summaryrefslogtreecommitdiff
path: root/lib/crypto/sha1.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/crypto/sha1.c')
-rw-r--r--lib/crypto/sha1.c365
1 files changed, 365 insertions, 0 deletions
diff --git a/lib/crypto/sha1.c b/lib/crypto/sha1.c
new file mode 100644
index 000000000000..52788278cd17
--- /dev/null
+++ b/lib/crypto/sha1.c
@@ -0,0 +1,365 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * SHA-1 and HMAC-SHA1 library functions
+ */
+
+#include <crypto/hmac.h>
+#include <crypto/sha1.h>
+#include <linux/bitops.h>
+#include <linux/export.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/string.h>
+#include <linux/unaligned.h>
+#include <linux/wordpart.h>
+#include "fips.h"
+
+static const struct sha1_block_state sha1_iv = {
+ .h = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
+};
+
+/*
+ * If you have 32 registers or more, the compiler can (and should)
+ * try to change the array[] accesses into registers. However, on
+ * machines with less than ~25 registers, that won't really work,
+ * and at least gcc will make an unholy mess of it.
+ *
+ * So to avoid that mess which just slows things down, we force
+ * the stores to memory to actually happen (we might be better off
+ * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
+ * suggested by Artur Skawina - that will also make gcc unable to
+ * try to do the silly "optimize away loads" part because it won't
+ * see what the value will be).
+ *
+ * Ben Herrenschmidt reports that on PPC, the C version comes close
+ * to the optimized asm with this (ie on PPC you don't want that
+ * 'volatile', since there are lots of registers).
+ *
+ * On ARM we get the best code generation by forcing a full memory barrier
+ * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
+ * the stack frame size simply explode and performance goes down the drain.
+ */
+
+#ifdef CONFIG_X86
+ #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
+#elif defined(CONFIG_ARM)
+ #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
+#else
+ #define setW(x, val) (W(x) = (val))
+#endif
+
+/* This "rolls" over the 512-bit array */
+#define W(x) (array[(x)&15])
+
+/*
+ * Where do we get the source from? The first 16 iterations get it from
+ * the input data, the next mix it from the 512-bit array.
+ */
+#define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
+#define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
+
+#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
+ __u32 TEMP = input(t); setW(t, TEMP); \
+ E += TEMP + rol32(A,5) + (fn) + (constant); \
+ B = ror32(B, 2); \
+ TEMP = E; E = D; D = C; C = B; B = A; A = TEMP; } while (0)
+
+#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
+#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
+#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
+#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
+#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E )
+
+/**
+ * sha1_transform - single block SHA1 transform (deprecated)
+ *
+ * @digest: 160 bit digest to update
+ * @data: 512 bits of data to hash
+ * @array: 16 words of workspace (see note)
+ *
+ * This function executes SHA-1's internal compression function. It updates the
+ * 160-bit internal state (@digest) with a single 512-bit data block (@data).
+ *
+ * Don't use this function. SHA-1 is no longer considered secure. And even if
+ * you do have to use SHA-1, this isn't the correct way to hash something with
+ * SHA-1 as this doesn't handle padding and finalization.
+ *
+ * Note: If the hash is security sensitive, the caller should be sure
+ * to clear the workspace. This is left to the caller to avoid
+ * unnecessary clears between chained hashing operations.
+ */
+void sha1_transform(__u32 *digest, const char *data, __u32 *array)
+{
+ __u32 A, B, C, D, E;
+ unsigned int i = 0;
+
+ A = digest[0];
+ B = digest[1];
+ C = digest[2];
+ D = digest[3];
+ E = digest[4];
+
+ /* Round 1 - iterations 0-16 take their input from 'data' */
+ for (; i < 16; ++i)
+ T_0_15(i, A, B, C, D, E);
+
+ /* Round 1 - tail. Input from 512-bit mixing array */
+ for (; i < 20; ++i)
+ T_16_19(i, A, B, C, D, E);
+
+ /* Round 2 */
+ for (; i < 40; ++i)
+ T_20_39(i, A, B, C, D, E);
+
+ /* Round 3 */
+ for (; i < 60; ++i)
+ T_40_59(i, A, B, C, D, E);
+
+ /* Round 4 */
+ for (; i < 80; ++i)
+ T_60_79(i, A, B, C, D, E);
+
+ digest[0] += A;
+ digest[1] += B;
+ digest[2] += C;
+ digest[3] += D;
+ digest[4] += E;
+}
+EXPORT_SYMBOL(sha1_transform);
+
+/**
+ * sha1_init_raw - initialize the vectors for a SHA1 digest
+ * @buf: vector to initialize
+ */
+void sha1_init_raw(__u32 *buf)
+{
+ buf[0] = 0x67452301;
+ buf[1] = 0xefcdab89;
+ buf[2] = 0x98badcfe;
+ buf[3] = 0x10325476;
+ buf[4] = 0xc3d2e1f0;
+}
+EXPORT_SYMBOL(sha1_init_raw);
+
+static void __maybe_unused sha1_blocks_generic(struct sha1_block_state *state,
+ const u8 *data, size_t nblocks)
+{
+ u32 workspace[SHA1_WORKSPACE_WORDS];
+
+ do {
+ sha1_transform(state->h, data, workspace);
+ data += SHA1_BLOCK_SIZE;
+ } while (--nblocks);
+
+ memzero_explicit(workspace, sizeof(workspace));
+}
+
+#ifdef CONFIG_CRYPTO_LIB_SHA1_ARCH
+#include "sha1.h" /* $(SRCARCH)/sha1.h */
+#else
+#define sha1_blocks sha1_blocks_generic
+#endif
+
+void sha1_init(struct sha1_ctx *ctx)
+{
+ ctx->state = sha1_iv;
+ ctx->bytecount = 0;
+}
+EXPORT_SYMBOL_GPL(sha1_init);
+
+void sha1_update(struct sha1_ctx *ctx, const u8 *data, size_t len)
+{
+ size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE;
+
+ ctx->bytecount += len;
+
+ if (partial + len >= SHA1_BLOCK_SIZE) {
+ size_t nblocks;
+
+ if (partial) {
+ size_t l = SHA1_BLOCK_SIZE - partial;
+
+ memcpy(&ctx->buf[partial], data, l);
+ data += l;
+ len -= l;
+
+ sha1_blocks(&ctx->state, ctx->buf, 1);
+ }
+
+ nblocks = len / SHA1_BLOCK_SIZE;
+ len %= SHA1_BLOCK_SIZE;
+
+ if (nblocks) {
+ sha1_blocks(&ctx->state, data, nblocks);
+ data += nblocks * SHA1_BLOCK_SIZE;
+ }
+ partial = 0;
+ }
+ if (len)
+ memcpy(&ctx->buf[partial], data, len);
+}
+EXPORT_SYMBOL_GPL(sha1_update);
+
+static void __sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
+{
+ u64 bitcount = ctx->bytecount << 3;
+ size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE;
+
+ ctx->buf[partial++] = 0x80;
+ if (partial > SHA1_BLOCK_SIZE - 8) {
+ memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - partial);
+ sha1_blocks(&ctx->state, ctx->buf, 1);
+ partial = 0;
+ }
+ memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - 8 - partial);
+ *(__be64 *)&ctx->buf[SHA1_BLOCK_SIZE - 8] = cpu_to_be64(bitcount);
+ sha1_blocks(&ctx->state, ctx->buf, 1);
+
+ for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4)
+ put_unaligned_be32(ctx->state.h[i / 4], out + i);
+}
+
+void sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
+{
+ __sha1_final(ctx, out);
+ memzero_explicit(ctx, sizeof(*ctx));
+}
+EXPORT_SYMBOL_GPL(sha1_final);
+
+void sha1(const u8 *data, size_t len, u8 out[SHA1_DIGEST_SIZE])
+{
+ struct sha1_ctx ctx;
+
+ sha1_init(&ctx);
+ sha1_update(&ctx, data, len);
+ sha1_final(&ctx, out);
+}
+EXPORT_SYMBOL_GPL(sha1);
+
+static void __hmac_sha1_preparekey(struct sha1_block_state *istate,
+ struct sha1_block_state *ostate,
+ const u8 *raw_key, size_t raw_key_len)
+{
+ union {
+ u8 b[SHA1_BLOCK_SIZE];
+ unsigned long w[SHA1_BLOCK_SIZE / sizeof(unsigned long)];
+ } derived_key = { 0 };
+
+ if (unlikely(raw_key_len > SHA1_BLOCK_SIZE))
+ sha1(raw_key, raw_key_len, derived_key.b);
+ else
+ memcpy(derived_key.b, raw_key, raw_key_len);
+
+ for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
+ derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE);
+ *istate = sha1_iv;
+ sha1_blocks(istate, derived_key.b, 1);
+
+ for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
+ derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^
+ HMAC_IPAD_VALUE);
+ *ostate = sha1_iv;
+ sha1_blocks(ostate, derived_key.b, 1);
+
+ memzero_explicit(&derived_key, sizeof(derived_key));
+}
+
+void hmac_sha1_preparekey(struct hmac_sha1_key *key,
+ const u8 *raw_key, size_t raw_key_len)
+{
+ __hmac_sha1_preparekey(&key->istate, &key->ostate,
+ raw_key, raw_key_len);
+}
+EXPORT_SYMBOL_GPL(hmac_sha1_preparekey);
+
+void hmac_sha1_init(struct hmac_sha1_ctx *ctx, const struct hmac_sha1_key *key)
+{
+ ctx->sha_ctx.state = key->istate;
+ ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE;
+ ctx->ostate = key->ostate;
+}
+EXPORT_SYMBOL_GPL(hmac_sha1_init);
+
+void hmac_sha1_init_usingrawkey(struct hmac_sha1_ctx *ctx,
+ const u8 *raw_key, size_t raw_key_len)
+{
+ __hmac_sha1_preparekey(&ctx->sha_ctx.state, &ctx->ostate,
+ raw_key, raw_key_len);
+ ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE;
+}
+EXPORT_SYMBOL_GPL(hmac_sha1_init_usingrawkey);
+
+void hmac_sha1_final(struct hmac_sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
+{
+ /* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */
+ __sha1_final(&ctx->sha_ctx, ctx->sha_ctx.buf);
+ memset(&ctx->sha_ctx.buf[SHA1_DIGEST_SIZE], 0,
+ SHA1_BLOCK_SIZE - SHA1_DIGEST_SIZE);
+ ctx->sha_ctx.buf[SHA1_DIGEST_SIZE] = 0x80;
+ *(__be32 *)&ctx->sha_ctx.buf[SHA1_BLOCK_SIZE - 4] =
+ cpu_to_be32(8 * (SHA1_BLOCK_SIZE + SHA1_DIGEST_SIZE));
+
+ /* Compute the outer hash, which gives the HMAC value. */
+ sha1_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1);
+ for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4)
+ put_unaligned_be32(ctx->ostate.h[i / 4], out + i);
+
+ memzero_explicit(ctx, sizeof(*ctx));
+}
+EXPORT_SYMBOL_GPL(hmac_sha1_final);
+
+void hmac_sha1(const struct hmac_sha1_key *key,
+ const u8 *data, size_t data_len, u8 out[SHA1_DIGEST_SIZE])
+{
+ struct hmac_sha1_ctx ctx;
+
+ hmac_sha1_init(&ctx, key);
+ hmac_sha1_update(&ctx, data, data_len);
+ hmac_sha1_final(&ctx, out);
+}
+EXPORT_SYMBOL_GPL(hmac_sha1);
+
+void hmac_sha1_usingrawkey(const u8 *raw_key, size_t raw_key_len,
+ const u8 *data, size_t data_len,
+ u8 out[SHA1_DIGEST_SIZE])
+{
+ struct hmac_sha1_ctx ctx;
+
+ hmac_sha1_init_usingrawkey(&ctx, raw_key, raw_key_len);
+ hmac_sha1_update(&ctx, data, data_len);
+ hmac_sha1_final(&ctx, out);
+}
+EXPORT_SYMBOL_GPL(hmac_sha1_usingrawkey);
+
+#if defined(sha1_mod_init_arch) || defined(CONFIG_CRYPTO_FIPS)
+static int __init sha1_mod_init(void)
+{
+#ifdef sha1_mod_init_arch
+ sha1_mod_init_arch();
+#endif
+ if (fips_enabled) {
+ /*
+ * FIPS cryptographic algorithm self-test. As per the FIPS
+ * Implementation Guidance, testing HMAC-SHA1 satisfies the test
+ * requirement for SHA-1 too.
+ */
+ u8 mac[SHA1_DIGEST_SIZE];
+
+ hmac_sha1_usingrawkey(fips_test_key, sizeof(fips_test_key),
+ fips_test_data, sizeof(fips_test_data),
+ mac);
+ if (memcmp(fips_test_hmac_sha1_value, mac, sizeof(mac)) != 0)
+ panic("sha1: FIPS self-test failed\n");
+ }
+ return 0;
+}
+subsys_initcall(sha1_mod_init);
+
+static void __exit sha1_mod_exit(void)
+{
+}
+module_exit(sha1_mod_exit);
+#endif
+
+MODULE_DESCRIPTION("SHA-1 and HMAC-SHA1 library functions");
+MODULE_LICENSE("GPL");