diff options
Diffstat (limited to 'kernel/sched/core.c')
-rw-r--r-- | kernel/sched/core.c | 3229 |
1 files changed, 964 insertions, 2265 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 7019a40457a6..62b3416f5e43 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -2,9 +2,10 @@ /* * kernel/sched/core.c * - * Core kernel scheduler code and related syscalls + * Core kernel CPU scheduler code * * Copyright (C) 1991-2002 Linus Torvalds + * Copyright (C) 1998-2024 Ingo Molnar, Red Hat */ #include <linux/highmem.h> #include <linux/hrtimer_api.h> @@ -65,6 +66,7 @@ #include <linux/vtime.h> #include <linux/wait_api.h> #include <linux/workqueue_api.h> +#include <linux/livepatch_sched.h> #ifdef CONFIG_PREEMPT_DYNAMIC # ifdef CONFIG_GENERIC_ENTRY @@ -90,7 +92,6 @@ #include "autogroup.h" #include "pelt.h" #include "smp.h" -#include "stats.h" #include "../workqueue_internal.h" #include "../../io_uring/io-wq.h" @@ -108,7 +109,7 @@ EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); -EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); +EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); @@ -118,7 +119,6 @@ EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); -#ifdef CONFIG_SCHED_DEBUG /* * Debugging: various feature bits * @@ -128,7 +128,7 @@ DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); */ #define SCHED_FEAT(name, enabled) \ (1UL << __SCHED_FEAT_##name) * enabled | -const_debug unsigned int sysctl_sched_features = +__read_mostly unsigned int sysctl_sched_features = #include "features.h" 0; #undef SCHED_FEAT @@ -142,13 +142,12 @@ const_debug unsigned int sysctl_sched_features = */ __read_mostly int sysctl_resched_latency_warn_ms = 100; __read_mostly int sysctl_resched_latency_warn_once = 1; -#endif /* CONFIG_SCHED_DEBUG */ /* * Number of tasks to iterate in a single balance run. * Limited because this is done with IRQs disabled. */ -const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; +__read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; __read_mostly int scheduler_running; @@ -162,13 +161,19 @@ static inline int __task_prio(const struct task_struct *p) if (p->sched_class == &stop_sched_class) /* trumps deadline */ return -2; - if (rt_prio(p->prio)) /* includes deadline */ + if (p->dl_server) + return -1; /* deadline */ + + if (rt_or_dl_prio(p->prio)) return p->prio; /* [-1, 99] */ if (p->sched_class == &idle_sched_class) return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ - return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ + if (task_on_scx(p)) + return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ + + return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ } /* @@ -191,12 +196,33 @@ static inline bool prio_less(const struct task_struct *a, if (-pb < -pa) return false; - if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ - return !dl_time_before(a->dl.deadline, b->dl.deadline); + if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ + const struct sched_dl_entity *a_dl, *b_dl; + + a_dl = &a->dl; + /* + * Since,'a' and 'b' can be CFS tasks served by DL server, + * __task_prio() can return -1 (for DL) even for those. In that + * case, get to the dl_server's DL entity. + */ + if (a->dl_server) + a_dl = a->dl_server; + + b_dl = &b->dl; + if (b->dl_server) + b_dl = b->dl_server; + + return !dl_time_before(a_dl->deadline, b_dl->deadline); + } if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ return cfs_prio_less(a, b, in_fi); +#ifdef CONFIG_SCHED_CLASS_EXT + if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ + return scx_prio_less(a, b, in_fi); +#endif + return false; } @@ -239,6 +265,9 @@ static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) void sched_core_enqueue(struct rq *rq, struct task_struct *p) { + if (p->se.sched_delayed) + return; + rq->core->core_task_seq++; if (!p->core_cookie) @@ -249,6 +278,9 @@ void sched_core_enqueue(struct rq *rq, struct task_struct *p) void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { + if (p->se.sched_delayed) + return; + rq->core->core_task_seq++; if (sched_core_enqueued(p)) { @@ -457,6 +489,16 @@ sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } #endif /* CONFIG_SCHED_CORE */ +/* need a wrapper since we may need to trace from modules */ +EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp); + +/* Call via the helper macro trace_set_current_state. */ +void __trace_set_current_state(int state_value) +{ + trace_sched_set_state_tp(current, state_value); +} +EXPORT_SYMBOL(__trace_set_current_state); + /* * Serialization rules: * @@ -514,6 +556,11 @@ sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } * ON_RQ_MIGRATING state is used for migration without holding both * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). * + * Additionally it is possible to be ->on_rq but still be considered not + * runnable when p->se.sched_delayed is true. These tasks are on the runqueue + * but will be dequeued as soon as they get picked again. See the + * task_is_runnable() helper. + * * p->on_cpu <- { 0, 1 }: * * is set by prepare_task() and cleared by finish_task() such that it will be @@ -701,40 +748,43 @@ static void update_rq_clock_task(struct rq *rq, s64 delta) s64 __maybe_unused steal = 0, irq_delta = 0; #ifdef CONFIG_IRQ_TIME_ACCOUNTING - irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; + if (irqtime_enabled()) { + irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; - /* - * Since irq_time is only updated on {soft,}irq_exit, we might run into - * this case when a previous update_rq_clock() happened inside a - * {soft,}irq region. - * - * When this happens, we stop ->clock_task and only update the - * prev_irq_time stamp to account for the part that fit, so that a next - * update will consume the rest. This ensures ->clock_task is - * monotonic. - * - * It does however cause some slight miss-attribution of {soft,}irq - * time, a more accurate solution would be to update the irq_time using - * the current rq->clock timestamp, except that would require using - * atomic ops. - */ - if (irq_delta > delta) - irq_delta = delta; - - rq->prev_irq_time += irq_delta; - delta -= irq_delta; - psi_account_irqtime(rq->curr, irq_delta); - delayacct_irq(rq->curr, irq_delta); + /* + * Since irq_time is only updated on {soft,}irq_exit, we might run into + * this case when a previous update_rq_clock() happened inside a + * {soft,}IRQ region. + * + * When this happens, we stop ->clock_task and only update the + * prev_irq_time stamp to account for the part that fit, so that a next + * update will consume the rest. This ensures ->clock_task is + * monotonic. + * + * It does however cause some slight miss-attribution of {soft,}IRQ + * time, a more accurate solution would be to update the irq_time using + * the current rq->clock timestamp, except that would require using + * atomic ops. + */ + if (irq_delta > delta) + irq_delta = delta; + + rq->prev_irq_time += irq_delta; + delta -= irq_delta; + delayacct_irq(rq->curr, irq_delta); + } #endif #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING if (static_key_false((¶virt_steal_rq_enabled))) { - steal = paravirt_steal_clock(cpu_of(rq)); + u64 prev_steal; + + steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); steal -= rq->prev_steal_time_rq; if (unlikely(steal > delta)) steal = delta; - rq->prev_steal_time_rq += steal; + rq->prev_steal_time_rq = prev_steal; delta -= steal; } #endif @@ -751,22 +801,25 @@ static void update_rq_clock_task(struct rq *rq, s64 delta) void update_rq_clock(struct rq *rq) { s64 delta; + u64 clock; lockdep_assert_rq_held(rq); if (rq->clock_update_flags & RQCF_ACT_SKIP) return; -#ifdef CONFIG_SCHED_DEBUG if (sched_feat(WARN_DOUBLE_CLOCK)) - SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); + WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED); rq->clock_update_flags |= RQCF_UPDATED; -#endif - delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; + clock = sched_clock_cpu(cpu_of(rq)); + scx_rq_clock_update(rq, clock); + + delta = clock - rq->clock; if (delta < 0) return; rq->clock += delta; + update_rq_clock_task(rq, delta); } @@ -794,7 +847,7 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer) rq_lock(rq, &rf); update_rq_clock(rq); - rq->curr->sched_class->task_tick(rq, rq->curr, 1); + rq->donor->sched_class->task_tick(rq, rq->curr, 1); rq_unlock(rq, &rf); return HRTIMER_NORESTART; @@ -826,7 +879,7 @@ static void __hrtick_start(void *arg) /* * Called to set the hrtick timer state. * - * called with rq->lock held and irqs disabled + * called with rq->lock held and IRQs disabled */ void hrtick_start(struct rq *rq, u64 delay) { @@ -850,7 +903,7 @@ void hrtick_start(struct rq *rq, u64 delay) /* * Called to set the hrtick timer state. * - * called with rq->lock held and irqs disabled + * called with rq->lock held and IRQs disabled */ void hrtick_start(struct rq *rq, u64 delay) { @@ -870,8 +923,7 @@ static void hrtick_rq_init(struct rq *rq) #ifdef CONFIG_SMP INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); #endif - hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); - rq->hrtick_timer.function = hrtick; + hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); } #else /* CONFIG_SCHED_HRTICK */ static inline void hrtick_clear(struct rq *rq) @@ -884,7 +936,7 @@ static inline void hrtick_rq_init(struct rq *rq) #endif /* CONFIG_SCHED_HRTICK */ /* - * cmpxchg based fetch_or, macro so it works for different integer types + * try_cmpxchg based fetch_or() macro so it works for different integer types: */ #define fetch_or(ptr, mask) \ ({ \ @@ -903,10 +955,9 @@ static inline void hrtick_rq_init(struct rq *rq) * this avoids any races wrt polling state changes and thereby avoids * spurious IPIs. */ -static inline bool set_nr_and_not_polling(struct task_struct *p) +static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) { - struct thread_info *ti = task_thread_info(p); - return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); + return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); } /* @@ -931,9 +982,9 @@ static bool set_nr_if_polling(struct task_struct *p) } #else -static inline bool set_nr_and_not_polling(struct task_struct *p) +static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) { - set_tsk_need_resched(p); + set_ti_thread_flag(ti, tif); return true; } @@ -1018,9 +1069,10 @@ void wake_up_q(struct wake_q_head *head) struct task_struct *task; task = container_of(node, struct task_struct, wake_q); - /* Task can safely be re-inserted now: */ node = node->next; - task->wake_q.next = NULL; + /* pairs with cmpxchg_relaxed() in __wake_q_add() */ + WRITE_ONCE(task->wake_q.next, NULL); + /* Task can safely be re-inserted now. */ /* * wake_up_process() executes a full barrier, which pairs with @@ -1038,28 +1090,70 @@ void wake_up_q(struct wake_q_head *head) * might also involve a cross-CPU call to trigger the scheduler on * the target CPU. */ -void resched_curr(struct rq *rq) +static void __resched_curr(struct rq *rq, int tif) { struct task_struct *curr = rq->curr; + struct thread_info *cti = task_thread_info(curr); int cpu; lockdep_assert_rq_held(rq); - if (test_tsk_need_resched(curr)) + /* + * Always immediately preempt the idle task; no point in delaying doing + * actual work. + */ + if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) + tif = TIF_NEED_RESCHED; + + if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) return; cpu = cpu_of(rq); if (cpu == smp_processor_id()) { - set_tsk_need_resched(curr); - set_preempt_need_resched(); + set_ti_thread_flag(cti, tif); + if (tif == TIF_NEED_RESCHED) + set_preempt_need_resched(); return; } - if (set_nr_and_not_polling(curr)) - smp_send_reschedule(cpu); - else + if (set_nr_and_not_polling(cti, tif)) { + if (tif == TIF_NEED_RESCHED) + smp_send_reschedule(cpu); + } else { trace_sched_wake_idle_without_ipi(cpu); + } +} + +void resched_curr(struct rq *rq) +{ + __resched_curr(rq, TIF_NEED_RESCHED); +} + +#ifdef CONFIG_PREEMPT_DYNAMIC +static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); +static __always_inline bool dynamic_preempt_lazy(void) +{ + return static_branch_unlikely(&sk_dynamic_preempt_lazy); +} +#else +static __always_inline bool dynamic_preempt_lazy(void) +{ + return IS_ENABLED(CONFIG_PREEMPT_LAZY); +} +#endif + +static __always_inline int get_lazy_tif_bit(void) +{ + if (dynamic_preempt_lazy()) + return TIF_NEED_RESCHED_LAZY; + + return TIF_NEED_RESCHED; +} + +void resched_curr_lazy(struct rq *rq) +{ + __resched_curr(rq, get_lazy_tif_bit()); } void resched_cpu(int cpu) @@ -1081,7 +1175,7 @@ void resched_cpu(int cpu) * * We don't do similar optimization for completely idle system, as * selecting an idle CPU will add more delays to the timers than intended - * (as that CPU's timer base may not be uptodate wrt jiffies etc). + * (as that CPU's timer base may not be up to date wrt jiffies etc). */ int get_nohz_timer_target(void) { @@ -1089,13 +1183,13 @@ int get_nohz_timer_target(void) struct sched_domain *sd; const struct cpumask *hk_mask; - if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { + if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { if (!idle_cpu(cpu)) return cpu; default_cpu = cpu; } - hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); + hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); guard(rcu)(); @@ -1110,7 +1204,7 @@ int get_nohz_timer_target(void) } if (default_cpu == -1) - default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); + default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); return default_cpu; } @@ -1141,7 +1235,7 @@ static void wake_up_idle_cpu(int cpu) * nohz functions that would need to follow TIF_NR_POLLING * clearing: * - * - On most archs, a simple fetch_or on ti::flags with a + * - On most architectures, a simple fetch_or on ti::flags with a * "0" value would be enough to know if an IPI needs to be sent. * * - x86 needs to perform a last need_resched() check between @@ -1154,7 +1248,7 @@ static void wake_up_idle_cpu(int cpu) * and testing of the above solutions didn't appear to report * much benefits. */ - if (set_nr_and_not_polling(rq->idle)) + if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) smp_send_reschedule(cpu); else trace_sched_wake_idle_without_ipi(cpu); @@ -1204,9 +1298,9 @@ static void nohz_csd_func(void *info) WARN_ON(!(flags & NOHZ_KICK_MASK)); rq->idle_balance = idle_cpu(cpu); - if (rq->idle_balance && !need_resched()) { + if (rq->idle_balance) { rq->nohz_idle_balance = flags; - raise_softirq_irqoff(SCHED_SOFTIRQ); + __raise_softirq_irqoff(SCHED_SOFTIRQ); } } @@ -1255,11 +1349,14 @@ bool sched_can_stop_tick(struct rq *rq) return true; /* - * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; - * if there's more than one we need the tick for involuntary - * preemption. + * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks + * left. For CFS, if there's more than one we need the tick for + * involuntary preemption. For SCX, ask. */ - if (rq->nr_running > 1) + if (scx_enabled() && !scx_can_stop_tick(rq)) + return false; + + if (rq->cfs.h_nr_queued > 1) return false; /* @@ -1269,7 +1366,7 @@ bool sched_can_stop_tick(struct rq *rq) * dequeued by migrating while the constrained task continues to run. * E.g. going from 2->1 without going through pick_next_task(). */ - if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) { + if (__need_bw_check(rq, rq->curr)) { if (cfs_task_bw_constrained(rq->curr)) return false; } @@ -1324,30 +1421,27 @@ int tg_nop(struct task_group *tg, void *data) } #endif -static void set_load_weight(struct task_struct *p, bool update_load) +void set_load_weight(struct task_struct *p, bool update_load) { int prio = p->static_prio - MAX_RT_PRIO; - struct load_weight *load = &p->se.load; + struct load_weight lw; - /* - * SCHED_IDLE tasks get minimal weight: - */ if (task_has_idle_policy(p)) { - load->weight = scale_load(WEIGHT_IDLEPRIO); - load->inv_weight = WMULT_IDLEPRIO; - return; + lw.weight = scale_load(WEIGHT_IDLEPRIO); + lw.inv_weight = WMULT_IDLEPRIO; + } else { + lw.weight = scale_load(sched_prio_to_weight[prio]); + lw.inv_weight = sched_prio_to_wmult[prio]; } /* * SCHED_OTHER tasks have to update their load when changing their * weight */ - if (update_load && p->sched_class == &fair_sched_class) { - reweight_task(p, prio); - } else { - load->weight = scale_load(sched_prio_to_weight[prio]); - load->inv_weight = sched_prio_to_wmult[prio]; - } + if (update_load && p->sched_class->reweight_task) + p->sched_class->reweight_task(task_rq(p), p, &lw); + else + p->se.load = lw; } #ifdef CONFIG_UCLAMP_TASK @@ -1361,7 +1455,7 @@ static void set_load_weight(struct task_struct *p, bool update_load) * requests are serialized using a mutex to reduce the risk of conflicting * updates or API abuses. */ -static DEFINE_MUTEX(uclamp_mutex); +static __maybe_unused DEFINE_MUTEX(uclamp_mutex); /* Max allowed minimum utilization */ static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; @@ -1384,7 +1478,7 @@ static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY * This knob will not override the system default sched_util_clamp_min defined * above. */ -static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; +unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; /* All clamps are required to be less or equal than these values */ static struct uclamp_se uclamp_default[UCLAMP_CNT]; @@ -1409,32 +1503,6 @@ static struct uclamp_se uclamp_default[UCLAMP_CNT]; */ DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); -/* Integer rounded range for each bucket */ -#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) - -#define for_each_clamp_id(clamp_id) \ - for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) - -static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) -{ - return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); -} - -static inline unsigned int uclamp_none(enum uclamp_id clamp_id) -{ - if (clamp_id == UCLAMP_MIN) - return 0; - return SCHED_CAPACITY_SCALE; -} - -static inline void uclamp_se_set(struct uclamp_se *uc_se, - unsigned int value, bool user_defined) -{ - uc_se->value = value; - uc_se->bucket_id = uclamp_bucket_id(value); - uc_se->user_defined = user_defined; -} - static inline unsigned int uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, unsigned int clamp_value) @@ -1658,7 +1726,7 @@ static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, bucket = &uc_rq->bucket[uc_se->bucket_id]; - SCHED_WARN_ON(!bucket->tasks); + WARN_ON_ONCE(!bucket->tasks); if (likely(bucket->tasks)) bucket->tasks--; @@ -1676,16 +1744,16 @@ static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, rq_clamp = uclamp_rq_get(rq, clamp_id); /* * Defensive programming: this should never happen. If it happens, - * e.g. due to future modification, warn and fixup the expected value. + * e.g. due to future modification, warn and fix up the expected value. */ - SCHED_WARN_ON(bucket->value > rq_clamp); + WARN_ON_ONCE(bucket->value > rq_clamp); if (bucket->value >= rq_clamp) { bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); uclamp_rq_set(rq, clamp_id, bkt_clamp); } } -static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) +static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { enum uclamp_id clamp_id; @@ -1695,12 +1763,16 @@ static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) * The condition is constructed such that a NOP is generated when * sched_uclamp_used is disabled. */ - if (!static_branch_unlikely(&sched_uclamp_used)) + if (!uclamp_is_used()) return; if (unlikely(!p->sched_class->uclamp_enabled)) return; + /* Only inc the delayed task which being woken up. */ + if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED)) + return; + for_each_clamp_id(clamp_id) uclamp_rq_inc_id(rq, p, clamp_id); @@ -1719,12 +1791,15 @@ static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) * The condition is constructed such that a NOP is generated when * sched_uclamp_used is disabled. */ - if (!static_branch_unlikely(&sched_uclamp_used)) + if (!uclamp_is_used()) return; if (unlikely(!p->sched_class->uclamp_enabled)) return; + if (p->se.sched_delayed) + return; + for_each_clamp_id(clamp_id) uclamp_rq_dec_id(rq, p, clamp_id); } @@ -1835,7 +1910,7 @@ static void uclamp_sync_util_min_rt_default(void) uclamp_update_util_min_rt_default(p); } -static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, +static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { bool update_root_tg = false; @@ -1874,12 +1949,12 @@ static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, } if (update_root_tg) { - static_branch_enable(&sched_uclamp_used); + sched_uclamp_enable(); uclamp_update_root_tg(); } if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { - static_branch_enable(&sched_uclamp_used); + sched_uclamp_enable(); uclamp_sync_util_min_rt_default(); } @@ -1898,107 +1973,6 @@ undo: } #endif -static int uclamp_validate(struct task_struct *p, - const struct sched_attr *attr) -{ - int util_min = p->uclamp_req[UCLAMP_MIN].value; - int util_max = p->uclamp_req[UCLAMP_MAX].value; - - if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { - util_min = attr->sched_util_min; - - if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) - return -EINVAL; - } - - if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { - util_max = attr->sched_util_max; - - if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) - return -EINVAL; - } - - if (util_min != -1 && util_max != -1 && util_min > util_max) - return -EINVAL; - - /* - * We have valid uclamp attributes; make sure uclamp is enabled. - * - * We need to do that here, because enabling static branches is a - * blocking operation which obviously cannot be done while holding - * scheduler locks. - */ - static_branch_enable(&sched_uclamp_used); - - return 0; -} - -static bool uclamp_reset(const struct sched_attr *attr, - enum uclamp_id clamp_id, - struct uclamp_se *uc_se) -{ - /* Reset on sched class change for a non user-defined clamp value. */ - if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && - !uc_se->user_defined) - return true; - - /* Reset on sched_util_{min,max} == -1. */ - if (clamp_id == UCLAMP_MIN && - attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && - attr->sched_util_min == -1) { - return true; - } - - if (clamp_id == UCLAMP_MAX && - attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && - attr->sched_util_max == -1) { - return true; - } - - return false; -} - -static void __setscheduler_uclamp(struct task_struct *p, - const struct sched_attr *attr) -{ - enum uclamp_id clamp_id; - - for_each_clamp_id(clamp_id) { - struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; - unsigned int value; - - if (!uclamp_reset(attr, clamp_id, uc_se)) - continue; - - /* - * RT by default have a 100% boost value that could be modified - * at runtime. - */ - if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) - value = sysctl_sched_uclamp_util_min_rt_default; - else - value = uclamp_none(clamp_id); - - uclamp_se_set(uc_se, value, false); - - } - - if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) - return; - - if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && - attr->sched_util_min != -1) { - uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], - attr->sched_util_min, true); - } - - if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && - attr->sched_util_max != -1) { - uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], - attr->sched_util_max, true); - } -} - static void uclamp_fork(struct task_struct *p) { enum uclamp_id clamp_id; @@ -2064,15 +2038,8 @@ static void __init init_uclamp(void) } #else /* !CONFIG_UCLAMP_TASK */ -static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } +static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { } static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } -static inline int uclamp_validate(struct task_struct *p, - const struct sched_attr *attr) -{ - return -EOPNOTSUPP; -} -static void __setscheduler_uclamp(struct task_struct *p, - const struct sched_attr *attr) { } static inline void uclamp_fork(struct task_struct *p) { } static inline void uclamp_post_fork(struct task_struct *p) { } static inline void init_uclamp(void) { } @@ -2102,24 +2069,33 @@ unsigned long get_wchan(struct task_struct *p) return ip; } -static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) +void enqueue_task(struct rq *rq, struct task_struct *p, int flags) { if (!(flags & ENQUEUE_NOCLOCK)) update_rq_clock(rq); - if (!(flags & ENQUEUE_RESTORE)) { - sched_info_enqueue(rq, p); - psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED)); - } + /* + * Can be before ->enqueue_task() because uclamp considers the + * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared + * in ->enqueue_task(). + */ + uclamp_rq_inc(rq, p, flags); - uclamp_rq_inc(rq, p); p->sched_class->enqueue_task(rq, p, flags); + psi_enqueue(p, flags); + + if (!(flags & ENQUEUE_RESTORE)) + sched_info_enqueue(rq, p); + if (sched_core_enabled(rq)) sched_core_enqueue(rq, p); } -static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) +/* + * Must only return false when DEQUEUE_SLEEP. + */ +inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) { if (sched_core_enabled(rq)) sched_core_dequeue(rq, p, flags); @@ -2127,13 +2103,17 @@ static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) if (!(flags & DEQUEUE_NOCLOCK)) update_rq_clock(rq); - if (!(flags & DEQUEUE_SAVE)) { + if (!(flags & DEQUEUE_SAVE)) sched_info_dequeue(rq, p); - psi_dequeue(p, flags & DEQUEUE_SLEEP); - } + psi_dequeue(p, flags); + + /* + * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' + * and mark the task ->sched_delayed. + */ uclamp_rq_dec(rq, p); - p->sched_class->dequeue_task(rq, p, flags); + return p->sched_class->dequeue_task(rq, p, flags); } void activate_task(struct rq *rq, struct task_struct *p, int flags) @@ -2151,56 +2131,23 @@ void activate_task(struct rq *rq, struct task_struct *p, int flags) void deactivate_task(struct rq *rq, struct task_struct *p, int flags) { - WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING); - ASSERT_EXCLUSIVE_WRITER(p->on_rq); - - dequeue_task(rq, p, flags); -} - -static inline int __normal_prio(int policy, int rt_prio, int nice) -{ - int prio; + WARN_ON_ONCE(flags & DEQUEUE_SLEEP); - if (dl_policy(policy)) - prio = MAX_DL_PRIO - 1; - else if (rt_policy(policy)) - prio = MAX_RT_PRIO - 1 - rt_prio; - else - prio = NICE_TO_PRIO(nice); + WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); + ASSERT_EXCLUSIVE_WRITER(p->on_rq); - return prio; -} + /* + * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* + * dequeue_task() and cleared *after* enqueue_task(). + */ -/* - * Calculate the expected normal priority: i.e. priority - * without taking RT-inheritance into account. Might be - * boosted by interactivity modifiers. Changes upon fork, - * setprio syscalls, and whenever the interactivity - * estimator recalculates. - */ -static inline int normal_prio(struct task_struct *p) -{ - return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); + dequeue_task(rq, p, flags); } -/* - * Calculate the current priority, i.e. the priority - * taken into account by the scheduler. This value might - * be boosted by RT tasks, or might be boosted by - * interactivity modifiers. Will be RT if the task got - * RT-boosted. If not then it returns p->normal_prio. - */ -static int effective_prio(struct task_struct *p) +static void block_task(struct rq *rq, struct task_struct *p, int flags) { - p->normal_prio = normal_prio(p); - /* - * If we are RT tasks or we were boosted to RT priority, - * keep the priority unchanged. Otherwise, update priority - * to the normal priority: - */ - if (!rt_prio(p->prio)) - return p->normal_prio; - return p->prio; + if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) + __block_task(rq, p); } /** @@ -2215,15 +2162,26 @@ inline int task_curr(const struct task_struct *p) } /* + * ->switching_to() is called with the pi_lock and rq_lock held and must not + * mess with locking. + */ +void check_class_changing(struct rq *rq, struct task_struct *p, + const struct sched_class *prev_class) +{ + if (prev_class != p->sched_class && p->sched_class->switching_to) + p->sched_class->switching_to(rq, p); +} + +/* * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, * use the balance_callback list if you want balancing. * * this means any call to check_class_changed() must be followed by a call to * balance_callback(). */ -static inline void check_class_changed(struct rq *rq, struct task_struct *p, - const struct sched_class *prev_class, - int oldprio) +void check_class_changed(struct rq *rq, struct task_struct *p, + const struct sched_class *prev_class, + int oldprio) { if (prev_class != p->sched_class) { if (prev_class->switched_from) @@ -2236,16 +2194,18 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) { - if (p->sched_class == rq->curr->sched_class) - rq->curr->sched_class->wakeup_preempt(rq, p, flags); - else if (sched_class_above(p->sched_class, rq->curr->sched_class)) + struct task_struct *donor = rq->donor; + + if (p->sched_class == donor->sched_class) + donor->sched_class->wakeup_preempt(rq, p, flags); + else if (sched_class_above(p->sched_class, donor->sched_class)) resched_curr(rq); /* * A queue event has occurred, and we're going to schedule. In * this case, we can save a useless back to back clock update. */ - if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) + if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) rq_clock_skip_update(rq); } @@ -2327,6 +2287,12 @@ unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state * just go back and repeat. */ rq = task_rq_lock(p, &rf); + /* + * If task is sched_delayed, force dequeue it, to avoid always + * hitting the tick timeout in the queued case + */ + if (p->se.sched_delayed) + dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); trace_sched_wait_task(p); running = task_on_cpu(rq, p); queued = task_on_rq_queued(p); @@ -2392,9 +2358,6 @@ unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state static void __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); -static int __set_cpus_allowed_ptr(struct task_struct *p, - struct affinity_context *ctx); - static void migrate_disable_switch(struct rq *rq, struct task_struct *p) { struct affinity_context ac = { @@ -2409,7 +2372,7 @@ static void migrate_disable_switch(struct rq *rq, struct task_struct *p) return; /* - * Violates locking rules! see comment in __do_set_cpus_allowed(). + * Violates locking rules! See comment in __do_set_cpus_allowed(). */ __do_set_cpus_allowed(p, &ac); } @@ -2419,6 +2382,12 @@ void migrate_disable(void) struct task_struct *p = current; if (p->migration_disabled) { +#ifdef CONFIG_DEBUG_PREEMPT + /* + *Warn about overflow half-way through the range. + */ + WARN_ON_ONCE((s16)p->migration_disabled < 0); +#endif p->migration_disabled++; return; } @@ -2437,14 +2406,20 @@ void migrate_enable(void) .flags = SCA_MIGRATE_ENABLE, }; +#ifdef CONFIG_DEBUG_PREEMPT + /* + * Check both overflow from migrate_disable() and superfluous + * migrate_enable(). + */ + if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) + return; +#endif + if (p->migration_disabled > 1) { p->migration_disabled--; return; } - if (WARN_ON_ONCE(!p->migration_disabled)) - return; - /* * Ensure stop_task runs either before or after this, and that * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). @@ -2475,7 +2450,7 @@ static inline bool rq_has_pinned_tasks(struct rq *rq) static inline bool is_cpu_allowed(struct task_struct *p, int cpu) { /* When not in the task's cpumask, no point in looking further. */ - if (!cpumask_test_cpu(cpu, p->cpus_ptr)) + if (!task_allowed_on_cpu(p, cpu)) return false; /* migrate_disabled() must be allowed to finish. */ @@ -2484,7 +2459,7 @@ static inline bool is_cpu_allowed(struct task_struct *p, int cpu) /* Non kernel threads are not allowed during either online or offline. */ if (!(p->flags & PF_KTHREAD)) - return cpu_active(cpu) && task_cpu_possible(cpu, p); + return cpu_active(cpu); /* KTHREAD_IS_PER_CPU is always allowed. */ if (kthread_is_per_cpu(p)) @@ -2576,7 +2551,7 @@ static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, } /* - * migration_cpu_stop - this will be executed by a highprio stopper thread + * migration_cpu_stop - this will be executed by a high-prio stopper thread * and performs thread migration by bumping thread off CPU then * 'pushing' onto another runqueue. */ @@ -2712,9 +2687,7 @@ int push_cpu_stop(void *arg) // XXX validate p is still the highest prio task if (task_rq(p) == rq) { - deactivate_task(rq, p, 0); - set_task_cpu(p, lowest_rq->cpu); - activate_task(lowest_rq, p, 0); + move_queued_task_locked(rq, lowest_rq, p); resched_curr(lowest_rq); } @@ -2769,12 +2742,12 @@ __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) * XXX do further audits, this smells like something putrid. */ if (ctx->flags & SCA_MIGRATE_DISABLE) - SCHED_WARN_ON(!p->on_cpu); + WARN_ON_ONCE(!p->on_cpu); else lockdep_assert_held(&p->pi_lock); queued = task_on_rq_queued(p); - running = task_current(rq, p); + running = task_current_donor(rq, p); if (queued) { /* @@ -2788,6 +2761,7 @@ __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) put_prev_task(rq, p); p->sched_class->set_cpus_allowed(p, ctx); + mm_set_cpus_allowed(p->mm, ctx->new_mask); if (queued) enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); @@ -2821,16 +2795,6 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); } -static cpumask_t *alloc_user_cpus_ptr(int node) -{ - /* - * See do_set_cpus_allowed() above for the rcu_head usage. - */ - int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); - - return kmalloc_node(size, GFP_KERNEL, node); -} - int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node) { @@ -3199,8 +3163,7 @@ out: * task must not exit() & deallocate itself prematurely. The * call is not atomic; no spinlocks may be held. */ -static int __set_cpus_allowed_ptr(struct task_struct *p, - struct affinity_context *ctx) +int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) { struct rq_flags rf; struct rq *rq; @@ -3319,9 +3282,6 @@ out_free_mask: free_cpumask_var(new_mask); } -static int -__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); - /* * Restore the affinity of a task @p which was previously restricted by a * call to force_compatible_cpus_allowed_ptr(). @@ -3347,7 +3307,6 @@ void relax_compatible_cpus_allowed_ptr(struct task_struct *p) void set_task_cpu(struct task_struct *p, unsigned int new_cpu) { -#ifdef CONFIG_SCHED_DEBUG unsigned int state = READ_ONCE(p->__state); /* @@ -3385,7 +3344,6 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) WARN_ON_ONCE(!cpu_online(new_cpu)); WARN_ON_ONCE(is_migration_disabled(p)); -#endif trace_sched_migrate_task(p, new_cpu); @@ -3414,9 +3372,7 @@ static void __migrate_swap_task(struct task_struct *p, int cpu) rq_pin_lock(src_rq, &srf); rq_pin_lock(dst_rq, &drf); - deactivate_task(src_rq, p, 0); - set_task_cpu(p, cpu); - activate_task(dst_rq, p, 0); + move_queued_task_locked(src_rq, dst_rq, p); wakeup_preempt(dst_rq, p, 0); rq_unpin_lock(dst_rq, &drf); @@ -3600,7 +3556,7 @@ static int select_fallback_rq(int cpu, struct task_struct *p) * * More yuck to audit. */ - do_set_cpus_allowed(p, task_cpu_possible_mask(p)); + do_set_cpus_allowed(p, task_cpu_fallback_mask(p)); state = fail; break; case fail: @@ -3629,14 +3585,16 @@ out: * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. */ static inline -int select_task_rq(struct task_struct *p, int cpu, int wake_flags) +int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) { lockdep_assert_held(&p->pi_lock); - if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) - cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); - else + if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { + cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); + *wake_flags |= WF_RQ_SELECTED; + } else { cpu = cpumask_any(p->cpus_ptr); + } /* * In order not to call set_task_cpu() on a blocking task we need @@ -3701,12 +3659,6 @@ void sched_set_stop_task(int cpu, struct task_struct *stop) #else /* CONFIG_SMP */ -static inline int __set_cpus_allowed_ptr(struct task_struct *p, - struct affinity_context *ctx) -{ - return set_cpus_allowed_ptr(p, ctx->new_mask); -} - static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } static inline bool rq_has_pinned_tasks(struct rq *rq) @@ -3714,11 +3666,6 @@ static inline bool rq_has_pinned_tasks(struct rq *rq) return false; } -static inline cpumask_t *alloc_user_cpus_ptr(int node) -{ - return NULL; -} - #endif /* !CONFIG_SMP */ static void @@ -3781,6 +3728,8 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, rq->nr_uninterruptible--; #ifdef CONFIG_SMP + if (wake_flags & WF_RQ_SELECTED) + en_flags |= ENQUEUE_RQ_SELECTED; if (wake_flags & WF_MIGRATED) en_flags |= ENQUEUE_MIGRATED; else @@ -3818,8 +3767,6 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, rq->idle_stamp = 0; } #endif - - p->dl_server = NULL; } /* @@ -3855,12 +3802,14 @@ static int ttwu_runnable(struct task_struct *p, int wake_flags) rq = __task_rq_lock(p, &rf); if (task_on_rq_queued(p)) { + update_rq_clock(rq); + if (p->se.sched_delayed) + enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); if (!task_on_cpu(rq, p)) { /* * When on_rq && !on_cpu the task is preempted, see if * it should preempt the task that is current now. */ - update_rq_clock(rq); wakeup_preempt(rq, p, wake_flags); } ttwu_do_wakeup(p); @@ -3901,8 +3850,8 @@ void sched_ttwu_pending(void *arg) * it is possible for select_idle_siblings() to stack a number * of tasks on this CPU during that window. * - * It is ok to clear ttwu_pending when another task pending. - * We will receive IPI after local irq enabled and then enqueue it. + * It is OK to clear ttwu_pending when another task pending. + * We will receive IPI after local IRQ enabled and then enqueue it. * Since now nr_running > 0, idle_cpu() will always get correct result. */ WRITE_ONCE(rq->ttwu_pending, 0); @@ -3986,6 +3935,10 @@ bool cpus_share_resources(int this_cpu, int that_cpu) static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) { + /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ + if (!scx_allow_ttwu_queue(p)) + return false; + /* * Do not complicate things with the async wake_list while the CPU is * in hotplug state. @@ -4233,6 +4186,8 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) guard(preempt)(); int cpu, success = 0; + wake_flags |= WF_TTWU; + if (p == current) { /* * We're waking current, this means 'p->on_rq' and 'task_cpu(p) @@ -4240,11 +4195,16 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) * case the whole 'p->on_rq && ttwu_runnable()' case below * without taking any locks. * + * Specifically, given current runs ttwu() we must be before + * schedule()'s block_task(), as such this must not observe + * sched_delayed. + * * In particular: * - we rely on Program-Order guarantees for all the ordering, * - we're serialized against set_special_state() by virtue of * it disabling IRQs (this allows not taking ->pi_lock). */ + WARN_ON_ONCE(p->se.sched_delayed); if (!ttwu_state_match(p, state, &success)) goto out; @@ -4360,7 +4320,7 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) */ smp_cond_load_acquire(&p->on_cpu, !VAL); - cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); + cpu = select_task_rq(p, p->wake_cpu, &wake_flags); if (task_cpu(p) != cpu) { if (p->in_iowait) { delayacct_blkio_end(p); @@ -4425,9 +4385,10 @@ static bool __task_needs_rq_lock(struct task_struct *p) * @arg: Argument to function. * * Fix the task in it's current state by avoiding wakeups and or rq operations - * and call @func(@arg) on it. This function can use ->on_rq and task_curr() - * to work out what the state is, if required. Given that @func can be invoked - * with a runqueue lock held, it had better be quite lightweight. + * and call @func(@arg) on it. This function can use task_is_runnable() and + * task_curr() to work out what the state is, if required. Given that @func + * can be invoked with a runqueue lock held, it had better be quite + * lightweight. * * Returns: * Whatever @func returns @@ -4467,12 +4428,7 @@ int task_call_func(struct task_struct *p, task_call_f func, void *arg) * @cpu: The CPU on which to snapshot the task. * * Returns the task_struct pointer of the task "currently" running on - * the specified CPU. If the same task is running on that CPU throughout, - * the return value will be a pointer to that task's task_struct structure. - * If the CPU did any context switches even vaguely concurrently with the - * execution of this function, the return value will be a pointer to the - * task_struct structure of a randomly chosen task that was running on - * that CPU somewhere around the time that this function was executing. + * the specified CPU. * * If the specified CPU was offline, the return value is whatever it * is, perhaps a pointer to the task_struct structure of that CPU's idle @@ -4486,11 +4442,16 @@ int task_call_func(struct task_struct *p, task_call_f func, void *arg) */ struct task_struct *cpu_curr_snapshot(int cpu) { + struct rq *rq = cpu_rq(cpu); struct task_struct *t; + struct rq_flags rf; - smp_mb(); /* Pairing determined by caller's synchronization design. */ + rq_lock_irqsave(rq, &rf); + smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ t = rcu_dereference(cpu_curr(cpu)); + rq_unlock_irqrestore(rq, &rf); smp_mb(); /* Pairing determined by caller's synchronization design. */ + return t; } @@ -4520,7 +4481,8 @@ int wake_up_state(struct task_struct *p, unsigned int state) * Perform scheduler related setup for a newly forked process p. * p is forked by current. * - * __sched_fork() is basic setup used by init_idle() too: + * __sched_fork() is basic setup which is also used by sched_init() to + * initialize the boot CPU's idle task. */ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) { @@ -4533,9 +4495,11 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) p->se.nr_migrations = 0; p->se.vruntime = 0; p->se.vlag = 0; - p->se.slice = sysctl_sched_base_slice; INIT_LIST_HEAD(&p->se.group_node); + /* A delayed task cannot be in clone(). */ + WARN_ON_ONCE(p->se.sched_delayed); + #ifdef CONFIG_FAIR_GROUP_SCHED p->se.cfs_rq = NULL; #endif @@ -4553,6 +4517,10 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) p->rt.on_rq = 0; p->rt.on_list = 0; +#ifdef CONFIG_SCHED_CLASS_EXT + init_scx_entity(&p->scx); +#endif + #ifdef CONFIG_PREEMPT_NOTIFIERS INIT_HLIST_HEAD(&p->preempt_notifiers); #endif @@ -4603,7 +4571,7 @@ static void reset_memory_tiering(void) } } -static int sysctl_numa_balancing(struct ctl_table *table, int write, +static int sysctl_numa_balancing(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ctl_table t; @@ -4672,7 +4640,7 @@ out: __setup("schedstats=", setup_schedstats); #ifdef CONFIG_PROC_SYSCTL -static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, +static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ctl_table t; @@ -4695,7 +4663,7 @@ static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, #endif /* CONFIG_SCHEDSTATS */ #ifdef CONFIG_SYSCTL -static struct ctl_table sched_core_sysctls[] = { +static const struct ctl_table sched_core_sysctls[] = { #ifdef CONFIG_SCHEDSTATS { .procname = "sched_schedstats", @@ -4741,7 +4709,6 @@ static struct ctl_table sched_core_sysctls[] = { .extra2 = SYSCTL_FOUR, }, #endif /* CONFIG_NUMA_BALANCING */ - {} }; static int __init sched_core_sysctl_init(void) { @@ -4784,6 +4751,8 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p) p->prio = p->normal_prio = p->static_prio; set_load_weight(p, false); + p->se.custom_slice = 0; + p->se.slice = sysctl_sched_base_slice; /* * We don't need the reset flag anymore after the fork. It has @@ -4794,10 +4763,18 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p) if (dl_prio(p->prio)) return -EAGAIN; - else if (rt_prio(p->prio)) + + scx_pre_fork(p); + + if (rt_prio(p->prio)) { p->sched_class = &rt_sched_class; - else +#ifdef CONFIG_SCHED_CLASS_EXT + } else if (task_should_scx(p->policy)) { + p->sched_class = &ext_sched_class; +#endif + } else { p->sched_class = &fair_sched_class; + } init_entity_runnable_average(&p->se); @@ -4817,7 +4794,7 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p) return 0; } -void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) +int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) { unsigned long flags; @@ -4844,11 +4821,19 @@ void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) if (p->sched_class->task_fork) p->sched_class->task_fork(p); raw_spin_unlock_irqrestore(&p->pi_lock, flags); + + return scx_fork(p); +} + +void sched_cancel_fork(struct task_struct *p) +{ + scx_cancel_fork(p); } void sched_post_fork(struct task_struct *p) { uclamp_post_fork(p); + scx_post_fork(p); } unsigned long to_ratio(u64 period, u64 runtime) @@ -4878,6 +4863,7 @@ void wake_up_new_task(struct task_struct *p) { struct rq_flags rf; struct rq *rq; + int wake_flags = WF_FORK; raw_spin_lock_irqsave(&p->pi_lock, rf.flags); WRITE_ONCE(p->__state, TASK_RUNNING); @@ -4892,15 +4878,15 @@ void wake_up_new_task(struct task_struct *p) */ p->recent_used_cpu = task_cpu(p); rseq_migrate(p); - __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); + __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); #endif rq = __task_rq_lock(p, &rf); update_rq_clock(rq); post_init_entity_util_avg(p); - activate_task(rq, p, ENQUEUE_NOCLOCK); + activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); trace_sched_wakeup_new(p); - wakeup_preempt(rq, p, WF_FORK); + wakeup_preempt(rq, p, wake_flags); #ifdef CONFIG_SMP if (p->sched_class->task_woken) { /* @@ -5096,7 +5082,7 @@ __splice_balance_callbacks(struct rq *rq, bool split) return head; } -static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) +struct balance_callback *splice_balance_callbacks(struct rq *rq) { return __splice_balance_callbacks(rq, true); } @@ -5106,7 +5092,7 @@ static void __balance_callbacks(struct rq *rq) do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); } -static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) +void balance_callbacks(struct rq *rq, struct balance_callback *head) { unsigned long flags; @@ -5123,15 +5109,6 @@ static inline void __balance_callbacks(struct rq *rq) { } -static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) -{ - return NULL; -} - -static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) -{ -} - #endif static inline void @@ -5234,7 +5211,7 @@ prepare_task_switch(struct rq *rq, struct task_struct *prev, * * The context switch have flipped the stack from under us and restored the * local variables which were saved when this task called schedule() in the - * past. prev == current is still correct but we need to recalculate this_rq + * past. 'prev == current' is still correct but we need to recalculate this_rq * because prev may have moved to another CPU. */ static struct rq *finish_task_switch(struct task_struct *prev) @@ -5338,6 +5315,12 @@ asmlinkage __visible void schedule_tail(struct task_struct *prev) */ finish_task_switch(prev); + /* + * This is a special case: the newly created task has just + * switched the context for the first time. It is returning from + * schedule for the first time in this path. + */ + trace_sched_exit_tp(true, CALLER_ADDR0); preempt_enable(); if (current->set_child_tid) @@ -5557,9 +5540,9 @@ EXPORT_PER_CPU_SYMBOL(kernel_cpustat); static inline void prefetch_curr_exec_start(struct task_struct *p) { #ifdef CONFIG_FAIR_GROUP_SCHED - struct sched_entity *curr = (&p->se)->cfs_rq->curr; + struct sched_entity *curr = p->se.cfs_rq->curr; #else - struct sched_entity *curr = (&task_rq(p)->cfs)->curr; + struct sched_entity *curr = task_rq(p)->cfs.curr; #endif prefetch(curr); prefetch(&curr->exec_start); @@ -5580,7 +5563,7 @@ unsigned long long task_sched_runtime(struct task_struct *p) /* * 64-bit doesn't need locks to atomically read a 64-bit value. * So we have a optimization chance when the task's delta_exec is 0. - * Reading ->on_cpu is racy, but this is ok. + * Reading ->on_cpu is racy, but this is OK. * * If we race with it leaving CPU, we'll take a lock. So we're correct. * If we race with it entering CPU, unaccounted time is 0. This is @@ -5598,7 +5581,7 @@ unsigned long long task_sched_runtime(struct task_struct *p) * project cycles that may never be accounted to this * thread, breaking clock_gettime(). */ - if (task_current(rq, p) && task_on_rq_queued(p)) { + if (task_current_donor(rq, p) && task_on_rq_queued(p)) { prefetch_curr_exec_start(p); update_rq_clock(rq); p->sched_class->update_curr(rq); @@ -5609,7 +5592,6 @@ unsigned long long task_sched_runtime(struct task_struct *p) return ns; } -#ifdef CONFIG_SCHED_DEBUG static u64 cpu_resched_latency(struct rq *rq) { int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); @@ -5654,39 +5636,45 @@ static int __init setup_resched_latency_warn_ms(char *str) return 1; } __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); -#else -static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } -#endif /* CONFIG_SCHED_DEBUG */ /* * This function gets called by the timer code, with HZ frequency. * We call it with interrupts disabled. */ -void scheduler_tick(void) +void sched_tick(void) { int cpu = smp_processor_id(); struct rq *rq = cpu_rq(cpu); - struct task_struct *curr = rq->curr; + /* accounting goes to the donor task */ + struct task_struct *donor; struct rq_flags rf; - unsigned long thermal_pressure; + unsigned long hw_pressure; u64 resched_latency; - if (housekeeping_cpu(cpu, HK_TYPE_TICK)) + if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) arch_scale_freq_tick(); sched_clock_tick(); rq_lock(rq, &rf); + donor = rq->donor; + + psi_account_irqtime(rq, donor, NULL); update_rq_clock(rq); - thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); - update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); - curr->sched_class->task_tick(rq, curr, 0); + hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); + update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); + + if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) + resched_curr(rq); + + donor->sched_class->task_tick(rq, donor, 0); if (sched_feat(LATENCY_WARN)) resched_latency = cpu_resched_latency(rq); calc_global_load_tick(rq); sched_core_tick(rq); - task_tick_mm_cid(rq, curr); + task_tick_mm_cid(rq, donor); + scx_tick(rq); rq_unlock(rq, &rf); @@ -5695,12 +5683,14 @@ void scheduler_tick(void) perf_event_task_tick(); - if (curr->flags & PF_WQ_WORKER) - wq_worker_tick(curr); + if (donor->flags & PF_WQ_WORKER) + wq_worker_tick(donor); #ifdef CONFIG_SMP - rq->idle_balance = idle_cpu(cpu); - trigger_load_balance(rq); + if (!scx_switched_all()) { + rq->idle_balance = idle_cpu(cpu); + sched_balance_trigger(rq); + } #endif } @@ -5761,6 +5751,12 @@ static void sched_tick_remote(struct work_struct *work) struct task_struct *curr = rq->curr; if (cpu_online(cpu)) { + /* + * Since this is a remote tick for full dynticks mode, + * we are always sure that there is no proxy (only a + * single task is running). + */ + WARN_ON_ONCE(rq->curr != rq->donor); update_rq_clock(rq); if (!is_idle_task(curr)) { @@ -5794,7 +5790,7 @@ static void sched_tick_start(int cpu) int os; struct tick_work *twork; - if (housekeeping_cpu(cpu, HK_TYPE_TICK)) + if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) return; WARN_ON_ONCE(!tick_work_cpu); @@ -5815,7 +5811,7 @@ static void sched_tick_stop(int cpu) struct tick_work *twork; int os; - if (housekeeping_cpu(cpu, HK_TYPE_TICK)) + if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) return; WARN_ON_ONCE(!tick_work_cpu); @@ -5980,18 +5976,32 @@ static inline void schedule_debug(struct task_struct *prev, bool preempt) preempt_count_set(PREEMPT_DISABLED); } rcu_sleep_check(); - SCHED_WARN_ON(ct_state() == CONTEXT_USER); + WARN_ON_ONCE(ct_state() == CT_STATE_USER); profile_hit(SCHED_PROFILING, __builtin_return_address(0)); schedstat_inc(this_rq()->sched_count); } -static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, - struct rq_flags *rf) +static void prev_balance(struct rq *rq, struct task_struct *prev, + struct rq_flags *rf) { -#ifdef CONFIG_SMP + const struct sched_class *start_class = prev->sched_class; const struct sched_class *class; + +#ifdef CONFIG_SCHED_CLASS_EXT + /* + * SCX requires a balance() call before every pick_task() including when + * waking up from SCHED_IDLE. If @start_class is below SCX, start from + * SCX instead. Also, set a flag to detect missing balance() call. + */ + if (scx_enabled()) { + rq->scx.flags |= SCX_RQ_BAL_PENDING; + if (sched_class_above(&ext_sched_class, start_class)) + start_class = &ext_sched_class; + } +#endif + /* * We must do the balancing pass before put_prev_task(), such * that when we release the rq->lock the task is in the same @@ -6000,13 +6010,10 @@ static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, * We can terminate the balance pass as soon as we know there is * a runnable task of @class priority or higher. */ - for_class_range(class, prev->sched_class, &idle_sched_class) { - if (class->balance(rq, prev, rf)) + for_active_class_range(class, start_class, &idle_sched_class) { + if (class->balance && class->balance(rq, prev, rf)) break; } -#endif - - put_prev_task(rq, prev); } /* @@ -6018,6 +6025,11 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) const struct sched_class *class; struct task_struct *p; + rq->dl_server = NULL; + + if (scx_enabled()) + goto restart; + /* * Optimization: we know that if all tasks are in the fair class we can * call that function directly, but only if the @prev task wasn't of a @@ -6025,7 +6037,7 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) * opportunity to pull in more work from other CPUs. */ if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && - rq->nr_running == rq->cfs.h_nr_running)) { + rq->nr_running == rq->cfs.h_nr_queued)) { p = pick_next_task_fair(rq, prev, rf); if (unlikely(p == RETRY_TASK)) @@ -6033,35 +6045,28 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) /* Assume the next prioritized class is idle_sched_class */ if (!p) { - put_prev_task(rq, prev); - p = pick_next_task_idle(rq); + p = pick_task_idle(rq); + put_prev_set_next_task(rq, prev, p); } - /* - * This is the fast path; it cannot be a DL server pick; - * therefore even if @p == @prev, ->dl_server must be NULL. - */ - if (p->dl_server) - p->dl_server = NULL; - return p; } restart: - put_prev_task_balance(rq, prev, rf); - - /* - * We've updated @prev and no longer need the server link, clear it. - * Must be done before ->pick_next_task() because that can (re)set - * ->dl_server. - */ - if (prev->dl_server) - prev->dl_server = NULL; + prev_balance(rq, prev, rf); - for_each_class(class) { - p = class->pick_next_task(rq); - if (p) - return p; + for_each_active_class(class) { + if (class->pick_next_task) { + p = class->pick_next_task(rq, prev); + if (p) + return p; + } else { + p = class->pick_task(rq); + if (p) { + put_prev_set_next_task(rq, prev, p); + return p; + } + } } BUG(); /* The idle class should always have a runnable task. */ @@ -6091,7 +6096,9 @@ static inline struct task_struct *pick_task(struct rq *rq) const struct sched_class *class; struct task_struct *p; - for_each_class(class) { + rq->dl_server = NULL; + + for_each_active_class(class) { p = class->pick_task(rq); if (p) return p; @@ -6129,6 +6136,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) * another cpu during offline. */ rq->core_pick = NULL; + rq->core_dl_server = NULL; return __pick_next_task(rq, prev, rf); } @@ -6147,16 +6155,13 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); next = rq->core_pick; - if (next != prev) { - put_prev_task(rq, prev); - set_next_task(rq, next); - } - + rq->dl_server = rq->core_dl_server; rq->core_pick = NULL; - goto out; + rq->core_dl_server = NULL; + goto out_set_next; } - put_prev_task_balance(rq, prev, rf); + prev_balance(rq, prev, rf); smt_mask = cpu_smt_mask(cpu); need_sync = !!rq->core->core_cookie; @@ -6197,6 +6202,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) next = pick_task(rq); if (!next->core_cookie) { rq->core_pick = NULL; + rq->core_dl_server = NULL; /* * For robustness, update the min_vruntime_fi for * unconstrained picks as well. @@ -6224,7 +6230,9 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) if (i != cpu && (rq_i != rq->core || !core_clock_updated)) update_rq_clock(rq_i); - p = rq_i->core_pick = pick_task(rq_i); + rq_i->core_pick = p = pick_task(rq_i); + rq_i->core_dl_server = rq_i->dl_server; + if (!max || prio_less(max, p, fi_before)) max = p; } @@ -6248,6 +6256,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) } rq_i->core_pick = p; + rq_i->core_dl_server = NULL; if (p == rq_i->idle) { if (rq_i->nr_running) { @@ -6308,6 +6317,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) if (i == cpu) { rq_i->core_pick = NULL; + rq_i->core_dl_server = NULL; continue; } @@ -6316,6 +6326,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) if (rq_i->curr == rq_i->core_pick) { rq_i->core_pick = NULL; + rq_i->core_dl_server = NULL; continue; } @@ -6323,8 +6334,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) } out_set_next: - set_next_task(rq, next); -out: + put_prev_set_next_task(rq, prev, next); if (rq->core->core_forceidle_count && next == rq->idle) queue_core_balance(rq); @@ -6370,10 +6380,7 @@ static bool try_steal_cookie(int this, int that) if (sched_task_is_throttled(p, this)) goto next; - deactivate_task(src, p, 0); - set_task_cpu(p, this); - activate_task(dst, p, 0); - + move_queued_task_locked(src, dst, p); resched_curr(dst); success = true; @@ -6560,19 +6567,53 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) * Constants for the sched_mode argument of __schedule(). * * The mode argument allows RT enabled kernels to differentiate a - * preemption from blocking on an 'sleeping' spin/rwlock. Note that - * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to - * optimize the AND operation out and just check for zero. + * preemption from blocking on an 'sleeping' spin/rwlock. */ -#define SM_NONE 0x0 -#define SM_PREEMPT 0x1 -#define SM_RTLOCK_WAIT 0x2 +#define SM_IDLE (-1) +#define SM_NONE 0 +#define SM_PREEMPT 1 +#define SM_RTLOCK_WAIT 2 -#ifndef CONFIG_PREEMPT_RT -# define SM_MASK_PREEMPT (~0U) -#else -# define SM_MASK_PREEMPT SM_PREEMPT -#endif +/* + * Helper function for __schedule() + * + * If a task does not have signals pending, deactivate it + * Otherwise marks the task's __state as RUNNING + */ +static bool try_to_block_task(struct rq *rq, struct task_struct *p, + unsigned long *task_state_p) +{ + unsigned long task_state = *task_state_p; + int flags = DEQUEUE_NOCLOCK; + + if (signal_pending_state(task_state, p)) { + WRITE_ONCE(p->__state, TASK_RUNNING); + *task_state_p = TASK_RUNNING; + return false; + } + + p->sched_contributes_to_load = + (task_state & TASK_UNINTERRUPTIBLE) && + !(task_state & TASK_NOLOAD) && + !(task_state & TASK_FROZEN); + + if (unlikely(is_special_task_state(task_state))) + flags |= DEQUEUE_SPECIAL; + + /* + * __schedule() ttwu() + * prev_state = prev->state; if (p->on_rq && ...) + * if (prev_state) goto out; + * p->on_rq = 0; smp_acquire__after_ctrl_dep(); + * p->state = TASK_WAKING + * + * Where __schedule() and ttwu() have matching control dependencies. + * + * After this, schedule() must not care about p->state any more. + */ + block_task(rq, p, flags); + return true; +} /* * __schedule() is the main scheduler function. @@ -6585,7 +6626,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) * paths. For example, see arch/x86/entry_64.S. * * To drive preemption between tasks, the scheduler sets the flag in timer - * interrupt handler scheduler_tick(). + * interrupt handler sched_tick(). * * 3. Wakeups don't really cause entry into schedule(). They add a * task to the run-queue and that's it. @@ -6613,26 +6654,36 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) * * WARNING: must be called with preemption disabled! */ -static void __sched notrace __schedule(unsigned int sched_mode) +static void __sched notrace __schedule(int sched_mode) { struct task_struct *prev, *next; + /* + * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted + * as a preemption by schedule_debug() and RCU. + */ + bool preempt = sched_mode > SM_NONE; + bool is_switch = false; unsigned long *switch_count; unsigned long prev_state; struct rq_flags rf; struct rq *rq; int cpu; + trace_sched_entry_tp(preempt, CALLER_ADDR0); + cpu = smp_processor_id(); rq = cpu_rq(cpu); prev = rq->curr; - schedule_debug(prev, !!sched_mode); + schedule_debug(prev, preempt); if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) hrtick_clear(rq); + klp_sched_try_switch(prev); + local_irq_disable(); - rcu_note_context_switch(!!sched_mode); + rcu_note_context_switch(preempt); /* * Make sure that signal_pending_state()->signal_pending() below @@ -6661,52 +6712,34 @@ static void __sched notrace __schedule(unsigned int sched_mode) switch_count = &prev->nivcsw; + /* Task state changes only considers SM_PREEMPT as preemption */ + preempt = sched_mode == SM_PREEMPT; + /* * We must load prev->state once (task_struct::state is volatile), such * that we form a control dependency vs deactivate_task() below. */ prev_state = READ_ONCE(prev->__state); - if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { - if (signal_pending_state(prev_state, prev)) { - WRITE_ONCE(prev->__state, TASK_RUNNING); - } else { - prev->sched_contributes_to_load = - (prev_state & TASK_UNINTERRUPTIBLE) && - !(prev_state & TASK_NOLOAD) && - !(prev_state & TASK_FROZEN); - - if (prev->sched_contributes_to_load) - rq->nr_uninterruptible++; - - /* - * __schedule() ttwu() - * prev_state = prev->state; if (p->on_rq && ...) - * if (prev_state) goto out; - * p->on_rq = 0; smp_acquire__after_ctrl_dep(); - * p->state = TASK_WAKING - * - * Where __schedule() and ttwu() have matching control dependencies. - * - * After this, schedule() must not care about p->state any more. - */ - deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); - - if (prev->in_iowait) { - atomic_inc(&rq->nr_iowait); - delayacct_blkio_start(); - } + if (sched_mode == SM_IDLE) { + /* SCX must consult the BPF scheduler to tell if rq is empty */ + if (!rq->nr_running && !scx_enabled()) { + next = prev; + goto picked; } + } else if (!preempt && prev_state) { + try_to_block_task(rq, prev, &prev_state); switch_count = &prev->nvcsw; } next = pick_next_task(rq, prev, &rf); + rq_set_donor(rq, next); +picked: clear_tsk_need_resched(prev); clear_preempt_need_resched(); -#ifdef CONFIG_SCHED_DEBUG rq->last_seen_need_resched_ns = 0; -#endif - if (likely(prev != next)) { + is_switch = prev != next; + if (likely(is_switch)) { rq->nr_switches++; /* * RCU users of rcu_dereference(rq->curr) may not see @@ -6738,9 +6771,11 @@ static void __sched notrace __schedule(unsigned int sched_mode) ++*switch_count; migrate_disable_switch(rq, prev); - psi_sched_switch(prev, next, !task_on_rq_queued(prev)); + psi_account_irqtime(rq, prev, next); + psi_sched_switch(prev, next, !task_on_rq_queued(prev) || + prev->se.sched_delayed); - trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); + trace_sched_switch(preempt, prev, next, prev_state); /* Also unlocks the rq: */ rq = context_switch(rq, prev, next, &rf); @@ -6749,6 +6784,7 @@ static void __sched notrace __schedule(unsigned int sched_mode) __balance_callbacks(rq); raw_spin_rq_unlock_irq(rq); } + trace_sched_exit_tp(is_switch, CALLER_ADDR0); } void __noreturn do_task_dead(void) @@ -6793,7 +6829,7 @@ static inline void sched_submit_work(struct task_struct *tsk) * deadlock if the callback attempts to acquire a lock which is * already acquired. */ - SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); + WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT); /* * If we are going to sleep and we have plugged IO queued, @@ -6816,7 +6852,7 @@ static void sched_update_worker(struct task_struct *tsk) } } -static __always_inline void __schedule_loop(unsigned int sched_mode) +static __always_inline void __schedule_loop(int sched_mode) { do { preempt_disable(); @@ -6854,14 +6890,14 @@ void __sched schedule_idle(void) { /* * As this skips calling sched_submit_work(), which the idle task does - * regardless because that function is a nop when the task is in a + * regardless because that function is a NOP when the task is in a * TASK_RUNNING state, make sure this isn't used someplace that the * current task can be in any other state. Note, idle is always in the * TASK_RUNNING state. */ WARN_ON_ONCE(current->__state); do { - __schedule(SM_NONE); + __schedule(SM_IDLE); } while (need_resched()); } @@ -6875,7 +6911,7 @@ asmlinkage __visible void __sched schedule_user(void) * we find a better solution. * * NB: There are buggy callers of this function. Ideally we - * should warn if prev_state != CONTEXT_USER, but that will trigger + * should warn if prev_state != CT_STATE_USER, but that will trigger * too frequently to make sense yet. */ enum ctx_state prev_state = exception_enter(); @@ -7049,9 +7085,9 @@ EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); /* * This is the entry point to schedule() from kernel preemption - * off of irq context. - * Note, that this is called and return with irqs disabled. This will - * protect us against recursive calling from irq. + * off of IRQ context. + * Note, that this is called and return with IRQs disabled. This will + * protect us against recursive calling from IRQ contexts. */ asmlinkage __visible void __sched preempt_schedule_irq(void) { @@ -7076,21 +7112,25 @@ asmlinkage __visible void __sched preempt_schedule_irq(void) int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, void *key) { - WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); + WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); return try_to_wake_up(curr->private, mode, wake_flags); } EXPORT_SYMBOL(default_wake_function); -static void __setscheduler_prio(struct task_struct *p, int prio) +const struct sched_class *__setscheduler_class(int policy, int prio) { if (dl_prio(prio)) - p->sched_class = &dl_sched_class; - else if (rt_prio(prio)) - p->sched_class = &rt_sched_class; - else - p->sched_class = &fair_sched_class; + return &dl_sched_class; - p->prio = prio; + if (rt_prio(prio)) + return &rt_sched_class; + +#ifdef CONFIG_SCHED_CLASS_EXT + if (task_should_scx(policy)) + return &ext_sched_class; +#endif + + return &fair_sched_class; } #ifdef CONFIG_RT_MUTEXES @@ -7121,21 +7161,6 @@ void rt_mutex_post_schedule(void) lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); } -static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) -{ - if (pi_task) - prio = min(prio, pi_task->prio); - - return prio; -} - -static inline int rt_effective_prio(struct task_struct *p, int prio) -{ - struct task_struct *pi_task = rt_mutex_get_top_task(p); - - return __rt_effective_prio(pi_task, prio); -} - /* * rt_mutex_setprio - set the current priority of a task * @p: task to boost @@ -7151,7 +7176,7 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) { int prio, oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; - const struct sched_class *prev_class; + const struct sched_class *prev_class, *next_class; struct rq_flags rf; struct rq *rq; @@ -7185,7 +7210,7 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) goto out_unlock; /* - * Idle task boosting is a nono in general. There is one + * Idle task boosting is a no-no in general. There is one * exception, when PREEMPT_RT and NOHZ is active: * * The idle task calls get_next_timer_interrupt() and holds @@ -7209,8 +7234,13 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) queue_flag &= ~DEQUEUE_MOVE; prev_class = p->sched_class; + next_class = __setscheduler_class(p->policy, prio); + + if (prev_class != next_class && p->se.sched_delayed) + dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); + queued = task_on_rq_queued(p); - running = task_current(rq, p); + running = task_current_donor(rq, p); if (queued) dequeue_task(rq, p, queue_flag); if (running) @@ -7246,7 +7276,10 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) p->rt.timeout = 0; } - __setscheduler_prio(p, prio); + p->sched_class = next_class; + p->prio = prio; + + check_class_changing(rq, p, prev_class); if (queued) enqueue_task(rq, p, queue_flag); @@ -7264,1334 +7297,17 @@ out_unlock: preempt_enable(); } -#else -static inline int rt_effective_prio(struct task_struct *p, int prio) -{ - return prio; -} -#endif - -void set_user_nice(struct task_struct *p, long nice) -{ - bool queued, running; - struct rq *rq; - int old_prio; - - if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) - return; - /* - * We have to be careful, if called from sys_setpriority(), - * the task might be in the middle of scheduling on another CPU. - */ - CLASS(task_rq_lock, rq_guard)(p); - rq = rq_guard.rq; - - update_rq_clock(rq); - - /* - * The RT priorities are set via sched_setscheduler(), but we still - * allow the 'normal' nice value to be set - but as expected - * it won't have any effect on scheduling until the task is - * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: - */ - if (task_has_dl_policy(p) || task_has_rt_policy(p)) { - p->static_prio = NICE_TO_PRIO(nice); - return; - } - - queued = task_on_rq_queued(p); - running = task_current(rq, p); - if (queued) - dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); - if (running) - put_prev_task(rq, p); - - p->static_prio = NICE_TO_PRIO(nice); - set_load_weight(p, true); - old_prio = p->prio; - p->prio = effective_prio(p); - - if (queued) - enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); - if (running) - set_next_task(rq, p); - - /* - * If the task increased its priority or is running and - * lowered its priority, then reschedule its CPU: - */ - p->sched_class->prio_changed(rq, p, old_prio); -} -EXPORT_SYMBOL(set_user_nice); - -/* - * is_nice_reduction - check if nice value is an actual reduction - * - * Similar to can_nice() but does not perform a capability check. - * - * @p: task - * @nice: nice value - */ -static bool is_nice_reduction(const struct task_struct *p, const int nice) -{ - /* Convert nice value [19,-20] to rlimit style value [1,40]: */ - int nice_rlim = nice_to_rlimit(nice); - - return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); -} - -/* - * can_nice - check if a task can reduce its nice value - * @p: task - * @nice: nice value - */ -int can_nice(const struct task_struct *p, const int nice) -{ - return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); -} - -#ifdef __ARCH_WANT_SYS_NICE - -/* - * sys_nice - change the priority of the current process. - * @increment: priority increment - * - * sys_setpriority is a more generic, but much slower function that - * does similar things. - */ -SYSCALL_DEFINE1(nice, int, increment) -{ - long nice, retval; - - /* - * Setpriority might change our priority at the same moment. - * We don't have to worry. Conceptually one call occurs first - * and we have a single winner. - */ - increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); - nice = task_nice(current) + increment; - - nice = clamp_val(nice, MIN_NICE, MAX_NICE); - if (increment < 0 && !can_nice(current, nice)) - return -EPERM; - - retval = security_task_setnice(current, nice); - if (retval) - return retval; - - set_user_nice(current, nice); - return 0; -} - -#endif - -/** - * task_prio - return the priority value of a given task. - * @p: the task in question. - * - * Return: The priority value as seen by users in /proc. - * - * sched policy return value kernel prio user prio/nice - * - * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] - * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] - * deadline -101 -1 0 - */ -int task_prio(const struct task_struct *p) -{ - return p->prio - MAX_RT_PRIO; -} - -/** - * idle_cpu - is a given CPU idle currently? - * @cpu: the processor in question. - * - * Return: 1 if the CPU is currently idle. 0 otherwise. - */ -int idle_cpu(int cpu) -{ - struct rq *rq = cpu_rq(cpu); - - if (rq->curr != rq->idle) - return 0; - - if (rq->nr_running) - return 0; - -#ifdef CONFIG_SMP - if (rq->ttwu_pending) - return 0; -#endif - - return 1; -} - -/** - * available_idle_cpu - is a given CPU idle for enqueuing work. - * @cpu: the CPU in question. - * - * Return: 1 if the CPU is currently idle. 0 otherwise. - */ -int available_idle_cpu(int cpu) -{ - if (!idle_cpu(cpu)) - return 0; - - if (vcpu_is_preempted(cpu)) - return 0; - - return 1; -} - -/** - * idle_task - return the idle task for a given CPU. - * @cpu: the processor in question. - * - * Return: The idle task for the CPU @cpu. - */ -struct task_struct *idle_task(int cpu) -{ - return cpu_rq(cpu)->idle; -} - -#ifdef CONFIG_SCHED_CORE -int sched_core_idle_cpu(int cpu) -{ - struct rq *rq = cpu_rq(cpu); - - if (sched_core_enabled(rq) && rq->curr == rq->idle) - return 1; - - return idle_cpu(cpu); -} - -#endif - -#ifdef CONFIG_SMP -/* - * This function computes an effective utilization for the given CPU, to be - * used for frequency selection given the linear relation: f = u * f_max. - * - * The scheduler tracks the following metrics: - * - * cpu_util_{cfs,rt,dl,irq}() - * cpu_bw_dl() - * - * Where the cfs,rt and dl util numbers are tracked with the same metric and - * synchronized windows and are thus directly comparable. - * - * The cfs,rt,dl utilization are the running times measured with rq->clock_task - * which excludes things like IRQ and steal-time. These latter are then accrued - * in the irq utilization. - * - * The DL bandwidth number otoh is not a measured metric but a value computed - * based on the task model parameters and gives the minimal utilization - * required to meet deadlines. - */ -unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, - unsigned long *min, - unsigned long *max) -{ - unsigned long util, irq, scale; - struct rq *rq = cpu_rq(cpu); - - scale = arch_scale_cpu_capacity(cpu); - - /* - * Early check to see if IRQ/steal time saturates the CPU, can be - * because of inaccuracies in how we track these -- see - * update_irq_load_avg(). - */ - irq = cpu_util_irq(rq); - if (unlikely(irq >= scale)) { - if (min) - *min = scale; - if (max) - *max = scale; - return scale; - } - - if (min) { - /* - * The minimum utilization returns the highest level between: - * - the computed DL bandwidth needed with the IRQ pressure which - * steals time to the deadline task. - * - The minimum performance requirement for CFS and/or RT. - */ - *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); - - /* - * When an RT task is runnable and uclamp is not used, we must - * ensure that the task will run at maximum compute capacity. - */ - if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) - *min = max(*min, scale); - } - - /* - * Because the time spend on RT/DL tasks is visible as 'lost' time to - * CFS tasks and we use the same metric to track the effective - * utilization (PELT windows are synchronized) we can directly add them - * to obtain the CPU's actual utilization. - */ - util = util_cfs + cpu_util_rt(rq); - util += cpu_util_dl(rq); - - /* - * The maximum hint is a soft bandwidth requirement, which can be lower - * than the actual utilization because of uclamp_max requirements. - */ - if (max) - *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); - - if (util >= scale) - return scale; - - /* - * There is still idle time; further improve the number by using the - * irq metric. Because IRQ/steal time is hidden from the task clock we - * need to scale the task numbers: - * - * max - irq - * U' = irq + --------- * U - * max - */ - util = scale_irq_capacity(util, irq, scale); - util += irq; - - return min(scale, util); -} - -unsigned long sched_cpu_util(int cpu) -{ - return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); -} -#endif /* CONFIG_SMP */ - -/** - * find_process_by_pid - find a process with a matching PID value. - * @pid: the pid in question. - * - * The task of @pid, if found. %NULL otherwise. - */ -static struct task_struct *find_process_by_pid(pid_t pid) -{ - return pid ? find_task_by_vpid(pid) : current; -} - -static struct task_struct *find_get_task(pid_t pid) -{ - struct task_struct *p; - guard(rcu)(); - - p = find_process_by_pid(pid); - if (likely(p)) - get_task_struct(p); - - return p; -} - -DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), - find_get_task(pid), pid_t pid) - -/* - * sched_setparam() passes in -1 for its policy, to let the functions - * it calls know not to change it. - */ -#define SETPARAM_POLICY -1 - -static void __setscheduler_params(struct task_struct *p, - const struct sched_attr *attr) -{ - int policy = attr->sched_policy; - - if (policy == SETPARAM_POLICY) - policy = p->policy; - - p->policy = policy; - - if (dl_policy(policy)) - __setparam_dl(p, attr); - else if (fair_policy(policy)) - p->static_prio = NICE_TO_PRIO(attr->sched_nice); - - /* - * __sched_setscheduler() ensures attr->sched_priority == 0 when - * !rt_policy. Always setting this ensures that things like - * getparam()/getattr() don't report silly values for !rt tasks. - */ - p->rt_priority = attr->sched_priority; - p->normal_prio = normal_prio(p); - set_load_weight(p, true); -} - -/* - * Check the target process has a UID that matches the current process's: - */ -static bool check_same_owner(struct task_struct *p) -{ - const struct cred *cred = current_cred(), *pcred; - guard(rcu)(); - - pcred = __task_cred(p); - return (uid_eq(cred->euid, pcred->euid) || - uid_eq(cred->euid, pcred->uid)); -} - -/* - * Allow unprivileged RT tasks to decrease priority. - * Only issue a capable test if needed and only once to avoid an audit - * event on permitted non-privileged operations: - */ -static int user_check_sched_setscheduler(struct task_struct *p, - const struct sched_attr *attr, - int policy, int reset_on_fork) -{ - if (fair_policy(policy)) { - if (attr->sched_nice < task_nice(p) && - !is_nice_reduction(p, attr->sched_nice)) - goto req_priv; - } - - if (rt_policy(policy)) { - unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); - - /* Can't set/change the rt policy: */ - if (policy != p->policy && !rlim_rtprio) - goto req_priv; - - /* Can't increase priority: */ - if (attr->sched_priority > p->rt_priority && - attr->sched_priority > rlim_rtprio) - goto req_priv; - } - - /* - * Can't set/change SCHED_DEADLINE policy at all for now - * (safest behavior); in the future we would like to allow - * unprivileged DL tasks to increase their relative deadline - * or reduce their runtime (both ways reducing utilization) - */ - if (dl_policy(policy)) - goto req_priv; - - /* - * Treat SCHED_IDLE as nice 20. Only allow a switch to - * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. - */ - if (task_has_idle_policy(p) && !idle_policy(policy)) { - if (!is_nice_reduction(p, task_nice(p))) - goto req_priv; - } - - /* Can't change other user's priorities: */ - if (!check_same_owner(p)) - goto req_priv; - - /* Normal users shall not reset the sched_reset_on_fork flag: */ - if (p->sched_reset_on_fork && !reset_on_fork) - goto req_priv; - - return 0; - -req_priv: - if (!capable(CAP_SYS_NICE)) - return -EPERM; - - return 0; -} - -static int __sched_setscheduler(struct task_struct *p, - const struct sched_attr *attr, - bool user, bool pi) -{ - int oldpolicy = -1, policy = attr->sched_policy; - int retval, oldprio, newprio, queued, running; - const struct sched_class *prev_class; - struct balance_callback *head; - struct rq_flags rf; - int reset_on_fork; - int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; - struct rq *rq; - bool cpuset_locked = false; - - /* The pi code expects interrupts enabled */ - BUG_ON(pi && in_interrupt()); -recheck: - /* Double check policy once rq lock held: */ - if (policy < 0) { - reset_on_fork = p->sched_reset_on_fork; - policy = oldpolicy = p->policy; - } else { - reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); - - if (!valid_policy(policy)) - return -EINVAL; - } - - if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) - return -EINVAL; - - /* - * Valid priorities for SCHED_FIFO and SCHED_RR are - * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, - * SCHED_BATCH and SCHED_IDLE is 0. - */ - if (attr->sched_priority > MAX_RT_PRIO-1) - return -EINVAL; - if ((dl_policy(policy) && !__checkparam_dl(attr)) || - (rt_policy(policy) != (attr->sched_priority != 0))) - return -EINVAL; - - if (user) { - retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); - if (retval) - return retval; - - if (attr->sched_flags & SCHED_FLAG_SUGOV) - return -EINVAL; - - retval = security_task_setscheduler(p); - if (retval) - return retval; - } - - /* Update task specific "requested" clamps */ - if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { - retval = uclamp_validate(p, attr); - if (retval) - return retval; - } - - /* - * SCHED_DEADLINE bandwidth accounting relies on stable cpusets - * information. - */ - if (dl_policy(policy) || dl_policy(p->policy)) { - cpuset_locked = true; - cpuset_lock(); - } - - /* - * Make sure no PI-waiters arrive (or leave) while we are - * changing the priority of the task: - * - * To be able to change p->policy safely, the appropriate - * runqueue lock must be held. - */ - rq = task_rq_lock(p, &rf); - update_rq_clock(rq); - - /* - * Changing the policy of the stop threads its a very bad idea: - */ - if (p == rq->stop) { - retval = -EINVAL; - goto unlock; - } - - /* - * If not changing anything there's no need to proceed further, - * but store a possible modification of reset_on_fork. - */ - if (unlikely(policy == p->policy)) { - if (fair_policy(policy) && attr->sched_nice != task_nice(p)) - goto change; - if (rt_policy(policy) && attr->sched_priority != p->rt_priority) - goto change; - if (dl_policy(policy) && dl_param_changed(p, attr)) - goto change; - if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) - goto change; - - p->sched_reset_on_fork = reset_on_fork; - retval = 0; - goto unlock; - } -change: - - if (user) { -#ifdef CONFIG_RT_GROUP_SCHED - /* - * Do not allow realtime tasks into groups that have no runtime - * assigned. - */ - if (rt_bandwidth_enabled() && rt_policy(policy) && - task_group(p)->rt_bandwidth.rt_runtime == 0 && - !task_group_is_autogroup(task_group(p))) { - retval = -EPERM; - goto unlock; - } -#endif -#ifdef CONFIG_SMP - if (dl_bandwidth_enabled() && dl_policy(policy) && - !(attr->sched_flags & SCHED_FLAG_SUGOV)) { - cpumask_t *span = rq->rd->span; - - /* - * Don't allow tasks with an affinity mask smaller than - * the entire root_domain to become SCHED_DEADLINE. We - * will also fail if there's no bandwidth available. - */ - if (!cpumask_subset(span, p->cpus_ptr) || - rq->rd->dl_bw.bw == 0) { - retval = -EPERM; - goto unlock; - } - } #endif - } - - /* Re-check policy now with rq lock held: */ - if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { - policy = oldpolicy = -1; - task_rq_unlock(rq, p, &rf); - if (cpuset_locked) - cpuset_unlock(); - goto recheck; - } - - /* - * If setscheduling to SCHED_DEADLINE (or changing the parameters - * of a SCHED_DEADLINE task) we need to check if enough bandwidth - * is available. - */ - if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { - retval = -EBUSY; - goto unlock; - } - - p->sched_reset_on_fork = reset_on_fork; - oldprio = p->prio; - - newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); - if (pi) { - /* - * Take priority boosted tasks into account. If the new - * effective priority is unchanged, we just store the new - * normal parameters and do not touch the scheduler class and - * the runqueue. This will be done when the task deboost - * itself. - */ - newprio = rt_effective_prio(p, newprio); - if (newprio == oldprio) - queue_flags &= ~DEQUEUE_MOVE; - } - - queued = task_on_rq_queued(p); - running = task_current(rq, p); - if (queued) - dequeue_task(rq, p, queue_flags); - if (running) - put_prev_task(rq, p); - - prev_class = p->sched_class; - - if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { - __setscheduler_params(p, attr); - __setscheduler_prio(p, newprio); - } - __setscheduler_uclamp(p, attr); - - if (queued) { - /* - * We enqueue to tail when the priority of a task is - * increased (user space view). - */ - if (oldprio < p->prio) - queue_flags |= ENQUEUE_HEAD; - - enqueue_task(rq, p, queue_flags); - } - if (running) - set_next_task(rq, p); - - check_class_changed(rq, p, prev_class, oldprio); - - /* Avoid rq from going away on us: */ - preempt_disable(); - head = splice_balance_callbacks(rq); - task_rq_unlock(rq, p, &rf); - - if (pi) { - if (cpuset_locked) - cpuset_unlock(); - rt_mutex_adjust_pi(p); - } - - /* Run balance callbacks after we've adjusted the PI chain: */ - balance_callbacks(rq, head); - preempt_enable(); - - return 0; - -unlock: - task_rq_unlock(rq, p, &rf); - if (cpuset_locked) - cpuset_unlock(); - return retval; -} - -static int _sched_setscheduler(struct task_struct *p, int policy, - const struct sched_param *param, bool check) -{ - struct sched_attr attr = { - .sched_policy = policy, - .sched_priority = param->sched_priority, - .sched_nice = PRIO_TO_NICE(p->static_prio), - }; - - /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ - if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { - attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; - policy &= ~SCHED_RESET_ON_FORK; - attr.sched_policy = policy; - } - - return __sched_setscheduler(p, &attr, check, true); -} -/** - * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. - * @p: the task in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - * - * Use sched_set_fifo(), read its comment. - * - * Return: 0 on success. An error code otherwise. - * - * NOTE that the task may be already dead. - */ -int sched_setscheduler(struct task_struct *p, int policy, - const struct sched_param *param) -{ - return _sched_setscheduler(p, policy, param, true); -} - -int sched_setattr(struct task_struct *p, const struct sched_attr *attr) -{ - return __sched_setscheduler(p, attr, true, true); -} - -int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) -{ - return __sched_setscheduler(p, attr, false, true); -} -EXPORT_SYMBOL_GPL(sched_setattr_nocheck); - -/** - * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. - * @p: the task in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - * - * Just like sched_setscheduler, only don't bother checking if the - * current context has permission. For example, this is needed in - * stop_machine(): we create temporary high priority worker threads, - * but our caller might not have that capability. - * - * Return: 0 on success. An error code otherwise. - */ -int sched_setscheduler_nocheck(struct task_struct *p, int policy, - const struct sched_param *param) -{ - return _sched_setscheduler(p, policy, param, false); -} - -/* - * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally - * incapable of resource management, which is the one thing an OS really should - * be doing. - * - * This is of course the reason it is limited to privileged users only. - * - * Worse still; it is fundamentally impossible to compose static priority - * workloads. You cannot take two correctly working static prio workloads - * and smash them together and still expect them to work. - * - * For this reason 'all' FIFO tasks the kernel creates are basically at: - * - * MAX_RT_PRIO / 2 - * - * The administrator _MUST_ configure the system, the kernel simply doesn't - * know enough information to make a sensible choice. - */ -void sched_set_fifo(struct task_struct *p) -{ - struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; - WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); -} -EXPORT_SYMBOL_GPL(sched_set_fifo); - -/* - * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. - */ -void sched_set_fifo_low(struct task_struct *p) -{ - struct sched_param sp = { .sched_priority = 1 }; - WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); -} -EXPORT_SYMBOL_GPL(sched_set_fifo_low); - -void sched_set_normal(struct task_struct *p, int nice) -{ - struct sched_attr attr = { - .sched_policy = SCHED_NORMAL, - .sched_nice = nice, - }; - WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); -} -EXPORT_SYMBOL_GPL(sched_set_normal); - -static int -do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) -{ - struct sched_param lparam; - - if (!param || pid < 0) - return -EINVAL; - if (copy_from_user(&lparam, param, sizeof(struct sched_param))) - return -EFAULT; - - CLASS(find_get_task, p)(pid); - if (!p) - return -ESRCH; - - return sched_setscheduler(p, policy, &lparam); -} - -/* - * Mimics kernel/events/core.c perf_copy_attr(). - */ -static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) -{ - u32 size; - int ret; - - /* Zero the full structure, so that a short copy will be nice: */ - memset(attr, 0, sizeof(*attr)); - - ret = get_user(size, &uattr->size); - if (ret) - return ret; - - /* ABI compatibility quirk: */ - if (!size) - size = SCHED_ATTR_SIZE_VER0; - if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) - goto err_size; - - ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); - if (ret) { - if (ret == -E2BIG) - goto err_size; - return ret; - } - - if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && - size < SCHED_ATTR_SIZE_VER1) - return -EINVAL; - - /* - * XXX: Do we want to be lenient like existing syscalls; or do we want - * to be strict and return an error on out-of-bounds values? - */ - attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); - - return 0; - -err_size: - put_user(sizeof(*attr), &uattr->size); - return -E2BIG; -} - -static void get_params(struct task_struct *p, struct sched_attr *attr) -{ - if (task_has_dl_policy(p)) - __getparam_dl(p, attr); - else if (task_has_rt_policy(p)) - attr->sched_priority = p->rt_priority; - else - attr->sched_nice = task_nice(p); -} - -/** - * sys_sched_setscheduler - set/change the scheduler policy and RT priority - * @pid: the pid in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - * - * Return: 0 on success. An error code otherwise. - */ -SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) -{ - if (policy < 0) - return -EINVAL; - - return do_sched_setscheduler(pid, policy, param); -} - -/** - * sys_sched_setparam - set/change the RT priority of a thread - * @pid: the pid in question. - * @param: structure containing the new RT priority. - * - * Return: 0 on success. An error code otherwise. - */ -SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) -{ - return do_sched_setscheduler(pid, SETPARAM_POLICY, param); -} - -/** - * sys_sched_setattr - same as above, but with extended sched_attr - * @pid: the pid in question. - * @uattr: structure containing the extended parameters. - * @flags: for future extension. - */ -SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, - unsigned int, flags) -{ - struct sched_attr attr; - int retval; - - if (!uattr || pid < 0 || flags) - return -EINVAL; - - retval = sched_copy_attr(uattr, &attr); - if (retval) - return retval; - - if ((int)attr.sched_policy < 0) - return -EINVAL; - if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) - attr.sched_policy = SETPARAM_POLICY; - - CLASS(find_get_task, p)(pid); - if (!p) - return -ESRCH; - - if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) - get_params(p, &attr); - - return sched_setattr(p, &attr); -} - -/** - * sys_sched_getscheduler - get the policy (scheduling class) of a thread - * @pid: the pid in question. - * - * Return: On success, the policy of the thread. Otherwise, a negative error - * code. - */ -SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) -{ - struct task_struct *p; - int retval; - - if (pid < 0) - return -EINVAL; - - guard(rcu)(); - p = find_process_by_pid(pid); - if (!p) - return -ESRCH; - - retval = security_task_getscheduler(p); - if (!retval) { - retval = p->policy; - if (p->sched_reset_on_fork) - retval |= SCHED_RESET_ON_FORK; - } - return retval; -} - -/** - * sys_sched_getparam - get the RT priority of a thread - * @pid: the pid in question. - * @param: structure containing the RT priority. - * - * Return: On success, 0 and the RT priority is in @param. Otherwise, an error - * code. - */ -SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) -{ - struct sched_param lp = { .sched_priority = 0 }; - struct task_struct *p; - int retval; - - if (!param || pid < 0) - return -EINVAL; - - scoped_guard (rcu) { - p = find_process_by_pid(pid); - if (!p) - return -ESRCH; - - retval = security_task_getscheduler(p); - if (retval) - return retval; - - if (task_has_rt_policy(p)) - lp.sched_priority = p->rt_priority; - } - - /* - * This one might sleep, we cannot do it with a spinlock held ... - */ - return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; -} - -/* - * Copy the kernel size attribute structure (which might be larger - * than what user-space knows about) to user-space. - * - * Note that all cases are valid: user-space buffer can be larger or - * smaller than the kernel-space buffer. The usual case is that both - * have the same size. - */ -static int -sched_attr_copy_to_user(struct sched_attr __user *uattr, - struct sched_attr *kattr, - unsigned int usize) -{ - unsigned int ksize = sizeof(*kattr); - - if (!access_ok(uattr, usize)) - return -EFAULT; - - /* - * sched_getattr() ABI forwards and backwards compatibility: - * - * If usize == ksize then we just copy everything to user-space and all is good. - * - * If usize < ksize then we only copy as much as user-space has space for, - * this keeps ABI compatibility as well. We skip the rest. - * - * If usize > ksize then user-space is using a newer version of the ABI, - * which part the kernel doesn't know about. Just ignore it - tooling can - * detect the kernel's knowledge of attributes from the attr->size value - * which is set to ksize in this case. - */ - kattr->size = min(usize, ksize); - - if (copy_to_user(uattr, kattr, kattr->size)) - return -EFAULT; - - return 0; -} - -/** - * sys_sched_getattr - similar to sched_getparam, but with sched_attr - * @pid: the pid in question. - * @uattr: structure containing the extended parameters. - * @usize: sizeof(attr) for fwd/bwd comp. - * @flags: for future extension. - */ -SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, - unsigned int, usize, unsigned int, flags) -{ - struct sched_attr kattr = { }; - struct task_struct *p; - int retval; - - if (!uattr || pid < 0 || usize > PAGE_SIZE || - usize < SCHED_ATTR_SIZE_VER0 || flags) - return -EINVAL; - - scoped_guard (rcu) { - p = find_process_by_pid(pid); - if (!p) - return -ESRCH; - - retval = security_task_getscheduler(p); - if (retval) - return retval; - - kattr.sched_policy = p->policy; - if (p->sched_reset_on_fork) - kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; - get_params(p, &kattr); - kattr.sched_flags &= SCHED_FLAG_ALL; - -#ifdef CONFIG_UCLAMP_TASK - /* - * This could race with another potential updater, but this is fine - * because it'll correctly read the old or the new value. We don't need - * to guarantee who wins the race as long as it doesn't return garbage. - */ - kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; - kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; -#endif - } - - return sched_attr_copy_to_user(uattr, &kattr, usize); -} - -#ifdef CONFIG_SMP -int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) -{ - /* - * If the task isn't a deadline task or admission control is - * disabled then we don't care about affinity changes. - */ - if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) - return 0; - - /* - * Since bandwidth control happens on root_domain basis, - * if admission test is enabled, we only admit -deadline - * tasks allowed to run on all the CPUs in the task's - * root_domain. - */ - guard(rcu)(); - if (!cpumask_subset(task_rq(p)->rd->span, mask)) - return -EBUSY; - - return 0; -} -#endif - -static int -__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) -{ - int retval; - cpumask_var_t cpus_allowed, new_mask; - - if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) - return -ENOMEM; - - if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { - retval = -ENOMEM; - goto out_free_cpus_allowed; - } - - cpuset_cpus_allowed(p, cpus_allowed); - cpumask_and(new_mask, ctx->new_mask, cpus_allowed); - - ctx->new_mask = new_mask; - ctx->flags |= SCA_CHECK; - - retval = dl_task_check_affinity(p, new_mask); - if (retval) - goto out_free_new_mask; - - retval = __set_cpus_allowed_ptr(p, ctx); - if (retval) - goto out_free_new_mask; - - cpuset_cpus_allowed(p, cpus_allowed); - if (!cpumask_subset(new_mask, cpus_allowed)) { - /* - * We must have raced with a concurrent cpuset update. - * Just reset the cpumask to the cpuset's cpus_allowed. - */ - cpumask_copy(new_mask, cpus_allowed); - - /* - * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() - * will restore the previous user_cpus_ptr value. - * - * In the unlikely event a previous user_cpus_ptr exists, - * we need to further restrict the mask to what is allowed - * by that old user_cpus_ptr. - */ - if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { - bool empty = !cpumask_and(new_mask, new_mask, - ctx->user_mask); - - if (WARN_ON_ONCE(empty)) - cpumask_copy(new_mask, cpus_allowed); - } - __set_cpus_allowed_ptr(p, ctx); - retval = -EINVAL; - } - -out_free_new_mask: - free_cpumask_var(new_mask); -out_free_cpus_allowed: - free_cpumask_var(cpus_allowed); - return retval; -} - -long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) -{ - struct affinity_context ac; - struct cpumask *user_mask; - int retval; - - CLASS(find_get_task, p)(pid); - if (!p) - return -ESRCH; - - if (p->flags & PF_NO_SETAFFINITY) - return -EINVAL; - - if (!check_same_owner(p)) { - guard(rcu)(); - if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) - return -EPERM; - } - - retval = security_task_setscheduler(p); - if (retval) - return retval; - - /* - * With non-SMP configs, user_cpus_ptr/user_mask isn't used and - * alloc_user_cpus_ptr() returns NULL. - */ - user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); - if (user_mask) { - cpumask_copy(user_mask, in_mask); - } else if (IS_ENABLED(CONFIG_SMP)) { - return -ENOMEM; - } - - ac = (struct affinity_context){ - .new_mask = in_mask, - .user_mask = user_mask, - .flags = SCA_USER, - }; - - retval = __sched_setaffinity(p, &ac); - kfree(ac.user_mask); - - return retval; -} - -static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, - struct cpumask *new_mask) -{ - if (len < cpumask_size()) - cpumask_clear(new_mask); - else if (len > cpumask_size()) - len = cpumask_size(); - - return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; -} - -/** - * sys_sched_setaffinity - set the CPU affinity of a process - * @pid: pid of the process - * @len: length in bytes of the bitmask pointed to by user_mask_ptr - * @user_mask_ptr: user-space pointer to the new CPU mask - * - * Return: 0 on success. An error code otherwise. - */ -SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, - unsigned long __user *, user_mask_ptr) -{ - cpumask_var_t new_mask; - int retval; - - if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) - return -ENOMEM; - - retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); - if (retval == 0) - retval = sched_setaffinity(pid, new_mask); - free_cpumask_var(new_mask); - return retval; -} - -long sched_getaffinity(pid_t pid, struct cpumask *mask) -{ - struct task_struct *p; - int retval; - - guard(rcu)(); - p = find_process_by_pid(pid); - if (!p) - return -ESRCH; - - retval = security_task_getscheduler(p); - if (retval) - return retval; - - guard(raw_spinlock_irqsave)(&p->pi_lock); - cpumask_and(mask, &p->cpus_mask, cpu_active_mask); - - return 0; -} - -/** - * sys_sched_getaffinity - get the CPU affinity of a process - * @pid: pid of the process - * @len: length in bytes of the bitmask pointed to by user_mask_ptr - * @user_mask_ptr: user-space pointer to hold the current CPU mask - * - * Return: size of CPU mask copied to user_mask_ptr on success. An - * error code otherwise. - */ -SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, - unsigned long __user *, user_mask_ptr) -{ - int ret; - cpumask_var_t mask; - - if ((len * BITS_PER_BYTE) < nr_cpu_ids) - return -EINVAL; - if (len & (sizeof(unsigned long)-1)) - return -EINVAL; - - if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) - return -ENOMEM; - - ret = sched_getaffinity(pid, mask); - if (ret == 0) { - unsigned int retlen = min(len, cpumask_size()); - - if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) - ret = -EFAULT; - else - ret = retlen; - } - free_cpumask_var(mask); - - return ret; -} - -static void do_sched_yield(void) -{ - struct rq_flags rf; - struct rq *rq; - - rq = this_rq_lock_irq(&rf); - - schedstat_inc(rq->yld_count); - current->sched_class->yield_task(rq); - - preempt_disable(); - rq_unlock_irq(rq, &rf); - sched_preempt_enable_no_resched(); - - schedule(); -} - -/** - * sys_sched_yield - yield the current processor to other threads. - * - * This function yields the current CPU to other tasks. If there are no - * other threads running on this CPU then this function will return. - * - * Return: 0. - */ -SYSCALL_DEFINE0(sched_yield) -{ - do_sched_yield(); - return 0; -} #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) int __sched __cond_resched(void) { - if (should_resched(0)) { + if (should_resched(0) && !irqs_disabled()) { preempt_schedule_common(); return 1; } /* - * In preemptible kernels, ->rcu_read_lock_nesting tells the tick + * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick * whether the current CPU is in an RCU read-side critical section, * so the tick can report quiescent states even for CPUs looping * in kernel context. In contrast, in non-preemptible kernels, @@ -8600,6 +7316,8 @@ int __sched __cond_resched(void) * RCU quiescent state. Therefore, the following code causes * cond_resched() to report a quiescent state, but only when RCU * is in urgent need of one. + * A third case, preemptible, but non-PREEMPT_RCU provides for + * urgently needed quiescent states via rcu_flavor_sched_clock_irq(). */ #ifndef CONFIG_PREEMPT_RCU rcu_all_qs(); @@ -8624,7 +7342,6 @@ EXPORT_STATIC_CALL_TRAMP(might_resched); static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); int __sched dynamic_cond_resched(void) { - klp_sched_try_switch(); if (!static_branch_unlikely(&sk_dynamic_cond_resched)) return 0; return __cond_resched(); @@ -8724,6 +7441,7 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write); * preempt_schedule <- NOP * preempt_schedule_notrace <- NOP * irqentry_exit_cond_resched <- NOP + * dynamic_preempt_lazy <- false * * VOLUNTARY: * cond_resched <- __cond_resched @@ -8731,6 +7449,7 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write); * preempt_schedule <- NOP * preempt_schedule_notrace <- NOP * irqentry_exit_cond_resched <- NOP + * dynamic_preempt_lazy <- false * * FULL: * cond_resched <- RET0 @@ -8738,6 +7457,15 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write); * preempt_schedule <- preempt_schedule * preempt_schedule_notrace <- preempt_schedule_notrace * irqentry_exit_cond_resched <- irqentry_exit_cond_resched + * dynamic_preempt_lazy <- false + * + * LAZY: + * cond_resched <- RET0 + * might_resched <- RET0 + * preempt_schedule <- preempt_schedule + * preempt_schedule_notrace <- preempt_schedule_notrace + * irqentry_exit_cond_resched <- irqentry_exit_cond_resched + * dynamic_preempt_lazy <- true */ enum { @@ -8745,36 +7473,46 @@ enum { preempt_dynamic_none, preempt_dynamic_voluntary, preempt_dynamic_full, + preempt_dynamic_lazy, }; int preempt_dynamic_mode = preempt_dynamic_undefined; int sched_dynamic_mode(const char *str) { +#ifndef CONFIG_PREEMPT_RT if (!strcmp(str, "none")) return preempt_dynamic_none; if (!strcmp(str, "voluntary")) return preempt_dynamic_voluntary; +#endif if (!strcmp(str, "full")) return preempt_dynamic_full; +#ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY + if (!strcmp(str, "lazy")) + return preempt_dynamic_lazy; +#endif + return -EINVAL; } +#define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) +#define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) + #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) -#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) -#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) +#define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) +#define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) #else #error "Unsupported PREEMPT_DYNAMIC mechanism" #endif static DEFINE_MUTEX(sched_dynamic_mutex); -static bool klp_override; static void __sched_dynamic_update(int mode) { @@ -8782,46 +7520,57 @@ static void __sched_dynamic_update(int mode) * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in * the ZERO state, which is invalid. */ - if (!klp_override) - preempt_dynamic_enable(cond_resched); + preempt_dynamic_enable(cond_resched); preempt_dynamic_enable(might_resched); preempt_dynamic_enable(preempt_schedule); preempt_dynamic_enable(preempt_schedule_notrace); preempt_dynamic_enable(irqentry_exit_cond_resched); + preempt_dynamic_key_disable(preempt_lazy); switch (mode) { case preempt_dynamic_none: - if (!klp_override) - preempt_dynamic_enable(cond_resched); + preempt_dynamic_enable(cond_resched); preempt_dynamic_disable(might_resched); preempt_dynamic_disable(preempt_schedule); preempt_dynamic_disable(preempt_schedule_notrace); preempt_dynamic_disable(irqentry_exit_cond_resched); + preempt_dynamic_key_disable(preempt_lazy); if (mode != preempt_dynamic_mode) pr_info("Dynamic Preempt: none\n"); break; case preempt_dynamic_voluntary: - if (!klp_override) - preempt_dynamic_enable(cond_resched); + preempt_dynamic_enable(cond_resched); preempt_dynamic_enable(might_resched); preempt_dynamic_disable(preempt_schedule); preempt_dynamic_disable(preempt_schedule_notrace); preempt_dynamic_disable(irqentry_exit_cond_resched); + preempt_dynamic_key_disable(preempt_lazy); if (mode != preempt_dynamic_mode) pr_info("Dynamic Preempt: voluntary\n"); break; case preempt_dynamic_full: - if (!klp_override) - preempt_dynamic_disable(cond_resched); + preempt_dynamic_disable(cond_resched); preempt_dynamic_disable(might_resched); preempt_dynamic_enable(preempt_schedule); preempt_dynamic_enable(preempt_schedule_notrace); preempt_dynamic_enable(irqentry_exit_cond_resched); + preempt_dynamic_key_disable(preempt_lazy); if (mode != preempt_dynamic_mode) pr_info("Dynamic Preempt: full\n"); break; + + case preempt_dynamic_lazy: + preempt_dynamic_disable(cond_resched); + preempt_dynamic_disable(might_resched); + preempt_dynamic_enable(preempt_schedule); + preempt_dynamic_enable(preempt_schedule_notrace); + preempt_dynamic_enable(irqentry_exit_cond_resched); + preempt_dynamic_key_enable(preempt_lazy); + if (mode != preempt_dynamic_mode) + pr_info("Dynamic Preempt: lazy\n"); + break; } preempt_dynamic_mode = mode; @@ -8834,36 +7583,6 @@ void sched_dynamic_update(int mode) mutex_unlock(&sched_dynamic_mutex); } -#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL - -static int klp_cond_resched(void) -{ - __klp_sched_try_switch(); - return __cond_resched(); -} - -void sched_dynamic_klp_enable(void) -{ - mutex_lock(&sched_dynamic_mutex); - - klp_override = true; - static_call_update(cond_resched, klp_cond_resched); - - mutex_unlock(&sched_dynamic_mutex); -} - -void sched_dynamic_klp_disable(void) -{ - mutex_lock(&sched_dynamic_mutex); - - klp_override = false; - __sched_dynamic_update(preempt_dynamic_mode); - - mutex_unlock(&sched_dynamic_mutex); -} - -#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ - static int __init setup_preempt_mode(char *str) { int mode = sched_dynamic_mode(str); @@ -8884,6 +7603,8 @@ static void __init preempt_dynamic_init(void) sched_dynamic_update(preempt_dynamic_none); } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { sched_dynamic_update(preempt_dynamic_voluntary); + } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { + sched_dynamic_update(preempt_dynamic_lazy); } else { /* Default static call setting, nothing to do */ WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); @@ -8904,106 +7625,60 @@ static void __init preempt_dynamic_init(void) PREEMPT_MODEL_ACCESSOR(none); PREEMPT_MODEL_ACCESSOR(voluntary); PREEMPT_MODEL_ACCESSOR(full); +PREEMPT_MODEL_ACCESSOR(lazy); + +#else /* !CONFIG_PREEMPT_DYNAMIC: */ -#else /* !CONFIG_PREEMPT_DYNAMIC */ +#define preempt_dynamic_mode -1 static inline void preempt_dynamic_init(void) { } -#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ +#endif /* CONFIG_PREEMPT_DYNAMIC */ -/** - * yield - yield the current processor to other threads. - * - * Do not ever use this function, there's a 99% chance you're doing it wrong. - * - * The scheduler is at all times free to pick the calling task as the most - * eligible task to run, if removing the yield() call from your code breaks - * it, it's already broken. - * - * Typical broken usage is: - * - * while (!event) - * yield(); - * - * where one assumes that yield() will let 'the other' process run that will - * make event true. If the current task is a SCHED_FIFO task that will never - * happen. Never use yield() as a progress guarantee!! - * - * If you want to use yield() to wait for something, use wait_event(). - * If you want to use yield() to be 'nice' for others, use cond_resched(). - * If you still want to use yield(), do not! - */ -void __sched yield(void) -{ - set_current_state(TASK_RUNNING); - do_sched_yield(); -} -EXPORT_SYMBOL(yield); +const char *preempt_modes[] = { + "none", "voluntary", "full", "lazy", NULL, +}; -/** - * yield_to - yield the current processor to another thread in - * your thread group, or accelerate that thread toward the - * processor it's on. - * @p: target task - * @preempt: whether task preemption is allowed or not - * - * It's the caller's job to ensure that the target task struct - * can't go away on us before we can do any checks. - * - * Return: - * true (>0) if we indeed boosted the target task. - * false (0) if we failed to boost the target. - * -ESRCH if there's no task to yield to. - */ -int __sched yield_to(struct task_struct *p, bool preempt) +const char *preempt_model_str(void) { - struct task_struct *curr = current; - struct rq *rq, *p_rq; - int yielded = 0; - - scoped_guard (irqsave) { - rq = this_rq(); - -again: - p_rq = task_rq(p); - /* - * If we're the only runnable task on the rq and target rq also - * has only one task, there's absolutely no point in yielding. - */ - if (rq->nr_running == 1 && p_rq->nr_running == 1) - return -ESRCH; + bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) && + (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) || + IS_ENABLED(CONFIG_PREEMPT_LAZY)); + static char buf[128]; - guard(double_rq_lock)(rq, p_rq); - if (task_rq(p) != p_rq) - goto again; + if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) { + struct seq_buf s; - if (!curr->sched_class->yield_to_task) - return 0; + seq_buf_init(&s, buf, sizeof(buf)); + seq_buf_puts(&s, "PREEMPT"); - if (curr->sched_class != p->sched_class) - return 0; + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + seq_buf_printf(&s, "%sRT%s", + brace ? "_{" : "_", + brace ? "," : ""); - if (task_on_cpu(p_rq, p) || !task_is_running(p)) - return 0; + if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) { + seq_buf_printf(&s, "(%s)%s", + preempt_dynamic_mode > 0 ? + preempt_modes[preempt_dynamic_mode] : "undef", + brace ? "}" : ""); + return seq_buf_str(&s); + } - yielded = curr->sched_class->yield_to_task(rq, p); - if (yielded) { - schedstat_inc(rq->yld_count); - /* - * Make p's CPU reschedule; pick_next_entity - * takes care of fairness. - */ - if (preempt && rq != p_rq) - resched_curr(p_rq); + if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { + seq_buf_printf(&s, "LAZY%s", + brace ? "}" : ""); + return seq_buf_str(&s); } + + return seq_buf_str(&s); } - if (yielded) - schedule(); + if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD)) + return "VOLUNTARY"; - return yielded; + return "NONE"; } -EXPORT_SYMBOL_GPL(yield_to); int io_schedule_prepare(void) { @@ -9046,126 +7721,9 @@ void __sched io_schedule(void) } EXPORT_SYMBOL(io_schedule); -/** - * sys_sched_get_priority_max - return maximum RT priority. - * @policy: scheduling class. - * - * Return: On success, this syscall returns the maximum - * rt_priority that can be used by a given scheduling class. - * On failure, a negative error code is returned. - */ -SYSCALL_DEFINE1(sched_get_priority_max, int, policy) -{ - int ret = -EINVAL; - - switch (policy) { - case SCHED_FIFO: - case SCHED_RR: - ret = MAX_RT_PRIO-1; - break; - case SCHED_DEADLINE: - case SCHED_NORMAL: - case SCHED_BATCH: - case SCHED_IDLE: - ret = 0; - break; - } - return ret; -} - -/** - * sys_sched_get_priority_min - return minimum RT priority. - * @policy: scheduling class. - * - * Return: On success, this syscall returns the minimum - * rt_priority that can be used by a given scheduling class. - * On failure, a negative error code is returned. - */ -SYSCALL_DEFINE1(sched_get_priority_min, int, policy) -{ - int ret = -EINVAL; - - switch (policy) { - case SCHED_FIFO: - case SCHED_RR: - ret = 1; - break; - case SCHED_DEADLINE: - case SCHED_NORMAL: - case SCHED_BATCH: - case SCHED_IDLE: - ret = 0; - } - return ret; -} - -static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) -{ - unsigned int time_slice = 0; - int retval; - - if (pid < 0) - return -EINVAL; - - scoped_guard (rcu) { - struct task_struct *p = find_process_by_pid(pid); - if (!p) - return -ESRCH; - - retval = security_task_getscheduler(p); - if (retval) - return retval; - - scoped_guard (task_rq_lock, p) { - struct rq *rq = scope.rq; - if (p->sched_class->get_rr_interval) - time_slice = p->sched_class->get_rr_interval(rq, p); - } - } - - jiffies_to_timespec64(time_slice, t); - return 0; -} - -/** - * sys_sched_rr_get_interval - return the default timeslice of a process. - * @pid: pid of the process. - * @interval: userspace pointer to the timeslice value. - * - * this syscall writes the default timeslice value of a given process - * into the user-space timespec buffer. A value of '0' means infinity. - * - * Return: On success, 0 and the timeslice is in @interval. Otherwise, - * an error code. - */ -SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, - struct __kernel_timespec __user *, interval) -{ - struct timespec64 t; - int retval = sched_rr_get_interval(pid, &t); - - if (retval == 0) - retval = put_timespec64(&t, interval); - - return retval; -} - -#ifdef CONFIG_COMPAT_32BIT_TIME -SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, - struct old_timespec32 __user *, interval) -{ - struct timespec64 t; - int retval = sched_rr_get_interval(pid, &t); - - if (retval == 0) - retval = put_old_timespec32(&t, interval); - return retval; -} -#endif - void sched_show_task(struct task_struct *p) { - unsigned long free = 0; + unsigned long free; int ppid; if (!try_get_task_stack(p)) @@ -9175,20 +7733,19 @@ void sched_show_task(struct task_struct *p) if (task_is_running(p)) pr_cont(" running task "); -#ifdef CONFIG_DEBUG_STACK_USAGE free = stack_not_used(p); -#endif ppid = 0; rcu_read_lock(); if (pid_alive(p)) ppid = task_pid_nr(rcu_dereference(p->real_parent)); rcu_read_unlock(); - pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", + pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n", free, task_pid_nr(p), task_tgid_nr(p), - ppid, read_task_thread_flags(p)); + ppid, p->flags, read_task_thread_flags(p)); print_worker_info(KERN_INFO, p); print_stop_info(KERN_INFO, p); + print_scx_info(KERN_INFO, p); show_stack(p, NULL, KERN_INFO); put_task_stack(p); } @@ -9237,10 +7794,9 @@ void show_state_filter(unsigned int state_filter) sched_show_task(p); } -#ifdef CONFIG_SCHED_DEBUG if (!state_filter) sysrq_sched_debug_show(); -#endif + rcu_read_unlock(); /* * Only show locks if all tasks are dumped: @@ -9268,8 +7824,6 @@ void __init init_idle(struct task_struct *idle, int cpu) struct rq *rq = cpu_rq(cpu); unsigned long flags; - __sched_fork(0, idle); - raw_spin_lock_irqsave(&idle->pi_lock, flags); raw_spin_rq_lock(rq); @@ -9284,10 +7838,8 @@ void __init init_idle(struct task_struct *idle, int cpu) #ifdef CONFIG_SMP /* - * It's possible that init_idle() gets called multiple times on a task, - * in that case do_set_cpus_allowed() will not do the right thing. - * - * And since this is boot we can forgo the serialization. + * No validation and serialization required at boot time and for + * setting up the idle tasks of not yet online CPUs. */ set_cpus_allowed_common(idle, &ac); #endif @@ -9306,6 +7858,7 @@ void __init init_idle(struct task_struct *idle, int cpu) rcu_read_unlock(); rq->idle = idle; + rq_set_donor(rq, idle); rcu_assign_pointer(rq->curr, idle); idle->on_rq = TASK_ON_RQ_QUEUED; #ifdef CONFIG_SMP @@ -9395,7 +7948,7 @@ void sched_setnuma(struct task_struct *p, int nid) rq = task_rq_lock(p, &rf); queued = task_on_rq_queued(p); - running = task_current(rq, p); + running = task_current_donor(rq, p); if (queued) dequeue_task(rq, p, DEQUEUE_SAVE); @@ -9414,19 +7967,26 @@ void sched_setnuma(struct task_struct *p, int nid) #ifdef CONFIG_HOTPLUG_CPU /* - * Ensure that the idle task is using init_mm right before its CPU goes - * offline. + * Invoked on the outgoing CPU in context of the CPU hotplug thread + * after ensuring that there are no user space tasks left on the CPU. + * + * If there is a lazy mm in use on the hotplug thread, drop it and + * switch to init_mm. + * + * The reference count on init_mm is dropped in finish_cpu(). */ -void idle_task_exit(void) +static void sched_force_init_mm(void) { struct mm_struct *mm = current->active_mm; - BUG_ON(cpu_online(smp_processor_id())); - BUG_ON(current != this_rq()->idle); - if (mm != &init_mm) { - switch_mm(mm, &init_mm, current); + mmgrab_lazy_tlb(&init_mm); + local_irq_disable(); + current->active_mm = &init_mm; + switch_mm_irqs_off(mm, &init_mm, current); + local_irq_enable(); finish_arch_post_lock_switch(); + mmdrop_lazy_tlb(mm); } /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ @@ -9605,6 +8165,30 @@ void set_rq_offline(struct rq *rq) } } +static inline void sched_set_rq_online(struct rq *rq, int cpu) +{ + struct rq_flags rf; + + rq_lock_irqsave(rq, &rf); + if (rq->rd) { + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); + set_rq_online(rq); + } + rq_unlock_irqrestore(rq, &rf); +} + +static inline void sched_set_rq_offline(struct rq *rq, int cpu) +{ + struct rq_flags rf; + + rq_lock_irqsave(rq, &rf); + if (rq->rd) { + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); + set_rq_offline(rq); + } + rq_unlock_irqrestore(rq, &rf); +} + /* * used to mark begin/end of suspend/resume: */ @@ -9627,7 +8211,7 @@ static void cpuset_cpu_active(void) * operation in the resume sequence, just build a single sched * domain, ignoring cpusets. */ - partition_sched_domains(1, NULL, NULL); + cpuset_reset_sched_domains(); if (--num_cpus_frozen) return; /* @@ -9640,25 +8224,35 @@ static void cpuset_cpu_active(void) cpuset_update_active_cpus(); } -static int cpuset_cpu_inactive(unsigned int cpu) +static void cpuset_cpu_inactive(unsigned int cpu) { if (!cpuhp_tasks_frozen) { - int ret = dl_bw_check_overflow(cpu); - - if (ret) - return ret; cpuset_update_active_cpus(); } else { num_cpus_frozen++; - partition_sched_domains(1, NULL, NULL); + cpuset_reset_sched_domains(); } - return 0; +} + +static inline void sched_smt_present_inc(int cpu) +{ +#ifdef CONFIG_SCHED_SMT + if (cpumask_weight(cpu_smt_mask(cpu)) == 2) + static_branch_inc_cpuslocked(&sched_smt_present); +#endif +} + +static inline void sched_smt_present_dec(int cpu) +{ +#ifdef CONFIG_SCHED_SMT + if (cpumask_weight(cpu_smt_mask(cpu)) == 2) + static_branch_dec_cpuslocked(&sched_smt_present); +#endif } int sched_cpu_activate(unsigned int cpu) { struct rq *rq = cpu_rq(cpu); - struct rq_flags rf; /* * Clear the balance_push callback and prepare to schedule @@ -9666,13 +8260,10 @@ int sched_cpu_activate(unsigned int cpu) */ balance_push_set(cpu, false); -#ifdef CONFIG_SCHED_SMT /* * When going up, increment the number of cores with SMT present. */ - if (cpumask_weight(cpu_smt_mask(cpu)) == 2) - static_branch_inc_cpuslocked(&sched_smt_present); -#endif + sched_smt_present_inc(cpu); set_cpu_active(cpu, true); if (sched_smp_initialized) { @@ -9681,6 +8272,8 @@ int sched_cpu_activate(unsigned int cpu) cpuset_cpu_active(); } + scx_rq_activate(rq); + /* * Put the rq online, if not already. This happens: * @@ -9690,12 +8283,7 @@ int sched_cpu_activate(unsigned int cpu) * 2) At runtime, if cpuset_cpu_active() fails to rebuild the * domains. */ - rq_lock_irqsave(rq, &rf); - if (rq->rd) { - BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); - set_rq_online(rq); - } - rq_unlock_irqrestore(rq, &rf); + sched_set_rq_online(rq, cpu); return 0; } @@ -9703,9 +8291,13 @@ int sched_cpu_activate(unsigned int cpu) int sched_cpu_deactivate(unsigned int cpu) { struct rq *rq = cpu_rq(cpu); - struct rq_flags rf; int ret; + ret = dl_bw_deactivate(cpu); + + if (ret) + return ret; + /* * Remove CPU from nohz.idle_cpus_mask to prevent participating in * load balancing when not active @@ -9730,24 +8322,20 @@ int sched_cpu_deactivate(unsigned int cpu) * Specifically, we rely on ttwu to no longer target this CPU, see * ttwu_queue_cond() and is_cpu_allowed(). * - * Do sync before park smpboot threads to take care the rcu boost case. + * Do sync before park smpboot threads to take care the RCU boost case. */ synchronize_rcu(); - rq_lock_irqsave(rq, &rf); - if (rq->rd) { - BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); - set_rq_offline(rq); - } - rq_unlock_irqrestore(rq, &rf); + sched_set_rq_offline(rq, cpu); + + scx_rq_deactivate(rq); -#ifdef CONFIG_SCHED_SMT /* * When going down, decrement the number of cores with SMT present. */ - if (cpumask_weight(cpu_smt_mask(cpu)) == 2) - static_branch_dec_cpuslocked(&sched_smt_present); + sched_smt_present_dec(cpu); +#ifdef CONFIG_SCHED_SMT sched_core_cpu_deactivate(cpu); #endif @@ -9755,13 +8343,7 @@ int sched_cpu_deactivate(unsigned int cpu) return 0; sched_update_numa(cpu, false); - ret = cpuset_cpu_inactive(cpu); - if (ret) { - balance_push_set(cpu, false); - set_cpu_active(cpu, true); - sched_update_numa(cpu, true); - return ret; - } + cpuset_cpu_inactive(cpu); sched_domains_numa_masks_clear(cpu); return 0; } @@ -9798,6 +8380,7 @@ int sched_cpu_starting(unsigned int cpu) int sched_cpu_wait_empty(unsigned int cpu) { balance_hotplug_wait(); + sched_force_init_mm(); return 0; } @@ -9805,7 +8388,7 @@ int sched_cpu_wait_empty(unsigned int cpu) * Since this CPU is going 'away' for a while, fold any nr_active delta we * might have. Called from the CPU stopper task after ensuring that the * stopper is the last running task on the CPU, so nr_active count is - * stable. We need to take the teardown thread which is calling this into + * stable. We need to take the tear-down thread which is calling this into * account, so we hand in adjust = 1 to the load calculation. * * Also see the comment "Global load-average calculations". @@ -9869,9 +8452,9 @@ void __init sched_init_smp(void) * CPU masks are stable and all blatant races in the below code cannot * happen. */ - mutex_lock(&sched_domains_mutex); + sched_domains_mutex_lock(); sched_init_domains(cpu_active_mask); - mutex_unlock(&sched_domains_mutex); + sched_domains_mutex_unlock(); /* Move init over to a non-isolated CPU */ if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) @@ -9924,11 +8507,15 @@ void __init sched_init(void) int i; /* Make sure the linker didn't screw up */ - BUG_ON(&idle_sched_class != &fair_sched_class + 1 || - &fair_sched_class != &rt_sched_class + 1 || - &rt_sched_class != &dl_sched_class + 1); #ifdef CONFIG_SMP - BUG_ON(&dl_sched_class != &stop_sched_class + 1); + BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); +#endif + BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); + BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); + BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); +#ifdef CONFIG_SCHED_CLASS_EXT + BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); + BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); #endif wait_bit_init(); @@ -9952,6 +8539,9 @@ void __init sched_init(void) root_task_group.shares = ROOT_TASK_GROUP_LOAD; init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); #endif /* CONFIG_FAIR_GROUP_SCHED */ +#ifdef CONFIG_EXT_GROUP_SCHED + root_task_group.scx_weight = CGROUP_WEIGHT_DFL; +#endif /* CONFIG_EXT_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED root_task_group.rt_se = (struct sched_rt_entity **)ptr; ptr += nr_cpu_ids * sizeof(void **); @@ -9962,8 +8552,6 @@ void __init sched_init(void) #endif /* CONFIG_RT_GROUP_SCHED */ } - init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); - #ifdef CONFIG_SMP init_defrootdomain(); #endif @@ -9999,7 +8587,7 @@ void __init sched_init(void) /* * How much CPU bandwidth does root_task_group get? * - * In case of task-groups formed thr' the cgroup filesystem, it + * In case of task-groups formed through the cgroup filesystem, it * gets 100% of the CPU resources in the system. This overall * system CPU resource is divided among the tasks of * root_task_group and its child task-groups in a fair manner, @@ -10018,8 +8606,13 @@ void __init sched_init(void) init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); #endif /* CONFIG_FAIR_GROUP_SCHED */ - rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; #ifdef CONFIG_RT_GROUP_SCHED + /* + * This is required for init cpu because rt.c:__enable_runtime() + * starts working after scheduler_running, which is not the case + * yet. + */ + rq->rt.rt_runtime = global_rt_runtime(); init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); #endif #ifdef CONFIG_SMP @@ -10051,10 +8644,12 @@ void __init sched_init(void) #endif /* CONFIG_SMP */ hrtick_rq_init(rq); atomic_set(&rq->nr_iowait, 0); + fair_server_init(rq); #ifdef CONFIG_SCHED_CORE rq->core = rq; rq->core_pick = NULL; + rq->core_dl_server = NULL; rq->core_enabled = 0; rq->core_tree = RB_ROOT; rq->core_forceidle_count = 0; @@ -10067,6 +8662,7 @@ void __init sched_init(void) } set_load_weight(&init_task, false); + init_task.se.slice = sysctl_sched_base_slice, /* * The boot idle thread does lazy MMU switching as well: @@ -10088,6 +8684,7 @@ void __init sched_init(void) * but because we are the idle thread, we just pick up running again * when this runqueue becomes "idle". */ + __sched_fork(0, current); init_idle(current, smp_processor_id()); calc_load_update = jiffies + LOAD_FREQ; @@ -10097,6 +8694,7 @@ void __init sched_init(void) balance_push_set(smp_processor_id(), false); #endif init_sched_fair_class(); + init_sched_ext_class(); psi_init(); @@ -10282,7 +8880,7 @@ void normalize_rt_tasks(void) schedstat_set(p->stats.sleep_start, 0); schedstat_set(p->stats.block_start, 0); - if (!dl_task(p) && !rt_task(p)) { + if (!rt_or_dl_task(p)) { /* * Renice negative nice level userspace * tasks back to 0: @@ -10301,7 +8899,7 @@ void normalize_rt_tasks(void) #if defined(CONFIG_KGDB_KDB) /* - * These functions are only useful for kdb. + * These functions are only useful for KDB. * * They can only be called when the whole system has been * stopped - every CPU needs to be quiescent, and no scheduling @@ -10382,6 +8980,7 @@ struct task_group *sched_create_group(struct task_group *parent) if (!alloc_rt_sched_group(tg, parent)) goto err; + scx_group_set_weight(tg, CGROUP_WEIGHT_DFL); alloc_uclamp_sched_group(tg, parent); return tg; @@ -10396,7 +8995,7 @@ void sched_online_group(struct task_group *tg, struct task_group *parent) unsigned long flags; spin_lock_irqsave(&task_group_lock, flags); - list_add_rcu(&tg->list, &task_groups); + list_add_tail_rcu(&tg->list, &task_groups); /* Root should already exist: */ WARN_ON(!parent); @@ -10409,7 +9008,7 @@ void sched_online_group(struct task_group *tg, struct task_group *parent) online_fair_sched_group(tg); } -/* rcu callback to free various structures associated with a task group */ +/* RCU callback to free various structures associated with a task group */ static void sched_unregister_group_rcu(struct rcu_head *rhp) { /* Now it should be safe to free those cfs_rqs: */ @@ -10445,7 +9044,7 @@ void sched_release_group(struct task_group *tg) spin_unlock_irqrestore(&task_group_lock, flags); } -static struct task_group *sched_get_task_group(struct task_struct *tsk) +static void sched_change_group(struct task_struct *tsk) { struct task_group *tg; @@ -10457,13 +9056,7 @@ static struct task_group *sched_get_task_group(struct task_struct *tsk) tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), struct task_group, css); tg = autogroup_task_group(tsk, tg); - - return tg; -} - -static void sched_change_group(struct task_struct *tsk, struct task_group *group) -{ - tsk->sched_task_group = group; + tsk->sched_task_group = tg; #ifdef CONFIG_FAIR_GROUP_SCHED if (tsk->sched_class->task_change_group) @@ -10480,27 +9073,18 @@ static void sched_change_group(struct task_struct *tsk, struct task_group *group * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect * its new group. */ -void sched_move_task(struct task_struct *tsk) +void sched_move_task(struct task_struct *tsk, bool for_autogroup) { int queued, running, queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; - struct task_group *group; struct rq *rq; CLASS(task_rq_lock, rq_guard)(tsk); rq = rq_guard.rq; - /* - * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous - * group changes. - */ - group = sched_get_task_group(tsk); - if (group == tsk->sched_task_group) - return; - update_rq_clock(rq); - running = task_current(rq, tsk); + running = task_current_donor(rq, tsk); queued = task_on_rq_queued(tsk); if (queued) @@ -10508,7 +9092,9 @@ void sched_move_task(struct task_struct *tsk) if (running) put_prev_task(rq, tsk); - sched_change_group(tsk, group); + sched_change_group(tsk); + if (!for_autogroup) + scx_cgroup_move_task(tsk); if (queued) enqueue_task(rq, tsk, queue_flags); @@ -10523,11 +9109,6 @@ void sched_move_task(struct task_struct *tsk) } } -static inline struct task_group *css_tg(struct cgroup_subsys_state *css) -{ - return css ? container_of(css, struct task_group, css) : NULL; -} - static struct cgroup_subsys_state * cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) { @@ -10551,6 +9132,11 @@ static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) { struct task_group *tg = css_tg(css); struct task_group *parent = css_tg(css->parent); + int ret; + + ret = scx_tg_online(tg); + if (ret) + return ret; if (parent) sched_online_group(tg, parent); @@ -10565,6 +9151,13 @@ static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) return 0; } +static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) +{ + struct task_group *tg = css_tg(css); + + scx_tg_offline(tg); +} + static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) { struct task_group *tg = css_tg(css); @@ -10582,19 +9175,23 @@ static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) sched_unregister_group(tg); } -#ifdef CONFIG_RT_GROUP_SCHED static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) { +#ifdef CONFIG_RT_GROUP_SCHED struct task_struct *task; struct cgroup_subsys_state *css; + if (!rt_group_sched_enabled()) + goto scx_check; + cgroup_taskset_for_each(task, css, tset) { if (!sched_rt_can_attach(css_tg(css), task)) return -EINVAL; } - return 0; +scx_check: +#endif /* CONFIG_RT_GROUP_SCHED */ + return scx_cgroup_can_attach(tset); } -#endif static void cpu_cgroup_attach(struct cgroup_taskset *tset) { @@ -10602,7 +9199,14 @@ static void cpu_cgroup_attach(struct cgroup_taskset *tset) struct cgroup_subsys_state *css; cgroup_taskset_for_each(task, css, tset) - sched_move_task(task); + sched_move_task(task, false); + + scx_cgroup_finish_attach(); +} + +static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) +{ + scx_cgroup_cancel_attach(tset); } #ifdef CONFIG_UCLAMP_TASK_GROUP @@ -10616,7 +9220,7 @@ static void cpu_util_update_eff(struct cgroup_subsys_state *css) unsigned int clamps; lockdep_assert_held(&uclamp_mutex); - SCHED_WARN_ON(!rcu_read_lock_held()); + WARN_ON_ONCE(!rcu_read_lock_held()); css_for_each_descendant_pre(css, top_css) { uc_parent = css_tg(css)->parent @@ -10708,7 +9312,7 @@ static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, if (req.ret) return req.ret; - static_branch_enable(&sched_uclamp_used); + sched_uclamp_enable(); guard(mutex)(&uclamp_mutex); guard(rcu)(); @@ -10779,22 +9383,36 @@ static int cpu_uclamp_max_show(struct seq_file *sf, void *v) } #endif /* CONFIG_UCLAMP_TASK_GROUP */ +#ifdef CONFIG_GROUP_SCHED_WEIGHT +static unsigned long tg_weight(struct task_group *tg) +{ #ifdef CONFIG_FAIR_GROUP_SCHED + return scale_load_down(tg->shares); +#else + return sched_weight_from_cgroup(tg->scx_weight); +#endif +} + static int cpu_shares_write_u64(struct cgroup_subsys_state *css, struct cftype *cftype, u64 shareval) { + int ret; + if (shareval > scale_load_down(ULONG_MAX)) shareval = MAX_SHARES; - return sched_group_set_shares(css_tg(css), scale_load(shareval)); + ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); + if (!ret) + scx_group_set_weight(css_tg(css), + sched_weight_to_cgroup(shareval)); + return ret; } static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) { - struct task_group *tg = css_tg(css); - - return (u64) scale_load_down(tg->shares); + return tg_weight(css_tg(css)); } +#endif /* CONFIG_GROUP_SCHED_WEIGHT */ #ifdef CONFIG_CFS_BANDWIDTH static DEFINE_MUTEX(cfs_constraints_mutex); @@ -11140,7 +9758,6 @@ static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) return 0; } #endif /* CONFIG_CFS_BANDWIDTH */ -#endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, @@ -11168,7 +9785,7 @@ static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, } #endif /* CONFIG_RT_GROUP_SCHED */ -#ifdef CONFIG_FAIR_GROUP_SCHED +#ifdef CONFIG_GROUP_SCHED_WEIGHT static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) { @@ -11178,12 +9795,17 @@ static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, static int cpu_idle_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, s64 idle) { - return sched_group_set_idle(css_tg(css), idle); + int ret; + + ret = sched_group_set_idle(css_tg(css), idle); + if (!ret) + scx_group_set_idle(css_tg(css), idle); + return ret; } #endif static struct cftype cpu_legacy_files[] = { -#ifdef CONFIG_FAIR_GROUP_SCHED +#ifdef CONFIG_GROUP_SCHED_WEIGHT { .name = "shares", .read_u64 = cpu_shares_read_u64, @@ -11220,18 +9842,6 @@ static struct cftype cpu_legacy_files[] = { .seq_show = cpu_cfs_local_stat_show, }, #endif -#ifdef CONFIG_RT_GROUP_SCHED - { - .name = "rt_runtime_us", - .read_s64 = cpu_rt_runtime_read, - .write_s64 = cpu_rt_runtime_write, - }, - { - .name = "rt_period_us", - .read_u64 = cpu_rt_period_read_uint, - .write_u64 = cpu_rt_period_write_uint, - }, -#endif #ifdef CONFIG_UCLAMP_TASK_GROUP { .name = "uclamp.min", @@ -11249,6 +9859,55 @@ static struct cftype cpu_legacy_files[] = { { } /* Terminate */ }; +#ifdef CONFIG_RT_GROUP_SCHED +static struct cftype rt_group_files[] = { + { + .name = "rt_runtime_us", + .read_s64 = cpu_rt_runtime_read, + .write_s64 = cpu_rt_runtime_write, + }, + { + .name = "rt_period_us", + .read_u64 = cpu_rt_period_read_uint, + .write_u64 = cpu_rt_period_write_uint, + }, + { } /* Terminate */ +}; + +# ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED +DEFINE_STATIC_KEY_FALSE(rt_group_sched); +# else +DEFINE_STATIC_KEY_TRUE(rt_group_sched); +# endif + +static int __init setup_rt_group_sched(char *str) +{ + long val; + + if (kstrtol(str, 0, &val) || val < 0 || val > 1) { + pr_warn("Unable to set rt_group_sched\n"); + return 1; + } + if (val) + static_branch_enable(&rt_group_sched); + else + static_branch_disable(&rt_group_sched); + + return 1; +} +__setup("rt_group_sched=", setup_rt_group_sched); + +static int __init cpu_rt_group_init(void) +{ + if (!rt_group_sched_enabled()) + return 0; + + WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files)); + return 0; +} +subsys_initcall(cpu_rt_group_init); +#endif /* CONFIG_RT_GROUP_SCHED */ + static int cpu_extra_stat_show(struct seq_file *sf, struct cgroup_subsys_state *css) { @@ -11293,38 +9952,35 @@ static int cpu_local_stat_show(struct seq_file *sf, return 0; } -#ifdef CONFIG_FAIR_GROUP_SCHED +#ifdef CONFIG_GROUP_SCHED_WEIGHT + static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) { - struct task_group *tg = css_tg(css); - u64 weight = scale_load_down(tg->shares); - - return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); + return sched_weight_to_cgroup(tg_weight(css_tg(css))); } static int cpu_weight_write_u64(struct cgroup_subsys_state *css, - struct cftype *cft, u64 weight) + struct cftype *cft, u64 cgrp_weight) { - /* - * cgroup weight knobs should use the common MIN, DFL and MAX - * values which are 1, 100 and 10000 respectively. While it loses - * a bit of range on both ends, it maps pretty well onto the shares - * value used by scheduler and the round-trip conversions preserve - * the original value over the entire range. - */ - if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) + unsigned long weight; + int ret; + + if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) return -ERANGE; - weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); + weight = sched_weight_from_cgroup(cgrp_weight); - return sched_group_set_shares(css_tg(css), scale_load(weight)); + ret = sched_group_set_shares(css_tg(css), scale_load(weight)); + if (!ret) + scx_group_set_weight(css_tg(css), cgrp_weight); + return ret; } static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) { - unsigned long weight = scale_load_down(css_tg(css)->shares); + unsigned long weight = tg_weight(css_tg(css)); int last_delta = INT_MAX; int prio, delta; @@ -11343,7 +9999,7 @@ static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, s64 nice) { unsigned long weight; - int idx; + int idx, ret; if (nice < MIN_NICE || nice > MAX_NICE) return -ERANGE; @@ -11352,9 +10008,13 @@ static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, idx = array_index_nospec(idx, 40); weight = sched_prio_to_weight[idx]; - return sched_group_set_shares(css_tg(css), scale_load(weight)); + ret = sched_group_set_shares(css_tg(css), scale_load(weight)); + if (!ret) + scx_group_set_weight(css_tg(css), + sched_weight_to_cgroup(weight)); + return ret; } -#endif +#endif /* CONFIG_GROUP_SCHED_WEIGHT */ static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, long period, long quota) @@ -11402,7 +10062,7 @@ static ssize_t cpu_max_write(struct kernfs_open_file *of, { struct task_group *tg = css_tg(of_css(of)); u64 period = tg_get_cfs_period(tg); - u64 burst = tg_get_cfs_burst(tg); + u64 burst = tg->cfs_bandwidth.burst; u64 quota; int ret; @@ -11414,7 +10074,7 @@ static ssize_t cpu_max_write(struct kernfs_open_file *of, #endif static struct cftype cpu_files[] = { -#ifdef CONFIG_FAIR_GROUP_SCHED +#ifdef CONFIG_GROUP_SCHED_WEIGHT { .name = "weight", .flags = CFTYPE_NOT_ON_ROOT, @@ -11468,14 +10128,14 @@ static struct cftype cpu_files[] = { struct cgroup_subsys cpu_cgrp_subsys = { .css_alloc = cpu_cgroup_css_alloc, .css_online = cpu_cgroup_css_online, + .css_offline = cpu_cgroup_css_offline, .css_released = cpu_cgroup_css_released, .css_free = cpu_cgroup_css_free, .css_extra_stat_show = cpu_extra_stat_show, .css_local_stat_show = cpu_local_stat_show, -#ifdef CONFIG_RT_GROUP_SCHED .can_attach = cpu_cgroup_can_attach, -#endif .attach = cpu_cgroup_attach, + .cancel_attach = cpu_cgroup_cancel_attach, .legacy_cftypes = cpu_legacy_files, .dfl_cftypes = cpu_files, .early_init = true, @@ -11486,7 +10146,7 @@ struct cgroup_subsys cpu_cgrp_subsys = { void dump_cpu_task(int cpu) { - if (cpu == smp_processor_id() && in_hardirq()) { + if (in_hardirq() && cpu == smp_processor_id()) { struct pt_regs *regs; regs = get_irq_regs(); @@ -11527,10 +10187,10 @@ const int sched_prio_to_weight[40] = { }; /* - * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. + * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. * * In cases where the weight does not change often, we can use the - * precalculated inverse to speed up arithmetics by turning divisions + * pre-calculated inverse to speed up arithmetics by turning divisions * into multiplications: */ const u32 sched_prio_to_wmult[40] = { @@ -11759,6 +10419,7 @@ int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, */ if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) return -1; + WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); return src_cid; } @@ -11771,7 +10432,8 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; struct mm_struct *mm = t->mm; - int src_cid, dst_cid, src_cpu; + int src_cid, src_cpu; + bool dst_cid_is_set; struct rq *src_rq; lockdep_assert_rq_held(dst_rq); @@ -11786,21 +10448,21 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) /* * Move the src cid if the dst cid is unset. This keeps id * allocation closest to 0 in cases where few threads migrate around - * many cpus. + * many CPUs. * - * If destination cid is already set, we may have to just clear - * the src cid to ensure compactness in frequent migrations - * scenarios. + * If destination cid or recent cid is already set, we may have + * to just clear the src cid to ensure compactness in frequent + * migrations scenarios. * * It is not useful to clear the src cid when the number of threads is - * greater or equal to the number of allowed cpus, because user-space + * greater or equal to the number of allowed CPUs, because user-space * can expect that the number of allowed cids can reach the number of - * allowed cpus. + * allowed CPUs. */ dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); - dst_cid = READ_ONCE(dst_pcpu_cid->cid); - if (!mm_cid_is_unset(dst_cid) && - atomic_read(&mm->mm_users) >= t->nr_cpus_allowed) + dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || + !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); + if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) return; src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); src_rq = cpu_rq(src_cpu); @@ -11811,13 +10473,14 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) src_cid); if (src_cid == -1) return; - if (!mm_cid_is_unset(dst_cid)) { + if (dst_cid_is_set) { __mm_cid_put(mm, src_cid); return; } /* Move src_cid to dst cpu. */ mm_cid_snapshot_time(dst_rq, mm); WRITE_ONCE(dst_pcpu_cid->cid, src_cid); + WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); } static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, @@ -11929,7 +10592,7 @@ static void task_mm_cid_work(struct callback_head *work) struct mm_struct *mm; int weight, cpu; - SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); + WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work)); work->next = work; /* Prevent double-add */ if (t->flags & PF_EXITING) @@ -11989,6 +10652,8 @@ void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) return; if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) return; + + /* No page allocation under rq lock */ task_work_add(curr, work, TWA_RESUME); } @@ -12054,9 +10719,8 @@ void sched_mm_cid_after_execve(struct task_struct *t) * Matches barrier in sched_mm_cid_remote_clear_old(). */ smp_mb(); - t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm); + t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); } - rseq_set_notify_resume(t); } void sched_mm_cid_fork(struct task_struct *t) @@ -12065,3 +10729,38 @@ void sched_mm_cid_fork(struct task_struct *t) t->mm_cid_active = 1; } #endif + +#ifdef CONFIG_SCHED_CLASS_EXT +void sched_deq_and_put_task(struct task_struct *p, int queue_flags, + struct sched_enq_and_set_ctx *ctx) +{ + struct rq *rq = task_rq(p); + + lockdep_assert_rq_held(rq); + + *ctx = (struct sched_enq_and_set_ctx){ + .p = p, + .queue_flags = queue_flags, + .queued = task_on_rq_queued(p), + .running = task_current(rq, p), + }; + + update_rq_clock(rq); + if (ctx->queued) + dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); + if (ctx->running) + put_prev_task(rq, p); +} + +void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) +{ + struct rq *rq = task_rq(ctx->p); + + lockdep_assert_rq_held(rq); + + if (ctx->queued) + enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); + if (ctx->running) + set_next_task(rq, ctx->p); +} +#endif /* CONFIG_SCHED_CLASS_EXT */ |