diff options
Diffstat (limited to 'kernel/time/tick-common.c')
| -rw-r--r-- | kernel/time/tick-common.c | 349 |
1 files changed, 278 insertions, 71 deletions
diff --git a/kernel/time/tick-common.c b/kernel/time/tick-common.c index 64522ecdfe0e..7e33d3f2e889 100644 --- a/kernel/time/tick-common.c +++ b/kernel/time/tick-common.c @@ -1,24 +1,23 @@ +// SPDX-License-Identifier: GPL-2.0 /* - * linux/kernel/time/tick-common.c - * * This file contains the base functions to manage periodic tick * related events. * * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner - * - * This code is licenced under the GPL version 2. For details see - * kernel-base/COPYING. */ +#include <linux/compiler.h> #include <linux/cpu.h> #include <linux/err.h> #include <linux/hrtimer.h> #include <linux/interrupt.h> +#include <linux/nmi.h> #include <linux/percpu.h> #include <linux/profile.h> #include <linux/sched.h> #include <linux/module.h> +#include <trace/events/power.h> #include <asm/irq_regs.h> @@ -29,11 +28,35 @@ */ DEFINE_PER_CPU(struct tick_device, tick_cpu_device); /* - * Tick next event: keeps track of the tick time + * Tick next event: keeps track of the tick time. It's updated by the + * CPU which handles the tick and protected by jiffies_lock. There is + * no requirement to write hold the jiffies seqcount for it. */ ktime_t tick_next_period; -ktime_t tick_period; + +/* + * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR + * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This + * variable has two functions: + * + * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the + * timekeeping lock all at once. Only the CPU which is assigned to do the + * update is handling it. + * + * 2) Hand off the duty in the NOHZ idle case by setting the value to + * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks + * at it will take over and keep the time keeping alive. The handover + * procedure also covers cpu hotplug. + */ int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; +#ifdef CONFIG_NO_HZ_FULL +/* + * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns + * tick_do_timer_cpu and it should be taken over by an eligible secondary + * when one comes online. + */ +static int tick_do_timer_boot_cpu __read_mostly = -1; +#endif /* * Debugging: see timer_list.c @@ -62,14 +85,17 @@ int tick_is_oneshot_available(void) */ static void tick_periodic(int cpu) { - if (tick_do_timer_cpu == cpu) { - write_seqlock(&jiffies_lock); + if (READ_ONCE(tick_do_timer_cpu) == cpu) { + raw_spin_lock(&jiffies_lock); + write_seqcount_begin(&jiffies_seq); /* Keep track of the next tick event */ - tick_next_period = ktime_add(tick_next_period, tick_period); + tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC); do_timer(1); - write_sequnlock(&jiffies_lock); + write_seqcount_end(&jiffies_seq); + raw_spin_unlock(&jiffies_lock); + update_wall_time(); } update_process_times(user_mode(get_irq_regs())); @@ -82,18 +108,27 @@ static void tick_periodic(int cpu) void tick_handle_periodic(struct clock_event_device *dev) { int cpu = smp_processor_id(); - ktime_t next; + ktime_t next = dev->next_event; tick_periodic(cpu); - if (dev->mode != CLOCK_EVT_MODE_ONESHOT) - return; /* - * Setup the next period for devices, which do not have - * periodic mode: + * The cpu might have transitioned to HIGHRES or NOHZ mode via + * update_process_times() -> run_local_timers() -> + * hrtimer_run_queues(). */ - next = ktime_add(dev->next_event, tick_period); + if (IS_ENABLED(CONFIG_TICK_ONESHOT) && dev->event_handler != tick_handle_periodic) + return; + + if (!clockevent_state_oneshot(dev)) + return; for (;;) { + /* + * Setup the next period for devices, which do not have + * periodic mode: + */ + next = ktime_add_ns(next, TICK_NSEC); + if (!clockevents_program_event(dev, next, false)) return; /* @@ -102,12 +137,11 @@ void tick_handle_periodic(struct clock_event_device *dev) * to be sure we're using a real hardware clocksource. * Otherwise we could get trapped in an infinite * loop, as the tick_periodic() increments jiffies, - * when then will increment time, posibly causing + * which then will increment time, possibly causing * the loop to trigger again and again. */ if (timekeeping_valid_for_hres()) tick_periodic(cpu); - next = ktime_add(next, tick_period); } } @@ -124,22 +158,22 @@ void tick_setup_periodic(struct clock_event_device *dev, int broadcast) if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && !tick_broadcast_oneshot_active()) { - clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC); + clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); } else { - unsigned long seq; + unsigned int seq; ktime_t next; do { - seq = read_seqbegin(&jiffies_lock); + seq = read_seqcount_begin(&jiffies_seq); next = tick_next_period; - } while (read_seqretry(&jiffies_lock, seq)); + } while (read_seqcount_retry(&jiffies_seq, seq)); - clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); + clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); for (;;) { if (!clockevents_program_event(dev, next, false)) return; - next = ktime_add(next, tick_period); + next = ktime_add_ns(next, TICK_NSEC); } } } @@ -151,8 +185,8 @@ static void tick_setup_device(struct tick_device *td, struct clock_event_device *newdev, int cpu, const struct cpumask *cpumask) { - ktime_t next_event; void (*handler)(struct clock_event_device *) = NULL; + ktime_t next_event = 0; /* * First device setup ? @@ -162,13 +196,31 @@ static void tick_setup_device(struct tick_device *td, * If no cpu took the do_timer update, assign it to * this cpu: */ - if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { - if (!tick_nohz_full_cpu(cpu)) - tick_do_timer_cpu = cpu; - else - tick_do_timer_cpu = TICK_DO_TIMER_NONE; + if (READ_ONCE(tick_do_timer_cpu) == TICK_DO_TIMER_BOOT) { + WRITE_ONCE(tick_do_timer_cpu, cpu); tick_next_period = ktime_get(); - tick_period = ktime_set(0, NSEC_PER_SEC / HZ); +#ifdef CONFIG_NO_HZ_FULL + /* + * The boot CPU may be nohz_full, in which case the + * first housekeeping secondary will take do_timer() + * from it. + */ + if (tick_nohz_full_cpu(cpu)) + tick_do_timer_boot_cpu = cpu; + + } else if (tick_do_timer_boot_cpu != -1 && !tick_nohz_full_cpu(cpu)) { + tick_do_timer_boot_cpu = -1; + /* + * The boot CPU will stay in periodic (NOHZ disabled) + * mode until clocksource_done_booting() called after + * smp_init() selects a high resolution clocksource and + * timekeeping_notify() kicks the NOHZ stuff alive. + * + * So this WRITE_ONCE can only race with the READ_ONCE + * check in tick_periodic() but this race is harmless. + */ + WRITE_ONCE(tick_do_timer_cpu, cpu); +#endif } /* @@ -208,7 +260,7 @@ static void tick_setup_device(struct tick_device *td, void tick_install_replacement(struct clock_event_device *newdev) { - struct tick_device *td = &__get_cpu_var(tick_cpu_device); + struct tick_device *td = this_cpu_ptr(&tick_cpu_device); int cpu = smp_processor_id(); clockevents_exchange_device(td->evtdev, newdev); @@ -260,7 +312,7 @@ static bool tick_check_preferred(struct clock_event_device *curdev, bool tick_check_replacement(struct clock_event_device *curdev, struct clock_event_device *newdev) { - if (tick_check_percpu(curdev, newdev, smp_processor_id())) + if (!tick_check_percpu(curdev, newdev, smp_processor_id())) return false; return tick_check_preferred(curdev, newdev); @@ -277,18 +329,10 @@ void tick_check_new_device(struct clock_event_device *newdev) int cpu; cpu = smp_processor_id(); - if (!cpumask_test_cpu(cpu, newdev->cpumask)) - goto out_bc; - td = &per_cpu(tick_cpu_device, cpu); curdev = td->evtdev; - /* cpu local device ? */ - if (!tick_check_percpu(curdev, newdev, cpu)) - goto out_bc; - - /* Preference decision */ - if (!tick_check_preferred(curdev, newdev)) + if (!tick_check_replacement(curdev, newdev)) goto out_bc; if (!try_module_get(newdev->owner)) @@ -313,70 +357,232 @@ out_bc: /* * Can the new device be used as a broadcast device ? */ - tick_install_broadcast_device(newdev); + tick_install_broadcast_device(newdev, cpu); } -/* - * Transfer the do_timer job away from a dying cpu. +/** + * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode + * @state: The target state (enter/exit) + * + * The system enters/leaves a state, where affected devices might stop + * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. * - * Called with interrupts disabled. + * Called with interrupts disabled, so clockevents_lock is not + * required here because the local clock event device cannot go away + * under us. */ -void tick_handover_do_timer(int *cpup) +int tick_broadcast_oneshot_control(enum tick_broadcast_state state) { - if (*cpup == tick_do_timer_cpu) { - int cpu = cpumask_first(cpu_online_mask); + struct tick_device *td = this_cpu_ptr(&tick_cpu_device); - tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : - TICK_DO_TIMER_NONE; - } + if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) + return 0; + + return __tick_broadcast_oneshot_control(state); } +EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); +#ifdef CONFIG_HOTPLUG_CPU +void tick_assert_timekeeping_handover(void) +{ + WARN_ON_ONCE(tick_do_timer_cpu == smp_processor_id()); +} /* - * Shutdown an event device on a given cpu: + * Stop the tick and transfer the timekeeping job away from a dying cpu. + */ +int tick_cpu_dying(unsigned int dying_cpu) +{ + /* + * If the current CPU is the timekeeper, it's the only one that can + * safely hand over its duty. Also all online CPUs are in stop + * machine, guaranteed not to be idle, therefore there is no + * concurrency and it's safe to pick any online successor. + */ + if (tick_do_timer_cpu == dying_cpu) + tick_do_timer_cpu = cpumask_first(cpu_online_mask); + + /* Make sure the CPU won't try to retake the timekeeping duty */ + tick_sched_timer_dying(dying_cpu); + + /* Remove CPU from timer broadcasting */ + tick_offline_cpu(dying_cpu); + + return 0; +} + +/* + * Shutdown an event device on the outgoing CPU: * - * This is called on a life CPU, when a CPU is dead. So we cannot - * access the hardware device itself. - * We just set the mode and remove it from the lists. + * Called by the dying CPU during teardown, with clockevents_lock held + * and interrupts disabled. */ -void tick_shutdown(unsigned int *cpup) +void tick_shutdown(void) { - struct tick_device *td = &per_cpu(tick_cpu_device, *cpup); + struct tick_device *td = this_cpu_ptr(&tick_cpu_device); struct clock_event_device *dev = td->evtdev; td->mode = TICKDEV_MODE_PERIODIC; if (dev) { - /* - * Prevent that the clock events layer tries to call - * the set mode function! - */ - dev->mode = CLOCK_EVT_MODE_UNUSED; clockevents_exchange_device(dev, NULL); dev->event_handler = clockevents_handle_noop; td->evtdev = NULL; } } +#endif -void tick_suspend(void) +/** + * tick_suspend_local - Suspend the local tick device + * + * Called from the local cpu for freeze with interrupts disabled. + * + * No locks required. Nothing can change the per cpu device. + */ +void tick_suspend_local(void) { - struct tick_device *td = &__get_cpu_var(tick_cpu_device); + struct tick_device *td = this_cpu_ptr(&tick_cpu_device); clockevents_shutdown(td->evtdev); } -void tick_resume(void) +/** + * tick_resume_local - Resume the local tick device + * + * Called from the local CPU for unfreeze or XEN resume magic. + * + * No locks required. Nothing can change the per cpu device. + */ +void tick_resume_local(void) { - struct tick_device *td = &__get_cpu_var(tick_cpu_device); - int broadcast = tick_resume_broadcast(); - - clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME); + struct tick_device *td = this_cpu_ptr(&tick_cpu_device); + bool broadcast = tick_resume_check_broadcast(); + clockevents_tick_resume(td->evtdev); if (!broadcast) { if (td->mode == TICKDEV_MODE_PERIODIC) tick_setup_periodic(td->evtdev, 0); else tick_resume_oneshot(); } + + /* + * Ensure that hrtimers are up to date and the clockevents device + * is reprogrammed correctly when high resolution timers are + * enabled. + */ + hrtimers_resume_local(); +} + +/** + * tick_suspend - Suspend the tick and the broadcast device + * + * Called from syscore_suspend() via timekeeping_suspend with only one + * CPU online and interrupts disabled or from tick_unfreeze() under + * tick_freeze_lock. + * + * No locks required. Nothing can change the per cpu device. + */ +void tick_suspend(void) +{ + tick_suspend_local(); + tick_suspend_broadcast(); +} + +/** + * tick_resume - Resume the tick and the broadcast device + * + * Called from syscore_resume() via timekeeping_resume with only one + * CPU online and interrupts disabled. + * + * No locks required. Nothing can change the per cpu device. + */ +void tick_resume(void) +{ + tick_resume_broadcast(); + tick_resume_local(); +} + +#ifdef CONFIG_SUSPEND +static DEFINE_RAW_SPINLOCK(tick_freeze_lock); +static DEFINE_WAIT_OVERRIDE_MAP(tick_freeze_map, LD_WAIT_SLEEP); +static unsigned int tick_freeze_depth; + +/** + * tick_freeze - Suspend the local tick and (possibly) timekeeping. + * + * Check if this is the last online CPU executing the function and if so, + * suspend timekeeping. Otherwise suspend the local tick. + * + * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). + * Interrupts must not be enabled before the subsequent %tick_unfreeze(). + */ +void tick_freeze(void) +{ + raw_spin_lock(&tick_freeze_lock); + + tick_freeze_depth++; + if (tick_freeze_depth == num_online_cpus()) { + trace_suspend_resume(TPS("timekeeping_freeze"), + smp_processor_id(), true); + /* + * All other CPUs have their interrupts disabled and are + * suspended to idle. Other tasks have been frozen so there + * is no scheduling happening. This means that there is no + * concurrency in the system at this point. Therefore it is + * okay to acquire a sleeping lock on PREEMPT_RT, such as a + * spinlock, because the lock cannot be held by other CPUs + * or threads and acquiring it cannot block. + * + * Inform lockdep about the situation. + */ + lock_map_acquire_try(&tick_freeze_map); + system_state = SYSTEM_SUSPEND; + sched_clock_suspend(); + timekeeping_suspend(); + lock_map_release(&tick_freeze_map); + } else { + tick_suspend_local(); + } + + raw_spin_unlock(&tick_freeze_lock); +} + +/** + * tick_unfreeze - Resume the local tick and (possibly) timekeeping. + * + * Check if this is the first CPU executing the function and if so, resume + * timekeeping. Otherwise resume the local tick. + * + * Call with interrupts disabled. Must be balanced with %tick_freeze(). + * Interrupts must not be enabled after the preceding %tick_freeze(). + */ +void tick_unfreeze(void) +{ + raw_spin_lock(&tick_freeze_lock); + + if (tick_freeze_depth == num_online_cpus()) { + /* + * Similar to tick_freeze(). On resumption the first CPU may + * acquire uncontended sleeping locks while other CPUs block on + * tick_freeze_lock. + */ + lock_map_acquire_try(&tick_freeze_map); + timekeeping_resume(); + sched_clock_resume(); + lock_map_release(&tick_freeze_map); + + system_state = SYSTEM_RUNNING; + trace_suspend_resume(TPS("timekeeping_freeze"), + smp_processor_id(), false); + } else { + touch_softlockup_watchdog(); + tick_resume_local(); + } + + tick_freeze_depth--; + + raw_spin_unlock(&tick_freeze_lock); } +#endif /* CONFIG_SUSPEND */ /** * tick_init - initialize the tick control @@ -384,4 +590,5 @@ void tick_resume(void) void __init tick_init(void) { tick_broadcast_init(); + tick_nohz_init(); } |
