diff options
Diffstat (limited to 'kernel/rseq.c')
| -rw-r--r-- | kernel/rseq.c | 478 |
1 files changed, 478 insertions, 0 deletions
diff --git a/kernel/rseq.c b/kernel/rseq.c new file mode 100644 index 000000000000..395d8b002350 --- /dev/null +++ b/kernel/rseq.c @@ -0,0 +1,478 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Restartable sequences system call + * + * Copyright (C) 2015, Google, Inc., + * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com> + * Copyright (C) 2015-2018, EfficiOS Inc., + * Mathieu Desnoyers <mathieu.desnoyers@efficios.com> + */ + +/* + * Restartable sequences are a lightweight interface that allows + * user-level code to be executed atomically relative to scheduler + * preemption and signal delivery. Typically used for implementing + * per-cpu operations. + * + * It allows user-space to perform update operations on per-cpu data + * without requiring heavy-weight atomic operations. + * + * Detailed algorithm of rseq user-space assembly sequences: + * + * init(rseq_cs) + * cpu = TLS->rseq::cpu_id_start + * [1] TLS->rseq::rseq_cs = rseq_cs + * [start_ip] ---------------------------- + * [2] if (cpu != TLS->rseq::cpu_id) + * goto abort_ip; + * [3] <last_instruction_in_cs> + * [post_commit_ip] ---------------------------- + * + * The address of jump target abort_ip must be outside the critical + * region, i.e.: + * + * [abort_ip] < [start_ip] || [abort_ip] >= [post_commit_ip] + * + * Steps [2]-[3] (inclusive) need to be a sequence of instructions in + * userspace that can handle being interrupted between any of those + * instructions, and then resumed to the abort_ip. + * + * 1. Userspace stores the address of the struct rseq_cs assembly + * block descriptor into the rseq_cs field of the registered + * struct rseq TLS area. This update is performed through a single + * store within the inline assembly instruction sequence. + * [start_ip] + * + * 2. Userspace tests to check whether the current cpu_id field match + * the cpu number loaded before start_ip, branching to abort_ip + * in case of a mismatch. + * + * If the sequence is preempted or interrupted by a signal + * at or after start_ip and before post_commit_ip, then the kernel + * clears TLS->__rseq_abi::rseq_cs, and sets the user-space return + * ip to abort_ip before returning to user-space, so the preempted + * execution resumes at abort_ip. + * + * 3. Userspace critical section final instruction before + * post_commit_ip is the commit. The critical section is + * self-terminating. + * [post_commit_ip] + * + * 4. <success> + * + * On failure at [2], or if interrupted by preempt or signal delivery + * between [1] and [3]: + * + * [abort_ip] + * F1. <failure> + */ + +/* Required to select the proper per_cpu ops for rseq_stats_inc() */ +#define RSEQ_BUILD_SLOW_PATH + +#include <linux/debugfs.h> +#include <linux/ratelimit.h> +#include <linux/rseq_entry.h> +#include <linux/sched.h> +#include <linux/syscalls.h> +#include <linux/uaccess.h> +#include <linux/types.h> +#include <asm/ptrace.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/rseq.h> + +DEFINE_STATIC_KEY_MAYBE(CONFIG_RSEQ_DEBUG_DEFAULT_ENABLE, rseq_debug_enabled); + +static inline void rseq_control_debug(bool on) +{ + if (on) + static_branch_enable(&rseq_debug_enabled); + else + static_branch_disable(&rseq_debug_enabled); +} + +static int __init rseq_setup_debug(char *str) +{ + bool on; + + if (kstrtobool(str, &on)) + return -EINVAL; + rseq_control_debug(on); + return 1; +} +__setup("rseq_debug=", rseq_setup_debug); + +#ifdef CONFIG_TRACEPOINTS +/* + * Out of line, so the actual update functions can be in a header to be + * inlined into the exit to user code. + */ +void __rseq_trace_update(struct task_struct *t) +{ + trace_rseq_update(t); +} + +void __rseq_trace_ip_fixup(unsigned long ip, unsigned long start_ip, + unsigned long offset, unsigned long abort_ip) +{ + trace_rseq_ip_fixup(ip, start_ip, offset, abort_ip); +} +#endif /* CONFIG_TRACEPOINTS */ + +#ifdef CONFIG_DEBUG_FS +#ifdef CONFIG_RSEQ_STATS +DEFINE_PER_CPU(struct rseq_stats, rseq_stats); + +static int rseq_stats_show(struct seq_file *m, void *p) +{ + struct rseq_stats stats = { }; + unsigned int cpu; + + for_each_possible_cpu(cpu) { + stats.exit += data_race(per_cpu(rseq_stats.exit, cpu)); + stats.signal += data_race(per_cpu(rseq_stats.signal, cpu)); + stats.slowpath += data_race(per_cpu(rseq_stats.slowpath, cpu)); + stats.fastpath += data_race(per_cpu(rseq_stats.fastpath, cpu)); + stats.ids += data_race(per_cpu(rseq_stats.ids, cpu)); + stats.cs += data_race(per_cpu(rseq_stats.cs, cpu)); + stats.clear += data_race(per_cpu(rseq_stats.clear, cpu)); + stats.fixup += data_race(per_cpu(rseq_stats.fixup, cpu)); + } + + seq_printf(m, "exit: %16lu\n", stats.exit); + seq_printf(m, "signal: %16lu\n", stats.signal); + seq_printf(m, "slowp: %16lu\n", stats.slowpath); + seq_printf(m, "fastp: %16lu\n", stats.fastpath); + seq_printf(m, "ids: %16lu\n", stats.ids); + seq_printf(m, "cs: %16lu\n", stats.cs); + seq_printf(m, "clear: %16lu\n", stats.clear); + seq_printf(m, "fixup: %16lu\n", stats.fixup); + return 0; +} + +static int rseq_stats_open(struct inode *inode, struct file *file) +{ + return single_open(file, rseq_stats_show, inode->i_private); +} + +static const struct file_operations stat_ops = { + .open = rseq_stats_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +static int __init rseq_stats_init(struct dentry *root_dir) +{ + debugfs_create_file("stats", 0444, root_dir, NULL, &stat_ops); + return 0; +} +#else +static inline void rseq_stats_init(struct dentry *root_dir) { } +#endif /* CONFIG_RSEQ_STATS */ + +static int rseq_debug_show(struct seq_file *m, void *p) +{ + bool on = static_branch_unlikely(&rseq_debug_enabled); + + seq_printf(m, "%d\n", on); + return 0; +} + +static ssize_t rseq_debug_write(struct file *file, const char __user *ubuf, + size_t count, loff_t *ppos) +{ + bool on; + + if (kstrtobool_from_user(ubuf, count, &on)) + return -EINVAL; + + rseq_control_debug(on); + return count; +} + +static int rseq_debug_open(struct inode *inode, struct file *file) +{ + return single_open(file, rseq_debug_show, inode->i_private); +} + +static const struct file_operations debug_ops = { + .open = rseq_debug_open, + .read = seq_read, + .write = rseq_debug_write, + .llseek = seq_lseek, + .release = single_release, +}; + +static int __init rseq_debugfs_init(void) +{ + struct dentry *root_dir = debugfs_create_dir("rseq", NULL); + + debugfs_create_file("debug", 0644, root_dir, NULL, &debug_ops); + rseq_stats_init(root_dir); + return 0; +} +__initcall(rseq_debugfs_init); +#endif /* CONFIG_DEBUG_FS */ + +static bool rseq_set_ids(struct task_struct *t, struct rseq_ids *ids, u32 node_id) +{ + return rseq_set_ids_get_csaddr(t, ids, node_id, NULL); +} + +static bool rseq_handle_cs(struct task_struct *t, struct pt_regs *regs) +{ + struct rseq __user *urseq = t->rseq.usrptr; + u64 csaddr; + + scoped_user_read_access(urseq, efault) + unsafe_get_user(csaddr, &urseq->rseq_cs, efault); + if (likely(!csaddr)) + return true; + return rseq_update_user_cs(t, regs, csaddr); +efault: + return false; +} + +static void rseq_slowpath_update_usr(struct pt_regs *regs) +{ + /* + * Preserve rseq state and user_irq state. The generic entry code + * clears user_irq on the way out, the non-generic entry + * architectures are not having user_irq. + */ + const struct rseq_event evt_mask = { .has_rseq = true, .user_irq = true, }; + struct task_struct *t = current; + struct rseq_ids ids; + u32 node_id; + bool event; + + if (unlikely(t->flags & PF_EXITING)) + return; + + rseq_stat_inc(rseq_stats.slowpath); + + /* + * Read and clear the event pending bit first. If the task + * was not preempted or migrated or a signal is on the way, + * there is no point in doing any of the heavy lifting here + * on production kernels. In that case TIF_NOTIFY_RESUME + * was raised by some other functionality. + * + * This is correct because the read/clear operation is + * guarded against scheduler preemption, which makes it CPU + * local atomic. If the task is preempted right after + * re-enabling preemption then TIF_NOTIFY_RESUME is set + * again and this function is invoked another time _before_ + * the task is able to return to user mode. + * + * On a debug kernel, invoke the fixup code unconditionally + * with the result handed in to allow the detection of + * inconsistencies. + */ + scoped_guard(irq) { + event = t->rseq.event.sched_switch; + t->rseq.event.all &= evt_mask.all; + ids.cpu_id = task_cpu(t); + ids.mm_cid = task_mm_cid(t); + } + + if (!event) + return; + + node_id = cpu_to_node(ids.cpu_id); + + if (unlikely(!rseq_update_usr(t, regs, &ids, node_id))) { + /* + * Clear the errors just in case this might survive magically, but + * leave the rest intact. + */ + t->rseq.event.error = 0; + force_sig(SIGSEGV); + } +} + +void __rseq_handle_slowpath(struct pt_regs *regs) +{ + /* + * If invoked from hypervisors before entering the guest via + * resume_user_mode_work(), then @regs is a NULL pointer. + * + * resume_user_mode_work() clears TIF_NOTIFY_RESUME and re-raises + * it before returning from the ioctl() to user space when + * rseq_event.sched_switch is set. + * + * So it's safe to ignore here instead of pointlessly updating it + * in the vcpu_run() loop. + */ + if (!regs) + return; + + rseq_slowpath_update_usr(regs); +} + +void __rseq_signal_deliver(int sig, struct pt_regs *regs) +{ + rseq_stat_inc(rseq_stats.signal); + /* + * Don't update IDs, they are handled on exit to user if + * necessary. The important thing is to abort a critical section of + * the interrupted context as after this point the instruction + * pointer in @regs points to the signal handler. + */ + if (unlikely(!rseq_handle_cs(current, regs))) { + /* + * Clear the errors just in case this might survive + * magically, but leave the rest intact. + */ + current->rseq.event.error = 0; + force_sigsegv(sig); + } +} + +/* + * Terminate the process if a syscall is issued within a restartable + * sequence. + */ +void __rseq_debug_syscall_return(struct pt_regs *regs) +{ + struct task_struct *t = current; + u64 csaddr; + + if (!t->rseq.event.has_rseq) + return; + if (get_user(csaddr, &t->rseq.usrptr->rseq_cs)) + goto fail; + if (likely(!csaddr)) + return; + if (unlikely(csaddr >= TASK_SIZE)) + goto fail; + if (rseq_debug_update_user_cs(t, regs, csaddr)) + return; +fail: + force_sig(SIGSEGV); +} + +#ifdef CONFIG_DEBUG_RSEQ +/* Kept around to keep GENERIC_ENTRY=n architectures supported. */ +void rseq_syscall(struct pt_regs *regs) +{ + __rseq_debug_syscall_return(regs); +} +#endif + +static bool rseq_reset_ids(void) +{ + struct rseq_ids ids = { + .cpu_id = RSEQ_CPU_ID_UNINITIALIZED, + .mm_cid = 0, + }; + + /* + * If this fails, terminate it because this leaves the kernel in + * stupid state as exit to user space will try to fixup the ids + * again. + */ + if (rseq_set_ids(current, &ids, 0)) + return true; + + force_sig(SIGSEGV); + return false; +} + +/* The original rseq structure size (including padding) is 32 bytes. */ +#define ORIG_RSEQ_SIZE 32 + +/* + * sys_rseq - setup restartable sequences for caller thread. + */ +SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len, int, flags, u32, sig) +{ + if (flags & RSEQ_FLAG_UNREGISTER) { + if (flags & ~RSEQ_FLAG_UNREGISTER) + return -EINVAL; + /* Unregister rseq for current thread. */ + if (current->rseq.usrptr != rseq || !current->rseq.usrptr) + return -EINVAL; + if (rseq_len != current->rseq.len) + return -EINVAL; + if (current->rseq.sig != sig) + return -EPERM; + if (!rseq_reset_ids()) + return -EFAULT; + rseq_reset(current); + return 0; + } + + if (unlikely(flags)) + return -EINVAL; + + if (current->rseq.usrptr) { + /* + * If rseq is already registered, check whether + * the provided address differs from the prior + * one. + */ + if (current->rseq.usrptr != rseq || rseq_len != current->rseq.len) + return -EINVAL; + if (current->rseq.sig != sig) + return -EPERM; + /* Already registered. */ + return -EBUSY; + } + + /* + * If there was no rseq previously registered, ensure the provided rseq + * is properly aligned, as communcated to user-space through the ELF + * auxiliary vector AT_RSEQ_ALIGN. If rseq_len is the original rseq + * size, the required alignment is the original struct rseq alignment. + * + * In order to be valid, rseq_len is either the original rseq size, or + * large enough to contain all supported fields, as communicated to + * user-space through the ELF auxiliary vector AT_RSEQ_FEATURE_SIZE. + */ + if (rseq_len < ORIG_RSEQ_SIZE || + (rseq_len == ORIG_RSEQ_SIZE && !IS_ALIGNED((unsigned long)rseq, ORIG_RSEQ_SIZE)) || + (rseq_len != ORIG_RSEQ_SIZE && (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) || + rseq_len < offsetof(struct rseq, end)))) + return -EINVAL; + if (!access_ok(rseq, rseq_len)) + return -EFAULT; + + scoped_user_write_access(rseq, efault) { + /* + * If the rseq_cs pointer is non-NULL on registration, clear it to + * avoid a potential segfault on return to user-space. The proper thing + * to do would have been to fail the registration but this would break + * older libcs that reuse the rseq area for new threads without + * clearing the fields. Don't bother reading it, just reset it. + */ + unsafe_put_user(0UL, &rseq->rseq_cs, efault); + /* Initialize IDs in user space */ + unsafe_put_user(RSEQ_CPU_ID_UNINITIALIZED, &rseq->cpu_id_start, efault); + unsafe_put_user(RSEQ_CPU_ID_UNINITIALIZED, &rseq->cpu_id, efault); + unsafe_put_user(0U, &rseq->node_id, efault); + unsafe_put_user(0U, &rseq->mm_cid, efault); + } + + /* + * Activate the registration by setting the rseq area address, length + * and signature in the task struct. + */ + current->rseq.usrptr = rseq; + current->rseq.len = rseq_len; + current->rseq.sig = sig; + + /* + * If rseq was previously inactive, and has just been + * registered, ensure the cpu_id_start and cpu_id fields + * are updated before returning to user-space. + */ + current->rseq.event.has_rseq = true; + rseq_force_update(); + return 0; + +efault: + return -EFAULT; +} |
