite loop here + * } + * + */ +static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) +{ + struct bpf_reg_state *slot, *cur_slot; + struct bpf_func_state *state; + int i, fr; + + for (fr = old->curframe; fr >= 0; fr--) { + state = old->frame[fr]; + for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { + if (state->stack[i].slot_type[0] != STACK_ITER) + continue; + + slot = &state->stack[i].spilled_ptr; + if (slot->iter.state != BPF_ITER_STATE_ACTIVE) + continue; + + cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; + if (cur_slot->iter.depth != slot->iter.depth) + return true; + } + } + return false; +} + +static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) +{ + struct bpf_verifier_state_list *new_sl; + struct bpf_verifier_state_list *sl; + struct bpf_verifier_state *cur = env->cur_state, *new; + bool force_new_state, add_new_state, loop; + int n, err, states_cnt = 0; + struct list_head *pos, *tmp, *head; + + force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) || + /* Avoid accumulating infinitely long jmp history */ + cur->jmp_history_cnt > 40; + + /* bpf progs typically have pruning point every 4 instructions + * http://vger.kernel.org/bpfconf2019.html#session-1 + * Do not add new state for future pruning if the verifier hasn't seen + * at least 2 jumps and at least 8 instructions. + * This heuristics helps decrease 'total_states' and 'peak_states' metric. + * In tests that amounts to up to 50% reduction into total verifier + * memory consumption and 20% verifier time speedup. + */ + add_new_state = force_new_state; + if (env->jmps_processed - env->prev_jmps_processed >= 2 && + env->insn_processed - env->prev_insn_processed >= 8) + add_new_state = true; + + clean_live_states(env, insn_idx, cur); + + loop = false; + head = explored_state(env, insn_idx); + list_for_each_safe(pos, tmp, head) { + sl = container_of(pos, struct bpf_verifier_state_list, node); + states_cnt++; + if (sl->state.insn_idx != insn_idx) + continue; + + if (sl->state.branches) { + struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; + + if (frame->in_async_callback_fn && + frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { + /* Different async_entry_cnt means that the verifier is + * processing another entry into async callback. + * Seeing the same state is not an indication of infinite + * loop or infinite recursion. + * But finding the same state doesn't mean that it's safe + * to stop processing the current state. The previous state + * hasn't yet reached bpf_exit, since state.branches > 0. + * Checking in_async_callback_fn alone is not enough either. + * Since the verifier still needs to catch infinite loops + * inside async callbacks. + */ + goto skip_inf_loop_check; + } + /* BPF open-coded iterators loop detection is special. + * states_maybe_looping() logic is too simplistic in detecting + * states that *might* be equivalent, because it doesn't know + * about ID remapping, so don't even perform it. + * See process_iter_next_call() and iter_active_depths_differ() + * for overview of the logic. When current and one of parent + * states are detected as equivalent, it's a good thing: we prove + * convergence and can stop simulating further iterations. + * It's safe to assume that iterator loop will finish, taking into + * account iter_next() contract of eventually returning + * sticky NULL result. + * + * Note, that states have to be compared exactly in this case because + * read and precision marks might not be finalized inside the loop. + * E.g. as in the program below: + * + * 1. r7 = -16 + * 2. r6 = bpf_get_prandom_u32() + * 3. while (bpf_iter_num_next(&fp[-8])) { + * 4. if (r6 != 42) { + * 5. r7 = -32 + * 6. r6 = bpf_get_prandom_u32() + * 7. continue + * 8. } + * 9. r0 = r10 + * 10. r0 += r7 + * 11. r8 = *(u64 *)(r0 + 0) + * 12. r6 = bpf_get_prandom_u32() + * 13. } + * + * Here verifier would first visit path 1-3, create a checkpoint at 3 + * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does + * not have read or precision mark for r7 yet, thus inexact states + * comparison would discard current state with r7=-32 + * => unsafe memory access at 11 would not be caught. + */ + if (is_iter_next_insn(env, insn_idx)) { + if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) { + struct bpf_func_state *cur_frame; + struct bpf_reg_state *iter_state, *iter_reg; + int spi; + + cur_frame = cur->frame[cur->curframe]; + /* btf_check_iter_kfuncs() enforces that + * iter state pointer is always the first arg + */ + iter_reg = &cur_frame->regs[BPF_REG_1]; + /* current state is valid due to states_equal(), + * so we can assume valid iter and reg state, + * no need for extra (re-)validations + */ + spi = __get_spi(iter_reg->off + iter_reg->var_off.value); + iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; + if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { + loop = true; + goto hit; + } + } + goto skip_inf_loop_check; + } + if (is_may_goto_insn_at(env, insn_idx)) { + if (sl->state.may_goto_depth != cur->may_goto_depth && + states_equal(env, &sl->state, cur, RANGE_WITHIN)) { + loop = true; + goto hit; + } + } + if (bpf_calls_callback(env, insn_idx)) { + if (states_equal(env, &sl->state, cur, RANGE_WITHIN)) + goto hit; + goto skip_inf_loop_check; + } + /* attempt to detect infinite loop to avoid unnecessary doomed work */ + if (states_maybe_looping(&sl->state, cur) && + states_equal(env, &sl->state, cur, EXACT) && + !iter_active_depths_differ(&sl->state, cur) && + sl->state.may_goto_depth == cur->may_goto_depth && + sl->state.callback_unroll_depth == cur->callback_unroll_depth) { + verbose_linfo(env, insn_idx, "; "); + verbose(env, "infinite loop detected at insn %d\n", insn_idx); + verbose(env, "cur state:"); + print_verifier_state(env, cur, cur->curframe, true); + verbose(env, "old state:"); + print_verifier_state(env, &sl->state, cur->curframe, true); + return -EINVAL; + } + /* if the verifier is processing a loop, avoid adding new state + * too often, since different loop iterations have distinct + * states and may not help future pruning. + * This threshold shouldn't be too low to make sure that + * a loop with large bound will be rejected quickly. + * The most abusive loop will be: + * r1 += 1 + * if r1 < 1000000 goto pc-2 + * 1M insn_procssed limit / 100 == 10k peak states. + * This threshold shouldn't be too high either, since states + * at the end of the loop are likely to be useful in pruning. + */ +skip_inf_loop_check: + if (!force_new_state && + env->jmps_processed - env->prev_jmps_processed < 20 && + env->insn_processed - env->prev_insn_processed < 100) + add_new_state = false; + goto miss; + } + /* See comments for mark_all_regs_read_and_precise() */ + loop = incomplete_read_marks(env, &sl->state); + if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) { +hit: + sl->hit_cnt++; + + /* if previous state reached the exit with precision and + * current state is equivalent to it (except precision marks) + * the precision needs to be propagated back in + * the current state. + */ + err = 0; + if (is_jmp_point(env, env->insn_idx)) + err = push_jmp_history(env, cur, 0, 0); + err = err ? : propagate_precision(env, &sl->state, cur, NULL); + if (err) + return err; + /* When processing iterator based loops above propagate_liveness and + * propagate_precision calls are not sufficient to transfer all relevant + * read and precision marks. E.g. consider the following case: + * + * .-> A --. Assume the states are visited in the order A, B, C. + * | | | Assume that state B reaches a state equivalent to state A. + * | v v At this point, state C is not processed yet, so state A + * '-- B C has not received any read or precision marks from C. + * Thus, marks propagated from A to B are incomplete. + * + * The verifier mitigates this by performing the following steps: + * + * - Prior to the main verification pass, strongly connected components + * (SCCs) are computed over the program's control flow graph, + * intraprocedurally. + * + * - During the main verification pass, `maybe_enter_scc()` checks + * whether the current verifier state is entering an SCC. If so, an + * instance of a `bpf_scc_visit` object is created, and the state + * entering the SCC is recorded as the entry state. + * + * - This instance is associated not with the SCC itself, but with a + * `bpf_scc_callchain`: a tuple consisting of the call sites leading to + * the SCC and the SCC id. See `compute_scc_callchain()`. + * + * - When a verification path encounters a `states_equal(..., + * RANGE_WITHIN)` condition, there exists a call chain describing the + * current state and a corresponding `bpf_scc_visit` instance. A copy + * of the current state is created and added to + * `bpf_scc_visit->backedges`. + * + * - When a verification path terminates, `maybe_exit_scc()` is called + * from `update_branch_counts()`. For states with `branches == 0`, it + * checks whether the state is the entry state of any `bpf_scc_visit` + * instance. If it is, this indicates that all paths originating from + * this SCC visit have been explored. `propagate_backedges()` is then + * called, which propagates read and precision marks through the + * backedges until a fixed point is reached. + * (In the earlier example, this would propagate marks from A to B, + * from C to A, and then again from A to B.) + * + * A note on callchains + * -------------------- + * + * Consider the following example: + * + * void foo() { loop { ... SCC#1 ... } } + * void main() { + * A: foo(); + * B: ... + * C: foo(); + * } + * + * Here, there are two distinct callchains leading to SCC#1: + * - (A, SCC#1) + * - (C, SCC#1) + * + * Each callchain identifies a separate `bpf_scc_visit` instance that + * accumulates backedge states. The `propagate_{liveness,precision}()` + * functions traverse the parent state of each backedge state, which + * means these parent states must remain valid (i.e., not freed) while + * the corresponding `bpf_scc_visit` instance exists. + * + * Associating `bpf_scc_visit` instances directly with SCCs instead of + * callchains would break this invariant: + * - States explored during `C: foo()` would contribute backedges to + * SCC#1, but SCC#1 would only be exited once the exploration of + * `A: foo()` completes. + * - By that time, the states explored between `A: foo()` and `C: foo()` + * (i.e., `B: ...`) may have already been freed, causing the parent + * links for states from `C: foo()` to become invalid. + */ + if (loop) { + struct bpf_scc_backedge *backedge; + + backedge = kzalloc(sizeof(*backedge), GFP_KERNEL_ACCOUNT); + if (!backedge) + return -ENOMEM; + err = copy_verifier_state(&backedge->state, cur); + backedge->state.equal_state = &sl->state; + backedge->state.insn_idx = insn_idx; + err = err ?: add_scc_backedge(env, &sl->state, backedge); + if (err) { + free_verifier_state(&backedge->state, false); + kfree(backedge); + return err; + } + } + return 1; + } +miss: + /* when new state is not going to be added do not increase miss count. + * Otherwise several loop iterations will remove the state + * recorded earlier. The goal of these heuristics is to have + * states from some iterations of the loop (some in the beginning + * and some at the end) to help pruning. + */ + if (add_new_state) + sl->miss_cnt++; + /* heuristic to determine whether this state is beneficial + * to keep checking from state equivalence point of view. + * Higher numbers increase max_states_per_insn and verification time, + * but do not meaningfully decrease insn_processed. + * 'n' controls how many times state could miss before eviction. + * Use bigger 'n' for checkpoints because evicting checkpoint states + * too early would hinder iterator convergence. + */ + n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; + if (sl->miss_cnt > sl->hit_cnt * n + n) { + /* the state is unlikely to be useful. Remove it to + * speed up verification + */ + sl->in_free_list = true; + list_del(&sl->node); + list_add(&sl->node, &env->free_list); + env->free_list_size++; + env->explored_states_size--; + maybe_free_verifier_state(env, sl); + } + } + + if (env->max_states_per_insn < states_cnt) + env->max_states_per_insn = states_cnt; + + if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) + return 0; + + if (!add_new_state) + return 0; + + /* There were no equivalent states, remember the current one. + * Technically the current state is not proven to be safe yet, + * but it will either reach outer most bpf_exit (which means it's safe) + * or it will be rejected. When there are no loops the verifier won't be + * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) + * again on the way to bpf_exit. + * When looping the sl->state.branches will be > 0 and this state + * will not be considered for equivalence until branches == 0. + */ + new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL_ACCOUNT); + if (!new_sl) + return -ENOMEM; + env->total_states++; + env->explored_states_size++; + update_peak_states(env); + env->prev_jmps_processed = env->jmps_processed; + env->prev_insn_processed = env->insn_processed; + + /* forget precise markings we inherited, see __mark_chain_precision */ + if (env->bpf_capable) + mark_all_scalars_imprecise(env, cur); + + /* add new state to the head of linked list */ + new = &new_sl->state; + err = copy_verifier_state(new, cur); + if (err) { + free_verifier_state(new, false); + kfree(new_sl); + return err; + } + new->insn_idx = insn_idx; + verifier_bug_if(new->branches != 1, env, + "%s:branches_to_explore=%d insn %d", + __func__, new->branches, insn_idx); + err = maybe_enter_scc(env, new); + if (err) { + free_verifier_state(new, false); + kfree(new_sl); + return err; + } + + cur->parent = new; + cur->first_insn_idx = insn_idx; + cur->dfs_depth = new->dfs_depth + 1; + clear_jmp_history(cur); + list_add(&new_sl->node, head); + return 0; +} + +/* Return true if it's OK to have the same insn return a different type. */ +static bool reg_type_mismatch_ok(enum bpf_reg_type type) +{ + switch (base_type(type)) { + case PTR_TO_CTX: + case PTR_TO_SOCKET: + case PTR_TO_SOCK_COMMON: + case PTR_TO_TCP_SOCK: + case PTR_TO_XDP_SOCK: + case PTR_TO_BTF_ID: + case PTR_TO_ARENA: + return false; + default: + return true; + } +} + +/* If an instruction was previously used with particular pointer types, then we + * need to be careful to avoid cases such as the below, where it may be ok + * for one branch accessing the pointer, but not ok for the other branch: + * + * R1 = sock_ptr + * goto X; + * ... + * R1 = some_other_valid_ptr; + * goto X; + * ... + * R2 = *(u32 *)(R1 + 0); + */ +static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) +{ + return src != prev && (!reg_type_mismatch_ok(src) || + !reg_type_mismatch_ok(prev)); +} + +static bool is_ptr_to_mem_or_btf_id(enum bpf_reg_type type) +{ + switch (base_type(type)) { + case PTR_TO_MEM: + case PTR_TO_BTF_ID: + return true; + default: + return false; + } +} + +static bool is_ptr_to_mem(enum bpf_reg_type type) +{ + return base_type(type) == PTR_TO_MEM; +} + +static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, + bool allow_trust_mismatch) +{ + enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; + enum bpf_reg_type merged_type; + + if (*prev_type == NOT_INIT) { + /* Saw a valid insn + * dst_reg = *(u32 *)(src_reg + off) + * save type to validate intersecting paths + */ + *prev_type = type; + } else if (reg_type_mismatch(type, *prev_type)) { + /* Abuser program is trying to use the same insn + * dst_reg = *(u32*) (src_reg + off) + * with different pointer types: + * src_reg == ctx in one branch and + * src_reg == stack|map in some other branch. + * Reject it. + */ + if (allow_trust_mismatch && + is_ptr_to_mem_or_btf_id(type) && + is_ptr_to_mem_or_btf_id(*prev_type)) { + /* + * Have to support a use case when one path through + * the program yields TRUSTED pointer while another + * is UNTRUSTED. Fallback to UNTRUSTED to generate + * BPF_PROBE_MEM/BPF_PROBE_MEMSX. + * Same behavior of MEM_RDONLY flag. + */ + if (is_ptr_to_mem(type) || is_ptr_to_mem(*prev_type)) + merged_type = PTR_TO_MEM; + else + merged_type = PTR_TO_BTF_ID; + if ((type & PTR_UNTRUSTED) || (*prev_type & PTR_UNTRUSTED)) + merged_type |= PTR_UNTRUSTED; + if ((type & MEM_RDONLY) || (*prev_type & MEM_RDONLY)) + merged_type |= MEM_RDONLY; + *prev_type = merged_type; + } else { + verbose(env, "same insn cannot be used with different pointers\n"); + return -EINVAL; + } + } + + return 0; +} + +enum { + PROCESS_BPF_EXIT = 1 +}; + +static int process_bpf_exit_full(struct bpf_verifier_env *env, + bool *do_print_state, + bool exception_exit) +{ + /* We must do check_reference_leak here before + * prepare_func_exit to handle the case when + * state->curframe > 0, it may be a callback function, + * for which reference_state must match caller reference + * state when it exits. + */ + int err = check_resource_leak(env, exception_exit, + !env->cur_state->curframe, + "BPF_EXIT instruction in main prog"); + if (err) + return err; + + /* The side effect of the prepare_func_exit which is + * being skipped is that it frees bpf_func_state. + * Typically, process_bpf_exit will only be hit with + * outermost exit. copy_verifier_state in pop_stack will + * handle freeing of any extra bpf_func_state left over + * from not processing all nested function exits. We + * also skip return code checks as they are not needed + * for exceptional exits. + */ + if (exception_exit) + return PROCESS_BPF_EXIT; + + if (env->cur_state->curframe) { + /* exit from nested function */ + err = prepare_func_exit(env, &env->insn_idx); + if (err) + return err; + *do_print_state = true; + return 0; + } + + err = check_return_code(env, BPF_REG_0, "R0"); + if (err) + return err; + return PROCESS_BPF_EXIT; +} + +static int indirect_jump_min_max_index(struct bpf_verifier_env *env, + int regno, + struct bpf_map *map, + u32 *pmin_index, u32 *pmax_index) +{ + struct bpf_reg_state *reg = reg_state(env, regno); + u64 min_index, max_index; + const u32 size = 8; + + if (check_add_overflow(reg->umin_value, reg->off, &min_index) || + (min_index > (u64) U32_MAX * size)) { + verbose(env, "the sum of R%u umin_value %llu and off %u is too big\n", + regno, reg->umin_value, reg->off); + return -ERANGE; + } + if (check_add_overflow(reg->umax_value, reg->off, &max_index) || + (max_index > (u64) U32_MAX * size)) { + verbose(env, "the sum of R%u umax_value %llu and off %u is too big\n", + regno, reg->umax_value, reg->off); + return -ERANGE; + } + + min_index /= size; + max_index /= size; + + if (max_index >= map->max_entries) { + verbose(env, "R%u points to outside of jump table: [%llu,%llu] max_entries %u\n", + regno, min_index, max_index, map->max_entries); + return -EINVAL; + } + + *pmin_index = min_index; + *pmax_index = max_index; + return 0; +} + +/* gotox *dst_reg */ +static int check_indirect_jump(struct bpf_verifier_env *env, struct bpf_insn *insn) +{ + struct bpf_verifier_state *other_branch; + struct bpf_reg_state *dst_reg; + struct bpf_map *map; + u32 min_index, max_index; + int err = 0; + int n; + int i; + + dst_reg = reg_state(env, insn->dst_reg); + if (dst_reg->type != PTR_TO_INSN) { + verbose(env, "R%d has type %s, expected PTR_TO_INSN\n", + insn->dst_reg, reg_type_str(env, dst_reg->type)); + return -EINVAL; + } + + map = dst_reg->map_ptr; + if (verifier_bug_if(!map, env, "R%d has an empty map pointer", insn->dst_reg)) + return -EFAULT; + + if (verifier_bug_if(map->map_type != BPF_MAP_TYPE_INSN_ARRAY, env, + "R%d has incorrect map type %d", insn->dst_reg, map->map_type)) + return -EFAULT; + + err = indirect_jump_min_max_index(env, insn->dst_reg, map, &min_index, &max_index); + if (err) + return err; + + /* Ensure that the buffer is large enough */ + if (!env->gotox_tmp_buf || env->gotox_tmp_buf->cnt < max_index - min_index + 1) { + env->gotox_tmp_buf = iarray_realloc(env->gotox_tmp_buf, + max_index - min_index + 1); + if (!env->gotox_tmp_buf) + return -ENOMEM; + } + + n = copy_insn_array_uniq(map, min_index, max_index, env->gotox_tmp_buf->items); + if (n < 0) + return n; + if (n == 0) { + verbose(env, "register R%d doesn't point to any offset in map id=%d\n", + insn->dst_reg, map->id); + return -EINVAL; + } + + for (i = 0; i < n - 1; i++) { + other_branch = push_stack(env, env->gotox_tmp_buf->items[i], + env->insn_idx, env->cur_state->speculative); + if (IS_ERR(other_branch)) + return PTR_ERR(other_branch); + } + env->insn_idx = env->gotox_tmp_buf->items[n-1]; + return 0; +} + +static int do_check_insn(struct bpf_verifier_env *env, bool *do_print_state) +{ + int err; + struct bpf_insn *insn = &env->prog->insnsi[env->insn_idx]; + u8 class = BPF_CLASS(insn->code); + + if (class == BPF_ALU || class == BPF_ALU64) { + err = check_alu_op(env, insn); + if (err) + return err; + + } else if (class == BPF_LDX) { + bool is_ldsx = BPF_MODE(insn->code) == BPF_MEMSX; + + /* Check for reserved fields is already done in + * resolve_pseudo_ldimm64(). + */ + err = check_load_mem(env, insn, false, is_ldsx, true, "ldx"); + if (err) + return err; + } else if (class == BPF_STX) { + if (BPF_MODE(insn->code) == BPF_ATOMIC) { + err = check_atomic(env, insn); + if (err) + return err; + env->insn_idx++; + return 0; + } + + if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { + verbose(env, "BPF_STX uses reserved fields\n"); + return -EINVAL; + } + + err = check_store_reg(env, insn, false); + if (err) + return err; + } else if (class == BPF_ST) { + enum bpf_reg_type dst_reg_type; + + if (BPF_MODE(insn->code) != BPF_MEM || + insn->src_reg != BPF_REG_0) { + verbose(env, "BPF_ST uses reserved fields\n"); + return -EINVAL; + } + /* check src operand */ + err = check_reg_arg(env, insn->dst_reg, SRC_OP); + if (err) + return err; + + dst_reg_type = cur_regs(env)[insn->dst_reg].type; + + /* check that memory (dst_reg + off) is writeable */ + err = check_mem_access(env, env->insn_idx, insn->dst_reg, + insn->off, BPF_SIZE(insn->code), + BPF_WRITE, -1, false, false); + if (err) + return err; + + err = save_aux_ptr_type(env, dst_reg_type, false); + if (err) + return err; + } else if (class == BPF_JMP || class == BPF_JMP32) { + u8 opcode = BPF_OP(insn->code); + + env->jmps_processed++; + if (opcode == BPF_CALL) { + if (BPF_SRC(insn->code) != BPF_K || + (insn->src_reg != BPF_PSEUDO_KFUNC_CALL && + insn->off != 0) || + (insn->src_reg != BPF_REG_0 && + insn->src_reg != BPF_PSEUDO_CALL && + insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || + insn->dst_reg != BPF_REG_0 || class == BPF_JMP32) { + verbose(env, "BPF_CALL uses reserved fields\n"); + return -EINVAL; + } + + if (env->cur_state->active_locks) { + if ((insn->src_reg == BPF_REG_0 && + insn->imm != BPF_FUNC_spin_unlock) || + (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && + (insn->off != 0 || !kfunc_spin_allowed(insn->imm)))) { + verbose(env, + "function calls are not allowed while holding a lock\n"); + return -EINVAL; + } + } + if (insn->src_reg == BPF_PSEUDO_CALL) { + err = check_func_call(env, insn, &env->insn_idx); + } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { + err = check_kfunc_call(env, insn, &env->insn_idx); + if (!err && is_bpf_throw_kfunc(insn)) + return process_bpf_exit_full(env, do_print_state, true); + } else { + err = check_helper_call(env, insn, &env->insn_idx); + } + if (err) + return err; + + mark_reg_scratched(env, BPF_REG_0); + } else if (opcode == BPF_JA) { + if (BPF_SRC(insn->code) == BPF_X) { + if (insn->src_reg != BPF_REG_0 || + insn->imm != 0 || insn->off != 0) { + verbose(env, "BPF_JA|BPF_X uses reserved fields\n"); + return -EINVAL; + } + return check_indirect_jump(env, insn); + } + + if (BPF_SRC(insn->code) != BPF_K || + insn->src_reg != BPF_REG_0 || + insn->dst_reg != BPF_REG_0 || + (class == BPF_JMP && insn->imm != 0) || + (class == BPF_JMP32 && insn->off != 0)) { + verbose(env, "BPF_JA uses reserved fields\n"); + return -EINVAL; + } + + if (class == BPF_JMP) + env->insn_idx += insn->off + 1; + else + env->insn_idx += insn->imm + 1; + return 0; + } else if (opcode == BPF_EXIT) { + if (BPF_SRC(insn->code) != BPF_K || + insn->imm != 0 || + insn->src_reg != BPF_REG_0 || + insn->dst_reg != BPF_REG_0 || + class == BPF_JMP32) { + verbose(env, "BPF_EXIT uses reserved fields\n"); + return -EINVAL; + } + return process_bpf_exit_full(env, do_print_state, false); + } else { + err = check_cond_jmp_op(env, insn, &env->insn_idx); + if (err) + return err; + } + } else if (class == BPF_LD) { + u8 mode = BPF_MODE(insn->code); + + if (mode == BPF_ABS || mode == BPF_IND) { + err = check_ld_abs(env, insn); + if (err) + return err; + + } else if (mode == BPF_IMM) { + err = check_ld_imm(env, insn); + if (err) + return err; + + env->insn_idx++; + sanitize_mark_insn_seen(env); + } else { + verbose(env, "invalid BPF_LD mode\n"); + return -EINVAL; + } + } else { + verbose(env, "unknown insn class %d\n", class); + return -EINVAL; + } + + env->insn_idx++; + return 0; +} + +static int do_check(struct bpf_verifier_env *env) +{ + bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); + struct bpf_verifier_state *state = env->cur_state; + struct bpf_insn *insns = env->prog->insnsi; + int insn_cnt = env->prog->len; + bool do_print_state = false; + int prev_insn_idx = -1; + + for (;;) { + struct bpf_insn *insn; + struct bpf_insn_aux_data *insn_aux; + int err, marks_err; + + /* reset current history entry on each new instruction */ + env->cur_hist_ent = NULL; + + env->prev_insn_idx = prev_insn_idx; + if (env->insn_idx >= insn_cnt) { + verbose(env, "invalid insn idx %d insn_cnt %d\n", + env->insn_idx, insn_cnt); + return -EFAULT; + } + + insn = &insns[env->insn_idx]; + insn_aux = &env->insn_aux_data[env->insn_idx]; + + if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { + verbose(env, + "BPF program is too large. Processed %d insn\n", + env->insn_processed); + return -E2BIG; + } + + state->last_insn_idx = env->prev_insn_idx; + state->insn_idx = env->insn_idx; + + if (is_prune_point(env, env->insn_idx)) { + err = is_state_visited(env, env->insn_idx); + if (err < 0) + return err; + if (err == 1) { + /* found equivalent state, can prune the search */ + if (env->log.level & BPF_LOG_LEVEL) { + if (do_print_state) + verbose(env, "\nfrom %d to %d%s: safe\n", + env->prev_insn_idx, env->insn_idx, + env->cur_state->speculative ? + " (speculative execution)" : ""); + else + verbose(env, "%d: safe\n", env->insn_idx); + } + goto process_bpf_exit; + } + } + + if (is_jmp_point(env, env->insn_idx)) { + err = push_jmp_history(env, state, 0, 0); + if (err) + return err; + } + + if (signal_pending(current)) + return -EAGAIN; + + if (need_resched()) + cond_resched(); + + if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { + verbose(env, "\nfrom %d to %d%s:", + env->prev_insn_idx, env->insn_idx, + env->cur_state->speculative ? + " (speculative execution)" : ""); + print_verifier_state(env, state, state->curframe, true); + do_print_state = false; + } + + if (env->log.level & BPF_LOG_LEVEL) { + if (verifier_state_scratched(env)) + print_insn_state(env, state, state->curframe); + + verbose_linfo(env, env->insn_idx, "; "); + env->prev_log_pos = env->log.end_pos; + verbose(env, "%d: ", env->insn_idx); + verbose_insn(env, insn); + env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; + env->prev_log_pos = env->log.end_pos; + } + + if (bpf_prog_is_offloaded(env->prog->aux)) { + err = bpf_prog_offload_verify_insn(env, env->insn_idx, + env->prev_insn_idx); + if (err) + return err; + } + + sanitize_mark_insn_seen(env); + prev_insn_idx = env->insn_idx; + + /* Reduce verification complexity by stopping speculative path + * verification when a nospec is encountered. + */ + if (state->speculative && insn_aux->nospec) + goto process_bpf_exit; + + err = bpf_reset_stack_write_marks(env, env->insn_idx); + if (err) + return err; + err = do_check_insn(env, &do_print_state); + if (err >= 0 || error_recoverable_with_nospec(err)) { + marks_err = bpf_commit_stack_write_marks(env); + if (marks_err) + return marks_err; + } + if (error_recoverable_with_nospec(err) && state->speculative) { + /* Prevent this speculative path from ever reaching the + * insn that would have been unsafe to execute. + */ + insn_aux->nospec = true; + /* If it was an ADD/SUB insn, potentially remove any + * markings for alu sanitization. + */ + insn_aux->alu_state = 0; + goto process_bpf_exit; + } else if (err < 0) { + return err; + } else if (err == PROCESS_BPF_EXIT) { + goto process_bpf_exit; + } + WARN_ON_ONCE(err); + + if (state->speculative && insn_aux->nospec_result) { + /* If we are on a path that performed a jump-op, this + * may skip a nospec patched-in after the jump. This can + * currently never happen because nospec_result is only + * used for the write-ops + * `*(size*)(dst_reg+off)=src_reg|imm32` which must + * never skip the following insn. Still, add a warning + * to document this in case nospec_result is used + * elsewhere in the future. + * + * All non-branch instructions have a single + * fall-through edge. For these, nospec_result should + * already work. + */ + if (verifier_bug_if(BPF_CLASS(insn->code) == BPF_JMP || + BPF_CLASS(insn->code) == BPF_JMP32, env, + "speculation barrier after jump instruction may not have the desired effect")) + return -EFAULT; +process_bpf_exit: + mark_verifier_state_scratched(env); + err = update_branch_counts(env, env->cur_state); + if (err) + return err; + err = bpf_update_live_stack(env); + if (err) + return err; + err = pop_stack(env, &prev_insn_idx, &env->insn_idx, + pop_log); + if (err < 0) { + if (err != -ENOENT) + return err; + break; + } else { + do_print_state = true; + continue; + } + } + } + + return 0; +} + +static int find_btf_percpu_datasec(struct btf *btf) +{ + const struct btf_type *t; + const char *tname; + int i, n; + + /* + * Both vmlinux and module each have their own ".data..percpu" + * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF + * types to look at only module's own BTF types. + */ + n = btf_nr_types(btf); + if (btf_is_module(btf)) + i = btf_nr_types(btf_vmlinux); + else + i = 1; + + for(; i < n; i++) { + t = btf_type_by_id(btf, i); + if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) + continue; + + tname = btf_name_by_offset(btf, t->name_off); + if (!strcmp(tname, ".data..percpu")) + return i; + } + + return -ENOENT; +} + +/* + * Add btf to the used_btfs array and return the index. (If the btf was + * already added, then just return the index.) Upon successful insertion + * increase btf refcnt, and, if present, also refcount the corresponding + * kernel module. + */ +static int __add_used_btf(struct bpf_verifier_env *env, struct btf *btf) +{ + struct btf_mod_pair *btf_mod; + int i; + + /* check whether we recorded this BTF (and maybe module) already */ + for (i = 0; i < env->used_btf_cnt; i++) + if (env->used_btfs[i].btf == btf) + return i; + + if (env->used_btf_cnt >= MAX_USED_BTFS) { + verbose(env, "The total number of btfs per program has reached the limit of %u\n", + MAX_USED_BTFS); + return -E2BIG; + } + + btf_get(btf); + + btf_mod = &env->used_btfs[env->used_btf_cnt]; + btf_mod->btf = btf; + btf_mod->module = NULL; + + /* if we reference variables from kernel module, bump its refcount */ + if (btf_is_module(btf)) { + btf_mod->module = btf_try_get_module(btf); + if (!btf_mod->module) { + btf_put(btf); + return -ENXIO; + } + } + + return env->used_btf_cnt++; +} + +/* replace pseudo btf_id with kernel symbol address */ +static int __check_pseudo_btf_id(struct bpf_verifier_env *env, + struct bpf_insn *insn, + struct bpf_insn_aux_data *aux, + struct btf *btf) +{ + const struct btf_var_secinfo *vsi; + const struct btf_type *datasec; + const struct btf_type *t; + const char *sym_name; + bool percpu = false; + u32 type, id = insn->imm; + s32 datasec_id; + u64 addr; + int i; + + t = btf_type_by_id(btf, id); + if (!t) { + verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); + return -ENOENT; + } + + if (!btf_type_is_var(t) && !btf_type_is_func(t)) { + verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); + return -EINVAL; + } + + sym_name = btf_name_by_offset(btf, t->name_off); + addr = kallsyms_lookup_name(sym_name); + if (!addr) { + verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", + sym_name); + return -ENOENT; + } + insn[0].imm = (u32)addr; + insn[1].imm = addr >> 32; + + if (btf_type_is_func(t)) { + aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; + aux->btf_var.mem_size = 0; + return 0; + } + + datasec_id = find_btf_percpu_datasec(btf); + if (datasec_id > 0) { + datasec = btf_type_by_id(btf, datasec_id); + for_each_vsi(i, datasec, vsi) { + if (vsi->type == id) { + percpu = true; + break; + } + } + } + + type = t->type; + t = btf_type_skip_modifiers(btf, type, NULL); + if (percpu) { + aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; + aux->btf_var.btf = btf; + aux->btf_var.btf_id = type; + } else if (!btf_type_is_struct(t)) { + const struct btf_type *ret; + const char *tname; + u32 tsize; + + /* resolve the type size of ksym. */ + ret = btf_resolve_size(btf, t, &tsize); + if (IS_ERR(ret)) { + tname = btf_name_by_offset(btf, t->name_off); + verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", + tname, PTR_ERR(ret)); + return -EINVAL; + } + aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; + aux->btf_var.mem_size = tsize; + } else { + aux->btf_var.reg_type = PTR_TO_BTF_ID; + aux->btf_var.btf = btf; + aux->btf_var.btf_id = type; + } + + return 0; +} + +static int check_pseudo_btf_id(struct bpf_verifier_env *env, + struct bpf_insn *insn, + struct bpf_insn_aux_data *aux) +{ + struct btf *btf; + int btf_fd; + int err; + + btf_fd = insn[1].imm; + if (btf_fd) { + CLASS(fd, f)(btf_fd); + + btf = __btf_get_by_fd(f); + if (IS_ERR(btf)) { + verbose(env, "invalid module BTF object FD specified.\n"); + return -EINVAL; + } + } else { + if (!btf_vmlinux) { + verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); + return -EINVAL; + } + btf = btf_vmlinux; + } + + err = __check_pseudo_btf_id(env, insn, aux, btf); + if (err) + return err; + + err = __add_used_btf(env, btf); + if (err < 0) + return err; + return 0; +} + +static bool is_tracing_prog_type(enum bpf_prog_type type) +{ + switch (type) { + case BPF_PROG_TYPE_KPROBE: + case BPF_PROG_TYPE_TRACEPOINT: + case BPF_PROG_TYPE_PERF_EVENT: + case BPF_PROG_TYPE_RAW_TRACEPOINT: + case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: + return true; + default: + return false; + } +} + +static bool bpf_map_is_cgroup_storage(struct bpf_map *map) +{ + return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || + map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); +} + +static int check_map_prog_compatibility(struct bpf_verifier_env *env, + struct bpf_map *map, + struct bpf_prog *prog) + +{ + enum bpf_prog_type prog_type = resolve_prog_type(prog); + + if (map->excl_prog_sha && + memcmp(map->excl_prog_sha, prog->digest, SHA256_DIGEST_SIZE)) { + verbose(env, "program's hash doesn't match map's excl_prog_hash\n"); + return -EACCES; + } + + if (btf_record_has_field(map->record, BPF_LIST_HEAD) || + btf_record_has_field(map->record, BPF_RB_ROOT)) { + if (is_tracing_prog_type(prog_type)) { + verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); + return -EINVAL; + } + } + + if (btf_record_has_field(map->record, BPF_SPIN_LOCK | BPF_RES_SPIN_LOCK)) { + if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { + verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); + return -EINVAL; + } + + if (is_tracing_prog_type(prog_type)) { + verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); + return -EINVAL; + } + } + + if (btf_record_has_field(map->record, BPF_TIMER)) { + if (is_tracing_prog_type(prog_type)) { + verbose(env, "tracing progs cannot use bpf_timer yet\n"); + return -EINVAL; + } + } + + if (btf_record_has_field(map->record, BPF_WORKQUEUE)) { + if (is_tracing_prog_type(prog_type)) { + verbose(env, "tracing progs cannot use bpf_wq yet\n"); + return -EINVAL; + } + } + + if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && + !bpf_offload_prog_map_match(prog, map)) { + verbose(env, "offload device mismatch between prog and map\n"); + return -EINVAL; + } + + if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { + verbose(env, "bpf_struct_ops map cannot be used in prog\n"); + return -EINVAL; + } + + if (prog->sleepable) + switch (map->map_type) { + case BPF_MAP_TYPE_HASH: + case BPF_MAP_TYPE_LRU_HASH: + case BPF_MAP_TYPE_ARRAY: + case BPF_MAP_TYPE_PERCPU_HASH: + case BPF_MAP_TYPE_PERCPU_ARRAY: + case BPF_MAP_TYPE_LRU_PERCPU_HASH: + case BPF_MAP_TYPE_ARRAY_OF_MAPS: + case BPF_MAP_TYPE_HASH_OF_MAPS: + case BPF_MAP_TYPE_RINGBUF: + case BPF_MAP_TYPE_USER_RINGBUF: + case BPF_MAP_TYPE_INODE_STORAGE: + case BPF_MAP_TYPE_SK_STORAGE: + case BPF_MAP_TYPE_TASK_STORAGE: + case BPF_MAP_TYPE_CGRP_STORAGE: + case BPF_MAP_TYPE_QUEUE: + case BPF_MAP_TYPE_STACK: + case BPF_MAP_TYPE_ARENA: + case BPF_MAP_TYPE_INSN_ARRAY: + break; + default: + verbose(env, + "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); + return -EINVAL; + } + + if (bpf_map_is_cgroup_storage(map) && + bpf_cgroup_storage_assign(env->prog->aux, map)) { + verbose(env, "only one cgroup storage of each type is allowed\n"); + return -EBUSY; + } + + if (map->map_type == BPF_MAP_TYPE_ARENA) { + if (env->prog->aux->arena) { + verbose(env, "Only one arena per program\n"); + return -EBUSY; + } + if (!env->allow_ptr_leaks || !env->bpf_capable) { + verbose(env, "CAP_BPF and CAP_PERFMON are required to use arena\n"); + return -EPERM; + } + if (!env->prog->jit_requested) { + verbose(env, "JIT is required to use arena\n"); + return -EOPNOTSUPP; + } + if (!bpf_jit_supports_arena()) { + verbose(env, "JIT doesn't support arena\n"); + return -EOPNOTSUPP; + } + env->prog->aux->arena = (void *)map; + if (!bpf_arena_get_user_vm_start(env->prog->aux->arena)) { + verbose(env, "arena's user address must be set via map_extra or mmap()\n"); + return -EINVAL; + } + } + + return 0; +} + +static int __add_used_map(struct bpf_verifier_env *env, struct bpf_map *map) +{ + int i, err; + + /* check whether we recorded this map already */ + for (i = 0; i < env->used_map_cnt; i++) + if (env->used_maps[i] == map) + return i; + + if (env->used_map_cnt >= MAX_USED_MAPS) { + verbose(env, "The total number of maps per program has reached the limit of %u\n", + MAX_USED_MAPS); + return -E2BIG; + } + + err = check_map_prog_compatibility(env, map, env->prog); + if (err) + return err; + + if (env->prog->sleepable) + atomic64_inc(&map->sleepable_refcnt); + + /* hold the map. If the program is rejected by verifier, + * the map will be released by release_maps() or it + * will be used by the valid program until it's unloaded + * and all maps are released in bpf_free_used_maps() + */ + bpf_map_inc(map); + + env->used_maps[env->used_map_cnt++] = map; + + if (map->map_type == BPF_MAP_TYPE_INSN_ARRAY) { + err = bpf_insn_array_init(map, env->prog); + if (err) { + verbose(env, "Failed to properly initialize insn array\n"); + return err; + } + env->insn_array_maps[env->insn_array_map_cnt++] = map; + } + + return env->used_map_cnt - 1; +} + +/* Add map behind fd to used maps list, if it's not already there, and return + * its index. + * Returns <0 on error, or >= 0 index, on success. + */ +static int add_used_map(struct bpf_verifier_env *env, int fd) +{ + struct bpf_map *map; + CLASS(fd, f)(fd); + + map = __bpf_map_get(f); + if (IS_ERR(map)) { + verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); + return PTR_ERR(map); + } + + return __add_used_map(env, map); +} + +/* find and rewrite pseudo imm in ld_imm64 instructions: + * + * 1. if it accesses map FD, replace it with actual map pointer. + * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. + * + * NOTE: btf_vmlinux is required for converting pseudo btf_id. + */ +static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) +{ + struct bpf_insn *insn = env->prog->insnsi; + int insn_cnt = env->prog->len; + int i, err; + + err = bpf_prog_calc_tag(env->prog); + if (err) + return err; + + for (i = 0; i < insn_cnt; i++, insn++) { + if (BPF_CLASS(insn->code) == BPF_LDX && + ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || + insn->imm != 0)) { + verbose(env, "BPF_LDX uses reserved fields\n"); + return -EINVAL; + } + + if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { + struct bpf_insn_aux_data *aux; + struct bpf_map *map; + int map_idx; + u64 addr; + u32 fd; + + if (i == insn_cnt - 1 || insn[1].code != 0 || + insn[1].dst_reg != 0 || insn[1].src_reg != 0 || + insn[1].off != 0) { + verbose(env, "invalid bpf_ld_imm64 insn\n"); + return -EINVAL; + } + + if (insn[0].src_reg == 0) + /* valid generic load 64-bit imm */ + goto next_insn; + + if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { + aux = &env->insn_aux_data[i]; + err = check_pseudo_btf_id(env, insn, aux); + if (err) + return err; + goto next_insn; + } + + if (insn[0].src_reg == BPF_PSEUDO_FUNC) { + aux = &env->insn_aux_data[i]; + aux->ptr_type = PTR_TO_FUNC; + goto next_insn; + } + + /* In final convert_pseudo_ld_imm64() step, this is + * converted into regular 64-bit imm load insn. + */ + switch (insn[0].src_reg) { + case BPF_PSEUDO_MAP_VALUE: + case BPF_PSEUDO_MAP_IDX_VALUE: + break; + case BPF_PSEUDO_MAP_FD: + case BPF_PSEUDO_MAP_IDX: + if (insn[1].imm == 0) + break; + fallthrough; + default: + verbose(env, "unrecognized bpf_ld_imm64 insn\n"); + return -EINVAL; + } + + switch (insn[0].src_reg) { + case BPF_PSEUDO_MAP_IDX_VALUE: + case BPF_PSEUDO_MAP_IDX: + if (bpfptr_is_null(env->fd_array)) { + verbose(env, "fd_idx without fd_array is invalid\n"); + return -EPROTO; + } + if (copy_from_bpfptr_offset(&fd, env->fd_array, + insn[0].imm * sizeof(fd), + sizeof(fd))) + return -EFAULT; + break; + default: + fd = insn[0].imm; + break; + } + + map_idx = add_used_map(env, fd); + if (map_idx < 0) + return map_idx; + map = env->used_maps[map_idx]; + + aux = &env->insn_aux_data[i]; + aux->map_index = map_idx; + + if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || + insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { + addr = (unsigned long)map; + } else { + u32 off = insn[1].imm; + + if (off >= BPF_MAX_VAR_OFF) { + verbose(env, "direct value offset of %u is not allowed\n", off); + return -EINVAL; + } + + if (!map->ops->map_direct_value_addr) { + verbose(env, "no direct value access support for this map type\n"); + return -EINVAL; + } + + err = map->ops->map_direct_value_addr(map, &addr, off); + if (err) { + verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", + map->value_size, off); + return err; + } + + aux->map_off = off; + addr += off; + } + + insn[0].imm = (u32)addr; + insn[1].imm = addr >> 32; + +next_insn: + insn++; + i++; + continue; + } + + /* Basic sanity check before we invest more work here. */ + if (!bpf_opcode_in_insntable(insn->code)) { + verbose(env, "unknown opcode %02x\n", insn->code); + return -EINVAL; + } + } + + /* now all pseudo BPF_LD_IMM64 instructions load valid + * 'struct bpf_map *' into a register instead of user map_fd. + * These pointers will be used later by verifier to validate map access. + */ + return 0; +} + +/* drop refcnt of maps used by the rejected program */ +static void release_maps(struct bpf_verifier_env *env) +{ + __bpf_free_used_maps(env->prog->aux, env->used_maps, + env->used_map_cnt); +} + +/* drop refcnt of maps used by the rejected program */ +static void release_btfs(struct bpf_verifier_env *env) +{ + __bpf_free_used_btfs(env->used_btfs, env->used_btf_cnt); +} + +/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ +static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) +{ + struct bpf_insn *insn = env->prog->insnsi; + int insn_cnt = env->prog->len; + int i; + + for (i = 0; i < insn_cnt; i++, insn++) { + if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) + continue; + if (insn->src_reg == BPF_PSEUDO_FUNC) + continue; + insn->src_reg = 0; + } +} + +/* single env->prog->insni[off] instruction was replaced with the range + * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying + * [0, off) and [off, end) to new locations, so the patched range stays zero + */ +static void adjust_insn_aux_data(struct bpf_verifier_env *env, + struct bpf_prog *new_prog, u32 off, u32 cnt) +{ + struct bpf_insn_aux_data *data = env->insn_aux_data; + struct bpf_insn *insn = new_prog->insnsi; + u32 old_seen = data[off].seen; + u32 prog_len; + int i; + + /* aux info at OFF always needs adjustment, no matter fast path + * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the + * original insn at old prog. + */ + data[off].zext_dst = insn_has_def32(insn + off + cnt - 1); + + if (cnt == 1) + return; + prog_len = new_prog->len; + + memmove(data + off + cnt - 1, data + off, + sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); + memset(data + off, 0, sizeof(struct bpf_insn_aux_data) * (cnt - 1)); + for (i = off; i < off + cnt - 1; i++) { + /* Expand insni[off]'s seen count to the patched range. */ + data[i].seen = old_seen; + data[i].zext_dst = insn_has_def32(insn + i); + } +} + +static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) +{ + int i; + + if (len == 1) + return; + /* NOTE: fake 'exit' subprog should be updated as well. */ + for (i = 0; i <= env->subprog_cnt; i++) { + if (env->subprog_info[i].start <= off) + continue; + env->subprog_info[i].start += len - 1; + } +} + +static void release_insn_arrays(struct bpf_verifier_env *env) +{ + int i; + + for (i = 0; i < env->insn_array_map_cnt; i++) + bpf_insn_array_release(env->insn_array_maps[i]); +} + +static void adjust_insn_arrays(struct bpf_verifier_env *env, u32 off, u32 len) +{ + int i; + + if (len == 1) + return; + + for (i = 0; i < env->insn_array_map_cnt; i++) + bpf_insn_array_adjust(env->insn_array_maps[i], off, len); +} + +static void adjust_insn_arrays_after_remove(struct bpf_verifier_env *env, u32 off, u32 len) +{ + int i; + + for (i = 0; i < env->insn_array_map_cnt; i++) + bpf_insn_array_adjust_after_remove(env->insn_array_maps[i], off, len); +} + +static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) +{ + struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; + int i, sz = prog->aux->size_poke_tab; + struct bpf_jit_poke_descriptor *desc; + + for (i = 0; i < sz; i++) { + desc = &tab[i]; + if (desc->insn_idx <= off) + continue; + desc->insn_idx += len - 1; + } +} + +static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, + const struct bpf_insn *patch, u32 len) +{ + struct bpf_prog *new_prog; + struct bpf_insn_aux_data *new_data = NULL; + + if (len > 1) { + new_data = vrealloc(env->insn_aux_data, + array_size(env->prog->len + len - 1, + sizeof(struct bpf_insn_aux_data)), + GFP_KERNEL_ACCOUNT | __GFP_ZERO); + if (!new_data) + return NULL; + + env->insn_aux_data = new_data; + } + + new_prog = bpf_patch_insn_single(env->prog, off, patch, len); + if (IS_ERR(new_prog)) { + if (PTR_ERR(new_prog) == -ERANGE) + verbose(env, + "insn %d cannot be patched due to 16-bit range\n", + env->insn_aux_data[off].orig_idx); + return NULL; + } + adjust_insn_aux_data(env, new_prog, off, len); + adjust_subprog_starts(env, off, len); + adjust_insn_arrays(env, off, len); + adjust_poke_descs(new_prog, off, len); + return new_prog; +} + +/* + * For all jmp insns in a given 'prog' that point to 'tgt_idx' insn adjust the + * jump offset by 'delta'. + */ +static int adjust_jmp_off(struct bpf_prog *prog, u32 tgt_idx, u32 delta) +{ + struct bpf_insn *insn = prog->insnsi; + u32 insn_cnt = prog->len, i; + s32 imm; + s16 off; + + for (i = 0; i < insn_cnt; i++, insn++) { + u8 code = insn->code; + + if (tgt_idx <= i && i < tgt_idx + delta) + continue; + + if ((BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) || + BPF_OP(code) == BPF_CALL || BPF_OP(code) == BPF_EXIT) + continue; + + if (insn->code == (BPF_JMP32 | BPF_JA)) { + if (i + 1 + insn->imm != tgt_idx) + continue; + if (check_add_overflow(insn->imm, delta, &imm)) + return -ERANGE; + insn->imm = imm; + } else { + if (i + 1 + insn->off != tgt_idx) + continue; + if (check_add_overflow(insn->off, delta, &off)) + return -ERANGE; + insn->off = off; + } + } + return 0; +} + +static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, + u32 off, u32 cnt) +{ + int i, j; + + /* find first prog starting at or after off (first to remove) */ + for (i = 0; i < env->subprog_cnt; i++) + if (env->subprog_info[i].start >= off) + break; + /* find first prog starting at or after off + cnt (first to stay) */ + for (j = i; j < env->subprog_cnt; j++) + if (env->subprog_info[j].start >= off + cnt) + break; + /* if j doesn't start exactly at off + cnt, we are just removing + * the front of previous prog + */ + if (env->subprog_info[j].start != off + cnt) + j--; + + if (j > i) { + struct bpf_prog_aux *aux = env->prog->aux; + int move; + + /* move fake 'exit' subprog as well */ + move = env->subprog_cnt + 1 - j; + + memmove(env->subprog_info + i, + env->subprog_info + j, + sizeof(*env->subprog_info) * move); + env->subprog_cnt -= j - i; + + /* remove func_info */ + if (aux->func_info) { + move = aux->func_info_cnt - j; + + memmove(aux->func_info + i, + aux->func_info + j, + sizeof(*aux->func_info) * move); + aux->func_info_cnt -= j - i; + /* func_info->insn_off is set after all code rewrites, + * in adjust_btf_func() - no need to adjust + */ + } + } else { + /* convert i from "first prog to remove" to "first to adjust" */ + if (env->subprog_info[i].start == off) + i++; + } + + /* update fake 'exit' subprog as well */ + for (; i <= env->subprog_cnt; i++) + env->subprog_info[i].start -= cnt; + + return 0; +} + +static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, + u32 cnt) +{ + struct bpf_prog *prog = env->prog; + u32 i, l_off, l_cnt, nr_linfo; + struct bpf_line_info *linfo; + + nr_linfo = prog->aux->nr_linfo; + if (!nr_linfo) + return 0; + + linfo = prog->aux->linfo; + + /* find first line info to remove, count lines to be removed */ + for (i = 0; i < nr_linfo; i++) + if (linfo[i].insn_off >= off) + break; + + l_off = i; + l_cnt = 0; + for (; i < nr_linfo; i++) + if (linfo[i].insn_off < off + cnt) + l_cnt++; + else + break; + + /* First live insn doesn't match first live linfo, it needs to "inherit" + * last removed linfo. prog is already modified, so prog->len == off + * means no live instructions after (tail of the program was removed). + */ + if (prog->len != off && l_cnt && + (i == nr_linfo || linfo[i].insn_off != off + cnt)) { + l_cnt--; + linfo[--i].insn_off = off + cnt; + } + + /* remove the line info which refer to the removed instructions */ + if (l_cnt) { + memmove(linfo + l_off, linfo + i, + sizeof(*linfo) * (nr_linfo - i)); + + prog->aux->nr_linfo -= l_cnt; + nr_linfo = prog->aux->nr_linfo; + } + + /* pull all linfo[i].insn_off >= off + cnt in by cnt */ + for (i = l_off; i < nr_linfo; i++) + linfo[i].insn_off -= cnt; + + /* fix up all subprogs (incl. 'exit') which start >= off */ + for (i = 0; i <= env->subprog_cnt; i++) + if (env->subprog_info[i].linfo_idx > l_off) { + /* program may have started in the removed region but + * may not be fully removed + */ + if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) + env->subprog_info[i].linfo_idx -= l_cnt; + else + env->subprog_info[i].linfo_idx = l_off; + } + + return 0; +} + +/* + * Clean up dynamically allocated fields of aux data for instructions [start, ...] + */ +static void clear_insn_aux_data(struct bpf_verifier_env *env, int start, int len) +{ + struct bpf_insn_aux_data *aux_data = env->insn_aux_data; + struct bpf_insn *insns = env->prog->insnsi; + int end = start + len; + int i; + + for (i = start; i < end; i++) { + if (aux_data[i].jt) { + kvfree(aux_data[i].jt); + aux_data[i].jt = NULL; + } + + if (bpf_is_ldimm64(&insns[i])) + i++; + } +} + +static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) +{ + struct bpf_insn_aux_data *aux_data = env->insn_aux_data; + unsigned int orig_prog_len = env->prog->len; + int err; + + if (bpf_prog_is_offloaded(env->prog->aux)) + bpf_prog_offload_remove_insns(env, off, cnt); + + /* Should be called before bpf_remove_insns, as it uses prog->insnsi */ + clear_insn_aux_data(env, off, cnt); + + err = bpf_remove_insns(env->prog, off, cnt); + if (err) + return err; + + err = adjust_subprog_starts_after_remove(env, off, cnt); + if (err) + return err; + + err = bpf_adj_linfo_after_remove(env, off, cnt); + if (err) + return err; + + adjust_insn_arrays_after_remove(env, off, cnt); + + memmove(aux_data + off, aux_data + off + cnt, + sizeof(*aux_data) * (orig_prog_len - off - cnt)); + + return 0; +} + +/* The verifier does more data flow analysis than llvm and will not + * explore branches that are dead at run time. Malicious programs can + * have dead code too. Therefore replace all dead at-run-time code + * with 'ja -1'. + * + * Just nops are not optimal, e.g. if they would sit at the end of the + * program and through another bug we would manage to jump there, then + * we'd execute beyond program memory otherwise. Returning exception + * code also wouldn't work since we can have subprogs where the dead + * code could be located. + */ +static void sanitize_dead_code(struct bpf_verifier_env *env) +{ + struct bpf_insn_aux_data *aux_data = env->insn_aux_data; + struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); + struct bpf_insn *insn = env->prog->insnsi; + const int insn_cnt = env->prog->len; + int i; + + for (i = 0; i < insn_cnt; i++) { + if (aux_data[i].seen) + continue; + memcpy(insn + i, &trap, sizeof(trap)); + aux_data[i].zext_dst = false; + } +} + +static bool insn_is_cond_jump(u8 code) +{ + u8 op; + + op = BPF_OP(code); + if (BPF_CLASS(code) == BPF_JMP32) + return op != BPF_JA; + + if (BPF_CLASS(code) != BPF_JMP) + return false; + + return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; +} + +static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) +{ + struct bpf_insn_aux_data *aux_data = env->insn_aux_data; + struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); + struct bpf_insn *insn = env->prog->insnsi; + const int insn_cnt = env->prog->len; + int i; + + for (i = 0; i < insn_cnt; i++, insn++) { + if (!insn_is_cond_jump(insn->code)) + continue; + + if (!aux_data[i + 1].seen) + ja.off = insn->off; + else if (!aux_data[i + 1 + insn->off].seen) + ja.off = 0; + else + continue; + + if (bpf_prog_is_offloaded(env->prog->aux)) + bpf_prog_offload_replace_insn(env, i, &ja); + + memcpy(insn, &ja, sizeof(ja)); + } +} + +static int opt_remove_dead_code(struct bpf_verifier_env *env) +{ + struct bpf_insn_aux_data *aux_data = env->insn_aux_data; + int insn_cnt = env->prog->len; + int i, err; + + for (i = 0; i < insn_cnt; i++) { + int j; + + j = 0; + while (i + j < insn_cnt && !aux_data[i + j].seen) + j++; + if (!j) + continue; + + err = verifier_remove_insns(env, i, j); + if (err) + return err; + insn_cnt = env->prog->len; + } + + return 0; +} + +static const struct bpf_insn NOP = BPF_JMP_IMM(BPF_JA, 0, 0, 0); +static const struct bpf_insn MAY_GOTO_0 = BPF_RAW_INSN(BPF_JMP | BPF_JCOND, 0, 0, 0, 0); + +static int opt_remove_nops(struct bpf_verifier_env *env) +{ + struct bpf_insn *insn = env->prog->insnsi; + int insn_cnt = env->prog->len; + bool is_may_goto_0, is_ja; + int i, err; + + for (i = 0; i < insn_cnt; i++) { + is_may_goto_0 = !memcmp(&insn[i], &MAY_GOTO_0, sizeof(MAY_GOTO_0)); + is_ja = !memcmp(&insn[i], &NOP, sizeof(NOP)); + + if (!is_may_goto_0 && !is_ja) + continue; + + err = verifier_remove_insns(env, i, 1); + if (err) + return err; + insn_cnt--; + /* Go back one insn to catch may_goto +1; may_goto +0 sequence */ + i -= (is_may_goto_0 && i > 0) ? 2 : 1; + } + + return 0; +} + +static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, + const union bpf_attr *attr) +{ + struct bpf_insn *patch; + /* use env->insn_buf as two independent buffers */ + struct bpf_insn *zext_patch = env->insn_buf; + struct bpf_insn *rnd_hi32_patch = &env->insn_buf[2]; + struct bpf_insn_aux_data *aux = env->insn_aux_data; + int i, patch_len, delta = 0, len = env->prog->len; + struct bpf_insn *insns = env->prog->insnsi; + struct bpf_prog *new_prog; + bool rnd_hi32; + + rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; + zext_patch[1] = BPF_ZEXT_REG(0); + rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); + rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); + rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); + for (i = 0; i < len; i++) { + int adj_idx = i + delta; + struct bpf_insn insn; + int load_reg; + + insn = insns[adj_idx]; + load_reg = insn_def_regno(&insn); + if (!aux[adj_idx].zext_dst) { + u8 code, class; + u32 imm_rnd; + + if (!rnd_hi32) + continue; + + code = insn.code; + class = BPF_CLASS(code); + if (load_reg == -1) + continue; + + /* NOTE: arg "reg" (the fourth one) is only used for + * BPF_STX + SRC_OP, so it is safe to pass NULL + * here. + */ + if (is_reg64(&insn, load_reg, NULL, DST_OP)) { + if (class == BPF_LD && + BPF_MODE(code) == BPF_IMM) + i++; + continue; + } + + /* ctx load could be transformed into wider load. */ + if (class == BPF_LDX && + aux[adj_idx].ptr_type == PTR_TO_CTX) + continue; + + imm_rnd = get_random_u32(); + rnd_hi32_patch[0] = insn; + rnd_hi32_patch[1].imm = imm_rnd; + rnd_hi32_patch[3].dst_reg = load_reg; + patch = rnd_hi32_patch; + patch_len = 4; + goto apply_patch_buffer; + } + + /* Add in an zero-extend instruction if a) the JIT has requested + * it or b) it's a CMPXCHG. + * + * The latter is because: BPF_CMPXCHG always loads a value into + * R0, therefore always zero-extends. However some archs' + * equivalent instruction only does this load when the + * comparison is successful. This detail of CMPXCHG is + * orthogonal to the general zero-extension behaviour of the + * CPU, so it's treated independently of bpf_jit_needs_zext. + */ + if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) + continue; + + /* Zero-extension is done by the caller. */ + if (bpf_pseudo_kfunc_call(&insn)) + continue; + + if (verifier_bug_if(load_reg == -1, env, + "zext_dst is set, but no reg is defined")) + return -EFAULT; + + zext_patch[0] = insn; + zext_patch[1].dst_reg = load_reg; + zext_patch[1].src_reg = load_reg; + patch = zext_patch; + patch_len = 2; +apply_patch_buffer: + new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); + if (!new_prog) + return -ENOMEM; + env->prog = new_prog; + insns = new_prog->insnsi; + aux = env->insn_aux_data; + delta += patch_len - 1; + } + + return 0; +} + +/* convert load instructions that access fields of a context type into a + * sequence of instructions that access fields of the underlying structure: + * struct __sk_buff -> struct sk_buff + * struct bpf_sock_ops -> struct sock + */ +static int convert_ctx_accesses(struct bpf_verifier_env *env) +{ + struct bpf_subprog_info *subprogs = env->subprog_info; + const struct bpf_verifier_ops *ops = env->ops; + int i, cnt, size, ctx_field_size, ret, delta = 0, epilogue_cnt = 0; + const int insn_cnt = env->prog->len; + struct bpf_insn *epilogue_buf = env->epilogue_buf; + struct bpf_insn *insn_buf = env->insn_buf; + struct bpf_insn *insn; + u32 target_size, size_default, off; + struct bpf_prog *new_prog; + enum bpf_access_type type; + bool is_narrower_load; + int epilogue_idx = 0; + + if (ops->gen_epilogue) { + epilogue_cnt = ops->gen_epilogue(epilogue_buf, env->prog, + -(subprogs[0].stack_depth + 8)); + if (epilogue_cnt >= INSN_BUF_SIZE) { + verifier_bug(env, "epilogue is too long"); + return -EFAULT; + } else if (epilogue_cnt) { + /* Save the ARG_PTR_TO_CTX for the epilogue to use */ + cnt = 0; + subprogs[0].stack_depth += 8; + insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_1, + -subprogs[0].stack_depth); + insn_buf[cnt++] = env->prog->insnsi[0]; + new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + env->prog = new_prog; + delta += cnt - 1; + + ret = add_kfunc_in_insns(env, epilogue_buf, epilogue_cnt - 1); + if (ret < 0) + return ret; + } + } + + if (ops->gen_prologue || env->seen_direct_write) { + if (!ops->gen_prologue) { + verifier_bug(env, "gen_prologue is null"); + return -EFAULT; + } + cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, + env->prog); + if (cnt >= INSN_BUF_SIZE) { + verifier_bug(env, "prologue is too long"); + return -EFAULT; + } else if (cnt) { + new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + env->prog = new_prog; + delta += cnt - 1; + + ret = add_kfunc_in_insns(env, insn_buf, cnt - 1); + if (ret < 0) + return ret; + } + } + + if (delta) + WARN_ON(adjust_jmp_off(env->prog, 0, delta)); + + if (bpf_prog_is_offloaded(env->prog->aux)) + return 0; + + insn = env->prog->insnsi + delta; + + for (i = 0; i < insn_cnt; i++, insn++) { + bpf_convert_ctx_access_t convert_ctx_access; + u8 mode; + + if (env->insn_aux_data[i + delta].nospec) { + WARN_ON_ONCE(env->insn_aux_data[i + delta].alu_state); + struct bpf_insn *patch = insn_buf; + + *patch++ = BPF_ST_NOSPEC(); + *patch++ = *insn; + cnt = patch - insn_buf; + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = new_prog; + insn = new_prog->insnsi + i + delta; + /* This can not be easily merged with the + * nospec_result-case, because an insn may require a + * nospec before and after itself. Therefore also do not + * 'continue' here but potentially apply further + * patching to insn. *insn should equal patch[1] now. + */ + } + + if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || + insn->code == (BPF_LDX | BPF_MEM | BPF_H) || + insn->code == (BPF_LDX | BPF_MEM | BPF_W) || + insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || + insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || + insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || + insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { + type = BPF_READ; + } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || + insn->code == (BPF_STX | BPF_MEM | BPF_H) || + insn->code == (BPF_STX | BPF_MEM | BPF_W) || + insn->code == (BPF_STX | BPF_MEM | BPF_DW) || + insn->code == (BPF_ST | BPF_MEM | BPF_B) || + insn->code == (BPF_ST | BPF_MEM | BPF_H) || + insn->code == (BPF_ST | BPF_MEM | BPF_W) || + insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { + type = BPF_WRITE; + } else if ((insn->code == (BPF_STX | BPF_ATOMIC | BPF_B) || + insn->code == (BPF_STX | BPF_ATOMIC | BPF_H) || + insn->code == (BPF_STX | BPF_ATOMIC | BPF_W) || + insn->code == (BPF_STX | BPF_ATOMIC | BPF_DW)) && + env->insn_aux_data[i + delta].ptr_type == PTR_TO_ARENA) { + insn->code = BPF_STX | BPF_PROBE_ATOMIC | BPF_SIZE(insn->code); + env->prog->aux->num_exentries++; + continue; + } else if (insn->code == (BPF_JMP | BPF_EXIT) && + epilogue_cnt && + i + delta < subprogs[1].start) { + /* Generate epilogue for the main prog */ + if (epilogue_idx) { + /* jump back to the earlier generated epilogue */ + insn_buf[0] = BPF_JMP32_A(epilogue_idx - i - delta - 1); + cnt = 1; + } else { + memcpy(insn_buf, epilogue_buf, + epilogue_cnt * sizeof(*epilogue_buf)); + cnt = epilogue_cnt; + /* epilogue_idx cannot be 0. It must have at + * least one ctx ptr saving insn before the + * epilogue. + */ + epilogue_idx = i + delta; + } + goto patch_insn_buf; + } else { + continue; + } + + if (type == BPF_WRITE && + env->insn_aux_data[i + delta].nospec_result) { + /* nospec_result is only used to mitigate Spectre v4 and + * to limit verification-time for Spectre v1. + */ + struct bpf_insn *patch = insn_buf; + + *patch++ = *insn; + *patch++ = BPF_ST_NOSPEC(); + cnt = patch - insn_buf; + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = new_prog; + insn = new_prog->insnsi + i + delta; + continue; + } + + switch ((int)env->insn_aux_data[i + delta].ptr_type) { + case PTR_TO_CTX: + if (!ops->convert_ctx_access) + continue; + convert_ctx_access = ops->convert_ctx_access; + break; + case PTR_TO_SOCKET: + case PTR_TO_SOCK_COMMON: + convert_ctx_access = bpf_sock_convert_ctx_access; + break; + case PTR_TO_TCP_SOCK: + convert_ctx_access = bpf_tcp_sock_convert_ctx_access; + break; + case PTR_TO_XDP_SOCK: + convert_ctx_access = bpf_xdp_sock_convert_ctx_access; + break; + case PTR_TO_BTF_ID: + case PTR_TO_BTF_ID | PTR_UNTRUSTED: + /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike + * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot + * be said once it is marked PTR_UNTRUSTED, hence we must handle + * any faults for loads into such types. BPF_WRITE is disallowed + * for this case. + */ + case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: + case PTR_TO_MEM | MEM_RDONLY | PTR_UNTRUSTED: + if (type == BPF_READ) { + if (BPF_MODE(insn->code) == BPF_MEM) + insn->code = BPF_LDX | BPF_PROBE_MEM | + BPF_SIZE((insn)->code); + else + insn->code = BPF_LDX | BPF_PROBE_MEMSX | + BPF_SIZE((insn)->code); + env->prog->aux->num_exentries++; + } + continue; + case PTR_TO_ARENA: + if (BPF_MODE(insn->code) == BPF_MEMSX) { + if (!bpf_jit_supports_insn(insn, true)) { + verbose(env, "sign extending loads from arena are not supported yet\n"); + return -EOPNOTSUPP; + } + insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32SX | BPF_SIZE(insn->code); + } else { + insn->code = BPF_CLASS(insn->code) | BPF_PROBE_MEM32 | BPF_SIZE(insn->code); + } + env->prog->aux->num_exentries++; + continue; + default: + continue; + } + + ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; + size = BPF_LDST_BYTES(insn); + mode = BPF_MODE(insn->code); + + /* If the read access is a narrower load of the field, + * convert to a 4/8-byte load, to minimum program type specific + * convert_ctx_access changes. If conversion is successful, + * we will apply proper mask to the result. + */ + is_narrower_load = size < ctx_field_size; + size_default = bpf_ctx_off_adjust_machine(ctx_field_size); + off = insn->off; + if (is_narrower_load) { + u8 size_code; + + if (type == BPF_WRITE) { + verifier_bug(env, "narrow ctx access misconfigured"); + return -EFAULT; + } + + size_code = BPF_H; + if (ctx_field_size == 4) + size_code = BPF_W; + else if (ctx_field_size == 8) + size_code = BPF_DW; + + insn->off = off & ~(size_default - 1); + insn->code = BPF_LDX | BPF_MEM | size_code; + } + + target_size = 0; + cnt = convert_ctx_access(type, insn, insn_buf, env->prog, + &target_size); + if (cnt == 0 || cnt >= INSN_BUF_SIZE || + (ctx_field_size && !target_size)) { + verifier_bug(env, "error during ctx access conversion (%d)", cnt); + return -EFAULT; + } + + if (is_narrower_load && size < target_size) { + u8 shift = bpf_ctx_narrow_access_offset( + off, size, size_default) * 8; + if (shift && cnt + 1 >= INSN_BUF_SIZE) { + verifier_bug(env, "narrow ctx load misconfigured"); + return -EFAULT; + } + if (ctx_field_size <= 4) { + if (shift) + insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, + insn->dst_reg, + shift); + insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, + (1 << size * 8) - 1); + } else { + if (shift) + insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, + insn->dst_reg, + shift); + insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, + (1ULL << size * 8) - 1); + } + } + if (mode == BPF_MEMSX) + insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, + insn->dst_reg, insn->dst_reg, + size * 8, 0); + +patch_insn_buf: + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + + /* keep walking new program and skip insns we just inserted */ + env->prog = new_prog; + insn = new_prog->insnsi + i + delta; + } + + return 0; +} + +static int jit_subprogs(struct bpf_verifier_env *env) +{ + struct bpf_prog *prog = env->prog, **func, *tmp; + int i, j, subprog_start, subprog_end = 0, len, subprog; + struct bpf_map *map_ptr; + struct bpf_insn *insn; + void *old_bpf_func; + int err, num_exentries; + int old_len, subprog_start_adjustment = 0; + + if (env->subprog_cnt <= 1) + return 0; + + for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { + if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) + continue; + + /* Upon error here we cannot fall back to interpreter but + * need a hard reject of the program. Thus -EFAULT is + * propagated in any case. + */ + subprog = find_subprog(env, i + insn->imm + 1); + if (verifier_bug_if(subprog < 0, env, "No program to jit at insn %d", + i + insn->imm + 1)) + return -EFAULT; + /* temporarily remember subprog id inside insn instead of + * aux_data, since next loop will split up all insns into funcs + */ + insn->off = subprog; + /* remember original imm in case JIT fails and fallback + * to interpreter will be needed + */ + env->insn_aux_data[i].call_imm = insn->imm; + /* point imm to __bpf_call_base+1 from JITs point of view */ + insn->imm = 1; + if (bpf_pseudo_func(insn)) { +#if defined(MODULES_VADDR) + u64 addr = MODULES_VADDR; +#else + u64 addr = VMALLOC_START; +#endif + /* jit (e.g. x86_64) may emit fewer instructions + * if it learns a u32 imm is the same as a u64 imm. + * Set close enough to possible prog address. + */ + insn[0].imm = (u32)addr; + insn[1].imm = addr >> 32; + } + } + + err = bpf_prog_alloc_jited_linfo(prog); + if (err) + goto out_undo_insn; + + err = -ENOMEM; + func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); + if (!func) + goto out_undo_insn; + + for (i = 0; i < env->subprog_cnt; i++) { + subprog_start = subprog_end; + subprog_end = env->subprog_info[i + 1].start; + + len = subprog_end - subprog_start; + /* bpf_prog_run() doesn't call subprogs directly, + * hence main prog stats include the runtime of subprogs. + * subprogs don't have IDs and not reachable via prog_get_next_id + * func[i]->stats will never be accessed and stays NULL + */ + func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); + if (!func[i]) + goto out_free; + memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], + len * sizeof(struct bpf_insn)); + func[i]->type = prog->type; + func[i]->len = len; + if (bpf_prog_calc_tag(func[i])) + goto out_free; + func[i]->is_func = 1; + func[i]->sleepable = prog->sleepable; + func[i]->aux->func_idx = i; + /* Below members will be freed only at prog->aux */ + func[i]->aux->btf = prog->aux->btf; + func[i]->aux->subprog_start = subprog_start + subprog_start_adjustment; + func[i]->aux->func_info = prog->aux->func_info; + func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; + func[i]->aux->poke_tab = prog->aux->poke_tab; + func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; + func[i]->aux->main_prog_aux = prog->aux; + + for (j = 0; j < prog->aux->size_poke_tab; j++) { + struct bpf_jit_poke_descriptor *poke; + + poke = &prog->aux->poke_tab[j]; + if (poke->insn_idx < subprog_end && + poke->insn_idx >= subprog_start) + poke->aux = func[i]->aux; + } + + func[i]->aux->name[0] = 'F'; + func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; + if (env->subprog_info[i].priv_stack_mode == PRIV_STACK_ADAPTIVE) + func[i]->aux->jits_use_priv_stack = true; + + func[i]->jit_requested = 1; + func[i]->blinding_requested = prog->blinding_requested; + func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; + func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; + func[i]->aux->linfo = prog->aux->linfo; + func[i]->aux->nr_linfo = prog->aux->nr_linfo; + func[i]->aux->jited_linfo = prog->aux->jited_linfo; + func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; + func[i]->aux->arena = prog->aux->arena; + func[i]->aux->used_maps = env->used_maps; + func[i]->aux->used_map_cnt = env->used_map_cnt; + num_exentries = 0; + insn = func[i]->insnsi; + for (j = 0; j < func[i]->len; j++, insn++) { + if (BPF_CLASS(insn->code) == BPF_LDX && + (BPF_MODE(insn->code) == BPF_PROBE_MEM || + BPF_MODE(insn->code) == BPF_PROBE_MEM32 || + BPF_MODE(insn->code) == BPF_PROBE_MEM32SX || + BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) + num_exentries++; + if ((BPF_CLASS(insn->code) == BPF_STX || + BPF_CLASS(insn->code) == BPF_ST) && + BPF_MODE(insn->code) == BPF_PROBE_MEM32) + num_exentries++; + if (BPF_CLASS(insn->code) == BPF_STX && + BPF_MODE(insn->code) == BPF_PROBE_ATOMIC) + num_exentries++; + } + func[i]->aux->num_exentries = num_exentries; + func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; + func[i]->aux->exception_cb = env->subprog_info[i].is_exception_cb; + func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data; + func[i]->aux->might_sleep = env->subprog_info[i].might_sleep; + if (!i) + func[i]->aux->exception_boundary = env->seen_exception; + + /* + * To properly pass the absolute subprog start to jit + * all instruction adjustments should be accumulated + */ + old_len = func[i]->len; + func[i] = bpf_int_jit_compile(func[i]); + subprog_start_adjustment += func[i]->len - old_len; + + if (!func[i]->jited) { + err = -ENOTSUPP; + goto out_free; + } + cond_resched(); + } + + /* at this point all bpf functions were successfully JITed + * now populate all bpf_calls with correct addresses and + * run last pass of JIT + */ + for (i = 0; i < env->subprog_cnt; i++) { + insn = func[i]->insnsi; + for (j = 0; j < func[i]->len; j++, insn++) { + if (bpf_pseudo_func(insn)) { + subprog = insn->off; + insn[0].imm = (u32)(long)func[subprog]->bpf_func; + insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; + continue; + } + if (!bpf_pseudo_call(insn)) + continue; + subprog = insn->off; + insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); + } + + /* we use the aux data to keep a list of the start addresses + * of the JITed images for each function in the program + * + * for some architectures, such as powerpc64, the imm field + * might not be large enough to hold the offset of the start + * address of the callee's JITed image from __bpf_call_base + * + * in such cases, we can lookup the start address of a callee + * by using its subprog id, available from the off field of + * the call instruction, as an index for this list + */ + func[i]->aux->func = func; + func[i]->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; + func[i]->aux->real_func_cnt = env->subprog_cnt; + } + for (i = 0; i < env->subprog_cnt; i++) { + old_bpf_func = func[i]->bpf_func; + tmp = bpf_int_jit_compile(func[i]); + if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { + verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); + err = -ENOTSUPP; + goto out_free; + } + cond_resched(); + } + + /* + * Cleanup func[i]->aux fields which aren't required + * or can become invalid in future + */ + for (i = 0; i < env->subprog_cnt; i++) { + func[i]->aux->used_maps = NULL; + func[i]->aux->used_map_cnt = 0; + } + + /* finally lock prog and jit images for all functions and + * populate kallsysm. Begin at the first subprogram, since + * bpf_prog_load will add the kallsyms for the main program. + */ + for (i = 1; i < env->subprog_cnt; i++) { + err = bpf_prog_lock_ro(func[i]); + if (err) + goto out_free; + } + + for (i = 1; i < env->subprog_cnt; i++) + bpf_prog_kallsyms_add(func[i]); + + /* Last step: make now unused interpreter insns from main + * prog consistent for later dump requests, so they can + * later look the same as if they were interpreted only. + */ + for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { + if (bpf_pseudo_func(insn)) { + insn[0].imm = env->insn_aux_data[i].call_imm; + insn[1].imm = insn->off; + insn->off = 0; + continue; + } + if (!bpf_pseudo_call(insn)) + continue; + insn->off = env->insn_aux_data[i].call_imm; + subprog = find_subprog(env, i + insn->off + 1); + insn->imm = subprog; + } + + prog->jited = 1; + prog->bpf_func = func[0]->bpf_func; + prog->jited_len = func[0]->jited_len; + prog->aux->extable = func[0]->aux->extable; + prog->aux->num_exentries = func[0]->aux->num_exentries; + prog->aux->func = func; + prog->aux->func_cnt = env->subprog_cnt - env->hidden_subprog_cnt; + prog->aux->real_func_cnt = env->subprog_cnt; + prog->aux->bpf_exception_cb = (void *)func[env->exception_callback_subprog]->bpf_func; + prog->aux->exception_boundary = func[0]->aux->exception_boundary; + bpf_prog_jit_attempt_done(prog); + return 0; +out_free: + /* We failed JIT'ing, so at this point we need to unregister poke + * descriptors from subprogs, so that kernel is not attempting to + * patch it anymore as we're freeing the subprog JIT memory. + */ + for (i = 0; i < prog->aux->size_poke_tab; i++) { + map_ptr = prog->aux->poke_tab[i].tail_call.map; + map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); + } + /* At this point we're guaranteed that poke descriptors are not + * live anymore. We can just unlink its descriptor table as it's + * released with the main prog. + */ + for (i = 0; i < env->subprog_cnt; i++) { + if (!func[i]) + continue; + func[i]->aux->poke_tab = NULL; + bpf_jit_free(func[i]); + } + kfree(func); +out_undo_insn: + /* cleanup main prog to be interpreted */ + prog->jit_requested = 0; + prog->blinding_requested = 0; + for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { + if (!bpf_pseudo_call(insn)) + continue; + insn->off = 0; + insn->imm = env->insn_aux_data[i].call_imm; + } + bpf_prog_jit_attempt_done(prog); + return err; +} + +static int fixup_call_args(struct bpf_verifier_env *env) +{ +#ifndef CONFIG_BPF_JIT_ALWAYS_ON + struct bpf_prog *prog = env->prog; + struct bpf_insn *insn = prog->insnsi; + bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); + int i, depth; +#endif + int err = 0; + + if (env->prog->jit_requested && + !bpf_prog_is_offloaded(env->prog->aux)) { + err = jit_subprogs(env); + if (err == 0) + return 0; + if (err == -EFAULT) + return err; + } +#ifndef CONFIG_BPF_JIT_ALWAYS_ON + if (has_kfunc_call) { + verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); + return -EINVAL; + } + if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { + /* When JIT fails the progs with bpf2bpf calls and tail_calls + * have to be rejected, since interpreter doesn't support them yet. + */ + verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); + return -EINVAL; + } + for (i = 0; i < prog->len; i++, insn++) { + if (bpf_pseudo_func(insn)) { + /* When JIT fails the progs with callback calls + * have to be rejected, since interpreter doesn't support them yet. + */ + verbose(env, "callbacks are not allowed in non-JITed programs\n"); + return -EINVAL; + } + + if (!bpf_pseudo_call(insn)) + continue; + depth = get_callee_stack_depth(env, insn, i); + if (depth < 0) + return depth; + bpf_patch_call_args(insn, depth); + } + err = 0; +#endif + return err; +} + +/* replace a generic kfunc with a specialized version if necessary */ +static int specialize_kfunc(struct bpf_verifier_env *env, struct bpf_kfunc_desc *desc, int insn_idx) +{ + struct bpf_prog *prog = env->prog; + bool seen_direct_write; + void *xdp_kfunc; + bool is_rdonly; + u32 func_id = desc->func_id; + u16 offset = desc->offset; + unsigned long addr = desc->addr; + + if (offset) /* return if module BTF is used */ + return 0; + + if (bpf_dev_bound_kfunc_id(func_id)) { + xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); + if (xdp_kfunc) + addr = (unsigned long)xdp_kfunc; + /* fallback to default kfunc when not supported by netdev */ + } else if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { + seen_direct_write = env->seen_direct_write; + is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); + + if (is_rdonly) + addr = (unsigned long)bpf_dynptr_from_skb_rdonly; + + /* restore env->seen_direct_write to its original value, since + * may_access_direct_pkt_data mutates it + */ + env->seen_direct_write = seen_direct_write; + } else if (func_id == special_kfunc_list[KF_bpf_set_dentry_xattr]) { + if (bpf_lsm_has_d_inode_locked(prog)) + addr = (unsigned long)bpf_set_dentry_xattr_locked; + } else if (func_id == special_kfunc_list[KF_bpf_remove_dentry_xattr]) { + if (bpf_lsm_has_d_inode_locked(prog)) + addr = (unsigned long)bpf_remove_dentry_xattr_locked; + } else if (func_id == special_kfunc_list[KF_bpf_dynptr_from_file]) { + if (!env->insn_aux_data[insn_idx].non_sleepable) + addr = (unsigned long)bpf_dynptr_from_file_sleepable; + } + desc->addr = addr; + return 0; +} + +static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, + u16 struct_meta_reg, + u16 node_offset_reg, + struct bpf_insn *insn, + struct bpf_insn *insn_buf, + int *cnt) +{ + struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; + struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; + + insn_buf[0] = addr[0]; + insn_buf[1] = addr[1]; + insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); + insn_buf[3] = *insn; + *cnt = 4; +} + +static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, + struct bpf_insn *insn_buf, int insn_idx, int *cnt) +{ + struct bpf_kfunc_desc *desc; + int err; + + if (!insn->imm) { + verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); + return -EINVAL; + } + + *cnt = 0; + + /* insn->imm has the btf func_id. Replace it with an offset relative to + * __bpf_call_base, unless the JIT needs to call functions that are + * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). + */ + desc = find_kfunc_desc(env->prog, insn->imm, insn->off); + if (!desc) { + verifier_bug(env, "kernel function descriptor not found for func_id %u", + insn->imm); + return -EFAULT; + } + + err = specialize_kfunc(env, desc, insn_idx); + if (err) + return err; + + if (!bpf_jit_supports_far_kfunc_call()) + insn->imm = BPF_CALL_IMM(desc->addr); + if (insn->off) + return 0; + if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl] || + desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl]) { + struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; + struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; + u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; + + if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_new_impl] && kptr_struct_meta) { + verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d", + insn_idx); + return -EFAULT; + } + + insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); + insn_buf[1] = addr[0]; + insn_buf[2] = addr[1]; + insn_buf[3] = *insn; + *cnt = 4; + } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || + desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] || + desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { + struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; + struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; + + if (desc->func_id == special_kfunc_list[KF_bpf_percpu_obj_drop_impl] && kptr_struct_meta) { + verifier_bug(env, "NULL kptr_struct_meta expected at insn_idx %d", + insn_idx); + return -EFAULT; + } + + if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && + !kptr_struct_meta) { + verifier_bug(env, "kptr_struct_meta expected at insn_idx %d", + insn_idx); + return -EFAULT; + } + + insn_buf[0] = addr[0]; + insn_buf[1] = addr[1]; + insn_buf[2] = *insn; + *cnt = 3; + } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || + desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || + desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { + struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; + int struct_meta_reg = BPF_REG_3; + int node_offset_reg = BPF_REG_4; + + /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ + if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { + struct_meta_reg = BPF_REG_4; + node_offset_reg = BPF_REG_5; + } + + if (!kptr_struct_meta) { + verifier_bug(env, "kptr_struct_meta expected at insn_idx %d", + insn_idx); + return -EFAULT; + } + + __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, + node_offset_reg, insn, insn_buf, cnt); + } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || + desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { + insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); + *cnt = 1; + } + + if (env->insn_aux_data[insn_idx].arg_prog) { + u32 regno = env->insn_aux_data[insn_idx].arg_prog; + struct bpf_insn ld_addrs[2] = { BPF_LD_IMM64(regno, (long)env->prog->aux) }; + int idx = *cnt; + + insn_buf[idx++] = ld_addrs[0]; + insn_buf[idx++] = ld_addrs[1]; + insn_buf[idx++] = *insn; + *cnt = idx; + } + return 0; +} + +/* The function requires that first instruction in 'patch' is insnsi[prog->len - 1] */ +static int add_hidden_subprog(struct bpf_verifier_env *env, struct bpf_insn *patch, int len) +{ + struct bpf_subprog_info *info = env->subprog_info; + int cnt = env->subprog_cnt; + struct bpf_prog *prog; + + /* We only reserve one slot for hidden subprogs in subprog_info. */ + if (env->hidden_subprog_cnt) { + verifier_bug(env, "only one hidden subprog supported"); + return -EFAULT; + } + /* We're not patching any existing instruction, just appending the new + * ones for the hidden subprog. Hence all of the adjustment operations + * in bpf_patch_insn_data are no-ops. + */ + prog = bpf_patch_insn_data(env, env->prog->len - 1, patch, len); + if (!prog) + return -ENOMEM; + env->prog = prog; + info[cnt + 1].start = info[cnt].start; + info[cnt].start = prog->len - len + 1; + env->subprog_cnt++; + env->hidden_subprog_cnt++; + return 0; +} + +/* Do various post-verification rewrites in a single program pass. + * These rewrites simplify JIT and interpreter implementations. + */ +static int do_misc_fixups(struct bpf_verifier_env *env) +{ + struct bpf_prog *prog = env->prog; + enum bpf_attach_type eatype = prog->expected_attach_type; + enum bpf_prog_type prog_type = resolve_prog_type(prog); + struct bpf_insn *insn = prog->insnsi; + const struct bpf_func_proto *fn; + const int insn_cnt = prog->len; + const struct bpf_map_ops *ops; + struct bpf_insn_aux_data *aux; + struct bpf_insn *insn_buf = env->insn_buf; + struct bpf_prog *new_prog; + struct bpf_map *map_ptr; + int i, ret, cnt, delta = 0, cur_subprog = 0; + struct bpf_subprog_info *subprogs = env->subprog_info; + u16 stack_depth = subprogs[cur_subprog].stack_depth; + u16 stack_depth_extra = 0; + + if (env->seen_exception && !env->exception_callback_subprog) { + struct bpf_insn *patch = insn_buf; + + *patch++ = env->prog->insnsi[insn_cnt - 1]; + *patch++ = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); + *patch++ = BPF_EXIT_INSN(); + ret = add_hidden_subprog(env, insn_buf, patch - insn_buf); + if (ret < 0) + return ret; + prog = env->prog; + insn = prog->insnsi; + + env->exception_callback_subprog = env->subprog_cnt - 1; + /* Don't update insn_cnt, as add_hidden_subprog always appends insns */ + mark_subprog_exc_cb(env, env->exception_callback_subprog); + } + + for (i = 0; i < insn_cnt;) { + if (insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->imm) { + if ((insn->off == BPF_ADDR_SPACE_CAST && insn->imm == 1) || + (((struct bpf_map *)env->prog->aux->arena)->map_flags & BPF_F_NO_USER_CONV)) { + /* convert to 32-bit mov that clears upper 32-bit */ + insn->code = BPF_ALU | BPF_MOV | BPF_X; + /* clear off and imm, so it's a normal 'wX = wY' from JIT pov */ + insn->off = 0; + insn->imm = 0; + } /* cast from as(0) to as(1) should be handled by JIT */ + goto next_insn; + } + + if (env->insn_aux_data[i + delta].needs_zext) + /* Convert BPF_CLASS(insn->code) == BPF_ALU64 to 32-bit ALU */ + insn->code = BPF_ALU | BPF_OP(insn->code) | BPF_SRC(insn->code); + + /* Make sdiv/smod divide-by-minus-one exceptions impossible. */ + if ((insn->code == (BPF_ALU64 | BPF_MOD | BPF_K) || + insn->code == (BPF_ALU64 | BPF_DIV | BPF_K) || + insn->code == (BPF_ALU | BPF_MOD | BPF_K) || + insn->code == (BPF_ALU | BPF_DIV | BPF_K)) && + insn->off == 1 && insn->imm == -1) { + bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; + bool isdiv = BPF_OP(insn->code) == BPF_DIV; + struct bpf_insn *patch = insn_buf; + + if (isdiv) + *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | + BPF_NEG | BPF_K, insn->dst_reg, + 0, 0, 0); + else + *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0); + + cnt = patch - insn_buf; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Make divide-by-zero and divide-by-minus-one exceptions impossible. */ + if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || + insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || + insn->code == (BPF_ALU | BPF_MOD | BPF_X) || + insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { + bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; + bool isdiv = BPF_OP(insn->code) == BPF_DIV; + bool is_sdiv = isdiv && insn->off == 1; + bool is_smod = !isdiv && insn->off == 1; + struct bpf_insn *patch = insn_buf; + + if (is_sdiv) { + /* [R,W]x sdiv 0 -> 0 + * LLONG_MIN sdiv -1 -> LLONG_MIN + * INT_MIN sdiv -1 -> INT_MIN + */ + *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); + *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | + BPF_ADD | BPF_K, BPF_REG_AX, + 0, 0, 1); + *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | + BPF_JGT | BPF_K, BPF_REG_AX, + 0, 4, 1); + *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | + BPF_JEQ | BPF_K, BPF_REG_AX, + 0, 1, 0); + *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | + BPF_MOV | BPF_K, insn->dst_reg, + 0, 0, 0); + /* BPF_NEG(LLONG_MIN) == -LLONG_MIN == LLONG_MIN */ + *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | + BPF_NEG | BPF_K, insn->dst_reg, + 0, 0, 0); + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); + *patch++ = *insn; + cnt = patch - insn_buf; + } else if (is_smod) { + /* [R,W]x mod 0 -> [R,W]x */ + /* [R,W]x mod -1 -> 0 */ + *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); + *patch++ = BPF_RAW_INSN((is64 ? BPF_ALU64 : BPF_ALU) | + BPF_ADD | BPF_K, BPF_REG_AX, + 0, 0, 1); + *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | + BPF_JGT | BPF_K, BPF_REG_AX, + 0, 3, 1); + *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | + BPF_JEQ | BPF_K, BPF_REG_AX, + 0, 3 + (is64 ? 0 : 1), 1); + *patch++ = BPF_MOV32_IMM(insn->dst_reg, 0); + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); + *patch++ = *insn; + + if (!is64) { + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); + *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg); + } + cnt = patch - insn_buf; + } else if (isdiv) { + /* [R,W]x div 0 -> 0 */ + *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | + BPF_JNE | BPF_K, insn->src_reg, + 0, 2, 0); + *patch++ = BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg); + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); + *patch++ = *insn; + cnt = patch - insn_buf; + } else { + /* [R,W]x mod 0 -> [R,W]x */ + *patch++ = BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | + BPF_JEQ | BPF_K, insn->src_reg, + 0, 1 + (is64 ? 0 : 1), 0); + *patch++ = *insn; + + if (!is64) { + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); + *patch++ = BPF_MOV32_REG(insn->dst_reg, insn->dst_reg); + } + cnt = patch - insn_buf; + } + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Make it impossible to de-reference a userspace address */ + if (BPF_CLASS(insn->code) == BPF_LDX && + (BPF_MODE(insn->code) == BPF_PROBE_MEM || + BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) { + struct bpf_insn *patch = insn_buf; + u64 uaddress_limit = bpf_arch_uaddress_limit(); + + if (!uaddress_limit) + goto next_insn; + + *patch++ = BPF_MOV64_REG(BPF_REG_AX, insn->src_reg); + if (insn->off) + *patch++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_AX, insn->off); + *patch++ = BPF_ALU64_IMM(BPF_RSH, BPF_REG_AX, 32); + *patch++ = BPF_JMP_IMM(BPF_JLE, BPF_REG_AX, uaddress_limit >> 32, 2); + *patch++ = *insn; + *patch++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); + *patch++ = BPF_MOV64_IMM(insn->dst_reg, 0); + + cnt = patch - insn_buf; + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ + if (BPF_CLASS(insn->code) == BPF_LD && + (BPF_MODE(insn->code) == BPF_ABS || + BPF_MODE(insn->code) == BPF_IND)) { + cnt = env->ops->gen_ld_abs(insn, insn_buf); + if (cnt == 0 || cnt >= INSN_BUF_SIZE) { + verifier_bug(env, "%d insns generated for ld_abs", cnt); + return -EFAULT; + } + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Rewrite pointer arithmetic to mitigate speculation attacks. */ + if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || + insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { + const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; + const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; + struct bpf_insn *patch = insn_buf; + bool issrc, isneg, isimm; + u32 off_reg; + + aux = &env->insn_aux_data[i + delta]; + if (!aux->alu_state || + aux->alu_state == BPF_ALU_NON_POINTER) + goto next_insn; + + isneg = aux->alu_state & BPF_ALU_NEG_VALUE; + issrc = (aux->alu_state & BPF_ALU_SANITIZE) == + BPF_ALU_SANITIZE_SRC; + isimm = aux->alu_state & BPF_ALU_IMMEDIATE; + + off_reg = issrc ? insn->src_reg : insn->dst_reg; + if (isimm) { + *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); + } else { + if (isneg) + *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); + *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); + *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); + *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); + *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); + *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); + *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); + } + if (!issrc) + *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); + insn->src_reg = BPF_REG_AX; + if (isneg) + insn->code = insn->code == code_add ? + code_sub : code_add; + *patch++ = *insn; + if (issrc && isneg && !isimm) + *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); + cnt = patch - insn_buf; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + if (is_may_goto_insn(insn) && bpf_jit_supports_timed_may_goto()) { + int stack_off_cnt = -stack_depth - 16; + + /* + * Two 8 byte slots, depth-16 stores the count, and + * depth-8 stores the start timestamp of the loop. + * + * The starting value of count is BPF_MAX_TIMED_LOOPS + * (0xffff). Every iteration loads it and subs it by 1, + * until the value becomes 0 in AX (thus, 1 in stack), + * after which we call arch_bpf_timed_may_goto, which + * either sets AX to 0xffff to keep looping, or to 0 + * upon timeout. AX is then stored into the stack. In + * the next iteration, we either see 0 and break out, or + * continue iterating until the next time value is 0 + * after subtraction, rinse and repeat. + */ + stack_depth_extra = 16; + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off_cnt); + if (insn->off >= 0) + insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 5); + else + insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); + insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); + insn_buf[3] = BPF_JMP_IMM(BPF_JNE, BPF_REG_AX, 0, 2); + /* + * AX is used as an argument to pass in stack_off_cnt + * (to add to r10/fp), and also as the return value of + * the call to arch_bpf_timed_may_goto. + */ + insn_buf[4] = BPF_MOV64_IMM(BPF_REG_AX, stack_off_cnt); + insn_buf[5] = BPF_EMIT_CALL(arch_bpf_timed_may_goto); + insn_buf[6] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off_cnt); + cnt = 7; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } else if (is_may_goto_insn(insn)) { + int stack_off = -stack_depth - 8; + + stack_depth_extra = 8; + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_AX, BPF_REG_10, stack_off); + if (insn->off >= 0) + insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off + 2); + else + insn_buf[1] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, insn->off - 1); + insn_buf[2] = BPF_ALU64_IMM(BPF_SUB, BPF_REG_AX, 1); + insn_buf[3] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_AX, stack_off); + cnt = 4; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + if (insn->code != (BPF_JMP | BPF_CALL)) + goto next_insn; + if (insn->src_reg == BPF_PSEUDO_CALL) + goto next_insn; + if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { + ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); + if (ret) + return ret; + if (cnt == 0) + goto next_insn; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Skip inlining the helper call if the JIT does it. */ + if (bpf_jit_inlines_helper_call(insn->imm)) + goto next_insn; + + if (insn->imm == BPF_FUNC_get_route_realm) + prog->dst_needed = 1; + if (insn->imm == BPF_FUNC_get_prandom_u32) + bpf_user_rnd_init_once(); + if (insn->imm == BPF_FUNC_override_return) + prog->kprobe_override = 1; + if (insn->imm == BPF_FUNC_tail_call) { + /* If we tail call into other programs, we + * cannot make any assumptions since they can + * be replaced dynamically during runtime in + * the program array. + */ + prog->cb_access = 1; + if (!allow_tail_call_in_subprogs(env)) + prog->aux->stack_depth = MAX_BPF_STACK; + prog->aux->max_pkt_offset = MAX_PACKET_OFF; + + /* mark bpf_tail_call as different opcode to avoid + * conditional branch in the interpreter for every normal + * call and to prevent accidental JITing by JIT compiler + * that doesn't support bpf_tail_call yet + */ + insn->imm = 0; + insn->code = BPF_JMP | BPF_TAIL_CALL; + + aux = &env->insn_aux_data[i + delta]; + if (env->bpf_capable && !prog->blinding_requested && + prog->jit_requested && + !bpf_map_key_poisoned(aux) && + !bpf_map_ptr_poisoned(aux) && + !bpf_map_ptr_unpriv(aux)) { + struct bpf_jit_poke_descriptor desc = { + .reason = BPF_POKE_REASON_TAIL_CALL, + .tail_call.map = aux->map_ptr_state.map_ptr, + .tail_call.key = bpf_map_key_immediate(aux), + .insn_idx = i + delta, + }; + + ret = bpf_jit_add_poke_descriptor(prog, &desc); + if (ret < 0) { + verbose(env, "adding tail call poke descriptor failed\n"); + return ret; + } + + insn->imm = ret + 1; + goto next_insn; + } + + if (!bpf_map_ptr_unpriv(aux)) + goto next_insn; + + /* instead of changing every JIT dealing with tail_call + * emit two extra insns: + * if (index >= max_entries) goto out; + * index &= array->index_mask; + * to avoid out-of-bounds cpu speculation + */ + if (bpf_map_ptr_poisoned(aux)) { + verbose(env, "tail_call abusing map_ptr\n"); + return -EINVAL; + } + + map_ptr = aux->map_ptr_state.map_ptr; + insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, + map_ptr->max_entries, 2); + insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, + container_of(map_ptr, + struct bpf_array, + map)->index_mask); + insn_buf[2] = *insn; + cnt = 3; + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + if (insn->imm == BPF_FUNC_timer_set_callback) { + /* The verifier will process callback_fn as many times as necessary + * with different maps and the register states prepared by + * set_timer_callback_state will be accurate. + * + * The following use case is valid: + * map1 is shared by prog1, prog2, prog3. + * prog1 calls bpf_timer_init for some map1 elements + * prog2 calls bpf_timer_set_callback for some map1 elements. + * Those that were not bpf_timer_init-ed will return -EINVAL. + * prog3 calls bpf_timer_start for some map1 elements. + * Those that were not both bpf_timer_init-ed and + * bpf_timer_set_callback-ed will return -EINVAL. + */ + struct bpf_insn ld_addrs[2] = { + BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), + }; + + insn_buf[0] = ld_addrs[0]; + insn_buf[1] = ld_addrs[1]; + insn_buf[2] = *insn; + cnt = 3; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto patch_call_imm; + } + + if (is_storage_get_function(insn->imm)) { + if (env->insn_aux_data[i + delta].non_sleepable) + insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); + else + insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); + insn_buf[1] = *insn; + cnt = 2; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto patch_call_imm; + } + + /* bpf_per_cpu_ptr() and bpf_this_cpu_ptr() */ + if (env->insn_aux_data[i + delta].call_with_percpu_alloc_ptr) { + /* patch with 'r1 = *(u64 *)(r1 + 0)' since for percpu data, + * bpf_mem_alloc() returns a ptr to the percpu data ptr. + */ + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0); + insn_buf[1] = *insn; + cnt = 2; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto patch_call_imm; + } + + /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup + * and other inlining handlers are currently limited to 64 bit + * only. + */ + if (prog->jit_requested && BITS_PER_LONG == 64 && + (insn->imm == BPF_FUNC_map_lookup_elem || + insn->imm == BPF_FUNC_map_update_elem || + insn->imm == BPF_FUNC_map_delete_elem || + insn->imm == BPF_FUNC_map_push_elem || + insn->imm == BPF_FUNC_map_pop_elem || + insn->imm == BPF_FUNC_map_peek_elem || + insn->imm == BPF_FUNC_redirect_map || + insn->imm == BPF_FUNC_for_each_map_elem || + insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { + aux = &env->insn_aux_data[i + delta]; + if (bpf_map_ptr_poisoned(aux)) + goto patch_call_imm; + + map_ptr = aux->map_ptr_state.map_ptr; + ops = map_ptr->ops; + if (insn->imm == BPF_FUNC_map_lookup_elem && + ops->map_gen_lookup) { + cnt = ops->map_gen_lookup(map_ptr, insn_buf); + if (cnt == -EOPNOTSUPP) + goto patch_map_ops_generic; + if (cnt <= 0 || cnt >= INSN_BUF_SIZE) { + verifier_bug(env, "%d insns generated for map lookup", cnt); + return -EFAULT; + } + + new_prog = bpf_patch_insn_data(env, i + delta, + insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, + (void *(*)(struct bpf_map *map, void *key))NULL)); + BUILD_BUG_ON(!__same_type(ops->map_delete_elem, + (long (*)(struct bpf_map *map, void *key))NULL)); + BUILD_BUG_ON(!__same_type(ops->map_update_elem, + (long (*)(struct bpf_map *map, void *key, void *value, + u64 flags))NULL)); + BUILD_BUG_ON(!__same_type(ops->map_push_elem, + (long (*)(struct bpf_map *map, void *value, + u64 flags))NULL)); + BUILD_BUG_ON(!__same_type(ops->map_pop_elem, + (long (*)(struct bpf_map *map, void *value))NULL)); + BUILD_BUG_ON(!__same_type(ops->map_peek_elem, + (long (*)(struct bpf_map *map, void *value))NULL)); + BUILD_BUG_ON(!__same_type(ops->map_redirect, + (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); + BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, + (long (*)(struct bpf_map *map, + bpf_callback_t callback_fn, + void *callback_ctx, + u64 flags))NULL)); + BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, + (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); + +patch_map_ops_generic: + switch (insn->imm) { + case BPF_FUNC_map_lookup_elem: + insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); + goto next_insn; + case BPF_FUNC_map_update_elem: + insn->imm = BPF_CALL_IMM(ops->map_update_elem); + goto next_insn; + case BPF_FUNC_map_delete_elem: + insn->imm = BPF_CALL_IMM(ops->map_delete_elem); + goto next_insn; + case BPF_FUNC_map_push_elem: + insn->imm = BPF_CALL_IMM(ops->map_push_elem); + goto next_insn; + case BPF_FUNC_map_pop_elem: + insn->imm = BPF_CALL_IMM(ops->map_pop_elem); + goto next_insn; + case BPF_FUNC_map_peek_elem: + insn->imm = BPF_CALL_IMM(ops->map_peek_elem); + goto next_insn; + case BPF_FUNC_redirect_map: + insn->imm = BPF_CALL_IMM(ops->map_redirect); + goto next_insn; + case BPF_FUNC_for_each_map_elem: + insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); + goto next_insn; + case BPF_FUNC_map_lookup_percpu_elem: + insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); + goto next_insn; + } + + goto patch_call_imm; + } + + /* Implement bpf_jiffies64 inline. */ + if (prog->jit_requested && BITS_PER_LONG == 64 && + insn->imm == BPF_FUNC_jiffies64) { + struct bpf_insn ld_jiffies_addr[2] = { + BPF_LD_IMM64(BPF_REG_0, + (unsigned long)&jiffies), + }; + + insn_buf[0] = ld_jiffies_addr[0]; + insn_buf[1] = ld_jiffies_addr[1]; + insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, + BPF_REG_0, 0); + cnt = 3; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, + cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + +#if defined(CONFIG_X86_64) && !defined(CONFIG_UML) + /* Implement bpf_get_smp_processor_id() inline. */ + if (insn->imm == BPF_FUNC_get_smp_processor_id && + verifier_inlines_helper_call(env, insn->imm)) { + /* BPF_FUNC_get_smp_processor_id inlining is an + * optimization, so if cpu_number is ever + * changed in some incompatible and hard to support + * way, it's fine to back out this inlining logic + */ +#ifdef CONFIG_SMP + insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, (u32)(unsigned long)&cpu_number); + insn_buf[1] = BPF_MOV64_PERCPU_REG(BPF_REG_0, BPF_REG_0); + insn_buf[2] = BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, 0); + cnt = 3; +#else + insn_buf[0] = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); + cnt = 1; +#endif + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } +#endif + /* Implement bpf_get_func_arg inline. */ + if (prog_type == BPF_PROG_TYPE_TRACING && + insn->imm == BPF_FUNC_get_func_arg) { + /* Load nr_args from ctx - 8 */ + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); + insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); + insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); + insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); + insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); + insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); + insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); + insn_buf[7] = BPF_JMP_A(1); + insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); + cnt = 9; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Implement bpf_get_func_ret inline. */ + if (prog_type == BPF_PROG_TYPE_TRACING && + insn->imm == BPF_FUNC_get_func_ret) { + if (eatype == BPF_TRACE_FEXIT || + eatype == BPF_MODIFY_RETURN) { + /* Load nr_args from ctx - 8 */ + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); + insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); + insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); + insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); + insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); + insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); + cnt = 6; + } else { + insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); + cnt = 1; + } + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Implement get_func_arg_cnt inline. */ + if (prog_type == BPF_PROG_TYPE_TRACING && + insn->imm == BPF_FUNC_get_func_arg_cnt) { + /* Load nr_args from ctx - 8 */ + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); + if (!new_prog) + return -ENOMEM; + + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Implement bpf_get_func_ip inline. */ + if (prog_type == BPF_PROG_TYPE_TRACING && + insn->imm == BPF_FUNC_get_func_ip) { + /* Load IP address from ctx - 16 */ + insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); + if (!new_prog) + return -ENOMEM; + + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Implement bpf_get_branch_snapshot inline. */ + if (IS_ENABLED(CONFIG_PERF_EVENTS) && + prog->jit_requested && BITS_PER_LONG == 64 && + insn->imm == BPF_FUNC_get_branch_snapshot) { + /* We are dealing with the following func protos: + * u64 bpf_get_branch_snapshot(void *buf, u32 size, u64 flags); + * int perf_snapshot_branch_stack(struct perf_branch_entry *entries, u32 cnt); + */ + const u32 br_entry_size = sizeof(struct perf_branch_entry); + + /* struct perf_branch_entry is part of UAPI and is + * used as an array element, so extremely unlikely to + * ever grow or shrink + */ + BUILD_BUG_ON(br_entry_size != 24); + + /* if (unlikely(flags)) return -EINVAL */ + insn_buf[0] = BPF_JMP_IMM(BPF_JNE, BPF_REG_3, 0, 7); + + /* Transform size (bytes) into number of entries (cnt = size / 24). + * But to avoid expensive division instruction, we implement + * divide-by-3 through multiplication, followed by further + * division by 8 through 3-bit right shift. + * Refer to book "Hacker's Delight, 2nd ed." by Henry S. Warren, Jr., + * p. 227, chapter "Unsigned Division by 3" for details and proofs. + * + * N / 3 <=> M * N / 2^33, where M = (2^33 + 1) / 3 = 0xaaaaaaab. + */ + insn_buf[1] = BPF_MOV32_IMM(BPF_REG_0, 0xaaaaaaab); + insn_buf[2] = BPF_ALU64_REG(BPF_MUL, BPF_REG_2, BPF_REG_0); + insn_buf[3] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36); + + /* call perf_snapshot_branch_stack implementation */ + insn_buf[4] = BPF_EMIT_CALL(static_call_query(perf_snapshot_branch_stack)); + /* if (entry_cnt == 0) return -ENOENT */ + insn_buf[5] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4); + /* return entry_cnt * sizeof(struct perf_branch_entry) */ + insn_buf[6] = BPF_ALU32_IMM(BPF_MUL, BPF_REG_0, br_entry_size); + insn_buf[7] = BPF_JMP_A(3); + /* return -EINVAL; */ + insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); + insn_buf[9] = BPF_JMP_A(1); + /* return -ENOENT; */ + insn_buf[10] = BPF_MOV64_IMM(BPF_REG_0, -ENOENT); + cnt = 11; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } + + /* Implement bpf_kptr_xchg inline */ + if (prog->jit_requested && BITS_PER_LONG == 64 && + insn->imm == BPF_FUNC_kptr_xchg && + bpf_jit_supports_ptr_xchg()) { + insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_2); + insn_buf[1] = BPF_ATOMIC_OP(BPF_DW, BPF_XCHG, BPF_REG_1, BPF_REG_0, 0); + cnt = 2; + + new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = prog = new_prog; + insn = new_prog->insnsi + i + delta; + goto next_insn; + } +patch_call_imm: + fn = env->ops->get_func_proto(insn->imm, env->prog); + /* all functions that have prototype and verifier allowed + * programs to call them, must be real in-kernel functions + */ + if (!fn->func) { + verifier_bug(env, + "not inlined functions %s#%d is missing func", + func_id_name(insn->imm), insn->imm); + return -EFAULT; + } + insn->imm = fn->func - __bpf_call_base; +next_insn: + if (subprogs[cur_subprog + 1].start == i + delta + 1) { + subprogs[cur_subprog].stack_depth += stack_depth_extra; + subprogs[cur_subprog].stack_extra = stack_depth_extra; + + stack_depth = subprogs[cur_subprog].stack_depth; + if (stack_depth > MAX_BPF_STACK && !prog->jit_requested) { + verbose(env, "stack size %d(extra %d) is too large\n", + stack_depth, stack_depth_extra); + return -EINVAL; + } + cur_subprog++; + stack_depth = subprogs[cur_subprog].stack_depth; + stack_depth_extra = 0; + } + i++; + insn++; + } + + env->prog->aux->stack_depth = subprogs[0].stack_depth; + for (i = 0; i < env->subprog_cnt; i++) { + int delta = bpf_jit_supports_timed_may_goto() ? 2 : 1; + int subprog_start = subprogs[i].start; + int stack_slots = subprogs[i].stack_extra / 8; + int slots = delta, cnt = 0; + + if (!stack_slots) + continue; + /* We need two slots in case timed may_goto is supported. */ + if (stack_slots > slots) { + verifier_bug(env, "stack_slots supports may_goto only"); + return -EFAULT; + } + + stack_depth = subprogs[i].stack_depth; + if (bpf_jit_supports_timed_may_goto()) { + insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, + BPF_MAX_TIMED_LOOPS); + insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth + 8, 0); + } else { + /* Add ST insn to subprog prologue to init extra stack */ + insn_buf[cnt++] = BPF_ST_MEM(BPF_DW, BPF_REG_FP, -stack_depth, + BPF_MAX_LOOPS); + } + /* Copy first actual insn to preserve it */ + insn_buf[cnt++] = env->prog->insnsi[subprog_start]; + + new_prog = bpf_patch_insn_data(env, subprog_start, insn_buf, cnt); + if (!new_prog) + return -ENOMEM; + env->prog = prog = new_prog; + /* + * If may_goto is a first insn of a prog there could be a jmp + * insn that points to it, hence adjust all such jmps to point + * to insn after BPF_ST that inits may_goto count. + * Adjustment will succeed because bpf_patch_insn_data() didn't fail. + */ + WARN_ON(adjust_jmp_off(env->prog, subprog_start, delta)); + } + + /* Since poke tab is now finalized, publish aux to tracker. */ + for (i = 0; i < prog->aux->size_poke_tab; i++) { + map_ptr = prog->aux->poke_tab[i].tail_call.map; + if (!map_ptr->ops->map_poke_track || + !map_ptr->ops->map_poke_untrack || + !map_ptr->ops->map_poke_run) { + verifier_bug(env, "poke tab is misconfigured"); + return -EFAULT; + } + + ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); + if (ret < 0) { + verbose(env, "tracking tail call prog failed\n"); + return ret; + } + } + + ret = sort_kfunc_descs_by_imm_off(env); + if (ret) + return ret; + + return 0; +} + +static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, + int position, + s32 stack_base, + u32 callback_subprogno, + u32 *total_cnt) +{ + s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; + s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; + s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; + int reg_loop_max = BPF_REG_6; + int reg_loop_cnt = BPF_REG_7; + int reg_loop_ctx = BPF_REG_8; + + struct bpf_insn *insn_buf = env->insn_buf; + struct bpf_prog *new_prog; + u32 callback_start; + u32 call_insn_offset; + s32 callback_offset; + u32 cnt = 0; + + /* This represents an inlined version of bpf_iter.c:bpf_loop, + * be careful to modify this code in sync. + */ + + /* Return error and jump to the end of the patch if + * expected number of iterations is too big. + */ + insn_buf[cnt++] = BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2); + insn_buf[cnt++] = BPF_MOV32_IMM(BPF_REG_0, -E2BIG); + insn_buf[cnt++] = BPF_JMP_IMM(BPF_JA, 0, 0, 16); + /* spill R6, R7, R8 to use these as loop vars */ + insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset); + insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset); + insn_buf[cnt++] = BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset); + /* initialize loop vars */ + insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_max, BPF_REG_1); + insn_buf[cnt++] = BPF_MOV32_IMM(reg_loop_cnt, 0); + insn_buf[cnt++] = BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3); + /* loop header, + * if reg_loop_cnt >= reg_loop_max skip the loop body + */ + insn_buf[cnt++] = BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5); + /* callback call, + * correct callback offset would be set after patching + */ + insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt); + insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx); + insn_buf[cnt++] = BPF_CALL_REL(0); + /* increment loop counter */ + insn_buf[cnt++] = BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1); + /* jump to loop header if callback returned 0 */ + insn_buf[cnt++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6); + /* return value of bpf_loop, + * set R0 to the number of iterations + */ + insn_buf[cnt++] = BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt); + /* restore original values of R6, R7, R8 */ + insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset); + insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset); + insn_buf[cnt++] = BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset); + + *total_cnt = cnt; + new_prog = bpf_patch_insn_data(env, position, insn_buf, cnt); + if (!new_prog) + return new_prog; + + /* callback start is known only after patching */ + callback_start = env->subprog_info[callback_subprogno].start; + /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ + call_insn_offset = position + 12; + callback_offset = callback_start - call_insn_offset - 1; + new_prog->insnsi[call_insn_offset].imm = callback_offset; + + return new_prog; +} + +static bool is_bpf_loop_call(struct bpf_insn *insn) +{ + return insn->code == (BPF_JMP | BPF_CALL) && + insn->src_reg == 0 && + insn->imm == BPF_FUNC_loop; +} + +/* For all sub-programs in the program (including main) check + * insn_aux_data to see if there are bpf_loop calls that require + * inlining. If such calls are found the calls are replaced with a + * sequence of instructions produced by `inline_bpf_loop` function and + * subprog stack_depth is increased by the size of 3 registers. + * This stack space is used to spill values of the R6, R7, R8. These + * registers are used to store the loop bound, counter and context + * variables. + */ +static int optimize_bpf_loop(struct bpf_verifier_env *env) +{ + struct bpf_subprog_info *subprogs = env->subprog_info; + int i, cur_subprog = 0, cnt, delta = 0; + struct bpf_insn *insn = env->prog->insnsi; + int insn_cnt = env->prog->len; + u16 stack_depth = subprogs[cur_subprog].stack_depth; + u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; + u16 stack_depth_extra = 0; + + for (i = 0; i < insn_cnt; i++, insn++) { + struct bpf_loop_inline_state *inline_state = + &env->insn_aux_data[i + delta].loop_inline_state; + + if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { + struct bpf_prog *new_prog; + + stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; + new_prog = inline_bpf_loop(env, + i + delta, + -(stack_depth + stack_depth_extra), + inline_state->callback_subprogno, + &cnt); + if (!new_prog) + return -ENOMEM; + + delta += cnt - 1; + env->prog = new_prog; + insn = new_prog->insnsi + i + delta; + } + + if (subprogs[cur_subprog + 1].start == i + delta + 1) { + subprogs[cur_subprog].stack_depth += stack_depth_extra; + cur_subprog++; + stack_depth = subprogs[cur_subprog].stack_depth; + stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; + stack_depth_extra = 0; + } + } + + env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; + + return 0; +} + +/* Remove unnecessary spill/fill pairs, members of fastcall pattern, + * adjust subprograms stack depth when possible. + */ +static int remove_fastcall_spills_fills(struct bpf_verifier_env *env) +{ + struct bpf_subprog_info *subprog = env->subprog_info; + struct bpf_insn_aux_data *aux = env->insn_aux_data; + struct bpf_insn *insn = env->prog->insnsi; + int insn_cnt = env->prog->len; + u32 spills_num; + bool modified = false; + int i, j; + + for (i = 0; i < insn_cnt; i++, insn++) { + if (aux[i].fastcall_spills_num > 0) { + spills_num = aux[i].fastcall_spills_num; + /* NOPs would be removed by opt_remove_nops() */ + for (j = 1; j <= spills_num; ++j) { + *(insn - j) = NOP; + *(insn + j) = NOP; + } + modified = true; + } + if ((subprog + 1)->start == i + 1) { + if (modified && !subprog->keep_fastcall_stack) + subprog->stack_depth = -subprog->fastcall_stack_off; + subprog++; + modified = false; + } + } + + return 0; +} + +static void free_states(struct bpf_verifier_env *env) +{ + struct bpf_verifier_state_list *sl; + struct list_head *head, *pos, *tmp; + struct bpf_scc_info *info; + int i, j; + + free_verifier_state(env->cur_state, true); + env->cur_state = NULL; + while (!pop_stack(env, NULL, NULL, false)); + + list_for_each_safe(pos, tmp, &env->free_list) { + sl = container_of(pos, struct bpf_verifier_state_list, node); + free_verifier_state(&sl->state, false); + kfree(sl); + } + INIT_LIST_HEAD(&env->free_list); + + for (i = 0; i < env->scc_cnt; ++i) { + info = env->scc_info[i]; + if (!info) + continue; + for (j = 0; j < info->num_visits; j++) + free_backedges(&info->visits[j]); + kvfree(info); + env->scc_info[i] = NULL; + } + + if (!env->explored_states) + return; + + for (i = 0; i < state_htab_size(env); i++) { + head = &env->explored_states[i]; + + list_for_each_safe(pos, tmp, head) { + sl = container_of(pos, struct bpf_verifier_state_list, node); + free_verifier_state(&sl->state, false); + kfree(sl); + } + INIT_LIST_HEAD(&env->explored_states[i]); + } +} + +static int do_check_common(struct bpf_verifier_env *env, int subprog) +{ + bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); + struct bpf_subprog_info *sub = subprog_info(env, subprog); + struct bpf_prog_aux *aux = env->prog->aux; + struct bpf_verifier_state *state; + struct bpf_reg_state *regs; + int ret, i; + + env->prev_linfo = NULL; + env->pass_cnt++; + + state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL_ACCOUNT); + if (!state) + return -ENOMEM; + state->curframe = 0; + state->speculative = false; + state->branches = 1; + state->in_sleepable = env->prog->sleepable; + state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL_ACCOUNT); + if (!state->frame[0]) { + kfree(state); + return -ENOMEM; + } + env->cur_state = state; + init_func_state(env, state->frame[0], + BPF_MAIN_FUNC /* callsite */, + 0 /* frameno */, + subprog); + state->first_insn_idx = env->subprog_info[subprog].start; + state->last_insn_idx = -1; + + regs = state->frame[state->curframe]->regs; + if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { + const char *sub_name = subprog_name(env, subprog); + struct bpf_subprog_arg_info *arg; + struct bpf_reg_state *reg; + + if (env->log.level & BPF_LOG_LEVEL) + verbose(env, "Validating %s() func#%d...\n", sub_name, subprog); + ret = btf_prepare_func_args(env, subprog); + if (ret) + goto out; + + if (subprog_is_exc_cb(env, subprog)) { + state->frame[0]->in_exception_callback_fn = true; + /* We have already ensured that the callback returns an integer, just + * like all global subprogs. We need to determine it only has a single + * scalar argument. + */ + if (sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_ANYTHING) { + verbose(env, "exception cb only supports single integer argument\n"); + ret = -EINVAL; + goto out; + } + } + for (i = BPF_REG_1; i <= sub->arg_cnt; i++) { + arg = &sub->args[i - BPF_REG_1]; + reg = ®s[i]; + + if (arg->arg_type == ARG_PTR_TO_CTX) { + reg->type = PTR_TO_CTX; + mark_reg_known_zero(env, regs, i); + } else if (arg->arg_type == ARG_ANYTHING) { + reg->type = SCALAR_VALUE; + mark_reg_unknown(env, regs, i); + } else if (arg->arg_type == (ARG_PTR_TO_DYNPTR | MEM_RDONLY)) { + /* assume unspecial LOCAL dynptr type */ + __mark_dynptr_reg(reg, BPF_DYNPTR_TYPE_LOCAL, true, ++env->id_gen); + } else if (base_type(arg->arg_type) == ARG_PTR_TO_MEM) { + reg->type = PTR_TO_MEM; + reg->type |= arg->arg_type & + (PTR_MAYBE_NULL | PTR_UNTRUSTED | MEM_RDONLY); + mark_reg_known_zero(env, regs, i); + reg->mem_size = arg->mem_size; + if (arg->arg_type & PTR_MAYBE_NULL) + reg->id = ++env->id_gen; + } else if (base_type(arg->arg_type) == ARG_PTR_TO_BTF_ID) { + reg->type = PTR_TO_BTF_ID; + if (arg->arg_type & PTR_MAYBE_NULL) + reg->type |= PTR_MAYBE_NULL; + if (arg->arg_type & PTR_UNTRUSTED) + reg->type |= PTR_UNTRUSTED; + if (arg->arg_type & PTR_TRUSTED) + reg->type |= PTR_TRUSTED; + mark_reg_known_zero(env, regs, i); + reg->btf = bpf_get_btf_vmlinux(); /* can't fail at this point */ + reg->btf_id = arg->btf_id; + reg->id = ++env->id_gen; + } else if (base_type(arg->arg_type) == ARG_PTR_TO_ARENA) { + /* caller can pass either PTR_TO_ARENA or SCALAR */ + mark_reg_unknown(env, regs, i); + } else { + verifier_bug(env, "unhandled arg#%d type %d", + i - BPF_REG_1, arg->arg_type); + ret = -EFAULT; + goto out; + } + } + } else { + /* if main BPF program has associated BTF info, validate that + * it's matching expected signature, and otherwise mark BTF + * info for main program as unreliable + */ + if (env->prog->aux->func_info_aux) { + ret = btf_prepare_func_args(env, 0); + if (ret || sub->arg_cnt != 1 || sub->args[0].arg_type != ARG_PTR_TO_CTX) + env->prog->aux->func_info_aux[0].unreliable = true; + } + + /* 1st arg to a function */ + regs[BPF_REG_1].type = PTR_TO_CTX; + mark_reg_known_zero(env, regs, BPF_REG_1); + } + + /* Acquire references for struct_ops program arguments tagged with "__ref" */ + if (!subprog && env->prog->type == BPF_PROG_TYPE_STRUCT_OPS) { + for (i = 0; i < aux->ctx_arg_info_size; i++) + aux->ctx_arg_info[i].ref_obj_id = aux->ctx_arg_info[i].refcounted ? + acquire_reference(env, 0) : 0; + } + + ret = do_check(env); +out: + if (!ret && pop_log) + bpf_vlog_reset(&env->log, 0); + free_states(env); + return ret; +} + +/* Lazily verify all global functions based on their BTF, if they are called + * from main BPF program or any of subprograms transitively. + * BPF global subprogs called from dead code are not validated. + * All callable global functions must pass verification. + * Otherwise the whole program is rejected. + * Consider: + * int bar(int); + * int foo(int f) + * { + * return bar(f); + * } + * int bar(int b) + * { + * ... + * } + * foo() will be verified first for R1=any_scalar_value. During verification it + * will be assumed that bar() already verified successfully and call to bar() + * from foo() will be checked for type match only. Later bar() will be verified + * independently to check that it's safe for R1=any_scalar_value. + */ +static int do_check_subprogs(struct bpf_verifier_env *env) +{ + struct bpf_prog_aux *aux = env->prog->aux; + struct bpf_func_info_aux *sub_aux; + int i, ret, new_cnt; + + if (!aux->func_info) + return 0; + + /* exception callback is presumed to be always called */ + if (env->exception_callback_subprog) + subprog_aux(env, env->exception_callback_subprog)->called = true; + +again: + new_cnt = 0; + for (i = 1; i < env->subprog_cnt; i++) { + if (!subprog_is_global(env, i)) + continue; + + sub_aux = subprog_aux(env, i); + if (!sub_aux->called || sub_aux->verified) + continue; + + env->insn_idx = env->subprog_info[i].start; + WARN_ON_ONCE(env->insn_idx == 0); + ret = do_check_common(env, i); + if (ret) { + return ret; + } else if (env->log.level & BPF_LOG_LEVEL) { + verbose(env, "Func#%d ('%s') is safe for any args that match its prototype\n", + i, subprog_name(env, i)); + } + + /* We verified new global subprog, it might have called some + * more global subprogs that we haven't verified yet, so we + * need to do another pass over subprogs to verify those. + */ + sub_aux->verified = true; + new_cnt++; + } + + /* We can't loop forever as we verify at least one global subprog on + * each pass. + */ + if (new_cnt) + goto again; + + return 0; +} + +static int do_check_main(struct bpf_verifier_env *env) +{ + int ret; + + env->insn_idx = 0; + ret = do_check_common(env, 0); + if (!ret) + env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; + return ret; +} + + +static void print_verification_stats(struct bpf_verifier_env *env) +{ + int i; + + if (env->log.level & BPF_LOG_STATS) { + verbose(env, "verification time %lld usec\n", + div_u64(env->verification_time, 1000)); + verbose(env, "stack depth "); + for (i = 0; i < env->subprog_cnt; i++) { + u32 depth = env->subprog_info[i].stack_depth; + + verbose(env, "%d", depth); + if (i + 1 < env->subprog_cnt) + verbose(env, "+"); + } + verbose(env, "\n"); + } + verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " + "total_states %d peak_states %d mark_read %d\n", + env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, + env->max_states_per_insn, env->total_states, + env->peak_states, env->longest_mark_read_walk); +} + +int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, + const struct bpf_ctx_arg_aux *info, u32 cnt) +{ + prog->aux->ctx_arg_info = kmemdup_array(info, cnt, sizeof(*info), GFP_KERNEL_ACCOUNT); + prog->aux->ctx_arg_info_size = cnt; + + return prog->aux->ctx_arg_info ? 0 : -ENOMEM; +} + +static int check_struct_ops_btf_id(struct bpf_verifier_env *env) +{ + const struct btf_type *t, *func_proto; + const struct bpf_struct_ops_desc *st_ops_desc; + const struct bpf_struct_ops *st_ops; + const struct btf_member *member; + struct bpf_prog *prog = env->prog; + bool has_refcounted_arg = false; + u32 btf_id, member_idx, member_off; + struct btf *btf; + const char *mname; + int i, err; + + if (!prog->gpl_compatible) { + verbose(env, "struct ops programs must have a GPL compatible license\n"); + return -EINVAL; + } + + if (!prog->aux->attach_btf_id) + return -ENOTSUPP; + + btf = prog->aux->attach_btf; + if (btf_is_module(btf)) { + /* Make sure st_ops is valid through the lifetime of env */ + env->attach_btf_mod = btf_try_get_module(btf); + if (!env->attach_btf_mod) { + verbose(env, "struct_ops module %s is not found\n", + btf_get_name(btf)); + return -ENOTSUPP; + } + } + + btf_id = prog->aux->attach_btf_id; + st_ops_desc = bpf_struct_ops_find(btf, btf_id); + if (!st_ops_desc) { + verbose(env, "attach_btf_id %u is not a supported struct\n", + btf_id); + return -ENOTSUPP; + } + st_ops = st_ops_desc->st_ops; + + t = st_ops_desc->type; + member_idx = prog->expected_attach_type; + if (member_idx >= btf_type_vlen(t)) { + verbose(env, "attach to invalid member idx %u of struct %s\n", + member_idx, st_ops->name); + return -EINVAL; + } + + member = &btf_type_member(t)[member_idx]; + mname = btf_name_by_offset(btf, member->name_off); + func_proto = btf_type_resolve_func_ptr(btf, member->type, + NULL); + if (!func_proto) { + verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", + mname, member_idx, st_ops->name); + return -EINVAL; + } + + member_off = __btf_member_bit_offset(t, member) / 8; + err = bpf_struct_ops_supported(st_ops, member_off); + if (err) { + verbose(env, "attach to unsupported member %s of struct %s\n", + mname, st_ops->name); + return err; + } + + if (st_ops->check_member) { + err = st_ops->check_member(t, member, prog); + + if (err) { + verbose(env, "attach to unsupported member %s of struct %s\n", + mname, st_ops->name); + return err; + } + } + + if (prog->aux->priv_stack_requested && !bpf_jit_supports_private_stack()) { + verbose(env, "Private stack not supported by jit\n"); + return -EACCES; + } + + for (i = 0; i < st_ops_desc->arg_info[member_idx].cnt; i++) { + if (st_ops_desc->arg_info[member_idx].info->refcounted) { + has_refcounted_arg = true; + break; + } + } + + /* Tail call is not allowed for programs with refcounted arguments since we + * cannot guarantee that valid refcounted kptrs will be passed to the callee. + */ + for (i = 0; i < env->subprog_cnt; i++) { + if (has_refcounted_arg && env->subprog_info[i].has_tail_call) { + verbose(env, "program with __ref argument cannot tail call\n"); + return -EINVAL; + } + } + + prog->aux->st_ops = st_ops; + prog->aux->attach_st_ops_member_off = member_off; + + prog->aux->attach_func_proto = func_proto; + prog->aux->attach_func_name = mname; + env->ops = st_ops->verifier_ops; + + return bpf_prog_ctx_arg_info_init(prog, st_ops_desc->arg_info[member_idx].info, + st_ops_desc->arg_info[member_idx].cnt); +} +#define SECURITY_PREFIX "security_" + +static int check_attach_modify_return(unsigned long addr, const char *func_name) +{ + if (within_error_injection_list(addr) || + !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) + return 0; + + return -EINVAL; +} + +/* list of non-sleepable functions that are otherwise on + * ALLOW_ERROR_INJECTION list + */ +BTF_SET_START(btf_non_sleepable_error_inject) +/* Three functions below can be called from sleepable and non-sleepable context. + * Assume non-sleepable from bpf safety point of view. + */ +BTF_ID(func, __filemap_add_folio) +#ifdef CONFIG_FAIL_PAGE_ALLOC +BTF_ID(func, should_fail_alloc_page) +#endif +#ifdef CONFIG_FAILSLAB +BTF_ID(func, should_failslab) +#endif +BTF_SET_END(btf_non_sleepable_error_inject) + +static int check_non_sleepable_error_inject(u32 btf_id) +{ + return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); +} + +int bpf_check_attach_target(struct bpf_verifier_log *log, + const struct bpf_prog *prog, + const struct bpf_prog *tgt_prog, + u32 btf_id, + struct bpf_attach_target_info *tgt_info) +{ + bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; + bool prog_tracing = prog->type == BPF_PROG_TYPE_TRACING; + char trace_symbol[KSYM_SYMBOL_LEN]; + const char prefix[] = "btf_trace_"; + struct bpf_raw_event_map *btp; + int ret = 0, subprog = -1, i; + const struct btf_type *t; + bool conservative = true; + const char *tname, *fname; + struct btf *btf; + long addr = 0; + struct module *mod = NULL; + + if (!btf_id) { + bpf_log(log, "Tracing programs must provide btf_id\n"); + return -EINVAL; + } + btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; + if (!btf) { + bpf_log(log, + "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); + return -EINVAL; + } + t = btf_type_by_id(btf, btf_id); + if (!t) { + bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); + return -EINVAL; + } + tname = btf_name_by_offset(btf, t->name_off); + if (!tname) { + bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); + return -EINVAL; + } + if (tgt_prog) { + struct bpf_prog_aux *aux = tgt_prog->aux; + bool tgt_changes_pkt_data; + bool tgt_might_sleep; + + if (bpf_prog_is_dev_bound(prog->aux) && + !bpf_prog_dev_bound_match(prog, tgt_prog)) { + bpf_log(log, "Target program bound device mismatch"); + return -EINVAL; + } + + for (i = 0; i < aux->func_info_cnt; i++) + if (aux->func_info[i].type_id == btf_id) { + subprog = i; + break; + } + if (subprog == -1) { + bpf_log(log, "Subprog %s doesn't exist\n", tname); + return -EINVAL; + } + if (aux->func && aux->func[subprog]->aux->exception_cb) { + bpf_log(log, + "%s programs cannot attach to exception callback\n", + prog_extension ? "Extension" : "FENTRY/FEXIT"); + return -EINVAL; + } + conservative = aux->func_info_aux[subprog].unreliable; + if (prog_extension) { + if (conservative) { + bpf_log(log, + "Cannot replace static functions\n"); + return -EINVAL; + } + if (!prog->jit_requested) { + bpf_log(log, + "Extension programs should be JITed\n"); + return -EINVAL; + } + tgt_changes_pkt_data = aux->func + ? aux->func[subprog]->aux->changes_pkt_data + : aux->changes_pkt_data; + if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) { + bpf_log(log, + "Extension program changes packet data, while original does not\n"); + return -EINVAL; + } + + tgt_might_sleep = aux->func + ? aux->func[subprog]->aux->might_sleep + : aux->might_sleep; + if (prog->aux->might_sleep && !tgt_might_sleep) { + bpf_log(log, + "Extension program may sleep, while original does not\n"); + return -EINVAL; + } + } + if (!tgt_prog->jited) { + bpf_log(log, "Can attach to only JITed progs\n"); + return -EINVAL; + } + if (prog_tracing) { + if (aux->attach_tracing_prog) { + /* + * Target program is an fentry/fexit which is already attached + * to another tracing program. More levels of nesting + * attachment are not allowed. + */ + bpf_log(log, "Cannot nest tracing program attach more than once\n"); + return -EINVAL; + } + } else if (tgt_prog->type == prog->type) { + /* + * To avoid potential call chain cycles, prevent attaching of a + * program extension to another extension. It's ok to attach + * fentry/fexit to extension program. + */ + bpf_log(log, "Cannot recursively attach\n"); + return -EINVAL; + } + if (tgt_prog->type == BPF_PROG_TYPE_TRACING && + prog_extension && + (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || + tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { + /* Program extensions can extend all program types + * except fentry/fexit. The reason is the following. + * The fentry/fexit programs are used for performance + * analysis, stats and can be attached to any program + * type. When extension program is replacing XDP function + * it is necessary to allow performance analysis of all + * functions. Both original XDP program and its program + * extension. Hence attaching fentry/fexit to + * BPF_PROG_TYPE_EXT is allowed. If extending of + * fentry/fexit was allowed it would be possible to create + * long call chain fentry->extension->fentry->extension + * beyond reasonable stack size. Hence extending fentry + * is not allowed. + */ + bpf_log(log, "Cannot extend fentry/fexit\n"); + return -EINVAL; + } + } else { + if (prog_extension) { + bpf_log(log, "Cannot replace kernel functions\n"); + return -EINVAL; + } + } + + switch (prog->expected_attach_type) { + case BPF_TRACE_RAW_TP: + if (tgt_prog) { + bpf_log(log, + "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); + return -EINVAL; + } + if (!btf_type_is_typedef(t)) { + bpf_log(log, "attach_btf_id %u is not a typedef\n", + btf_id); + return -EINVAL; + } + if (strncmp(prefix, tname, sizeof(prefix) - 1)) { + bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", + btf_id, tname); + return -EINVAL; + } + tname += sizeof(prefix) - 1; + + /* The func_proto of "btf_trace_##tname" is generated from typedef without argument + * names. Thus using bpf_raw_event_map to get argument names. + */ + btp = bpf_get_raw_tracepoint(tname); + if (!btp) + return -EINVAL; + fname = kallsyms_lookup((unsigned long)btp->bpf_func, NULL, NULL, NULL, + trace_symbol); + bpf_put_raw_tracepoint(btp); + + if (fname) + ret = btf_find_by_name_kind(btf, fname, BTF_KIND_FUNC); + + if (!fname || ret < 0) { + bpf_log(log, "Cannot find btf of tracepoint template, fall back to %s%s.\n", + prefix, tname); + t = btf_type_by_id(btf, t->type); + if (!btf_type_is_ptr(t)) + /* should never happen in valid vmlinux build */ + return -EINVAL; + } else { + t = btf_type_by_id(btf, ret); + if (!btf_type_is_func(t)) + /* should never happen in valid vmlinux build */ + return -EINVAL; + } + + t = btf_type_by_id(btf, t->type); + if (!btf_type_is_func_proto(t)) + /* should never happen in valid vmlinux build */ + return -EINVAL; + + break; + case BPF_TRACE_ITER: + if (!btf_type_is_func(t)) { + bpf_log(log, "attach_btf_id %u is not a function\n", + btf_id); + return -EINVAL; + } + t = btf_type_by_id(btf, t->type); + if (!btf_type_is_func_proto(t)) + return -EINVAL; + ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); + if (ret) + return ret; + break; + default: + if (!prog_extension) + return -EINVAL; + fallthrough; + case BPF_MODIFY_RETURN: + case BPF_LSM_MAC: + case BPF_LSM_CGROUP: + case BPF_TRACE_FENTRY: + case BPF_TRACE_FEXIT: + if (!btf_type_is_func(t)) { + bpf_log(log, "attach_btf_id %u is not a function\n", + btf_id); + return -EINVAL; + } + if (prog_extension && + btf_check_type_match(log, prog, btf, t)) + return -EINVAL; + t = btf_type_by_id(btf, t->type); + if (!btf_type_is_func_proto(t)) + return -EINVAL; + + if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && + (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || + prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) + return -EINVAL; + + if (tgt_prog && conservative) + t = NULL; + + ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); + if (ret < 0) + return ret; + + if (tgt_prog) { + if (subprog == 0) + addr = (long) tgt_prog->bpf_func; + else + addr = (long) tgt_prog->aux->func[subprog]->bpf_func; + } else { + if (btf_is_module(btf)) { + mod = btf_try_get_module(btf); + if (mod) + addr = find_kallsyms_symbol_value(mod, tname); + else + addr = 0; + } else { + addr = kallsyms_lookup_name(tname); + } + if (!addr) { + module_put(mod); + bpf_log(log, + "The address of function %s cannot be found\n", + tname); + return -ENOENT; + } + } + + if (prog->sleepable) { + ret = -EINVAL; + switch (prog->type) { + case BPF_PROG_TYPE_TRACING: + + /* fentry/fexit/fmod_ret progs can be sleepable if they are + * attached to ALLOW_ERROR_INJECTION and are not in denylist. + */ + if (!check_non_sleepable_error_inject(btf_id) && + within_error_injection_list(addr)) + ret = 0; + /* fentry/fexit/fmod_ret progs can also be sleepable if they are + * in the fmodret id set with the KF_SLEEPABLE flag. + */ + else { + u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, + prog); + + if (flags && (*flags & KF_SLEEPABLE)) + ret = 0; + } + break; + case BPF_PROG_TYPE_LSM: + /* LSM progs check that they are attached to bpf_lsm_*() funcs. + * Only some of them are sleepable. + */ + if (bpf_lsm_is_sleepable_hook(btf_id)) + ret = 0; + break; + default: + break; + } + if (ret) { + module_put(mod); + bpf_log(log, "%s is not sleepable\n", tname); + return ret; + } + } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { + if (tgt_prog) { + module_put(mod); + bpf_log(log, "can't modify return codes of BPF programs\n"); + return -EINVAL; + } + ret = -EINVAL; + if (btf_kfunc_is_modify_return(btf, btf_id, prog) || + !check_attach_modify_return(addr, tname)) + ret = 0; + if (ret) { + module_put(mod); + bpf_log(log, "%s() is not modifiable\n", tname); + return ret; + } + } + + break; + } + tgt_info->tgt_addr = addr; + tgt_info->tgt_name = tname; + tgt_info->tgt_type = t; + tgt_info->tgt_mod = mod; + return 0; +} + +BTF_SET_START(btf_id_deny) +BTF_ID_UNUSED +#ifdef CONFIG_SMP +BTF_ID(func, ___migrate_enable) +BTF_ID(func, migrate_disable) +BTF_ID(func, migrate_enable) +#endif +#if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU +BTF_ID(func, rcu_read_unlock_strict) +#endif +#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) +BTF_ID(func, preempt_count_add) +BTF_ID(func, preempt_count_sub) +#endif +#ifdef CONFIG_PREEMPT_RCU +BTF_ID(func, __rcu_read_lock) +BTF_ID(func, __rcu_read_unlock) +#endif +BTF_SET_END(btf_id_deny) + +/* fexit and fmod_ret can't be used to attach to __noreturn functions. + * Currently, we must manually list all __noreturn functions here. Once a more + * robust solution is implemented, this workaround can be removed. + */ +BTF_SET_START(noreturn_deny) +#ifdef CONFIG_IA32_EMULATION +BTF_ID(func, __ia32_sys_exit) +BTF_ID(func, __ia32_sys_exit_group) +#endif +#ifdef CONFIG_KUNIT +BTF_ID(func, __kunit_abort) +BTF_ID(func, kunit_try_catch_throw) +#endif +#ifdef CONFIG_MODULES +BTF_ID(func, __module_put_and_kthread_exit) +#endif +#ifdef CONFIG_X86_64 +BTF_ID(func, __x64_sys_exit) +BTF_ID(func, __x64_sys_exit_group) +#endif +BTF_ID(func, do_exit) +BTF_ID(func, do_group_exit) +BTF_ID(func, kthread_complete_and_exit) +BTF_ID(func, kthread_exit) +BTF_ID(func, make_task_dead) +BTF_SET_END(noreturn_deny) + +static bool can_be_sleepable(struct bpf_prog *prog) +{ + if (prog->type == BPF_PROG_TYPE_TRACING) { + switch (prog->expected_attach_type) { + case BPF_TRACE_FENTRY: + case BPF_TRACE_FEXIT: + case BPF_MODIFY_RETURN: + case BPF_TRACE_ITER: + return true; + default: + return false; + } + } + return prog->type == BPF_PROG_TYPE_LSM || + prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || + prog->type == BPF_PROG_TYPE_STRUCT_OPS; +} + +static int check_attach_btf_id(struct bpf_verifier_env *env) +{ + struct bpf_prog *prog = env->prog; + struct bpf_prog *tgt_prog = prog->aux->dst_prog; + struct bpf_attach_target_info tgt_info = {}; + u32 btf_id = prog->aux->attach_btf_id; + struct bpf_trampoline *tr; + int ret; + u64 key; + + if (prog->type == BPF_PROG_TYPE_SYSCALL) { + if (prog->sleepable) + /* attach_btf_id checked to be zero already */ + return 0; + verbose(env, "Syscall programs can only be sleepable\n"); + return -EINVAL; + } + + if (prog->sleepable && !can_be_sleepable(prog)) { + verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); + return -EINVAL; + } + + if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) + return check_struct_ops_btf_id(env); + + if (prog->type != BPF_PROG_TYPE_TRACING && + prog->type != BPF_PROG_TYPE_LSM && + prog->type != BPF_PROG_TYPE_EXT) + return 0; + + ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); + if (ret) + return ret; + + if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { + /* to make freplace equivalent to their targets, they need to + * inherit env->ops and expected_attach_type for the rest of the + * verification + */ + env->ops = bpf_verifier_ops[tgt_prog->type]; + prog->expected_attach_type = tgt_prog->expected_attach_type; + } + + /* store info about the attachment target that will be used later */ + prog->aux->attach_func_proto = tgt_info.tgt_type; + prog->aux->attach_func_name = tgt_info.tgt_name; + prog->aux->mod = tgt_info.tgt_mod; + + if (tgt_prog) { + prog->aux->saved_dst_prog_type = tgt_prog->type; + prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; + } + + if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { + prog->aux->attach_btf_trace = true; + return 0; + } else if (prog->expected_attach_type == BPF_TRACE_ITER) { + return bpf_iter_prog_supported(prog); + } + + if (prog->type == BPF_PROG_TYPE_LSM) { + ret = bpf_lsm_verify_prog(&env->log, prog); + if (ret < 0) + return ret; + } else if (prog->type == BPF_PROG_TYPE_TRACING && + btf_id_set_contains(&btf_id_deny, btf_id)) { + verbose(env, "Attaching tracing programs to function '%s' is rejected.\n", + tgt_info.tgt_name); + return -EINVAL; + } else if ((prog->expected_attach_type == BPF_TRACE_FEXIT || + prog->expected_attach_type == BPF_MODIFY_RETURN) && + btf_id_set_contains(&noreturn_deny, btf_id)) { + verbose(env, "Attaching fexit/fmod_ret to __noreturn function '%s' is rejected.\n", + tgt_info.tgt_name); + return -EINVAL; + } + + key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); + tr = bpf_trampoline_get(key, &tgt_info); + if (!tr) + return -ENOMEM; + + if (tgt_prog && tgt_prog->aux->tail_call_reachable) + tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; + + prog->aux->dst_trampoline = tr; + return 0; +} + +struct btf *bpf_get_btf_vmlinux(void) +{ + if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { + mutex_lock(&bpf_verifier_lock); + if (!btf_vmlinux) + btf_vmlinux = btf_parse_vmlinux(); + mutex_unlock(&bpf_verifier_lock); + } + return btf_vmlinux; +} + +/* + * The add_fd_from_fd_array() is executed only if fd_array_cnt is non-zero. In + * this case expect that every file descriptor in the array is either a map or + * a BTF. Everything else is considered to be trash. + */ +static int add_fd_from_fd_array(struct bpf_verifier_env *env, int fd) +{ + struct bpf_map *map; + struct btf *btf; + CLASS(fd, f)(fd); + int err; + + map = __bpf_map_get(f); + if (!IS_ERR(map)) { + err = __add_used_map(env, map); + if (err < 0) + return err; + return 0; + } + + btf = __btf_get_by_fd(f); + if (!IS_ERR(btf)) { + err = __add_used_btf(env, btf); + if (err < 0) + return err; + return 0; + } + + verbose(env, "fd %d is not pointing to valid bpf_map or btf\n", fd); + return PTR_ERR(map); +} + +static int process_fd_array(struct bpf_verifier_env *env, union bpf_attr *attr, bpfptr_t uattr) +{ + size_t size = sizeof(int); + int ret; + int fd; + u32 i; + + env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); + + /* + * The only difference between old (no fd_array_cnt is given) and new + * APIs is that in the latter case the fd_array is expected to be + * continuous and is scanned for map fds right away + */ + if (!attr->fd_array_cnt) + return 0; + + /* Check for integer overflow */ + if (attr->fd_array_cnt >= (U32_MAX / size)) { + verbose(env, "fd_array_cnt is too big (%u)\n", attr->fd_array_cnt); + return -EINVAL; + } + + for (i = 0; i < attr->fd_array_cnt; i++) { + if (copy_from_bpfptr_offset(&fd, env->fd_array, i * size, size)) + return -EFAULT; + + ret = add_fd_from_fd_array(env, fd); + if (ret) + return ret; + } + + return 0; +} + +/* Each field is a register bitmask */ +struct insn_live_regs { + u16 use; /* registers read by instruction */ + u16 def; /* registers written by instruction */ + u16 in; /* registers that may be alive before instruction */ + u16 out; /* registers that may be alive after instruction */ +}; + +/* Bitmask with 1s for all caller saved registers */ +#define ALL_CALLER_SAVED_REGS ((1u << CALLER_SAVED_REGS) - 1) + +/* Compute info->{use,def} fields for the instruction */ +static void compute_insn_live_regs(struct bpf_verifier_env *env, + struct bpf_insn *insn, + struct insn_live_regs *info) +{ + struct call_summary cs; + u8 class = BPF_CLASS(insn->code); + u8 code = BPF_OP(insn->code); + u8 mode = BPF_MODE(insn->code); + u16 src = BIT(insn->src_reg); + u16 dst = BIT(insn->dst_reg); + u16 r0 = BIT(0); + u16 def = 0; + u16 use = 0xffff; + + switch (class) { + case BPF_LD: + switch (mode) { + case BPF_IMM: + if (BPF_SIZE(insn->code) == BPF_DW) { + def = dst; + use = 0; + } + break; + case BPF_LD | BPF_ABS: + case BPF_LD | BPF_IND: + /* stick with defaults */ + break; + } + break; + case BPF_LDX: + switch (mode) { + case BPF_MEM: + case BPF_MEMSX: + def = dst; + use = src; + break; + } + break; + case BPF_ST: + switch (mode) { + case BPF_MEM: + def = 0; + use = dst; + break; + } + break; + case BPF_STX: + switch (mode) { + case BPF_MEM: + def = 0; + use = dst | src; + break; + case BPF_ATOMIC: + switch (insn->imm) { + case BPF_CMPXCHG: + use = r0 | dst | src; + def = r0; + break; + case BPF_LOAD_ACQ: + def = dst; + use = src; + break; + case BPF_STORE_REL: + def = 0; + use = dst | src; + break; + default: + use = dst | src; + if (insn->imm & BPF_FETCH) + def = src; + else + def = 0; + } + break; + } + break; + case BPF_ALU: + case BPF_ALU64: + switch (code) { + case BPF_END: + use = dst; + def = dst; + break; + case BPF_MOV: + def = dst; + if (BPF_SRC(insn->code) == BPF_K) + use = 0; + else + use = src; + break; + default: + def = dst; + if (BPF_SRC(insn->code) == BPF_K) + use = dst; + else + use = dst | src; + } + break; + case BPF_JMP: + case BPF_JMP32: + switch (code) { + case BPF_JA: + case BPF_JCOND: + def = 0; + use = 0; + break; + case BPF_EXIT: + def = 0; + use = r0; + break; + case BPF_CALL: + def = ALL_CALLER_SAVED_REGS; + use = def & ~BIT(BPF_REG_0); + if (get_call_summary(env, insn, &cs)) + use = GENMASK(cs.num_params, 1); + break; + default: + def = 0; + if (BPF_SRC(insn->code) == BPF_K) + use = dst; + else + use = dst | src; + } + break; + } + + info->def = def; + info->use = use; +} + +/* Compute may-live registers after each instruction in the program. + * The register is live after the instruction I if it is read by some + * instruction S following I during program execution and is not + * overwritten between I and S. + * + * Store result in env->insn_aux_data[i].live_regs. + */ +static int compute_live_registers(struct bpf_verifier_env *env) +{ + struct bpf_insn_aux_data *insn_aux = env->insn_aux_data; + struct bpf_insn *insns = env->prog->insnsi; + struct insn_live_regs *state; + int insn_cnt = env->prog->len; + int err = 0, i, j; + bool changed; + + /* Use the following algorithm: + * - define the following: + * - I.use : a set of all registers read by instruction I; + * - I.def : a set of all registers written by instruction I; + * - I.in : a set of all registers that may be alive before I execution; + * - I.out : a set of all registers that may be alive after I execution; + * - insn_successors(I): a set of instructions S that might immediately + * follow I for some program execution; + * - associate separate empty sets 'I.in' and 'I.out' with each instruction; + * - visit each instruction in a postorder and update + * state[i].in, state[i].out as follows: + * + * state[i].out = U [state[s].in for S in insn_successors(i)] + * state[i].in = (state[i].out / state[i].def) U state[i].use + * + * (where U stands for set union, / stands for set difference) + * - repeat the computation while {in,out} fields changes for + * any instruction. + */ + state = kvcalloc(insn_cnt, sizeof(*state), GFP_KERNEL_ACCOUNT); + if (!state) { + err = -ENOMEM; + goto out; + } + + for (i = 0; i < insn_cnt; ++i) + compute_insn_live_regs(env, &insns[i], &state[i]); + + changed = true; + while (changed) { + changed = false; + for (i = 0; i < env->cfg.cur_postorder; ++i) { + int insn_idx = env->cfg.insn_postorder[i]; + struct insn_live_regs *live = &state[insn_idx]; + struct bpf_iarray *succ; + u16 new_out = 0; + u16 new_in = 0; + + succ = bpf_insn_successors(env, insn_idx); + for (int s = 0; s < succ->cnt; ++s) + new_out |= state[succ->items[s]].in; + new_in = (new_out & ~live->def) | live->use; + if (new_out != live->out || new_in != live->in) { + live->in = new_in; + live->out = new_out; + changed = true; + } + } + } + + for (i = 0; i < insn_cnt; ++i) + insn_aux[i].live_regs_before = state[i].in; + + if (env->log.level & BPF_LOG_LEVEL2) { + verbose(env, "Live regs before insn:\n"); + for (i = 0; i < insn_cnt; ++i) { + if (env->insn_aux_data[i].scc) + verbose(env, "%3d ", env->insn_aux_data[i].scc); + else + verbose(env, " "); + verbose(env, "%3d: ", i); + for (j = BPF_REG_0; j < BPF_REG_10; ++j) + if (insn_aux[i].live_regs_before & BIT(j)) + verbose(env, "%d", j); + else + verbose(env, "."); + verbose(env, " "); + verbose_insn(env, &insns[i]); + if (bpf_is_ldimm64(&insns[i])) + i++; + } + } + +out: + kvfree(state); + return err; +} + +/* + * Compute strongly connected components (SCCs) on the CFG. + * Assign an SCC number to each instruction, recorded in env->insn_aux[*].scc. + * If instruction is a sole member of its SCC and there are no self edges, + * assign it SCC number of zero. + * Uses a non-recursive adaptation of Tarjan's algorithm for SCC computation. + */ +static int compute_scc(struct bpf_verifier_env *env) +{ + const u32 NOT_ON_STACK = U32_MAX; + + struct bpf_insn_aux_data *aux = env->insn_aux_data; + const u32 insn_cnt = env->prog->len; + int stack_sz, dfs_sz, err = 0; + u32 *stack, *pre, *low, *dfs; + u32 i, j, t, w; + u32 next_preorder_num; + u32 next_scc_id; + bool assign_scc; + struct bpf_iarray *succ; + + next_preorder_num = 1; + next_scc_id = 1; + /* + * - 'stack' accumulates vertices in DFS order, see invariant comment below; + * - 'pre[t] == p' => preorder number of vertex 't' is 'p'; + * - 'low[t] == n' => smallest preorder number of the vertex reachable from 't' is 'n'; + * - 'dfs' DFS traversal stack, used to emulate explicit recursion. + */ + stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); + pre = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); + low = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL_ACCOUNT); + dfs = kvcalloc(insn_cnt, sizeof(*dfs), GFP_KERNEL_ACCOUNT); + if (!stack || !pre || !low || !dfs) { + err = -ENOMEM; + goto exit; + } + /* + * References: + * [1] R. Tarjan "Depth-First Search and Linear Graph Algorithms" + * [2] D. J. Pearce "A Space-Efficient Algorithm for Finding Strongly Connected Components" + * + * The algorithm maintains the following invariant: + * - suppose there is a path 'u' ~> 'v', such that 'pre[v] < pre[u]'; + * - then, vertex 'u' remains on stack while vertex 'v' is on stack. + * + * Consequently: + * - If 'low[v] < pre[v]', there is a path from 'v' to some vertex 'u', + * such that 'pre[u] == low[v]'; vertex 'u' is currently on the stack, + * and thus there is an SCC (loop) containing both 'u' and 'v'. + * - If 'low[v] == pre[v]', loops containing 'v' have been explored, + * and 'v' can be considered the root of some SCC. + * + * Here is a pseudo-code for an explicitly recursive version of the algorithm: + * + * NOT_ON_STACK = insn_cnt + 1 + * pre = [0] * insn_cnt + * low = [0] * insn_cnt + * scc = [0] * insn_cnt + * stack = [] + * + * next_preorder_num = 1 + * next_scc_id = 1 + * + * def recur(w): + * nonlocal next_preorder_num + * nonlocal next_scc_id + * + * pre[w] = next_preorder_num + * low[w] = next_preorder_num + * next_preorder_num += 1 + * stack.append(w) + * for s in successors(w): + * # Note: for classic algorithm the block below should look as: + * # + * # if pre[s] == 0: + * # recur(s) + * # low[w] = min(low[w], low[s]) + * # elif low[s] != NOT_ON_STACK: + * # low[w] = min(low[w], pre[s]) + * # + * # But replacing both 'min' instructions with 'low[w] = min(low[w], low[s])' + * # does not break the invariant and makes itartive version of the algorithm + * # simpler. See 'Algorithm #3' from [2]. + * + * # 's' not yet visited + * if pre[s] == 0: + * recur(s) + * # if 's' is on stack, pick lowest reachable preorder number from it; + * # if 's' is not on stack 'low[s] == NOT_ON_STACK > low[w]', + * # so 'min' would be a noop. + * low[w] = min(low[w], low[s]) + * + * if low[w] == pre[w]: + * # 'w' is the root of an SCC, pop all vertices + * # below 'w' on stack and assign same SCC to them. + * while True: + * t = stack.pop() + * low[t] = NOT_ON_STACK + * scc[t] = next_scc_id + * if t == w: + * break + * next_scc_id += 1 + * + * for i in range(0, insn_cnt): + * if pre[i] == 0: + * recur(i) + * + * Below implementation replaces explicit recursion with array 'dfs'. + */ + for (i = 0; i < insn_cnt; i++) { + if (pre[i]) + continue; + stack_sz = 0; + dfs_sz = 1; + dfs[0] = i; +dfs_continue: + while (dfs_sz) { + w = dfs[dfs_sz - 1]; + if (pre[w] == 0) { + low[w] = next_preorder_num; + pre[w] = next_preorder_num; + next_preorder_num++; + stack[stack_sz++] = w; + } + /* Visit 'w' successors */ + succ = bpf_insn_successors(env, w); + for (j = 0; j < succ->cnt; ++j) { + if (pre[succ->items[j]]) { + low[w] = min(low[w], low[succ->items[j]]); + } else { + dfs[dfs_sz++] = succ->items[j]; + goto dfs_continue; + } + } + /* + * Preserve the invariant: if some vertex above in the stack + * is reachable from 'w', keep 'w' on the stack. + */ + if (low[w] < pre[w]) { + dfs_sz--; + goto dfs_continue; + } + /* + * Assign SCC number only if component has two or more elements, + * or if component has a self reference. + */ + assign_scc = stack[stack_sz - 1] != w; + for (j = 0; j < succ->cnt; ++j) { + if (succ->items[j] == w) { + assign_scc = true; + break; + } + } + /* Pop component elements from stack */ + do { + t = stack[--stack_sz]; + low[t] = NOT_ON_STACK; + if (assign_scc) + aux[t].scc = next_scc_id; + } while (t != w); + if (assign_scc) + next_scc_id++; + dfs_sz--; + } + } + env->scc_info = kvcalloc(next_scc_id, sizeof(*env->scc_info), GFP_KERNEL_ACCOUNT); + if (!env->scc_info) { + err = -ENOMEM; + goto exit; + } + env->scc_cnt = next_scc_id; +exit: + kvfree(stack); + kvfree(pre); + kvfree(low); + kvfree(dfs); + return err; +} + +int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) +{ + u64 start_time = ktime_get_ns(); + struct bpf_verifier_env *env; + int i, len, ret = -EINVAL, err; + u32 log_true_size; + bool is_priv; + + BTF_TYPE_EMIT(enum bpf_features); + + /* no program is valid */ + if (ARRAY_SIZE(bpf_verifier_ops) == 0) + return -EINVAL; + + /* 'struct bpf_verifier_env' can be global, but since it's not small, + * allocate/free it every time bpf_check() is called + */ + env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL_ACCOUNT); + if (!env) + return -ENOMEM; + + env->bt.env = env; + + len = (*prog)->len; + env->insn_aux_data = + vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); + ret = -ENOMEM; + if (!env->insn_aux_data) + goto err_free_env; + for (i = 0; i < len; i++) + env->insn_aux_data[i].orig_idx = i; + env->succ = iarray_realloc(NULL, 2); + if (!env->succ) + goto err_free_env; + env->prog = *prog; + env->ops = bpf_verifier_ops[env->prog->type]; + + env->allow_ptr_leaks = bpf_allow_ptr_leaks(env->prog->aux->token); + env->allow_uninit_stack = bpf_allow_uninit_stack(env->prog->aux->token); + env->bypass_spec_v1 = bpf_bypass_spec_v1(env->prog->aux->token); + env->bypass_spec_v4 = bpf_bypass_spec_v4(env->prog->aux->token); + env->bpf_capable = is_priv = bpf_token_capable(env->prog->aux->token, CAP_BPF); + + bpf_get_btf_vmlinux(); + + /* grab the mutex to protect few globals used by verifier */ + if (!is_priv) + mutex_lock(&bpf_verifier_lock); + + /* user could have requested verbose verifier output + * and supplied buffer to store the verification trace + */ + ret = bpf_vlog_init(&env->log, attr->log_level, + (char __user *) (unsigned long) attr->log_buf, + attr->log_size); + if (ret) + goto err_unlock; + + ret = process_fd_array(env, attr, uattr); + if (ret) + goto skip_full_check; + + mark_verifier_state_clean(env); + + if (IS_ERR(btf_vmlinux)) { + /* Either gcc or pahole or kernel are broken. */ + verbose(env, "in-kernel BTF is malformed\n"); + ret = PTR_ERR(btf_vmlinux); + goto skip_full_check; + } + + env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); + if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) + env->strict_alignment = true; + if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) + env->strict_alignment = false; + + if (is_priv) + env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; + env->test_reg_invariants = attr->prog_flags & BPF_F_TEST_REG_INVARIANTS; + + env->explored_states = kvcalloc(state_htab_size(env), + sizeof(struct list_head), + GFP_KERNEL_ACCOUNT); + ret = -ENOMEM; + if (!env->explored_states) + goto skip_full_check; + + for (i = 0; i < state_htab_size(env); i++) + INIT_LIST_HEAD(&env->explored_states[i]); + INIT_LIST_HEAD(&env->free_list); + + ret = check_btf_info_early(env, attr, uattr); + if (ret < 0) + goto skip_full_check; + + ret = add_subprog_and_kfunc(env); + if (ret < 0) + goto skip_full_check; + + ret = check_subprogs(env); + if (ret < 0) + goto skip_full_check; + + ret = check_btf_info(env, attr, uattr); + if (ret < 0) + goto skip_full_check; + + ret = resolve_pseudo_ldimm64(env); + if (ret < 0) + goto skip_full_check; + + if (bpf_prog_is_offloaded(env->prog->aux)) { + ret = bpf_prog_offload_verifier_prep(env->prog); + if (ret) + goto skip_full_check; + } + + ret = check_cfg(env); + if (ret < 0) + goto skip_full_check; + + ret = compute_postorder(env); + if (ret < 0) + goto skip_full_check; + + ret = bpf_stack_liveness_init(env); + if (ret) + goto skip_full_check; + + ret = check_attach_btf_id(env); + if (ret) + goto skip_full_check; + + ret = compute_scc(env); + if (ret < 0) + goto skip_full_check; + + ret = compute_live_registers(env); + if (ret < 0) + goto skip_full_check; + + ret = mark_fastcall_patterns(env); + if (ret < 0) + goto skip_full_check; + + ret = do_check_main(env); + ret = ret ?: do_check_subprogs(env); + + if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) + ret = bpf_prog_offload_finalize(env); + +skip_full_check: + kvfree(env->explored_states); + + /* might decrease stack depth, keep it before passes that + * allocate additional slots. + */ + if (ret == 0) + ret = remove_fastcall_spills_fills(env); + + if (ret == 0) + ret = check_max_stack_depth(env); + + /* instruction rewrites happen after this point */ + if (ret == 0) + ret = optimize_bpf_loop(env); + + if (is_priv) { + if (ret == 0) + opt_hard_wire_dead_code_branches(env); + if (ret == 0) + ret = opt_remove_dead_code(env); + if (ret == 0) + ret = opt_remove_nops(env); + } else { + if (ret == 0) + sanitize_dead_code(env); + } + + if (ret == 0) + /* program is valid, convert *(u32*)(ctx + off) accesses */ + ret = convert_ctx_accesses(env); + + if (ret == 0) + ret = do_misc_fixups(env); + + /* do 32-bit optimization after insn patching has done so those patched + * insns could be handled correctly. + */ + if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { + ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); + env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret + : false; + } + + if (ret == 0) + ret = fixup_call_args(env); + + env->verification_time = ktime_get_ns() - start_time; + print_verification_stats(env); + env->prog->aux->verified_insns = env->insn_processed; + + /* preserve original error even if log finalization is successful */ + err = bpf_vlog_finalize(&env->log, &log_true_size); + if (err) + ret = err; + + if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && + copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), + &log_true_size, sizeof(log_true_size))) { + ret = -EFAULT; + goto err_release_maps; + } + + if (ret) + goto err_release_maps; + + if (env->used_map_cnt) { + /* if program passed verifier, update used_maps in bpf_prog_info */ + env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, + sizeof(env->used_maps[0]), + GFP_KERNEL_ACCOUNT); + + if (!env->prog->aux->used_maps) { + ret = -ENOMEM; + goto err_release_maps; + } + + memcpy(env->prog->aux->used_maps, env->used_maps, + sizeof(env->used_maps[0]) * env->used_map_cnt); + env->prog->aux->used_map_cnt = env->used_map_cnt; + } + if (env->used_btf_cnt) { + /* if program passed verifier, update used_btfs in bpf_prog_aux */ + env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, + sizeof(env->used_btfs[0]), + GFP_KERNEL_ACCOUNT); + if (!env->prog->aux->used_btfs) { + ret = -ENOMEM; + goto err_release_maps; + } + + memcpy(env->prog->aux->used_btfs, env->used_btfs, + sizeof(env->used_btfs[0]) * env->used_btf_cnt); + env->prog->aux->used_btf_cnt = env->used_btf_cnt; + } + if (env->used_map_cnt || env->used_btf_cnt) { + /* program is valid. Convert pseudo bpf_ld_imm64 into generic + * bpf_ld_imm64 instructions + */ + convert_pseudo_ld_imm64(env); + } + + adjust_btf_func(env); + +err_release_maps: + if (ret) + release_insn_arrays(env); + if (!env->prog->aux->used_maps) + /* if we didn't copy map pointers into bpf_prog_info, release + * them now. Otherwise free_used_maps() will release them. + */ + release_maps(env); + if (!env->prog->aux->used_btfs) + release_btfs(env); + + /* extension progs temporarily inherit the attach_type of their targets + for verification purposes, so set it back to zero before returning + */ + if (env->prog->type == BPF_PROG_TYPE_EXT) + env->prog->expected_attach_type = 0; + + *prog = env->prog; + + module_put(env->attach_btf_mod); +err_unlock: + if (!is_priv) + mutex_unlock(&bpf_verifier_lock); + clear_insn_aux_data(env, 0, env->prog->len); + vfree(env->insn_aux_data); +err_free_env: + bpf_stack_liveness_free(env); + kvfree(env->cfg.insn_postorder); + kvfree(env->scc_info); + kvfree(env->succ); + kvfree(env->gotox_tmp_buf); + kvfree(env); + return ret; +} |
