diff options
Diffstat (limited to 'kernel/kexec_core.c')
| -rw-r--r-- | kernel/kexec_core.c | 1368 |
1 files changed, 1368 insertions, 0 deletions
diff --git a/kernel/kexec_core.c b/kernel/kexec_core.c new file mode 100644 index 000000000000..0f92acdd354d --- /dev/null +++ b/kernel/kexec_core.c @@ -0,0 +1,1368 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * kexec.c - kexec system call core code. + * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/btf.h> +#include <linux/capability.h> +#include <linux/mm.h> +#include <linux/file.h> +#include <linux/slab.h> +#include <linux/fs.h> +#include <linux/kexec.h> +#include <linux/mutex.h> +#include <linux/list.h> +#include <linux/liveupdate.h> +#include <linux/highmem.h> +#include <linux/syscalls.h> +#include <linux/reboot.h> +#include <linux/ioport.h> +#include <linux/hardirq.h> +#include <linux/elf.h> +#include <linux/elfcore.h> +#include <linux/utsname.h> +#include <linux/numa.h> +#include <linux/suspend.h> +#include <linux/device.h> +#include <linux/freezer.h> +#include <linux/panic_notifier.h> +#include <linux/pm.h> +#include <linux/cpu.h> +#include <linux/uaccess.h> +#include <linux/io.h> +#include <linux/console.h> +#include <linux/vmalloc.h> +#include <linux/swap.h> +#include <linux/syscore_ops.h> +#include <linux/compiler.h> +#include <linux/hugetlb.h> +#include <linux/objtool.h> +#include <linux/kmsg_dump.h> +#include <linux/dma-map-ops.h> +#include <linux/sysfs.h> + +#include <asm/page.h> +#include <asm/sections.h> + +#include <crypto/hash.h> +#include "kexec_internal.h" + +atomic_t __kexec_lock = ATOMIC_INIT(0); + +/* Flag to indicate we are going to kexec a new kernel */ +bool kexec_in_progress = false; + +bool kexec_file_dbg_print; + +/* + * When kexec transitions to the new kernel there is a one-to-one + * mapping between physical and virtual addresses. On processors + * where you can disable the MMU this is trivial, and easy. For + * others it is still a simple predictable page table to setup. + * + * In that environment kexec copies the new kernel to its final + * resting place. This means I can only support memory whose + * physical address can fit in an unsigned long. In particular + * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. + * If the assembly stub has more restrictive requirements + * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be + * defined more restrictively in <asm/kexec.h>. + * + * The code for the transition from the current kernel to the + * new kernel is placed in the control_code_buffer, whose size + * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single + * page of memory is necessary, but some architectures require more. + * Because this memory must be identity mapped in the transition from + * virtual to physical addresses it must live in the range + * 0 - TASK_SIZE, as only the user space mappings are arbitrarily + * modifiable. + * + * The assembly stub in the control code buffer is passed a linked list + * of descriptor pages detailing the source pages of the new kernel, + * and the destination addresses of those source pages. As this data + * structure is not used in the context of the current OS, it must + * be self-contained. + * + * The code has been made to work with highmem pages and will use a + * destination page in its final resting place (if it happens + * to allocate it). The end product of this is that most of the + * physical address space, and most of RAM can be used. + * + * Future directions include: + * - allocating a page table with the control code buffer identity + * mapped, to simplify machine_kexec and make kexec_on_panic more + * reliable. + */ + +/* + * KIMAGE_NO_DEST is an impossible destination address..., for + * allocating pages whose destination address we do not care about. + */ +#define KIMAGE_NO_DEST (-1UL) +#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) + +static struct page *kimage_alloc_page(struct kimage *image, + gfp_t gfp_mask, + unsigned long dest); + +int sanity_check_segment_list(struct kimage *image) +{ + int i; + unsigned long nr_segments = image->nr_segments; + unsigned long total_pages = 0; + unsigned long nr_pages = totalram_pages(); + + /* + * Verify we have good destination addresses. The caller is + * responsible for making certain we don't attempt to load + * the new image into invalid or reserved areas of RAM. This + * just verifies it is an address we can use. + * + * Since the kernel does everything in page size chunks ensure + * the destination addresses are page aligned. Too many + * special cases crop of when we don't do this. The most + * insidious is getting overlapping destination addresses + * simply because addresses are changed to page size + * granularity. + */ + for (i = 0; i < nr_segments; i++) { + unsigned long mstart, mend; + + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz; + if (mstart > mend) + return -EADDRNOTAVAIL; + if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) + return -EADDRNOTAVAIL; + if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) + return -EADDRNOTAVAIL; + } + + /* Verify our destination addresses do not overlap. + * If we alloed overlapping destination addresses + * through very weird things can happen with no + * easy explanation as one segment stops on another. + */ + for (i = 0; i < nr_segments; i++) { + unsigned long mstart, mend; + unsigned long j; + + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz; + for (j = 0; j < i; j++) { + unsigned long pstart, pend; + + pstart = image->segment[j].mem; + pend = pstart + image->segment[j].memsz; + /* Do the segments overlap ? */ + if ((mend > pstart) && (mstart < pend)) + return -EINVAL; + } + } + + /* Ensure our buffer sizes are strictly less than + * our memory sizes. This should always be the case, + * and it is easier to check up front than to be surprised + * later on. + */ + for (i = 0; i < nr_segments; i++) { + if (image->segment[i].bufsz > image->segment[i].memsz) + return -EINVAL; + } + + /* + * Verify that no more than half of memory will be consumed. If the + * request from userspace is too large, a large amount of time will be + * wasted allocating pages, which can cause a soft lockup. + */ + for (i = 0; i < nr_segments; i++) { + if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) + return -EINVAL; + + total_pages += PAGE_COUNT(image->segment[i].memsz); + } + + if (total_pages > nr_pages / 2) + return -EINVAL; + +#ifdef CONFIG_CRASH_DUMP + /* + * Verify we have good destination addresses. Normally + * the caller is responsible for making certain we don't + * attempt to load the new image into invalid or reserved + * areas of RAM. But crash kernels are preloaded into a + * reserved area of ram. We must ensure the addresses + * are in the reserved area otherwise preloading the + * kernel could corrupt things. + */ + + if (image->type == KEXEC_TYPE_CRASH) { + for (i = 0; i < nr_segments; i++) { + unsigned long mstart, mend; + + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz - 1; + /* Ensure we are within the crash kernel limits */ + if ((mstart < phys_to_boot_phys(crashk_res.start)) || + (mend > phys_to_boot_phys(crashk_res.end))) + return -EADDRNOTAVAIL; + } + } +#endif + + /* + * The destination addresses are searched from system RAM rather than + * being allocated from the buddy allocator, so they are not guaranteed + * to be accepted by the current kernel. Accept the destination + * addresses before kexec swaps their content with the segments' source + * pages to avoid accessing memory before it is accepted. + */ + for (i = 0; i < nr_segments; i++) + accept_memory(image->segment[i].mem, image->segment[i].memsz); + + return 0; +} + +struct kimage *do_kimage_alloc_init(void) +{ + struct kimage *image; + + /* Allocate a controlling structure */ + image = kzalloc(sizeof(*image), GFP_KERNEL); + if (!image) + return NULL; + + image->entry = &image->head; + image->last_entry = &image->head; + image->control_page = ~0; /* By default this does not apply */ + image->type = KEXEC_TYPE_DEFAULT; + + /* Initialize the list of control pages */ + INIT_LIST_HEAD(&image->control_pages); + + /* Initialize the list of destination pages */ + INIT_LIST_HEAD(&image->dest_pages); + + /* Initialize the list of unusable pages */ + INIT_LIST_HEAD(&image->unusable_pages); + +#ifdef CONFIG_CRASH_HOTPLUG + image->hp_action = KEXEC_CRASH_HP_NONE; + image->elfcorehdr_index = -1; + image->elfcorehdr_updated = false; +#endif + + return image; +} + +int kimage_is_destination_range(struct kimage *image, + unsigned long start, + unsigned long end) +{ + unsigned long i; + + for (i = 0; i < image->nr_segments; i++) { + unsigned long mstart, mend; + + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz - 1; + if ((end >= mstart) && (start <= mend)) + return 1; + } + + return 0; +} + +static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) +{ + struct page *pages; + + if (fatal_signal_pending(current)) + return NULL; + pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); + if (pages) { + unsigned int count, i; + + pages->mapping = NULL; + set_page_private(pages, order); + count = 1 << order; + for (i = 0; i < count; i++) + SetPageReserved(pages + i); + + arch_kexec_post_alloc_pages(page_address(pages), count, + gfp_mask); + + if (gfp_mask & __GFP_ZERO) + for (i = 0; i < count; i++) + clear_highpage(pages + i); + } + + return pages; +} + +static void kimage_free_pages(struct page *page) +{ + unsigned int order, count, i; + + order = page_private(page); + count = 1 << order; + + arch_kexec_pre_free_pages(page_address(page), count); + + for (i = 0; i < count; i++) + ClearPageReserved(page + i); + __free_pages(page, order); +} + +void kimage_free_page_list(struct list_head *list) +{ + struct page *page, *next; + + list_for_each_entry_safe(page, next, list, lru) { + list_del(&page->lru); + kimage_free_pages(page); + } +} + +static struct page *kimage_alloc_normal_control_pages(struct kimage *image, + unsigned int order) +{ + /* Control pages are special, they are the intermediaries + * that are needed while we copy the rest of the pages + * to their final resting place. As such they must + * not conflict with either the destination addresses + * or memory the kernel is already using. + * + * The only case where we really need more than one of + * these are for architectures where we cannot disable + * the MMU and must instead generate an identity mapped + * page table for all of the memory. + * + * At worst this runs in O(N) of the image size. + */ + struct list_head extra_pages; + struct page *pages; + unsigned int count; + + count = 1 << order; + INIT_LIST_HEAD(&extra_pages); + + /* Loop while I can allocate a page and the page allocated + * is a destination page. + */ + do { + unsigned long pfn, epfn, addr, eaddr; + + pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); + if (!pages) + break; + pfn = page_to_boot_pfn(pages); + epfn = pfn + count; + addr = pfn << PAGE_SHIFT; + eaddr = (epfn << PAGE_SHIFT) - 1; + if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || + kimage_is_destination_range(image, addr, eaddr)) { + list_add(&pages->lru, &extra_pages); + pages = NULL; + } + } while (!pages); + + if (pages) { + /* Remember the allocated page... */ + list_add(&pages->lru, &image->control_pages); + + /* Because the page is already in it's destination + * location we will never allocate another page at + * that address. Therefore kimage_alloc_pages + * will not return it (again) and we don't need + * to give it an entry in image->segment[]. + */ + } + /* Deal with the destination pages I have inadvertently allocated. + * + * Ideally I would convert multi-page allocations into single + * page allocations, and add everything to image->dest_pages. + * + * For now it is simpler to just free the pages. + */ + kimage_free_page_list(&extra_pages); + + return pages; +} + +#ifdef CONFIG_CRASH_DUMP +static struct page *kimage_alloc_crash_control_pages(struct kimage *image, + unsigned int order) +{ + /* Control pages are special, they are the intermediaries + * that are needed while we copy the rest of the pages + * to their final resting place. As such they must + * not conflict with either the destination addresses + * or memory the kernel is already using. + * + * Control pages are also the only pags we must allocate + * when loading a crash kernel. All of the other pages + * are specified by the segments and we just memcpy + * into them directly. + * + * The only case where we really need more than one of + * these are for architectures where we cannot disable + * the MMU and must instead generate an identity mapped + * page table for all of the memory. + * + * Given the low demand this implements a very simple + * allocator that finds the first hole of the appropriate + * size in the reserved memory region, and allocates all + * of the memory up to and including the hole. + */ + unsigned long hole_start, hole_end, size; + struct page *pages; + + pages = NULL; + size = (1 << order) << PAGE_SHIFT; + hole_start = ALIGN(image->control_page, size); + hole_end = hole_start + size - 1; + while (hole_end <= crashk_res.end) { + unsigned long i; + + cond_resched(); + + if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) + break; + /* See if I overlap any of the segments */ + for (i = 0; i < image->nr_segments; i++) { + unsigned long mstart, mend; + + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz - 1; + if ((hole_end >= mstart) && (hole_start <= mend)) { + /* Advance the hole to the end of the segment */ + hole_start = ALIGN(mend, size); + hole_end = hole_start + size - 1; + break; + } + } + /* If I don't overlap any segments I have found my hole! */ + if (i == image->nr_segments) { + pages = pfn_to_page(hole_start >> PAGE_SHIFT); + image->control_page = hole_end + 1; + break; + } + } + + /* Ensure that these pages are decrypted if SME is enabled. */ + if (pages) + arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); + + return pages; +} +#endif + + +struct page *kimage_alloc_control_pages(struct kimage *image, + unsigned int order) +{ + struct page *pages = NULL; + + switch (image->type) { + case KEXEC_TYPE_DEFAULT: + pages = kimage_alloc_normal_control_pages(image, order); + break; +#ifdef CONFIG_CRASH_DUMP + case KEXEC_TYPE_CRASH: + pages = kimage_alloc_crash_control_pages(image, order); + break; +#endif + } + + return pages; +} + +static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) +{ + if (*image->entry != 0) + image->entry++; + + if (image->entry == image->last_entry) { + kimage_entry_t *ind_page; + struct page *page; + + page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); + if (!page) + return -ENOMEM; + + ind_page = page_address(page); + *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; + image->entry = ind_page; + image->last_entry = ind_page + + ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); + } + *image->entry = entry; + image->entry++; + *image->entry = 0; + + return 0; +} + +static int kimage_set_destination(struct kimage *image, + unsigned long destination) +{ + destination &= PAGE_MASK; + + return kimage_add_entry(image, destination | IND_DESTINATION); +} + + +static int kimage_add_page(struct kimage *image, unsigned long page) +{ + page &= PAGE_MASK; + + return kimage_add_entry(image, page | IND_SOURCE); +} + + +static void kimage_free_extra_pages(struct kimage *image) +{ + /* Walk through and free any extra destination pages I may have */ + kimage_free_page_list(&image->dest_pages); + + /* Walk through and free any unusable pages I have cached */ + kimage_free_page_list(&image->unusable_pages); + +} + +void kimage_terminate(struct kimage *image) +{ + if (*image->entry != 0) + image->entry++; + + *image->entry = IND_DONE; +} + +#define for_each_kimage_entry(image, ptr, entry) \ + for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ + ptr = (entry & IND_INDIRECTION) ? \ + boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) + +static void kimage_free_entry(kimage_entry_t entry) +{ + struct page *page; + + page = boot_pfn_to_page(entry >> PAGE_SHIFT); + kimage_free_pages(page); +} + +static void kimage_free_cma(struct kimage *image) +{ + unsigned long i; + + for (i = 0; i < image->nr_segments; i++) { + struct page *cma = image->segment_cma[i]; + u32 nr_pages = image->segment[i].memsz >> PAGE_SHIFT; + + if (!cma) + continue; + + arch_kexec_pre_free_pages(page_address(cma), nr_pages); + dma_release_from_contiguous(NULL, cma, nr_pages); + image->segment_cma[i] = NULL; + } + +} + +void kimage_free(struct kimage *image) +{ + kimage_entry_t *ptr, entry; + kimage_entry_t ind = 0; + + if (!image) + return; + +#ifdef CONFIG_CRASH_DUMP + if (image->vmcoreinfo_data_copy) { + crash_update_vmcoreinfo_safecopy(NULL); + vunmap(image->vmcoreinfo_data_copy); + } +#endif + + kimage_free_extra_pages(image); + for_each_kimage_entry(image, ptr, entry) { + if (entry & IND_INDIRECTION) { + /* Free the previous indirection page */ + if (ind & IND_INDIRECTION) + kimage_free_entry(ind); + /* Save this indirection page until we are + * done with it. + */ + ind = entry; + } else if (entry & IND_SOURCE) + kimage_free_entry(entry); + } + /* Free the final indirection page */ + if (ind & IND_INDIRECTION) + kimage_free_entry(ind); + + /* Handle any machine specific cleanup */ + machine_kexec_cleanup(image); + + /* Free the kexec control pages... */ + kimage_free_page_list(&image->control_pages); + + /* Free CMA allocations */ + kimage_free_cma(image); + + /* + * Free up any temporary buffers allocated. This might hit if + * error occurred much later after buffer allocation. + */ + if (image->file_mode) + kimage_file_post_load_cleanup(image); + + kfree(image); +} + +static kimage_entry_t *kimage_dst_used(struct kimage *image, + unsigned long page) +{ + kimage_entry_t *ptr, entry; + unsigned long destination = 0; + + for_each_kimage_entry(image, ptr, entry) { + if (entry & IND_DESTINATION) + destination = entry & PAGE_MASK; + else if (entry & IND_SOURCE) { + if (page == destination) + return ptr; + destination += PAGE_SIZE; + } + } + + return NULL; +} + +static struct page *kimage_alloc_page(struct kimage *image, + gfp_t gfp_mask, + unsigned long destination) +{ + /* + * Here we implement safeguards to ensure that a source page + * is not copied to its destination page before the data on + * the destination page is no longer useful. + * + * To do this we maintain the invariant that a source page is + * either its own destination page, or it is not a + * destination page at all. + * + * That is slightly stronger than required, but the proof + * that no problems will not occur is trivial, and the + * implementation is simply to verify. + * + * When allocating all pages normally this algorithm will run + * in O(N) time, but in the worst case it will run in O(N^2) + * time. If the runtime is a problem the data structures can + * be fixed. + */ + struct page *page; + unsigned long addr; + + /* + * Walk through the list of destination pages, and see if I + * have a match. + */ + list_for_each_entry(page, &image->dest_pages, lru) { + addr = page_to_boot_pfn(page) << PAGE_SHIFT; + if (addr == destination) { + list_del(&page->lru); + return page; + } + } + page = NULL; + while (1) { + kimage_entry_t *old; + + /* Allocate a page, if we run out of memory give up */ + page = kimage_alloc_pages(gfp_mask, 0); + if (!page) + return NULL; + /* If the page cannot be used file it away */ + if (page_to_boot_pfn(page) > + (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { + list_add(&page->lru, &image->unusable_pages); + continue; + } + addr = page_to_boot_pfn(page) << PAGE_SHIFT; + + /* If it is the destination page we want use it */ + if (addr == destination) + break; + + /* If the page is not a destination page use it */ + if (!kimage_is_destination_range(image, addr, + addr + PAGE_SIZE - 1)) + break; + + /* + * I know that the page is someones destination page. + * See if there is already a source page for this + * destination page. And if so swap the source pages. + */ + old = kimage_dst_used(image, addr); + if (old) { + /* If so move it */ + unsigned long old_addr; + struct page *old_page; + + old_addr = *old & PAGE_MASK; + old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); + copy_highpage(page, old_page); + *old = addr | (*old & ~PAGE_MASK); + + /* The old page I have found cannot be a + * destination page, so return it if it's + * gfp_flags honor the ones passed in. + */ + if (!(gfp_mask & __GFP_HIGHMEM) && + PageHighMem(old_page)) { + kimage_free_pages(old_page); + continue; + } + page = old_page; + break; + } + /* Place the page on the destination list, to be used later */ + list_add(&page->lru, &image->dest_pages); + } + + return page; +} + +static int kimage_load_cma_segment(struct kimage *image, int idx) +{ + struct kexec_segment *segment = &image->segment[idx]; + struct page *cma = image->segment_cma[idx]; + char *ptr = page_address(cma); + size_t ubytes, mbytes; + int result = 0; + unsigned char __user *buf = NULL; + unsigned char *kbuf = NULL; + + if (image->file_mode) + kbuf = segment->kbuf; + else + buf = segment->buf; + ubytes = segment->bufsz; + mbytes = segment->memsz; + + /* Then copy from source buffer to the CMA one */ + while (mbytes) { + size_t uchunk, mchunk; + + mchunk = min_t(size_t, mbytes, PAGE_SIZE); + uchunk = min(ubytes, mchunk); + + if (uchunk) { + /* For file based kexec, source pages are in kernel memory */ + if (image->file_mode) + memcpy(ptr, kbuf, uchunk); + else + result = copy_from_user(ptr, buf, uchunk); + ubytes -= uchunk; + if (image->file_mode) + kbuf += uchunk; + else + buf += uchunk; + } + + if (result) { + result = -EFAULT; + goto out; + } + + ptr += mchunk; + mbytes -= mchunk; + + cond_resched(); + } + + /* Clear any remainder */ + memset(ptr, 0, mbytes); + +out: + return result; +} + +static int kimage_load_normal_segment(struct kimage *image, int idx) +{ + struct kexec_segment *segment = &image->segment[idx]; + unsigned long maddr; + size_t ubytes, mbytes; + int result; + unsigned char __user *buf = NULL; + unsigned char *kbuf = NULL; + + if (image->file_mode) + kbuf = segment->kbuf; + else + buf = segment->buf; + ubytes = segment->bufsz; + mbytes = segment->memsz; + maddr = segment->mem; + + if (image->segment_cma[idx]) + return kimage_load_cma_segment(image, idx); + + result = kimage_set_destination(image, maddr); + if (result < 0) + goto out; + + while (mbytes) { + struct page *page; + char *ptr; + size_t uchunk, mchunk; + + page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); + if (!page) { + result = -ENOMEM; + goto out; + } + result = kimage_add_page(image, page_to_boot_pfn(page) + << PAGE_SHIFT); + if (result < 0) + goto out; + + ptr = kmap_local_page(page); + /* Start with a clear page */ + clear_page(ptr); + mchunk = min_t(size_t, mbytes, PAGE_SIZE); + uchunk = min(ubytes, mchunk); + + if (uchunk) { + /* For file based kexec, source pages are in kernel memory */ + if (image->file_mode) + memcpy(ptr, kbuf, uchunk); + else + result = copy_from_user(ptr, buf, uchunk); + ubytes -= uchunk; + if (image->file_mode) + kbuf += uchunk; + else + buf += uchunk; + } + kunmap_local(ptr); + if (result) { + result = -EFAULT; + goto out; + } + maddr += mchunk; + mbytes -= mchunk; + + cond_resched(); + } +out: + return result; +} + +#ifdef CONFIG_CRASH_DUMP +static int kimage_load_crash_segment(struct kimage *image, int idx) +{ + /* For crash dumps kernels we simply copy the data from + * user space to it's destination. + * We do things a page at a time for the sake of kmap. + */ + struct kexec_segment *segment = &image->segment[idx]; + unsigned long maddr; + size_t ubytes, mbytes; + int result; + unsigned char __user *buf = NULL; + unsigned char *kbuf = NULL; + + result = 0; + if (image->file_mode) + kbuf = segment->kbuf; + else + buf = segment->buf; + ubytes = segment->bufsz; + mbytes = segment->memsz; + maddr = segment->mem; + while (mbytes) { + struct page *page; + char *ptr; + size_t uchunk, mchunk; + + page = boot_pfn_to_page(maddr >> PAGE_SHIFT); + if (!page) { + result = -ENOMEM; + goto out; + } + arch_kexec_post_alloc_pages(page_address(page), 1, 0); + ptr = kmap_local_page(page); + mchunk = min_t(size_t, mbytes, PAGE_SIZE); + uchunk = min(ubytes, mchunk); + if (mchunk > uchunk) { + /* Zero the trailing part of the page */ + memset(ptr + uchunk, 0, mchunk - uchunk); + } + + if (uchunk) { + /* For file based kexec, source pages are in kernel memory */ + if (image->file_mode) + memcpy(ptr, kbuf, uchunk); + else + result = copy_from_user(ptr, buf, uchunk); + ubytes -= uchunk; + if (image->file_mode) + kbuf += uchunk; + else + buf += uchunk; + } + kexec_flush_icache_page(page); + kunmap_local(ptr); + arch_kexec_pre_free_pages(page_address(page), 1); + if (result) { + result = -EFAULT; + goto out; + } + maddr += mchunk; + mbytes -= mchunk; + + cond_resched(); + } +out: + return result; +} +#endif + +int kimage_load_segment(struct kimage *image, int idx) +{ + int result = -ENOMEM; + + switch (image->type) { + case KEXEC_TYPE_DEFAULT: + result = kimage_load_normal_segment(image, idx); + break; +#ifdef CONFIG_CRASH_DUMP + case KEXEC_TYPE_CRASH: + result = kimage_load_crash_segment(image, idx); + break; +#endif + } + + return result; +} + +void *kimage_map_segment(struct kimage *image, + unsigned long addr, unsigned long size) +{ + unsigned long src_page_addr, dest_page_addr = 0; + unsigned long eaddr = addr + size; + kimage_entry_t *ptr, entry; + struct page **src_pages; + unsigned int npages; + void *vaddr = NULL; + int i; + + /* + * Collect the source pages and map them in a contiguous VA range. + */ + npages = PFN_UP(eaddr) - PFN_DOWN(addr); + src_pages = kmalloc_array(npages, sizeof(*src_pages), GFP_KERNEL); + if (!src_pages) { + pr_err("Could not allocate ima pages array.\n"); + return NULL; + } + + i = 0; + for_each_kimage_entry(image, ptr, entry) { + if (entry & IND_DESTINATION) { + dest_page_addr = entry & PAGE_MASK; + } else if (entry & IND_SOURCE) { + if (dest_page_addr >= addr && dest_page_addr < eaddr) { + src_page_addr = entry & PAGE_MASK; + src_pages[i++] = + virt_to_page(__va(src_page_addr)); + if (i == npages) + break; + dest_page_addr += PAGE_SIZE; + } + } + } + + /* Sanity check. */ + WARN_ON(i < npages); + + vaddr = vmap(src_pages, npages, VM_MAP, PAGE_KERNEL); + kfree(src_pages); + + if (!vaddr) + pr_err("Could not map ima buffer.\n"); + + return vaddr; +} + +void kimage_unmap_segment(void *segment_buffer) +{ + vunmap(segment_buffer); +} + +struct kexec_load_limit { + /* Mutex protects the limit count. */ + struct mutex mutex; + int limit; +}; + +static struct kexec_load_limit load_limit_reboot = { + .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex), + .limit = -1, +}; + +static struct kexec_load_limit load_limit_panic = { + .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex), + .limit = -1, +}; + +struct kimage *kexec_image; +struct kimage *kexec_crash_image; +static int kexec_load_disabled; + +#ifdef CONFIG_SYSCTL +static int kexec_limit_handler(const struct ctl_table *table, int write, + void *buffer, size_t *lenp, loff_t *ppos) +{ + struct kexec_load_limit *limit = table->data; + int val; + struct ctl_table tmp = { + .data = &val, + .maxlen = sizeof(val), + .mode = table->mode, + }; + int ret; + + if (write) { + ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); + if (ret) + return ret; + + if (val < 0) + return -EINVAL; + + mutex_lock(&limit->mutex); + if (limit->limit != -1 && val >= limit->limit) + ret = -EINVAL; + else + limit->limit = val; + mutex_unlock(&limit->mutex); + + return ret; + } + + mutex_lock(&limit->mutex); + val = limit->limit; + mutex_unlock(&limit->mutex); + + return proc_dointvec(&tmp, write, buffer, lenp, ppos); +} + +static const struct ctl_table kexec_core_sysctls[] = { + { + .procname = "kexec_load_disabled", + .data = &kexec_load_disabled, + .maxlen = sizeof(int), + .mode = 0644, + /* only handle a transition from default "0" to "1" */ + .proc_handler = proc_dointvec_minmax, + .extra1 = SYSCTL_ONE, + .extra2 = SYSCTL_ONE, + }, + { + .procname = "kexec_load_limit_panic", + .data = &load_limit_panic, + .mode = 0644, + .proc_handler = kexec_limit_handler, + }, + { + .procname = "kexec_load_limit_reboot", + .data = &load_limit_reboot, + .mode = 0644, + .proc_handler = kexec_limit_handler, + }, +}; + +static int __init kexec_core_sysctl_init(void) +{ + register_sysctl_init("kernel", kexec_core_sysctls); + return 0; +} +late_initcall(kexec_core_sysctl_init); +#endif + +bool kexec_load_permitted(int kexec_image_type) +{ + struct kexec_load_limit *limit; + + /* + * Only the superuser can use the kexec syscall and if it has not + * been disabled. + */ + if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) + return false; + + /* Check limit counter and decrease it.*/ + limit = (kexec_image_type == KEXEC_TYPE_CRASH) ? + &load_limit_panic : &load_limit_reboot; + mutex_lock(&limit->mutex); + if (!limit->limit) { + mutex_unlock(&limit->mutex); + return false; + } + if (limit->limit != -1) + limit->limit--; + mutex_unlock(&limit->mutex); + + return true; +} + +/* + * Move into place and start executing a preloaded standalone + * executable. If nothing was preloaded return an error. + */ +int kernel_kexec(void) +{ + int error = 0; + + if (!kexec_trylock()) + return -EBUSY; + if (!kexec_image) { + error = -EINVAL; + goto Unlock; + } + + error = liveupdate_reboot(); + if (error) + goto Unlock; + +#ifdef CONFIG_KEXEC_JUMP + if (kexec_image->preserve_context) { + /* + * This flow is analogous to hibernation flows that occur + * before creating an image and before jumping from the + * restore kernel to the image one, so it uses the same + * device callbacks as those two flows. + */ + pm_prepare_console(); + error = freeze_processes(); + if (error) { + error = -EBUSY; + goto Restore_console; + } + console_suspend_all(); + error = dpm_suspend_start(PMSG_FREEZE); + if (error) + goto Resume_devices; + /* + * dpm_suspend_end() must be called after dpm_suspend_start() + * to complete the transition, like in the hibernation flows + * mentioned above. + */ + error = dpm_suspend_end(PMSG_FREEZE); + if (error) + goto Resume_devices; + error = suspend_disable_secondary_cpus(); + if (error) + goto Enable_cpus; + local_irq_disable(); + error = syscore_suspend(); + if (error) + goto Enable_irqs; + } else +#endif + { + kexec_in_progress = true; + kernel_restart_prepare("kexec reboot"); + migrate_to_reboot_cpu(); + syscore_shutdown(); + + /* + * migrate_to_reboot_cpu() disables CPU hotplug assuming that + * no further code needs to use CPU hotplug (which is true in + * the reboot case). However, the kexec path depends on using + * CPU hotplug again; so re-enable it here. + */ + cpu_hotplug_enable(); + pr_notice("Starting new kernel\n"); + machine_shutdown(); + } + + kmsg_dump(KMSG_DUMP_SHUTDOWN); + machine_kexec(kexec_image); + +#ifdef CONFIG_KEXEC_JUMP + if (kexec_image->preserve_context) { + /* + * This flow is analogous to hibernation flows that occur after + * creating an image and after the image kernel has got control + * back, and in case the devices have been reset or otherwise + * manipulated in the meantime, it uses the device callbacks + * used by the latter. + */ + syscore_resume(); + Enable_irqs: + local_irq_enable(); + Enable_cpus: + suspend_enable_secondary_cpus(); + dpm_resume_start(PMSG_RESTORE); + Resume_devices: + dpm_resume_end(PMSG_RESTORE); + console_resume_all(); + thaw_processes(); + Restore_console: + pm_restore_console(); + } +#endif + + Unlock: + kexec_unlock(); + return error; +} + +static ssize_t loaded_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + return sysfs_emit(buf, "%d\n", !!kexec_image); +} +static struct kobj_attribute loaded_attr = __ATTR_RO(loaded); + +#ifdef CONFIG_CRASH_DUMP +static ssize_t crash_loaded_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + return sysfs_emit(buf, "%d\n", kexec_crash_loaded()); +} +static struct kobj_attribute crash_loaded_attr = __ATTR_RO(crash_loaded); + +#ifdef CONFIG_CRASH_RESERVE +static ssize_t crash_cma_ranges_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + + ssize_t len = 0; + int i; + + for (i = 0; i < crashk_cma_cnt; ++i) { + len += sysfs_emit_at(buf, len, "%08llx-%08llx\n", + crashk_cma_ranges[i].start, + crashk_cma_ranges[i].end); + } + return len; +} +static struct kobj_attribute crash_cma_ranges_attr = __ATTR_RO(crash_cma_ranges); +#endif + +static ssize_t crash_size_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + ssize_t size = crash_get_memory_size(); + + if (size < 0) + return size; + + return sysfs_emit(buf, "%zd\n", size); +} +static ssize_t crash_size_store(struct kobject *kobj, + struct kobj_attribute *attr, + const char *buf, size_t count) +{ + unsigned long cnt; + int ret; + + if (kstrtoul(buf, 0, &cnt)) + return -EINVAL; + + ret = crash_shrink_memory(cnt); + return ret < 0 ? ret : count; +} +static struct kobj_attribute crash_size_attr = __ATTR_RW(crash_size); + +#ifdef CONFIG_CRASH_HOTPLUG +static ssize_t crash_elfcorehdr_size_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + unsigned int sz = crash_get_elfcorehdr_size(); + + return sysfs_emit(buf, "%u\n", sz); +} +static struct kobj_attribute crash_elfcorehdr_size_attr = __ATTR_RO(crash_elfcorehdr_size); + +#endif /* CONFIG_CRASH_HOTPLUG */ +#endif /* CONFIG_CRASH_DUMP */ + +static struct attribute *kexec_attrs[] = { + &loaded_attr.attr, +#ifdef CONFIG_CRASH_DUMP + &crash_loaded_attr.attr, + &crash_size_attr.attr, +#ifdef CONFIG_CRASH_RESERVE + &crash_cma_ranges_attr.attr, +#endif +#ifdef CONFIG_CRASH_HOTPLUG + &crash_elfcorehdr_size_attr.attr, +#endif +#endif + NULL +}; + +struct kexec_link_entry { + const char *target; + const char *name; +}; + +static struct kexec_link_entry kexec_links[] = { + { "loaded", "kexec_loaded" }, +#ifdef CONFIG_CRASH_DUMP + { "crash_loaded", "kexec_crash_loaded" }, + { "crash_size", "kexec_crash_size" }, +#ifdef CONFIG_CRASH_RESERVE + {"crash_cma_ranges", "kexec_crash_cma_ranges"}, +#endif +#ifdef CONFIG_CRASH_HOTPLUG + { "crash_elfcorehdr_size", "crash_elfcorehdr_size" }, +#endif +#endif +}; + +static struct kobject *kexec_kobj; +ATTRIBUTE_GROUPS(kexec); + +static int __init init_kexec_sysctl(void) +{ + int error; + int i; + + kexec_kobj = kobject_create_and_add("kexec", kernel_kobj); + if (!kexec_kobj) { + pr_err("failed to create kexec kobject\n"); + return -ENOMEM; + } + + error = sysfs_create_groups(kexec_kobj, kexec_groups); + if (error) + goto kset_exit; + + for (i = 0; i < ARRAY_SIZE(kexec_links); i++) { + error = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, kexec_kobj, + kexec_links[i].target, + kexec_links[i].name); + if (error) + pr_err("Unable to create %s symlink (%d)", kexec_links[i].name, error); + } + + return 0; + +kset_exit: + kobject_put(kexec_kobj); + return error; +} + +subsys_initcall(init_kexec_sysctl); |
