diff options
Diffstat (limited to 'kernel/cgroup/cpuset.c')
| -rw-r--r-- | kernel/cgroup/cpuset.c | 3678 |
1 files changed, 1987 insertions, 1691 deletions
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c index 58e6f18f01c1..6e6eb09b8db6 100644 --- a/kernel/cgroup/cpuset.c +++ b/kernel/cgroup/cpuset.c @@ -21,10 +21,8 @@ * License. See the file COPYING in the main directory of the Linux * distribution for more details. */ +#include "cpuset-internal.h" -#include <linux/cpu.h> -#include <linux/cpumask.h> -#include <linux/cpuset.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> @@ -38,11 +36,11 @@ #include <linux/sched/mm.h> #include <linux/sched/task.h> #include <linux/security.h> -#include <linux/spinlock.h> #include <linux/oom.h> #include <linux/sched/isolation.h> -#include <linux/cgroup.h> #include <linux/wait.h> +#include <linux/workqueue.h> +#include <linux/task_work.h> DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); @@ -54,136 +52,63 @@ DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); */ DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); -/* See "Frequency meter" comments, below. */ - -struct fmeter { - int cnt; /* unprocessed events count */ - int val; /* most recent output value */ - time64_t time; /* clock (secs) when val computed */ - spinlock_t lock; /* guards read or write of above */ -}; - -/* - * Invalid partition error code - */ -enum prs_errcode { - PERR_NONE = 0, - PERR_INVCPUS, - PERR_INVPARENT, - PERR_NOTPART, - PERR_NOTEXCL, - PERR_NOCPUS, - PERR_HOTPLUG, - PERR_CPUSEMPTY, -}; - static const char * const perr_strings[] = { - [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus", + [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", [PERR_INVPARENT] = "Parent is an invalid partition root", [PERR_NOTPART] = "Parent is not a partition root", [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", [PERR_HOTPLUG] = "No cpu available due to hotplug", - [PERR_CPUSEMPTY] = "cpuset.cpus is empty", + [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty", + [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", + [PERR_ACCESS] = "Enable partition not permitted", + [PERR_REMOTE] = "Have remote partition underneath", }; -struct cpuset { - struct cgroup_subsys_state css; - - unsigned long flags; /* "unsigned long" so bitops work */ - - /* - * On default hierarchy: - * - * The user-configured masks can only be changed by writing to - * cpuset.cpus and cpuset.mems, and won't be limited by the - * parent masks. - * - * The effective masks is the real masks that apply to the tasks - * in the cpuset. They may be changed if the configured masks are - * changed or hotplug happens. - * - * effective_mask == configured_mask & parent's effective_mask, - * and if it ends up empty, it will inherit the parent's mask. - * - * - * On legacy hierarchy: - * - * The user-configured masks are always the same with effective masks. - */ - - /* user-configured CPUs and Memory Nodes allow to tasks */ - cpumask_var_t cpus_allowed; - nodemask_t mems_allowed; - - /* effective CPUs and Memory Nodes allow to tasks */ - cpumask_var_t effective_cpus; - nodemask_t effective_mems; - - /* - * CPUs allocated to child sub-partitions (default hierarchy only) - * - CPUs granted by the parent = effective_cpus U subparts_cpus - * - effective_cpus and subparts_cpus are mutually exclusive. - * - * effective_cpus contains only onlined CPUs, but subparts_cpus - * may have offlined ones. - */ - cpumask_var_t subparts_cpus; - - /* - * This is old Memory Nodes tasks took on. - * - * - top_cpuset.old_mems_allowed is initialized to mems_allowed. - * - A new cpuset's old_mems_allowed is initialized when some - * task is moved into it. - * - old_mems_allowed is used in cpuset_migrate_mm() when we change - * cpuset.mems_allowed and have tasks' nodemask updated, and - * then old_mems_allowed is updated to mems_allowed. - */ - nodemask_t old_mems_allowed; - - struct fmeter fmeter; /* memory_pressure filter */ - - /* - * Tasks are being attached to this cpuset. Used to prevent - * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). - */ - int attach_in_progress; - - /* partition number for rebuild_sched_domains() */ - int pn; - - /* for custom sched domain */ - int relax_domain_level; - - /* number of CPUs in subparts_cpus */ - int nr_subparts_cpus; - - /* partition root state */ - int partition_root_state; +/* + * For local partitions, update to subpartitions_cpus & isolated_cpus is done + * in update_parent_effective_cpumask(). For remote partitions, it is done in + * the remote_partition_*() and remote_cpus_update() helpers. + */ +/* + * Exclusive CPUs distributed out to local or remote sub-partitions of + * top_cpuset + */ +static cpumask_var_t subpartitions_cpus; - /* - * Default hierarchy only: - * use_parent_ecpus - set if using parent's effective_cpus - * child_ecpus_count - # of children with use_parent_ecpus set - */ - int use_parent_ecpus; - int child_ecpus_count; +/* + * Exclusive CPUs in isolated partitions + */ +static cpumask_var_t isolated_cpus; - /* - * number of SCHED_DEADLINE tasks attached to this cpuset, so that we - * know when to rebuild associated root domain bandwidth information. - */ - int nr_deadline_tasks; - int nr_migrate_dl_tasks; - u64 sum_migrate_dl_bw; +/* + * isolated_cpus updating flag (protected by cpuset_mutex) + * Set if isolated_cpus is going to be updated in the current + * cpuset_mutex crtical section. + */ +static bool isolated_cpus_updating; - /* Invalid partition error code, not lock protected */ - enum prs_errcode prs_err; +/* + * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot + */ +static cpumask_var_t boot_hk_cpus; +static bool have_boot_isolcpus; - /* Handle for cpuset.cpus.partition */ - struct cgroup_file partition_file; -}; +/* + * A flag to force sched domain rebuild at the end of an operation. + * It can be set in + * - update_partition_sd_lb() + * - update_cpumasks_hier() + * - cpuset_update_flag() + * - cpuset_hotplug_update_tasks() + * - cpuset_handle_hotplug() + * + * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock. + * + * Note that update_relax_domain_level() in cpuset-v1.c can still call + * rebuild_sched_domains_locked() directly without using this flag. + */ +static bool force_sd_rebuild; /* * Partition root states: @@ -193,6 +118,17 @@ struct cpuset { * 2 - partition root without load balancing (isolated) * -1 - invalid partition root * -2 - invalid isolated partition root + * + * There are 2 types of partitions - local or remote. Local partitions are + * those whose parents are partition root themselves. Setting of + * cpuset.cpus.exclusive are optional in setting up local partitions. + * Remote partitions are those whose parents are not partition roots. Passing + * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor + * nodes are mandatory in creating a remote partition. + * + * For simplicity, a local partition can be created under a local or remote + * partition but a remote partition cannot have any partition root in its + * ancestor chain except the cgroup root. */ #define PRS_MEMBER 0 #define PRS_ROOT 1 @@ -200,11 +136,6 @@ struct cpuset { #define PRS_INVALID_ROOT -1 #define PRS_INVALID_ISOLATED -2 -static inline bool is_prs_invalid(int prs_state) -{ - return prs_state < 0; -} - /* * Temporary cpumasks for working with partitions that are passed among * functions to avoid memory allocation in inner functions. @@ -214,22 +145,6 @@ struct tmpmasks { cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ }; -static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) -{ - return css ? container_of(css, struct cpuset, css) : NULL; -} - -/* Retrieve the cpuset for a task */ -static inline struct cpuset *task_cs(struct task_struct *task) -{ - return css_cs(task_css(task, cpuset_cgrp_id)); -} - -static inline struct cpuset *parent_cs(struct cpuset *cs) -{ - return css_cs(cs->css.parent); -} - void inc_dl_tasks_cs(struct task_struct *p) { struct cpuset *cs = task_cs(p); @@ -244,67 +159,19 @@ void dec_dl_tasks_cs(struct task_struct *p) cs->nr_deadline_tasks--; } -/* bits in struct cpuset flags field */ -typedef enum { - CS_ONLINE, - CS_CPU_EXCLUSIVE, - CS_MEM_EXCLUSIVE, - CS_MEM_HARDWALL, - CS_MEMORY_MIGRATE, - CS_SCHED_LOAD_BALANCE, - CS_SPREAD_PAGE, - CS_SPREAD_SLAB, -} cpuset_flagbits_t; - -/* convenient tests for these bits */ -static inline bool is_cpuset_online(struct cpuset *cs) -{ - return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); -} - -static inline int is_cpu_exclusive(const struct cpuset *cs) -{ - return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); -} - -static inline int is_mem_exclusive(const struct cpuset *cs) -{ - return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); -} - -static inline int is_mem_hardwall(const struct cpuset *cs) -{ - return test_bit(CS_MEM_HARDWALL, &cs->flags); -} - -static inline int is_sched_load_balance(const struct cpuset *cs) -{ - return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); -} - -static inline int is_memory_migrate(const struct cpuset *cs) -{ - return test_bit(CS_MEMORY_MIGRATE, &cs->flags); -} - -static inline int is_spread_page(const struct cpuset *cs) -{ - return test_bit(CS_SPREAD_PAGE, &cs->flags); -} - -static inline int is_spread_slab(const struct cpuset *cs) +static inline bool is_partition_valid(const struct cpuset *cs) { - return test_bit(CS_SPREAD_SLAB, &cs->flags); + return cs->partition_root_state > 0; } -static inline int is_partition_valid(const struct cpuset *cs) +static inline bool is_partition_invalid(const struct cpuset *cs) { - return cs->partition_root_state > 0; + return cs->partition_root_state < 0; } -static inline int is_partition_invalid(const struct cpuset *cs) +static inline bool cs_is_member(const struct cpuset *cs) { - return cs->partition_root_state < 0; + return cs->partition_root_state == PRS_MEMBER; } /* @@ -312,7 +179,7 @@ static inline int is_partition_invalid(const struct cpuset *cs) */ static inline void make_partition_invalid(struct cpuset *cs) { - if (is_partition_valid(cs)) + if (cs->partition_root_state > 0) cs->partition_root_state = -cs->partition_root_state; } @@ -330,46 +197,32 @@ static inline void notify_partition_change(struct cpuset *cs, int old_prs) WRITE_ONCE(cs->prs_err, PERR_NONE); } +/* + * The top_cpuset is always synchronized to cpu_active_mask and we should avoid + * using cpu_online_mask as much as possible. An active CPU is always an online + * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ + * during hotplug operations. A CPU is marked active at the last stage of CPU + * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code + * will be called to update the sched domains so that the scheduler can move + * a normal task to a newly active CPU or remove tasks away from a newly + * inactivated CPU. The online bit is set much earlier in the CPU bringup + * process and cleared much later in CPU teardown. + * + * If cpu_online_mask is used while a hotunplug operation is happening in + * parallel, we may leave an offline CPU in cpu_allowed or some other masks. + */ static struct cpuset top_cpuset = { - .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | - (1 << CS_MEM_EXCLUSIVE)), + .flags = BIT(CS_CPU_EXCLUSIVE) | + BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), .partition_root_state = PRS_ROOT, + .relax_domain_level = -1, + .remote_partition = false, }; -/** - * cpuset_for_each_child - traverse online children of a cpuset - * @child_cs: loop cursor pointing to the current child - * @pos_css: used for iteration - * @parent_cs: target cpuset to walk children of - * - * Walk @child_cs through the online children of @parent_cs. Must be used - * with RCU read locked. - */ -#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ - css_for_each_child((pos_css), &(parent_cs)->css) \ - if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) - -/** - * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants - * @des_cs: loop cursor pointing to the current descendant - * @pos_css: used for iteration - * @root_cs: target cpuset to walk ancestor of - * - * Walk @des_cs through the online descendants of @root_cs. Must be used - * with RCU read locked. The caller may modify @pos_css by calling - * css_rightmost_descendant() to skip subtree. @root_cs is included in the - * iteration and the first node to be visited. - */ -#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ - css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ - if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) - /* * There are two global locks guarding cpuset structures - cpuset_mutex and - * callback_lock. We also require taking task_lock() when dereferencing a - * task's cpuset pointer. See "The task_lock() exception", at the end of this - * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems - * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset + * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel + * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset * structures. Note that cpuset_mutex needs to be a mutex as it is used in * paths that rely on priority inheritance (e.g. scheduler - on RT) for * correctness. @@ -395,16 +248,19 @@ static struct cpuset top_cpuset = { * by other task, we use alloc_lock in the task_struct fields to protect * them. * - * The cpuset_common_file_read() handlers only hold callback_lock across + * The cpuset_common_seq_show() handlers only hold callback_lock across * small pieces of code, such as when reading out possibly multi-word * cpumasks and nodemasks. - * - * Accessing a task's cpuset should be done in accordance with the - * guidelines for accessing subsystem state in kernel/cgroup.c */ static DEFINE_MUTEX(cpuset_mutex); +/** + * cpuset_lock - Acquire the global cpuset mutex + * + * This locks the global cpuset mutex to prevent modifications to cpuset + * hierarchy and configurations. This helper is not enough to make modification. + */ void cpuset_lock(void) { mutex_lock(&cpuset_mutex); @@ -415,15 +271,37 @@ void cpuset_unlock(void) mutex_unlock(&cpuset_mutex); } +/** + * cpuset_full_lock - Acquire full protection for cpuset modification + * + * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex + * to safely modify cpuset data. + */ +void cpuset_full_lock(void) +{ + cpus_read_lock(); + mutex_lock(&cpuset_mutex); +} + +void cpuset_full_unlock(void) +{ + mutex_unlock(&cpuset_mutex); + cpus_read_unlock(); +} + static DEFINE_SPINLOCK(callback_lock); -static struct workqueue_struct *cpuset_migrate_mm_wq; +void cpuset_callback_lock_irq(void) +{ + spin_lock_irq(&callback_lock); +} -/* - * CPU / memory hotplug is handled asynchronously. - */ -static void cpuset_hotplug_workfn(struct work_struct *work); -static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); +void cpuset_callback_unlock_irq(void) +{ + spin_unlock_irq(&callback_lock); +} + +static struct workqueue_struct *cpuset_migrate_mm_wq; static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); @@ -431,7 +309,7 @@ static inline void check_insane_mems_config(nodemask_t *nodes) { if (!cpusets_insane_config() && movable_only_nodes(nodes)) { - static_branch_enable(&cpusets_insane_config_key); + static_branch_enable_cpuslocked(&cpusets_insane_config_key); pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" "Cpuset allocations might fail even with a lot of memory available.\n", nodemask_pr_args(nodes)); @@ -439,6 +317,32 @@ static inline void check_insane_mems_config(nodemask_t *nodes) } /* + * decrease cs->attach_in_progress. + * wake_up cpuset_attach_wq if cs->attach_in_progress==0. + */ +static inline void dec_attach_in_progress_locked(struct cpuset *cs) +{ + lockdep_assert_held(&cpuset_mutex); + + cs->attach_in_progress--; + if (!cs->attach_in_progress) + wake_up(&cpuset_attach_wq); +} + +static inline void dec_attach_in_progress(struct cpuset *cs) +{ + mutex_lock(&cpuset_mutex); + dec_attach_in_progress_locked(cs); + mutex_unlock(&cpuset_mutex); +} + +static inline bool cpuset_v2(void) +{ + return !IS_ENABLED(CONFIG_CPUSETS_V1) || + cgroup_subsys_on_dfl(cpuset_cgrp_subsys); +} + +/* * Cgroup v2 behavior is used on the "cpus" and "mems" control files when * on default hierarchy or when the cpuset_v2_mode flag is set by mounting * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. @@ -448,37 +352,59 @@ static inline void check_insane_mems_config(nodemask_t *nodes) */ static inline bool is_in_v2_mode(void) { - return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || + return cpuset_v2() || (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); } +static inline bool cpuset_is_populated(struct cpuset *cs) +{ + lockdep_assert_held(&cpuset_mutex); + + /* Cpusets in the process of attaching should be considered as populated */ + return cgroup_is_populated(cs->css.cgroup) || + cs->attach_in_progress; +} + /** * partition_is_populated - check if partition has tasks * @cs: partition root to be checked * @excluded_child: a child cpuset to be excluded in task checking * Return: true if there are tasks, false otherwise * - * It is assumed that @cs is a valid partition root. @excluded_child should - * be non-NULL when this cpuset is going to become a partition itself. + * @cs should be a valid partition root or going to become a partition root. + * @excluded_child should be non-NULL when this cpuset is going to become a + * partition itself. + * + * Note that a remote partition is not allowed underneath a valid local + * or remote partition. So if a non-partition root child is populated, + * the whole partition is considered populated. */ static inline bool partition_is_populated(struct cpuset *cs, struct cpuset *excluded_child) { - struct cgroup_subsys_state *css; - struct cpuset *child; + struct cpuset *cp; + struct cgroup_subsys_state *pos_css; - if (cs->css.cgroup->nr_populated_csets) + /* + * We cannot call cs_is_populated(cs) directly, as + * nr_populated_domain_children may include populated + * csets from descendants that are partitions. + */ + if (cs->css.cgroup->nr_populated_csets || + cs->attach_in_progress) return true; - if (!excluded_child && !cs->nr_subparts_cpus) - return cgroup_is_populated(cs->css.cgroup); rcu_read_lock(); - cpuset_for_each_child(child, css, cs) { - if (child == excluded_child) + cpuset_for_each_descendant_pre(cp, pos_css, cs) { + if (cp == cs || cp == excluded_child) continue; - if (is_partition_valid(child)) + + if (is_partition_valid(cp)) { + pos_css = css_rightmost_descendant(pos_css); continue; - if (cgroup_is_populated(child->css.cgroup)) { + } + + if (cpuset_is_populated(cp)) { rcu_read_unlock(); return true; } @@ -494,38 +420,26 @@ static inline bool partition_is_populated(struct cpuset *cs, * appropriate cpus. * * One way or another, we guarantee to return some non-empty subset - * of cpu_online_mask. + * of cpu_active_mask. * * Call with callback_lock or cpuset_mutex held. */ -static void guarantee_online_cpus(struct task_struct *tsk, +static void guarantee_active_cpus(struct task_struct *tsk, struct cpumask *pmask) { const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); struct cpuset *cs; - if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) - cpumask_copy(pmask, cpu_online_mask); + if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask))) + cpumask_copy(pmask, cpu_active_mask); rcu_read_lock(); cs = task_cs(tsk); - while (!cpumask_intersects(cs->effective_cpus, pmask)) { + while (!cpumask_intersects(cs->effective_cpus, pmask)) cs = parent_cs(cs); - if (unlikely(!cs)) { - /* - * The top cpuset doesn't have any online cpu as a - * consequence of a race between cpuset_hotplug_work - * and cpu hotplug notifier. But we know the top - * cpuset's effective_cpus is on its way to be - * identical to cpu_online_mask. - */ - goto out_unlock; - } - } - cpumask_and(pmask, pmask, cs->effective_cpus); -out_unlock: + cpumask_and(pmask, pmask, cs->effective_cpus); rcu_read_unlock(); } @@ -547,123 +461,105 @@ static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); } -/* - * update task's spread flag if cpuset's page/slab spread flag is set +/** + * alloc_cpumasks - Allocate an array of cpumask variables + * @pmasks: Pointer to array of cpumask_var_t pointers + * @size: Number of cpumasks to allocate + * Return: 0 if successful, -ENOMEM otherwise. * - * Call with callback_lock or cpuset_mutex held. The check can be skipped - * if on default hierarchy. + * Allocates @size cpumasks and initializes them to empty. Returns 0 on + * success, -ENOMEM on allocation failure. On failure, any previously + * allocated cpumasks are freed. */ -static void cpuset_update_task_spread_flags(struct cpuset *cs, - struct task_struct *tsk) +static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size) { - if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) - return; + int i; - if (is_spread_page(cs)) - task_set_spread_page(tsk); - else - task_clear_spread_page(tsk); - - if (is_spread_slab(cs)) - task_set_spread_slab(tsk); - else - task_clear_spread_slab(tsk); -} - -/* - * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? - * - * One cpuset is a subset of another if all its allowed CPUs and - * Memory Nodes are a subset of the other, and its exclusive flags - * are only set if the other's are set. Call holding cpuset_mutex. - */ - -static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) -{ - return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && - nodes_subset(p->mems_allowed, q->mems_allowed) && - is_cpu_exclusive(p) <= is_cpu_exclusive(q) && - is_mem_exclusive(p) <= is_mem_exclusive(q); + for (i = 0; i < size; i++) { + if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) { + while (--i >= 0) + free_cpumask_var(*pmasks[i]); + return -ENOMEM; + } + } + return 0; } /** - * alloc_cpumasks - allocate three cpumasks for cpuset - * @cs: the cpuset that have cpumasks to be allocated. - * @tmp: the tmpmasks structure pointer - * Return: 0 if successful, -ENOMEM otherwise. - * - * Only one of the two input arguments should be non-NULL. + * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations. + * @tmp: Pointer to tmpmasks structure to populate + * Return: 0 on success, -ENOMEM on allocation failure */ -static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) +static inline int alloc_tmpmasks(struct tmpmasks *tmp) { - cpumask_var_t *pmask1, *pmask2, *pmask3; - - if (cs) { - pmask1 = &cs->cpus_allowed; - pmask2 = &cs->effective_cpus; - pmask3 = &cs->subparts_cpus; - } else { - pmask1 = &tmp->new_cpus; - pmask2 = &tmp->addmask; - pmask3 = &tmp->delmask; - } - - if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) - return -ENOMEM; - - if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) - goto free_one; - - if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) - goto free_two; - - return 0; + /* + * Array of pointers to the three cpumask_var_t fields in tmpmasks. + * Note: Array size must match actual number of masks (3) + */ + cpumask_var_t *pmask[3] = { + &tmp->new_cpus, + &tmp->addmask, + &tmp->delmask + }; -free_two: - free_cpumask_var(*pmask2); -free_one: - free_cpumask_var(*pmask1); - return -ENOMEM; + return alloc_cpumasks(pmask, ARRAY_SIZE(pmask)); } /** - * free_cpumasks - free cpumasks in a tmpmasks structure - * @cs: the cpuset that have cpumasks to be free. + * free_tmpmasks - free cpumasks in a tmpmasks structure * @tmp: the tmpmasks structure pointer */ -static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) +static inline void free_tmpmasks(struct tmpmasks *tmp) { - if (cs) { - free_cpumask_var(cs->cpus_allowed); - free_cpumask_var(cs->effective_cpus); - free_cpumask_var(cs->subparts_cpus); - } - if (tmp) { - free_cpumask_var(tmp->new_cpus); - free_cpumask_var(tmp->addmask); - free_cpumask_var(tmp->delmask); - } + if (!tmp) + return; + + free_cpumask_var(tmp->new_cpus); + free_cpumask_var(tmp->addmask); + free_cpumask_var(tmp->delmask); } /** - * alloc_trial_cpuset - allocate a trial cpuset - * @cs: the cpuset that the trial cpuset duplicates + * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset + * @cs: Source cpuset to duplicate (NULL for a fresh allocation) + * + * Creates a new cpuset by either: + * 1. Duplicating an existing cpuset (if @cs is non-NULL), or + * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL) + * + * Return: Pointer to newly allocated cpuset on success, NULL on failure */ -static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) +static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs) { struct cpuset *trial; - trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); + /* Allocate base structure */ + trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) : + kzalloc(sizeof(*cs), GFP_KERNEL); if (!trial) return NULL; - if (alloc_cpumasks(trial, NULL)) { + /* Setup cpumask pointer array */ + cpumask_var_t *pmask[4] = { + &trial->cpus_allowed, + &trial->effective_cpus, + &trial->effective_xcpus, + &trial->exclusive_cpus + }; + + if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) { kfree(trial); return NULL; } - cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); - cpumask_copy(trial->effective_cpus, cs->effective_cpus); + /* Copy masks if duplicating */ + if (cs) { + cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); + cpumask_copy(trial->effective_cpus, cs->effective_cpus); + cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); + cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); + } + return trial; } @@ -673,37 +569,80 @@ static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) */ static inline void free_cpuset(struct cpuset *cs) { - free_cpumasks(cs, NULL); + free_cpumask_var(cs->cpus_allowed); + free_cpumask_var(cs->effective_cpus); + free_cpumask_var(cs->effective_xcpus); + free_cpumask_var(cs->exclusive_cpus); kfree(cs); } +/* Return user specified exclusive CPUs */ +static inline struct cpumask *user_xcpus(struct cpuset *cs) +{ + return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed + : cs->exclusive_cpus; +} + +static inline bool xcpus_empty(struct cpuset *cs) +{ + return cpumask_empty(cs->cpus_allowed) && + cpumask_empty(cs->exclusive_cpus); +} + /* - * validate_change_legacy() - Validate conditions specific to legacy (v1) - * behavior. + * cpusets_are_exclusive() - check if two cpusets are exclusive + * + * Return true if exclusive, false if not */ -static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) +static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) { - struct cgroup_subsys_state *css; - struct cpuset *c, *par; - int ret; + struct cpumask *xcpus1 = user_xcpus(cs1); + struct cpumask *xcpus2 = user_xcpus(cs2); - WARN_ON_ONCE(!rcu_read_lock_held()); + if (cpumask_intersects(xcpus1, xcpus2)) + return false; + return true; +} - /* Each of our child cpusets must be a subset of us */ - ret = -EBUSY; - cpuset_for_each_child(c, css, cur) - if (!is_cpuset_subset(c, trial)) - goto out; +/** + * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts + * @cs1: first cpuset to check + * @cs2: second cpuset to check + * + * Returns: true if CPU exclusivity conflict exists, false otherwise + * + * Conflict detection rules: + * 1. If either cpuset is CPU exclusive, they must be mutually exclusive + * 2. exclusive_cpus masks cannot intersect between cpusets + * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs + */ +static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) +{ + /* If either cpuset is exclusive, check if they are mutually exclusive */ + if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2)) + return !cpusets_are_exclusive(cs1, cs2); - /* On legacy hierarchy, we must be a subset of our parent cpuset. */ - ret = -EACCES; - par = parent_cs(cur); - if (par && !is_cpuset_subset(trial, par)) - goto out; + /* Exclusive_cpus cannot intersect */ + if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus)) + return true; - ret = 0; -out: - return ret; + /* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */ + if (!cpumask_empty(cs1->cpus_allowed) && + cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus)) + return true; + + if (!cpumask_empty(cs2->cpus_allowed) && + cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus)) + return true; + + return false; +} + +static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) +{ + if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2))) + return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed); + return false; } /* @@ -735,7 +674,7 @@ static int validate_change(struct cpuset *cur, struct cpuset *trial) rcu_read_lock(); if (!is_in_v2_mode()) - ret = validate_change_legacy(cur, trial); + ret = cpuset1_validate_change(cur, trial); if (ret) goto out; @@ -750,7 +689,7 @@ static int validate_change(struct cpuset *cur, struct cpuset *trial) * be changed to have empty cpus_allowed or mems_allowed. */ ret = -ENOSPC; - if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { + if (cpuset_is_populated(cur)) { if (!cpumask_empty(cur->cpus_allowed) && cpumask_empty(trial->cpus_allowed)) goto out; @@ -761,27 +700,37 @@ static int validate_change(struct cpuset *cur, struct cpuset *trial) /* * We can't shrink if we won't have enough room for SCHED_DEADLINE - * tasks. + * tasks. This check is not done when scheduling is disabled as the + * users should know what they are doing. + * + * For v1, effective_cpus == cpus_allowed & user_xcpus() returns + * cpus_allowed. + * + * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only + * for non-isolated partition root. At this point, the target + * effective_cpus isn't computed yet. user_xcpus() is the best + * approximation. + * + * TBD: May need to precompute the real effective_cpus here in case + * incorrect scheduling of SCHED_DEADLINE tasks in a partition + * becomes an issue. */ ret = -EBUSY; - if (is_cpu_exclusive(cur) && - !cpuset_cpumask_can_shrink(cur->cpus_allowed, - trial->cpus_allowed)) + if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) && + !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial))) goto out; /* * If either I or some sibling (!= me) is exclusive, we can't - * overlap + * overlap. exclusive_cpus cannot overlap with each other if set. */ ret = -EINVAL; cpuset_for_each_child(c, css, par) { - if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && - c != cur && - cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) + if (c == cur) + continue; + if (cpus_excl_conflict(trial, c)) goto out; - if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && - c != cur && - nodes_intersects(trial->mems_allowed, c->mems_allowed)) + if (mems_excl_conflict(trial, c)) goto out; } @@ -876,18 +825,15 @@ static inline int nr_cpusets(void) * were changed (added or removed.) * * Finding the best partition (set of domains): - * The triple nested loops below over i, j, k scan over the - * load balanced cpusets (using the array of cpuset pointers in - * csa[]) looking for pairs of cpusets that have overlapping - * cpus_allowed, but which don't have the same 'pn' partition - * number and gives them in the same partition number. It keeps - * looping on the 'restart' label until it can no longer find - * any such pairs. + * The double nested loops below over i, j scan over the load + * balanced cpusets (using the array of cpuset pointers in csa[]) + * looking for pairs of cpusets that have overlapping cpus_allowed + * and merging them using a union-find algorithm. + * + * The union of the cpus_allowed masks from the set of all cpusets + * having the same root then form the one element of the partition + * (one sched domain) to be passed to partition_sched_domains(). * - * The union of the cpus_allowed masks from the set of - * all cpusets having the same 'pn' value then form the one - * element of the partition (one sched domain) to be passed to - * partition_sched_domains(). */ static int generate_sched_domains(cpumask_var_t **domains, struct sched_domain_attr **attributes) @@ -895,20 +841,23 @@ static int generate_sched_domains(cpumask_var_t **domains, struct cpuset *cp; /* top-down scan of cpusets */ struct cpuset **csa; /* array of all cpuset ptrs */ int csn; /* how many cpuset ptrs in csa so far */ - int i, j, k; /* indices for partition finding loops */ + int i, j; /* indices for partition finding loops */ cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ struct sched_domain_attr *dattr; /* attributes for custom domains */ int ndoms = 0; /* number of sched domains in result */ int nslot; /* next empty doms[] struct cpumask slot */ struct cgroup_subsys_state *pos_css; bool root_load_balance = is_sched_load_balance(&top_cpuset); + bool cgrpv2 = cpuset_v2(); + int nslot_update; doms = NULL; dattr = NULL; csa = NULL; /* Special case for the 99% of systems with one, full, sched domain */ - if (root_load_balance && !top_cpuset.nr_subparts_cpus) { + if (root_load_balance && cpumask_empty(subpartitions_cpus)) { +single_root_domain: ndoms = 1; doms = alloc_sched_domains(ndoms); if (!doms) @@ -936,16 +885,18 @@ static int generate_sched_domains(cpumask_var_t **domains, cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { if (cp == &top_cpuset) continue; + + if (cgrpv2) + goto v2; + /* + * v1: * Continue traversing beyond @cp iff @cp has some CPUs and * isn't load balancing. The former is obvious. The * latter: All child cpusets contain a subset of the * parent's cpus, so just skip them, and then we call * update_domain_attr_tree() to calc relax_domain_level of * the corresponding sched domain. - * - * If root is load-balancing, we can skip @cp if it - * is a subset of the root's effective_cpus. */ if (!cpumask_empty(cp->cpus_allowed) && !(is_sched_load_balance(cp) && @@ -953,47 +904,62 @@ static int generate_sched_domains(cpumask_var_t **domains, housekeeping_cpumask(HK_TYPE_DOMAIN)))) continue; - if (root_load_balance && - cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) - continue; - if (is_sched_load_balance(cp) && !cpumask_empty(cp->effective_cpus)) csa[csn++] = cp; - /* skip @cp's subtree if not a partition root */ - if (!is_partition_valid(cp)) + /* skip @cp's subtree */ + pos_css = css_rightmost_descendant(pos_css); + continue; + +v2: + /* + * Only valid partition roots that are not isolated and with + * non-empty effective_cpus will be saved into csn[]. + */ + if ((cp->partition_root_state == PRS_ROOT) && + !cpumask_empty(cp->effective_cpus)) + csa[csn++] = cp; + + /* + * Skip @cp's subtree if not a partition root and has no + * exclusive CPUs to be granted to child cpusets. + */ + if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus)) pos_css = css_rightmost_descendant(pos_css); } rcu_read_unlock(); + /* + * If there are only isolated partitions underneath the cgroup root, + * we can optimize out unneeded sched domains scanning. + */ + if (root_load_balance && (csn == 1)) + goto single_root_domain; + for (i = 0; i < csn; i++) - csa[i]->pn = i; - ndoms = csn; + uf_node_init(&csa[i]->node); -restart: - /* Find the best partition (set of sched domains) */ + /* Merge overlapping cpusets */ for (i = 0; i < csn; i++) { - struct cpuset *a = csa[i]; - int apn = a->pn; - - for (j = 0; j < csn; j++) { - struct cpuset *b = csa[j]; - int bpn = b->pn; - - if (apn != bpn && cpusets_overlap(a, b)) { - for (k = 0; k < csn; k++) { - struct cpuset *c = csa[k]; - - if (c->pn == bpn) - c->pn = apn; - } - ndoms--; /* one less element */ - goto restart; + for (j = i + 1; j < csn; j++) { + if (cpusets_overlap(csa[i], csa[j])) { + /* + * Cgroup v2 shouldn't pass down overlapping + * partition root cpusets. + */ + WARN_ON_ONCE(cgrpv2); + uf_union(&csa[i]->node, &csa[j]->node); } } } + /* Count the total number of domains */ + for (i = 0; i < csn; i++) { + if (uf_find(&csa[i]->node) == &csa[i]->node) + ndoms++; + } + /* * Now we know how many domains to create. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. @@ -1009,45 +975,48 @@ restart: dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), GFP_KERNEL); - for (nslot = 0, i = 0; i < csn; i++) { - struct cpuset *a = csa[i]; - struct cpumask *dp; - int apn = a->pn; - - if (apn < 0) { - /* Skip completed partitions */ - continue; - } - - dp = doms[nslot]; - - if (nslot == ndoms) { - static int warnings = 10; - if (warnings) { - pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", - nslot, ndoms, csn, i, apn); - warnings--; - } - continue; + /* + * Cgroup v2 doesn't support domain attributes, just set all of them + * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a + * subset of HK_TYPE_DOMAIN housekeeping CPUs. + */ + if (cgrpv2) { + for (i = 0; i < ndoms; i++) { + /* + * The top cpuset may contain some boot time isolated + * CPUs that need to be excluded from the sched domain. + */ + if (csa[i] == &top_cpuset) + cpumask_and(doms[i], csa[i]->effective_cpus, + housekeeping_cpumask(HK_TYPE_DOMAIN)); + else + cpumask_copy(doms[i], csa[i]->effective_cpus); + if (dattr) + dattr[i] = SD_ATTR_INIT; } + goto done; + } - cpumask_clear(dp); - if (dattr) - *(dattr + nslot) = SD_ATTR_INIT; + for (nslot = 0, i = 0; i < csn; i++) { + nslot_update = 0; for (j = i; j < csn; j++) { - struct cpuset *b = csa[j]; - - if (apn == b->pn) { - cpumask_or(dp, dp, b->effective_cpus); + if (uf_find(&csa[j]->node) == &csa[i]->node) { + struct cpumask *dp = doms[nslot]; + + if (i == j) { + nslot_update = 1; + cpumask_clear(dp); + if (dattr) + *(dattr + nslot) = SD_ATTR_INIT; + } + cpumask_or(dp, dp, csa[j]->effective_cpus); cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); if (dattr) - update_domain_attr_tree(dattr + nslot, b); - - /* Done with this partition */ - b->pn = -1; + update_domain_attr_tree(dattr + nslot, csa[j]); } } - nslot++; + if (nslot_update) + nslot++; } BUG_ON(nslot != ndoms); @@ -1082,10 +1051,12 @@ static void dl_update_tasks_root_domain(struct cpuset *cs) css_task_iter_end(&it); } -static void dl_rebuild_rd_accounting(void) +void dl_rebuild_rd_accounting(void) { struct cpuset *cs = NULL; struct cgroup_subsys_state *pos_css; + int cpu; + u64 cookie = ++dl_cookie; lockdep_assert_held(&cpuset_mutex); lockdep_assert_cpus_held(); @@ -1093,11 +1064,12 @@ static void dl_rebuild_rd_accounting(void) rcu_read_lock(); - /* - * Clear default root domain DL accounting, it will be computed again - * if a task belongs to it. - */ - dl_clear_root_domain(&def_root_domain); + for_each_possible_cpu(cpu) { + if (dl_bw_visited(cpu, cookie)) + continue; + + dl_clear_root_domain_cpu(cpu); + } cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { @@ -1118,16 +1090,6 @@ static void dl_rebuild_rd_accounting(void) rcu_read_unlock(); } -static void -partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], - struct sched_domain_attr *dattr_new) -{ - mutex_lock(&sched_domains_mutex); - partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); - dl_rebuild_rd_accounting(); - mutex_unlock(&sched_domains_mutex); -} - /* * Rebuild scheduler domains. * @@ -1139,7 +1101,7 @@ partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], * * Call with cpuset_mutex held. Takes cpus_read_lock(). */ -static void rebuild_sched_domains_locked(void) +void rebuild_sched_domains_locked(void) { struct cgroup_subsys_state *pos_css; struct sched_domain_attr *attr; @@ -1149,17 +1111,18 @@ static void rebuild_sched_domains_locked(void) lockdep_assert_cpus_held(); lockdep_assert_held(&cpuset_mutex); + force_sd_rebuild = false; /* * If we have raced with CPU hotplug, return early to avoid * passing doms with offlined cpu to partition_sched_domains(). - * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. + * Anyways, cpuset_handle_hotplug() will rebuild sched domains. * * With no CPUs in any subpartitions, top_cpuset's effective CPUs * should be the same as the active CPUs, so checking only top_cpuset * is enough to detect racing CPU offlines. */ - if (!top_cpuset.nr_subparts_cpus && + if (cpumask_empty(subpartitions_cpus) && !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) return; @@ -1168,7 +1131,7 @@ static void rebuild_sched_domains_locked(void) * root should be only a subset of the active CPUs. Since a CPU in any * partition root could be offlined, all must be checked. */ - if (top_cpuset.nr_subparts_cpus) { + if (!cpumask_empty(subpartitions_cpus)) { rcu_read_lock(); cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { if (!is_partition_valid(cs)) { @@ -1188,35 +1151,52 @@ static void rebuild_sched_domains_locked(void) ndoms = generate_sched_domains(&doms, &attr); /* Have scheduler rebuild the domains */ - partition_and_rebuild_sched_domains(ndoms, doms, attr); + partition_sched_domains(ndoms, doms, attr); } #else /* !CONFIG_SMP */ -static void rebuild_sched_domains_locked(void) +void rebuild_sched_domains_locked(void) { } #endif /* CONFIG_SMP */ -void rebuild_sched_domains(void) +static void rebuild_sched_domains_cpuslocked(void) { - cpus_read_lock(); mutex_lock(&cpuset_mutex); rebuild_sched_domains_locked(); mutex_unlock(&cpuset_mutex); +} + +void rebuild_sched_domains(void) +{ + cpus_read_lock(); + rebuild_sched_domains_cpuslocked(); cpus_read_unlock(); } +void cpuset_reset_sched_domains(void) +{ + mutex_lock(&cpuset_mutex); + partition_sched_domains(1, NULL, NULL); + mutex_unlock(&cpuset_mutex); +} + /** - * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. + * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed * @new_cpus: the temp variable for the new effective_cpus mask * * Iterate through each task of @cs updating its cpus_allowed to the * effective cpuset's. As this function is called with cpuset_mutex held, - * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask() - * is used instead of effective_cpus to make sure all offline CPUs are also - * included as hotplug code won't update cpumasks for tasks in top_cpuset. + * cpuset membership stays stable. + * + * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus + * to make sure all offline CPUs are also included as hotplug code won't + * update cpumasks for tasks in top_cpuset. + * + * As task_cpu_possible_mask() can be task dependent in arm64, we have to + * do cpu masking per task instead of doing it once for all. */ -static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) +void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) { struct css_task_iter it; struct task_struct *task; @@ -1228,11 +1208,13 @@ static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) if (top_cs) { /* - * Percpu kthreads in top_cpuset are ignored + * PF_NO_SETAFFINITY tasks are ignored. + * All per cpu kthreads should have PF_NO_SETAFFINITY + * flag set, see kthread_set_per_cpu(). */ - if ((task->flags & PF_KTHREAD) && kthread_is_per_cpu(task)) + if (task->flags & PF_NO_SETAFFINITY) continue; - cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus); + cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); } else { cpumask_and(new_cpus, possible_mask, cs->effective_cpus); } @@ -1247,85 +1229,620 @@ static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) * @cs: the cpuset the need to recompute the new effective_cpus mask * @parent: the parent cpuset * - * If the parent has subpartition CPUs, include them in the list of - * allowable CPUs in computing the new effective_cpus mask. Since offlined - * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask - * to mask those out. + * The result is valid only if the given cpuset isn't a partition root. */ static void compute_effective_cpumask(struct cpumask *new_cpus, struct cpuset *cs, struct cpuset *parent) { - if (parent->nr_subparts_cpus) { - cpumask_or(new_cpus, parent->effective_cpus, - parent->subparts_cpus); - cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); - cpumask_and(new_cpus, new_cpus, cpu_active_mask); + cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); +} + +/* + * Commands for update_parent_effective_cpumask + */ +enum partition_cmd { + partcmd_enable, /* Enable partition root */ + partcmd_enablei, /* Enable isolated partition root */ + partcmd_disable, /* Disable partition root */ + partcmd_update, /* Update parent's effective_cpus */ + partcmd_invalidate, /* Make partition invalid */ +}; + +static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, + struct tmpmasks *tmp); + +/* + * Update partition exclusive flag + * + * Return: 0 if successful, an error code otherwise + */ +static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs) +{ + bool exclusive = (new_prs > PRS_MEMBER); + + if (exclusive && !is_cpu_exclusive(cs)) { + if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1)) + return PERR_NOTEXCL; + } else if (!exclusive && is_cpu_exclusive(cs)) { + /* Turning off CS_CPU_EXCLUSIVE will not return error */ + cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0); + } + return 0; +} + +/* + * Update partition load balance flag and/or rebuild sched domain + * + * Changing load balance flag will automatically call + * rebuild_sched_domains_locked(). + * This function is for cgroup v2 only. + */ +static void update_partition_sd_lb(struct cpuset *cs, int old_prs) +{ + int new_prs = cs->partition_root_state; + bool rebuild_domains = (new_prs > 0) || (old_prs > 0); + bool new_lb; + + /* + * If cs is not a valid partition root, the load balance state + * will follow its parent. + */ + if (new_prs > 0) { + new_lb = (new_prs != PRS_ISOLATED); } else { - cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); + new_lb = is_sched_load_balance(parent_cs(cs)); + } + if (new_lb != !!is_sched_load_balance(cs)) { + rebuild_domains = true; + if (new_lb) + set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); + else + clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); } + + if (rebuild_domains) + cpuset_force_rebuild(); } /* - * Commands for update_parent_subparts_cpumask + * tasks_nocpu_error - Return true if tasks will have no effective_cpus */ -enum subparts_cmd { - partcmd_enable, /* Enable partition root */ - partcmd_disable, /* Disable partition root */ - partcmd_update, /* Update parent's subparts_cpus */ - partcmd_invalidate, /* Make partition invalid */ -}; +static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, + struct cpumask *xcpus) +{ + /* + * A populated partition (cs or parent) can't have empty effective_cpus + */ + return (cpumask_subset(parent->effective_cpus, xcpus) && + partition_is_populated(parent, cs)) || + (!cpumask_intersects(xcpus, cpu_active_mask) && + partition_is_populated(cs, NULL)); +} + +static void reset_partition_data(struct cpuset *cs) +{ + struct cpuset *parent = parent_cs(cs); + + if (!cpuset_v2()) + return; + + lockdep_assert_held(&callback_lock); + + if (cpumask_empty(cs->exclusive_cpus)) { + cpumask_clear(cs->effective_xcpus); + if (is_cpu_exclusive(cs)) + clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); + } + if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed)) + cpumask_copy(cs->effective_cpus, parent->effective_cpus); +} + +/* + * isolated_cpus_update - Update the isolated_cpus mask + * @old_prs: old partition_root_state + * @new_prs: new partition_root_state + * @xcpus: exclusive CPUs with state change + */ +static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus) +{ + WARN_ON_ONCE(old_prs == new_prs); + if (new_prs == PRS_ISOLATED) + cpumask_or(isolated_cpus, isolated_cpus, xcpus); + else + cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); + + isolated_cpus_updating = true; +} + +/* + * partition_xcpus_add - Add new exclusive CPUs to partition + * @new_prs: new partition_root_state + * @parent: parent cpuset + * @xcpus: exclusive CPUs to be added + * + * Remote partition if parent == NULL + */ +static void partition_xcpus_add(int new_prs, struct cpuset *parent, + struct cpumask *xcpus) +{ + WARN_ON_ONCE(new_prs < 0); + lockdep_assert_held(&callback_lock); + if (!parent) + parent = &top_cpuset; + + + if (parent == &top_cpuset) + cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); + + if (new_prs != parent->partition_root_state) + isolated_cpus_update(parent->partition_root_state, new_prs, + xcpus); + + cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); +} + +/* + * partition_xcpus_del - Remove exclusive CPUs from partition + * @old_prs: old partition_root_state + * @parent: parent cpuset + * @xcpus: exclusive CPUs to be removed + * + * Remote partition if parent == NULL + */ +static void partition_xcpus_del(int old_prs, struct cpuset *parent, + struct cpumask *xcpus) +{ + WARN_ON_ONCE(old_prs < 0); + lockdep_assert_held(&callback_lock); + if (!parent) + parent = &top_cpuset; + + if (parent == &top_cpuset) + cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); + + if (old_prs != parent->partition_root_state) + isolated_cpus_update(old_prs, parent->partition_root_state, + xcpus); + + cpumask_and(xcpus, xcpus, cpu_active_mask); + cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); +} + +/* + * isolated_cpus_can_update - check for isolated & nohz_full conflicts + * @add_cpus: cpu mask for cpus that are going to be isolated + * @del_cpus: cpu mask for cpus that are no longer isolated, can be NULL + * Return: false if there is conflict, true otherwise + * + * If nohz_full is enabled and we have isolated CPUs, their combination must + * still leave housekeeping CPUs. + * + * TBD: Should consider merging this function into + * prstate_housekeeping_conflict(). + */ +static bool isolated_cpus_can_update(struct cpumask *add_cpus, + struct cpumask *del_cpus) +{ + cpumask_var_t full_hk_cpus; + int res = true; + + if (!housekeeping_enabled(HK_TYPE_KERNEL_NOISE)) + return true; + + if (del_cpus && cpumask_weight_and(del_cpus, + housekeeping_cpumask(HK_TYPE_KERNEL_NOISE))) + return true; + + if (!alloc_cpumask_var(&full_hk_cpus, GFP_KERNEL)) + return false; + + cpumask_and(full_hk_cpus, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE), + housekeeping_cpumask(HK_TYPE_DOMAIN)); + cpumask_andnot(full_hk_cpus, full_hk_cpus, isolated_cpus); + cpumask_and(full_hk_cpus, full_hk_cpus, cpu_active_mask); + if (!cpumask_weight_andnot(full_hk_cpus, add_cpus)) + res = false; + + free_cpumask_var(full_hk_cpus); + return res; +} + +/* + * prstate_housekeeping_conflict - check for partition & housekeeping conflicts + * @prstate: partition root state to be checked + * @new_cpus: cpu mask + * Return: true if there is conflict, false otherwise + * + * CPUs outside of boot_hk_cpus, if defined, can only be used in an + * isolated partition. + */ +static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) +{ + if (!have_boot_isolcpus) + return false; + + if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus)) + return true; + + return false; +} + +/* + * update_isolation_cpumasks - Update external isolation related CPU masks + * + * The following external CPU masks will be updated if necessary: + * - workqueue unbound cpumask + */ +static void update_isolation_cpumasks(void) +{ + int ret; + + if (!isolated_cpus_updating) + return; + + lockdep_assert_cpus_held(); + + ret = workqueue_unbound_exclude_cpumask(isolated_cpus); + WARN_ON_ONCE(ret < 0); + + ret = tmigr_isolated_exclude_cpumask(isolated_cpus); + WARN_ON_ONCE(ret < 0); + + isolated_cpus_updating = false; +} -static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, - int turning_on); /** - * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset + * cpuset_cpu_is_isolated - Check if the given CPU is isolated + * @cpu: the CPU number to be checked + * Return: true if CPU is used in an isolated partition, false otherwise + */ +bool cpuset_cpu_is_isolated(int cpu) +{ + return cpumask_test_cpu(cpu, isolated_cpus); +} +EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); + +/** + * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets + * @parent: Parent cpuset containing all siblings + * @cs: Current cpuset (will be skipped) + * @excpus: exclusive effective CPU mask to modify + * + * This function ensures the given @excpus mask doesn't include any CPUs that + * are exclusively allocated to sibling cpusets. It walks through all siblings + * of @cs under @parent and removes their exclusive CPUs from @excpus. + */ +static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs, + struct cpumask *excpus) +{ + struct cgroup_subsys_state *css; + struct cpuset *sibling; + int retval = 0; + + if (cpumask_empty(excpus)) + return retval; + + /* + * Exclude exclusive CPUs from siblings + */ + rcu_read_lock(); + cpuset_for_each_child(sibling, css, parent) { + if (sibling == cs) + continue; + + if (cpumask_intersects(excpus, sibling->exclusive_cpus)) { + cpumask_andnot(excpus, excpus, sibling->exclusive_cpus); + retval++; + continue; + } + if (cpumask_intersects(excpus, sibling->effective_xcpus)) { + cpumask_andnot(excpus, excpus, sibling->effective_xcpus); + retval++; + } + } + rcu_read_unlock(); + + return retval; +} + +/* + * compute_excpus - compute effective exclusive CPUs + * @cs: cpuset + * @xcpus: effective exclusive CPUs value to be set + * Return: 0 if there is no sibling conflict, > 0 otherwise + * + * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets + * and exclude their exclusive_cpus or effective_xcpus as well. + */ +static int compute_excpus(struct cpuset *cs, struct cpumask *excpus) +{ + struct cpuset *parent = parent_cs(cs); + + cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus); + + if (!cpumask_empty(cs->exclusive_cpus)) + return 0; + + return rm_siblings_excl_cpus(parent, cs, excpus); +} + +/* + * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset + * @trialcs: The trial cpuset containing the proposed new configuration + * @cs: The original cpuset that the trial configuration is based on + * Return: 0 if successful with no sibling conflict, >0 if a conflict is found + * + * Computes the effective_xcpus for a trial configuration. @cs is provided to represent + * the real cs. + */ +static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs) +{ + struct cpuset *parent = parent_cs(trialcs); + struct cpumask *excpus = trialcs->effective_xcpus; + + /* trialcs is member, cpuset.cpus has no impact to excpus */ + if (cs_is_member(cs)) + cpumask_and(excpus, trialcs->exclusive_cpus, + parent->effective_xcpus); + else + cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus); + + return rm_siblings_excl_cpus(parent, cs, excpus); +} + +static inline bool is_remote_partition(struct cpuset *cs) +{ + return cs->remote_partition; +} + +static inline bool is_local_partition(struct cpuset *cs) +{ + return is_partition_valid(cs) && !is_remote_partition(cs); +} + +/* + * remote_partition_enable - Enable current cpuset as a remote partition root + * @cs: the cpuset to update + * @new_prs: new partition_root_state + * @tmp: temporary masks + * Return: 0 if successful, errcode if error + * + * Enable the current cpuset to become a remote partition root taking CPUs + * directly from the top cpuset. cpuset_mutex must be held by the caller. + */ +static int remote_partition_enable(struct cpuset *cs, int new_prs, + struct tmpmasks *tmp) +{ + /* + * The user must have sysadmin privilege. + */ + if (!capable(CAP_SYS_ADMIN)) + return PERR_ACCESS; + + /* + * The requested exclusive_cpus must not be allocated to other + * partitions and it can't use up all the root's effective_cpus. + * + * The effective_xcpus mask can contain offline CPUs, but there must + * be at least one or more online CPUs present before it can be enabled. + * + * Note that creating a remote partition with any local partition root + * above it or remote partition root underneath it is not allowed. + */ + compute_excpus(cs, tmp->new_cpus); + WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus)); + if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) || + cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) + return PERR_INVCPUS; + if (((new_prs == PRS_ISOLATED) && + !isolated_cpus_can_update(tmp->new_cpus, NULL)) || + prstate_housekeeping_conflict(new_prs, tmp->new_cpus)) + return PERR_HKEEPING; + + spin_lock_irq(&callback_lock); + partition_xcpus_add(new_prs, NULL, tmp->new_cpus); + cs->remote_partition = true; + cpumask_copy(cs->effective_xcpus, tmp->new_cpus); + spin_unlock_irq(&callback_lock); + update_isolation_cpumasks(); + cpuset_force_rebuild(); + cs->prs_err = 0; + + /* + * Propagate changes in top_cpuset's effective_cpus down the hierarchy. + */ + cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); + update_sibling_cpumasks(&top_cpuset, NULL, tmp); + return 0; +} + +/* + * remote_partition_disable - Remove current cpuset from remote partition list + * @cs: the cpuset to update + * @tmp: temporary masks + * + * The effective_cpus is also updated. + * + * cpuset_mutex must be held by the caller. + */ +static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) +{ + WARN_ON_ONCE(!is_remote_partition(cs)); + WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); + + spin_lock_irq(&callback_lock); + cs->remote_partition = false; + partition_xcpus_del(cs->partition_root_state, NULL, cs->effective_xcpus); + if (cs->prs_err) + cs->partition_root_state = -cs->partition_root_state; + else + cs->partition_root_state = PRS_MEMBER; + + /* effective_xcpus may need to be changed */ + compute_excpus(cs, cs->effective_xcpus); + reset_partition_data(cs); + spin_unlock_irq(&callback_lock); + update_isolation_cpumasks(); + cpuset_force_rebuild(); + + /* + * Propagate changes in top_cpuset's effective_cpus down the hierarchy. + */ + cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); + update_sibling_cpumasks(&top_cpuset, NULL, tmp); +} + +/* + * remote_cpus_update - cpus_exclusive change of remote partition + * @cs: the cpuset to be updated + * @xcpus: the new exclusive_cpus mask, if non-NULL + * @excpus: the new effective_xcpus mask + * @tmp: temporary masks + * + * top_cpuset and subpartitions_cpus will be updated or partition can be + * invalidated. + */ +static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus, + struct cpumask *excpus, struct tmpmasks *tmp) +{ + bool adding, deleting; + int prs = cs->partition_root_state; + + if (WARN_ON_ONCE(!is_remote_partition(cs))) + return; + + WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); + + if (cpumask_empty(excpus)) { + cs->prs_err = PERR_CPUSEMPTY; + goto invalidate; + } + + adding = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus); + deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus); + + /* + * Additions of remote CPUs is only allowed if those CPUs are + * not allocated to other partitions and there are effective_cpus + * left in the top cpuset. + */ + if (adding) { + WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus)); + if (!capable(CAP_SYS_ADMIN)) + cs->prs_err = PERR_ACCESS; + else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) || + cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)) + cs->prs_err = PERR_NOCPUS; + else if ((prs == PRS_ISOLATED) && + !isolated_cpus_can_update(tmp->addmask, tmp->delmask)) + cs->prs_err = PERR_HKEEPING; + if (cs->prs_err) + goto invalidate; + } + + spin_lock_irq(&callback_lock); + if (adding) + partition_xcpus_add(prs, NULL, tmp->addmask); + if (deleting) + partition_xcpus_del(prs, NULL, tmp->delmask); + /* + * Need to update effective_xcpus and exclusive_cpus now as + * update_sibling_cpumasks() below may iterate back to the same cs. + */ + cpumask_copy(cs->effective_xcpus, excpus); + if (xcpus) + cpumask_copy(cs->exclusive_cpus, xcpus); + spin_unlock_irq(&callback_lock); + update_isolation_cpumasks(); + if (adding || deleting) + cpuset_force_rebuild(); + + /* + * Propagate changes in top_cpuset's effective_cpus down the hierarchy. + */ + cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); + update_sibling_cpumasks(&top_cpuset, NULL, tmp); + return; + +invalidate: + remote_partition_disable(cs, tmp); +} + +/** + * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset * @cs: The cpuset that requests change in partition root state * @cmd: Partition root state change command * @newmask: Optional new cpumask for partcmd_update * @tmp: Temporary addmask and delmask * Return: 0 or a partition root state error code * - * For partcmd_enable, the cpuset is being transformed from a non-partition - * root to a partition root. The cpus_allowed mask of the given cpuset will - * be put into parent's subparts_cpus and taken away from parent's - * effective_cpus. The function will return 0 if all the CPUs listed in - * cpus_allowed can be granted or an error code will be returned. + * For partcmd_enable*, the cpuset is being transformed from a non-partition + * root to a partition root. The effective_xcpus (cpus_allowed if + * effective_xcpus not set) mask of the given cpuset will be taken away from + * parent's effective_cpus. The function will return 0 if all the CPUs listed + * in effective_xcpus can be granted or an error code will be returned. * * For partcmd_disable, the cpuset is being transformed from a partition - * root back to a non-partition root. Any CPUs in cpus_allowed that are in - * parent's subparts_cpus will be taken away from that cpumask and put back - * into parent's effective_cpus. 0 will always be returned. + * root back to a non-partition root. Any CPUs in effective_xcpus will be + * given back to parent's effective_cpus. 0 will always be returned. * * For partcmd_update, if the optional newmask is specified, the cpu list is - * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is + * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is * assumed to remain the same. The cpuset should either be a valid or invalid * partition root. The partition root state may change from valid to invalid - * or vice versa. An error code will only be returned if transitioning from + * or vice versa. An error code will be returned if transitioning from * invalid to valid violates the exclusivity rule. * * For partcmd_invalidate, the current partition will be made invalid. * - * The partcmd_enable and partcmd_disable commands are used by + * The partcmd_enable* and partcmd_disable commands are used by * update_prstate(). An error code may be returned and the caller will check * for error. * * The partcmd_update command is used by update_cpumasks_hier() with newmask * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used * by update_cpumask() with NULL newmask. In both cases, the callers won't - * check for error and so partition_root_state and prs_error will be updated + * check for error and so partition_root_state and prs_err will be updated * directly. */ -static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd, - struct cpumask *newmask, - struct tmpmasks *tmp) +static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, + struct cpumask *newmask, + struct tmpmasks *tmp) { struct cpuset *parent = parent_cs(cs); - int adding; /* Moving cpus from effective_cpus to subparts_cpus */ - int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ + int adding; /* Adding cpus to parent's effective_cpus */ + int deleting; /* Deleting cpus from parent's effective_cpus */ int old_prs, new_prs; int part_error = PERR_NONE; /* Partition error? */ + struct cpumask *xcpus = user_xcpus(cs); + int parent_prs = parent->partition_root_state; + bool nocpu; lockdep_assert_held(&cpuset_mutex); + WARN_ON_ONCE(is_remote_partition(cs)); /* For local partition only */ + + /* + * new_prs will only be changed for the partcmd_update and + * partcmd_invalidate commands. + */ + adding = deleting = false; + old_prs = new_prs = cs->partition_root_state; + + if (cmd == partcmd_invalidate) { + if (is_partition_invalid(cs)) + return 0; + + /* + * Make the current partition invalid. + */ + if (is_partition_valid(parent)) + adding = cpumask_and(tmp->addmask, + xcpus, parent->effective_xcpus); + if (old_prs > 0) + new_prs = -old_prs; + + goto write_error; + } /* * The parent must be a partition root. @@ -1336,123 +1853,191 @@ static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd, return is_partition_invalid(parent) ? PERR_INVPARENT : PERR_NOTPART; } - if ((newmask && cpumask_empty(newmask)) || - (!newmask && cpumask_empty(cs->cpus_allowed))) + if (!newmask && xcpus_empty(cs)) return PERR_CPUSEMPTY; - /* - * new_prs will only be changed for the partcmd_update and - * partcmd_invalidate commands. - */ - adding = deleting = false; - old_prs = new_prs = cs->partition_root_state; - if (cmd == partcmd_enable) { + nocpu = tasks_nocpu_error(parent, cs, xcpus); + + if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { /* - * Enabling partition root is not allowed if cpus_allowed - * doesn't overlap parent's cpus_allowed. + * Need to call compute_excpus() in case + * exclusive_cpus not set. Sibling conflict should only happen + * if exclusive_cpus isn't set. */ - if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed)) - return PERR_INVCPUS; + xcpus = tmp->delmask; + if (compute_excpus(cs, xcpus)) + WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus)); + new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; /* - * A parent can be left with no CPU as long as there is no - * task directly associated with the parent partition. + * Enabling partition root is not allowed if its + * effective_xcpus is empty. */ - if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) && - partition_is_populated(parent, cs)) + if (cpumask_empty(xcpus)) + return PERR_INVCPUS; + + if (prstate_housekeeping_conflict(new_prs, xcpus)) + return PERR_HKEEPING; + + if ((new_prs == PRS_ISOLATED) && (new_prs != parent_prs) && + !isolated_cpus_can_update(xcpus, NULL)) + return PERR_HKEEPING; + + if (tasks_nocpu_error(parent, cs, xcpus)) return PERR_NOCPUS; - cpumask_copy(tmp->addmask, cs->cpus_allowed); - adding = true; - } else if (cmd == partcmd_disable) { /* - * Need to remove cpus from parent's subparts_cpus for valid - * partition root. + * This function will only be called when all the preliminary + * checks have passed. At this point, the following condition + * should hold. + * + * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus + * + * Warn if it is not the case. */ - deleting = !is_prs_invalid(old_prs) && - cpumask_and(tmp->delmask, cs->cpus_allowed, - parent->subparts_cpus); - } else if (cmd == partcmd_invalidate) { - if (is_prs_invalid(old_prs)) - return 0; + cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask); + WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); + deleting = true; + } else if (cmd == partcmd_disable) { /* - * Make the current partition invalid. It is assumed that - * invalidation is caused by violating cpu exclusivity rule. + * May need to add cpus back to parent's effective_cpus + * (and maybe removed from subpartitions_cpus/isolated_cpus) + * for valid partition root. xcpus may contain CPUs that + * shouldn't be removed from the two global cpumasks. */ - deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, - parent->subparts_cpus); - if (old_prs > 0) { - new_prs = -old_prs; - part_error = PERR_NOTEXCL; + if (is_partition_valid(cs)) { + cpumask_copy(tmp->addmask, cs->effective_xcpus); + adding = true; } + new_prs = PRS_MEMBER; } else if (newmask) { /* + * Empty cpumask is not allowed + */ + if (cpumask_empty(newmask)) { + part_error = PERR_CPUSEMPTY; + goto write_error; + } + + /* Check newmask again, whether cpus are available for parent/cs */ + nocpu |= tasks_nocpu_error(parent, cs, newmask); + + /* * partcmd_update with newmask: * - * Compute add/delete mask to/from subparts_cpus + * Compute add/delete mask to/from effective_cpus + * + * For valid partition: + * addmask = exclusive_cpus & ~newmask + * & parent->effective_xcpus + * delmask = newmask & ~exclusive_cpus + * & parent->effective_xcpus * - * delmask = cpus_allowed & ~newmask & parent->subparts_cpus - * addmask = newmask & parent->cpus_allowed - * & ~parent->subparts_cpus + * For invalid partition: + * delmask = newmask & parent->effective_xcpus + * The partition may become valid soon. + */ + if (is_partition_invalid(cs)) { + adding = false; + deleting = cpumask_and(tmp->delmask, + newmask, parent->effective_xcpus); + } else { + cpumask_andnot(tmp->addmask, xcpus, newmask); + adding = cpumask_and(tmp->addmask, tmp->addmask, + parent->effective_xcpus); + + cpumask_andnot(tmp->delmask, newmask, xcpus); + deleting = cpumask_and(tmp->delmask, tmp->delmask, + parent->effective_xcpus); + } + + /* + * TBD: Invalidate a currently valid child root partition may + * still break isolated_cpus_can_update() rule if parent is an + * isolated partition. + */ + if (is_partition_valid(cs) && (old_prs != parent_prs)) { + if ((parent_prs == PRS_ROOT) && + /* Adding to parent means removing isolated CPUs */ + !isolated_cpus_can_update(tmp->delmask, tmp->addmask)) + part_error = PERR_HKEEPING; + if ((parent_prs == PRS_ISOLATED) && + /* Adding to parent means adding isolated CPUs */ + !isolated_cpus_can_update(tmp->addmask, tmp->delmask)) + part_error = PERR_HKEEPING; + } + + /* + * The new CPUs to be removed from parent's effective CPUs + * must be present. */ - cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask); - deleting = cpumask_and(tmp->delmask, tmp->delmask, - parent->subparts_cpus); + if (deleting) { + cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask); + WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); + } - cpumask_and(tmp->addmask, newmask, parent->cpus_allowed); - adding = cpumask_andnot(tmp->addmask, tmp->addmask, - parent->subparts_cpus); /* * Make partition invalid if parent's effective_cpus could * become empty and there are tasks in the parent. */ - if (adding && - cpumask_subset(parent->effective_cpus, tmp->addmask) && - !cpumask_intersects(tmp->delmask, cpu_active_mask) && - partition_is_populated(parent, cs)) { + if (nocpu && (!adding || + !cpumask_intersects(tmp->addmask, cpu_active_mask))) { part_error = PERR_NOCPUS; - adding = false; - deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, - parent->subparts_cpus); + deleting = false; + adding = cpumask_and(tmp->addmask, + xcpus, parent->effective_xcpus); } } else { /* - * partcmd_update w/o newmask: + * partcmd_update w/o newmask + * + * delmask = effective_xcpus & parent->effective_cpus + * + * This can be called from: + * 1) update_cpumasks_hier() + * 2) cpuset_hotplug_update_tasks() * - * delmask = cpus_allowed & parent->subparts_cpus - * addmask = cpus_allowed & parent->cpus_allowed - * & ~parent->subparts_cpus + * Check to see if it can be transitioned from valid to + * invalid partition or vice versa. * - * This gets invoked either due to a hotplug event or from - * update_cpumasks_hier(). This can cause the state of a - * partition root to transition from valid to invalid or vice - * versa. So we still need to compute the addmask and delmask. - - * A partition error happens when: - * 1) Cpuset is valid partition, but parent does not distribute - * out any CPUs. - * 2) Parent has tasks and all its effective CPUs will have - * to be distributed out. + * A partition error happens when parent has tasks and all + * its effective CPUs will have to be distributed out. */ - cpumask_and(tmp->addmask, cs->cpus_allowed, - parent->cpus_allowed); - adding = cpumask_andnot(tmp->addmask, tmp->addmask, - parent->subparts_cpus); - - if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) || - (adding && - cpumask_subset(parent->effective_cpus, tmp->addmask) && - partition_is_populated(parent, cs))) { + if (nocpu) { part_error = PERR_NOCPUS; - adding = false; - } + if (is_partition_valid(cs)) + adding = cpumask_and(tmp->addmask, + xcpus, parent->effective_xcpus); + } else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) && + cpumask_subset(xcpus, parent->effective_xcpus)) { + struct cgroup_subsys_state *css; + struct cpuset *child; + bool exclusive = true; - if (part_error && is_partition_valid(cs) && - parent->nr_subparts_cpus) - deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, - parent->subparts_cpus); + /* + * Convert invalid partition to valid has to + * pass the cpu exclusivity test. + */ + rcu_read_lock(); + cpuset_for_each_child(child, css, parent) { + if (child == cs) + continue; + if (!cpusets_are_exclusive(cs, child)) { + exclusive = false; + break; + } + } + rcu_read_unlock(); + if (exclusive) + deleting = cpumask_and(tmp->delmask, + xcpus, parent->effective_cpus); + else + part_error = PERR_NOTEXCL; + } } + +write_error: if (part_error) WRITE_ONCE(cs->prs_err, part_error); @@ -1480,63 +2065,130 @@ static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd, /* * Transitioning between invalid to valid or vice versa may require - * changing CS_CPU_EXCLUSIVE and CS_SCHED_LOAD_BALANCE. + * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, + * validate_change() has already been successfully called and + * CPU lists in cs haven't been updated yet. So defer it to later. */ - if (old_prs != new_prs) { - if (is_prs_invalid(old_prs) && !is_cpu_exclusive(cs) && - (update_flag(CS_CPU_EXCLUSIVE, cs, 1) < 0)) - return PERR_NOTEXCL; - if (is_prs_invalid(new_prs) && is_cpu_exclusive(cs)) - update_flag(CS_CPU_EXCLUSIVE, cs, 0); + if ((old_prs != new_prs) && (cmd != partcmd_update)) { + int err = update_partition_exclusive_flag(cs, new_prs); + + if (err) + return err; } /* - * Change the parent's subparts_cpus. + * Change the parent's effective_cpus & effective_xcpus (top cpuset + * only). + * * Newly added CPUs will be removed from effective_cpus and * newly deleted ones will be added back to effective_cpus. */ spin_lock_irq(&callback_lock); - if (adding) { - cpumask_or(parent->subparts_cpus, - parent->subparts_cpus, tmp->addmask); - cpumask_andnot(parent->effective_cpus, - parent->effective_cpus, tmp->addmask); - } - if (deleting) { - cpumask_andnot(parent->subparts_cpus, - parent->subparts_cpus, tmp->delmask); - /* - * Some of the CPUs in subparts_cpus might have been offlined. - */ - cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); - cpumask_or(parent->effective_cpus, - parent->effective_cpus, tmp->delmask); - } - - parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); - if (old_prs != new_prs) cs->partition_root_state = new_prs; + /* + * Adding to parent's effective_cpus means deletion CPUs from cs + * and vice versa. + */ + if (adding) + partition_xcpus_del(old_prs, parent, tmp->addmask); + if (deleting) + partition_xcpus_add(new_prs, parent, tmp->delmask); + spin_unlock_irq(&callback_lock); + update_isolation_cpumasks(); - if (adding || deleting) - update_tasks_cpumask(parent, tmp->addmask); + if ((old_prs != new_prs) && (cmd == partcmd_update)) + update_partition_exclusive_flag(cs, new_prs); + + if (adding || deleting) { + cpuset_update_tasks_cpumask(parent, tmp->addmask); + update_sibling_cpumasks(parent, cs, tmp); + } /* - * Set or clear CS_SCHED_LOAD_BALANCE when partcmd_update, if necessary. - * rebuild_sched_domains_locked() may be called. + * For partcmd_update without newmask, it is being called from + * cpuset_handle_hotplug(). Update the load balance flag and + * scheduling domain accordingly. */ - if (old_prs != new_prs) { - if (old_prs == PRS_ISOLATED) - update_flag(CS_SCHED_LOAD_BALANCE, cs, 1); - else if (new_prs == PRS_ISOLATED) - update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); - } + if ((cmd == partcmd_update) && !newmask) + update_partition_sd_lb(cs, old_prs); + notify_partition_change(cs, old_prs); return 0; } +/** + * compute_partition_effective_cpumask - compute effective_cpus for partition + * @cs: partition root cpuset + * @new_ecpus: previously computed effective_cpus to be updated + * + * Compute the effective_cpus of a partition root by scanning effective_xcpus + * of child partition roots and excluding their effective_xcpus. + * + * This has the side effect of invalidating valid child partition roots, + * if necessary. Since it is called from either cpuset_hotplug_update_tasks() + * or update_cpumasks_hier() where parent and children are modified + * successively, we don't need to call update_parent_effective_cpumask() + * and the child's effective_cpus will be updated in later iterations. + * + * Note that rcu_read_lock() is assumed to be held. + */ +static void compute_partition_effective_cpumask(struct cpuset *cs, + struct cpumask *new_ecpus) +{ + struct cgroup_subsys_state *css; + struct cpuset *child; + bool populated = partition_is_populated(cs, NULL); + + /* + * Check child partition roots to see if they should be + * invalidated when + * 1) child effective_xcpus not a subset of new + * excluisve_cpus + * 2) All the effective_cpus will be used up and cp + * has tasks + */ + compute_excpus(cs, new_ecpus); + cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); + + rcu_read_lock(); + cpuset_for_each_child(child, css, cs) { + if (!is_partition_valid(child)) + continue; + + /* + * There shouldn't be a remote partition underneath another + * partition root. + */ + WARN_ON_ONCE(is_remote_partition(child)); + child->prs_err = 0; + if (!cpumask_subset(child->effective_xcpus, + cs->effective_xcpus)) + child->prs_err = PERR_INVCPUS; + else if (populated && + cpumask_subset(new_ecpus, child->effective_xcpus)) + child->prs_err = PERR_NOCPUS; + + if (child->prs_err) { + int old_prs = child->partition_root_state; + + /* + * Invalidate child partition + */ + spin_lock_irq(&callback_lock); + make_partition_invalid(child); + spin_unlock_irq(&callback_lock); + notify_partition_change(child, old_prs); + continue; + } + cpumask_andnot(new_ecpus, new_ecpus, + child->effective_xcpus); + } + rcu_read_unlock(); +} + /* * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree * @cs: the cpuset to consider @@ -1555,15 +2207,56 @@ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, { struct cpuset *cp; struct cgroup_subsys_state *pos_css; - bool need_rebuild_sched_domains = false; int old_prs, new_prs; rcu_read_lock(); cpuset_for_each_descendant_pre(cp, pos_css, cs) { struct cpuset *parent = parent_cs(cp); + bool remote = is_remote_partition(cp); bool update_parent = false; - compute_effective_cpumask(tmp->new_cpus, cp, parent); + old_prs = new_prs = cp->partition_root_state; + + /* + * For child remote partition root (!= cs), we need to call + * remote_cpus_update() if effective_xcpus will be changed. + * Otherwise, we can skip the whole subtree. + * + * remote_cpus_update() will reuse tmp->new_cpus only after + * its value is being processed. + */ + if (remote && (cp != cs)) { + compute_excpus(cp, tmp->new_cpus); + if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + rcu_read_unlock(); + remote_cpus_update(cp, NULL, tmp->new_cpus, tmp); + rcu_read_lock(); + + /* Remote partition may be invalidated */ + new_prs = cp->partition_root_state; + remote = (new_prs == old_prs); + } + + if (remote || (is_partition_valid(parent) && is_partition_valid(cp))) + compute_partition_effective_cpumask(cp, tmp->new_cpus); + else + compute_effective_cpumask(tmp->new_cpus, cp, parent); + + if (remote) + goto get_css; /* Ready to update cpuset data */ + + /* + * A partition with no effective_cpus is allowed as long as + * there is no task associated with it. Call + * update_parent_effective_cpumask() to check it. + */ + if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { + update_parent = true; + goto update_parent_effective; + } /* * If it becomes empty, inherit the effective mask of the @@ -1571,40 +2264,31 @@ static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, * it is a partition root that has explicitly distributed * out all its CPUs. */ - if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { - if (is_partition_valid(cp) && - cpumask_equal(cp->cpus_allowed, cp->subparts_cpus)) - goto update_parent_subparts; - + if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) cpumask_copy(tmp->new_cpus, parent->effective_cpus); - if (!cp->use_parent_ecpus) { - cp->use_parent_ecpus = true; - parent->child_ecpus_count++; - } - } else if (cp->use_parent_ecpus) { - cp->use_parent_ecpus = false; - WARN_ON_ONCE(!parent->child_ecpus_count); - parent->child_ecpus_count--; - } /* - * Skip the whole subtree if the cpumask remains the same - * and has no partition root state and force flag not set. + * Skip the whole subtree if + * 1) the cpumask remains the same, + * 2) has no partition root state, + * 3) force flag not set, and + * 4) for v2 load balance state same as its parent. */ if (!cp->partition_root_state && !force && - cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { + cpumask_equal(tmp->new_cpus, cp->effective_cpus) && + (!cpuset_v2() || + (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { pos_css = css_rightmost_descendant(pos_css); continue; } -update_parent_subparts: +update_parent_effective: /* - * update_parent_subparts_cpumask() should have been called + * update_parent_effective_cpumask() should have been called * for cs already in update_cpumask(). We should also call - * update_tasks_cpumask() again for tasks in the parent - * cpuset if the parent's subparts_cpus changes. + * cpuset_update_tasks_cpumask() again for tasks in the parent + * cpuset if the parent's effective_cpus changes. */ - old_prs = new_prs = cp->partition_root_state; if ((cp != cs) && old_prs) { switch (parent->partition_root_state) { case PRS_ROOT: @@ -1626,14 +2310,13 @@ update_parent_subparts: break; } } - +get_css: if (!css_tryget_online(&cp->css)) continue; rcu_read_unlock(); if (update_parent) { - update_parent_subparts_cpumask(cp, partcmd_update, NULL, - tmp); + update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); /* * The cpuset partition_root_state may become * invalid. Capture it. @@ -1642,30 +2325,20 @@ update_parent_subparts: } spin_lock_irq(&callback_lock); - - if (cp->nr_subparts_cpus && !is_partition_valid(cp)) { - /* - * Put all active subparts_cpus back to effective_cpus. - */ - cpumask_or(tmp->new_cpus, tmp->new_cpus, - cp->subparts_cpus); - cpumask_and(tmp->new_cpus, tmp->new_cpus, - cpu_active_mask); - cp->nr_subparts_cpus = 0; - cpumask_clear(cp->subparts_cpus); - } - cpumask_copy(cp->effective_cpus, tmp->new_cpus); - if (cp->nr_subparts_cpus) { - /* - * Make sure that effective_cpus & subparts_cpus - * are mutually exclusive. - */ - cpumask_andnot(cp->effective_cpus, cp->effective_cpus, - cp->subparts_cpus); - } - cp->partition_root_state = new_prs; + if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) + compute_excpus(cp, cp->effective_xcpus); + + /* + * Make sure effective_xcpus is properly set for a valid + * partition root. + */ + if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) + cpumask_and(cp->effective_xcpus, + cp->cpus_allowed, parent->effective_xcpus); + else if (new_prs < 0) + reset_partition_data(cp); spin_unlock_irq(&callback_lock); notify_partition_change(cp, old_prs); @@ -1673,7 +2346,20 @@ update_parent_subparts: WARN_ON(!is_in_v2_mode() && !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); - update_tasks_cpumask(cp, tmp->new_cpus); + cpuset_update_tasks_cpumask(cp, cp->effective_cpus); + + /* + * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE + * from parent if current cpuset isn't a valid partition root + * and their load balance states differ. + */ + if (cpuset_v2() && !is_partition_valid(cp) && + (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { + if (is_sched_load_balance(parent)) + set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); + else + clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); + } /* * On legacy hierarchy, if the effective cpumask of any non- @@ -1683,17 +2369,13 @@ update_parent_subparts: */ if (!cpumask_empty(cp->cpus_allowed) && is_sched_load_balance(cp) && - (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || - is_partition_valid(cp))) - need_rebuild_sched_domains = true; + (!cpuset_v2() || is_partition_valid(cp))) + cpuset_force_rebuild(); rcu_read_lock(); css_put(&cp->css); } rcu_read_unlock(); - - if (need_rebuild_sched_domains) - rebuild_sched_domains_locked(); } /** @@ -1712,8 +2394,12 @@ static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, /* * Check all its siblings and call update_cpumasks_hier() - * if their use_parent_ecpus flag is set in order for them - * to use the right effective_cpus value. + * if their effective_cpus will need to be changed. + * + * It is possible a change in parent's effective_cpus + * due to a change in a child partition's effective_xcpus will impact + * its siblings even if they do not inherit parent's effective_cpus + * directly. * * The update_cpumasks_hier() function may sleep. So we have to * release the RCU read lock before calling it. @@ -1722,8 +2408,19 @@ static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, cpuset_for_each_child(sibling, pos_css, parent) { if (sibling == cs) continue; - if (!sibling->use_parent_ecpus) + if (!is_partition_valid(sibling)) { + compute_effective_cpumask(tmp->new_cpus, sibling, + parent); + if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) + continue; + } else if (is_remote_partition(sibling)) { + /* + * Change in a sibling cpuset won't affect a remote + * partition root. + */ continue; + } + if (!css_tryget_online(&sibling->css)) continue; @@ -1735,63 +2432,60 @@ static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, rcu_read_unlock(); } +static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask) +{ + int retval; + + retval = cpulist_parse(buf, out_mask); + if (retval < 0) + return retval; + if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed)) + return -EINVAL; + + return 0; +} + /** - * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it - * @cs: the cpuset to consider - * @trialcs: trial cpuset - * @buf: buffer of cpu numbers written to this cpuset + * validate_partition - Validate a cpuset partition configuration + * @cs: The cpuset to validate + * @trialcs: The trial cpuset containing proposed configuration changes + * + * If any validation check fails, the appropriate error code is set in the + * cpuset's prs_err field. + * + * Return: PRS error code (0 if valid, non-zero error code if invalid) */ -static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, - const char *buf) +static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs) { - int retval; - struct tmpmasks tmp; - bool invalidate = false; + struct cpuset *parent = parent_cs(cs); - /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ - if (cs == &top_cpuset) - return -EACCES; + if (cs_is_member(trialcs)) + return PERR_NONE; - /* - * An empty cpus_allowed is ok only if the cpuset has no tasks. - * Since cpulist_parse() fails on an empty mask, we special case - * that parsing. The validate_change() call ensures that cpusets - * with tasks have cpus. - */ - if (!*buf) { - cpumask_clear(trialcs->cpus_allowed); - } else { - retval = cpulist_parse(buf, trialcs->cpus_allowed); - if (retval < 0) - return retval; + if (cpumask_empty(trialcs->effective_xcpus)) + return PERR_INVCPUS; - if (!cpumask_subset(trialcs->cpus_allowed, - top_cpuset.cpus_allowed)) - return -EINVAL; - } + if (prstate_housekeeping_conflict(trialcs->partition_root_state, + trialcs->effective_xcpus)) + return PERR_HKEEPING; - /* Nothing to do if the cpus didn't change */ - if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) - return 0; + if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) + return PERR_NOCPUS; -#ifdef CONFIG_CPUMASK_OFFSTACK - /* - * Use the cpumasks in trialcs for tmpmasks when they are pointers - * to allocated cpumasks. - * - * Note that update_parent_subparts_cpumask() uses only addmask & - * delmask, but not new_cpus. - */ - tmp.addmask = trialcs->subparts_cpus; - tmp.delmask = trialcs->effective_cpus; - tmp.new_cpus = NULL; -#endif + return PERR_NONE; +} + +static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs, + struct tmpmasks *tmp) +{ + int retval; + struct cpuset *parent = parent_cs(cs); retval = validate_change(cs, trialcs); - if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { - struct cpuset *cp, *parent; + if ((retval == -EINVAL) && cpuset_v2()) { struct cgroup_subsys_state *css; + struct cpuset *cp; /* * The -EINVAL error code indicates that partition sibling @@ -1800,73 +2494,186 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, * partition. However, any conflicting sibling partitions * have to be marked as invalid too. */ - invalidate = true; + trialcs->prs_err = PERR_NOTEXCL; rcu_read_lock(); - parent = parent_cs(cs); - cpuset_for_each_child(cp, css, parent) + cpuset_for_each_child(cp, css, parent) { + struct cpumask *xcpus = user_xcpus(trialcs); + if (is_partition_valid(cp) && - cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) { + cpumask_intersects(xcpus, cp->effective_xcpus)) { rcu_read_unlock(); - update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp); + update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp); rcu_read_lock(); } + } rcu_read_unlock(); retval = 0; } - if (retval < 0) - return retval; + return retval; +} + +/** + * partition_cpus_change - Handle partition state changes due to CPU mask updates + * @cs: The target cpuset being modified + * @trialcs: The trial cpuset containing proposed configuration changes + * @tmp: Temporary masks for intermediate calculations + * + * This function handles partition state transitions triggered by CPU mask changes. + * CPU modifications may cause a partition to be disabled or require state updates. + */ +static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs, + struct tmpmasks *tmp) +{ + enum prs_errcode prs_err; + + if (cs_is_member(cs)) + return; + + prs_err = validate_partition(cs, trialcs); + if (prs_err) + trialcs->prs_err = cs->prs_err = prs_err; - if (cs->partition_root_state) { - if (invalidate) - update_parent_subparts_cpumask(cs, partcmd_invalidate, - NULL, &tmp); + if (is_remote_partition(cs)) { + if (trialcs->prs_err) + remote_partition_disable(cs, tmp); else - update_parent_subparts_cpumask(cs, partcmd_update, - trialcs->cpus_allowed, &tmp); + remote_cpus_update(cs, trialcs->exclusive_cpus, + trialcs->effective_xcpus, tmp); + } else { + if (trialcs->prs_err) + update_parent_effective_cpumask(cs, partcmd_invalidate, + NULL, tmp); + else + update_parent_effective_cpumask(cs, partcmd_update, + trialcs->effective_xcpus, tmp); } +} + +/** + * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it + * @cs: the cpuset to consider + * @trialcs: trial cpuset + * @buf: buffer of cpu numbers written to this cpuset + */ +static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, + const char *buf) +{ + int retval; + struct tmpmasks tmp; + bool force = false; + int old_prs = cs->partition_root_state; + + retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed); + if (retval < 0) + return retval; + + /* Nothing to do if the cpus didn't change */ + if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) + return 0; + + if (alloc_tmpmasks(&tmp)) + return -ENOMEM; + + compute_trialcs_excpus(trialcs, cs); + trialcs->prs_err = PERR_NONE; + + retval = cpus_allowed_validate_change(cs, trialcs, &tmp); + if (retval < 0) + goto out_free; + + /* + * Check all the descendants in update_cpumasks_hier() if + * effective_xcpus is to be changed. + */ + force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); + + partition_cpus_change(cs, trialcs, &tmp); - compute_effective_cpumask(trialcs->effective_cpus, trialcs, - parent_cs(cs)); spin_lock_irq(&callback_lock); cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); + cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); + if ((old_prs > 0) && !is_partition_valid(cs)) + reset_partition_data(cs); + spin_unlock_irq(&callback_lock); + + /* effective_cpus/effective_xcpus will be updated here */ + update_cpumasks_hier(cs, &tmp, force); + + /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ + if (cs->partition_root_state) + update_partition_sd_lb(cs, old_prs); +out_free: + free_tmpmasks(&tmp); + return retval; +} + +/** + * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset + * @cs: the cpuset to consider + * @trialcs: trial cpuset + * @buf: buffer of cpu numbers written to this cpuset + * + * The tasks' cpumask will be updated if cs is a valid partition root. + */ +static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, + const char *buf) +{ + int retval; + struct tmpmasks tmp; + bool force = false; + int old_prs = cs->partition_root_state; + + retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus); + if (retval < 0) + return retval; + + /* Nothing to do if the CPUs didn't change */ + if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) + return 0; /* - * Make sure that subparts_cpus, if not empty, is a subset of - * cpus_allowed. Clear subparts_cpus if partition not valid or - * empty effective cpus with tasks. + * Reject the change if there is exclusive CPUs conflict with + * the siblings. */ - if (cs->nr_subparts_cpus) { - if (!is_partition_valid(cs) || - (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) && - partition_is_populated(cs, NULL))) { - cs->nr_subparts_cpus = 0; - cpumask_clear(cs->subparts_cpus); - } else { - cpumask_and(cs->subparts_cpus, cs->subparts_cpus, - cs->cpus_allowed); - cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); - } - } - spin_unlock_irq(&callback_lock); + if (compute_trialcs_excpus(trialcs, cs)) + return -EINVAL; -#ifdef CONFIG_CPUMASK_OFFSTACK - /* Now trialcs->cpus_allowed is available */ - tmp.new_cpus = trialcs->cpus_allowed; -#endif + /* + * Check all the descendants in update_cpumasks_hier() if + * effective_xcpus is to be changed. + */ + force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); - /* effective_cpus will be updated here */ - update_cpumasks_hier(cs, &tmp, false); + retval = validate_change(cs, trialcs); + if (retval) + return retval; - if (cs->partition_root_state) { - struct cpuset *parent = parent_cs(cs); + if (alloc_tmpmasks(&tmp)) + return -ENOMEM; - /* - * For partition root, update the cpumasks of sibling - * cpusets if they use parent's effective_cpus. - */ - if (parent->child_ecpus_count) - update_sibling_cpumasks(parent, cs, &tmp); - } + trialcs->prs_err = PERR_NONE; + partition_cpus_change(cs, trialcs, &tmp); + + spin_lock_irq(&callback_lock); + cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); + cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); + if ((old_prs > 0) && !is_partition_valid(cs)) + reset_partition_data(cs); + spin_unlock_irq(&callback_lock); + + /* + * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus + * of the subtree when it is a valid partition root or effective_xcpus + * is updated. + */ + if (is_partition_valid(cs) || force) + update_cpumasks_hier(cs, &tmp, force); + + /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ + if (cs->partition_root_state) + update_partition_sd_lb(cs, old_prs); + + free_tmpmasks(&tmp); return 0; } @@ -1918,9 +2725,24 @@ static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, } } -static void cpuset_post_attach(void) +static void flush_migrate_mm_task_workfn(struct callback_head *head) { flush_workqueue(cpuset_migrate_mm_wq); + kfree(head); +} + +static void schedule_flush_migrate_mm(void) +{ + struct callback_head *flush_cb; + + flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL); + if (!flush_cb) + return; + + init_task_work(flush_cb, flush_migrate_mm_task_workfn); + + if (task_work_add(current, flush_cb, TWA_RESUME)) + kfree(flush_cb); } /* @@ -1954,14 +2776,14 @@ static void cpuset_change_task_nodemask(struct task_struct *tsk, static void *cpuset_being_rebound; /** - * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. + * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed * * Iterate through each task of @cs updating its mems_allowed to the * effective cpuset's. As this function is called with cpuset_mutex held, * cpuset membership stays stable. */ -static void update_tasks_nodemask(struct cpuset *cs) +void cpuset_update_tasks_nodemask(struct cpuset *cs) { static nodemask_t newmems; /* protected by cpuset_mutex */ struct css_task_iter it; @@ -2059,7 +2881,7 @@ static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) WARN_ON(!is_in_v2_mode() && !nodes_equal(cp->mems_allowed, cp->effective_mems)); - update_tasks_nodemask(cp); + cpuset_update_tasks_nodemask(cp); rcu_read_lock(); css_put(&cp->css); @@ -2086,41 +2908,24 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, int retval; /* - * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; - * it's read-only - */ - if (cs == &top_cpuset) { - retval = -EACCES; - goto done; - } - - /* * An empty mems_allowed is ok iff there are no tasks in the cpuset. - * Since nodelist_parse() fails on an empty mask, we special case - * that parsing. The validate_change() call ensures that cpusets - * with tasks have memory. + * The validate_change() call ensures that cpusets with tasks have memory. */ - if (!*buf) { - nodes_clear(trialcs->mems_allowed); - } else { - retval = nodelist_parse(buf, trialcs->mems_allowed); - if (retval < 0) - goto done; + retval = nodelist_parse(buf, trialcs->mems_allowed); + if (retval < 0) + return retval; - if (!nodes_subset(trialcs->mems_allowed, - top_cpuset.mems_allowed)) { - retval = -EINVAL; - goto done; - } - } + if (!nodes_subset(trialcs->mems_allowed, + top_cpuset.mems_allowed)) + return -EINVAL; + + /* No change? nothing to do */ + if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) + return 0; - if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { - retval = 0; /* Too easy - nothing to do */ - goto done; - } retval = validate_change(cs, trialcs); if (retval < 0) - goto done; + return retval; check_insane_mems_config(&trialcs->mems_allowed); @@ -2130,8 +2935,7 @@ static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, /* use trialcs->mems_allowed as a temp variable */ update_nodemasks_hier(cs, &trialcs->mems_allowed); -done: - return retval; + return 0; } bool current_cpuset_is_being_rebound(void) @@ -2145,44 +2949,8 @@ bool current_cpuset_is_being_rebound(void) return ret; } -static int update_relax_domain_level(struct cpuset *cs, s64 val) -{ -#ifdef CONFIG_SMP - if (val < -1 || val >= sched_domain_level_max) - return -EINVAL; -#endif - - if (val != cs->relax_domain_level) { - cs->relax_domain_level = val; - if (!cpumask_empty(cs->cpus_allowed) && - is_sched_load_balance(cs)) - rebuild_sched_domains_locked(); - } - - return 0; -} - -/** - * update_tasks_flags - update the spread flags of tasks in the cpuset. - * @cs: the cpuset in which each task's spread flags needs to be changed - * - * Iterate through each task of @cs updating its spread flags. As this - * function is called with cpuset_mutex held, cpuset membership stays - * stable. - */ -static void update_tasks_flags(struct cpuset *cs) -{ - struct css_task_iter it; - struct task_struct *task; - - css_task_iter_start(&cs->css, 0, &it); - while ((task = css_task_iter_next(&it))) - cpuset_update_task_spread_flags(cs, task); - css_task_iter_end(&it); -} - /* - * update_flag - read a 0 or a 1 in a file and update associated flag + * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag * bit: the bit to update (see cpuset_flagbits_t) * cs: the cpuset to update * turning_on: whether the flag is being set or cleared @@ -2190,7 +2958,7 @@ static void update_tasks_flags(struct cpuset *cs) * Call with cpuset_mutex held. */ -static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, +int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs, int turning_on) { struct cpuset *trialcs; @@ -2198,7 +2966,7 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, int spread_flag_changed; int err; - trialcs = alloc_trial_cpuset(cs); + trialcs = dup_or_alloc_cpuset(cs); if (!trialcs) return -ENOMEM; @@ -2221,11 +2989,15 @@ static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, cs->flags = trialcs->flags; spin_unlock_irq(&callback_lock); - if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) - rebuild_sched_domains_locked(); + if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) { + if (cpuset_v2()) + cpuset_force_rebuild(); + else + rebuild_sched_domains_locked(); + } if (spread_flag_changed) - update_tasks_flags(cs); + cpuset1_update_tasks_flags(cs); out: free_cpuset(trialcs); return err; @@ -2242,221 +3014,122 @@ out: static int update_prstate(struct cpuset *cs, int new_prs) { int err = PERR_NONE, old_prs = cs->partition_root_state; - bool sched_domain_rebuilt = false; struct cpuset *parent = parent_cs(cs); struct tmpmasks tmpmask; + bool isolcpus_updated = false; if (old_prs == new_prs) return 0; /* - * For a previously invalid partition root, leave it at being - * invalid if new_prs is not "member". + * Treat a previously invalid partition root as if it is a "member". */ - if (new_prs && is_prs_invalid(old_prs)) { - cs->partition_root_state = -new_prs; - return 0; - } + if (new_prs && is_partition_invalid(cs)) + old_prs = PRS_MEMBER; - if (alloc_cpumasks(NULL, &tmpmask)) + if (alloc_tmpmasks(&tmpmask)) return -ENOMEM; + err = update_partition_exclusive_flag(cs, new_prs); + if (err) + goto out; + if (!old_prs) { /* - * Turning on partition root requires setting the - * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed - * cannot be empty. + * cpus_allowed and exclusive_cpus cannot be both empty. */ - if (cpumask_empty(cs->cpus_allowed)) { + if (xcpus_empty(cs)) { err = PERR_CPUSEMPTY; goto out; } - err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); - if (err) { - err = PERR_NOTEXCL; + /* + * We don't support the creation of a new local partition with + * a remote partition underneath it. This unsupported + * setting can happen only if parent is the top_cpuset because + * a remote partition cannot be created underneath an existing + * local or remote partition. + */ + if ((parent == &top_cpuset) && + cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) { + err = PERR_REMOTE; goto out; } - err = update_parent_subparts_cpumask(cs, partcmd_enable, - NULL, &tmpmask); - if (err) { - update_flag(CS_CPU_EXCLUSIVE, cs, 0); - goto out; - } + /* + * If parent is valid partition, enable local partiion. + * Otherwise, enable a remote partition. + */ + if (is_partition_valid(parent)) { + enum partition_cmd cmd = (new_prs == PRS_ROOT) + ? partcmd_enable : partcmd_enablei; - if (new_prs == PRS_ISOLATED) { - /* - * Disable the load balance flag should not return an - * error unless the system is running out of memory. - */ - update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); - sched_domain_rebuilt = true; + err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); + } else { + err = remote_partition_enable(cs, new_prs, &tmpmask); } } else if (old_prs && new_prs) { /* * A change in load balance state only, no change in cpumasks. + * Need to update isolated_cpus. */ - update_flag(CS_SCHED_LOAD_BALANCE, cs, (new_prs != PRS_ISOLATED)); - sched_domain_rebuilt = true; - goto out; /* Sched domain is rebuilt in update_flag() */ + if (((new_prs == PRS_ISOLATED) && + !isolated_cpus_can_update(cs->effective_xcpus, NULL)) || + prstate_housekeeping_conflict(new_prs, cs->effective_xcpus)) + err = PERR_HKEEPING; + else + isolcpus_updated = true; } else { /* * Switching back to member is always allowed even if it * disables child partitions. */ - update_parent_subparts_cpumask(cs, partcmd_disable, NULL, - &tmpmask); + if (is_remote_partition(cs)) + remote_partition_disable(cs, &tmpmask); + else + update_parent_effective_cpumask(cs, partcmd_disable, + NULL, &tmpmask); /* - * If there are child partitions, they will all become invalid. + * Invalidation of child partitions will be done in + * update_cpumasks_hier(). */ - if (unlikely(cs->nr_subparts_cpus)) { - spin_lock_irq(&callback_lock); - cs->nr_subparts_cpus = 0; - cpumask_clear(cs->subparts_cpus); - compute_effective_cpumask(cs->effective_cpus, cs, parent); - spin_unlock_irq(&callback_lock); - } - - /* Turning off CS_CPU_EXCLUSIVE will not return error */ - update_flag(CS_CPU_EXCLUSIVE, cs, 0); - - if (!is_sched_load_balance(cs)) { - /* Make sure load balance is on */ - update_flag(CS_SCHED_LOAD_BALANCE, cs, 1); - sched_domain_rebuilt = true; - } } - - update_tasks_cpumask(parent, tmpmask.new_cpus); - - if (parent->child_ecpus_count) - update_sibling_cpumasks(parent, cs, &tmpmask); - - if (!sched_domain_rebuilt) - rebuild_sched_domains_locked(); out: /* - * Make partition invalid if an error happen + * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error + * happens. */ - if (err) + if (err) { new_prs = -new_prs; + update_partition_exclusive_flag(cs, new_prs); + } + spin_lock_irq(&callback_lock); cs->partition_root_state = new_prs; WRITE_ONCE(cs->prs_err, err); + if (!is_partition_valid(cs)) + reset_partition_data(cs); + else if (isolcpus_updated) + isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus); spin_unlock_irq(&callback_lock); - /* - * Update child cpusets, if present. - * Force update if switching back to member. - */ - if (!list_empty(&cs->css.children)) - update_cpumasks_hier(cs, &tmpmask, !new_prs); + update_isolation_cpumasks(); - notify_partition_change(cs, old_prs); - free_cpumasks(NULL, &tmpmask); - return 0; -} + /* Force update if switching back to member & update effective_xcpus */ + update_cpumasks_hier(cs, &tmpmask, !new_prs); -/* - * Frequency meter - How fast is some event occurring? - * - * These routines manage a digitally filtered, constant time based, - * event frequency meter. There are four routines: - * fmeter_init() - initialize a frequency meter. - * fmeter_markevent() - called each time the event happens. - * fmeter_getrate() - returns the recent rate of such events. - * fmeter_update() - internal routine used to update fmeter. - * - * A common data structure is passed to each of these routines, - * which is used to keep track of the state required to manage the - * frequency meter and its digital filter. - * - * The filter works on the number of events marked per unit time. - * The filter is single-pole low-pass recursive (IIR). The time unit - * is 1 second. Arithmetic is done using 32-bit integers scaled to - * simulate 3 decimal digits of precision (multiplied by 1000). - * - * With an FM_COEF of 933, and a time base of 1 second, the filter - * has a half-life of 10 seconds, meaning that if the events quit - * happening, then the rate returned from the fmeter_getrate() - * will be cut in half each 10 seconds, until it converges to zero. - * - * It is not worth doing a real infinitely recursive filter. If more - * than FM_MAXTICKS ticks have elapsed since the last filter event, - * just compute FM_MAXTICKS ticks worth, by which point the level - * will be stable. - * - * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid - * arithmetic overflow in the fmeter_update() routine. - * - * Given the simple 32 bit integer arithmetic used, this meter works - * best for reporting rates between one per millisecond (msec) and - * one per 32 (approx) seconds. At constant rates faster than one - * per msec it maxes out at values just under 1,000,000. At constant - * rates between one per msec, and one per second it will stabilize - * to a value N*1000, where N is the rate of events per second. - * At constant rates between one per second and one per 32 seconds, - * it will be choppy, moving up on the seconds that have an event, - * and then decaying until the next event. At rates slower than - * about one in 32 seconds, it decays all the way back to zero between - * each event. - */ + /* A newly created partition must have effective_xcpus set */ + WARN_ON_ONCE(!old_prs && (new_prs > 0) + && cpumask_empty(cs->effective_xcpus)); -#define FM_COEF 933 /* coefficient for half-life of 10 secs */ -#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ -#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ -#define FM_SCALE 1000 /* faux fixed point scale */ + /* Update sched domains and load balance flag */ + update_partition_sd_lb(cs, old_prs); -/* Initialize a frequency meter */ -static void fmeter_init(struct fmeter *fmp) -{ - fmp->cnt = 0; - fmp->val = 0; - fmp->time = 0; - spin_lock_init(&fmp->lock); -} - -/* Internal meter update - process cnt events and update value */ -static void fmeter_update(struct fmeter *fmp) -{ - time64_t now; - u32 ticks; - - now = ktime_get_seconds(); - ticks = now - fmp->time; - - if (ticks == 0) - return; - - ticks = min(FM_MAXTICKS, ticks); - while (ticks-- > 0) - fmp->val = (FM_COEF * fmp->val) / FM_SCALE; - fmp->time = now; - - fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; - fmp->cnt = 0; -} - -/* Process any previous ticks, then bump cnt by one (times scale). */ -static void fmeter_markevent(struct fmeter *fmp) -{ - spin_lock(&fmp->lock); - fmeter_update(fmp); - fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); - spin_unlock(&fmp->lock); -} - -/* Process any previous ticks, then return current value. */ -static int fmeter_getrate(struct fmeter *fmp) -{ - int val; - - spin_lock(&fmp->lock); - fmeter_update(fmp); - val = fmp->val; - spin_unlock(&fmp->lock); - return val; + notify_partition_change(cs, old_prs); + if (force_sd_rebuild) + rebuild_sched_domains_locked(); + free_tmpmasks(&tmpmask); + return 0; } static struct cpuset *cpuset_attach_old_cs; @@ -2487,6 +3160,7 @@ static int cpuset_can_attach(struct cgroup_taskset *tset) struct cgroup_subsys_state *css; struct cpuset *cs, *oldcs; struct task_struct *task; + bool cpus_updated, mems_updated; int ret; /* used later by cpuset_attach() */ @@ -2501,13 +3175,24 @@ static int cpuset_can_attach(struct cgroup_taskset *tset) if (ret) goto out_unlock; + cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); + mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); + cgroup_taskset_for_each(task, css, tset) { ret = task_can_attach(task); if (ret) goto out_unlock; - ret = security_task_setscheduler(task); - if (ret) - goto out_unlock; + + /* + * Skip rights over task check in v2 when nothing changes, + * migration permission derives from hierarchy ownership in + * cgroup_procs_write_permission()). + */ + if (!cpuset_v2() || (cpus_updated || mems_updated)) { + ret = security_task_setscheduler(task); + if (ret) + goto out_unlock; + } if (dl_task(task)) { cs->nr_migrate_dl_tasks++; @@ -2554,9 +3239,7 @@ static void cpuset_cancel_attach(struct cgroup_taskset *tset) cs = css_cs(css); mutex_lock(&cpuset_mutex); - cs->attach_in_progress--; - if (!cs->attach_in_progress) - wake_up(&cpuset_attach_wq); + dec_attach_in_progress_locked(cs); if (cs->nr_migrate_dl_tasks) { int cpu = cpumask_any(cs->effective_cpus); @@ -2581,10 +3264,10 @@ static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) lockdep_assert_held(&cpuset_mutex); if (cs != &top_cpuset) - guarantee_online_cpus(task, cpus_attach); + guarantee_active_cpus(task, cpus_attach); else cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), - cs->subparts_cpus); + subpartitions_cpus); /* * can_attach beforehand should guarantee that this doesn't * fail. TODO: have a better way to handle failure here @@ -2592,7 +3275,7 @@ static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); - cpuset_update_task_spread_flags(cs, task); + cpuset1_update_task_spread_flags(cs, task); } static void cpuset_attach(struct cgroup_taskset *tset) @@ -2603,6 +3286,7 @@ static void cpuset_attach(struct cgroup_taskset *tset) struct cpuset *cs; struct cpuset *oldcs = cpuset_attach_old_cs; bool cpus_updated, mems_updated; + bool queue_task_work = false; cgroup_taskset_first(tset, &css); cs = css_cs(css); @@ -2619,8 +3303,7 @@ static void cpuset_attach(struct cgroup_taskset *tset) * in effective cpus and mems. In that case, we can optimize out * by skipping the task iteration and update. */ - if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && - !cpus_updated && !mems_updated) { + if (cpuset_v2() && !cpus_updated && !mems_updated) { cpuset_attach_nodemask_to = cs->effective_mems; goto out; } @@ -2654,15 +3337,18 @@ static void cpuset_attach(struct cgroup_taskset *tset) * @old_mems_allowed is the right nodesets that we * migrate mm from. */ - if (is_memory_migrate(cs)) + if (is_memory_migrate(cs)) { cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, &cpuset_attach_nodemask_to); - else + queue_task_work = true; + } else mmput(mm); } } out: + if (queue_task_work) + schedule_flush_migrate_mm(); cs->old_mems_allowed = cpuset_attach_nodemask_to; if (cs->nr_migrate_dl_tasks) { @@ -2671,150 +3357,31 @@ out: reset_migrate_dl_data(cs); } - cs->attach_in_progress--; - if (!cs->attach_in_progress) - wake_up(&cpuset_attach_wq); - - mutex_unlock(&cpuset_mutex); -} - -/* The various types of files and directories in a cpuset file system */ - -typedef enum { - FILE_MEMORY_MIGRATE, - FILE_CPULIST, - FILE_MEMLIST, - FILE_EFFECTIVE_CPULIST, - FILE_EFFECTIVE_MEMLIST, - FILE_SUBPARTS_CPULIST, - FILE_CPU_EXCLUSIVE, - FILE_MEM_EXCLUSIVE, - FILE_MEM_HARDWALL, - FILE_SCHED_LOAD_BALANCE, - FILE_PARTITION_ROOT, - FILE_SCHED_RELAX_DOMAIN_LEVEL, - FILE_MEMORY_PRESSURE_ENABLED, - FILE_MEMORY_PRESSURE, - FILE_SPREAD_PAGE, - FILE_SPREAD_SLAB, -} cpuset_filetype_t; - -static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, - u64 val) -{ - struct cpuset *cs = css_cs(css); - cpuset_filetype_t type = cft->private; - int retval = 0; - - cpus_read_lock(); - mutex_lock(&cpuset_mutex); - if (!is_cpuset_online(cs)) { - retval = -ENODEV; - goto out_unlock; - } - - switch (type) { - case FILE_CPU_EXCLUSIVE: - retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); - break; - case FILE_MEM_EXCLUSIVE: - retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); - break; - case FILE_MEM_HARDWALL: - retval = update_flag(CS_MEM_HARDWALL, cs, val); - break; - case FILE_SCHED_LOAD_BALANCE: - retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); - break; - case FILE_MEMORY_MIGRATE: - retval = update_flag(CS_MEMORY_MIGRATE, cs, val); - break; - case FILE_MEMORY_PRESSURE_ENABLED: - cpuset_memory_pressure_enabled = !!val; - break; - case FILE_SPREAD_PAGE: - retval = update_flag(CS_SPREAD_PAGE, cs, val); - break; - case FILE_SPREAD_SLAB: - retval = update_flag(CS_SPREAD_SLAB, cs, val); - break; - default: - retval = -EINVAL; - break; - } -out_unlock: - mutex_unlock(&cpuset_mutex); - cpus_read_unlock(); - return retval; -} - -static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, - s64 val) -{ - struct cpuset *cs = css_cs(css); - cpuset_filetype_t type = cft->private; - int retval = -ENODEV; - - cpus_read_lock(); - mutex_lock(&cpuset_mutex); - if (!is_cpuset_online(cs)) - goto out_unlock; + dec_attach_in_progress_locked(cs); - switch (type) { - case FILE_SCHED_RELAX_DOMAIN_LEVEL: - retval = update_relax_domain_level(cs, val); - break; - default: - retval = -EINVAL; - break; - } -out_unlock: mutex_unlock(&cpuset_mutex); - cpus_read_unlock(); - return retval; } /* * Common handling for a write to a "cpus" or "mems" file. */ -static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, +ssize_t cpuset_write_resmask(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cpuset *cs = css_cs(of_css(of)); struct cpuset *trialcs; int retval = -ENODEV; - buf = strstrip(buf); - - /* - * CPU or memory hotunplug may leave @cs w/o any execution - * resources, in which case the hotplug code asynchronously updates - * configuration and transfers all tasks to the nearest ancestor - * which can execute. - * - * As writes to "cpus" or "mems" may restore @cs's execution - * resources, wait for the previously scheduled operations before - * proceeding, so that we don't end up keep removing tasks added - * after execution capability is restored. - * - * cpuset_hotplug_work calls back into cgroup core via - * cgroup_transfer_tasks() and waiting for it from a cgroupfs - * operation like this one can lead to a deadlock through kernfs - * active_ref protection. Let's break the protection. Losing the - * protection is okay as we check whether @cs is online after - * grabbing cpuset_mutex anyway. This only happens on the legacy - * hierarchies. - */ - css_get(&cs->css); - kernfs_break_active_protection(of->kn); - flush_work(&cpuset_hotplug_work); + /* root is read-only */ + if (cs == &top_cpuset) + return -EACCES; - cpus_read_lock(); - mutex_lock(&cpuset_mutex); + buf = strstrip(buf); + cpuset_full_lock(); if (!is_cpuset_online(cs)) goto out_unlock; - trialcs = alloc_trial_cpuset(cs); + trialcs = dup_or_alloc_cpuset(cs); if (!trialcs) { retval = -ENOMEM; goto out_unlock; @@ -2824,6 +3391,9 @@ static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, case FILE_CPULIST: retval = update_cpumask(cs, trialcs, buf); break; + case FILE_EXCLUSIVE_CPULIST: + retval = update_exclusive_cpumask(cs, trialcs, buf); + break; case FILE_MEMLIST: retval = update_nodemask(cs, trialcs, buf); break; @@ -2833,12 +3403,12 @@ static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, } free_cpuset(trialcs); + if (force_sd_rebuild) + rebuild_sched_domains_locked(); out_unlock: - mutex_unlock(&cpuset_mutex); - cpus_read_unlock(); - kernfs_unbreak_active_protection(of->kn); - css_put(&cs->css); - flush_workqueue(cpuset_migrate_mm_wq); + cpuset_full_unlock(); + if (of_cft(of)->private == FILE_MEMLIST) + schedule_flush_migrate_mm(); return retval ?: nbytes; } @@ -2850,7 +3420,7 @@ out_unlock: * and since these maps can change value dynamically, one could read * gibberish by doing partial reads while a list was changing. */ -static int cpuset_common_seq_show(struct seq_file *sf, void *v) +int cpuset_common_seq_show(struct seq_file *sf, void *v) { struct cpuset *cs = css_cs(seq_css(sf)); cpuset_filetype_t type = seq_cft(sf)->private; @@ -2871,8 +3441,17 @@ static int cpuset_common_seq_show(struct seq_file *sf, void *v) case FILE_EFFECTIVE_MEMLIST: seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); break; + case FILE_EXCLUSIVE_CPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); + break; + case FILE_EFFECTIVE_XCPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); + break; case FILE_SUBPARTS_CPULIST: - seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); + seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); + break; + case FILE_ISOLATED_CPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); break; default: ret = -EINVAL; @@ -2882,53 +3461,7 @@ static int cpuset_common_seq_show(struct seq_file *sf, void *v) return ret; } -static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) -{ - struct cpuset *cs = css_cs(css); - cpuset_filetype_t type = cft->private; - switch (type) { - case FILE_CPU_EXCLUSIVE: - return is_cpu_exclusive(cs); - case FILE_MEM_EXCLUSIVE: - return is_mem_exclusive(cs); - case FILE_MEM_HARDWALL: - return is_mem_hardwall(cs); - case FILE_SCHED_LOAD_BALANCE: - return is_sched_load_balance(cs); - case FILE_MEMORY_MIGRATE: - return is_memory_migrate(cs); - case FILE_MEMORY_PRESSURE_ENABLED: - return cpuset_memory_pressure_enabled; - case FILE_MEMORY_PRESSURE: - return fmeter_getrate(&cs->fmeter); - case FILE_SPREAD_PAGE: - return is_spread_page(cs); - case FILE_SPREAD_SLAB: - return is_spread_slab(cs); - default: - BUG(); - } - - /* Unreachable but makes gcc happy */ - return 0; -} - -static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) -{ - struct cpuset *cs = css_cs(css); - cpuset_filetype_t type = cft->private; - switch (type) { - case FILE_SCHED_RELAX_DOMAIN_LEVEL: - return cs->relax_domain_level; - default: - BUG(); - } - - /* Unreachable but makes gcc happy */ - return 0; -} - -static int sched_partition_show(struct seq_file *seq, void *v) +static int cpuset_partition_show(struct seq_file *seq, void *v) { struct cpuset *cs = css_cs(seq_css(seq)); const char *err, *type = NULL; @@ -2959,7 +3492,7 @@ static int sched_partition_show(struct seq_file *seq, void *v) return 0; } -static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, +static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct cpuset *cs = css_cs(of_css(of)); @@ -2968,9 +3501,6 @@ static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, buf = strstrip(buf); - /* - * Convert "root" to ENABLED, and convert "member" to DISABLED. - */ if (!strcmp(buf, "root")) val = PRS_ROOT; else if (!strcmp(buf, "member")) @@ -2980,31 +3510,25 @@ static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, else return -EINVAL; - css_get(&cs->css); - cpus_read_lock(); - mutex_lock(&cpuset_mutex); - if (!is_cpuset_online(cs)) - goto out_unlock; - - retval = update_prstate(cs, val); -out_unlock: - mutex_unlock(&cpuset_mutex); - cpus_read_unlock(); - css_put(&cs->css); + cpuset_full_lock(); + if (is_cpuset_online(cs)) + retval = update_prstate(cs, val); + cpuset_full_unlock(); return retval ?: nbytes; } /* - * for the common functions, 'private' gives the type of file + * This is currently a minimal set for the default hierarchy. It can be + * expanded later on by migrating more features and control files from v1. */ - -static struct cftype legacy_files[] = { +static struct cftype dfl_files[] = { { .name = "cpus", .seq_show = cpuset_common_seq_show, .write = cpuset_write_resmask, .max_write_len = (100U + 6 * NR_CPUS), .private = FILE_CPULIST, + .flags = CFTYPE_NOT_ON_ROOT, }, { @@ -3013,142 +3537,58 @@ static struct cftype legacy_files[] = { .write = cpuset_write_resmask, .max_write_len = (100U + 6 * MAX_NUMNODES), .private = FILE_MEMLIST, + .flags = CFTYPE_NOT_ON_ROOT, }, { - .name = "effective_cpus", + .name = "cpus.effective", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_CPULIST, }, { - .name = "effective_mems", + .name = "mems.effective", .seq_show = cpuset_common_seq_show, .private = FILE_EFFECTIVE_MEMLIST, }, { - .name = "cpu_exclusive", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_CPU_EXCLUSIVE, - }, - - { - .name = "mem_exclusive", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_MEM_EXCLUSIVE, - }, - - { - .name = "mem_hardwall", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_MEM_HARDWALL, - }, - - { - .name = "sched_load_balance", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_SCHED_LOAD_BALANCE, - }, - - { - .name = "sched_relax_domain_level", - .read_s64 = cpuset_read_s64, - .write_s64 = cpuset_write_s64, - .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, - }, - - { - .name = "memory_migrate", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_MEMORY_MIGRATE, - }, - - { - .name = "memory_pressure", - .read_u64 = cpuset_read_u64, - .private = FILE_MEMORY_PRESSURE, - }, - - { - .name = "memory_spread_page", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_SPREAD_PAGE, - }, - - { - .name = "memory_spread_slab", - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_SPREAD_SLAB, + .name = "cpus.partition", + .seq_show = cpuset_partition_show, + .write = cpuset_partition_write, + .private = FILE_PARTITION_ROOT, + .flags = CFTYPE_NOT_ON_ROOT, + .file_offset = offsetof(struct cpuset, partition_file), }, { - .name = "memory_pressure_enabled", - .flags = CFTYPE_ONLY_ON_ROOT, - .read_u64 = cpuset_read_u64, - .write_u64 = cpuset_write_u64, - .private = FILE_MEMORY_PRESSURE_ENABLED, - }, - - { } /* terminate */ -}; - -/* - * This is currently a minimal set for the default hierarchy. It can be - * expanded later on by migrating more features and control files from v1. - */ -static struct cftype dfl_files[] = { - { - .name = "cpus", + .name = "cpus.exclusive", .seq_show = cpuset_common_seq_show, .write = cpuset_write_resmask, .max_write_len = (100U + 6 * NR_CPUS), - .private = FILE_CPULIST, + .private = FILE_EXCLUSIVE_CPULIST, .flags = CFTYPE_NOT_ON_ROOT, }, { - .name = "mems", + .name = "cpus.exclusive.effective", .seq_show = cpuset_common_seq_show, - .write = cpuset_write_resmask, - .max_write_len = (100U + 6 * MAX_NUMNODES), - .private = FILE_MEMLIST, + .private = FILE_EFFECTIVE_XCPULIST, .flags = CFTYPE_NOT_ON_ROOT, }, { - .name = "cpus.effective", - .seq_show = cpuset_common_seq_show, - .private = FILE_EFFECTIVE_CPULIST, - }, - - { - .name = "mems.effective", + .name = "cpus.subpartitions", .seq_show = cpuset_common_seq_show, - .private = FILE_EFFECTIVE_MEMLIST, - }, - - { - .name = "cpus.partition", - .seq_show = sched_partition_show, - .write = sched_partition_write, - .private = FILE_PARTITION_ROOT, - .flags = CFTYPE_NOT_ON_ROOT, - .file_offset = offsetof(struct cpuset, partition_file), + .private = FILE_SUBPARTS_CPULIST, + .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, }, { - .name = "cpus.subpartitions", + .name = "cpus.isolated", .seq_show = cpuset_common_seq_show, - .private = FILE_SUBPARTS_CPULIST, - .flags = CFTYPE_DEBUG, + .private = FILE_ISOLATED_CPULIST, + .flags = CFTYPE_ONLY_ON_ROOT, }, { } /* terminate */ @@ -3172,23 +3612,16 @@ cpuset_css_alloc(struct cgroup_subsys_state *parent_css) if (!parent_css) return &top_cpuset.css; - cs = kzalloc(sizeof(*cs), GFP_KERNEL); + cs = dup_or_alloc_cpuset(NULL); if (!cs) return ERR_PTR(-ENOMEM); - if (alloc_cpumasks(cs, NULL)) { - kfree(cs); - return ERR_PTR(-ENOMEM); - } - __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); - nodes_clear(cs->mems_allowed); - nodes_clear(cs->effective_mems); fmeter_init(&cs->fmeter); cs->relax_domain_level = -1; /* Set CS_MEMORY_MIGRATE for default hierarchy */ - if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) + if (cpuset_v2()) __set_bit(CS_MEMORY_MIGRATE, &cs->flags); return &cs->css; @@ -3204,14 +3637,16 @@ static int cpuset_css_online(struct cgroup_subsys_state *css) if (!parent) return 0; - cpus_read_lock(); - mutex_lock(&cpuset_mutex); - - set_bit(CS_ONLINE, &cs->flags); + cpuset_full_lock(); if (is_spread_page(parent)) set_bit(CS_SPREAD_PAGE, &cs->flags); if (is_spread_slab(parent)) set_bit(CS_SPREAD_SLAB, &cs->flags); + /* + * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated + */ + if (cpuset_v2() && !is_sched_load_balance(parent)) + clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); cpuset_inc(); @@ -3219,8 +3654,6 @@ static int cpuset_css_online(struct cgroup_subsys_state *css) if (is_in_v2_mode()) { cpumask_copy(cs->effective_cpus, parent->effective_cpus); cs->effective_mems = parent->effective_mems; - cs->use_parent_ecpus = true; - parent->child_ecpus_count++; } spin_unlock_irq(&callback_lock); @@ -3256,8 +3689,7 @@ static int cpuset_css_online(struct cgroup_subsys_state *css) cpumask_copy(cs->effective_cpus, parent->cpus_allowed); spin_unlock_irq(&callback_lock); out_unlock: - mutex_unlock(&cpuset_mutex); - cpus_read_unlock(); + cpuset_full_unlock(); return 0; } @@ -3267,37 +3699,33 @@ out_unlock: * will call rebuild_sched_domains_locked(). That is not needed * in the default hierarchy where only changes in partition * will cause repartitioning. - * - * If the cpuset has the 'sched.partition' flag enabled, simulate - * turning 'sched.partition" off. */ - static void cpuset_css_offline(struct cgroup_subsys_state *css) { struct cpuset *cs = css_cs(css); - cpus_read_lock(); - mutex_lock(&cpuset_mutex); - - if (is_partition_valid(cs)) - update_prstate(cs, 0); - - if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && - is_sched_load_balance(cs)) - update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); - - if (cs->use_parent_ecpus) { - struct cpuset *parent = parent_cs(cs); - - cs->use_parent_ecpus = false; - parent->child_ecpus_count--; - } + cpuset_full_lock(); + if (!cpuset_v2() && is_sched_load_balance(cs)) + cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); cpuset_dec(); - clear_bit(CS_ONLINE, &cs->flags); + cpuset_full_unlock(); +} - mutex_unlock(&cpuset_mutex); - cpus_read_unlock(); +/* + * If a dying cpuset has the 'cpus.partition' enabled, turn it off by + * changing it back to member to free its exclusive CPUs back to the pool to + * be used by other online cpusets. + */ +static void cpuset_css_killed(struct cgroup_subsys_state *css) +{ + struct cpuset *cs = css_cs(css); + + cpuset_full_lock(); + /* Reset valid partition back to member */ + if (is_partition_valid(cs)) + update_prstate(cs, PRS_MEMBER); + cpuset_full_unlock(); } static void cpuset_css_free(struct cgroup_subsys_state *css) @@ -3314,6 +3742,7 @@ static void cpuset_bind(struct cgroup_subsys_state *root_css) if (is_in_v2_mode()) { cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); + cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); top_cpuset.mems_allowed = node_possible_map; } else { cpumask_copy(top_cpuset.cpus_allowed, @@ -3380,11 +3809,7 @@ static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) if (same_cs) return; - mutex_lock(&cpuset_mutex); - cs->attach_in_progress--; - if (!cs->attach_in_progress) - wake_up(&cpuset_attach_wq); - mutex_unlock(&cpuset_mutex); + dec_attach_in_progress(cs); } /* @@ -3416,10 +3841,7 @@ static void cpuset_fork(struct task_struct *task) guarantee_online_mems(cs, &cpuset_attach_nodemask_to); cpuset_attach_task(cs, task); - cs->attach_in_progress--; - if (!cs->attach_in_progress) - wake_up(&cpuset_attach_wq); - + dec_attach_in_progress_locked(cs); mutex_unlock(&cpuset_mutex); } @@ -3427,16 +3849,18 @@ struct cgroup_subsys cpuset_cgrp_subsys = { .css_alloc = cpuset_css_alloc, .css_online = cpuset_css_online, .css_offline = cpuset_css_offline, + .css_killed = cpuset_css_killed, .css_free = cpuset_css_free, .can_attach = cpuset_can_attach, .cancel_attach = cpuset_cancel_attach, .attach = cpuset_attach, - .post_attach = cpuset_post_attach, .bind = cpuset_bind, .can_fork = cpuset_can_fork, .cancel_fork = cpuset_cancel_fork, .fork = cpuset_fork, - .legacy_cftypes = legacy_files, +#ifdef CONFIG_CPUSETS_V1 + .legacy_cftypes = cpuset1_files, +#endif .dfl_cftypes = dfl_files, .early_init = true, .threaded = true, @@ -3452,86 +3876,30 @@ int __init cpuset_init(void) { BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); - BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); + BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); + BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); + BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); + BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); cpumask_setall(top_cpuset.cpus_allowed); nodes_setall(top_cpuset.mems_allowed); cpumask_setall(top_cpuset.effective_cpus); + cpumask_setall(top_cpuset.effective_xcpus); + cpumask_setall(top_cpuset.exclusive_cpus); nodes_setall(top_cpuset.effective_mems); fmeter_init(&top_cpuset.fmeter); - set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); - top_cpuset.relax_domain_level = -1; BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); - return 0; -} - -/* - * If CPU and/or memory hotplug handlers, below, unplug any CPUs - * or memory nodes, we need to walk over the cpuset hierarchy, - * removing that CPU or node from all cpusets. If this removes the - * last CPU or node from a cpuset, then move the tasks in the empty - * cpuset to its next-highest non-empty parent. - */ -static void remove_tasks_in_empty_cpuset(struct cpuset *cs) -{ - struct cpuset *parent; - - /* - * Find its next-highest non-empty parent, (top cpuset - * has online cpus, so can't be empty). - */ - parent = parent_cs(cs); - while (cpumask_empty(parent->cpus_allowed) || - nodes_empty(parent->mems_allowed)) - parent = parent_cs(parent); - - if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { - pr_err("cpuset: failed to transfer tasks out of empty cpuset "); - pr_cont_cgroup_name(cs->css.cgroup); - pr_cont("\n"); + have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN); + if (have_boot_isolcpus) { + BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL)); + cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN)); + cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus); } -} -static void -hotplug_update_tasks_legacy(struct cpuset *cs, - struct cpumask *new_cpus, nodemask_t *new_mems, - bool cpus_updated, bool mems_updated) -{ - bool is_empty; - - spin_lock_irq(&callback_lock); - cpumask_copy(cs->cpus_allowed, new_cpus); - cpumask_copy(cs->effective_cpus, new_cpus); - cs->mems_allowed = *new_mems; - cs->effective_mems = *new_mems; - spin_unlock_irq(&callback_lock); - - /* - * Don't call update_tasks_cpumask() if the cpuset becomes empty, - * as the tasks will be migrated to an ancestor. - */ - if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) - update_tasks_cpumask(cs, new_cpus); - if (mems_updated && !nodes_empty(cs->mems_allowed)) - update_tasks_nodemask(cs); - - is_empty = cpumask_empty(cs->cpus_allowed) || - nodes_empty(cs->mems_allowed); - - mutex_unlock(&cpuset_mutex); - - /* - * Move tasks to the nearest ancestor with execution resources, - * This is full cgroup operation which will also call back into - * cpuset. Should be done outside any lock. - */ - if (is_empty) - remove_tasks_in_empty_cpuset(cs); - - mutex_lock(&cpuset_mutex); + return 0; } static void @@ -3551,16 +3919,14 @@ hotplug_update_tasks(struct cpuset *cs, spin_unlock_irq(&callback_lock); if (cpus_updated) - update_tasks_cpumask(cs, new_cpus); + cpuset_update_tasks_cpumask(cs, new_cpus); if (mems_updated) - update_tasks_nodemask(cs); + cpuset_update_tasks_nodemask(cs); } -static bool force_rebuild; - void cpuset_force_rebuild(void) { - force_rebuild = true; + force_sd_rebuild = true; } /** @@ -3578,6 +3944,8 @@ static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) static nodemask_t new_mems; bool cpus_updated; bool mems_updated; + bool remote; + int partcmd = -1; struct cpuset *parent; retry: wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); @@ -3597,29 +3965,23 @@ retry: compute_effective_cpumask(&new_cpus, cs, parent); nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); - if (cs->nr_subparts_cpus) - /* - * Make sure that CPUs allocated to child partitions - * do not show up in effective_cpus. - */ - cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); - if (!tmp || !cs->partition_root_state) goto update_tasks; /* - * In the unlikely event that a partition root has empty - * effective_cpus with tasks, we will have to invalidate child - * partitions, if present, by setting nr_subparts_cpus to 0 to - * reclaim their cpus. + * Compute effective_cpus for valid partition root, may invalidate + * child partition roots if necessary. */ - if (cs->nr_subparts_cpus && is_partition_valid(cs) && - cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) { - spin_lock_irq(&callback_lock); - cs->nr_subparts_cpus = 0; - cpumask_clear(cs->subparts_cpus); - spin_unlock_irq(&callback_lock); + remote = is_remote_partition(cs); + if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) + compute_partition_effective_cpumask(cs, &new_cpus); + + if (remote && cpumask_empty(&new_cpus) && + partition_is_populated(cs, NULL)) { + cs->prs_err = PERR_HOTPLUG; + remote_partition_disable(cs, tmp); compute_effective_cpumask(&new_cpus, cs, parent); + remote = false; } /* @@ -3629,44 +3991,23 @@ retry: * 2) parent is invalid or doesn't grant any cpus to child * partitions. */ - if (is_partition_valid(cs) && (!parent->nr_subparts_cpus || - (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) { - int old_prs, parent_prs; - - update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp); - if (cs->nr_subparts_cpus) { - spin_lock_irq(&callback_lock); - cs->nr_subparts_cpus = 0; - cpumask_clear(cs->subparts_cpus); - spin_unlock_irq(&callback_lock); - compute_effective_cpumask(&new_cpus, cs, parent); - } - - old_prs = cs->partition_root_state; - parent_prs = parent->partition_root_state; - if (is_partition_valid(cs)) { - spin_lock_irq(&callback_lock); - make_partition_invalid(cs); - spin_unlock_irq(&callback_lock); - if (is_prs_invalid(parent_prs)) - WRITE_ONCE(cs->prs_err, PERR_INVPARENT); - else if (!parent_prs) - WRITE_ONCE(cs->prs_err, PERR_NOTPART); - else - WRITE_ONCE(cs->prs_err, PERR_HOTPLUG); - notify_partition_change(cs, old_prs); - } - cpuset_force_rebuild(); - } - + if (is_local_partition(cs) && (!is_partition_valid(parent) || + tasks_nocpu_error(parent, cs, &new_cpus))) + partcmd = partcmd_invalidate; /* * On the other hand, an invalid partition root may be transitioned - * back to a regular one. + * back to a regular one with a non-empty effective xcpus. */ - else if (is_partition_valid(parent) && is_partition_invalid(cs)) { - update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp); - if (is_partition_valid(cs)) + else if (is_partition_valid(parent) && is_partition_invalid(cs) && + !cpumask_empty(cs->effective_xcpus)) + partcmd = partcmd_update; + + if (partcmd >= 0) { + update_parent_effective_cpumask(cs, partcmd, NULL, tmp); + if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { + compute_partition_effective_cpumask(cs, &new_cpus); cpuset_force_rebuild(); + } } update_tasks: @@ -3682,7 +4023,7 @@ update_tasks: hotplug_update_tasks(cs, &new_cpus, &new_mems, cpus_updated, mems_updated); else - hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, + cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems, cpus_updated, mems_updated); unlock: @@ -3690,7 +4031,7 @@ unlock: } /** - * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset + * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset * * This function is called after either CPU or memory configuration has * changed and updates cpuset accordingly. The top_cpuset is always @@ -3704,8 +4045,10 @@ unlock: * * Note that CPU offlining during suspend is ignored. We don't modify * cpusets across suspend/resume cycles at all. + * + * CPU / memory hotplug is handled synchronously. */ -static void cpuset_hotplug_workfn(struct work_struct *work) +static void cpuset_handle_hotplug(void) { static cpumask_t new_cpus; static nodemask_t new_mems; @@ -3713,9 +4056,10 @@ static void cpuset_hotplug_workfn(struct work_struct *work) bool on_dfl = is_in_v2_mode(); struct tmpmasks tmp, *ptmp = NULL; - if (on_dfl && !alloc_cpumasks(NULL, &tmp)) + if (on_dfl && !alloc_tmpmasks(&tmp)) ptmp = &tmp; + lockdep_assert_cpus_held(); mutex_lock(&cpuset_mutex); /* fetch the available cpus/mems and find out which changed how */ @@ -3723,39 +4067,32 @@ static void cpuset_hotplug_workfn(struct work_struct *work) new_mems = node_states[N_MEMORY]; /* - * If subparts_cpus is populated, it is likely that the check below - * will produce a false positive on cpus_updated when the cpu list - * isn't changed. It is extra work, but it is better to be safe. + * If subpartitions_cpus is populated, it is likely that the check + * below will produce a false positive on cpus_updated when the cpu + * list isn't changed. It is extra work, but it is better to be safe. */ - cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); + cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || + !cpumask_empty(subpartitions_cpus); mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); - /* - * In the rare case that hotplug removes all the cpus in subparts_cpus, - * we assumed that cpus are updated. - */ - if (!cpus_updated && top_cpuset.nr_subparts_cpus) - cpus_updated = true; - - /* synchronize cpus_allowed to cpu_active_mask */ + /* For v1, synchronize cpus_allowed to cpu_active_mask */ if (cpus_updated) { + cpuset_force_rebuild(); spin_lock_irq(&callback_lock); if (!on_dfl) cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); /* * Make sure that CPUs allocated to child partitions * do not show up in effective_cpus. If no CPU is left, - * we clear the subparts_cpus & let the child partitions + * we clear the subpartitions_cpus & let the child partitions * fight for the CPUs again. */ - if (top_cpuset.nr_subparts_cpus) { - if (cpumask_subset(&new_cpus, - top_cpuset.subparts_cpus)) { - top_cpuset.nr_subparts_cpus = 0; - cpumask_clear(top_cpuset.subparts_cpus); + if (!cpumask_empty(subpartitions_cpus)) { + if (cpumask_subset(&new_cpus, subpartitions_cpus)) { + cpumask_clear(subpartitions_cpus); } else { cpumask_andnot(&new_cpus, &new_cpus, - top_cpuset.subparts_cpus); + subpartitions_cpus); } } cpumask_copy(top_cpuset.effective_cpus, &new_cpus); @@ -3770,7 +4107,7 @@ static void cpuset_hotplug_workfn(struct work_struct *work) top_cpuset.mems_allowed = new_mems; top_cpuset.effective_mems = new_mems; spin_unlock_irq(&callback_lock); - update_tasks_nodemask(&top_cpuset); + cpuset_update_tasks_nodemask(&top_cpuset); } mutex_unlock(&cpuset_mutex); @@ -3794,13 +4131,11 @@ static void cpuset_hotplug_workfn(struct work_struct *work) rcu_read_unlock(); } - /* rebuild sched domains if cpus_allowed has changed */ - if (cpus_updated || force_rebuild) { - force_rebuild = false; - rebuild_sched_domains(); - } + /* rebuild sched domains if necessary */ + if (force_sd_rebuild) + rebuild_sched_domains_cpuslocked(); - free_cpumasks(NULL, ptmp); + free_tmpmasks(ptmp); } void cpuset_update_active_cpus(void) @@ -3810,12 +4145,7 @@ void cpuset_update_active_cpus(void) * inside cgroup synchronization. Bounce actual hotplug processing * to a work item to avoid reverse locking order. */ - schedule_work(&cpuset_hotplug_work); -} - -void cpuset_wait_for_hotplug(void) -{ - flush_work(&cpuset_hotplug_work); + cpuset_handle_hotplug(); } /* @@ -3826,7 +4156,7 @@ void cpuset_wait_for_hotplug(void) static int cpuset_track_online_nodes(struct notifier_block *self, unsigned long action, void *arg) { - schedule_work(&cpuset_hotplug_work); + cpuset_handle_hotplug(); return NOTIFY_OK; } @@ -3847,34 +4177,22 @@ void __init cpuset_init_smp(void) cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); top_cpuset.effective_mems = node_states[N_MEMORY]; - hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); + hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); BUG_ON(!cpuset_migrate_mm_wq); } -/** - * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. - * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. - * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. - * - * Description: Returns the cpumask_var_t cpus_allowed of the cpuset - * attached to the specified @tsk. Guaranteed to return some non-empty - * subset of cpu_online_mask, even if this means going outside the - * tasks cpuset, except when the task is in the top cpuset. - **/ - -void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) +/* + * Return cpus_allowed mask from a task's cpuset. + */ +static void __cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) { - unsigned long flags; struct cpuset *cs; - spin_lock_irqsave(&callback_lock, flags); - rcu_read_lock(); - cs = task_cs(tsk); if (cs != &top_cpuset) - guarantee_online_cpus(tsk, pmask); + guarantee_active_cpus(tsk, pmask); /* * Tasks in the top cpuset won't get update to their cpumasks * when a hotplug online/offline event happens. So we include all @@ -3887,12 +4205,43 @@ void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) * We first exclude cpus allocated to partitions. If there is no * allowable online cpu left, we fall back to all possible cpus. */ - cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus); - if (!cpumask_intersects(pmask, cpu_online_mask)) + cpumask_andnot(pmask, possible_mask, subpartitions_cpus); + if (!cpumask_intersects(pmask, cpu_active_mask)) cpumask_copy(pmask, possible_mask); } +} - rcu_read_unlock(); +/** + * cpuset_cpus_allowed_locked - return cpus_allowed mask from a task's cpuset. + * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. + * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. + * + * Similir to cpuset_cpus_allowed() except that the caller must have acquired + * cpuset_mutex. + */ +void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) +{ + lockdep_assert_held(&cpuset_mutex); + __cpuset_cpus_allowed_locked(tsk, pmask); +} + +/** + * cpuset_cpus_allowed - return cpus_allowed mask from a task's cpuset. + * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. + * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. + * + * Description: Returns the cpumask_var_t cpus_allowed of the cpuset + * attached to the specified @tsk. Guaranteed to return some non-empty + * subset of cpu_active_mask, even if this means going outside the + * tasks cpuset, except when the task is in the top cpuset. + **/ + +void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) +{ + unsigned long flags; + + spin_lock_irqsave(&callback_lock, flags); + __cpuset_cpus_allowed_locked(tsk, pmask); spin_unlock_irqrestore(&callback_lock, flags); } @@ -3919,7 +4268,7 @@ bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) rcu_read_lock(); cs_mask = task_cs(tsk)->cpus_allowed; if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { - do_set_cpus_allowed(tsk, cs_mask); + set_cpus_allowed_force(tsk, cs_mask); changed = true; } rcu_read_unlock(); @@ -3965,9 +4314,7 @@ nodemask_t cpuset_mems_allowed(struct task_struct *tsk) unsigned long flags; spin_lock_irqsave(&callback_lock, flags); - rcu_read_lock(); guarantee_online_mems(task_cs(tsk), &mask); - rcu_read_unlock(); spin_unlock_irqrestore(&callback_lock, flags); return mask; @@ -3998,7 +4345,7 @@ static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) } /* - * cpuset_node_allowed - Can we allocate on a memory node? + * cpuset_current_node_allowed - Can current task allocate on a memory node? * @node: is this an allowed node? * @gfp_mask: memory allocation flags * @@ -4037,7 +4384,7 @@ static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) * GFP_KERNEL - any node in enclosing hardwalled cpuset ok * GFP_USER - only nodes in current tasks mems allowed ok. */ -bool cpuset_node_allowed(int node, gfp_t gfp_mask) +bool cpuset_current_node_allowed(int node, gfp_t gfp_mask) { struct cpuset *cs; /* current cpuset ancestors */ bool allowed; /* is allocation in zone z allowed? */ @@ -4062,17 +4409,52 @@ bool cpuset_node_allowed(int node, gfp_t gfp_mask) /* Not hardwall and node outside mems_allowed: scan up cpusets */ spin_lock_irqsave(&callback_lock, flags); - rcu_read_lock(); cs = nearest_hardwall_ancestor(task_cs(current)); allowed = node_isset(node, cs->mems_allowed); - rcu_read_unlock(); spin_unlock_irqrestore(&callback_lock, flags); return allowed; } +bool cpuset_node_allowed(struct cgroup *cgroup, int nid) +{ + struct cgroup_subsys_state *css; + struct cpuset *cs; + bool allowed; + + /* + * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy + * and mems_allowed is likely to be empty even if we could get to it, + * so return true to avoid taking a global lock on the empty check. + */ + if (!cpuset_v2()) + return true; + + css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys); + if (!css) + return true; + + /* + * Normally, accessing effective_mems would require the cpuset_mutex + * or callback_lock - but node_isset is atomic and the reference + * taken via cgroup_get_e_css is sufficient to protect css. + * + * Since this interface is intended for use by migration paths, we + * relax locking here to avoid taking global locks - while accepting + * there may be rare scenarios where the result may be innaccurate. + * + * Reclaim and migration are subject to these same race conditions, and + * cannot make strong isolation guarantees, so this is acceptable. + */ + cs = container_of(css, struct cpuset, css); + allowed = node_isset(nid, cs->effective_mems); + css_put(css); + return allowed; +} + /** * cpuset_spread_node() - On which node to begin search for a page + * @rotor: round robin rotor * * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for * tasks in a cpuset with is_spread_page or is_spread_slab set), @@ -4114,19 +4496,6 @@ int cpuset_mem_spread_node(void) } /** - * cpuset_slab_spread_node() - On which node to begin search for a slab page - */ -int cpuset_slab_spread_node(void) -{ - if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) - current->cpuset_slab_spread_rotor = - node_random(¤t->mems_allowed); - - return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); -} -EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); - -/** * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? * @tsk1: pointer to task_struct of some task. * @tsk2: pointer to task_struct of some other task. @@ -4164,79 +4533,6 @@ void cpuset_print_current_mems_allowed(void) rcu_read_unlock(); } -/* - * Collection of memory_pressure is suppressed unless - * this flag is enabled by writing "1" to the special - * cpuset file 'memory_pressure_enabled' in the root cpuset. - */ - -int cpuset_memory_pressure_enabled __read_mostly; - -/* - * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. - * - * Keep a running average of the rate of synchronous (direct) - * page reclaim efforts initiated by tasks in each cpuset. - * - * This represents the rate at which some task in the cpuset - * ran low on memory on all nodes it was allowed to use, and - * had to enter the kernels page reclaim code in an effort to - * create more free memory by tossing clean pages or swapping - * or writing dirty pages. - * - * Display to user space in the per-cpuset read-only file - * "memory_pressure". Value displayed is an integer - * representing the recent rate of entry into the synchronous - * (direct) page reclaim by any task attached to the cpuset. - */ - -void __cpuset_memory_pressure_bump(void) -{ - rcu_read_lock(); - fmeter_markevent(&task_cs(current)->fmeter); - rcu_read_unlock(); -} - -#ifdef CONFIG_PROC_PID_CPUSET -/* - * proc_cpuset_show() - * - Print tasks cpuset path into seq_file. - * - Used for /proc/<pid>/cpuset. - * - No need to task_lock(tsk) on this tsk->cpuset reference, as it - * doesn't really matter if tsk->cpuset changes after we read it, - * and we take cpuset_mutex, keeping cpuset_attach() from changing it - * anyway. - */ -int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, - struct pid *pid, struct task_struct *tsk) -{ - char *buf; - struct cgroup_subsys_state *css; - int retval; - - retval = -ENOMEM; - buf = kmalloc(PATH_MAX, GFP_KERNEL); - if (!buf) - goto out; - - css = task_get_css(tsk, cpuset_cgrp_id); - retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, - current->nsproxy->cgroup_ns); - css_put(css); - if (retval >= PATH_MAX) - retval = -ENAMETOOLONG; - if (retval < 0) - goto out_free; - seq_puts(m, buf); - seq_putc(m, '\n'); - retval = 0; -out_free: - kfree(buf); -out: - return retval; -} -#endif /* CONFIG_PROC_PID_CPUSET */ - /* Display task mems_allowed in /proc/<pid>/status file. */ void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) { |
