summaryrefslogtreecommitdiff
path: root/kernel/rcu/tree.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/rcu/tree.c')
-rw-r--r--kernel/rcu/tree.c1537
1 files changed, 555 insertions, 982 deletions
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index d9642dd06c25..475f31deed14 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -75,12 +75,10 @@
#define MODULE_PARAM_PREFIX "rcutree."
/* Data structures. */
+static void rcu_sr_normal_gp_cleanup_work(struct work_struct *);
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
.gpwrap = true,
-#ifdef CONFIG_RCU_NOCB_CPU
- .cblist.flags = SEGCBLIST_RCU_CORE,
-#endif
};
static struct rcu_state rcu_state = {
.level = { &rcu_state.node[0] },
@@ -93,6 +91,12 @@ static struct rcu_state rcu_state = {
.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
+ .srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work,
+ rcu_sr_normal_gp_cleanup_work),
+ .srs_cleanups_pending = ATOMIC_INIT(0),
+#ifdef CONFIG_RCU_NOCB_CPU
+ .nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex),
+#endif
};
/* Dump rcu_node combining tree at boot to verify correct setup. */
@@ -145,7 +149,6 @@ static int rcu_scheduler_fully_active __read_mostly;
static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
unsigned long gps, unsigned long flags);
-static struct task_struct *rcu_boost_task(struct rcu_node *rnp);
static void invoke_rcu_core(void);
static void rcu_report_exp_rdp(struct rcu_data *rdp);
static void sync_sched_exp_online_cleanup(int cpu);
@@ -172,6 +175,9 @@ static int gp_init_delay;
module_param(gp_init_delay, int, 0444);
static int gp_cleanup_delay;
module_param(gp_cleanup_delay, int, 0444);
+static int nohz_full_patience_delay;
+module_param(nohz_full_patience_delay, int, 0444);
+static int nohz_full_patience_delay_jiffies;
// Add delay to rcu_read_unlock() for strict grace periods.
static int rcu_unlock_delay;
@@ -179,26 +185,6 @@ static int rcu_unlock_delay;
module_param(rcu_unlock_delay, int, 0444);
#endif
-/*
- * This rcu parameter is runtime-read-only. It reflects
- * a minimum allowed number of objects which can be cached
- * per-CPU. Object size is equal to one page. This value
- * can be changed at boot time.
- */
-static int rcu_min_cached_objs = 5;
-module_param(rcu_min_cached_objs, int, 0444);
-
-// A page shrinker can ask for pages to be freed to make them
-// available for other parts of the system. This usually happens
-// under low memory conditions, and in that case we should also
-// defer page-cache filling for a short time period.
-//
-// The default value is 5 seconds, which is long enough to reduce
-// interference with the shrinker while it asks other systems to
-// drain their caches.
-static int rcu_delay_page_cache_fill_msec = 5000;
-module_param(rcu_delay_page_cache_fill_msec, int, 0444);
-
/* Retrieve RCU kthreads priority for rcutorture */
int rcu_get_gp_kthreads_prio(void)
{
@@ -240,76 +226,113 @@ static long rcu_get_n_cbs_cpu(int cpu)
return 0;
}
+/**
+ * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing
+ *
+ * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU.
+ * This is a special-purpose function to be used in the softirq
+ * infrastructure and perhaps the occasional long-running softirq
+ * handler.
+ *
+ * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is
+ * equivalent to momentarily completely enabling preemption. For
+ * example, given this code::
+ *
+ * local_bh_disable();
+ * do_something();
+ * rcu_softirq_qs(); // A
+ * do_something_else();
+ * local_bh_enable(); // B
+ *
+ * A call to synchronize_rcu() that began concurrently with the
+ * call to do_something() would be guaranteed to wait only until
+ * execution reached statement A. Without that rcu_softirq_qs(),
+ * that same synchronize_rcu() would instead be guaranteed to wait
+ * until execution reached statement B.
+ */
void rcu_softirq_qs(void)
{
+ RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
+ lock_is_held(&rcu_lock_map) ||
+ lock_is_held(&rcu_sched_lock_map),
+ "Illegal rcu_softirq_qs() in RCU read-side critical section");
rcu_qs();
rcu_preempt_deferred_qs(current);
rcu_tasks_qs(current, false);
}
/*
- * Reset the current CPU's ->dynticks counter to indicate that the
+ * Reset the current CPU's RCU_WATCHING counter to indicate that the
* newly onlined CPU is no longer in an extended quiescent state.
* This will either leave the counter unchanged, or increment it
* to the next non-quiescent value.
*
* The non-atomic test/increment sequence works because the upper bits
- * of the ->dynticks counter are manipulated only by the corresponding CPU,
+ * of the ->state variable are manipulated only by the corresponding CPU,
* or when the corresponding CPU is offline.
*/
-static void rcu_dynticks_eqs_online(void)
+static void rcu_watching_online(void)
{
- if (ct_dynticks() & RCU_DYNTICKS_IDX)
+ if (ct_rcu_watching() & CT_RCU_WATCHING)
return;
- ct_state_inc(RCU_DYNTICKS_IDX);
+ ct_state_inc(CT_RCU_WATCHING);
}
/*
- * Snapshot the ->dynticks counter with full ordering so as to allow
- * stable comparison of this counter with past and future snapshots.
- */
-static int rcu_dynticks_snap(int cpu)
-{
- smp_mb(); // Fundamental RCU ordering guarantee.
- return ct_dynticks_cpu_acquire(cpu);
-}
-
-/*
- * Return true if the snapshot returned from rcu_dynticks_snap()
+ * Return true if the snapshot returned from ct_rcu_watching()
* indicates that RCU is in an extended quiescent state.
*/
-static bool rcu_dynticks_in_eqs(int snap)
+static bool rcu_watching_snap_in_eqs(int snap)
{
- return !(snap & RCU_DYNTICKS_IDX);
+ return !(snap & CT_RCU_WATCHING);
}
-/*
- * Return true if the CPU corresponding to the specified rcu_data
- * structure has spent some time in an extended quiescent state since
- * rcu_dynticks_snap() returned the specified snapshot.
+/**
+ * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU
+ * since the specified @snap?
+ *
+ * @rdp: The rcu_data corresponding to the CPU for which to check EQS.
+ * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS.
+ *
+ * Returns true if the CPU corresponding to @rdp has spent some time in an
+ * extended quiescent state since @snap. Note that this doesn't check if it
+ * /still/ is in an EQS, just that it went through one since @snap.
+ *
+ * This is meant to be used in a loop waiting for a CPU to go through an EQS.
*/
-static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
+static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap)
{
- return snap != rcu_dynticks_snap(rdp->cpu);
+ /*
+ * The first failing snapshot is already ordered against the accesses
+ * performed by the remote CPU after it exits idle.
+ *
+ * The second snapshot therefore only needs to order against accesses
+ * performed by the remote CPU prior to entering idle and therefore can
+ * rely solely on acquire semantics.
+ */
+ if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap)))
+ return true;
+
+ return snap != ct_rcu_watching_cpu_acquire(rdp->cpu);
}
/*
* Return true if the referenced integer is zero while the specified
* CPU remains within a single extended quiescent state.
*/
-bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
+bool rcu_watching_zero_in_eqs(int cpu, int *vp)
{
int snap;
// If not quiescent, force back to earlier extended quiescent state.
- snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
- smp_rmb(); // Order ->dynticks and *vp reads.
+ snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING;
+ smp_rmb(); // Order CT state and *vp reads.
if (READ_ONCE(*vp))
return false; // Non-zero, so report failure;
- smp_rmb(); // Order *vp read and ->dynticks re-read.
+ smp_rmb(); // Order *vp read and CT state re-read.
// If still in the same extended quiescent state, we are good!
- return snap == ct_dynticks_cpu(cpu);
+ return snap == ct_rcu_watching_cpu(cpu);
}
/*
@@ -323,17 +346,17 @@ bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
*
* The caller must have disabled interrupts and must not be idle.
*/
-notrace void rcu_momentary_dyntick_idle(void)
+notrace void rcu_momentary_eqs(void)
{
int seq;
raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
- seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
+ seq = ct_state_inc(2 * CT_RCU_WATCHING);
/* It is illegal to call this from idle state. */
- WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
+ WARN_ON_ONCE(!(seq & CT_RCU_WATCHING));
rcu_preempt_deferred_qs(current);
}
-EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
+EXPORT_SYMBOL_GPL(rcu_momentary_eqs);
/**
* rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
@@ -355,13 +378,13 @@ static int rcu_is_cpu_rrupt_from_idle(void)
lockdep_assert_irqs_disabled();
/* Check for counter underflows */
- RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
- "RCU dynticks_nesting counter underflow!");
- RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
- "RCU dynticks_nmi_nesting counter underflow/zero!");
+ RCU_LOCKDEP_WARN(ct_nesting() < 0,
+ "RCU nesting counter underflow!");
+ RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0,
+ "RCU nmi_nesting counter underflow/zero!");
/* Are we at first interrupt nesting level? */
- nesting = ct_dynticks_nmi_nesting();
+ nesting = ct_nmi_nesting();
if (nesting > 1)
return false;
@@ -371,7 +394,7 @@ static int rcu_is_cpu_rrupt_from_idle(void)
WARN_ON_ONCE(!nesting && !is_idle_task(current));
/* Does CPU appear to be idle from an RCU standpoint? */
- return ct_dynticks_nesting() == 0;
+ return ct_nesting() == 0;
}
#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
@@ -508,17 +531,10 @@ static struct rcu_node *rcu_get_root(void)
/*
* Send along grace-period-related data for rcutorture diagnostics.
*/
-void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
- unsigned long *gp_seq)
+void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
{
- switch (test_type) {
- case RCU_FLAVOR:
- *flags = READ_ONCE(rcu_state.gp_flags);
- *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
- break;
- default:
- break;
- }
+ *flags = READ_ONCE(rcu_state.gp_flags);
+ *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
@@ -570,12 +586,12 @@ void rcu_irq_exit_check_preempt(void)
{
lockdep_assert_irqs_disabled();
- RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
- "RCU dynticks_nesting counter underflow/zero!");
- RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
- DYNTICK_IRQ_NONIDLE,
- "Bad RCU dynticks_nmi_nesting counter\n");
- RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
+ RCU_LOCKDEP_WARN(ct_nesting() <= 0,
+ "RCU nesting counter underflow/zero!");
+ RCU_LOCKDEP_WARN(ct_nmi_nesting() !=
+ CT_NESTING_IRQ_NONIDLE,
+ "Bad RCU nmi_nesting counter\n");
+ RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
"RCU in extended quiescent state!");
}
#endif /* #ifdef CONFIG_PROVE_RCU */
@@ -615,7 +631,7 @@ void __rcu_irq_enter_check_tick(void)
if (in_nmi())
return;
- RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
+ RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
"Illegal rcu_irq_enter_check_tick() from extended quiescent state");
if (!tick_nohz_full_cpu(rdp->cpu) ||
@@ -697,7 +713,7 @@ notrace bool rcu_is_watching(void)
bool ret;
preempt_disable_notrace();
- ret = !rcu_dynticks_curr_cpu_in_eqs();
+ ret = rcu_is_watching_curr_cpu();
preempt_enable_notrace();
return ret;
}
@@ -739,14 +755,25 @@ static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
}
/*
- * Snapshot the specified CPU's dynticks counter so that we can later
+ * Snapshot the specified CPU's RCU_WATCHING counter so that we can later
* credit them with an implicit quiescent state. Return 1 if this CPU
* is in dynticks idle mode, which is an extended quiescent state.
*/
-static int dyntick_save_progress_counter(struct rcu_data *rdp)
+static int rcu_watching_snap_save(struct rcu_data *rdp)
{
- rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
- if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
+ /*
+ * Full ordering between remote CPU's post idle accesses and updater's
+ * accesses prior to current GP (and also the started GP sequence number)
+ * is enforced by rcu_seq_start() implicit barrier and even further by
+ * smp_mb__after_unlock_lock() barriers chained all the way throughout the
+ * rnp locking tree since rcu_gp_init() and up to the current leaf rnp
+ * locking.
+ *
+ * Ordering between remote CPU's pre idle accesses and post grace period
+ * updater's accesses is enforced by the below acquire semantic.
+ */
+ rdp->watching_snap = ct_rcu_watching_cpu_acquire(rdp->cpu);
+ if (rcu_watching_snap_in_eqs(rdp->watching_snap)) {
trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
rcu_gpnum_ovf(rdp->mynode, rdp);
return 1;
@@ -757,14 +784,14 @@ static int dyntick_save_progress_counter(struct rcu_data *rdp)
/*
* Returns positive if the specified CPU has passed through a quiescent state
* by virtue of being in or having passed through an dynticks idle state since
- * the last call to dyntick_save_progress_counter() for this same CPU, or by
+ * the last call to rcu_watching_snap_save() for this same CPU, or by
* virtue of having been offline.
*
* Returns negative if the specified CPU needs a force resched.
*
* Returns zero otherwise.
*/
-static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
+static int rcu_watching_snap_recheck(struct rcu_data *rdp)
{
unsigned long jtsq;
int ret = 0;
@@ -778,7 +805,7 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
* read-side critical section that started before the beginning
* of the current RCU grace period.
*/
- if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
+ if (rcu_watching_snap_stopped_since(rdp, rdp->watching_snap)) {
trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
rcu_gpnum_ovf(rnp, rdp);
return 1;
@@ -813,8 +840,8 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
- (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
- (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
+ (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
+ (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
return 1; /* Break things loose after complaining. */
}
@@ -1423,6 +1450,326 @@ static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
}
/*
+ * There is a single llist, which is used for handling
+ * synchronize_rcu() users' enqueued rcu_synchronize nodes.
+ * Within this llist, there are two tail pointers:
+ *
+ * wait tail: Tracks the set of nodes, which need to
+ * wait for the current GP to complete.
+ * done tail: Tracks the set of nodes, for which grace
+ * period has elapsed. These nodes processing
+ * will be done as part of the cleanup work
+ * execution by a kworker.
+ *
+ * At every grace period init, a new wait node is added
+ * to the llist. This wait node is used as wait tail
+ * for this new grace period. Given that there are a fixed
+ * number of wait nodes, if all wait nodes are in use
+ * (which can happen when kworker callback processing
+ * is delayed) and additional grace period is requested.
+ * This means, a system is slow in processing callbacks.
+ *
+ * TODO: If a slow processing is detected, a first node
+ * in the llist should be used as a wait-tail for this
+ * grace period, therefore users which should wait due
+ * to a slow process are handled by _this_ grace period
+ * and not next.
+ *
+ * Below is an illustration of how the done and wait
+ * tail pointers move from one set of rcu_synchronize nodes
+ * to the other, as grace periods start and finish and
+ * nodes are processed by kworker.
+ *
+ *
+ * a. Initial llist callbacks list:
+ *
+ * +----------+ +--------+ +-------+
+ * | | | | | |
+ * | head |---------> | cb2 |--------->| cb1 |
+ * | | | | | |
+ * +----------+ +--------+ +-------+
+ *
+ *
+ *
+ * b. New GP1 Start:
+ *
+ * WAIT TAIL
+ * |
+ * |
+ * v
+ * +----------+ +--------+ +--------+ +-------+
+ * | | | | | | | |
+ * | head ------> wait |------> cb2 |------> | cb1 |
+ * | | | head1 | | | | |
+ * +----------+ +--------+ +--------+ +-------+
+ *
+ *
+ *
+ * c. GP completion:
+ *
+ * WAIT_TAIL == DONE_TAIL
+ *
+ * DONE TAIL
+ * |
+ * |
+ * v
+ * +----------+ +--------+ +--------+ +-------+
+ * | | | | | | | |
+ * | head ------> wait |------> cb2 |------> | cb1 |
+ * | | | head1 | | | | |
+ * +----------+ +--------+ +--------+ +-------+
+ *
+ *
+ *
+ * d. New callbacks and GP2 start:
+ *
+ * WAIT TAIL DONE TAIL
+ * | |
+ * | |
+ * v v
+ * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
+ * | | | | | | | | | | | | | |
+ * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 |
+ * | | | head2| | | | | |head1| | | | |
+ * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
+ *
+ *
+ *
+ * e. GP2 completion:
+ *
+ * WAIT_TAIL == DONE_TAIL
+ * DONE TAIL
+ * |
+ * |
+ * v
+ * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
+ * | | | | | | | | | | | | | |
+ * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 |
+ * | | | head2| | | | | |head1| | | | |
+ * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
+ *
+ *
+ * While the llist state transitions from d to e, a kworker
+ * can start executing rcu_sr_normal_gp_cleanup_work() and
+ * can observe either the old done tail (@c) or the new
+ * done tail (@e). So, done tail updates and reads need
+ * to use the rel-acq semantics. If the concurrent kworker
+ * observes the old done tail, the newly queued work
+ * execution will process the updated done tail. If the
+ * concurrent kworker observes the new done tail, then
+ * the newly queued work will skip processing the done
+ * tail, as workqueue semantics guarantees that the new
+ * work is executed only after the previous one completes.
+ *
+ * f. kworker callbacks processing complete:
+ *
+ *
+ * DONE TAIL
+ * |
+ * |
+ * v
+ * +----------+ +--------+
+ * | | | |
+ * | head ------> wait |
+ * | | | head2 |
+ * +----------+ +--------+
+ *
+ */
+static bool rcu_sr_is_wait_head(struct llist_node *node)
+{
+ return &(rcu_state.srs_wait_nodes)[0].node <= node &&
+ node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node;
+}
+
+static struct llist_node *rcu_sr_get_wait_head(void)
+{
+ struct sr_wait_node *sr_wn;
+ int i;
+
+ for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) {
+ sr_wn = &(rcu_state.srs_wait_nodes)[i];
+
+ if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1))
+ return &sr_wn->node;
+ }
+
+ return NULL;
+}
+
+static void rcu_sr_put_wait_head(struct llist_node *node)
+{
+ struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node);
+
+ atomic_set_release(&sr_wn->inuse, 0);
+}
+
+/* Disabled by default. */
+static int rcu_normal_wake_from_gp;
+module_param(rcu_normal_wake_from_gp, int, 0644);
+static struct workqueue_struct *sync_wq;
+
+static void rcu_sr_normal_complete(struct llist_node *node)
+{
+ struct rcu_synchronize *rs = container_of(
+ (struct rcu_head *) node, struct rcu_synchronize, head);
+ unsigned long oldstate = (unsigned long) rs->head.func;
+
+ WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) &&
+ !poll_state_synchronize_rcu(oldstate),
+ "A full grace period is not passed yet: %lu",
+ rcu_seq_diff(get_state_synchronize_rcu(), oldstate));
+
+ /* Finally. */
+ complete(&rs->completion);
+}
+
+static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work)
+{
+ struct llist_node *done, *rcu, *next, *head;
+
+ /*
+ * This work execution can potentially execute
+ * while a new done tail is being updated by
+ * grace period kthread in rcu_sr_normal_gp_cleanup().
+ * So, read and updates of done tail need to
+ * follow acq-rel semantics.
+ *
+ * Given that wq semantics guarantees that a single work
+ * cannot execute concurrently by multiple kworkers,
+ * the done tail list manipulations are protected here.
+ */
+ done = smp_load_acquire(&rcu_state.srs_done_tail);
+ if (WARN_ON_ONCE(!done))
+ return;
+
+ WARN_ON_ONCE(!rcu_sr_is_wait_head(done));
+ head = done->next;
+ done->next = NULL;
+
+ /*
+ * The dummy node, which is pointed to by the
+ * done tail which is acq-read above is not removed
+ * here. This allows lockless additions of new
+ * rcu_synchronize nodes in rcu_sr_normal_add_req(),
+ * while the cleanup work executes. The dummy
+ * nodes is removed, in next round of cleanup
+ * work execution.
+ */
+ llist_for_each_safe(rcu, next, head) {
+ if (!rcu_sr_is_wait_head(rcu)) {
+ rcu_sr_normal_complete(rcu);
+ continue;
+ }
+
+ rcu_sr_put_wait_head(rcu);
+ }
+
+ /* Order list manipulations with atomic access. */
+ atomic_dec_return_release(&rcu_state.srs_cleanups_pending);
+}
+
+/*
+ * Helper function for rcu_gp_cleanup().
+ */
+static void rcu_sr_normal_gp_cleanup(void)
+{
+ struct llist_node *wait_tail, *next = NULL, *rcu = NULL;
+ int done = 0;
+
+ wait_tail = rcu_state.srs_wait_tail;
+ if (wait_tail == NULL)
+ return;
+
+ rcu_state.srs_wait_tail = NULL;
+ ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
+ WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail));
+
+ /*
+ * Process (a) and (d) cases. See an illustration.
+ */
+ llist_for_each_safe(rcu, next, wait_tail->next) {
+ if (rcu_sr_is_wait_head(rcu))
+ break;
+
+ rcu_sr_normal_complete(rcu);
+ // It can be last, update a next on this step.
+ wait_tail->next = next;
+
+ if (++done == SR_MAX_USERS_WAKE_FROM_GP)
+ break;
+ }
+
+ /*
+ * Fast path, no more users to process except putting the second last
+ * wait head if no inflight-workers. If there are in-flight workers,
+ * they will remove the last wait head.
+ *
+ * Note that the ACQUIRE orders atomic access with list manipulation.
+ */
+ if (wait_tail->next && wait_tail->next->next == NULL &&
+ rcu_sr_is_wait_head(wait_tail->next) &&
+ !atomic_read_acquire(&rcu_state.srs_cleanups_pending)) {
+ rcu_sr_put_wait_head(wait_tail->next);
+ wait_tail->next = NULL;
+ }
+
+ /* Concurrent sr_normal_gp_cleanup work might observe this update. */
+ ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail);
+ smp_store_release(&rcu_state.srs_done_tail, wait_tail);
+
+ /*
+ * We schedule a work in order to perform a final processing
+ * of outstanding users(if still left) and releasing wait-heads
+ * added by rcu_sr_normal_gp_init() call.
+ */
+ if (wait_tail->next) {
+ atomic_inc(&rcu_state.srs_cleanups_pending);
+ if (!queue_work(sync_wq, &rcu_state.srs_cleanup_work))
+ atomic_dec(&rcu_state.srs_cleanups_pending);
+ }
+}
+
+/*
+ * Helper function for rcu_gp_init().
+ */
+static bool rcu_sr_normal_gp_init(void)
+{
+ struct llist_node *first;
+ struct llist_node *wait_head;
+ bool start_new_poll = false;
+
+ first = READ_ONCE(rcu_state.srs_next.first);
+ if (!first || rcu_sr_is_wait_head(first))
+ return start_new_poll;
+
+ wait_head = rcu_sr_get_wait_head();
+ if (!wait_head) {
+ // Kick another GP to retry.
+ start_new_poll = true;
+ return start_new_poll;
+ }
+
+ /* Inject a wait-dummy-node. */
+ llist_add(wait_head, &rcu_state.srs_next);
+
+ /*
+ * A waiting list of rcu_synchronize nodes should be empty on
+ * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(),
+ * rolls it over. If not, it is a BUG, warn a user.
+ */
+ WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL);
+ rcu_state.srs_wait_tail = wait_head;
+ ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
+
+ return start_new_poll;
+}
+
+static void rcu_sr_normal_add_req(struct rcu_synchronize *rs)
+{
+ llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next);
+}
+
+/*
* Initialize a new grace period. Return false if no grace period required.
*/
static noinline_for_stack bool rcu_gp_init(void)
@@ -1432,10 +1779,11 @@ static noinline_for_stack bool rcu_gp_init(void)
unsigned long mask;
struct rcu_data *rdp;
struct rcu_node *rnp = rcu_get_root();
+ bool start_new_poll;
WRITE_ONCE(rcu_state.gp_activity, jiffies);
raw_spin_lock_irq_rcu_node(rnp);
- if (!READ_ONCE(rcu_state.gp_flags)) {
+ if (!rcu_state.gp_flags) {
/* Spurious wakeup, tell caller to go back to sleep. */
raw_spin_unlock_irq_rcu_node(rnp);
return false;
@@ -1456,11 +1804,25 @@ static noinline_for_stack bool rcu_gp_init(void)
/* Record GP times before starting GP, hence rcu_seq_start(). */
rcu_seq_start(&rcu_state.gp_seq);
ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
+ start_new_poll = rcu_sr_normal_gp_init();
trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
raw_spin_unlock_irq_rcu_node(rnp);
/*
+ * The "start_new_poll" is set to true, only when this GP is not able
+ * to handle anything and there are outstanding users. It happens when
+ * the rcu_sr_normal_gp_init() function was not able to insert a dummy
+ * separator to the llist, because there were no left any dummy-nodes.
+ *
+ * Number of dummy-nodes is fixed, it could be that we are run out of
+ * them, if so we start a new pool request to repeat a try. It is rare
+ * and it means that a system is doing a slow processing of callbacks.
+ */
+ if (start_new_poll)
+ (void) start_poll_synchronize_rcu();
+
+ /*
* Apply per-leaf buffered online and offline operations to
* the rcu_node tree. Note that this new grace period need not
* wait for subsequent online CPUs, and that RCU hooks in the CPU
@@ -1472,7 +1834,7 @@ static noinline_for_stack bool rcu_gp_init(void)
WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
/* Exclude CPU hotplug operations. */
rcu_for_each_leaf_node(rnp) {
- local_irq_save(flags);
+ local_irq_disable();
arch_spin_lock(&rcu_state.ofl_lock);
raw_spin_lock_rcu_node(rnp);
if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
@@ -1480,7 +1842,7 @@ static noinline_for_stack bool rcu_gp_init(void)
/* Nothing to do on this leaf rcu_node structure. */
raw_spin_unlock_rcu_node(rnp);
arch_spin_unlock(&rcu_state.ofl_lock);
- local_irq_restore(flags);
+ local_irq_enable();
continue;
}
@@ -1517,7 +1879,7 @@ static noinline_for_stack bool rcu_gp_init(void)
raw_spin_unlock_rcu_node(rnp);
arch_spin_unlock(&rcu_state.ofl_lock);
- local_irq_restore(flags);
+ local_irq_enable();
}
rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
@@ -1612,16 +1974,15 @@ static void rcu_gp_fqs(bool first_time)
if (first_time) {
/* Collect dyntick-idle snapshots. */
- force_qs_rnp(dyntick_save_progress_counter);
+ force_qs_rnp(rcu_watching_snap_save);
} else {
/* Handle dyntick-idle and offline CPUs. */
- force_qs_rnp(rcu_implicit_dynticks_qs);
+ force_qs_rnp(rcu_watching_snap_recheck);
}
/* Clear flag to prevent immediate re-entry. */
if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
raw_spin_lock_irq_rcu_node(rnp);
- WRITE_ONCE(rcu_state.gp_flags,
- READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
+ WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS);
raw_spin_unlock_irq_rcu_node(rnp);
}
}
@@ -1825,6 +2186,9 @@ static noinline void rcu_gp_cleanup(void)
}
raw_spin_unlock_irq_rcu_node(rnp);
+ // Make synchronize_rcu() users aware of the end of old grace period.
+ rcu_sr_normal_gp_cleanup();
+
// If strict, make all CPUs aware of the end of the old grace period.
if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
@@ -1882,8 +2246,7 @@ static void rcu_report_qs_rsp(unsigned long flags)
{
raw_lockdep_assert_held_rcu_node(rcu_get_root());
WARN_ON_ONCE(!rcu_gp_in_progress());
- WRITE_ONCE(rcu_state.gp_flags,
- READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
+ WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
rcu_gp_kthread_wake();
}
@@ -2010,7 +2373,6 @@ rcu_report_qs_rdp(struct rcu_data *rdp)
{
unsigned long flags;
unsigned long mask;
- bool needacc = false;
struct rcu_node *rnp;
WARN_ON_ONCE(rdp->cpu != smp_processor_id());
@@ -2047,23 +2409,11 @@ rcu_report_qs_rdp(struct rcu_data *rdp)
* to return true. So complain, but don't awaken.
*/
WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
- } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
- /*
- * ...but NOCB kthreads may miss or delay callbacks acceleration
- * if in the middle of a (de-)offloading process.
- */
- needacc = true;
}
rcu_disable_urgency_upon_qs(rdp);
rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
/* ^^^ Released rnp->lock */
-
- if (needacc) {
- rcu_nocb_lock_irqsave(rdp, flags);
- rcu_accelerate_cbs_unlocked(rnp, rdp);
- rcu_nocb_unlock_irqrestore(rdp, flags);
- }
}
}
@@ -2398,8 +2748,7 @@ void rcu_force_quiescent_state(void)
raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
return; /* Someone beat us to it. */
}
- WRITE_ONCE(rcu_state.gp_flags,
- READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
+ WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
rcu_gp_kthread_wake();
}
@@ -2419,24 +2768,6 @@ static __latent_entropy void rcu_core(void)
unsigned long flags;
struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
struct rcu_node *rnp = rdp->mynode;
- /*
- * On RT rcu_core() can be preempted when IRQs aren't disabled.
- * Therefore this function can race with concurrent NOCB (de-)offloading
- * on this CPU and the below condition must be considered volatile.
- * However if we race with:
- *
- * _ Offloading: In the worst case we accelerate or process callbacks
- * concurrently with NOCB kthreads. We are guaranteed to
- * call rcu_nocb_lock() if that happens.
- *
- * _ Deoffloading: In the worst case we miss callbacks acceleration or
- * processing. This is fine because the early stage
- * of deoffloading invokes rcu_core() after setting
- * SEGCBLIST_RCU_CORE. So we guarantee that we'll process
- * what could have been dismissed without the need to wait
- * for the next rcu_pending() check in the next jiffy.
- */
- const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
if (cpu_is_offline(smp_processor_id()))
return;
@@ -2456,17 +2787,17 @@ static __latent_entropy void rcu_core(void)
/* No grace period and unregistered callbacks? */
if (!rcu_gp_in_progress() &&
- rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
- rcu_nocb_lock_irqsave(rdp, flags);
+ rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) {
+ local_irq_save(flags);
if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
rcu_accelerate_cbs_unlocked(rnp, rdp);
- rcu_nocb_unlock_irqrestore(rdp, flags);
+ local_irq_restore(flags);
}
rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
/* If there are callbacks ready, invoke them. */
- if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
+ if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(&rdp->cblist) &&
likely(READ_ONCE(rcu_scheduler_fully_active))) {
rcu_do_batch(rdp);
/* Re-invoke RCU core processing if there are callbacks remaining. */
@@ -2483,7 +2814,7 @@ static __latent_entropy void rcu_core(void)
queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
}
-static void rcu_core_si(struct softirq_action *h)
+static void rcu_core_si(void)
{
rcu_core();
}
@@ -2731,9 +3062,12 @@ __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
}
head->func = func;
head->next = NULL;
- kasan_record_aux_stack_noalloc(head);
+ kasan_record_aux_stack(head);
+
local_irq_save(flags);
rdp = this_cpu_ptr(&rcu_data);
+ RCU_LOCKDEP_WARN(!rcu_rdp_cpu_online(rdp), "Callback enqueued on offline CPU!");
+
lazy = lazy_in && !rcu_async_should_hurry();
/* Add the callback to our list. */
@@ -2839,724 +3173,60 @@ void call_rcu(struct rcu_head *head, rcu_callback_t func)
}
EXPORT_SYMBOL_GPL(call_rcu);
-/* Maximum number of jiffies to wait before draining a batch. */
-#define KFREE_DRAIN_JIFFIES (5 * HZ)
-#define KFREE_N_BATCHES 2
-#define FREE_N_CHANNELS 2
-
-/**
- * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
- * @list: List node. All blocks are linked between each other
- * @gp_snap: Snapshot of RCU state for objects placed to this bulk
- * @nr_records: Number of active pointers in the array
- * @records: Array of the kvfree_rcu() pointers
- */
-struct kvfree_rcu_bulk_data {
- struct list_head list;
- struct rcu_gp_oldstate gp_snap;
- unsigned long nr_records;
- void *records[];
-};
-
/*
- * This macro defines how many entries the "records" array
- * will contain. It is based on the fact that the size of
- * kvfree_rcu_bulk_data structure becomes exactly one page.
- */
-#define KVFREE_BULK_MAX_ENTR \
- ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
-
-/**
- * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
- * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
- * @head_free: List of kfree_rcu() objects waiting for a grace period
- * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
- * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
- * @krcp: Pointer to @kfree_rcu_cpu structure
- */
-
-struct kfree_rcu_cpu_work {
- struct rcu_work rcu_work;
- struct rcu_head *head_free;
- struct rcu_gp_oldstate head_free_gp_snap;
- struct list_head bulk_head_free[FREE_N_CHANNELS];
- struct kfree_rcu_cpu *krcp;
-};
-
-/**
- * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
- * @head: List of kfree_rcu() objects not yet waiting for a grace period
- * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
- * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
- * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
- * @lock: Synchronize access to this structure
- * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
- * @initialized: The @rcu_work fields have been initialized
- * @head_count: Number of objects in rcu_head singular list
- * @bulk_count: Number of objects in bulk-list
- * @bkvcache:
- * A simple cache list that contains objects for reuse purpose.
- * In order to save some per-cpu space the list is singular.
- * Even though it is lockless an access has to be protected by the
- * per-cpu lock.
- * @page_cache_work: A work to refill the cache when it is empty
- * @backoff_page_cache_fill: Delay cache refills
- * @work_in_progress: Indicates that page_cache_work is running
- * @hrtimer: A hrtimer for scheduling a page_cache_work
- * @nr_bkv_objs: number of allocated objects at @bkvcache.
+ * During early boot, any blocking grace-period wait automatically
+ * implies a grace period.
*
- * This is a per-CPU structure. The reason that it is not included in
- * the rcu_data structure is to permit this code to be extracted from
- * the RCU files. Such extraction could allow further optimization of
- * the interactions with the slab allocators.
- */
-struct kfree_rcu_cpu {
- // Objects queued on a linked list
- // through their rcu_head structures.
- struct rcu_head *head;
- unsigned long head_gp_snap;
- atomic_t head_count;
-
- // Objects queued on a bulk-list.
- struct list_head bulk_head[FREE_N_CHANNELS];
- atomic_t bulk_count[FREE_N_CHANNELS];
-
- struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
- raw_spinlock_t lock;
- struct delayed_work monitor_work;
- bool initialized;
-
- struct delayed_work page_cache_work;
- atomic_t backoff_page_cache_fill;
- atomic_t work_in_progress;
- struct hrtimer hrtimer;
-
- struct llist_head bkvcache;
- int nr_bkv_objs;
-};
-
-static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
- .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
-};
-
-static __always_inline void
-debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
-{
-#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
- int i;
-
- for (i = 0; i < bhead->nr_records; i++)
- debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
-#endif
-}
-
-static inline struct kfree_rcu_cpu *
-krc_this_cpu_lock(unsigned long *flags)
-{
- struct kfree_rcu_cpu *krcp;
-
- local_irq_save(*flags); // For safely calling this_cpu_ptr().
- krcp = this_cpu_ptr(&krc);
- raw_spin_lock(&krcp->lock);
-
- return krcp;
-}
-
-static inline void
-krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
-{
- raw_spin_unlock_irqrestore(&krcp->lock, flags);
-}
-
-static inline struct kvfree_rcu_bulk_data *
-get_cached_bnode(struct kfree_rcu_cpu *krcp)
-{
- if (!krcp->nr_bkv_objs)
- return NULL;
-
- WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
- return (struct kvfree_rcu_bulk_data *)
- llist_del_first(&krcp->bkvcache);
-}
-
-static inline bool
-put_cached_bnode(struct kfree_rcu_cpu *krcp,
- struct kvfree_rcu_bulk_data *bnode)
-{
- // Check the limit.
- if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
- return false;
-
- llist_add((struct llist_node *) bnode, &krcp->bkvcache);
- WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
- return true;
-}
-
-static int
-drain_page_cache(struct kfree_rcu_cpu *krcp)
-{
- unsigned long flags;
- struct llist_node *page_list, *pos, *n;
- int freed = 0;
-
- if (!rcu_min_cached_objs)
- return 0;
-
- raw_spin_lock_irqsave(&krcp->lock, flags);
- page_list = llist_del_all(&krcp->bkvcache);
- WRITE_ONCE(krcp->nr_bkv_objs, 0);
- raw_spin_unlock_irqrestore(&krcp->lock, flags);
-
- llist_for_each_safe(pos, n, page_list) {
- free_page((unsigned long)pos);
- freed++;
- }
-
- return freed;
-}
-
-static void
-kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
- struct kvfree_rcu_bulk_data *bnode, int idx)
-{
- unsigned long flags;
- int i;
-
- if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
- debug_rcu_bhead_unqueue(bnode);
- rcu_lock_acquire(&rcu_callback_map);
- if (idx == 0) { // kmalloc() / kfree().
- trace_rcu_invoke_kfree_bulk_callback(
- rcu_state.name, bnode->nr_records,
- bnode->records);
-
- kfree_bulk(bnode->nr_records, bnode->records);
- } else { // vmalloc() / vfree().
- for (i = 0; i < bnode->nr_records; i++) {
- trace_rcu_invoke_kvfree_callback(
- rcu_state.name, bnode->records[i], 0);
-
- vfree(bnode->records[i]);
- }
- }
- rcu_lock_release(&rcu_callback_map);
- }
-
- raw_spin_lock_irqsave(&krcp->lock, flags);
- if (put_cached_bnode(krcp, bnode))
- bnode = NULL;
- raw_spin_unlock_irqrestore(&krcp->lock, flags);
-
- if (bnode)
- free_page((unsigned long) bnode);
-
- cond_resched_tasks_rcu_qs();
-}
-
-static void
-kvfree_rcu_list(struct rcu_head *head)
-{
- struct rcu_head *next;
-
- for (; head; head = next) {
- void *ptr = (void *) head->func;
- unsigned long offset = (void *) head - ptr;
-
- next = head->next;
- debug_rcu_head_unqueue((struct rcu_head *)ptr);
- rcu_lock_acquire(&rcu_callback_map);
- trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
-
- if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
- kvfree(ptr);
-
- rcu_lock_release(&rcu_callback_map);
- cond_resched_tasks_rcu_qs();
- }
-}
-
-/*
- * This function is invoked in workqueue context after a grace period.
- * It frees all the objects queued on ->bulk_head_free or ->head_free.
- */
-static void kfree_rcu_work(struct work_struct *work)
-{
- unsigned long flags;
- struct kvfree_rcu_bulk_data *bnode, *n;
- struct list_head bulk_head[FREE_N_CHANNELS];
- struct rcu_head *head;
- struct kfree_rcu_cpu *krcp;
- struct kfree_rcu_cpu_work *krwp;
- struct rcu_gp_oldstate head_gp_snap;
- int i;
-
- krwp = container_of(to_rcu_work(work),
- struct kfree_rcu_cpu_work, rcu_work);
- krcp = krwp->krcp;
-
- raw_spin_lock_irqsave(&krcp->lock, flags);
- // Channels 1 and 2.
- for (i = 0; i < FREE_N_CHANNELS; i++)
- list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
-
- // Channel 3.
- head = krwp->head_free;
- krwp->head_free = NULL;
- head_gp_snap = krwp->head_free_gp_snap;
- raw_spin_unlock_irqrestore(&krcp->lock, flags);
-
- // Handle the first two channels.
- for (i = 0; i < FREE_N_CHANNELS; i++) {
- // Start from the tail page, so a GP is likely passed for it.
- list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
- kvfree_rcu_bulk(krcp, bnode, i);
- }
-
- /*
- * This is used when the "bulk" path can not be used for the
- * double-argument of kvfree_rcu(). This happens when the
- * page-cache is empty, which means that objects are instead
- * queued on a linked list through their rcu_head structures.
- * This list is named "Channel 3".
- */
- if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
- kvfree_rcu_list(head);
-}
-
-static bool
-need_offload_krc(struct kfree_rcu_cpu *krcp)
-{
- int i;
-
- for (i = 0; i < FREE_N_CHANNELS; i++)
- if (!list_empty(&krcp->bulk_head[i]))
- return true;
-
- return !!READ_ONCE(krcp->head);
-}
-
-static bool
-need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
-{
- int i;
-
- for (i = 0; i < FREE_N_CHANNELS; i++)
- if (!list_empty(&krwp->bulk_head_free[i]))
- return true;
-
- return !!krwp->head_free;
-}
-
-static int krc_count(struct kfree_rcu_cpu *krcp)
-{
- int sum = atomic_read(&krcp->head_count);
- int i;
-
- for (i = 0; i < FREE_N_CHANNELS; i++)
- sum += atomic_read(&krcp->bulk_count[i]);
-
- return sum;
-}
-
-static void
-schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
-{
- long delay, delay_left;
-
- delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
- if (delayed_work_pending(&krcp->monitor_work)) {
- delay_left = krcp->monitor_work.timer.expires - jiffies;
- if (delay < delay_left)
- mod_delayed_work(system_wq, &krcp->monitor_work, delay);
- return;
- }
- queue_delayed_work(system_wq, &krcp->monitor_work, delay);
-}
-
-static void
-kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
-{
- struct list_head bulk_ready[FREE_N_CHANNELS];
- struct kvfree_rcu_bulk_data *bnode, *n;
- struct rcu_head *head_ready = NULL;
- unsigned long flags;
- int i;
-
- raw_spin_lock_irqsave(&krcp->lock, flags);
- for (i = 0; i < FREE_N_CHANNELS; i++) {
- INIT_LIST_HEAD(&bulk_ready[i]);
-
- list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
- if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
- break;
-
- atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
- list_move(&bnode->list, &bulk_ready[i]);
- }
- }
-
- if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
- head_ready = krcp->head;
- atomic_set(&krcp->head_count, 0);
- WRITE_ONCE(krcp->head, NULL);
- }
- raw_spin_unlock_irqrestore(&krcp->lock, flags);
-
- for (i = 0; i < FREE_N_CHANNELS; i++) {
- list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
- kvfree_rcu_bulk(krcp, bnode, i);
- }
-
- if (head_ready)
- kvfree_rcu_list(head_ready);
-}
-
-/*
- * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
+ * Later on, this could in theory be the case for kernels built with
+ * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
+ * is not a common case. Furthermore, this optimization would cause
+ * the rcu_gp_oldstate structure to expand by 50%, so this potential
+ * grace-period optimization is ignored once the scheduler is running.
*/
-static void kfree_rcu_monitor(struct work_struct *work)
-{
- struct kfree_rcu_cpu *krcp = container_of(work,
- struct kfree_rcu_cpu, monitor_work.work);
- unsigned long flags;
- int i, j;
-
- // Drain ready for reclaim.
- kvfree_rcu_drain_ready(krcp);
-
- raw_spin_lock_irqsave(&krcp->lock, flags);
-
- // Attempt to start a new batch.
- for (i = 0; i < KFREE_N_BATCHES; i++) {
- struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
-
- // Try to detach bulk_head or head and attach it, only when
- // all channels are free. Any channel is not free means at krwp
- // there is on-going rcu work to handle krwp's free business.
- if (need_wait_for_krwp_work(krwp))
- continue;
-
- // kvfree_rcu_drain_ready() might handle this krcp, if so give up.
- if (need_offload_krc(krcp)) {
- // Channel 1 corresponds to the SLAB-pointer bulk path.
- // Channel 2 corresponds to vmalloc-pointer bulk path.
- for (j = 0; j < FREE_N_CHANNELS; j++) {
- if (list_empty(&krwp->bulk_head_free[j])) {
- atomic_set(&krcp->bulk_count[j], 0);
- list_replace_init(&krcp->bulk_head[j],
- &krwp->bulk_head_free[j]);
- }
- }
-
- // Channel 3 corresponds to both SLAB and vmalloc
- // objects queued on the linked list.
- if (!krwp->head_free) {
- krwp->head_free = krcp->head;
- get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
- atomic_set(&krcp->head_count, 0);
- WRITE_ONCE(krcp->head, NULL);
- }
-
- // One work is per one batch, so there are three
- // "free channels", the batch can handle. It can
- // be that the work is in the pending state when
- // channels have been detached following by each
- // other.
- queue_rcu_work(system_wq, &krwp->rcu_work);
- }
- }
-
- raw_spin_unlock_irqrestore(&krcp->lock, flags);
-
- // If there is nothing to detach, it means that our job is
- // successfully done here. In case of having at least one
- // of the channels that is still busy we should rearm the
- // work to repeat an attempt. Because previous batches are
- // still in progress.
- if (need_offload_krc(krcp))
- schedule_delayed_monitor_work(krcp);
-}
-
-static enum hrtimer_restart
-schedule_page_work_fn(struct hrtimer *t)
-{
- struct kfree_rcu_cpu *krcp =
- container_of(t, struct kfree_rcu_cpu, hrtimer);
-
- queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
- return HRTIMER_NORESTART;
-}
-
-static void fill_page_cache_func(struct work_struct *work)
-{
- struct kvfree_rcu_bulk_data *bnode;
- struct kfree_rcu_cpu *krcp =
- container_of(work, struct kfree_rcu_cpu,
- page_cache_work.work);
- unsigned long flags;
- int nr_pages;
- bool pushed;
- int i;
-
- nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
- 1 : rcu_min_cached_objs;
-
- for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
- bnode = (struct kvfree_rcu_bulk_data *)
- __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
-
- if (!bnode)
- break;
-
- raw_spin_lock_irqsave(&krcp->lock, flags);
- pushed = put_cached_bnode(krcp, bnode);
- raw_spin_unlock_irqrestore(&krcp->lock, flags);
-
- if (!pushed) {
- free_page((unsigned long) bnode);
- break;
- }
- }
-
- atomic_set(&krcp->work_in_progress, 0);
- atomic_set(&krcp->backoff_page_cache_fill, 0);
-}
-
-static void
-run_page_cache_worker(struct kfree_rcu_cpu *krcp)
-{
- // If cache disabled, bail out.
- if (!rcu_min_cached_objs)
- return;
-
- if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
- !atomic_xchg(&krcp->work_in_progress, 1)) {
- if (atomic_read(&krcp->backoff_page_cache_fill)) {
- queue_delayed_work(system_wq,
- &krcp->page_cache_work,
- msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
- } else {
- hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- krcp->hrtimer.function = schedule_page_work_fn;
- hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
- }
- }
-}
-
-// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
-// state specified by flags. If can_alloc is true, the caller must
-// be schedulable and not be holding any locks or mutexes that might be
-// acquired by the memory allocator or anything that it might invoke.
-// Returns true if ptr was successfully recorded, else the caller must
-// use a fallback.
-static inline bool
-add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
- unsigned long *flags, void *ptr, bool can_alloc)
+static int rcu_blocking_is_gp(void)
{
- struct kvfree_rcu_bulk_data *bnode;
- int idx;
-
- *krcp = krc_this_cpu_lock(flags);
- if (unlikely(!(*krcp)->initialized))
+ if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
+ might_sleep();
return false;
-
- idx = !!is_vmalloc_addr(ptr);
- bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
- struct kvfree_rcu_bulk_data, list);
-
- /* Check if a new block is required. */
- if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
- bnode = get_cached_bnode(*krcp);
- if (!bnode && can_alloc) {
- krc_this_cpu_unlock(*krcp, *flags);
-
- // __GFP_NORETRY - allows a light-weight direct reclaim
- // what is OK from minimizing of fallback hitting point of
- // view. Apart of that it forbids any OOM invoking what is
- // also beneficial since we are about to release memory soon.
- //
- // __GFP_NOMEMALLOC - prevents from consuming of all the
- // memory reserves. Please note we have a fallback path.
- //
- // __GFP_NOWARN - it is supposed that an allocation can
- // be failed under low memory or high memory pressure
- // scenarios.
- bnode = (struct kvfree_rcu_bulk_data *)
- __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
- raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
- }
-
- if (!bnode)
- return false;
-
- // Initialize the new block and attach it.
- bnode->nr_records = 0;
- list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
}
-
- // Finally insert and update the GP for this page.
- bnode->records[bnode->nr_records++] = ptr;
- get_state_synchronize_rcu_full(&bnode->gp_snap);
- atomic_inc(&(*krcp)->bulk_count[idx]);
-
return true;
}
/*
- * Queue a request for lazy invocation of the appropriate free routine
- * after a grace period. Please note that three paths are maintained,
- * two for the common case using arrays of pointers and a third one that
- * is used only when the main paths cannot be used, for example, due to
- * memory pressure.
- *
- * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
- * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
- * be free'd in workqueue context. This allows us to: batch requests together to
- * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
+ * Helper function for the synchronize_rcu() API.
*/
-void kvfree_call_rcu(struct rcu_head *head, void *ptr)
+static void synchronize_rcu_normal(void)
{
- unsigned long flags;
- struct kfree_rcu_cpu *krcp;
- bool success;
+ struct rcu_synchronize rs;
- /*
- * Please note there is a limitation for the head-less
- * variant, that is why there is a clear rule for such
- * objects: it can be used from might_sleep() context
- * only. For other places please embed an rcu_head to
- * your data.
- */
- if (!head)
- might_sleep();
+ trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request"));
- // Queue the object but don't yet schedule the batch.
- if (debug_rcu_head_queue(ptr)) {
- // Probable double kfree_rcu(), just leak.
- WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
- __func__, head);
-
- // Mark as success and leave.
- return;
+ if (!READ_ONCE(rcu_normal_wake_from_gp)) {
+ wait_rcu_gp(call_rcu_hurry);
+ goto trace_complete_out;
}
- kasan_record_aux_stack_noalloc(ptr);
- success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
- if (!success) {
- run_page_cache_worker(krcp);
-
- if (head == NULL)
- // Inline if kvfree_rcu(one_arg) call.
- goto unlock_return;
-
- head->func = ptr;
- head->next = krcp->head;
- WRITE_ONCE(krcp->head, head);
- atomic_inc(&krcp->head_count);
-
- // Take a snapshot for this krcp.
- krcp->head_gp_snap = get_state_synchronize_rcu();
- success = true;
- }
+ init_rcu_head_on_stack(&rs.head);
+ init_completion(&rs.completion);
/*
- * The kvfree_rcu() caller considers the pointer freed at this point
- * and likely removes any references to it. Since the actual slab
- * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
- * this object (no scanning or false positives reporting).
+ * This code might be preempted, therefore take a GP
+ * snapshot before adding a request.
*/
- kmemleak_ignore(ptr);
+ if (IS_ENABLED(CONFIG_PROVE_RCU))
+ rs.head.func = (void *) get_state_synchronize_rcu();
- // Set timer to drain after KFREE_DRAIN_JIFFIES.
- if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
- schedule_delayed_monitor_work(krcp);
+ rcu_sr_normal_add_req(&rs);
-unlock_return:
- krc_this_cpu_unlock(krcp, flags);
+ /* Kick a GP and start waiting. */
+ (void) start_poll_synchronize_rcu();
- /*
- * Inline kvfree() after synchronize_rcu(). We can do
- * it from might_sleep() context only, so the current
- * CPU can pass the QS state.
- */
- if (!success) {
- debug_rcu_head_unqueue((struct rcu_head *) ptr);
- synchronize_rcu();
- kvfree(ptr);
- }
-}
-EXPORT_SYMBOL_GPL(kvfree_call_rcu);
-
-static unsigned long
-kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
-{
- int cpu;
- unsigned long count = 0;
-
- /* Snapshot count of all CPUs */
- for_each_possible_cpu(cpu) {
- struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
-
- count += krc_count(krcp);
- count += READ_ONCE(krcp->nr_bkv_objs);
- atomic_set(&krcp->backoff_page_cache_fill, 1);
- }
-
- return count == 0 ? SHRINK_EMPTY : count;
-}
-
-static unsigned long
-kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
-{
- int cpu, freed = 0;
-
- for_each_possible_cpu(cpu) {
- int count;
- struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
-
- count = krc_count(krcp);
- count += drain_page_cache(krcp);
- kfree_rcu_monitor(&krcp->monitor_work.work);
-
- sc->nr_to_scan -= count;
- freed += count;
-
- if (sc->nr_to_scan <= 0)
- break;
- }
-
- return freed == 0 ? SHRINK_STOP : freed;
-}
+ /* Now we can wait. */
+ wait_for_completion(&rs.completion);
+ destroy_rcu_head_on_stack(&rs.head);
-void __init kfree_rcu_scheduler_running(void)
-{
- int cpu;
-
- for_each_possible_cpu(cpu) {
- struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
-
- if (need_offload_krc(krcp))
- schedule_delayed_monitor_work(krcp);
- }
-}
-
-/*
- * During early boot, any blocking grace-period wait automatically
- * implies a grace period.
- *
- * Later on, this could in theory be the case for kernels built with
- * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
- * is not a common case. Furthermore, this optimization would cause
- * the rcu_gp_oldstate structure to expand by 50%, so this potential
- * grace-period optimization is ignored once the scheduler is running.
- */
-static int rcu_blocking_is_gp(void)
-{
- if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
- might_sleep();
- return false;
- }
- return true;
+trace_complete_out:
+ trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete"));
}
/**
@@ -3610,7 +3280,7 @@ void synchronize_rcu(void)
if (rcu_gp_is_expedited())
synchronize_rcu_expedited();
else
- wait_rcu_gp(call_rcu_hurry);
+ synchronize_rcu_normal();
return;
}
@@ -3710,7 +3380,6 @@ static void start_poll_synchronize_rcu_common(void)
struct rcu_data *rdp;
struct rcu_node *rnp;
- lockdep_assert_irqs_enabled();
local_irq_save(flags);
rdp = this_cpu_ptr(&rcu_data);
rnp = rdp->mynode;
@@ -3735,9 +3404,6 @@ static void start_poll_synchronize_rcu_common(void)
* grace period has elapsed in the meantime. If the needed grace period
* is not already slated to start, notifies RCU core of the need for that
* grace period.
- *
- * Interrupts must be enabled for the case where it is necessary to awaken
- * the grace-period kthread.
*/
unsigned long start_poll_synchronize_rcu(void)
{
@@ -3758,9 +3424,6 @@ EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
* grace period (whether normal or expedited) has elapsed in the meantime.
* If the needed grace period is not already slated to start, notifies
* RCU core of the need for that grace period.
- *
- * Interrupts must be enabled for the case where it is necessary to awaken
- * the grace-period kthread.
*/
void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
{
@@ -3938,11 +3601,15 @@ static int rcu_pending(int user)
return 1;
/* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
- if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
+ gp_in_progress = rcu_gp_in_progress();
+ if ((user || rcu_is_cpu_rrupt_from_idle() ||
+ (gp_in_progress &&
+ time_before(jiffies, READ_ONCE(rcu_state.gp_start) +
+ nohz_full_patience_delay_jiffies))) &&
+ rcu_nohz_full_cpu())
return 0;
/* Is the RCU core waiting for a quiescent state from this CPU? */
- gp_in_progress = rcu_gp_in_progress();
if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
return 1;
@@ -3990,6 +3657,7 @@ static void rcu_barrier_callback(struct rcu_head *rhp)
{
unsigned long __maybe_unused s = rcu_state.barrier_sequence;
+ rhp->next = rhp; // Mark the callback as having been invoked.
if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
rcu_barrier_trace(TPS("LastCB"), -1, s);
complete(&rcu_state.barrier_completion);
@@ -4303,7 +3971,7 @@ EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
// whether spinlocks may be acquired safely.
static bool rcu_init_invoked(void)
{
- return !!rcu_state.n_online_cpus;
+ return !!READ_ONCE(rcu_state.n_online_cpus);
}
/*
@@ -4391,18 +4059,34 @@ rcu_boot_init_percpu_data(int cpu)
/* Set up local state, ensuring consistent view of global state. */
rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
INIT_WORK(&rdp->strict_work, strict_work_handler);
- WARN_ON_ONCE(ct->dynticks_nesting != 1);
- WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
+ WARN_ON_ONCE(ct->nesting != 1);
+ WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu)));
rdp->barrier_seq_snap = rcu_state.barrier_sequence;
rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
- rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
+ rdp->rcu_ofl_gp_state = RCU_GP_CLEANED;
rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
- rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
+ rdp->rcu_onl_gp_state = RCU_GP_CLEANED;
rdp->last_sched_clock = jiffies;
rdp->cpu = cpu;
rcu_boot_init_nocb_percpu_data(rdp);
}
+static void rcu_thread_affine_rnp(struct task_struct *t, struct rcu_node *rnp)
+{
+ cpumask_var_t affinity;
+ int cpu;
+
+ if (!zalloc_cpumask_var(&affinity, GFP_KERNEL))
+ return;
+
+ for_each_leaf_node_possible_cpu(rnp, cpu)
+ cpumask_set_cpu(cpu, affinity);
+
+ kthread_affine_preferred(t, affinity);
+
+ free_cpumask_var(affinity);
+}
+
struct kthread_worker *rcu_exp_gp_kworker;
static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
@@ -4425,16 +4109,9 @@ static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, &param);
-}
-
-static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp)
-{
- struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker);
- if (!kworker)
- return NULL;
-
- return kworker->task;
+ rcu_thread_affine_rnp(kworker->task, rnp);
+ wake_up_process(kworker->task);
}
static void __init rcu_start_exp_gp_kworker(void)
@@ -4442,7 +4119,7 @@ static void __init rcu_start_exp_gp_kworker(void)
const char *name = "rcu_exp_gp_kthread_worker";
struct sched_param param = { .sched_priority = kthread_prio };
- rcu_exp_gp_kworker = kthread_create_worker(0, name);
+ rcu_exp_gp_kworker = kthread_run_worker(0, name);
if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
pr_err("Failed to create %s!\n", name);
rcu_exp_gp_kworker = NULL;
@@ -4485,7 +4162,7 @@ int rcutree_prepare_cpu(unsigned int cpu)
rdp->qlen_last_fqs_check = 0;
rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
rdp->blimit = blimit;
- ct->dynticks_nesting = 1; /* CPU not up, no tearing. */
+ ct->nesting = 1; /* CPU not up, no tearing. */
raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
/*
@@ -4513,73 +4190,13 @@ int rcutree_prepare_cpu(unsigned int cpu)
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
rcu_spawn_rnp_kthreads(rnp);
rcu_spawn_cpu_nocb_kthread(cpu);
+ ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
return 0;
}
/*
- * Update kthreads affinity during CPU-hotplug changes.
- *
- * Set the per-rcu_node kthread's affinity to cover all CPUs that are
- * served by the rcu_node in question. The CPU hotplug lock is still
- * held, so the value of rnp->qsmaskinit will be stable.
- *
- * We don't include outgoingcpu in the affinity set, use -1 if there is
- * no outgoing CPU. If there are no CPUs left in the affinity set,
- * this function allows the kthread to execute on any CPU.
- *
- * Any future concurrent calls are serialized via ->kthread_mutex.
- */
-static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu)
-{
- cpumask_var_t cm;
- unsigned long mask;
- struct rcu_data *rdp;
- struct rcu_node *rnp;
- struct task_struct *task_boost, *task_exp;
-
- rdp = per_cpu_ptr(&rcu_data, cpu);
- rnp = rdp->mynode;
-
- task_boost = rcu_boost_task(rnp);
- task_exp = rcu_exp_par_gp_task(rnp);
-
- /*
- * If CPU is the boot one, those tasks are created later from early
- * initcall since kthreadd must be created first.
- */
- if (!task_boost && !task_exp)
- return;
-
- if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
- return;
-
- mutex_lock(&rnp->kthread_mutex);
- mask = rcu_rnp_online_cpus(rnp);
- for_each_leaf_node_possible_cpu(rnp, cpu)
- if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
- cpu != outgoingcpu)
- cpumask_set_cpu(cpu, cm);
- cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
- if (cpumask_empty(cm)) {
- cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
- if (outgoingcpu >= 0)
- cpumask_clear_cpu(outgoingcpu, cm);
- }
-
- if (task_exp)
- set_cpus_allowed_ptr(task_exp, cm);
-
- if (task_boost)
- set_cpus_allowed_ptr(task_boost, cm);
-
- mutex_unlock(&rnp->kthread_mutex);
-
- free_cpumask_var(cm);
-}
-
-/*
* Has the specified (known valid) CPU ever been fully online?
*/
bool rcu_cpu_beenfullyonline(int cpu)
@@ -4607,7 +4224,6 @@ int rcutree_online_cpu(unsigned int cpu)
if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
return 0; /* Too early in boot for scheduler work. */
sync_sched_exp_online_cleanup(cpu);
- rcutree_affinity_setting(cpu, -1);
// Stop-machine done, so allow nohz_full to disable tick.
tick_dep_clear(TICK_DEP_BIT_RCU);
@@ -4644,7 +4260,7 @@ void rcutree_report_cpu_starting(unsigned int cpu)
rnp = rdp->mynode;
mask = rdp->grpmask;
arch_spin_lock(&rcu_state.ofl_lock);
- rcu_dynticks_eqs_online();
+ rcu_watching_online();
raw_spin_lock(&rcu_state.barrier_lock);
raw_spin_lock_rcu_node(rnp);
WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
@@ -4656,7 +4272,7 @@ void rcutree_report_cpu_starting(unsigned int cpu)
ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
- rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
+ rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state);
/* An incoming CPU should never be blocking a grace period. */
if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
@@ -4707,7 +4323,7 @@ void rcutree_report_cpu_dead(void)
arch_spin_lock(&rcu_state.ofl_lock);
raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
- rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
+ rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state);
if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
/* Report quiescent state -before- changing ->qsmaskinitnext! */
rcu_disable_urgency_upon_qs(rdp);
@@ -4734,11 +4350,15 @@ void rcutree_migrate_callbacks(int cpu)
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
bool needwake;
- if (rcu_rdp_is_offloaded(rdp) ||
- rcu_segcblist_empty(&rdp->cblist))
- return; /* No callbacks to migrate. */
+ if (rcu_rdp_is_offloaded(rdp))
+ return;
raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
+ if (rcu_segcblist_empty(&rdp->cblist)) {
+ raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
+ return; /* No callbacks to migrate. */
+ }
+
WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
rcu_barrier_entrain(rdp);
my_rdp = this_cpu_ptr(&rcu_data);
@@ -4781,6 +4401,7 @@ void rcutree_migrate_callbacks(int cpu)
*/
int rcutree_dead_cpu(unsigned int cpu)
{
+ ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
// Stop-machine done, so allow nohz_full to disable tick.
tick_dep_clear(TICK_DEP_BIT_RCU);
@@ -4819,8 +4440,6 @@ int rcutree_offline_cpu(unsigned int cpu)
rnp->ffmask &= ~rdp->grpmask;
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
- rcutree_affinity_setting(cpu, cpu);
-
// nohz_full CPUs need the tick for stop-machine to work quickly
tick_dep_set(TICK_DEP_BIT_RCU);
return 0;
@@ -5005,6 +4624,8 @@ static void __init rcu_init_one(void)
while (i > rnp->grphi)
rnp++;
per_cpu_ptr(&rcu_data, i)->mynode = rnp;
+ per_cpu_ptr(&rcu_data, i)->barrier_head.next =
+ &per_cpu_ptr(&rcu_data, i)->barrier_head;
rcu_boot_init_percpu_data(i);
}
}
@@ -5083,8 +4704,7 @@ void rcu_init_geometry(void)
* Complain and fall back to the compile-time values if this
* limit is exceeded.
*/
- if (rcu_fanout_leaf < 2 ||
- rcu_fanout_leaf > sizeof(unsigned long) * 8) {
+ if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) {
rcu_fanout_leaf = RCU_FANOUT_LEAF;
WARN_ON(1);
return;
@@ -5149,62 +4769,12 @@ static void __init rcu_dump_rcu_node_tree(void)
struct workqueue_struct *rcu_gp_wq;
-static void __init kfree_rcu_batch_init(void)
-{
- int cpu;
- int i, j;
- struct shrinker *kfree_rcu_shrinker;
-
- /* Clamp it to [0:100] seconds interval. */
- if (rcu_delay_page_cache_fill_msec < 0 ||
- rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
-
- rcu_delay_page_cache_fill_msec =
- clamp(rcu_delay_page_cache_fill_msec, 0,
- (int) (100 * MSEC_PER_SEC));
-
- pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
- rcu_delay_page_cache_fill_msec);
- }
-
- for_each_possible_cpu(cpu) {
- struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
-
- for (i = 0; i < KFREE_N_BATCHES; i++) {
- INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
- krcp->krw_arr[i].krcp = krcp;
-
- for (j = 0; j < FREE_N_CHANNELS; j++)
- INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
- }
-
- for (i = 0; i < FREE_N_CHANNELS; i++)
- INIT_LIST_HEAD(&krcp->bulk_head[i]);
-
- INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
- INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
- krcp->initialized = true;
- }
-
- kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree");
- if (!kfree_rcu_shrinker) {
- pr_err("Failed to allocate kfree_rcu() shrinker!\n");
- return;
- }
-
- kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
- kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
-
- shrinker_register(kfree_rcu_shrinker);
-}
-
void __init rcu_init(void)
{
int cpu = smp_processor_id();
rcu_early_boot_tests();
- kfree_rcu_batch_init();
rcu_bootup_announce();
sanitize_kthread_prio();
rcu_init_geometry();
@@ -5229,6 +4799,9 @@ void __init rcu_init(void)
rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
WARN_ON(!rcu_gp_wq);
+ sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0);
+ WARN_ON(!sync_wq);
+
/* Fill in default value for rcutree.qovld boot parameter. */
/* -After- the rcu_node ->lock fields are initialized! */
if (qovld < 0)