diff options
Diffstat (limited to 'kernel/time/timekeeping.c')
-rw-r--r-- | kernel/time/timekeeping.c | 969 |
1 files changed, 537 insertions, 432 deletions
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index b58dffc58a8f..a009c91f7b05 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c @@ -30,8 +30,9 @@ #include "timekeeping_internal.h" #define TK_CLEAR_NTP (1 << 0) -#define TK_MIRROR (1 << 1) -#define TK_CLOCK_WAS_SET (1 << 2) +#define TK_CLOCK_WAS_SET (1 << 1) + +#define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) enum timekeeping_adv_mode { /* Update timekeeper when a tick has passed */ @@ -41,20 +42,18 @@ enum timekeeping_adv_mode { TK_ADV_FREQ }; -DEFINE_RAW_SPINLOCK(timekeeper_lock); - /* * The most important data for readout fits into a single 64 byte * cache line. */ -static struct { +struct tk_data { seqcount_raw_spinlock_t seq; struct timekeeper timekeeper; -} tk_core ____cacheline_aligned = { - .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), -}; + struct timekeeper shadow_timekeeper; + raw_spinlock_t lock; +} ____cacheline_aligned; -static struct timekeeper shadow_timekeeper; +static struct tk_data tk_core; /* flag for if timekeeping is suspended */ int __read_mostly timekeeping_suspended; @@ -114,6 +113,36 @@ static struct tk_fast tk_fast_raw ____cacheline_aligned = { .base[1] = FAST_TK_INIT, }; +unsigned long timekeeper_lock_irqsave(void) +{ + unsigned long flags; + + raw_spin_lock_irqsave(&tk_core.lock, flags); + return flags; +} + +void timekeeper_unlock_irqrestore(unsigned long flags) +{ + raw_spin_unlock_irqrestore(&tk_core.lock, flags); +} + +/* + * Multigrain timestamps require tracking the latest fine-grained timestamp + * that has been issued, and never returning a coarse-grained timestamp that is + * earlier than that value. + * + * mg_floor represents the latest fine-grained time that has been handed out as + * a file timestamp on the system. This is tracked as a monotonic ktime_t, and + * converted to a realtime clock value on an as-needed basis. + * + * Maintaining mg_floor ensures the multigrain interfaces never issue a + * timestamp earlier than one that has been previously issued. + * + * The exception to this rule is when there is a backward realtime clock jump. If + * such an event occurs, a timestamp can appear to be earlier than a previous one. + */ +static __cacheline_aligned_in_smp atomic64_t mg_floor; + static inline void tk_normalize_xtime(struct timekeeper *tk) { while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { @@ -135,10 +164,34 @@ static inline struct timespec64 tk_xtime(const struct timekeeper *tk) return ts; } +static inline struct timespec64 tk_xtime_coarse(const struct timekeeper *tk) +{ + struct timespec64 ts; + + ts.tv_sec = tk->xtime_sec; + ts.tv_nsec = tk->coarse_nsec; + return ts; +} + +/* + * Update the nanoseconds part for the coarse time keepers. They can't rely + * on xtime_nsec because xtime_nsec could be adjusted by a small negative + * amount when the multiplication factor of the clock is adjusted, which + * could cause the coarse clocks to go slightly backwards. See + * timekeeping_apply_adjustment(). Thus we keep a separate copy for the coarse + * clockids which only is updated when the clock has been set or we have + * accumulated time. + */ +static inline void tk_update_coarse_nsecs(struct timekeeper *tk) +{ + tk->coarse_nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; +} + static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) { tk->xtime_sec = ts->tv_sec; tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; + tk_update_coarse_nsecs(tk); } static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) @@ -146,6 +199,7 @@ static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) tk->xtime_sec += ts->tv_sec; tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; tk_normalize_xtime(tk); + tk_update_coarse_nsecs(tk); } static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) @@ -161,13 +215,15 @@ static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); tk->wall_to_monotonic = wtm; set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); - tk->offs_real = timespec64_to_ktime(tmp); - tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); + /* Paired with READ_ONCE() in ktime_mono_to_any() */ + WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); + WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); } static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) { - tk->offs_boot = ktime_add(tk->offs_boot, delta); + /* Paired with READ_ONCE() in ktime_mono_to_any() */ + WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); /* * Timespec representation for VDSO update to avoid 64bit division * on every update. @@ -184,7 +240,7 @@ static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) * the tkr's clocksource may change between the read reference, and the * clock reference passed to the read function. This can cause crashes if * the wrong clocksource is passed to the wrong read function. - * This isn't necessary to use when holding the timekeeper_lock or doing + * This isn't necessary to use when holding the tk_core.lock or doing * a read of the fast-timekeeper tkrs (which is protected by its own locking * and update logic). */ @@ -195,106 +251,6 @@ static inline u64 tk_clock_read(const struct tk_read_base *tkr) return clock->read(clock); } -#ifdef CONFIG_DEBUG_TIMEKEEPING -#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ - -static void timekeeping_check_update(struct timekeeper *tk, u64 offset) -{ - - u64 max_cycles = tk->tkr_mono.clock->max_cycles; - const char *name = tk->tkr_mono.clock->name; - - if (offset > max_cycles) { - printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", - offset, name, max_cycles); - printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); - } else { - if (offset > (max_cycles >> 1)) { - printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", - offset, name, max_cycles >> 1); - printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); - } - } - - if (tk->underflow_seen) { - if (jiffies - tk->last_warning > WARNING_FREQ) { - printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); - printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); - printk_deferred(" Your kernel is probably still fine.\n"); - tk->last_warning = jiffies; - } - tk->underflow_seen = 0; - } - - if (tk->overflow_seen) { - if (jiffies - tk->last_warning > WARNING_FREQ) { - printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); - printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); - printk_deferred(" Your kernel is probably still fine.\n"); - tk->last_warning = jiffies; - } - tk->overflow_seen = 0; - } -} - -static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) -{ - struct timekeeper *tk = &tk_core.timekeeper; - u64 now, last, mask, max, delta; - unsigned int seq; - - /* - * Since we're called holding a seqcount, the data may shift - * under us while we're doing the calculation. This can cause - * false positives, since we'd note a problem but throw the - * results away. So nest another seqcount here to atomically - * grab the points we are checking with. - */ - do { - seq = read_seqcount_begin(&tk_core.seq); - now = tk_clock_read(tkr); - last = tkr->cycle_last; - mask = tkr->mask; - max = tkr->clock->max_cycles; - } while (read_seqcount_retry(&tk_core.seq, seq)); - - delta = clocksource_delta(now, last, mask); - - /* - * Try to catch underflows by checking if we are seeing small - * mask-relative negative values. - */ - if (unlikely((~delta & mask) < (mask >> 3))) { - tk->underflow_seen = 1; - delta = 0; - } - - /* Cap delta value to the max_cycles values to avoid mult overflows */ - if (unlikely(delta > max)) { - tk->overflow_seen = 1; - delta = tkr->clock->max_cycles; - } - - return delta; -} -#else -static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) -{ -} -static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) -{ - u64 cycle_now, delta; - - /* read clocksource */ - cycle_now = tk_clock_read(tkr); - - /* calculate the delta since the last update_wall_time */ - delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); - - return delta; -} -#endif - /** * tk_setup_internals - Set up internals to use clocksource clock. * @@ -370,32 +326,38 @@ static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) } /* Timekeeper helper functions. */ - -static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) +static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) { - u64 nsec; - - nsec = delta * tkr->mult + tkr->xtime_nsec; - nsec >>= tkr->shift; - - return nsec; + return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); } -static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) +static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) { - u64 delta; + /* Calculate the delta since the last update_wall_time() */ + u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; + + /* + * This detects both negative motion and the case where the delta + * overflows the multiplication with tkr->mult. + */ + if (unlikely(delta > tkr->clock->max_cycles)) { + /* + * Handle clocksource inconsistency between CPUs to prevent + * time from going backwards by checking for the MSB of the + * mask being set in the delta. + */ + if (delta & ~(mask >> 1)) + return tkr->xtime_nsec >> tkr->shift; - delta = timekeeping_get_delta(tkr); - return timekeeping_delta_to_ns(tkr, delta); + return delta_to_ns_safe(tkr, delta); + } + + return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; } -static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) +static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) { - u64 delta; - - /* calculate the delta since the last update_wall_time */ - delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); - return timekeeping_delta_to_ns(tkr, delta); + return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); } /** @@ -406,7 +368,7 @@ static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 c * We want to use this from any context including NMI and tracing / * instrumenting the timekeeping code itself. * - * Employ the latch technique; see @raw_write_seqcount_latch. + * Employ the latch technique; see @write_seqcount_latch. * * So if a NMI hits the update of base[0] then it will use base[1] * which is still consistent. In the worst case this can result is a @@ -419,24 +381,18 @@ static void update_fast_timekeeper(const struct tk_read_base *tkr, struct tk_read_base *base = tkf->base; /* Force readers off to base[1] */ - raw_write_seqcount_latch(&tkf->seq); + write_seqcount_latch_begin(&tkf->seq); /* Update base[0] */ memcpy(base, tkr, sizeof(*base)); /* Force readers back to base[0] */ - raw_write_seqcount_latch(&tkf->seq); + write_seqcount_latch(&tkf->seq); /* Update base[1] */ memcpy(base + 1, base, sizeof(*base)); -} -static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr) -{ - u64 delta, cycles = tk_clock_read(tkr); - - delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); - return timekeeping_delta_to_ns(tkr, delta); + write_seqcount_latch_end(&tkf->seq); } static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) @@ -446,11 +402,11 @@ static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) u64 now; do { - seq = raw_read_seqcount_latch(&tkf->seq); + seq = read_seqcount_latch(&tkf->seq); tkr = tkf->base + (seq & 0x01); now = ktime_to_ns(tkr->base); - now += fast_tk_get_delta_ns(tkr); - } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); + now += timekeeping_get_ns(tkr); + } while (read_seqcount_latch_retry(&tkf->seq, seq)); return now; } @@ -520,7 +476,7 @@ EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); * timekeeping_inject_sleeptime64() * __timekeeping_inject_sleeptime(tk, delta); * timestamp(); - * timekeeping_update(tk, TK_CLEAR_NTP...); + * timekeeping_update_staged(tkd, TK_CLEAR_NTP...); * * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be * partially updated. Since the tk->offs_boot update is a rare event, this @@ -554,91 +510,30 @@ u64 notrace ktime_get_tai_fast_ns(void) } EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); -static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) +/** + * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. + * + * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. + */ +u64 ktime_get_real_fast_ns(void) { + struct tk_fast *tkf = &tk_fast_mono; struct tk_read_base *tkr; - u64 basem, baser, delta; + u64 baser, delta; unsigned int seq; do { seq = raw_read_seqcount_latch(&tkf->seq); tkr = tkf->base + (seq & 0x01); - basem = ktime_to_ns(tkr->base); baser = ktime_to_ns(tkr->base_real); - delta = fast_tk_get_delta_ns(tkr); + delta = timekeeping_get_ns(tkr); } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); - if (mono) - *mono = basem + delta; return baser + delta; } - -/** - * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. - * - * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. - */ -u64 ktime_get_real_fast_ns(void) -{ - return __ktime_get_real_fast(&tk_fast_mono, NULL); -} EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); /** - * ktime_get_fast_timestamps: - NMI safe timestamps - * @snapshot: Pointer to timestamp storage - * - * Stores clock monotonic, boottime and realtime timestamps. - * - * Boot time is a racy access on 32bit systems if the sleep time injection - * happens late during resume and not in timekeeping_resume(). That could - * be avoided by expanding struct tk_read_base with boot offset for 32bit - * and adding more overhead to the update. As this is a hard to observe - * once per resume event which can be filtered with reasonable effort using - * the accurate mono/real timestamps, it's probably not worth the trouble. - * - * Aside of that it might be possible on 32 and 64 bit to observe the - * following when the sleep time injection happens late: - * - * CPU 0 CPU 1 - * timekeeping_resume() - * ktime_get_fast_timestamps() - * mono, real = __ktime_get_real_fast() - * inject_sleep_time() - * update boot offset - * boot = mono + bootoffset; - * - * That means that boot time already has the sleep time adjustment, but - * real time does not. On the next readout both are in sync again. - * - * Preventing this for 64bit is not really feasible without destroying the - * careful cache layout of the timekeeper because the sequence count and - * struct tk_read_base would then need two cache lines instead of one. - * - * Access to the time keeper clock source is disabled across the innermost - * steps of suspend/resume. The accessors still work, but the timestamps - * are frozen until time keeping is resumed which happens very early. - * - * For regular suspend/resume there is no observable difference vs. sched - * clock, but it might affect some of the nasty low level debug printks. - * - * OTOH, access to sched clock is not guaranteed across suspend/resume on - * all systems either so it depends on the hardware in use. - * - * If that turns out to be a real problem then this could be mitigated by - * using sched clock in a similar way as during early boot. But it's not as - * trivial as on early boot because it needs some careful protection - * against the clock monotonic timestamp jumping backwards on resume. - */ -void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) -{ - struct timekeeper *tk = &tk_core.timekeeper; - - snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); - snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); -} - -/** * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. * @tk: Timekeeper to snapshot. * @@ -679,13 +574,11 @@ static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) int pvclock_gtod_register_notifier(struct notifier_block *nb) { struct timekeeper *tk = &tk_core.timekeeper; - unsigned long flags; int ret; - raw_spin_lock_irqsave(&timekeeper_lock, flags); + guard(raw_spinlock_irqsave)(&tk_core.lock); ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); update_pvclock_gtod(tk, true); - raw_spin_unlock_irqrestore(&timekeeper_lock, flags); return ret; } @@ -698,14 +591,8 @@ EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); */ int pvclock_gtod_unregister_notifier(struct notifier_block *nb) { - unsigned long flags; - int ret; - - raw_spin_lock_irqsave(&timekeeper_lock, flags); - ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); - raw_spin_unlock_irqrestore(&timekeeper_lock, flags); - - return ret; + guard(raw_spinlock_irqsave)(&tk_core.lock); + return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); } EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); @@ -721,6 +608,18 @@ static inline void tk_update_leap_state(struct timekeeper *tk) } /* + * Leap state update for both shadow and the real timekeeper + * Separate to spare a full memcpy() of the timekeeper. + */ +static void tk_update_leap_state_all(struct tk_data *tkd) +{ + write_seqcount_begin(&tkd->seq); + tk_update_leap_state(&tkd->shadow_timekeeper); + tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; + write_seqcount_end(&tkd->seq); +} + +/* * Update the ktime_t based scalar nsec members of the timekeeper */ static inline void tk_update_ktime_data(struct timekeeper *tk) @@ -753,9 +652,30 @@ static inline void tk_update_ktime_data(struct timekeeper *tk) tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); } -/* must hold timekeeper_lock */ -static void timekeeping_update(struct timekeeper *tk, unsigned int action) +/* + * Restore the shadow timekeeper from the real timekeeper. + */ +static void timekeeping_restore_shadow(struct tk_data *tkd) { + lockdep_assert_held(&tkd->lock); + memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); +} + +static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) +{ + struct timekeeper *tk = &tk_core.shadow_timekeeper; + + lockdep_assert_held(&tkd->lock); + + /* + * Block out readers before running the updates below because that + * updates VDSO and other time related infrastructure. Not blocking + * the readers might let a reader see time going backwards when + * reading from the VDSO after the VDSO update and then reading in + * the kernel from the timekeeper before that got updated. + */ + write_seqcount_begin(&tkd->seq); + if (action & TK_CLEAR_NTP) { tk->ntp_error = 0; ntp_clear(); @@ -773,14 +693,17 @@ static void timekeeping_update(struct timekeeper *tk, unsigned int action) if (action & TK_CLOCK_WAS_SET) tk->clock_was_set_seq++; + /* - * The mirroring of the data to the shadow-timekeeper needs - * to happen last here to ensure we don't over-write the - * timekeeper structure on the next update with stale data + * Update the real timekeeper. + * + * We could avoid this memcpy() by switching pointers, but that has + * the downside that the reader side does not longer benefit from + * the cacheline optimized data layout of the timekeeper and requires + * another indirection. */ - if (action & TK_MIRROR) - memcpy(&shadow_timekeeper, &tk_core.timekeeper, - sizeof(tk_core.timekeeper)); + memcpy(&tkd->timekeeper, tk, sizeof(*tk)); + write_seqcount_end(&tkd->seq); } /** @@ -796,14 +719,21 @@ static void timekeeping_forward_now(struct timekeeper *tk) u64 cycle_now, delta; cycle_now = tk_clock_read(&tk->tkr_mono); - delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); + delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask, + tk->tkr_mono.clock->max_raw_delta); tk->tkr_mono.cycle_last = cycle_now; tk->tkr_raw.cycle_last = cycle_now; - tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; - tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; + while (delta > 0) { + u64 max = tk->tkr_mono.clock->max_cycles; + u64 incr = delta < max ? delta : max; - tk_normalize_xtime(tk); + tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; + tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; + tk_normalize_xtime(tk); + delta -= incr; + } + tk_update_coarse_nsecs(tk); } /** @@ -900,8 +830,8 @@ EXPORT_SYMBOL_GPL(ktime_get_with_offset); ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) { struct timekeeper *tk = &tk_core.timekeeper; - unsigned int seq; ktime_t base, *offset = offsets[offs]; + unsigned int seq; u64 nsecs; WARN_ON(timekeeping_suspended); @@ -909,7 +839,7 @@ ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) do { seq = read_seqcount_begin(&tk_core.seq); base = ktime_add(tk->tkr_mono.base, *offset); - nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; + nsecs = tk->coarse_nsec; } while (read_seqcount_retry(&tk_core.seq, seq)); @@ -928,6 +858,14 @@ ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) unsigned int seq; ktime_t tconv; + if (IS_ENABLED(CONFIG_64BIT)) { + /* + * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and + * tk_update_sleep_time(). + */ + return ktime_add(tmono, READ_ONCE(*offset)); + } + do { seq = read_seqcount_begin(&tk_core.seq); tconv = ktime_add(tmono, *offset); @@ -1058,6 +996,7 @@ void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) unsigned int seq; ktime_t base_raw; ktime_t base_real; + ktime_t base_boot; u64 nsec_raw; u64 nsec_real; u64 now; @@ -1072,6 +1011,8 @@ void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; base_real = ktime_add(tk->tkr_mono.base, tk_core.timekeeper.offs_real); + base_boot = ktime_add(tk->tkr_mono.base, + tk_core.timekeeper.offs_boot); base_raw = tk->tkr_raw.base; nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); @@ -1079,6 +1020,7 @@ void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) systime_snapshot->cycles = now; systime_snapshot->real = ktime_add_ns(base_real, nsec_real); + systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); } EXPORT_SYMBOL_GPL(ktime_get_snapshot); @@ -1193,6 +1135,108 @@ static bool timestamp_in_interval(u64 start, u64 end, u64 ts) return false; } +static bool convert_clock(u64 *val, u32 numerator, u32 denominator) +{ + u64 rem, res; + + if (!numerator || !denominator) + return false; + + res = div64_u64_rem(*val, denominator, &rem) * numerator; + *val = res + div_u64(rem * numerator, denominator); + return true; +} + +static bool convert_base_to_cs(struct system_counterval_t *scv) +{ + struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; + struct clocksource_base *base; + u32 num, den; + + /* The timestamp was taken from the time keeper clock source */ + if (cs->id == scv->cs_id) + return true; + + /* + * Check whether cs_id matches the base clock. Prevent the compiler from + * re-evaluating @base as the clocksource might change concurrently. + */ + base = READ_ONCE(cs->base); + if (!base || base->id != scv->cs_id) + return false; + + num = scv->use_nsecs ? cs->freq_khz : base->numerator; + den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; + + if (!convert_clock(&scv->cycles, num, den)) + return false; + + scv->cycles += base->offset; + return true; +} + +static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) +{ + struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; + struct clocksource_base *base; + + /* + * Check whether base_id matches the base clock. Prevent the compiler from + * re-evaluating @base as the clocksource might change concurrently. + */ + base = READ_ONCE(cs->base); + if (!base || base->id != base_id) + return false; + + *cycles -= base->offset; + if (!convert_clock(cycles, base->denominator, base->numerator)) + return false; + return true; +} + +static bool convert_ns_to_cs(u64 *delta) +{ + struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; + + if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) + return false; + + *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); + return true; +} + +/** + * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp + * @treal: CLOCK_REALTIME timestamp to convert + * @base_id: base clocksource id + * @cycles: pointer to store the converted base clock timestamp + * + * Converts a supplied, future realtime clock value to the corresponding base clock value. + * + * Return: true if the conversion is successful, false otherwise. + */ +bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) +{ + struct timekeeper *tk = &tk_core.timekeeper; + unsigned int seq; + u64 delta; + + do { + seq = read_seqcount_begin(&tk_core.seq); + if ((u64)treal < tk->tkr_mono.base_real) + return false; + delta = (u64)treal - tk->tkr_mono.base_real; + if (!convert_ns_to_cs(&delta)) + return false; + *cycles = tk->tkr_mono.cycle_last + delta; + if (!convert_cs_to_base(cycles, base_id)) + return false; + } while (read_seqcount_retry(&tk_core.seq, seq)); + + return true; +} +EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); + /** * get_device_system_crosststamp - Synchronously capture system/device timestamp * @get_time_fn: Callback to get simultaneous device time and @@ -1239,7 +1283,7 @@ int get_device_system_crosststamp(int (*get_time_fn) * installed timekeeper clocksource */ if (system_counterval.cs_id == CSID_GENERIC || - tk->tkr_mono.clock->id != system_counterval.cs_id) + !convert_base_to_cs(&system_counterval)) return -ENODEV; cycles = system_counterval.cycles; @@ -1305,6 +1349,30 @@ int get_device_system_crosststamp(int (*get_time_fn) EXPORT_SYMBOL_GPL(get_device_system_crosststamp); /** + * timekeeping_clocksource_has_base - Check whether the current clocksource + * is based on given a base clock + * @id: base clocksource ID + * + * Note: The return value is a snapshot which can become invalid right + * after the function returns. + * + * Return: true if the timekeeper clocksource has a base clock with @id, + * false otherwise + */ +bool timekeeping_clocksource_has_base(enum clocksource_ids id) +{ + /* + * This is a snapshot, so no point in using the sequence + * count. Just prevent the compiler from re-evaluating @base as the + * clocksource might change concurrently. + */ + struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); + + return base ? base->id == id : false; +} +EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); + +/** * do_settimeofday64 - Sets the time of day. * @ts: pointer to the timespec64 variable containing the new time * @@ -1312,45 +1380,35 @@ EXPORT_SYMBOL_GPL(get_device_system_crosststamp); */ int do_settimeofday64(const struct timespec64 *ts) { - struct timekeeper *tk = &tk_core.timekeeper; struct timespec64 ts_delta, xt; - unsigned long flags; - int ret = 0; if (!timespec64_valid_settod(ts)) return -EINVAL; - raw_spin_lock_irqsave(&timekeeper_lock, flags); - write_seqcount_begin(&tk_core.seq); - - timekeeping_forward_now(tk); + scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { + struct timekeeper *tks = &tk_core.shadow_timekeeper; - xt = tk_xtime(tk); - ts_delta = timespec64_sub(*ts, xt); + timekeeping_forward_now(tks); - if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { - ret = -EINVAL; - goto out; - } + xt = tk_xtime(tks); + ts_delta = timespec64_sub(*ts, xt); - tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); - - tk_set_xtime(tk, ts); -out: - timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); + if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { + timekeeping_restore_shadow(&tk_core); + return -EINVAL; + } - write_seqcount_end(&tk_core.seq); - raw_spin_unlock_irqrestore(&timekeeper_lock, flags); + tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); + tk_set_xtime(tks, ts); + timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); + } /* Signal hrtimers about time change */ clock_was_set(CLOCK_SET_WALL); - if (!ret) { - audit_tk_injoffset(ts_delta); - add_device_randomness(ts, sizeof(*ts)); - } - - return ret; + audit_tk_injoffset(ts_delta); + add_device_randomness(ts, sizeof(*ts)); + return 0; } EXPORT_SYMBOL(do_settimeofday64); @@ -1362,40 +1420,31 @@ EXPORT_SYMBOL(do_settimeofday64); */ static int timekeeping_inject_offset(const struct timespec64 *ts) { - struct timekeeper *tk = &tk_core.timekeeper; - unsigned long flags; - struct timespec64 tmp; - int ret = 0; - if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) return -EINVAL; - raw_spin_lock_irqsave(&timekeeper_lock, flags); - write_seqcount_begin(&tk_core.seq); - - timekeeping_forward_now(tk); - - /* Make sure the proposed value is valid */ - tmp = timespec64_add(tk_xtime(tk), *ts); - if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || - !timespec64_valid_settod(&tmp)) { - ret = -EINVAL; - goto error; - } + scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { + struct timekeeper *tks = &tk_core.shadow_timekeeper; + struct timespec64 tmp; - tk_xtime_add(tk, ts); - tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); + timekeeping_forward_now(tks); -error: /* even if we error out, we forwarded the time, so call update */ - timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); + /* Make sure the proposed value is valid */ + tmp = timespec64_add(tk_xtime(tks), *ts); + if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || + !timespec64_valid_settod(&tmp)) { + timekeeping_restore_shadow(&tk_core); + return -EINVAL; + } - write_seqcount_end(&tk_core.seq); - raw_spin_unlock_irqrestore(&timekeeper_lock, flags); + tk_xtime_add(tks, ts); + tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); + timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); + } /* Signal hrtimers about time change */ clock_was_set(CLOCK_SET_WALL); - - return ret; + return 0; } /* @@ -1448,43 +1497,34 @@ static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) */ static int change_clocksource(void *data) { - struct timekeeper *tk = &tk_core.timekeeper; - struct clocksource *new, *old = NULL; - unsigned long flags; - bool change = false; - - new = (struct clocksource *) data; + struct clocksource *new = data, *old = NULL; /* - * If the cs is in module, get a module reference. Succeeds - * for built-in code (owner == NULL) as well. + * If the clocksource is in a module, get a module reference. + * Succeeds for built-in code (owner == NULL) as well. Abort if the + * reference can't be acquired. */ - if (try_module_get(new->owner)) { - if (!new->enable || new->enable(new) == 0) - change = true; - else - module_put(new->owner); - } - - raw_spin_lock_irqsave(&timekeeper_lock, flags); - write_seqcount_begin(&tk_core.seq); - - timekeeping_forward_now(tk); + if (!try_module_get(new->owner)) + return 0; - if (change) { - old = tk->tkr_mono.clock; - tk_setup_internals(tk, new); + /* Abort if the device can't be enabled */ + if (new->enable && new->enable(new) != 0) { + module_put(new->owner); + return 0; } - timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); + scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { + struct timekeeper *tks = &tk_core.shadow_timekeeper; - write_seqcount_end(&tk_core.seq); - raw_spin_unlock_irqrestore(&timekeeper_lock, flags); + timekeeping_forward_now(tks); + old = tks->tkr_mono.clock; + tk_setup_internals(tks, new); + timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); + } if (old) { if (old->disable) old->disable(old); - module_put(old->owner); } @@ -1609,6 +1649,12 @@ read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, *boot_offset = ns_to_timespec64(local_clock()); } +static __init void tkd_basic_setup(struct tk_data *tkd) +{ + raw_spin_lock_init(&tkd->lock); + seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); +} + /* * Flag reflecting whether timekeeping_resume() has injected sleeptime. * @@ -1633,9 +1679,10 @@ static bool persistent_clock_exists; void __init timekeeping_init(void) { struct timespec64 wall_time, boot_offset, wall_to_mono; - struct timekeeper *tk = &tk_core.timekeeper; + struct timekeeper *tks = &tk_core.shadow_timekeeper; struct clocksource *clock; - unsigned long flags; + + tkd_basic_setup(&tk_core); read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); if (timespec64_valid_settod(&wall_time) && @@ -1655,24 +1702,21 @@ void __init timekeeping_init(void) */ wall_to_mono = timespec64_sub(boot_offset, wall_time); - raw_spin_lock_irqsave(&timekeeper_lock, flags); - write_seqcount_begin(&tk_core.seq); + guard(raw_spinlock_irqsave)(&tk_core.lock); + ntp_init(); clock = clocksource_default_clock(); if (clock->enable) clock->enable(clock); - tk_setup_internals(tk, clock); - - tk_set_xtime(tk, &wall_time); - tk->raw_sec = 0; + tk_setup_internals(tks, clock); - tk_set_wall_to_mono(tk, wall_to_mono); + tk_set_xtime(tks, &wall_time); + tks->raw_sec = 0; - timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); + tk_set_wall_to_mono(tks, wall_to_mono); - write_seqcount_end(&tk_core.seq); - raw_spin_unlock_irqrestore(&timekeeper_lock, flags); + timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); } /* time in seconds when suspend began for persistent clock */ @@ -1750,22 +1794,14 @@ bool timekeeping_rtc_skipsuspend(void) */ void timekeeping_inject_sleeptime64(const struct timespec64 *delta) { - struct timekeeper *tk = &tk_core.timekeeper; - unsigned long flags; - - raw_spin_lock_irqsave(&timekeeper_lock, flags); - write_seqcount_begin(&tk_core.seq); + scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { + struct timekeeper *tks = &tk_core.shadow_timekeeper; - suspend_timing_needed = false; - - timekeeping_forward_now(tk); - - __timekeeping_inject_sleeptime(tk, delta); - - timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); - - write_seqcount_end(&tk_core.seq); - raw_spin_unlock_irqrestore(&timekeeper_lock, flags); + suspend_timing_needed = false; + timekeeping_forward_now(tks); + __timekeeping_inject_sleeptime(tks, delta); + timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); + } /* Signal hrtimers about time change */ clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); @@ -1777,20 +1813,19 @@ void timekeeping_inject_sleeptime64(const struct timespec64 *delta) */ void timekeeping_resume(void) { - struct timekeeper *tk = &tk_core.timekeeper; - struct clocksource *clock = tk->tkr_mono.clock; - unsigned long flags; + struct timekeeper *tks = &tk_core.shadow_timekeeper; + struct clocksource *clock = tks->tkr_mono.clock; struct timespec64 ts_new, ts_delta; - u64 cycle_now, nsec; bool inject_sleeptime = false; + u64 cycle_now, nsec; + unsigned long flags; read_persistent_clock64(&ts_new); clockevents_resume(); clocksource_resume(); - raw_spin_lock_irqsave(&timekeeper_lock, flags); - write_seqcount_begin(&tk_core.seq); + raw_spin_lock_irqsave(&tk_core.lock, flags); /* * After system resumes, we need to calculate the suspended time and @@ -1804,7 +1839,7 @@ void timekeeping_resume(void) * The less preferred source will only be tried if there is no better * usable source. The rtc part is handled separately in rtc core code. */ - cycle_now = tk_clock_read(&tk->tkr_mono); + cycle_now = tk_clock_read(&tks->tkr_mono); nsec = clocksource_stop_suspend_timing(clock, cycle_now); if (nsec > 0) { ts_delta = ns_to_timespec64(nsec); @@ -1816,18 +1851,17 @@ void timekeeping_resume(void) if (inject_sleeptime) { suspend_timing_needed = false; - __timekeeping_inject_sleeptime(tk, &ts_delta); + __timekeeping_inject_sleeptime(tks, &ts_delta); } /* Re-base the last cycle value */ - tk->tkr_mono.cycle_last = cycle_now; - tk->tkr_raw.cycle_last = cycle_now; + tks->tkr_mono.cycle_last = cycle_now; + tks->tkr_raw.cycle_last = cycle_now; - tk->ntp_error = 0; + tks->ntp_error = 0; timekeeping_suspended = 0; - timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); - write_seqcount_end(&tk_core.seq); - raw_spin_unlock_irqrestore(&timekeeper_lock, flags); + timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); + raw_spin_unlock_irqrestore(&tk_core.lock, flags); touch_softlockup_watchdog(); @@ -1839,11 +1873,11 @@ void timekeeping_resume(void) int timekeeping_suspend(void) { - struct timekeeper *tk = &tk_core.timekeeper; - unsigned long flags; - struct timespec64 delta, delta_delta; - static struct timespec64 old_delta; + struct timekeeper *tks = &tk_core.shadow_timekeeper; + struct timespec64 delta, delta_delta; + static struct timespec64 old_delta; struct clocksource *curr_clock; + unsigned long flags; u64 cycle_now; read_persistent_clock64(&timekeeping_suspend_time); @@ -1858,9 +1892,8 @@ int timekeeping_suspend(void) suspend_timing_needed = true; - raw_spin_lock_irqsave(&timekeeper_lock, flags); - write_seqcount_begin(&tk_core.seq); - timekeeping_forward_now(tk); + raw_spin_lock_irqsave(&tk_core.lock, flags); + timekeeping_forward_now(tks); timekeeping_suspended = 1; /* @@ -1868,8 +1901,8 @@ int timekeeping_suspend(void) * just read from the current clocksource. Save this to potentially * use in suspend timing. */ - curr_clock = tk->tkr_mono.clock; - cycle_now = tk->tkr_mono.cycle_last; + curr_clock = tks->tkr_mono.clock; + cycle_now = tks->tkr_mono.cycle_last; clocksource_start_suspend_timing(curr_clock, cycle_now); if (persistent_clock_exists) { @@ -1879,7 +1912,7 @@ int timekeeping_suspend(void) * try to compensate so the difference in system time * and persistent_clock time stays close to constant. */ - delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); + delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); delta_delta = timespec64_sub(delta, old_delta); if (abs(delta_delta.tv_sec) >= 2) { /* @@ -1894,10 +1927,9 @@ int timekeeping_suspend(void) } } - timekeeping_update(tk, TK_MIRROR); - halt_fast_timekeeper(tk); - write_seqcount_end(&tk_core.seq); - raw_spin_unlock_irqrestore(&timekeeper_lock, flags); + timekeeping_update_from_shadow(&tk_core, 0); + halt_fast_timekeeper(tks); + raw_spin_unlock_irqrestore(&tk_core.lock, flags); tick_suspend(); clocksource_suspend(); @@ -2002,16 +2034,17 @@ static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, */ static void timekeeping_adjust(struct timekeeper *tk, s64 offset) { + u64 ntp_tl = ntp_tick_length(); u32 mult; /* * Determine the multiplier from the current NTP tick length. * Avoid expensive division when the tick length doesn't change. */ - if (likely(tk->ntp_tick == ntp_tick_length())) { + if (likely(tk->ntp_tick == ntp_tl)) { mult = tk->tkr_mono.mult - tk->ntp_err_mult; } else { - tk->ntp_tick = ntp_tick_length(); + tk->ntp_tick = ntp_tl; mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - tk->xtime_remainder, tk->cycle_interval); } @@ -2150,28 +2183,25 @@ static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, */ static bool timekeeping_advance(enum timekeeping_adv_mode mode) { + struct timekeeper *tk = &tk_core.shadow_timekeeper; struct timekeeper *real_tk = &tk_core.timekeeper; - struct timekeeper *tk = &shadow_timekeeper; - u64 offset; - int shift = 0, maxshift; unsigned int clock_set = 0; - unsigned long flags; + int shift = 0, maxshift; + u64 offset, orig_offset; - raw_spin_lock_irqsave(&timekeeper_lock, flags); + guard(raw_spinlock_irqsave)(&tk_core.lock); /* Make sure we're fully resumed: */ if (unlikely(timekeeping_suspended)) - goto out; + return false; offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), - tk->tkr_mono.cycle_last, tk->tkr_mono.mask); - + tk->tkr_mono.cycle_last, tk->tkr_mono.mask, + tk->tkr_mono.clock->max_raw_delta); + orig_offset = offset; /* Check if there's really nothing to do */ if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) - goto out; - - /* Do some additional sanity checking */ - timekeeping_check_update(tk, offset); + return false; /* * With NO_HZ we may have to accumulate many cycle_intervals @@ -2187,8 +2217,7 @@ static bool timekeeping_advance(enum timekeeping_adv_mode mode) maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; shift = min(shift, maxshift); while (offset >= tk->cycle_interval) { - offset = logarithmic_accumulation(tk, offset, shift, - &clock_set); + offset = logarithmic_accumulation(tk, offset, shift, &clock_set); if (offset < tk->cycle_interval<<shift) shift--; } @@ -2202,23 +2231,15 @@ static bool timekeeping_advance(enum timekeeping_adv_mode mode) */ clock_set |= accumulate_nsecs_to_secs(tk); - write_seqcount_begin(&tk_core.seq); /* - * Update the real timekeeper. - * - * We could avoid this memcpy by switching pointers, but that - * requires changes to all other timekeeper usage sites as - * well, i.e. move the timekeeper pointer getter into the - * spinlocked/seqcount protected sections. And we trade this - * memcpy under the tk_core.seq against one before we start - * updating. + * To avoid inconsistencies caused adjtimex TK_ADV_FREQ calls + * making small negative adjustments to the base xtime_nsec + * value, only update the coarse clocks if we accumulated time */ - timekeeping_update(tk, clock_set); - memcpy(real_tk, tk, sizeof(*tk)); - /* The memcpy must come last. Do not put anything here! */ - write_seqcount_end(&tk_core.seq); -out: - raw_spin_unlock_irqrestore(&timekeeper_lock, flags); + if (orig_offset != offset) + tk_update_coarse_nsecs(tk); + + timekeeping_update_from_shadow(&tk_core, clock_set); return !!clock_set; } @@ -2261,11 +2282,99 @@ void ktime_get_coarse_real_ts64(struct timespec64 *ts) do { seq = read_seqcount_begin(&tk_core.seq); - *ts = tk_xtime(tk); + *ts = tk_xtime_coarse(tk); } while (read_seqcount_retry(&tk_core.seq, seq)); } EXPORT_SYMBOL(ktime_get_coarse_real_ts64); +/** + * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor + * @ts: timespec64 to be filled + * + * Fetch the global mg_floor value, convert it to realtime and compare it + * to the current coarse-grained time. Fill @ts with whichever is + * latest. Note that this is a filesystem-specific interface and should be + * avoided outside of that context. + */ +void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) +{ + struct timekeeper *tk = &tk_core.timekeeper; + u64 floor = atomic64_read(&mg_floor); + ktime_t f_real, offset, coarse; + unsigned int seq; + + do { + seq = read_seqcount_begin(&tk_core.seq); + *ts = tk_xtime_coarse(tk); + offset = tk_core.timekeeper.offs_real; + } while (read_seqcount_retry(&tk_core.seq, seq)); + + coarse = timespec64_to_ktime(*ts); + f_real = ktime_add(floor, offset); + if (ktime_after(f_real, coarse)) + *ts = ktime_to_timespec64(f_real); +} + +/** + * ktime_get_real_ts64_mg - attempt to update floor value and return result + * @ts: pointer to the timespec to be set + * + * Get a monotonic fine-grained time value and attempt to swap it into + * mg_floor. If that succeeds then accept the new floor value. If it fails + * then another task raced in during the interim time and updated the + * floor. Since any update to the floor must be later than the previous + * floor, either outcome is acceptable. + * + * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), + * and determining that the resulting coarse-grained timestamp did not effect + * a change in ctime. Any more recent floor value would effect a change to + * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. + * + * @ts will be filled with the latest floor value, regardless of the outcome of + * the cmpxchg. Note that this is a filesystem specific interface and should be + * avoided outside of that context. + */ +void ktime_get_real_ts64_mg(struct timespec64 *ts) +{ + struct timekeeper *tk = &tk_core.timekeeper; + ktime_t old = atomic64_read(&mg_floor); + ktime_t offset, mono; + unsigned int seq; + u64 nsecs; + + do { + seq = read_seqcount_begin(&tk_core.seq); + + ts->tv_sec = tk->xtime_sec; + mono = tk->tkr_mono.base; + nsecs = timekeeping_get_ns(&tk->tkr_mono); + offset = tk_core.timekeeper.offs_real; + } while (read_seqcount_retry(&tk_core.seq, seq)); + + mono = ktime_add_ns(mono, nsecs); + + /* + * Attempt to update the floor with the new time value. As any + * update must be later then the existing floor, and would effect + * a change to ctime from the perspective of the current task, + * accept the resulting floor value regardless of the outcome of + * the swap. + */ + if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { + ts->tv_nsec = 0; + timespec64_add_ns(ts, nsecs); + timekeeping_inc_mg_floor_swaps(); + } else { + /* + * Another task changed mg_floor since "old" was fetched. + * "old" has been updated with the latest value of "mg_floor". + * That value is newer than the previous floor value, which + * is enough to effect a change to ctime. Accept it. + */ + *ts = ktime_to_timespec64(ktime_add(old, offset)); + } +} + void ktime_get_coarse_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; @@ -2275,12 +2384,12 @@ void ktime_get_coarse_ts64(struct timespec64 *ts) do { seq = read_seqcount_begin(&tk_core.seq); - now = tk_xtime(tk); + now = tk_xtime_coarse(tk); mono = tk->wall_to_monotonic; } while (read_seqcount_retry(&tk_core.seq, seq)); set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, - now.tv_nsec + mono.tv_nsec); + now.tv_nsec + mono.tv_nsec); } EXPORT_SYMBOL(ktime_get_coarse_ts64); @@ -2419,15 +2528,14 @@ EXPORT_SYMBOL_GPL(random_get_entropy_fallback); /** * do_adjtimex() - Accessor function to NTP __do_adjtimex function + * @txc: Pointer to kernel_timex structure containing NTP parameters */ int do_adjtimex(struct __kernel_timex *txc) { - struct timekeeper *tk = &tk_core.timekeeper; struct audit_ntp_data ad; + bool offset_set = false; bool clock_set = false; struct timespec64 ts; - unsigned long flags; - s32 orig_tai, tai; int ret; /* Validate the data before disabling interrupts */ @@ -2438,6 +2546,7 @@ int do_adjtimex(struct __kernel_timex *txc) if (txc->modes & ADJ_SETOFFSET) { struct timespec64 delta; + delta.tv_sec = txc->time.tv_sec; delta.tv_nsec = txc->time.tv_usec; if (!(txc->modes & ADJ_NANO)) @@ -2446,6 +2555,7 @@ int do_adjtimex(struct __kernel_timex *txc) if (ret) return ret; + offset_set = delta.tv_sec != 0; audit_tk_injoffset(delta); } @@ -2454,21 +2564,21 @@ int do_adjtimex(struct __kernel_timex *txc) ktime_get_real_ts64(&ts); add_device_randomness(&ts, sizeof(ts)); - raw_spin_lock_irqsave(&timekeeper_lock, flags); - write_seqcount_begin(&tk_core.seq); + scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { + struct timekeeper *tks = &tk_core.shadow_timekeeper; + s32 orig_tai, tai; - orig_tai = tai = tk->tai_offset; - ret = __do_adjtimex(txc, &ts, &tai, &ad); + orig_tai = tai = tks->tai_offset; + ret = __do_adjtimex(txc, &ts, &tai, &ad); - if (tai != orig_tai) { - __timekeeping_set_tai_offset(tk, tai); - timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); - clock_set = true; + if (tai != orig_tai) { + __timekeeping_set_tai_offset(tks, tai); + timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); + clock_set = true; + } else { + tk_update_leap_state_all(&tk_core); + } } - tk_update_leap_state(tk); - - write_seqcount_end(&tk_core.seq); - raw_spin_unlock_irqrestore(&timekeeper_lock, flags); audit_ntp_log(&ad); @@ -2477,9 +2587,9 @@ int do_adjtimex(struct __kernel_timex *txc) clock_set |= timekeeping_advance(TK_ADV_FREQ); if (clock_set) - clock_was_set(CLOCK_REALTIME); + clock_was_set(CLOCK_SET_WALL); - ntp_notify_cmos_timer(); + ntp_notify_cmos_timer(offset_set); return ret; } @@ -2487,18 +2597,13 @@ int do_adjtimex(struct __kernel_timex *txc) #ifdef CONFIG_NTP_PPS /** * hardpps() - Accessor function to NTP __hardpps function + * @phase_ts: Pointer to timespec64 structure representing phase timestamp + * @raw_ts: Pointer to timespec64 structure representing raw timestamp */ void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) { - unsigned long flags; - - raw_spin_lock_irqsave(&timekeeper_lock, flags); - write_seqcount_begin(&tk_core.seq); - + guard(raw_spinlock_irqsave)(&tk_core.lock); __hardpps(phase_ts, raw_ts); - - write_seqcount_end(&tk_core.seq); - raw_spin_unlock_irqrestore(&timekeeper_lock, flags); } EXPORT_SYMBOL(hardpps); #endif /* CONFIG_NTP_PPS */ |