summaryrefslogtreecommitdiff
path: root/lib/math/div64.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/math/div64.c')
-rw-r--r--lib/math/div64.c333
1 files changed, 333 insertions, 0 deletions
diff --git a/lib/math/div64.c b/lib/math/div64.c
new file mode 100644
index 000000000000..d1e92ea24fce
--- /dev/null
+++ b/lib/math/div64.c
@@ -0,0 +1,333 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
+ *
+ * Based on former do_div() implementation from asm-parisc/div64.h:
+ * Copyright (C) 1999 Hewlett-Packard Co
+ * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ *
+ * Generic C version of 64bit/32bit division and modulo, with
+ * 64bit result and 32bit remainder.
+ *
+ * The fast case for (n>>32 == 0) is handled inline by do_div().
+ *
+ * Code generated for this function might be very inefficient
+ * for some CPUs. __div64_32() can be overridden by linking arch-specific
+ * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
+ * or by defining a preprocessor macro in arch/include/asm/div64.h.
+ */
+
+#include <linux/bitops.h>
+#include <linux/export.h>
+#include <linux/math.h>
+#include <linux/math64.h>
+#include <linux/minmax.h>
+#include <linux/log2.h>
+
+/* Not needed on 64bit architectures */
+#if BITS_PER_LONG == 32
+
+#ifndef __div64_32
+uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
+{
+ uint64_t rem = *n;
+ uint64_t b = base;
+ uint64_t res, d = 1;
+ uint32_t high = rem >> 32;
+
+ /* Reduce the thing a bit first */
+ res = 0;
+ if (high >= base) {
+ high /= base;
+ res = (uint64_t) high << 32;
+ rem -= (uint64_t) (high*base) << 32;
+ }
+
+ while ((int64_t)b > 0 && b < rem) {
+ b = b+b;
+ d = d+d;
+ }
+
+ do {
+ if (rem >= b) {
+ rem -= b;
+ res += d;
+ }
+ b >>= 1;
+ d >>= 1;
+ } while (d);
+
+ *n = res;
+ return rem;
+}
+EXPORT_SYMBOL(__div64_32);
+#endif
+
+#ifndef div_s64_rem
+s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
+{
+ u64 quotient;
+
+ if (dividend < 0) {
+ quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
+ *remainder = -*remainder;
+ if (divisor > 0)
+ quotient = -quotient;
+ } else {
+ quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
+ if (divisor < 0)
+ quotient = -quotient;
+ }
+ return quotient;
+}
+EXPORT_SYMBOL(div_s64_rem);
+#endif
+
+/*
+ * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
+ * @dividend: 64bit dividend
+ * @divisor: 64bit divisor
+ * @remainder: 64bit remainder
+ *
+ * This implementation is a comparable to algorithm used by div64_u64.
+ * But this operation, which includes math for calculating the remainder,
+ * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
+ * systems.
+ */
+#ifndef div64_u64_rem
+u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
+{
+ u32 high = divisor >> 32;
+ u64 quot;
+
+ if (high == 0) {
+ u32 rem32;
+ quot = div_u64_rem(dividend, divisor, &rem32);
+ *remainder = rem32;
+ } else {
+ int n = fls(high);
+ quot = div_u64(dividend >> n, divisor >> n);
+
+ if (quot != 0)
+ quot--;
+
+ *remainder = dividend - quot * divisor;
+ if (*remainder >= divisor) {
+ quot++;
+ *remainder -= divisor;
+ }
+ }
+
+ return quot;
+}
+EXPORT_SYMBOL(div64_u64_rem);
+#endif
+
+/*
+ * div64_u64 - unsigned 64bit divide with 64bit divisor
+ * @dividend: 64bit dividend
+ * @divisor: 64bit divisor
+ *
+ * This implementation is a modified version of the algorithm proposed
+ * by the book 'Hacker's Delight'. The original source and full proof
+ * can be found here and is available for use without restriction.
+ *
+ * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
+ */
+#ifndef div64_u64
+u64 div64_u64(u64 dividend, u64 divisor)
+{
+ u32 high = divisor >> 32;
+ u64 quot;
+
+ if (high == 0) {
+ quot = div_u64(dividend, divisor);
+ } else {
+ int n = fls(high);
+ quot = div_u64(dividend >> n, divisor >> n);
+
+ if (quot != 0)
+ quot--;
+ if ((dividend - quot * divisor) >= divisor)
+ quot++;
+ }
+
+ return quot;
+}
+EXPORT_SYMBOL(div64_u64);
+#endif
+
+#ifndef div64_s64
+s64 div64_s64(s64 dividend, s64 divisor)
+{
+ s64 quot, t;
+
+ quot = div64_u64(abs(dividend), abs(divisor));
+ t = (dividend ^ divisor) >> 63;
+
+ return (quot ^ t) - t;
+}
+EXPORT_SYMBOL(div64_s64);
+#endif
+
+#endif /* BITS_PER_LONG == 32 */
+
+/*
+ * Iterative div/mod for use when dividend is not expected to be much
+ * bigger than divisor.
+ */
+#ifndef iter_div_u64_rem
+u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
+{
+ return __iter_div_u64_rem(dividend, divisor, remainder);
+}
+EXPORT_SYMBOL(iter_div_u64_rem);
+#endif
+
+#if !defined(mul_u64_add_u64_div_u64) || defined(test_mul_u64_add_u64_div_u64)
+
+#define mul_add(a, b, c) add_u64_u32(mul_u32_u32(a, b), c)
+
+#if defined(__SIZEOF_INT128__) && !defined(test_mul_u64_add_u64_div_u64)
+static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
+{
+ /* native 64x64=128 bits multiplication */
+ u128 prod = (u128)a * b + c;
+
+ *p_lo = prod;
+ return prod >> 64;
+}
+#else
+static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
+{
+ /* perform a 64x64=128 bits multiplication in 32bit chunks */
+ u64 x, y, z;
+
+ /* Since (x-1)(x-1) + 2(x-1) == x.x - 1 two u32 can be added to a u64 */
+ x = mul_add(a, b, c);
+ y = mul_add(a, b >> 32, c >> 32);
+ y = add_u64_u32(y, x >> 32);
+ z = mul_add(a >> 32, b >> 32, y >> 32);
+ y = mul_add(a >> 32, b, y);
+ *p_lo = (y << 32) + (u32)x;
+ return add_u64_u32(z, y >> 32);
+}
+#endif
+
+#ifndef BITS_PER_ITER
+#define BITS_PER_ITER (__LONG_WIDTH__ >= 64 ? 32 : 16)
+#endif
+
+#if BITS_PER_ITER == 32
+#define mul_u64_long_add_u64(p_lo, a, b, c) mul_u64_u64_add_u64(p_lo, a, b, c)
+#define add_u64_long(a, b) ((a) + (b))
+#else
+#undef BITS_PER_ITER
+#define BITS_PER_ITER 16
+static inline u32 mul_u64_long_add_u64(u64 *p_lo, u64 a, u32 b, u64 c)
+{
+ u64 n_lo = mul_add(a, b, c);
+ u64 n_med = mul_add(a >> 32, b, c >> 32);
+
+ n_med = add_u64_u32(n_med, n_lo >> 32);
+ *p_lo = n_med << 32 | (u32)n_lo;
+ return n_med >> 32;
+}
+
+#define add_u64_long(a, b) add_u64_u32(a, b)
+#endif
+
+u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
+{
+ unsigned long d_msig, q_digit;
+ unsigned int reps, d_z_hi;
+ u64 quotient, n_lo, n_hi;
+ u32 overflow;
+
+ n_hi = mul_u64_u64_add_u64(&n_lo, a, b, c);
+
+ if (!n_hi)
+ return div64_u64(n_lo, d);
+
+ if (unlikely(n_hi >= d)) {
+ /* trigger runtime exception if divisor is zero */
+ if (d == 0) {
+ unsigned long zero = 0;
+
+ OPTIMIZER_HIDE_VAR(zero);
+ return ~0UL/zero;
+ }
+ /* overflow: result is unrepresentable in a u64 */
+ return ~0ULL;
+ }
+
+ /* Left align the divisor, shifting the dividend to match */
+ d_z_hi = __builtin_clzll(d);
+ if (d_z_hi) {
+ d <<= d_z_hi;
+ n_hi = n_hi << d_z_hi | n_lo >> (64 - d_z_hi);
+ n_lo <<= d_z_hi;
+ }
+
+ reps = 64 / BITS_PER_ITER;
+ /* Optimise loop count for small dividends */
+ if (!(u32)(n_hi >> 32)) {
+ reps -= 32 / BITS_PER_ITER;
+ n_hi = n_hi << 32 | n_lo >> 32;
+ n_lo <<= 32;
+ }
+#if BITS_PER_ITER == 16
+ if (!(u32)(n_hi >> 48)) {
+ reps--;
+ n_hi = add_u64_u32(n_hi << 16, n_lo >> 48);
+ n_lo <<= 16;
+ }
+#endif
+
+ /* Invert the dividend so we can use add instead of subtract. */
+ n_lo = ~n_lo;
+ n_hi = ~n_hi;
+
+ /*
+ * Get the most significant BITS_PER_ITER bits of the divisor.
+ * This is used to get a low 'guestimate' of the quotient digit.
+ */
+ d_msig = (d >> (64 - BITS_PER_ITER)) + 1;
+
+ /*
+ * Now do a 'long division' with BITS_PER_ITER bit 'digits'.
+ * The 'guess' quotient digit can be low and BITS_PER_ITER+1 bits.
+ * The worst case is dividing ~0 by 0x8000 which requires two subtracts.
+ */
+ quotient = 0;
+ while (reps--) {
+ q_digit = (unsigned long)(~n_hi >> (64 - 2 * BITS_PER_ITER)) / d_msig;
+ /* Shift 'n' left to align with the product q_digit * d */
+ overflow = n_hi >> (64 - BITS_PER_ITER);
+ n_hi = add_u64_u32(n_hi << BITS_PER_ITER, n_lo >> (64 - BITS_PER_ITER));
+ n_lo <<= BITS_PER_ITER;
+ /* Add product to negated divisor */
+ overflow += mul_u64_long_add_u64(&n_hi, d, q_digit, n_hi);
+ /* Adjust for the q_digit 'guestimate' being low */
+ while (overflow < 0xffffffff >> (32 - BITS_PER_ITER)) {
+ q_digit++;
+ n_hi += d;
+ overflow += n_hi < d;
+ }
+ quotient = add_u64_long(quotient << BITS_PER_ITER, q_digit);
+ }
+
+ /*
+ * The above only ensures the remainder doesn't overflow,
+ * it can still be possible to add (aka subtract) another copy
+ * of the divisor.
+ */
+ if ((n_hi + d) > n_hi)
+ quotient++;
+ return quotient;
+}
+#if !defined(test_mul_u64_add_u64_div_u64)
+EXPORT_SYMBOL(mul_u64_add_u64_div_u64);
+#endif
+#endif