summaryrefslogtreecommitdiff
path: root/kernel/kexec_core.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/kexec_core.c')
-rw-r--r--kernel/kexec_core.c1368
1 files changed, 1368 insertions, 0 deletions
diff --git a/kernel/kexec_core.c b/kernel/kexec_core.c
new file mode 100644
index 000000000000..0f92acdd354d
--- /dev/null
+++ b/kernel/kexec_core.c
@@ -0,0 +1,1368 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * kexec.c - kexec system call core code.
+ * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/btf.h>
+#include <linux/capability.h>
+#include <linux/mm.h>
+#include <linux/file.h>
+#include <linux/slab.h>
+#include <linux/fs.h>
+#include <linux/kexec.h>
+#include <linux/mutex.h>
+#include <linux/list.h>
+#include <linux/liveupdate.h>
+#include <linux/highmem.h>
+#include <linux/syscalls.h>
+#include <linux/reboot.h>
+#include <linux/ioport.h>
+#include <linux/hardirq.h>
+#include <linux/elf.h>
+#include <linux/elfcore.h>
+#include <linux/utsname.h>
+#include <linux/numa.h>
+#include <linux/suspend.h>
+#include <linux/device.h>
+#include <linux/freezer.h>
+#include <linux/panic_notifier.h>
+#include <linux/pm.h>
+#include <linux/cpu.h>
+#include <linux/uaccess.h>
+#include <linux/io.h>
+#include <linux/console.h>
+#include <linux/vmalloc.h>
+#include <linux/swap.h>
+#include <linux/syscore_ops.h>
+#include <linux/compiler.h>
+#include <linux/hugetlb.h>
+#include <linux/objtool.h>
+#include <linux/kmsg_dump.h>
+#include <linux/dma-map-ops.h>
+#include <linux/sysfs.h>
+
+#include <asm/page.h>
+#include <asm/sections.h>
+
+#include <crypto/hash.h>
+#include "kexec_internal.h"
+
+atomic_t __kexec_lock = ATOMIC_INIT(0);
+
+/* Flag to indicate we are going to kexec a new kernel */
+bool kexec_in_progress = false;
+
+bool kexec_file_dbg_print;
+
+/*
+ * When kexec transitions to the new kernel there is a one-to-one
+ * mapping between physical and virtual addresses. On processors
+ * where you can disable the MMU this is trivial, and easy. For
+ * others it is still a simple predictable page table to setup.
+ *
+ * In that environment kexec copies the new kernel to its final
+ * resting place. This means I can only support memory whose
+ * physical address can fit in an unsigned long. In particular
+ * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
+ * If the assembly stub has more restrictive requirements
+ * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
+ * defined more restrictively in <asm/kexec.h>.
+ *
+ * The code for the transition from the current kernel to the
+ * new kernel is placed in the control_code_buffer, whose size
+ * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
+ * page of memory is necessary, but some architectures require more.
+ * Because this memory must be identity mapped in the transition from
+ * virtual to physical addresses it must live in the range
+ * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
+ * modifiable.
+ *
+ * The assembly stub in the control code buffer is passed a linked list
+ * of descriptor pages detailing the source pages of the new kernel,
+ * and the destination addresses of those source pages. As this data
+ * structure is not used in the context of the current OS, it must
+ * be self-contained.
+ *
+ * The code has been made to work with highmem pages and will use a
+ * destination page in its final resting place (if it happens
+ * to allocate it). The end product of this is that most of the
+ * physical address space, and most of RAM can be used.
+ *
+ * Future directions include:
+ * - allocating a page table with the control code buffer identity
+ * mapped, to simplify machine_kexec and make kexec_on_panic more
+ * reliable.
+ */
+
+/*
+ * KIMAGE_NO_DEST is an impossible destination address..., for
+ * allocating pages whose destination address we do not care about.
+ */
+#define KIMAGE_NO_DEST (-1UL)
+#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
+
+static struct page *kimage_alloc_page(struct kimage *image,
+ gfp_t gfp_mask,
+ unsigned long dest);
+
+int sanity_check_segment_list(struct kimage *image)
+{
+ int i;
+ unsigned long nr_segments = image->nr_segments;
+ unsigned long total_pages = 0;
+ unsigned long nr_pages = totalram_pages();
+
+ /*
+ * Verify we have good destination addresses. The caller is
+ * responsible for making certain we don't attempt to load
+ * the new image into invalid or reserved areas of RAM. This
+ * just verifies it is an address we can use.
+ *
+ * Since the kernel does everything in page size chunks ensure
+ * the destination addresses are page aligned. Too many
+ * special cases crop of when we don't do this. The most
+ * insidious is getting overlapping destination addresses
+ * simply because addresses are changed to page size
+ * granularity.
+ */
+ for (i = 0; i < nr_segments; i++) {
+ unsigned long mstart, mend;
+
+ mstart = image->segment[i].mem;
+ mend = mstart + image->segment[i].memsz;
+ if (mstart > mend)
+ return -EADDRNOTAVAIL;
+ if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
+ return -EADDRNOTAVAIL;
+ if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
+ return -EADDRNOTAVAIL;
+ }
+
+ /* Verify our destination addresses do not overlap.
+ * If we alloed overlapping destination addresses
+ * through very weird things can happen with no
+ * easy explanation as one segment stops on another.
+ */
+ for (i = 0; i < nr_segments; i++) {
+ unsigned long mstart, mend;
+ unsigned long j;
+
+ mstart = image->segment[i].mem;
+ mend = mstart + image->segment[i].memsz;
+ for (j = 0; j < i; j++) {
+ unsigned long pstart, pend;
+
+ pstart = image->segment[j].mem;
+ pend = pstart + image->segment[j].memsz;
+ /* Do the segments overlap ? */
+ if ((mend > pstart) && (mstart < pend))
+ return -EINVAL;
+ }
+ }
+
+ /* Ensure our buffer sizes are strictly less than
+ * our memory sizes. This should always be the case,
+ * and it is easier to check up front than to be surprised
+ * later on.
+ */
+ for (i = 0; i < nr_segments; i++) {
+ if (image->segment[i].bufsz > image->segment[i].memsz)
+ return -EINVAL;
+ }
+
+ /*
+ * Verify that no more than half of memory will be consumed. If the
+ * request from userspace is too large, a large amount of time will be
+ * wasted allocating pages, which can cause a soft lockup.
+ */
+ for (i = 0; i < nr_segments; i++) {
+ if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
+ return -EINVAL;
+
+ total_pages += PAGE_COUNT(image->segment[i].memsz);
+ }
+
+ if (total_pages > nr_pages / 2)
+ return -EINVAL;
+
+#ifdef CONFIG_CRASH_DUMP
+ /*
+ * Verify we have good destination addresses. Normally
+ * the caller is responsible for making certain we don't
+ * attempt to load the new image into invalid or reserved
+ * areas of RAM. But crash kernels are preloaded into a
+ * reserved area of ram. We must ensure the addresses
+ * are in the reserved area otherwise preloading the
+ * kernel could corrupt things.
+ */
+
+ if (image->type == KEXEC_TYPE_CRASH) {
+ for (i = 0; i < nr_segments; i++) {
+ unsigned long mstart, mend;
+
+ mstart = image->segment[i].mem;
+ mend = mstart + image->segment[i].memsz - 1;
+ /* Ensure we are within the crash kernel limits */
+ if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
+ (mend > phys_to_boot_phys(crashk_res.end)))
+ return -EADDRNOTAVAIL;
+ }
+ }
+#endif
+
+ /*
+ * The destination addresses are searched from system RAM rather than
+ * being allocated from the buddy allocator, so they are not guaranteed
+ * to be accepted by the current kernel. Accept the destination
+ * addresses before kexec swaps their content with the segments' source
+ * pages to avoid accessing memory before it is accepted.
+ */
+ for (i = 0; i < nr_segments; i++)
+ accept_memory(image->segment[i].mem, image->segment[i].memsz);
+
+ return 0;
+}
+
+struct kimage *do_kimage_alloc_init(void)
+{
+ struct kimage *image;
+
+ /* Allocate a controlling structure */
+ image = kzalloc(sizeof(*image), GFP_KERNEL);
+ if (!image)
+ return NULL;
+
+ image->entry = &image->head;
+ image->last_entry = &image->head;
+ image->control_page = ~0; /* By default this does not apply */
+ image->type = KEXEC_TYPE_DEFAULT;
+
+ /* Initialize the list of control pages */
+ INIT_LIST_HEAD(&image->control_pages);
+
+ /* Initialize the list of destination pages */
+ INIT_LIST_HEAD(&image->dest_pages);
+
+ /* Initialize the list of unusable pages */
+ INIT_LIST_HEAD(&image->unusable_pages);
+
+#ifdef CONFIG_CRASH_HOTPLUG
+ image->hp_action = KEXEC_CRASH_HP_NONE;
+ image->elfcorehdr_index = -1;
+ image->elfcorehdr_updated = false;
+#endif
+
+ return image;
+}
+
+int kimage_is_destination_range(struct kimage *image,
+ unsigned long start,
+ unsigned long end)
+{
+ unsigned long i;
+
+ for (i = 0; i < image->nr_segments; i++) {
+ unsigned long mstart, mend;
+
+ mstart = image->segment[i].mem;
+ mend = mstart + image->segment[i].memsz - 1;
+ if ((end >= mstart) && (start <= mend))
+ return 1;
+ }
+
+ return 0;
+}
+
+static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
+{
+ struct page *pages;
+
+ if (fatal_signal_pending(current))
+ return NULL;
+ pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
+ if (pages) {
+ unsigned int count, i;
+
+ pages->mapping = NULL;
+ set_page_private(pages, order);
+ count = 1 << order;
+ for (i = 0; i < count; i++)
+ SetPageReserved(pages + i);
+
+ arch_kexec_post_alloc_pages(page_address(pages), count,
+ gfp_mask);
+
+ if (gfp_mask & __GFP_ZERO)
+ for (i = 0; i < count; i++)
+ clear_highpage(pages + i);
+ }
+
+ return pages;
+}
+
+static void kimage_free_pages(struct page *page)
+{
+ unsigned int order, count, i;
+
+ order = page_private(page);
+ count = 1 << order;
+
+ arch_kexec_pre_free_pages(page_address(page), count);
+
+ for (i = 0; i < count; i++)
+ ClearPageReserved(page + i);
+ __free_pages(page, order);
+}
+
+void kimage_free_page_list(struct list_head *list)
+{
+ struct page *page, *next;
+
+ list_for_each_entry_safe(page, next, list, lru) {
+ list_del(&page->lru);
+ kimage_free_pages(page);
+ }
+}
+
+static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
+ unsigned int order)
+{
+ /* Control pages are special, they are the intermediaries
+ * that are needed while we copy the rest of the pages
+ * to their final resting place. As such they must
+ * not conflict with either the destination addresses
+ * or memory the kernel is already using.
+ *
+ * The only case where we really need more than one of
+ * these are for architectures where we cannot disable
+ * the MMU and must instead generate an identity mapped
+ * page table for all of the memory.
+ *
+ * At worst this runs in O(N) of the image size.
+ */
+ struct list_head extra_pages;
+ struct page *pages;
+ unsigned int count;
+
+ count = 1 << order;
+ INIT_LIST_HEAD(&extra_pages);
+
+ /* Loop while I can allocate a page and the page allocated
+ * is a destination page.
+ */
+ do {
+ unsigned long pfn, epfn, addr, eaddr;
+
+ pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
+ if (!pages)
+ break;
+ pfn = page_to_boot_pfn(pages);
+ epfn = pfn + count;
+ addr = pfn << PAGE_SHIFT;
+ eaddr = (epfn << PAGE_SHIFT) - 1;
+ if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
+ kimage_is_destination_range(image, addr, eaddr)) {
+ list_add(&pages->lru, &extra_pages);
+ pages = NULL;
+ }
+ } while (!pages);
+
+ if (pages) {
+ /* Remember the allocated page... */
+ list_add(&pages->lru, &image->control_pages);
+
+ /* Because the page is already in it's destination
+ * location we will never allocate another page at
+ * that address. Therefore kimage_alloc_pages
+ * will not return it (again) and we don't need
+ * to give it an entry in image->segment[].
+ */
+ }
+ /* Deal with the destination pages I have inadvertently allocated.
+ *
+ * Ideally I would convert multi-page allocations into single
+ * page allocations, and add everything to image->dest_pages.
+ *
+ * For now it is simpler to just free the pages.
+ */
+ kimage_free_page_list(&extra_pages);
+
+ return pages;
+}
+
+#ifdef CONFIG_CRASH_DUMP
+static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
+ unsigned int order)
+{
+ /* Control pages are special, they are the intermediaries
+ * that are needed while we copy the rest of the pages
+ * to their final resting place. As such they must
+ * not conflict with either the destination addresses
+ * or memory the kernel is already using.
+ *
+ * Control pages are also the only pags we must allocate
+ * when loading a crash kernel. All of the other pages
+ * are specified by the segments and we just memcpy
+ * into them directly.
+ *
+ * The only case where we really need more than one of
+ * these are for architectures where we cannot disable
+ * the MMU and must instead generate an identity mapped
+ * page table for all of the memory.
+ *
+ * Given the low demand this implements a very simple
+ * allocator that finds the first hole of the appropriate
+ * size in the reserved memory region, and allocates all
+ * of the memory up to and including the hole.
+ */
+ unsigned long hole_start, hole_end, size;
+ struct page *pages;
+
+ pages = NULL;
+ size = (1 << order) << PAGE_SHIFT;
+ hole_start = ALIGN(image->control_page, size);
+ hole_end = hole_start + size - 1;
+ while (hole_end <= crashk_res.end) {
+ unsigned long i;
+
+ cond_resched();
+
+ if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
+ break;
+ /* See if I overlap any of the segments */
+ for (i = 0; i < image->nr_segments; i++) {
+ unsigned long mstart, mend;
+
+ mstart = image->segment[i].mem;
+ mend = mstart + image->segment[i].memsz - 1;
+ if ((hole_end >= mstart) && (hole_start <= mend)) {
+ /* Advance the hole to the end of the segment */
+ hole_start = ALIGN(mend, size);
+ hole_end = hole_start + size - 1;
+ break;
+ }
+ }
+ /* If I don't overlap any segments I have found my hole! */
+ if (i == image->nr_segments) {
+ pages = pfn_to_page(hole_start >> PAGE_SHIFT);
+ image->control_page = hole_end + 1;
+ break;
+ }
+ }
+
+ /* Ensure that these pages are decrypted if SME is enabled. */
+ if (pages)
+ arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
+
+ return pages;
+}
+#endif
+
+
+struct page *kimage_alloc_control_pages(struct kimage *image,
+ unsigned int order)
+{
+ struct page *pages = NULL;
+
+ switch (image->type) {
+ case KEXEC_TYPE_DEFAULT:
+ pages = kimage_alloc_normal_control_pages(image, order);
+ break;
+#ifdef CONFIG_CRASH_DUMP
+ case KEXEC_TYPE_CRASH:
+ pages = kimage_alloc_crash_control_pages(image, order);
+ break;
+#endif
+ }
+
+ return pages;
+}
+
+static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
+{
+ if (*image->entry != 0)
+ image->entry++;
+
+ if (image->entry == image->last_entry) {
+ kimage_entry_t *ind_page;
+ struct page *page;
+
+ page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
+ if (!page)
+ return -ENOMEM;
+
+ ind_page = page_address(page);
+ *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
+ image->entry = ind_page;
+ image->last_entry = ind_page +
+ ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
+ }
+ *image->entry = entry;
+ image->entry++;
+ *image->entry = 0;
+
+ return 0;
+}
+
+static int kimage_set_destination(struct kimage *image,
+ unsigned long destination)
+{
+ destination &= PAGE_MASK;
+
+ return kimage_add_entry(image, destination | IND_DESTINATION);
+}
+
+
+static int kimage_add_page(struct kimage *image, unsigned long page)
+{
+ page &= PAGE_MASK;
+
+ return kimage_add_entry(image, page | IND_SOURCE);
+}
+
+
+static void kimage_free_extra_pages(struct kimage *image)
+{
+ /* Walk through and free any extra destination pages I may have */
+ kimage_free_page_list(&image->dest_pages);
+
+ /* Walk through and free any unusable pages I have cached */
+ kimage_free_page_list(&image->unusable_pages);
+
+}
+
+void kimage_terminate(struct kimage *image)
+{
+ if (*image->entry != 0)
+ image->entry++;
+
+ *image->entry = IND_DONE;
+}
+
+#define for_each_kimage_entry(image, ptr, entry) \
+ for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
+ ptr = (entry & IND_INDIRECTION) ? \
+ boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
+
+static void kimage_free_entry(kimage_entry_t entry)
+{
+ struct page *page;
+
+ page = boot_pfn_to_page(entry >> PAGE_SHIFT);
+ kimage_free_pages(page);
+}
+
+static void kimage_free_cma(struct kimage *image)
+{
+ unsigned long i;
+
+ for (i = 0; i < image->nr_segments; i++) {
+ struct page *cma = image->segment_cma[i];
+ u32 nr_pages = image->segment[i].memsz >> PAGE_SHIFT;
+
+ if (!cma)
+ continue;
+
+ arch_kexec_pre_free_pages(page_address(cma), nr_pages);
+ dma_release_from_contiguous(NULL, cma, nr_pages);
+ image->segment_cma[i] = NULL;
+ }
+
+}
+
+void kimage_free(struct kimage *image)
+{
+ kimage_entry_t *ptr, entry;
+ kimage_entry_t ind = 0;
+
+ if (!image)
+ return;
+
+#ifdef CONFIG_CRASH_DUMP
+ if (image->vmcoreinfo_data_copy) {
+ crash_update_vmcoreinfo_safecopy(NULL);
+ vunmap(image->vmcoreinfo_data_copy);
+ }
+#endif
+
+ kimage_free_extra_pages(image);
+ for_each_kimage_entry(image, ptr, entry) {
+ if (entry & IND_INDIRECTION) {
+ /* Free the previous indirection page */
+ if (ind & IND_INDIRECTION)
+ kimage_free_entry(ind);
+ /* Save this indirection page until we are
+ * done with it.
+ */
+ ind = entry;
+ } else if (entry & IND_SOURCE)
+ kimage_free_entry(entry);
+ }
+ /* Free the final indirection page */
+ if (ind & IND_INDIRECTION)
+ kimage_free_entry(ind);
+
+ /* Handle any machine specific cleanup */
+ machine_kexec_cleanup(image);
+
+ /* Free the kexec control pages... */
+ kimage_free_page_list(&image->control_pages);
+
+ /* Free CMA allocations */
+ kimage_free_cma(image);
+
+ /*
+ * Free up any temporary buffers allocated. This might hit if
+ * error occurred much later after buffer allocation.
+ */
+ if (image->file_mode)
+ kimage_file_post_load_cleanup(image);
+
+ kfree(image);
+}
+
+static kimage_entry_t *kimage_dst_used(struct kimage *image,
+ unsigned long page)
+{
+ kimage_entry_t *ptr, entry;
+ unsigned long destination = 0;
+
+ for_each_kimage_entry(image, ptr, entry) {
+ if (entry & IND_DESTINATION)
+ destination = entry & PAGE_MASK;
+ else if (entry & IND_SOURCE) {
+ if (page == destination)
+ return ptr;
+ destination += PAGE_SIZE;
+ }
+ }
+
+ return NULL;
+}
+
+static struct page *kimage_alloc_page(struct kimage *image,
+ gfp_t gfp_mask,
+ unsigned long destination)
+{
+ /*
+ * Here we implement safeguards to ensure that a source page
+ * is not copied to its destination page before the data on
+ * the destination page is no longer useful.
+ *
+ * To do this we maintain the invariant that a source page is
+ * either its own destination page, or it is not a
+ * destination page at all.
+ *
+ * That is slightly stronger than required, but the proof
+ * that no problems will not occur is trivial, and the
+ * implementation is simply to verify.
+ *
+ * When allocating all pages normally this algorithm will run
+ * in O(N) time, but in the worst case it will run in O(N^2)
+ * time. If the runtime is a problem the data structures can
+ * be fixed.
+ */
+ struct page *page;
+ unsigned long addr;
+
+ /*
+ * Walk through the list of destination pages, and see if I
+ * have a match.
+ */
+ list_for_each_entry(page, &image->dest_pages, lru) {
+ addr = page_to_boot_pfn(page) << PAGE_SHIFT;
+ if (addr == destination) {
+ list_del(&page->lru);
+ return page;
+ }
+ }
+ page = NULL;
+ while (1) {
+ kimage_entry_t *old;
+
+ /* Allocate a page, if we run out of memory give up */
+ page = kimage_alloc_pages(gfp_mask, 0);
+ if (!page)
+ return NULL;
+ /* If the page cannot be used file it away */
+ if (page_to_boot_pfn(page) >
+ (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
+ list_add(&page->lru, &image->unusable_pages);
+ continue;
+ }
+ addr = page_to_boot_pfn(page) << PAGE_SHIFT;
+
+ /* If it is the destination page we want use it */
+ if (addr == destination)
+ break;
+
+ /* If the page is not a destination page use it */
+ if (!kimage_is_destination_range(image, addr,
+ addr + PAGE_SIZE - 1))
+ break;
+
+ /*
+ * I know that the page is someones destination page.
+ * See if there is already a source page for this
+ * destination page. And if so swap the source pages.
+ */
+ old = kimage_dst_used(image, addr);
+ if (old) {
+ /* If so move it */
+ unsigned long old_addr;
+ struct page *old_page;
+
+ old_addr = *old & PAGE_MASK;
+ old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
+ copy_highpage(page, old_page);
+ *old = addr | (*old & ~PAGE_MASK);
+
+ /* The old page I have found cannot be a
+ * destination page, so return it if it's
+ * gfp_flags honor the ones passed in.
+ */
+ if (!(gfp_mask & __GFP_HIGHMEM) &&
+ PageHighMem(old_page)) {
+ kimage_free_pages(old_page);
+ continue;
+ }
+ page = old_page;
+ break;
+ }
+ /* Place the page on the destination list, to be used later */
+ list_add(&page->lru, &image->dest_pages);
+ }
+
+ return page;
+}
+
+static int kimage_load_cma_segment(struct kimage *image, int idx)
+{
+ struct kexec_segment *segment = &image->segment[idx];
+ struct page *cma = image->segment_cma[idx];
+ char *ptr = page_address(cma);
+ size_t ubytes, mbytes;
+ int result = 0;
+ unsigned char __user *buf = NULL;
+ unsigned char *kbuf = NULL;
+
+ if (image->file_mode)
+ kbuf = segment->kbuf;
+ else
+ buf = segment->buf;
+ ubytes = segment->bufsz;
+ mbytes = segment->memsz;
+
+ /* Then copy from source buffer to the CMA one */
+ while (mbytes) {
+ size_t uchunk, mchunk;
+
+ mchunk = min_t(size_t, mbytes, PAGE_SIZE);
+ uchunk = min(ubytes, mchunk);
+
+ if (uchunk) {
+ /* For file based kexec, source pages are in kernel memory */
+ if (image->file_mode)
+ memcpy(ptr, kbuf, uchunk);
+ else
+ result = copy_from_user(ptr, buf, uchunk);
+ ubytes -= uchunk;
+ if (image->file_mode)
+ kbuf += uchunk;
+ else
+ buf += uchunk;
+ }
+
+ if (result) {
+ result = -EFAULT;
+ goto out;
+ }
+
+ ptr += mchunk;
+ mbytes -= mchunk;
+
+ cond_resched();
+ }
+
+ /* Clear any remainder */
+ memset(ptr, 0, mbytes);
+
+out:
+ return result;
+}
+
+static int kimage_load_normal_segment(struct kimage *image, int idx)
+{
+ struct kexec_segment *segment = &image->segment[idx];
+ unsigned long maddr;
+ size_t ubytes, mbytes;
+ int result;
+ unsigned char __user *buf = NULL;
+ unsigned char *kbuf = NULL;
+
+ if (image->file_mode)
+ kbuf = segment->kbuf;
+ else
+ buf = segment->buf;
+ ubytes = segment->bufsz;
+ mbytes = segment->memsz;
+ maddr = segment->mem;
+
+ if (image->segment_cma[idx])
+ return kimage_load_cma_segment(image, idx);
+
+ result = kimage_set_destination(image, maddr);
+ if (result < 0)
+ goto out;
+
+ while (mbytes) {
+ struct page *page;
+ char *ptr;
+ size_t uchunk, mchunk;
+
+ page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
+ if (!page) {
+ result = -ENOMEM;
+ goto out;
+ }
+ result = kimage_add_page(image, page_to_boot_pfn(page)
+ << PAGE_SHIFT);
+ if (result < 0)
+ goto out;
+
+ ptr = kmap_local_page(page);
+ /* Start with a clear page */
+ clear_page(ptr);
+ mchunk = min_t(size_t, mbytes, PAGE_SIZE);
+ uchunk = min(ubytes, mchunk);
+
+ if (uchunk) {
+ /* For file based kexec, source pages are in kernel memory */
+ if (image->file_mode)
+ memcpy(ptr, kbuf, uchunk);
+ else
+ result = copy_from_user(ptr, buf, uchunk);
+ ubytes -= uchunk;
+ if (image->file_mode)
+ kbuf += uchunk;
+ else
+ buf += uchunk;
+ }
+ kunmap_local(ptr);
+ if (result) {
+ result = -EFAULT;
+ goto out;
+ }
+ maddr += mchunk;
+ mbytes -= mchunk;
+
+ cond_resched();
+ }
+out:
+ return result;
+}
+
+#ifdef CONFIG_CRASH_DUMP
+static int kimage_load_crash_segment(struct kimage *image, int idx)
+{
+ /* For crash dumps kernels we simply copy the data from
+ * user space to it's destination.
+ * We do things a page at a time for the sake of kmap.
+ */
+ struct kexec_segment *segment = &image->segment[idx];
+ unsigned long maddr;
+ size_t ubytes, mbytes;
+ int result;
+ unsigned char __user *buf = NULL;
+ unsigned char *kbuf = NULL;
+
+ result = 0;
+ if (image->file_mode)
+ kbuf = segment->kbuf;
+ else
+ buf = segment->buf;
+ ubytes = segment->bufsz;
+ mbytes = segment->memsz;
+ maddr = segment->mem;
+ while (mbytes) {
+ struct page *page;
+ char *ptr;
+ size_t uchunk, mchunk;
+
+ page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
+ if (!page) {
+ result = -ENOMEM;
+ goto out;
+ }
+ arch_kexec_post_alloc_pages(page_address(page), 1, 0);
+ ptr = kmap_local_page(page);
+ mchunk = min_t(size_t, mbytes, PAGE_SIZE);
+ uchunk = min(ubytes, mchunk);
+ if (mchunk > uchunk) {
+ /* Zero the trailing part of the page */
+ memset(ptr + uchunk, 0, mchunk - uchunk);
+ }
+
+ if (uchunk) {
+ /* For file based kexec, source pages are in kernel memory */
+ if (image->file_mode)
+ memcpy(ptr, kbuf, uchunk);
+ else
+ result = copy_from_user(ptr, buf, uchunk);
+ ubytes -= uchunk;
+ if (image->file_mode)
+ kbuf += uchunk;
+ else
+ buf += uchunk;
+ }
+ kexec_flush_icache_page(page);
+ kunmap_local(ptr);
+ arch_kexec_pre_free_pages(page_address(page), 1);
+ if (result) {
+ result = -EFAULT;
+ goto out;
+ }
+ maddr += mchunk;
+ mbytes -= mchunk;
+
+ cond_resched();
+ }
+out:
+ return result;
+}
+#endif
+
+int kimage_load_segment(struct kimage *image, int idx)
+{
+ int result = -ENOMEM;
+
+ switch (image->type) {
+ case KEXEC_TYPE_DEFAULT:
+ result = kimage_load_normal_segment(image, idx);
+ break;
+#ifdef CONFIG_CRASH_DUMP
+ case KEXEC_TYPE_CRASH:
+ result = kimage_load_crash_segment(image, idx);
+ break;
+#endif
+ }
+
+ return result;
+}
+
+void *kimage_map_segment(struct kimage *image,
+ unsigned long addr, unsigned long size)
+{
+ unsigned long src_page_addr, dest_page_addr = 0;
+ unsigned long eaddr = addr + size;
+ kimage_entry_t *ptr, entry;
+ struct page **src_pages;
+ unsigned int npages;
+ void *vaddr = NULL;
+ int i;
+
+ /*
+ * Collect the source pages and map them in a contiguous VA range.
+ */
+ npages = PFN_UP(eaddr) - PFN_DOWN(addr);
+ src_pages = kmalloc_array(npages, sizeof(*src_pages), GFP_KERNEL);
+ if (!src_pages) {
+ pr_err("Could not allocate ima pages array.\n");
+ return NULL;
+ }
+
+ i = 0;
+ for_each_kimage_entry(image, ptr, entry) {
+ if (entry & IND_DESTINATION) {
+ dest_page_addr = entry & PAGE_MASK;
+ } else if (entry & IND_SOURCE) {
+ if (dest_page_addr >= addr && dest_page_addr < eaddr) {
+ src_page_addr = entry & PAGE_MASK;
+ src_pages[i++] =
+ virt_to_page(__va(src_page_addr));
+ if (i == npages)
+ break;
+ dest_page_addr += PAGE_SIZE;
+ }
+ }
+ }
+
+ /* Sanity check. */
+ WARN_ON(i < npages);
+
+ vaddr = vmap(src_pages, npages, VM_MAP, PAGE_KERNEL);
+ kfree(src_pages);
+
+ if (!vaddr)
+ pr_err("Could not map ima buffer.\n");
+
+ return vaddr;
+}
+
+void kimage_unmap_segment(void *segment_buffer)
+{
+ vunmap(segment_buffer);
+}
+
+struct kexec_load_limit {
+ /* Mutex protects the limit count. */
+ struct mutex mutex;
+ int limit;
+};
+
+static struct kexec_load_limit load_limit_reboot = {
+ .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
+ .limit = -1,
+};
+
+static struct kexec_load_limit load_limit_panic = {
+ .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
+ .limit = -1,
+};
+
+struct kimage *kexec_image;
+struct kimage *kexec_crash_image;
+static int kexec_load_disabled;
+
+#ifdef CONFIG_SYSCTL
+static int kexec_limit_handler(const struct ctl_table *table, int write,
+ void *buffer, size_t *lenp, loff_t *ppos)
+{
+ struct kexec_load_limit *limit = table->data;
+ int val;
+ struct ctl_table tmp = {
+ .data = &val,
+ .maxlen = sizeof(val),
+ .mode = table->mode,
+ };
+ int ret;
+
+ if (write) {
+ ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
+ if (ret)
+ return ret;
+
+ if (val < 0)
+ return -EINVAL;
+
+ mutex_lock(&limit->mutex);
+ if (limit->limit != -1 && val >= limit->limit)
+ ret = -EINVAL;
+ else
+ limit->limit = val;
+ mutex_unlock(&limit->mutex);
+
+ return ret;
+ }
+
+ mutex_lock(&limit->mutex);
+ val = limit->limit;
+ mutex_unlock(&limit->mutex);
+
+ return proc_dointvec(&tmp, write, buffer, lenp, ppos);
+}
+
+static const struct ctl_table kexec_core_sysctls[] = {
+ {
+ .procname = "kexec_load_disabled",
+ .data = &kexec_load_disabled,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ /* only handle a transition from default "0" to "1" */
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ONE,
+ .extra2 = SYSCTL_ONE,
+ },
+ {
+ .procname = "kexec_load_limit_panic",
+ .data = &load_limit_panic,
+ .mode = 0644,
+ .proc_handler = kexec_limit_handler,
+ },
+ {
+ .procname = "kexec_load_limit_reboot",
+ .data = &load_limit_reboot,
+ .mode = 0644,
+ .proc_handler = kexec_limit_handler,
+ },
+};
+
+static int __init kexec_core_sysctl_init(void)
+{
+ register_sysctl_init("kernel", kexec_core_sysctls);
+ return 0;
+}
+late_initcall(kexec_core_sysctl_init);
+#endif
+
+bool kexec_load_permitted(int kexec_image_type)
+{
+ struct kexec_load_limit *limit;
+
+ /*
+ * Only the superuser can use the kexec syscall and if it has not
+ * been disabled.
+ */
+ if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
+ return false;
+
+ /* Check limit counter and decrease it.*/
+ limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
+ &load_limit_panic : &load_limit_reboot;
+ mutex_lock(&limit->mutex);
+ if (!limit->limit) {
+ mutex_unlock(&limit->mutex);
+ return false;
+ }
+ if (limit->limit != -1)
+ limit->limit--;
+ mutex_unlock(&limit->mutex);
+
+ return true;
+}
+
+/*
+ * Move into place and start executing a preloaded standalone
+ * executable. If nothing was preloaded return an error.
+ */
+int kernel_kexec(void)
+{
+ int error = 0;
+
+ if (!kexec_trylock())
+ return -EBUSY;
+ if (!kexec_image) {
+ error = -EINVAL;
+ goto Unlock;
+ }
+
+ error = liveupdate_reboot();
+ if (error)
+ goto Unlock;
+
+#ifdef CONFIG_KEXEC_JUMP
+ if (kexec_image->preserve_context) {
+ /*
+ * This flow is analogous to hibernation flows that occur
+ * before creating an image and before jumping from the
+ * restore kernel to the image one, so it uses the same
+ * device callbacks as those two flows.
+ */
+ pm_prepare_console();
+ error = freeze_processes();
+ if (error) {
+ error = -EBUSY;
+ goto Restore_console;
+ }
+ console_suspend_all();
+ error = dpm_suspend_start(PMSG_FREEZE);
+ if (error)
+ goto Resume_devices;
+ /*
+ * dpm_suspend_end() must be called after dpm_suspend_start()
+ * to complete the transition, like in the hibernation flows
+ * mentioned above.
+ */
+ error = dpm_suspend_end(PMSG_FREEZE);
+ if (error)
+ goto Resume_devices;
+ error = suspend_disable_secondary_cpus();
+ if (error)
+ goto Enable_cpus;
+ local_irq_disable();
+ error = syscore_suspend();
+ if (error)
+ goto Enable_irqs;
+ } else
+#endif
+ {
+ kexec_in_progress = true;
+ kernel_restart_prepare("kexec reboot");
+ migrate_to_reboot_cpu();
+ syscore_shutdown();
+
+ /*
+ * migrate_to_reboot_cpu() disables CPU hotplug assuming that
+ * no further code needs to use CPU hotplug (which is true in
+ * the reboot case). However, the kexec path depends on using
+ * CPU hotplug again; so re-enable it here.
+ */
+ cpu_hotplug_enable();
+ pr_notice("Starting new kernel\n");
+ machine_shutdown();
+ }
+
+ kmsg_dump(KMSG_DUMP_SHUTDOWN);
+ machine_kexec(kexec_image);
+
+#ifdef CONFIG_KEXEC_JUMP
+ if (kexec_image->preserve_context) {
+ /*
+ * This flow is analogous to hibernation flows that occur after
+ * creating an image and after the image kernel has got control
+ * back, and in case the devices have been reset or otherwise
+ * manipulated in the meantime, it uses the device callbacks
+ * used by the latter.
+ */
+ syscore_resume();
+ Enable_irqs:
+ local_irq_enable();
+ Enable_cpus:
+ suspend_enable_secondary_cpus();
+ dpm_resume_start(PMSG_RESTORE);
+ Resume_devices:
+ dpm_resume_end(PMSG_RESTORE);
+ console_resume_all();
+ thaw_processes();
+ Restore_console:
+ pm_restore_console();
+ }
+#endif
+
+ Unlock:
+ kexec_unlock();
+ return error;
+}
+
+static ssize_t loaded_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ return sysfs_emit(buf, "%d\n", !!kexec_image);
+}
+static struct kobj_attribute loaded_attr = __ATTR_RO(loaded);
+
+#ifdef CONFIG_CRASH_DUMP
+static ssize_t crash_loaded_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ return sysfs_emit(buf, "%d\n", kexec_crash_loaded());
+}
+static struct kobj_attribute crash_loaded_attr = __ATTR_RO(crash_loaded);
+
+#ifdef CONFIG_CRASH_RESERVE
+static ssize_t crash_cma_ranges_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+
+ ssize_t len = 0;
+ int i;
+
+ for (i = 0; i < crashk_cma_cnt; ++i) {
+ len += sysfs_emit_at(buf, len, "%08llx-%08llx\n",
+ crashk_cma_ranges[i].start,
+ crashk_cma_ranges[i].end);
+ }
+ return len;
+}
+static struct kobj_attribute crash_cma_ranges_attr = __ATTR_RO(crash_cma_ranges);
+#endif
+
+static ssize_t crash_size_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ ssize_t size = crash_get_memory_size();
+
+ if (size < 0)
+ return size;
+
+ return sysfs_emit(buf, "%zd\n", size);
+}
+static ssize_t crash_size_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count)
+{
+ unsigned long cnt;
+ int ret;
+
+ if (kstrtoul(buf, 0, &cnt))
+ return -EINVAL;
+
+ ret = crash_shrink_memory(cnt);
+ return ret < 0 ? ret : count;
+}
+static struct kobj_attribute crash_size_attr = __ATTR_RW(crash_size);
+
+#ifdef CONFIG_CRASH_HOTPLUG
+static ssize_t crash_elfcorehdr_size_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ unsigned int sz = crash_get_elfcorehdr_size();
+
+ return sysfs_emit(buf, "%u\n", sz);
+}
+static struct kobj_attribute crash_elfcorehdr_size_attr = __ATTR_RO(crash_elfcorehdr_size);
+
+#endif /* CONFIG_CRASH_HOTPLUG */
+#endif /* CONFIG_CRASH_DUMP */
+
+static struct attribute *kexec_attrs[] = {
+ &loaded_attr.attr,
+#ifdef CONFIG_CRASH_DUMP
+ &crash_loaded_attr.attr,
+ &crash_size_attr.attr,
+#ifdef CONFIG_CRASH_RESERVE
+ &crash_cma_ranges_attr.attr,
+#endif
+#ifdef CONFIG_CRASH_HOTPLUG
+ &crash_elfcorehdr_size_attr.attr,
+#endif
+#endif
+ NULL
+};
+
+struct kexec_link_entry {
+ const char *target;
+ const char *name;
+};
+
+static struct kexec_link_entry kexec_links[] = {
+ { "loaded", "kexec_loaded" },
+#ifdef CONFIG_CRASH_DUMP
+ { "crash_loaded", "kexec_crash_loaded" },
+ { "crash_size", "kexec_crash_size" },
+#ifdef CONFIG_CRASH_RESERVE
+ {"crash_cma_ranges", "kexec_crash_cma_ranges"},
+#endif
+#ifdef CONFIG_CRASH_HOTPLUG
+ { "crash_elfcorehdr_size", "crash_elfcorehdr_size" },
+#endif
+#endif
+};
+
+static struct kobject *kexec_kobj;
+ATTRIBUTE_GROUPS(kexec);
+
+static int __init init_kexec_sysctl(void)
+{
+ int error;
+ int i;
+
+ kexec_kobj = kobject_create_and_add("kexec", kernel_kobj);
+ if (!kexec_kobj) {
+ pr_err("failed to create kexec kobject\n");
+ return -ENOMEM;
+ }
+
+ error = sysfs_create_groups(kexec_kobj, kexec_groups);
+ if (error)
+ goto kset_exit;
+
+ for (i = 0; i < ARRAY_SIZE(kexec_links); i++) {
+ error = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, kexec_kobj,
+ kexec_links[i].target,
+ kexec_links[i].name);
+ if (error)
+ pr_err("Unable to create %s symlink (%d)", kexec_links[i].name, error);
+ }
+
+ return 0;
+
+kset_exit:
+ kobject_put(kexec_kobj);
+ return error;
+}
+
+subsys_initcall(init_kexec_sysctl);