summaryrefslogtreecommitdiff
path: root/kernel/sched/cputime.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/cputime.c')
-rw-r--r--kernel/sched/cputime.c1136
1 files changed, 686 insertions, 450 deletions
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index a7959e05a9d5..4f97896887ec 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -1,11 +1,14 @@
-#include <linux/export.h>
-#include <linux/sched.h>
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Simple CPU accounting cgroup controller
+ */
+#include <linux/sched/cputime.h>
#include <linux/tsacct_kern.h>
-#include <linux/kernel_stat.h>
-#include <linux/static_key.h>
-#include <linux/context_tracking.h>
#include "sched.h"
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
+ #include <asm/cputime.h>
+#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
@@ -14,17 +17,15 @@
* They are only modified in vtime_account, on corresponding CPU
* with interrupts disabled. So, writes are safe.
* They are read and saved off onto struct rq in update_rq_clock().
- * This may result in other CPU reading this CPU's irq time and can
+ * This may result in other CPU reading this CPU's IRQ time and can
* race with irq/vtime_account on this CPU. We would either get old
- * or new value with a side effect of accounting a slice of irq time to wrong
- * task when irq is in progress while we read rq->clock. That is a worthy
- * compromise in place of having locks on each irq in account_system_time.
+ * or new value with a side effect of accounting a slice of IRQ time to wrong
+ * task when IRQ is in progress while we read rq->clock. That is a worthy
+ * compromise in place of having locks on each IRQ in account_system_time.
*/
-DEFINE_PER_CPU(u64, cpu_hardirq_time);
-DEFINE_PER_CPU(u64, cpu_softirq_time);
+DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
-static DEFINE_PER_CPU(u64, irq_start_time);
-static int sched_clock_irqtime;
+int sched_clock_irqtime;
void enable_sched_clock_irqtime(void)
{
@@ -36,79 +37,66 @@ void disable_sched_clock_irqtime(void)
sched_clock_irqtime = 0;
}
-#ifndef CONFIG_64BIT
-DEFINE_PER_CPU(seqcount_t, irq_time_seq);
-#endif /* CONFIG_64BIT */
+static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
+ enum cpu_usage_stat idx)
+{
+ u64 *cpustat = kcpustat_this_cpu->cpustat;
+
+ u64_stats_update_begin(&irqtime->sync);
+ cpustat[idx] += delta;
+ irqtime->total += delta;
+ irqtime->tick_delta += delta;
+ u64_stats_update_end(&irqtime->sync);
+}
/*
- * Called before incrementing preempt_count on {soft,}irq_enter
+ * Called after incrementing preempt_count on {soft,}irq_enter
* and before decrementing preempt_count on {soft,}irq_exit.
*/
-void irqtime_account_irq(struct task_struct *curr)
+void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
{
- unsigned long flags;
+ struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
+ unsigned int pc;
s64 delta;
int cpu;
- if (!sched_clock_irqtime)
+ if (!irqtime_enabled())
return;
- local_irq_save(flags);
-
cpu = smp_processor_id();
- delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
- __this_cpu_add(irq_start_time, delta);
+ delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
+ irqtime->irq_start_time += delta;
+ pc = irq_count() - offset;
- irq_time_write_begin();
/*
* We do not account for softirq time from ksoftirqd here.
* We want to continue accounting softirq time to ksoftirqd thread
* in that case, so as not to confuse scheduler with a special task
* that do not consume any time, but still wants to run.
*/
- if (hardirq_count())
- __this_cpu_add(cpu_hardirq_time, delta);
- else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
- __this_cpu_add(cpu_softirq_time, delta);
-
- irq_time_write_end();
- local_irq_restore(flags);
+ if (pc & HARDIRQ_MASK)
+ irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
+ else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
+ irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
}
-EXPORT_SYMBOL_GPL(irqtime_account_irq);
-static int irqtime_account_hi_update(void)
+static u64 irqtime_tick_accounted(u64 maxtime)
{
- u64 *cpustat = kcpustat_this_cpu->cpustat;
- unsigned long flags;
- u64 latest_ns;
- int ret = 0;
-
- local_irq_save(flags);
- latest_ns = this_cpu_read(cpu_hardirq_time);
- if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
- ret = 1;
- local_irq_restore(flags);
- return ret;
-}
+ struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
+ u64 delta;
-static int irqtime_account_si_update(void)
-{
- u64 *cpustat = kcpustat_this_cpu->cpustat;
- unsigned long flags;
- u64 latest_ns;
- int ret = 0;
+ delta = min(irqtime->tick_delta, maxtime);
+ irqtime->tick_delta -= delta;
- local_irq_save(flags);
- latest_ns = this_cpu_read(cpu_softirq_time);
- if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
- ret = 1;
- local_irq_restore(flags);
- return ret;
+ return delta;
}
-#else /* CONFIG_IRQ_TIME_ACCOUNTING */
+#else /* !CONFIG_IRQ_TIME_ACCOUNTING: */
-#define sched_clock_irqtime (0)
+static u64 irqtime_tick_accounted(u64 dummy)
+{
+ return 0;
+}
#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
@@ -121,100 +109,89 @@ static inline void task_group_account_field(struct task_struct *p, int index,
* is the only cgroup, then nothing else should be necessary.
*
*/
- __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
+ __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
- cpuacct_account_field(p, index, tmp);
+ cgroup_account_cputime_field(p, index, tmp);
}
/*
- * Account user cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in user space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
+ * Account user CPU time to a process.
+ * @p: the process that the CPU time gets accounted to
+ * @cputime: the CPU time spent in user space since the last update
*/
-void account_user_time(struct task_struct *p, cputime_t cputime,
- cputime_t cputime_scaled)
+void account_user_time(struct task_struct *p, u64 cputime)
{
int index;
/* Add user time to process. */
p->utime += cputime;
- p->utimescaled += cputime_scaled;
account_group_user_time(p, cputime);
- index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
+ index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
/* Add user time to cpustat. */
- task_group_account_field(p, index, (__force u64) cputime);
+ task_group_account_field(p, index, cputime);
/* Account for user time used */
acct_account_cputime(p);
}
/*
- * Account guest cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in virtual machine since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
+ * Account guest CPU time to a process.
+ * @p: the process that the CPU time gets accounted to
+ * @cputime: the CPU time spent in virtual machine since the last update
*/
-static void account_guest_time(struct task_struct *p, cputime_t cputime,
- cputime_t cputime_scaled)
+void account_guest_time(struct task_struct *p, u64 cputime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
/* Add guest time to process. */
p->utime += cputime;
- p->utimescaled += cputime_scaled;
account_group_user_time(p, cputime);
p->gtime += cputime;
/* Add guest time to cpustat. */
- if (TASK_NICE(p) > 0) {
- cpustat[CPUTIME_NICE] += (__force u64) cputime;
- cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
+ if (task_nice(p) > 0) {
+ task_group_account_field(p, CPUTIME_NICE, cputime);
+ cpustat[CPUTIME_GUEST_NICE] += cputime;
} else {
- cpustat[CPUTIME_USER] += (__force u64) cputime;
- cpustat[CPUTIME_GUEST] += (__force u64) cputime;
+ task_group_account_field(p, CPUTIME_USER, cputime);
+ cpustat[CPUTIME_GUEST] += cputime;
}
}
/*
- * Account system cpu time to a process and desired cpustat field
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in kernel space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- * @target_cputime64: pointer to cpustat field that has to be updated
+ * Account system CPU time to a process and desired cpustat field
+ * @p: the process that the CPU time gets accounted to
+ * @cputime: the CPU time spent in kernel space since the last update
+ * @index: pointer to cpustat field that has to be updated
*/
-static inline
-void __account_system_time(struct task_struct *p, cputime_t cputime,
- cputime_t cputime_scaled, int index)
+void account_system_index_time(struct task_struct *p,
+ u64 cputime, enum cpu_usage_stat index)
{
/* Add system time to process. */
p->stime += cputime;
- p->stimescaled += cputime_scaled;
account_group_system_time(p, cputime);
/* Add system time to cpustat. */
- task_group_account_field(p, index, (__force u64) cputime);
+ task_group_account_field(p, index, cputime);
/* Account for system time used */
acct_account_cputime(p);
}
/*
- * Account system cpu time to a process.
- * @p: the process that the cpu time gets accounted to
+ * Account system CPU time to a process.
+ * @p: the process that the CPU time gets accounted to
* @hardirq_offset: the offset to subtract from hardirq_count()
- * @cputime: the cpu time spent in kernel space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
+ * @cputime: the CPU time spent in kernel space since the last update
*/
-void account_system_time(struct task_struct *p, int hardirq_offset,
- cputime_t cputime, cputime_t cputime_scaled)
+void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
{
int index;
if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
- account_guest_time(p, cputime, cputime_scaled);
+ account_guest_time(p, cputime);
return;
}
@@ -225,88 +202,150 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
else
index = CPUTIME_SYSTEM;
- __account_system_time(p, cputime, cputime_scaled, index);
+ account_system_index_time(p, cputime, index);
}
/*
* Account for involuntary wait time.
- * @cputime: the cpu time spent in involuntary wait
+ * @cputime: the CPU time spent in involuntary wait
*/
-void account_steal_time(cputime_t cputime)
+void account_steal_time(u64 cputime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
- cpustat[CPUTIME_STEAL] += (__force u64) cputime;
+ cpustat[CPUTIME_STEAL] += cputime;
}
/*
* Account for idle time.
- * @cputime: the cpu time spent in idle wait
+ * @cputime: the CPU time spent in idle wait
*/
-void account_idle_time(cputime_t cputime)
+void account_idle_time(u64 cputime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
struct rq *rq = this_rq();
if (atomic_read(&rq->nr_iowait) > 0)
- cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
+ cpustat[CPUTIME_IOWAIT] += cputime;
else
- cpustat[CPUTIME_IDLE] += (__force u64) cputime;
+ cpustat[CPUTIME_IDLE] += cputime;
}
-static __always_inline bool steal_account_process_tick(void)
+
+#ifdef CONFIG_SCHED_CORE
+/*
+ * Account for forceidle time due to core scheduling.
+ *
+ * REQUIRES: schedstat is enabled.
+ */
+void __account_forceidle_time(struct task_struct *p, u64 delta)
+{
+ __schedstat_add(p->stats.core_forceidle_sum, delta);
+
+ task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
+}
+#endif /* CONFIG_SCHED_CORE */
+
+/*
+ * When a guest is interrupted for a longer amount of time, missed clock
+ * ticks are not redelivered later. Due to that, this function may on
+ * occasion account more time than the calling functions think elapsed.
+ */
+static __always_inline u64 steal_account_process_time(u64 maxtime)
{
#ifdef CONFIG_PARAVIRT
if (static_key_false(&paravirt_steal_enabled)) {
- u64 steal, st = 0;
+ u64 steal;
steal = paravirt_steal_clock(smp_processor_id());
steal -= this_rq()->prev_steal_time;
+ steal = min(steal, maxtime);
+ account_steal_time(steal);
+ this_rq()->prev_steal_time += steal;
- st = steal_ticks(steal);
- this_rq()->prev_steal_time += st * TICK_NSEC;
-
- account_steal_time(st);
- return st;
+ return steal;
}
-#endif
- return false;
+#endif /* CONFIG_PARAVIRT */
+ return 0;
}
/*
+ * Account how much elapsed time was spent in steal, IRQ, or softirq time.
+ */
+static inline u64 account_other_time(u64 max)
+{
+ u64 accounted;
+
+ lockdep_assert_irqs_disabled();
+
+ accounted = steal_account_process_time(max);
+
+ if (accounted < max)
+ accounted += irqtime_tick_accounted(max - accounted);
+
+ return accounted;
+}
+
+#ifdef CONFIG_64BIT
+static inline u64 read_sum_exec_runtime(struct task_struct *t)
+{
+ return t->se.sum_exec_runtime;
+}
+#else /* !CONFIG_64BIT: */
+static u64 read_sum_exec_runtime(struct task_struct *t)
+{
+ u64 ns;
+ struct rq_flags rf;
+ struct rq *rq;
+
+ rq = task_rq_lock(t, &rf);
+ ns = t->se.sum_exec_runtime;
+ task_rq_unlock(rq, t, &rf);
+
+ return ns;
+}
+#endif /* !CONFIG_64BIT */
+
+/*
* Accumulate raw cputime values of dead tasks (sig->[us]time) and live
* tasks (sum on group iteration) belonging to @tsk's group.
*/
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
{
struct signal_struct *sig = tsk->signal;
- cputime_t utime, stime;
struct task_struct *t;
+ u64 utime, stime;
- times->utime = sig->utime;
- times->stime = sig->stime;
- times->sum_exec_runtime = sig->sum_sched_runtime;
-
- rcu_read_lock();
- /* make sure we can trust tsk->thread_group list */
- if (!likely(pid_alive(tsk)))
- goto out;
-
- t = tsk;
- do {
- task_cputime(t, &utime, &stime);
- times->utime += utime;
- times->stime += stime;
- times->sum_exec_runtime += task_sched_runtime(t);
- } while_each_thread(tsk, t);
-out:
- rcu_read_unlock();
+ /*
+ * Update current task runtime to account pending time since last
+ * scheduler action or thread_group_cputime() call. This thread group
+ * might have other running tasks on different CPUs, but updating
+ * their runtime can affect syscall performance, so we skip account
+ * those pending times and rely only on values updated on tick or
+ * other scheduler action.
+ */
+ if (same_thread_group(current, tsk))
+ (void) task_sched_runtime(current);
+
+ guard(rcu)();
+ scoped_seqlock_read (&sig->stats_lock, ss_lock_irqsave) {
+ times->utime = sig->utime;
+ times->stime = sig->stime;
+ times->sum_exec_runtime = sig->sum_sched_runtime;
+
+ __for_each_thread(sig, t) {
+ task_cputime(t, &utime, &stime);
+ times->utime += utime;
+ times->stime += stime;
+ times->sum_exec_runtime += read_sum_exec_runtime(t);
+ }
+ }
}
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
* Account a tick to a process and cpustat
- * @p: the process that the cpu time gets accounted to
+ * @p: the process that the CPU time gets accounted to
* @user_tick: is the tick from userspace
* @rq: the pointer to rq
*
@@ -322,125 +361,91 @@ out:
* Check for hardirq is done both for system and user time as there is
* no timer going off while we are on hardirq and hence we may never get an
* opportunity to update it solely in system time.
- * p->stime and friends are only updated on system time and not on irq
+ * p->stime and friends are only updated on system time and not on IRQ
* softirq as those do not count in task exec_runtime any more.
*/
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
- struct rq *rq)
+ int ticks)
{
- cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
- u64 *cpustat = kcpustat_this_cpu->cpustat;
+ u64 other, cputime = TICK_NSEC * ticks;
- if (steal_account_process_tick())
+ /*
+ * When returning from idle, many ticks can get accounted at
+ * once, including some ticks of steal, IRQ, and softirq time.
+ * Subtract those ticks from the amount of time accounted to
+ * idle, or potentially user or system time. Due to rounding,
+ * other time can exceed ticks occasionally.
+ */
+ other = account_other_time(ULONG_MAX);
+ if (other >= cputime)
return;
- if (irqtime_account_hi_update()) {
- cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
- } else if (irqtime_account_si_update()) {
- cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
- } else if (this_cpu_ksoftirqd() == p) {
+ cputime -= other;
+
+ if (this_cpu_ksoftirqd() == p) {
/*
* ksoftirqd time do not get accounted in cpu_softirq_time.
* So, we have to handle it separately here.
* Also, p->stime needs to be updated for ksoftirqd.
*/
- __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
- CPUTIME_SOFTIRQ);
+ account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
} else if (user_tick) {
- account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
- } else if (p == rq->idle) {
- account_idle_time(cputime_one_jiffy);
+ account_user_time(p, cputime);
+ } else if (p == this_rq()->idle) {
+ account_idle_time(cputime);
} else if (p->flags & PF_VCPU) { /* System time or guest time */
- account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
+ account_guest_time(p, cputime);
} else {
- __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
- CPUTIME_SYSTEM);
+ account_system_index_time(p, cputime, CPUTIME_SYSTEM);
}
}
static void irqtime_account_idle_ticks(int ticks)
{
- int i;
- struct rq *rq = this_rq();
-
- for (i = 0; i < ticks; i++)
- irqtime_account_process_tick(current, 0, rq);
+ irqtime_account_process_tick(current, 0, ticks);
}
-#else /* CONFIG_IRQ_TIME_ACCOUNTING */
-static inline void irqtime_account_idle_ticks(int ticks) {}
+#else /* !CONFIG_IRQ_TIME_ACCOUNTING: */
+static inline void irqtime_account_idle_ticks(int ticks) { }
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
- struct rq *rq) {}
-#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
+ int nr_ticks) { }
+#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
/*
* Use precise platform statistics if available:
*/
-#ifdef CONFIG_VIRT_CPU_ACCOUNTING
-
-#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
-void vtime_task_switch(struct task_struct *prev)
-{
- if (!vtime_accounting_enabled())
- return;
-
- if (is_idle_task(prev))
- vtime_account_idle(prev);
- else
- vtime_account_system(prev);
-
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
- vtime_account_user(prev);
-#endif
- arch_vtime_task_switch(prev);
-}
-#endif
-/*
- * Archs that account the whole time spent in the idle task
- * (outside irq) as idle time can rely on this and just implement
- * vtime_account_system() and vtime_account_idle(). Archs that
- * have other meaning of the idle time (s390 only includes the
- * time spent by the CPU when it's in low power mode) must override
- * vtime_account().
- */
-#ifndef __ARCH_HAS_VTIME_ACCOUNT
-void vtime_account_irq_enter(struct task_struct *tsk)
+void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
{
- if (!vtime_accounting_enabled())
- return;
-
- if (!in_interrupt()) {
- /*
- * If we interrupted user, context_tracking_in_user()
- * is 1 because the context tracking don't hook
- * on irq entry/exit. This way we know if
- * we need to flush user time on kernel entry.
- */
- if (context_tracking_in_user()) {
- vtime_account_user(tsk);
- return;
- }
-
- if (is_idle_task(tsk)) {
- vtime_account_idle(tsk);
- return;
- }
+ unsigned int pc = irq_count() - offset;
+
+ if (pc & HARDIRQ_OFFSET) {
+ vtime_account_hardirq(tsk);
+ } else if (pc & SOFTIRQ_OFFSET) {
+ vtime_account_softirq(tsk);
+ } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
+ is_idle_task(tsk)) {
+ vtime_account_idle(tsk);
+ } else {
+ vtime_account_kernel(tsk);
}
- vtime_account_system(tsk);
}
-EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
-#endif /* __ARCH_HAS_VTIME_ACCOUNT */
-#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
+void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
+ u64 *ut, u64 *st)
+{
+ *ut = curr->utime;
+ *st = curr->stime;
+}
-#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
-void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
+void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
{
*ut = p->utime;
*st = p->stime;
}
+EXPORT_SYMBOL_GPL(task_cputime_adjusted);
-void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
+void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
{
struct task_cputime cputime;
@@ -449,45 +454,40 @@ void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime
*ut = cputime.utime;
*st = cputime.stime;
}
-#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
+
+#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
+
/*
- * Account a single tick of cpu time.
- * @p: the process that the cpu time gets accounted to
+ * Account a single tick of CPU time.
+ * @p: the process that the CPU time gets accounted to
* @user_tick: indicates if the tick is a user or a system tick
*/
void account_process_tick(struct task_struct *p, int user_tick)
{
- cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
- struct rq *rq = this_rq();
+ u64 cputime, steal;
- if (vtime_accounting_enabled())
+ if (vtime_accounting_enabled_this_cpu())
return;
- if (sched_clock_irqtime) {
- irqtime_account_process_tick(p, user_tick, rq);
+ if (irqtime_enabled()) {
+ irqtime_account_process_tick(p, user_tick, 1);
return;
}
- if (steal_account_process_tick())
+ cputime = TICK_NSEC;
+ steal = steal_account_process_time(ULONG_MAX);
+
+ if (steal >= cputime)
return;
+ cputime -= steal;
+
if (user_tick)
- account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
- else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
- account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
- one_jiffy_scaled);
+ account_user_time(p, cputime);
+ else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
+ account_system_time(p, HARDIRQ_OFFSET, cputime);
else
- account_idle_time(cputime_one_jiffy);
-}
-
-/*
- * Account multiple ticks of steal time.
- * @p: the process from which the cpu time has been stolen
- * @ticks: number of stolen ticks
- */
-void account_steal_ticks(unsigned long ticks)
-{
- account_steal_time(jiffies_to_cputime(ticks));
+ account_idle_time(cputime);
}
/*
@@ -496,134 +496,134 @@ void account_steal_ticks(unsigned long ticks)
*/
void account_idle_ticks(unsigned long ticks)
{
+ u64 cputime, steal;
- if (sched_clock_irqtime) {
+ if (irqtime_enabled()) {
irqtime_account_idle_ticks(ticks);
return;
}
- account_idle_time(jiffies_to_cputime(ticks));
+ cputime = ticks * TICK_NSEC;
+ steal = steal_account_process_time(ULONG_MAX);
+
+ if (steal >= cputime)
+ return;
+
+ cputime -= steal;
+ account_idle_time(cputime);
}
/*
- * Perform (stime * rtime) / total, but avoid multiplication overflow by
- * loosing precision when the numbers are big.
+ * Adjust tick based cputime random precision against scheduler runtime
+ * accounting.
+ *
+ * Tick based cputime accounting depend on random scheduling timeslices of a
+ * task to be interrupted or not by the timer. Depending on these
+ * circumstances, the number of these interrupts may be over or
+ * under-optimistic, matching the real user and system cputime with a variable
+ * precision.
+ *
+ * Fix this by scaling these tick based values against the total runtime
+ * accounted by the CFS scheduler.
+ *
+ * This code provides the following guarantees:
+ *
+ * stime + utime == rtime
+ * stime_i+1 >= stime_i, utime_i+1 >= utime_i
+ *
+ * Assuming that rtime_i+1 >= rtime_i.
*/
-static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
+void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
+ u64 *ut, u64 *st)
{
- u64 scaled;
-
- for (;;) {
- /* Make sure "rtime" is the bigger of stime/rtime */
- if (stime > rtime)
- swap(rtime, stime);
-
- /* Make sure 'total' fits in 32 bits */
- if (total >> 32)
- goto drop_precision;
-
- /* Does rtime (and thus stime) fit in 32 bits? */
- if (!(rtime >> 32))
- break;
-
- /* Can we just balance rtime/stime rather than dropping bits? */
- if (stime >> 31)
- goto drop_precision;
-
- /* We can grow stime and shrink rtime and try to make them both fit */
- stime <<= 1;
- rtime >>= 1;
- continue;
+ u64 rtime, stime, utime;
+ unsigned long flags;
-drop_precision:
- /* We drop from rtime, it has more bits than stime */
- rtime >>= 1;
- total >>= 1;
- }
+ /* Serialize concurrent callers such that we can honour our guarantees */
+ raw_spin_lock_irqsave(&prev->lock, flags);
+ rtime = curr->sum_exec_runtime;
/*
- * Make sure gcc understands that this is a 32x32->64 multiply,
- * followed by a 64/32->64 divide.
+ * This is possible under two circumstances:
+ * - rtime isn't monotonic after all (a bug);
+ * - we got reordered by the lock.
+ *
+ * In both cases this acts as a filter such that the rest of the code
+ * can assume it is monotonic regardless of anything else.
*/
- scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
- return (__force cputime_t) scaled;
-}
+ if (prev->stime + prev->utime >= rtime)
+ goto out;
-/*
- * Adjust tick based cputime random precision against scheduler
- * runtime accounting.
- */
-static void cputime_adjust(struct task_cputime *curr,
- struct cputime *prev,
- cputime_t *ut, cputime_t *st)
-{
- cputime_t rtime, stime, utime, total;
+ stime = curr->stime;
+ utime = curr->utime;
- if (vtime_accounting_enabled()) {
- *ut = curr->utime;
- *st = curr->stime;
- return;
+ /*
+ * If either stime or utime are 0, assume all runtime is userspace.
+ * Once a task gets some ticks, the monotonicity code at 'update:'
+ * will ensure things converge to the observed ratio.
+ */
+ if (stime == 0) {
+ utime = rtime;
+ goto update;
}
- stime = curr->stime;
- total = stime + curr->utime;
+ if (utime == 0) {
+ stime = rtime;
+ goto update;
+ }
+ stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
/*
- * Tick based cputime accounting depend on random scheduling
- * timeslices of a task to be interrupted or not by the timer.
- * Depending on these circumstances, the number of these interrupts
- * may be over or under-optimistic, matching the real user and system
- * cputime with a variable precision.
- *
- * Fix this by scaling these tick based values against the total
- * runtime accounted by the CFS scheduler.
+ * Because mul_u64_u64_div_u64() can approximate on some
+ * achitectures; enforce the constraint that: a*b/(b+c) <= a.
*/
- rtime = nsecs_to_cputime(curr->sum_exec_runtime);
+ if (unlikely(stime > rtime))
+ stime = rtime;
+update:
/*
- * Update userspace visible utime/stime values only if actual execution
- * time is bigger than already exported. Note that can happen, that we
- * provided bigger values due to scaling inaccuracy on big numbers.
+ * Make sure stime doesn't go backwards; this preserves monotonicity
+ * for utime because rtime is monotonic.
+ *
+ * utime_i+1 = rtime_i+1 - stime_i
+ * = rtime_i+1 - (rtime_i - utime_i)
+ * = (rtime_i+1 - rtime_i) + utime_i
+ * >= utime_i
*/
- if (prev->stime + prev->utime >= rtime)
- goto out;
-
- if (total) {
- stime = scale_stime((__force u64)stime,
- (__force u64)rtime, (__force u64)total);
- utime = rtime - stime;
- } else {
- stime = rtime;
- utime = 0;
- }
+ if (stime < prev->stime)
+ stime = prev->stime;
+ utime = rtime - stime;
/*
- * If the tick based count grows faster than the scheduler one,
- * the result of the scaling may go backward.
- * Let's enforce monotonicity.
+ * Make sure utime doesn't go backwards; this still preserves
+ * monotonicity for stime, analogous argument to above.
*/
- prev->stime = max(prev->stime, stime);
- prev->utime = max(prev->utime, utime);
+ if (utime < prev->utime) {
+ utime = prev->utime;
+ stime = rtime - utime;
+ }
+ prev->stime = stime;
+ prev->utime = utime;
out:
*ut = prev->utime;
*st = prev->stime;
+ raw_spin_unlock_irqrestore(&prev->lock, flags);
}
-void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
+void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
{
struct task_cputime cputime = {
.sum_exec_runtime = p->se.sum_exec_runtime,
};
- task_cputime(p, &cputime.utime, &cputime.stime);
+ if (task_cputime(p, &cputime.utime, &cputime.stime))
+ cputime.sum_exec_runtime = task_sched_runtime(p);
cputime_adjust(&cputime, &p->prev_cputime, ut, st);
}
+EXPORT_SYMBOL_GPL(task_cputime_adjusted);
-/*
- * Must be called with siglock held.
- */
-void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
+void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
{
struct task_cputime cputime;
@@ -633,146 +633,195 @@ void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime
#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
-static unsigned long long vtime_delta(struct task_struct *tsk)
+static u64 vtime_delta(struct vtime *vtime)
{
unsigned long long clock;
- clock = local_clock();
- if (clock < tsk->vtime_snap)
+ clock = sched_clock();
+ if (clock < vtime->starttime)
return 0;
- return clock - tsk->vtime_snap;
+ return clock - vtime->starttime;
}
-static cputime_t get_vtime_delta(struct task_struct *tsk)
+static u64 get_vtime_delta(struct vtime *vtime)
{
- unsigned long long delta = vtime_delta(tsk);
+ u64 delta = vtime_delta(vtime);
+ u64 other;
- WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
- tsk->vtime_snap += delta;
+ /*
+ * Unlike tick based timing, vtime based timing never has lost
+ * ticks, and no need for steal time accounting to make up for
+ * lost ticks. Vtime accounts a rounded version of actual
+ * elapsed time. Limit account_other_time to prevent rounding
+ * errors from causing elapsed vtime to go negative.
+ */
+ other = account_other_time(delta);
+ WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
+ vtime->starttime += delta;
- /* CHECKME: always safe to convert nsecs to cputime? */
- return nsecs_to_cputime(delta);
+ return delta - other;
}
-static void __vtime_account_system(struct task_struct *tsk)
+static void vtime_account_system(struct task_struct *tsk,
+ struct vtime *vtime)
{
- cputime_t delta_cpu = get_vtime_delta(tsk);
-
- account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
+ vtime->stime += get_vtime_delta(vtime);
+ if (vtime->stime >= TICK_NSEC) {
+ account_system_time(tsk, irq_count(), vtime->stime);
+ vtime->stime = 0;
+ }
}
-void vtime_account_system(struct task_struct *tsk)
+static void vtime_account_guest(struct task_struct *tsk,
+ struct vtime *vtime)
{
- if (!vtime_accounting_enabled())
- return;
-
- write_seqlock(&tsk->vtime_seqlock);
- __vtime_account_system(tsk);
- write_sequnlock(&tsk->vtime_seqlock);
+ vtime->gtime += get_vtime_delta(vtime);
+ if (vtime->gtime >= TICK_NSEC) {
+ account_guest_time(tsk, vtime->gtime);
+ vtime->gtime = 0;
+ }
}
-void vtime_account_irq_exit(struct task_struct *tsk)
+static void __vtime_account_kernel(struct task_struct *tsk,
+ struct vtime *vtime)
{
- if (!vtime_accounting_enabled())
- return;
-
- write_seqlock(&tsk->vtime_seqlock);
- if (context_tracking_in_user())
- tsk->vtime_snap_whence = VTIME_USER;
- __vtime_account_system(tsk);
- write_sequnlock(&tsk->vtime_seqlock);
+ /* We might have scheduled out from guest path */
+ if (vtime->state == VTIME_GUEST)
+ vtime_account_guest(tsk, vtime);
+ else
+ vtime_account_system(tsk, vtime);
}
-void vtime_account_user(struct task_struct *tsk)
+void vtime_account_kernel(struct task_struct *tsk)
{
- cputime_t delta_cpu;
+ struct vtime *vtime = &tsk->vtime;
- if (!vtime_accounting_enabled())
+ if (!vtime_delta(vtime))
return;
- delta_cpu = get_vtime_delta(tsk);
-
- write_seqlock(&tsk->vtime_seqlock);
- tsk->vtime_snap_whence = VTIME_SYS;
- account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
- write_sequnlock(&tsk->vtime_seqlock);
+ write_seqcount_begin(&vtime->seqcount);
+ __vtime_account_kernel(tsk, vtime);
+ write_seqcount_end(&vtime->seqcount);
}
void vtime_user_enter(struct task_struct *tsk)
{
- if (!vtime_accounting_enabled())
- return;
+ struct vtime *vtime = &tsk->vtime;
- write_seqlock(&tsk->vtime_seqlock);
- tsk->vtime_snap_whence = VTIME_USER;
- __vtime_account_system(tsk);
- write_sequnlock(&tsk->vtime_seqlock);
+ write_seqcount_begin(&vtime->seqcount);
+ vtime_account_system(tsk, vtime);
+ vtime->state = VTIME_USER;
+ write_seqcount_end(&vtime->seqcount);
}
-void vtime_guest_enter(struct task_struct *tsk)
+void vtime_user_exit(struct task_struct *tsk)
{
- write_seqlock(&tsk->vtime_seqlock);
- __vtime_account_system(tsk);
- current->flags |= PF_VCPU;
- write_sequnlock(&tsk->vtime_seqlock);
+ struct vtime *vtime = &tsk->vtime;
+
+ write_seqcount_begin(&vtime->seqcount);
+ vtime->utime += get_vtime_delta(vtime);
+ if (vtime->utime >= TICK_NSEC) {
+ account_user_time(tsk, vtime->utime);
+ vtime->utime = 0;
+ }
+ vtime->state = VTIME_SYS;
+ write_seqcount_end(&vtime->seqcount);
}
-void vtime_guest_exit(struct task_struct *tsk)
+void vtime_guest_enter(struct task_struct *tsk)
{
- write_seqlock(&tsk->vtime_seqlock);
- __vtime_account_system(tsk);
- current->flags &= ~PF_VCPU;
- write_sequnlock(&tsk->vtime_seqlock);
+ struct vtime *vtime = &tsk->vtime;
+ /*
+ * The flags must be updated under the lock with
+ * the vtime_starttime flush and update.
+ * That enforces a right ordering and update sequence
+ * synchronization against the reader (task_gtime())
+ * that can thus safely catch up with a tickless delta.
+ */
+ write_seqcount_begin(&vtime->seqcount);
+ vtime_account_system(tsk, vtime);
+ tsk->flags |= PF_VCPU;
+ vtime->state = VTIME_GUEST;
+ write_seqcount_end(&vtime->seqcount);
}
+EXPORT_SYMBOL_GPL(vtime_guest_enter);
-void vtime_account_idle(struct task_struct *tsk)
+void vtime_guest_exit(struct task_struct *tsk)
{
- cputime_t delta_cpu = get_vtime_delta(tsk);
+ struct vtime *vtime = &tsk->vtime;
- account_idle_time(delta_cpu);
+ write_seqcount_begin(&vtime->seqcount);
+ vtime_account_guest(tsk, vtime);
+ tsk->flags &= ~PF_VCPU;
+ vtime->state = VTIME_SYS;
+ write_seqcount_end(&vtime->seqcount);
}
+EXPORT_SYMBOL_GPL(vtime_guest_exit);
-bool vtime_accounting_enabled(void)
+void vtime_account_idle(struct task_struct *tsk)
{
- return context_tracking_active();
+ account_idle_time(get_vtime_delta(&tsk->vtime));
}
-void arch_vtime_task_switch(struct task_struct *prev)
+void vtime_task_switch_generic(struct task_struct *prev)
{
- write_seqlock(&prev->vtime_seqlock);
- prev->vtime_snap_whence = VTIME_SLEEPING;
- write_sequnlock(&prev->vtime_seqlock);
+ struct vtime *vtime = &prev->vtime;
- write_seqlock(&current->vtime_seqlock);
- current->vtime_snap_whence = VTIME_SYS;
- current->vtime_snap = sched_clock_cpu(smp_processor_id());
- write_sequnlock(&current->vtime_seqlock);
+ write_seqcount_begin(&vtime->seqcount);
+ if (vtime->state == VTIME_IDLE)
+ vtime_account_idle(prev);
+ else
+ __vtime_account_kernel(prev, vtime);
+ vtime->state = VTIME_INACTIVE;
+ vtime->cpu = -1;
+ write_seqcount_end(&vtime->seqcount);
+
+ vtime = &current->vtime;
+
+ write_seqcount_begin(&vtime->seqcount);
+ if (is_idle_task(current))
+ vtime->state = VTIME_IDLE;
+ else if (current->flags & PF_VCPU)
+ vtime->state = VTIME_GUEST;
+ else
+ vtime->state = VTIME_SYS;
+ vtime->starttime = sched_clock();
+ vtime->cpu = smp_processor_id();
+ write_seqcount_end(&vtime->seqcount);
}
void vtime_init_idle(struct task_struct *t, int cpu)
{
+ struct vtime *vtime = &t->vtime;
unsigned long flags;
- write_seqlock_irqsave(&t->vtime_seqlock, flags);
- t->vtime_snap_whence = VTIME_SYS;
- t->vtime_snap = sched_clock_cpu(cpu);
- write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
+ local_irq_save(flags);
+ write_seqcount_begin(&vtime->seqcount);
+ vtime->state = VTIME_IDLE;
+ vtime->starttime = sched_clock();
+ vtime->cpu = cpu;
+ write_seqcount_end(&vtime->seqcount);
+ local_irq_restore(flags);
}
-cputime_t task_gtime(struct task_struct *t)
+u64 task_gtime(struct task_struct *t)
{
+ struct vtime *vtime = &t->vtime;
unsigned int seq;
- cputime_t gtime;
+ u64 gtime;
+
+ if (!vtime_accounting_enabled())
+ return t->gtime;
do {
- seq = read_seqbegin(&t->vtime_seqlock);
+ seq = read_seqcount_begin(&vtime->seqcount);
gtime = t->gtime;
- if (t->flags & PF_VCPU)
- gtime += vtime_delta(t);
+ if (vtime->state == VTIME_GUEST)
+ gtime += vtime->gtime + vtime_delta(vtime);
- } while (read_seqretry(&t->vtime_seqlock, seq));
+ } while (read_seqcount_retry(&vtime->seqcount, seq));
return gtime;
}
@@ -782,69 +831,256 @@ cputime_t task_gtime(struct task_struct *t)
* add up the pending nohz execution time since the last
* cputime snapshot.
*/
-static void
-fetch_task_cputime(struct task_struct *t,
- cputime_t *u_dst, cputime_t *s_dst,
- cputime_t *u_src, cputime_t *s_src,
- cputime_t *udelta, cputime_t *sdelta)
+bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
{
+ struct vtime *vtime = &t->vtime;
unsigned int seq;
- unsigned long long delta;
+ u64 delta;
+ int ret;
- do {
- *udelta = 0;
- *sdelta = 0;
+ if (!vtime_accounting_enabled()) {
+ *utime = t->utime;
+ *stime = t->stime;
+ return false;
+ }
- seq = read_seqbegin(&t->vtime_seqlock);
+ do {
+ ret = false;
+ seq = read_seqcount_begin(&vtime->seqcount);
- if (u_dst)
- *u_dst = *u_src;
- if (s_dst)
- *s_dst = *s_src;
+ *utime = t->utime;
+ *stime = t->stime;
- /* Task is sleeping, nothing to add */
- if (t->vtime_snap_whence == VTIME_SLEEPING ||
- is_idle_task(t))
+ /* Task is sleeping or idle, nothing to add */
+ if (vtime->state < VTIME_SYS)
continue;
- delta = vtime_delta(t);
+ ret = true;
+ delta = vtime_delta(vtime);
/*
- * Task runs either in user or kernel space, add pending nohz time to
- * the right place.
+ * Task runs either in user (including guest) or kernel space,
+ * add pending nohz time to the right place.
*/
- if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
- *udelta = delta;
- } else {
- if (t->vtime_snap_whence == VTIME_SYS)
- *sdelta = delta;
+ if (vtime->state == VTIME_SYS)
+ *stime += vtime->stime + delta;
+ else
+ *utime += vtime->utime + delta;
+ } while (read_seqcount_retry(&vtime->seqcount, seq));
+
+ return ret;
+}
+
+static int vtime_state_fetch(struct vtime *vtime, int cpu)
+{
+ int state = READ_ONCE(vtime->state);
+
+ /*
+ * We raced against a context switch, fetch the
+ * kcpustat task again.
+ */
+ if (vtime->cpu != cpu && vtime->cpu != -1)
+ return -EAGAIN;
+
+ /*
+ * Two possible things here:
+ * 1) We are seeing the scheduling out task (prev) or any past one.
+ * 2) We are seeing the scheduling in task (next) but it hasn't
+ * passed though vtime_task_switch() yet so the pending
+ * cputime of the prev task may not be flushed yet.
+ *
+ * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
+ */
+ if (state == VTIME_INACTIVE)
+ return -EAGAIN;
+
+ return state;
+}
+
+static u64 kcpustat_user_vtime(struct vtime *vtime)
+{
+ if (vtime->state == VTIME_USER)
+ return vtime->utime + vtime_delta(vtime);
+ else if (vtime->state == VTIME_GUEST)
+ return vtime->gtime + vtime_delta(vtime);
+ return 0;
+}
+
+static int kcpustat_field_vtime(u64 *cpustat,
+ struct task_struct *tsk,
+ enum cpu_usage_stat usage,
+ int cpu, u64 *val)
+{
+ struct vtime *vtime = &tsk->vtime;
+ unsigned int seq;
+
+ do {
+ int state;
+
+ seq = read_seqcount_begin(&vtime->seqcount);
+
+ state = vtime_state_fetch(vtime, cpu);
+ if (state < 0)
+ return state;
+
+ *val = cpustat[usage];
+
+ /*
+ * Nice VS unnice cputime accounting may be inaccurate if
+ * the nice value has changed since the last vtime update.
+ * But proper fix would involve interrupting target on nice
+ * updates which is a no go on nohz_full (although the scheduler
+ * may still interrupt the target if rescheduling is needed...)
+ */
+ switch (usage) {
+ case CPUTIME_SYSTEM:
+ if (state == VTIME_SYS)
+ *val += vtime->stime + vtime_delta(vtime);
+ break;
+ case CPUTIME_USER:
+ if (task_nice(tsk) <= 0)
+ *val += kcpustat_user_vtime(vtime);
+ break;
+ case CPUTIME_NICE:
+ if (task_nice(tsk) > 0)
+ *val += kcpustat_user_vtime(vtime);
+ break;
+ case CPUTIME_GUEST:
+ if (state == VTIME_GUEST && task_nice(tsk) <= 0)
+ *val += vtime->gtime + vtime_delta(vtime);
+ break;
+ case CPUTIME_GUEST_NICE:
+ if (state == VTIME_GUEST && task_nice(tsk) > 0)
+ *val += vtime->gtime + vtime_delta(vtime);
+ break;
+ default:
+ break;
}
- } while (read_seqretry(&t->vtime_seqlock, seq));
+ } while (read_seqcount_retry(&vtime->seqcount, seq));
+
+ return 0;
}
+u64 kcpustat_field(struct kernel_cpustat *kcpustat,
+ enum cpu_usage_stat usage, int cpu)
+{
+ u64 *cpustat = kcpustat->cpustat;
+ u64 val = cpustat[usage];
+ struct rq *rq;
+ int err;
+
+ if (!vtime_accounting_enabled_cpu(cpu))
+ return val;
+
+ rq = cpu_rq(cpu);
+
+ for (;;) {
+ struct task_struct *curr;
+
+ rcu_read_lock();
+ curr = rcu_dereference(rq->curr);
+ if (WARN_ON_ONCE(!curr)) {
+ rcu_read_unlock();
+ return cpustat[usage];
+ }
+
+ err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
+ rcu_read_unlock();
+
+ if (!err)
+ return val;
+
+ cpu_relax();
+ }
+}
+EXPORT_SYMBOL_GPL(kcpustat_field);
-void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
+static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
+ const struct kernel_cpustat *src,
+ struct task_struct *tsk, int cpu)
{
- cputime_t udelta, sdelta;
+ struct vtime *vtime = &tsk->vtime;
+ unsigned int seq;
+
+ do {
+ u64 *cpustat;
+ u64 delta;
+ int state;
+
+ seq = read_seqcount_begin(&vtime->seqcount);
- fetch_task_cputime(t, utime, stime, &t->utime,
- &t->stime, &udelta, &sdelta);
- if (utime)
- *utime += udelta;
- if (stime)
- *stime += sdelta;
+ state = vtime_state_fetch(vtime, cpu);
+ if (state < 0)
+ return state;
+
+ *dst = *src;
+ cpustat = dst->cpustat;
+
+ /* Task is sleeping, dead or idle, nothing to add */
+ if (state < VTIME_SYS)
+ continue;
+
+ delta = vtime_delta(vtime);
+
+ /*
+ * Task runs either in user (including guest) or kernel space,
+ * add pending nohz time to the right place.
+ */
+ if (state == VTIME_SYS) {
+ cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
+ } else if (state == VTIME_USER) {
+ if (task_nice(tsk) > 0)
+ cpustat[CPUTIME_NICE] += vtime->utime + delta;
+ else
+ cpustat[CPUTIME_USER] += vtime->utime + delta;
+ } else {
+ WARN_ON_ONCE(state != VTIME_GUEST);
+ if (task_nice(tsk) > 0) {
+ cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
+ cpustat[CPUTIME_NICE] += vtime->gtime + delta;
+ } else {
+ cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
+ cpustat[CPUTIME_USER] += vtime->gtime + delta;
+ }
+ }
+ } while (read_seqcount_retry(&vtime->seqcount, seq));
+
+ return 0;
}
-void task_cputime_scaled(struct task_struct *t,
- cputime_t *utimescaled, cputime_t *stimescaled)
+void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
{
- cputime_t udelta, sdelta;
+ const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
+ struct rq *rq;
+ int err;
+
+ if (!vtime_accounting_enabled_cpu(cpu)) {
+ *dst = *src;
+ return;
+ }
+
+ rq = cpu_rq(cpu);
+
+ for (;;) {
+ struct task_struct *curr;
- fetch_task_cputime(t, utimescaled, stimescaled,
- &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
- if (utimescaled)
- *utimescaled += cputime_to_scaled(udelta);
- if (stimescaled)
- *stimescaled += cputime_to_scaled(sdelta);
+ rcu_read_lock();
+ curr = rcu_dereference(rq->curr);
+ if (WARN_ON_ONCE(!curr)) {
+ rcu_read_unlock();
+ *dst = *src;
+ return;
+ }
+
+ err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
+ rcu_read_unlock();
+
+ if (!err)
+ return;
+
+ cpu_relax();
+ }
}
+EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
+
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */