diff options
Diffstat (limited to 'kernel/fork.c')
| -rw-r--r-- | kernel/fork.c | 2827 |
1 files changed, 2097 insertions, 730 deletions
diff --git a/kernel/fork.c b/kernel/fork.c index 66635c80a813..b1f3915d5f8e 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -1,3 +1,4 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * linux/kernel/fork.c * @@ -11,7 +12,19 @@ * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' */ +#include <linux/anon_inodes.h> #include <linux/slab.h> +#include <linux/sched/autogroup.h> +#include <linux/sched/mm.h> +#include <linux/sched/user.h> +#include <linux/sched/numa_balancing.h> +#include <linux/sched/stat.h> +#include <linux/sched/task.h> +#include <linux/sched/task_stack.h> +#include <linux/sched/cputime.h> +#include <linux/sched/ext.h> +#include <linux/seq_file.h> +#include <linux/rtmutex.h> #include <linux/init.h> #include <linux/unistd.h> #include <linux/module.h> @@ -24,10 +37,14 @@ #include <linux/fdtable.h> #include <linux/iocontext.h> #include <linux/key.h> +#include <linux/kmsan.h> #include <linux/binfmts.h> #include <linux/mman.h> #include <linux/mmu_notifier.h> #include <linux/fs.h> +#include <linux/mm.h> +#include <linux/mm_inline.h> +#include <linux/memblock.h> #include <linux/nsproxy.h> #include <linux/capability.h> #include <linux/cpu.h> @@ -37,6 +54,7 @@ #include <linux/seccomp.h> #include <linux/swap.h> #include <linux/syscalls.h> +#include <linux/syscall_user_dispatch.h> #include <linux/jiffies.h> #include <linux/futex.h> #include <linux/compat.h> @@ -53,14 +71,13 @@ #include <linux/rmap.h> #include <linux/ksm.h> #include <linux/acct.h> +#include <linux/userfaultfd_k.h> #include <linux/tsacct_kern.h> #include <linux/cn_proc.h> #include <linux/freezer.h> #include <linux/delayacct.h> #include <linux/taskstats_kern.h> -#include <linux/random.h> #include <linux/tty.h> -#include <linux/blkdev.h> #include <linux/fs_struct.h> #include <linux/magic.h> #include <linux/perf_event.h> @@ -71,26 +88,67 @@ #include <linux/signalfd.h> #include <linux/uprobes.h> #include <linux/aio.h> +#include <linux/compiler.h> +#include <linux/sysctl.h> +#include <linux/kcov.h> +#include <linux/livepatch.h> +#include <linux/thread_info.h> +#include <linux/kstack_erase.h> +#include <linux/kasan.h> +#include <linux/scs.h> +#include <linux/io_uring.h> +#include <linux/bpf.h> +#include <linux/stackprotector.h> +#include <linux/user_events.h> +#include <linux/iommu.h> +#include <linux/rseq.h> +#include <uapi/linux/pidfd.h> +#include <linux/pidfs.h> +#include <linux/tick.h> +#include <linux/unwind_deferred.h> +#include <linux/pgalloc.h> +#include <linux/uaccess.h> -#include <asm/pgtable.h> -#include <asm/pgalloc.h> -#include <asm/uaccess.h> #include <asm/mmu_context.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> +/* For dup_mmap(). */ +#include "../mm/internal.h" + #include <trace/events/sched.h> #define CREATE_TRACE_POINTS #include <trace/events/task.h> +#include <kunit/visibility.h> + +/* + * Minimum number of threads to boot the kernel + */ +#define MIN_THREADS 20 + +/* + * Maximum number of threads + */ +#define MAX_THREADS FUTEX_TID_MASK + /* * Protected counters by write_lock_irq(&tasklist_lock) */ unsigned long total_forks; /* Handle normal Linux uptimes. */ int nr_threads; /* The idle threads do not count.. */ -int max_threads; /* tunable limit on nr_threads */ +static int max_threads; /* tunable limit on nr_threads */ + +#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) + +static const char * const resident_page_types[] = { + NAMED_ARRAY_INDEX(MM_FILEPAGES), + NAMED_ARRAY_INDEX(MM_ANONPAGES), + NAMED_ARRAY_INDEX(MM_SWAPENTS), + NAMED_ARRAY_INDEX(MM_SHMEMPAGES), +}; DEFINE_PER_CPU(unsigned long, process_counts) = 0; @@ -119,7 +177,6 @@ void __weak arch_release_task_struct(struct task_struct *tsk) { } -#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR static struct kmem_cache *task_struct_cachep; static inline struct task_struct *alloc_task_struct_node(int node) @@ -131,54 +188,279 @@ static inline void free_task_struct(struct task_struct *tsk) { kmem_cache_free(task_struct_cachep, tsk); } -#endif -void __weak arch_release_thread_info(struct thread_info *ti) +#ifdef CONFIG_VMAP_STACK +/* + * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB + * flush. Try to minimize the number of calls by caching stacks. + */ +#define NR_CACHED_STACKS 2 +static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); +/* + * Allocated stacks are cached and later reused by new threads, so memcg + * accounting is performed by the code assigning/releasing stacks to tasks. + * We need a zeroed memory without __GFP_ACCOUNT. + */ +#define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO) + +struct vm_stack { + struct rcu_head rcu; + struct vm_struct *stack_vm_area; +}; + +static struct vm_struct *alloc_thread_stack_node_from_cache(struct task_struct *tsk, int node) +{ + struct vm_struct *vm_area; + unsigned int i; + + /* + * If the node has memory, we are guaranteed the stacks are backed by local pages. + * Otherwise the pages are arbitrary. + * + * Note that depending on cpuset it is possible we will get migrated to a different + * node immediately after allocating here, so this does *not* guarantee locality for + * arbitrary callers. + */ + scoped_guard(preempt) { + if (node != NUMA_NO_NODE && numa_node_id() != node) + return NULL; + + for (i = 0; i < NR_CACHED_STACKS; i++) { + vm_area = this_cpu_xchg(cached_stacks[i], NULL); + if (vm_area) + return vm_area; + } + } + + return NULL; +} + +static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area) +{ + unsigned int i; + int nid; + + /* + * Don't cache stacks if any of the pages don't match the local domain, unless + * there is no local memory to begin with. + * + * Note that lack of local memory does not automatically mean it makes no difference + * performance-wise which other domain backs the stack. In this case we are merely + * trying to avoid constantly going to vmalloc. + */ + scoped_guard(preempt) { + nid = numa_node_id(); + if (node_state(nid, N_MEMORY)) { + for (i = 0; i < vm_area->nr_pages; i++) { + struct page *page = vm_area->pages[i]; + if (page_to_nid(page) != nid) + return false; + } + } + + for (i = 0; i < NR_CACHED_STACKS; i++) { + struct vm_struct *tmp = NULL; + + if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area)) + return true; + } + } + return false; +} + +static void thread_stack_free_rcu(struct rcu_head *rh) +{ + struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); + struct vm_struct *vm_area = vm_stack->stack_vm_area; + + if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) + return; + + vfree(vm_area->addr); +} + +static void thread_stack_delayed_free(struct task_struct *tsk) +{ + struct vm_stack *vm_stack = tsk->stack; + + vm_stack->stack_vm_area = tsk->stack_vm_area; + call_rcu(&vm_stack->rcu, thread_stack_free_rcu); +} + +static int free_vm_stack_cache(unsigned int cpu) +{ + struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu); + int i; + + for (i = 0; i < NR_CACHED_STACKS; i++) { + struct vm_struct *vm_area = cached_vm_stack_areas[i]; + + if (!vm_area) + continue; + + vfree(vm_area->addr); + cached_vm_stack_areas[i] = NULL; + } + + return 0; +} + +static int memcg_charge_kernel_stack(struct vm_struct *vm_area) +{ + int i; + int ret; + int nr_charged = 0; + + BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE); + + for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { + ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0); + if (ret) + goto err; + nr_charged++; + } + return 0; +err: + for (i = 0; i < nr_charged; i++) + memcg_kmem_uncharge_page(vm_area->pages[i], 0); + return ret; +} + +static int alloc_thread_stack_node(struct task_struct *tsk, int node) +{ + struct vm_struct *vm_area; + void *stack; + + vm_area = alloc_thread_stack_node_from_cache(tsk, node); + if (vm_area) { + if (memcg_charge_kernel_stack(vm_area)) { + vfree(vm_area->addr); + return -ENOMEM; + } + + /* Reset stack metadata. */ + kasan_unpoison_range(vm_area->addr, THREAD_SIZE); + + stack = kasan_reset_tag(vm_area->addr); + + /* Clear stale pointers from reused stack. */ + memset(stack, 0, THREAD_SIZE); + + tsk->stack_vm_area = vm_area; + tsk->stack = stack; + return 0; + } + + stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN, + GFP_VMAP_STACK, + node, __builtin_return_address(0)); + if (!stack) + return -ENOMEM; + + vm_area = find_vm_area(stack); + if (memcg_charge_kernel_stack(vm_area)) { + vfree(stack); + return -ENOMEM; + } + /* + * We can't call find_vm_area() in interrupt context, and + * free_thread_stack() can be called in interrupt context, + * so cache the vm_struct. + */ + tsk->stack_vm_area = vm_area; + stack = kasan_reset_tag(stack); + tsk->stack = stack; + return 0; +} + +static void free_thread_stack(struct task_struct *tsk) { + if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) + thread_stack_delayed_free(tsk); + + tsk->stack = NULL; + tsk->stack_vm_area = NULL; } -#ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR +#else /* !CONFIG_VMAP_STACK */ /* * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a * kmemcache based allocator. */ -# if THREAD_SIZE >= PAGE_SIZE -static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, - int node) +#if THREAD_SIZE >= PAGE_SIZE + +static void thread_stack_free_rcu(struct rcu_head *rh) +{ + __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); +} + +static void thread_stack_delayed_free(struct task_struct *tsk) +{ + struct rcu_head *rh = tsk->stack; + + call_rcu(rh, thread_stack_free_rcu); +} + +static int alloc_thread_stack_node(struct task_struct *tsk, int node) { - struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED, + struct page *page = alloc_pages_node(node, THREADINFO_GFP, THREAD_SIZE_ORDER); - return page ? page_address(page) : NULL; + if (likely(page)) { + tsk->stack = kasan_reset_tag(page_address(page)); + return 0; + } + return -ENOMEM; } -static inline void free_thread_info(struct thread_info *ti) +static void free_thread_stack(struct task_struct *tsk) { - free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER); + thread_stack_delayed_free(tsk); + tsk->stack = NULL; } -# else -static struct kmem_cache *thread_info_cache; -static struct thread_info *alloc_thread_info_node(struct task_struct *tsk, - int node) +#else /* !(THREAD_SIZE >= PAGE_SIZE) */ + +static struct kmem_cache *thread_stack_cache; + +static void thread_stack_free_rcu(struct rcu_head *rh) { - return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node); + kmem_cache_free(thread_stack_cache, rh); } -static void free_thread_info(struct thread_info *ti) +static void thread_stack_delayed_free(struct task_struct *tsk) { - kmem_cache_free(thread_info_cache, ti); + struct rcu_head *rh = tsk->stack; + + call_rcu(rh, thread_stack_free_rcu); } -void thread_info_cache_init(void) +static int alloc_thread_stack_node(struct task_struct *tsk, int node) { - thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, - THREAD_SIZE, 0, NULL); - BUG_ON(thread_info_cache == NULL); + unsigned long *stack; + stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); + stack = kasan_reset_tag(stack); + tsk->stack = stack; + return stack ? 0 : -ENOMEM; +} + +static void free_thread_stack(struct task_struct *tsk) +{ + thread_stack_delayed_free(tsk); + tsk->stack = NULL; } -# endif -#endif + +void thread_stack_cache_init(void) +{ + thread_stack_cache = kmem_cache_create_usercopy("thread_stack", + THREAD_SIZE, THREAD_SIZE, 0, 0, + THREAD_SIZE, NULL); + BUG_ON(thread_stack_cache == NULL); +} + +#endif /* THREAD_SIZE >= PAGE_SIZE */ +#endif /* CONFIG_VMAP_STACK */ /* SLAB cache for signal_struct structures (tsk->signal) */ static struct kmem_cache *signal_cachep; @@ -192,318 +474,544 @@ struct kmem_cache *files_cachep; /* SLAB cache for fs_struct structures (tsk->fs) */ struct kmem_cache *fs_cachep; -/* SLAB cache for vm_area_struct structures */ -struct kmem_cache *vm_area_cachep; - /* SLAB cache for mm_struct structures (tsk->mm) */ static struct kmem_cache *mm_cachep; -static void account_kernel_stack(struct thread_info *ti, int account) +static void account_kernel_stack(struct task_struct *tsk, int account) { - struct zone *zone = page_zone(virt_to_page(ti)); + if (IS_ENABLED(CONFIG_VMAP_STACK)) { + struct vm_struct *vm_area = task_stack_vm_area(tsk); + int i; - mod_zone_page_state(zone, NR_KERNEL_STACK, account); + for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) + mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB, + account * (PAGE_SIZE / 1024)); + } else { + void *stack = task_stack_page(tsk); + + /* All stack pages are in the same node. */ + mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, + account * (THREAD_SIZE / 1024)); + } +} + +void exit_task_stack_account(struct task_struct *tsk) +{ + account_kernel_stack(tsk, -1); + + if (IS_ENABLED(CONFIG_VMAP_STACK)) { + struct vm_struct *vm_area; + int i; + + vm_area = task_stack_vm_area(tsk); + for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) + memcg_kmem_uncharge_page(vm_area->pages[i], 0); + } +} + +static void release_task_stack(struct task_struct *tsk) +{ + if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) + return; /* Better to leak the stack than to free prematurely */ + + free_thread_stack(tsk); +} + +#ifdef CONFIG_THREAD_INFO_IN_TASK +void put_task_stack(struct task_struct *tsk) +{ + if (refcount_dec_and_test(&tsk->stack_refcount)) + release_task_stack(tsk); } +#endif void free_task(struct task_struct *tsk) { - account_kernel_stack(tsk->stack, -1); - arch_release_thread_info(tsk->stack); - free_thread_info(tsk->stack); +#ifdef CONFIG_SECCOMP + WARN_ON_ONCE(tsk->seccomp.filter); +#endif + release_user_cpus_ptr(tsk); + scs_release(tsk); + +#ifndef CONFIG_THREAD_INFO_IN_TASK + /* + * The task is finally done with both the stack and thread_info, + * so free both. + */ + release_task_stack(tsk); +#else + /* + * If the task had a separate stack allocation, it should be gone + * by now. + */ + WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); +#endif rt_mutex_debug_task_free(tsk); ftrace_graph_exit_task(tsk); - put_seccomp_filter(tsk); arch_release_task_struct(tsk); + if (tsk->flags & PF_KTHREAD) + free_kthread_struct(tsk); + bpf_task_storage_free(tsk); free_task_struct(tsk); } EXPORT_SYMBOL(free_task); +void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) +{ + struct file *exe_file; + + exe_file = get_mm_exe_file(oldmm); + RCU_INIT_POINTER(mm->exe_file, exe_file); + /* + * We depend on the oldmm having properly denied write access to the + * exe_file already. + */ + if (exe_file && exe_file_deny_write_access(exe_file)) + pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); +} + +#ifdef CONFIG_MMU +static inline int mm_alloc_pgd(struct mm_struct *mm) +{ + mm->pgd = pgd_alloc(mm); + if (unlikely(!mm->pgd)) + return -ENOMEM; + return 0; +} + +static inline void mm_free_pgd(struct mm_struct *mm) +{ + pgd_free(mm, mm->pgd); +} +#else +#define mm_alloc_pgd(mm) (0) +#define mm_free_pgd(mm) +#endif /* CONFIG_MMU */ + +#ifdef CONFIG_MM_ID +static DEFINE_IDA(mm_ida); + +static inline int mm_alloc_id(struct mm_struct *mm) +{ + int ret; + + ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL); + if (ret < 0) + return ret; + mm->mm_id = ret; + return 0; +} + +static inline void mm_free_id(struct mm_struct *mm) +{ + const mm_id_t id = mm->mm_id; + + mm->mm_id = MM_ID_DUMMY; + if (id == MM_ID_DUMMY) + return; + if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX)) + return; + ida_free(&mm_ida, id); +} +#else /* !CONFIG_MM_ID */ +static inline int mm_alloc_id(struct mm_struct *mm) { return 0; } +static inline void mm_free_id(struct mm_struct *mm) {} +#endif /* CONFIG_MM_ID */ + +static void check_mm(struct mm_struct *mm) +{ + int i; + + BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, + "Please make sure 'struct resident_page_types[]' is updated as well"); + + for (i = 0; i < NR_MM_COUNTERS; i++) { + long x = percpu_counter_sum(&mm->rss_stat[i]); + + if (unlikely(x)) { + pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld Comm:%s Pid:%d\n", + mm, resident_page_types[i], x, + current->comm, + task_pid_nr(current)); + } + } + + if (mm_pgtables_bytes(mm)) + pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", + mm_pgtables_bytes(mm)); + +#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) + VM_BUG_ON_MM(mm->pmd_huge_pte, mm); +#endif +} + +#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) +#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) + +static void do_check_lazy_tlb(void *arg) +{ + struct mm_struct *mm = arg; + + WARN_ON_ONCE(current->active_mm == mm); +} + +static void do_shoot_lazy_tlb(void *arg) +{ + struct mm_struct *mm = arg; + + if (current->active_mm == mm) { + WARN_ON_ONCE(current->mm); + current->active_mm = &init_mm; + switch_mm(mm, &init_mm, current); + } +} + +static void cleanup_lazy_tlbs(struct mm_struct *mm) +{ + if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { + /* + * In this case, lazy tlb mms are refounted and would not reach + * __mmdrop until all CPUs have switched away and mmdrop()ed. + */ + return; + } + + /* + * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it + * requires lazy mm users to switch to another mm when the refcount + * drops to zero, before the mm is freed. This requires IPIs here to + * switch kernel threads to init_mm. + * + * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm + * switch with the final userspace teardown TLB flush which leaves the + * mm lazy on this CPU but no others, reducing the need for additional + * IPIs here. There are cases where a final IPI is still required here, + * such as the final mmdrop being performed on a different CPU than the + * one exiting, or kernel threads using the mm when userspace exits. + * + * IPI overheads have not found to be expensive, but they could be + * reduced in a number of possible ways, for example (roughly + * increasing order of complexity): + * - The last lazy reference created by exit_mm() could instead switch + * to init_mm, however it's probable this will run on the same CPU + * immediately afterwards, so this may not reduce IPIs much. + * - A batch of mms requiring IPIs could be gathered and freed at once. + * - CPUs store active_mm where it can be remotely checked without a + * lock, to filter out false-positives in the cpumask. + * - After mm_users or mm_count reaches zero, switching away from the + * mm could clear mm_cpumask to reduce some IPIs, perhaps together + * with some batching or delaying of the final IPIs. + * - A delayed freeing and RCU-like quiescing sequence based on mm + * switching to avoid IPIs completely. + */ + on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); + if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) + on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); +} + +/* + * Called when the last reference to the mm + * is dropped: either by a lazy thread or by + * mmput. Free the page directory and the mm. + */ +void __mmdrop(struct mm_struct *mm) +{ + BUG_ON(mm == &init_mm); + WARN_ON_ONCE(mm == current->mm); + + /* Ensure no CPUs are using this as their lazy tlb mm */ + cleanup_lazy_tlbs(mm); + + WARN_ON_ONCE(mm == current->active_mm); + mm_free_pgd(mm); + mm_free_id(mm); + destroy_context(mm); + mmu_notifier_subscriptions_destroy(mm); + check_mm(mm); + put_user_ns(mm->user_ns); + mm_pasid_drop(mm); + mm_destroy_cid(mm); + percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); + + free_mm(mm); +} +EXPORT_SYMBOL_GPL(__mmdrop); + +static void mmdrop_async_fn(struct work_struct *work) +{ + struct mm_struct *mm; + + mm = container_of(work, struct mm_struct, async_put_work); + __mmdrop(mm); +} + +static void mmdrop_async(struct mm_struct *mm) +{ + if (unlikely(atomic_dec_and_test(&mm->mm_count))) { + INIT_WORK(&mm->async_put_work, mmdrop_async_fn); + schedule_work(&mm->async_put_work); + } +} + static inline void free_signal_struct(struct signal_struct *sig) { taskstats_tgid_free(sig); sched_autogroup_exit(sig); + /* + * __mmdrop is not safe to call from softirq context on x86 due to + * pgd_dtor so postpone it to the async context + */ + if (sig->oom_mm) + mmdrop_async(sig->oom_mm); kmem_cache_free(signal_cachep, sig); } static inline void put_signal_struct(struct signal_struct *sig) { - if (atomic_dec_and_test(&sig->sigcnt)) + if (refcount_dec_and_test(&sig->sigcnt)) free_signal_struct(sig); } void __put_task_struct(struct task_struct *tsk) { WARN_ON(!tsk->exit_state); - WARN_ON(atomic_read(&tsk->usage)); + WARN_ON(refcount_read(&tsk->usage)); WARN_ON(tsk == current); + unwind_task_free(tsk); + io_uring_free(tsk); + cgroup_task_free(tsk); + task_numa_free(tsk, true); security_task_free(tsk); exit_creds(tsk); delayacct_tsk_free(tsk); put_signal_struct(tsk->signal); - - if (!profile_handoff_task(tsk)) - free_task(tsk); + sched_core_free(tsk); + free_task(tsk); } EXPORT_SYMBOL_GPL(__put_task_struct); +void __put_task_struct_rcu_cb(struct rcu_head *rhp) +{ + struct task_struct *task = container_of(rhp, struct task_struct, rcu); + + __put_task_struct(task); +} +EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); + void __init __weak arch_task_cache_init(void) { } -void __init fork_init(unsigned long mempages) +/* + * set_max_threads + */ +static void __init set_max_threads(unsigned int max_threads_suggested) +{ + u64 threads; + unsigned long nr_pages = memblock_estimated_nr_free_pages(); + + /* + * The number of threads shall be limited such that the thread + * structures may only consume a small part of the available memory. + */ + if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) + threads = MAX_THREADS; + else + threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, + (u64) THREAD_SIZE * 8UL); + + if (threads > max_threads_suggested) + threads = max_threads_suggested; + + max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); +} + +#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT +/* Initialized by the architecture: */ +int arch_task_struct_size __read_mostly; +#endif + +static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) +{ + /* Fetch thread_struct whitelist for the architecture. */ + arch_thread_struct_whitelist(offset, size); + + /* + * Handle zero-sized whitelist or empty thread_struct, otherwise + * adjust offset to position of thread_struct in task_struct. + */ + if (unlikely(*size == 0)) + *offset = 0; + else + *offset += offsetof(struct task_struct, thread); +} + +void __init fork_init(void) { -#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR + int i; #ifndef ARCH_MIN_TASKALIGN -#define ARCH_MIN_TASKALIGN L1_CACHE_BYTES +#define ARCH_MIN_TASKALIGN 0 #endif + int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); + unsigned long useroffset, usersize; + /* create a slab on which task_structs can be allocated */ - task_struct_cachep = - kmem_cache_create("task_struct", sizeof(struct task_struct), - ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL); -#endif + task_struct_whitelist(&useroffset, &usersize); + task_struct_cachep = kmem_cache_create_usercopy("task_struct", + arch_task_struct_size, align, + SLAB_PANIC|SLAB_ACCOUNT, + useroffset, usersize, NULL); /* do the arch specific task caches init */ arch_task_cache_init(); - /* - * The default maximum number of threads is set to a safe - * value: the thread structures can take up at most half - * of memory. - */ - max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); - - /* - * we need to allow at least 20 threads to boot a system - */ - if (max_threads < 20) - max_threads = 20; + set_max_threads(MAX_THREADS); init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; init_task.signal->rlim[RLIMIT_SIGPENDING] = init_task.signal->rlim[RLIMIT_NPROC]; + + for (i = 0; i < UCOUNT_COUNTS; i++) + init_user_ns.ucount_max[i] = max_threads/2; + + set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); + set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); + set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); + set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); + +#ifdef CONFIG_VMAP_STACK + cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", + NULL, free_vm_stack_cache); +#endif + + scs_init(); + + lockdep_init_task(&init_task); + uprobes_init(); } -int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, +int __weak arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { *dst = *src; return 0; } -static struct task_struct *dup_task_struct(struct task_struct *orig) +void set_task_stack_end_magic(struct task_struct *tsk) { - struct task_struct *tsk; - struct thread_info *ti; unsigned long *stackend; - int node = tsk_fork_get_node(orig); + + stackend = end_of_stack(tsk); + *stackend = STACK_END_MAGIC; /* for overflow detection */ +} + +static struct task_struct *dup_task_struct(struct task_struct *orig, int node) +{ + struct task_struct *tsk; int err; + if (node == NUMA_NO_NODE) + node = tsk_fork_get_node(orig); tsk = alloc_task_struct_node(node); if (!tsk) return NULL; - ti = alloc_thread_info_node(tsk, node); - if (!ti) + err = arch_dup_task_struct(tsk, orig); + if (err) + goto free_tsk; + + err = alloc_thread_stack_node(tsk, node); + if (err) goto free_tsk; - err = arch_dup_task_struct(tsk, orig); +#ifdef CONFIG_THREAD_INFO_IN_TASK + refcount_set(&tsk->stack_refcount, 1); +#endif + account_kernel_stack(tsk, 1); + + err = scs_prepare(tsk, node); if (err) - goto free_ti; + goto free_stack; - tsk->stack = ti; +#ifdef CONFIG_SECCOMP + /* + * We must handle setting up seccomp filters once we're under + * the sighand lock in case orig has changed between now and + * then. Until then, filter must be NULL to avoid messing up + * the usage counts on the error path calling free_task. + */ + tsk->seccomp.filter = NULL; +#endif setup_thread_stack(tsk, orig); clear_user_return_notifier(tsk); clear_tsk_need_resched(tsk); - stackend = end_of_stack(tsk); - *stackend = STACK_END_MAGIC; /* for overflow detection */ + set_task_stack_end_magic(tsk); + clear_syscall_work_syscall_user_dispatch(tsk); -#ifdef CONFIG_CC_STACKPROTECTOR - tsk->stack_canary = get_random_int(); +#ifdef CONFIG_STACKPROTECTOR + tsk->stack_canary = get_random_canary(); #endif + if (orig->cpus_ptr == &orig->cpus_mask) + tsk->cpus_ptr = &tsk->cpus_mask; + dup_user_cpus_ptr(tsk, orig, node); /* - * One for us, one for whoever does the "release_task()" (usually - * parent) + * One for the user space visible state that goes away when reaped. + * One for the scheduler. */ - atomic_set(&tsk->usage, 2); + refcount_set(&tsk->rcu_users, 2); + /* One for the rcu users */ + refcount_set(&tsk->usage, 1); #ifdef CONFIG_BLK_DEV_IO_TRACE tsk->btrace_seq = 0; #endif tsk->splice_pipe = NULL; tsk->task_frag.page = NULL; + tsk->wake_q.next = NULL; + tsk->worker_private = NULL; - account_kernel_stack(ti, 1); - - return tsk; - -free_ti: - free_thread_info(ti); -free_tsk: - free_task_struct(tsk); - return NULL; -} - -#ifdef CONFIG_MMU -static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) -{ - struct vm_area_struct *mpnt, *tmp, *prev, **pprev; - struct rb_node **rb_link, *rb_parent; - int retval; - unsigned long charge; - struct mempolicy *pol; - - uprobe_start_dup_mmap(); - down_write(&oldmm->mmap_sem); - flush_cache_dup_mm(oldmm); - uprobe_dup_mmap(oldmm, mm); - /* - * Not linked in yet - no deadlock potential: - */ - down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); - - mm->locked_vm = 0; - mm->mmap = NULL; - mm->mmap_cache = NULL; - mm->map_count = 0; - cpumask_clear(mm_cpumask(mm)); - mm->mm_rb = RB_ROOT; - rb_link = &mm->mm_rb.rb_node; - rb_parent = NULL; - pprev = &mm->mmap; - retval = ksm_fork(mm, oldmm); - if (retval) - goto out; - retval = khugepaged_fork(mm, oldmm); - if (retval) - goto out; - - prev = NULL; - for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { - struct file *file; - - if (mpnt->vm_flags & VM_DONTCOPY) { - vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, - -vma_pages(mpnt)); - continue; - } - charge = 0; - if (mpnt->vm_flags & VM_ACCOUNT) { - unsigned long len = vma_pages(mpnt); - - if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ - goto fail_nomem; - charge = len; - } - tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); - if (!tmp) - goto fail_nomem; - *tmp = *mpnt; - INIT_LIST_HEAD(&tmp->anon_vma_chain); - pol = mpol_dup(vma_policy(mpnt)); - retval = PTR_ERR(pol); - if (IS_ERR(pol)) - goto fail_nomem_policy; - vma_set_policy(tmp, pol); - tmp->vm_mm = mm; - if (anon_vma_fork(tmp, mpnt)) - goto fail_nomem_anon_vma_fork; - tmp->vm_flags &= ~VM_LOCKED; - tmp->vm_next = tmp->vm_prev = NULL; - file = tmp->vm_file; - if (file) { - struct inode *inode = file_inode(file); - struct address_space *mapping = file->f_mapping; - - get_file(file); - if (tmp->vm_flags & VM_DENYWRITE) - atomic_dec(&inode->i_writecount); - mutex_lock(&mapping->i_mmap_mutex); - if (tmp->vm_flags & VM_SHARED) - mapping->i_mmap_writable++; - flush_dcache_mmap_lock(mapping); - /* insert tmp into the share list, just after mpnt */ - if (unlikely(tmp->vm_flags & VM_NONLINEAR)) - vma_nonlinear_insert(tmp, - &mapping->i_mmap_nonlinear); - else - vma_interval_tree_insert_after(tmp, mpnt, - &mapping->i_mmap); - flush_dcache_mmap_unlock(mapping); - mutex_unlock(&mapping->i_mmap_mutex); - } + kcov_task_init(tsk); + kmsan_task_create(tsk); + kmap_local_fork(tsk); - /* - * Clear hugetlb-related page reserves for children. This only - * affects MAP_PRIVATE mappings. Faults generated by the child - * are not guaranteed to succeed, even if read-only - */ - if (is_vm_hugetlb_page(tmp)) - reset_vma_resv_huge_pages(tmp); - - /* - * Link in the new vma and copy the page table entries. - */ - *pprev = tmp; - pprev = &tmp->vm_next; - tmp->vm_prev = prev; - prev = tmp; +#ifdef CONFIG_FAULT_INJECTION + tsk->fail_nth = 0; +#endif - __vma_link_rb(mm, tmp, rb_link, rb_parent); - rb_link = &tmp->vm_rb.rb_right; - rb_parent = &tmp->vm_rb; +#ifdef CONFIG_BLK_CGROUP + tsk->throttle_disk = NULL; + tsk->use_memdelay = 0; +#endif - mm->map_count++; - retval = copy_page_range(mm, oldmm, mpnt); +#ifdef CONFIG_ARCH_HAS_CPU_PASID + tsk->pasid_activated = 0; +#endif - if (tmp->vm_ops && tmp->vm_ops->open) - tmp->vm_ops->open(tmp); +#ifdef CONFIG_MEMCG + tsk->active_memcg = NULL; +#endif - if (retval) - goto out; - } - /* a new mm has just been created */ - arch_dup_mmap(oldmm, mm); - retval = 0; -out: - up_write(&mm->mmap_sem); - flush_tlb_mm(oldmm); - up_write(&oldmm->mmap_sem); - uprobe_end_dup_mmap(); - return retval; -fail_nomem_anon_vma_fork: - mpol_put(pol); -fail_nomem_policy: - kmem_cache_free(vm_area_cachep, tmp); -fail_nomem: - retval = -ENOMEM; - vm_unacct_memory(charge); - goto out; -} +#ifdef CONFIG_X86_BUS_LOCK_DETECT + tsk->reported_split_lock = 0; +#endif -static inline int mm_alloc_pgd(struct mm_struct *mm) -{ - mm->pgd = pgd_alloc(mm); - if (unlikely(!mm->pgd)) - return -ENOMEM; - return 0; -} +#ifdef CONFIG_SCHED_MM_CID + tsk->mm_cid.cid = MM_CID_UNSET; + tsk->mm_cid.active = 0; +#endif + return tsk; -static inline void mm_free_pgd(struct mm_struct *mm) -{ - pgd_free(mm, mm->pgd); +free_stack: + exit_task_stack_account(tsk); + free_thread_stack(tsk); +free_tsk: + free_task_struct(tsk); + return NULL; } -#else -#define dup_mmap(mm, oldmm) (0) -#define mm_alloc_pgd(mm) (0) -#define mm_free_pgd(mm) -#endif /* CONFIG_MMU */ __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); -#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) -#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) - static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; static int __init coredump_filter_setup(char *s) @@ -522,50 +1030,120 @@ static void mm_init_aio(struct mm_struct *mm) { #ifdef CONFIG_AIO spin_lock_init(&mm->ioctx_lock); - INIT_HLIST_HEAD(&mm->ioctx_list); + mm->ioctx_table = NULL; +#endif +} + +static __always_inline void mm_clear_owner(struct mm_struct *mm, + struct task_struct *p) +{ +#ifdef CONFIG_MEMCG + if (mm->owner == p) + WRITE_ONCE(mm->owner, NULL); +#endif +} + +static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) +{ +#ifdef CONFIG_MEMCG + mm->owner = p; +#endif +} + +static void mm_init_uprobes_state(struct mm_struct *mm) +{ +#ifdef CONFIG_UPROBES + mm->uprobes_state.xol_area = NULL; + arch_uprobe_init_state(mm); #endif } -static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p) +static void mmap_init_lock(struct mm_struct *mm) { + init_rwsem(&mm->mmap_lock); + mm_lock_seqcount_init(mm); +#ifdef CONFIG_PER_VMA_LOCK + rcuwait_init(&mm->vma_writer_wait); +#endif +} + +static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, + struct user_namespace *user_ns) +{ + mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); + mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); atomic_set(&mm->mm_users, 1); atomic_set(&mm->mm_count, 1); - init_rwsem(&mm->mmap_sem); + seqcount_init(&mm->write_protect_seq); + mmap_init_lock(mm); INIT_LIST_HEAD(&mm->mmlist); - mm->flags = (current->mm) ? - (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; - mm->core_state = NULL; - mm->nr_ptes = 0; + mm_pgtables_bytes_init(mm); + mm->map_count = 0; + mm->locked_vm = 0; + atomic64_set(&mm->pinned_vm, 0); memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); spin_lock_init(&mm->page_table_lock); + spin_lock_init(&mm->arg_lock); + mm_init_cpumask(mm); mm_init_aio(mm); mm_init_owner(mm, p); + mm_pasid_init(mm); + RCU_INIT_POINTER(mm->exe_file, NULL); + mmu_notifier_subscriptions_init(mm); + init_tlb_flush_pending(mm); +#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) + mm->pmd_huge_pte = NULL; +#endif + mm_init_uprobes_state(mm); + hugetlb_count_init(mm); - if (likely(!mm_alloc_pgd(mm))) { + mm_flags_clear_all(mm); + if (current->mm) { + unsigned long flags = __mm_flags_get_word(current->mm); + + __mm_flags_overwrite_word(mm, mmf_init_legacy_flags(flags)); + mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; + } else { + __mm_flags_overwrite_word(mm, default_dump_filter); mm->def_flags = 0; - mmu_notifier_mm_init(mm); - return mm; } - free_mm(mm); - return NULL; -} + if (futex_mm_init(mm)) + goto fail_mm_init; -static void check_mm(struct mm_struct *mm) -{ - int i; + if (mm_alloc_pgd(mm)) + goto fail_nopgd; - for (i = 0; i < NR_MM_COUNTERS; i++) { - long x = atomic_long_read(&mm->rss_stat.count[i]); + if (mm_alloc_id(mm)) + goto fail_noid; - if (unlikely(x)) - printk(KERN_ALERT "BUG: Bad rss-counter state " - "mm:%p idx:%d val:%ld\n", mm, i, x); - } + if (init_new_context(p, mm)) + goto fail_nocontext; -#ifdef CONFIG_TRANSPARENT_HUGEPAGE - VM_BUG_ON(mm->pmd_huge_pte); -#endif + if (mm_alloc_cid(mm, p)) + goto fail_cid; + + if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, + NR_MM_COUNTERS)) + goto fail_pcpu; + + mm->user_ns = get_user_ns(user_ns); + lru_gen_init_mm(mm); + return mm; + +fail_pcpu: + mm_destroy_cid(mm); +fail_cid: + destroy_context(mm); +fail_nocontext: + mm_free_id(mm); +fail_noid: + mm_free_pgd(mm); +fail_nopgd: + futex_hash_free(mm); +fail_mm_init: + free_mm(mm); + return NULL; } /* @@ -580,25 +1158,32 @@ struct mm_struct *mm_alloc(void) return NULL; memset(mm, 0, sizeof(*mm)); - mm_init_cpumask(mm); - return mm_init(mm, current); + return mm_init(mm, current, current_user_ns()); } +EXPORT_SYMBOL_IF_KUNIT(mm_alloc); -/* - * Called when the last reference to the mm - * is dropped: either by a lazy thread or by - * mmput. Free the page directory and the mm. - */ -void __mmdrop(struct mm_struct *mm) +static inline void __mmput(struct mm_struct *mm) { - BUG_ON(mm == &init_mm); - mm_free_pgd(mm); - destroy_context(mm); - mmu_notifier_mm_destroy(mm); - check_mm(mm); - free_mm(mm); + VM_BUG_ON(atomic_read(&mm->mm_users)); + + uprobe_clear_state(mm); + exit_aio(mm); + ksm_exit(mm); + khugepaged_exit(mm); /* must run before exit_mmap */ + exit_mmap(mm); + mm_put_huge_zero_folio(mm); + set_mm_exe_file(mm, NULL); + if (!list_empty(&mm->mmlist)) { + spin_lock(&mmlist_lock); + list_del(&mm->mmlist); + spin_unlock(&mmlist_lock); + } + if (mm->binfmt) + module_put(mm->binfmt->module); + lru_gen_del_mm(mm); + futex_hash_free(mm); + mmdrop(mm); } -EXPORT_SYMBOL_GPL(__mmdrop); /* * Decrement the use count and release all resources for an mm. @@ -607,56 +1192,168 @@ void mmput(struct mm_struct *mm) { might_sleep(); + if (atomic_dec_and_test(&mm->mm_users)) + __mmput(mm); +} +EXPORT_SYMBOL_GPL(mmput); + +#if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH) +static void mmput_async_fn(struct work_struct *work) +{ + struct mm_struct *mm = container_of(work, struct mm_struct, + async_put_work); + + __mmput(mm); +} + +void mmput_async(struct mm_struct *mm) +{ if (atomic_dec_and_test(&mm->mm_users)) { - uprobe_clear_state(mm); - exit_aio(mm); - ksm_exit(mm); - khugepaged_exit(mm); /* must run before exit_mmap */ - exit_mmap(mm); - set_mm_exe_file(mm, NULL); - if (!list_empty(&mm->mmlist)) { - spin_lock(&mmlist_lock); - list_del(&mm->mmlist); - spin_unlock(&mmlist_lock); - } - if (mm->binfmt) - module_put(mm->binfmt->module); - mmdrop(mm); + INIT_WORK(&mm->async_put_work, mmput_async_fn); + schedule_work(&mm->async_put_work); } } -EXPORT_SYMBOL_GPL(mmput); +EXPORT_SYMBOL_GPL(mmput_async); +#endif -void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) +/** + * set_mm_exe_file - change a reference to the mm's executable file + * @mm: The mm to change. + * @new_exe_file: The new file to use. + * + * This changes mm's executable file (shown as symlink /proc/[pid]/exe). + * + * Main users are mmput() and sys_execve(). Callers prevent concurrent + * invocations: in mmput() nobody alive left, in execve it happens before + * the new mm is made visible to anyone. + * + * Can only fail if new_exe_file != NULL. + */ +int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) { - if (new_exe_file) + struct file *old_exe_file; + + /* + * It is safe to dereference the exe_file without RCU as + * this function is only called if nobody else can access + * this mm -- see comment above for justification. + */ + old_exe_file = rcu_dereference_raw(mm->exe_file); + + if (new_exe_file) { + /* + * We expect the caller (i.e., sys_execve) to already denied + * write access, so this is unlikely to fail. + */ + if (unlikely(exe_file_deny_write_access(new_exe_file))) + return -EACCES; get_file(new_exe_file); - if (mm->exe_file) - fput(mm->exe_file); - mm->exe_file = new_exe_file; + } + rcu_assign_pointer(mm->exe_file, new_exe_file); + if (old_exe_file) { + exe_file_allow_write_access(old_exe_file); + fput(old_exe_file); + } + return 0; +} + +/** + * replace_mm_exe_file - replace a reference to the mm's executable file + * @mm: The mm to change. + * @new_exe_file: The new file to use. + * + * This changes mm's executable file (shown as symlink /proc/[pid]/exe). + * + * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). + */ +int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) +{ + struct vm_area_struct *vma; + struct file *old_exe_file; + int ret = 0; + + /* Forbid mm->exe_file change if old file still mapped. */ + old_exe_file = get_mm_exe_file(mm); + if (old_exe_file) { + VMA_ITERATOR(vmi, mm, 0); + mmap_read_lock(mm); + for_each_vma(vmi, vma) { + if (!vma->vm_file) + continue; + if (path_equal(&vma->vm_file->f_path, + &old_exe_file->f_path)) { + ret = -EBUSY; + break; + } + } + mmap_read_unlock(mm); + fput(old_exe_file); + if (ret) + return ret; + } + + ret = exe_file_deny_write_access(new_exe_file); + if (ret) + return -EACCES; + get_file(new_exe_file); + + /* set the new file */ + mmap_write_lock(mm); + old_exe_file = rcu_dereference_raw(mm->exe_file); + rcu_assign_pointer(mm->exe_file, new_exe_file); + mmap_write_unlock(mm); + + if (old_exe_file) { + exe_file_allow_write_access(old_exe_file); + fput(old_exe_file); + } + return 0; } +/** + * get_mm_exe_file - acquire a reference to the mm's executable file + * @mm: The mm of interest. + * + * Returns %NULL if mm has no associated executable file. + * User must release file via fput(). + */ struct file *get_mm_exe_file(struct mm_struct *mm) { struct file *exe_file; - /* We need mmap_sem to protect against races with removal of exe_file */ - down_read(&mm->mmap_sem); - exe_file = mm->exe_file; - if (exe_file) - get_file(exe_file); - up_read(&mm->mmap_sem); + rcu_read_lock(); + exe_file = get_file_rcu(&mm->exe_file); + rcu_read_unlock(); return exe_file; } -static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm) +/** + * get_task_exe_file - acquire a reference to the task's executable file + * @task: The task. + * + * Returns %NULL if task's mm (if any) has no associated executable file or + * this is a kernel thread with borrowed mm (see the comment above get_task_mm). + * User must release file via fput(). + */ +struct file *get_task_exe_file(struct task_struct *task) { - /* It's safe to write the exe_file pointer without exe_file_lock because - * this is called during fork when the task is not yet in /proc */ - newmm->exe_file = get_mm_exe_file(oldmm); + struct file *exe_file = NULL; + struct mm_struct *mm; + + if (task->flags & PF_KTHREAD) + return NULL; + + task_lock(task); + mm = task->mm; + if (mm) + exe_file = get_mm_exe_file(mm); + task_unlock(task); + return exe_file; } /** * get_task_mm - acquire a reference to the task's mm + * @task: The task. * * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning * this kernel workthread has transiently adopted a user mm with use_mm, @@ -668,35 +1365,46 @@ struct mm_struct *get_task_mm(struct task_struct *task) { struct mm_struct *mm; + if (task->flags & PF_KTHREAD) + return NULL; + task_lock(task); mm = task->mm; - if (mm) { - if (task->flags & PF_KTHREAD) - mm = NULL; - else - atomic_inc(&mm->mm_users); - } + if (mm) + mmget(mm); task_unlock(task); return mm; } EXPORT_SYMBOL_GPL(get_task_mm); +static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode) +{ + if (mm == current->mm) + return true; + if (ptrace_may_access(task, mode)) + return true; + if ((mode & PTRACE_MODE_READ) && perfmon_capable()) + return true; + return false; +} + struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) { struct mm_struct *mm; int err; - err = mutex_lock_killable(&task->signal->cred_guard_mutex); + err = down_read_killable(&task->signal->exec_update_lock); if (err) return ERR_PTR(err); mm = get_task_mm(task); - if (mm && mm != current->mm && - !ptrace_may_access(task, mode)) { + if (!mm) { + mm = ERR_PTR(-ESRCH); + } else if (!may_access_mm(mm, task, mode)) { mmput(mm); mm = ERR_PTR(-EACCES); } - mutex_unlock(&task->signal->cred_guard_mutex); + up_read(&task->signal->exec_update_lock); return mm; } @@ -717,11 +1425,12 @@ static void complete_vfork_done(struct task_struct *tsk) static int wait_for_vfork_done(struct task_struct *child, struct completion *vfork) { + unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; int killed; - freezer_do_not_count(); - killed = wait_for_completion_killable(vfork); - freezer_count(); + cgroup_enter_frozen(); + killed = wait_for_completion_state(vfork, state); + cgroup_leave_frozen(false); if (killed) { task_lock(child); @@ -746,46 +1455,27 @@ static int wait_for_vfork_done(struct task_struct *child, * restoring the old one. . . * Eric Biederman 10 January 1998 */ -void mm_release(struct task_struct *tsk, struct mm_struct *mm) +static void mm_release(struct task_struct *tsk, struct mm_struct *mm) { - /* Get rid of any futexes when releasing the mm */ -#ifdef CONFIG_FUTEX - if (unlikely(tsk->robust_list)) { - exit_robust_list(tsk); - tsk->robust_list = NULL; - } -#ifdef CONFIG_COMPAT - if (unlikely(tsk->compat_robust_list)) { - compat_exit_robust_list(tsk); - tsk->compat_robust_list = NULL; - } -#endif - if (unlikely(!list_empty(&tsk->pi_state_list))) - exit_pi_state_list(tsk); -#endif - uprobe_free_utask(tsk); /* Get rid of any cached register state */ deactivate_mm(tsk, mm); /* - * If we're exiting normally, clear a user-space tid field if - * requested. We leave this alone when dying by signal, to leave - * the value intact in a core dump, and to save the unnecessary - * trouble, say, a killed vfork parent shouldn't touch this mm. - * Userland only wants this done for a sys_exit. + * Signal userspace if we're not exiting with a core dump + * because we want to leave the value intact for debugging + * purposes. */ if (tsk->clear_child_tid) { - if (!(tsk->flags & PF_SIGNALED) && - atomic_read(&mm->mm_users) > 1) { + if (atomic_read(&mm->mm_users) > 1) { /* * We don't check the error code - if userspace has * not set up a proper pointer then tough luck. */ put_user(0, tsk->clear_child_tid); - sys_futex(tsk->clear_child_tid, FUTEX_WAKE, - 1, NULL, NULL, 0); + do_futex(tsk->clear_child_tid, FUTEX_WAKE, + 1, NULL, NULL, 0, 0); } tsk->clear_child_tid = NULL; } @@ -798,42 +1488,48 @@ void mm_release(struct task_struct *tsk, struct mm_struct *mm) complete_vfork_done(tsk); } -/* - * Allocate a new mm structure and copy contents from the - * mm structure of the passed in task structure. +void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) +{ + futex_exit_release(tsk); + mm_release(tsk, mm); +} + +void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) +{ + futex_exec_release(tsk); + mm_release(tsk, mm); +} + +/** + * dup_mm() - duplicates an existing mm structure + * @tsk: the task_struct with which the new mm will be associated. + * @oldmm: the mm to duplicate. + * + * Allocates a new mm structure and duplicates the provided @oldmm structure + * content into it. + * + * Return: the duplicated mm or NULL on failure. */ -struct mm_struct *dup_mm(struct task_struct *tsk) +static struct mm_struct *dup_mm(struct task_struct *tsk, + struct mm_struct *oldmm) { - struct mm_struct *mm, *oldmm = current->mm; + struct mm_struct *mm; int err; - if (!oldmm) - return NULL; - mm = allocate_mm(); if (!mm) goto fail_nomem; memcpy(mm, oldmm, sizeof(*mm)); - mm_init_cpumask(mm); -#ifdef CONFIG_TRANSPARENT_HUGEPAGE - mm->pmd_huge_pte = NULL; -#endif -#ifdef CONFIG_NUMA_BALANCING - mm->first_nid = NUMA_PTE_SCAN_INIT; -#endif - if (!mm_init(mm, tsk)) + if (!mm_init(mm, tsk, mm->user_ns)) goto fail_nomem; - if (init_new_context(tsk, mm)) - goto fail_nocontext; - - dup_mm_exe_file(oldmm, mm); - + uprobe_start_dup_mmap(); err = dup_mmap(mm, oldmm); if (err) goto free_pt; + uprobe_end_dup_mmap(); mm->hiwater_rss = get_mm_rss(mm); mm->hiwater_vm = mm->total_vm; @@ -846,30 +1542,24 @@ struct mm_struct *dup_mm(struct task_struct *tsk) free_pt: /* don't put binfmt in mmput, we haven't got module yet */ mm->binfmt = NULL; + mm_init_owner(mm, NULL); mmput(mm); + if (err) + uprobe_end_dup_mmap(); fail_nomem: return NULL; - -fail_nocontext: - /* - * If init_new_context() failed, we cannot use mmput() to free the mm - * because it calls destroy_context() - */ - mm_free_pgd(mm); - free_mm(mm); - return NULL; } -static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) +static int copy_mm(u64 clone_flags, struct task_struct *tsk) { struct mm_struct *mm, *oldmm; - int retval; tsk->min_flt = tsk->maj_flt = 0; tsk->nvcsw = tsk->nivcsw = 0; #ifdef CONFIG_DETECT_HUNG_TASK tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; + tsk->last_switch_time = 0; #endif tsk->mm = NULL; @@ -885,37 +1575,33 @@ static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) return 0; if (clone_flags & CLONE_VM) { - atomic_inc(&oldmm->mm_users); + mmget(oldmm); mm = oldmm; - goto good_mm; + } else { + mm = dup_mm(tsk, current->mm); + if (!mm) + return -ENOMEM; } - retval = -ENOMEM; - mm = dup_mm(tsk); - if (!mm) - goto fail_nomem; - -good_mm: tsk->mm = mm; tsk->active_mm = mm; + sched_mm_cid_fork(tsk); return 0; - -fail_nomem: - return retval; } -static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) +static int copy_fs(u64 clone_flags, struct task_struct *tsk) { struct fs_struct *fs = current->fs; if (clone_flags & CLONE_FS) { /* tsk->fs is already what we want */ - spin_lock(&fs->lock); + read_seqlock_excl(&fs->seq); + /* "users" and "in_exec" locked for check_unsafe_exec() */ if (fs->in_exec) { - spin_unlock(&fs->lock); + read_sequnlock_excl(&fs->seq); return -EAGAIN; } fs->users++; - spin_unlock(&fs->lock); + read_sequnlock_excl(&fs->seq); return 0; } tsk->fs = copy_fs_struct(fs); @@ -924,108 +1610,86 @@ static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) return 0; } -static int copy_files(unsigned long clone_flags, struct task_struct *tsk) +static int copy_files(u64 clone_flags, struct task_struct *tsk, + int no_files) { struct files_struct *oldf, *newf; - int error = 0; /* * A background process may not have any files ... */ oldf = current->files; if (!oldf) - goto out; + return 0; + + if (no_files) { + tsk->files = NULL; + return 0; + } if (clone_flags & CLONE_FILES) { atomic_inc(&oldf->count); - goto out; + return 0; } - newf = dup_fd(oldf, &error); - if (!newf) - goto out; + newf = dup_fd(oldf, NULL); + if (IS_ERR(newf)) + return PTR_ERR(newf); tsk->files = newf; - error = 0; -out: - return error; -} - -static int copy_io(unsigned long clone_flags, struct task_struct *tsk) -{ -#ifdef CONFIG_BLOCK - struct io_context *ioc = current->io_context; - struct io_context *new_ioc; - - if (!ioc) - return 0; - /* - * Share io context with parent, if CLONE_IO is set - */ - if (clone_flags & CLONE_IO) { - ioc_task_link(ioc); - tsk->io_context = ioc; - } else if (ioprio_valid(ioc->ioprio)) { - new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); - if (unlikely(!new_ioc)) - return -ENOMEM; - - new_ioc->ioprio = ioc->ioprio; - put_io_context(new_ioc); - } -#endif return 0; } -static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) +static int copy_sighand(u64 clone_flags, struct task_struct *tsk) { struct sighand_struct *sig; if (clone_flags & CLONE_SIGHAND) { - atomic_inc(¤t->sighand->count); + refcount_inc(¤t->sighand->count); return 0; } sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); - rcu_assign_pointer(tsk->sighand, sig); + RCU_INIT_POINTER(tsk->sighand, sig); if (!sig) return -ENOMEM; - atomic_set(&sig->count, 1); + + refcount_set(&sig->count, 1); + spin_lock_irq(¤t->sighand->siglock); memcpy(sig->action, current->sighand->action, sizeof(sig->action)); + spin_unlock_irq(¤t->sighand->siglock); + + /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ + if (clone_flags & CLONE_CLEAR_SIGHAND) + flush_signal_handlers(tsk, 0); + return 0; } void __cleanup_sighand(struct sighand_struct *sighand) { - if (atomic_dec_and_test(&sighand->count)) { + if (refcount_dec_and_test(&sighand->count)) { signalfd_cleanup(sighand); + /* + * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it + * without an RCU grace period, see __lock_task_sighand(). + */ kmem_cache_free(sighand_cachep, sighand); } } - /* * Initialize POSIX timer handling for a thread group. */ static void posix_cpu_timers_init_group(struct signal_struct *sig) { + struct posix_cputimers *pct = &sig->posix_cputimers; unsigned long cpu_limit; - /* Thread group counters. */ - thread_group_cputime_init(sig); - - cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); - if (cpu_limit != RLIM_INFINITY) { - sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit); - sig->cputimer.running = 1; - } - - /* The timer lists. */ - INIT_LIST_HEAD(&sig->cpu_timers[0]); - INIT_LIST_HEAD(&sig->cpu_timers[1]); - INIT_LIST_HEAD(&sig->cpu_timers[2]); + cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); + posix_cputimers_group_init(pct, cpu_limit); } -static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) +static int copy_signal(u64 clone_flags, struct task_struct *tsk) { struct signal_struct *sig; @@ -1038,15 +1702,26 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) return -ENOMEM; sig->nr_threads = 1; + sig->quick_threads = 1; atomic_set(&sig->live, 1); - atomic_set(&sig->sigcnt, 1); + refcount_set(&sig->sigcnt, 1); + + /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ + sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); + tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); + init_waitqueue_head(&sig->wait_chldexit); sig->curr_target = tsk; init_sigpending(&sig->shared_pending); - INIT_LIST_HEAD(&sig->posix_timers); - - hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); - sig->real_timer.function = it_real_fn; + INIT_HLIST_HEAD(&sig->multiprocess); + seqlock_init(&sig->stats_lock); + prev_cputime_init(&sig->prev_cputime); + +#ifdef CONFIG_POSIX_TIMERS + INIT_HLIST_HEAD(&sig->posix_timers); + INIT_HLIST_HEAD(&sig->ignored_posix_timers); + hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL); +#endif task_lock(current->group_leader); memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); @@ -1058,27 +1733,49 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) sched_autogroup_fork(sig); #ifdef CONFIG_CGROUPS - init_rwsem(&sig->group_rwsem); + init_rwsem(&sig->cgroup_threadgroup_rwsem); #endif sig->oom_score_adj = current->signal->oom_score_adj; sig->oom_score_adj_min = current->signal->oom_score_adj_min; - sig->has_child_subreaper = current->signal->has_child_subreaper || - current->signal->is_child_subreaper; - mutex_init(&sig->cred_guard_mutex); + init_rwsem(&sig->exec_update_lock); return 0; } -static void copy_flags(unsigned long clone_flags, struct task_struct *p) +static void copy_seccomp(struct task_struct *p) { - unsigned long new_flags = p->flags; +#ifdef CONFIG_SECCOMP + /* + * Must be called with sighand->lock held, which is common to + * all threads in the group. Holding cred_guard_mutex is not + * needed because this new task is not yet running and cannot + * be racing exec. + */ + assert_spin_locked(¤t->sighand->siglock); + + /* Ref-count the new filter user, and assign it. */ + get_seccomp_filter(current); + p->seccomp = current->seccomp; + + /* + * Explicitly enable no_new_privs here in case it got set + * between the task_struct being duplicated and holding the + * sighand lock. The seccomp state and nnp must be in sync. + */ + if (task_no_new_privs(current)) + task_set_no_new_privs(p); - new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER); - new_flags |= PF_FORKNOEXEC; - p->flags = new_flags; + /* + * If the parent gained a seccomp mode after copying thread + * flags and between before we held the sighand lock, we have + * to manually enable the seccomp thread flag here. + */ + if (p->seccomp.mode != SECCOMP_MODE_DISABLED) + set_task_syscall_work(p, SECCOMP); +#endif } SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) @@ -1092,35 +1789,170 @@ static void rt_mutex_init_task(struct task_struct *p) { raw_spin_lock_init(&p->pi_lock); #ifdef CONFIG_RT_MUTEXES - plist_head_init(&p->pi_waiters); + p->pi_waiters = RB_ROOT_CACHED; + p->pi_top_task = NULL; p->pi_blocked_on = NULL; #endif } -#ifdef CONFIG_MM_OWNER -void mm_init_owner(struct mm_struct *mm, struct task_struct *p) +static inline void init_task_pid_links(struct task_struct *task) { - mm->owner = p; + enum pid_type type; + + for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) + INIT_HLIST_NODE(&task->pid_links[type]); } -#endif /* CONFIG_MM_OWNER */ -/* - * Initialize POSIX timer handling for a single task. +static inline void +init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) +{ + if (type == PIDTYPE_PID) + task->thread_pid = pid; + else + task->signal->pids[type] = pid; +} + +static inline void rcu_copy_process(struct task_struct *p) +{ +#ifdef CONFIG_PREEMPT_RCU + p->rcu_read_lock_nesting = 0; + p->rcu_read_unlock_special.s = 0; + p->rcu_blocked_node = NULL; + INIT_LIST_HEAD(&p->rcu_node_entry); +#endif /* #ifdef CONFIG_PREEMPT_RCU */ +#ifdef CONFIG_TASKS_RCU + p->rcu_tasks_holdout = false; + INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); + p->rcu_tasks_idle_cpu = -1; + INIT_LIST_HEAD(&p->rcu_tasks_exit_list); +#endif /* #ifdef CONFIG_TASKS_RCU */ +#ifdef CONFIG_TASKS_TRACE_RCU + p->trc_reader_nesting = 0; + p->trc_reader_special.s = 0; + INIT_LIST_HEAD(&p->trc_holdout_list); + INIT_LIST_HEAD(&p->trc_blkd_node); +#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ +} + +/** + * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd + * @pid: the struct pid for which to create a pidfd + * @flags: flags of the new @pidfd + * @ret_file: return the new pidfs file + * + * Allocate a new file that stashes @pid and reserve a new pidfd number in the + * caller's file descriptor table. The pidfd is reserved but not installed yet. + * + * The helper verifies that @pid is still in use, without PIDFD_THREAD the + * task identified by @pid must be a thread-group leader. + * + * If this function returns successfully the caller is responsible to either + * call fd_install() passing the returned pidfd and pidfd file as arguments in + * order to install the pidfd into its file descriptor table or they must use + * put_unused_fd() and fput() on the returned pidfd and pidfd file + * respectively. + * + * This function is useful when a pidfd must already be reserved but there + * might still be points of failure afterwards and the caller wants to ensure + * that no pidfd is leaked into its file descriptor table. + * + * Return: On success, a reserved pidfd is returned from the function and a new + * pidfd file is returned in the last argument to the function. On + * error, a negative error code is returned from the function and the + * last argument remains unchanged. */ -static void posix_cpu_timers_init(struct task_struct *tsk) +int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file) +{ + struct file *pidfs_file; + + /* + * PIDFD_STALE is only allowed to be passed if the caller knows + * that @pid is already registered in pidfs and thus + * PIDFD_INFO_EXIT information is guaranteed to be available. + */ + if (!(flags & PIDFD_STALE)) { + /* + * While holding the pidfd waitqueue lock removing the + * task linkage for the thread-group leader pid + * (PIDTYPE_TGID) isn't possible. Thus, if there's still + * task linkage for PIDTYPE_PID not having thread-group + * leader linkage for the pid means it wasn't a + * thread-group leader in the first place. + */ + guard(spinlock_irq)(&pid->wait_pidfd.lock); + + /* Task has already been reaped. */ + if (!pid_has_task(pid, PIDTYPE_PID)) + return -ESRCH; + /* + * If this struct pid isn't used as a thread-group + * leader but the caller requested to create a + * thread-group leader pidfd then report ENOENT. + */ + if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID)) + return -ENOENT; + } + + CLASS(get_unused_fd, pidfd)(O_CLOEXEC); + if (pidfd < 0) + return pidfd; + + pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR); + if (IS_ERR(pidfs_file)) + return PTR_ERR(pidfs_file); + + *ret_file = pidfs_file; + return take_fd(pidfd); +} + +static void __delayed_free_task(struct rcu_head *rhp) +{ + struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); + + free_task(tsk); +} + +static __always_inline void delayed_free_task(struct task_struct *tsk) { - tsk->cputime_expires.prof_exp = 0; - tsk->cputime_expires.virt_exp = 0; - tsk->cputime_expires.sched_exp = 0; - INIT_LIST_HEAD(&tsk->cpu_timers[0]); - INIT_LIST_HEAD(&tsk->cpu_timers[1]); - INIT_LIST_HEAD(&tsk->cpu_timers[2]); + if (IS_ENABLED(CONFIG_MEMCG)) + call_rcu(&tsk->rcu, __delayed_free_task); + else + free_task(tsk); } -static inline void -init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) +static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) +{ + /* Skip if kernel thread */ + if (!tsk->mm) + return; + + /* Skip if spawning a thread or using vfork */ + if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) + return; + + /* We need to synchronize with __set_oom_adj */ + mutex_lock(&oom_adj_mutex); + mm_flags_set(MMF_MULTIPROCESS, tsk->mm); + /* Update the values in case they were changed after copy_signal */ + tsk->signal->oom_score_adj = current->signal->oom_score_adj; + tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; + mutex_unlock(&oom_adj_mutex); +} + +#ifdef CONFIG_RV +static void rv_task_fork(struct task_struct *p) { - task->pids[type].pid = pid; + memset(&p->rv, 0, sizeof(p->rv)); +} +#else +#define rv_task_fork(p) do {} while (0) +#endif + +static bool need_futex_hash_allocate_default(u64 clone_flags) +{ + if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM)) + return false; + return true; } /* @@ -1131,16 +1963,23 @@ init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) * parts of the process environment (as per the clone * flags). The actual kick-off is left to the caller. */ -static struct task_struct *copy_process(unsigned long clone_flags, - unsigned long stack_start, - unsigned long stack_size, - int __user *child_tidptr, +__latent_entropy struct task_struct *copy_process( struct pid *pid, - int trace) + int trace, + int node, + struct kernel_clone_args *args) { - int retval; + int pidfd = -1, retval; struct task_struct *p; + struct multiprocess_signals delayed; + struct file *pidfile = NULL; + const u64 clone_flags = args->flags; + struct nsproxy *nsp = current->nsproxy; + /* + * Don't allow sharing the root directory with processes in a different + * namespace + */ if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) return ERR_PTR(-EINVAL); @@ -1173,59 +2012,101 @@ static struct task_struct *copy_process(unsigned long clone_flags, return ERR_PTR(-EINVAL); /* - * If the new process will be in a different pid namespace - * don't allow the creation of threads. + * If the new process will be in a different pid or user namespace + * do not allow it to share a thread group with the forking task. */ - if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) && - (task_active_pid_ns(current) != current->nsproxy->pid_ns)) - return ERR_PTR(-EINVAL); + if (clone_flags & CLONE_THREAD) { + if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || + (task_active_pid_ns(current) != nsp->pid_ns_for_children)) + return ERR_PTR(-EINVAL); + } - retval = security_task_create(clone_flags); - if (retval) + if (clone_flags & CLONE_PIDFD) { + /* + * - CLONE_DETACHED is blocked so that we can potentially + * reuse it later for CLONE_PIDFD. + */ + if (clone_flags & CLONE_DETACHED) + return ERR_PTR(-EINVAL); + } + + /* + * Force any signals received before this point to be delivered + * before the fork happens. Collect up signals sent to multiple + * processes that happen during the fork and delay them so that + * they appear to happen after the fork. + */ + sigemptyset(&delayed.signal); + INIT_HLIST_NODE(&delayed.node); + + spin_lock_irq(¤t->sighand->siglock); + if (!(clone_flags & CLONE_THREAD)) + hlist_add_head(&delayed.node, ¤t->signal->multiprocess); + recalc_sigpending(); + spin_unlock_irq(¤t->sighand->siglock); + retval = -ERESTARTNOINTR; + if (task_sigpending(current)) goto fork_out; retval = -ENOMEM; - p = dup_task_struct(current); + p = dup_task_struct(current, node); if (!p) goto fork_out; + p->flags &= ~PF_KTHREAD; + if (args->kthread) + p->flags |= PF_KTHREAD; + if (args->user_worker) { + /* + * Mark us a user worker, and block any signal that isn't + * fatal or STOP + */ + p->flags |= PF_USER_WORKER; + siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); + } + if (args->io_thread) + p->flags |= PF_IO_WORKER; + + if (args->name) + strscpy_pad(p->comm, args->name, sizeof(p->comm)); + + p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; + /* + * Clear TID on mm_release()? + */ + p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; ftrace_graph_init_task(p); - get_seccomp_filter(p); rt_mutex_init_task(p); + lockdep_assert_irqs_enabled(); #ifdef CONFIG_PROVE_LOCKING - DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); #endif + retval = copy_creds(p, clone_flags); + if (retval < 0) + goto bad_fork_free; + retval = -EAGAIN; - if (atomic_read(&p->real_cred->user->processes) >= - task_rlimit(p, RLIMIT_NPROC)) { + if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { if (p->real_cred->user != INIT_USER && !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) - goto bad_fork_free; + goto bad_fork_cleanup_count; } current->flags &= ~PF_NPROC_EXCEEDED; - retval = copy_creds(p, clone_flags); - if (retval < 0) - goto bad_fork_free; - /* * If multiple threads are within copy_process(), then this check * triggers too late. This doesn't hurt, the check is only there * to stop root fork bombs. */ retval = -EAGAIN; - if (nr_threads >= max_threads) - goto bad_fork_cleanup_count; - - if (!try_module_get(task_thread_info(p)->exec_domain->module)) + if (data_race(nr_threads >= max_threads)) goto bad_fork_cleanup_count; - p->did_exec = 0; delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ - copy_flags(clone_flags, p); + p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); + p->flags |= PF_FORKNOEXEC; INIT_LIST_HEAD(&p->children); INIT_LIST_HEAD(&p->sibling); rcu_copy_process(p); @@ -1235,96 +2116,97 @@ static struct task_struct *copy_process(unsigned long clone_flags, init_sigpending(&p->pending); p->utime = p->stime = p->gtime = 0; +#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME p->utimescaled = p->stimescaled = 0; -#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE - p->prev_cputime.utime = p->prev_cputime.stime = 0; #endif + prev_cputime_init(&p->prev_cputime); + #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN - seqlock_init(&p->vtime_seqlock); - p->vtime_snap = 0; - p->vtime_snap_whence = VTIME_SLEEPING; + seqcount_init(&p->vtime.seqcount); + p->vtime.starttime = 0; + p->vtime.state = VTIME_INACTIVE; #endif -#if defined(SPLIT_RSS_COUNTING) - memset(&p->rss_stat, 0, sizeof(p->rss_stat)); +#ifdef CONFIG_IO_URING + p->io_uring = NULL; #endif p->default_timer_slack_ns = current->timer_slack_ns; +#ifdef CONFIG_PSI + p->psi_flags = 0; +#endif + task_io_accounting_init(&p->ioac); acct_clear_integrals(p); - posix_cpu_timers_init(p); + posix_cputimers_init(&p->posix_cputimers); + tick_dep_init_task(p); - do_posix_clock_monotonic_gettime(&p->start_time); - p->real_start_time = p->start_time; - monotonic_to_bootbased(&p->real_start_time); p->io_context = NULL; - p->audit_context = NULL; - if (clone_flags & CLONE_THREAD) - threadgroup_change_begin(current); + audit_set_context(p, NULL); cgroup_fork(p); + if (args->kthread) { + if (!set_kthread_struct(p)) + goto bad_fork_cleanup_delayacct; + } #ifdef CONFIG_NUMA p->mempolicy = mpol_dup(p->mempolicy); if (IS_ERR(p->mempolicy)) { retval = PTR_ERR(p->mempolicy); p->mempolicy = NULL; - goto bad_fork_cleanup_cgroup; + goto bad_fork_cleanup_delayacct; } - mpol_fix_fork_child_flag(p); #endif #ifdef CONFIG_CPUSETS p->cpuset_mem_spread_rotor = NUMA_NO_NODE; - p->cpuset_slab_spread_rotor = NUMA_NO_NODE; - seqcount_init(&p->mems_allowed_seq); + seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); #endif #ifdef CONFIG_TRACE_IRQFLAGS - p->irq_events = 0; - p->hardirqs_enabled = 0; - p->hardirq_enable_ip = 0; - p->hardirq_enable_event = 0; - p->hardirq_disable_ip = _THIS_IP_; - p->hardirq_disable_event = 0; - p->softirqs_enabled = 1; - p->softirq_enable_ip = _THIS_IP_; - p->softirq_enable_event = 0; - p->softirq_disable_ip = 0; - p->softirq_disable_event = 0; - p->hardirq_context = 0; - p->softirq_context = 0; -#endif -#ifdef CONFIG_LOCKDEP - p->lockdep_depth = 0; /* no locks held yet */ - p->curr_chain_key = 0; - p->lockdep_recursion = 0; + memset(&p->irqtrace, 0, sizeof(p->irqtrace)); + p->irqtrace.hardirq_disable_ip = _THIS_IP_; + p->irqtrace.softirq_enable_ip = _THIS_IP_; + p->softirqs_enabled = 1; + p->softirq_context = 0; #endif -#ifdef CONFIG_DEBUG_MUTEXES + p->pagefault_disabled = 0; + + lockdep_init_task(p); + p->blocked_on = NULL; /* not blocked yet */ -#endif -#ifdef CONFIG_MEMCG - p->memcg_batch.do_batch = 0; - p->memcg_batch.memcg = NULL; -#endif + #ifdef CONFIG_BCACHE p->sequential_io = 0; p->sequential_io_avg = 0; #endif +#ifdef CONFIG_BPF_SYSCALL + RCU_INIT_POINTER(p->bpf_storage, NULL); + p->bpf_ctx = NULL; +#endif - /* Perform scheduler related setup. Assign this task to a CPU. */ - sched_fork(p); + unwind_task_init(p); - retval = perf_event_init_task(p); + /* Perform scheduler related setup. Assign this task to a CPU. */ + retval = sched_fork(clone_flags, p); if (retval) goto bad_fork_cleanup_policy; + + retval = perf_event_init_task(p, clone_flags); + if (retval) + goto bad_fork_sched_cancel_fork; retval = audit_alloc(p); if (retval) - goto bad_fork_cleanup_policy; + goto bad_fork_cleanup_perf; /* copy all the process information */ - retval = copy_semundo(clone_flags, p); + shm_init_task(p); + retval = security_task_alloc(p, clone_flags); if (retval) goto bad_fork_cleanup_audit; - retval = copy_files(clone_flags, p); + retval = copy_semundo(clone_flags, p); + if (retval) + goto bad_fork_cleanup_security; + retval = copy_files(clone_flags, p, args->no_files); if (retval) goto bad_fork_cleanup_semundo; retval = copy_fs(clone_flags, p); @@ -1345,75 +2227,138 @@ static struct task_struct *copy_process(unsigned long clone_flags, retval = copy_io(clone_flags, p); if (retval) goto bad_fork_cleanup_namespaces; - retval = copy_thread(clone_flags, stack_start, stack_size, p); + retval = copy_thread(p, args); if (retval) goto bad_fork_cleanup_io; + stackleak_task_init(p); + if (pid != &init_struct_pid) { - retval = -ENOMEM; - pid = alloc_pid(p->nsproxy->pid_ns); - if (!pid) - goto bad_fork_cleanup_io; + pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, + args->set_tid_size); + if (IS_ERR(pid)) { + retval = PTR_ERR(pid); + goto bad_fork_cleanup_thread; + } } - p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; /* - * Clear TID on mm_release()? + * This has to happen after we've potentially unshared the file + * descriptor table (so that the pidfd doesn't leak into the child + * if the fd table isn't shared). */ - p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; + if (clone_flags & CLONE_PIDFD) { + int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; + + /* + * Note that no task has been attached to @pid yet indicate + * that via CLONE_PIDFD. + */ + retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile); + if (retval < 0) + goto bad_fork_free_pid; + pidfd = retval; + + retval = put_user(pidfd, args->pidfd); + if (retval) + goto bad_fork_put_pidfd; + } + #ifdef CONFIG_BLOCK p->plug = NULL; #endif -#ifdef CONFIG_FUTEX - p->robust_list = NULL; -#ifdef CONFIG_COMPAT - p->compat_robust_list = NULL; -#endif - INIT_LIST_HEAD(&p->pi_state_list); - p->pi_state_cache = NULL; -#endif - uprobe_copy_process(p); + futex_init_task(p); + /* * sigaltstack should be cleared when sharing the same VM */ if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) - p->sas_ss_sp = p->sas_ss_size = 0; + sas_ss_reset(p); /* * Syscall tracing and stepping should be turned off in the * child regardless of CLONE_PTRACE. */ user_disable_single_step(p); - clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); -#ifdef TIF_SYSCALL_EMU - clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); + clear_task_syscall_work(p, SYSCALL_TRACE); +#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) + clear_task_syscall_work(p, SYSCALL_EMU); #endif - clear_all_latency_tracing(p); + clear_tsk_latency_tracing(p); /* ok, now we should be set up.. */ p->pid = pid_nr(pid); if (clone_flags & CLONE_THREAD) { - p->exit_signal = -1; p->group_leader = current->group_leader; p->tgid = current->tgid; } else { - if (clone_flags & CLONE_PARENT) - p->exit_signal = current->group_leader->exit_signal; - else - p->exit_signal = (clone_flags & CSIGNAL); p->group_leader = p; p->tgid = p->pid; } - p->pdeath_signal = 0; - p->exit_state = 0; - p->nr_dirtied = 0; p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); p->dirty_paused_when = 0; - INIT_LIST_HEAD(&p->thread_group); + p->pdeath_signal = 0; p->task_works = NULL; + clear_posix_cputimers_work(p); + +#ifdef CONFIG_KRETPROBES + p->kretprobe_instances.first = NULL; +#endif +#ifdef CONFIG_RETHOOK + p->rethooks.first = NULL; +#endif + + /* + * Ensure that the cgroup subsystem policies allow the new process to be + * forked. It should be noted that the new process's css_set can be changed + * between here and cgroup_post_fork() if an organisation operation is in + * progress. + */ + retval = cgroup_can_fork(p, args); + if (retval) + goto bad_fork_put_pidfd; + + /* + * Now that the cgroups are pinned, re-clone the parent cgroup and put + * the new task on the correct runqueue. All this *before* the task + * becomes visible. + * + * This isn't part of ->can_fork() because while the re-cloning is + * cgroup specific, it unconditionally needs to place the task on a + * runqueue. + */ + retval = sched_cgroup_fork(p, args); + if (retval) + goto bad_fork_cancel_cgroup; + + /* + * Allocate a default futex hash for the user process once the first + * thread spawns. + */ + if (need_futex_hash_allocate_default(clone_flags)) { + retval = futex_hash_allocate_default(); + if (retval) + goto bad_fork_cancel_cgroup; + /* + * If we fail beyond this point we don't free the allocated + * futex hash map. We assume that another thread will be created + * and makes use of it. The hash map will be freed once the main + * thread terminates. + */ + } + /* + * From this point on we must avoid any synchronous user-space + * communication until we take the tasklist-lock. In particular, we do + * not want user-space to be able to predict the process start-time by + * stalling fork(2) after we recorded the start_time but before it is + * visible to the system. + */ + + p->start_time = ktime_get_ns(); + p->start_boottime = ktime_get_boottime_ns(); /* * Make it visible to the rest of the system, but dont wake it up yet. @@ -1425,34 +2370,53 @@ static struct task_struct *copy_process(unsigned long clone_flags, if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { p->real_parent = current->real_parent; p->parent_exec_id = current->parent_exec_id; + if (clone_flags & CLONE_THREAD) + p->exit_signal = -1; + else + p->exit_signal = current->group_leader->exit_signal; } else { p->real_parent = current; p->parent_exec_id = current->self_exec_id; + p->exit_signal = args->exit_signal; } + klp_copy_process(p); + + sched_core_fork(p); + spin_lock(¤t->sighand->siglock); - /* - * Process group and session signals need to be delivered to just the - * parent before the fork or both the parent and the child after the - * fork. Restart if a signal comes in before we add the new process to - * it's process group. - * A fatal signal pending means that current will exit, so the new - * thread can't slip out of an OOM kill (or normal SIGKILL). - */ - recalc_sigpending(); - if (signal_pending(current)) { - spin_unlock(¤t->sighand->siglock); - write_unlock_irq(&tasklist_lock); - retval = -ERESTARTNOINTR; - goto bad_fork_free_pid; + rv_task_fork(p); + + rseq_fork(p, clone_flags); + + /* Don't start children in a dying pid namespace */ + if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { + retval = -ENOMEM; + goto bad_fork_core_free; + } + + /* Let kill terminate clone/fork in the middle */ + if (fatal_signal_pending(current)) { + retval = -EINTR; + goto bad_fork_core_free; } + /* No more failure paths after this point. */ + + /* + * Copy seccomp details explicitly here, in case they were changed + * before holding sighand lock. + */ + copy_seccomp(p); + + init_task_pid_links(p); if (likely(p->pid)) { ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); init_task_pid(p, PIDTYPE_PID, pid); if (thread_group_leader(p)) { + init_task_pid(p, PIDTYPE_TGID, pid); init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); init_task_pid(p, PIDTYPE_SID, task_session(current)); @@ -1460,49 +2424,82 @@ static struct task_struct *copy_process(unsigned long clone_flags, ns_of_pid(pid)->child_reaper = p; p->signal->flags |= SIGNAL_UNKILLABLE; } - - p->signal->leader_pid = pid; + p->signal->shared_pending.signal = delayed.signal; p->signal->tty = tty_kref_get(current->signal->tty); + /* + * Inherit has_child_subreaper flag under the same + * tasklist_lock with adding child to the process tree + * for propagate_has_child_subreaper optimization. + */ + p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || + p->real_parent->signal->is_child_subreaper; list_add_tail(&p->sibling, &p->real_parent->children); list_add_tail_rcu(&p->tasks, &init_task.tasks); + attach_pid(p, PIDTYPE_TGID); attach_pid(p, PIDTYPE_PGID); attach_pid(p, PIDTYPE_SID); __this_cpu_inc(process_counts); } else { current->signal->nr_threads++; + current->signal->quick_threads++; atomic_inc(¤t->signal->live); - atomic_inc(¤t->signal->sigcnt); - list_add_tail_rcu(&p->thread_group, - &p->group_leader->thread_group); + refcount_inc(¤t->signal->sigcnt); + task_join_group_stop(p); + list_add_tail_rcu(&p->thread_node, + &p->signal->thread_head); } attach_pid(p, PIDTYPE_PID); nr_threads++; } - total_forks++; + hlist_del_init(&delayed.node); spin_unlock(¤t->sighand->siglock); + syscall_tracepoint_update(p); write_unlock_irq(&tasklist_lock); + + if (pidfile) + fd_install(pidfd, pidfile); + proc_fork_connector(p); - cgroup_post_fork(p); - if (clone_flags & CLONE_THREAD) - threadgroup_change_end(current); + sched_post_fork(p); + cgroup_post_fork(p, args); perf_event_fork(p); trace_task_newtask(p, clone_flags); + uprobe_copy_process(p, clone_flags); + user_events_fork(p, clone_flags); + + copy_oom_score_adj(clone_flags, p); return p; +bad_fork_core_free: + sched_core_free(p); + spin_unlock(¤t->sighand->siglock); + write_unlock_irq(&tasklist_lock); +bad_fork_cancel_cgroup: + cgroup_cancel_fork(p, args); +bad_fork_put_pidfd: + if (clone_flags & CLONE_PIDFD) { + fput(pidfile); + put_unused_fd(pidfd); + } bad_fork_free_pid: if (pid != &init_struct_pid) free_pid(pid); +bad_fork_cleanup_thread: + exit_thread(p); bad_fork_cleanup_io: if (p->io_context) exit_io_context(p); bad_fork_cleanup_namespaces: - exit_task_namespaces(p); + exit_nsproxy_namespaces(p); bad_fork_cleanup_mm: - if (p->mm) + if (p->mm) { + sched_mm_cid_exit(p); + mm_clear_owner(p->mm, p); mmput(p->mm); + } bad_fork_cleanup_signal: if (!(clone_flags & CLONE_THREAD)) free_signal_struct(p->signal); @@ -1514,44 +2511,67 @@ bad_fork_cleanup_files: exit_files(p); /* blocking */ bad_fork_cleanup_semundo: exit_sem(p); +bad_fork_cleanup_security: + security_task_free(p); bad_fork_cleanup_audit: audit_free(p); -bad_fork_cleanup_policy: +bad_fork_cleanup_perf: perf_event_free_task(p); +bad_fork_sched_cancel_fork: + sched_cancel_fork(p); +bad_fork_cleanup_policy: + lockdep_free_task(p); #ifdef CONFIG_NUMA mpol_put(p->mempolicy); -bad_fork_cleanup_cgroup: #endif - if (clone_flags & CLONE_THREAD) - threadgroup_change_end(current); - cgroup_exit(p, 0); +bad_fork_cleanup_delayacct: delayacct_tsk_free(p); - module_put(task_thread_info(p)->exec_domain->module); bad_fork_cleanup_count: - atomic_dec(&p->cred->user->processes); + dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); + exit_cred_namespaces(p); exit_creds(p); bad_fork_free: - free_task(p); + WRITE_ONCE(p->__state, TASK_DEAD); + exit_task_stack_account(p); + put_task_stack(p); + delayed_free_task(p); fork_out: + spin_lock_irq(¤t->sighand->siglock); + hlist_del_init(&delayed.node); + spin_unlock_irq(¤t->sighand->siglock); return ERR_PTR(retval); } -static inline void init_idle_pids(struct pid_link *links) +static inline void init_idle_pids(struct task_struct *idle) { enum pid_type type; for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { - INIT_HLIST_NODE(&links[type].node); /* not really needed */ - links[type].pid = &init_struct_pid; + INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ + init_task_pid(idle, type, &init_struct_pid); } } -struct task_struct * __cpuinit fork_idle(int cpu) +static int idle_dummy(void *dummy) +{ + /* This function is never called */ + return 0; +} + +struct task_struct * __init fork_idle(int cpu) { struct task_struct *task; - task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0); + struct kernel_clone_args args = { + .flags = CLONE_VM, + .fn = &idle_dummy, + .fn_arg = NULL, + .kthread = 1, + .idle = 1, + }; + + task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); if (!IS_ERR(task)) { - init_idle_pids(task->pids); + init_idle_pids(task); init_idle(task, cpu); } @@ -1559,29 +2579,56 @@ struct task_struct * __cpuinit fork_idle(int cpu) } /* + * This is like kernel_clone(), but shaved down and tailored to just + * creating io_uring workers. It returns a created task, or an error pointer. + * The returned task is inactive, and the caller must fire it up through + * wake_up_new_task(p). All signals are blocked in the created task. + */ +struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) +{ + unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| + CLONE_IO|CLONE_VM|CLONE_UNTRACED; + struct kernel_clone_args args = { + .flags = flags, + .fn = fn, + .fn_arg = arg, + .io_thread = 1, + .user_worker = 1, + }; + + return copy_process(NULL, 0, node, &args); +} + +/* * Ok, this is the main fork-routine. * * It copies the process, and if successful kick-starts * it and waits for it to finish using the VM if required. + * + * args->exit_signal is expected to be checked for sanity by the caller. */ -long do_fork(unsigned long clone_flags, - unsigned long stack_start, - unsigned long stack_size, - int __user *parent_tidptr, - int __user *child_tidptr) +pid_t kernel_clone(struct kernel_clone_args *args) { + u64 clone_flags = args->flags; + struct completion vfork; + struct pid *pid; struct task_struct *p; int trace = 0; - long nr; + pid_t nr; /* - * Do some preliminary argument and permissions checking before we - * actually start allocating stuff + * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument + * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are + * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate + * field in struct clone_args and it still doesn't make sense to have + * them both point at the same memory location. Performing this check + * here has the advantage that we don't need to have a separate helper + * to check for legacy clone(). */ - if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) { - if (clone_flags & (CLONE_THREAD|CLONE_PARENT)) - return -EINVAL; - } + if ((clone_flags & CLONE_PIDFD) && + (clone_flags & CLONE_PARENT_SETTID) && + (args->pidfd == args->parent_tid)) + return -EINVAL; /* * Determine whether and which event to report to ptracer. When @@ -1592,7 +2639,7 @@ long do_fork(unsigned long clone_flags, if (!(clone_flags & CLONE_UNTRACED)) { if (clone_flags & CLONE_VFORK) trace = PTRACE_EVENT_VFORK; - else if ((clone_flags & CSIGNAL) != SIGCHLD) + else if (args->exit_signal != SIGCHLD) trace = PTRACE_EVENT_CLONE; else trace = PTRACE_EVENT_FORK; @@ -1601,61 +2648,97 @@ long do_fork(unsigned long clone_flags, trace = 0; } - p = copy_process(clone_flags, stack_start, stack_size, - child_tidptr, NULL, trace); + p = copy_process(NULL, trace, NUMA_NO_NODE, args); + add_latent_entropy(); + + if (IS_ERR(p)) + return PTR_ERR(p); + /* * Do this prior waking up the new thread - the thread pointer * might get invalid after that point, if the thread exits quickly. */ - if (!IS_ERR(p)) { - struct completion vfork; + trace_sched_process_fork(current, p); - trace_sched_process_fork(current, p); + pid = get_task_pid(p, PIDTYPE_PID); + nr = pid_vnr(pid); - nr = task_pid_vnr(p); + if (clone_flags & CLONE_PARENT_SETTID) + put_user(nr, args->parent_tid); - if (clone_flags & CLONE_PARENT_SETTID) - put_user(nr, parent_tidptr); + if (clone_flags & CLONE_VFORK) { + p->vfork_done = &vfork; + init_completion(&vfork); + get_task_struct(p); + } - if (clone_flags & CLONE_VFORK) { - p->vfork_done = &vfork; - init_completion(&vfork); - get_task_struct(p); - } + if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { + /* lock the task to synchronize with memcg migration */ + task_lock(p); + lru_gen_add_mm(p->mm); + task_unlock(p); + } - wake_up_new_task(p); + wake_up_new_task(p); - /* forking complete and child started to run, tell ptracer */ - if (unlikely(trace)) - ptrace_event(trace, nr); + /* forking complete and child started to run, tell ptracer */ + if (unlikely(trace)) + ptrace_event_pid(trace, pid); - if (clone_flags & CLONE_VFORK) { - if (!wait_for_vfork_done(p, &vfork)) - ptrace_event(PTRACE_EVENT_VFORK_DONE, nr); - } - } else { - nr = PTR_ERR(p); + if (clone_flags & CLONE_VFORK) { + if (!wait_for_vfork_done(p, &vfork)) + ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); } + + put_pid(pid); return nr; } /* * Create a kernel thread. */ -pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) +pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, + unsigned long flags) { - return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, - (unsigned long)arg, NULL, NULL); + struct kernel_clone_args args = { + .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), + .exit_signal = (flags & CSIGNAL), + .fn = fn, + .fn_arg = arg, + .name = name, + .kthread = 1, + }; + + return kernel_clone(&args); +} + +/* + * Create a user mode thread. + */ +pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) +{ + struct kernel_clone_args args = { + .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), + .exit_signal = (flags & CSIGNAL), + .fn = fn, + .fn_arg = arg, + }; + + return kernel_clone(&args); } #ifdef __ARCH_WANT_SYS_FORK SYSCALL_DEFINE0(fork) { #ifdef CONFIG_MMU - return do_fork(SIGCHLD, 0, 0, NULL, NULL); + struct kernel_clone_args args = { + .exit_signal = SIGCHLD, + }; + + return kernel_clone(&args); #else /* can not support in nommu mode */ - return(-EINVAL); + return -EINVAL; #endif } #endif @@ -1663,8 +2746,12 @@ SYSCALL_DEFINE0(fork) #ifdef __ARCH_WANT_SYS_VFORK SYSCALL_DEFINE0(vfork) { - return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, - 0, NULL, NULL); + struct kernel_clone_args args = { + .flags = CLONE_VFORK | CLONE_VM, + .exit_signal = SIGCHLD, + }; + + return kernel_clone(&args); } #endif @@ -1672,24 +2759,232 @@ SYSCALL_DEFINE0(vfork) #ifdef CONFIG_CLONE_BACKWARDS SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, int __user *, parent_tidptr, - int, tls_val, + unsigned long, tls, int __user *, child_tidptr) #elif defined(CONFIG_CLONE_BACKWARDS2) SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, int __user *, parent_tidptr, int __user *, child_tidptr, - int, tls_val) + unsigned long, tls) +#elif defined(CONFIG_CLONE_BACKWARDS3) +SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, + int, stack_size, + int __user *, parent_tidptr, + int __user *, child_tidptr, + unsigned long, tls) #else SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, int __user *, parent_tidptr, int __user *, child_tidptr, - int, tls_val) + unsigned long, tls) +#endif +{ + struct kernel_clone_args args = { + .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), + .pidfd = parent_tidptr, + .child_tid = child_tidptr, + .parent_tid = parent_tidptr, + .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), + .stack = newsp, + .tls = tls, + }; + + return kernel_clone(&args); +} +#endif + +static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs, + struct clone_args __user *uargs, + size_t usize) +{ + int err; + struct clone_args args; + pid_t *kset_tid = kargs->set_tid; + + BUILD_BUG_ON(offsetofend(struct clone_args, tls) != + CLONE_ARGS_SIZE_VER0); + BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != + CLONE_ARGS_SIZE_VER1); + BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != + CLONE_ARGS_SIZE_VER2); + BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); + + if (unlikely(usize > PAGE_SIZE)) + return -E2BIG; + if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) + return -EINVAL; + + err = copy_struct_from_user(&args, sizeof(args), uargs, usize); + if (err) + return err; + + if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) + return -EINVAL; + + if (unlikely(!args.set_tid && args.set_tid_size > 0)) + return -EINVAL; + + if (unlikely(args.set_tid && args.set_tid_size == 0)) + return -EINVAL; + + /* + * Verify that higher 32bits of exit_signal are unset and that + * it is a valid signal + */ + if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || + !valid_signal(args.exit_signal))) + return -EINVAL; + + if ((args.flags & CLONE_INTO_CGROUP) && + (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) + return -EINVAL; + + *kargs = (struct kernel_clone_args){ + .flags = args.flags, + .pidfd = u64_to_user_ptr(args.pidfd), + .child_tid = u64_to_user_ptr(args.child_tid), + .parent_tid = u64_to_user_ptr(args.parent_tid), + .exit_signal = args.exit_signal, + .stack = args.stack, + .stack_size = args.stack_size, + .tls = args.tls, + .set_tid_size = args.set_tid_size, + .cgroup = args.cgroup, + }; + + if (args.set_tid && + copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), + (kargs->set_tid_size * sizeof(pid_t)))) + return -EFAULT; + + kargs->set_tid = kset_tid; + + return 0; +} + +/** + * clone3_stack_valid - check and prepare stack + * @kargs: kernel clone args + * + * Verify that the stack arguments userspace gave us are sane. + * In addition, set the stack direction for userspace since it's easy for us to + * determine. + */ +static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) +{ + if (kargs->stack == 0) { + if (kargs->stack_size > 0) + return false; + } else { + if (kargs->stack_size == 0) + return false; + + if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) + return false; + +#if !defined(CONFIG_STACK_GROWSUP) + kargs->stack += kargs->stack_size; #endif + } + + return true; +} + +static bool clone3_args_valid(struct kernel_clone_args *kargs) { - return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr); + /* Verify that no unknown flags are passed along. */ + if (kargs->flags & + ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) + return false; + + /* + * - make the CLONE_DETACHED bit reusable for clone3 + * - make the CSIGNAL bits reusable for clone3 + */ + if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) + return false; + + if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == + (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) + return false; + + if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && + kargs->exit_signal) + return false; + + if (!clone3_stack_valid(kargs)) + return false; + + return true; } + +/** + * sys_clone3 - create a new process with specific properties + * @uargs: argument structure + * @size: size of @uargs + * + * clone3() is the extensible successor to clone()/clone2(). + * It takes a struct as argument that is versioned by its size. + * + * Return: On success, a positive PID for the child process. + * On error, a negative errno number. + */ +SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) +{ + int err; + + struct kernel_clone_args kargs; + pid_t set_tid[MAX_PID_NS_LEVEL]; + +#ifdef __ARCH_BROKEN_SYS_CLONE3 +#warning clone3() entry point is missing, please fix + return -ENOSYS; #endif + kargs.set_tid = set_tid; + + err = copy_clone_args_from_user(&kargs, uargs, size); + if (err) + return err; + + if (!clone3_args_valid(&kargs)) + return -EINVAL; + + return kernel_clone(&kargs); +} + +void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) +{ + struct task_struct *leader, *parent, *child; + int res; + + read_lock(&tasklist_lock); + leader = top = top->group_leader; +down: + for_each_thread(leader, parent) { + list_for_each_entry(child, &parent->children, sibling) { + res = visitor(child, data); + if (res) { + if (res < 0) + goto out; + leader = child; + goto down; + } +up: + ; + } + } + + if (leader != top) { + child = leader; + parent = child->real_parent; + leader = parent->group_leader; + goto up; + } +out: + read_unlock(&tasklist_lock); +} + #ifndef ARCH_MIN_MMSTRUCT_ALIGN #define ARCH_MIN_MMSTRUCT_ALIGN 0 #endif @@ -1702,32 +2997,43 @@ static void sighand_ctor(void *data) init_waitqueue_head(&sighand->signalfd_wqh); } +void __init mm_cache_init(void) +{ + unsigned int mm_size; + + /* + * The mm_cpumask is located at the end of mm_struct, and is + * dynamically sized based on the maximum CPU number this system + * can have, taking hotplug into account (nr_cpu_ids). + */ + mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); + + mm_cachep = kmem_cache_create_usercopy("mm_struct", + mm_size, ARCH_MIN_MMSTRUCT_ALIGN, + SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, + offsetof(struct mm_struct, saved_auxv), + sizeof_field(struct mm_struct, saved_auxv), + NULL); +} + void __init proc_caches_init(void) { sighand_cachep = kmem_cache_create("sighand_cache", sizeof(struct sighand_struct), 0, - SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU| - SLAB_NOTRACK, sighand_ctor); + SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| + SLAB_ACCOUNT, sighand_ctor); signal_cachep = kmem_cache_create("signal_cache", sizeof(struct signal_struct), 0, - SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); + SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, + NULL); files_cachep = kmem_cache_create("files_cache", sizeof(struct files_struct), 0, - SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); + SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, + NULL); fs_cachep = kmem_cache_create("fs_cache", sizeof(struct fs_struct), 0, - SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); - /* - * FIXME! The "sizeof(struct mm_struct)" currently includes the - * whole struct cpumask for the OFFSTACK case. We could change - * this to *only* allocate as much of it as required by the - * maximum number of CPU's we can ever have. The cpumask_allocation - * is at the end of the structure, exactly for that reason. - */ - mm_cachep = kmem_cache_create("mm_struct", - sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, - SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL); - vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC); + SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, + NULL); mmap_init(); nsproxy_cache_init(); } @@ -1740,16 +3046,25 @@ static int check_unshare_flags(unsigned long unshare_flags) if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| - CLONE_NEWUSER|CLONE_NEWPID)) + CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| + CLONE_NEWTIME)) return -EINVAL; /* - * Not implemented, but pretend it works if there is nothing to - * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND - * needs to unshare vm. + * Not implemented, but pretend it works if there is nothing + * to unshare. Note that unsharing the address space or the + * signal handlers also need to unshare the signal queues (aka + * CLONE_THREAD). */ if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { - /* FIXME: get_task_mm() increments ->mm_users */ - if (atomic_read(¤t->mm->mm_users) > 1) + if (!thread_group_empty(current)) + return -EINVAL; + } + if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { + if (refcount_read(¤t->sighand->count) > 1) + return -EINVAL; + } + if (unshare_flags & CLONE_VM) { + if (!current_is_single_threaded()) return -EINVAL; } @@ -1783,13 +3098,13 @@ static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) { struct files_struct *fd = current->files; - int error = 0; if ((unshare_flags & CLONE_FILES) && (fd && atomic_read(&fd->count) > 1)) { - *new_fdp = dup_fd(fd, &error); - if (!*new_fdp) - return error; + fd = dup_fd(fd, NULL); + if (IS_ERR(fd)) + return PTR_ERR(fd); + *new_fdp = fd; } return 0; @@ -1798,41 +3113,37 @@ static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp /* * unshare allows a process to 'unshare' part of the process * context which was originally shared using clone. copy_* - * functions used by do_fork() cannot be used here directly + * functions used by kernel_clone() cannot be used here directly * because they modify an inactive task_struct that is being * constructed. Here we are modifying the current, active, * task_struct. */ -SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) +int ksys_unshare(unsigned long unshare_flags) { struct fs_struct *fs, *new_fs = NULL; - struct files_struct *fd, *new_fd = NULL; + struct files_struct *new_fd = NULL; struct cred *new_cred = NULL; struct nsproxy *new_nsproxy = NULL; int do_sysvsem = 0; int err; /* - * If unsharing a user namespace must also unshare the thread. + * If unsharing a user namespace must also unshare the thread group + * and unshare the filesystem root and working directories. */ if (unshare_flags & CLONE_NEWUSER) unshare_flags |= CLONE_THREAD | CLONE_FS; /* - * If unsharing a pid namespace must also unshare the thread. - */ - if (unshare_flags & CLONE_NEWPID) - unshare_flags |= CLONE_THREAD; - /* - * If unsharing a thread from a thread group, must also unshare vm. - */ - if (unshare_flags & CLONE_THREAD) - unshare_flags |= CLONE_VM; - /* * If unsharing vm, must also unshare signal handlers. */ if (unshare_flags & CLONE_VM) unshare_flags |= CLONE_SIGHAND; /* + * If unsharing a signal handlers, must also unshare the signal queues. + */ + if (unshare_flags & CLONE_SIGHAND) + unshare_flags |= CLONE_THREAD; + /* * If unsharing namespace, must also unshare filesystem information. */ if (unshare_flags & CLONE_NEWNS) @@ -1862,6 +3173,12 @@ SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) if (err) goto bad_unshare_cleanup_cred; + if (new_cred) { + err = set_cred_ucounts(new_cred); + if (err) + goto bad_unshare_cleanup_cred; + } + if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { if (do_sysvsem) { /* @@ -1869,6 +3186,11 @@ SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) */ exit_sem(current); } + if (unshare_flags & CLONE_NEWIPC) { + /* Orphan segments in old ns (see sem above). */ + exit_shm(current); + shm_init_task(current); + } if (new_nsproxy) switch_task_namespaces(current, new_nsproxy); @@ -1877,20 +3199,17 @@ SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) if (new_fs) { fs = current->fs; - spin_lock(&fs->lock); + read_seqlock_excl(&fs->seq); current->fs = new_fs; if (--fs->users) new_fs = NULL; else new_fs = fs; - spin_unlock(&fs->lock); + read_sequnlock_excl(&fs->seq); } - if (new_fd) { - fd = current->files; - current->files = new_fd; - new_fd = fd; - } + if (new_fd) + swap(current->files, new_fd); task_unlock(current); @@ -1901,6 +3220,8 @@ SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) } } + perf_event_namespaces(current); + bad_unshare_cleanup_cred: if (new_cred) put_cred(new_cred); @@ -1916,26 +3237,72 @@ bad_unshare_out: return err; } +SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) +{ + return ksys_unshare(unshare_flags); +} + /* * Helper to unshare the files of the current task. * We don't want to expose copy_files internals to * the exec layer of the kernel. */ -int unshare_files(struct files_struct **displaced) +int unshare_files(void) { struct task_struct *task = current; - struct files_struct *copy = NULL; + struct files_struct *old, *copy = NULL; int error; error = unshare_fd(CLONE_FILES, ©); - if (error || !copy) { - *displaced = NULL; + if (error || !copy) return error; - } - *displaced = task->files; + + old = task->files; task_lock(task); task->files = copy; task_unlock(task); + put_files_struct(old); return 0; } + +static int sysctl_max_threads(const struct ctl_table *table, int write, + void *buffer, size_t *lenp, loff_t *ppos) +{ + struct ctl_table t; + int ret; + int threads = max_threads; + int min = 1; + int max = MAX_THREADS; + + t = *table; + t.data = &threads; + t.extra1 = &min; + t.extra2 = &max; + + ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); + if (ret || !write) + return ret; + + max_threads = threads; + + return 0; +} + +static const struct ctl_table fork_sysctl_table[] = { + { + .procname = "threads-max", + .data = NULL, + .maxlen = sizeof(int), + .mode = 0644, + .proc_handler = sysctl_max_threads, + }, +}; + +static int __init init_fork_sysctl(void) +{ + register_sysctl_init("kernel", fork_sysctl_table); + return 0; +} + +subsys_initcall(init_fork_sysctl); |
