diff options
Diffstat (limited to 'kernel/sched/sched.h')
| -rw-r--r-- | kernel/sched/sched.h | 2064 |
1 files changed, 1394 insertions, 670 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index 771f8ddb7053..d30cca6870f5 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -5,6 +5,7 @@ #ifndef _KERNEL_SCHED_SCHED_H #define _KERNEL_SCHED_SCHED_H +#include <linux/prandom.h> #include <linux/sched/affinity.h> #include <linux/sched/autogroup.h> #include <linux/sched/cpufreq.h> @@ -20,7 +21,6 @@ #include <linux/sched/task_flags.h> #include <linux/sched/task.h> #include <linux/sched/topology.h> - #include <linux/atomic.h> #include <linux/bitmap.h> #include <linux/bug.h> @@ -68,38 +68,30 @@ #include <linux/wait_api.h> #include <linux/wait_bit.h> #include <linux/workqueue_api.h> +#include <linux/delayacct.h> +#include <linux/mmu_context.h> #include <trace/events/power.h> #include <trace/events/sched.h> #include "../workqueue_internal.h" -#ifdef CONFIG_CGROUP_SCHED -#include <linux/cgroup.h> -#include <linux/psi.h> -#endif - -#ifdef CONFIG_SCHED_DEBUG -# include <linux/static_key.h> -#endif +struct rq; +struct cfs_rq; +struct rt_rq; +struct sched_group; +struct cpuidle_state; #ifdef CONFIG_PARAVIRT # include <asm/paravirt.h> # include <asm/paravirt_api_clock.h> #endif +#include <asm/barrier.h> + #include "cpupri.h" #include "cpudeadline.h" -#ifdef CONFIG_SCHED_DEBUG -# define SCHED_WARN_ON(x) WARN_ONCE(x, #x) -#else -# define SCHED_WARN_ON(x) ({ (void)(x), 0; }) -#endif - -struct rq; -struct cpuidle_state; - /* task_struct::on_rq states: */ #define TASK_ON_RQ_QUEUED 1 #define TASK_ON_RQ_MIGRATING 2 @@ -109,26 +101,38 @@ extern __read_mostly int scheduler_running; extern unsigned long calc_load_update; extern atomic_long_t calc_load_tasks; -extern unsigned int sysctl_sched_child_runs_first; - extern void calc_global_load_tick(struct rq *this_rq); extern long calc_load_fold_active(struct rq *this_rq, long adjust); extern void call_trace_sched_update_nr_running(struct rq *rq, int count); -extern unsigned int sysctl_sched_rt_period; +extern int sysctl_sched_rt_period; extern int sysctl_sched_rt_runtime; extern int sched_rr_timeslice; /* + * Asymmetric CPU capacity bits + */ +struct asym_cap_data { + struct list_head link; + struct rcu_head rcu; + unsigned long capacity; + unsigned long cpus[]; +}; + +extern struct list_head asym_cap_list; + +#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) + +/* * Helpers for converting nanosecond timing to jiffy resolution */ -#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) +#define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) /* * Increase resolution of nice-level calculations for 64-bit architectures. * The extra resolution improves shares distribution and load balancing of - * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup + * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group * hierarchies, especially on larger systems. This is not a user-visible change * and does not change the user-interface for setting shares/weights. * @@ -142,12 +146,13 @@ extern int sched_rr_timeslice; #ifdef CONFIG_64BIT # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) -# define scale_load_down(w) \ -({ \ - unsigned long __w = (w); \ - if (__w) \ - __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ - __w; \ +# define scale_load_down(w) \ +({ \ + unsigned long __w = (w); \ + \ + if (__w) \ + __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ + __w; \ }) #else # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) @@ -182,9 +187,19 @@ static inline int idle_policy(int policy) { return policy == SCHED_IDLE; } + +static inline int normal_policy(int policy) +{ +#ifdef CONFIG_SCHED_CLASS_EXT + if (policy == SCHED_EXT) + return true; +#endif + return policy == SCHED_NORMAL; +} + static inline int fair_policy(int policy) { - return policy == SCHED_NORMAL || policy == SCHED_BATCH; + return normal_policy(policy) || policy == SCHED_BATCH; } static inline int rt_policy(int policy) @@ -196,6 +211,7 @@ static inline int dl_policy(int policy) { return policy == SCHED_DEADLINE; } + static inline bool valid_policy(int policy) { return idle_policy(policy) || fair_policy(policy) || @@ -217,11 +233,12 @@ static inline int task_has_dl_policy(struct task_struct *p) return dl_policy(p->policy); } -#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) +#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) static inline void update_avg(u64 *avg, u64 sample) { s64 diff = sample - *avg; + *avg += diff / 8; } @@ -233,6 +250,24 @@ static inline void update_avg(u64 *avg, u64 sample) (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) /* + * cgroup weight knobs should use the common MIN, DFL and MAX values which are + * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it + * maps pretty well onto the shares value used by scheduler and the round-trip + * conversions preserve the original value over the entire range. + */ +static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) +{ + return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); +} + +static inline unsigned long sched_weight_to_cgroup(unsigned long weight) +{ + return clamp_t(unsigned long, + DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), + CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); +} + +/* * !! For sched_setattr_nocheck() (kernel) only !! * * This is actually gross. :( @@ -246,9 +281,9 @@ static inline void update_avg(u64 *avg, u64 sample) */ #define SCHED_FLAG_SUGOV 0x10000000 -#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) +#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) -static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) +static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) { #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); @@ -260,8 +295,8 @@ static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) /* * Tells if entity @a should preempt entity @b. */ -static inline bool -dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) +static inline bool dl_entity_preempt(const struct sched_dl_entity *a, + const struct sched_dl_entity *b) { return dl_entity_is_special(a) || dl_time_before(a->deadline, b->deadline); @@ -284,14 +319,6 @@ struct rt_bandwidth { unsigned int rt_period_active; }; -void __dl_clear_params(struct task_struct *p); - -struct dl_bandwidth { - raw_spinlock_t dl_runtime_lock; - u64 dl_runtime; - u64 dl_period; -}; - static inline int dl_bandwidth_enabled(void) { return sysctl_sched_rt_runtime >= 0; @@ -330,15 +357,89 @@ extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); extern bool __checkparam_dl(const struct sched_attr *attr); extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); -extern int dl_cpu_busy(int cpu, struct task_struct *p); +extern int dl_bw_deactivate(int cpu); +extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); +/* + * SCHED_DEADLINE supports servers (nested scheduling) with the following + * interface: + * + * dl_se::rq -- runqueue we belong to. + * + * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this + * returns NULL. + * + * dl_server_update() -- called from update_curr_common(), propagates runtime + * to the server. + * + * dl_server_start() -- start the server when it has tasks; it will stop + * automatically when there are no more tasks, per + * dl_se::server_pick() returning NULL. + * + * dl_server_stop() -- (force) stop the server; use when updating + * parameters. + * + * dl_server_init() -- initializes the server. + * + * When started the dl_server will (per dl_defer) schedule a timer for its + * zero-laxity point -- that is, unlike regular EDF tasks which run ASAP, a + * server will run at the very end of its period. + * + * This is done such that any runtime from the target class can be accounted + * against the server -- through dl_server_update() above -- such that when it + * becomes time to run, it might already be out of runtime and get deferred + * until the next period. In this case dl_server_timer() will alternate + * between defer and replenish but never actually enqueue the server. + * + * Only when the target class does not manage to exhaust the server's runtime + * (there's actualy starvation in the given period), will the dl_server get on + * the runqueue. Once queued it will pick tasks from the target class and run + * them until either its runtime is exhaused, at which point its back to + * dl_server_timer, or until there are no more tasks to run, at which point + * the dl_server stops itself. + * + * By stopping at this point the dl_server retains bandwidth, which, if a new + * task wakes up imminently (starting the server again), can be used -- + * subject to CBS wakeup rules -- without having to wait for the next period. + * + * Additionally, because of the dl_defer behaviour the start/stop behaviour is + * naturally thottled to once per period, avoiding high context switch + * workloads from spamming the hrtimer program/cancel paths. + */ +extern void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec); +extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); +extern void dl_server_start(struct sched_dl_entity *dl_se); +extern void dl_server_stop(struct sched_dl_entity *dl_se); +extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, + dl_server_pick_f pick_task); +extern void sched_init_dl_servers(void); -#ifdef CONFIG_CGROUP_SCHED +extern void fair_server_init(struct rq *rq); +extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); +extern int dl_server_apply_params(struct sched_dl_entity *dl_se, + u64 runtime, u64 period, bool init); -struct cfs_rq; -struct rt_rq; +static inline bool dl_server_active(struct sched_dl_entity *dl_se) +{ + return dl_se->dl_server_active; +} + +#ifdef CONFIG_CGROUP_SCHED extern struct list_head task_groups; +#ifdef CONFIG_GROUP_SCHED_BANDWIDTH +extern const u64 max_bw_quota_period_us; + +/* + * default period for group bandwidth. + * default: 0.1s, units: microseconds + */ +static inline u64 default_bw_period_us(void) +{ + return 100000ULL; +} +#endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ + struct cfs_bandwidth { #ifdef CONFIG_CFS_BANDWIDTH raw_spinlock_t lock; @@ -362,32 +463,31 @@ struct cfs_bandwidth { int nr_burst; u64 throttled_time; u64 burst_time; -#endif +#endif /* CONFIG_CFS_BANDWIDTH */ }; /* Task group related information */ struct task_group { struct cgroup_subsys_state css; +#ifdef CONFIG_GROUP_SCHED_WEIGHT + /* A positive value indicates that this is a SCHED_IDLE group. */ + int idle; +#endif + #ifdef CONFIG_FAIR_GROUP_SCHED /* schedulable entities of this group on each CPU */ struct sched_entity **se; /* runqueue "owned" by this group on each CPU */ struct cfs_rq **cfs_rq; unsigned long shares; - - /* A positive value indicates that this is a SCHED_IDLE group. */ - int idle; - -#ifdef CONFIG_SMP /* * load_avg can be heavily contended at clock tick time, so put - * it in its own cacheline separated from the fields above which + * it in its own cache-line separated from the fields above which * will also be accessed at each tick. */ atomic_long_t load_avg ____cacheline_aligned; -#endif -#endif +#endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED struct sched_rt_entity **rt_se; @@ -396,6 +496,8 @@ struct task_group { struct rt_bandwidth rt_bandwidth; #endif + struct scx_task_group scx; + struct rcu_head rcu; struct list_head list; @@ -420,7 +522,7 @@ struct task_group { }; -#ifdef CONFIG_FAIR_GROUP_SCHED +#ifdef CONFIG_GROUP_SCHED_WEIGHT #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD /* @@ -451,20 +553,37 @@ static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) return walk_tg_tree_from(&root_task_group, down, up, data); } +static inline struct task_group *css_tg(struct cgroup_subsys_state *css) +{ + return css ? container_of(css, struct task_group, css) : NULL; +} + extern int tg_nop(struct task_group *tg, void *data); +#ifdef CONFIG_FAIR_GROUP_SCHED extern void free_fair_sched_group(struct task_group *tg); extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); extern void online_fair_sched_group(struct task_group *tg); extern void unregister_fair_sched_group(struct task_group *tg); +#else /* !CONFIG_FAIR_GROUP_SCHED: */ +static inline void free_fair_sched_group(struct task_group *tg) { } +static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) +{ + return 1; +} +static inline void online_fair_sched_group(struct task_group *tg) { } +static inline void unregister_fair_sched_group(struct task_group *tg) { } +#endif /* !CONFIG_FAIR_GROUP_SCHED */ + extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, struct sched_entity *se, int cpu, struct sched_entity *parent); -extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); +extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); +extern bool cfs_task_bw_constrained(struct task_struct *p); extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int cpu, @@ -481,27 +600,27 @@ extern void sched_online_group(struct task_group *tg, extern void sched_destroy_group(struct task_group *tg); extern void sched_release_group(struct task_group *tg); -extern void sched_move_task(struct task_struct *tsk); +extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); #ifdef CONFIG_FAIR_GROUP_SCHED extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); extern int sched_group_set_idle(struct task_group *tg, long idle); -#ifdef CONFIG_SMP extern void set_task_rq_fair(struct sched_entity *se, struct cfs_rq *prev, struct cfs_rq *next); -#else /* !CONFIG_SMP */ -static inline void set_task_rq_fair(struct sched_entity *se, - struct cfs_rq *prev, struct cfs_rq *next) { } -#endif /* CONFIG_SMP */ -#endif /* CONFIG_FAIR_GROUP_SCHED */ +#else /* !CONFIG_FAIR_GROUP_SCHED: */ +static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } +static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } +#endif /* !CONFIG_FAIR_GROUP_SCHED */ -#else /* CONFIG_CGROUP_SCHED */ +#else /* !CONFIG_CGROUP_SCHED: */ struct cfs_bandwidth { }; -#endif /* CONFIG_CGROUP_SCHED */ +static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } + +#endif /* !CONFIG_CGROUP_SCHED */ extern void unregister_rt_sched_group(struct task_group *tg); extern void free_rt_sched_group(struct task_group *tg); @@ -514,8 +633,8 @@ extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent * applicable for 32-bits architectures. */ #ifdef CONFIG_64BIT -# define u64_u32_load_copy(var, copy) var -# define u64_u32_store_copy(var, copy, val) (var = val) +# define u64_u32_load_copy(var, copy) var +# define u64_u32_store_copy(var, copy, val) (var = val) #else # define u64_u32_load_copy(var, copy) \ ({ \ @@ -543,26 +662,29 @@ do { \ copy = __val; \ } while (0) #endif -# define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) -# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) +# define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) +# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) + +struct balance_callback { + struct balance_callback *next; + void (*func)(struct rq *rq); +}; /* CFS-related fields in a runqueue */ struct cfs_rq { struct load_weight load; - unsigned int nr_running; - unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ - unsigned int idle_nr_running; /* SCHED_IDLE */ - unsigned int idle_h_nr_running; /* SCHED_IDLE */ + unsigned int nr_queued; + unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ + unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ + unsigned int h_nr_idle; /* SCHED_IDLE */ + + s64 avg_vruntime; + u64 avg_load; - u64 exec_clock; - u64 min_vruntime; + u64 zero_vruntime; #ifdef CONFIG_SCHED_CORE unsigned int forceidle_seq; - u64 min_vruntime_fi; -#endif - -#ifndef CONFIG_64BIT - u64 min_vruntime_copy; + u64 zero_vruntime_fi; #endif struct rb_root_cached tasks_timeline; @@ -573,14 +695,7 @@ struct cfs_rq { */ struct sched_entity *curr; struct sched_entity *next; - struct sched_entity *last; - struct sched_entity *skip; - -#ifdef CONFIG_SCHED_DEBUG - unsigned int nr_spread_over; -#endif -#ifdef CONFIG_SMP /* * CFS load tracking */ @@ -597,6 +712,7 @@ struct cfs_rq { } removed; #ifdef CONFIG_FAIR_GROUP_SCHED + u64 last_update_tg_load_avg; unsigned long tg_load_avg_contrib; long propagate; long prop_runnable_sum; @@ -611,7 +727,6 @@ struct cfs_rq { u64 last_h_load_update; struct sched_entity *h_load_next; #endif /* CONFIG_FAIR_GROUP_SCHED */ -#endif /* CONFIG_SMP */ #ifdef CONFIG_FAIR_GROUP_SCHED struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ @@ -642,13 +757,61 @@ struct cfs_rq { u64 throttled_clock; u64 throttled_clock_pelt; u64 throttled_clock_pelt_time; - int throttled; + u64 throttled_clock_self; + u64 throttled_clock_self_time; + bool throttled:1; + bool pelt_clock_throttled:1; int throttle_count; struct list_head throttled_list; + struct list_head throttled_csd_list; + struct list_head throttled_limbo_list; #endif /* CONFIG_CFS_BANDWIDTH */ #endif /* CONFIG_FAIR_GROUP_SCHED */ }; +#ifdef CONFIG_SCHED_CLASS_EXT +/* scx_rq->flags, protected by the rq lock */ +enum scx_rq_flags { + /* + * A hotplugged CPU starts scheduling before rq_online_scx(). Track + * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called + * only while the BPF scheduler considers the CPU to be online. + */ + SCX_RQ_ONLINE = 1 << 0, + SCX_RQ_CAN_STOP_TICK = 1 << 1, + SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ + SCX_RQ_BYPASSING = 1 << 4, + SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ + SCX_RQ_BAL_CB_PENDING = 1 << 6, /* must queue a cb after dispatching */ + + SCX_RQ_IN_WAKEUP = 1 << 16, + SCX_RQ_IN_BALANCE = 1 << 17, +}; + +struct scx_rq { + struct scx_dispatch_q local_dsq; + struct list_head runnable_list; /* runnable tasks on this rq */ + struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ + unsigned long ops_qseq; + u64 extra_enq_flags; /* see move_task_to_local_dsq() */ + u32 nr_running; + u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ + bool cpu_released; + u32 flags; + u64 clock; /* current per-rq clock -- see scx_bpf_now() */ + cpumask_var_t cpus_to_kick; + cpumask_var_t cpus_to_kick_if_idle; + cpumask_var_t cpus_to_preempt; + cpumask_var_t cpus_to_wait; + unsigned long kick_sync; + local_t reenq_local_deferred; + struct balance_callback deferred_bal_cb; + struct irq_work deferred_irq_work; + struct irq_work kick_cpus_irq_work; + struct scx_dispatch_q bypass_dsq; +}; +#endif /* CONFIG_SCHED_CLASS_EXT */ + static inline int rt_bandwidth_enabled(void) { return sysctl_sched_rt_runtime >= 0; @@ -664,34 +827,28 @@ struct rt_rq { struct rt_prio_array active; unsigned int rt_nr_running; unsigned int rr_nr_running; -#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED struct { int curr; /* highest queued rt task prio */ -#ifdef CONFIG_SMP int next; /* next highest */ -#endif } highest_prio; -#endif -#ifdef CONFIG_SMP - unsigned int rt_nr_migratory; - unsigned int rt_nr_total; - int overloaded; + bool overloaded; struct plist_head pushable_tasks; -#endif /* CONFIG_SMP */ int rt_queued; +#ifdef CONFIG_RT_GROUP_SCHED int rt_throttled; - u64 rt_time; - u64 rt_runtime; + u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ + u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ /* Nests inside the rq lock: */ raw_spinlock_t rt_runtime_lock; -#ifdef CONFIG_RT_GROUP_SCHED unsigned int rt_nr_boosted; - struct rq *rq; - struct task_group *tg; + struct rq *rq; /* this is always top-level rq, cache? */ +#endif +#ifdef CONFIG_CGROUP_SCHED + struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ #endif }; @@ -707,7 +864,6 @@ struct dl_rq { unsigned int dl_nr_running; -#ifdef CONFIG_SMP /* * Deadline values of the currently executing and the * earliest ready task on this rq. Caching these facilitates @@ -719,8 +875,7 @@ struct dl_rq { u64 next; } earliest_dl; - unsigned int dl_nr_migratory; - int overloaded; + bool overloaded; /* * Tasks on this rq that can be pushed away. They are kept in @@ -728,9 +883,7 @@ struct dl_rq { * of the leftmost (earliest deadline) element. */ struct rb_root_cached pushable_dl_tasks_root; -#else - struct dl_bw dl_bw; -#endif + /* * "Active utilization" for this runqueue: increased when a * task wakes up (becomes TASK_RUNNING) and decreased when a @@ -751,6 +904,12 @@ struct dl_rq { u64 extra_bw; /* + * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM + * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). + */ + u64 max_bw; + + /* * Inverse of the fraction of CPU utilization that can be reclaimed * by the GRUB algorithm. */ @@ -758,35 +917,43 @@ struct dl_rq { }; #ifdef CONFIG_FAIR_GROUP_SCHED + /* An entity is a task if it doesn't "own" a runqueue */ #define entity_is_task(se) (!se->my_q) static inline void se_update_runnable(struct sched_entity *se) { if (!entity_is_task(se)) - se->runnable_weight = se->my_q->h_nr_running; + se->runnable_weight = se->my_q->h_nr_runnable; } static inline long se_runnable(struct sched_entity *se) { + if (se->sched_delayed) + return false; + if (entity_is_task(se)) return !!se->on_rq; else return se->runnable_weight; } -#else +#else /* !CONFIG_FAIR_GROUP_SCHED: */ + #define entity_is_task(se) 1 -static inline void se_update_runnable(struct sched_entity *se) {} +static inline void se_update_runnable(struct sched_entity *se) { } static inline long se_runnable(struct sched_entity *se) { + if (se->sched_delayed) + return false; + return !!se->on_rq; } -#endif -#ifdef CONFIG_SMP +#endif /* !CONFIG_FAIR_GROUP_SCHED */ + /* * XXX we want to get rid of these helpers and use the full load resolution. */ @@ -807,10 +974,6 @@ struct perf_domain { struct rcu_head rcu; }; -/* Scheduling group status flags */ -#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ -#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ - /* * We add the notion of a root-domain which will be used to define per-domain * variables. Each exclusive cpuset essentially defines an island domain by @@ -831,10 +994,10 @@ struct root_domain { * - More than one runnable task * - Running task is misfit */ - int overload; + bool overloaded; - /* Indicate one or more cpus over-utilized (tipping point) */ - int overutilized; + /* Indicate one or more CPUs over-utilized (tipping point) */ + bool overutilized; /* * The bit corresponding to a CPU gets set here if such CPU has more @@ -852,7 +1015,7 @@ struct root_domain { * Also, some corner cases, like 'wrap around' is dangerous, but given * that u64 is 'big enough'. So that shouldn't be a concern. */ - u64 visit_gen; + u64 visit_cookie; #ifdef HAVE_RT_PUSH_IPI /* @@ -866,7 +1029,7 @@ struct root_domain { /* These atomics are updated outside of a lock */ atomic_t rto_loop_next; atomic_t rto_loop_start; -#endif +#endif /* HAVE_RT_PUSH_IPI */ /* * The "RT overload" flag: it gets set if a CPU has more than * one runnable RT task. @@ -874,8 +1037,6 @@ struct root_domain { cpumask_var_t rto_mask; struct cpupri cpupri; - unsigned long max_cpu_capacity; - /* * NULL-terminated list of performance domains intersecting with the * CPUs of the rd. Protected by RCU. @@ -889,10 +1050,20 @@ extern void rq_attach_root(struct rq *rq, struct root_domain *rd); extern void sched_get_rd(struct root_domain *rd); extern void sched_put_rd(struct root_domain *rd); +static inline int get_rd_overloaded(struct root_domain *rd) +{ + return READ_ONCE(rd->overloaded); +} + +static inline void set_rd_overloaded(struct root_domain *rd, int status) +{ + if (get_rd_overloaded(rd) != status) + WRITE_ONCE(rd->overloaded, status); +} + #ifdef HAVE_RT_PUSH_IPI extern void rto_push_irq_work_func(struct irq_work *work); #endif -#endif /* CONFIG_SMP */ #ifdef CONFIG_UCLAMP_TASK /* @@ -938,12 +1109,6 @@ struct uclamp_rq { DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); #endif /* CONFIG_UCLAMP_TASK */ -struct rq; -struct balance_callback { - struct balance_callback *next; - void (*func)(struct rq *rq); -}; - /* * This is the main, per-CPU runqueue data structure. * @@ -955,10 +1120,8 @@ struct rq { /* runqueue lock: */ raw_spinlock_t __lock; - /* - * nr_running and cpu_load should be in the same cacheline because - * remote CPUs use both these fields when doing load calculation. - */ + /* Per class runqueue modification mask; bits in class order. */ + unsigned int queue_mask; unsigned int nr_running; #ifdef CONFIG_NUMA_BALANCING unsigned int nr_numa_running; @@ -966,18 +1129,14 @@ struct rq { unsigned int numa_migrate_on; #endif #ifdef CONFIG_NO_HZ_COMMON -#ifdef CONFIG_SMP unsigned long last_blocked_load_update_tick; unsigned int has_blocked_load; call_single_data_t nohz_csd; -#endif /* CONFIG_SMP */ unsigned int nohz_tick_stopped; atomic_t nohz_flags; #endif /* CONFIG_NO_HZ_COMMON */ -#ifdef CONFIG_SMP unsigned int ttwu_pending; -#endif u64 nr_switches; #ifdef CONFIG_UCLAMP_TASK @@ -990,6 +1149,11 @@ struct rq { struct cfs_rq cfs; struct rt_rq rt; struct dl_rq dl; +#ifdef CONFIG_SCHED_CLASS_EXT + struct scx_rq scx; +#endif + + struct sched_dl_entity fair_server; #ifdef CONFIG_FAIR_GROUP_SCHED /* list of leaf cfs_rq on this CPU: */ @@ -1003,9 +1167,18 @@ struct rq { * one CPU and if it got migrated afterwards it may decrease * it on another CPU. Always updated under the runqueue lock: */ - unsigned int nr_uninterruptible; + unsigned long nr_uninterruptible; - struct task_struct __rcu *curr; +#ifdef CONFIG_SCHED_PROXY_EXEC + struct task_struct __rcu *donor; /* Scheduling context */ + struct task_struct __rcu *curr; /* Execution context */ +#else + union { + struct task_struct __rcu *donor; /* Scheduler context */ + struct task_struct __rcu *curr; /* Execution context */ + }; +#endif + struct sched_dl_entity *dl_server; struct task_struct *idle; struct task_struct *stop; unsigned long next_balance; @@ -1026,22 +1199,17 @@ struct rq { atomic_t nr_iowait; -#ifdef CONFIG_SCHED_DEBUG u64 last_seen_need_resched_ns; int ticks_without_resched; -#endif #ifdef CONFIG_MEMBARRIER int membarrier_state; #endif -#ifdef CONFIG_SMP struct root_domain *rd; struct sched_domain __rcu *sd; unsigned long cpu_capacity; - unsigned long cpu_capacity_orig; - unsigned long cpu_capacity_inverted; struct balance_callback *balance_callback; @@ -1066,25 +1234,22 @@ struct rq { #ifdef CONFIG_HAVE_SCHED_AVG_IRQ struct sched_avg avg_irq; #endif -#ifdef CONFIG_SCHED_THERMAL_PRESSURE - struct sched_avg avg_thermal; +#ifdef CONFIG_SCHED_HW_PRESSURE + struct sched_avg avg_hw; #endif u64 idle_stamp; u64 avg_idle; - unsigned long wake_stamp; - u64 wake_avg_idle; - /* This is used to determine avg_idle's max value */ u64 max_idle_balance_cost; #ifdef CONFIG_HOTPLUG_CPU struct rcuwait hotplug_wait; #endif -#endif /* CONFIG_SMP */ #ifdef CONFIG_IRQ_TIME_ACCOUNTING u64 prev_irq_time; + u64 psi_irq_time; #endif #ifdef CONFIG_PARAVIRT u64 prev_steal_time; @@ -1098,18 +1263,15 @@ struct rq { long calc_load_active; #ifdef CONFIG_SCHED_HRTICK -#ifdef CONFIG_SMP call_single_data_t hrtick_csd; -#endif struct hrtimer hrtick_timer; - ktime_t hrtick_time; + ktime_t hrtick_time; #endif #ifdef CONFIG_SCHEDSTATS /* latency stats */ struct sched_info rq_sched_info; unsigned long long rq_cpu_time; - /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ /* sys_sched_yield() stats */ unsigned int yld_count; @@ -1124,13 +1286,11 @@ struct rq { #endif #ifdef CONFIG_CPU_IDLE - /* Must be inspected within a rcu lock section */ + /* Must be inspected within a RCU lock section */ struct cpuidle_state *idle_state; #endif -#ifdef CONFIG_SMP unsigned int nr_pinned; -#endif unsigned int push_busy; struct cpu_stop_work push_work; @@ -1138,6 +1298,7 @@ struct rq { /* per rq */ struct rq *core; struct task_struct *core_pick; + struct sched_dl_entity *core_dl_server; unsigned int core_enabled; unsigned int core_sched_seq; struct rb_root core_tree; @@ -1150,10 +1311,15 @@ struct rq { unsigned int core_forceidle_seq; unsigned int core_forceidle_occupation; u64 core_forceidle_start; -#endif +#endif /* CONFIG_SCHED_CORE */ /* Scratch cpumask to be temporarily used under rq_lock */ cpumask_var_t scratch_mask; + +#ifdef CONFIG_CFS_BANDWIDTH + call_single_data_t cfsb_csd; + struct list_head cfsb_csd_list; +#endif }; #ifdef CONFIG_FAIR_GROUP_SCHED @@ -1164,35 +1330,33 @@ static inline struct rq *rq_of(struct cfs_rq *cfs_rq) return cfs_rq->rq; } -#else +#else /* !CONFIG_FAIR_GROUP_SCHED: */ static inline struct rq *rq_of(struct cfs_rq *cfs_rq) { return container_of(cfs_rq, struct rq, cfs); } -#endif +#endif /* !CONFIG_FAIR_GROUP_SCHED */ static inline int cpu_of(struct rq *rq) { -#ifdef CONFIG_SMP return rq->cpu; -#else - return 0; -#endif } -#define MDF_PUSH 0x01 +#define MDF_PUSH 0x01 static inline bool is_migration_disabled(struct task_struct *p) { -#ifdef CONFIG_SMP return p->migration_disabled; -#else - return false; -#endif } DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); +DECLARE_PER_CPU(struct rnd_state, sched_rnd_state); + +static inline u32 sched_rng(void) +{ + return prandom_u32_state(this_cpu_ptr(&sched_rnd_state)); +} #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) #define this_rq() this_cpu_ptr(&runqueues) @@ -1200,7 +1364,18 @@ DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); #define cpu_curr(cpu) (cpu_rq(cpu)->curr) #define raw_rq() raw_cpu_ptr(&runqueues) -struct sched_group; +#ifdef CONFIG_SCHED_PROXY_EXEC +static inline void rq_set_donor(struct rq *rq, struct task_struct *t) +{ + rcu_assign_pointer(rq->donor, t); +} +#else +static inline void rq_set_donor(struct rq *rq, struct task_struct *t) +{ + /* Do nothing */ +} +#endif + #ifdef CONFIG_SCHED_CORE static inline struct cpumask *sched_group_span(struct sched_group *sg); @@ -1236,7 +1411,10 @@ static inline raw_spinlock_t *__rq_lockp(struct rq *rq) return &rq->__lock; } -bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi); +extern bool +cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); + +extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); /* * Helpers to check if the CPU's core cookie matches with the task's cookie @@ -1262,6 +1440,9 @@ static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) if (!sched_core_enabled(rq)) return true; + if (rq->core->core_cookie == p->core_cookie) + return true; + for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { if (!available_idle_cpu(cpu)) { idle_core = false; @@ -1273,7 +1454,7 @@ static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) * A CPU in an idle core is always the best choice for tasks with * cookies. */ - return idle_core || rq->core->core_cookie == p->core_cookie; + return idle_core; } static inline bool sched_group_cookie_match(struct rq *rq, @@ -1304,7 +1485,7 @@ extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); extern void sched_core_get(void); extern void sched_core_put(void); -#else /* !CONFIG_SCHED_CORE */ +#else /* !CONFIG_SCHED_CORE: */ static inline bool sched_core_enabled(struct rq *rq) { @@ -1342,7 +1523,26 @@ static inline bool sched_group_cookie_match(struct rq *rq, { return true; } -#endif /* CONFIG_SCHED_CORE */ + +#endif /* !CONFIG_SCHED_CORE */ + +#ifdef CONFIG_RT_GROUP_SCHED +# ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED +DECLARE_STATIC_KEY_FALSE(rt_group_sched); +static inline bool rt_group_sched_enabled(void) +{ + return static_branch_unlikely(&rt_group_sched); +} +# else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */ +DECLARE_STATIC_KEY_TRUE(rt_group_sched); +static inline bool rt_group_sched_enabled(void) +{ + return static_branch_likely(&rt_group_sched); +} +# endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ +#else /* !CONFIG_RT_GROUP_SCHED: */ +# define rt_group_sched_enabled() false +#endif /* !CONFIG_RT_GROUP_SCHED */ static inline void lockdep_assert_rq_held(struct rq *rq) { @@ -1373,8 +1573,10 @@ static inline void raw_spin_rq_unlock_irq(struct rq *rq) static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) { unsigned long flags; + local_irq_save(flags); raw_spin_rq_lock(rq); + return flags; } @@ -1398,14 +1600,15 @@ static inline void update_idle_core(struct rq *rq) __update_idle_core(rq); } -#else +#else /* !CONFIG_SCHED_SMT: */ static inline void update_idle_core(struct rq *rq) { } -#endif +#endif /* !CONFIG_SCHED_SMT */ #ifdef CONFIG_FAIR_GROUP_SCHED + static inline struct task_struct *task_of(struct sched_entity *se) { - SCHED_WARN_ON(!entity_is_task(se)); + WARN_ON_ONCE(!entity_is_task(se)); return container_of(se, struct task_struct, se); } @@ -1415,7 +1618,7 @@ static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) } /* runqueue on which this entity is (to be) queued */ -static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) +static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) { return se->cfs_rq; } @@ -1426,21 +1629,18 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) return grp->my_q; } -#else +#else /* !CONFIG_FAIR_GROUP_SCHED: */ -static inline struct task_struct *task_of(struct sched_entity *se) -{ - return container_of(se, struct task_struct, se); -} +#define task_of(_se) container_of(_se, struct task_struct, se) -static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) +static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) { return &task_rq(p)->cfs; } -static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) +static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) { - struct task_struct *p = task_of(se); + const struct task_struct *p = task_of(se); struct rq *rq = task_rq(p); return &rq->cfs; @@ -1451,7 +1651,8 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) { return NULL; } -#endif + +#endif /* !CONFIG_FAIR_GROUP_SCHED */ extern void update_rq_clock(struct rq *rq); @@ -1488,7 +1689,7 @@ static inline void assert_clock_updated(struct rq *rq) * The only reason for not seeing a clock update since the * last rq_pin_lock() is if we're currently skipping updates. */ - SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); + WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); } static inline u64 rq_clock(struct rq *rq) @@ -1507,24 +1708,6 @@ static inline u64 rq_clock_task(struct rq *rq) return rq->clock_task; } -/** - * By default the decay is the default pelt decay period. - * The decay shift can change the decay period in - * multiples of 32. - * Decay shift Decay period(ms) - * 0 32 - * 1 64 - * 2 128 - * 3 256 - * 4 512 - */ -extern int sched_thermal_decay_shift; - -static inline u64 rq_clock_thermal(struct rq *rq) -{ - return rq_clock_task(rq) >> sched_thermal_decay_shift; -} - static inline void rq_clock_skip_update(struct rq *rq) { lockdep_assert_rq_held(rq); @@ -1541,21 +1724,73 @@ static inline void rq_clock_cancel_skipupdate(struct rq *rq) rq->clock_update_flags &= ~RQCF_REQ_SKIP; } +/* + * During cpu offlining and rq wide unthrottling, we can trigger + * an update_rq_clock() for several cfs and rt runqueues (Typically + * when using list_for_each_entry_*) + * rq_clock_start_loop_update() can be called after updating the clock + * once and before iterating over the list to prevent multiple update. + * After the iterative traversal, we need to call rq_clock_stop_loop_update() + * to clear RQCF_ACT_SKIP of rq->clock_update_flags. + */ +static inline void rq_clock_start_loop_update(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); + rq->clock_update_flags |= RQCF_ACT_SKIP; +} + +static inline void rq_clock_stop_loop_update(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + rq->clock_update_flags &= ~RQCF_ACT_SKIP; +} + struct rq_flags { unsigned long flags; struct pin_cookie cookie; -#ifdef CONFIG_SCHED_DEBUG /* * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the * current pin context is stashed here in case it needs to be * restored in rq_repin_lock(). */ unsigned int clock_update_flags; -#endif }; extern struct balance_callback balance_push_callback; +#ifdef CONFIG_SCHED_CLASS_EXT +extern const struct sched_class ext_sched_class; + +DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ +DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ + +#define scx_enabled() static_branch_unlikely(&__scx_enabled) +#define scx_switched_all() static_branch_unlikely(&__scx_switched_all) + +static inline void scx_rq_clock_update(struct rq *rq, u64 clock) +{ + if (!scx_enabled()) + return; + WRITE_ONCE(rq->scx.clock, clock); + smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); +} + +static inline void scx_rq_clock_invalidate(struct rq *rq) +{ + if (!scx_enabled()) + return; + WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); +} + +#else /* !CONFIG_SCHED_CLASS_EXT: */ +#define scx_enabled() false +#define scx_switched_all() false + +static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} +static inline void scx_rq_clock_invalidate(struct rq *rq) {} +#endif /* !CONFIG_SCHED_CLASS_EXT */ + /* * Lockdep annotation that avoids accidental unlocks; it's like a * sticky/continuous lockdep_assert_held(). @@ -1570,22 +1805,17 @@ static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) { rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); -#ifdef CONFIG_SCHED_DEBUG rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); rf->clock_update_flags = 0; -#ifdef CONFIG_SMP - SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); -#endif -#endif + WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); } static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) { -#ifdef CONFIG_SCHED_DEBUG if (rq->clock_update_flags > RQCF_ACT_SKIP) rf->clock_update_flags = RQCF_UPDATED; -#endif + scx_rq_clock_invalidate(rq); lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); } @@ -1593,22 +1823,23 @@ static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) { lockdep_repin_lock(__rq_lockp(rq), rf->cookie); -#ifdef CONFIG_SCHED_DEBUG /* * Restore the value we stashed in @rf for this pin context. */ rq->clock_update_flags |= rf->clock_update_flags; -#endif } +extern struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) __acquires(rq->lock); +extern struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) __acquires(p->pi_lock) __acquires(rq->lock); -static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) +static inline void +__task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) __releases(rq->lock) { rq_unpin_lock(rq, rf); @@ -1620,61 +1851,78 @@ task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) __releases(rq->lock) __releases(p->pi_lock) { - rq_unpin_lock(rq, rf); - raw_spin_rq_unlock(rq); + __task_rq_unlock(rq, p, rf); raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); } -static inline void -rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) +DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, + _T->rq = task_rq_lock(_T->lock, &_T->rf), + task_rq_unlock(_T->rq, _T->lock, &_T->rf), + struct rq *rq; struct rq_flags rf) + +DEFINE_LOCK_GUARD_1(__task_rq_lock, struct task_struct, + _T->rq = __task_rq_lock(_T->lock, &_T->rf), + __task_rq_unlock(_T->rq, _T->lock, &_T->rf), + struct rq *rq; struct rq_flags rf) + +static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock) { raw_spin_rq_lock_irqsave(rq, rf->flags); rq_pin_lock(rq, rf); } -static inline void -rq_lock_irq(struct rq *rq, struct rq_flags *rf) +static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock) { raw_spin_rq_lock_irq(rq); rq_pin_lock(rq, rf); } -static inline void -rq_lock(struct rq *rq, struct rq_flags *rf) +static inline void rq_lock(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock) { raw_spin_rq_lock(rq); rq_pin_lock(rq, rf); } -static inline void -rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) +static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) __releases(rq->lock) { rq_unpin_lock(rq, rf); raw_spin_rq_unlock_irqrestore(rq, rf->flags); } -static inline void -rq_unlock_irq(struct rq *rq, struct rq_flags *rf) +static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) __releases(rq->lock) { rq_unpin_lock(rq, rf); raw_spin_rq_unlock_irq(rq); } -static inline void -rq_unlock(struct rq *rq, struct rq_flags *rf) +static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) __releases(rq->lock) { rq_unpin_lock(rq, rf); raw_spin_rq_unlock(rq); } -static inline struct rq * -this_rq_lock_irq(struct rq_flags *rf) +DEFINE_LOCK_GUARD_1(rq_lock, struct rq, + rq_lock(_T->lock, &_T->rf), + rq_unlock(_T->lock, &_T->rf), + struct rq_flags rf) + +DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, + rq_lock_irq(_T->lock, &_T->rf), + rq_unlock_irq(_T->lock, &_T->rf), + struct rq_flags rf) + +DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, + rq_lock_irqsave(_T->lock, &_T->rf), + rq_unlock_irqrestore(_T->lock, &_T->rf), + struct rq_flags rf) + +static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) __acquires(rq->lock) { struct rq *rq; @@ -1682,15 +1930,18 @@ this_rq_lock_irq(struct rq_flags *rf) local_irq_disable(); rq = this_rq(); rq_lock(rq, rf); + return rq; } #ifdef CONFIG_NUMA + enum numa_topology_type { NUMA_DIRECT, NUMA_GLUELESS_MESH, NUMA_BACKPLANE, }; + extern enum numa_topology_type sched_numa_topology_type; extern int sched_max_numa_distance; extern bool find_numa_distance(int distance); @@ -1699,18 +1950,23 @@ extern void sched_update_numa(int cpu, bool online); extern void sched_domains_numa_masks_set(unsigned int cpu); extern void sched_domains_numa_masks_clear(unsigned int cpu); extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); -#else + +#else /* !CONFIG_NUMA: */ + static inline void sched_init_numa(int offline_node) { } static inline void sched_update_numa(int cpu, bool online) { } static inline void sched_domains_numa_masks_set(unsigned int cpu) { } static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } + static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) { return nr_cpu_ids; } -#endif + +#endif /* !CONFIG_NUMA */ #ifdef CONFIG_NUMA_BALANCING + /* The regions in numa_faults array from task_struct */ enum numa_faults_stats { NUMA_MEM = 0, @@ -1718,19 +1974,21 @@ enum numa_faults_stats { NUMA_MEMBUF, NUMA_CPUBUF }; + extern void sched_setnuma(struct task_struct *p, int node); extern int migrate_task_to(struct task_struct *p, int cpu); extern int migrate_swap(struct task_struct *p, struct task_struct *t, int cpu, int scpu); -extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); -#else +extern void init_numa_balancing(u64 clone_flags, struct task_struct *p); + +#else /* !CONFIG_NUMA_BALANCING: */ + static inline void -init_numa_balancing(unsigned long clone_flags, struct task_struct *p) +init_numa_balancing(u64 clone_flags, struct task_struct *p) { } -#endif /* CONFIG_NUMA_BALANCING */ -#ifdef CONFIG_SMP +#endif /* !CONFIG_NUMA_BALANCING */ static inline void queue_balance_callback(struct rq *rq, @@ -1753,8 +2011,7 @@ queue_balance_callback(struct rq *rq, } #define rcu_dereference_check_sched_domain(p) \ - rcu_dereference_check((p), \ - lockdep_is_held(&sched_domains_mutex)) + rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) /* * The domain tree (rq->sd) is protected by RCU's quiescent state transition. @@ -1767,6 +2024,13 @@ queue_balance_callback(struct rq *rq, for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ __sd; __sd = __sd->parent) +/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ +#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | +static const unsigned int SD_SHARED_CHILD_MASK = +#include <linux/sched/sd_flags.h> +0; +#undef SD_FLAG + /** * highest_flag_domain - Return highest sched_domain containing flag. * @cpu: The CPU whose highest level of sched domain is to @@ -1774,16 +2038,25 @@ queue_balance_callback(struct rq *rq, * @flag: The flag to check for the highest sched_domain * for the given CPU. * - * Returns the highest sched_domain of a CPU which contains the given flag. + * Returns the highest sched_domain of a CPU which contains @flag. If @flag has + * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. */ static inline struct sched_domain *highest_flag_domain(int cpu, int flag) { struct sched_domain *sd, *hsd = NULL; for_each_domain(cpu, sd) { - if (!(sd->flags & flag)) + if (sd->flags & flag) { + hsd = sd; + continue; + } + + /* + * Stop the search if @flag is known to be shared at lower + * levels. It will not be found further up. + */ + if (flag & SD_SHARED_CHILD_MASK) break; - hsd = sd; } return hsd; @@ -1804,11 +2077,14 @@ static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); DECLARE_PER_CPU(int, sd_llc_size); DECLARE_PER_CPU(int, sd_llc_id); +DECLARE_PER_CPU(int, sd_share_id); DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); + extern struct static_key_false sched_asym_cpucapacity; +extern struct static_key_false sched_cluster_active; static __always_inline bool sched_asym_cpucap_active(void) { @@ -1827,9 +2103,7 @@ struct sched_group_capacity { unsigned long next_update; int imbalance; /* XXX unrelated to capacity but shared group state */ -#ifdef CONFIG_SCHED_DEBUG int id; -#endif unsigned long cpumask[]; /* Balance mask */ }; @@ -1839,6 +2113,7 @@ struct sched_group { atomic_t ref; unsigned int group_weight; + unsigned int cores; struct sched_group_capacity *sgc; int asym_prefer_cpu; /* CPU of highest priority in group */ int flags; @@ -1868,17 +2143,8 @@ static inline struct cpumask *group_balance_mask(struct sched_group *sg) extern int group_balance_cpu(struct sched_group *sg); -#ifdef CONFIG_SCHED_DEBUG -void update_sched_domain_debugfs(void); -void dirty_sched_domain_sysctl(int cpu); -#else -static inline void update_sched_domain_debugfs(void) -{ -} -static inline void dirty_sched_domain_sysctl(int cpu) -{ -} -#endif +extern void update_sched_domain_debugfs(void); +extern void dirty_sched_domain_sysctl(int cpu); extern int sched_update_scaling(void); @@ -1888,35 +2154,6 @@ static inline const struct cpumask *task_user_cpus(struct task_struct *p) return cpu_possible_mask; /* &init_task.cpus_mask */ return p->user_cpus_ptr; } -#endif /* CONFIG_SMP */ - -#include "stats.h" - -#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) - -extern void __sched_core_account_forceidle(struct rq *rq); - -static inline void sched_core_account_forceidle(struct rq *rq) -{ - if (schedstat_enabled()) - __sched_core_account_forceidle(rq); -} - -extern void __sched_core_tick(struct rq *rq); - -static inline void sched_core_tick(struct rq *rq) -{ - if (sched_core_enabled(rq) && schedstat_enabled()) - __sched_core_tick(rq); -} - -#else - -static inline void sched_core_account_forceidle(struct rq *rq) {} - -static inline void sched_core_tick(struct rq *rq) {} - -#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ #ifdef CONFIG_CGROUP_SCHED @@ -1953,20 +2190,28 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) #endif #ifdef CONFIG_RT_GROUP_SCHED + /* + * p->rt.rt_rq is NULL initially and it is easier to assign + * root_task_group's rt_rq than switching in rt_rq_of_se() + * Clobbers tg(!) + */ + if (!rt_group_sched_enabled()) + tg = &root_task_group; p->rt.rt_rq = tg->rt_rq[cpu]; p->rt.parent = tg->rt_se[cpu]; -#endif +#endif /* CONFIG_RT_GROUP_SCHED */ } -#else /* CONFIG_CGROUP_SCHED */ +#else /* !CONFIG_CGROUP_SCHED: */ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } + static inline struct task_group *task_group(struct task_struct *p) { return NULL; } -#endif /* CONFIG_CGROUP_SCHED */ +#endif /* !CONFIG_CGROUP_SCHED */ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) { @@ -1980,17 +2225,13 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) smp_wmb(); WRITE_ONCE(task_thread_info(p)->cpu, cpu); p->wake_cpu = cpu; -#endif + rseq_sched_set_ids_changed(p); +#endif /* CONFIG_SMP */ } /* - * Tunables that become constants when CONFIG_SCHED_DEBUG is off: + * Tunables: */ -#ifdef CONFIG_SCHED_DEBUG -# define const_debug __read_mostly -#else -# define const_debug const -#endif #define SCHED_FEAT(name, enabled) \ __SCHED_FEAT_##name , @@ -2002,15 +2243,14 @@ enum { #undef SCHED_FEAT -#ifdef CONFIG_SCHED_DEBUG - /* * To support run-time toggling of sched features, all the translation units * (but core.c) reference the sysctl_sched_features defined in core.c. */ -extern const_debug unsigned int sysctl_sched_features; +extern __read_mostly unsigned int sysctl_sched_features; #ifdef CONFIG_JUMP_LABEL + #define SCHED_FEAT(name, enabled) \ static __always_inline bool static_branch_##name(struct static_key *key) \ { \ @@ -2023,29 +2263,11 @@ static __always_inline bool static_branch_##name(struct static_key *key) \ extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) -#else /* !CONFIG_JUMP_LABEL */ +#else /* !CONFIG_JUMP_LABEL: */ #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) -#endif /* CONFIG_JUMP_LABEL */ - -#else /* !SCHED_DEBUG */ - -/* - * Each translation unit has its own copy of sysctl_sched_features to allow - * constants propagation at compile time and compiler optimization based on - * features default. - */ -#define SCHED_FEAT(name, enabled) \ - (1UL << __SCHED_FEAT_##name) * enabled | -static const_debug __maybe_unused unsigned int sysctl_sched_features = -#include "features.h" - 0; -#undef SCHED_FEAT - -#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) - -#endif /* SCHED_DEBUG */ +#endif /* !CONFIG_JUMP_LABEL */ extern struct static_key_false sched_numa_balancing; extern struct static_key_false sched_schedstats; @@ -2063,23 +2285,41 @@ static inline u64 global_rt_runtime(void) return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; } +/* + * Is p the current execution context? + */ static inline int task_current(struct rq *rq, struct task_struct *p) { return rq->curr == p; } +/* + * Is p the current scheduling context? + * + * Note that it might be the current execution context at the same time if + * rq->curr == rq->donor == p. + */ +static inline int task_current_donor(struct rq *rq, struct task_struct *p) +{ + return rq->donor == p; +} + +static inline bool task_is_blocked(struct task_struct *p) +{ + if (!sched_proxy_exec()) + return false; + + return !!p->blocked_on; +} + static inline int task_on_cpu(struct rq *rq, struct task_struct *p) { -#ifdef CONFIG_SMP return p->on_cpu; -#else - return task_current(rq, p); -#endif } static inline int task_on_rq_queued(struct task_struct *p) { - return p->on_rq == TASK_ON_RQ_QUEUED; + return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; } static inline int task_on_rq_migrating(struct task_struct *p) @@ -2088,18 +2328,18 @@ static inline int task_on_rq_migrating(struct task_struct *p) } /* Wake flags. The first three directly map to some SD flag value */ -#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ -#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ -#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ +#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ +#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ +#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ -#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ -#define WF_MIGRATED 0x20 /* Internal use, task got migrated */ +#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ +#define WF_MIGRATED 0x20 /* Internal use, task got migrated */ +#define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ +#define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ -#ifdef CONFIG_SMP static_assert(WF_EXEC == SD_BALANCE_EXEC); static_assert(WF_FORK == SD_BALANCE_FORK); static_assert(WF_TTWU == SD_BALANCE_WAKE); -#endif /* * To aid in avoiding the subversion of "niceness" due to uneven distribution @@ -2119,8 +2359,7 @@ extern const u32 sched_prio_to_wmult[40]; /* * {de,en}queue flags: * - * DEQUEUE_SLEEP - task is no longer runnable - * ENQUEUE_WAKEUP - task just became runnable + * SLEEP/WAKEUP - task is no-longer/just-became runnable * * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks * are in a known state which allows modification. Such pairs @@ -2129,102 +2368,251 @@ extern const u32 sched_prio_to_wmult[40]; * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location * in the runqueue. * + * NOCLOCK - skip the update_rq_clock() (avoids double updates) + * + * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) + * + * DELAYED - de/re-queue a sched_delayed task + * + * CLASS - going to update p->sched_class; makes sched_change call the + * various switch methods. + * * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) * ENQUEUE_MIGRATED - the task was migrated during wakeup + * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called * + * XXX SAVE/RESTORE in combination with CLASS doesn't really make sense, but + * SCHED_DEADLINE seems to rely on this for now. */ -#define DEQUEUE_SLEEP 0x01 -#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ -#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ -#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ +#define DEQUEUE_SLEEP 0x0001 /* Matches ENQUEUE_WAKEUP */ +#define DEQUEUE_SAVE 0x0002 /* Matches ENQUEUE_RESTORE */ +#define DEQUEUE_MOVE 0x0004 /* Matches ENQUEUE_MOVE */ +#define DEQUEUE_NOCLOCK 0x0008 /* Matches ENQUEUE_NOCLOCK */ -#define ENQUEUE_WAKEUP 0x01 -#define ENQUEUE_RESTORE 0x02 -#define ENQUEUE_MOVE 0x04 -#define ENQUEUE_NOCLOCK 0x08 +#define DEQUEUE_MIGRATING 0x0010 /* Matches ENQUEUE_MIGRATING */ +#define DEQUEUE_DELAYED 0x0020 /* Matches ENQUEUE_DELAYED */ +#define DEQUEUE_CLASS 0x0040 /* Matches ENQUEUE_CLASS */ -#define ENQUEUE_HEAD 0x10 -#define ENQUEUE_REPLENISH 0x20 -#ifdef CONFIG_SMP -#define ENQUEUE_MIGRATED 0x40 -#else -#define ENQUEUE_MIGRATED 0x00 -#endif +#define DEQUEUE_SPECIAL 0x00010000 +#define DEQUEUE_THROTTLE 0x00020000 + +#define ENQUEUE_WAKEUP 0x0001 +#define ENQUEUE_RESTORE 0x0002 +#define ENQUEUE_MOVE 0x0004 +#define ENQUEUE_NOCLOCK 0x0008 + +#define ENQUEUE_MIGRATING 0x0010 +#define ENQUEUE_DELAYED 0x0020 +#define ENQUEUE_CLASS 0x0040 + +#define ENQUEUE_HEAD 0x00010000 +#define ENQUEUE_REPLENISH 0x00020000 +#define ENQUEUE_MIGRATED 0x00040000 +#define ENQUEUE_INITIAL 0x00080000 +#define ENQUEUE_RQ_SELECTED 0x00100000 #define RETRY_TASK ((void *)-1UL) struct affinity_context { - const struct cpumask *new_mask; - struct cpumask *user_mask; - unsigned int flags; + const struct cpumask *new_mask; + struct cpumask *user_mask; + unsigned int flags; }; +extern s64 update_curr_common(struct rq *rq); + struct sched_class { #ifdef CONFIG_UCLAMP_TASK int uclamp_enabled; #endif + /* + * idle: 0 + * ext: 1 + * fair: 2 + * rt: 4 + * dl: 8 + * stop: 16 + */ + unsigned int queue_mask; + /* + * move_queued_task/activate_task/enqueue_task: rq->lock + * ttwu_do_activate/activate_task/enqueue_task: rq->lock + * wake_up_new_task/activate_task/enqueue_task: task_rq_lock + * ttwu_runnable/enqueue_task: task_rq_lock + * proxy_task_current: rq->lock + * sched_change_end + */ void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); - void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); + /* + * move_queued_task/deactivate_task/dequeue_task: rq->lock + * __schedule/block_task/dequeue_task: rq->lock + * proxy_task_current: rq->lock + * wait_task_inactive: task_rq_lock + * sched_change_begin + */ + bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); + + /* + * do_sched_yield: rq->lock + */ void (*yield_task) (struct rq *rq); + /* + * yield_to: rq->lock (double) + */ bool (*yield_to_task)(struct rq *rq, struct task_struct *p); - void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); + /* + * move_queued_task: rq->lock + * __migrate_swap_task: rq->lock + * ttwu_do_activate: rq->lock + * ttwu_runnable: task_rq_lock + * wake_up_new_task: task_rq_lock + */ + void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); - struct task_struct *(*pick_next_task)(struct rq *rq); + /* + * schedule/pick_next_task/prev_balance: rq->lock + */ + int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); - void (*put_prev_task)(struct rq *rq, struct task_struct *p); + /* + * schedule/pick_next_task: rq->lock + */ + struct task_struct *(*pick_task)(struct rq *rq, struct rq_flags *rf); + /* + * Optional! When implemented pick_next_task() should be equivalent to: + * + * next = pick_task(); + * if (next) { + * put_prev_task(prev); + * set_next_task_first(next); + * } + */ + struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev, + struct rq_flags *rf); + + /* + * sched_change: + * __schedule: rq->lock + */ + void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); -#ifdef CONFIG_SMP - int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); + /* + * select_task_rq: p->pi_lock + * sched_exec: p->pi_lock + */ int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); - struct task_struct * (*pick_task)(struct rq *rq); - + /* + * set_task_cpu: p->pi_lock || rq->lock (ttwu like) + */ void (*migrate_task_rq)(struct task_struct *p, int new_cpu); + /* + * ttwu_do_activate: rq->lock + * wake_up_new_task: task_rq_lock + */ void (*task_woken)(struct rq *this_rq, struct task_struct *task); + /* + * do_set_cpus_allowed: task_rq_lock + sched_change + */ void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); + /* + * sched_set_rq_{on,off}line: rq->lock + */ void (*rq_online)(struct rq *rq); void (*rq_offline)(struct rq *rq); + /* + * push_cpu_stop: p->pi_lock && rq->lock + */ struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); -#endif + /* + * hrtick: rq->lock + * sched_tick: rq->lock + * sched_tick_remote: rq->lock + */ void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); + /* + * sched_cgroup_fork: p->pi_lock + */ void (*task_fork)(struct task_struct *p); + /* + * finish_task_switch: no locks + */ void (*task_dead)(struct task_struct *p); /* - * The switched_from() call is allowed to drop rq->lock, therefore we - * cannot assume the switched_from/switched_to pair is serialized by - * rq->lock. They are however serialized by p->pi_lock. + * sched_change */ - void (*switched_from)(struct rq *this_rq, struct task_struct *task); - void (*switched_to) (struct rq *this_rq, struct task_struct *task); + void (*switching_from)(struct rq *this_rq, struct task_struct *task); + void (*switched_from) (struct rq *this_rq, struct task_struct *task); + void (*switching_to) (struct rq *this_rq, struct task_struct *task); + void (*switched_to) (struct rq *this_rq, struct task_struct *task); + u64 (*get_prio) (struct rq *this_rq, struct task_struct *task); void (*prio_changed) (struct rq *this_rq, struct task_struct *task, - int oldprio); + u64 oldprio); + + /* + * set_load_weight: task_rq_lock + sched_change + * __setscheduler_parms: task_rq_lock + sched_change + */ + void (*reweight_task)(struct rq *this_rq, struct task_struct *task, + const struct load_weight *lw); + /* + * sched_rr_get_interval: task_rq_lock + */ unsigned int (*get_rr_interval)(struct rq *rq, struct task_struct *task); + /* + * task_sched_runtime: task_rq_lock + */ void (*update_curr)(struct rq *rq); #ifdef CONFIG_FAIR_GROUP_SCHED + /* + * sched_change_group: task_rq_lock + sched_change + */ void (*task_change_group)(struct task_struct *p); #endif + +#ifdef CONFIG_SCHED_CORE + /* + * pick_next_task: rq->lock + * try_steal_cookie: rq->lock (double) + */ + int (*task_is_throttled)(struct task_struct *p, int cpu); +#endif }; +/* + * Does not nest; only used around sched_class::pick_task() rq-lock-breaks. + */ +static inline void rq_modified_clear(struct rq *rq) +{ + rq->queue_mask = 0; +} + +static inline bool rq_modified_above(struct rq *rq, const struct sched_class * class) +{ + unsigned int mask = class->queue_mask; + return rq->queue_mask & ~((mask << 1) - 1); +} + static inline void put_prev_task(struct rq *rq, struct task_struct *prev) { - WARN_ON_ONCE(rq->curr != prev); - prev->sched_class->put_prev_task(rq, prev); + WARN_ON_ONCE(rq->donor != prev); + prev->sched_class->put_prev_task(rq, prev, NULL); } static inline void set_next_task(struct rq *rq, struct task_struct *next) @@ -2232,6 +2620,30 @@ static inline void set_next_task(struct rq *rq, struct task_struct *next) next->sched_class->set_next_task(rq, next, false); } +static inline void +__put_prev_set_next_dl_server(struct rq *rq, + struct task_struct *prev, + struct task_struct *next) +{ + prev->dl_server = NULL; + next->dl_server = rq->dl_server; + rq->dl_server = NULL; +} + +static inline void put_prev_set_next_task(struct rq *rq, + struct task_struct *prev, + struct task_struct *next) +{ + WARN_ON_ONCE(rq->donor != prev); + + __put_prev_set_next_dl_server(rq, prev, next); + + if (next == prev) + return; + + prev->sched_class->put_prev_task(rq, prev, next); + next->sched_class->set_next_task(rq, next, true); +} /* * Helper to define a sched_class instance; each one is placed in a separate @@ -2252,19 +2664,41 @@ const struct sched_class name##_sched_class \ extern struct sched_class __sched_class_highest[]; extern struct sched_class __sched_class_lowest[]; +extern const struct sched_class stop_sched_class; +extern const struct sched_class dl_sched_class; +extern const struct sched_class rt_sched_class; +extern const struct sched_class fair_sched_class; +extern const struct sched_class idle_sched_class; + +/* + * Iterate only active classes. SCX can take over all fair tasks or be + * completely disabled. If the former, skip fair. If the latter, skip SCX. + */ +static inline const struct sched_class *next_active_class(const struct sched_class *class) +{ + class++; +#ifdef CONFIG_SCHED_CLASS_EXT + if (scx_switched_all() && class == &fair_sched_class) + class++; + if (!scx_enabled() && class == &ext_sched_class) + class++; +#endif + return class; +} + #define for_class_range(class, _from, _to) \ for (class = (_from); class < (_to); class++) #define for_each_class(class) \ for_class_range(class, __sched_class_highest, __sched_class_lowest) -#define sched_class_above(_a, _b) ((_a) < (_b)) +#define for_active_class_range(class, _from, _to) \ + for (class = (_from); class != (_to); class = next_active_class(class)) -extern const struct sched_class stop_sched_class; -extern const struct sched_class dl_sched_class; -extern const struct sched_class rt_sched_class; -extern const struct sched_class fair_sched_class; -extern const struct sched_class idle_sched_class; +#define for_each_active_class(class) \ + for_active_class_range(class, __sched_class_highest, __sched_class_lowest) + +#define sched_class_above(_a, _b) ((_a) < (_b)) static inline bool sched_stop_runnable(struct rq *rq) { @@ -2283,28 +2717,51 @@ static inline bool sched_rt_runnable(struct rq *rq) static inline bool sched_fair_runnable(struct rq *rq) { - return rq->cfs.nr_running > 0; + return rq->cfs.nr_queued > 0; } -extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); -extern struct task_struct *pick_next_task_idle(struct rq *rq); +extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, + struct rq_flags *rf); +extern struct task_struct *pick_task_idle(struct rq *rq, struct rq_flags *rf); #define SCA_CHECK 0x01 #define SCA_MIGRATE_DISABLE 0x02 #define SCA_MIGRATE_ENABLE 0x04 #define SCA_USER 0x08 -#ifdef CONFIG_SMP - extern void update_group_capacity(struct sched_domain *sd, int cpu); -extern void trigger_load_balance(struct rq *rq); +extern void sched_balance_trigger(struct rq *rq); +extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); +static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) +{ + /* When not in the task's cpumask, no point in looking further. */ + if (!cpumask_test_cpu(cpu, p->cpus_ptr)) + return false; + + /* Can @cpu run a user thread? */ + if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) + return false; + + return true; +} + +static inline cpumask_t *alloc_user_cpus_ptr(int node) +{ + /* + * See set_cpus_allowed_force() above for the rcu_head usage. + */ + int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); + + return kmalloc_node(size, GFP_KERNEL, node); +} + static inline struct task_struct *get_push_task(struct rq *rq) { - struct task_struct *p = rq->curr; + struct task_struct *p = rq->donor; lockdep_assert_rq_held(rq); @@ -2323,9 +2780,8 @@ static inline struct task_struct *get_push_task(struct rq *rq) extern int push_cpu_stop(void *arg); -#endif - #ifdef CONFIG_CPU_IDLE + static inline void idle_set_state(struct rq *rq, struct cpuidle_state *idle_state) { @@ -2334,11 +2790,13 @@ static inline void idle_set_state(struct rq *rq, static inline struct cpuidle_state *idle_get_state(struct rq *rq) { - SCHED_WARN_ON(!rcu_read_lock_held()); + WARN_ON_ONCE(!rcu_read_lock_held()); return rq->idle_state; } -#else + +#else /* !CONFIG_CPU_IDLE: */ + static inline void idle_set_state(struct rq *rq, struct cpuidle_state *idle_state) { @@ -2348,9 +2806,11 @@ static inline struct cpuidle_state *idle_get_state(struct rq *rq) { return NULL; } -#endif + +#endif /* !CONFIG_CPU_IDLE */ extern void schedule_idle(void); +asmlinkage void schedule_user(void); extern void sysrq_sched_debug_show(void); extern void sched_init_granularity(void); @@ -2360,25 +2820,24 @@ extern void init_sched_dl_class(void); extern void init_sched_rt_class(void); extern void init_sched_fair_class(void); -extern void reweight_task(struct task_struct *p, int prio); - extern void resched_curr(struct rq *rq); +extern void resched_curr_lazy(struct rq *rq); extern void resched_cpu(int cpu); -extern struct rt_bandwidth def_rt_bandwidth; extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); -extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); -extern void init_dl_task_timer(struct sched_dl_entity *dl_se); -extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); +extern void init_dl_entity(struct sched_dl_entity *dl_se); + +extern void init_cfs_throttle_work(struct task_struct *p); #define BW_SHIFT 20 #define BW_UNIT (1 << BW_SHIFT) #define RATIO_SHIFT 8 #define MAX_BW_BITS (64 - BW_SHIFT) #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) -unsigned long to_ratio(u64 period, u64 runtime); + +extern unsigned long to_ratio(u64 period, u64 runtime); extern void init_entity_runnable_average(struct sched_entity *se); extern void post_init_entity_util_avg(struct task_struct *p); @@ -2404,10 +2863,10 @@ static inline void sched_update_tick_dependency(struct rq *rq) else tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); } -#else +#else /* !CONFIG_NO_HZ_FULL: */ static inline int sched_tick_offload_init(void) { return 0; } static inline void sched_update_tick_dependency(struct rq *rq) { } -#endif +#endif /* !CONFIG_NO_HZ_FULL */ static inline void add_nr_running(struct rq *rq, unsigned count) { @@ -2418,12 +2877,8 @@ static inline void add_nr_running(struct rq *rq, unsigned count) call_trace_sched_update_nr_running(rq, count); } -#ifdef CONFIG_SMP - if (prev_nr < 2 && rq->nr_running >= 2) { - if (!READ_ONCE(rq->rd->overload)) - WRITE_ONCE(rq->rd->overload, 1); - } -#endif + if (prev_nr < 2 && rq->nr_running >= 2) + set_rd_overloaded(rq->rd, 1); sched_update_tick_dependency(rq); } @@ -2439,25 +2894,65 @@ static inline void sub_nr_running(struct rq *rq, unsigned count) sched_update_tick_dependency(rq); } +static inline void __block_task(struct rq *rq, struct task_struct *p) +{ + if (p->sched_contributes_to_load) + rq->nr_uninterruptible++; + + if (p->in_iowait) { + atomic_inc(&rq->nr_iowait); + delayacct_blkio_start(); + } + + ASSERT_EXCLUSIVE_WRITER(p->on_rq); + + /* + * The moment this write goes through, ttwu() can swoop in and migrate + * this task, rendering our rq->__lock ineffective. + * + * __schedule() try_to_wake_up() + * LOCK rq->__lock LOCK p->pi_lock + * pick_next_task() + * pick_next_task_fair() + * pick_next_entity() + * dequeue_entities() + * __block_task() + * RELEASE p->on_rq = 0 if (p->on_rq && ...) + * break; + * + * ACQUIRE (after ctrl-dep) + * + * cpu = select_task_rq(); + * set_task_cpu(p, cpu); + * ttwu_queue() + * ttwu_do_activate() + * LOCK rq->__lock + * activate_task() + * STORE p->on_rq = 1 + * UNLOCK rq->__lock + * + * Callers must ensure to not reference @p after this -- we no longer + * own it. + */ + smp_store_release(&p->on_rq, 0); +} + extern void activate_task(struct rq *rq, struct task_struct *p, int flags); extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); -extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); +extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); #ifdef CONFIG_PREEMPT_RT -#define SCHED_NR_MIGRATE_BREAK 8 +# define SCHED_NR_MIGRATE_BREAK 8 #else -#define SCHED_NR_MIGRATE_BREAK 32 +# define SCHED_NR_MIGRATE_BREAK 32 #endif -extern const_debug unsigned int sysctl_sched_nr_migrate; -extern const_debug unsigned int sysctl_sched_migration_cost; +extern __read_mostly unsigned int sysctl_sched_nr_migrate; +extern __read_mostly unsigned int sysctl_sched_migration_cost; + +extern unsigned int sysctl_sched_base_slice; -#ifdef CONFIG_SCHED_DEBUG -extern unsigned int sysctl_sched_latency; -extern unsigned int sysctl_sched_min_granularity; -extern unsigned int sysctl_sched_idle_min_granularity; -extern unsigned int sysctl_sched_wakeup_granularity; extern int sysctl_resched_latency_warn_ms; extern int sysctl_resched_latency_warn_once; @@ -2468,7 +2963,6 @@ extern unsigned int sysctl_numa_balancing_scan_period_min; extern unsigned int sysctl_numa_balancing_scan_period_max; extern unsigned int sysctl_numa_balancing_scan_size; extern unsigned int sysctl_numa_balancing_hot_threshold; -#endif #ifdef CONFIG_SCHED_HRTICK @@ -2498,9 +2992,9 @@ static inline int hrtick_enabled_dl(struct rq *rq) return hrtick_enabled(rq); } -void hrtick_start(struct rq *rq, u64 delay); +extern void hrtick_start(struct rq *rq, u64 delay); -#else +#else /* !CONFIG_SCHED_HRTICK: */ static inline int hrtick_enabled_fair(struct rq *rq) { @@ -2517,13 +3011,10 @@ static inline int hrtick_enabled(struct rq *rq) return 0; } -#endif /* CONFIG_SCHED_HRTICK */ +#endif /* !CONFIG_SCHED_HRTICK */ #ifndef arch_scale_freq_tick -static __always_inline -void arch_scale_freq_tick(void) -{ -} +static __always_inline void arch_scale_freq_tick(void) { } #endif #ifndef arch_scale_freq_capacity @@ -2544,7 +3035,6 @@ unsigned long arch_scale_freq_capacity(int cpu) } #endif -#ifdef CONFIG_SCHED_DEBUG /* * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to * acquire rq lock instead of rq_lock(). So at the end of these two functions @@ -2554,16 +3044,14 @@ unsigned long arch_scale_freq_capacity(int cpu) static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); - /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ -#ifdef CONFIG_SMP rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); -#endif } -#else -static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} -#endif -#ifdef CONFIG_SMP +#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ +__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ +static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ +{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ + _lock; return _t; } static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) { @@ -2587,7 +3075,7 @@ static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) /* * __sched_core_flip() relies on SMT having cpu-id lock order. */ -#endif +#endif /* CONFIG_SCHED_CORE */ return rq1->cpu < rq2->cpu; } @@ -2614,7 +3102,7 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) return 1; } -#else +#else /* !CONFIG_PREEMPTION: */ /* * Unfair double_lock_balance: Optimizes throughput at the expense of * latency by eliminating extra atomic operations when the locks are @@ -2645,7 +3133,7 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) return 1; } -#endif /* CONFIG_PREEMPTION */ +#endif /* !CONFIG_PREEMPTION */ /* * double_lock_balance - lock the busiest runqueue, this_rq is locked already. @@ -2692,6 +3180,16 @@ static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); } +static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) +{ + raw_spin_unlock(l1); + raw_spin_unlock(l2); +} + +DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, + double_raw_lock(_T->lock, _T->lock2), + double_raw_unlock(_T->lock, _T->lock2)) + /* * double_rq_unlock - safely unlock two runqueues * @@ -2711,48 +3209,17 @@ static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) extern void set_rq_online (struct rq *rq); extern void set_rq_offline(struct rq *rq); -extern bool sched_smp_initialized; -#else /* CONFIG_SMP */ - -/* - * double_rq_lock - safely lock two runqueues - * - * Note this does not disable interrupts like task_rq_lock, - * you need to do so manually before calling. - */ -static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) - __acquires(rq1->lock) - __acquires(rq2->lock) -{ - WARN_ON_ONCE(!irqs_disabled()); - WARN_ON_ONCE(rq1 != rq2); - raw_spin_rq_lock(rq1); - __acquire(rq2->lock); /* Fake it out ;) */ - double_rq_clock_clear_update(rq1, rq2); -} - -/* - * double_rq_unlock - safely unlock two runqueues - * - * Note this does not restore interrupts like task_rq_unlock, - * you need to do so manually after calling. - */ -static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) - __releases(rq1->lock) - __releases(rq2->lock) -{ - WARN_ON_ONCE(rq1 != rq2); - raw_spin_rq_unlock(rq1); - __release(rq2->lock); -} +extern bool sched_smp_initialized; -#endif +DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, + double_rq_lock(_T->lock, _T->lock2), + double_rq_unlock(_T->lock, _T->lock2)) +extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); -#ifdef CONFIG_SCHED_DEBUG extern bool sched_debug_verbose; extern void print_cfs_stats(struct seq_file *m, int cpu); @@ -2763,16 +3230,13 @@ extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); extern void resched_latency_warn(int cpu, u64 latency); + #ifdef CONFIG_NUMA_BALANCING -extern void -show_numa_stats(struct task_struct *p, struct seq_file *m); +extern void show_numa_stats(struct task_struct *p, struct seq_file *m); extern void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, - unsigned long tpf, unsigned long gsf, unsigned long gpf); + unsigned long tpf, unsigned long gsf, unsigned long gpf); #endif /* CONFIG_NUMA_BALANCING */ -#else -static inline void resched_latency_warn(int cpu, u64 latency) {} -#endif /* CONFIG_SCHED_DEBUG */ extern void init_cfs_rq(struct cfs_rq *cfs_rq); extern void init_rt_rq(struct rt_rq *rt_rq); @@ -2782,12 +3246,13 @@ extern void cfs_bandwidth_usage_inc(void); extern void cfs_bandwidth_usage_dec(void); #ifdef CONFIG_NO_HZ_COMMON + #define NOHZ_BALANCE_KICK_BIT 0 #define NOHZ_STATS_KICK_BIT 1 #define NOHZ_NEWILB_KICK_BIT 2 #define NOHZ_NEXT_KICK_BIT 3 -/* Run rebalance_domains() */ +/* Run sched_balance_domains() */ #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) /* Update blocked load */ #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) @@ -2796,22 +3261,51 @@ extern void cfs_bandwidth_usage_dec(void); /* Update nohz.next_balance */ #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) -#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) +#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) -#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) +#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) extern void nohz_balance_exit_idle(struct rq *rq); -#else +#else /* !CONFIG_NO_HZ_COMMON: */ static inline void nohz_balance_exit_idle(struct rq *rq) { } -#endif +#endif /* !CONFIG_NO_HZ_COMMON */ -#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) +#ifdef CONFIG_NO_HZ_COMMON extern void nohz_run_idle_balance(int cpu); #else static inline void nohz_run_idle_balance(int cpu) { } #endif +#include "stats.h" + +#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) + +extern void __sched_core_account_forceidle(struct rq *rq); + +static inline void sched_core_account_forceidle(struct rq *rq) +{ + if (schedstat_enabled()) + __sched_core_account_forceidle(rq); +} + +extern void __sched_core_tick(struct rq *rq); + +static inline void sched_core_tick(struct rq *rq) +{ + if (sched_core_enabled(rq) && schedstat_enabled()) + __sched_core_tick(rq); +} + +#else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ + +static inline void sched_core_account_forceidle(struct rq *rq) { } + +static inline void sched_core_tick(struct rq *rq) { } + +#endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ + #ifdef CONFIG_IRQ_TIME_ACCOUNTING + struct irqtime { u64 total; u64 tick_delta; @@ -2820,6 +3314,12 @@ struct irqtime { }; DECLARE_PER_CPU(struct irqtime, cpu_irqtime); +extern int sched_clock_irqtime; + +static inline int irqtime_enabled(void) +{ + return sched_clock_irqtime; +} /* * Returns the irqtime minus the softirq time computed by ksoftirqd. @@ -2839,9 +3339,18 @@ static inline u64 irq_time_read(int cpu) return total; } -#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ + +#else /* !CONFIG_IRQ_TIME_ACCOUNTING: */ + +static inline int irqtime_enabled(void) +{ + return 0; +} + +#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ #ifdef CONFIG_CPU_FREQ + DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); /** @@ -2875,9 +3384,9 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) if (data) data->func(data, rq_clock(rq), flags); } -#else -static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} -#endif /* CONFIG_CPU_FREQ */ +#else /* !CONFIG_CPU_FREQ: */ +static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } +#endif /* !CONFIG_CPU_FREQ */ #ifdef arch_scale_freq_capacity # ifndef arch_scale_freq_invariant @@ -2887,48 +3396,14 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} # define arch_scale_freq_invariant() false #endif -#ifdef CONFIG_SMP -static inline unsigned long capacity_orig_of(int cpu) -{ - return cpu_rq(cpu)->cpu_capacity_orig; -} - -/* - * Returns inverted capacity if the CPU is in capacity inversion state. - * 0 otherwise. - * - * Capacity inversion detection only considers thermal impact where actual - * performance points (OPPs) gets dropped. - * - * Capacity inversion state happens when another performance domain that has - * equal or lower capacity_orig_of() becomes effectively larger than the perf - * domain this CPU belongs to due to thermal pressure throttling it hard. - * - * See comment in update_cpu_capacity(). - */ -static inline unsigned long cpu_in_capacity_inversion(int cpu) -{ - return cpu_rq(cpu)->cpu_capacity_inverted; -} +unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, + unsigned long *min, + unsigned long *max); -/** - * enum cpu_util_type - CPU utilization type - * @FREQUENCY_UTIL: Utilization used to select frequency - * @ENERGY_UTIL: Utilization used during energy calculation - * - * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time - * need to be aggregated differently depending on the usage made of them. This - * enum is used within effective_cpu_util() to differentiate the types of - * utilization expected by the callers, and adjust the aggregation accordingly. - */ -enum cpu_util_type { - FREQUENCY_UTIL, - ENERGY_UTIL, -}; +unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, + unsigned long min, + unsigned long max); -unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, - enum cpu_util_type type, - struct task_struct *p); /* * Verify the fitness of task @p to run on @cpu taking into account the @@ -2955,63 +3430,44 @@ static inline unsigned long cpu_util_dl(struct rq *rq) return READ_ONCE(rq->avg_dl.util_avg); } -/** - * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks. - * @cpu: the CPU to get the utilization for. - * - * The unit of the return value must be the same as the one of CPU capacity - * so that CPU utilization can be compared with CPU capacity. - * - * CPU utilization is the sum of running time of runnable tasks plus the - * recent utilization of currently non-runnable tasks on that CPU. - * It represents the amount of CPU capacity currently used by CFS tasks in - * the range [0..max CPU capacity] with max CPU capacity being the CPU - * capacity at f_max. - * - * The estimated CPU utilization is defined as the maximum between CPU - * utilization and sum of the estimated utilization of the currently - * runnable tasks on that CPU. It preserves a utilization "snapshot" of - * previously-executed tasks, which helps better deduce how busy a CPU will - * be when a long-sleeping task wakes up. The contribution to CPU utilization - * of such a task would be significantly decayed at this point of time. - * - * CPU utilization can be higher than the current CPU capacity - * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because - * of rounding errors as well as task migrations or wakeups of new tasks. - * CPU utilization has to be capped to fit into the [0..max CPU capacity] - * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) - * could be seen as over-utilized even though CPU1 has 20% of spare CPU - * capacity. CPU utilization is allowed to overshoot current CPU capacity - * though since this is useful for predicting the CPU capacity required - * after task migrations (scheduler-driven DVFS). - * - * Return: (Estimated) utilization for the specified CPU. - */ -static inline unsigned long cpu_util_cfs(int cpu) -{ - struct cfs_rq *cfs_rq; - unsigned long util; - cfs_rq = &cpu_rq(cpu)->cfs; - util = READ_ONCE(cfs_rq->avg.util_avg); - - if (sched_feat(UTIL_EST)) { - util = max_t(unsigned long, util, - READ_ONCE(cfs_rq->avg.util_est.enqueued)); - } - - return min(util, capacity_orig_of(cpu)); -} +extern unsigned long cpu_util_cfs(int cpu); +extern unsigned long cpu_util_cfs_boost(int cpu); static inline unsigned long cpu_util_rt(struct rq *rq) { return READ_ONCE(rq->avg_rt.util_avg); } -#endif #ifdef CONFIG_UCLAMP_TASK + unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); +/* + * When uclamp is compiled in, the aggregation at rq level is 'turned off' + * by default in the fast path and only gets turned on once userspace performs + * an operation that requires it. + * + * Returns true if userspace opted-in to use uclamp and aggregation at rq level + * hence is active. + */ +static inline bool uclamp_is_used(void) +{ + return static_branch_likely(&sched_uclamp_used); +} + +/* + * Enabling static branches would get the cpus_read_lock(), + * check whether uclamp_is_used before enable it to avoid always + * calling cpus_read_lock(). Because we never disable this + * static key once enable it. + */ +static inline void sched_uclamp_enable(void) +{ + if (!uclamp_is_used()) + static_branch_enable(&sched_uclamp_used); +} + static inline unsigned long uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) { @@ -3029,66 +3485,13 @@ static inline bool uclamp_rq_is_idle(struct rq *rq) return rq->uclamp_flags & UCLAMP_FLAG_IDLE; } -/** - * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. - * @rq: The rq to clamp against. Must not be NULL. - * @util: The util value to clamp. - * @p: The task to clamp against. Can be NULL if you want to clamp - * against @rq only. - * - * Clamps the passed @util to the max(@rq, @p) effective uclamp values. - * - * If sched_uclamp_used static key is disabled, then just return the util - * without any clamping since uclamp aggregation at the rq level in the fast - * path is disabled, rendering this operation a NOP. - * - * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It - * will return the correct effective uclamp value of the task even if the - * static key is disabled. - */ -static __always_inline -unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, - struct task_struct *p) -{ - unsigned long min_util = 0; - unsigned long max_util = 0; - - if (!static_branch_likely(&sched_uclamp_used)) - return util; - - if (p) { - min_util = uclamp_eff_value(p, UCLAMP_MIN); - max_util = uclamp_eff_value(p, UCLAMP_MAX); - - /* - * Ignore last runnable task's max clamp, as this task will - * reset it. Similarly, no need to read the rq's min clamp. - */ - if (uclamp_rq_is_idle(rq)) - goto out; - } - - min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN)); - max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX)); -out: - /* - * Since CPU's {min,max}_util clamps are MAX aggregated considering - * RUNNABLE tasks with _different_ clamps, we can end up with an - * inversion. Fix it now when the clamps are applied. - */ - if (unlikely(min_util >= max_util)) - return min_util; - - return clamp(util, min_util, max_util); -} - /* Is the rq being capped/throttled by uclamp_max? */ static inline bool uclamp_rq_is_capped(struct rq *rq) { unsigned long rq_util; unsigned long max_util; - if (!static_branch_likely(&sched_uclamp_used)) + if (!uclamp_is_used()) return false; rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); @@ -3097,33 +3500,44 @@ static inline bool uclamp_rq_is_capped(struct rq *rq) return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; } -/* - * When uclamp is compiled in, the aggregation at rq level is 'turned off' - * by default in the fast path and only gets turned on once userspace performs - * an operation that requires it. - * - * Returns true if userspace opted-in to use uclamp and aggregation at rq level - * hence is active. - */ -static inline bool uclamp_is_used(void) -{ - return static_branch_likely(&sched_uclamp_used); -} -#else /* CONFIG_UCLAMP_TASK */ -static inline unsigned long uclamp_eff_value(struct task_struct *p, - enum uclamp_id clamp_id) +#define for_each_clamp_id(clamp_id) \ + for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) + +extern unsigned int sysctl_sched_uclamp_util_min_rt_default; + + +static inline unsigned int uclamp_none(enum uclamp_id clamp_id) { if (clamp_id == UCLAMP_MIN) return 0; - return SCHED_CAPACITY_SCALE; } -static inline -unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, - struct task_struct *p) +/* Integer rounded range for each bucket */ +#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) + +static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) { - return util; + return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); +} + +static inline void +uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) +{ + uc_se->value = value; + uc_se->bucket_id = uclamp_bucket_id(value); + uc_se->user_defined = user_defined; +} + +#else /* !CONFIG_UCLAMP_TASK: */ + +static inline unsigned long +uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) +{ + if (clamp_id == UCLAMP_MIN) + return 0; + + return SCHED_CAPACITY_SCALE; } static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } @@ -3133,8 +3547,10 @@ static inline bool uclamp_is_used(void) return false; } -static inline unsigned long uclamp_rq_get(struct rq *rq, - enum uclamp_id clamp_id) +static inline void sched_uclamp_enable(void) {} + +static inline unsigned long +uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) { if (clamp_id == UCLAMP_MIN) return 0; @@ -3142,8 +3558,8 @@ static inline unsigned long uclamp_rq_get(struct rq *rq, return SCHED_CAPACITY_SCALE; } -static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, - unsigned int value) +static inline void +uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) { } @@ -3151,12 +3567,14 @@ static inline bool uclamp_rq_is_idle(struct rq *rq) { return false; } -#endif /* CONFIG_UCLAMP_TASK */ + +#endif /* !CONFIG_UCLAMP_TASK */ #ifdef CONFIG_HAVE_SCHED_AVG_IRQ + static inline unsigned long cpu_util_irq(struct rq *rq) { - return rq->avg_irq.util_avg; + return READ_ONCE(rq->avg_irq.util_avg); } static inline @@ -3168,7 +3586,9 @@ unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned return util; } -#else + +#else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ + static inline unsigned long cpu_util_irq(struct rq *rq) { return 0; @@ -3179,7 +3599,10 @@ unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned { return util; } -#endif + +#endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ + +extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) @@ -3192,14 +3615,16 @@ static inline bool sched_energy_enabled(void) return static_branch_unlikely(&sched_energy_present); } -#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ +#else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */ #define perf_domain_span(pd) NULL + static inline bool sched_energy_enabled(void) { return false; } -#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ +#endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ #ifdef CONFIG_MEMBARRIER + /* * The scheduler provides memory barriers required by membarrier between: * - prior user-space memory accesses and store to rq->membarrier_state, @@ -3221,15 +3646,17 @@ static inline void membarrier_switch_mm(struct rq *rq, WRITE_ONCE(rq->membarrier_state, membarrier_state); } -#else + +#else /* !CONFIG_MEMBARRIER: */ + static inline void membarrier_switch_mm(struct rq *rq, struct mm_struct *prev_mm, struct mm_struct *next_mm) { } -#endif -#ifdef CONFIG_SMP +#endif /* !CONFIG_MEMBARRIER */ + static inline bool is_per_cpu_kthread(struct task_struct *p) { if (!(p->flags & PF_KTHREAD)) @@ -3240,25 +3667,322 @@ static inline bool is_per_cpu_kthread(struct task_struct *p) return true; } -#endif extern void swake_up_all_locked(struct swait_queue_head *q); extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); +extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); + #ifdef CONFIG_PREEMPT_DYNAMIC extern int preempt_dynamic_mode; extern int sched_dynamic_mode(const char *str); extern void sched_dynamic_update(int mode); #endif +extern const char *preempt_modes[]; + +#ifdef CONFIG_SCHED_MM_CID + +static __always_inline bool cid_on_cpu(unsigned int cid) +{ + return cid & MM_CID_ONCPU; +} -static inline void update_current_exec_runtime(struct task_struct *curr, - u64 now, u64 delta_exec) +static __always_inline bool cid_in_transit(unsigned int cid) { - curr->se.sum_exec_runtime += delta_exec; - account_group_exec_runtime(curr, delta_exec); + return cid & MM_CID_TRANSIT; +} - curr->se.exec_start = now; - cgroup_account_cputime(curr, delta_exec); +static __always_inline unsigned int cpu_cid_to_cid(unsigned int cid) +{ + return cid & ~MM_CID_ONCPU; } +static __always_inline unsigned int cid_to_cpu_cid(unsigned int cid) +{ + return cid | MM_CID_ONCPU; +} + +static __always_inline unsigned int cid_to_transit_cid(unsigned int cid) +{ + return cid | MM_CID_TRANSIT; +} + +static __always_inline unsigned int cid_from_transit_cid(unsigned int cid) +{ + return cid & ~MM_CID_TRANSIT; +} + +static __always_inline bool cid_on_task(unsigned int cid) +{ + /* True if none of the MM_CID_ONCPU, MM_CID_TRANSIT, MM_CID_UNSET bits is set */ + return cid < MM_CID_TRANSIT; +} + +static __always_inline void mm_drop_cid(struct mm_struct *mm, unsigned int cid) +{ + clear_bit(cid, mm_cidmask(mm)); +} + +static __always_inline void mm_unset_cid_on_task(struct task_struct *t) +{ + unsigned int cid = t->mm_cid.cid; + + t->mm_cid.cid = MM_CID_UNSET; + if (cid_on_task(cid)) + mm_drop_cid(t->mm, cid); +} + +static __always_inline void mm_drop_cid_on_cpu(struct mm_struct *mm, struct mm_cid_pcpu *pcp) +{ + /* Clear the ONCPU bit, but do not set UNSET in the per CPU storage */ + pcp->cid = cpu_cid_to_cid(pcp->cid); + mm_drop_cid(mm, pcp->cid); +} + +static inline unsigned int __mm_get_cid(struct mm_struct *mm, unsigned int max_cids) +{ + unsigned int cid = find_first_zero_bit(mm_cidmask(mm), max_cids); + + if (cid >= max_cids) + return MM_CID_UNSET; + if (test_and_set_bit(cid, mm_cidmask(mm))) + return MM_CID_UNSET; + return cid; +} + +static inline unsigned int mm_get_cid(struct mm_struct *mm) +{ + unsigned int cid = __mm_get_cid(mm, READ_ONCE(mm->mm_cid.max_cids)); + + while (cid == MM_CID_UNSET) { + cpu_relax(); + cid = __mm_get_cid(mm, num_possible_cpus()); + } + return cid; +} + +static inline unsigned int mm_cid_converge(struct mm_struct *mm, unsigned int orig_cid, + unsigned int max_cids) +{ + unsigned int new_cid, cid = cpu_cid_to_cid(orig_cid); + + /* Is it in the optimal CID space? */ + if (likely(cid < max_cids)) + return orig_cid; + + /* Try to find one in the optimal space. Otherwise keep the provided. */ + new_cid = __mm_get_cid(mm, max_cids); + if (new_cid != MM_CID_UNSET) { + mm_drop_cid(mm, cid); + /* Preserve the ONCPU mode of the original CID */ + return new_cid | (orig_cid & MM_CID_ONCPU); + } + return orig_cid; +} + +static __always_inline void mm_cid_update_task_cid(struct task_struct *t, unsigned int cid) +{ + if (t->mm_cid.cid != cid) { + t->mm_cid.cid = cid; + rseq_sched_set_ids_changed(t); + } +} + +static __always_inline void mm_cid_update_pcpu_cid(struct mm_struct *mm, unsigned int cid) +{ + __this_cpu_write(mm->mm_cid.pcpu->cid, cid); +} + +static __always_inline void mm_cid_from_cpu(struct task_struct *t, unsigned int cpu_cid) +{ + unsigned int max_cids, tcid = t->mm_cid.cid; + struct mm_struct *mm = t->mm; + + max_cids = READ_ONCE(mm->mm_cid.max_cids); + /* Optimize for the common case where both have the ONCPU bit set */ + if (likely(cid_on_cpu(cpu_cid & tcid))) { + if (likely(cpu_cid_to_cid(cpu_cid) < max_cids)) { + mm_cid_update_task_cid(t, cpu_cid); + return; + } + /* Try to converge into the optimal CID space */ + cpu_cid = mm_cid_converge(mm, cpu_cid, max_cids); + } else { + /* Hand over or drop the task owned CID */ + if (cid_on_task(tcid)) { + if (cid_on_cpu(cpu_cid)) + mm_unset_cid_on_task(t); + else + cpu_cid = cid_to_cpu_cid(tcid); + } + /* Still nothing, allocate a new one */ + if (!cid_on_cpu(cpu_cid)) + cpu_cid = cid_to_cpu_cid(mm_get_cid(mm)); + } + mm_cid_update_pcpu_cid(mm, cpu_cid); + mm_cid_update_task_cid(t, cpu_cid); +} + +static __always_inline void mm_cid_from_task(struct task_struct *t, unsigned int cpu_cid) +{ + unsigned int max_cids, tcid = t->mm_cid.cid; + struct mm_struct *mm = t->mm; + + max_cids = READ_ONCE(mm->mm_cid.max_cids); + /* Optimize for the common case, where both have the ONCPU bit clear */ + if (likely(cid_on_task(tcid | cpu_cid))) { + if (likely(tcid < max_cids)) { + mm_cid_update_pcpu_cid(mm, tcid); + return; + } + /* Try to converge into the optimal CID space */ + tcid = mm_cid_converge(mm, tcid, max_cids); + } else { + /* Hand over or drop the CPU owned CID */ + if (cid_on_cpu(cpu_cid)) { + if (cid_on_task(tcid)) + mm_drop_cid_on_cpu(mm, this_cpu_ptr(mm->mm_cid.pcpu)); + else + tcid = cpu_cid_to_cid(cpu_cid); + } + /* Still nothing, allocate a new one */ + if (!cid_on_task(tcid)) + tcid = mm_get_cid(mm); + /* Set the transition mode flag if required */ + tcid |= READ_ONCE(mm->mm_cid.transit); + } + mm_cid_update_pcpu_cid(mm, tcid); + mm_cid_update_task_cid(t, tcid); +} + +static __always_inline void mm_cid_schedin(struct task_struct *next) +{ + struct mm_struct *mm = next->mm; + unsigned int cpu_cid; + + if (!next->mm_cid.active) + return; + + cpu_cid = __this_cpu_read(mm->mm_cid.pcpu->cid); + if (likely(!READ_ONCE(mm->mm_cid.percpu))) + mm_cid_from_task(next, cpu_cid); + else + mm_cid_from_cpu(next, cpu_cid); +} + +static __always_inline void mm_cid_schedout(struct task_struct *prev) +{ + /* During mode transitions CIDs are temporary and need to be dropped */ + if (likely(!cid_in_transit(prev->mm_cid.cid))) + return; + + mm_drop_cid(prev->mm, cid_from_transit_cid(prev->mm_cid.cid)); + prev->mm_cid.cid = MM_CID_UNSET; +} + +static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) +{ + mm_cid_schedout(prev); + mm_cid_schedin(next); +} + +#else /* !CONFIG_SCHED_MM_CID: */ +static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) { } +#endif /* !CONFIG_SCHED_MM_CID */ + +extern u64 avg_vruntime(struct cfs_rq *cfs_rq); +extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); +static inline +void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) +{ + lockdep_assert_rq_held(src_rq); + lockdep_assert_rq_held(dst_rq); + + deactivate_task(src_rq, task, 0); + set_task_cpu(task, dst_rq->cpu); + activate_task(dst_rq, task, 0); +} + +static inline +bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) +{ + if (!task_on_cpu(rq, p) && + cpumask_test_cpu(cpu, &p->cpus_mask)) + return true; + + return false; +} + +#ifdef CONFIG_RT_MUTEXES + +static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) +{ + if (pi_task) + prio = min(prio, pi_task->prio); + + return prio; +} + +static inline int rt_effective_prio(struct task_struct *p, int prio) +{ + struct task_struct *pi_task = rt_mutex_get_top_task(p); + + return __rt_effective_prio(pi_task, prio); +} + +#else /* !CONFIG_RT_MUTEXES: */ + +static inline int rt_effective_prio(struct task_struct *p, int prio) +{ + return prio; +} + +#endif /* !CONFIG_RT_MUTEXES */ + +extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); +extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); +extern const struct sched_class *__setscheduler_class(int policy, int prio); +extern void set_load_weight(struct task_struct *p, bool update_load); +extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); +extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); + +extern struct balance_callback *splice_balance_callbacks(struct rq *rq); +extern void balance_callbacks(struct rq *rq, struct balance_callback *head); + +/* + * The 'sched_change' pattern is the safe, easy and slow way of changing a + * task's scheduling properties. It dequeues a task, such that the scheduler + * is fully unaware of it; at which point its properties can be modified; + * after which it is enqueued again. + * + * Typically this must be called while holding task_rq_lock, since most/all + * properties are serialized under those locks. There is currently one + * exception to this rule in sched/ext which only holds rq->lock. + */ + +/* + * This structure is a temporary, used to preserve/convey the queueing state + * of the task between sched_change_begin() and sched_change_end(). Ensuring + * the task's queueing state is idempotent across the operation. + */ +struct sched_change_ctx { + u64 prio; + struct task_struct *p; + int flags; + bool queued; + bool running; +}; + +struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags); +void sched_change_end(struct sched_change_ctx *ctx); + +DEFINE_CLASS(sched_change, struct sched_change_ctx *, + sched_change_end(_T), + sched_change_begin(p, flags), + struct task_struct *p, unsigned int flags) + +DEFINE_CLASS_IS_UNCONDITIONAL(sched_change) + +#include "ext.h" + #endif /* _KERNEL_SCHED_SCHED_H */ |
