diff options
Diffstat (limited to 'kernel/dma/direct.c')
| -rw-r--r-- | kernel/dma/direct.c | 740 |
1 files changed, 513 insertions, 227 deletions
diff --git a/kernel/dma/direct.c b/kernel/dma/direct.c index 355d16acee6d..50c3fe2a1d55 100644 --- a/kernel/dma/direct.c +++ b/kernel/dma/direct.c @@ -1,76 +1,55 @@ // SPDX-License-Identifier: GPL-2.0 /* - * Copyright (C) 2018 Christoph Hellwig. + * Copyright (C) 2018-2020 Christoph Hellwig. * * DMA operations that map physical memory directly without using an IOMMU. */ #include <linux/memblock.h> /* for max_pfn */ #include <linux/export.h> #include <linux/mm.h> -#include <linux/dma-direct.h> +#include <linux/dma-map-ops.h> #include <linux/scatterlist.h> -#include <linux/dma-contiguous.h> -#include <linux/dma-noncoherent.h> #include <linux/pfn.h> +#include <linux/vmalloc.h> #include <linux/set_memory.h> -#include <linux/swiotlb.h> +#include <linux/slab.h> +#include <linux/pci-p2pdma.h> +#include "direct.h" /* - * Most architectures use ZONE_DMA for the first 16 Megabytes, but - * some use it for entirely different regions: + * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use + * it for entirely different regions. In that case the arch code needs to + * override the variable below for dma-direct to work properly. */ -#ifndef ARCH_ZONE_DMA_BITS -#define ARCH_ZONE_DMA_BITS 24 -#endif - -/* - * For AMD SEV all DMA must be to unencrypted addresses. - */ -static inline bool force_dma_unencrypted(void) -{ - return sev_active(); -} - -static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size) -{ - if (!dev->dma_mask) { - dev_err_once(dev, "DMA map on device without dma_mask\n"); - } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) { - dev_err_once(dev, - "overflow %pad+%zu of DMA mask %llx bus mask %llx\n", - &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask); - } - WARN_ON_ONCE(1); -} +u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24); static inline dma_addr_t phys_to_dma_direct(struct device *dev, phys_addr_t phys) { - if (force_dma_unencrypted()) - return __phys_to_dma(dev, phys); + if (force_dma_unencrypted(dev)) + return phys_to_dma_unencrypted(dev, phys); return phys_to_dma(dev, phys); } -u64 dma_direct_get_required_mask(struct device *dev) +static inline struct page *dma_direct_to_page(struct device *dev, + dma_addr_t dma_addr) { - u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT); + return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); +} - if (dev->bus_dma_mask && dev->bus_dma_mask < max_dma) - max_dma = dev->bus_dma_mask; +u64 dma_direct_get_required_mask(struct device *dev) +{ + phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; + u64 max_dma = phys_to_dma_direct(dev, phys); return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; } -static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, - u64 *phys_mask) +static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit) { - if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask) - dma_mask = dev->bus_dma_mask; - - if (force_dma_unencrypted()) - *phys_mask = __dma_to_phys(dev, dma_mask); - else - *phys_mask = dma_to_phys(dev, dma_mask); + u64 dma_limit = min_not_zero( + dev->coherent_dma_mask, + dev->bus_dma_limit); /* * Optimistically try the zone that the physical address mask falls @@ -80,151 +59,338 @@ static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding * zones. */ - if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) + *phys_limit = dma_to_phys(dev, dma_limit); + if (*phys_limit <= zone_dma_limit) return GFP_DMA; - if (*phys_mask <= DMA_BIT_MASK(32)) + if (*phys_limit <= DMA_BIT_MASK(32)) return GFP_DMA32; return 0; } -static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) +bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) { - return phys_to_dma_direct(dev, phys) + size - 1 <= - min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask); + dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); + + if (dma_addr == DMA_MAPPING_ERROR) + return false; + return dma_addr + size - 1 <= + min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); } -struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, - dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) +static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size) { - unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; - int page_order = get_order(size); - struct page *page = NULL; - u64 phys_mask; + if (!force_dma_unencrypted(dev)) + return 0; + return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size)); +} - if (attrs & DMA_ATTR_NO_WARN) - gfp |= __GFP_NOWARN; +static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size) +{ + int ret; - /* we always manually zero the memory once we are done: */ - gfp &= ~__GFP_ZERO; - gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, - &phys_mask); -again: - /* CMA can be used only in the context which permits sleeping */ - if (gfpflags_allow_blocking(gfp)) { - page = dma_alloc_from_contiguous(dev, count, page_order, - gfp & __GFP_NOWARN); - if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { - dma_release_from_contiguous(dev, page, count); - page = NULL; - } - } - if (!page) - page = alloc_pages_node(dev_to_node(dev), gfp, page_order); + if (!force_dma_unencrypted(dev)) + return 0; + ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size)); + if (ret) + pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n"); + return ret; +} + +static void __dma_direct_free_pages(struct device *dev, struct page *page, + size_t size) +{ + if (swiotlb_free(dev, page, size)) + return; + dma_free_contiguous(dev, page, size); +} + +static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size) +{ + struct page *page = swiotlb_alloc(dev, size); if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { - __free_pages(page, page_order); - page = NULL; + swiotlb_free(dev, page, size); + return NULL; + } + + return page; +} + +static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, + gfp_t gfp, bool allow_highmem) +{ + int node = dev_to_node(dev); + struct page *page; + u64 phys_limit; + + WARN_ON_ONCE(!PAGE_ALIGNED(size)); + + if (is_swiotlb_for_alloc(dev)) + return dma_direct_alloc_swiotlb(dev, size); + + gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit); + page = dma_alloc_contiguous(dev, size, gfp); + if (page) { + if (dma_coherent_ok(dev, page_to_phys(page), size) && + (allow_highmem || !PageHighMem(page))) + return page; + + dma_free_contiguous(dev, page, size); + } + + while ((page = alloc_pages_node(node, gfp, get_order(size))) + && !dma_coherent_ok(dev, page_to_phys(page), size)) { + __free_pages(page, get_order(size)); if (IS_ENABLED(CONFIG_ZONE_DMA32) && - phys_mask < DMA_BIT_MASK(64) && - !(gfp & (GFP_DMA32 | GFP_DMA))) { + phys_limit < DMA_BIT_MASK(64) && + !(gfp & (GFP_DMA32 | GFP_DMA))) gfp |= GFP_DMA32; - goto again; - } - - if (IS_ENABLED(CONFIG_ZONE_DMA) && - phys_mask < DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) { + else if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) gfp = (gfp & ~GFP_DMA32) | GFP_DMA; - goto again; - } + else + return NULL; } return page; } -void *dma_direct_alloc_pages(struct device *dev, size_t size, - dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) +/* + * Check if a potentially blocking operations needs to dip into the atomic + * pools for the given device/gfp. + */ +static bool dma_direct_use_pool(struct device *dev, gfp_t gfp) +{ + return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev); +} + +static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp) { struct page *page; + u64 phys_limit; void *ret; - page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); + if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))) + return NULL; + + gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit); + page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); if (!page) return NULL; + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return ret; +} + +static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp) +{ + struct page *page; + + page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); + if (!page) + return NULL; + + /* remove any dirty cache lines on the kernel alias */ + if (!PageHighMem(page)) + arch_dma_prep_coherent(page, size); + + /* return the page pointer as the opaque cookie */ + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return page; +} + +void *dma_direct_alloc(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) +{ + bool remap = false, set_uncached = false; + struct page *page; + void *ret; + + size = PAGE_ALIGN(size); + if (attrs & DMA_ATTR_NO_WARN) + gfp |= __GFP_NOWARN; + + if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && + !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) + return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp); + + if (!dev_is_dma_coherent(dev)) { + if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) && + !is_swiotlb_for_alloc(dev)) + return arch_dma_alloc(dev, size, dma_handle, gfp, + attrs); - if (PageHighMem(page)) { /* - * Depending on the cma= arguments and per-arch setup - * dma_alloc_from_contiguous could return highmem pages. - * Without remapping there is no way to return them here, - * so log an error and fail. + * If there is a global pool, always allocate from it for + * non-coherent devices. */ - dev_info(dev, "Rejecting highmem page from CMA.\n"); - __dma_direct_free_pages(dev, size, page); + if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)) + return dma_alloc_from_global_coherent(dev, size, + dma_handle); + + /* + * Otherwise we require the architecture to either be able to + * mark arbitrary parts of the kernel direct mapping uncached, + * or remapped it uncached. + */ + set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED); + remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP); + if (!set_uncached && !remap) { + pr_warn_once("coherent DMA allocations not supported on this platform.\n"); + return NULL; + } + } + + /* + * Remapping or decrypting memory may block, allocate the memory from + * the atomic pools instead if we aren't allowed block. + */ + if ((remap || force_dma_unencrypted(dev)) && + dma_direct_use_pool(dev, gfp)) + return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); + + /* we always manually zero the memory once we are done */ + page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); + if (!page) return NULL; + + /* + * dma_alloc_contiguous can return highmem pages depending on a + * combination the cma= arguments and per-arch setup. These need to be + * remapped to return a kernel virtual address. + */ + if (PageHighMem(page)) { + remap = true; + set_uncached = false; } - ret = page_address(page); - if (force_dma_unencrypted()) { - set_memory_decrypted((unsigned long)ret, 1 << get_order(size)); - *dma_handle = __phys_to_dma(dev, page_to_phys(page)); + if (remap) { + pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); + + if (force_dma_unencrypted(dev)) + prot = pgprot_decrypted(prot); + + /* remove any dirty cache lines on the kernel alias */ + arch_dma_prep_coherent(page, size); + + /* create a coherent mapping */ + ret = dma_common_contiguous_remap(page, size, prot, + __builtin_return_address(0)); + if (!ret) + goto out_free_pages; } else { - *dma_handle = phys_to_dma(dev, page_to_phys(page)); + ret = page_address(page); + if (dma_set_decrypted(dev, ret, size)) + goto out_leak_pages; } + memset(ret, 0, size); - return ret; -} -void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page) -{ - unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; + if (set_uncached) { + arch_dma_prep_coherent(page, size); + ret = arch_dma_set_uncached(ret, size); + if (IS_ERR(ret)) + goto out_encrypt_pages; + } - if (!dma_release_from_contiguous(dev, page, count)) - __free_pages(page, get_order(size)); + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return ret; + +out_encrypt_pages: + if (dma_set_encrypted(dev, page_address(page), size)) + return NULL; +out_free_pages: + __dma_direct_free_pages(dev, page, size); + return NULL; +out_leak_pages: + return NULL; } -void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, - dma_addr_t dma_addr, unsigned long attrs) +void dma_direct_free(struct device *dev, size_t size, + void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { unsigned int page_order = get_order(size); - if (force_dma_unencrypted()) - set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); - __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr)); -} + if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && + !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) { + /* cpu_addr is a struct page cookie, not a kernel address */ + dma_free_contiguous(dev, cpu_addr, size); + return; + } -void *dma_direct_alloc(struct device *dev, size_t size, - dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) -{ - if (!dev_is_dma_coherent(dev)) - return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); - return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); + if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) && + !dev_is_dma_coherent(dev) && + !is_swiotlb_for_alloc(dev)) { + arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); + return; + } + + if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && + !dev_is_dma_coherent(dev)) { + if (!dma_release_from_global_coherent(page_order, cpu_addr)) + WARN_ON_ONCE(1); + return; + } + + /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && + dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) + return; + + if (is_vmalloc_addr(cpu_addr)) { + vunmap(cpu_addr); + } else { + if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) + arch_dma_clear_uncached(cpu_addr, size); + if (dma_set_encrypted(dev, cpu_addr, size)) + return; + } + + __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size); } -void dma_direct_free(struct device *dev, size_t size, - void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) +struct page *dma_direct_alloc_pages(struct device *dev, size_t size, + dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) { - if (!dev_is_dma_coherent(dev)) - arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); - else - dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs); + struct page *page; + void *ret; + + if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) + return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); + + page = __dma_direct_alloc_pages(dev, size, gfp, false); + if (!page) + return NULL; + + ret = page_address(page); + if (dma_set_decrypted(dev, ret, size)) + goto out_leak_pages; + memset(ret, 0, size); + *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); + return page; +out_leak_pages: + return NULL; } -#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ - defined(CONFIG_SWIOTLB) -void dma_direct_sync_single_for_device(struct device *dev, - dma_addr_t addr, size_t size, enum dma_data_direction dir) +void dma_direct_free_pages(struct device *dev, size_t size, + struct page *page, dma_addr_t dma_addr, + enum dma_data_direction dir) { - phys_addr_t paddr = dma_to_phys(dev, addr); + void *vaddr = page_address(page); - if (unlikely(is_swiotlb_buffer(paddr))) - swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); + /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ + if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && + dma_free_from_pool(dev, vaddr, size)) + return; - if (!dev_is_dma_coherent(dev)) - arch_sync_dma_for_device(dev, paddr, size, dir); + if (dma_set_encrypted(dev, vaddr, size)) + return; + __dma_direct_free_pages(dev, page, size); } -EXPORT_SYMBOL(dma_direct_sync_single_for_device); +#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ + defined(CONFIG_SWIOTLB) void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { @@ -232,36 +398,20 @@ void dma_direct_sync_sg_for_device(struct device *dev, int i; for_each_sg(sgl, sg, nents, i) { - if (unlikely(is_swiotlb_buffer(sg_phys(sg)))) - swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, - dir, SYNC_FOR_DEVICE); + phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); + + swiotlb_sync_single_for_device(dev, paddr, sg->length, dir); if (!dev_is_dma_coherent(dev)) - arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, + arch_sync_dma_for_device(paddr, sg->length, dir); } } -EXPORT_SYMBOL(dma_direct_sync_sg_for_device); #endif #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ defined(CONFIG_SWIOTLB) -void dma_direct_sync_single_for_cpu(struct device *dev, - dma_addr_t addr, size_t size, enum dma_data_direction dir) -{ - phys_addr_t paddr = dma_to_phys(dev, addr); - - if (!dev_is_dma_coherent(dev)) { - arch_sync_dma_for_cpu(dev, paddr, size, dir); - arch_sync_dma_for_cpu_all(dev); - } - - if (unlikely(is_swiotlb_buffer(paddr))) - swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); -} -EXPORT_SYMBOL(dma_direct_sync_single_for_cpu); - void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { @@ -269,82 +419,75 @@ void dma_direct_sync_sg_for_cpu(struct device *dev, int i; for_each_sg(sgl, sg, nents, i) { - if (!dev_is_dma_coherent(dev)) - arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir); - - if (unlikely(is_swiotlb_buffer(sg_phys(sg)))) - swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, dir, - SYNC_FOR_CPU); - } + phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); - if (!dev_is_dma_coherent(dev)) - arch_sync_dma_for_cpu_all(dev); -} -EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu); + if (!dev_is_dma_coherent(dev)) + arch_sync_dma_for_cpu(paddr, sg->length, dir); -void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, - size_t size, enum dma_data_direction dir, unsigned long attrs) -{ - phys_addr_t phys = dma_to_phys(dev, addr); + swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir); - if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) - dma_direct_sync_single_for_cpu(dev, addr, size, dir); + if (dir == DMA_FROM_DEVICE) + arch_dma_mark_clean(paddr, sg->length); + } - if (unlikely(is_swiotlb_buffer(phys))) - swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs); + if (!dev_is_dma_coherent(dev)) + arch_sync_dma_for_cpu_all(); } -EXPORT_SYMBOL(dma_direct_unmap_page); +/* + * Unmaps segments, except for ones marked as pci_p2pdma which do not + * require any further action as they contain a bus address. + */ void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *sg; int i; - for_each_sg(sgl, sg, nents, i) - dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, - attrs); -} -EXPORT_SYMBOL(dma_direct_unmap_sg); -#endif - -static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr, - size_t size) -{ - return swiotlb_force != SWIOTLB_FORCE && - (!dev || dma_capable(dev, dma_addr, size)); -} - -dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, - unsigned long offset, size_t size, enum dma_data_direction dir, - unsigned long attrs) -{ - phys_addr_t phys = page_to_phys(page) + offset; - dma_addr_t dma_addr = phys_to_dma(dev, phys); - - if (unlikely(!dma_direct_possible(dev, dma_addr, size)) && - !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) { - report_addr(dev, dma_addr, size); - return DMA_MAPPING_ERROR; + for_each_sg(sgl, sg, nents, i) { + if (sg_dma_is_bus_address(sg)) + sg_dma_unmark_bus_address(sg); + else + dma_direct_unmap_phys(dev, sg->dma_address, + sg_dma_len(sg), dir, attrs); } - - if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) - arch_sync_dma_for_device(dev, phys, size, dir); - return dma_addr; } -EXPORT_SYMBOL(dma_direct_map_page); +#endif int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { - int i; + struct pci_p2pdma_map_state p2pdma_state = {}; struct scatterlist *sg; + int i, ret; for_each_sg(sgl, sg, nents, i) { - sg->dma_address = dma_direct_map_page(dev, sg_page(sg), - sg->offset, sg->length, dir, attrs); - if (sg->dma_address == DMA_MAPPING_ERROR) + switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(sg))) { + case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: + /* + * Any P2P mapping that traverses the PCI host bridge + * must be mapped with CPU physical address and not PCI + * bus addresses. + */ + break; + case PCI_P2PDMA_MAP_NONE: + sg->dma_address = dma_direct_map_phys(dev, sg_phys(sg), + sg->length, dir, attrs); + if (sg->dma_address == DMA_MAPPING_ERROR) { + ret = -EIO; + goto out_unmap; + } + break; + case PCI_P2PDMA_MAP_BUS_ADDR: + sg->dma_address = pci_p2pdma_bus_addr_map( + p2pdma_state.mem, sg_phys(sg)); + sg_dma_len(sg) = sg->length; + sg_dma_mark_bus_address(sg); + continue; + default: + ret = -EREMOTEIO; goto out_unmap; + } sg_dma_len(sg) = sg->length; } @@ -352,31 +495,174 @@ int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, out_unmap: dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); - return 0; + return ret; } -EXPORT_SYMBOL(dma_direct_map_sg); -/* - * Because 32-bit DMA masks are so common we expect every architecture to be - * able to satisfy them - either by not supporting more physical memory, or by - * providing a ZONE_DMA32. If neither is the case, the architecture needs to - * use an IOMMU instead of the direct mapping. - */ -int dma_direct_supported(struct device *dev, u64 mask) +int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + unsigned long attrs) { - u64 min_mask; + struct page *page = dma_direct_to_page(dev, dma_addr); + int ret; - if (IS_ENABLED(CONFIG_ZONE_DMA)) - min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS); - else - min_mask = DMA_BIT_MASK(32); + ret = sg_alloc_table(sgt, 1, GFP_KERNEL); + if (!ret) + sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); + return ret; +} + +bool dma_direct_can_mmap(struct device *dev) +{ + return dev_is_dma_coherent(dev) || + IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); +} + +int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, + void *cpu_addr, dma_addr_t dma_addr, size_t size, + unsigned long attrs) +{ + unsigned long user_count = vma_pages(vma); + unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; + unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); + int ret = -ENXIO; + + vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); + if (force_dma_unencrypted(dev)) + vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); + + if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) + return ret; + if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret)) + return ret; + + if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) + return -ENXIO; + return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, + user_count << PAGE_SHIFT, vma->vm_page_prot); +} + +int dma_direct_supported(struct device *dev, u64 mask) +{ + u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; - min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT); + /* + * Because 32-bit DMA masks are so common we expect every architecture + * to be able to satisfy them - either by not supporting more physical + * memory, or by providing a ZONE_DMA32. If neither is the case, the + * architecture needs to use an IOMMU instead of the direct mapping. + */ + if (mask >= DMA_BIT_MASK(32)) + return 1; /* - * This check needs to be against the actual bit mask value, so - * use __phys_to_dma() here so that the SME encryption mask isn't + * This check needs to be against the actual bit mask value, so use + * phys_to_dma_unencrypted() here so that the SME encryption mask isn't * part of the check. */ - return mask >= __phys_to_dma(dev, min_mask); + if (IS_ENABLED(CONFIG_ZONE_DMA)) + min_mask = min_t(u64, min_mask, zone_dma_limit); + return mask >= phys_to_dma_unencrypted(dev, min_mask); +} + +static const struct bus_dma_region *dma_find_range(struct device *dev, + unsigned long start_pfn) +{ + const struct bus_dma_region *m; + + for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) { + unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start); + + if (start_pfn >= cpu_start_pfn && + start_pfn - cpu_start_pfn < PFN_DOWN(m->size)) + return m; + } + + return NULL; +} + +/* + * To check whether all ram resource ranges are covered by dma range map + * Returns 0 when further check is needed + * Returns 1 if there is some RAM range can't be covered by dma_range_map + */ +static int check_ram_in_range_map(unsigned long start_pfn, + unsigned long nr_pages, void *data) +{ + unsigned long end_pfn = start_pfn + nr_pages; + struct device *dev = data; + + while (start_pfn < end_pfn) { + const struct bus_dma_region *bdr; + + bdr = dma_find_range(dev, start_pfn); + if (!bdr) + return 1; + + start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size); + } + + return 0; +} + +bool dma_direct_all_ram_mapped(struct device *dev) +{ + if (!dev->dma_range_map) + return true; + return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev, + check_ram_in_range_map); +} + +size_t dma_direct_max_mapping_size(struct device *dev) +{ + /* If SWIOTLB is active, use its maximum mapping size */ + if (is_swiotlb_active(dev) && + (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev))) + return swiotlb_max_mapping_size(dev); + return SIZE_MAX; +} + +bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) +{ + return !dev_is_dma_coherent(dev) || + swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr)); +} + +/** + * dma_direct_set_offset - Assign scalar offset for a single DMA range. + * @dev: device pointer; needed to "own" the alloced memory. + * @cpu_start: beginning of memory region covered by this offset. + * @dma_start: beginning of DMA/PCI region covered by this offset. + * @size: size of the region. + * + * This is for the simple case of a uniform offset which cannot + * be discovered by "dma-ranges". + * + * It returns -ENOMEM if out of memory, -EINVAL if a map + * already exists, 0 otherwise. + * + * Note: any call to this from a driver is a bug. The mapping needs + * to be described by the device tree or other firmware interfaces. + */ +int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, + dma_addr_t dma_start, u64 size) +{ + struct bus_dma_region *map; + u64 offset = (u64)cpu_start - (u64)dma_start; + + if (dev->dma_range_map) { + dev_err(dev, "attempt to add DMA range to existing map\n"); + return -EINVAL; + } + + if (!offset) + return 0; + + map = kcalloc(2, sizeof(*map), GFP_KERNEL); + if (!map) + return -ENOMEM; + map[0].cpu_start = cpu_start; + map[0].dma_start = dma_start; + map[0].size = size; + dev->dma_range_map = map; + return 0; } |
