diff options
Diffstat (limited to 'kernel/sched/sched.h')
| -rw-r--r-- | kernel/sched/sched.h | 3027 |
1 files changed, 2353 insertions, 674 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index d04530bf251f..d30cca6870f5 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -2,88 +2,96 @@ /* * Scheduler internal types and methods: */ -#include <linux/sched.h> +#ifndef _KERNEL_SCHED_SCHED_H +#define _KERNEL_SCHED_SCHED_H +#include <linux/prandom.h> +#include <linux/sched/affinity.h> #include <linux/sched/autogroup.h> -#include <linux/sched/clock.h> -#include <linux/sched/coredump.h> #include <linux/sched/cpufreq.h> -#include <linux/sched/cputime.h> #include <linux/sched/deadline.h> -#include <linux/sched/debug.h> -#include <linux/sched/hotplug.h> -#include <linux/sched/idle.h> -#include <linux/sched/init.h> -#include <linux/sched/isolation.h> -#include <linux/sched/jobctl.h> +#include <linux/sched.h> #include <linux/sched/loadavg.h> #include <linux/sched/mm.h> -#include <linux/sched/nohz.h> -#include <linux/sched/numa_balancing.h> -#include <linux/sched/prio.h> -#include <linux/sched/rt.h> +#include <linux/sched/rseq_api.h> #include <linux/sched/signal.h> #include <linux/sched/smt.h> #include <linux/sched/stat.h> #include <linux/sched/sysctl.h> +#include <linux/sched/task_flags.h> #include <linux/sched/task.h> -#include <linux/sched/task_stack.h> #include <linux/sched/topology.h> -#include <linux/sched/user.h> -#include <linux/sched/wake_q.h> -#include <linux/sched/xacct.h> - -#include <uapi/linux/sched/types.h> - -#include <linux/binfmts.h> -#include <linux/blkdev.h> -#include <linux/compat.h> +#include <linux/atomic.h> +#include <linux/bitmap.h> +#include <linux/bug.h> +#include <linux/capability.h> +#include <linux/cgroup_api.h> +#include <linux/cgroup.h> #include <linux/context_tracking.h> #include <linux/cpufreq.h> -#include <linux/cpuidle.h> -#include <linux/cpuset.h> +#include <linux/cpumask_api.h> #include <linux/ctype.h> -#include <linux/debugfs.h> -#include <linux/delayacct.h> -#include <linux/energy_model.h> -#include <linux/init_task.h> -#include <linux/kprobes.h> +#include <linux/file.h> +#include <linux/fs_api.h> +#include <linux/hrtimer_api.h> +#include <linux/interrupt.h> +#include <linux/irq_work.h> +#include <linux/jiffies.h> +#include <linux/kref_api.h> #include <linux/kthread.h> -#include <linux/membarrier.h> -#include <linux/migrate.h> -#include <linux/mmu_context.h> -#include <linux/nmi.h> +#include <linux/ktime_api.h> +#include <linux/lockdep_api.h> +#include <linux/lockdep.h> +#include <linux/minmax.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/mutex_api.h> +#include <linux/plist.h> +#include <linux/poll.h> #include <linux/proc_fs.h> -#include <linux/prefetch.h> #include <linux/profile.h> #include <linux/psi.h> -#include <linux/rcupdate_wait.h> -#include <linux/security.h> +#include <linux/rcupdate.h> +#include <linux/seq_file.h> +#include <linux/seqlock.h> +#include <linux/softirq.h> +#include <linux/spinlock_api.h> +#include <linux/static_key.h> #include <linux/stop_machine.h> -#include <linux/suspend.h> -#include <linux/swait.h> +#include <linux/syscalls_api.h> #include <linux/syscalls.h> -#include <linux/task_work.h> -#include <linux/tsacct_kern.h> +#include <linux/tick.h> +#include <linux/topology.h> +#include <linux/types.h> +#include <linux/u64_stats_sync_api.h> +#include <linux/uaccess.h> +#include <linux/wait_api.h> +#include <linux/wait_bit.h> +#include <linux/workqueue_api.h> +#include <linux/delayacct.h> +#include <linux/mmu_context.h> -#include <asm/tlb.h> +#include <trace/events/power.h> +#include <trace/events/sched.h> + +#include "../workqueue_internal.h" + +struct rq; +struct cfs_rq; +struct rt_rq; +struct sched_group; +struct cpuidle_state; #ifdef CONFIG_PARAVIRT # include <asm/paravirt.h> +# include <asm/paravirt_api_clock.h> #endif +#include <asm/barrier.h> + #include "cpupri.h" #include "cpudeadline.h" -#ifdef CONFIG_SCHED_DEBUG -# define SCHED_WARN_ON(x) WARN_ONCE(x, #x) -#else -# define SCHED_WARN_ON(x) ({ (void)(x), 0; }) -#endif - -struct rq; -struct cpuidle_state; - /* task_struct::on_rq states: */ #define TASK_ON_RQ_QUEUED 1 #define TASK_ON_RQ_MIGRATING 2 @@ -96,21 +104,35 @@ extern atomic_long_t calc_load_tasks; extern void calc_global_load_tick(struct rq *this_rq); extern long calc_load_fold_active(struct rq *this_rq, long adjust); -#ifdef CONFIG_SMP -extern void cpu_load_update_active(struct rq *this_rq); -#else -static inline void cpu_load_update_active(struct rq *this_rq) { } -#endif +extern void call_trace_sched_update_nr_running(struct rq *rq, int count); + +extern int sysctl_sched_rt_period; +extern int sysctl_sched_rt_runtime; +extern int sched_rr_timeslice; + +/* + * Asymmetric CPU capacity bits + */ +struct asym_cap_data { + struct list_head link; + struct rcu_head rcu; + unsigned long capacity; + unsigned long cpus[]; +}; + +extern struct list_head asym_cap_list; + +#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) /* * Helpers for converting nanosecond timing to jiffy resolution */ -#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) +#define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) /* * Increase resolution of nice-level calculations for 64-bit architectures. * The extra resolution improves shares distribution and load balancing of - * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup + * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group * hierarchies, especially on larger systems. This is not a user-visible change * and does not change the user-interface for setting shares/weights. * @@ -124,7 +146,14 @@ static inline void cpu_load_update_active(struct rq *this_rq) { } #ifdef CONFIG_64BIT # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) -# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT) +# define scale_load_down(w) \ +({ \ + unsigned long __w = (w); \ + \ + if (__w) \ + __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ + __w; \ +}) #else # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) # define scale_load(w) (w) @@ -137,7 +166,7 @@ static inline void cpu_load_update_active(struct rq *this_rq) { } * scale_load() and scale_load_down(w) to convert between them. The * following must be true: * - * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD + * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD * */ #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) @@ -158,9 +187,19 @@ static inline int idle_policy(int policy) { return policy == SCHED_IDLE; } + +static inline int normal_policy(int policy) +{ +#ifdef CONFIG_SCHED_CLASS_EXT + if (policy == SCHED_EXT) + return true; +#endif + return policy == SCHED_NORMAL; +} + static inline int fair_policy(int policy) { - return policy == SCHED_NORMAL || policy == SCHED_BATCH; + return normal_policy(policy) || policy == SCHED_BATCH; } static inline int rt_policy(int policy) @@ -172,6 +211,7 @@ static inline int dl_policy(int policy) { return policy == SCHED_DEADLINE; } + static inline bool valid_policy(int policy) { return idle_policy(policy) || fair_policy(policy) || @@ -193,7 +233,39 @@ static inline int task_has_dl_policy(struct task_struct *p) return dl_policy(p->policy); } -#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) +#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) + +static inline void update_avg(u64 *avg, u64 sample) +{ + s64 diff = sample - *avg; + + *avg += diff / 8; +} + +/* + * Shifting a value by an exponent greater *or equal* to the size of said value + * is UB; cap at size-1. + */ +#define shr_bound(val, shift) \ + (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) + +/* + * cgroup weight knobs should use the common MIN, DFL and MAX values which are + * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it + * maps pretty well onto the shares value used by scheduler and the round-trip + * conversions preserve the original value over the entire range. + */ +static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) +{ + return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); +} + +static inline unsigned long sched_weight_to_cgroup(unsigned long weight) +{ + return clamp_t(unsigned long, + DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), + CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); +} /* * !! For sched_setattr_nocheck() (kernel) only !! @@ -209,7 +281,9 @@ static inline int task_has_dl_policy(struct task_struct *p) */ #define SCHED_FLAG_SUGOV 0x10000000 -static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) +#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) + +static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) { #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); @@ -221,8 +295,8 @@ static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) /* * Tells if entity @a should preempt entity @b. */ -static inline bool -dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) +static inline bool dl_entity_preempt(const struct sched_dl_entity *a, + const struct sched_dl_entity *b) { return dl_entity_is_special(a) || dl_time_before(a->deadline, b->deadline); @@ -245,13 +319,17 @@ struct rt_bandwidth { unsigned int rt_period_active; }; -void __dl_clear_params(struct task_struct *p); +static inline int dl_bandwidth_enabled(void) +{ + return sysctl_sched_rt_runtime >= 0; +} /* - * To keep the bandwidth of -deadline tasks and groups under control + * To keep the bandwidth of -deadline tasks under control * we need some place where: - * - store the maximum -deadline bandwidth of the system (the group); - * - cache the fraction of that bandwidth that is currently allocated. + * - store the maximum -deadline bandwidth of each cpu; + * - cache the fraction of bandwidth that is currently allocated in + * each root domain; * * This is all done in the data structure below. It is similar to the * one used for RT-throttling (rt_bandwidth), with the main difference @@ -259,59 +337,17 @@ void __dl_clear_params(struct task_struct *p); * do not decrease any runtime while the group "executes", neither we * need a timer to replenish it. * - * With respect to SMP, the bandwidth is given on a per-CPU basis, + * With respect to SMP, bandwidth is given on a per root domain basis, * meaning that: - * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; - * - dl_total_bw array contains, in the i-eth element, the currently - * allocated bandwidth on the i-eth CPU. - * Moreover, groups consume bandwidth on each CPU, while tasks only - * consume bandwidth on the CPU they're running on. - * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw - * that will be shown the next time the proc or cgroup controls will - * be red. It on its turn can be changed by writing on its own - * control. + * - bw (< 100%) is the deadline bandwidth of each CPU; + * - total_bw is the currently allocated bandwidth in each root domain; */ -struct dl_bandwidth { - raw_spinlock_t dl_runtime_lock; - u64 dl_runtime; - u64 dl_period; -}; - -static inline int dl_bandwidth_enabled(void) -{ - return sysctl_sched_rt_runtime >= 0; -} - struct dl_bw { raw_spinlock_t lock; u64 bw; u64 total_bw; }; -static inline void __dl_update(struct dl_bw *dl_b, s64 bw); - -static inline -void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) -{ - dl_b->total_bw -= tsk_bw; - __dl_update(dl_b, (s32)tsk_bw / cpus); -} - -static inline -void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) -{ - dl_b->total_bw += tsk_bw; - __dl_update(dl_b, -((s32)tsk_bw / cpus)); -} - -static inline -bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) -{ - return dl_b->bw != -1 && - dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; -} - -extern void dl_change_utilization(struct task_struct *p, u64 new_bw); extern void init_dl_bw(struct dl_bw *dl_b); extern int sched_dl_global_validate(void); extern void sched_dl_do_global(void); @@ -320,32 +356,103 @@ extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); extern bool __checkparam_dl(const struct sched_attr *attr); extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); -extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); -extern bool dl_cpu_busy(unsigned int cpu); +extern int dl_bw_deactivate(int cpu); +extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); +/* + * SCHED_DEADLINE supports servers (nested scheduling) with the following + * interface: + * + * dl_se::rq -- runqueue we belong to. + * + * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this + * returns NULL. + * + * dl_server_update() -- called from update_curr_common(), propagates runtime + * to the server. + * + * dl_server_start() -- start the server when it has tasks; it will stop + * automatically when there are no more tasks, per + * dl_se::server_pick() returning NULL. + * + * dl_server_stop() -- (force) stop the server; use when updating + * parameters. + * + * dl_server_init() -- initializes the server. + * + * When started the dl_server will (per dl_defer) schedule a timer for its + * zero-laxity point -- that is, unlike regular EDF tasks which run ASAP, a + * server will run at the very end of its period. + * + * This is done such that any runtime from the target class can be accounted + * against the server -- through dl_server_update() above -- such that when it + * becomes time to run, it might already be out of runtime and get deferred + * until the next period. In this case dl_server_timer() will alternate + * between defer and replenish but never actually enqueue the server. + * + * Only when the target class does not manage to exhaust the server's runtime + * (there's actualy starvation in the given period), will the dl_server get on + * the runqueue. Once queued it will pick tasks from the target class and run + * them until either its runtime is exhaused, at which point its back to + * dl_server_timer, or until there are no more tasks to run, at which point + * the dl_server stops itself. + * + * By stopping at this point the dl_server retains bandwidth, which, if a new + * task wakes up imminently (starting the server again), can be used -- + * subject to CBS wakeup rules -- without having to wait for the next period. + * + * Additionally, because of the dl_defer behaviour the start/stop behaviour is + * naturally thottled to once per period, avoiding high context switch + * workloads from spamming the hrtimer program/cancel paths. + */ +extern void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec); +extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); +extern void dl_server_start(struct sched_dl_entity *dl_se); +extern void dl_server_stop(struct sched_dl_entity *dl_se); +extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, + dl_server_pick_f pick_task); +extern void sched_init_dl_servers(void); -#ifdef CONFIG_CGROUP_SCHED +extern void fair_server_init(struct rq *rq); +extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); +extern int dl_server_apply_params(struct sched_dl_entity *dl_se, + u64 runtime, u64 period, bool init); -#include <linux/cgroup.h> -#include <linux/psi.h> +static inline bool dl_server_active(struct sched_dl_entity *dl_se) +{ + return dl_se->dl_server_active; +} -struct cfs_rq; -struct rt_rq; +#ifdef CONFIG_CGROUP_SCHED extern struct list_head task_groups; +#ifdef CONFIG_GROUP_SCHED_BANDWIDTH +extern const u64 max_bw_quota_period_us; + +/* + * default period for group bandwidth. + * default: 0.1s, units: microseconds + */ +static inline u64 default_bw_period_us(void) +{ + return 100000ULL; +} +#endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ + struct cfs_bandwidth { #ifdef CONFIG_CFS_BANDWIDTH raw_spinlock_t lock; ktime_t period; u64 quota; u64 runtime; + u64 burst; + u64 runtime_snap; s64 hierarchical_quota; - u64 runtime_expires; - int expires_seq; - short idle; - short period_active; + u8 idle; + u8 period_active; + u8 slack_started; struct hrtimer period_timer; struct hrtimer slack_timer; struct list_head throttled_cfs_rq; @@ -353,32 +460,34 @@ struct cfs_bandwidth { /* Statistics: */ int nr_periods; int nr_throttled; + int nr_burst; u64 throttled_time; - - bool distribute_running; -#endif + u64 burst_time; +#endif /* CONFIG_CFS_BANDWIDTH */ }; /* Task group related information */ struct task_group { struct cgroup_subsys_state css; +#ifdef CONFIG_GROUP_SCHED_WEIGHT + /* A positive value indicates that this is a SCHED_IDLE group. */ + int idle; +#endif + #ifdef CONFIG_FAIR_GROUP_SCHED /* schedulable entities of this group on each CPU */ struct sched_entity **se; /* runqueue "owned" by this group on each CPU */ struct cfs_rq **cfs_rq; unsigned long shares; - -#ifdef CONFIG_SMP /* * load_avg can be heavily contended at clock tick time, so put - * it in its own cacheline separated from the fields above which + * it in its own cache-line separated from the fields above which * will also be accessed at each tick. */ atomic_long_t load_avg ____cacheline_aligned; -#endif -#endif +#endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED struct sched_rt_entity **rt_se; @@ -387,6 +496,8 @@ struct task_group { struct rt_bandwidth rt_bandwidth; #endif + struct scx_task_group scx; + struct rcu_head rcu; struct list_head list; @@ -399,9 +510,19 @@ struct task_group { #endif struct cfs_bandwidth cfs_bandwidth; + +#ifdef CONFIG_UCLAMP_TASK_GROUP + /* The two decimal precision [%] value requested from user-space */ + unsigned int uclamp_pct[UCLAMP_CNT]; + /* Clamp values requested for a task group */ + struct uclamp_se uclamp_req[UCLAMP_CNT]; + /* Effective clamp values used for a task group */ + struct uclamp_se uclamp[UCLAMP_CNT]; +#endif + }; -#ifdef CONFIG_FAIR_GROUP_SCHED +#ifdef CONFIG_GROUP_SCHED_WEIGHT #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD /* @@ -432,23 +553,38 @@ static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) return walk_tg_tree_from(&root_task_group, down, up, data); } +static inline struct task_group *css_tg(struct cgroup_subsys_state *css) +{ + return css ? container_of(css, struct task_group, css) : NULL; +} + extern int tg_nop(struct task_group *tg, void *data); +#ifdef CONFIG_FAIR_GROUP_SCHED extern void free_fair_sched_group(struct task_group *tg); extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); extern void online_fair_sched_group(struct task_group *tg); extern void unregister_fair_sched_group(struct task_group *tg); +#else /* !CONFIG_FAIR_GROUP_SCHED: */ +static inline void free_fair_sched_group(struct task_group *tg) { } +static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) +{ + return 1; +} +static inline void online_fair_sched_group(struct task_group *tg) { } +static inline void unregister_fair_sched_group(struct task_group *tg) { } +#endif /* !CONFIG_FAIR_GROUP_SCHED */ + extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, struct sched_entity *se, int cpu, struct sched_entity *parent); -extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); +extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); +extern bool cfs_task_bw_constrained(struct task_struct *p); -extern void free_rt_sched_group(struct task_group *tg); -extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int cpu, struct sched_rt_entity *parent); @@ -462,39 +598,93 @@ extern struct task_group *sched_create_group(struct task_group *parent); extern void sched_online_group(struct task_group *tg, struct task_group *parent); extern void sched_destroy_group(struct task_group *tg); -extern void sched_offline_group(struct task_group *tg); +extern void sched_release_group(struct task_group *tg); -extern void sched_move_task(struct task_struct *tsk); +extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); #ifdef CONFIG_FAIR_GROUP_SCHED extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); -#ifdef CONFIG_SMP +extern int sched_group_set_idle(struct task_group *tg, long idle); + extern void set_task_rq_fair(struct sched_entity *se, struct cfs_rq *prev, struct cfs_rq *next); -#else /* !CONFIG_SMP */ -static inline void set_task_rq_fair(struct sched_entity *se, - struct cfs_rq *prev, struct cfs_rq *next) { } -#endif /* CONFIG_SMP */ -#endif /* CONFIG_FAIR_GROUP_SCHED */ +#else /* !CONFIG_FAIR_GROUP_SCHED: */ +static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } +static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } +#endif /* !CONFIG_FAIR_GROUP_SCHED */ -#else /* CONFIG_CGROUP_SCHED */ +#else /* !CONFIG_CGROUP_SCHED: */ struct cfs_bandwidth { }; -#endif /* CONFIG_CGROUP_SCHED */ +static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } + +#endif /* !CONFIG_CGROUP_SCHED */ + +extern void unregister_rt_sched_group(struct task_group *tg); +extern void free_rt_sched_group(struct task_group *tg); +extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); + +/* + * u64_u32_load/u64_u32_store + * + * Use a copy of a u64 value to protect against data race. This is only + * applicable for 32-bits architectures. + */ +#ifdef CONFIG_64BIT +# define u64_u32_load_copy(var, copy) var +# define u64_u32_store_copy(var, copy, val) (var = val) +#else +# define u64_u32_load_copy(var, copy) \ +({ \ + u64 __val, __val_copy; \ + do { \ + __val_copy = copy; \ + /* \ + * paired with u64_u32_store_copy(), ordering access \ + * to var and copy. \ + */ \ + smp_rmb(); \ + __val = var; \ + } while (__val != __val_copy); \ + __val; \ +}) +# define u64_u32_store_copy(var, copy, val) \ +do { \ + typeof(val) __val = (val); \ + var = __val; \ + /* \ + * paired with u64_u32_load_copy(), ordering access to var and \ + * copy. \ + */ \ + smp_wmb(); \ + copy = __val; \ +} while (0) +#endif +# define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) +# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) + +struct balance_callback { + struct balance_callback *next; + void (*func)(struct rq *rq); +}; /* CFS-related fields in a runqueue */ struct cfs_rq { struct load_weight load; - unsigned long runnable_weight; - unsigned int nr_running; - unsigned int h_nr_running; + unsigned int nr_queued; + unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ + unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ + unsigned int h_nr_idle; /* SCHED_IDLE */ - u64 exec_clock; - u64 min_vruntime; -#ifndef CONFIG_64BIT - u64 min_vruntime_copy; + s64 avg_vruntime; + u64 avg_load; + + u64 zero_vruntime; +#ifdef CONFIG_SCHED_CORE + unsigned int forceidle_seq; + u64 zero_vruntime_fi; #endif struct rb_root_cached tasks_timeline; @@ -505,30 +695,24 @@ struct cfs_rq { */ struct sched_entity *curr; struct sched_entity *next; - struct sched_entity *last; - struct sched_entity *skip; - -#ifdef CONFIG_SCHED_DEBUG - unsigned int nr_spread_over; -#endif -#ifdef CONFIG_SMP /* * CFS load tracking */ struct sched_avg avg; #ifndef CONFIG_64BIT - u64 load_last_update_time_copy; + u64 last_update_time_copy; #endif struct { raw_spinlock_t lock ____cacheline_aligned; int nr; unsigned long load_avg; unsigned long util_avg; - unsigned long runnable_sum; + unsigned long runnable_avg; } removed; #ifdef CONFIG_FAIR_GROUP_SCHED + u64 last_update_tg_load_avg; unsigned long tg_load_avg_contrib; long propagate; long prop_runnable_sum; @@ -543,7 +727,6 @@ struct cfs_rq { u64 last_h_load_update; struct sched_entity *h_load_next; #endif /* CONFIG_FAIR_GROUP_SCHED */ -#endif /* CONFIG_SMP */ #ifdef CONFIG_FAIR_GROUP_SCHED struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ @@ -560,22 +743,75 @@ struct cfs_rq { struct list_head leaf_cfs_rq_list; struct task_group *tg; /* group that "owns" this runqueue */ + /* Locally cached copy of our task_group's idle value */ + int idle; + #ifdef CONFIG_CFS_BANDWIDTH int runtime_enabled; - int expires_seq; - u64 runtime_expires; s64 runtime_remaining; + u64 throttled_pelt_idle; +#ifndef CONFIG_64BIT + u64 throttled_pelt_idle_copy; +#endif u64 throttled_clock; - u64 throttled_clock_task; - u64 throttled_clock_task_time; - int throttled; + u64 throttled_clock_pelt; + u64 throttled_clock_pelt_time; + u64 throttled_clock_self; + u64 throttled_clock_self_time; + bool throttled:1; + bool pelt_clock_throttled:1; int throttle_count; struct list_head throttled_list; + struct list_head throttled_csd_list; + struct list_head throttled_limbo_list; #endif /* CONFIG_CFS_BANDWIDTH */ #endif /* CONFIG_FAIR_GROUP_SCHED */ }; +#ifdef CONFIG_SCHED_CLASS_EXT +/* scx_rq->flags, protected by the rq lock */ +enum scx_rq_flags { + /* + * A hotplugged CPU starts scheduling before rq_online_scx(). Track + * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called + * only while the BPF scheduler considers the CPU to be online. + */ + SCX_RQ_ONLINE = 1 << 0, + SCX_RQ_CAN_STOP_TICK = 1 << 1, + SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ + SCX_RQ_BYPASSING = 1 << 4, + SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ + SCX_RQ_BAL_CB_PENDING = 1 << 6, /* must queue a cb after dispatching */ + + SCX_RQ_IN_WAKEUP = 1 << 16, + SCX_RQ_IN_BALANCE = 1 << 17, +}; + +struct scx_rq { + struct scx_dispatch_q local_dsq; + struct list_head runnable_list; /* runnable tasks on this rq */ + struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ + unsigned long ops_qseq; + u64 extra_enq_flags; /* see move_task_to_local_dsq() */ + u32 nr_running; + u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ + bool cpu_released; + u32 flags; + u64 clock; /* current per-rq clock -- see scx_bpf_now() */ + cpumask_var_t cpus_to_kick; + cpumask_var_t cpus_to_kick_if_idle; + cpumask_var_t cpus_to_preempt; + cpumask_var_t cpus_to_wait; + unsigned long kick_sync; + local_t reenq_local_deferred; + struct balance_callback deferred_bal_cb; + struct irq_work deferred_irq_work; + struct irq_work kick_cpus_irq_work; + struct scx_dispatch_q bypass_dsq; +}; +#endif /* CONFIG_SCHED_CLASS_EXT */ + static inline int rt_bandwidth_enabled(void) { return sysctl_sched_rt_runtime >= 0; @@ -591,34 +827,28 @@ struct rt_rq { struct rt_prio_array active; unsigned int rt_nr_running; unsigned int rr_nr_running; -#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED struct { int curr; /* highest queued rt task prio */ -#ifdef CONFIG_SMP int next; /* next highest */ -#endif } highest_prio; -#endif -#ifdef CONFIG_SMP - unsigned long rt_nr_migratory; - unsigned long rt_nr_total; - int overloaded; + bool overloaded; struct plist_head pushable_tasks; -#endif /* CONFIG_SMP */ int rt_queued; +#ifdef CONFIG_RT_GROUP_SCHED int rt_throttled; - u64 rt_time; - u64 rt_runtime; + u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ + u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ /* Nests inside the rq lock: */ raw_spinlock_t rt_runtime_lock; -#ifdef CONFIG_RT_GROUP_SCHED - unsigned long rt_nr_boosted; + unsigned int rt_nr_boosted; - struct rq *rq; - struct task_group *tg; + struct rq *rq; /* this is always top-level rq, cache? */ +#endif +#ifdef CONFIG_CGROUP_SCHED + struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ #endif }; @@ -632,9 +862,8 @@ struct dl_rq { /* runqueue is an rbtree, ordered by deadline */ struct rb_root_cached root; - unsigned long dl_nr_running; + unsigned int dl_nr_running; -#ifdef CONFIG_SMP /* * Deadline values of the currently executing and the * earliest ready task on this rq. Caching these facilitates @@ -646,8 +875,7 @@ struct dl_rq { u64 next; } earliest_dl; - unsigned long dl_nr_migratory; - int overloaded; + bool overloaded; /* * Tasks on this rq that can be pushed away. They are kept in @@ -655,9 +883,7 @@ struct dl_rq { * of the leftmost (earliest deadline) element. */ struct rb_root_cached pushable_dl_tasks_root; -#else - struct dl_bw dl_bw; -#endif + /* * "Active utilization" for this runqueue: increased when a * task wakes up (becomes TASK_RUNNING) and decreased when a @@ -678,6 +904,12 @@ struct dl_rq { u64 extra_bw; /* + * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM + * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). + */ + u64 max_bw; + + /* * Inverse of the fraction of CPU utilization that can be reclaimed * by the GRUB algorithm. */ @@ -685,13 +917,43 @@ struct dl_rq { }; #ifdef CONFIG_FAIR_GROUP_SCHED + /* An entity is a task if it doesn't "own" a runqueue */ #define entity_is_task(se) (!se->my_q) -#else + +static inline void se_update_runnable(struct sched_entity *se) +{ + if (!entity_is_task(se)) + se->runnable_weight = se->my_q->h_nr_runnable; +} + +static inline long se_runnable(struct sched_entity *se) +{ + if (se->sched_delayed) + return false; + + if (entity_is_task(se)) + return !!se->on_rq; + else + return se->runnable_weight; +} + +#else /* !CONFIG_FAIR_GROUP_SCHED: */ + #define entity_is_task(se) 1 -#endif -#ifdef CONFIG_SMP +static inline void se_update_runnable(struct sched_entity *se) { } + +static inline long se_runnable(struct sched_entity *se) +{ + if (se->sched_delayed) + return false; + + return !!se->on_rq; +} + +#endif /* !CONFIG_FAIR_GROUP_SCHED */ + /* * XXX we want to get rid of these helpers and use the full load resolution. */ @@ -700,10 +962,6 @@ static inline long se_weight(struct sched_entity *se) return scale_load_down(se->load.weight); } -static inline long se_runnable(struct sched_entity *se) -{ - return scale_load_down(se->runnable_weight); -} static inline bool sched_asym_prefer(int a, int b) { @@ -716,10 +974,6 @@ struct perf_domain { struct rcu_head rcu; }; -/* Scheduling group status flags */ -#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ -#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ - /* * We add the notion of a root-domain which will be used to define per-domain * variables. Each exclusive cpuset essentially defines an island domain by @@ -740,10 +994,10 @@ struct root_domain { * - More than one runnable task * - Running task is misfit */ - int overload; + bool overloaded; - /* Indicate one or more cpus over-utilized (tipping point) */ - int overutilized; + /* Indicate one or more CPUs over-utilized (tipping point) */ + bool overutilized; /* * The bit corresponding to a CPU gets set here if such CPU has more @@ -754,6 +1008,15 @@ struct root_domain { struct dl_bw dl_bw; struct cpudl cpudl; + /* + * Indicate whether a root_domain's dl_bw has been checked or + * updated. It's monotonously increasing value. + * + * Also, some corner cases, like 'wrap around' is dangerous, but given + * that u64 is 'big enough'. So that shouldn't be a concern. + */ + u64 visit_cookie; + #ifdef HAVE_RT_PUSH_IPI /* * For IPI pull requests, loop across the rto_mask. @@ -766,7 +1029,7 @@ struct root_domain { /* These atomics are updated outside of a lock */ atomic_t rto_loop_next; atomic_t rto_loop_start; -#endif +#endif /* HAVE_RT_PUSH_IPI */ /* * The "RT overload" flag: it gets set if a CPU has more than * one runnable RT task. @@ -774,28 +1037,77 @@ struct root_domain { cpumask_var_t rto_mask; struct cpupri cpupri; - unsigned long max_cpu_capacity; - /* * NULL-terminated list of performance domains intersecting with the * CPUs of the rd. Protected by RCU. */ - struct perf_domain *pd; + struct perf_domain __rcu *pd; }; -extern struct root_domain def_root_domain; -extern struct mutex sched_domains_mutex; - extern void init_defrootdomain(void); extern int sched_init_domains(const struct cpumask *cpu_map); extern void rq_attach_root(struct rq *rq, struct root_domain *rd); extern void sched_get_rd(struct root_domain *rd); extern void sched_put_rd(struct root_domain *rd); +static inline int get_rd_overloaded(struct root_domain *rd) +{ + return READ_ONCE(rd->overloaded); +} + +static inline void set_rd_overloaded(struct root_domain *rd, int status) +{ + if (get_rd_overloaded(rd) != status) + WRITE_ONCE(rd->overloaded, status); +} + #ifdef HAVE_RT_PUSH_IPI extern void rto_push_irq_work_func(struct irq_work *work); #endif -#endif /* CONFIG_SMP */ + +#ifdef CONFIG_UCLAMP_TASK +/* + * struct uclamp_bucket - Utilization clamp bucket + * @value: utilization clamp value for tasks on this clamp bucket + * @tasks: number of RUNNABLE tasks on this clamp bucket + * + * Keep track of how many tasks are RUNNABLE for a given utilization + * clamp value. + */ +struct uclamp_bucket { + unsigned long value : bits_per(SCHED_CAPACITY_SCALE); + unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); +}; + +/* + * struct uclamp_rq - rq's utilization clamp + * @value: currently active clamp values for a rq + * @bucket: utilization clamp buckets affecting a rq + * + * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. + * A clamp value is affecting a rq when there is at least one task RUNNABLE + * (or actually running) with that value. + * + * There are up to UCLAMP_CNT possible different clamp values, currently there + * are only two: minimum utilization and maximum utilization. + * + * All utilization clamping values are MAX aggregated, since: + * - for util_min: we want to run the CPU at least at the max of the minimum + * utilization required by its currently RUNNABLE tasks. + * - for util_max: we want to allow the CPU to run up to the max of the + * maximum utilization allowed by its currently RUNNABLE tasks. + * + * Since on each system we expect only a limited number of different + * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track + * the metrics required to compute all the per-rq utilization clamp values. + */ +struct uclamp_rq { + unsigned int value; + struct uclamp_bucket bucket[UCLAMP_BUCKETS]; +}; + +DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); +#endif /* CONFIG_UCLAMP_TASK */ /* * This is the main, per-CPU runqueue data structure. @@ -806,38 +1118,42 @@ extern void rto_push_irq_work_func(struct irq_work *work); */ struct rq { /* runqueue lock: */ - raw_spinlock_t lock; + raw_spinlock_t __lock; - /* - * nr_running and cpu_load should be in the same cacheline because - * remote CPUs use both these fields when doing load calculation. - */ + /* Per class runqueue modification mask; bits in class order. */ + unsigned int queue_mask; unsigned int nr_running; #ifdef CONFIG_NUMA_BALANCING unsigned int nr_numa_running; unsigned int nr_preferred_running; unsigned int numa_migrate_on; #endif - #define CPU_LOAD_IDX_MAX 5 - unsigned long cpu_load[CPU_LOAD_IDX_MAX]; #ifdef CONFIG_NO_HZ_COMMON -#ifdef CONFIG_SMP - unsigned long last_load_update_tick; unsigned long last_blocked_load_update_tick; unsigned int has_blocked_load; -#endif /* CONFIG_SMP */ + call_single_data_t nohz_csd; unsigned int nohz_tick_stopped; - atomic_t nohz_flags; + atomic_t nohz_flags; #endif /* CONFIG_NO_HZ_COMMON */ - /* capture load from *all* tasks on this CPU: */ - struct load_weight load; - unsigned long nr_load_updates; + unsigned int ttwu_pending; u64 nr_switches; +#ifdef CONFIG_UCLAMP_TASK + /* Utilization clamp values based on CPU's RUNNABLE tasks */ + struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; + unsigned int uclamp_flags; +#define UCLAMP_FLAG_IDLE 0x01 +#endif + struct cfs_rq cfs; struct rt_rq rt; struct dl_rq dl; +#ifdef CONFIG_SCHED_CLASS_EXT + struct scx_rq scx; +#endif + + struct sched_dl_entity fair_server; #ifdef CONFIG_FAIR_GROUP_SCHED /* list of leaf cfs_rq on this CPU: */ @@ -853,7 +1169,16 @@ struct rq { */ unsigned long nr_uninterruptible; - struct task_struct *curr; +#ifdef CONFIG_SCHED_PROXY_EXEC + struct task_struct __rcu *donor; /* Scheduling context */ + struct task_struct __rcu *curr; /* Execution context */ +#else + union { + struct task_struct __rcu *donor; /* Scheduler context */ + struct task_struct __rcu *curr; /* Execution context */ + }; +#endif + struct sched_dl_entity *dl_server; struct task_struct *idle; struct task_struct *stop; unsigned long next_balance; @@ -861,19 +1186,34 @@ struct rq { unsigned int clock_update_flags; u64 clock; - u64 clock_task; + /* Ensure that all clocks are in the same cache line */ + u64 clock_task ____cacheline_aligned; + u64 clock_pelt; + unsigned long lost_idle_time; + u64 clock_pelt_idle; + u64 clock_idle; +#ifndef CONFIG_64BIT + u64 clock_pelt_idle_copy; + u64 clock_idle_copy; +#endif atomic_t nr_iowait; -#ifdef CONFIG_SMP - struct root_domain *rd; - struct sched_domain *sd; + u64 last_seen_need_resched_ns; + int ticks_without_resched; + +#ifdef CONFIG_MEMBARRIER + int membarrier_state; +#endif + + struct root_domain *rd; + struct sched_domain __rcu *sd; unsigned long cpu_capacity; - unsigned long cpu_capacity_orig; - struct callback_head *balance_callback; + struct balance_callback *balance_callback; + unsigned char nohz_idle_balance; unsigned char idle_balance; unsigned long misfit_task_load; @@ -894,15 +1234,22 @@ struct rq { #ifdef CONFIG_HAVE_SCHED_AVG_IRQ struct sched_avg avg_irq; #endif +#ifdef CONFIG_SCHED_HW_PRESSURE + struct sched_avg avg_hw; +#endif u64 idle_stamp; u64 avg_idle; /* This is used to determine avg_idle's max value */ u64 max_idle_balance_cost; + +#ifdef CONFIG_HOTPLUG_CPU + struct rcuwait hotplug_wait; #endif #ifdef CONFIG_IRQ_TIME_ACCOUNTING u64 prev_irq_time; + u64 psi_irq_time; #endif #ifdef CONFIG_PARAVIRT u64 prev_steal_time; @@ -916,18 +1263,15 @@ struct rq { long calc_load_active; #ifdef CONFIG_SCHED_HRTICK -#ifdef CONFIG_SMP - int hrtick_csd_pending; call_single_data_t hrtick_csd; -#endif struct hrtimer hrtick_timer; + ktime_t hrtick_time; #endif #ifdef CONFIG_SCHEDSTATS /* latency stats */ struct sched_info rq_sched_info; unsigned long long rq_cpu_time; - /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ /* sys_sched_yield() stats */ unsigned int yld_count; @@ -941,25 +1285,311 @@ struct rq { unsigned int ttwu_local; #endif -#ifdef CONFIG_SMP - struct llist_head wake_list; -#endif - #ifdef CONFIG_CPU_IDLE - /* Must be inspected within a rcu lock section */ + /* Must be inspected within a RCU lock section */ struct cpuidle_state *idle_state; #endif + + unsigned int nr_pinned; + unsigned int push_busy; + struct cpu_stop_work push_work; + +#ifdef CONFIG_SCHED_CORE + /* per rq */ + struct rq *core; + struct task_struct *core_pick; + struct sched_dl_entity *core_dl_server; + unsigned int core_enabled; + unsigned int core_sched_seq; + struct rb_root core_tree; + + /* shared state -- careful with sched_core_cpu_deactivate() */ + unsigned int core_task_seq; + unsigned int core_pick_seq; + unsigned long core_cookie; + unsigned int core_forceidle_count; + unsigned int core_forceidle_seq; + unsigned int core_forceidle_occupation; + u64 core_forceidle_start; +#endif /* CONFIG_SCHED_CORE */ + + /* Scratch cpumask to be temporarily used under rq_lock */ + cpumask_var_t scratch_mask; + +#ifdef CONFIG_CFS_BANDWIDTH + call_single_data_t cfsb_csd; + struct list_head cfsb_csd_list; +#endif }; +#ifdef CONFIG_FAIR_GROUP_SCHED + +/* CPU runqueue to which this cfs_rq is attached */ +static inline struct rq *rq_of(struct cfs_rq *cfs_rq) +{ + return cfs_rq->rq; +} + +#else /* !CONFIG_FAIR_GROUP_SCHED: */ + +static inline struct rq *rq_of(struct cfs_rq *cfs_rq) +{ + return container_of(cfs_rq, struct rq, cfs); +} +#endif /* !CONFIG_FAIR_GROUP_SCHED */ + static inline int cpu_of(struct rq *rq) { -#ifdef CONFIG_SMP return rq->cpu; +} + +#define MDF_PUSH 0x01 + +static inline bool is_migration_disabled(struct task_struct *p) +{ + return p->migration_disabled; +} + +DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); +DECLARE_PER_CPU(struct rnd_state, sched_rnd_state); + +static inline u32 sched_rng(void) +{ + return prandom_u32_state(this_cpu_ptr(&sched_rnd_state)); +} + +#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) +#define this_rq() this_cpu_ptr(&runqueues) +#define task_rq(p) cpu_rq(task_cpu(p)) +#define cpu_curr(cpu) (cpu_rq(cpu)->curr) +#define raw_rq() raw_cpu_ptr(&runqueues) + +#ifdef CONFIG_SCHED_PROXY_EXEC +static inline void rq_set_donor(struct rq *rq, struct task_struct *t) +{ + rcu_assign_pointer(rq->donor, t); +} #else - return 0; +static inline void rq_set_donor(struct rq *rq, struct task_struct *t) +{ + /* Do nothing */ +} #endif + +#ifdef CONFIG_SCHED_CORE +static inline struct cpumask *sched_group_span(struct sched_group *sg); + +DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); + +static inline bool sched_core_enabled(struct rq *rq) +{ + return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; +} + +static inline bool sched_core_disabled(void) +{ + return !static_branch_unlikely(&__sched_core_enabled); +} + +/* + * Be careful with this function; not for general use. The return value isn't + * stable unless you actually hold a relevant rq->__lock. + */ +static inline raw_spinlock_t *rq_lockp(struct rq *rq) +{ + if (sched_core_enabled(rq)) + return &rq->core->__lock; + + return &rq->__lock; +} + +static inline raw_spinlock_t *__rq_lockp(struct rq *rq) +{ + if (rq->core_enabled) + return &rq->core->__lock; + + return &rq->__lock; } +extern bool +cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); + +extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); + +/* + * Helpers to check if the CPU's core cookie matches with the task's cookie + * when core scheduling is enabled. + * A special case is that the task's cookie always matches with CPU's core + * cookie if the CPU is in an idle core. + */ +static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) +{ + /* Ignore cookie match if core scheduler is not enabled on the CPU. */ + if (!sched_core_enabled(rq)) + return true; + + return rq->core->core_cookie == p->core_cookie; +} + +static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) +{ + bool idle_core = true; + int cpu; + + /* Ignore cookie match if core scheduler is not enabled on the CPU. */ + if (!sched_core_enabled(rq)) + return true; + + if (rq->core->core_cookie == p->core_cookie) + return true; + + for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { + if (!available_idle_cpu(cpu)) { + idle_core = false; + break; + } + } + + /* + * A CPU in an idle core is always the best choice for tasks with + * cookies. + */ + return idle_core; +} + +static inline bool sched_group_cookie_match(struct rq *rq, + struct task_struct *p, + struct sched_group *group) +{ + int cpu; + + /* Ignore cookie match if core scheduler is not enabled on the CPU. */ + if (!sched_core_enabled(rq)) + return true; + + for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { + if (sched_core_cookie_match(cpu_rq(cpu), p)) + return true; + } + return false; +} + +static inline bool sched_core_enqueued(struct task_struct *p) +{ + return !RB_EMPTY_NODE(&p->core_node); +} + +extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); +extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); + +extern void sched_core_get(void); +extern void sched_core_put(void); + +#else /* !CONFIG_SCHED_CORE: */ + +static inline bool sched_core_enabled(struct rq *rq) +{ + return false; +} + +static inline bool sched_core_disabled(void) +{ + return true; +} + +static inline raw_spinlock_t *rq_lockp(struct rq *rq) +{ + return &rq->__lock; +} + +static inline raw_spinlock_t *__rq_lockp(struct rq *rq) +{ + return &rq->__lock; +} + +static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) +{ + return true; +} + +static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) +{ + return true; +} + +static inline bool sched_group_cookie_match(struct rq *rq, + struct task_struct *p, + struct sched_group *group) +{ + return true; +} + +#endif /* !CONFIG_SCHED_CORE */ + +#ifdef CONFIG_RT_GROUP_SCHED +# ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED +DECLARE_STATIC_KEY_FALSE(rt_group_sched); +static inline bool rt_group_sched_enabled(void) +{ + return static_branch_unlikely(&rt_group_sched); +} +# else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */ +DECLARE_STATIC_KEY_TRUE(rt_group_sched); +static inline bool rt_group_sched_enabled(void) +{ + return static_branch_likely(&rt_group_sched); +} +# endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ +#else /* !CONFIG_RT_GROUP_SCHED: */ +# define rt_group_sched_enabled() false +#endif /* !CONFIG_RT_GROUP_SCHED */ + +static inline void lockdep_assert_rq_held(struct rq *rq) +{ + lockdep_assert_held(__rq_lockp(rq)); +} + +extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); +extern bool raw_spin_rq_trylock(struct rq *rq); +extern void raw_spin_rq_unlock(struct rq *rq); + +static inline void raw_spin_rq_lock(struct rq *rq) +{ + raw_spin_rq_lock_nested(rq, 0); +} + +static inline void raw_spin_rq_lock_irq(struct rq *rq) +{ + local_irq_disable(); + raw_spin_rq_lock(rq); +} + +static inline void raw_spin_rq_unlock_irq(struct rq *rq) +{ + raw_spin_rq_unlock(rq); + local_irq_enable(); +} + +static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) +{ + unsigned long flags; + + local_irq_save(flags); + raw_spin_rq_lock(rq); + + return flags; +} + +static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) +{ + raw_spin_rq_unlock(rq); + local_irq_restore(flags); +} + +#define raw_spin_rq_lock_irqsave(rq, flags) \ +do { \ + flags = _raw_spin_rq_lock_irqsave(rq); \ +} while (0) #ifdef CONFIG_SCHED_SMT extern void __update_idle_core(struct rq *rq); @@ -970,25 +1600,62 @@ static inline void update_idle_core(struct rq *rq) __update_idle_core(rq); } -#else +#else /* !CONFIG_SCHED_SMT: */ static inline void update_idle_core(struct rq *rq) { } -#endif +#endif /* !CONFIG_SCHED_SMT */ -DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); +#ifdef CONFIG_FAIR_GROUP_SCHED -#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) -#define this_rq() this_cpu_ptr(&runqueues) -#define task_rq(p) cpu_rq(task_cpu(p)) -#define cpu_curr(cpu) (cpu_rq(cpu)->curr) -#define raw_rq() raw_cpu_ptr(&runqueues) +static inline struct task_struct *task_of(struct sched_entity *se) +{ + WARN_ON_ONCE(!entity_is_task(se)); + return container_of(se, struct task_struct, se); +} -extern void update_rq_clock(struct rq *rq); +static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) +{ + return p->se.cfs_rq; +} + +/* runqueue on which this entity is (to be) queued */ +static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) +{ + return se->cfs_rq; +} -static inline u64 __rq_clock_broken(struct rq *rq) +/* runqueue "owned" by this group */ +static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) { - return READ_ONCE(rq->clock); + return grp->my_q; } +#else /* !CONFIG_FAIR_GROUP_SCHED: */ + +#define task_of(_se) container_of(_se, struct task_struct, se) + +static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) +{ + return &task_rq(p)->cfs; +} + +static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) +{ + const struct task_struct *p = task_of(se); + struct rq *rq = task_rq(p); + + return &rq->cfs; +} + +/* runqueue "owned" by this group */ +static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) +{ + return NULL; +} + +#endif /* !CONFIG_FAIR_GROUP_SCHED */ + +extern void update_rq_clock(struct rq *rq); + /* * rq::clock_update_flags bits * @@ -1008,7 +1675,7 @@ static inline u64 __rq_clock_broken(struct rq *rq) * * if (rq-clock_update_flags >= RQCF_UPDATED) * - * to check if %RQCF_UPADTED is set. It'll never be shifted more than + * to check if %RQCF_UPDATED is set. It'll never be shifted more than * one position though, because the next rq_unpin_lock() will shift it * back. */ @@ -1022,12 +1689,12 @@ static inline void assert_clock_updated(struct rq *rq) * The only reason for not seeing a clock update since the * last rq_pin_lock() is if we're currently skipping updates. */ - SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); + WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); } static inline u64 rq_clock(struct rq *rq) { - lockdep_assert_held(&rq->lock); + lockdep_assert_rq_held(rq); assert_clock_updated(rq); return rq->clock; @@ -1035,7 +1702,7 @@ static inline u64 rq_clock(struct rq *rq) static inline u64 rq_clock_task(struct rq *rq) { - lockdep_assert_held(&rq->lock); + lockdep_assert_rq_held(rq); assert_clock_updated(rq); return rq->clock_task; @@ -1043,77 +1710,140 @@ static inline u64 rq_clock_task(struct rq *rq) static inline void rq_clock_skip_update(struct rq *rq) { - lockdep_assert_held(&rq->lock); + lockdep_assert_rq_held(rq); rq->clock_update_flags |= RQCF_REQ_SKIP; } /* * See rt task throttling, which is the only time a skip - * request is cancelled. + * request is canceled. */ static inline void rq_clock_cancel_skipupdate(struct rq *rq) { - lockdep_assert_held(&rq->lock); + lockdep_assert_rq_held(rq); rq->clock_update_flags &= ~RQCF_REQ_SKIP; } +/* + * During cpu offlining and rq wide unthrottling, we can trigger + * an update_rq_clock() for several cfs and rt runqueues (Typically + * when using list_for_each_entry_*) + * rq_clock_start_loop_update() can be called after updating the clock + * once and before iterating over the list to prevent multiple update. + * After the iterative traversal, we need to call rq_clock_stop_loop_update() + * to clear RQCF_ACT_SKIP of rq->clock_update_flags. + */ +static inline void rq_clock_start_loop_update(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); + rq->clock_update_flags |= RQCF_ACT_SKIP; +} + +static inline void rq_clock_stop_loop_update(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + rq->clock_update_flags &= ~RQCF_ACT_SKIP; +} + struct rq_flags { unsigned long flags; struct pin_cookie cookie; -#ifdef CONFIG_SCHED_DEBUG /* * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the * current pin context is stashed here in case it needs to be * restored in rq_repin_lock(). */ unsigned int clock_update_flags; -#endif }; +extern struct balance_callback balance_push_callback; + +#ifdef CONFIG_SCHED_CLASS_EXT +extern const struct sched_class ext_sched_class; + +DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ +DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ + +#define scx_enabled() static_branch_unlikely(&__scx_enabled) +#define scx_switched_all() static_branch_unlikely(&__scx_switched_all) + +static inline void scx_rq_clock_update(struct rq *rq, u64 clock) +{ + if (!scx_enabled()) + return; + WRITE_ONCE(rq->scx.clock, clock); + smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); +} + +static inline void scx_rq_clock_invalidate(struct rq *rq) +{ + if (!scx_enabled()) + return; + WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); +} + +#else /* !CONFIG_SCHED_CLASS_EXT: */ +#define scx_enabled() false +#define scx_switched_all() false + +static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} +static inline void scx_rq_clock_invalidate(struct rq *rq) {} +#endif /* !CONFIG_SCHED_CLASS_EXT */ + +/* + * Lockdep annotation that avoids accidental unlocks; it's like a + * sticky/continuous lockdep_assert_held(). + * + * This avoids code that has access to 'struct rq *rq' (basically everything in + * the scheduler) from accidentally unlocking the rq if they do not also have a + * copy of the (on-stack) 'struct rq_flags rf'. + * + * Also see Documentation/locking/lockdep-design.rst. + */ static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) { - rf->cookie = lockdep_pin_lock(&rq->lock); + rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); -#ifdef CONFIG_SCHED_DEBUG rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); rf->clock_update_flags = 0; -#endif + WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); } static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) { -#ifdef CONFIG_SCHED_DEBUG if (rq->clock_update_flags > RQCF_ACT_SKIP) rf->clock_update_flags = RQCF_UPDATED; -#endif - lockdep_unpin_lock(&rq->lock, rf->cookie); + scx_rq_clock_invalidate(rq); + lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); } static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) { - lockdep_repin_lock(&rq->lock, rf->cookie); + lockdep_repin_lock(__rq_lockp(rq), rf->cookie); -#ifdef CONFIG_SCHED_DEBUG /* * Restore the value we stashed in @rf for this pin context. */ rq->clock_update_flags |= rf->clock_update_flags; -#endif } +extern struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) __acquires(rq->lock); +extern struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) __acquires(p->pi_lock) __acquires(rq->lock); -static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) +static inline void +__task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) __releases(rq->lock) { rq_unpin_lock(rq, rf); - raw_spin_unlock(&rq->lock); + raw_spin_rq_unlock(rq); } static inline void @@ -1121,69 +1851,78 @@ task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) __releases(rq->lock) __releases(p->pi_lock) { - rq_unpin_lock(rq, rf); - raw_spin_unlock(&rq->lock); + __task_rq_unlock(rq, p, rf); raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); } -static inline void -rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) - __acquires(rq->lock) -{ - raw_spin_lock_irqsave(&rq->lock, rf->flags); - rq_pin_lock(rq, rf); -} +DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, + _T->rq = task_rq_lock(_T->lock, &_T->rf), + task_rq_unlock(_T->rq, _T->lock, &_T->rf), + struct rq *rq; struct rq_flags rf) -static inline void -rq_lock_irq(struct rq *rq, struct rq_flags *rf) +DEFINE_LOCK_GUARD_1(__task_rq_lock, struct task_struct, + _T->rq = __task_rq_lock(_T->lock, &_T->rf), + __task_rq_unlock(_T->rq, _T->lock, &_T->rf), + struct rq *rq; struct rq_flags rf) + +static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock) { - raw_spin_lock_irq(&rq->lock); + raw_spin_rq_lock_irqsave(rq, rf->flags); rq_pin_lock(rq, rf); } -static inline void -rq_lock(struct rq *rq, struct rq_flags *rf) +static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock) { - raw_spin_lock(&rq->lock); + raw_spin_rq_lock_irq(rq); rq_pin_lock(rq, rf); } -static inline void -rq_relock(struct rq *rq, struct rq_flags *rf) +static inline void rq_lock(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock) { - raw_spin_lock(&rq->lock); - rq_repin_lock(rq, rf); + raw_spin_rq_lock(rq); + rq_pin_lock(rq, rf); } -static inline void -rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) +static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) __releases(rq->lock) { rq_unpin_lock(rq, rf); - raw_spin_unlock_irqrestore(&rq->lock, rf->flags); + raw_spin_rq_unlock_irqrestore(rq, rf->flags); } -static inline void -rq_unlock_irq(struct rq *rq, struct rq_flags *rf) +static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) __releases(rq->lock) { rq_unpin_lock(rq, rf); - raw_spin_unlock_irq(&rq->lock); + raw_spin_rq_unlock_irq(rq); } -static inline void -rq_unlock(struct rq *rq, struct rq_flags *rf) +static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) __releases(rq->lock) { rq_unpin_lock(rq, rf); - raw_spin_unlock(&rq->lock); + raw_spin_rq_unlock(rq); } -static inline struct rq * -this_rq_lock_irq(struct rq_flags *rf) +DEFINE_LOCK_GUARD_1(rq_lock, struct rq, + rq_lock(_T->lock, &_T->rf), + rq_unlock(_T->lock, &_T->rf), + struct rq_flags rf) + +DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, + rq_lock_irq(_T->lock, &_T->rf), + rq_unlock_irq(_T->lock, &_T->rf), + struct rq_flags rf) + +DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, + rq_lock_irqsave(_T->lock, &_T->rf), + rq_unlock_irqrestore(_T->lock, &_T->rf), + struct rq_flags rf) + +static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) __acquires(rq->lock) { struct rq *rq; @@ -1191,31 +1930,43 @@ this_rq_lock_irq(struct rq_flags *rf) local_irq_disable(); rq = this_rq(); rq_lock(rq, rf); + return rq; } #ifdef CONFIG_NUMA + enum numa_topology_type { NUMA_DIRECT, NUMA_GLUELESS_MESH, NUMA_BACKPLANE, }; + extern enum numa_topology_type sched_numa_topology_type; extern int sched_max_numa_distance; extern bool find_numa_distance(int distance); -#endif - -#ifdef CONFIG_NUMA -extern void sched_init_numa(void); +extern void sched_init_numa(int offline_node); +extern void sched_update_numa(int cpu, bool online); extern void sched_domains_numa_masks_set(unsigned int cpu); extern void sched_domains_numa_masks_clear(unsigned int cpu); -#else -static inline void sched_init_numa(void) { } +extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); + +#else /* !CONFIG_NUMA: */ + +static inline void sched_init_numa(int offline_node) { } +static inline void sched_update_numa(int cpu, bool online) { } static inline void sched_domains_numa_masks_set(unsigned int cpu) { } static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } -#endif + +static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) +{ + return nr_cpu_ids; +} + +#endif /* !CONFIG_NUMA */ #ifdef CONFIG_NUMA_BALANCING + /* The regions in numa_faults array from task_struct */ enum numa_faults_stats { NUMA_MEM = 0, @@ -1223,44 +1974,48 @@ enum numa_faults_stats { NUMA_MEMBUF, NUMA_CPUBUF }; + extern void sched_setnuma(struct task_struct *p, int node); extern int migrate_task_to(struct task_struct *p, int cpu); extern int migrate_swap(struct task_struct *p, struct task_struct *t, int cpu, int scpu); -extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); -#else +extern void init_numa_balancing(u64 clone_flags, struct task_struct *p); + +#else /* !CONFIG_NUMA_BALANCING: */ + static inline void -init_numa_balancing(unsigned long clone_flags, struct task_struct *p) +init_numa_balancing(u64 clone_flags, struct task_struct *p) { } -#endif /* CONFIG_NUMA_BALANCING */ -#ifdef CONFIG_SMP +#endif /* !CONFIG_NUMA_BALANCING */ static inline void queue_balance_callback(struct rq *rq, - struct callback_head *head, + struct balance_callback *head, void (*func)(struct rq *rq)) { - lockdep_assert_held(&rq->lock); + lockdep_assert_rq_held(rq); - if (unlikely(head->next)) + /* + * Don't (re)queue an already queued item; nor queue anything when + * balance_push() is active, see the comment with + * balance_push_callback. + */ + if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) return; - head->func = (void (*)(struct callback_head *))func; + head->func = func; head->next = rq->balance_callback; rq->balance_callback = head; } -extern void sched_ttwu_pending(void); - #define rcu_dereference_check_sched_domain(p) \ - rcu_dereference_check((p), \ - lockdep_is_held(&sched_domains_mutex)) + rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) /* * The domain tree (rq->sd) is protected by RCU's quiescent state transition. - * See detach_destroy_domains: synchronize_sched for details. + * See destroy_sched_domains: call_rcu for details. * * The domain tree of any CPU may only be accessed from within * preempt-disabled sections. @@ -1269,7 +2024,12 @@ extern void sched_ttwu_pending(void); for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ __sd; __sd = __sd->parent) -#define for_each_lower_domain(sd) for (; sd; sd = sd->child) +/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ +#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | +static const unsigned int SD_SHARED_CHILD_MASK = +#include <linux/sched/sd_flags.h> +0; +#undef SD_FLAG /** * highest_flag_domain - Return highest sched_domain containing flag. @@ -1278,16 +2038,25 @@ extern void sched_ttwu_pending(void); * @flag: The flag to check for the highest sched_domain * for the given CPU. * - * Returns the highest sched_domain of a CPU which contains the given flag. + * Returns the highest sched_domain of a CPU which contains @flag. If @flag has + * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. */ static inline struct sched_domain *highest_flag_domain(int cpu, int flag) { struct sched_domain *sd, *hsd = NULL; for_each_domain(cpu, sd) { - if (!(sd->flags & flag)) + if (sd->flags & flag) { + hsd = sd; + continue; + } + + /* + * Stop the search if @flag is known to be shared at lower + * levels. It will not be found further up. + */ + if (flag & SD_SHARED_CHILD_MASK) break; - hsd = sd; } return hsd; @@ -1305,14 +2074,22 @@ static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) return sd; } -DECLARE_PER_CPU(struct sched_domain *, sd_llc); +DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); DECLARE_PER_CPU(int, sd_llc_size); DECLARE_PER_CPU(int, sd_llc_id); -DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); -DECLARE_PER_CPU(struct sched_domain *, sd_numa); -DECLARE_PER_CPU(struct sched_domain *, sd_asym_packing); -DECLARE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity); +DECLARE_PER_CPU(int, sd_share_id); +DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); +DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); +DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); +DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); + extern struct static_key_false sched_asym_cpucapacity; +extern struct static_key_false sched_cluster_active; + +static __always_inline bool sched_asym_cpucap_active(void) +{ + return static_branch_unlikely(&sched_asym_cpucapacity); +} struct sched_group_capacity { atomic_t ref; @@ -1326,11 +2103,9 @@ struct sched_group_capacity { unsigned long next_update; int imbalance; /* XXX unrelated to capacity but shared group state */ -#ifdef CONFIG_SCHED_DEBUG int id; -#endif - unsigned long cpumask[0]; /* Balance mask */ + unsigned long cpumask[]; /* Balance mask */ }; struct sched_group { @@ -1338,8 +2113,10 @@ struct sched_group { atomic_t ref; unsigned int group_weight; + unsigned int cores; struct sched_group_capacity *sgc; int asym_prefer_cpu; /* CPU of highest priority in group */ + int flags; /* * The CPUs this group covers. @@ -1348,7 +2125,7 @@ struct sched_group { * by attaching extra space to the end of the structure, * depending on how many CPUs the kernel has booted up with) */ - unsigned long cpumask[0]; + unsigned long cpumask[]; }; static inline struct cpumask *sched_group_span(struct sched_group *sg) @@ -1364,41 +2141,19 @@ static inline struct cpumask *group_balance_mask(struct sched_group *sg) return to_cpumask(sg->sgc->cpumask); } -/** - * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. - * @group: The group whose first CPU is to be returned. - */ -static inline unsigned int group_first_cpu(struct sched_group *group) -{ - return cpumask_first(sched_group_span(group)); -} - extern int group_balance_cpu(struct sched_group *sg); -#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) -void register_sched_domain_sysctl(void); -void dirty_sched_domain_sysctl(int cpu); -void unregister_sched_domain_sysctl(void); -#else -static inline void register_sched_domain_sysctl(void) -{ -} -static inline void dirty_sched_domain_sysctl(int cpu) -{ -} -static inline void unregister_sched_domain_sysctl(void) -{ -} -#endif - -#else - -static inline void sched_ttwu_pending(void) { } +extern void update_sched_domain_debugfs(void); +extern void dirty_sched_domain_sysctl(int cpu); -#endif /* CONFIG_SMP */ +extern int sched_update_scaling(void); -#include "stats.h" -#include "autogroup.h" +static inline const struct cpumask *task_user_cpus(struct task_struct *p) +{ + if (!p->user_cpus_ptr) + return cpu_possible_mask; /* &init_task.cpus_mask */ + return p->user_cpus_ptr; +} #ifdef CONFIG_CGROUP_SCHED @@ -1431,23 +2186,32 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); p->se.cfs_rq = tg->cfs_rq[cpu]; p->se.parent = tg->se[cpu]; + p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; #endif #ifdef CONFIG_RT_GROUP_SCHED + /* + * p->rt.rt_rq is NULL initially and it is easier to assign + * root_task_group's rt_rq than switching in rt_rq_of_se() + * Clobbers tg(!) + */ + if (!rt_group_sched_enabled()) + tg = &root_task_group; p->rt.rt_rq = tg->rt_rq[cpu]; p->rt.parent = tg->rt_se[cpu]; -#endif +#endif /* CONFIG_RT_GROUP_SCHED */ } -#else /* CONFIG_CGROUP_SCHED */ +#else /* !CONFIG_CGROUP_SCHED: */ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } + static inline struct task_group *task_group(struct task_struct *p) { return NULL; } -#endif /* CONFIG_CGROUP_SCHED */ +#endif /* !CONFIG_CGROUP_SCHED */ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) { @@ -1459,24 +2223,15 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) * per-task data have been completed by this moment. */ smp_wmb(); -#ifdef CONFIG_THREAD_INFO_IN_TASK - p->cpu = cpu; -#else - task_thread_info(p)->cpu = cpu; -#endif + WRITE_ONCE(task_thread_info(p)->cpu, cpu); p->wake_cpu = cpu; -#endif + rseq_sched_set_ids_changed(p); +#endif /* CONFIG_SMP */ } /* - * Tunables that become constants when CONFIG_SCHED_DEBUG is off: + * Tunables: */ -#ifdef CONFIG_SCHED_DEBUG -# include <linux/static_key.h> -# define const_debug __read_mostly -#else -# define const_debug const -#endif #define SCHED_FEAT(name, enabled) \ __SCHED_FEAT_##name , @@ -1488,13 +2243,13 @@ enum { #undef SCHED_FEAT -#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) - /* * To support run-time toggling of sched features, all the translation units * (but core.c) reference the sysctl_sched_features defined in core.c. */ -extern const_debug unsigned int sysctl_sched_features; +extern __read_mostly unsigned int sysctl_sched_features; + +#ifdef CONFIG_JUMP_LABEL #define SCHED_FEAT(name, enabled) \ static __always_inline bool static_branch_##name(struct static_key *key) \ @@ -1508,23 +2263,11 @@ static __always_inline bool static_branch_##name(struct static_key *key) \ extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) -#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */ +#else /* !CONFIG_JUMP_LABEL: */ -/* - * Each translation unit has its own copy of sysctl_sched_features to allow - * constants propagation at compile time and compiler optimization based on - * features default. - */ -#define SCHED_FEAT(name, enabled) \ - (1UL << __SCHED_FEAT_##name) * enabled | -static const_debug __maybe_unused unsigned int sysctl_sched_features = -#include "features.h" - 0; -#undef SCHED_FEAT - -#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) +#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) -#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */ +#endif /* !CONFIG_JUMP_LABEL */ extern struct static_key_false sched_numa_balancing; extern struct static_key_false sched_schedstats; @@ -1542,36 +2285,61 @@ static inline u64 global_rt_runtime(void) return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; } +/* + * Is p the current execution context? + */ static inline int task_current(struct rq *rq, struct task_struct *p) { return rq->curr == p; } -static inline int task_running(struct rq *rq, struct task_struct *p) +/* + * Is p the current scheduling context? + * + * Note that it might be the current execution context at the same time if + * rq->curr == rq->donor == p. + */ +static inline int task_current_donor(struct rq *rq, struct task_struct *p) +{ + return rq->donor == p; +} + +static inline bool task_is_blocked(struct task_struct *p) +{ + if (!sched_proxy_exec()) + return false; + + return !!p->blocked_on; +} + +static inline int task_on_cpu(struct rq *rq, struct task_struct *p) { -#ifdef CONFIG_SMP return p->on_cpu; -#else - return task_current(rq, p); -#endif } static inline int task_on_rq_queued(struct task_struct *p) { - return p->on_rq == TASK_ON_RQ_QUEUED; + return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; } static inline int task_on_rq_migrating(struct task_struct *p) { - return p->on_rq == TASK_ON_RQ_MIGRATING; + return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; } -/* - * wake flags - */ -#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */ -#define WF_FORK 0x02 /* Child wakeup after fork */ -#define WF_MIGRATED 0x4 /* Internal use, task got migrated */ +/* Wake flags. The first three directly map to some SD flag value */ +#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ +#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ +#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ + +#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ +#define WF_MIGRATED 0x20 /* Internal use, task got migrated */ +#define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ +#define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ + +static_assert(WF_EXEC == SD_BALANCE_EXEC); +static_assert(WF_FORK == SD_BALANCE_FORK); +static_assert(WF_TTWU == SD_BALANCE_WAKE); /* * To aid in avoiding the subversion of "niceness" due to uneven distribution @@ -1591,8 +2359,7 @@ extern const u32 sched_prio_to_wmult[40]; /* * {de,en}queue flags: * - * DEQUEUE_SLEEP - task is no longer runnable - * ENQUEUE_WAKEUP - task just became runnable + * SLEEP/WAKEUP - task is no-longer/just-became runnable * * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks * are in a known state which allows modification. Such pairs @@ -1601,113 +2368,301 @@ extern const u32 sched_prio_to_wmult[40]; * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location * in the runqueue. * + * NOCLOCK - skip the update_rq_clock() (avoids double updates) + * + * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) + * + * DELAYED - de/re-queue a sched_delayed task + * + * CLASS - going to update p->sched_class; makes sched_change call the + * various switch methods. + * * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) * ENQUEUE_MIGRATED - the task was migrated during wakeup + * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called * + * XXX SAVE/RESTORE in combination with CLASS doesn't really make sense, but + * SCHED_DEADLINE seems to rely on this for now. */ -#define DEQUEUE_SLEEP 0x01 -#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ -#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ -#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ +#define DEQUEUE_SLEEP 0x0001 /* Matches ENQUEUE_WAKEUP */ +#define DEQUEUE_SAVE 0x0002 /* Matches ENQUEUE_RESTORE */ +#define DEQUEUE_MOVE 0x0004 /* Matches ENQUEUE_MOVE */ +#define DEQUEUE_NOCLOCK 0x0008 /* Matches ENQUEUE_NOCLOCK */ -#define ENQUEUE_WAKEUP 0x01 -#define ENQUEUE_RESTORE 0x02 -#define ENQUEUE_MOVE 0x04 -#define ENQUEUE_NOCLOCK 0x08 +#define DEQUEUE_MIGRATING 0x0010 /* Matches ENQUEUE_MIGRATING */ +#define DEQUEUE_DELAYED 0x0020 /* Matches ENQUEUE_DELAYED */ +#define DEQUEUE_CLASS 0x0040 /* Matches ENQUEUE_CLASS */ -#define ENQUEUE_HEAD 0x10 -#define ENQUEUE_REPLENISH 0x20 -#ifdef CONFIG_SMP -#define ENQUEUE_MIGRATED 0x40 -#else -#define ENQUEUE_MIGRATED 0x00 -#endif +#define DEQUEUE_SPECIAL 0x00010000 +#define DEQUEUE_THROTTLE 0x00020000 + +#define ENQUEUE_WAKEUP 0x0001 +#define ENQUEUE_RESTORE 0x0002 +#define ENQUEUE_MOVE 0x0004 +#define ENQUEUE_NOCLOCK 0x0008 + +#define ENQUEUE_MIGRATING 0x0010 +#define ENQUEUE_DELAYED 0x0020 +#define ENQUEUE_CLASS 0x0040 + +#define ENQUEUE_HEAD 0x00010000 +#define ENQUEUE_REPLENISH 0x00020000 +#define ENQUEUE_MIGRATED 0x00040000 +#define ENQUEUE_INITIAL 0x00080000 +#define ENQUEUE_RQ_SELECTED 0x00100000 #define RETRY_TASK ((void *)-1UL) +struct affinity_context { + const struct cpumask *new_mask; + struct cpumask *user_mask; + unsigned int flags; +}; + +extern s64 update_curr_common(struct rq *rq); + struct sched_class { - const struct sched_class *next; +#ifdef CONFIG_UCLAMP_TASK + int uclamp_enabled; +#endif + /* + * idle: 0 + * ext: 1 + * fair: 2 + * rt: 4 + * dl: 8 + * stop: 16 + */ + unsigned int queue_mask; + + /* + * move_queued_task/activate_task/enqueue_task: rq->lock + * ttwu_do_activate/activate_task/enqueue_task: rq->lock + * wake_up_new_task/activate_task/enqueue_task: task_rq_lock + * ttwu_runnable/enqueue_task: task_rq_lock + * proxy_task_current: rq->lock + * sched_change_end + */ void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); - void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); + /* + * move_queued_task/deactivate_task/dequeue_task: rq->lock + * __schedule/block_task/dequeue_task: rq->lock + * proxy_task_current: rq->lock + * wait_task_inactive: task_rq_lock + * sched_change_begin + */ + bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); + + /* + * do_sched_yield: rq->lock + */ void (*yield_task) (struct rq *rq); - bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt); + /* + * yield_to: rq->lock (double) + */ + bool (*yield_to_task)(struct rq *rq, struct task_struct *p); - void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); + /* + * move_queued_task: rq->lock + * __migrate_swap_task: rq->lock + * ttwu_do_activate: rq->lock + * ttwu_runnable: task_rq_lock + * wake_up_new_task: task_rq_lock + */ + void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); /* - * It is the responsibility of the pick_next_task() method that will - * return the next task to call put_prev_task() on the @prev task or - * something equivalent. + * schedule/pick_next_task/prev_balance: rq->lock + */ + int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); + + /* + * schedule/pick_next_task: rq->lock + */ + struct task_struct *(*pick_task)(struct rq *rq, struct rq_flags *rf); + /* + * Optional! When implemented pick_next_task() should be equivalent to: * - * May return RETRY_TASK when it finds a higher prio class has runnable - * tasks. + * next = pick_task(); + * if (next) { + * put_prev_task(prev); + * set_next_task_first(next); + * } */ - struct task_struct * (*pick_next_task)(struct rq *rq, - struct task_struct *prev, - struct rq_flags *rf); - void (*put_prev_task)(struct rq *rq, struct task_struct *p); + struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev, + struct rq_flags *rf); -#ifdef CONFIG_SMP - int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); + /* + * sched_change: + * __schedule: rq->lock + */ + void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); + void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); + + /* + * select_task_rq: p->pi_lock + * sched_exec: p->pi_lock + */ + int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); + + /* + * set_task_cpu: p->pi_lock || rq->lock (ttwu like) + */ void (*migrate_task_rq)(struct task_struct *p, int new_cpu); + /* + * ttwu_do_activate: rq->lock + * wake_up_new_task: task_rq_lock + */ void (*task_woken)(struct rq *this_rq, struct task_struct *task); - void (*set_cpus_allowed)(struct task_struct *p, - const struct cpumask *newmask); + /* + * do_set_cpus_allowed: task_rq_lock + sched_change + */ + void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); + /* + * sched_set_rq_{on,off}line: rq->lock + */ void (*rq_online)(struct rq *rq); void (*rq_offline)(struct rq *rq); -#endif - void (*set_curr_task)(struct rq *rq); + /* + * push_cpu_stop: p->pi_lock && rq->lock + */ + struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); + + /* + * hrtick: rq->lock + * sched_tick: rq->lock + * sched_tick_remote: rq->lock + */ void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); + /* + * sched_cgroup_fork: p->pi_lock + */ void (*task_fork)(struct task_struct *p); + /* + * finish_task_switch: no locks + */ void (*task_dead)(struct task_struct *p); /* - * The switched_from() call is allowed to drop rq->lock, therefore we - * cannot assume the switched_from/switched_to pair is serliazed by - * rq->lock. They are however serialized by p->pi_lock. + * sched_change */ - void (*switched_from)(struct rq *this_rq, struct task_struct *task); - void (*switched_to) (struct rq *this_rq, struct task_struct *task); + void (*switching_from)(struct rq *this_rq, struct task_struct *task); + void (*switched_from) (struct rq *this_rq, struct task_struct *task); + void (*switching_to) (struct rq *this_rq, struct task_struct *task); + void (*switched_to) (struct rq *this_rq, struct task_struct *task); + u64 (*get_prio) (struct rq *this_rq, struct task_struct *task); void (*prio_changed) (struct rq *this_rq, struct task_struct *task, - int oldprio); + u64 oldprio); + /* + * set_load_weight: task_rq_lock + sched_change + * __setscheduler_parms: task_rq_lock + sched_change + */ + void (*reweight_task)(struct rq *this_rq, struct task_struct *task, + const struct load_weight *lw); + + /* + * sched_rr_get_interval: task_rq_lock + */ unsigned int (*get_rr_interval)(struct rq *rq, struct task_struct *task); + /* + * task_sched_runtime: task_rq_lock + */ void (*update_curr)(struct rq *rq); -#define TASK_SET_GROUP 0 -#define TASK_MOVE_GROUP 1 - #ifdef CONFIG_FAIR_GROUP_SCHED - void (*task_change_group)(struct task_struct *p, int type); + /* + * sched_change_group: task_rq_lock + sched_change + */ + void (*task_change_group)(struct task_struct *p); +#endif + +#ifdef CONFIG_SCHED_CORE + /* + * pick_next_task: rq->lock + * try_steal_cookie: rq->lock (double) + */ + int (*task_is_throttled)(struct task_struct *p, int cpu); #endif }; +/* + * Does not nest; only used around sched_class::pick_task() rq-lock-breaks. + */ +static inline void rq_modified_clear(struct rq *rq) +{ + rq->queue_mask = 0; +} + +static inline bool rq_modified_above(struct rq *rq, const struct sched_class * class) +{ + unsigned int mask = class->queue_mask; + return rq->queue_mask & ~((mask << 1) - 1); +} + static inline void put_prev_task(struct rq *rq, struct task_struct *prev) { - prev->sched_class->put_prev_task(rq, prev); + WARN_ON_ONCE(rq->donor != prev); + prev->sched_class->put_prev_task(rq, prev, NULL); } -static inline void set_curr_task(struct rq *rq, struct task_struct *curr) +static inline void set_next_task(struct rq *rq, struct task_struct *next) { - curr->sched_class->set_curr_task(rq); + next->sched_class->set_next_task(rq, next, false); } -#ifdef CONFIG_SMP -#define sched_class_highest (&stop_sched_class) -#else -#define sched_class_highest (&dl_sched_class) -#endif -#define for_each_class(class) \ - for (class = sched_class_highest; class; class = class->next) +static inline void +__put_prev_set_next_dl_server(struct rq *rq, + struct task_struct *prev, + struct task_struct *next) +{ + prev->dl_server = NULL; + next->dl_server = rq->dl_server; + rq->dl_server = NULL; +} + +static inline void put_prev_set_next_task(struct rq *rq, + struct task_struct *prev, + struct task_struct *next) +{ + WARN_ON_ONCE(rq->donor != prev); + + __put_prev_set_next_dl_server(rq, prev, next); + + if (next == prev) + return; + + prev->sched_class->put_prev_task(rq, prev, next); + next->sched_class->set_next_task(rq, next, true); +} + +/* + * Helper to define a sched_class instance; each one is placed in a separate + * section which is ordered by the linker script: + * + * include/asm-generic/vmlinux.lds.h + * + * *CAREFUL* they are laid out in *REVERSE* order!!! + * + * Also enforce alignment on the instance, not the type, to guarantee layout. + */ +#define DEFINE_SCHED_CLASS(name) \ +const struct sched_class name##_sched_class \ + __aligned(__alignof__(struct sched_class)) \ + __section("__" #name "_sched_class") + +/* Defined in include/asm-generic/vmlinux.lds.h */ +extern struct sched_class __sched_class_highest[]; +extern struct sched_class __sched_class_lowest[]; extern const struct sched_class stop_sched_class; extern const struct sched_class dl_sched_class; @@ -1715,18 +2670,118 @@ extern const struct sched_class rt_sched_class; extern const struct sched_class fair_sched_class; extern const struct sched_class idle_sched_class; +/* + * Iterate only active classes. SCX can take over all fair tasks or be + * completely disabled. If the former, skip fair. If the latter, skip SCX. + */ +static inline const struct sched_class *next_active_class(const struct sched_class *class) +{ + class++; +#ifdef CONFIG_SCHED_CLASS_EXT + if (scx_switched_all() && class == &fair_sched_class) + class++; + if (!scx_enabled() && class == &ext_sched_class) + class++; +#endif + return class; +} -#ifdef CONFIG_SMP +#define for_class_range(class, _from, _to) \ + for (class = (_from); class < (_to); class++) + +#define for_each_class(class) \ + for_class_range(class, __sched_class_highest, __sched_class_lowest) + +#define for_active_class_range(class, _from, _to) \ + for (class = (_from); class != (_to); class = next_active_class(class)) + +#define for_each_active_class(class) \ + for_active_class_range(class, __sched_class_highest, __sched_class_lowest) + +#define sched_class_above(_a, _b) ((_a) < (_b)) + +static inline bool sched_stop_runnable(struct rq *rq) +{ + return rq->stop && task_on_rq_queued(rq->stop); +} + +static inline bool sched_dl_runnable(struct rq *rq) +{ + return rq->dl.dl_nr_running > 0; +} + +static inline bool sched_rt_runnable(struct rq *rq) +{ + return rq->rt.rt_queued > 0; +} + +static inline bool sched_fair_runnable(struct rq *rq) +{ + return rq->cfs.nr_queued > 0; +} + +extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, + struct rq_flags *rf); +extern struct task_struct *pick_task_idle(struct rq *rq, struct rq_flags *rf); + +#define SCA_CHECK 0x01 +#define SCA_MIGRATE_DISABLE 0x02 +#define SCA_MIGRATE_ENABLE 0x04 +#define SCA_USER 0x08 extern void update_group_capacity(struct sched_domain *sd, int cpu); -extern void trigger_load_balance(struct rq *rq); +extern void sched_balance_trigger(struct rq *rq); -extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); +extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); +extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); -#endif +static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) +{ + /* When not in the task's cpumask, no point in looking further. */ + if (!cpumask_test_cpu(cpu, p->cpus_ptr)) + return false; + + /* Can @cpu run a user thread? */ + if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) + return false; + + return true; +} + +static inline cpumask_t *alloc_user_cpus_ptr(int node) +{ + /* + * See set_cpus_allowed_force() above for the rcu_head usage. + */ + int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); + + return kmalloc_node(size, GFP_KERNEL, node); +} + +static inline struct task_struct *get_push_task(struct rq *rq) +{ + struct task_struct *p = rq->donor; + + lockdep_assert_rq_held(rq); + + if (rq->push_busy) + return NULL; + + if (p->nr_cpus_allowed == 1) + return NULL; + + if (p->migration_disabled) + return NULL; + + rq->push_busy = true; + return get_task_struct(p); +} + +extern int push_cpu_stop(void *arg); #ifdef CONFIG_CPU_IDLE + static inline void idle_set_state(struct rq *rq, struct cpuidle_state *idle_state) { @@ -1735,11 +2790,13 @@ static inline void idle_set_state(struct rq *rq, static inline struct cpuidle_state *idle_get_state(struct rq *rq) { - SCHED_WARN_ON(!rcu_read_lock_held()); + WARN_ON_ONCE(!rcu_read_lock_held()); return rq->idle_state; } -#else + +#else /* !CONFIG_CPU_IDLE: */ + static inline void idle_set_state(struct rq *rq, struct cpuidle_state *idle_state) { @@ -1749,9 +2806,11 @@ static inline struct cpuidle_state *idle_get_state(struct rq *rq) { return NULL; } -#endif + +#endif /* !CONFIG_CPU_IDLE */ extern void schedule_idle(void); +asmlinkage void schedule_user(void); extern void sysrq_sched_debug_show(void); extern void sched_init_granularity(void); @@ -1761,27 +2820,27 @@ extern void init_sched_dl_class(void); extern void init_sched_rt_class(void); extern void init_sched_fair_class(void); -extern void reweight_task(struct task_struct *p, int prio); - extern void resched_curr(struct rq *rq); +extern void resched_curr_lazy(struct rq *rq); extern void resched_cpu(int cpu); -extern struct rt_bandwidth def_rt_bandwidth; extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); +extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); -extern struct dl_bandwidth def_dl_bandwidth; -extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); -extern void init_dl_task_timer(struct sched_dl_entity *dl_se); -extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); -extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); +extern void init_dl_entity(struct sched_dl_entity *dl_se); + +extern void init_cfs_throttle_work(struct task_struct *p); #define BW_SHIFT 20 #define BW_UNIT (1 << BW_SHIFT) #define RATIO_SHIFT 8 -unsigned long to_ratio(u64 period, u64 runtime); +#define MAX_BW_BITS (64 - BW_SHIFT) +#define MAX_BW ((1ULL << MAX_BW_BITS) - 1) + +extern unsigned long to_ratio(u64 period, u64 runtime); extern void init_entity_runnable_average(struct sched_entity *se); -extern void post_init_entity_util_avg(struct sched_entity *se); +extern void post_init_entity_util_avg(struct task_struct *p); #ifdef CONFIG_NO_HZ_FULL extern bool sched_can_stop_tick(struct rq *rq); @@ -1794,12 +2853,7 @@ extern int __init sched_tick_offload_init(void); */ static inline void sched_update_tick_dependency(struct rq *rq) { - int cpu; - - if (!tick_nohz_full_enabled()) - return; - - cpu = cpu_of(rq); + int cpu = cpu_of(rq); if (!tick_nohz_full_cpu(cpu)) return; @@ -1809,23 +2863,22 @@ static inline void sched_update_tick_dependency(struct rq *rq) else tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); } -#else +#else /* !CONFIG_NO_HZ_FULL: */ static inline int sched_tick_offload_init(void) { return 0; } static inline void sched_update_tick_dependency(struct rq *rq) { } -#endif +#endif /* !CONFIG_NO_HZ_FULL */ static inline void add_nr_running(struct rq *rq, unsigned count) { unsigned prev_nr = rq->nr_running; rq->nr_running = prev_nr + count; - -#ifdef CONFIG_SMP - if (prev_nr < 2 && rq->nr_running >= 2) { - if (!READ_ONCE(rq->rd->overload)) - WRITE_ONCE(rq->rd->overload, 1); + if (trace_sched_update_nr_running_tp_enabled()) { + call_trace_sched_update_nr_running(rq, count); } -#endif + + if (prev_nr < 2 && rq->nr_running >= 2) + set_rd_overloaded(rq->rd, 1); sched_update_tick_dependency(rq); } @@ -1833,17 +2886,83 @@ static inline void add_nr_running(struct rq *rq, unsigned count) static inline void sub_nr_running(struct rq *rq, unsigned count) { rq->nr_running -= count; + if (trace_sched_update_nr_running_tp_enabled()) { + call_trace_sched_update_nr_running(rq, -count); + } + /* Check if we still need preemption */ sched_update_tick_dependency(rq); } +static inline void __block_task(struct rq *rq, struct task_struct *p) +{ + if (p->sched_contributes_to_load) + rq->nr_uninterruptible++; + + if (p->in_iowait) { + atomic_inc(&rq->nr_iowait); + delayacct_blkio_start(); + } + + ASSERT_EXCLUSIVE_WRITER(p->on_rq); + + /* + * The moment this write goes through, ttwu() can swoop in and migrate + * this task, rendering our rq->__lock ineffective. + * + * __schedule() try_to_wake_up() + * LOCK rq->__lock LOCK p->pi_lock + * pick_next_task() + * pick_next_task_fair() + * pick_next_entity() + * dequeue_entities() + * __block_task() + * RELEASE p->on_rq = 0 if (p->on_rq && ...) + * break; + * + * ACQUIRE (after ctrl-dep) + * + * cpu = select_task_rq(); + * set_task_cpu(p, cpu); + * ttwu_queue() + * ttwu_do_activate() + * LOCK rq->__lock + * activate_task() + * STORE p->on_rq = 1 + * UNLOCK rq->__lock + * + * Callers must ensure to not reference @p after this -- we no longer + * own it. + */ + smp_store_release(&p->on_rq, 0); +} + extern void activate_task(struct rq *rq, struct task_struct *p, int flags); extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); -extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); +extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); + +#ifdef CONFIG_PREEMPT_RT +# define SCHED_NR_MIGRATE_BREAK 8 +#else +# define SCHED_NR_MIGRATE_BREAK 32 +#endif + +extern __read_mostly unsigned int sysctl_sched_nr_migrate; +extern __read_mostly unsigned int sysctl_sched_migration_cost; -extern const_debug unsigned int sysctl_sched_nr_migrate; -extern const_debug unsigned int sysctl_sched_migration_cost; +extern unsigned int sysctl_sched_base_slice; + +extern int sysctl_resched_latency_warn_ms; +extern int sysctl_resched_latency_warn_once; + +extern unsigned int sysctl_sched_tunable_scaling; + +extern unsigned int sysctl_numa_balancing_scan_delay; +extern unsigned int sysctl_numa_balancing_scan_period_min; +extern unsigned int sysctl_numa_balancing_scan_period_max; +extern unsigned int sysctl_numa_balancing_scan_size; +extern unsigned int sysctl_numa_balancing_hot_threshold; #ifdef CONFIG_SCHED_HRTICK @@ -1854,25 +2973,61 @@ extern const_debug unsigned int sysctl_sched_migration_cost; */ static inline int hrtick_enabled(struct rq *rq) { - if (!sched_feat(HRTICK)) - return 0; if (!cpu_active(cpu_of(rq))) return 0; return hrtimer_is_hres_active(&rq->hrtick_timer); } -void hrtick_start(struct rq *rq, u64 delay); +static inline int hrtick_enabled_fair(struct rq *rq) +{ + if (!sched_feat(HRTICK)) + return 0; + return hrtick_enabled(rq); +} -#else +static inline int hrtick_enabled_dl(struct rq *rq) +{ + if (!sched_feat(HRTICK_DL)) + return 0; + return hrtick_enabled(rq); +} + +extern void hrtick_start(struct rq *rq, u64 delay); + +#else /* !CONFIG_SCHED_HRTICK: */ + +static inline int hrtick_enabled_fair(struct rq *rq) +{ + return 0; +} + +static inline int hrtick_enabled_dl(struct rq *rq) +{ + return 0; +} static inline int hrtick_enabled(struct rq *rq) { return 0; } -#endif /* CONFIG_SCHED_HRTICK */ +#endif /* !CONFIG_SCHED_HRTICK */ + +#ifndef arch_scale_freq_tick +static __always_inline void arch_scale_freq_tick(void) { } +#endif #ifndef arch_scale_freq_capacity +/** + * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. + * @cpu: the CPU in question. + * + * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. + * + * f_curr + * ------ * SCHED_CAPACITY_SCALE + * f_max + */ static __always_inline unsigned long arch_scale_freq_capacity(int cpu) { @@ -1880,10 +3035,53 @@ unsigned long arch_scale_freq_capacity(int cpu) } #endif -#ifdef CONFIG_SMP -#ifdef CONFIG_PREEMPT +/* + * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to + * acquire rq lock instead of rq_lock(). So at the end of these two functions + * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of + * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. + */ +static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) +{ + rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); + rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); +} -static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); +#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ +__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ +static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ +{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ + _lock; return _t; } + +static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) +{ +#ifdef CONFIG_SCHED_CORE + /* + * In order to not have {0,2},{1,3} turn into into an AB-BA, + * order by core-id first and cpu-id second. + * + * Notably: + * + * double_rq_lock(0,3); will take core-0, core-1 lock + * double_rq_lock(1,2); will take core-1, core-0 lock + * + * when only cpu-id is considered. + */ + if (rq1->core->cpu < rq2->core->cpu) + return true; + if (rq1->core->cpu > rq2->core->cpu) + return false; + + /* + * __sched_core_flip() relies on SMT having cpu-id lock order. + */ +#endif /* CONFIG_SCHED_CORE */ + return rq1->cpu < rq2->cpu; +} + +extern void double_rq_lock(struct rq *rq1, struct rq *rq2); + +#ifdef CONFIG_PREEMPTION /* * fair double_lock_balance: Safely acquires both rq->locks in a fair @@ -1898,13 +3096,13 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __acquires(busiest->lock) __acquires(this_rq->lock) { - raw_spin_unlock(&this_rq->lock); + raw_spin_rq_unlock(this_rq); double_rq_lock(this_rq, busiest); return 1; } -#else +#else /* !CONFIG_PREEMPTION: */ /* * Unfair double_lock_balance: Optimizes throughput at the expense of * latency by eliminating extra atomic operations when the locks are @@ -1917,34 +3115,32 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __acquires(busiest->lock) __acquires(this_rq->lock) { - int ret = 0; - - if (unlikely(!raw_spin_trylock(&busiest->lock))) { - if (busiest < this_rq) { - raw_spin_unlock(&this_rq->lock); - raw_spin_lock(&busiest->lock); - raw_spin_lock_nested(&this_rq->lock, - SINGLE_DEPTH_NESTING); - ret = 1; - } else - raw_spin_lock_nested(&busiest->lock, - SINGLE_DEPTH_NESTING); + if (__rq_lockp(this_rq) == __rq_lockp(busiest) || + likely(raw_spin_rq_trylock(busiest))) { + double_rq_clock_clear_update(this_rq, busiest); + return 0; + } + + if (rq_order_less(this_rq, busiest)) { + raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); + double_rq_clock_clear_update(this_rq, busiest); + return 0; } - return ret; + + raw_spin_rq_unlock(this_rq); + double_rq_lock(this_rq, busiest); + + return 1; } -#endif /* CONFIG_PREEMPT */ +#endif /* !CONFIG_PREEMPTION */ /* * double_lock_balance - lock the busiest runqueue, this_rq is locked already. */ static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) { - if (unlikely(!irqs_disabled())) { - /* printk() doesn't work well under rq->lock */ - raw_spin_unlock(&this_rq->lock); - BUG_ON(1); - } + lockdep_assert_irqs_disabled(); return _double_lock_balance(this_rq, busiest); } @@ -1952,8 +3148,9 @@ static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) __releases(busiest->lock) { - raw_spin_unlock(&busiest->lock); - lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); + if (__rq_lockp(this_rq) != __rq_lockp(busiest)) + raw_spin_rq_unlock(busiest); + lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); } static inline void double_lock(spinlock_t *l1, spinlock_t *l2) @@ -1983,31 +3180,16 @@ static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); } -/* - * double_rq_lock - safely lock two runqueues - * - * Note this does not disable interrupts like task_rq_lock, - * you need to do so manually before calling. - */ -static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) - __acquires(rq1->lock) - __acquires(rq2->lock) -{ - BUG_ON(!irqs_disabled()); - if (rq1 == rq2) { - raw_spin_lock(&rq1->lock); - __acquire(rq2->lock); /* Fake it out ;) */ - } else { - if (rq1 < rq2) { - raw_spin_lock(&rq1->lock); - raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); - } else { - raw_spin_lock(&rq2->lock); - raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); - } - } +static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) +{ + raw_spin_unlock(l1); + raw_spin_unlock(l2); } +DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, + double_raw_lock(_T->lock, _T->lock2), + double_raw_unlock(_T->lock, _T->lock2)) + /* * double_rq_unlock - safely unlock two runqueues * @@ -2018,57 +3200,27 @@ static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) __releases(rq1->lock) __releases(rq2->lock) { - raw_spin_unlock(&rq1->lock); - if (rq1 != rq2) - raw_spin_unlock(&rq2->lock); + if (__rq_lockp(rq1) != __rq_lockp(rq2)) + raw_spin_rq_unlock(rq2); else __release(rq2->lock); + raw_spin_rq_unlock(rq1); } extern void set_rq_online (struct rq *rq); extern void set_rq_offline(struct rq *rq); -extern bool sched_smp_initialized; - -#else /* CONFIG_SMP */ -/* - * double_rq_lock - safely lock two runqueues - * - * Note this does not disable interrupts like task_rq_lock, - * you need to do so manually before calling. - */ -static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) - __acquires(rq1->lock) - __acquires(rq2->lock) -{ - BUG_ON(!irqs_disabled()); - BUG_ON(rq1 != rq2); - raw_spin_lock(&rq1->lock); - __acquire(rq2->lock); /* Fake it out ;) */ -} - -/* - * double_rq_unlock - safely unlock two runqueues - * - * Note this does not restore interrupts like task_rq_unlock, - * you need to do so manually after calling. - */ -static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) - __releases(rq1->lock) - __releases(rq2->lock) -{ - BUG_ON(rq1 != rq2); - raw_spin_unlock(&rq1->lock); - __release(rq2->lock); -} +extern bool sched_smp_initialized; -#endif +DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, + double_rq_lock(_T->lock, _T->lock2), + double_rq_unlock(_T->lock, _T->lock2)) +extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); -#ifdef CONFIG_SCHED_DEBUG -extern bool sched_debug_enabled; +extern bool sched_debug_verbose; extern void print_cfs_stats(struct seq_file *m, int cpu); extern void print_rt_stats(struct seq_file *m, int cpu); @@ -2076,14 +3228,15 @@ extern void print_dl_stats(struct seq_file *m, int cpu); extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); + +extern void resched_latency_warn(int cpu, u64 latency); + #ifdef CONFIG_NUMA_BALANCING -extern void -show_numa_stats(struct task_struct *p, struct seq_file *m); +extern void show_numa_stats(struct task_struct *p, struct seq_file *m); extern void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, - unsigned long tpf, unsigned long gsf, unsigned long gpf); + unsigned long tpf, unsigned long gsf, unsigned long gpf); #endif /* CONFIG_NUMA_BALANCING */ -#endif /* CONFIG_SCHED_DEBUG */ extern void init_cfs_rq(struct cfs_rq *cfs_rq); extern void init_rt_rq(struct rt_rq *rt_rq); @@ -2093,49 +3246,66 @@ extern void cfs_bandwidth_usage_inc(void); extern void cfs_bandwidth_usage_dec(void); #ifdef CONFIG_NO_HZ_COMMON + #define NOHZ_BALANCE_KICK_BIT 0 #define NOHZ_STATS_KICK_BIT 1 +#define NOHZ_NEWILB_KICK_BIT 2 +#define NOHZ_NEXT_KICK_BIT 3 +/* Run sched_balance_domains() */ #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) +/* Update blocked load */ #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) +/* Update blocked load when entering idle */ +#define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) +/* Update nohz.next_balance */ +#define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) -#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK) +#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) -#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) +#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) extern void nohz_balance_exit_idle(struct rq *rq); -#else +#else /* !CONFIG_NO_HZ_COMMON: */ static inline void nohz_balance_exit_idle(struct rq *rq) { } +#endif /* !CONFIG_NO_HZ_COMMON */ + +#ifdef CONFIG_NO_HZ_COMMON +extern void nohz_run_idle_balance(int cpu); +#else +static inline void nohz_run_idle_balance(int cpu) { } #endif +#include "stats.h" -#ifdef CONFIG_SMP -static inline -void __dl_update(struct dl_bw *dl_b, s64 bw) -{ - struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); - int i; +#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) - RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), - "sched RCU must be held"); - for_each_cpu_and(i, rd->span, cpu_active_mask) { - struct rq *rq = cpu_rq(i); +extern void __sched_core_account_forceidle(struct rq *rq); - rq->dl.extra_bw += bw; - } -} -#else -static inline -void __dl_update(struct dl_bw *dl_b, s64 bw) +static inline void sched_core_account_forceidle(struct rq *rq) { - struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); + if (schedstat_enabled()) + __sched_core_account_forceidle(rq); +} - dl->extra_bw += bw; +extern void __sched_core_tick(struct rq *rq); + +static inline void sched_core_tick(struct rq *rq) +{ + if (sched_core_enabled(rq) && schedstat_enabled()) + __sched_core_tick(rq); } -#endif +#else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ + +static inline void sched_core_account_forceidle(struct rq *rq) { } + +static inline void sched_core_tick(struct rq *rq) { } + +#endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ #ifdef CONFIG_IRQ_TIME_ACCOUNTING + struct irqtime { u64 total; u64 tick_delta; @@ -2144,10 +3314,16 @@ struct irqtime { }; DECLARE_PER_CPU(struct irqtime, cpu_irqtime); +extern int sched_clock_irqtime; + +static inline int irqtime_enabled(void) +{ + return sched_clock_irqtime; +} /* * Returns the irqtime minus the softirq time computed by ksoftirqd. - * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime + * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime * and never move forward. */ static inline u64 irq_time_read(int cpu) @@ -2163,10 +3339,19 @@ static inline u64 irq_time_read(int cpu) return total; } -#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ + +#else /* !CONFIG_IRQ_TIME_ACCOUNTING: */ + +static inline int irqtime_enabled(void) +{ + return 0; +} + +#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ #ifdef CONFIG_CPU_FREQ -DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data); + +DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); /** * cpufreq_update_util - Take a note about CPU utilization changes. @@ -2199,9 +3384,9 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) if (data) data->func(data, rq_clock(rq), flags); } -#else -static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} -#endif /* CONFIG_CPU_FREQ */ +#else /* !CONFIG_CPU_FREQ: */ +static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } +#endif /* !CONFIG_CPU_FREQ */ #ifdef arch_scale_freq_capacity # ifndef arch_scale_freq_invariant @@ -2211,30 +3396,28 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} # define arch_scale_freq_invariant() false #endif -#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL -/** - * enum schedutil_type - CPU utilization type - * @FREQUENCY_UTIL: Utilization used to select frequency - * @ENERGY_UTIL: Utilization used during energy calculation - * - * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time - * need to be aggregated differently depending on the usage made of them. This - * enum is used within schedutil_freq_util() to differentiate the types of - * utilization expected by the callers, and adjust the aggregation accordingly. - */ -enum schedutil_type { - FREQUENCY_UTIL, - ENERGY_UTIL, -}; +unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, + unsigned long *min, + unsigned long *max); + +unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, + unsigned long min, + unsigned long max); -unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs, - unsigned long max, enum schedutil_type type); -static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs) +/* + * Verify the fitness of task @p to run on @cpu taking into account the + * CPU original capacity and the runtime/deadline ratio of the task. + * + * The function will return true if the original capacity of @cpu is + * greater than or equal to task's deadline density right shifted by + * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. + */ +static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) { - unsigned long max = arch_scale_cpu_capacity(NULL, cpu); + unsigned long cap = arch_scale_cpu_capacity(cpu); - return schedutil_freq_util(cpu, cfs, max, ENERGY_UTIL); + return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); } static inline unsigned long cpu_bw_dl(struct rq *rq) @@ -2247,33 +3430,151 @@ static inline unsigned long cpu_util_dl(struct rq *rq) return READ_ONCE(rq->avg_dl.util_avg); } -static inline unsigned long cpu_util_cfs(struct rq *rq) + +extern unsigned long cpu_util_cfs(int cpu); +extern unsigned long cpu_util_cfs_boost(int cpu); + +static inline unsigned long cpu_util_rt(struct rq *rq) { - unsigned long util = READ_ONCE(rq->cfs.avg.util_avg); + return READ_ONCE(rq->avg_rt.util_avg); +} - if (sched_feat(UTIL_EST)) { - util = max_t(unsigned long, util, - READ_ONCE(rq->cfs.avg.util_est.enqueued)); - } +#ifdef CONFIG_UCLAMP_TASK - return util; +unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); + +/* + * When uclamp is compiled in, the aggregation at rq level is 'turned off' + * by default in the fast path and only gets turned on once userspace performs + * an operation that requires it. + * + * Returns true if userspace opted-in to use uclamp and aggregation at rq level + * hence is active. + */ +static inline bool uclamp_is_used(void) +{ + return static_branch_likely(&sched_uclamp_used); } -static inline unsigned long cpu_util_rt(struct rq *rq) +/* + * Enabling static branches would get the cpus_read_lock(), + * check whether uclamp_is_used before enable it to avoid always + * calling cpus_read_lock(). Because we never disable this + * static key once enable it. + */ +static inline void sched_uclamp_enable(void) { - return READ_ONCE(rq->avg_rt.util_avg); + if (!uclamp_is_used()) + static_branch_enable(&sched_uclamp_used); } -#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ -static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs) + +static inline unsigned long uclamp_rq_get(struct rq *rq, + enum uclamp_id clamp_id) { - return cfs; + return READ_ONCE(rq->uclamp[clamp_id].value); } -#endif + +static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, + unsigned int value) +{ + WRITE_ONCE(rq->uclamp[clamp_id].value, value); +} + +static inline bool uclamp_rq_is_idle(struct rq *rq) +{ + return rq->uclamp_flags & UCLAMP_FLAG_IDLE; +} + +/* Is the rq being capped/throttled by uclamp_max? */ +static inline bool uclamp_rq_is_capped(struct rq *rq) +{ + unsigned long rq_util; + unsigned long max_util; + + if (!uclamp_is_used()) + return false; + + rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); + max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); + + return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; +} + +#define for_each_clamp_id(clamp_id) \ + for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) + +extern unsigned int sysctl_sched_uclamp_util_min_rt_default; + + +static inline unsigned int uclamp_none(enum uclamp_id clamp_id) +{ + if (clamp_id == UCLAMP_MIN) + return 0; + return SCHED_CAPACITY_SCALE; +} + +/* Integer rounded range for each bucket */ +#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) + +static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) +{ + return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); +} + +static inline void +uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) +{ + uc_se->value = value; + uc_se->bucket_id = uclamp_bucket_id(value); + uc_se->user_defined = user_defined; +} + +#else /* !CONFIG_UCLAMP_TASK: */ + +static inline unsigned long +uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) +{ + if (clamp_id == UCLAMP_MIN) + return 0; + + return SCHED_CAPACITY_SCALE; +} + +static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } + +static inline bool uclamp_is_used(void) +{ + return false; +} + +static inline void sched_uclamp_enable(void) {} + +static inline unsigned long +uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) +{ + if (clamp_id == UCLAMP_MIN) + return 0; + + return SCHED_CAPACITY_SCALE; +} + +static inline void +uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) +{ +} + +static inline bool uclamp_rq_is_idle(struct rq *rq) +{ + return false; +} + +#endif /* !CONFIG_UCLAMP_TASK */ #ifdef CONFIG_HAVE_SCHED_AVG_IRQ + static inline unsigned long cpu_util_irq(struct rq *rq) { - return rq->avg_irq.util_avg; + return READ_ONCE(rq->avg_irq.util_avg); } static inline @@ -2285,7 +3586,9 @@ unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned return util; } -#else + +#else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ + static inline unsigned long cpu_util_irq(struct rq *rq) { return 0; @@ -2296,14 +3599,390 @@ unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned { return util; } -#endif + +#endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ + +extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) + #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) -#else + +DECLARE_STATIC_KEY_FALSE(sched_energy_present); + +static inline bool sched_energy_enabled(void) +{ + return static_branch_unlikely(&sched_energy_present); +} + +#else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */ + #define perf_domain_span(pd) NULL -#endif -#ifdef CONFIG_SMP -extern struct static_key_false sched_energy_present; +static inline bool sched_energy_enabled(void) { return false; } + +#endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ + +#ifdef CONFIG_MEMBARRIER + +/* + * The scheduler provides memory barriers required by membarrier between: + * - prior user-space memory accesses and store to rq->membarrier_state, + * - store to rq->membarrier_state and following user-space memory accesses. + * In the same way it provides those guarantees around store to rq->curr. + */ +static inline void membarrier_switch_mm(struct rq *rq, + struct mm_struct *prev_mm, + struct mm_struct *next_mm) +{ + int membarrier_state; + + if (prev_mm == next_mm) + return; + + membarrier_state = atomic_read(&next_mm->membarrier_state); + if (READ_ONCE(rq->membarrier_state) == membarrier_state) + return; + + WRITE_ONCE(rq->membarrier_state, membarrier_state); +} + +#else /* !CONFIG_MEMBARRIER: */ + +static inline void membarrier_switch_mm(struct rq *rq, + struct mm_struct *prev_mm, + struct mm_struct *next_mm) +{ +} + +#endif /* !CONFIG_MEMBARRIER */ + +static inline bool is_per_cpu_kthread(struct task_struct *p) +{ + if (!(p->flags & PF_KTHREAD)) + return false; + + if (p->nr_cpus_allowed != 1) + return false; + + return true; +} + +extern void swake_up_all_locked(struct swait_queue_head *q); +extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); + +extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); + +#ifdef CONFIG_PREEMPT_DYNAMIC +extern int preempt_dynamic_mode; +extern int sched_dynamic_mode(const char *str); +extern void sched_dynamic_update(int mode); #endif +extern const char *preempt_modes[]; + +#ifdef CONFIG_SCHED_MM_CID + +static __always_inline bool cid_on_cpu(unsigned int cid) +{ + return cid & MM_CID_ONCPU; +} + +static __always_inline bool cid_in_transit(unsigned int cid) +{ + return cid & MM_CID_TRANSIT; +} + +static __always_inline unsigned int cpu_cid_to_cid(unsigned int cid) +{ + return cid & ~MM_CID_ONCPU; +} + +static __always_inline unsigned int cid_to_cpu_cid(unsigned int cid) +{ + return cid | MM_CID_ONCPU; +} + +static __always_inline unsigned int cid_to_transit_cid(unsigned int cid) +{ + return cid | MM_CID_TRANSIT; +} + +static __always_inline unsigned int cid_from_transit_cid(unsigned int cid) +{ + return cid & ~MM_CID_TRANSIT; +} + +static __always_inline bool cid_on_task(unsigned int cid) +{ + /* True if none of the MM_CID_ONCPU, MM_CID_TRANSIT, MM_CID_UNSET bits is set */ + return cid < MM_CID_TRANSIT; +} + +static __always_inline void mm_drop_cid(struct mm_struct *mm, unsigned int cid) +{ + clear_bit(cid, mm_cidmask(mm)); +} + +static __always_inline void mm_unset_cid_on_task(struct task_struct *t) +{ + unsigned int cid = t->mm_cid.cid; + + t->mm_cid.cid = MM_CID_UNSET; + if (cid_on_task(cid)) + mm_drop_cid(t->mm, cid); +} + +static __always_inline void mm_drop_cid_on_cpu(struct mm_struct *mm, struct mm_cid_pcpu *pcp) +{ + /* Clear the ONCPU bit, but do not set UNSET in the per CPU storage */ + pcp->cid = cpu_cid_to_cid(pcp->cid); + mm_drop_cid(mm, pcp->cid); +} + +static inline unsigned int __mm_get_cid(struct mm_struct *mm, unsigned int max_cids) +{ + unsigned int cid = find_first_zero_bit(mm_cidmask(mm), max_cids); + + if (cid >= max_cids) + return MM_CID_UNSET; + if (test_and_set_bit(cid, mm_cidmask(mm))) + return MM_CID_UNSET; + return cid; +} + +static inline unsigned int mm_get_cid(struct mm_struct *mm) +{ + unsigned int cid = __mm_get_cid(mm, READ_ONCE(mm->mm_cid.max_cids)); + + while (cid == MM_CID_UNSET) { + cpu_relax(); + cid = __mm_get_cid(mm, num_possible_cpus()); + } + return cid; +} + +static inline unsigned int mm_cid_converge(struct mm_struct *mm, unsigned int orig_cid, + unsigned int max_cids) +{ + unsigned int new_cid, cid = cpu_cid_to_cid(orig_cid); + + /* Is it in the optimal CID space? */ + if (likely(cid < max_cids)) + return orig_cid; + + /* Try to find one in the optimal space. Otherwise keep the provided. */ + new_cid = __mm_get_cid(mm, max_cids); + if (new_cid != MM_CID_UNSET) { + mm_drop_cid(mm, cid); + /* Preserve the ONCPU mode of the original CID */ + return new_cid | (orig_cid & MM_CID_ONCPU); + } + return orig_cid; +} + +static __always_inline void mm_cid_update_task_cid(struct task_struct *t, unsigned int cid) +{ + if (t->mm_cid.cid != cid) { + t->mm_cid.cid = cid; + rseq_sched_set_ids_changed(t); + } +} + +static __always_inline void mm_cid_update_pcpu_cid(struct mm_struct *mm, unsigned int cid) +{ + __this_cpu_write(mm->mm_cid.pcpu->cid, cid); +} + +static __always_inline void mm_cid_from_cpu(struct task_struct *t, unsigned int cpu_cid) +{ + unsigned int max_cids, tcid = t->mm_cid.cid; + struct mm_struct *mm = t->mm; + + max_cids = READ_ONCE(mm->mm_cid.max_cids); + /* Optimize for the common case where both have the ONCPU bit set */ + if (likely(cid_on_cpu(cpu_cid & tcid))) { + if (likely(cpu_cid_to_cid(cpu_cid) < max_cids)) { + mm_cid_update_task_cid(t, cpu_cid); + return; + } + /* Try to converge into the optimal CID space */ + cpu_cid = mm_cid_converge(mm, cpu_cid, max_cids); + } else { + /* Hand over or drop the task owned CID */ + if (cid_on_task(tcid)) { + if (cid_on_cpu(cpu_cid)) + mm_unset_cid_on_task(t); + else + cpu_cid = cid_to_cpu_cid(tcid); + } + /* Still nothing, allocate a new one */ + if (!cid_on_cpu(cpu_cid)) + cpu_cid = cid_to_cpu_cid(mm_get_cid(mm)); + } + mm_cid_update_pcpu_cid(mm, cpu_cid); + mm_cid_update_task_cid(t, cpu_cid); +} + +static __always_inline void mm_cid_from_task(struct task_struct *t, unsigned int cpu_cid) +{ + unsigned int max_cids, tcid = t->mm_cid.cid; + struct mm_struct *mm = t->mm; + + max_cids = READ_ONCE(mm->mm_cid.max_cids); + /* Optimize for the common case, where both have the ONCPU bit clear */ + if (likely(cid_on_task(tcid | cpu_cid))) { + if (likely(tcid < max_cids)) { + mm_cid_update_pcpu_cid(mm, tcid); + return; + } + /* Try to converge into the optimal CID space */ + tcid = mm_cid_converge(mm, tcid, max_cids); + } else { + /* Hand over or drop the CPU owned CID */ + if (cid_on_cpu(cpu_cid)) { + if (cid_on_task(tcid)) + mm_drop_cid_on_cpu(mm, this_cpu_ptr(mm->mm_cid.pcpu)); + else + tcid = cpu_cid_to_cid(cpu_cid); + } + /* Still nothing, allocate a new one */ + if (!cid_on_task(tcid)) + tcid = mm_get_cid(mm); + /* Set the transition mode flag if required */ + tcid |= READ_ONCE(mm->mm_cid.transit); + } + mm_cid_update_pcpu_cid(mm, tcid); + mm_cid_update_task_cid(t, tcid); +} + +static __always_inline void mm_cid_schedin(struct task_struct *next) +{ + struct mm_struct *mm = next->mm; + unsigned int cpu_cid; + + if (!next->mm_cid.active) + return; + + cpu_cid = __this_cpu_read(mm->mm_cid.pcpu->cid); + if (likely(!READ_ONCE(mm->mm_cid.percpu))) + mm_cid_from_task(next, cpu_cid); + else + mm_cid_from_cpu(next, cpu_cid); +} + +static __always_inline void mm_cid_schedout(struct task_struct *prev) +{ + /* During mode transitions CIDs are temporary and need to be dropped */ + if (likely(!cid_in_transit(prev->mm_cid.cid))) + return; + + mm_drop_cid(prev->mm, cid_from_transit_cid(prev->mm_cid.cid)); + prev->mm_cid.cid = MM_CID_UNSET; +} + +static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) +{ + mm_cid_schedout(prev); + mm_cid_schedin(next); +} + +#else /* !CONFIG_SCHED_MM_CID: */ +static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) { } +#endif /* !CONFIG_SCHED_MM_CID */ + +extern u64 avg_vruntime(struct cfs_rq *cfs_rq); +extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); +static inline +void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) +{ + lockdep_assert_rq_held(src_rq); + lockdep_assert_rq_held(dst_rq); + + deactivate_task(src_rq, task, 0); + set_task_cpu(task, dst_rq->cpu); + activate_task(dst_rq, task, 0); +} + +static inline +bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) +{ + if (!task_on_cpu(rq, p) && + cpumask_test_cpu(cpu, &p->cpus_mask)) + return true; + + return false; +} + +#ifdef CONFIG_RT_MUTEXES + +static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) +{ + if (pi_task) + prio = min(prio, pi_task->prio); + + return prio; +} + +static inline int rt_effective_prio(struct task_struct *p, int prio) +{ + struct task_struct *pi_task = rt_mutex_get_top_task(p); + + return __rt_effective_prio(pi_task, prio); +} + +#else /* !CONFIG_RT_MUTEXES: */ + +static inline int rt_effective_prio(struct task_struct *p, int prio) +{ + return prio; +} + +#endif /* !CONFIG_RT_MUTEXES */ + +extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); +extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); +extern const struct sched_class *__setscheduler_class(int policy, int prio); +extern void set_load_weight(struct task_struct *p, bool update_load); +extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); +extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); + +extern struct balance_callback *splice_balance_callbacks(struct rq *rq); +extern void balance_callbacks(struct rq *rq, struct balance_callback *head); + +/* + * The 'sched_change' pattern is the safe, easy and slow way of changing a + * task's scheduling properties. It dequeues a task, such that the scheduler + * is fully unaware of it; at which point its properties can be modified; + * after which it is enqueued again. + * + * Typically this must be called while holding task_rq_lock, since most/all + * properties are serialized under those locks. There is currently one + * exception to this rule in sched/ext which only holds rq->lock. + */ + +/* + * This structure is a temporary, used to preserve/convey the queueing state + * of the task between sched_change_begin() and sched_change_end(). Ensuring + * the task's queueing state is idempotent across the operation. + */ +struct sched_change_ctx { + u64 prio; + struct task_struct *p; + int flags; + bool queued; + bool running; +}; + +struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags); +void sched_change_end(struct sched_change_ctx *ctx); + +DEFINE_CLASS(sched_change, struct sched_change_ctx *, + sched_change_end(_T), + sched_change_begin(p, flags), + struct task_struct *p, unsigned int flags) + +DEFINE_CLASS_IS_UNCONDITIONAL(sched_change) + +#include "ext.h" + +#endif /* _KERNEL_SCHED_SCHED_H */ |
