diff options
Diffstat (limited to 'lib/math/div64.c')
| -rw-r--r-- | lib/math/div64.c | 333 |
1 files changed, 333 insertions, 0 deletions
diff --git a/lib/math/div64.c b/lib/math/div64.c new file mode 100644 index 000000000000..d1e92ea24fce --- /dev/null +++ b/lib/math/div64.c @@ -0,0 +1,333 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> + * + * Based on former do_div() implementation from asm-parisc/div64.h: + * Copyright (C) 1999 Hewlett-Packard Co + * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> + * + * + * Generic C version of 64bit/32bit division and modulo, with + * 64bit result and 32bit remainder. + * + * The fast case for (n>>32 == 0) is handled inline by do_div(). + * + * Code generated for this function might be very inefficient + * for some CPUs. __div64_32() can be overridden by linking arch-specific + * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S + * or by defining a preprocessor macro in arch/include/asm/div64.h. + */ + +#include <linux/bitops.h> +#include <linux/export.h> +#include <linux/math.h> +#include <linux/math64.h> +#include <linux/minmax.h> +#include <linux/log2.h> + +/* Not needed on 64bit architectures */ +#if BITS_PER_LONG == 32 + +#ifndef __div64_32 +uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base) +{ + uint64_t rem = *n; + uint64_t b = base; + uint64_t res, d = 1; + uint32_t high = rem >> 32; + + /* Reduce the thing a bit first */ + res = 0; + if (high >= base) { + high /= base; + res = (uint64_t) high << 32; + rem -= (uint64_t) (high*base) << 32; + } + + while ((int64_t)b > 0 && b < rem) { + b = b+b; + d = d+d; + } + + do { + if (rem >= b) { + rem -= b; + res += d; + } + b >>= 1; + d >>= 1; + } while (d); + + *n = res; + return rem; +} +EXPORT_SYMBOL(__div64_32); +#endif + +#ifndef div_s64_rem +s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) +{ + u64 quotient; + + if (dividend < 0) { + quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); + *remainder = -*remainder; + if (divisor > 0) + quotient = -quotient; + } else { + quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); + if (divisor < 0) + quotient = -quotient; + } + return quotient; +} +EXPORT_SYMBOL(div_s64_rem); +#endif + +/* + * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder + * @dividend: 64bit dividend + * @divisor: 64bit divisor + * @remainder: 64bit remainder + * + * This implementation is a comparable to algorithm used by div64_u64. + * But this operation, which includes math for calculating the remainder, + * is kept distinct to avoid slowing down the div64_u64 operation on 32bit + * systems. + */ +#ifndef div64_u64_rem +u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) +{ + u32 high = divisor >> 32; + u64 quot; + + if (high == 0) { + u32 rem32; + quot = div_u64_rem(dividend, divisor, &rem32); + *remainder = rem32; + } else { + int n = fls(high); + quot = div_u64(dividend >> n, divisor >> n); + + if (quot != 0) + quot--; + + *remainder = dividend - quot * divisor; + if (*remainder >= divisor) { + quot++; + *remainder -= divisor; + } + } + + return quot; +} +EXPORT_SYMBOL(div64_u64_rem); +#endif + +/* + * div64_u64 - unsigned 64bit divide with 64bit divisor + * @dividend: 64bit dividend + * @divisor: 64bit divisor + * + * This implementation is a modified version of the algorithm proposed + * by the book 'Hacker's Delight'. The original source and full proof + * can be found here and is available for use without restriction. + * + * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt' + */ +#ifndef div64_u64 +u64 div64_u64(u64 dividend, u64 divisor) +{ + u32 high = divisor >> 32; + u64 quot; + + if (high == 0) { + quot = div_u64(dividend, divisor); + } else { + int n = fls(high); + quot = div_u64(dividend >> n, divisor >> n); + + if (quot != 0) + quot--; + if ((dividend - quot * divisor) >= divisor) + quot++; + } + + return quot; +} +EXPORT_SYMBOL(div64_u64); +#endif + +#ifndef div64_s64 +s64 div64_s64(s64 dividend, s64 divisor) +{ + s64 quot, t; + + quot = div64_u64(abs(dividend), abs(divisor)); + t = (dividend ^ divisor) >> 63; + + return (quot ^ t) - t; +} +EXPORT_SYMBOL(div64_s64); +#endif + +#endif /* BITS_PER_LONG == 32 */ + +/* + * Iterative div/mod for use when dividend is not expected to be much + * bigger than divisor. + */ +#ifndef iter_div_u64_rem +u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) +{ + return __iter_div_u64_rem(dividend, divisor, remainder); +} +EXPORT_SYMBOL(iter_div_u64_rem); +#endif + +#if !defined(mul_u64_add_u64_div_u64) || defined(test_mul_u64_add_u64_div_u64) + +#define mul_add(a, b, c) add_u64_u32(mul_u32_u32(a, b), c) + +#if defined(__SIZEOF_INT128__) && !defined(test_mul_u64_add_u64_div_u64) +static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c) +{ + /* native 64x64=128 bits multiplication */ + u128 prod = (u128)a * b + c; + + *p_lo = prod; + return prod >> 64; +} +#else +static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c) +{ + /* perform a 64x64=128 bits multiplication in 32bit chunks */ + u64 x, y, z; + + /* Since (x-1)(x-1) + 2(x-1) == x.x - 1 two u32 can be added to a u64 */ + x = mul_add(a, b, c); + y = mul_add(a, b >> 32, c >> 32); + y = add_u64_u32(y, x >> 32); + z = mul_add(a >> 32, b >> 32, y >> 32); + y = mul_add(a >> 32, b, y); + *p_lo = (y << 32) + (u32)x; + return add_u64_u32(z, y >> 32); +} +#endif + +#ifndef BITS_PER_ITER +#define BITS_PER_ITER (__LONG_WIDTH__ >= 64 ? 32 : 16) +#endif + +#if BITS_PER_ITER == 32 +#define mul_u64_long_add_u64(p_lo, a, b, c) mul_u64_u64_add_u64(p_lo, a, b, c) +#define add_u64_long(a, b) ((a) + (b)) +#else +#undef BITS_PER_ITER +#define BITS_PER_ITER 16 +static inline u32 mul_u64_long_add_u64(u64 *p_lo, u64 a, u32 b, u64 c) +{ + u64 n_lo = mul_add(a, b, c); + u64 n_med = mul_add(a >> 32, b, c >> 32); + + n_med = add_u64_u32(n_med, n_lo >> 32); + *p_lo = n_med << 32 | (u32)n_lo; + return n_med >> 32; +} + +#define add_u64_long(a, b) add_u64_u32(a, b) +#endif + +u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d) +{ + unsigned long d_msig, q_digit; + unsigned int reps, d_z_hi; + u64 quotient, n_lo, n_hi; + u32 overflow; + + n_hi = mul_u64_u64_add_u64(&n_lo, a, b, c); + + if (!n_hi) + return div64_u64(n_lo, d); + + if (unlikely(n_hi >= d)) { + /* trigger runtime exception if divisor is zero */ + if (d == 0) { + unsigned long zero = 0; + + OPTIMIZER_HIDE_VAR(zero); + return ~0UL/zero; + } + /* overflow: result is unrepresentable in a u64 */ + return ~0ULL; + } + + /* Left align the divisor, shifting the dividend to match */ + d_z_hi = __builtin_clzll(d); + if (d_z_hi) { + d <<= d_z_hi; + n_hi = n_hi << d_z_hi | n_lo >> (64 - d_z_hi); + n_lo <<= d_z_hi; + } + + reps = 64 / BITS_PER_ITER; + /* Optimise loop count for small dividends */ + if (!(u32)(n_hi >> 32)) { + reps -= 32 / BITS_PER_ITER; + n_hi = n_hi << 32 | n_lo >> 32; + n_lo <<= 32; + } +#if BITS_PER_ITER == 16 + if (!(u32)(n_hi >> 48)) { + reps--; + n_hi = add_u64_u32(n_hi << 16, n_lo >> 48); + n_lo <<= 16; + } +#endif + + /* Invert the dividend so we can use add instead of subtract. */ + n_lo = ~n_lo; + n_hi = ~n_hi; + + /* + * Get the most significant BITS_PER_ITER bits of the divisor. + * This is used to get a low 'guestimate' of the quotient digit. + */ + d_msig = (d >> (64 - BITS_PER_ITER)) + 1; + + /* + * Now do a 'long division' with BITS_PER_ITER bit 'digits'. + * The 'guess' quotient digit can be low and BITS_PER_ITER+1 bits. + * The worst case is dividing ~0 by 0x8000 which requires two subtracts. + */ + quotient = 0; + while (reps--) { + q_digit = (unsigned long)(~n_hi >> (64 - 2 * BITS_PER_ITER)) / d_msig; + /* Shift 'n' left to align with the product q_digit * d */ + overflow = n_hi >> (64 - BITS_PER_ITER); + n_hi = add_u64_u32(n_hi << BITS_PER_ITER, n_lo >> (64 - BITS_PER_ITER)); + n_lo <<= BITS_PER_ITER; + /* Add product to negated divisor */ + overflow += mul_u64_long_add_u64(&n_hi, d, q_digit, n_hi); + /* Adjust for the q_digit 'guestimate' being low */ + while (overflow < 0xffffffff >> (32 - BITS_PER_ITER)) { + q_digit++; + n_hi += d; + overflow += n_hi < d; + } + quotient = add_u64_long(quotient << BITS_PER_ITER, q_digit); + } + + /* + * The above only ensures the remainder doesn't overflow, + * it can still be possible to add (aka subtract) another copy + * of the divisor. + */ + if ((n_hi + d) > n_hi) + quotient++; + return quotient; +} +#if !defined(test_mul_u64_add_u64_div_u64) +EXPORT_SYMBOL(mul_u64_add_u64_div_u64); +#endif +#endif |
