summaryrefslogtreecommitdiff
path: root/lib/crypto/arm64/sha256-ce.S
diff options
context:
space:
mode:
Diffstat (limited to 'lib/crypto/arm64/sha256-ce.S')
-rw-r--r--lib/crypto/arm64/sha256-ce.S408
1 files changed, 408 insertions, 0 deletions
diff --git a/lib/crypto/arm64/sha256-ce.S b/lib/crypto/arm64/sha256-ce.S
new file mode 100644
index 000000000000..e4bfe42a61a9
--- /dev/null
+++ b/lib/crypto/arm64/sha256-ce.S
@@ -0,0 +1,408 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Core SHA-224/SHA-256 transform using v8 Crypto Extensions
+ *
+ * Copyright (C) 2014 Linaro Ltd <ard.biesheuvel@linaro.org>
+ */
+
+#include <linux/linkage.h>
+#include <asm/assembler.h>
+
+ .text
+ .arch armv8-a+crypto
+
+ dga .req q20
+ dgav .req v20
+ dgb .req q21
+ dgbv .req v21
+
+ t0 .req v22
+ t1 .req v23
+
+ dg0q .req q24
+ dg0v .req v24
+ dg1q .req q25
+ dg1v .req v25
+ dg2q .req q26
+ dg2v .req v26
+
+ .macro add_only, ev, rc, s0
+ mov dg2v.16b, dg0v.16b
+ .ifeq \ev
+ add t1.4s, v\s0\().4s, \rc\().4s
+ sha256h dg0q, dg1q, t0.4s
+ sha256h2 dg1q, dg2q, t0.4s
+ .else
+ .ifnb \s0
+ add t0.4s, v\s0\().4s, \rc\().4s
+ .endif
+ sha256h dg0q, dg1q, t1.4s
+ sha256h2 dg1q, dg2q, t1.4s
+ .endif
+ .endm
+
+ .macro add_update, ev, rc, s0, s1, s2, s3
+ sha256su0 v\s0\().4s, v\s1\().4s
+ add_only \ev, \rc, \s1
+ sha256su1 v\s0\().4s, v\s2\().4s, v\s3\().4s
+ .endm
+
+ /*
+ * The SHA-256 round constants
+ */
+ .section ".rodata", "a"
+ .align 4
+.Lsha2_rcon:
+ .word 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5
+ .word 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5
+ .word 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3
+ .word 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174
+ .word 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc
+ .word 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da
+ .word 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7
+ .word 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967
+ .word 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13
+ .word 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85
+ .word 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3
+ .word 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070
+ .word 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5
+ .word 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3
+ .word 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208
+ .word 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
+
+ .macro load_round_constants tmp
+ adr_l \tmp, .Lsha2_rcon
+ ld1 { v0.4s- v3.4s}, [\tmp], #64
+ ld1 { v4.4s- v7.4s}, [\tmp], #64
+ ld1 { v8.4s-v11.4s}, [\tmp], #64
+ ld1 {v12.4s-v15.4s}, [\tmp]
+ .endm
+
+ /*
+ * size_t __sha256_ce_transform(struct sha256_block_state *state,
+ * const u8 *data, size_t nblocks);
+ */
+ .text
+SYM_FUNC_START(__sha256_ce_transform)
+
+ load_round_constants x8
+
+ /* load state */
+ ld1 {dgav.4s, dgbv.4s}, [x0]
+
+ /* load input */
+0: ld1 {v16.4s-v19.4s}, [x1], #64
+ sub x2, x2, #1
+
+CPU_LE( rev32 v16.16b, v16.16b )
+CPU_LE( rev32 v17.16b, v17.16b )
+CPU_LE( rev32 v18.16b, v18.16b )
+CPU_LE( rev32 v19.16b, v19.16b )
+
+ add t0.4s, v16.4s, v0.4s
+ mov dg0v.16b, dgav.16b
+ mov dg1v.16b, dgbv.16b
+
+ add_update 0, v1, 16, 17, 18, 19
+ add_update 1, v2, 17, 18, 19, 16
+ add_update 0, v3, 18, 19, 16, 17
+ add_update 1, v4, 19, 16, 17, 18
+
+ add_update 0, v5, 16, 17, 18, 19
+ add_update 1, v6, 17, 18, 19, 16
+ add_update 0, v7, 18, 19, 16, 17
+ add_update 1, v8, 19, 16, 17, 18
+
+ add_update 0, v9, 16, 17, 18, 19
+ add_update 1, v10, 17, 18, 19, 16
+ add_update 0, v11, 18, 19, 16, 17
+ add_update 1, v12, 19, 16, 17, 18
+
+ add_only 0, v13, 17
+ add_only 1, v14, 18
+ add_only 0, v15, 19
+ add_only 1
+
+ /* update state */
+ add dgav.4s, dgav.4s, dg0v.4s
+ add dgbv.4s, dgbv.4s, dg1v.4s
+
+ /* return early if voluntary preemption is needed */
+ cond_yield 1f, x5, x6
+
+ /* handled all input blocks? */
+ cbnz x2, 0b
+
+ /* store new state */
+1: st1 {dgav.4s, dgbv.4s}, [x0]
+ mov x0, x2
+ ret
+SYM_FUNC_END(__sha256_ce_transform)
+
+ .unreq dga
+ .unreq dgav
+ .unreq dgb
+ .unreq dgbv
+ .unreq t0
+ .unreq t1
+ .unreq dg0q
+ .unreq dg0v
+ .unreq dg1q
+ .unreq dg1v
+ .unreq dg2q
+ .unreq dg2v
+
+ // parameters for sha256_ce_finup2x()
+ ctx .req x0
+ data1 .req x1
+ data2 .req x2
+ len .req w3
+ out1 .req x4
+ out2 .req x5
+
+ // other scalar variables
+ count .req x6
+ final_step .req w7
+
+ // x8-x9 are used as temporaries.
+
+ // v0-v15 are used to cache the SHA-256 round constants.
+ // v16-v19 are used for the message schedule for the first message.
+ // v20-v23 are used for the message schedule for the second message.
+ // v24-v31 are used for the state and temporaries as given below.
+ // *_a are for the first message and *_b for the second.
+ state0_a_q .req q24
+ state0_a .req v24
+ state1_a_q .req q25
+ state1_a .req v25
+ state0_b_q .req q26
+ state0_b .req v26
+ state1_b_q .req q27
+ state1_b .req v27
+ t0_a .req v28
+ t0_b .req v29
+ t1_a_q .req q30
+ t1_a .req v30
+ t1_b_q .req q31
+ t1_b .req v31
+
+#define OFFSETOF_BYTECOUNT 32 // offsetof(struct __sha256_ctx, bytecount)
+#define OFFSETOF_BUF 40 // offsetof(struct __sha256_ctx, buf)
+// offsetof(struct __sha256_ctx, state) is assumed to be 0.
+
+ // Do 4 rounds of SHA-256 for each of two messages (interleaved). m0_a
+ // and m0_b contain the current 4 message schedule words for the first
+ // and second message respectively.
+ //
+ // If not all the message schedule words have been computed yet, then
+ // this also computes 4 more message schedule words for each message.
+ // m1_a-m3_a contain the next 3 groups of 4 message schedule words for
+ // the first message, and likewise m1_b-m3_b for the second. After
+ // consuming the current value of m0_a, this macro computes the group
+ // after m3_a and writes it to m0_a, and likewise for *_b. This means
+ // that the next (m0_a, m1_a, m2_a, m3_a) is the current (m1_a, m2_a,
+ // m3_a, m0_a), and likewise for *_b, so the caller must cycle through
+ // the registers accordingly.
+ .macro do_4rounds_2x i, k, m0_a, m1_a, m2_a, m3_a, \
+ m0_b, m1_b, m2_b, m3_b
+ add t0_a\().4s, \m0_a\().4s, \k\().4s
+ add t0_b\().4s, \m0_b\().4s, \k\().4s
+ .if \i < 48
+ sha256su0 \m0_a\().4s, \m1_a\().4s
+ sha256su0 \m0_b\().4s, \m1_b\().4s
+ sha256su1 \m0_a\().4s, \m2_a\().4s, \m3_a\().4s
+ sha256su1 \m0_b\().4s, \m2_b\().4s, \m3_b\().4s
+ .endif
+ mov t1_a.16b, state0_a.16b
+ mov t1_b.16b, state0_b.16b
+ sha256h state0_a_q, state1_a_q, t0_a\().4s
+ sha256h state0_b_q, state1_b_q, t0_b\().4s
+ sha256h2 state1_a_q, t1_a_q, t0_a\().4s
+ sha256h2 state1_b_q, t1_b_q, t0_b\().4s
+ .endm
+
+ .macro do_16rounds_2x i, k0, k1, k2, k3
+ do_4rounds_2x \i + 0, \k0, v16, v17, v18, v19, v20, v21, v22, v23
+ do_4rounds_2x \i + 4, \k1, v17, v18, v19, v16, v21, v22, v23, v20
+ do_4rounds_2x \i + 8, \k2, v18, v19, v16, v17, v22, v23, v20, v21
+ do_4rounds_2x \i + 12, \k3, v19, v16, v17, v18, v23, v20, v21, v22
+ .endm
+
+//
+// void sha256_ce_finup2x(const struct __sha256_ctx *ctx,
+// const u8 *data1, const u8 *data2, int len,
+// u8 out1[SHA256_DIGEST_SIZE],
+// u8 out2[SHA256_DIGEST_SIZE]);
+//
+// This function computes the SHA-256 digests of two messages |data1| and
+// |data2| that are both |len| bytes long, starting from the initial context
+// |ctx|. |len| must be at least SHA256_BLOCK_SIZE.
+//
+// The instructions for the two SHA-256 operations are interleaved. On many
+// CPUs, this is almost twice as fast as hashing each message individually due
+// to taking better advantage of the CPU's SHA-256 and SIMD throughput.
+//
+SYM_FUNC_START(sha256_ce_finup2x)
+ sub sp, sp, #128
+ mov final_step, #0
+ load_round_constants x8
+
+ // Load the initial state from ctx->state.
+ ld1 {state0_a.4s-state1_a.4s}, [ctx]
+
+ // Load ctx->bytecount. Take the mod 64 of it to get the number of
+ // bytes that are buffered in ctx->buf. Also save it in a register with
+ // len added to it.
+ ldr x8, [ctx, #OFFSETOF_BYTECOUNT]
+ add count, x8, len, sxtw
+ and x8, x8, #63
+ cbz x8, .Lfinup2x_enter_loop // No bytes buffered?
+
+ // x8 bytes (1 to 63) are currently buffered in ctx->buf. Load them
+ // followed by the first 64 - x8 bytes of data. Since len >= 64, we
+ // just load 64 bytes from each of ctx->buf, data1, and data2
+ // unconditionally and rearrange the data as needed.
+ add x9, ctx, #OFFSETOF_BUF
+ ld1 {v16.16b-v19.16b}, [x9]
+ st1 {v16.16b-v19.16b}, [sp]
+
+ ld1 {v16.16b-v19.16b}, [data1], #64
+ add x9, sp, x8
+ st1 {v16.16b-v19.16b}, [x9]
+ ld1 {v16.4s-v19.4s}, [sp]
+
+ ld1 {v20.16b-v23.16b}, [data2], #64
+ st1 {v20.16b-v23.16b}, [x9]
+ ld1 {v20.4s-v23.4s}, [sp]
+
+ sub len, len, #64
+ sub data1, data1, x8
+ sub data2, data2, x8
+ add len, len, w8
+ mov state0_b.16b, state0_a.16b
+ mov state1_b.16b, state1_a.16b
+ b .Lfinup2x_loop_have_data
+
+.Lfinup2x_enter_loop:
+ sub len, len, #64
+ mov state0_b.16b, state0_a.16b
+ mov state1_b.16b, state1_a.16b
+.Lfinup2x_loop:
+ // Load the next two data blocks.
+ ld1 {v16.4s-v19.4s}, [data1], #64
+ ld1 {v20.4s-v23.4s}, [data2], #64
+.Lfinup2x_loop_have_data:
+ // Convert the words of the data blocks from big endian.
+CPU_LE( rev32 v16.16b, v16.16b )
+CPU_LE( rev32 v17.16b, v17.16b )
+CPU_LE( rev32 v18.16b, v18.16b )
+CPU_LE( rev32 v19.16b, v19.16b )
+CPU_LE( rev32 v20.16b, v20.16b )
+CPU_LE( rev32 v21.16b, v21.16b )
+CPU_LE( rev32 v22.16b, v22.16b )
+CPU_LE( rev32 v23.16b, v23.16b )
+.Lfinup2x_loop_have_bswapped_data:
+
+ // Save the original state for each block.
+ st1 {state0_a.4s-state1_b.4s}, [sp]
+
+ // Do the SHA-256 rounds on each block.
+ do_16rounds_2x 0, v0, v1, v2, v3
+ do_16rounds_2x 16, v4, v5, v6, v7
+ do_16rounds_2x 32, v8, v9, v10, v11
+ do_16rounds_2x 48, v12, v13, v14, v15
+
+ // Add the original state for each block.
+ ld1 {v16.4s-v19.4s}, [sp]
+ add state0_a.4s, state0_a.4s, v16.4s
+ add state1_a.4s, state1_a.4s, v17.4s
+ add state0_b.4s, state0_b.4s, v18.4s
+ add state1_b.4s, state1_b.4s, v19.4s
+
+ // Update len and loop back if more blocks remain.
+ sub len, len, #64
+ tbz len, #31, .Lfinup2x_loop // len >= 0?
+
+ // Check if any final blocks need to be handled.
+ // final_step = 2: all done
+ // final_step = 1: need to do count-only padding block
+ // final_step = 0: need to do the block with 0x80 padding byte
+ tbnz final_step, #1, .Lfinup2x_done
+ tbnz final_step, #0, .Lfinup2x_finalize_countonly
+ add len, len, #64
+ cbz len, .Lfinup2x_finalize_blockaligned
+
+ // Not block-aligned; 1 <= len <= 63 data bytes remain. Pad the block.
+ // To do this, write the padding starting with the 0x80 byte to
+ // &sp[64]. Then for each message, copy the last 64 data bytes to sp
+ // and load from &sp[64 - len] to get the needed padding block. This
+ // code relies on the data buffers being >= 64 bytes in length.
+ sub w8, len, #64 // w8 = len - 64
+ add data1, data1, w8, sxtw // data1 += len - 64
+ add data2, data2, w8, sxtw // data2 += len - 64
+CPU_LE( mov x9, #0x80 )
+CPU_LE( fmov d16, x9 )
+CPU_BE( movi v16.16b, #0 )
+CPU_BE( mov x9, #0x8000000000000000 )
+CPU_BE( mov v16.d[1], x9 )
+ movi v17.16b, #0
+ stp q16, q17, [sp, #64]
+ stp q17, q17, [sp, #96]
+ sub x9, sp, w8, sxtw // x9 = &sp[64 - len]
+ cmp len, #56
+ b.ge 1f // will count spill into its own block?
+ lsl count, count, #3
+CPU_LE( rev count, count )
+ str count, [x9, #56]
+ mov final_step, #2 // won't need count-only block
+ b 2f
+1:
+ mov final_step, #1 // will need count-only block
+2:
+ ld1 {v16.16b-v19.16b}, [data1]
+ st1 {v16.16b-v19.16b}, [sp]
+ ld1 {v16.4s-v19.4s}, [x9]
+ ld1 {v20.16b-v23.16b}, [data2]
+ st1 {v20.16b-v23.16b}, [sp]
+ ld1 {v20.4s-v23.4s}, [x9]
+ b .Lfinup2x_loop_have_data
+
+ // Prepare a padding block, either:
+ //
+ // {0x80, 0, 0, 0, ..., count (as __be64)}
+ // This is for a block aligned message.
+ //
+ // { 0, 0, 0, 0, ..., count (as __be64)}
+ // This is for a message whose length mod 64 is >= 56.
+ //
+ // Pre-swap the endianness of the words.
+.Lfinup2x_finalize_countonly:
+ movi v16.2d, #0
+ b 1f
+.Lfinup2x_finalize_blockaligned:
+ mov x8, #0x80000000
+ fmov d16, x8
+1:
+ movi v17.2d, #0
+ movi v18.2d, #0
+ ror count, count, #29 // ror(lsl(count, 3), 32)
+ mov v19.d[0], xzr
+ mov v19.d[1], count
+ mov v20.16b, v16.16b
+ movi v21.2d, #0
+ movi v22.2d, #0
+ mov v23.16b, v19.16b
+ mov final_step, #2
+ b .Lfinup2x_loop_have_bswapped_data
+
+.Lfinup2x_done:
+ // Write the two digests with all bytes in the correct order.
+CPU_LE( rev32 state0_a.16b, state0_a.16b )
+CPU_LE( rev32 state1_a.16b, state1_a.16b )
+CPU_LE( rev32 state0_b.16b, state0_b.16b )
+CPU_LE( rev32 state1_b.16b, state1_b.16b )
+ st1 {state0_a.4s-state1_a.4s}, [out1]
+ st1 {state0_b.4s-state1_b.4s}, [out2]
+ add sp, sp, #128
+ ret
+SYM_FUNC_END(sha256_ce_finup2x)