summaryrefslogtreecommitdiff
path: root/kernel/sched/sched.h
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/sched.h')
-rw-r--r--kernel/sched/sched.h3027
1 files changed, 2353 insertions, 674 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index d04530bf251f..d30cca6870f5 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -2,88 +2,96 @@
/*
* Scheduler internal types and methods:
*/
-#include <linux/sched.h>
+#ifndef _KERNEL_SCHED_SCHED_H
+#define _KERNEL_SCHED_SCHED_H
+#include <linux/prandom.h>
+#include <linux/sched/affinity.h>
#include <linux/sched/autogroup.h>
-#include <linux/sched/clock.h>
-#include <linux/sched/coredump.h>
#include <linux/sched/cpufreq.h>
-#include <linux/sched/cputime.h>
#include <linux/sched/deadline.h>
-#include <linux/sched/debug.h>
-#include <linux/sched/hotplug.h>
-#include <linux/sched/idle.h>
-#include <linux/sched/init.h>
-#include <linux/sched/isolation.h>
-#include <linux/sched/jobctl.h>
+#include <linux/sched.h>
#include <linux/sched/loadavg.h>
#include <linux/sched/mm.h>
-#include <linux/sched/nohz.h>
-#include <linux/sched/numa_balancing.h>
-#include <linux/sched/prio.h>
-#include <linux/sched/rt.h>
+#include <linux/sched/rseq_api.h>
#include <linux/sched/signal.h>
#include <linux/sched/smt.h>
#include <linux/sched/stat.h>
#include <linux/sched/sysctl.h>
+#include <linux/sched/task_flags.h>
#include <linux/sched/task.h>
-#include <linux/sched/task_stack.h>
#include <linux/sched/topology.h>
-#include <linux/sched/user.h>
-#include <linux/sched/wake_q.h>
-#include <linux/sched/xacct.h>
-
-#include <uapi/linux/sched/types.h>
-
-#include <linux/binfmts.h>
-#include <linux/blkdev.h>
-#include <linux/compat.h>
+#include <linux/atomic.h>
+#include <linux/bitmap.h>
+#include <linux/bug.h>
+#include <linux/capability.h>
+#include <linux/cgroup_api.h>
+#include <linux/cgroup.h>
#include <linux/context_tracking.h>
#include <linux/cpufreq.h>
-#include <linux/cpuidle.h>
-#include <linux/cpuset.h>
+#include <linux/cpumask_api.h>
#include <linux/ctype.h>
-#include <linux/debugfs.h>
-#include <linux/delayacct.h>
-#include <linux/energy_model.h>
-#include <linux/init_task.h>
-#include <linux/kprobes.h>
+#include <linux/file.h>
+#include <linux/fs_api.h>
+#include <linux/hrtimer_api.h>
+#include <linux/interrupt.h>
+#include <linux/irq_work.h>
+#include <linux/jiffies.h>
+#include <linux/kref_api.h>
#include <linux/kthread.h>
-#include <linux/membarrier.h>
-#include <linux/migrate.h>
-#include <linux/mmu_context.h>
-#include <linux/nmi.h>
+#include <linux/ktime_api.h>
+#include <linux/lockdep_api.h>
+#include <linux/lockdep.h>
+#include <linux/minmax.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/mutex_api.h>
+#include <linux/plist.h>
+#include <linux/poll.h>
#include <linux/proc_fs.h>
-#include <linux/prefetch.h>
#include <linux/profile.h>
#include <linux/psi.h>
-#include <linux/rcupdate_wait.h>
-#include <linux/security.h>
+#include <linux/rcupdate.h>
+#include <linux/seq_file.h>
+#include <linux/seqlock.h>
+#include <linux/softirq.h>
+#include <linux/spinlock_api.h>
+#include <linux/static_key.h>
#include <linux/stop_machine.h>
-#include <linux/suspend.h>
-#include <linux/swait.h>
+#include <linux/syscalls_api.h>
#include <linux/syscalls.h>
-#include <linux/task_work.h>
-#include <linux/tsacct_kern.h>
+#include <linux/tick.h>
+#include <linux/topology.h>
+#include <linux/types.h>
+#include <linux/u64_stats_sync_api.h>
+#include <linux/uaccess.h>
+#include <linux/wait_api.h>
+#include <linux/wait_bit.h>
+#include <linux/workqueue_api.h>
+#include <linux/delayacct.h>
+#include <linux/mmu_context.h>
-#include <asm/tlb.h>
+#include <trace/events/power.h>
+#include <trace/events/sched.h>
+
+#include "../workqueue_internal.h"
+
+struct rq;
+struct cfs_rq;
+struct rt_rq;
+struct sched_group;
+struct cpuidle_state;
#ifdef CONFIG_PARAVIRT
# include <asm/paravirt.h>
+# include <asm/paravirt_api_clock.h>
#endif
+#include <asm/barrier.h>
+
#include "cpupri.h"
#include "cpudeadline.h"
-#ifdef CONFIG_SCHED_DEBUG
-# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
-#else
-# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
-#endif
-
-struct rq;
-struct cpuidle_state;
-
/* task_struct::on_rq states: */
#define TASK_ON_RQ_QUEUED 1
#define TASK_ON_RQ_MIGRATING 2
@@ -96,21 +104,35 @@ extern atomic_long_t calc_load_tasks;
extern void calc_global_load_tick(struct rq *this_rq);
extern long calc_load_fold_active(struct rq *this_rq, long adjust);
-#ifdef CONFIG_SMP
-extern void cpu_load_update_active(struct rq *this_rq);
-#else
-static inline void cpu_load_update_active(struct rq *this_rq) { }
-#endif
+extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
+
+extern int sysctl_sched_rt_period;
+extern int sysctl_sched_rt_runtime;
+extern int sched_rr_timeslice;
+
+/*
+ * Asymmetric CPU capacity bits
+ */
+struct asym_cap_data {
+ struct list_head link;
+ struct rcu_head rcu;
+ unsigned long capacity;
+ unsigned long cpus[];
+};
+
+extern struct list_head asym_cap_list;
+
+#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
/*
* Helpers for converting nanosecond timing to jiffy resolution
*/
-#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
+#define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ))
/*
* Increase resolution of nice-level calculations for 64-bit architectures.
* The extra resolution improves shares distribution and load balancing of
- * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
+ * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
* hierarchies, especially on larger systems. This is not a user-visible change
* and does not change the user-interface for setting shares/weights.
*
@@ -124,7 +146,14 @@ static inline void cpu_load_update_active(struct rq *this_rq) { }
#ifdef CONFIG_64BIT
# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
-# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
+# define scale_load_down(w) \
+({ \
+ unsigned long __w = (w); \
+ \
+ if (__w) \
+ __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
+ __w; \
+})
#else
# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
# define scale_load(w) (w)
@@ -137,7 +166,7 @@ static inline void cpu_load_update_active(struct rq *this_rq) { }
* scale_load() and scale_load_down(w) to convert between them. The
* following must be true:
*
- * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
+ * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
*
*/
#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
@@ -158,9 +187,19 @@ static inline int idle_policy(int policy)
{
return policy == SCHED_IDLE;
}
+
+static inline int normal_policy(int policy)
+{
+#ifdef CONFIG_SCHED_CLASS_EXT
+ if (policy == SCHED_EXT)
+ return true;
+#endif
+ return policy == SCHED_NORMAL;
+}
+
static inline int fair_policy(int policy)
{
- return policy == SCHED_NORMAL || policy == SCHED_BATCH;
+ return normal_policy(policy) || policy == SCHED_BATCH;
}
static inline int rt_policy(int policy)
@@ -172,6 +211,7 @@ static inline int dl_policy(int policy)
{
return policy == SCHED_DEADLINE;
}
+
static inline bool valid_policy(int policy)
{
return idle_policy(policy) || fair_policy(policy) ||
@@ -193,7 +233,39 @@ static inline int task_has_dl_policy(struct task_struct *p)
return dl_policy(p->policy);
}
-#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
+#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
+
+static inline void update_avg(u64 *avg, u64 sample)
+{
+ s64 diff = sample - *avg;
+
+ *avg += diff / 8;
+}
+
+/*
+ * Shifting a value by an exponent greater *or equal* to the size of said value
+ * is UB; cap at size-1.
+ */
+#define shr_bound(val, shift) \
+ (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
+
+/*
+ * cgroup weight knobs should use the common MIN, DFL and MAX values which are
+ * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
+ * maps pretty well onto the shares value used by scheduler and the round-trip
+ * conversions preserve the original value over the entire range.
+ */
+static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
+{
+ return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
+}
+
+static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
+{
+ return clamp_t(unsigned long,
+ DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
+ CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
+}
/*
* !! For sched_setattr_nocheck() (kernel) only !!
@@ -209,7 +281,9 @@ static inline int task_has_dl_policy(struct task_struct *p)
*/
#define SCHED_FLAG_SUGOV 0x10000000
-static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
+#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
+
+static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
{
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
@@ -221,8 +295,8 @@ static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
/*
* Tells if entity @a should preempt entity @b.
*/
-static inline bool
-dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
+static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
+ const struct sched_dl_entity *b)
{
return dl_entity_is_special(a) ||
dl_time_before(a->deadline, b->deadline);
@@ -245,13 +319,17 @@ struct rt_bandwidth {
unsigned int rt_period_active;
};
-void __dl_clear_params(struct task_struct *p);
+static inline int dl_bandwidth_enabled(void)
+{
+ return sysctl_sched_rt_runtime >= 0;
+}
/*
- * To keep the bandwidth of -deadline tasks and groups under control
+ * To keep the bandwidth of -deadline tasks under control
* we need some place where:
- * - store the maximum -deadline bandwidth of the system (the group);
- * - cache the fraction of that bandwidth that is currently allocated.
+ * - store the maximum -deadline bandwidth of each cpu;
+ * - cache the fraction of bandwidth that is currently allocated in
+ * each root domain;
*
* This is all done in the data structure below. It is similar to the
* one used for RT-throttling (rt_bandwidth), with the main difference
@@ -259,59 +337,17 @@ void __dl_clear_params(struct task_struct *p);
* do not decrease any runtime while the group "executes", neither we
* need a timer to replenish it.
*
- * With respect to SMP, the bandwidth is given on a per-CPU basis,
+ * With respect to SMP, bandwidth is given on a per root domain basis,
* meaning that:
- * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
- * - dl_total_bw array contains, in the i-eth element, the currently
- * allocated bandwidth on the i-eth CPU.
- * Moreover, groups consume bandwidth on each CPU, while tasks only
- * consume bandwidth on the CPU they're running on.
- * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
- * that will be shown the next time the proc or cgroup controls will
- * be red. It on its turn can be changed by writing on its own
- * control.
+ * - bw (< 100%) is the deadline bandwidth of each CPU;
+ * - total_bw is the currently allocated bandwidth in each root domain;
*/
-struct dl_bandwidth {
- raw_spinlock_t dl_runtime_lock;
- u64 dl_runtime;
- u64 dl_period;
-};
-
-static inline int dl_bandwidth_enabled(void)
-{
- return sysctl_sched_rt_runtime >= 0;
-}
-
struct dl_bw {
raw_spinlock_t lock;
u64 bw;
u64 total_bw;
};
-static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
-
-static inline
-void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
-{
- dl_b->total_bw -= tsk_bw;
- __dl_update(dl_b, (s32)tsk_bw / cpus);
-}
-
-static inline
-void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
-{
- dl_b->total_bw += tsk_bw;
- __dl_update(dl_b, -((s32)tsk_bw / cpus));
-}
-
-static inline
-bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
-{
- return dl_b->bw != -1 &&
- dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
-}
-
-extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
extern void init_dl_bw(struct dl_bw *dl_b);
extern int sched_dl_global_validate(void);
extern void sched_dl_do_global(void);
@@ -320,32 +356,103 @@ extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
extern bool __checkparam_dl(const struct sched_attr *attr);
extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
-extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
-extern bool dl_cpu_busy(unsigned int cpu);
+extern int dl_bw_deactivate(int cpu);
+extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
+/*
+ * SCHED_DEADLINE supports servers (nested scheduling) with the following
+ * interface:
+ *
+ * dl_se::rq -- runqueue we belong to.
+ *
+ * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
+ * returns NULL.
+ *
+ * dl_server_update() -- called from update_curr_common(), propagates runtime
+ * to the server.
+ *
+ * dl_server_start() -- start the server when it has tasks; it will stop
+ * automatically when there are no more tasks, per
+ * dl_se::server_pick() returning NULL.
+ *
+ * dl_server_stop() -- (force) stop the server; use when updating
+ * parameters.
+ *
+ * dl_server_init() -- initializes the server.
+ *
+ * When started the dl_server will (per dl_defer) schedule a timer for its
+ * zero-laxity point -- that is, unlike regular EDF tasks which run ASAP, a
+ * server will run at the very end of its period.
+ *
+ * This is done such that any runtime from the target class can be accounted
+ * against the server -- through dl_server_update() above -- such that when it
+ * becomes time to run, it might already be out of runtime and get deferred
+ * until the next period. In this case dl_server_timer() will alternate
+ * between defer and replenish but never actually enqueue the server.
+ *
+ * Only when the target class does not manage to exhaust the server's runtime
+ * (there's actualy starvation in the given period), will the dl_server get on
+ * the runqueue. Once queued it will pick tasks from the target class and run
+ * them until either its runtime is exhaused, at which point its back to
+ * dl_server_timer, or until there are no more tasks to run, at which point
+ * the dl_server stops itself.
+ *
+ * By stopping at this point the dl_server retains bandwidth, which, if a new
+ * task wakes up imminently (starting the server again), can be used --
+ * subject to CBS wakeup rules -- without having to wait for the next period.
+ *
+ * Additionally, because of the dl_defer behaviour the start/stop behaviour is
+ * naturally thottled to once per period, avoiding high context switch
+ * workloads from spamming the hrtimer program/cancel paths.
+ */
+extern void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec);
+extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
+extern void dl_server_start(struct sched_dl_entity *dl_se);
+extern void dl_server_stop(struct sched_dl_entity *dl_se);
+extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
+ dl_server_pick_f pick_task);
+extern void sched_init_dl_servers(void);
-#ifdef CONFIG_CGROUP_SCHED
+extern void fair_server_init(struct rq *rq);
+extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
+extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
+ u64 runtime, u64 period, bool init);
-#include <linux/cgroup.h>
-#include <linux/psi.h>
+static inline bool dl_server_active(struct sched_dl_entity *dl_se)
+{
+ return dl_se->dl_server_active;
+}
-struct cfs_rq;
-struct rt_rq;
+#ifdef CONFIG_CGROUP_SCHED
extern struct list_head task_groups;
+#ifdef CONFIG_GROUP_SCHED_BANDWIDTH
+extern const u64 max_bw_quota_period_us;
+
+/*
+ * default period for group bandwidth.
+ * default: 0.1s, units: microseconds
+ */
+static inline u64 default_bw_period_us(void)
+{
+ return 100000ULL;
+}
+#endif /* CONFIG_GROUP_SCHED_BANDWIDTH */
+
struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
raw_spinlock_t lock;
ktime_t period;
u64 quota;
u64 runtime;
+ u64 burst;
+ u64 runtime_snap;
s64 hierarchical_quota;
- u64 runtime_expires;
- int expires_seq;
- short idle;
- short period_active;
+ u8 idle;
+ u8 period_active;
+ u8 slack_started;
struct hrtimer period_timer;
struct hrtimer slack_timer;
struct list_head throttled_cfs_rq;
@@ -353,32 +460,34 @@ struct cfs_bandwidth {
/* Statistics: */
int nr_periods;
int nr_throttled;
+ int nr_burst;
u64 throttled_time;
-
- bool distribute_running;
-#endif
+ u64 burst_time;
+#endif /* CONFIG_CFS_BANDWIDTH */
};
/* Task group related information */
struct task_group {
struct cgroup_subsys_state css;
+#ifdef CONFIG_GROUP_SCHED_WEIGHT
+ /* A positive value indicates that this is a SCHED_IDLE group. */
+ int idle;
+#endif
+
#ifdef CONFIG_FAIR_GROUP_SCHED
/* schedulable entities of this group on each CPU */
struct sched_entity **se;
/* runqueue "owned" by this group on each CPU */
struct cfs_rq **cfs_rq;
unsigned long shares;
-
-#ifdef CONFIG_SMP
/*
* load_avg can be heavily contended at clock tick time, so put
- * it in its own cacheline separated from the fields above which
+ * it in its own cache-line separated from the fields above which
* will also be accessed at each tick.
*/
atomic_long_t load_avg ____cacheline_aligned;
-#endif
-#endif
+#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
struct sched_rt_entity **rt_se;
@@ -387,6 +496,8 @@ struct task_group {
struct rt_bandwidth rt_bandwidth;
#endif
+ struct scx_task_group scx;
+
struct rcu_head rcu;
struct list_head list;
@@ -399,9 +510,19 @@ struct task_group {
#endif
struct cfs_bandwidth cfs_bandwidth;
+
+#ifdef CONFIG_UCLAMP_TASK_GROUP
+ /* The two decimal precision [%] value requested from user-space */
+ unsigned int uclamp_pct[UCLAMP_CNT];
+ /* Clamp values requested for a task group */
+ struct uclamp_se uclamp_req[UCLAMP_CNT];
+ /* Effective clamp values used for a task group */
+ struct uclamp_se uclamp[UCLAMP_CNT];
+#endif
+
};
-#ifdef CONFIG_FAIR_GROUP_SCHED
+#ifdef CONFIG_GROUP_SCHED_WEIGHT
#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
/*
@@ -432,23 +553,38 @@ static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
return walk_tg_tree_from(&root_task_group, down, up, data);
}
+static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
+{
+ return css ? container_of(css, struct task_group, css) : NULL;
+}
+
extern int tg_nop(struct task_group *tg, void *data);
+#ifdef CONFIG_FAIR_GROUP_SCHED
extern void free_fair_sched_group(struct task_group *tg);
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
extern void online_fair_sched_group(struct task_group *tg);
extern void unregister_fair_sched_group(struct task_group *tg);
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
+static inline void free_fair_sched_group(struct task_group *tg) { }
+static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
+{
+ return 1;
+}
+static inline void online_fair_sched_group(struct task_group *tg) { }
+static inline void unregister_fair_sched_group(struct task_group *tg) { }
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
+
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
struct sched_entity *se, int cpu,
struct sched_entity *parent);
-extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
+extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
+extern bool cfs_task_bw_constrained(struct task_struct *p);
-extern void free_rt_sched_group(struct task_group *tg);
-extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
struct sched_rt_entity *rt_se, int cpu,
struct sched_rt_entity *parent);
@@ -462,39 +598,93 @@ extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_online_group(struct task_group *tg,
struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
-extern void sched_offline_group(struct task_group *tg);
+extern void sched_release_group(struct task_group *tg);
-extern void sched_move_task(struct task_struct *tsk);
+extern void sched_move_task(struct task_struct *tsk, bool for_autogroup);
#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
-#ifdef CONFIG_SMP
+extern int sched_group_set_idle(struct task_group *tg, long idle);
+
extern void set_task_rq_fair(struct sched_entity *se,
struct cfs_rq *prev, struct cfs_rq *next);
-#else /* !CONFIG_SMP */
-static inline void set_task_rq_fair(struct sched_entity *se,
- struct cfs_rq *prev, struct cfs_rq *next) { }
-#endif /* CONFIG_SMP */
-#endif /* CONFIG_FAIR_GROUP_SCHED */
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
+static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
+static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
-#else /* CONFIG_CGROUP_SCHED */
+#else /* !CONFIG_CGROUP_SCHED: */
struct cfs_bandwidth { };
-#endif /* CONFIG_CGROUP_SCHED */
+static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
+
+#endif /* !CONFIG_CGROUP_SCHED */
+
+extern void unregister_rt_sched_group(struct task_group *tg);
+extern void free_rt_sched_group(struct task_group *tg);
+extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
+
+/*
+ * u64_u32_load/u64_u32_store
+ *
+ * Use a copy of a u64 value to protect against data race. This is only
+ * applicable for 32-bits architectures.
+ */
+#ifdef CONFIG_64BIT
+# define u64_u32_load_copy(var, copy) var
+# define u64_u32_store_copy(var, copy, val) (var = val)
+#else
+# define u64_u32_load_copy(var, copy) \
+({ \
+ u64 __val, __val_copy; \
+ do { \
+ __val_copy = copy; \
+ /* \
+ * paired with u64_u32_store_copy(), ordering access \
+ * to var and copy. \
+ */ \
+ smp_rmb(); \
+ __val = var; \
+ } while (__val != __val_copy); \
+ __val; \
+})
+# define u64_u32_store_copy(var, copy, val) \
+do { \
+ typeof(val) __val = (val); \
+ var = __val; \
+ /* \
+ * paired with u64_u32_load_copy(), ordering access to var and \
+ * copy. \
+ */ \
+ smp_wmb(); \
+ copy = __val; \
+} while (0)
+#endif
+# define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
+# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
+
+struct balance_callback {
+ struct balance_callback *next;
+ void (*func)(struct rq *rq);
+};
/* CFS-related fields in a runqueue */
struct cfs_rq {
struct load_weight load;
- unsigned long runnable_weight;
- unsigned int nr_running;
- unsigned int h_nr_running;
+ unsigned int nr_queued;
+ unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */
+ unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */
+ unsigned int h_nr_idle; /* SCHED_IDLE */
- u64 exec_clock;
- u64 min_vruntime;
-#ifndef CONFIG_64BIT
- u64 min_vruntime_copy;
+ s64 avg_vruntime;
+ u64 avg_load;
+
+ u64 zero_vruntime;
+#ifdef CONFIG_SCHED_CORE
+ unsigned int forceidle_seq;
+ u64 zero_vruntime_fi;
#endif
struct rb_root_cached tasks_timeline;
@@ -505,30 +695,24 @@ struct cfs_rq {
*/
struct sched_entity *curr;
struct sched_entity *next;
- struct sched_entity *last;
- struct sched_entity *skip;
-
-#ifdef CONFIG_SCHED_DEBUG
- unsigned int nr_spread_over;
-#endif
-#ifdef CONFIG_SMP
/*
* CFS load tracking
*/
struct sched_avg avg;
#ifndef CONFIG_64BIT
- u64 load_last_update_time_copy;
+ u64 last_update_time_copy;
#endif
struct {
raw_spinlock_t lock ____cacheline_aligned;
int nr;
unsigned long load_avg;
unsigned long util_avg;
- unsigned long runnable_sum;
+ unsigned long runnable_avg;
} removed;
#ifdef CONFIG_FAIR_GROUP_SCHED
+ u64 last_update_tg_load_avg;
unsigned long tg_load_avg_contrib;
long propagate;
long prop_runnable_sum;
@@ -543,7 +727,6 @@ struct cfs_rq {
u64 last_h_load_update;
struct sched_entity *h_load_next;
#endif /* CONFIG_FAIR_GROUP_SCHED */
-#endif /* CONFIG_SMP */
#ifdef CONFIG_FAIR_GROUP_SCHED
struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
@@ -560,22 +743,75 @@ struct cfs_rq {
struct list_head leaf_cfs_rq_list;
struct task_group *tg; /* group that "owns" this runqueue */
+ /* Locally cached copy of our task_group's idle value */
+ int idle;
+
#ifdef CONFIG_CFS_BANDWIDTH
int runtime_enabled;
- int expires_seq;
- u64 runtime_expires;
s64 runtime_remaining;
+ u64 throttled_pelt_idle;
+#ifndef CONFIG_64BIT
+ u64 throttled_pelt_idle_copy;
+#endif
u64 throttled_clock;
- u64 throttled_clock_task;
- u64 throttled_clock_task_time;
- int throttled;
+ u64 throttled_clock_pelt;
+ u64 throttled_clock_pelt_time;
+ u64 throttled_clock_self;
+ u64 throttled_clock_self_time;
+ bool throttled:1;
+ bool pelt_clock_throttled:1;
int throttle_count;
struct list_head throttled_list;
+ struct list_head throttled_csd_list;
+ struct list_head throttled_limbo_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};
+#ifdef CONFIG_SCHED_CLASS_EXT
+/* scx_rq->flags, protected by the rq lock */
+enum scx_rq_flags {
+ /*
+ * A hotplugged CPU starts scheduling before rq_online_scx(). Track
+ * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
+ * only while the BPF scheduler considers the CPU to be online.
+ */
+ SCX_RQ_ONLINE = 1 << 0,
+ SCX_RQ_CAN_STOP_TICK = 1 << 1,
+ SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */
+ SCX_RQ_BYPASSING = 1 << 4,
+ SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */
+ SCX_RQ_BAL_CB_PENDING = 1 << 6, /* must queue a cb after dispatching */
+
+ SCX_RQ_IN_WAKEUP = 1 << 16,
+ SCX_RQ_IN_BALANCE = 1 << 17,
+};
+
+struct scx_rq {
+ struct scx_dispatch_q local_dsq;
+ struct list_head runnable_list; /* runnable tasks on this rq */
+ struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */
+ unsigned long ops_qseq;
+ u64 extra_enq_flags; /* see move_task_to_local_dsq() */
+ u32 nr_running;
+ u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */
+ bool cpu_released;
+ u32 flags;
+ u64 clock; /* current per-rq clock -- see scx_bpf_now() */
+ cpumask_var_t cpus_to_kick;
+ cpumask_var_t cpus_to_kick_if_idle;
+ cpumask_var_t cpus_to_preempt;
+ cpumask_var_t cpus_to_wait;
+ unsigned long kick_sync;
+ local_t reenq_local_deferred;
+ struct balance_callback deferred_bal_cb;
+ struct irq_work deferred_irq_work;
+ struct irq_work kick_cpus_irq_work;
+ struct scx_dispatch_q bypass_dsq;
+};
+#endif /* CONFIG_SCHED_CLASS_EXT */
+
static inline int rt_bandwidth_enabled(void)
{
return sysctl_sched_rt_runtime >= 0;
@@ -591,34 +827,28 @@ struct rt_rq {
struct rt_prio_array active;
unsigned int rt_nr_running;
unsigned int rr_nr_running;
-#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
struct {
int curr; /* highest queued rt task prio */
-#ifdef CONFIG_SMP
int next; /* next highest */
-#endif
} highest_prio;
-#endif
-#ifdef CONFIG_SMP
- unsigned long rt_nr_migratory;
- unsigned long rt_nr_total;
- int overloaded;
+ bool overloaded;
struct plist_head pushable_tasks;
-#endif /* CONFIG_SMP */
int rt_queued;
+#ifdef CONFIG_RT_GROUP_SCHED
int rt_throttled;
- u64 rt_time;
- u64 rt_runtime;
+ u64 rt_time; /* consumed RT time, goes up in update_curr_rt */
+ u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */
/* Nests inside the rq lock: */
raw_spinlock_t rt_runtime_lock;
-#ifdef CONFIG_RT_GROUP_SCHED
- unsigned long rt_nr_boosted;
+ unsigned int rt_nr_boosted;
- struct rq *rq;
- struct task_group *tg;
+ struct rq *rq; /* this is always top-level rq, cache? */
+#endif
+#ifdef CONFIG_CGROUP_SCHED
+ struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */
#endif
};
@@ -632,9 +862,8 @@ struct dl_rq {
/* runqueue is an rbtree, ordered by deadline */
struct rb_root_cached root;
- unsigned long dl_nr_running;
+ unsigned int dl_nr_running;
-#ifdef CONFIG_SMP
/*
* Deadline values of the currently executing and the
* earliest ready task on this rq. Caching these facilitates
@@ -646,8 +875,7 @@ struct dl_rq {
u64 next;
} earliest_dl;
- unsigned long dl_nr_migratory;
- int overloaded;
+ bool overloaded;
/*
* Tasks on this rq that can be pushed away. They are kept in
@@ -655,9 +883,7 @@ struct dl_rq {
* of the leftmost (earliest deadline) element.
*/
struct rb_root_cached pushable_dl_tasks_root;
-#else
- struct dl_bw dl_bw;
-#endif
+
/*
* "Active utilization" for this runqueue: increased when a
* task wakes up (becomes TASK_RUNNING) and decreased when a
@@ -678,6 +904,12 @@ struct dl_rq {
u64 extra_bw;
/*
+ * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
+ * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
+ */
+ u64 max_bw;
+
+ /*
* Inverse of the fraction of CPU utilization that can be reclaimed
* by the GRUB algorithm.
*/
@@ -685,13 +917,43 @@ struct dl_rq {
};
#ifdef CONFIG_FAIR_GROUP_SCHED
+
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se) (!se->my_q)
-#else
+
+static inline void se_update_runnable(struct sched_entity *se)
+{
+ if (!entity_is_task(se))
+ se->runnable_weight = se->my_q->h_nr_runnable;
+}
+
+static inline long se_runnable(struct sched_entity *se)
+{
+ if (se->sched_delayed)
+ return false;
+
+ if (entity_is_task(se))
+ return !!se->on_rq;
+ else
+ return se->runnable_weight;
+}
+
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
+
#define entity_is_task(se) 1
-#endif
-#ifdef CONFIG_SMP
+static inline void se_update_runnable(struct sched_entity *se) { }
+
+static inline long se_runnable(struct sched_entity *se)
+{
+ if (se->sched_delayed)
+ return false;
+
+ return !!se->on_rq;
+}
+
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
+
/*
* XXX we want to get rid of these helpers and use the full load resolution.
*/
@@ -700,10 +962,6 @@ static inline long se_weight(struct sched_entity *se)
return scale_load_down(se->load.weight);
}
-static inline long se_runnable(struct sched_entity *se)
-{
- return scale_load_down(se->runnable_weight);
-}
static inline bool sched_asym_prefer(int a, int b)
{
@@ -716,10 +974,6 @@ struct perf_domain {
struct rcu_head rcu;
};
-/* Scheduling group status flags */
-#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
-#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
-
/*
* We add the notion of a root-domain which will be used to define per-domain
* variables. Each exclusive cpuset essentially defines an island domain by
@@ -740,10 +994,10 @@ struct root_domain {
* - More than one runnable task
* - Running task is misfit
*/
- int overload;
+ bool overloaded;
- /* Indicate one or more cpus over-utilized (tipping point) */
- int overutilized;
+ /* Indicate one or more CPUs over-utilized (tipping point) */
+ bool overutilized;
/*
* The bit corresponding to a CPU gets set here if such CPU has more
@@ -754,6 +1008,15 @@ struct root_domain {
struct dl_bw dl_bw;
struct cpudl cpudl;
+ /*
+ * Indicate whether a root_domain's dl_bw has been checked or
+ * updated. It's monotonously increasing value.
+ *
+ * Also, some corner cases, like 'wrap around' is dangerous, but given
+ * that u64 is 'big enough'. So that shouldn't be a concern.
+ */
+ u64 visit_cookie;
+
#ifdef HAVE_RT_PUSH_IPI
/*
* For IPI pull requests, loop across the rto_mask.
@@ -766,7 +1029,7 @@ struct root_domain {
/* These atomics are updated outside of a lock */
atomic_t rto_loop_next;
atomic_t rto_loop_start;
-#endif
+#endif /* HAVE_RT_PUSH_IPI */
/*
* The "RT overload" flag: it gets set if a CPU has more than
* one runnable RT task.
@@ -774,28 +1037,77 @@ struct root_domain {
cpumask_var_t rto_mask;
struct cpupri cpupri;
- unsigned long max_cpu_capacity;
-
/*
* NULL-terminated list of performance domains intersecting with the
* CPUs of the rd. Protected by RCU.
*/
- struct perf_domain *pd;
+ struct perf_domain __rcu *pd;
};
-extern struct root_domain def_root_domain;
-extern struct mutex sched_domains_mutex;
-
extern void init_defrootdomain(void);
extern int sched_init_domains(const struct cpumask *cpu_map);
extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
extern void sched_get_rd(struct root_domain *rd);
extern void sched_put_rd(struct root_domain *rd);
+static inline int get_rd_overloaded(struct root_domain *rd)
+{
+ return READ_ONCE(rd->overloaded);
+}
+
+static inline void set_rd_overloaded(struct root_domain *rd, int status)
+{
+ if (get_rd_overloaded(rd) != status)
+ WRITE_ONCE(rd->overloaded, status);
+}
+
#ifdef HAVE_RT_PUSH_IPI
extern void rto_push_irq_work_func(struct irq_work *work);
#endif
-#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_UCLAMP_TASK
+/*
+ * struct uclamp_bucket - Utilization clamp bucket
+ * @value: utilization clamp value for tasks on this clamp bucket
+ * @tasks: number of RUNNABLE tasks on this clamp bucket
+ *
+ * Keep track of how many tasks are RUNNABLE for a given utilization
+ * clamp value.
+ */
+struct uclamp_bucket {
+ unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
+ unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
+};
+
+/*
+ * struct uclamp_rq - rq's utilization clamp
+ * @value: currently active clamp values for a rq
+ * @bucket: utilization clamp buckets affecting a rq
+ *
+ * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
+ * A clamp value is affecting a rq when there is at least one task RUNNABLE
+ * (or actually running) with that value.
+ *
+ * There are up to UCLAMP_CNT possible different clamp values, currently there
+ * are only two: minimum utilization and maximum utilization.
+ *
+ * All utilization clamping values are MAX aggregated, since:
+ * - for util_min: we want to run the CPU at least at the max of the minimum
+ * utilization required by its currently RUNNABLE tasks.
+ * - for util_max: we want to allow the CPU to run up to the max of the
+ * maximum utilization allowed by its currently RUNNABLE tasks.
+ *
+ * Since on each system we expect only a limited number of different
+ * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
+ * the metrics required to compute all the per-rq utilization clamp values.
+ */
+struct uclamp_rq {
+ unsigned int value;
+ struct uclamp_bucket bucket[UCLAMP_BUCKETS];
+};
+
+DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
+#endif /* CONFIG_UCLAMP_TASK */
/*
* This is the main, per-CPU runqueue data structure.
@@ -806,38 +1118,42 @@ extern void rto_push_irq_work_func(struct irq_work *work);
*/
struct rq {
/* runqueue lock: */
- raw_spinlock_t lock;
+ raw_spinlock_t __lock;
- /*
- * nr_running and cpu_load should be in the same cacheline because
- * remote CPUs use both these fields when doing load calculation.
- */
+ /* Per class runqueue modification mask; bits in class order. */
+ unsigned int queue_mask;
unsigned int nr_running;
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
unsigned int nr_preferred_running;
unsigned int numa_migrate_on;
#endif
- #define CPU_LOAD_IDX_MAX 5
- unsigned long cpu_load[CPU_LOAD_IDX_MAX];
#ifdef CONFIG_NO_HZ_COMMON
-#ifdef CONFIG_SMP
- unsigned long last_load_update_tick;
unsigned long last_blocked_load_update_tick;
unsigned int has_blocked_load;
-#endif /* CONFIG_SMP */
+ call_single_data_t nohz_csd;
unsigned int nohz_tick_stopped;
- atomic_t nohz_flags;
+ atomic_t nohz_flags;
#endif /* CONFIG_NO_HZ_COMMON */
- /* capture load from *all* tasks on this CPU: */
- struct load_weight load;
- unsigned long nr_load_updates;
+ unsigned int ttwu_pending;
u64 nr_switches;
+#ifdef CONFIG_UCLAMP_TASK
+ /* Utilization clamp values based on CPU's RUNNABLE tasks */
+ struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
+ unsigned int uclamp_flags;
+#define UCLAMP_FLAG_IDLE 0x01
+#endif
+
struct cfs_rq cfs;
struct rt_rq rt;
struct dl_rq dl;
+#ifdef CONFIG_SCHED_CLASS_EXT
+ struct scx_rq scx;
+#endif
+
+ struct sched_dl_entity fair_server;
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this CPU: */
@@ -853,7 +1169,16 @@ struct rq {
*/
unsigned long nr_uninterruptible;
- struct task_struct *curr;
+#ifdef CONFIG_SCHED_PROXY_EXEC
+ struct task_struct __rcu *donor; /* Scheduling context */
+ struct task_struct __rcu *curr; /* Execution context */
+#else
+ union {
+ struct task_struct __rcu *donor; /* Scheduler context */
+ struct task_struct __rcu *curr; /* Execution context */
+ };
+#endif
+ struct sched_dl_entity *dl_server;
struct task_struct *idle;
struct task_struct *stop;
unsigned long next_balance;
@@ -861,19 +1186,34 @@ struct rq {
unsigned int clock_update_flags;
u64 clock;
- u64 clock_task;
+ /* Ensure that all clocks are in the same cache line */
+ u64 clock_task ____cacheline_aligned;
+ u64 clock_pelt;
+ unsigned long lost_idle_time;
+ u64 clock_pelt_idle;
+ u64 clock_idle;
+#ifndef CONFIG_64BIT
+ u64 clock_pelt_idle_copy;
+ u64 clock_idle_copy;
+#endif
atomic_t nr_iowait;
-#ifdef CONFIG_SMP
- struct root_domain *rd;
- struct sched_domain *sd;
+ u64 last_seen_need_resched_ns;
+ int ticks_without_resched;
+
+#ifdef CONFIG_MEMBARRIER
+ int membarrier_state;
+#endif
+
+ struct root_domain *rd;
+ struct sched_domain __rcu *sd;
unsigned long cpu_capacity;
- unsigned long cpu_capacity_orig;
- struct callback_head *balance_callback;
+ struct balance_callback *balance_callback;
+ unsigned char nohz_idle_balance;
unsigned char idle_balance;
unsigned long misfit_task_load;
@@ -894,15 +1234,22 @@ struct rq {
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
struct sched_avg avg_irq;
#endif
+#ifdef CONFIG_SCHED_HW_PRESSURE
+ struct sched_avg avg_hw;
+#endif
u64 idle_stamp;
u64 avg_idle;
/* This is used to determine avg_idle's max value */
u64 max_idle_balance_cost;
+
+#ifdef CONFIG_HOTPLUG_CPU
+ struct rcuwait hotplug_wait;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
u64 prev_irq_time;
+ u64 psi_irq_time;
#endif
#ifdef CONFIG_PARAVIRT
u64 prev_steal_time;
@@ -916,18 +1263,15 @@ struct rq {
long calc_load_active;
#ifdef CONFIG_SCHED_HRTICK
-#ifdef CONFIG_SMP
- int hrtick_csd_pending;
call_single_data_t hrtick_csd;
-#endif
struct hrtimer hrtick_timer;
+ ktime_t hrtick_time;
#endif
#ifdef CONFIG_SCHEDSTATS
/* latency stats */
struct sched_info rq_sched_info;
unsigned long long rq_cpu_time;
- /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
/* sys_sched_yield() stats */
unsigned int yld_count;
@@ -941,25 +1285,311 @@ struct rq {
unsigned int ttwu_local;
#endif
-#ifdef CONFIG_SMP
- struct llist_head wake_list;
-#endif
-
#ifdef CONFIG_CPU_IDLE
- /* Must be inspected within a rcu lock section */
+ /* Must be inspected within a RCU lock section */
struct cpuidle_state *idle_state;
#endif
+
+ unsigned int nr_pinned;
+ unsigned int push_busy;
+ struct cpu_stop_work push_work;
+
+#ifdef CONFIG_SCHED_CORE
+ /* per rq */
+ struct rq *core;
+ struct task_struct *core_pick;
+ struct sched_dl_entity *core_dl_server;
+ unsigned int core_enabled;
+ unsigned int core_sched_seq;
+ struct rb_root core_tree;
+
+ /* shared state -- careful with sched_core_cpu_deactivate() */
+ unsigned int core_task_seq;
+ unsigned int core_pick_seq;
+ unsigned long core_cookie;
+ unsigned int core_forceidle_count;
+ unsigned int core_forceidle_seq;
+ unsigned int core_forceidle_occupation;
+ u64 core_forceidle_start;
+#endif /* CONFIG_SCHED_CORE */
+
+ /* Scratch cpumask to be temporarily used under rq_lock */
+ cpumask_var_t scratch_mask;
+
+#ifdef CONFIG_CFS_BANDWIDTH
+ call_single_data_t cfsb_csd;
+ struct list_head cfsb_csd_list;
+#endif
};
+#ifdef CONFIG_FAIR_GROUP_SCHED
+
+/* CPU runqueue to which this cfs_rq is attached */
+static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
+{
+ return cfs_rq->rq;
+}
+
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
+
+static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
+{
+ return container_of(cfs_rq, struct rq, cfs);
+}
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
+
static inline int cpu_of(struct rq *rq)
{
-#ifdef CONFIG_SMP
return rq->cpu;
+}
+
+#define MDF_PUSH 0x01
+
+static inline bool is_migration_disabled(struct task_struct *p)
+{
+ return p->migration_disabled;
+}
+
+DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+DECLARE_PER_CPU(struct rnd_state, sched_rnd_state);
+
+static inline u32 sched_rng(void)
+{
+ return prandom_u32_state(this_cpu_ptr(&sched_rnd_state));
+}
+
+#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
+#define this_rq() this_cpu_ptr(&runqueues)
+#define task_rq(p) cpu_rq(task_cpu(p))
+#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
+#define raw_rq() raw_cpu_ptr(&runqueues)
+
+#ifdef CONFIG_SCHED_PROXY_EXEC
+static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
+{
+ rcu_assign_pointer(rq->donor, t);
+}
#else
- return 0;
+static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
+{
+ /* Do nothing */
+}
#endif
+
+#ifdef CONFIG_SCHED_CORE
+static inline struct cpumask *sched_group_span(struct sched_group *sg);
+
+DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
+
+static inline bool sched_core_enabled(struct rq *rq)
+{
+ return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
+}
+
+static inline bool sched_core_disabled(void)
+{
+ return !static_branch_unlikely(&__sched_core_enabled);
+}
+
+/*
+ * Be careful with this function; not for general use. The return value isn't
+ * stable unless you actually hold a relevant rq->__lock.
+ */
+static inline raw_spinlock_t *rq_lockp(struct rq *rq)
+{
+ if (sched_core_enabled(rq))
+ return &rq->core->__lock;
+
+ return &rq->__lock;
+}
+
+static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
+{
+ if (rq->core_enabled)
+ return &rq->core->__lock;
+
+ return &rq->__lock;
}
+extern bool
+cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
+
+extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
+
+/*
+ * Helpers to check if the CPU's core cookie matches with the task's cookie
+ * when core scheduling is enabled.
+ * A special case is that the task's cookie always matches with CPU's core
+ * cookie if the CPU is in an idle core.
+ */
+static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
+{
+ /* Ignore cookie match if core scheduler is not enabled on the CPU. */
+ if (!sched_core_enabled(rq))
+ return true;
+
+ return rq->core->core_cookie == p->core_cookie;
+}
+
+static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
+{
+ bool idle_core = true;
+ int cpu;
+
+ /* Ignore cookie match if core scheduler is not enabled on the CPU. */
+ if (!sched_core_enabled(rq))
+ return true;
+
+ if (rq->core->core_cookie == p->core_cookie)
+ return true;
+
+ for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
+ if (!available_idle_cpu(cpu)) {
+ idle_core = false;
+ break;
+ }
+ }
+
+ /*
+ * A CPU in an idle core is always the best choice for tasks with
+ * cookies.
+ */
+ return idle_core;
+}
+
+static inline bool sched_group_cookie_match(struct rq *rq,
+ struct task_struct *p,
+ struct sched_group *group)
+{
+ int cpu;
+
+ /* Ignore cookie match if core scheduler is not enabled on the CPU. */
+ if (!sched_core_enabled(rq))
+ return true;
+
+ for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
+ if (sched_core_cookie_match(cpu_rq(cpu), p))
+ return true;
+ }
+ return false;
+}
+
+static inline bool sched_core_enqueued(struct task_struct *p)
+{
+ return !RB_EMPTY_NODE(&p->core_node);
+}
+
+extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
+extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
+
+extern void sched_core_get(void);
+extern void sched_core_put(void);
+
+#else /* !CONFIG_SCHED_CORE: */
+
+static inline bool sched_core_enabled(struct rq *rq)
+{
+ return false;
+}
+
+static inline bool sched_core_disabled(void)
+{
+ return true;
+}
+
+static inline raw_spinlock_t *rq_lockp(struct rq *rq)
+{
+ return &rq->__lock;
+}
+
+static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
+{
+ return &rq->__lock;
+}
+
+static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
+{
+ return true;
+}
+
+static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
+{
+ return true;
+}
+
+static inline bool sched_group_cookie_match(struct rq *rq,
+ struct task_struct *p,
+ struct sched_group *group)
+{
+ return true;
+}
+
+#endif /* !CONFIG_SCHED_CORE */
+
+#ifdef CONFIG_RT_GROUP_SCHED
+# ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
+DECLARE_STATIC_KEY_FALSE(rt_group_sched);
+static inline bool rt_group_sched_enabled(void)
+{
+ return static_branch_unlikely(&rt_group_sched);
+}
+# else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */
+DECLARE_STATIC_KEY_TRUE(rt_group_sched);
+static inline bool rt_group_sched_enabled(void)
+{
+ return static_branch_likely(&rt_group_sched);
+}
+# endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */
+#else /* !CONFIG_RT_GROUP_SCHED: */
+# define rt_group_sched_enabled() false
+#endif /* !CONFIG_RT_GROUP_SCHED */
+
+static inline void lockdep_assert_rq_held(struct rq *rq)
+{
+ lockdep_assert_held(__rq_lockp(rq));
+}
+
+extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
+extern bool raw_spin_rq_trylock(struct rq *rq);
+extern void raw_spin_rq_unlock(struct rq *rq);
+
+static inline void raw_spin_rq_lock(struct rq *rq)
+{
+ raw_spin_rq_lock_nested(rq, 0);
+}
+
+static inline void raw_spin_rq_lock_irq(struct rq *rq)
+{
+ local_irq_disable();
+ raw_spin_rq_lock(rq);
+}
+
+static inline void raw_spin_rq_unlock_irq(struct rq *rq)
+{
+ raw_spin_rq_unlock(rq);
+ local_irq_enable();
+}
+
+static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ raw_spin_rq_lock(rq);
+
+ return flags;
+}
+
+static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
+{
+ raw_spin_rq_unlock(rq);
+ local_irq_restore(flags);
+}
+
+#define raw_spin_rq_lock_irqsave(rq, flags) \
+do { \
+ flags = _raw_spin_rq_lock_irqsave(rq); \
+} while (0)
#ifdef CONFIG_SCHED_SMT
extern void __update_idle_core(struct rq *rq);
@@ -970,25 +1600,62 @@ static inline void update_idle_core(struct rq *rq)
__update_idle_core(rq);
}
-#else
+#else /* !CONFIG_SCHED_SMT: */
static inline void update_idle_core(struct rq *rq) { }
-#endif
+#endif /* !CONFIG_SCHED_SMT */
-DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
+#ifdef CONFIG_FAIR_GROUP_SCHED
-#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
-#define this_rq() this_cpu_ptr(&runqueues)
-#define task_rq(p) cpu_rq(task_cpu(p))
-#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
-#define raw_rq() raw_cpu_ptr(&runqueues)
+static inline struct task_struct *task_of(struct sched_entity *se)
+{
+ WARN_ON_ONCE(!entity_is_task(se));
+ return container_of(se, struct task_struct, se);
+}
-extern void update_rq_clock(struct rq *rq);
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
+{
+ return p->se.cfs_rq;
+}
+
+/* runqueue on which this entity is (to be) queued */
+static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
+{
+ return se->cfs_rq;
+}
-static inline u64 __rq_clock_broken(struct rq *rq)
+/* runqueue "owned" by this group */
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
- return READ_ONCE(rq->clock);
+ return grp->my_q;
}
+#else /* !CONFIG_FAIR_GROUP_SCHED: */
+
+#define task_of(_se) container_of(_se, struct task_struct, se)
+
+static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
+{
+ return &task_rq(p)->cfs;
+}
+
+static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
+{
+ const struct task_struct *p = task_of(se);
+ struct rq *rq = task_rq(p);
+
+ return &rq->cfs;
+}
+
+/* runqueue "owned" by this group */
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
+{
+ return NULL;
+}
+
+#endif /* !CONFIG_FAIR_GROUP_SCHED */
+
+extern void update_rq_clock(struct rq *rq);
+
/*
* rq::clock_update_flags bits
*
@@ -1008,7 +1675,7 @@ static inline u64 __rq_clock_broken(struct rq *rq)
*
* if (rq-clock_update_flags >= RQCF_UPDATED)
*
- * to check if %RQCF_UPADTED is set. It'll never be shifted more than
+ * to check if %RQCF_UPDATED is set. It'll never be shifted more than
* one position though, because the next rq_unpin_lock() will shift it
* back.
*/
@@ -1022,12 +1689,12 @@ static inline void assert_clock_updated(struct rq *rq)
* The only reason for not seeing a clock update since the
* last rq_pin_lock() is if we're currently skipping updates.
*/
- SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
+ WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP);
}
static inline u64 rq_clock(struct rq *rq)
{
- lockdep_assert_held(&rq->lock);
+ lockdep_assert_rq_held(rq);
assert_clock_updated(rq);
return rq->clock;
@@ -1035,7 +1702,7 @@ static inline u64 rq_clock(struct rq *rq)
static inline u64 rq_clock_task(struct rq *rq)
{
- lockdep_assert_held(&rq->lock);
+ lockdep_assert_rq_held(rq);
assert_clock_updated(rq);
return rq->clock_task;
@@ -1043,77 +1710,140 @@ static inline u64 rq_clock_task(struct rq *rq)
static inline void rq_clock_skip_update(struct rq *rq)
{
- lockdep_assert_held(&rq->lock);
+ lockdep_assert_rq_held(rq);
rq->clock_update_flags |= RQCF_REQ_SKIP;
}
/*
* See rt task throttling, which is the only time a skip
- * request is cancelled.
+ * request is canceled.
*/
static inline void rq_clock_cancel_skipupdate(struct rq *rq)
{
- lockdep_assert_held(&rq->lock);
+ lockdep_assert_rq_held(rq);
rq->clock_update_flags &= ~RQCF_REQ_SKIP;
}
+/*
+ * During cpu offlining and rq wide unthrottling, we can trigger
+ * an update_rq_clock() for several cfs and rt runqueues (Typically
+ * when using list_for_each_entry_*)
+ * rq_clock_start_loop_update() can be called after updating the clock
+ * once and before iterating over the list to prevent multiple update.
+ * After the iterative traversal, we need to call rq_clock_stop_loop_update()
+ * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
+ */
+static inline void rq_clock_start_loop_update(struct rq *rq)
+{
+ lockdep_assert_rq_held(rq);
+ WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP);
+ rq->clock_update_flags |= RQCF_ACT_SKIP;
+}
+
+static inline void rq_clock_stop_loop_update(struct rq *rq)
+{
+ lockdep_assert_rq_held(rq);
+ rq->clock_update_flags &= ~RQCF_ACT_SKIP;
+}
+
struct rq_flags {
unsigned long flags;
struct pin_cookie cookie;
-#ifdef CONFIG_SCHED_DEBUG
/*
* A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
* current pin context is stashed here in case it needs to be
* restored in rq_repin_lock().
*/
unsigned int clock_update_flags;
-#endif
};
+extern struct balance_callback balance_push_callback;
+
+#ifdef CONFIG_SCHED_CLASS_EXT
+extern const struct sched_class ext_sched_class;
+
+DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */
+DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */
+
+#define scx_enabled() static_branch_unlikely(&__scx_enabled)
+#define scx_switched_all() static_branch_unlikely(&__scx_switched_all)
+
+static inline void scx_rq_clock_update(struct rq *rq, u64 clock)
+{
+ if (!scx_enabled())
+ return;
+ WRITE_ONCE(rq->scx.clock, clock);
+ smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID);
+}
+
+static inline void scx_rq_clock_invalidate(struct rq *rq)
+{
+ if (!scx_enabled())
+ return;
+ WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID);
+}
+
+#else /* !CONFIG_SCHED_CLASS_EXT: */
+#define scx_enabled() false
+#define scx_switched_all() false
+
+static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {}
+static inline void scx_rq_clock_invalidate(struct rq *rq) {}
+#endif /* !CONFIG_SCHED_CLASS_EXT */
+
+/*
+ * Lockdep annotation that avoids accidental unlocks; it's like a
+ * sticky/continuous lockdep_assert_held().
+ *
+ * This avoids code that has access to 'struct rq *rq' (basically everything in
+ * the scheduler) from accidentally unlocking the rq if they do not also have a
+ * copy of the (on-stack) 'struct rq_flags rf'.
+ *
+ * Also see Documentation/locking/lockdep-design.rst.
+ */
static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
{
- rf->cookie = lockdep_pin_lock(&rq->lock);
+ rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
-#ifdef CONFIG_SCHED_DEBUG
rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
rf->clock_update_flags = 0;
-#endif
+ WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback);
}
static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
{
-#ifdef CONFIG_SCHED_DEBUG
if (rq->clock_update_flags > RQCF_ACT_SKIP)
rf->clock_update_flags = RQCF_UPDATED;
-#endif
- lockdep_unpin_lock(&rq->lock, rf->cookie);
+ scx_rq_clock_invalidate(rq);
+ lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
}
static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
{
- lockdep_repin_lock(&rq->lock, rf->cookie);
+ lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
-#ifdef CONFIG_SCHED_DEBUG
/*
* Restore the value we stashed in @rf for this pin context.
*/
rq->clock_update_flags |= rf->clock_update_flags;
-#endif
}
+extern
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
__acquires(rq->lock);
+extern
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
__acquires(p->pi_lock)
__acquires(rq->lock);
-static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
+static inline void
+__task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
__releases(rq->lock)
{
rq_unpin_lock(rq, rf);
- raw_spin_unlock(&rq->lock);
+ raw_spin_rq_unlock(rq);
}
static inline void
@@ -1121,69 +1851,78 @@ task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
__releases(rq->lock)
__releases(p->pi_lock)
{
- rq_unpin_lock(rq, rf);
- raw_spin_unlock(&rq->lock);
+ __task_rq_unlock(rq, p, rf);
raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
}
-static inline void
-rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
- __acquires(rq->lock)
-{
- raw_spin_lock_irqsave(&rq->lock, rf->flags);
- rq_pin_lock(rq, rf);
-}
+DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
+ _T->rq = task_rq_lock(_T->lock, &_T->rf),
+ task_rq_unlock(_T->rq, _T->lock, &_T->rf),
+ struct rq *rq; struct rq_flags rf)
-static inline void
-rq_lock_irq(struct rq *rq, struct rq_flags *rf)
+DEFINE_LOCK_GUARD_1(__task_rq_lock, struct task_struct,
+ _T->rq = __task_rq_lock(_T->lock, &_T->rf),
+ __task_rq_unlock(_T->rq, _T->lock, &_T->rf),
+ struct rq *rq; struct rq_flags rf)
+
+static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
__acquires(rq->lock)
{
- raw_spin_lock_irq(&rq->lock);
+ raw_spin_rq_lock_irqsave(rq, rf->flags);
rq_pin_lock(rq, rf);
}
-static inline void
-rq_lock(struct rq *rq, struct rq_flags *rf)
+static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
__acquires(rq->lock)
{
- raw_spin_lock(&rq->lock);
+ raw_spin_rq_lock_irq(rq);
rq_pin_lock(rq, rf);
}
-static inline void
-rq_relock(struct rq *rq, struct rq_flags *rf)
+static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
__acquires(rq->lock)
{
- raw_spin_lock(&rq->lock);
- rq_repin_lock(rq, rf);
+ raw_spin_rq_lock(rq);
+ rq_pin_lock(rq, rf);
}
-static inline void
-rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
+static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
__releases(rq->lock)
{
rq_unpin_lock(rq, rf);
- raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
+ raw_spin_rq_unlock_irqrestore(rq, rf->flags);
}
-static inline void
-rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
+static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
__releases(rq->lock)
{
rq_unpin_lock(rq, rf);
- raw_spin_unlock_irq(&rq->lock);
+ raw_spin_rq_unlock_irq(rq);
}
-static inline void
-rq_unlock(struct rq *rq, struct rq_flags *rf)
+static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
__releases(rq->lock)
{
rq_unpin_lock(rq, rf);
- raw_spin_unlock(&rq->lock);
+ raw_spin_rq_unlock(rq);
}
-static inline struct rq *
-this_rq_lock_irq(struct rq_flags *rf)
+DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
+ rq_lock(_T->lock, &_T->rf),
+ rq_unlock(_T->lock, &_T->rf),
+ struct rq_flags rf)
+
+DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
+ rq_lock_irq(_T->lock, &_T->rf),
+ rq_unlock_irq(_T->lock, &_T->rf),
+ struct rq_flags rf)
+
+DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
+ rq_lock_irqsave(_T->lock, &_T->rf),
+ rq_unlock_irqrestore(_T->lock, &_T->rf),
+ struct rq_flags rf)
+
+static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
__acquires(rq->lock)
{
struct rq *rq;
@@ -1191,31 +1930,43 @@ this_rq_lock_irq(struct rq_flags *rf)
local_irq_disable();
rq = this_rq();
rq_lock(rq, rf);
+
return rq;
}
#ifdef CONFIG_NUMA
+
enum numa_topology_type {
NUMA_DIRECT,
NUMA_GLUELESS_MESH,
NUMA_BACKPLANE,
};
+
extern enum numa_topology_type sched_numa_topology_type;
extern int sched_max_numa_distance;
extern bool find_numa_distance(int distance);
-#endif
-
-#ifdef CONFIG_NUMA
-extern void sched_init_numa(void);
+extern void sched_init_numa(int offline_node);
+extern void sched_update_numa(int cpu, bool online);
extern void sched_domains_numa_masks_set(unsigned int cpu);
extern void sched_domains_numa_masks_clear(unsigned int cpu);
-#else
-static inline void sched_init_numa(void) { }
+extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
+
+#else /* !CONFIG_NUMA: */
+
+static inline void sched_init_numa(int offline_node) { }
+static inline void sched_update_numa(int cpu, bool online) { }
static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
-#endif
+
+static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
+{
+ return nr_cpu_ids;
+}
+
+#endif /* !CONFIG_NUMA */
#ifdef CONFIG_NUMA_BALANCING
+
/* The regions in numa_faults array from task_struct */
enum numa_faults_stats {
NUMA_MEM = 0,
@@ -1223,44 +1974,48 @@ enum numa_faults_stats {
NUMA_MEMBUF,
NUMA_CPUBUF
};
+
extern void sched_setnuma(struct task_struct *p, int node);
extern int migrate_task_to(struct task_struct *p, int cpu);
extern int migrate_swap(struct task_struct *p, struct task_struct *t,
int cpu, int scpu);
-extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
-#else
+extern void init_numa_balancing(u64 clone_flags, struct task_struct *p);
+
+#else /* !CONFIG_NUMA_BALANCING: */
+
static inline void
-init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
+init_numa_balancing(u64 clone_flags, struct task_struct *p)
{
}
-#endif /* CONFIG_NUMA_BALANCING */
-#ifdef CONFIG_SMP
+#endif /* !CONFIG_NUMA_BALANCING */
static inline void
queue_balance_callback(struct rq *rq,
- struct callback_head *head,
+ struct balance_callback *head,
void (*func)(struct rq *rq))
{
- lockdep_assert_held(&rq->lock);
+ lockdep_assert_rq_held(rq);
- if (unlikely(head->next))
+ /*
+ * Don't (re)queue an already queued item; nor queue anything when
+ * balance_push() is active, see the comment with
+ * balance_push_callback.
+ */
+ if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
return;
- head->func = (void (*)(struct callback_head *))func;
+ head->func = func;
head->next = rq->balance_callback;
rq->balance_callback = head;
}
-extern void sched_ttwu_pending(void);
-
#define rcu_dereference_check_sched_domain(p) \
- rcu_dereference_check((p), \
- lockdep_is_held(&sched_domains_mutex))
+ rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
/*
* The domain tree (rq->sd) is protected by RCU's quiescent state transition.
- * See detach_destroy_domains: synchronize_sched for details.
+ * See destroy_sched_domains: call_rcu for details.
*
* The domain tree of any CPU may only be accessed from within
* preempt-disabled sections.
@@ -1269,7 +2024,12 @@ extern void sched_ttwu_pending(void);
for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
__sd; __sd = __sd->parent)
-#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
+/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
+#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
+static const unsigned int SD_SHARED_CHILD_MASK =
+#include <linux/sched/sd_flags.h>
+0;
+#undef SD_FLAG
/**
* highest_flag_domain - Return highest sched_domain containing flag.
@@ -1278,16 +2038,25 @@ extern void sched_ttwu_pending(void);
* @flag: The flag to check for the highest sched_domain
* for the given CPU.
*
- * Returns the highest sched_domain of a CPU which contains the given flag.
+ * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
+ * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
*/
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
{
struct sched_domain *sd, *hsd = NULL;
for_each_domain(cpu, sd) {
- if (!(sd->flags & flag))
+ if (sd->flags & flag) {
+ hsd = sd;
+ continue;
+ }
+
+ /*
+ * Stop the search if @flag is known to be shared at lower
+ * levels. It will not be found further up.
+ */
+ if (flag & SD_SHARED_CHILD_MASK)
break;
- hsd = sd;
}
return hsd;
@@ -1305,14 +2074,22 @@ static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
return sd;
}
-DECLARE_PER_CPU(struct sched_domain *, sd_llc);
+DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
DECLARE_PER_CPU(int, sd_llc_size);
DECLARE_PER_CPU(int, sd_llc_id);
-DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
-DECLARE_PER_CPU(struct sched_domain *, sd_numa);
-DECLARE_PER_CPU(struct sched_domain *, sd_asym_packing);
-DECLARE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
+DECLARE_PER_CPU(int, sd_share_id);
+DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
+DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
+DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
+DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
+
extern struct static_key_false sched_asym_cpucapacity;
+extern struct static_key_false sched_cluster_active;
+
+static __always_inline bool sched_asym_cpucap_active(void)
+{
+ return static_branch_unlikely(&sched_asym_cpucapacity);
+}
struct sched_group_capacity {
atomic_t ref;
@@ -1326,11 +2103,9 @@ struct sched_group_capacity {
unsigned long next_update;
int imbalance; /* XXX unrelated to capacity but shared group state */
-#ifdef CONFIG_SCHED_DEBUG
int id;
-#endif
- unsigned long cpumask[0]; /* Balance mask */
+ unsigned long cpumask[]; /* Balance mask */
};
struct sched_group {
@@ -1338,8 +2113,10 @@ struct sched_group {
atomic_t ref;
unsigned int group_weight;
+ unsigned int cores;
struct sched_group_capacity *sgc;
int asym_prefer_cpu; /* CPU of highest priority in group */
+ int flags;
/*
* The CPUs this group covers.
@@ -1348,7 +2125,7 @@ struct sched_group {
* by attaching extra space to the end of the structure,
* depending on how many CPUs the kernel has booted up with)
*/
- unsigned long cpumask[0];
+ unsigned long cpumask[];
};
static inline struct cpumask *sched_group_span(struct sched_group *sg)
@@ -1364,41 +2141,19 @@ static inline struct cpumask *group_balance_mask(struct sched_group *sg)
return to_cpumask(sg->sgc->cpumask);
}
-/**
- * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
- * @group: The group whose first CPU is to be returned.
- */
-static inline unsigned int group_first_cpu(struct sched_group *group)
-{
- return cpumask_first(sched_group_span(group));
-}
-
extern int group_balance_cpu(struct sched_group *sg);
-#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
-void register_sched_domain_sysctl(void);
-void dirty_sched_domain_sysctl(int cpu);
-void unregister_sched_domain_sysctl(void);
-#else
-static inline void register_sched_domain_sysctl(void)
-{
-}
-static inline void dirty_sched_domain_sysctl(int cpu)
-{
-}
-static inline void unregister_sched_domain_sysctl(void)
-{
-}
-#endif
-
-#else
-
-static inline void sched_ttwu_pending(void) { }
+extern void update_sched_domain_debugfs(void);
+extern void dirty_sched_domain_sysctl(int cpu);
-#endif /* CONFIG_SMP */
+extern int sched_update_scaling(void);
-#include "stats.h"
-#include "autogroup.h"
+static inline const struct cpumask *task_user_cpus(struct task_struct *p)
+{
+ if (!p->user_cpus_ptr)
+ return cpu_possible_mask; /* &init_task.cpus_mask */
+ return p->user_cpus_ptr;
+}
#ifdef CONFIG_CGROUP_SCHED
@@ -1431,23 +2186,32 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
p->se.cfs_rq = tg->cfs_rq[cpu];
p->se.parent = tg->se[cpu];
+ p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
#endif
#ifdef CONFIG_RT_GROUP_SCHED
+ /*
+ * p->rt.rt_rq is NULL initially and it is easier to assign
+ * root_task_group's rt_rq than switching in rt_rq_of_se()
+ * Clobbers tg(!)
+ */
+ if (!rt_group_sched_enabled())
+ tg = &root_task_group;
p->rt.rt_rq = tg->rt_rq[cpu];
p->rt.parent = tg->rt_se[cpu];
-#endif
+#endif /* CONFIG_RT_GROUP_SCHED */
}
-#else /* CONFIG_CGROUP_SCHED */
+#else /* !CONFIG_CGROUP_SCHED: */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
+
static inline struct task_group *task_group(struct task_struct *p)
{
return NULL;
}
-#endif /* CONFIG_CGROUP_SCHED */
+#endif /* !CONFIG_CGROUP_SCHED */
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
@@ -1459,24 +2223,15 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
* per-task data have been completed by this moment.
*/
smp_wmb();
-#ifdef CONFIG_THREAD_INFO_IN_TASK
- p->cpu = cpu;
-#else
- task_thread_info(p)->cpu = cpu;
-#endif
+ WRITE_ONCE(task_thread_info(p)->cpu, cpu);
p->wake_cpu = cpu;
-#endif
+ rseq_sched_set_ids_changed(p);
+#endif /* CONFIG_SMP */
}
/*
- * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
+ * Tunables:
*/
-#ifdef CONFIG_SCHED_DEBUG
-# include <linux/static_key.h>
-# define const_debug __read_mostly
-#else
-# define const_debug const
-#endif
#define SCHED_FEAT(name, enabled) \
__SCHED_FEAT_##name ,
@@ -1488,13 +2243,13 @@ enum {
#undef SCHED_FEAT
-#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
-
/*
* To support run-time toggling of sched features, all the translation units
* (but core.c) reference the sysctl_sched_features defined in core.c.
*/
-extern const_debug unsigned int sysctl_sched_features;
+extern __read_mostly unsigned int sysctl_sched_features;
+
+#ifdef CONFIG_JUMP_LABEL
#define SCHED_FEAT(name, enabled) \
static __always_inline bool static_branch_##name(struct static_key *key) \
@@ -1508,23 +2263,11 @@ static __always_inline bool static_branch_##name(struct static_key *key) \
extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
-#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
+#else /* !CONFIG_JUMP_LABEL: */
-/*
- * Each translation unit has its own copy of sysctl_sched_features to allow
- * constants propagation at compile time and compiler optimization based on
- * features default.
- */
-#define SCHED_FEAT(name, enabled) \
- (1UL << __SCHED_FEAT_##name) * enabled |
-static const_debug __maybe_unused unsigned int sysctl_sched_features =
-#include "features.h"
- 0;
-#undef SCHED_FEAT
-
-#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
+#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
-#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
+#endif /* !CONFIG_JUMP_LABEL */
extern struct static_key_false sched_numa_balancing;
extern struct static_key_false sched_schedstats;
@@ -1542,36 +2285,61 @@ static inline u64 global_rt_runtime(void)
return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
+/*
+ * Is p the current execution context?
+ */
static inline int task_current(struct rq *rq, struct task_struct *p)
{
return rq->curr == p;
}
-static inline int task_running(struct rq *rq, struct task_struct *p)
+/*
+ * Is p the current scheduling context?
+ *
+ * Note that it might be the current execution context at the same time if
+ * rq->curr == rq->donor == p.
+ */
+static inline int task_current_donor(struct rq *rq, struct task_struct *p)
+{
+ return rq->donor == p;
+}
+
+static inline bool task_is_blocked(struct task_struct *p)
+{
+ if (!sched_proxy_exec())
+ return false;
+
+ return !!p->blocked_on;
+}
+
+static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
{
-#ifdef CONFIG_SMP
return p->on_cpu;
-#else
- return task_current(rq, p);
-#endif
}
static inline int task_on_rq_queued(struct task_struct *p)
{
- return p->on_rq == TASK_ON_RQ_QUEUED;
+ return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED;
}
static inline int task_on_rq_migrating(struct task_struct *p)
{
- return p->on_rq == TASK_ON_RQ_MIGRATING;
+ return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
}
-/*
- * wake flags
- */
-#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
-#define WF_FORK 0x02 /* Child wakeup after fork */
-#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
+/* Wake flags. The first three directly map to some SD flag value */
+#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
+#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
+#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
+
+#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
+#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
+#define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */
+#define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */
+
+static_assert(WF_EXEC == SD_BALANCE_EXEC);
+static_assert(WF_FORK == SD_BALANCE_FORK);
+static_assert(WF_TTWU == SD_BALANCE_WAKE);
/*
* To aid in avoiding the subversion of "niceness" due to uneven distribution
@@ -1591,8 +2359,7 @@ extern const u32 sched_prio_to_wmult[40];
/*
* {de,en}queue flags:
*
- * DEQUEUE_SLEEP - task is no longer runnable
- * ENQUEUE_WAKEUP - task just became runnable
+ * SLEEP/WAKEUP - task is no-longer/just-became runnable
*
* SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
* are in a known state which allows modification. Such pairs
@@ -1601,113 +2368,301 @@ extern const u32 sched_prio_to_wmult[40];
* MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
* in the runqueue.
*
+ * NOCLOCK - skip the update_rq_clock() (avoids double updates)
+ *
+ * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
+ *
+ * DELAYED - de/re-queue a sched_delayed task
+ *
+ * CLASS - going to update p->sched_class; makes sched_change call the
+ * various switch methods.
+ *
* ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
* ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
* ENQUEUE_MIGRATED - the task was migrated during wakeup
+ * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
*
+ * XXX SAVE/RESTORE in combination with CLASS doesn't really make sense, but
+ * SCHED_DEADLINE seems to rely on this for now.
*/
-#define DEQUEUE_SLEEP 0x01
-#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
-#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
-#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
+#define DEQUEUE_SLEEP 0x0001 /* Matches ENQUEUE_WAKEUP */
+#define DEQUEUE_SAVE 0x0002 /* Matches ENQUEUE_RESTORE */
+#define DEQUEUE_MOVE 0x0004 /* Matches ENQUEUE_MOVE */
+#define DEQUEUE_NOCLOCK 0x0008 /* Matches ENQUEUE_NOCLOCK */
-#define ENQUEUE_WAKEUP 0x01
-#define ENQUEUE_RESTORE 0x02
-#define ENQUEUE_MOVE 0x04
-#define ENQUEUE_NOCLOCK 0x08
+#define DEQUEUE_MIGRATING 0x0010 /* Matches ENQUEUE_MIGRATING */
+#define DEQUEUE_DELAYED 0x0020 /* Matches ENQUEUE_DELAYED */
+#define DEQUEUE_CLASS 0x0040 /* Matches ENQUEUE_CLASS */
-#define ENQUEUE_HEAD 0x10
-#define ENQUEUE_REPLENISH 0x20
-#ifdef CONFIG_SMP
-#define ENQUEUE_MIGRATED 0x40
-#else
-#define ENQUEUE_MIGRATED 0x00
-#endif
+#define DEQUEUE_SPECIAL 0x00010000
+#define DEQUEUE_THROTTLE 0x00020000
+
+#define ENQUEUE_WAKEUP 0x0001
+#define ENQUEUE_RESTORE 0x0002
+#define ENQUEUE_MOVE 0x0004
+#define ENQUEUE_NOCLOCK 0x0008
+
+#define ENQUEUE_MIGRATING 0x0010
+#define ENQUEUE_DELAYED 0x0020
+#define ENQUEUE_CLASS 0x0040
+
+#define ENQUEUE_HEAD 0x00010000
+#define ENQUEUE_REPLENISH 0x00020000
+#define ENQUEUE_MIGRATED 0x00040000
+#define ENQUEUE_INITIAL 0x00080000
+#define ENQUEUE_RQ_SELECTED 0x00100000
#define RETRY_TASK ((void *)-1UL)
+struct affinity_context {
+ const struct cpumask *new_mask;
+ struct cpumask *user_mask;
+ unsigned int flags;
+};
+
+extern s64 update_curr_common(struct rq *rq);
+
struct sched_class {
- const struct sched_class *next;
+#ifdef CONFIG_UCLAMP_TASK
+ int uclamp_enabled;
+#endif
+ /*
+ * idle: 0
+ * ext: 1
+ * fair: 2
+ * rt: 4
+ * dl: 8
+ * stop: 16
+ */
+ unsigned int queue_mask;
+
+ /*
+ * move_queued_task/activate_task/enqueue_task: rq->lock
+ * ttwu_do_activate/activate_task/enqueue_task: rq->lock
+ * wake_up_new_task/activate_task/enqueue_task: task_rq_lock
+ * ttwu_runnable/enqueue_task: task_rq_lock
+ * proxy_task_current: rq->lock
+ * sched_change_end
+ */
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
- void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
+ /*
+ * move_queued_task/deactivate_task/dequeue_task: rq->lock
+ * __schedule/block_task/dequeue_task: rq->lock
+ * proxy_task_current: rq->lock
+ * wait_task_inactive: task_rq_lock
+ * sched_change_begin
+ */
+ bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
+
+ /*
+ * do_sched_yield: rq->lock
+ */
void (*yield_task) (struct rq *rq);
- bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
+ /*
+ * yield_to: rq->lock (double)
+ */
+ bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
- void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
+ /*
+ * move_queued_task: rq->lock
+ * __migrate_swap_task: rq->lock
+ * ttwu_do_activate: rq->lock
+ * ttwu_runnable: task_rq_lock
+ * wake_up_new_task: task_rq_lock
+ */
+ void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
/*
- * It is the responsibility of the pick_next_task() method that will
- * return the next task to call put_prev_task() on the @prev task or
- * something equivalent.
+ * schedule/pick_next_task/prev_balance: rq->lock
+ */
+ int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
+
+ /*
+ * schedule/pick_next_task: rq->lock
+ */
+ struct task_struct *(*pick_task)(struct rq *rq, struct rq_flags *rf);
+ /*
+ * Optional! When implemented pick_next_task() should be equivalent to:
*
- * May return RETRY_TASK when it finds a higher prio class has runnable
- * tasks.
+ * next = pick_task();
+ * if (next) {
+ * put_prev_task(prev);
+ * set_next_task_first(next);
+ * }
*/
- struct task_struct * (*pick_next_task)(struct rq *rq,
- struct task_struct *prev,
- struct rq_flags *rf);
- void (*put_prev_task)(struct rq *rq, struct task_struct *p);
+ struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev,
+ struct rq_flags *rf);
-#ifdef CONFIG_SMP
- int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
+ /*
+ * sched_change:
+ * __schedule: rq->lock
+ */
+ void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
+ void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
+
+ /*
+ * select_task_rq: p->pi_lock
+ * sched_exec: p->pi_lock
+ */
+ int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
+
+ /*
+ * set_task_cpu: p->pi_lock || rq->lock (ttwu like)
+ */
void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
+ /*
+ * ttwu_do_activate: rq->lock
+ * wake_up_new_task: task_rq_lock
+ */
void (*task_woken)(struct rq *this_rq, struct task_struct *task);
- void (*set_cpus_allowed)(struct task_struct *p,
- const struct cpumask *newmask);
+ /*
+ * do_set_cpus_allowed: task_rq_lock + sched_change
+ */
+ void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
+ /*
+ * sched_set_rq_{on,off}line: rq->lock
+ */
void (*rq_online)(struct rq *rq);
void (*rq_offline)(struct rq *rq);
-#endif
- void (*set_curr_task)(struct rq *rq);
+ /*
+ * push_cpu_stop: p->pi_lock && rq->lock
+ */
+ struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
+
+ /*
+ * hrtick: rq->lock
+ * sched_tick: rq->lock
+ * sched_tick_remote: rq->lock
+ */
void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
+ /*
+ * sched_cgroup_fork: p->pi_lock
+ */
void (*task_fork)(struct task_struct *p);
+ /*
+ * finish_task_switch: no locks
+ */
void (*task_dead)(struct task_struct *p);
/*
- * The switched_from() call is allowed to drop rq->lock, therefore we
- * cannot assume the switched_from/switched_to pair is serliazed by
- * rq->lock. They are however serialized by p->pi_lock.
+ * sched_change
*/
- void (*switched_from)(struct rq *this_rq, struct task_struct *task);
- void (*switched_to) (struct rq *this_rq, struct task_struct *task);
+ void (*switching_from)(struct rq *this_rq, struct task_struct *task);
+ void (*switched_from) (struct rq *this_rq, struct task_struct *task);
+ void (*switching_to) (struct rq *this_rq, struct task_struct *task);
+ void (*switched_to) (struct rq *this_rq, struct task_struct *task);
+ u64 (*get_prio) (struct rq *this_rq, struct task_struct *task);
void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
- int oldprio);
+ u64 oldprio);
+ /*
+ * set_load_weight: task_rq_lock + sched_change
+ * __setscheduler_parms: task_rq_lock + sched_change
+ */
+ void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
+ const struct load_weight *lw);
+
+ /*
+ * sched_rr_get_interval: task_rq_lock
+ */
unsigned int (*get_rr_interval)(struct rq *rq,
struct task_struct *task);
+ /*
+ * task_sched_runtime: task_rq_lock
+ */
void (*update_curr)(struct rq *rq);
-#define TASK_SET_GROUP 0
-#define TASK_MOVE_GROUP 1
-
#ifdef CONFIG_FAIR_GROUP_SCHED
- void (*task_change_group)(struct task_struct *p, int type);
+ /*
+ * sched_change_group: task_rq_lock + sched_change
+ */
+ void (*task_change_group)(struct task_struct *p);
+#endif
+
+#ifdef CONFIG_SCHED_CORE
+ /*
+ * pick_next_task: rq->lock
+ * try_steal_cookie: rq->lock (double)
+ */
+ int (*task_is_throttled)(struct task_struct *p, int cpu);
#endif
};
+/*
+ * Does not nest; only used around sched_class::pick_task() rq-lock-breaks.
+ */
+static inline void rq_modified_clear(struct rq *rq)
+{
+ rq->queue_mask = 0;
+}
+
+static inline bool rq_modified_above(struct rq *rq, const struct sched_class * class)
+{
+ unsigned int mask = class->queue_mask;
+ return rq->queue_mask & ~((mask << 1) - 1);
+}
+
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
- prev->sched_class->put_prev_task(rq, prev);
+ WARN_ON_ONCE(rq->donor != prev);
+ prev->sched_class->put_prev_task(rq, prev, NULL);
}
-static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
+static inline void set_next_task(struct rq *rq, struct task_struct *next)
{
- curr->sched_class->set_curr_task(rq);
+ next->sched_class->set_next_task(rq, next, false);
}
-#ifdef CONFIG_SMP
-#define sched_class_highest (&stop_sched_class)
-#else
-#define sched_class_highest (&dl_sched_class)
-#endif
-#define for_each_class(class) \
- for (class = sched_class_highest; class; class = class->next)
+static inline void
+__put_prev_set_next_dl_server(struct rq *rq,
+ struct task_struct *prev,
+ struct task_struct *next)
+{
+ prev->dl_server = NULL;
+ next->dl_server = rq->dl_server;
+ rq->dl_server = NULL;
+}
+
+static inline void put_prev_set_next_task(struct rq *rq,
+ struct task_struct *prev,
+ struct task_struct *next)
+{
+ WARN_ON_ONCE(rq->donor != prev);
+
+ __put_prev_set_next_dl_server(rq, prev, next);
+
+ if (next == prev)
+ return;
+
+ prev->sched_class->put_prev_task(rq, prev, next);
+ next->sched_class->set_next_task(rq, next, true);
+}
+
+/*
+ * Helper to define a sched_class instance; each one is placed in a separate
+ * section which is ordered by the linker script:
+ *
+ * include/asm-generic/vmlinux.lds.h
+ *
+ * *CAREFUL* they are laid out in *REVERSE* order!!!
+ *
+ * Also enforce alignment on the instance, not the type, to guarantee layout.
+ */
+#define DEFINE_SCHED_CLASS(name) \
+const struct sched_class name##_sched_class \
+ __aligned(__alignof__(struct sched_class)) \
+ __section("__" #name "_sched_class")
+
+/* Defined in include/asm-generic/vmlinux.lds.h */
+extern struct sched_class __sched_class_highest[];
+extern struct sched_class __sched_class_lowest[];
extern const struct sched_class stop_sched_class;
extern const struct sched_class dl_sched_class;
@@ -1715,18 +2670,118 @@ extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;
+/*
+ * Iterate only active classes. SCX can take over all fair tasks or be
+ * completely disabled. If the former, skip fair. If the latter, skip SCX.
+ */
+static inline const struct sched_class *next_active_class(const struct sched_class *class)
+{
+ class++;
+#ifdef CONFIG_SCHED_CLASS_EXT
+ if (scx_switched_all() && class == &fair_sched_class)
+ class++;
+ if (!scx_enabled() && class == &ext_sched_class)
+ class++;
+#endif
+ return class;
+}
-#ifdef CONFIG_SMP
+#define for_class_range(class, _from, _to) \
+ for (class = (_from); class < (_to); class++)
+
+#define for_each_class(class) \
+ for_class_range(class, __sched_class_highest, __sched_class_lowest)
+
+#define for_active_class_range(class, _from, _to) \
+ for (class = (_from); class != (_to); class = next_active_class(class))
+
+#define for_each_active_class(class) \
+ for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
+
+#define sched_class_above(_a, _b) ((_a) < (_b))
+
+static inline bool sched_stop_runnable(struct rq *rq)
+{
+ return rq->stop && task_on_rq_queued(rq->stop);
+}
+
+static inline bool sched_dl_runnable(struct rq *rq)
+{
+ return rq->dl.dl_nr_running > 0;
+}
+
+static inline bool sched_rt_runnable(struct rq *rq)
+{
+ return rq->rt.rt_queued > 0;
+}
+
+static inline bool sched_fair_runnable(struct rq *rq)
+{
+ return rq->cfs.nr_queued > 0;
+}
+
+extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev,
+ struct rq_flags *rf);
+extern struct task_struct *pick_task_idle(struct rq *rq, struct rq_flags *rf);
+
+#define SCA_CHECK 0x01
+#define SCA_MIGRATE_DISABLE 0x02
+#define SCA_MIGRATE_ENABLE 0x04
+#define SCA_USER 0x08
extern void update_group_capacity(struct sched_domain *sd, int cpu);
-extern void trigger_load_balance(struct rq *rq);
+extern void sched_balance_trigger(struct rq *rq);
-extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
+extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
+extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
-#endif
+static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
+{
+ /* When not in the task's cpumask, no point in looking further. */
+ if (!cpumask_test_cpu(cpu, p->cpus_ptr))
+ return false;
+
+ /* Can @cpu run a user thread? */
+ if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
+ return false;
+
+ return true;
+}
+
+static inline cpumask_t *alloc_user_cpus_ptr(int node)
+{
+ /*
+ * See set_cpus_allowed_force() above for the rcu_head usage.
+ */
+ int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
+
+ return kmalloc_node(size, GFP_KERNEL, node);
+}
+
+static inline struct task_struct *get_push_task(struct rq *rq)
+{
+ struct task_struct *p = rq->donor;
+
+ lockdep_assert_rq_held(rq);
+
+ if (rq->push_busy)
+ return NULL;
+
+ if (p->nr_cpus_allowed == 1)
+ return NULL;
+
+ if (p->migration_disabled)
+ return NULL;
+
+ rq->push_busy = true;
+ return get_task_struct(p);
+}
+
+extern int push_cpu_stop(void *arg);
#ifdef CONFIG_CPU_IDLE
+
static inline void idle_set_state(struct rq *rq,
struct cpuidle_state *idle_state)
{
@@ -1735,11 +2790,13 @@ static inline void idle_set_state(struct rq *rq,
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
- SCHED_WARN_ON(!rcu_read_lock_held());
+ WARN_ON_ONCE(!rcu_read_lock_held());
return rq->idle_state;
}
-#else
+
+#else /* !CONFIG_CPU_IDLE: */
+
static inline void idle_set_state(struct rq *rq,
struct cpuidle_state *idle_state)
{
@@ -1749,9 +2806,11 @@ static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
return NULL;
}
-#endif
+
+#endif /* !CONFIG_CPU_IDLE */
extern void schedule_idle(void);
+asmlinkage void schedule_user(void);
extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
@@ -1761,27 +2820,27 @@ extern void init_sched_dl_class(void);
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);
-extern void reweight_task(struct task_struct *p, int prio);
-
extern void resched_curr(struct rq *rq);
+extern void resched_curr_lazy(struct rq *rq);
extern void resched_cpu(int cpu);
-extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
+extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
-extern struct dl_bandwidth def_dl_bandwidth;
-extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
-extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
-extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
-extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
+extern void init_dl_entity(struct sched_dl_entity *dl_se);
+
+extern void init_cfs_throttle_work(struct task_struct *p);
#define BW_SHIFT 20
#define BW_UNIT (1 << BW_SHIFT)
#define RATIO_SHIFT 8
-unsigned long to_ratio(u64 period, u64 runtime);
+#define MAX_BW_BITS (64 - BW_SHIFT)
+#define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
+
+extern unsigned long to_ratio(u64 period, u64 runtime);
extern void init_entity_runnable_average(struct sched_entity *se);
-extern void post_init_entity_util_avg(struct sched_entity *se);
+extern void post_init_entity_util_avg(struct task_struct *p);
#ifdef CONFIG_NO_HZ_FULL
extern bool sched_can_stop_tick(struct rq *rq);
@@ -1794,12 +2853,7 @@ extern int __init sched_tick_offload_init(void);
*/
static inline void sched_update_tick_dependency(struct rq *rq)
{
- int cpu;
-
- if (!tick_nohz_full_enabled())
- return;
-
- cpu = cpu_of(rq);
+ int cpu = cpu_of(rq);
if (!tick_nohz_full_cpu(cpu))
return;
@@ -1809,23 +2863,22 @@ static inline void sched_update_tick_dependency(struct rq *rq)
else
tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
}
-#else
+#else /* !CONFIG_NO_HZ_FULL: */
static inline int sched_tick_offload_init(void) { return 0; }
static inline void sched_update_tick_dependency(struct rq *rq) { }
-#endif
+#endif /* !CONFIG_NO_HZ_FULL */
static inline void add_nr_running(struct rq *rq, unsigned count)
{
unsigned prev_nr = rq->nr_running;
rq->nr_running = prev_nr + count;
-
-#ifdef CONFIG_SMP
- if (prev_nr < 2 && rq->nr_running >= 2) {
- if (!READ_ONCE(rq->rd->overload))
- WRITE_ONCE(rq->rd->overload, 1);
+ if (trace_sched_update_nr_running_tp_enabled()) {
+ call_trace_sched_update_nr_running(rq, count);
}
-#endif
+
+ if (prev_nr < 2 && rq->nr_running >= 2)
+ set_rd_overloaded(rq->rd, 1);
sched_update_tick_dependency(rq);
}
@@ -1833,17 +2886,83 @@ static inline void add_nr_running(struct rq *rq, unsigned count)
static inline void sub_nr_running(struct rq *rq, unsigned count)
{
rq->nr_running -= count;
+ if (trace_sched_update_nr_running_tp_enabled()) {
+ call_trace_sched_update_nr_running(rq, -count);
+ }
+
/* Check if we still need preemption */
sched_update_tick_dependency(rq);
}
+static inline void __block_task(struct rq *rq, struct task_struct *p)
+{
+ if (p->sched_contributes_to_load)
+ rq->nr_uninterruptible++;
+
+ if (p->in_iowait) {
+ atomic_inc(&rq->nr_iowait);
+ delayacct_blkio_start();
+ }
+
+ ASSERT_EXCLUSIVE_WRITER(p->on_rq);
+
+ /*
+ * The moment this write goes through, ttwu() can swoop in and migrate
+ * this task, rendering our rq->__lock ineffective.
+ *
+ * __schedule() try_to_wake_up()
+ * LOCK rq->__lock LOCK p->pi_lock
+ * pick_next_task()
+ * pick_next_task_fair()
+ * pick_next_entity()
+ * dequeue_entities()
+ * __block_task()
+ * RELEASE p->on_rq = 0 if (p->on_rq && ...)
+ * break;
+ *
+ * ACQUIRE (after ctrl-dep)
+ *
+ * cpu = select_task_rq();
+ * set_task_cpu(p, cpu);
+ * ttwu_queue()
+ * ttwu_do_activate()
+ * LOCK rq->__lock
+ * activate_task()
+ * STORE p->on_rq = 1
+ * UNLOCK rq->__lock
+ *
+ * Callers must ensure to not reference @p after this -- we no longer
+ * own it.
+ */
+ smp_store_release(&p->on_rq, 0);
+}
+
extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
-extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
+extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
+
+#ifdef CONFIG_PREEMPT_RT
+# define SCHED_NR_MIGRATE_BREAK 8
+#else
+# define SCHED_NR_MIGRATE_BREAK 32
+#endif
+
+extern __read_mostly unsigned int sysctl_sched_nr_migrate;
+extern __read_mostly unsigned int sysctl_sched_migration_cost;
-extern const_debug unsigned int sysctl_sched_nr_migrate;
-extern const_debug unsigned int sysctl_sched_migration_cost;
+extern unsigned int sysctl_sched_base_slice;
+
+extern int sysctl_resched_latency_warn_ms;
+extern int sysctl_resched_latency_warn_once;
+
+extern unsigned int sysctl_sched_tunable_scaling;
+
+extern unsigned int sysctl_numa_balancing_scan_delay;
+extern unsigned int sysctl_numa_balancing_scan_period_min;
+extern unsigned int sysctl_numa_balancing_scan_period_max;
+extern unsigned int sysctl_numa_balancing_scan_size;
+extern unsigned int sysctl_numa_balancing_hot_threshold;
#ifdef CONFIG_SCHED_HRTICK
@@ -1854,25 +2973,61 @@ extern const_debug unsigned int sysctl_sched_migration_cost;
*/
static inline int hrtick_enabled(struct rq *rq)
{
- if (!sched_feat(HRTICK))
- return 0;
if (!cpu_active(cpu_of(rq)))
return 0;
return hrtimer_is_hres_active(&rq->hrtick_timer);
}
-void hrtick_start(struct rq *rq, u64 delay);
+static inline int hrtick_enabled_fair(struct rq *rq)
+{
+ if (!sched_feat(HRTICK))
+ return 0;
+ return hrtick_enabled(rq);
+}
-#else
+static inline int hrtick_enabled_dl(struct rq *rq)
+{
+ if (!sched_feat(HRTICK_DL))
+ return 0;
+ return hrtick_enabled(rq);
+}
+
+extern void hrtick_start(struct rq *rq, u64 delay);
+
+#else /* !CONFIG_SCHED_HRTICK: */
+
+static inline int hrtick_enabled_fair(struct rq *rq)
+{
+ return 0;
+}
+
+static inline int hrtick_enabled_dl(struct rq *rq)
+{
+ return 0;
+}
static inline int hrtick_enabled(struct rq *rq)
{
return 0;
}
-#endif /* CONFIG_SCHED_HRTICK */
+#endif /* !CONFIG_SCHED_HRTICK */
+
+#ifndef arch_scale_freq_tick
+static __always_inline void arch_scale_freq_tick(void) { }
+#endif
#ifndef arch_scale_freq_capacity
+/**
+ * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
+ * @cpu: the CPU in question.
+ *
+ * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
+ *
+ * f_curr
+ * ------ * SCHED_CAPACITY_SCALE
+ * f_max
+ */
static __always_inline
unsigned long arch_scale_freq_capacity(int cpu)
{
@@ -1880,10 +3035,53 @@ unsigned long arch_scale_freq_capacity(int cpu)
}
#endif
-#ifdef CONFIG_SMP
-#ifdef CONFIG_PREEMPT
+/*
+ * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
+ * acquire rq lock instead of rq_lock(). So at the end of these two functions
+ * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
+ * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
+ */
+static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
+{
+ rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
+ rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
+}
-static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
+#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \
+__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
+static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
+{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \
+ _lock; return _t; }
+
+static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
+{
+#ifdef CONFIG_SCHED_CORE
+ /*
+ * In order to not have {0,2},{1,3} turn into into an AB-BA,
+ * order by core-id first and cpu-id second.
+ *
+ * Notably:
+ *
+ * double_rq_lock(0,3); will take core-0, core-1 lock
+ * double_rq_lock(1,2); will take core-1, core-0 lock
+ *
+ * when only cpu-id is considered.
+ */
+ if (rq1->core->cpu < rq2->core->cpu)
+ return true;
+ if (rq1->core->cpu > rq2->core->cpu)
+ return false;
+
+ /*
+ * __sched_core_flip() relies on SMT having cpu-id lock order.
+ */
+#endif /* CONFIG_SCHED_CORE */
+ return rq1->cpu < rq2->cpu;
+}
+
+extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
+
+#ifdef CONFIG_PREEMPTION
/*
* fair double_lock_balance: Safely acquires both rq->locks in a fair
@@ -1898,13 +3096,13 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
- raw_spin_unlock(&this_rq->lock);
+ raw_spin_rq_unlock(this_rq);
double_rq_lock(this_rq, busiest);
return 1;
}
-#else
+#else /* !CONFIG_PREEMPTION: */
/*
* Unfair double_lock_balance: Optimizes throughput at the expense of
* latency by eliminating extra atomic operations when the locks are
@@ -1917,34 +3115,32 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
- int ret = 0;
-
- if (unlikely(!raw_spin_trylock(&busiest->lock))) {
- if (busiest < this_rq) {
- raw_spin_unlock(&this_rq->lock);
- raw_spin_lock(&busiest->lock);
- raw_spin_lock_nested(&this_rq->lock,
- SINGLE_DEPTH_NESTING);
- ret = 1;
- } else
- raw_spin_lock_nested(&busiest->lock,
- SINGLE_DEPTH_NESTING);
+ if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
+ likely(raw_spin_rq_trylock(busiest))) {
+ double_rq_clock_clear_update(this_rq, busiest);
+ return 0;
+ }
+
+ if (rq_order_less(this_rq, busiest)) {
+ raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
+ double_rq_clock_clear_update(this_rq, busiest);
+ return 0;
}
- return ret;
+
+ raw_spin_rq_unlock(this_rq);
+ double_rq_lock(this_rq, busiest);
+
+ return 1;
}
-#endif /* CONFIG_PREEMPT */
+#endif /* !CONFIG_PREEMPTION */
/*
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
*/
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
- if (unlikely(!irqs_disabled())) {
- /* printk() doesn't work well under rq->lock */
- raw_spin_unlock(&this_rq->lock);
- BUG_ON(1);
- }
+ lockdep_assert_irqs_disabled();
return _double_lock_balance(this_rq, busiest);
}
@@ -1952,8 +3148,9 @@ static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
__releases(busiest->lock)
{
- raw_spin_unlock(&busiest->lock);
- lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
+ if (__rq_lockp(this_rq) != __rq_lockp(busiest))
+ raw_spin_rq_unlock(busiest);
+ lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
}
static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
@@ -1983,31 +3180,16 @@ static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}
-/*
- * double_rq_lock - safely lock two runqueues
- *
- * Note this does not disable interrupts like task_rq_lock,
- * you need to do so manually before calling.
- */
-static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
- __acquires(rq1->lock)
- __acquires(rq2->lock)
-{
- BUG_ON(!irqs_disabled());
- if (rq1 == rq2) {
- raw_spin_lock(&rq1->lock);
- __acquire(rq2->lock); /* Fake it out ;) */
- } else {
- if (rq1 < rq2) {
- raw_spin_lock(&rq1->lock);
- raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
- } else {
- raw_spin_lock(&rq2->lock);
- raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
- }
- }
+static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
+{
+ raw_spin_unlock(l1);
+ raw_spin_unlock(l2);
}
+DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
+ double_raw_lock(_T->lock, _T->lock2),
+ double_raw_unlock(_T->lock, _T->lock2))
+
/*
* double_rq_unlock - safely unlock two runqueues
*
@@ -2018,57 +3200,27 @@ static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
__releases(rq1->lock)
__releases(rq2->lock)
{
- raw_spin_unlock(&rq1->lock);
- if (rq1 != rq2)
- raw_spin_unlock(&rq2->lock);
+ if (__rq_lockp(rq1) != __rq_lockp(rq2))
+ raw_spin_rq_unlock(rq2);
else
__release(rq2->lock);
+ raw_spin_rq_unlock(rq1);
}
extern void set_rq_online (struct rq *rq);
extern void set_rq_offline(struct rq *rq);
-extern bool sched_smp_initialized;
-
-#else /* CONFIG_SMP */
-/*
- * double_rq_lock - safely lock two runqueues
- *
- * Note this does not disable interrupts like task_rq_lock,
- * you need to do so manually before calling.
- */
-static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
- __acquires(rq1->lock)
- __acquires(rq2->lock)
-{
- BUG_ON(!irqs_disabled());
- BUG_ON(rq1 != rq2);
- raw_spin_lock(&rq1->lock);
- __acquire(rq2->lock); /* Fake it out ;) */
-}
-
-/*
- * double_rq_unlock - safely unlock two runqueues
- *
- * Note this does not restore interrupts like task_rq_unlock,
- * you need to do so manually after calling.
- */
-static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
- __releases(rq1->lock)
- __releases(rq2->lock)
-{
- BUG_ON(rq1 != rq2);
- raw_spin_unlock(&rq1->lock);
- __release(rq2->lock);
-}
+extern bool sched_smp_initialized;
-#endif
+DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
+ double_rq_lock(_T->lock, _T->lock2),
+ double_rq_unlock(_T->lock, _T->lock2))
+extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
-#ifdef CONFIG_SCHED_DEBUG
-extern bool sched_debug_enabled;
+extern bool sched_debug_verbose;
extern void print_cfs_stats(struct seq_file *m, int cpu);
extern void print_rt_stats(struct seq_file *m, int cpu);
@@ -2076,14 +3228,15 @@ extern void print_dl_stats(struct seq_file *m, int cpu);
extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
+
+extern void resched_latency_warn(int cpu, u64 latency);
+
#ifdef CONFIG_NUMA_BALANCING
-extern void
-show_numa_stats(struct task_struct *p, struct seq_file *m);
+extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
extern void
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
- unsigned long tpf, unsigned long gsf, unsigned long gpf);
+ unsigned long tpf, unsigned long gsf, unsigned long gpf);
#endif /* CONFIG_NUMA_BALANCING */
-#endif /* CONFIG_SCHED_DEBUG */
extern void init_cfs_rq(struct cfs_rq *cfs_rq);
extern void init_rt_rq(struct rt_rq *rt_rq);
@@ -2093,49 +3246,66 @@ extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void);
#ifdef CONFIG_NO_HZ_COMMON
+
#define NOHZ_BALANCE_KICK_BIT 0
#define NOHZ_STATS_KICK_BIT 1
+#define NOHZ_NEWILB_KICK_BIT 2
+#define NOHZ_NEXT_KICK_BIT 3
+/* Run sched_balance_domains() */
#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
+/* Update blocked load */
#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
+/* Update blocked load when entering idle */
+#define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
+/* Update nohz.next_balance */
+#define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
-#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
+#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
-#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
+#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
extern void nohz_balance_exit_idle(struct rq *rq);
-#else
+#else /* !CONFIG_NO_HZ_COMMON: */
static inline void nohz_balance_exit_idle(struct rq *rq) { }
+#endif /* !CONFIG_NO_HZ_COMMON */
+
+#ifdef CONFIG_NO_HZ_COMMON
+extern void nohz_run_idle_balance(int cpu);
+#else
+static inline void nohz_run_idle_balance(int cpu) { }
#endif
+#include "stats.h"
-#ifdef CONFIG_SMP
-static inline
-void __dl_update(struct dl_bw *dl_b, s64 bw)
-{
- struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
- int i;
+#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
- RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
- "sched RCU must be held");
- for_each_cpu_and(i, rd->span, cpu_active_mask) {
- struct rq *rq = cpu_rq(i);
+extern void __sched_core_account_forceidle(struct rq *rq);
- rq->dl.extra_bw += bw;
- }
-}
-#else
-static inline
-void __dl_update(struct dl_bw *dl_b, s64 bw)
+static inline void sched_core_account_forceidle(struct rq *rq)
{
- struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
+ if (schedstat_enabled())
+ __sched_core_account_forceidle(rq);
+}
- dl->extra_bw += bw;
+extern void __sched_core_tick(struct rq *rq);
+
+static inline void sched_core_tick(struct rq *rq)
+{
+ if (sched_core_enabled(rq) && schedstat_enabled())
+ __sched_core_tick(rq);
}
-#endif
+#else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
+
+static inline void sched_core_account_forceidle(struct rq *rq) { }
+
+static inline void sched_core_tick(struct rq *rq) { }
+
+#endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
+
struct irqtime {
u64 total;
u64 tick_delta;
@@ -2144,10 +3314,16 @@ struct irqtime {
};
DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
+extern int sched_clock_irqtime;
+
+static inline int irqtime_enabled(void)
+{
+ return sched_clock_irqtime;
+}
/*
* Returns the irqtime minus the softirq time computed by ksoftirqd.
- * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
+ * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
* and never move forward.
*/
static inline u64 irq_time_read(int cpu)
@@ -2163,10 +3339,19 @@ static inline u64 irq_time_read(int cpu)
return total;
}
-#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
+
+#else /* !CONFIG_IRQ_TIME_ACCOUNTING: */
+
+static inline int irqtime_enabled(void)
+{
+ return 0;
+}
+
+#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
#ifdef CONFIG_CPU_FREQ
-DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
+
+DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
/**
* cpufreq_update_util - Take a note about CPU utilization changes.
@@ -2199,9 +3384,9 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
if (data)
data->func(data, rq_clock(rq), flags);
}
-#else
-static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
-#endif /* CONFIG_CPU_FREQ */
+#else /* !CONFIG_CPU_FREQ: */
+static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
+#endif /* !CONFIG_CPU_FREQ */
#ifdef arch_scale_freq_capacity
# ifndef arch_scale_freq_invariant
@@ -2211,30 +3396,28 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
# define arch_scale_freq_invariant() false
#endif
-#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
-/**
- * enum schedutil_type - CPU utilization type
- * @FREQUENCY_UTIL: Utilization used to select frequency
- * @ENERGY_UTIL: Utilization used during energy calculation
- *
- * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
- * need to be aggregated differently depending on the usage made of them. This
- * enum is used within schedutil_freq_util() to differentiate the types of
- * utilization expected by the callers, and adjust the aggregation accordingly.
- */
-enum schedutil_type {
- FREQUENCY_UTIL,
- ENERGY_UTIL,
-};
+unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
+ unsigned long *min,
+ unsigned long *max);
+
+unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
+ unsigned long min,
+ unsigned long max);
-unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
- unsigned long max, enum schedutil_type type);
-static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
+/*
+ * Verify the fitness of task @p to run on @cpu taking into account the
+ * CPU original capacity and the runtime/deadline ratio of the task.
+ *
+ * The function will return true if the original capacity of @cpu is
+ * greater than or equal to task's deadline density right shifted by
+ * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
+ */
+static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
{
- unsigned long max = arch_scale_cpu_capacity(NULL, cpu);
+ unsigned long cap = arch_scale_cpu_capacity(cpu);
- return schedutil_freq_util(cpu, cfs, max, ENERGY_UTIL);
+ return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
}
static inline unsigned long cpu_bw_dl(struct rq *rq)
@@ -2247,33 +3430,151 @@ static inline unsigned long cpu_util_dl(struct rq *rq)
return READ_ONCE(rq->avg_dl.util_avg);
}
-static inline unsigned long cpu_util_cfs(struct rq *rq)
+
+extern unsigned long cpu_util_cfs(int cpu);
+extern unsigned long cpu_util_cfs_boost(int cpu);
+
+static inline unsigned long cpu_util_rt(struct rq *rq)
{
- unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
+ return READ_ONCE(rq->avg_rt.util_avg);
+}
- if (sched_feat(UTIL_EST)) {
- util = max_t(unsigned long, util,
- READ_ONCE(rq->cfs.avg.util_est.enqueued));
- }
+#ifdef CONFIG_UCLAMP_TASK
- return util;
+unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
+
+/*
+ * When uclamp is compiled in, the aggregation at rq level is 'turned off'
+ * by default in the fast path and only gets turned on once userspace performs
+ * an operation that requires it.
+ *
+ * Returns true if userspace opted-in to use uclamp and aggregation at rq level
+ * hence is active.
+ */
+static inline bool uclamp_is_used(void)
+{
+ return static_branch_likely(&sched_uclamp_used);
}
-static inline unsigned long cpu_util_rt(struct rq *rq)
+/*
+ * Enabling static branches would get the cpus_read_lock(),
+ * check whether uclamp_is_used before enable it to avoid always
+ * calling cpus_read_lock(). Because we never disable this
+ * static key once enable it.
+ */
+static inline void sched_uclamp_enable(void)
{
- return READ_ONCE(rq->avg_rt.util_avg);
+ if (!uclamp_is_used())
+ static_branch_enable(&sched_uclamp_used);
}
-#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
-static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
+
+static inline unsigned long uclamp_rq_get(struct rq *rq,
+ enum uclamp_id clamp_id)
{
- return cfs;
+ return READ_ONCE(rq->uclamp[clamp_id].value);
}
-#endif
+
+static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
+ unsigned int value)
+{
+ WRITE_ONCE(rq->uclamp[clamp_id].value, value);
+}
+
+static inline bool uclamp_rq_is_idle(struct rq *rq)
+{
+ return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
+}
+
+/* Is the rq being capped/throttled by uclamp_max? */
+static inline bool uclamp_rq_is_capped(struct rq *rq)
+{
+ unsigned long rq_util;
+ unsigned long max_util;
+
+ if (!uclamp_is_used())
+ return false;
+
+ rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
+ max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
+
+ return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
+}
+
+#define for_each_clamp_id(clamp_id) \
+ for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
+
+extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
+
+
+static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
+{
+ if (clamp_id == UCLAMP_MIN)
+ return 0;
+ return SCHED_CAPACITY_SCALE;
+}
+
+/* Integer rounded range for each bucket */
+#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
+
+static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
+{
+ return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
+}
+
+static inline void
+uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
+{
+ uc_se->value = value;
+ uc_se->bucket_id = uclamp_bucket_id(value);
+ uc_se->user_defined = user_defined;
+}
+
+#else /* !CONFIG_UCLAMP_TASK: */
+
+static inline unsigned long
+uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
+{
+ if (clamp_id == UCLAMP_MIN)
+ return 0;
+
+ return SCHED_CAPACITY_SCALE;
+}
+
+static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
+
+static inline bool uclamp_is_used(void)
+{
+ return false;
+}
+
+static inline void sched_uclamp_enable(void) {}
+
+static inline unsigned long
+uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
+{
+ if (clamp_id == UCLAMP_MIN)
+ return 0;
+
+ return SCHED_CAPACITY_SCALE;
+}
+
+static inline void
+uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
+{
+}
+
+static inline bool uclamp_rq_is_idle(struct rq *rq)
+{
+ return false;
+}
+
+#endif /* !CONFIG_UCLAMP_TASK */
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
+
static inline unsigned long cpu_util_irq(struct rq *rq)
{
- return rq->avg_irq.util_avg;
+ return READ_ONCE(rq->avg_irq.util_avg);
}
static inline
@@ -2285,7 +3586,9 @@ unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned
return util;
}
-#else
+
+#else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
+
static inline unsigned long cpu_util_irq(struct rq *rq)
{
return 0;
@@ -2296,14 +3599,390 @@ unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned
{
return util;
}
-#endif
+
+#endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
+
+extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr);
#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
+
#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
-#else
+
+DECLARE_STATIC_KEY_FALSE(sched_energy_present);
+
+static inline bool sched_energy_enabled(void)
+{
+ return static_branch_unlikely(&sched_energy_present);
+}
+
+#else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */
+
#define perf_domain_span(pd) NULL
-#endif
-#ifdef CONFIG_SMP
-extern struct static_key_false sched_energy_present;
+static inline bool sched_energy_enabled(void) { return false; }
+
+#endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
+
+#ifdef CONFIG_MEMBARRIER
+
+/*
+ * The scheduler provides memory barriers required by membarrier between:
+ * - prior user-space memory accesses and store to rq->membarrier_state,
+ * - store to rq->membarrier_state and following user-space memory accesses.
+ * In the same way it provides those guarantees around store to rq->curr.
+ */
+static inline void membarrier_switch_mm(struct rq *rq,
+ struct mm_struct *prev_mm,
+ struct mm_struct *next_mm)
+{
+ int membarrier_state;
+
+ if (prev_mm == next_mm)
+ return;
+
+ membarrier_state = atomic_read(&next_mm->membarrier_state);
+ if (READ_ONCE(rq->membarrier_state) == membarrier_state)
+ return;
+
+ WRITE_ONCE(rq->membarrier_state, membarrier_state);
+}
+
+#else /* !CONFIG_MEMBARRIER: */
+
+static inline void membarrier_switch_mm(struct rq *rq,
+ struct mm_struct *prev_mm,
+ struct mm_struct *next_mm)
+{
+}
+
+#endif /* !CONFIG_MEMBARRIER */
+
+static inline bool is_per_cpu_kthread(struct task_struct *p)
+{
+ if (!(p->flags & PF_KTHREAD))
+ return false;
+
+ if (p->nr_cpus_allowed != 1)
+ return false;
+
+ return true;
+}
+
+extern void swake_up_all_locked(struct swait_queue_head *q);
+extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
+
+extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
+
+#ifdef CONFIG_PREEMPT_DYNAMIC
+extern int preempt_dynamic_mode;
+extern int sched_dynamic_mode(const char *str);
+extern void sched_dynamic_update(int mode);
#endif
+extern const char *preempt_modes[];
+
+#ifdef CONFIG_SCHED_MM_CID
+
+static __always_inline bool cid_on_cpu(unsigned int cid)
+{
+ return cid & MM_CID_ONCPU;
+}
+
+static __always_inline bool cid_in_transit(unsigned int cid)
+{
+ return cid & MM_CID_TRANSIT;
+}
+
+static __always_inline unsigned int cpu_cid_to_cid(unsigned int cid)
+{
+ return cid & ~MM_CID_ONCPU;
+}
+
+static __always_inline unsigned int cid_to_cpu_cid(unsigned int cid)
+{
+ return cid | MM_CID_ONCPU;
+}
+
+static __always_inline unsigned int cid_to_transit_cid(unsigned int cid)
+{
+ return cid | MM_CID_TRANSIT;
+}
+
+static __always_inline unsigned int cid_from_transit_cid(unsigned int cid)
+{
+ return cid & ~MM_CID_TRANSIT;
+}
+
+static __always_inline bool cid_on_task(unsigned int cid)
+{
+ /* True if none of the MM_CID_ONCPU, MM_CID_TRANSIT, MM_CID_UNSET bits is set */
+ return cid < MM_CID_TRANSIT;
+}
+
+static __always_inline void mm_drop_cid(struct mm_struct *mm, unsigned int cid)
+{
+ clear_bit(cid, mm_cidmask(mm));
+}
+
+static __always_inline void mm_unset_cid_on_task(struct task_struct *t)
+{
+ unsigned int cid = t->mm_cid.cid;
+
+ t->mm_cid.cid = MM_CID_UNSET;
+ if (cid_on_task(cid))
+ mm_drop_cid(t->mm, cid);
+}
+
+static __always_inline void mm_drop_cid_on_cpu(struct mm_struct *mm, struct mm_cid_pcpu *pcp)
+{
+ /* Clear the ONCPU bit, but do not set UNSET in the per CPU storage */
+ pcp->cid = cpu_cid_to_cid(pcp->cid);
+ mm_drop_cid(mm, pcp->cid);
+}
+
+static inline unsigned int __mm_get_cid(struct mm_struct *mm, unsigned int max_cids)
+{
+ unsigned int cid = find_first_zero_bit(mm_cidmask(mm), max_cids);
+
+ if (cid >= max_cids)
+ return MM_CID_UNSET;
+ if (test_and_set_bit(cid, mm_cidmask(mm)))
+ return MM_CID_UNSET;
+ return cid;
+}
+
+static inline unsigned int mm_get_cid(struct mm_struct *mm)
+{
+ unsigned int cid = __mm_get_cid(mm, READ_ONCE(mm->mm_cid.max_cids));
+
+ while (cid == MM_CID_UNSET) {
+ cpu_relax();
+ cid = __mm_get_cid(mm, num_possible_cpus());
+ }
+ return cid;
+}
+
+static inline unsigned int mm_cid_converge(struct mm_struct *mm, unsigned int orig_cid,
+ unsigned int max_cids)
+{
+ unsigned int new_cid, cid = cpu_cid_to_cid(orig_cid);
+
+ /* Is it in the optimal CID space? */
+ if (likely(cid < max_cids))
+ return orig_cid;
+
+ /* Try to find one in the optimal space. Otherwise keep the provided. */
+ new_cid = __mm_get_cid(mm, max_cids);
+ if (new_cid != MM_CID_UNSET) {
+ mm_drop_cid(mm, cid);
+ /* Preserve the ONCPU mode of the original CID */
+ return new_cid | (orig_cid & MM_CID_ONCPU);
+ }
+ return orig_cid;
+}
+
+static __always_inline void mm_cid_update_task_cid(struct task_struct *t, unsigned int cid)
+{
+ if (t->mm_cid.cid != cid) {
+ t->mm_cid.cid = cid;
+ rseq_sched_set_ids_changed(t);
+ }
+}
+
+static __always_inline void mm_cid_update_pcpu_cid(struct mm_struct *mm, unsigned int cid)
+{
+ __this_cpu_write(mm->mm_cid.pcpu->cid, cid);
+}
+
+static __always_inline void mm_cid_from_cpu(struct task_struct *t, unsigned int cpu_cid)
+{
+ unsigned int max_cids, tcid = t->mm_cid.cid;
+ struct mm_struct *mm = t->mm;
+
+ max_cids = READ_ONCE(mm->mm_cid.max_cids);
+ /* Optimize for the common case where both have the ONCPU bit set */
+ if (likely(cid_on_cpu(cpu_cid & tcid))) {
+ if (likely(cpu_cid_to_cid(cpu_cid) < max_cids)) {
+ mm_cid_update_task_cid(t, cpu_cid);
+ return;
+ }
+ /* Try to converge into the optimal CID space */
+ cpu_cid = mm_cid_converge(mm, cpu_cid, max_cids);
+ } else {
+ /* Hand over or drop the task owned CID */
+ if (cid_on_task(tcid)) {
+ if (cid_on_cpu(cpu_cid))
+ mm_unset_cid_on_task(t);
+ else
+ cpu_cid = cid_to_cpu_cid(tcid);
+ }
+ /* Still nothing, allocate a new one */
+ if (!cid_on_cpu(cpu_cid))
+ cpu_cid = cid_to_cpu_cid(mm_get_cid(mm));
+ }
+ mm_cid_update_pcpu_cid(mm, cpu_cid);
+ mm_cid_update_task_cid(t, cpu_cid);
+}
+
+static __always_inline void mm_cid_from_task(struct task_struct *t, unsigned int cpu_cid)
+{
+ unsigned int max_cids, tcid = t->mm_cid.cid;
+ struct mm_struct *mm = t->mm;
+
+ max_cids = READ_ONCE(mm->mm_cid.max_cids);
+ /* Optimize for the common case, where both have the ONCPU bit clear */
+ if (likely(cid_on_task(tcid | cpu_cid))) {
+ if (likely(tcid < max_cids)) {
+ mm_cid_update_pcpu_cid(mm, tcid);
+ return;
+ }
+ /* Try to converge into the optimal CID space */
+ tcid = mm_cid_converge(mm, tcid, max_cids);
+ } else {
+ /* Hand over or drop the CPU owned CID */
+ if (cid_on_cpu(cpu_cid)) {
+ if (cid_on_task(tcid))
+ mm_drop_cid_on_cpu(mm, this_cpu_ptr(mm->mm_cid.pcpu));
+ else
+ tcid = cpu_cid_to_cid(cpu_cid);
+ }
+ /* Still nothing, allocate a new one */
+ if (!cid_on_task(tcid))
+ tcid = mm_get_cid(mm);
+ /* Set the transition mode flag if required */
+ tcid |= READ_ONCE(mm->mm_cid.transit);
+ }
+ mm_cid_update_pcpu_cid(mm, tcid);
+ mm_cid_update_task_cid(t, tcid);
+}
+
+static __always_inline void mm_cid_schedin(struct task_struct *next)
+{
+ struct mm_struct *mm = next->mm;
+ unsigned int cpu_cid;
+
+ if (!next->mm_cid.active)
+ return;
+
+ cpu_cid = __this_cpu_read(mm->mm_cid.pcpu->cid);
+ if (likely(!READ_ONCE(mm->mm_cid.percpu)))
+ mm_cid_from_task(next, cpu_cid);
+ else
+ mm_cid_from_cpu(next, cpu_cid);
+}
+
+static __always_inline void mm_cid_schedout(struct task_struct *prev)
+{
+ /* During mode transitions CIDs are temporary and need to be dropped */
+ if (likely(!cid_in_transit(prev->mm_cid.cid)))
+ return;
+
+ mm_drop_cid(prev->mm, cid_from_transit_cid(prev->mm_cid.cid));
+ prev->mm_cid.cid = MM_CID_UNSET;
+}
+
+static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next)
+{
+ mm_cid_schedout(prev);
+ mm_cid_schedin(next);
+}
+
+#else /* !CONFIG_SCHED_MM_CID: */
+static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) { }
+#endif /* !CONFIG_SCHED_MM_CID */
+
+extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
+extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
+static inline
+void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
+{
+ lockdep_assert_rq_held(src_rq);
+ lockdep_assert_rq_held(dst_rq);
+
+ deactivate_task(src_rq, task, 0);
+ set_task_cpu(task, dst_rq->cpu);
+ activate_task(dst_rq, task, 0);
+}
+
+static inline
+bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
+{
+ if (!task_on_cpu(rq, p) &&
+ cpumask_test_cpu(cpu, &p->cpus_mask))
+ return true;
+
+ return false;
+}
+
+#ifdef CONFIG_RT_MUTEXES
+
+static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
+{
+ if (pi_task)
+ prio = min(prio, pi_task->prio);
+
+ return prio;
+}
+
+static inline int rt_effective_prio(struct task_struct *p, int prio)
+{
+ struct task_struct *pi_task = rt_mutex_get_top_task(p);
+
+ return __rt_effective_prio(pi_task, prio);
+}
+
+#else /* !CONFIG_RT_MUTEXES: */
+
+static inline int rt_effective_prio(struct task_struct *p, int prio)
+{
+ return prio;
+}
+
+#endif /* !CONFIG_RT_MUTEXES */
+
+extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
+extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
+extern const struct sched_class *__setscheduler_class(int policy, int prio);
+extern void set_load_weight(struct task_struct *p, bool update_load);
+extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
+extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
+
+extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
+extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
+
+/*
+ * The 'sched_change' pattern is the safe, easy and slow way of changing a
+ * task's scheduling properties. It dequeues a task, such that the scheduler
+ * is fully unaware of it; at which point its properties can be modified;
+ * after which it is enqueued again.
+ *
+ * Typically this must be called while holding task_rq_lock, since most/all
+ * properties are serialized under those locks. There is currently one
+ * exception to this rule in sched/ext which only holds rq->lock.
+ */
+
+/*
+ * This structure is a temporary, used to preserve/convey the queueing state
+ * of the task between sched_change_begin() and sched_change_end(). Ensuring
+ * the task's queueing state is idempotent across the operation.
+ */
+struct sched_change_ctx {
+ u64 prio;
+ struct task_struct *p;
+ int flags;
+ bool queued;
+ bool running;
+};
+
+struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags);
+void sched_change_end(struct sched_change_ctx *ctx);
+
+DEFINE_CLASS(sched_change, struct sched_change_ctx *,
+ sched_change_end(_T),
+ sched_change_begin(p, flags),
+ struct task_struct *p, unsigned int flags)
+
+DEFINE_CLASS_IS_UNCONDITIONAL(sched_change)
+
+#include "ext.h"
+
+#endif /* _KERNEL_SCHED_SCHED_H */