summaryrefslogtreecommitdiff
path: root/kernel/time/tick-sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/time/tick-sched.c')
-rw-r--r--kernel/time/tick-sched.c1889
1 files changed, 1182 insertions, 707 deletions
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index 69601726a745..8ddf74e705d3 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -1,28 +1,32 @@
+// SPDX-License-Identifier: GPL-2.0
/*
- * linux/kernel/time/tick-sched.c
- *
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
* Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
*
- * No idle tick implementation for low and high resolution timers
+ * NOHZ implementation for low and high resolution timers
*
* Started by: Thomas Gleixner and Ingo Molnar
- *
- * Distribute under GPLv2.
*/
+#include <linux/compiler.h>
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
+#include <linux/nmi.h>
#include <linux/profile.h>
-#include <linux/sched.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/clock.h>
+#include <linux/sched/stat.h>
+#include <linux/sched/nohz.h>
+#include <linux/sched/loadavg.h>
#include <linux/module.h>
#include <linux/irq_work.h>
#include <linux/posix-timers.h>
-#include <linux/perf_event.h>
+#include <linux/context_tracking.h>
+#include <linux/mm.h>
#include <asm/irq_regs.h>
@@ -31,14 +35,9 @@
#include <trace/events/timer.h>
/*
- * Per cpu nohz control structure
- */
-DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
-
-/*
- * The time, when the last jiffy update happened. Protected by jiffies_lock.
+ * Per-CPU nohz control structure
*/
-static ktime_t last_jiffies_update;
+static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
struct tick_sched *tick_get_tick_sched(int cpu)
{
@@ -46,45 +45,108 @@ struct tick_sched *tick_get_tick_sched(int cpu)
}
/*
+ * The time when the last jiffy update happened. Write access must hold
+ * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
+ * consistent view of jiffies and last_jiffies_update.
+ */
+static ktime_t last_jiffies_update;
+
+/*
* Must be called with interrupts disabled !
*/
static void tick_do_update_jiffies64(ktime_t now)
{
- unsigned long ticks = 0;
- ktime_t delta;
+ unsigned long ticks = 1;
+ ktime_t delta, nextp;
+
+ /*
+ * 64-bit can do a quick check without holding the jiffies lock and
+ * without looking at the sequence count. The smp_load_acquire()
+ * pairs with the update done later in this function.
+ *
+ * 32-bit cannot do that because the store of 'tick_next_period'
+ * consists of two 32-bit stores, and the first store could be
+ * moved by the CPU to a random point in the future.
+ */
+ if (IS_ENABLED(CONFIG_64BIT)) {
+ if (ktime_before(now, smp_load_acquire(&tick_next_period)))
+ return;
+ } else {
+ unsigned int seq;
+
+ /*
+ * Avoid contention on 'jiffies_lock' and protect the quick
+ * check with the sequence count.
+ */
+ do {
+ seq = read_seqcount_begin(&jiffies_seq);
+ nextp = tick_next_period;
+ } while (read_seqcount_retry(&jiffies_seq, seq));
+ if (ktime_before(now, nextp))
+ return;
+ }
+
+ /* Quick check failed, i.e. update is required. */
+ raw_spin_lock(&jiffies_lock);
/*
- * Do a quick check without holding jiffies_lock:
+ * Re-evaluate with the lock held. Another CPU might have done the
+ * update already.
*/
- delta = ktime_sub(now, last_jiffies_update);
- if (delta.tv64 < tick_period.tv64)
+ if (ktime_before(now, tick_next_period)) {
+ raw_spin_unlock(&jiffies_lock);
return;
+ }
- /* Reevalute with jiffies_lock held */
- write_seqlock(&jiffies_lock);
+ write_seqcount_begin(&jiffies_seq);
- delta = ktime_sub(now, last_jiffies_update);
- if (delta.tv64 >= tick_period.tv64) {
+ delta = ktime_sub(now, tick_next_period);
+ if (unlikely(delta >= TICK_NSEC)) {
+ /* Slow path for long idle sleep times */
+ s64 incr = TICK_NSEC;
- delta = ktime_sub(delta, tick_period);
- last_jiffies_update = ktime_add(last_jiffies_update,
- tick_period);
+ ticks += ktime_divns(delta, incr);
- /* Slow path for long timeouts */
- if (unlikely(delta.tv64 >= tick_period.tv64)) {
- s64 incr = ktime_to_ns(tick_period);
+ last_jiffies_update = ktime_add_ns(last_jiffies_update,
+ incr * ticks);
+ } else {
+ last_jiffies_update = ktime_add_ns(last_jiffies_update,
+ TICK_NSEC);
+ }
- ticks = ktime_divns(delta, incr);
+ /* Advance jiffies to complete the 'jiffies_seq' protected job */
+ jiffies_64 += ticks;
- last_jiffies_update = ktime_add_ns(last_jiffies_update,
- incr * ticks);
- }
- do_timer(++ticks);
+ /* Keep the tick_next_period variable up to date */
+ nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
- /* Keep the tick_next_period variable up to date */
- tick_next_period = ktime_add(last_jiffies_update, tick_period);
+ if (IS_ENABLED(CONFIG_64BIT)) {
+ /*
+ * Pairs with smp_load_acquire() in the lockless quick
+ * check above, and ensures that the update to 'jiffies_64' is
+ * not reordered vs. the store to 'tick_next_period', neither
+ * by the compiler nor by the CPU.
+ */
+ smp_store_release(&tick_next_period, nextp);
+ } else {
+ /*
+ * A plain store is good enough on 32-bit, as the quick check
+ * above is protected by the sequence count.
+ */
+ tick_next_period = nextp;
}
- write_sequnlock(&jiffies_lock);
+
+ /*
+ * Release the sequence count. calc_global_load() below is not
+ * protected by it, but 'jiffies_lock' needs to be held to prevent
+ * concurrent invocations.
+ */
+ write_seqcount_end(&jiffies_seq);
+
+ calc_global_load();
+
+ raw_spin_unlock(&jiffies_lock);
+ update_wall_time();
}
/*
@@ -94,269 +156,534 @@ static ktime_t tick_init_jiffy_update(void)
{
ktime_t period;
- write_seqlock(&jiffies_lock);
- /* Did we start the jiffies update yet ? */
- if (last_jiffies_update.tv64 == 0)
+ raw_spin_lock(&jiffies_lock);
+ write_seqcount_begin(&jiffies_seq);
+
+ /* Have we started the jiffies update yet ? */
+ if (last_jiffies_update == 0) {
+ u32 rem;
+
+ /*
+ * Ensure that the tick is aligned to a multiple of
+ * TICK_NSEC.
+ */
+ div_u64_rem(tick_next_period, TICK_NSEC, &rem);
+ if (rem)
+ tick_next_period += TICK_NSEC - rem;
+
last_jiffies_update = tick_next_period;
+ }
period = last_jiffies_update;
- write_sequnlock(&jiffies_lock);
+
+ write_seqcount_end(&jiffies_seq);
+ raw_spin_unlock(&jiffies_lock);
+
return period;
}
+static inline int tick_sched_flag_test(struct tick_sched *ts,
+ unsigned long flag)
+{
+ return !!(ts->flags & flag);
+}
-static void tick_sched_do_timer(ktime_t now)
+static inline void tick_sched_flag_set(struct tick_sched *ts,
+ unsigned long flag)
{
- int cpu = smp_processor_id();
+ lockdep_assert_irqs_disabled();
+ ts->flags |= flag;
+}
+
+static inline void tick_sched_flag_clear(struct tick_sched *ts,
+ unsigned long flag)
+{
+ lockdep_assert_irqs_disabled();
+ ts->flags &= ~flag;
+}
+
+/*
+ * Allow only one non-timekeeper CPU at a time update jiffies from
+ * the timer tick.
+ *
+ * Returns true if update was run.
+ */
+static bool tick_limited_update_jiffies64(struct tick_sched *ts, ktime_t now)
+{
+ static atomic_t in_progress;
+ int inp;
+
+ inp = atomic_read(&in_progress);
+ if (inp || !atomic_try_cmpxchg(&in_progress, &inp, 1))
+ return false;
+
+ if (ts->last_tick_jiffies == jiffies)
+ tick_do_update_jiffies64(now);
+ atomic_set(&in_progress, 0);
+ return true;
+}
+
+#define MAX_STALLED_JIFFIES 5
+
+static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
+{
+ int tick_cpu, cpu = smp_processor_id();
-#ifdef CONFIG_NO_HZ_COMMON
/*
* Check if the do_timer duty was dropped. We don't care about
- * concurrency: This happens only when the cpu in charge went
- * into a long sleep. If two cpus happen to assign themself to
+ * concurrency: This happens only when the CPU in charge went
+ * into a long sleep. If two CPUs happen to assign themselves to
* this duty, then the jiffies update is still serialized by
- * jiffies_lock.
+ * 'jiffies_lock'.
+ *
+ * If nohz_full is enabled, this should not happen because the
+ * 'tick_do_timer_cpu' CPU never relinquishes.
*/
- if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
- && !tick_nohz_full_cpu(cpu))
- tick_do_timer_cpu = cpu;
+ tick_cpu = READ_ONCE(tick_do_timer_cpu);
+
+ if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
+#ifdef CONFIG_NO_HZ_FULL
+ WARN_ON_ONCE(tick_nohz_full_running);
#endif
+ WRITE_ONCE(tick_do_timer_cpu, cpu);
+ tick_cpu = cpu;
+ }
- /* Check, if the jiffies need an update */
- if (tick_do_timer_cpu == cpu)
+ /* Check if jiffies need an update */
+ if (tick_cpu == cpu)
tick_do_update_jiffies64(now);
+
+ /*
+ * If the jiffies update stalled for too long (timekeeper in stop_machine()
+ * or VMEXIT'ed for several msecs), force an update.
+ */
+ if (ts->last_tick_jiffies != jiffies) {
+ ts->stalled_jiffies = 0;
+ ts->last_tick_jiffies = READ_ONCE(jiffies);
+ } else {
+ if (++ts->stalled_jiffies >= MAX_STALLED_JIFFIES) {
+ if (tick_limited_update_jiffies64(ts, now)) {
+ ts->stalled_jiffies = 0;
+ ts->last_tick_jiffies = READ_ONCE(jiffies);
+ }
+ }
+ }
+
+ if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
+ ts->got_idle_tick = 1;
}
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
-#ifdef CONFIG_NO_HZ_COMMON
/*
* When we are idle and the tick is stopped, we have to touch
* the watchdog as we might not schedule for a really long
- * time. This happens on complete idle SMP systems while
+ * time. This happens on completely idle SMP systems while
* waiting on the login prompt. We also increment the "start of
* idle" jiffy stamp so the idle accounting adjustment we do
- * when we go busy again does not account too much ticks.
+ * when we go busy again does not account too many ticks.
*/
- if (ts->tick_stopped) {
- touch_softlockup_watchdog();
+ if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
+ tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
+ touch_softlockup_watchdog_sched();
if (is_idle_task(current))
ts->idle_jiffies++;
+ /*
+ * In case the current tick fired too early past its expected
+ * expiration, make sure we don't bypass the next clock reprogramming
+ * to the same deadline.
+ */
+ ts->next_tick = 0;
}
-#endif
+
update_process_times(user_mode(regs));
profile_tick(CPU_PROFILING);
}
+/*
+ * We rearm the timer until we get disabled by the idle code.
+ * Called with interrupts disabled.
+ */
+static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
+{
+ struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer);
+ struct pt_regs *regs = get_irq_regs();
+ ktime_t now = ktime_get();
+
+ tick_sched_do_timer(ts, now);
+
+ /*
+ * Do not call when we are not in IRQ context and have
+ * no valid 'regs' pointer
+ */
+ if (regs)
+ tick_sched_handle(ts, regs);
+ else
+ ts->next_tick = 0;
+
+ /*
+ * In dynticks mode, tick reprogram is deferred:
+ * - to the idle task if in dynticks-idle
+ * - to IRQ exit if in full-dynticks.
+ */
+ if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
+ return HRTIMER_NORESTART;
+
+ hrtimer_forward(timer, now, TICK_NSEC);
+
+ return HRTIMER_RESTART;
+}
+
#ifdef CONFIG_NO_HZ_FULL
-static cpumask_var_t nohz_full_mask;
-bool have_nohz_full_mask;
+cpumask_var_t tick_nohz_full_mask;
+EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
+bool tick_nohz_full_running;
+EXPORT_SYMBOL_GPL(tick_nohz_full_running);
+static atomic_t tick_dep_mask;
-static bool can_stop_full_tick(void)
+static bool check_tick_dependency(atomic_t *dep)
{
- WARN_ON_ONCE(!irqs_disabled());
+ int val = atomic_read(dep);
- if (!sched_can_stop_tick()) {
- trace_tick_stop(0, "more than 1 task in runqueue\n");
- return false;
+ if (val & TICK_DEP_MASK_POSIX_TIMER) {
+ trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
+ return true;
}
- if (!posix_cpu_timers_can_stop_tick(current)) {
- trace_tick_stop(0, "posix timers running\n");
- return false;
+ if (val & TICK_DEP_MASK_PERF_EVENTS) {
+ trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
+ return true;
}
- if (!perf_event_can_stop_tick()) {
- trace_tick_stop(0, "perf events running\n");
- return false;
+ if (val & TICK_DEP_MASK_SCHED) {
+ trace_tick_stop(0, TICK_DEP_MASK_SCHED);
+ return true;
}
- /* sched_clock_tick() needs us? */
-#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
- /*
- * TODO: kick full dynticks CPUs when
- * sched_clock_stable is set.
- */
- if (!sched_clock_stable) {
- trace_tick_stop(0, "unstable sched clock\n");
- /*
- * Don't allow the user to think they can get
- * full NO_HZ with this machine.
- */
- WARN_ONCE(1, "NO_HZ FULL will not work with unstable sched clock");
- return false;
+ if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
+ trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
+ return true;
}
-#endif
- return true;
-}
+ if (val & TICK_DEP_MASK_RCU) {
+ trace_tick_stop(0, TICK_DEP_MASK_RCU);
+ return true;
+ }
-static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
+ if (val & TICK_DEP_MASK_RCU_EXP) {
+ trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
+ return true;
+ }
-/*
- * Re-evaluate the need for the tick on the current CPU
- * and restart it if necessary.
- */
-void tick_nohz_full_check(void)
+ return false;
+}
+
+static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
{
- struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
+ lockdep_assert_irqs_disabled();
- if (tick_nohz_full_cpu(smp_processor_id())) {
- if (ts->tick_stopped && !is_idle_task(current)) {
- if (!can_stop_full_tick())
- tick_nohz_restart_sched_tick(ts, ktime_get());
- }
- }
+ if (unlikely(!cpu_online(cpu)))
+ return false;
+
+ if (check_tick_dependency(&tick_dep_mask))
+ return false;
+
+ if (check_tick_dependency(&ts->tick_dep_mask))
+ return false;
+
+ if (check_tick_dependency(&current->tick_dep_mask))
+ return false;
+
+ if (check_tick_dependency(&current->signal->tick_dep_mask))
+ return false;
+
+ return true;
}
-static void nohz_full_kick_work_func(struct irq_work *work)
+static void nohz_full_kick_func(struct irq_work *work)
{
- tick_nohz_full_check();
+ /* Empty, the tick restart happens on tick_nohz_irq_exit() */
}
-static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
- .func = nohz_full_kick_work_func,
-};
+static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
+ IRQ_WORK_INIT_HARD(nohz_full_kick_func);
/*
- * Kick the current CPU if it's full dynticks in order to force it to
+ * Kick this CPU if it's full dynticks in order to force it to
* re-evaluate its dependency on the tick and restart it if necessary.
+ * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
+ * is NMI safe.
*/
-void tick_nohz_full_kick(void)
+static void tick_nohz_full_kick(void)
{
- if (tick_nohz_full_cpu(smp_processor_id()))
- irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
+ if (!tick_nohz_full_cpu(smp_processor_id()))
+ return;
+
+ irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
}
-static void nohz_full_kick_ipi(void *info)
+/*
+ * Kick the CPU if it's full dynticks in order to force it to
+ * re-evaluate its dependency on the tick and restart it if necessary.
+ */
+void tick_nohz_full_kick_cpu(int cpu)
{
- tick_nohz_full_check();
+ if (!tick_nohz_full_cpu(cpu))
+ return;
+
+ irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
+}
+
+static void tick_nohz_kick_task(struct task_struct *tsk)
+{
+ int cpu;
+
+ /*
+ * If the task is not running, run_posix_cpu_timers()
+ * has nothing to elapse, and an IPI can then be optimized out.
+ *
+ * activate_task() STORE p->tick_dep_mask
+ * STORE p->on_rq
+ * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
+ * LOCK rq->lock LOAD p->on_rq
+ * smp_mb__after_spin_lock()
+ * tick_nohz_task_switch()
+ * LOAD p->tick_dep_mask
+ *
+ * XXX given a task picks up the dependency on schedule(), should we
+ * only care about tasks that are currently on the CPU instead of all
+ * that are on the runqueue?
+ *
+ * That is, does this want to be: task_on_cpu() / task_curr()?
+ */
+ if (!sched_task_on_rq(tsk))
+ return;
+
+ /*
+ * If the task concurrently migrates to another CPU,
+ * we guarantee it sees the new tick dependency upon
+ * schedule.
+ *
+ * set_task_cpu(p, cpu);
+ * STORE p->cpu = @cpu
+ * __schedule() (switch to task 'p')
+ * LOCK rq->lock
+ * smp_mb__after_spin_lock() STORE p->tick_dep_mask
+ * tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
+ * LOAD p->tick_dep_mask LOAD p->cpu
+ */
+ cpu = task_cpu(tsk);
+
+ preempt_disable();
+ if (cpu_online(cpu))
+ tick_nohz_full_kick_cpu(cpu);
+ preempt_enable();
}
/*
* Kick all full dynticks CPUs in order to force these to re-evaluate
* their dependency on the tick and restart it if necessary.
*/
-void tick_nohz_full_kick_all(void)
+static void tick_nohz_full_kick_all(void)
{
- if (!have_nohz_full_mask)
+ int cpu;
+
+ if (!tick_nohz_full_running)
return;
preempt_disable();
- smp_call_function_many(nohz_full_mask,
- nohz_full_kick_ipi, NULL, false);
+ for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
+ tick_nohz_full_kick_cpu(cpu);
preempt_enable();
}
+static void tick_nohz_dep_set_all(atomic_t *dep,
+ enum tick_dep_bits bit)
+{
+ int prev;
+
+ prev = atomic_fetch_or(BIT(bit), dep);
+ if (!prev)
+ tick_nohz_full_kick_all();
+}
+
/*
- * Re-evaluate the need for the tick as we switch the current task.
- * It might need the tick due to per task/process properties:
- * perf events, posix cpu timers, ...
+ * Set a global tick dependency. Used by perf events that rely on freq and
+ * unstable clocks.
*/
-void tick_nohz_task_switch(struct task_struct *tsk)
+void tick_nohz_dep_set(enum tick_dep_bits bit)
{
- unsigned long flags;
+ tick_nohz_dep_set_all(&tick_dep_mask, bit);
+}
- local_irq_save(flags);
+void tick_nohz_dep_clear(enum tick_dep_bits bit)
+{
+ atomic_andnot(BIT(bit), &tick_dep_mask);
+}
- if (!tick_nohz_full_cpu(smp_processor_id()))
- goto out;
+/*
+ * Set per-CPU tick dependency. Used by scheduler and perf events in order to
+ * manage event-throttling.
+ */
+void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
+{
+ int prev;
+ struct tick_sched *ts;
- if (tick_nohz_tick_stopped() && !can_stop_full_tick())
- tick_nohz_full_kick();
+ ts = per_cpu_ptr(&tick_cpu_sched, cpu);
-out:
- local_irq_restore(flags);
+ prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
+ if (!prev) {
+ preempt_disable();
+ /* Perf needs local kick that is NMI safe */
+ if (cpu == smp_processor_id()) {
+ tick_nohz_full_kick();
+ } else {
+ /* Remote IRQ work not NMI-safe */
+ if (!WARN_ON_ONCE(in_nmi()))
+ tick_nohz_full_kick_cpu(cpu);
+ }
+ preempt_enable();
+ }
}
+EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
-int tick_nohz_full_cpu(int cpu)
+void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
- if (!have_nohz_full_mask)
- return 0;
+ struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
- return cpumask_test_cpu(cpu, nohz_full_mask);
+ atomic_andnot(BIT(bit), &ts->tick_dep_mask);
}
+EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
-/* Parse the boot-time nohz CPU list from the kernel parameters. */
-static int __init tick_nohz_full_setup(char *str)
+/*
+ * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
+ * in order to elapse per task timers.
+ */
+void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
- int cpu;
+ if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
+ tick_nohz_kick_task(tsk);
+}
+EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
- alloc_bootmem_cpumask_var(&nohz_full_mask);
- if (cpulist_parse(str, nohz_full_mask) < 0) {
- pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
- return 1;
- }
+void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
+{
+ atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
+}
+EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
+
+/*
+ * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
+ * per process timers.
+ */
+void tick_nohz_dep_set_signal(struct task_struct *tsk,
+ enum tick_dep_bits bit)
+{
+ int prev;
+ struct signal_struct *sig = tsk->signal;
+
+ prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
+ if (!prev) {
+ struct task_struct *t;
- cpu = smp_processor_id();
- if (cpumask_test_cpu(cpu, nohz_full_mask)) {
- pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
- cpumask_clear_cpu(cpu, nohz_full_mask);
+ lockdep_assert_held(&tsk->sighand->siglock);
+ __for_each_thread(sig, t)
+ tick_nohz_kick_task(t);
}
- have_nohz_full_mask = true;
+}
- return 1;
+void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
+{
+ atomic_andnot(BIT(bit), &sig->tick_dep_mask);
}
-__setup("nohz_full=", tick_nohz_full_setup);
-static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb,
- unsigned long action,
- void *hcpu)
+/*
+ * Re-evaluate the need for the tick as we switch the current task.
+ * It might need the tick due to per task/process properties:
+ * perf events, posix CPU timers, ...
+ */
+void __tick_nohz_task_switch(void)
{
- unsigned int cpu = (unsigned long)hcpu;
+ struct tick_sched *ts;
- switch (action & ~CPU_TASKS_FROZEN) {
- case CPU_DOWN_PREPARE:
- /*
- * If we handle the timekeeping duty for full dynticks CPUs,
- * we can't safely shutdown that CPU.
- */
- if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
- return NOTIFY_BAD;
- break;
+ if (!tick_nohz_full_cpu(smp_processor_id()))
+ return;
+
+ ts = this_cpu_ptr(&tick_cpu_sched);
+
+ if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
+ if (atomic_read(&current->tick_dep_mask) ||
+ atomic_read(&current->signal->tick_dep_mask))
+ tick_nohz_full_kick();
}
- return NOTIFY_OK;
}
-/*
- * Worst case string length in chunks of CPU range seems 2 steps
- * separations: 0,2,4,6,...
- * This is NR_CPUS + sizeof('\0')
- */
-static char __initdata nohz_full_buf[NR_CPUS + 1];
+/* Get the boot-time nohz CPU list from the kernel parameters. */
+void __init tick_nohz_full_setup(cpumask_var_t cpumask)
+{
+ alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
+ cpumask_copy(tick_nohz_full_mask, cpumask);
+ tick_nohz_full_running = true;
+}
-static int tick_nohz_init_all(void)
+bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
{
- int err = -1;
+ /*
+ * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
+ * timers, workqueues, timekeeping, ...) on behalf of full dynticks
+ * CPUs. It must remain online when nohz full is enabled.
+ */
+ if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
+ return false;
+ return true;
+}
-#ifdef CONFIG_NO_HZ_FULL_ALL
- if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) {
- pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
- return err;
- }
- err = 0;
- cpumask_setall(nohz_full_mask);
- cpumask_clear_cpu(smp_processor_id(), nohz_full_mask);
- have_nohz_full_mask = true;
-#endif
- return err;
+static int tick_nohz_cpu_down(unsigned int cpu)
+{
+ return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
}
void __init tick_nohz_init(void)
{
- int cpu;
+ int cpu, ret;
- if (!have_nohz_full_mask) {
- if (tick_nohz_init_all() < 0)
- return;
+ if (!tick_nohz_full_running)
+ return;
+
+ /*
+ * Full dynticks uses IRQ work to drive the tick rescheduling on safe
+ * locking contexts. But then we need IRQ work to raise its own
+ * interrupts to avoid circular dependency on the tick.
+ */
+ if (!arch_irq_work_has_interrupt()) {
+ pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
+ cpumask_clear(tick_nohz_full_mask);
+ tick_nohz_full_running = false;
+ return;
}
- cpu_notifier(tick_nohz_cpu_down_callback, 0);
- cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
- pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
+ if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
+ !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
+ cpu = smp_processor_id();
+
+ if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
+ pr_warn("NO_HZ: Clearing %d from nohz_full range "
+ "for timekeeping\n", cpu);
+ cpumask_clear_cpu(cpu, tick_nohz_full_mask);
+ }
+ }
+
+ for_each_cpu(cpu, tick_nohz_full_mask)
+ ct_cpu_track_user(cpu);
+
+ ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
+ "kernel/nohz:predown", NULL,
+ tick_nohz_cpu_down);
+ WARN_ON(ret < 0);
+ pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
+ cpumask_pr_args(tick_nohz_full_mask));
}
-#else
-#define have_nohz_full_mask (0)
-#endif
+#endif /* #ifdef CONFIG_NO_HZ_FULL */
/*
* NOHZ - aka dynamic tick functionality
@@ -365,543 +692,734 @@ void __init tick_nohz_init(void)
/*
* NO HZ enabled ?
*/
-int tick_nohz_enabled __read_mostly = 1;
-
+bool tick_nohz_enabled __read_mostly = true;
+unsigned long tick_nohz_active __read_mostly;
/*
* Enable / Disable tickless mode
*/
static int __init setup_tick_nohz(char *str)
{
- if (!strcmp(str, "off"))
- tick_nohz_enabled = 0;
- else if (!strcmp(str, "on"))
- tick_nohz_enabled = 1;
- else
- return 0;
- return 1;
+ return (kstrtobool(str, &tick_nohz_enabled) == 0);
}
__setup("nohz=", setup_tick_nohz);
+bool tick_nohz_tick_stopped(void)
+{
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
+
+ return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
+}
+
+bool tick_nohz_tick_stopped_cpu(int cpu)
+{
+ struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
+
+ return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
+}
+
/**
* tick_nohz_update_jiffies - update jiffies when idle was interrupted
+ * @now: current ktime_t
*
* Called from interrupt entry when the CPU was idle
*
* In case the sched_tick was stopped on this CPU, we have to check if jiffies
* must be updated. Otherwise an interrupt handler could use a stale jiffy
- * value. We do this unconditionally on any cpu, as we don't know whether the
- * cpu, which has the update task assigned is in a long sleep.
+ * value. We do this unconditionally on any CPU, as we don't know whether the
+ * CPU, which has the update task assigned, is in a long sleep.
*/
static void tick_nohz_update_jiffies(ktime_t now)
{
- int cpu = smp_processor_id();
- struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
unsigned long flags;
- ts->idle_waketime = now;
+ __this_cpu_write(tick_cpu_sched.idle_waketime, now);
local_irq_save(flags);
tick_do_update_jiffies64(now);
local_irq_restore(flags);
- touch_softlockup_watchdog();
+ touch_softlockup_watchdog_sched();
}
-/*
- * Updates the per cpu time idle statistics counters
- */
-static void
-update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
+static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
{
ktime_t delta;
- if (ts->idle_active) {
- delta = ktime_sub(now, ts->idle_entrytime);
- if (nr_iowait_cpu(cpu) > 0)
- ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
- else
- ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
- ts->idle_entrytime = now;
- }
+ if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
+ return;
- if (last_update_time)
- *last_update_time = ktime_to_us(now);
+ delta = ktime_sub(now, ts->idle_entrytime);
+ write_seqcount_begin(&ts->idle_sleeptime_seq);
+ if (nr_iowait_cpu(smp_processor_id()) > 0)
+ ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
+ else
+ ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
+
+ ts->idle_entrytime = now;
+ tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
+ write_seqcount_end(&ts->idle_sleeptime_seq);
+
+ sched_clock_idle_wakeup_event();
}
-static void tick_nohz_stop_idle(int cpu, ktime_t now)
+static void tick_nohz_start_idle(struct tick_sched *ts)
{
- struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
+ write_seqcount_begin(&ts->idle_sleeptime_seq);
+ ts->idle_entrytime = ktime_get();
+ tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
+ write_seqcount_end(&ts->idle_sleeptime_seq);
- update_ts_time_stats(cpu, ts, now, NULL);
- ts->idle_active = 0;
-
- sched_clock_idle_wakeup_event(0);
+ sched_clock_idle_sleep_event();
}
-static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
+static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
+ bool compute_delta, u64 *last_update_time)
{
- ktime_t now = ktime_get();
+ ktime_t now, idle;
+ unsigned int seq;
+
+ if (!tick_nohz_active)
+ return -1;
+
+ now = ktime_get();
+ if (last_update_time)
+ *last_update_time = ktime_to_us(now);
+
+ do {
+ seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
+
+ if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
+ ktime_t delta = ktime_sub(now, ts->idle_entrytime);
+
+ idle = ktime_add(*sleeptime, delta);
+ } else {
+ idle = *sleeptime;
+ }
+ } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
+
+ return ktime_to_us(idle);
- ts->idle_entrytime = now;
- ts->idle_active = 1;
- sched_clock_idle_sleep_event();
- return now;
}
/**
- * get_cpu_idle_time_us - get the total idle time of a cpu
+ * get_cpu_idle_time_us - get the total idle time of a CPU
* @cpu: CPU number to query
* @last_update_time: variable to store update time in. Do not update
* counters if NULL.
*
- * Return the cummulative idle time (since boot) for a given
- * CPU, in microseconds.
+ * Return the cumulative idle time (since boot) for a given
+ * CPU, in microseconds. Note that this is partially broken due to
+ * the counter of iowait tasks that can be remotely updated without
+ * any synchronization. Therefore it is possible to observe backward
+ * values within two consecutive reads.
*
* This time is measured via accounting rather than sampling,
* and is as accurate as ktime_get() is.
*
- * This function returns -1 if NOHZ is not enabled.
+ * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
*/
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
- ktime_t now, idle;
-
- if (!tick_nohz_enabled)
- return -1;
-
- now = ktime_get();
- if (last_update_time) {
- update_ts_time_stats(cpu, ts, now, last_update_time);
- idle = ts->idle_sleeptime;
- } else {
- if (ts->idle_active && !nr_iowait_cpu(cpu)) {
- ktime_t delta = ktime_sub(now, ts->idle_entrytime);
-
- idle = ktime_add(ts->idle_sleeptime, delta);
- } else {
- idle = ts->idle_sleeptime;
- }
- }
-
- return ktime_to_us(idle);
+ return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
+ !nr_iowait_cpu(cpu), last_update_time);
}
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
/**
- * get_cpu_iowait_time_us - get the total iowait time of a cpu
+ * get_cpu_iowait_time_us - get the total iowait time of a CPU
* @cpu: CPU number to query
* @last_update_time: variable to store update time in. Do not update
* counters if NULL.
*
- * Return the cummulative iowait time (since boot) for a given
- * CPU, in microseconds.
+ * Return the cumulative iowait time (since boot) for a given
+ * CPU, in microseconds. Note this is partially broken due to
+ * the counter of iowait tasks that can be remotely updated without
+ * any synchronization. Therefore it is possible to observe backward
+ * values within two consecutive reads.
*
* This time is measured via accounting rather than sampling,
* and is as accurate as ktime_get() is.
*
- * This function returns -1 if NOHZ is not enabled.
+ * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
*/
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
- ktime_t now, iowait;
-
- if (!tick_nohz_enabled)
- return -1;
-
- now = ktime_get();
- if (last_update_time) {
- update_ts_time_stats(cpu, ts, now, last_update_time);
- iowait = ts->iowait_sleeptime;
- } else {
- if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
- ktime_t delta = ktime_sub(now, ts->idle_entrytime);
-
- iowait = ktime_add(ts->iowait_sleeptime, delta);
- } else {
- iowait = ts->iowait_sleeptime;
- }
- }
- return ktime_to_us(iowait);
+ return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
+ nr_iowait_cpu(cpu), last_update_time);
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
-static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
- ktime_t now, int cpu)
+static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
- unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
- ktime_t last_update, expires, ret = { .tv64 = 0 };
- unsigned long rcu_delta_jiffies;
- struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
- u64 time_delta;
+ hrtimer_cancel(&ts->sched_timer);
+ hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
- /* Read jiffies and the time when jiffies were updated last */
- do {
- seq = read_seqbegin(&jiffies_lock);
- last_update = last_jiffies_update;
- last_jiffies = jiffies;
- time_delta = timekeeping_max_deferment();
- } while (read_seqretry(&jiffies_lock, seq));
-
- if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
- arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
- next_jiffies = last_jiffies + 1;
- delta_jiffies = 1;
+ /* Forward the time to expire in the future */
+ hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
+
+ if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
+ hrtimer_start_expires(&ts->sched_timer,
+ HRTIMER_MODE_ABS_PINNED_HARD);
} else {
- /* Get the next timer wheel timer */
- next_jiffies = get_next_timer_interrupt(last_jiffies);
- delta_jiffies = next_jiffies - last_jiffies;
- if (rcu_delta_jiffies < delta_jiffies) {
- next_jiffies = last_jiffies + rcu_delta_jiffies;
- delta_jiffies = rcu_delta_jiffies;
- }
+ tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
}
/*
- * Do not stop the tick, if we are only one off (or less)
- * or if the cpu is required for RCU:
+ * Reset to make sure the next tick stop doesn't get fooled by past
+ * cached clock deadline.
*/
- if (!ts->tick_stopped && delta_jiffies <= 1)
- goto out;
+ ts->next_tick = 0;
+}
+
+static inline bool local_timer_softirq_pending(void)
+{
+ return local_timers_pending() & BIT(TIMER_SOFTIRQ);
+}
+
+/*
+ * Read jiffies and the time when jiffies were updated last
+ */
+u64 get_jiffies_update(unsigned long *basej)
+{
+ unsigned long basejiff;
+ unsigned int seq;
+ u64 basemono;
+
+ do {
+ seq = read_seqcount_begin(&jiffies_seq);
+ basemono = last_jiffies_update;
+ basejiff = jiffies;
+ } while (read_seqcount_retry(&jiffies_seq, seq));
+ *basej = basejiff;
+ return basemono;
+}
+
+/**
+ * tick_nohz_next_event() - return the clock monotonic based next event
+ * @ts: pointer to tick_sched struct
+ * @cpu: CPU number
+ *
+ * Return:
+ * *%0 - When the next event is a maximum of TICK_NSEC in the future
+ * and the tick is not stopped yet
+ * *%next_event - Next event based on clock monotonic
+ */
+static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
+{
+ u64 basemono, next_tick, delta, expires;
+ unsigned long basejiff;
+ int tick_cpu;
- /* Schedule the tick, if we are at least one jiffie off */
- if ((long)delta_jiffies >= 1) {
+ basemono = get_jiffies_update(&basejiff);
+ ts->last_jiffies = basejiff;
+ ts->timer_expires_base = basemono;
+ /*
+ * Keep the periodic tick, when RCU, architecture or irq_work
+ * requests it.
+ * Aside of that, check whether the local timer softirq is
+ * pending. If so, its a bad idea to call get_next_timer_interrupt(),
+ * because there is an already expired timer, so it will request
+ * immediate expiry, which rearms the hardware timer with a
+ * minimal delta, which brings us back to this place
+ * immediately. Lather, rinse and repeat...
+ */
+ if (rcu_needs_cpu() || arch_needs_cpu() ||
+ irq_work_needs_cpu() || local_timer_softirq_pending()) {
+ next_tick = basemono + TICK_NSEC;
+ } else {
/*
- * If this cpu is the one which updates jiffies, then
- * give up the assignment and let it be taken by the
- * cpu which runs the tick timer next, which might be
- * this cpu as well. If we don't drop this here the
- * jiffies might be stale and do_timer() never
- * invoked. Keep track of the fact that it was the one
- * which had the do_timer() duty last. If this cpu is
- * the one which had the do_timer() duty last, we
- * limit the sleep time to the timekeeping
- * max_deferement value which we retrieved
- * above. Otherwise we can sleep as long as we want.
+ * Get the next pending timer. If high resolution
+ * timers are enabled this only takes the timer wheel
+ * timers into account. If high resolution timers are
+ * disabled this also looks at the next expiring
+ * hrtimer.
*/
- if (cpu == tick_do_timer_cpu) {
- tick_do_timer_cpu = TICK_DO_TIMER_NONE;
- ts->do_timer_last = 1;
- } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
- time_delta = KTIME_MAX;
- ts->do_timer_last = 0;
- } else if (!ts->do_timer_last) {
- time_delta = KTIME_MAX;
- }
+ next_tick = get_next_timer_interrupt(basejiff, basemono);
+ ts->next_timer = next_tick;
+ }
-#ifdef CONFIG_NO_HZ_FULL
- if (!ts->inidle) {
- time_delta = min(time_delta,
- scheduler_tick_max_deferment());
- }
-#endif
+ /* Make sure next_tick is never before basemono! */
+ if (WARN_ON_ONCE(basemono > next_tick))
+ next_tick = basemono;
+ /*
+ * If the tick is due in the next period, keep it ticking or
+ * force prod the timer.
+ */
+ delta = next_tick - basemono;
+ if (delta <= (u64)TICK_NSEC) {
/*
- * calculate the expiry time for the next timer wheel
- * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
- * that there is no timer pending or at least extremely
- * far into the future (12 days for HZ=1000). In this
- * case we set the expiry to the end of time.
+ * We've not stopped the tick yet, and there's a timer in the
+ * next period, so no point in stopping it either, bail.
*/
- if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
- /*
- * Calculate the time delta for the next timer event.
- * If the time delta exceeds the maximum time delta
- * permitted by the current clocksource then adjust
- * the time delta accordingly to ensure the
- * clocksource does not wrap.
- */
- time_delta = min_t(u64, time_delta,
- tick_period.tv64 * delta_jiffies);
+ if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
+ ts->timer_expires = 0;
+ goto out;
}
+ }
- if (time_delta < KTIME_MAX)
- expires = ktime_add_ns(last_update, time_delta);
- else
- expires.tv64 = KTIME_MAX;
+ /*
+ * If this CPU is the one which had the do_timer() duty last, we limit
+ * the sleep time to the timekeeping 'max_deferment' value.
+ * Otherwise we can sleep as long as we want.
+ */
+ delta = timekeeping_max_deferment();
+ tick_cpu = READ_ONCE(tick_do_timer_cpu);
+ if (tick_cpu != cpu &&
+ (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
+ delta = KTIME_MAX;
+
+ /* Calculate the next expiry time */
+ if (delta < (KTIME_MAX - basemono))
+ expires = basemono + delta;
+ else
+ expires = KTIME_MAX;
- /* Skip reprogram of event if its not changed */
- if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
- goto out;
+ ts->timer_expires = min_t(u64, expires, next_tick);
- ret = expires;
+out:
+ return ts->timer_expires;
+}
- /*
- * nohz_stop_sched_tick can be called several times before
- * the nohz_restart_sched_tick is called. This happens when
- * interrupts arrive which do not cause a reschedule. In the
- * first call we save the current tick time, so we can restart
- * the scheduler tick in nohz_restart_sched_tick.
- */
- if (!ts->tick_stopped) {
- nohz_balance_enter_idle(cpu);
- calc_load_enter_idle();
+static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
+{
+ struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
+ unsigned long basejiff = ts->last_jiffies;
+ u64 basemono = ts->timer_expires_base;
+ bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
+ int tick_cpu;
+ u64 expires;
- ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
- ts->tick_stopped = 1;
- trace_tick_stop(1, " ");
- }
+ /* Make sure we won't be trying to stop it twice in a row. */
+ ts->timer_expires_base = 0;
+ /*
+ * Now the tick should be stopped definitely - so the timer base needs
+ * to be marked idle as well to not miss a newly queued timer.
+ */
+ expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
+ if (expires > ts->timer_expires) {
/*
- * If the expiration time == KTIME_MAX, then
- * in this case we simply stop the tick timer.
+ * This path could only happen when the first timer was removed
+ * between calculating the possible sleep length and now (when
+ * high resolution mode is not active, timer could also be a
+ * hrtimer).
+ *
+ * We have to stick to the original calculated expiry value to
+ * not stop the tick for too long with a shallow C-state (which
+ * was programmed by cpuidle because of an early next expiration
+ * value).
*/
- if (unlikely(expires.tv64 == KTIME_MAX)) {
- if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
- hrtimer_cancel(&ts->sched_timer);
- goto out;
- }
+ expires = ts->timer_expires;
+ }
- if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
- hrtimer_start(&ts->sched_timer, expires,
- HRTIMER_MODE_ABS_PINNED);
- /* Check, if the timer was already in the past */
- if (hrtimer_active(&ts->sched_timer))
- goto out;
- } else if (!tick_program_event(expires, 0))
- goto out;
- /*
- * We are past the event already. So we crossed a
- * jiffie boundary. Update jiffies and raise the
- * softirq.
- */
- tick_do_update_jiffies64(ktime_get());
+ /* If the timer base is not idle, retain the not yet stopped tick. */
+ if (!timer_idle)
+ return;
+
+ /*
+ * If this CPU is the one which updates jiffies, then give up
+ * the assignment and let it be taken by the CPU which runs
+ * the tick timer next, which might be this CPU as well. If we
+ * don't drop this here, the jiffies might be stale and
+ * do_timer() never gets invoked. Keep track of the fact that it
+ * was the one which had the do_timer() duty last.
+ */
+ tick_cpu = READ_ONCE(tick_do_timer_cpu);
+ if (tick_cpu == cpu) {
+ WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
+ tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
+ } else if (tick_cpu != TICK_DO_TIMER_NONE) {
+ tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
+ }
+
+ /* Skip reprogram of event if it's not changed */
+ if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
+ /* Sanity check: make sure clockevent is actually programmed */
+ if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
+ return;
+
+ WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu "
+ "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick,
+ dev->next_event, hrtimer_active(&ts->sched_timer),
+ hrtimer_get_expires(&ts->sched_timer));
}
- raise_softirq_irqoff(TIMER_SOFTIRQ);
-out:
- ts->next_jiffies = next_jiffies;
- ts->last_jiffies = last_jiffies;
- ts->sleep_length = ktime_sub(dev->next_event, now);
- return ret;
+ /*
+ * tick_nohz_stop_tick() can be called several times before
+ * tick_nohz_restart_sched_tick() is called. This happens when
+ * interrupts arrive which do not cause a reschedule. In the first
+ * call we save the current tick time, so we can restart the
+ * scheduler tick in tick_nohz_restart_sched_tick().
+ */
+ if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
+ calc_load_nohz_start();
+ quiet_vmstat();
+
+ ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
+ tick_sched_flag_set(ts, TS_FLAG_STOPPED);
+ trace_tick_stop(1, TICK_DEP_MASK_NONE);
+ }
+
+ ts->next_tick = expires;
+
+ /*
+ * If the expiration time == KTIME_MAX, then we simply stop
+ * the tick timer.
+ */
+ if (unlikely(expires == KTIME_MAX)) {
+ if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
+ hrtimer_cancel(&ts->sched_timer);
+ else
+ tick_program_event(KTIME_MAX, 1);
+ return;
+ }
+
+ if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
+ hrtimer_start(&ts->sched_timer, expires,
+ HRTIMER_MODE_ABS_PINNED_HARD);
+ } else {
+ hrtimer_set_expires(&ts->sched_timer, expires);
+ tick_program_event(expires, 1);
+ }
}
-static void tick_nohz_full_stop_tick(struct tick_sched *ts)
+static void tick_nohz_retain_tick(struct tick_sched *ts)
{
+ ts->timer_expires_base = 0;
+}
+
#ifdef CONFIG_NO_HZ_FULL
- int cpu = smp_processor_id();
+static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
+{
+ if (tick_nohz_next_event(ts, cpu))
+ tick_nohz_stop_tick(ts, cpu);
+ else
+ tick_nohz_retain_tick(ts);
+}
+#endif /* CONFIG_NO_HZ_FULL */
- if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
- return;
+static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
+{
+ /* Update jiffies first */
+ tick_do_update_jiffies64(now);
- if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
- return;
+ /*
+ * Clear the timer idle flag, so we avoid IPIs on remote queueing and
+ * the clock forward checks in the enqueue path:
+ */
+ timer_clear_idle();
+
+ calc_load_nohz_stop();
+ touch_softlockup_watchdog_sched();
- if (!can_stop_full_tick())
- return;
+ /* Cancel the scheduled timer and restore the tick: */
+ tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
+ tick_nohz_restart(ts, now);
+}
+
+static void __tick_nohz_full_update_tick(struct tick_sched *ts,
+ ktime_t now)
+{
+#ifdef CONFIG_NO_HZ_FULL
+ int cpu = smp_processor_id();
- tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
+ if (can_stop_full_tick(cpu, ts))
+ tick_nohz_full_stop_tick(ts, cpu);
+ else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
+ tick_nohz_restart_sched_tick(ts, now);
#endif
}
-static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
+static void tick_nohz_full_update_tick(struct tick_sched *ts)
{
- /*
- * If this cpu is offline and it is the one which updates
- * jiffies, then give up the assignment and let it be taken by
- * the cpu which runs the tick timer next. If we don't drop
- * this here the jiffies might be stale and do_timer() never
- * invoked.
- */
- if (unlikely(!cpu_online(cpu))) {
- if (cpu == tick_do_timer_cpu)
- tick_do_timer_cpu = TICK_DO_TIMER_NONE;
+ if (!tick_nohz_full_cpu(smp_processor_id()))
+ return;
+
+ if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
+ return;
+
+ __tick_nohz_full_update_tick(ts, ktime_get());
+}
+
+/*
+ * A pending softirq outside an IRQ (or softirq disabled section) context
+ * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
+ * reach this code due to the need_resched() early check in can_stop_idle_tick().
+ *
+ * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
+ * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
+ * triggering the code below, since wakep_softirqd() is ignored.
+ *
+ */
+static bool report_idle_softirq(void)
+{
+ static int ratelimit;
+ unsigned int pending = local_softirq_pending();
+
+ if (likely(!pending))
return false;
+
+ /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
+ if (!cpu_active(smp_processor_id())) {
+ pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
+ if (!pending)
+ return false;
}
- if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
+ /* On RT, softirq handling may be waiting on some lock */
+ if (local_bh_blocked())
return false;
- if (need_resched())
+ if (ratelimit < 10) {
+ pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
+ pending);
+ ratelimit++;
+ }
+
+ return true;
+}
+
+static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
+{
+ WARN_ON_ONCE(cpu_is_offline(cpu));
+
+ if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
return false;
- if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
- static int ratelimit;
+ if (need_resched())
+ return false;
- if (ratelimit < 10 &&
- (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
- pr_warn("NOHZ: local_softirq_pending %02x\n",
- (unsigned int) local_softirq_pending());
- ratelimit++;
- }
+ if (unlikely(report_idle_softirq()))
return false;
- }
- if (have_nohz_full_mask) {
+ if (tick_nohz_full_enabled()) {
+ int tick_cpu = READ_ONCE(tick_do_timer_cpu);
+
/*
* Keep the tick alive to guarantee timekeeping progression
* if there are full dynticks CPUs around
*/
- if (tick_do_timer_cpu == cpu)
+ if (tick_cpu == cpu)
return false;
- /*
- * Boot safety: make sure the timekeeping duty has been
- * assigned before entering dyntick-idle mode,
- */
- if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
+
+ /* Should not happen for nohz-full */
+ if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
return false;
}
return true;
}
-static void __tick_nohz_idle_enter(struct tick_sched *ts)
+/**
+ * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
+ *
+ * When the next event is more than a tick into the future, stop the idle tick
+ */
+void tick_nohz_idle_stop_tick(void)
{
- ktime_t now, expires;
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
int cpu = smp_processor_id();
+ ktime_t expires;
- now = tick_nohz_start_idle(cpu, ts);
+ /*
+ * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
+ * tick timer expiration time is known already.
+ */
+ if (ts->timer_expires_base)
+ expires = ts->timer_expires;
+ else if (can_stop_idle_tick(cpu, ts))
+ expires = tick_nohz_next_event(ts, cpu);
+ else
+ return;
- if (can_stop_idle_tick(cpu, ts)) {
- int was_stopped = ts->tick_stopped;
+ ts->idle_calls++;
- ts->idle_calls++;
+ if (expires > 0LL) {
+ int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
- expires = tick_nohz_stop_sched_tick(ts, now, cpu);
- if (expires.tv64 > 0LL) {
- ts->idle_sleeps++;
- ts->idle_expires = expires;
- }
+ tick_nohz_stop_tick(ts, cpu);
- if (!was_stopped && ts->tick_stopped)
+ ts->idle_sleeps++;
+ ts->idle_expires = expires;
+
+ if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
ts->idle_jiffies = ts->last_jiffies;
+ nohz_balance_enter_idle(cpu);
+ }
+ } else {
+ tick_nohz_retain_tick(ts);
}
}
+void tick_nohz_idle_retain_tick(void)
+{
+ tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
+}
+
/**
- * tick_nohz_idle_enter - stop the idle tick from the idle task
+ * tick_nohz_idle_enter - prepare for entering idle on the current CPU
*
- * When the next event is more than a tick into the future, stop the idle tick
* Called when we start the idle loop.
- *
- * The arch is responsible of calling:
- *
- * - rcu_idle_enter() after its last use of RCU before the CPU is put
- * to sleep.
- * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
*/
void tick_nohz_idle_enter(void)
{
struct tick_sched *ts;
- WARN_ON_ONCE(irqs_disabled());
-
- /*
- * Update the idle state in the scheduler domain hierarchy
- * when tick_nohz_stop_sched_tick() is called from the idle loop.
- * State will be updated to busy during the first busy tick after
- * exiting idle.
- */
- set_cpu_sd_state_idle();
+ lockdep_assert_irqs_enabled();
local_irq_disable();
- ts = &__get_cpu_var(tick_cpu_sched);
- /*
- * set ts->inidle unconditionally. even if the system did not
- * switch to nohz mode the cpu frequency governers rely on the
- * update of the idle time accounting in tick_nohz_start_idle().
- */
- ts->inidle = 1;
- __tick_nohz_idle_enter(ts);
+ ts = this_cpu_ptr(&tick_cpu_sched);
+
+ WARN_ON_ONCE(ts->timer_expires_base);
+
+ tick_sched_flag_set(ts, TS_FLAG_INIDLE);
+ tick_nohz_start_idle(ts);
local_irq_enable();
}
-EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
/**
- * tick_nohz_irq_exit - update next tick event from interrupt exit
+ * tick_nohz_irq_exit - Notify the tick about IRQ exit
*
- * When an interrupt fires while we are idle and it doesn't cause
- * a reschedule, it may still add, modify or delete a timer, enqueue
- * an RCU callback, etc...
- * So we need to re-calculate and reprogram the next tick event.
+ * A timer may have been added/modified/deleted either by the current IRQ,
+ * or by another place using this IRQ as a notification. This IRQ may have
+ * also updated the RCU callback list. These events may require a
+ * re-evaluation of the next tick. Depending on the context:
+ *
+ * 1) If the CPU is idle and no resched is pending, just proceed with idle
+ * time accounting. The next tick will be re-evaluated on the next idle
+ * loop iteration.
+ *
+ * 2) If the CPU is nohz_full:
+ *
+ * 2.1) If there is any tick dependency, restart the tick if stopped.
+ *
+ * 2.2) If there is no tick dependency, (re-)evaluate the next tick and
+ * stop/update it accordingly.
*/
void tick_nohz_irq_exit(void)
{
- struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
- if (ts->inidle) {
- /* Cancel the timer because CPU already waken up from the C-states*/
- menu_hrtimer_cancel();
- __tick_nohz_idle_enter(ts);
- } else {
- tick_nohz_full_stop_tick(ts);
+ if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
+ tick_nohz_start_idle(ts);
+ else
+ tick_nohz_full_update_tick(ts);
+}
+
+/**
+ * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
+ *
+ * Return: %true if the tick handler has run, otherwise %false
+ */
+bool tick_nohz_idle_got_tick(void)
+{
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
+
+ if (ts->got_idle_tick) {
+ ts->got_idle_tick = 0;
+ return true;
}
+ return false;
}
/**
- * tick_nohz_get_sleep_length - return the length of the current sleep
+ * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
+ * or the tick, whichever expires first. Note that, if the tick has been
+ * stopped, it returns the next hrtimer.
*
* Called from power state control code with interrupts disabled
+ *
+ * Return: the next expiration time
*/
-ktime_t tick_nohz_get_sleep_length(void)
+ktime_t tick_nohz_get_next_hrtimer(void)
{
- struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
-
- return ts->sleep_length;
+ return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
}
-static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
+/**
+ * tick_nohz_get_sleep_length - return the expected length of the current sleep
+ * @delta_next: duration until the next event if the tick cannot be stopped
+ *
+ * Called from power state control code with interrupts disabled.
+ *
+ * The return value of this function and/or the value returned by it through the
+ * @delta_next pointer can be negative which must be taken into account by its
+ * callers.
+ *
+ * Return: the expected length of the current sleep
+ */
+ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
{
- hrtimer_cancel(&ts->sched_timer);
- hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
+ struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
+ int cpu = smp_processor_id();
+ /*
+ * The idle entry time is expected to be a sufficient approximation of
+ * the current time at this point.
+ */
+ ktime_t now = ts->idle_entrytime;
+ ktime_t next_event;
- while (1) {
- /* Forward the time to expire in the future */
- hrtimer_forward(&ts->sched_timer, now, tick_period);
+ WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
- if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
- hrtimer_start_expires(&ts->sched_timer,
- HRTIMER_MODE_ABS_PINNED);
- /* Check, if the timer was already in the past */
- if (hrtimer_active(&ts->sched_timer))
- break;
- } else {
- if (!tick_program_event(
- hrtimer_get_expires(&ts->sched_timer), 0))
- break;
- }
- /* Reread time and update jiffies */
- now = ktime_get();
- tick_do_update_jiffies64(now);
- }
-}
+ *delta_next = ktime_sub(dev->next_event, now);
-static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
-{
- /* Update jiffies first */
- tick_do_update_jiffies64(now);
- update_cpu_load_nohz();
+ if (!can_stop_idle_tick(cpu, ts))
+ return *delta_next;
+
+ next_event = tick_nohz_next_event(ts, cpu);
+ if (!next_event)
+ return *delta_next;
- calc_load_exit_idle();
- touch_softlockup_watchdog();
/*
- * Cancel the scheduled timer and restore the tick
+ * If the next highres timer to expire is earlier than 'next_event', the
+ * idle governor needs to know that.
*/
- ts->tick_stopped = 0;
- ts->idle_exittime = now;
+ next_event = min_t(u64, next_event,
+ hrtimer_next_event_without(&ts->sched_timer));
- tick_nohz_restart(ts, now);
+ return ktime_sub(next_event, now);
}
-static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
+/**
+ * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
+ * for a particular CPU.
+ * @cpu: target CPU number
+ *
+ * Called from the schedutil frequency scaling governor in scheduler context.
+ *
+ * Return: the current idle calls counter value for @cpu
+ */
+unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
+{
+ struct tick_sched *ts = tick_get_tick_sched(cpu);
+
+ return ts->idle_calls;
+}
+
+static void tick_nohz_account_idle_time(struct tick_sched *ts,
+ ktime_t now)
{
-#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
unsigned long ticks;
- if (vtime_accounting_enabled())
+ ts->idle_exittime = now;
+
+ if (vtime_accounting_enabled_this_cpu())
return;
/*
- * We stopped the tick in idle. Update process times would miss the
- * time we slept as update_process_times does only a 1 tick
- * accounting. Enforce that this is accounted to idle !
+ * We stopped the tick in idle. update_process_times() would miss the
+ * time we slept, as it does only a 1 tick accounting.
+ * Enforce that this is accounted to idle !
*/
ticks = jiffies - ts->idle_jiffies;
/*
@@ -909,197 +1427,152 @@ static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
*/
if (ticks && ticks < LONG_MAX)
account_idle_ticks(ticks);
-#endif
+}
+
+void tick_nohz_idle_restart_tick(void)
+{
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
+
+ if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
+ ktime_t now = ktime_get();
+ tick_nohz_restart_sched_tick(ts, now);
+ tick_nohz_account_idle_time(ts, now);
+ }
+}
+
+static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
+{
+ if (tick_nohz_full_cpu(smp_processor_id()))
+ __tick_nohz_full_update_tick(ts, now);
+ else
+ tick_nohz_restart_sched_tick(ts, now);
+
+ tick_nohz_account_idle_time(ts, now);
}
/**
- * tick_nohz_idle_exit - restart the idle tick from the idle task
+ * tick_nohz_idle_exit - Update the tick upon idle task exit
+ *
+ * When the idle task exits, update the tick depending on the
+ * following situations:
+ *
+ * 1) If the CPU is not in nohz_full mode (most cases), then
+ * restart the tick.
+ *
+ * 2) If the CPU is in nohz_full mode (corner case):
+ * 2.1) If the tick can be kept stopped (no tick dependencies)
+ * then re-evaluate the next tick and try to keep it stopped
+ * as long as possible.
+ * 2.2) If the tick has dependencies, restart the tick.
*
- * Restart the idle tick when the CPU is woken up from idle
- * This also exit the RCU extended quiescent state. The CPU
- * can use RCU again after this function is called.
*/
void tick_nohz_idle_exit(void)
{
- int cpu = smp_processor_id();
- struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
+ bool idle_active, tick_stopped;
ktime_t now;
local_irq_disable();
- WARN_ON_ONCE(!ts->inidle);
+ WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
+ WARN_ON_ONCE(ts->timer_expires_base);
- ts->inidle = 0;
+ tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
+ idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
+ tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
- /* Cancel the timer because CPU already waken up from the C-states*/
- menu_hrtimer_cancel();
- if (ts->idle_active || ts->tick_stopped)
+ if (idle_active || tick_stopped)
now = ktime_get();
- if (ts->idle_active)
- tick_nohz_stop_idle(cpu, now);
+ if (idle_active)
+ tick_nohz_stop_idle(ts, now);
- if (ts->tick_stopped) {
- tick_nohz_restart_sched_tick(ts, now);
- tick_nohz_account_idle_ticks(ts);
- }
+ if (tick_stopped)
+ tick_nohz_idle_update_tick(ts, now);
local_irq_enable();
}
-EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
-
-static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
-{
- hrtimer_forward(&ts->sched_timer, now, tick_period);
- return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
-}
/*
- * The nohz low res interrupt handler
+ * In low-resolution mode, the tick handler must be implemented directly
+ * at the clockevent level. hrtimer can't be used instead, because its
+ * infrastructure actually relies on the tick itself as a backend in
+ * low-resolution mode (see hrtimer_run_queues()).
*/
-static void tick_nohz_handler(struct clock_event_device *dev)
+static void tick_nohz_lowres_handler(struct clock_event_device *dev)
{
- struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
- struct pt_regs *regs = get_irq_regs();
- ktime_t now = ktime_get();
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
- dev->next_event.tv64 = KTIME_MAX;
+ dev->next_event = KTIME_MAX;
- tick_sched_do_timer(now);
- tick_sched_handle(ts, regs);
+ if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
+ tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
+}
- while (tick_nohz_reprogram(ts, now)) {
- now = ktime_get();
- tick_do_update_jiffies64(now);
- }
+static inline void tick_nohz_activate(struct tick_sched *ts)
+{
+ if (!tick_nohz_enabled)
+ return;
+ tick_sched_flag_set(ts, TS_FLAG_NOHZ);
+ /* One update is enough */
+ if (!test_and_set_bit(0, &tick_nohz_active))
+ timers_update_nohz();
}
/**
- * tick_nohz_switch_to_nohz - switch to nohz mode
+ * tick_nohz_switch_to_nohz - switch to NOHZ mode
*/
static void tick_nohz_switch_to_nohz(void)
{
- struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
- ktime_t next;
-
if (!tick_nohz_enabled)
return;
- local_irq_disable();
- if (tick_switch_to_oneshot(tick_nohz_handler)) {
- local_irq_enable();
+ if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
return;
- }
-
- ts->nohz_mode = NOHZ_MODE_LOWRES;
-
- /*
- * Recycle the hrtimer in ts, so we can share the
- * hrtimer_forward with the highres code.
- */
- hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
- /* Get the next period */
- next = tick_init_jiffy_update();
-
- for (;;) {
- hrtimer_set_expires(&ts->sched_timer, next);
- if (!tick_program_event(next, 0))
- break;
- next = ktime_add(next, tick_period);
- }
- local_irq_enable();
-}
-
-/*
- * When NOHZ is enabled and the tick is stopped, we need to kick the
- * tick timer from irq_enter() so that the jiffies update is kept
- * alive during long running softirqs. That's ugly as hell, but
- * correctness is key even if we need to fix the offending softirq in
- * the first place.
- *
- * Note, this is different to tick_nohz_restart. We just kick the
- * timer and do not touch the other magic bits which need to be done
- * when idle is left.
- */
-static void tick_nohz_kick_tick(int cpu, ktime_t now)
-{
-#if 0
- /* Switch back to 2.6.27 behaviour */
-
- struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
- ktime_t delta;
/*
- * Do not touch the tick device, when the next expiry is either
- * already reached or less/equal than the tick period.
+ * Recycle the hrtimer in 'ts', so we can share the
+ * highres code.
*/
- delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
- if (delta.tv64 <= tick_period.tv64)
- return;
-
- tick_nohz_restart(ts, now);
-#endif
+ tick_setup_sched_timer(false);
}
-static inline void tick_check_nohz(int cpu)
+static inline void tick_nohz_irq_enter(void)
{
- struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
ktime_t now;
- if (!ts->idle_active && !ts->tick_stopped)
+ if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
return;
now = ktime_get();
- if (ts->idle_active)
- tick_nohz_stop_idle(cpu, now);
- if (ts->tick_stopped) {
+ if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
+ tick_nohz_stop_idle(ts, now);
+ /*
+ * If all CPUs are idle we may need to update a stale jiffies value.
+ * Note nohz_full is a special case: a timekeeper is guaranteed to stay
+ * alive but it might be busy looping with interrupts disabled in some
+ * rare case (typically stop machine). So we must make sure we have a
+ * last resort.
+ */
+ if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
tick_nohz_update_jiffies(now);
- tick_nohz_kick_tick(cpu, now);
- }
}
#else
static inline void tick_nohz_switch_to_nohz(void) { }
-static inline void tick_check_nohz(int cpu) { }
+static inline void tick_nohz_irq_enter(void) { }
+static inline void tick_nohz_activate(struct tick_sched *ts) { }
#endif /* CONFIG_NO_HZ_COMMON */
/*
- * Called from irq_enter to notify about the possible interruption of idle()
+ * Called from irq_enter() to notify about the possible interruption of idle()
*/
-void tick_check_idle(int cpu)
+void tick_irq_enter(void)
{
- tick_check_oneshot_broadcast(cpu);
- tick_check_nohz(cpu);
-}
-
-/*
- * High resolution timer specific code
- */
-#ifdef CONFIG_HIGH_RES_TIMERS
-/*
- * We rearm the timer until we get disabled by the idle code.
- * Called with interrupts disabled.
- */
-static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
-{
- struct tick_sched *ts =
- container_of(timer, struct tick_sched, sched_timer);
- struct pt_regs *regs = get_irq_regs();
- ktime_t now = ktime_get();
-
- tick_sched_do_timer(now);
-
- /*
- * Do not call, when we are not in irq context and have
- * no valid regs pointer
- */
- if (regs)
- tick_sched_handle(ts, regs);
-
- hrtimer_forward(timer, now, tick_period);
-
- return HRTIMER_RESTART;
+ tick_check_oneshot_broadcast_this_cpu();
+ tick_nohz_irq_enter();
}
static int sched_skew_tick;
@@ -1114,61 +1587,63 @@ early_param("skew_tick", skew_tick);
/**
* tick_setup_sched_timer - setup the tick emulation timer
+ * @hrtimer: whether to use the hrtimer or not
*/
-void tick_setup_sched_timer(void)
+void tick_setup_sched_timer(bool hrtimer)
{
- struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
- ktime_t now = ktime_get();
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
- /*
- * Emulate tick processing via per-CPU hrtimers:
- */
- hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
- ts->sched_timer.function = tick_sched_timer;
+ /* Emulate tick processing via per-CPU hrtimers: */
+ hrtimer_setup(&ts->sched_timer, tick_nohz_handler, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
- /* Get the next period (per cpu) */
+ if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
+ tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
+
+ /* Get the next period (per-CPU) */
hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
- /* Offset the tick to avert jiffies_lock contention. */
+ /* Offset the tick to avert 'jiffies_lock' contention. */
if (sched_skew_tick) {
- u64 offset = ktime_to_ns(tick_period) >> 1;
+ u64 offset = TICK_NSEC >> 1;
do_div(offset, num_possible_cpus());
offset *= smp_processor_id();
hrtimer_add_expires_ns(&ts->sched_timer, offset);
}
- for (;;) {
- hrtimer_forward(&ts->sched_timer, now, tick_period);
- hrtimer_start_expires(&ts->sched_timer,
- HRTIMER_MODE_ABS_PINNED);
- /* Check, if the timer was already in the past */
- if (hrtimer_active(&ts->sched_timer))
- break;
- now = ktime_get();
- }
-
-#ifdef CONFIG_NO_HZ_COMMON
- if (tick_nohz_enabled)
- ts->nohz_mode = NOHZ_MODE_HIGHRES;
-#endif
+ hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
+ if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
+ hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
+ else
+ tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
+ tick_nohz_activate(ts);
}
-#endif /* HIGH_RES_TIMERS */
-#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
-void tick_cancel_sched_timer(int cpu)
+/*
+ * Shut down the tick and make sure the CPU won't try to retake the timekeeping
+ * duty before disabling IRQs in idle for the last time.
+ */
+void tick_sched_timer_dying(int cpu)
{
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
+ ktime_t idle_sleeptime, iowait_sleeptime;
+ unsigned long idle_calls, idle_sleeps;
-# ifdef CONFIG_HIGH_RES_TIMERS
- if (ts->sched_timer.base)
+ /* This must happen before hrtimers are migrated! */
+ if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
hrtimer_cancel(&ts->sched_timer);
-# endif
+ idle_sleeptime = ts->idle_sleeptime;
+ iowait_sleeptime = ts->iowait_sleeptime;
+ idle_calls = ts->idle_calls;
+ idle_sleeps = ts->idle_sleeps;
memset(ts, 0, sizeof(*ts));
+ ts->idle_sleeptime = idle_sleeptime;
+ ts->iowait_sleeptime = iowait_sleeptime;
+ ts->idle_calls = idle_calls;
+ ts->idle_sleeps = idle_sleeps;
}
-#endif
-/**
+/*
* Async notification about clocksource changes
*/
void tick_clock_notify(void)
@@ -1184,27 +1659,27 @@ void tick_clock_notify(void)
*/
void tick_oneshot_notify(void)
{
- struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
set_bit(0, &ts->check_clocks);
}
-/**
- * Check, if a change happened, which makes oneshot possible.
+/*
+ * Check if a change happened, which makes oneshot possible.
*
- * Called cyclic from the hrtimer softirq (driven by the timer
- * softirq) allow_nohz signals, that we can switch into low-res nohz
+ * Called cyclically from the hrtimer softirq (driven by the timer
+ * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
* mode, because high resolution timers are disabled (either compile
- * or runtime).
+ * or runtime). Called with interrupts disabled.
*/
int tick_check_oneshot_change(int allow_nohz)
{
- struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
+ struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
if (!test_and_clear_bit(0, &ts->check_clocks))
return 0;
- if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
+ if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
return 0;
if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())