summaryrefslogtreecommitdiff
path: root/mm/hugetlb.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/hugetlb.c')
-rw-r--r--mm/hugetlb.c7234
1 files changed, 4786 insertions, 2448 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index df2e7dd5ff17..9e7815b4f058 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
* Generic hugetlb support.
* (C) Nadia Yvette Chambers, April 2004
@@ -6,81 +7,151 @@
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/seq_file.h>
-#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/mmu_notifier.h>
#include <linux/nodemask.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/compiler.h>
+#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/mutex.h>
#include <linux/memblock.h>
-#include <linux/sysfs.h>
+#include <linux/minmax.h>
#include <linux/slab.h>
+#include <linux/sched/mm.h>
#include <linux/mmdebug.h>
#include <linux/sched/signal.h>
#include <linux/rmap.h>
+#include <linux/string_choices.h>
#include <linux/string_helpers.h>
#include <linux/swap.h>
-#include <linux/swapops.h>
+#include <linux/leafops.h>
#include <linux/jhash.h>
+#include <linux/numa.h>
+#include <linux/llist.h>
+#include <linux/cma.h>
+#include <linux/migrate.h>
+#include <linux/nospec.h>
+#include <linux/delayacct.h>
+#include <linux/memory.h>
+#include <linux/mm_inline.h>
+#include <linux/padata.h>
+#include <linux/pgalloc.h>
#include <asm/page.h>
-#include <asm/pgtable.h>
#include <asm/tlb.h>
+#include <asm/setup.h>
#include <linux/io.h>
-#include <linux/hugetlb.h>
-#include <linux/hugetlb_cgroup.h>
#include <linux/node.h>
-#include <linux/userfaultfd_k.h>
#include <linux/page_owner.h>
#include "internal.h"
+#include "hugetlb_vmemmap.h"
+#include "hugetlb_cma.h"
+#include "hugetlb_internal.h"
+#include <linux/page-isolation.h>
int hugetlb_max_hstate __read_mostly;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
+
+__initdata nodemask_t hugetlb_bootmem_nodes;
+__initdata struct list_head huge_boot_pages[MAX_NUMNODES];
+static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
+
/*
- * Minimum page order among possible hugepage sizes, set to a proper value
- * at boot time.
+ * Due to ordering constraints across the init code for various
+ * architectures, hugetlb hstate cmdline parameters can't simply
+ * be early_param. early_param might call the setup function
+ * before valid hugetlb page sizes are determined, leading to
+ * incorrect rejection of valid hugepagesz= options.
+ *
+ * So, record the parameters early and consume them whenever the
+ * init code is ready for them, by calling hugetlb_parse_params().
*/
-static unsigned int minimum_order __read_mostly = UINT_MAX;
-__initdata LIST_HEAD(huge_boot_pages);
+/* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
+#define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1)
+struct hugetlb_cmdline {
+ char *val;
+ int (*setup)(char *val);
+};
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
-static unsigned long __initdata default_hstate_size;
static bool __initdata parsed_valid_hugepagesz = true;
+static bool __initdata parsed_default_hugepagesz;
+static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
+static unsigned long hugepage_allocation_threads __initdata;
+
+static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
+static int hstate_cmdline_index __initdata;
+static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
+static int hugetlb_param_index __initdata;
+static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
+static __init void hugetlb_parse_params(void);
+
+#define hugetlb_early_param(str, func) \
+static __init int func##args(char *s) \
+{ \
+ return hugetlb_add_param(s, func); \
+} \
+early_param(str, func##args)
/*
* Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
* free_huge_pages, and surplus_huge_pages.
*/
-DEFINE_SPINLOCK(hugetlb_lock);
+__cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
/*
* Serializes faults on the same logical page. This is used to
* prevent spurious OOMs when the hugepage pool is fully utilized.
*/
-static int num_fault_mutexes;
-struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
+static int num_fault_mutexes __ro_after_init;
+struct mutex *hugetlb_fault_mutex_table __ro_after_init;
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);
+static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
+static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
+static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end, bool take_locks);
+static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
-static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
+static void hugetlb_free_folio(struct folio *folio)
{
- bool free = (spool->count == 0) && (spool->used_hpages == 0);
+ if (folio_test_hugetlb_cma(folio)) {
+ hugetlb_cma_free_folio(folio);
+ return;
+ }
- spin_unlock(&spool->lock);
+ folio_put(folio);
+}
+
+static inline bool subpool_is_free(struct hugepage_subpool *spool)
+{
+ if (spool->count)
+ return false;
+ if (spool->max_hpages != -1)
+ return spool->used_hpages == 0;
+ if (spool->min_hpages != -1)
+ return spool->rsv_hpages == spool->min_hpages;
+
+ return true;
+}
+
+static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
+ unsigned long irq_flags)
+{
+ spin_unlock_irqrestore(&spool->lock, irq_flags);
/* If no pages are used, and no other handles to the subpool
- * remain, give up any reservations mased on minimum size and
+ * remain, give up any reservations based on minimum size and
* free the subpool */
- if (free) {
+ if (subpool_is_free(spool)) {
if (spool->min_hpages != -1)
hugetlb_acct_memory(spool->hstate,
-spool->min_hpages);
@@ -114,19 +185,21 @@ struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
void hugepage_put_subpool(struct hugepage_subpool *spool)
{
- spin_lock(&spool->lock);
+ unsigned long flags;
+
+ spin_lock_irqsave(&spool->lock, flags);
BUG_ON(!spool->count);
spool->count--;
- unlock_or_release_subpool(spool);
+ unlock_or_release_subpool(spool, flags);
}
/*
* Subpool accounting for allocating and reserving pages.
* Return -ENOMEM if there are not enough resources to satisfy the
- * the request. Otherwise, return the number of pages by which the
+ * request. Otherwise, return the number of pages by which the
* global pools must be adjusted (upward). The returned value may
* only be different than the passed value (delta) in the case where
- * a subpool minimum size must be manitained.
+ * a subpool minimum size must be maintained.
*/
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
long delta)
@@ -136,7 +209,7 @@ static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
if (!spool)
return ret;
- spin_lock(&spool->lock);
+ spin_lock_irq(&spool->lock);
if (spool->max_hpages != -1) { /* maximum size accounting */
if ((spool->used_hpages + delta) <= spool->max_hpages)
@@ -163,7 +236,7 @@ static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
}
unlock_ret:
- spin_unlock(&spool->lock);
+ spin_unlock_irq(&spool->lock);
return ret;
}
@@ -177,11 +250,12 @@ static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
long delta)
{
long ret = delta;
+ unsigned long flags;
if (!spool)
return delta;
- spin_lock(&spool->lock);
+ spin_lock_irqsave(&spool->lock, flags);
if (spool->max_hpages != -1) /* maximum size accounting */
spool->used_hpages -= delta;
@@ -202,131 +276,509 @@ static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
* If hugetlbfs_put_super couldn't free spool due to an outstanding
* quota reference, free it now.
*/
- unlock_or_release_subpool(spool);
+ unlock_or_release_subpool(spool, flags);
return ret;
}
-static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
+static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
- return HUGETLBFS_SB(inode->i_sb)->spool;
+ return subpool_inode(file_inode(vma->vm_file));
}
-static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
+/*
+ * hugetlb vma_lock helper routines
+ */
+void hugetlb_vma_lock_read(struct vm_area_struct *vma)
{
- return subpool_inode(file_inode(vma->vm_file));
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ down_read(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ down_read(&resv_map->rw_sema);
+ }
+}
+
+void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
+{
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ up_read(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ up_read(&resv_map->rw_sema);
+ }
+}
+
+void hugetlb_vma_lock_write(struct vm_area_struct *vma)
+{
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ down_write(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ down_write(&resv_map->rw_sema);
+ }
+}
+
+void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
+{
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ up_write(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ up_write(&resv_map->rw_sema);
+ }
+}
+
+int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
+{
+
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ return down_write_trylock(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ return down_write_trylock(&resv_map->rw_sema);
+ }
+
+ return 1;
+}
+
+void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
+{
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ lockdep_assert_held(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ lockdep_assert_held(&resv_map->rw_sema);
+ }
+}
+
+void hugetlb_vma_lock_release(struct kref *kref)
+{
+ struct hugetlb_vma_lock *vma_lock = container_of(kref,
+ struct hugetlb_vma_lock, refs);
+
+ kfree(vma_lock);
+}
+
+static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
+{
+ struct vm_area_struct *vma = vma_lock->vma;
+
+ /*
+ * vma_lock structure may or not be released as a result of put,
+ * it certainly will no longer be attached to vma so clear pointer.
+ * Semaphore synchronizes access to vma_lock->vma field.
+ */
+ vma_lock->vma = NULL;
+ vma->vm_private_data = NULL;
+ up_write(&vma_lock->rw_sema);
+ kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
+}
+
+static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
+{
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ __hugetlb_vma_unlock_write_put(vma_lock);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ /* no free for anon vmas, but still need to unlock */
+ up_write(&resv_map->rw_sema);
+ }
+}
+
+static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
+{
+ /*
+ * Only present in sharable vmas.
+ */
+ if (!vma || !__vma_shareable_lock(vma))
+ return;
+
+ if (vma->vm_private_data) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ down_write(&vma_lock->rw_sema);
+ __hugetlb_vma_unlock_write_put(vma_lock);
+ }
}
/*
- * Region tracking -- allows tracking of reservations and instantiated pages
- * across the pages in a mapping.
- *
- * The region data structures are embedded into a resv_map and protected
- * by a resv_map's lock. The set of regions within the resv_map represent
- * reservations for huge pages, or huge pages that have already been
- * instantiated within the map. The from and to elements are huge page
- * indicies into the associated mapping. from indicates the starting index
- * of the region. to represents the first index past the end of the region.
- *
- * For example, a file region structure with from == 0 and to == 4 represents
- * four huge pages in a mapping. It is important to note that the to element
- * represents the first element past the end of the region. This is used in
- * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
- *
- * Interval notation of the form [from, to) will be used to indicate that
- * the endpoint from is inclusive and to is exclusive.
+ * vma specific semaphore used for pmd sharing and fault/truncation
+ * synchronization
*/
-struct file_region {
- struct list_head link;
- long from;
- long to;
-};
+int hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
+{
+ struct hugetlb_vma_lock *vma_lock;
+
+ /* Only establish in (flags) sharable vmas */
+ if (!vma || !(vma->vm_flags & VM_MAYSHARE))
+ return 0;
+
+ /* Should never get here with non-NULL vm_private_data */
+ if (vma->vm_private_data)
+ return -EINVAL;
+
+ vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
+ if (!vma_lock) {
+ /*
+ * If we can not allocate structure, then vma can not
+ * participate in pmd sharing. This is only a possible
+ * performance enhancement and memory saving issue.
+ * However, the lock is also used to synchronize page
+ * faults with truncation. If the lock is not present,
+ * unlikely races could leave pages in a file past i_size
+ * until the file is removed. Warn in the unlikely case of
+ * allocation failure.
+ */
+ pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
+ return -EINVAL;
+ }
+
+ kref_init(&vma_lock->refs);
+ init_rwsem(&vma_lock->rw_sema);
+ vma_lock->vma = vma;
+ vma->vm_private_data = vma_lock;
+
+ return 0;
+}
+
+/* Helper that removes a struct file_region from the resv_map cache and returns
+ * it for use.
+ */
+static struct file_region *
+get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
+{
+ struct file_region *nrg;
+
+ VM_BUG_ON(resv->region_cache_count <= 0);
+
+ resv->region_cache_count--;
+ nrg = list_first_entry(&resv->region_cache, struct file_region, link);
+ list_del(&nrg->link);
+
+ nrg->from = from;
+ nrg->to = to;
+
+ return nrg;
+}
+
+static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
+ struct file_region *rg)
+{
+#ifdef CONFIG_CGROUP_HUGETLB
+ nrg->reservation_counter = rg->reservation_counter;
+ nrg->css = rg->css;
+ if (rg->css)
+ css_get(rg->css);
+#endif
+}
+
+/* Helper that records hugetlb_cgroup uncharge info. */
+static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
+ struct hstate *h,
+ struct resv_map *resv,
+ struct file_region *nrg)
+{
+#ifdef CONFIG_CGROUP_HUGETLB
+ if (h_cg) {
+ nrg->reservation_counter =
+ &h_cg->rsvd_hugepage[hstate_index(h)];
+ nrg->css = &h_cg->css;
+ /*
+ * The caller will hold exactly one h_cg->css reference for the
+ * whole contiguous reservation region. But this area might be
+ * scattered when there are already some file_regions reside in
+ * it. As a result, many file_regions may share only one css
+ * reference. In order to ensure that one file_region must hold
+ * exactly one h_cg->css reference, we should do css_get for
+ * each file_region and leave the reference held by caller
+ * untouched.
+ */
+ css_get(&h_cg->css);
+ if (!resv->pages_per_hpage)
+ resv->pages_per_hpage = pages_per_huge_page(h);
+ /* pages_per_hpage should be the same for all entries in
+ * a resv_map.
+ */
+ VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
+ } else {
+ nrg->reservation_counter = NULL;
+ nrg->css = NULL;
+ }
+#endif
+}
+
+static void put_uncharge_info(struct file_region *rg)
+{
+#ifdef CONFIG_CGROUP_HUGETLB
+ if (rg->css)
+ css_put(rg->css);
+#endif
+}
+
+static bool has_same_uncharge_info(struct file_region *rg,
+ struct file_region *org)
+{
+#ifdef CONFIG_CGROUP_HUGETLB
+ return rg->reservation_counter == org->reservation_counter &&
+ rg->css == org->css;
+
+#else
+ return true;
+#endif
+}
+
+static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
+{
+ struct file_region *nrg, *prg;
+
+ prg = list_prev_entry(rg, link);
+ if (&prg->link != &resv->regions && prg->to == rg->from &&
+ has_same_uncharge_info(prg, rg)) {
+ prg->to = rg->to;
+
+ list_del(&rg->link);
+ put_uncharge_info(rg);
+ kfree(rg);
+
+ rg = prg;
+ }
+
+ nrg = list_next_entry(rg, link);
+ if (&nrg->link != &resv->regions && nrg->from == rg->to &&
+ has_same_uncharge_info(nrg, rg)) {
+ nrg->from = rg->from;
+
+ list_del(&rg->link);
+ put_uncharge_info(rg);
+ kfree(rg);
+ }
+}
+
+static inline long
+hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
+ long to, struct hstate *h, struct hugetlb_cgroup *cg,
+ long *regions_needed)
+{
+ struct file_region *nrg;
+
+ if (!regions_needed) {
+ nrg = get_file_region_entry_from_cache(map, from, to);
+ record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
+ list_add(&nrg->link, rg);
+ coalesce_file_region(map, nrg);
+ } else
+ *regions_needed += 1;
+
+ return to - from;
+}
/*
- * Add the huge page range represented by [f, t) to the reserve
- * map. In the normal case, existing regions will be expanded
- * to accommodate the specified range. Sufficient regions should
- * exist for expansion due to the previous call to region_chg
- * with the same range. However, it is possible that region_del
- * could have been called after region_chg and modifed the map
- * in such a way that no region exists to be expanded. In this
- * case, pull a region descriptor from the cache associated with
- * the map and use that for the new range.
+ * Must be called with resv->lock held.
*
- * Return the number of new huge pages added to the map. This
- * number is greater than or equal to zero.
+ * Calling this with regions_needed != NULL will count the number of pages
+ * to be added but will not modify the linked list. And regions_needed will
+ * indicate the number of file_regions needed in the cache to carry out to add
+ * the regions for this range.
*/
-static long region_add(struct resv_map *resv, long f, long t)
+static long add_reservation_in_range(struct resv_map *resv, long f, long t,
+ struct hugetlb_cgroup *h_cg,
+ struct hstate *h, long *regions_needed)
{
- struct list_head *head = &resv->regions;
- struct file_region *rg, *nrg, *trg;
long add = 0;
+ struct list_head *head = &resv->regions;
+ long last_accounted_offset = f;
+ struct file_region *iter, *trg = NULL;
+ struct list_head *rg = NULL;
- spin_lock(&resv->lock);
- /* Locate the region we are either in or before. */
- list_for_each_entry(rg, head, link)
- if (f <= rg->to)
+ if (regions_needed)
+ *regions_needed = 0;
+
+ /* In this loop, we essentially handle an entry for the range
+ * [last_accounted_offset, iter->from), at every iteration, with some
+ * bounds checking.
+ */
+ list_for_each_entry_safe(iter, trg, head, link) {
+ /* Skip irrelevant regions that start before our range. */
+ if (iter->from < f) {
+ /* If this region ends after the last accounted offset,
+ * then we need to update last_accounted_offset.
+ */
+ if (iter->to > last_accounted_offset)
+ last_accounted_offset = iter->to;
+ continue;
+ }
+
+ /* When we find a region that starts beyond our range, we've
+ * finished.
+ */
+ if (iter->from >= t) {
+ rg = iter->link.prev;
break;
+ }
+
+ /* Add an entry for last_accounted_offset -> iter->from, and
+ * update last_accounted_offset.
+ */
+ if (iter->from > last_accounted_offset)
+ add += hugetlb_resv_map_add(resv, iter->link.prev,
+ last_accounted_offset,
+ iter->from, h, h_cg,
+ regions_needed);
+
+ last_accounted_offset = iter->to;
+ }
+
+ /* Handle the case where our range extends beyond
+ * last_accounted_offset.
+ */
+ if (!rg)
+ rg = head->prev;
+ if (last_accounted_offset < t)
+ add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
+ t, h, h_cg, regions_needed);
+
+ return add;
+}
+
+/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
+ */
+static int allocate_file_region_entries(struct resv_map *resv,
+ int regions_needed)
+ __must_hold(&resv->lock)
+{
+ LIST_HEAD(allocated_regions);
+ int to_allocate = 0, i = 0;
+ struct file_region *trg = NULL, *rg = NULL;
+
+ VM_BUG_ON(regions_needed < 0);
/*
- * If no region exists which can be expanded to include the
- * specified range, the list must have been modified by an
- * interleving call to region_del(). Pull a region descriptor
- * from the cache and use it for this range.
+ * Check for sufficient descriptors in the cache to accommodate
+ * the number of in progress add operations plus regions_needed.
+ *
+ * This is a while loop because when we drop the lock, some other call
+ * to region_add or region_del may have consumed some region_entries,
+ * so we keep looping here until we finally have enough entries for
+ * (adds_in_progress + regions_needed).
*/
- if (&rg->link == head || t < rg->from) {
- VM_BUG_ON(resv->region_cache_count <= 0);
+ while (resv->region_cache_count <
+ (resv->adds_in_progress + regions_needed)) {
+ to_allocate = resv->adds_in_progress + regions_needed -
+ resv->region_cache_count;
+
+ /* At this point, we should have enough entries in the cache
+ * for all the existing adds_in_progress. We should only be
+ * needing to allocate for regions_needed.
+ */
+ VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
- resv->region_cache_count--;
- nrg = list_first_entry(&resv->region_cache, struct file_region,
- link);
- list_del(&nrg->link);
+ spin_unlock(&resv->lock);
+ for (i = 0; i < to_allocate; i++) {
+ trg = kmalloc(sizeof(*trg), GFP_KERNEL);
+ if (!trg)
+ goto out_of_memory;
+ list_add(&trg->link, &allocated_regions);
+ }
- nrg->from = f;
- nrg->to = t;
- list_add(&nrg->link, rg->link.prev);
+ spin_lock(&resv->lock);
- add += t - f;
- goto out_locked;
+ list_splice(&allocated_regions, &resv->region_cache);
+ resv->region_cache_count += to_allocate;
}
- /* Round our left edge to the current segment if it encloses us. */
- if (f > rg->from)
- f = rg->from;
+ return 0;
- /* Check for and consume any regions we now overlap with. */
- nrg = rg;
- list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
- if (&rg->link == head)
- break;
- if (rg->from > t)
- break;
+out_of_memory:
+ list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
+ list_del(&rg->link);
+ kfree(rg);
+ }
+ return -ENOMEM;
+}
- /* If this area reaches higher then extend our area to
- * include it completely. If this is not the first area
- * which we intend to reuse, free it. */
- if (rg->to > t)
- t = rg->to;
- if (rg != nrg) {
- /* Decrement return value by the deleted range.
- * Another range will span this area so that by
- * end of routine add will be >= zero
- */
- add -= (rg->to - rg->from);
- list_del(&rg->link);
- kfree(rg);
+/*
+ * Add the huge page range represented by [f, t) to the reserve
+ * map. Regions will be taken from the cache to fill in this range.
+ * Sufficient regions should exist in the cache due to the previous
+ * call to region_chg with the same range, but in some cases the cache will not
+ * have sufficient entries due to races with other code doing region_add or
+ * region_del. The extra needed entries will be allocated.
+ *
+ * regions_needed is the out value provided by a previous call to region_chg.
+ *
+ * Return the number of new huge pages added to the map. This number is greater
+ * than or equal to zero. If file_region entries needed to be allocated for
+ * this operation and we were not able to allocate, it returns -ENOMEM.
+ * region_add of regions of length 1 never allocate file_regions and cannot
+ * fail; region_chg will always allocate at least 1 entry and a region_add for
+ * 1 page will only require at most 1 entry.
+ */
+static long region_add(struct resv_map *resv, long f, long t,
+ long in_regions_needed, struct hstate *h,
+ struct hugetlb_cgroup *h_cg)
+{
+ long add = 0, actual_regions_needed = 0;
+
+ spin_lock(&resv->lock);
+retry:
+
+ /* Count how many regions are actually needed to execute this add. */
+ add_reservation_in_range(resv, f, t, NULL, NULL,
+ &actual_regions_needed);
+
+ /*
+ * Check for sufficient descriptors in the cache to accommodate
+ * this add operation. Note that actual_regions_needed may be greater
+ * than in_regions_needed, as the resv_map may have been modified since
+ * the region_chg call. In this case, we need to make sure that we
+ * allocate extra entries, such that we have enough for all the
+ * existing adds_in_progress, plus the excess needed for this
+ * operation.
+ */
+ if (actual_regions_needed > in_regions_needed &&
+ resv->region_cache_count <
+ resv->adds_in_progress +
+ (actual_regions_needed - in_regions_needed)) {
+ /* region_add operation of range 1 should never need to
+ * allocate file_region entries.
+ */
+ VM_BUG_ON(t - f <= 1);
+
+ if (allocate_file_region_entries(
+ resv, actual_regions_needed - in_regions_needed)) {
+ return -ENOMEM;
}
+
+ goto retry;
}
- add += (nrg->from - f); /* Added to beginning of region */
- nrg->from = f;
- add += t - nrg->to; /* Added to end of region */
- nrg->to = t;
+ add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
+
+ resv->adds_in_progress -= in_regions_needed;
-out_locked:
- resv->adds_in_progress--;
spin_unlock(&resv->lock);
- VM_BUG_ON(add < 0);
return add;
}
@@ -337,111 +789,38 @@ out_locked:
* call to region_add that will actually modify the reserve
* map to add the specified range [f, t). region_chg does
* not change the number of huge pages represented by the
- * map. However, if the existing regions in the map can not
- * be expanded to represent the new range, a new file_region
- * structure is added to the map as a placeholder. This is
- * so that the subsequent region_add call will have all the
- * regions it needs and will not fail.
+ * map. A number of new file_region structures is added to the cache as a
+ * placeholder, for the subsequent region_add call to use. At least 1
+ * file_region structure is added.
*
- * Upon entry, region_chg will also examine the cache of region descriptors
- * associated with the map. If there are not enough descriptors cached, one
- * will be allocated for the in progress add operation.
+ * out_regions_needed is the number of regions added to the
+ * resv->adds_in_progress. This value needs to be provided to a follow up call
+ * to region_add or region_abort for proper accounting.
*
* Returns the number of huge pages that need to be added to the existing
* reservation map for the range [f, t). This number is greater or equal to
* zero. -ENOMEM is returned if a new file_region structure or cache entry
* is needed and can not be allocated.
*/
-static long region_chg(struct resv_map *resv, long f, long t)
+static long region_chg(struct resv_map *resv, long f, long t,
+ long *out_regions_needed)
{
- struct list_head *head = &resv->regions;
- struct file_region *rg, *nrg = NULL;
long chg = 0;
-retry:
spin_lock(&resv->lock);
-retry_locked:
- resv->adds_in_progress++;
-
- /*
- * Check for sufficient descriptors in the cache to accommodate
- * the number of in progress add operations.
- */
- if (resv->adds_in_progress > resv->region_cache_count) {
- struct file_region *trg;
-
- VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
- /* Must drop lock to allocate a new descriptor. */
- resv->adds_in_progress--;
- spin_unlock(&resv->lock);
- trg = kmalloc(sizeof(*trg), GFP_KERNEL);
- if (!trg) {
- kfree(nrg);
- return -ENOMEM;
- }
-
- spin_lock(&resv->lock);
- list_add(&trg->link, &resv->region_cache);
- resv->region_cache_count++;
- goto retry_locked;
- }
-
- /* Locate the region we are before or in. */
- list_for_each_entry(rg, head, link)
- if (f <= rg->to)
- break;
+ /* Count how many hugepages in this range are NOT represented. */
+ chg = add_reservation_in_range(resv, f, t, NULL, NULL,
+ out_regions_needed);
- /* If we are below the current region then a new region is required.
- * Subtle, allocate a new region at the position but make it zero
- * size such that we can guarantee to record the reservation. */
- if (&rg->link == head || t < rg->from) {
- if (!nrg) {
- resv->adds_in_progress--;
- spin_unlock(&resv->lock);
- nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
- if (!nrg)
- return -ENOMEM;
+ if (*out_regions_needed == 0)
+ *out_regions_needed = 1;
- nrg->from = f;
- nrg->to = f;
- INIT_LIST_HEAD(&nrg->link);
- goto retry;
- }
-
- list_add(&nrg->link, rg->link.prev);
- chg = t - f;
- goto out_nrg;
- }
-
- /* Round our left edge to the current segment if it encloses us. */
- if (f > rg->from)
- f = rg->from;
- chg = t - f;
-
- /* Check for and consume any regions we now overlap with. */
- list_for_each_entry(rg, rg->link.prev, link) {
- if (&rg->link == head)
- break;
- if (rg->from > t)
- goto out;
+ if (allocate_file_region_entries(resv, *out_regions_needed))
+ return -ENOMEM;
- /* We overlap with this area, if it extends further than
- * us then we must extend ourselves. Account for its
- * existing reservation. */
- if (rg->to > t) {
- chg += rg->to - t;
- t = rg->to;
- }
- chg -= rg->to - rg->from;
- }
+ resv->adds_in_progress += *out_regions_needed;
-out:
- spin_unlock(&resv->lock);
- /* We already know we raced and no longer need the new region */
- kfree(nrg);
- return chg;
-out_nrg:
spin_unlock(&resv->lock);
return chg;
}
@@ -451,17 +830,20 @@ out_nrg:
* of the resv_map keeps track of the operations in progress between
* calls to region_chg and region_add. Operations are sometimes
* aborted after the call to region_chg. In such cases, region_abort
- * is called to decrement the adds_in_progress counter.
+ * is called to decrement the adds_in_progress counter. regions_needed
+ * is the value returned by the region_chg call, it is used to decrement
+ * the adds_in_progress counter.
*
* NOTE: The range arguments [f, t) are not needed or used in this
* routine. They are kept to make reading the calling code easier as
* arguments will match the associated region_chg call.
*/
-static void region_abort(struct resv_map *resv, long f, long t)
+static void region_abort(struct resv_map *resv, long f, long t,
+ long regions_needed)
{
spin_lock(&resv->lock);
VM_BUG_ON(!resv->region_cache_count);
- resv->adds_in_progress--;
+ resv->adds_in_progress -= regions_needed;
spin_unlock(&resv->lock);
}
@@ -525,10 +907,15 @@ retry:
}
del += t - f;
+ hugetlb_cgroup_uncharge_file_region(
+ resv, rg, t - f, false);
/* New entry for end of split region */
nrg->from = t;
nrg->to = rg->to;
+
+ copy_hugetlb_cgroup_uncharge_info(nrg, rg);
+
INIT_LIST_HEAD(&nrg->link);
/* Original entry is trimmed */
@@ -541,15 +928,23 @@ retry:
if (f <= rg->from && t >= rg->to) { /* Remove entire region */
del += rg->to - rg->from;
+ hugetlb_cgroup_uncharge_file_region(resv, rg,
+ rg->to - rg->from, true);
list_del(&rg->link);
kfree(rg);
continue;
}
if (f <= rg->from) { /* Trim beginning of region */
+ hugetlb_cgroup_uncharge_file_region(resv, rg,
+ t - rg->from, false);
+
del += t - rg->from;
rg->from = t;
} else { /* Trim end of region */
+ hugetlb_cgroup_uncharge_file_region(resv, rg,
+ rg->to - f, false);
+
del += rg->to - f;
rg->to = f;
}
@@ -573,13 +968,20 @@ void hugetlb_fix_reserve_counts(struct inode *inode)
{
struct hugepage_subpool *spool = subpool_inode(inode);
long rsv_adjust;
+ bool reserved = false;
rsv_adjust = hugepage_subpool_get_pages(spool, 1);
- if (rsv_adjust) {
+ if (rsv_adjust > 0) {
struct hstate *h = hstate_inode(inode);
- hugetlb_acct_memory(h, 1);
+ if (!hugetlb_acct_memory(h, 1))
+ reserved = true;
+ } else if (!rsv_adjust) {
+ reserved = true;
}
+
+ if (!reserved)
+ pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
}
/*
@@ -615,7 +1017,7 @@ static long region_count(struct resv_map *resv, long f, long t)
/*
* Convert the address within this vma to the page offset within
- * the mapping, in pagecache page units; huge pages here.
+ * the mapping, huge page units here.
*/
static pgoff_t vma_hugecache_offset(struct hstate *h,
struct vm_area_struct *vma, unsigned long address)
@@ -624,16 +1026,14 @@ static pgoff_t vma_hugecache_offset(struct hstate *h,
(vma->vm_pgoff >> huge_page_order(h));
}
-pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
- unsigned long address)
-{
- return vma_hugecache_offset(hstate_vma(vma), vma, address);
-}
-EXPORT_SYMBOL_GPL(linear_hugepage_index);
-
-/*
- * Return the size of the pages allocated when backing a VMA. In the majority
- * cases this will be same size as used by the page table entries.
+/**
+ * vma_kernel_pagesize - Page size granularity for this VMA.
+ * @vma: The user mapping.
+ *
+ * Folios in this VMA will be aligned to, and at least the size of the
+ * number of bytes returned by this function.
+ *
+ * Return: The default size of the folios allocated when backing a VMA.
*/
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
@@ -668,7 +1068,7 @@ __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
* faults in a MAP_PRIVATE mapping. Only the process that called mmap()
* is guaranteed to have their future faults succeed.
*
- * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
+ * With the exception of hugetlb_dup_vma_private() which is called at fork(),
* the reserve counters are updated with the hugetlb_lock held. It is safe
* to reset the VMA at fork() time as it is not in use yet and there is no
* chance of the global counters getting corrupted as a result of the values.
@@ -693,6 +1093,25 @@ static void set_vma_private_data(struct vm_area_struct *vma,
vma->vm_private_data = (void *)value;
}
+static void
+resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
+ struct hugetlb_cgroup *h_cg,
+ struct hstate *h)
+{
+#ifdef CONFIG_CGROUP_HUGETLB
+ if (!h_cg || !h) {
+ resv_map->reservation_counter = NULL;
+ resv_map->pages_per_hpage = 0;
+ resv_map->css = NULL;
+ } else {
+ resv_map->reservation_counter =
+ &h_cg->rsvd_hugepage[hstate_index(h)];
+ resv_map->pages_per_hpage = pages_per_huge_page(h);
+ resv_map->css = &h_cg->css;
+ }
+#endif
+}
+
struct resv_map *resv_map_alloc(void)
{
struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
@@ -707,8 +1126,16 @@ struct resv_map *resv_map_alloc(void)
kref_init(&resv_map->refs);
spin_lock_init(&resv_map->lock);
INIT_LIST_HEAD(&resv_map->regions);
+ init_rwsem(&resv_map->rw_sema);
resv_map->adds_in_progress = 0;
+ /*
+ * Initialize these to 0. On shared mappings, 0's here indicate these
+ * fields don't do cgroup accounting. On private mappings, these will be
+ * re-initialized to the proper values, to indicate that hugetlb cgroup
+ * reservations are to be un-charged from here.
+ */
+ resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
INIT_LIST_HEAD(&resv_map->region_cache);
list_add(&rg->link, &resv_map->region_cache);
@@ -739,7 +1166,15 @@ void resv_map_release(struct kref *ref)
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
- return inode->i_mapping->private_data;
+ /*
+ * At inode evict time, i_mapping may not point to the original
+ * address space within the inode. This original address space
+ * contains the pointer to the resv_map. So, always use the
+ * address space embedded within the inode.
+ * The VERY common case is inode->mapping == &inode->i_data but,
+ * this may not be true for device special inodes.
+ */
+ return (struct resv_map *)(&inode->i_data)->i_private_data;
}
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
@@ -757,21 +1192,28 @@ static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
}
}
-static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
+static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
- VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
- VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
+ VM_WARN_ON_ONCE_VMA(!is_vm_hugetlb_page(vma), vma);
+ VM_WARN_ON_ONCE_VMA(vma->vm_flags & VM_MAYSHARE, vma);
- set_vma_private_data(vma, (get_vma_private_data(vma) &
- HPAGE_RESV_MASK) | (unsigned long)map);
+ set_vma_private_data(vma, get_vma_private_data(vma) | flags);
}
-static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
+static void set_vma_desc_resv_map(struct vm_area_desc *desc, struct resv_map *map)
{
- VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
- VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
+ VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags));
+ VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE);
- set_vma_private_data(vma, get_vma_private_data(vma) | flags);
+ desc->private_data = map;
+}
+
+static void set_vma_desc_resv_flags(struct vm_area_desc *desc, unsigned long flags)
+{
+ VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags));
+ VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE);
+
+ desc->private_data = (void *)((unsigned long)desc->private_data | flags);
}
static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
@@ -781,120 +1223,135 @@ static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
return (get_vma_private_data(vma) & flag) != 0;
}
-/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
-void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
+static bool is_vma_desc_resv_set(struct vm_area_desc *desc, unsigned long flag)
{
- VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
- if (!(vma->vm_flags & VM_MAYSHARE))
- vma->vm_private_data = (void *)0;
+ VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags));
+
+ return ((unsigned long)desc->private_data) & flag;
}
-/* Returns true if the VMA has associated reserve pages */
-static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
+bool __vma_private_lock(struct vm_area_struct *vma)
{
- if (vma->vm_flags & VM_NORESERVE) {
- /*
- * This address is already reserved by other process(chg == 0),
- * so, we should decrement reserved count. Without decrementing,
- * reserve count remains after releasing inode, because this
- * allocated page will go into page cache and is regarded as
- * coming from reserved pool in releasing step. Currently, we
- * don't have any other solution to deal with this situation
- * properly, so add work-around here.
- */
- if (vma->vm_flags & VM_MAYSHARE && chg == 0)
- return true;
- else
- return false;
- }
+ return !(vma->vm_flags & VM_MAYSHARE) &&
+ get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
+ is_vma_resv_set(vma, HPAGE_RESV_OWNER);
+}
- /* Shared mappings always use reserves */
+void hugetlb_dup_vma_private(struct vm_area_struct *vma)
+{
+ VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
+ /*
+ * Clear vm_private_data
+ * - For shared mappings this is a per-vma semaphore that may be
+ * allocated in a subsequent call to hugetlb_vm_op_open.
+ * Before clearing, make sure pointer is not associated with vma
+ * as this will leak the structure. This is the case when called
+ * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
+ * been called to allocate a new structure.
+ * - For MAP_PRIVATE mappings, this is the reserve map which does
+ * not apply to children. Faults generated by the children are
+ * not guaranteed to succeed, even if read-only.
+ */
if (vma->vm_flags & VM_MAYSHARE) {
- /*
- * We know VM_NORESERVE is not set. Therefore, there SHOULD
- * be a region map for all pages. The only situation where
- * there is no region map is if a hole was punched via
- * fallocate. In this case, there really are no reverves to
- * use. This situation is indicated if chg != 0.
- */
- if (chg)
- return false;
- else
- return true;
- }
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+ if (vma_lock && vma_lock->vma != vma)
+ vma->vm_private_data = NULL;
+ } else
+ vma->vm_private_data = NULL;
+}
+
+/*
+ * Reset and decrement one ref on hugepage private reservation.
+ * Called with mm->mmap_lock writer semaphore held.
+ * This function should be only used by mremap and operate on
+ * same sized vma. It should never come here with last ref on the
+ * reservation.
+ */
+void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
+{
/*
- * Only the process that called mmap() has reserves for
- * private mappings.
+ * Clear the old hugetlb private page reservation.
+ * It has already been transferred to new_vma.
+ *
+ * During a mremap() operation of a hugetlb vma we call move_vma()
+ * which copies vma into new_vma and unmaps vma. After the copy
+ * operation both new_vma and vma share a reference to the resv_map
+ * struct, and at that point vma is about to be unmapped. We don't
+ * want to return the reservation to the pool at unmap of vma because
+ * the reservation still lives on in new_vma, so simply decrement the
+ * ref here and remove the resv_map reference from this vma.
*/
- if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
- /*
- * Like the shared case above, a hole punch or truncate
- * could have been performed on the private mapping.
- * Examine the value of chg to determine if reserves
- * actually exist or were previously consumed.
- * Very Subtle - The value of chg comes from a previous
- * call to vma_needs_reserves(). The reserve map for
- * private mappings has different (opposite) semantics
- * than that of shared mappings. vma_needs_reserves()
- * has already taken this difference in semantics into
- * account. Therefore, the meaning of chg is the same
- * as in the shared case above. Code could easily be
- * combined, but keeping it separate draws attention to
- * subtle differences.
- */
- if (chg)
- return false;
- else
- return true;
+ struct resv_map *reservations = vma_resv_map(vma);
+
+ if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
+ resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
+ kref_put(&reservations->refs, resv_map_release);
}
- return false;
+ hugetlb_dup_vma_private(vma);
}
-static void enqueue_huge_page(struct hstate *h, struct page *page)
+static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
{
- int nid = page_to_nid(page);
- list_move(&page->lru, &h->hugepage_freelists[nid]);
+ int nid = folio_nid(folio);
+
+ lockdep_assert_held(&hugetlb_lock);
+ VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
+
+ list_move(&folio->lru, &h->hugepage_freelists[nid]);
h->free_huge_pages++;
h->free_huge_pages_node[nid]++;
+ folio_set_hugetlb_freed(folio);
}
-static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
+static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
+ int nid)
{
- struct page *page;
+ struct folio *folio;
+ bool pin = !!(current->flags & PF_MEMALLOC_PIN);
- list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
- if (!PageHWPoison(page))
- break;
- /*
- * if 'non-isolated free hugepage' not found on the list,
- * the allocation fails.
- */
- if (&h->hugepage_freelists[nid] == &page->lru)
- return NULL;
- list_move(&page->lru, &h->hugepage_activelist);
- set_page_refcounted(page);
- h->free_huge_pages--;
- h->free_huge_pages_node[nid]--;
- return page;
+ lockdep_assert_held(&hugetlb_lock);
+ list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
+ if (pin && !folio_is_longterm_pinnable(folio))
+ continue;
+
+ if (folio_test_hwpoison(folio))
+ continue;
+
+ if (is_migrate_isolate_page(&folio->page))
+ continue;
+
+ list_move(&folio->lru, &h->hugepage_activelist);
+ folio_ref_unfreeze(folio, 1);
+ folio_clear_hugetlb_freed(folio);
+ h->free_huge_pages--;
+ h->free_huge_pages_node[nid]--;
+ return folio;
+ }
+
+ return NULL;
}
-static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
- nodemask_t *nmask)
+static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
+ int nid, nodemask_t *nmask)
{
unsigned int cpuset_mems_cookie;
struct zonelist *zonelist;
struct zone *zone;
struct zoneref *z;
- int node = -1;
+ int node = NUMA_NO_NODE;
+
+ /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
+ if (nid == NUMA_NO_NODE)
+ nid = numa_node_id();
zonelist = node_zonelist(nid, gfp_mask);
retry_cpuset:
cpuset_mems_cookie = read_mems_allowed_begin();
for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
- struct page *page;
+ struct folio *folio;
if (!cpuset_zone_allowed(zone, gfp_mask))
continue;
@@ -906,9 +1363,9 @@ retry_cpuset:
continue;
node = zone_to_nid(zone);
- page = dequeue_huge_page_node_exact(h, node);
- if (page)
- return page;
+ folio = dequeue_hugetlb_folio_node_exact(h, node);
+ if (folio)
+ return folio;
}
if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
goto retry_cpuset;
@@ -916,541 +1373,641 @@ retry_cpuset:
return NULL;
}
-/* Movability of hugepages depends on migration support. */
-static inline gfp_t htlb_alloc_mask(struct hstate *h)
+static unsigned long available_huge_pages(struct hstate *h)
{
- if (hugepage_migration_supported(h))
- return GFP_HIGHUSER_MOVABLE;
- else
- return GFP_HIGHUSER;
+ return h->free_huge_pages - h->resv_huge_pages;
}
-static struct page *dequeue_huge_page_vma(struct hstate *h,
+static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
struct vm_area_struct *vma,
- unsigned long address, int avoid_reserve,
- long chg)
+ unsigned long address, long gbl_chg)
{
- struct page *page;
+ struct folio *folio = NULL;
struct mempolicy *mpol;
gfp_t gfp_mask;
nodemask_t *nodemask;
int nid;
/*
- * A child process with MAP_PRIVATE mappings created by their parent
- * have no page reserves. This check ensures that reservations are
- * not "stolen". The child may still get SIGKILLed
+ * gbl_chg==1 means the allocation requires a new page that was not
+ * reserved before. Making sure there's at least one free page.
*/
- if (!vma_has_reserves(vma, chg) &&
- h->free_huge_pages - h->resv_huge_pages == 0)
- goto err;
-
- /* If reserves cannot be used, ensure enough pages are in the pool */
- if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
+ if (gbl_chg && !available_huge_pages(h))
goto err;
gfp_mask = htlb_alloc_mask(h);
nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
- page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
- if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
- SetPagePrivate(page);
- h->resv_huge_pages--;
+
+ if (mpol_is_preferred_many(mpol)) {
+ folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
+ nid, nodemask);
+
+ /* Fallback to all nodes if page==NULL */
+ nodemask = NULL;
}
+ if (!folio)
+ folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
+ nid, nodemask);
+
mpol_cond_put(mpol);
- return page;
+ return folio;
err:
return NULL;
}
-/*
- * common helper functions for hstate_next_node_to_{alloc|free}.
- * We may have allocated or freed a huge page based on a different
- * nodes_allowed previously, so h->next_node_to_{alloc|free} might
- * be outside of *nodes_allowed. Ensure that we use an allowed
- * node for alloc or free.
- */
-static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
+#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
+#ifdef CONFIG_CONTIG_ALLOC
+static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask,
+ int nid, nodemask_t *nodemask)
{
- nid = next_node_in(nid, *nodes_allowed);
- VM_BUG_ON(nid >= MAX_NUMNODES);
+ struct folio *folio;
+ bool retried = false;
- return nid;
+retry:
+ folio = hugetlb_cma_alloc_folio(order, gfp_mask, nid, nodemask);
+ if (!folio) {
+ if (hugetlb_cma_exclusive_alloc())
+ return NULL;
+
+ folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
+ if (!folio)
+ return NULL;
+ }
+
+ if (folio_ref_freeze(folio, 1))
+ return folio;
+
+ pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
+ hugetlb_free_folio(folio);
+ if (!retried) {
+ retried = true;
+ goto retry;
+ }
+ return NULL;
}
-static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
+#else /* !CONFIG_CONTIG_ALLOC */
+static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid,
+ nodemask_t *nodemask)
{
- if (!node_isset(nid, *nodes_allowed))
- nid = next_node_allowed(nid, nodes_allowed);
- return nid;
+ return NULL;
}
+#endif /* CONFIG_CONTIG_ALLOC */
-/*
- * returns the previously saved node ["this node"] from which to
- * allocate a persistent huge page for the pool and advance the
- * next node from which to allocate, handling wrap at end of node
- * mask.
- */
-static int hstate_next_node_to_alloc(struct hstate *h,
- nodemask_t *nodes_allowed)
+#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
+static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid,
+ nodemask_t *nodemask)
{
- int nid;
-
- VM_BUG_ON(!nodes_allowed);
-
- nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
- h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
-
- return nid;
+ return NULL;
}
+#endif
/*
- * helper for free_pool_huge_page() - return the previously saved
- * node ["this node"] from which to free a huge page. Advance the
- * next node id whether or not we find a free huge page to free so
- * that the next attempt to free addresses the next node.
+ * Remove hugetlb folio from lists.
+ * If vmemmap exists for the folio, clear the hugetlb flag so that the
+ * folio appears as just a compound page. Otherwise, wait until after
+ * allocating vmemmap to clear the flag.
+ *
+ * Must be called with hugetlb lock held.
*/
-static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
+void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
+ bool adjust_surplus)
{
- int nid;
-
- VM_BUG_ON(!nodes_allowed);
+ int nid = folio_nid(folio);
- nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
- h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
-
- return nid;
-}
+ VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
+ VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
-#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
- for (nr_nodes = nodes_weight(*mask); \
- nr_nodes > 0 && \
- ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
- nr_nodes--)
+ lockdep_assert_held(&hugetlb_lock);
+ if (hstate_is_gigantic_no_runtime(h))
+ return;
-#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
- for (nr_nodes = nodes_weight(*mask); \
- nr_nodes > 0 && \
- ((node = hstate_next_node_to_free(hs, mask)) || 1); \
- nr_nodes--)
+ list_del(&folio->lru);
-#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
-static void destroy_compound_gigantic_page(struct page *page,
- unsigned int order)
-{
- int i;
- int nr_pages = 1 << order;
- struct page *p = page + 1;
-
- atomic_set(compound_mapcount_ptr(page), 0);
- for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
- clear_compound_head(p);
- set_page_refcounted(p);
+ if (folio_test_hugetlb_freed(folio)) {
+ folio_clear_hugetlb_freed(folio);
+ h->free_huge_pages--;
+ h->free_huge_pages_node[nid]--;
+ }
+ if (adjust_surplus) {
+ h->surplus_huge_pages--;
+ h->surplus_huge_pages_node[nid]--;
}
- set_compound_order(page, 0);
- __ClearPageHead(page);
-}
-
-static void free_gigantic_page(struct page *page, unsigned int order)
-{
- free_contig_range(page_to_pfn(page), 1 << order);
-}
+ /*
+ * We can only clear the hugetlb flag after allocating vmemmap
+ * pages. Otherwise, someone (memory error handling) may try to write
+ * to tail struct pages.
+ */
+ if (!folio_test_hugetlb_vmemmap_optimized(folio))
+ __folio_clear_hugetlb(folio);
-static int __alloc_gigantic_page(unsigned long start_pfn,
- unsigned long nr_pages, gfp_t gfp_mask)
-{
- unsigned long end_pfn = start_pfn + nr_pages;
- return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
- gfp_mask);
+ h->nr_huge_pages--;
+ h->nr_huge_pages_node[nid]--;
}
-static bool pfn_range_valid_gigantic(struct zone *z,
- unsigned long start_pfn, unsigned long nr_pages)
+void add_hugetlb_folio(struct hstate *h, struct folio *folio,
+ bool adjust_surplus)
{
- unsigned long i, end_pfn = start_pfn + nr_pages;
- struct page *page;
-
- for (i = start_pfn; i < end_pfn; i++) {
- if (!pfn_valid(i))
- return false;
-
- page = pfn_to_page(i);
+ int nid = folio_nid(folio);
- if (page_zone(page) != z)
- return false;
+ VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
- if (PageReserved(page))
- return false;
+ lockdep_assert_held(&hugetlb_lock);
- if (page_count(page) > 0)
- return false;
+ INIT_LIST_HEAD(&folio->lru);
+ h->nr_huge_pages++;
+ h->nr_huge_pages_node[nid]++;
- if (PageHuge(page))
- return false;
+ if (adjust_surplus) {
+ h->surplus_huge_pages++;
+ h->surplus_huge_pages_node[nid]++;
}
- return true;
-}
+ __folio_set_hugetlb(folio);
+ folio_change_private(folio, NULL);
+ /*
+ * We have to set hugetlb_vmemmap_optimized again as above
+ * folio_change_private(folio, NULL) cleared it.
+ */
+ folio_set_hugetlb_vmemmap_optimized(folio);
-static bool zone_spans_last_pfn(const struct zone *zone,
- unsigned long start_pfn, unsigned long nr_pages)
-{
- unsigned long last_pfn = start_pfn + nr_pages - 1;
- return zone_spans_pfn(zone, last_pfn);
+ arch_clear_hugetlb_flags(folio);
+ enqueue_hugetlb_folio(h, folio);
}
-static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
- int nid, nodemask_t *nodemask)
+static void __update_and_free_hugetlb_folio(struct hstate *h,
+ struct folio *folio)
{
- unsigned int order = huge_page_order(h);
- unsigned long nr_pages = 1 << order;
- unsigned long ret, pfn, flags;
- struct zonelist *zonelist;
- struct zone *zone;
- struct zoneref *z;
+ bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
- zonelist = node_zonelist(nid, gfp_mask);
- for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
- spin_lock_irqsave(&zone->lock, flags);
+ if (hstate_is_gigantic_no_runtime(h))
+ return;
- pfn = ALIGN(zone->zone_start_pfn, nr_pages);
- while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
- if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
- /*
- * We release the zone lock here because
- * alloc_contig_range() will also lock the zone
- * at some point. If there's an allocation
- * spinning on this lock, it may win the race
- * and cause alloc_contig_range() to fail...
- */
- spin_unlock_irqrestore(&zone->lock, flags);
- ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
- if (!ret)
- return pfn_to_page(pfn);
- spin_lock_irqsave(&zone->lock, flags);
- }
- pfn += nr_pages;
- }
+ /*
+ * If we don't know which subpages are hwpoisoned, we can't free
+ * the hugepage, so it's leaked intentionally.
+ */
+ if (folio_test_hugetlb_raw_hwp_unreliable(folio))
+ return;
- spin_unlock_irqrestore(&zone->lock, flags);
+ /*
+ * If folio is not vmemmap optimized (!clear_flag), then the folio
+ * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
+ * can only be passed hugetlb pages and will BUG otherwise.
+ */
+ if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
+ spin_lock_irq(&hugetlb_lock);
+ /*
+ * If we cannot allocate vmemmap pages, just refuse to free the
+ * page and put the page back on the hugetlb free list and treat
+ * as a surplus page.
+ */
+ add_hugetlb_folio(h, folio, true);
+ spin_unlock_irq(&hugetlb_lock);
+ return;
}
- return NULL;
-}
+ /*
+ * If vmemmap pages were allocated above, then we need to clear the
+ * hugetlb flag under the hugetlb lock.
+ */
+ if (folio_test_hugetlb(folio)) {
+ spin_lock_irq(&hugetlb_lock);
+ __folio_clear_hugetlb(folio);
+ spin_unlock_irq(&hugetlb_lock);
+ }
-static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
-static void prep_compound_gigantic_page(struct page *page, unsigned int order);
+ /*
+ * Move PageHWPoison flag from head page to the raw error pages,
+ * which makes any healthy subpages reusable.
+ */
+ if (unlikely(folio_test_hwpoison(folio)))
+ folio_clear_hugetlb_hwpoison(folio);
-#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
-static inline bool gigantic_page_supported(void) { return false; }
-static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
- int nid, nodemask_t *nodemask) { return NULL; }
-static inline void free_gigantic_page(struct page *page, unsigned int order) { }
-static inline void destroy_compound_gigantic_page(struct page *page,
- unsigned int order) { }
-#endif
+ folio_ref_unfreeze(folio, 1);
+
+ hugetlb_free_folio(folio);
+}
+
+/*
+ * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
+ * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
+ * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
+ * the vmemmap pages.
+ *
+ * free_hpage_workfn() locklessly retrieves the linked list of pages to be
+ * freed and frees them one-by-one. As the page->mapping pointer is going
+ * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
+ * structure of a lockless linked list of huge pages to be freed.
+ */
+static LLIST_HEAD(hpage_freelist);
-static void update_and_free_page(struct hstate *h, struct page *page)
+static void free_hpage_workfn(struct work_struct *work)
{
- int i;
+ struct llist_node *node;
- if (hstate_is_gigantic(h) && !gigantic_page_supported())
- return;
+ node = llist_del_all(&hpage_freelist);
- h->nr_huge_pages--;
- h->nr_huge_pages_node[page_to_nid(page)]--;
- for (i = 0; i < pages_per_huge_page(h); i++) {
- page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
- 1 << PG_referenced | 1 << PG_dirty |
- 1 << PG_active | 1 << PG_private |
- 1 << PG_writeback);
- }
- VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
- set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
- set_page_refcounted(page);
- if (hstate_is_gigantic(h)) {
- destroy_compound_gigantic_page(page, huge_page_order(h));
- free_gigantic_page(page, huge_page_order(h));
- } else {
- __free_pages(page, huge_page_order(h));
- }
-}
+ while (node) {
+ struct folio *folio;
+ struct hstate *h;
-struct hstate *size_to_hstate(unsigned long size)
-{
- struct hstate *h;
+ folio = container_of((struct address_space **)node,
+ struct folio, mapping);
+ node = node->next;
+ folio->mapping = NULL;
+ /*
+ * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
+ * folio_hstate() is going to trigger because a previous call to
+ * remove_hugetlb_folio() will clear the hugetlb bit, so do
+ * not use folio_hstate() directly.
+ */
+ h = size_to_hstate(folio_size(folio));
- for_each_hstate(h) {
- if (huge_page_size(h) == size)
- return h;
+ __update_and_free_hugetlb_folio(h, folio);
+
+ cond_resched();
}
- return NULL;
}
+static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
-/*
- * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
- * to hstate->hugepage_activelist.)
- *
- * This function can be called for tail pages, but never returns true for them.
- */
-bool page_huge_active(struct page *page)
+static inline void flush_free_hpage_work(struct hstate *h)
{
- VM_BUG_ON_PAGE(!PageHuge(page), page);
- return PageHead(page) && PagePrivate(&page[1]);
+ if (hugetlb_vmemmap_optimizable(h))
+ flush_work(&free_hpage_work);
}
-/* never called for tail page */
-static void set_page_huge_active(struct page *page)
+static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
+ bool atomic)
{
- VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
- SetPagePrivate(&page[1]);
-}
+ if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
+ __update_and_free_hugetlb_folio(h, folio);
+ return;
+ }
-static void clear_page_huge_active(struct page *page)
-{
- VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
- ClearPagePrivate(&page[1]);
+ /*
+ * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
+ *
+ * Only call schedule_work() if hpage_freelist is previously
+ * empty. Otherwise, schedule_work() had been called but the workfn
+ * hasn't retrieved the list yet.
+ */
+ if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
+ schedule_work(&free_hpage_work);
}
-/*
- * Internal hugetlb specific page flag. Do not use outside of the hugetlb
- * code
- */
-static inline bool PageHugeTemporary(struct page *page)
+static void bulk_vmemmap_restore_error(struct hstate *h,
+ struct list_head *folio_list,
+ struct list_head *non_hvo_folios)
{
- if (!PageHuge(page))
- return false;
+ struct folio *folio, *t_folio;
- return (unsigned long)page[2].mapping == -1U;
+ if (!list_empty(non_hvo_folios)) {
+ /*
+ * Free any restored hugetlb pages so that restore of the
+ * entire list can be retried.
+ * The idea is that in the common case of ENOMEM errors freeing
+ * hugetlb pages with vmemmap we will free up memory so that we
+ * can allocate vmemmap for more hugetlb pages.
+ */
+ list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
+ list_del(&folio->lru);
+ spin_lock_irq(&hugetlb_lock);
+ __folio_clear_hugetlb(folio);
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_hugetlb_folio(h, folio, false);
+ cond_resched();
+ }
+ } else {
+ /*
+ * In the case where there are no folios which can be
+ * immediately freed, we loop through the list trying to restore
+ * vmemmap individually in the hope that someone elsewhere may
+ * have done something to cause success (such as freeing some
+ * memory). If unable to restore a hugetlb page, the hugetlb
+ * page is made a surplus page and removed from the list.
+ * If are able to restore vmemmap and free one hugetlb page, we
+ * quit processing the list to retry the bulk operation.
+ */
+ list_for_each_entry_safe(folio, t_folio, folio_list, lru)
+ if (hugetlb_vmemmap_restore_folio(h, folio)) {
+ list_del(&folio->lru);
+ spin_lock_irq(&hugetlb_lock);
+ add_hugetlb_folio(h, folio, true);
+ spin_unlock_irq(&hugetlb_lock);
+ } else {
+ list_del(&folio->lru);
+ spin_lock_irq(&hugetlb_lock);
+ __folio_clear_hugetlb(folio);
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_hugetlb_folio(h, folio, false);
+ cond_resched();
+ break;
+ }
+ }
}
-static inline void SetPageHugeTemporary(struct page *page)
+static void update_and_free_pages_bulk(struct hstate *h,
+ struct list_head *folio_list)
{
- page[2].mapping = (void *)-1U;
+ long ret;
+ struct folio *folio, *t_folio;
+ LIST_HEAD(non_hvo_folios);
+
+ /*
+ * First allocate required vmemmmap (if necessary) for all folios.
+ * Carefully handle errors and free up any available hugetlb pages
+ * in an effort to make forward progress.
+ */
+retry:
+ ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
+ if (ret < 0) {
+ bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
+ goto retry;
+ }
+
+ /*
+ * At this point, list should be empty, ret should be >= 0 and there
+ * should only be pages on the non_hvo_folios list.
+ * Do note that the non_hvo_folios list could be empty.
+ * Without HVO enabled, ret will be 0 and there is no need to call
+ * __folio_clear_hugetlb as this was done previously.
+ */
+ VM_WARN_ON(!list_empty(folio_list));
+ VM_WARN_ON(ret < 0);
+ if (!list_empty(&non_hvo_folios) && ret) {
+ spin_lock_irq(&hugetlb_lock);
+ list_for_each_entry(folio, &non_hvo_folios, lru)
+ __folio_clear_hugetlb(folio);
+ spin_unlock_irq(&hugetlb_lock);
+ }
+
+ list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
+ update_and_free_hugetlb_folio(h, folio, false);
+ cond_resched();
+ }
}
-static inline void ClearPageHugeTemporary(struct page *page)
+struct hstate *size_to_hstate(unsigned long size)
{
- page[2].mapping = NULL;
+ struct hstate *h;
+
+ for_each_hstate(h) {
+ if (huge_page_size(h) == size)
+ return h;
+ }
+ return NULL;
}
-void free_huge_page(struct page *page)
+void free_huge_folio(struct folio *folio)
{
/*
* Can't pass hstate in here because it is called from the
- * compound page destructor.
+ * generic mm code.
*/
- struct hstate *h = page_hstate(page);
- int nid = page_to_nid(page);
- struct hugepage_subpool *spool =
- (struct hugepage_subpool *)page_private(page);
+ struct hstate *h = folio_hstate(folio);
+ int nid = folio_nid(folio);
+ struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
bool restore_reserve;
+ unsigned long flags;
- VM_BUG_ON_PAGE(page_count(page), page);
- VM_BUG_ON_PAGE(page_mapcount(page), page);
+ VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
+ VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
- set_page_private(page, 0);
- page->mapping = NULL;
- restore_reserve = PagePrivate(page);
- ClearPagePrivate(page);
+ hugetlb_set_folio_subpool(folio, NULL);
+ if (folio_test_anon(folio))
+ __ClearPageAnonExclusive(&folio->page);
+ folio->mapping = NULL;
+ restore_reserve = folio_test_hugetlb_restore_reserve(folio);
+ folio_clear_hugetlb_restore_reserve(folio);
/*
- * A return code of zero implies that the subpool will be under its
- * minimum size if the reservation is not restored after page is free.
- * Therefore, force restore_reserve operation.
+ * If HPageRestoreReserve was set on page, page allocation consumed a
+ * reservation. If the page was associated with a subpool, there
+ * would have been a page reserved in the subpool before allocation
+ * via hugepage_subpool_get_pages(). Since we are 'restoring' the
+ * reservation, do not call hugepage_subpool_put_pages() as this will
+ * remove the reserved page from the subpool.
*/
- if (hugepage_subpool_put_pages(spool, 1) == 0)
- restore_reserve = true;
+ if (!restore_reserve) {
+ /*
+ * A return code of zero implies that the subpool will be
+ * under its minimum size if the reservation is not restored
+ * after page is free. Therefore, force restore_reserve
+ * operation.
+ */
+ if (hugepage_subpool_put_pages(spool, 1) == 0)
+ restore_reserve = true;
+ }
- spin_lock(&hugetlb_lock);
- clear_page_huge_active(page);
- hugetlb_cgroup_uncharge_page(hstate_index(h),
- pages_per_huge_page(h), page);
+ spin_lock_irqsave(&hugetlb_lock, flags);
+ folio_clear_hugetlb_migratable(folio);
+ hugetlb_cgroup_uncharge_folio(hstate_index(h),
+ pages_per_huge_page(h), folio);
+ hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
+ pages_per_huge_page(h), folio);
+ lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
+ mem_cgroup_uncharge(folio);
if (restore_reserve)
h->resv_huge_pages++;
- if (PageHugeTemporary(page)) {
- list_del(&page->lru);
- ClearPageHugeTemporary(page);
- update_and_free_page(h, page);
+ if (folio_test_hugetlb_temporary(folio)) {
+ remove_hugetlb_folio(h, folio, false);
+ spin_unlock_irqrestore(&hugetlb_lock, flags);
+ update_and_free_hugetlb_folio(h, folio, true);
} else if (h->surplus_huge_pages_node[nid]) {
/* remove the page from active list */
- list_del(&page->lru);
- update_and_free_page(h, page);
- h->surplus_huge_pages--;
- h->surplus_huge_pages_node[nid]--;
+ remove_hugetlb_folio(h, folio, true);
+ spin_unlock_irqrestore(&hugetlb_lock, flags);
+ update_and_free_hugetlb_folio(h, folio, true);
} else {
- arch_clear_hugepage_flags(page);
- enqueue_huge_page(h, page);
+ arch_clear_hugetlb_flags(folio);
+ enqueue_hugetlb_folio(h, folio);
+ spin_unlock_irqrestore(&hugetlb_lock, flags);
}
- spin_unlock(&hugetlb_lock);
}
-static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
+/*
+ * Must be called with the hugetlb lock held
+ */
+static void account_new_hugetlb_folio(struct hstate *h, struct folio *folio)
{
- INIT_LIST_HEAD(&page->lru);
- set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
- spin_lock(&hugetlb_lock);
- set_hugetlb_cgroup(page, NULL);
+ lockdep_assert_held(&hugetlb_lock);
h->nr_huge_pages++;
- h->nr_huge_pages_node[nid]++;
- spin_unlock(&hugetlb_lock);
+ h->nr_huge_pages_node[folio_nid(folio)]++;
}
-static void prep_compound_gigantic_page(struct page *page, unsigned int order)
+void init_new_hugetlb_folio(struct folio *folio)
{
- int i;
- int nr_pages = 1 << order;
- struct page *p = page + 1;
-
- /* we rely on prep_new_huge_page to set the destructor */
- set_compound_order(page, order);
- __ClearPageReserved(page);
- __SetPageHead(page);
- for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
- /*
- * For gigantic hugepages allocated through bootmem at
- * boot, it's safer to be consistent with the not-gigantic
- * hugepages and clear the PG_reserved bit from all tail pages
- * too. Otherwse drivers using get_user_pages() to access tail
- * pages may get the reference counting wrong if they see
- * PG_reserved set on a tail page (despite the head page not
- * having PG_reserved set). Enforcing this consistency between
- * head and tail pages allows drivers to optimize away a check
- * on the head page when they need know if put_page() is needed
- * after get_user_pages().
- */
- __ClearPageReserved(p);
- set_page_count(p, 0);
- set_compound_head(p, page);
- }
- atomic_set(compound_mapcount_ptr(page), -1);
+ __folio_set_hugetlb(folio);
+ INIT_LIST_HEAD(&folio->lru);
+ hugetlb_set_folio_subpool(folio, NULL);
+ set_hugetlb_cgroup(folio, NULL);
+ set_hugetlb_cgroup_rsvd(folio, NULL);
}
/*
- * PageHuge() only returns true for hugetlbfs pages, but not for normal or
- * transparent huge pages. See the PageTransHuge() documentation for more
- * details.
+ * Find and lock address space (mapping) in write mode.
+ *
+ * Upon entry, the folio is locked which means that folio_mapping() is
+ * stable. Due to locking order, we can only trylock_write. If we can
+ * not get the lock, simply return NULL to caller.
*/
-int PageHuge(struct page *page)
+struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
{
- if (!PageCompound(page))
- return 0;
+ struct address_space *mapping = folio_mapping(folio);
- page = compound_head(page);
- return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
-}
-EXPORT_SYMBOL_GPL(PageHuge);
+ if (!mapping)
+ return mapping;
-/*
- * PageHeadHuge() only returns true for hugetlbfs head page, but not for
- * normal or transparent huge pages.
- */
-int PageHeadHuge(struct page *page_head)
-{
- if (!PageHead(page_head))
- return 0;
+ if (i_mmap_trylock_write(mapping))
+ return mapping;
- return get_compound_page_dtor(page_head) == free_huge_page;
+ return NULL;
}
-pgoff_t __basepage_index(struct page *page)
+static struct folio *alloc_buddy_hugetlb_folio(int order, gfp_t gfp_mask,
+ int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry)
{
- struct page *page_head = compound_head(page);
- pgoff_t index = page_index(page_head);
- unsigned long compound_idx;
+ struct folio *folio;
+ bool alloc_try_hard = true;
- if (!PageHuge(page_head))
- return page_index(page);
+ /*
+ * By default we always try hard to allocate the folio with
+ * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
+ * a loop (to adjust global huge page counts) and previous allocation
+ * failed, do not continue to try hard on the same node. Use the
+ * node_alloc_noretry bitmap to manage this state information.
+ */
+ if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
+ alloc_try_hard = false;
+ if (alloc_try_hard)
+ gfp_mask |= __GFP_RETRY_MAYFAIL;
- if (compound_order(page_head) >= MAX_ORDER)
- compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
- else
- compound_idx = page - page_head;
+ folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask);
+
+ /*
+ * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
+ * folio this indicates an overall state change. Clear bit so
+ * that we resume normal 'try hard' allocations.
+ */
+ if (node_alloc_noretry && folio && !alloc_try_hard)
+ node_clear(nid, *node_alloc_noretry);
+
+ /*
+ * If we tried hard to get a folio but failed, set bit so that
+ * subsequent attempts will not try as hard until there is an
+ * overall state change.
+ */
+ if (node_alloc_noretry && !folio && alloc_try_hard)
+ node_set(nid, *node_alloc_noretry);
+
+ if (!folio) {
+ __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
+ return NULL;
+ }
- return (index << compound_order(page_head)) + compound_idx;
+ __count_vm_event(HTLB_BUDDY_PGALLOC);
+ return folio;
}
-static struct page *alloc_buddy_huge_page(struct hstate *h,
- gfp_t gfp_mask, int nid, nodemask_t *nmask)
+static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
+ gfp_t gfp_mask, int nid, nodemask_t *nmask,
+ nodemask_t *node_alloc_noretry)
{
+ struct folio *folio;
int order = huge_page_order(h);
- struct page *page;
- gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
if (nid == NUMA_NO_NODE)
nid = numa_mem_id();
- page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
- if (page)
- __count_vm_event(HTLB_BUDDY_PGALLOC);
- else
- __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
- return page;
+ if (order_is_gigantic(order))
+ folio = alloc_gigantic_folio(order, gfp_mask, nid, nmask);
+ else
+ folio = alloc_buddy_hugetlb_folio(order, gfp_mask, nid, nmask,
+ node_alloc_noretry);
+ if (folio)
+ init_new_hugetlb_folio(folio);
+ return folio;
}
/*
- * Common helper to allocate a fresh hugetlb page. All specific allocators
- * should use this function to get new hugetlb pages
+ * Common helper to allocate a fresh hugetlb folio. All specific allocators
+ * should use this function to get new hugetlb folio
+ *
+ * Note that returned folio is 'frozen': ref count of head page and all tail
+ * pages is zero, and the accounting must be done in the caller.
*/
-static struct page *alloc_fresh_huge_page(struct hstate *h,
+static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
gfp_t gfp_mask, int nid, nodemask_t *nmask)
{
- struct page *page;
+ struct folio *folio;
- if (hstate_is_gigantic(h))
- page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
- else
- page = alloc_buddy_huge_page(h, gfp_mask,
- nid, nmask);
- if (!page)
- return NULL;
+ folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
+ if (folio)
+ hugetlb_vmemmap_optimize_folio(h, folio);
+ return folio;
+}
- if (hstate_is_gigantic(h))
- prep_compound_gigantic_page(page, huge_page_order(h));
- prep_new_huge_page(h, page, page_to_nid(page));
+void prep_and_add_allocated_folios(struct hstate *h,
+ struct list_head *folio_list)
+{
+ unsigned long flags;
+ struct folio *folio, *tmp_f;
- return page;
+ /* Send list for bulk vmemmap optimization processing */
+ hugetlb_vmemmap_optimize_folios(h, folio_list);
+
+ /* Add all new pool pages to free lists in one lock cycle */
+ spin_lock_irqsave(&hugetlb_lock, flags);
+ list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
+ account_new_hugetlb_folio(h, folio);
+ enqueue_hugetlb_folio(h, folio);
+ }
+ spin_unlock_irqrestore(&hugetlb_lock, flags);
}
/*
- * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
- * manner.
+ * Allocates a fresh hugetlb page in a node interleaved manner. The page
+ * will later be added to the appropriate hugetlb pool.
*/
-static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
+static struct folio *alloc_pool_huge_folio(struct hstate *h,
+ nodemask_t *nodes_allowed,
+ nodemask_t *node_alloc_noretry,
+ int *next_node)
{
- struct page *page;
- int nr_nodes, node;
gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
+ int nr_nodes, node;
- for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
- page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
- if (page)
- break;
- }
-
- if (!page)
- return 0;
+ for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
+ struct folio *folio;
- put_page(page); /* free it into the hugepage allocator */
+ folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
+ nodes_allowed, node_alloc_noretry);
+ if (folio)
+ return folio;
+ }
- return 1;
+ return NULL;
}
/*
- * Free huge page from pool from next node to free.
- * Attempt to keep persistent huge pages more or less
- * balanced over allowed nodes.
+ * Remove huge page from pool from next node to free. Attempt to keep
+ * persistent huge pages more or less balanced over allowed nodes.
+ * This routine only 'removes' the hugetlb page. The caller must make
+ * an additional call to free the page to low level allocators.
* Called with hugetlb_lock locked.
*/
-static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
- bool acct_surplus)
+static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
+ nodemask_t *nodes_allowed, bool acct_surplus)
{
int nr_nodes, node;
- int ret = 0;
+ struct folio *folio = NULL;
+ lockdep_assert_held(&hugetlb_lock);
for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
/*
* If we're returning unused surplus pages, only examine
@@ -1458,59 +2015,105 @@ static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
*/
if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
!list_empty(&h->hugepage_freelists[node])) {
- struct page *page =
- list_entry(h->hugepage_freelists[node].next,
- struct page, lru);
- list_del(&page->lru);
- h->free_huge_pages--;
- h->free_huge_pages_node[node]--;
- if (acct_surplus) {
- h->surplus_huge_pages--;
- h->surplus_huge_pages_node[node]--;
- }
- update_and_free_page(h, page);
- ret = 1;
+ folio = list_entry(h->hugepage_freelists[node].next,
+ struct folio, lru);
+ remove_hugetlb_folio(h, folio, acct_surplus);
break;
}
}
- return ret;
+ return folio;
}
/*
- * Dissolve a given free hugepage into free buddy pages. This function does
- * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
- * dissolution fails because a give page is not a free hugepage, or because
- * free hugepages are fully reserved.
+ * Dissolve a given free hugetlb folio into free buddy pages. This function
+ * does nothing for in-use hugetlb folios and non-hugetlb folios.
+ * This function returns values like below:
+ *
+ * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
+ * when the system is under memory pressure and the feature of
+ * freeing unused vmemmap pages associated with each hugetlb page
+ * is enabled.
+ * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
+ * (allocated or reserved.)
+ * 0: successfully dissolved free hugepages or the page is not a
+ * hugepage (considered as already dissolved)
*/
-int dissolve_free_huge_page(struct page *page)
+int dissolve_free_hugetlb_folio(struct folio *folio)
{
int rc = -EBUSY;
- spin_lock(&hugetlb_lock);
- if (PageHuge(page) && !page_count(page)) {
- struct page *head = compound_head(page);
- struct hstate *h = page_hstate(head);
- int nid = page_to_nid(head);
- if (h->free_huge_pages - h->resv_huge_pages == 0)
+retry:
+ /* Not to disrupt normal path by vainly holding hugetlb_lock */
+ if (!folio_test_hugetlb(folio))
+ return 0;
+
+ spin_lock_irq(&hugetlb_lock);
+ if (!folio_test_hugetlb(folio)) {
+ rc = 0;
+ goto out;
+ }
+
+ if (!folio_ref_count(folio)) {
+ struct hstate *h = folio_hstate(folio);
+ bool adjust_surplus = false;
+
+ if (!available_huge_pages(h))
goto out;
+
/*
- * Move PageHWPoison flag from head page to the raw error page,
- * which makes any subpages rather than the error page reusable.
+ * We should make sure that the page is already on the free list
+ * when it is dissolved.
*/
- if (PageHWPoison(head) && page != head) {
- SetPageHWPoison(page);
- ClearPageHWPoison(head);
+ if (unlikely(!folio_test_hugetlb_freed(folio))) {
+ spin_unlock_irq(&hugetlb_lock);
+ cond_resched();
+
+ /*
+ * Theoretically, we should return -EBUSY when we
+ * encounter this race. In fact, we have a chance
+ * to successfully dissolve the page if we do a
+ * retry. Because the race window is quite small.
+ * If we seize this opportunity, it is an optimization
+ * for increasing the success rate of dissolving page.
+ */
+ goto retry;
}
- list_del(&head->lru);
- h->free_huge_pages--;
- h->free_huge_pages_node[nid]--;
+
+ if (h->surplus_huge_pages_node[folio_nid(folio)])
+ adjust_surplus = true;
+ remove_hugetlb_folio(h, folio, adjust_surplus);
h->max_huge_pages--;
- update_and_free_page(h, head);
- rc = 0;
+ spin_unlock_irq(&hugetlb_lock);
+
+ /*
+ * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
+ * before freeing the page. update_and_free_hugtlb_folio will fail to
+ * free the page if it can not allocate required vmemmap. We
+ * need to adjust max_huge_pages if the page is not freed.
+ * Attempt to allocate vmemmmap here so that we can take
+ * appropriate action on failure.
+ *
+ * The folio_test_hugetlb check here is because
+ * remove_hugetlb_folio will clear hugetlb folio flag for
+ * non-vmemmap optimized hugetlb folios.
+ */
+ if (folio_test_hugetlb(folio)) {
+ rc = hugetlb_vmemmap_restore_folio(h, folio);
+ if (rc) {
+ spin_lock_irq(&hugetlb_lock);
+ add_hugetlb_folio(h, folio, adjust_surplus);
+ h->max_huge_pages++;
+ goto out;
+ }
+ } else
+ rc = 0;
+
+ update_and_free_hugetlb_folio(h, folio, false);
+ return rc;
}
out:
- spin_unlock(&hugetlb_lock);
+ spin_unlock_irq(&hugetlb_lock);
return rc;
}
@@ -1519,25 +2122,29 @@ out:
* make specified memory blocks removable from the system.
* Note that this will dissolve a free gigantic hugepage completely, if any
* part of it lies within the given range.
- * Also note that if dissolve_free_huge_page() returns with an error, all
- * free hugepages that were dissolved before that error are lost.
+ * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
+ * free hugetlb folios that were dissolved before that error are lost.
*/
-int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
+int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
- struct page *page;
+ struct folio *folio;
int rc = 0;
+ unsigned int order;
+ struct hstate *h;
if (!hugepages_supported())
return rc;
- for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
- page = pfn_to_page(pfn);
- if (PageHuge(page) && !page_count(page)) {
- rc = dissolve_free_huge_page(page);
- if (rc)
- break;
- }
+ order = huge_page_order(&default_hstate);
+ for_each_hstate(h)
+ order = min(order, huge_page_order(h));
+
+ for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
+ folio = pfn_folio(pfn);
+ rc = dissolve_free_hugetlb_folio(folio);
+ if (rc)
+ break;
}
return rc;
@@ -1546,158 +2153,193 @@ int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
/*
* Allocates a fresh surplus page from the page allocator.
*/
-static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
- int nid, nodemask_t *nmask)
+static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
+ gfp_t gfp_mask, int nid, nodemask_t *nmask)
{
- struct page *page = NULL;
+ struct folio *folio = NULL;
- if (hstate_is_gigantic(h))
+ if (hstate_is_gigantic_no_runtime(h))
return NULL;
- spin_lock(&hugetlb_lock);
+ spin_lock_irq(&hugetlb_lock);
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
goto out_unlock;
- spin_unlock(&hugetlb_lock);
+ spin_unlock_irq(&hugetlb_lock);
- page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
- if (!page)
+ folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
+ if (!folio)
return NULL;
- spin_lock(&hugetlb_lock);
+ spin_lock_irq(&hugetlb_lock);
+ /*
+ * nr_huge_pages needs to be adjusted within the same lock cycle
+ * as surplus_pages, otherwise it might confuse
+ * persistent_huge_pages() momentarily.
+ */
+ account_new_hugetlb_folio(h, folio);
+
/*
* We could have raced with the pool size change.
* Double check that and simply deallocate the new page
* if we would end up overcommiting the surpluses. Abuse
- * temporary page to workaround the nasty free_huge_page
+ * temporary page to workaround the nasty free_huge_folio
* codeflow
*/
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
- SetPageHugeTemporary(page);
- put_page(page);
- page = NULL;
- } else {
- h->surplus_huge_pages++;
- h->surplus_huge_pages_node[page_to_nid(page)]++;
+ folio_set_hugetlb_temporary(folio);
+ spin_unlock_irq(&hugetlb_lock);
+ free_huge_folio(folio);
+ return NULL;
}
+ h->surplus_huge_pages++;
+ h->surplus_huge_pages_node[folio_nid(folio)]++;
+
out_unlock:
- spin_unlock(&hugetlb_lock);
+ spin_unlock_irq(&hugetlb_lock);
- return page;
+ return folio;
}
-static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
- int nid, nodemask_t *nmask)
+static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
+ int nid, nodemask_t *nmask)
{
- struct page *page;
+ struct folio *folio;
if (hstate_is_gigantic(h))
return NULL;
- page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
- if (!page)
+ folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
+ if (!folio)
return NULL;
+ spin_lock_irq(&hugetlb_lock);
+ account_new_hugetlb_folio(h, folio);
+ spin_unlock_irq(&hugetlb_lock);
+
+ /* fresh huge pages are frozen */
+ folio_ref_unfreeze(folio, 1);
/*
* We do not account these pages as surplus because they are only
* temporary and will be released properly on the last reference
*/
- SetPageHugeTemporary(page);
+ folio_set_hugetlb_temporary(folio);
- return page;
+ return folio;
}
/*
* Use the VMA's mpolicy to allocate a huge page from the buddy.
*/
static
-struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
+struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr)
{
- struct page *page;
+ struct folio *folio = NULL;
struct mempolicy *mpol;
gfp_t gfp_mask = htlb_alloc_mask(h);
int nid;
nodemask_t *nodemask;
nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
- page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
- mpol_cond_put(mpol);
+ if (mpol_is_preferred_many(mpol)) {
+ gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
- return page;
+ folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
+
+ /* Fallback to all nodes if page==NULL */
+ nodemask = NULL;
+ }
+
+ if (!folio)
+ folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
+ mpol_cond_put(mpol);
+ return folio;
}
-/* page migration callback function */
-struct page *alloc_huge_page_node(struct hstate *h, int nid)
+struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
+ nodemask_t *nmask, gfp_t gfp_mask)
{
- gfp_t gfp_mask = htlb_alloc_mask(h);
- struct page *page = NULL;
-
- if (nid != NUMA_NO_NODE)
- gfp_mask |= __GFP_THISNODE;
+ struct folio *folio;
- spin_lock(&hugetlb_lock);
- if (h->free_huge_pages - h->resv_huge_pages > 0)
- page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
- spin_unlock(&hugetlb_lock);
+ spin_lock_irq(&hugetlb_lock);
+ if (!h->resv_huge_pages) {
+ spin_unlock_irq(&hugetlb_lock);
+ return NULL;
+ }
- if (!page)
- page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
+ folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
+ nmask);
+ if (folio)
+ h->resv_huge_pages--;
- return page;
+ spin_unlock_irq(&hugetlb_lock);
+ return folio;
}
-/* page migration callback function */
-struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
- nodemask_t *nmask)
+/* folio migration callback function */
+struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
+ nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
{
- gfp_t gfp_mask = htlb_alloc_mask(h);
+ spin_lock_irq(&hugetlb_lock);
+ if (available_huge_pages(h)) {
+ struct folio *folio;
- spin_lock(&hugetlb_lock);
- if (h->free_huge_pages - h->resv_huge_pages > 0) {
- struct page *page;
-
- page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
- if (page) {
- spin_unlock(&hugetlb_lock);
- return page;
+ folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
+ preferred_nid, nmask);
+ if (folio) {
+ spin_unlock_irq(&hugetlb_lock);
+ return folio;
}
}
- spin_unlock(&hugetlb_lock);
+ spin_unlock_irq(&hugetlb_lock);
- return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
+ /* We cannot fallback to other nodes, as we could break the per-node pool. */
+ if (!allow_alloc_fallback)
+ gfp_mask |= __GFP_THISNODE;
+
+ return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
}
-/* mempolicy aware migration callback */
-struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
- unsigned long address)
+static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
{
- struct mempolicy *mpol;
- nodemask_t *nodemask;
- struct page *page;
- gfp_t gfp_mask;
- int node;
-
- gfp_mask = htlb_alloc_mask(h);
- node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
- page = alloc_huge_page_nodemask(h, node, nodemask);
- mpol_cond_put(mpol);
+#ifdef CONFIG_NUMA
+ struct mempolicy *mpol = get_task_policy(current);
- return page;
+ /*
+ * Only enforce MPOL_BIND policy which overlaps with cpuset policy
+ * (from policy_nodemask) specifically for hugetlb case
+ */
+ if (mpol->mode == MPOL_BIND &&
+ (apply_policy_zone(mpol, gfp_zone(gfp)) &&
+ cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
+ return &mpol->nodes;
+#endif
+ return NULL;
}
/*
* Increase the hugetlb pool such that it can accommodate a reservation
* of size 'delta'.
*/
-static int gather_surplus_pages(struct hstate *h, int delta)
+static int gather_surplus_pages(struct hstate *h, long delta)
+ __must_hold(&hugetlb_lock)
{
- struct list_head surplus_list;
- struct page *page, *tmp;
- int ret, i;
- int needed, allocated;
+ LIST_HEAD(surplus_list);
+ struct folio *folio, *tmp;
+ int ret;
+ long i;
+ long needed, allocated;
bool alloc_ok = true;
+ nodemask_t *mbind_nodemask, alloc_nodemask;
+
+ mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
+ if (mbind_nodemask)
+ nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
+ else
+ alloc_nodemask = cpuset_current_mems_allowed;
+ lockdep_assert_held(&hugetlb_lock);
needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
if (needed <= 0) {
h->resv_huge_pages += delta;
@@ -1705,19 +2347,24 @@ static int gather_surplus_pages(struct hstate *h, int delta)
}
allocated = 0;
- INIT_LIST_HEAD(&surplus_list);
ret = -ENOMEM;
retry:
- spin_unlock(&hugetlb_lock);
+ spin_unlock_irq(&hugetlb_lock);
for (i = 0; i < needed; i++) {
- page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
- NUMA_NO_NODE, NULL);
- if (!page) {
+ folio = NULL;
+
+ /*
+ * It is okay to use NUMA_NO_NODE because we use numa_mem_id()
+ * down the road to pick the current node if that is the case.
+ */
+ folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
+ NUMA_NO_NODE, &alloc_nodemask);
+ if (!folio) {
alloc_ok = false;
break;
}
- list_add(&page->lru, &surplus_list);
+ list_add(&folio->lru, &surplus_list);
cond_resched();
}
allocated += i;
@@ -1726,7 +2373,7 @@ retry:
* After retaking hugetlb_lock, we need to recalculate 'needed'
* because either resv_huge_pages or free_huge_pages may have changed.
*/
- spin_lock(&hugetlb_lock);
+ spin_lock_irq(&hugetlb_lock);
needed = (h->resv_huge_pages + delta) -
(h->free_huge_pages + allocated);
if (needed > 0) {
@@ -1752,24 +2399,22 @@ retry:
ret = 0;
/* Free the needed pages to the hugetlb pool */
- list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
+ list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
if ((--needed) < 0)
break;
- /*
- * This page is now managed by the hugetlb allocator and has
- * no users -- drop the buddy allocator's reference.
- */
- put_page_testzero(page);
- VM_BUG_ON_PAGE(page_count(page), page);
- enqueue_huge_page(h, page);
+ /* Add the page to the hugetlb allocator */
+ enqueue_hugetlb_folio(h, folio);
}
free:
- spin_unlock(&hugetlb_lock);
+ spin_unlock_irq(&hugetlb_lock);
- /* Free unnecessary surplus pages to the buddy allocator */
- list_for_each_entry_safe(page, tmp, &surplus_list, lru)
- put_page(page);
- spin_lock(&hugetlb_lock);
+ /*
+ * Free unnecessary surplus pages to the buddy allocator.
+ * Pages have no ref count, call free_huge_folio directly.
+ */
+ list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
+ free_huge_folio(folio);
+ spin_lock_irq(&hugetlb_lock);
return ret;
}
@@ -1781,20 +2426,18 @@ free:
* to the associated reservation map.
* 2) Free any unused surplus pages that may have been allocated to satisfy
* the reservation. As many as unused_resv_pages may be freed.
- *
- * Called with hugetlb_lock held. However, the lock could be dropped (and
- * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
- * we must make sure nobody else can claim pages we are in the process of
- * freeing. Do this by ensuring resv_huge_page always is greater than the
- * number of huge pages we plan to free when dropping the lock.
*/
static void return_unused_surplus_pages(struct hstate *h,
unsigned long unused_resv_pages)
{
unsigned long nr_pages;
+ LIST_HEAD(page_list);
- /* Cannot return gigantic pages currently */
- if (hstate_is_gigantic(h))
+ lockdep_assert_held(&hugetlb_lock);
+ /* Uncommit the reservation */
+ h->resv_huge_pages -= unused_resv_pages;
+
+ if (hstate_is_gigantic_no_runtime(h))
goto out;
/*
@@ -1808,24 +2451,23 @@ static void return_unused_surplus_pages(struct hstate *h,
* evenly across all nodes with memory. Iterate across these nodes
* until we can no longer free unreserved surplus pages. This occurs
* when the nodes with surplus pages have no free pages.
- * free_pool_huge_page() will balance the the freed pages across the
+ * remove_pool_hugetlb_folio() will balance the freed pages across the
* on-line nodes with memory and will handle the hstate accounting.
- *
- * Note that we decrement resv_huge_pages as we free the pages. If
- * we drop the lock, resv_huge_pages will still be sufficiently large
- * to cover subsequent pages we may free.
*/
while (nr_pages--) {
- h->resv_huge_pages--;
- unused_resv_pages--;
- if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
+ struct folio *folio;
+
+ folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
+ if (!folio)
goto out;
- cond_resched_lock(&hugetlb_lock);
+
+ list_add(&folio->lru, &page_list);
}
out:
- /* Fully uncommit the reservation */
- h->resv_huge_pages -= unused_resv_pages;
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_pages_bulk(h, &page_list);
+ spin_lock_irq(&hugetlb_lock);
}
@@ -1852,12 +2494,18 @@ out:
* be restored when a newly allocated huge page must be freed. It is
* to be called after calling vma_needs_reservation to determine if a
* reservation exists.
+ *
+ * vma_del_reservation is used in error paths where an entry in the reserve
+ * map was created during huge page allocation and must be removed. It is to
+ * be called after calling vma_needs_reservation to determine if a reservation
+ * exists.
*/
enum vma_resv_mode {
VMA_NEEDS_RESV,
VMA_COMMIT_RESV,
VMA_END_RESV,
VMA_ADD_RESV,
+ VMA_DEL_RESV,
};
static long __vma_reservation_common(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr,
@@ -1866,6 +2514,7 @@ static long __vma_reservation_common(struct hstate *h,
struct resv_map *resv;
pgoff_t idx;
long ret;
+ long dummy_out_regions_needed;
resv = vma_resv_map(vma);
if (!resv)
@@ -1874,50 +2523,68 @@ static long __vma_reservation_common(struct hstate *h,
idx = vma_hugecache_offset(h, vma, addr);
switch (mode) {
case VMA_NEEDS_RESV:
- ret = region_chg(resv, idx, idx + 1);
+ ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
+ /* We assume that vma_reservation_* routines always operate on
+ * 1 page, and that adding to resv map a 1 page entry can only
+ * ever require 1 region.
+ */
+ VM_BUG_ON(dummy_out_regions_needed != 1);
break;
case VMA_COMMIT_RESV:
- ret = region_add(resv, idx, idx + 1);
+ ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
+ /* region_add calls of range 1 should never fail. */
+ VM_BUG_ON(ret < 0);
break;
case VMA_END_RESV:
- region_abort(resv, idx, idx + 1);
+ region_abort(resv, idx, idx + 1, 1);
ret = 0;
break;
case VMA_ADD_RESV:
- if (vma->vm_flags & VM_MAYSHARE)
- ret = region_add(resv, idx, idx + 1);
- else {
- region_abort(resv, idx, idx + 1);
+ if (vma->vm_flags & VM_MAYSHARE) {
+ ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
+ /* region_add calls of range 1 should never fail. */
+ VM_BUG_ON(ret < 0);
+ } else {
+ region_abort(resv, idx, idx + 1, 1);
+ ret = region_del(resv, idx, idx + 1);
+ }
+ break;
+ case VMA_DEL_RESV:
+ if (vma->vm_flags & VM_MAYSHARE) {
+ region_abort(resv, idx, idx + 1, 1);
ret = region_del(resv, idx, idx + 1);
+ } else {
+ ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
+ /* region_add calls of range 1 should never fail. */
+ VM_BUG_ON(ret < 0);
}
break;
default:
BUG();
}
- if (vma->vm_flags & VM_MAYSHARE)
+ if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
return ret;
- else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
- /*
- * In most cases, reserves always exist for private mappings.
- * However, a file associated with mapping could have been
- * hole punched or truncated after reserves were consumed.
- * As subsequent fault on such a range will not use reserves.
- * Subtle - The reserve map for private mappings has the
- * opposite meaning than that of shared mappings. If NO
- * entry is in the reserve map, it means a reservation exists.
- * If an entry exists in the reserve map, it means the
- * reservation has already been consumed. As a result, the
- * return value of this routine is the opposite of the
- * value returned from reserve map manipulation routines above.
- */
- if (ret)
- return 0;
- else
- return 1;
- }
- else
- return ret < 0 ? ret : 0;
+ /*
+ * We know private mapping must have HPAGE_RESV_OWNER set.
+ *
+ * In most cases, reserves always exist for private mappings.
+ * However, a file associated with mapping could have been
+ * hole punched or truncated after reserves were consumed.
+ * As subsequent fault on such a range will not use reserves.
+ * Subtle - The reserve map for private mappings has the
+ * opposite meaning than that of shared mappings. If NO
+ * entry is in the reserve map, it means a reservation exists.
+ * If an entry exists in the reserve map, it means the
+ * reservation has already been consumed. As a result, the
+ * return value of this routine is the opposite of the
+ * value returned from reserve map manipulation routines above.
+ */
+ if (ret > 0)
+ return 0;
+ if (ret == 0)
+ return 1;
+ return ret;
}
static long vma_needs_reservation(struct hstate *h,
@@ -1944,271 +2611,1079 @@ static long vma_add_reservation(struct hstate *h,
return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}
+static long vma_del_reservation(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long addr)
+{
+ return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
+}
+
/*
- * This routine is called to restore a reservation on error paths. In the
- * specific error paths, a huge page was allocated (via alloc_huge_page)
- * and is about to be freed. If a reservation for the page existed,
- * alloc_huge_page would have consumed the reservation and set PagePrivate
- * in the newly allocated page. When the page is freed via free_huge_page,
- * the global reservation count will be incremented if PagePrivate is set.
- * However, free_huge_page can not adjust the reserve map. Adjust the
- * reserve map here to be consistent with global reserve count adjustments
- * to be made by free_huge_page.
+ * This routine is called to restore reservation information on error paths.
+ * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
+ * and the hugetlb mutex should remain held when calling this routine.
+ *
+ * It handles two specific cases:
+ * 1) A reservation was in place and the folio consumed the reservation.
+ * hugetlb_restore_reserve is set in the folio.
+ * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
+ * not set. However, alloc_hugetlb_folio always updates the reserve map.
+ *
+ * In case 1, free_huge_folio later in the error path will increment the
+ * global reserve count. But, free_huge_folio does not have enough context
+ * to adjust the reservation map. This case deals primarily with private
+ * mappings. Adjust the reserve map here to be consistent with global
+ * reserve count adjustments to be made by free_huge_folio. Make sure the
+ * reserve map indicates there is a reservation present.
+ *
+ * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
*/
-static void restore_reserve_on_error(struct hstate *h,
- struct vm_area_struct *vma, unsigned long address,
- struct page *page)
+void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
+ unsigned long address, struct folio *folio)
{
- if (unlikely(PagePrivate(page))) {
- long rc = vma_needs_reservation(h, vma, address);
+ long rc = vma_needs_reservation(h, vma, address);
- if (unlikely(rc < 0)) {
+ if (folio_test_hugetlb_restore_reserve(folio)) {
+ if (unlikely(rc < 0))
/*
* Rare out of memory condition in reserve map
- * manipulation. Clear PagePrivate so that
- * global reserve count will not be incremented
- * by free_huge_page. This will make it appear
- * as though the reservation for this page was
+ * manipulation. Clear hugetlb_restore_reserve so
+ * that global reserve count will not be incremented
+ * by free_huge_folio. This will make it appear
+ * as though the reservation for this folio was
* consumed. This may prevent the task from
- * faulting in the page at a later time. This
+ * faulting in the folio at a later time. This
* is better than inconsistent global huge page
* accounting of reserve counts.
*/
- ClearPagePrivate(page);
- } else if (rc) {
- rc = vma_add_reservation(h, vma, address);
- if (unlikely(rc < 0))
+ folio_clear_hugetlb_restore_reserve(folio);
+ else if (rc)
+ (void)vma_add_reservation(h, vma, address);
+ else
+ vma_end_reservation(h, vma, address);
+ } else {
+ if (!rc) {
+ /*
+ * This indicates there is an entry in the reserve map
+ * not added by alloc_hugetlb_folio. We know it was added
+ * before the alloc_hugetlb_folio call, otherwise
+ * hugetlb_restore_reserve would be set on the folio.
+ * Remove the entry so that a subsequent allocation
+ * does not consume a reservation.
+ */
+ rc = vma_del_reservation(h, vma, address);
+ if (rc < 0)
/*
- * See above comment about rare out of
- * memory condition.
+ * VERY rare out of memory condition. Since
+ * we can not delete the entry, set
+ * hugetlb_restore_reserve so that the reserve
+ * count will be incremented when the folio
+ * is freed. This reserve will be consumed
+ * on a subsequent allocation.
*/
- ClearPagePrivate(page);
+ folio_set_hugetlb_restore_reserve(folio);
+ } else if (rc < 0) {
+ /*
+ * Rare out of memory condition from
+ * vma_needs_reservation call. Memory allocation is
+ * only attempted if a new entry is needed. Therefore,
+ * this implies there is not an entry in the
+ * reserve map.
+ *
+ * For shared mappings, no entry in the map indicates
+ * no reservation. We are done.
+ */
+ if (!(vma->vm_flags & VM_MAYSHARE))
+ /*
+ * For private mappings, no entry indicates
+ * a reservation is present. Since we can
+ * not add an entry, set hugetlb_restore_reserve
+ * on the folio so reserve count will be
+ * incremented when freed. This reserve will
+ * be consumed on a subsequent allocation.
+ */
+ folio_set_hugetlb_restore_reserve(folio);
} else
- vma_end_reservation(h, vma, address);
+ /*
+ * No reservation present, do nothing
+ */
+ vma_end_reservation(h, vma, address);
+ }
+}
+
+/*
+ * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
+ * the old one
+ * @old_folio: Old folio to dissolve
+ * @list: List to isolate the page in case we need to
+ * Returns 0 on success, otherwise negated error.
+ */
+static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio,
+ struct list_head *list)
+{
+ gfp_t gfp_mask;
+ struct hstate *h;
+ int nid = folio_nid(old_folio);
+ struct folio *new_folio = NULL;
+ int ret = 0;
+
+retry:
+ /*
+ * The old_folio might have been dissolved from under our feet, so make sure
+ * to carefully check the state under the lock.
+ */
+ spin_lock_irq(&hugetlb_lock);
+ if (!folio_test_hugetlb(old_folio)) {
+ /*
+ * Freed from under us. Drop new_folio too.
+ */
+ goto free_new;
+ } else if (folio_ref_count(old_folio)) {
+ bool isolated;
+
+ /*
+ * Someone has grabbed the folio, try to isolate it here.
+ * Fail with -EBUSY if not possible.
+ */
+ spin_unlock_irq(&hugetlb_lock);
+ isolated = folio_isolate_hugetlb(old_folio, list);
+ ret = isolated ? 0 : -EBUSY;
+ spin_lock_irq(&hugetlb_lock);
+ goto free_new;
+ } else if (!folio_test_hugetlb_freed(old_folio)) {
+ /*
+ * Folio's refcount is 0 but it has not been enqueued in the
+ * freelist yet. Race window is small, so we can succeed here if
+ * we retry.
+ */
+ spin_unlock_irq(&hugetlb_lock);
+ cond_resched();
+ goto retry;
+ } else {
+ h = folio_hstate(old_folio);
+ if (!new_folio) {
+ spin_unlock_irq(&hugetlb_lock);
+ gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
+ new_folio = alloc_fresh_hugetlb_folio(h, gfp_mask,
+ nid, NULL);
+ if (!new_folio)
+ return -ENOMEM;
+ goto retry;
+ }
+
+ /*
+ * Ok, old_folio is still a genuine free hugepage. Remove it from
+ * the freelist and decrease the counters. These will be
+ * incremented again when calling account_new_hugetlb_folio()
+ * and enqueue_hugetlb_folio() for new_folio. The counters will
+ * remain stable since this happens under the lock.
+ */
+ remove_hugetlb_folio(h, old_folio, false);
+
+ /*
+ * Ref count on new_folio is already zero as it was dropped
+ * earlier. It can be directly added to the pool free list.
+ */
+ account_new_hugetlb_folio(h, new_folio);
+ enqueue_hugetlb_folio(h, new_folio);
+
+ /*
+ * Folio has been replaced, we can safely free the old one.
+ */
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_hugetlb_folio(h, old_folio, false);
+ }
+
+ return ret;
+
+free_new:
+ spin_unlock_irq(&hugetlb_lock);
+ if (new_folio)
+ update_and_free_hugetlb_folio(h, new_folio, false);
+
+ return ret;
+}
+
+int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list)
+{
+ int ret = -EBUSY;
+
+ /* Not to disrupt normal path by vainly holding hugetlb_lock */
+ if (!folio_test_hugetlb(folio))
+ return 0;
+
+ /*
+ * Fence off gigantic pages as there is a cyclic dependency between
+ * alloc_contig_range and them. Return -ENOMEM as this has the effect
+ * of bailing out right away without further retrying.
+ */
+ if (order_is_gigantic(folio_order(folio)))
+ return -ENOMEM;
+
+ if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
+ ret = 0;
+ else if (!folio_ref_count(folio))
+ ret = alloc_and_dissolve_hugetlb_folio(folio, list);
+
+ return ret;
+}
+
+/*
+ * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
+ * range with new folios.
+ * @start_pfn: start pfn of the given pfn range
+ * @end_pfn: end pfn of the given pfn range
+ * Returns 0 on success, otherwise negated error.
+ */
+int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
+{
+ struct folio *folio;
+ int ret = 0;
+
+ LIST_HEAD(isolate_list);
+
+ while (start_pfn < end_pfn) {
+ folio = pfn_folio(start_pfn);
+
+ /* Not to disrupt normal path by vainly holding hugetlb_lock */
+ if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) {
+ ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list);
+ if (ret)
+ break;
+
+ putback_movable_pages(&isolate_list);
+ }
+ start_pfn++;
}
+
+ return ret;
}
-struct page *alloc_huge_page(struct vm_area_struct *vma,
- unsigned long addr, int avoid_reserve)
+void wait_for_freed_hugetlb_folios(void)
+{
+ if (llist_empty(&hpage_freelist))
+ return;
+
+ flush_work(&free_hpage_work);
+}
+
+typedef enum {
+ /*
+ * For either 0/1: we checked the per-vma resv map, and one resv
+ * count either can be reused (0), or an extra needed (1).
+ */
+ MAP_CHG_REUSE = 0,
+ MAP_CHG_NEEDED = 1,
+ /*
+ * Cannot use per-vma resv count can be used, hence a new resv
+ * count is enforced.
+ *
+ * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
+ * that currently vma_needs_reservation() has an unwanted side
+ * effect to either use end() or commit() to complete the
+ * transaction. Hence it needs to differentiate from NEEDED.
+ */
+ MAP_CHG_ENFORCED = 2,
+} map_chg_state;
+
+/*
+ * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
+ * faults of hugetlb private mappings on top of a non-page-cache folio (in
+ * which case even if there's a private vma resv map it won't cover such
+ * allocation). New call sites should (probably) never set it to true!!
+ * When it's set, the allocation will bypass all vma level reservations.
+ */
+struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
+ unsigned long addr, bool cow_from_owner)
{
struct hugepage_subpool *spool = subpool_vma(vma);
struct hstate *h = hstate_vma(vma);
- struct page *page;
- long map_chg, map_commit;
- long gbl_chg;
+ struct folio *folio;
+ long retval, gbl_chg, gbl_reserve;
+ map_chg_state map_chg;
int ret, idx;
- struct hugetlb_cgroup *h_cg;
+ struct hugetlb_cgroup *h_cg = NULL;
+ gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
idx = hstate_index(h);
- /*
- * Examine the region/reserve map to determine if the process
- * has a reservation for the page to be allocated. A return
- * code of zero indicates a reservation exists (no change).
- */
- map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
- if (map_chg < 0)
- return ERR_PTR(-ENOMEM);
+
+ /* Whether we need a separate per-vma reservation? */
+ if (cow_from_owner) {
+ /*
+ * Special case! Since it's a CoW on top of a reserved
+ * page, the private resv map doesn't count. So it cannot
+ * consume the per-vma resv map even if it's reserved.
+ */
+ map_chg = MAP_CHG_ENFORCED;
+ } else {
+ /*
+ * Examine the region/reserve map to determine if the process
+ * has a reservation for the page to be allocated. A return
+ * code of zero indicates a reservation exists (no change).
+ */
+ retval = vma_needs_reservation(h, vma, addr);
+ if (retval < 0)
+ return ERR_PTR(-ENOMEM);
+ map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
+ }
/*
+ * Whether we need a separate global reservation?
+ *
* Processes that did not create the mapping will have no
* reserves as indicated by the region/reserve map. Check
* that the allocation will not exceed the subpool limit.
- * Allocations for MAP_NORESERVE mappings also need to be
- * checked against any subpool limit.
+ * Or if it can get one from the pool reservation directly.
*/
- if (map_chg || avoid_reserve) {
+ if (map_chg) {
gbl_chg = hugepage_subpool_get_pages(spool, 1);
- if (gbl_chg < 0) {
- vma_end_reservation(h, vma, addr);
- return ERR_PTR(-ENOSPC);
- }
-
+ if (gbl_chg < 0)
+ goto out_end_reservation;
+ } else {
/*
- * Even though there was no reservation in the region/reserve
- * map, there could be reservations associated with the
- * subpool that can be used. This would be indicated if the
- * return value of hugepage_subpool_get_pages() is zero.
- * However, if avoid_reserve is specified we still avoid even
- * the subpool reservations.
+ * If we have the vma reservation ready, no need for extra
+ * global reservation.
*/
- if (avoid_reserve)
- gbl_chg = 1;
+ gbl_chg = 0;
+ }
+
+ /*
+ * If this allocation is not consuming a per-vma reservation,
+ * charge the hugetlb cgroup now.
+ */
+ if (map_chg) {
+ ret = hugetlb_cgroup_charge_cgroup_rsvd(
+ idx, pages_per_huge_page(h), &h_cg);
+ if (ret)
+ goto out_subpool_put;
}
ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
if (ret)
- goto out_subpool_put;
+ goto out_uncharge_cgroup_reservation;
- spin_lock(&hugetlb_lock);
+ spin_lock_irq(&hugetlb_lock);
/*
* glb_chg is passed to indicate whether or not a page must be taken
* from the global free pool (global change). gbl_chg == 0 indicates
* a reservation exists for the allocation.
*/
- page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
- if (!page) {
- spin_unlock(&hugetlb_lock);
- page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
- if (!page)
+ folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
+ if (!folio) {
+ spin_unlock_irq(&hugetlb_lock);
+ folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
+ if (!folio)
goto out_uncharge_cgroup;
- if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
- SetPagePrivate(page);
- h->resv_huge_pages--;
- }
- spin_lock(&hugetlb_lock);
- list_move(&page->lru, &h->hugepage_activelist);
+ spin_lock_irq(&hugetlb_lock);
+ list_add(&folio->lru, &h->hugepage_activelist);
+ folio_ref_unfreeze(folio, 1);
/* Fall through */
}
- hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
- spin_unlock(&hugetlb_lock);
- set_page_private(page, (unsigned long)spool);
+ /*
+ * Either dequeued or buddy-allocated folio needs to add special
+ * mark to the folio when it consumes a global reservation.
+ */
+ if (!gbl_chg) {
+ folio_set_hugetlb_restore_reserve(folio);
+ h->resv_huge_pages--;
+ }
+
+ hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
+ /* If allocation is not consuming a reservation, also store the
+ * hugetlb_cgroup pointer on the page.
+ */
+ if (map_chg) {
+ hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
+ h_cg, folio);
+ }
+
+ spin_unlock_irq(&hugetlb_lock);
+
+ hugetlb_set_folio_subpool(folio, spool);
- map_commit = vma_commit_reservation(h, vma, addr);
- if (unlikely(map_chg > map_commit)) {
+ if (map_chg != MAP_CHG_ENFORCED) {
+ /* commit() is only needed if the map_chg is not enforced */
+ retval = vma_commit_reservation(h, vma, addr);
/*
+ * Check for possible race conditions. When it happens..
* The page was added to the reservation map between
* vma_needs_reservation and vma_commit_reservation.
* This indicates a race with hugetlb_reserve_pages.
* Adjust for the subpool count incremented above AND
- * in hugetlb_reserve_pages for the same page. Also,
+ * in hugetlb_reserve_pages for the same page. Also,
* the reservation count added in hugetlb_reserve_pages
* no longer applies.
*/
- long rsv_adjust;
+ if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
+ long rsv_adjust;
+
+ rsv_adjust = hugepage_subpool_put_pages(spool, 1);
+ hugetlb_acct_memory(h, -rsv_adjust);
+ if (map_chg) {
+ spin_lock_irq(&hugetlb_lock);
+ hugetlb_cgroup_uncharge_folio_rsvd(
+ hstate_index(h), pages_per_huge_page(h),
+ folio);
+ spin_unlock_irq(&hugetlb_lock);
+ }
+ }
+ }
- rsv_adjust = hugepage_subpool_put_pages(spool, 1);
- hugetlb_acct_memory(h, -rsv_adjust);
+ ret = mem_cgroup_charge_hugetlb(folio, gfp);
+ /*
+ * Unconditionally increment NR_HUGETLB here. If it turns out that
+ * mem_cgroup_charge_hugetlb failed, then immediately free the page and
+ * decrement NR_HUGETLB.
+ */
+ lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
+
+ if (ret == -ENOMEM) {
+ free_huge_folio(folio);
+ return ERR_PTR(-ENOMEM);
}
- return page;
+
+ return folio;
out_uncharge_cgroup:
hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
+out_uncharge_cgroup_reservation:
+ if (map_chg)
+ hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
+ h_cg);
out_subpool_put:
- if (map_chg || avoid_reserve)
- hugepage_subpool_put_pages(spool, 1);
- vma_end_reservation(h, vma, addr);
+ /*
+ * put page to subpool iff the quota of subpool's rsv_hpages is used
+ * during hugepage_subpool_get_pages.
+ */
+ if (map_chg && !gbl_chg) {
+ gbl_reserve = hugepage_subpool_put_pages(spool, 1);
+ hugetlb_acct_memory(h, -gbl_reserve);
+ }
+
+
+out_end_reservation:
+ if (map_chg != MAP_CHG_ENFORCED)
+ vma_end_reservation(h, vma, addr);
return ERR_PTR(-ENOSPC);
}
-int alloc_bootmem_huge_page(struct hstate *h)
- __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
-int __alloc_bootmem_huge_page(struct hstate *h)
+static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
{
struct huge_bootmem_page *m;
- int nr_nodes, node;
-
- for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
- void *addr;
-
- addr = memblock_alloc_try_nid_raw(
- huge_page_size(h), huge_page_size(h),
- 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
- if (addr) {
+ int listnode = nid;
+
+ if (hugetlb_early_cma(h))
+ m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
+ else {
+ if (node_exact)
+ m = memblock_alloc_exact_nid_raw(huge_page_size(h),
+ huge_page_size(h), 0,
+ MEMBLOCK_ALLOC_ACCESSIBLE, nid);
+ else {
+ m = memblock_alloc_try_nid_raw(huge_page_size(h),
+ huge_page_size(h), 0,
+ MEMBLOCK_ALLOC_ACCESSIBLE, nid);
/*
- * Use the beginning of the huge page to store the
- * huge_bootmem_page struct (until gather_bootmem
- * puts them into the mem_map).
+ * For pre-HVO to work correctly, pages need to be on
+ * the list for the node they were actually allocated
+ * from. That node may be different in the case of
+ * fallback by memblock_alloc_try_nid_raw. So,
+ * extract the actual node first.
*/
- m = addr;
- goto found;
+ if (m)
+ listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
+ }
+
+ if (m) {
+ m->flags = 0;
+ m->cma = NULL;
}
}
- return 0;
+
+ if (m) {
+ /*
+ * Use the beginning of the huge page to store the
+ * huge_bootmem_page struct (until gather_bootmem
+ * puts them into the mem_map).
+ *
+ * Put them into a private list first because mem_map
+ * is not up yet.
+ */
+ INIT_LIST_HEAD(&m->list);
+ list_add(&m->list, &huge_boot_pages[listnode]);
+ m->hstate = h;
+ }
+
+ return m;
+}
+
+int alloc_bootmem_huge_page(struct hstate *h, int nid)
+ __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
+int __alloc_bootmem_huge_page(struct hstate *h, int nid)
+{
+ struct huge_bootmem_page *m = NULL; /* initialize for clang */
+ int nr_nodes, node = nid;
+
+ /* do node specific alloc */
+ if (nid != NUMA_NO_NODE) {
+ m = alloc_bootmem(h, node, true);
+ if (!m)
+ return 0;
+ goto found;
+ }
+
+ /* allocate from next node when distributing huge pages */
+ for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node,
+ &hugetlb_bootmem_nodes) {
+ m = alloc_bootmem(h, node, false);
+ if (!m)
+ return 0;
+ goto found;
+ }
found:
- BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
- /* Put them into a private list first because mem_map is not up yet */
- INIT_LIST_HEAD(&m->list);
- list_add(&m->list, &huge_boot_pages);
- m->hstate = h;
+
+ /*
+ * Only initialize the head struct page in memmap_init_reserved_pages,
+ * rest of the struct pages will be initialized by the HugeTLB
+ * subsystem itself.
+ * The head struct page is used to get folio information by the HugeTLB
+ * subsystem like zone id and node id.
+ */
+ memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
+ huge_page_size(h) - PAGE_SIZE);
+
return 1;
}
-static void __init prep_compound_huge_page(struct page *page,
- unsigned int order)
+/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
+static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
+ unsigned long start_page_number,
+ unsigned long end_page_number)
{
- if (unlikely(order > (MAX_ORDER - 1)))
- prep_compound_gigantic_page(page, order);
- else
- prep_compound_page(page, order);
+ enum zone_type zone = folio_zonenum(folio);
+ int nid = folio_nid(folio);
+ struct page *page = folio_page(folio, start_page_number);
+ unsigned long head_pfn = folio_pfn(folio);
+ unsigned long pfn, end_pfn = head_pfn + end_page_number;
+
+ /*
+ * As we marked all tail pages with memblock_reserved_mark_noinit(),
+ * we must initialize them ourselves here.
+ */
+ for (pfn = head_pfn + start_page_number; pfn < end_pfn; page++, pfn++) {
+ __init_single_page(page, pfn, zone, nid);
+ prep_compound_tail((struct page *)folio, pfn - head_pfn);
+ set_page_count(page, 0);
+ }
}
-/* Put bootmem huge pages into the standard lists after mem_map is up */
-static void __init gather_bootmem_prealloc(void)
+static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
+ struct hstate *h,
+ unsigned long nr_pages)
{
- struct huge_bootmem_page *m;
+ int ret;
+
+ /*
+ * This is an open-coded prep_compound_page() whereby we avoid
+ * walking pages twice by initializing/preparing+freezing them in the
+ * same go.
+ */
+ __folio_clear_reserved(folio);
+ __folio_set_head(folio);
+ ret = folio_ref_freeze(folio, 1);
+ VM_BUG_ON(!ret);
+ hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
+ prep_compound_head(&folio->page, huge_page_order(h));
+}
+
+static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
+{
+ return m->flags & HUGE_BOOTMEM_HVO;
+}
+
+static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
+{
+ return m->flags & HUGE_BOOTMEM_CMA;
+}
+
+/*
+ * memblock-allocated pageblocks might not have the migrate type set
+ * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
+ * here, or MIGRATE_CMA if this was a page allocated through an early CMA
+ * reservation.
+ *
+ * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
+ * read-only, but that's ok - for sparse vmemmap this does not write to
+ * the page structure.
+ */
+static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
+ struct hstate *h)
+{
+ unsigned long nr_pages = pages_per_huge_page(h), i;
+
+ WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
+
+ for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
+ if (folio_test_hugetlb_cma(folio))
+ init_cma_pageblock(folio_page(folio, i));
+ else
+ init_pageblock_migratetype(folio_page(folio, i),
+ MIGRATE_MOVABLE, false);
+ }
+}
+
+static void __init prep_and_add_bootmem_folios(struct hstate *h,
+ struct list_head *folio_list)
+{
+ unsigned long flags;
+ struct folio *folio, *tmp_f;
+
+ /* Send list for bulk vmemmap optimization processing */
+ hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
- list_for_each_entry(m, &huge_boot_pages, list) {
+ list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
+ if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
+ /*
+ * If HVO fails, initialize all tail struct pages
+ * We do not worry about potential long lock hold
+ * time as this is early in boot and there should
+ * be no contention.
+ */
+ hugetlb_folio_init_tail_vmemmap(folio,
+ HUGETLB_VMEMMAP_RESERVE_PAGES,
+ pages_per_huge_page(h));
+ }
+ hugetlb_bootmem_init_migratetype(folio, h);
+ /* Subdivide locks to achieve better parallel performance */
+ spin_lock_irqsave(&hugetlb_lock, flags);
+ account_new_hugetlb_folio(h, folio);
+ enqueue_hugetlb_folio(h, folio);
+ spin_unlock_irqrestore(&hugetlb_lock, flags);
+ }
+}
+
+bool __init hugetlb_bootmem_page_zones_valid(int nid,
+ struct huge_bootmem_page *m)
+{
+ unsigned long start_pfn;
+ bool valid;
+
+ if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
+ /*
+ * Already validated, skip check.
+ */
+ return true;
+ }
+
+ if (hugetlb_bootmem_page_earlycma(m)) {
+ valid = cma_validate_zones(m->cma);
+ goto out;
+ }
+
+ start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
+
+ valid = !pfn_range_intersects_zones(nid, start_pfn,
+ pages_per_huge_page(m->hstate));
+out:
+ if (!valid)
+ hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
+
+ return valid;
+}
+
+/*
+ * Free a bootmem page that was found to be invalid (intersecting with
+ * multiple zones).
+ *
+ * Since it intersects with multiple zones, we can't just do a free
+ * operation on all pages at once, but instead have to walk all
+ * pages, freeing them one by one.
+ */
+static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
+ struct hstate *h)
+{
+ unsigned long npages = pages_per_huge_page(h);
+ unsigned long pfn;
+
+ while (npages--) {
+ pfn = page_to_pfn(page);
+ __init_page_from_nid(pfn, nid);
+ free_reserved_page(page);
+ page++;
+ }
+}
+
+/*
+ * Put bootmem huge pages into the standard lists after mem_map is up.
+ * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
+ */
+static void __init gather_bootmem_prealloc_node(unsigned long nid)
+{
+ LIST_HEAD(folio_list);
+ struct huge_bootmem_page *m, *tm;
+ struct hstate *h = NULL, *prev_h = NULL;
+
+ list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
struct page *page = virt_to_page(m);
- struct hstate *h = m->hstate;
+ struct folio *folio = (void *)page;
- WARN_ON(page_count(page) != 1);
- prep_compound_huge_page(page, h->order);
- WARN_ON(PageReserved(page));
- prep_new_huge_page(h, page, page_to_nid(page));
- put_page(page); /* free it into the hugepage allocator */
+ h = m->hstate;
+ if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
+ /*
+ * Can't use this page. Initialize the
+ * page structures if that hasn't already
+ * been done, and give them to the page
+ * allocator.
+ */
+ hugetlb_bootmem_free_invalid_page(nid, page, h);
+ continue;
+ }
/*
- * If we had gigantic hugepages allocated at boot time, we need
- * to restore the 'stolen' pages to totalram_pages in order to
- * fix confusing memory reports from free(1) and another
- * side-effects, like CommitLimit going negative.
+ * It is possible to have multiple huge page sizes (hstates)
+ * in this list. If so, process each size separately.
*/
- if (hstate_is_gigantic(h))
- adjust_managed_page_count(page, 1 << h->order);
+ if (h != prev_h && prev_h != NULL)
+ prep_and_add_bootmem_folios(prev_h, &folio_list);
+ prev_h = h;
+
+ VM_BUG_ON(!hstate_is_gigantic(h));
+ WARN_ON(folio_ref_count(folio) != 1);
+
+ hugetlb_folio_init_vmemmap(folio, h,
+ HUGETLB_VMEMMAP_RESERVE_PAGES);
+ init_new_hugetlb_folio(folio);
+
+ if (hugetlb_bootmem_page_prehvo(m))
+ /*
+ * If pre-HVO was done, just set the
+ * flag, the HVO code will then skip
+ * this folio.
+ */
+ folio_set_hugetlb_vmemmap_optimized(folio);
+
+ if (hugetlb_bootmem_page_earlycma(m))
+ folio_set_hugetlb_cma(folio);
+
+ list_add(&folio->lru, &folio_list);
+
+ /*
+ * We need to restore the 'stolen' pages to totalram_pages
+ * in order to fix confusing memory reports from free(1) and
+ * other side-effects, like CommitLimit going negative.
+ *
+ * For CMA pages, this is done in init_cma_pageblock
+ * (via hugetlb_bootmem_init_migratetype), so skip it here.
+ */
+ if (!folio_test_hugetlb_cma(folio))
+ adjust_managed_page_count(page, pages_per_huge_page(h));
cond_resched();
}
+
+ prep_and_add_bootmem_folios(h, &folio_list);
}
-static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
+static void __init gather_bootmem_prealloc_parallel(unsigned long start,
+ unsigned long end, void *arg)
+{
+ int nid;
+
+ for (nid = start; nid < end; nid++)
+ gather_bootmem_prealloc_node(nid);
+}
+
+static void __init gather_bootmem_prealloc(void)
+{
+ struct padata_mt_job job = {
+ .thread_fn = gather_bootmem_prealloc_parallel,
+ .fn_arg = NULL,
+ .start = 0,
+ .size = nr_node_ids,
+ .align = 1,
+ .min_chunk = 1,
+ .max_threads = num_node_state(N_MEMORY),
+ .numa_aware = true,
+ };
+
+ padata_do_multithreaded(&job);
+}
+
+static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
{
unsigned long i;
+ char buf[32];
+ LIST_HEAD(folio_list);
- for (i = 0; i < h->max_huge_pages; ++i) {
+ for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
if (hstate_is_gigantic(h)) {
- if (!alloc_bootmem_huge_page(h))
+ if (!alloc_bootmem_huge_page(h, nid))
break;
- } else if (!alloc_pool_huge_page(h,
- &node_states[N_MEMORY]))
- break;
+ } else {
+ struct folio *folio;
+ gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
+
+ folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
+ &node_states[N_MEMORY], NULL);
+ if (!folio)
+ break;
+ list_add(&folio->lru, &folio_list);
+ }
cond_resched();
}
- if (i < h->max_huge_pages) {
+
+ if (!list_empty(&folio_list))
+ prep_and_add_allocated_folios(h, &folio_list);
+
+ if (i == h->max_huge_pages_node[nid])
+ return;
+
+ string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
+ pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
+ h->max_huge_pages_node[nid], buf, nid, i);
+ h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
+ h->max_huge_pages_node[nid] = i;
+}
+
+static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
+{
+ int i;
+ bool node_specific_alloc = false;
+
+ for_each_online_node(i) {
+ if (h->max_huge_pages_node[i] > 0) {
+ hugetlb_hstate_alloc_pages_onenode(h, i);
+ node_specific_alloc = true;
+ }
+ }
+
+ return node_specific_alloc;
+}
+
+static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
+{
+ if (allocated < h->max_huge_pages) {
char buf[32];
string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
- h->max_huge_pages, buf, i);
- h->max_huge_pages = i;
+ h->max_huge_pages, buf, allocated);
+ h->max_huge_pages = allocated;
+ }
+}
+
+static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
+{
+ struct hstate *h = (struct hstate *)arg;
+ int i, num = end - start;
+ nodemask_t node_alloc_noretry;
+ LIST_HEAD(folio_list);
+ int next_node = first_online_node;
+
+ /* Bit mask controlling how hard we retry per-node allocations.*/
+ nodes_clear(node_alloc_noretry);
+
+ for (i = 0; i < num; ++i) {
+ struct folio *folio;
+
+ if (hugetlb_vmemmap_optimizable_size(h) &&
+ (si_mem_available() == 0) && !list_empty(&folio_list)) {
+ prep_and_add_allocated_folios(h, &folio_list);
+ INIT_LIST_HEAD(&folio_list);
+ }
+ folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
+ &node_alloc_noretry, &next_node);
+ if (!folio)
+ break;
+
+ list_move(&folio->lru, &folio_list);
+ cond_resched();
+ }
+
+ prep_and_add_allocated_folios(h, &folio_list);
+}
+
+static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
+{
+ unsigned long i;
+
+ for (i = 0; i < h->max_huge_pages; ++i) {
+ if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
+ break;
+ cond_resched();
+ }
+
+ return i;
+}
+
+static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
+{
+ struct padata_mt_job job = {
+ .fn_arg = h,
+ .align = 1,
+ .numa_aware = true
+ };
+
+ unsigned long jiffies_start;
+ unsigned long jiffies_end;
+ unsigned long remaining;
+
+ job.thread_fn = hugetlb_pages_alloc_boot_node;
+
+ /*
+ * job.max_threads is 25% of the available cpu threads by default.
+ *
+ * On large servers with terabytes of memory, huge page allocation
+ * can consume a considerably amount of time.
+ *
+ * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
+ * 2MiB huge pages. Using more threads can significantly improve allocation time.
+ *
+ * +-----------------------+-------+-------+-------+-------+-------+
+ * | threads | 8 | 16 | 32 | 64 | 128 |
+ * +-----------------------+-------+-------+-------+-------+-------+
+ * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s |
+ * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s |
+ * +-----------------------+-------+-------+-------+-------+-------+
+ */
+ if (hugepage_allocation_threads == 0) {
+ hugepage_allocation_threads = num_online_cpus() / 4;
+ hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
+ }
+
+ job.max_threads = hugepage_allocation_threads;
+
+ jiffies_start = jiffies;
+ do {
+ remaining = h->max_huge_pages - h->nr_huge_pages;
+
+ job.start = h->nr_huge_pages;
+ job.size = remaining;
+ job.min_chunk = remaining / hugepage_allocation_threads;
+ padata_do_multithreaded(&job);
+
+ if (h->nr_huge_pages == h->max_huge_pages)
+ break;
+
+ /*
+ * Retry only if the vmemmap optimization might have been able to free
+ * some memory back to the system.
+ */
+ if (!hugetlb_vmemmap_optimizable(h))
+ break;
+
+ /* Continue if progress was made in last iteration */
+ } while (remaining != (h->max_huge_pages - h->nr_huge_pages));
+
+ jiffies_end = jiffies;
+
+ pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
+ jiffies_to_msecs(jiffies_end - jiffies_start),
+ hugepage_allocation_threads);
+
+ return h->nr_huge_pages;
+}
+
+/*
+ * NOTE: this routine is called in different contexts for gigantic and
+ * non-gigantic pages.
+ * - For gigantic pages, this is called early in the boot process and
+ * pages are allocated from memblock allocated or something similar.
+ * Gigantic pages are actually added to pools later with the routine
+ * gather_bootmem_prealloc.
+ * - For non-gigantic pages, this is called later in the boot process after
+ * all of mm is up and functional. Pages are allocated from buddy and
+ * then added to hugetlb pools.
+ */
+static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
+{
+ unsigned long allocated;
+
+ /*
+ * Skip gigantic hugepages allocation if early CMA
+ * reservations are not available.
+ */
+ if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
+ !hugetlb_early_cma(h)) {
+ pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
+ return;
}
+
+ if (!h->max_huge_pages)
+ return;
+
+ /* do node specific alloc */
+ if (hugetlb_hstate_alloc_pages_specific_nodes(h))
+ return;
+
+ /* below will do all node balanced alloc */
+ if (hstate_is_gigantic(h))
+ allocated = hugetlb_gigantic_pages_alloc_boot(h);
+ else
+ allocated = hugetlb_pages_alloc_boot(h);
+
+ hugetlb_hstate_alloc_pages_errcheck(allocated, h);
}
static void __init hugetlb_init_hstates(void)
{
- struct hstate *h;
+ struct hstate *h, *h2;
for_each_hstate(h) {
- if (minimum_order > huge_page_order(h))
- minimum_order = huge_page_order(h);
+ /*
+ * Always reset to first_memory_node here, even if
+ * next_nid_to_alloc was set before - we can't
+ * reference hugetlb_bootmem_nodes after init, and
+ * first_memory_node is right for all further allocations.
+ */
+ h->next_nid_to_alloc = first_memory_node;
+ h->next_nid_to_free = first_memory_node;
/* oversize hugepages were init'ed in early boot */
if (!hstate_is_gigantic(h))
hugetlb_hstate_alloc_pages(h);
+
+ /*
+ * Set demote order for each hstate. Note that
+ * h->demote_order is initially 0.
+ * - We can not demote gigantic pages if runtime freeing
+ * is not supported, so skip this.
+ * - If CMA allocation is possible, we can not demote
+ * HUGETLB_PAGE_ORDER or smaller size pages.
+ */
+ if (hstate_is_gigantic_no_runtime(h))
+ continue;
+ if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
+ continue;
+ for_each_hstate(h2) {
+ if (h2 == h)
+ continue;
+ if (h2->order < h->order &&
+ h2->order > h->demote_order)
+ h->demote_order = h2->order;
+ }
}
- VM_BUG_ON(minimum_order == UINT_MAX);
}
static void __init report_hugepages(void)
{
struct hstate *h;
+ unsigned long nrinvalid;
for_each_hstate(h) {
char buf[32];
+ nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
+ h->max_huge_pages -= nrinvalid;
+
string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
- pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
- buf, h->free_huge_pages);
+ pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
+ buf, h->nr_huge_pages);
+ if (nrinvalid)
+ pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
+ buf, nrinvalid, str_plural(nrinvalid));
+ pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
+ hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
}
}
@@ -2217,24 +3692,32 @@ static void try_to_free_low(struct hstate *h, unsigned long count,
nodemask_t *nodes_allowed)
{
int i;
+ LIST_HEAD(page_list);
+ lockdep_assert_held(&hugetlb_lock);
if (hstate_is_gigantic(h))
return;
+ /*
+ * Collect pages to be freed on a list, and free after dropping lock
+ */
for_each_node_mask(i, *nodes_allowed) {
- struct page *page, *next;
+ struct folio *folio, *next;
struct list_head *freel = &h->hugepage_freelists[i];
- list_for_each_entry_safe(page, next, freel, lru) {
+ list_for_each_entry_safe(folio, next, freel, lru) {
if (count >= h->nr_huge_pages)
- return;
- if (PageHighMem(page))
+ goto out;
+ if (folio_test_highmem(folio))
continue;
- list_del(&page->lru);
- update_and_free_page(h, page);
- h->free_huge_pages--;
- h->free_huge_pages_node[page_to_nid(page)]--;
+ remove_hugetlb_folio(h, folio, false);
+ list_add(&folio->lru, &page_list);
}
}
+
+out:
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_pages_bulk(h, &page_list);
+ spin_lock_irq(&hugetlb_lock);
}
#else
static inline void try_to_free_low(struct hstate *h, unsigned long count,
@@ -2253,10 +3736,11 @@ static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
{
int nr_nodes, node;
+ lockdep_assert_held(&hugetlb_lock);
VM_BUG_ON(delta != -1 && delta != 1);
if (delta < 0) {
- for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
+ for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
if (h->surplus_huge_pages_node[node])
goto found;
}
@@ -2276,50 +3760,128 @@ found:
}
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
-static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
- nodemask_t *nodes_allowed)
+static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
+ nodemask_t *nodes_allowed)
{
- unsigned long min_count, ret;
+ unsigned long persistent_free_count;
+ unsigned long min_count;
+ unsigned long allocated;
+ struct folio *folio;
+ LIST_HEAD(page_list);
+ NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
+
+ /*
+ * Bit mask controlling how hard we retry per-node allocations.
+ * If we can not allocate the bit mask, do not attempt to allocate
+ * the requested huge pages.
+ */
+ if (node_alloc_noretry)
+ nodes_clear(*node_alloc_noretry);
+ else
+ return -ENOMEM;
+
+ /*
+ * resize_lock mutex prevents concurrent adjustments to number of
+ * pages in hstate via the proc/sysfs interfaces.
+ */
+ mutex_lock(&h->resize_lock);
+ flush_free_hpage_work(h);
+ spin_lock_irq(&hugetlb_lock);
- if (hstate_is_gigantic(h) && !gigantic_page_supported())
- return h->max_huge_pages;
+ /*
+ * Check for a node specific request.
+ * Changing node specific huge page count may require a corresponding
+ * change to the global count. In any case, the passed node mask
+ * (nodes_allowed) will restrict alloc/free to the specified node.
+ */
+ if (nid != NUMA_NO_NODE) {
+ unsigned long old_count = count;
+
+ count += persistent_huge_pages(h) -
+ (h->nr_huge_pages_node[nid] -
+ h->surplus_huge_pages_node[nid]);
+ /*
+ * User may have specified a large count value which caused the
+ * above calculation to overflow. In this case, they wanted
+ * to allocate as many huge pages as possible. Set count to
+ * largest possible value to align with their intention.
+ */
+ if (count < old_count)
+ count = ULONG_MAX;
+ }
+
+ /*
+ * Gigantic pages runtime allocation depend on the capability for large
+ * page range allocation.
+ * If the system does not provide this feature, return an error when
+ * the user tries to allocate gigantic pages but let the user free the
+ * boottime allocated gigantic pages.
+ */
+ if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
+ if (count > persistent_huge_pages(h)) {
+ spin_unlock_irq(&hugetlb_lock);
+ mutex_unlock(&h->resize_lock);
+ NODEMASK_FREE(node_alloc_noretry);
+ return -EINVAL;
+ }
+ /* Fall through to decrease pool */
+ }
/*
* Increase the pool size
* First take pages out of surplus state. Then make up the
* remaining difference by allocating fresh huge pages.
*
- * We might race with alloc_surplus_huge_page() here and be unable
+ * We might race with alloc_surplus_hugetlb_folio() here and be unable
* to convert a surplus huge page to a normal huge page. That is
* not critical, though, it just means the overall size of the
* pool might be one hugepage larger than it needs to be, but
* within all the constraints specified by the sysctls.
*/
- spin_lock(&hugetlb_lock);
while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
if (!adjust_pool_surplus(h, nodes_allowed, -1))
break;
}
- while (count > persistent_huge_pages(h)) {
+ allocated = 0;
+ while (count > (persistent_huge_pages(h) + allocated)) {
/*
* If this allocation races such that we no longer need the
- * page, free_huge_page will handle it by freeing the page
+ * page, free_huge_folio will handle it by freeing the page
* and reducing the surplus.
*/
- spin_unlock(&hugetlb_lock);
+ spin_unlock_irq(&hugetlb_lock);
/* yield cpu to avoid soft lockup */
cond_resched();
- ret = alloc_pool_huge_page(h, nodes_allowed);
- spin_lock(&hugetlb_lock);
- if (!ret)
+ folio = alloc_pool_huge_folio(h, nodes_allowed,
+ node_alloc_noretry,
+ &h->next_nid_to_alloc);
+ if (!folio) {
+ prep_and_add_allocated_folios(h, &page_list);
+ spin_lock_irq(&hugetlb_lock);
goto out;
+ }
+
+ list_add(&folio->lru, &page_list);
+ allocated++;
/* Bail for signals. Probably ctrl-c from user */
- if (signal_pending(current))
+ if (signal_pending(current)) {
+ prep_and_add_allocated_folios(h, &page_list);
+ spin_lock_irq(&hugetlb_lock);
goto out;
+ }
+
+ spin_lock_irq(&hugetlb_lock);
+ }
+
+ /* Add allocated pages to the pool */
+ if (!list_empty(&page_list)) {
+ spin_unlock_irq(&hugetlb_lock);
+ prep_and_add_allocated_folios(h, &page_list);
+ spin_lock_irq(&hugetlb_lock);
}
/*
@@ -2332,460 +3894,279 @@ static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
* By placing pages into the surplus state independent of the
* overcommit value, we are allowing the surplus pool size to
* exceed overcommit. There are few sane options here. Since
- * alloc_surplus_huge_page() is checking the global counter,
+ * alloc_surplus_hugetlb_folio() is checking the global counter,
* though, we'll note that we're not allowed to exceed surplus
* and won't grow the pool anywhere else. Not until one of the
* sysctls are changed, or the surplus pages go out of use.
+ *
+ * min_count is the expected number of persistent pages, we
+ * shouldn't calculate min_count by using
+ * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
+ * because there may exist free surplus huge pages, and this will
+ * lead to subtracting twice. Free surplus huge pages come from HVO
+ * failing to restore vmemmap, see comments in the callers of
+ * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
+ * persistent free count first.
*/
- min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
+ persistent_free_count = h->free_huge_pages;
+ if (h->free_huge_pages > persistent_huge_pages(h)) {
+ if (h->free_huge_pages > h->surplus_huge_pages)
+ persistent_free_count -= h->surplus_huge_pages;
+ else
+ persistent_free_count = 0;
+ }
+ min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
min_count = max(count, min_count);
try_to_free_low(h, min_count, nodes_allowed);
+
+ /*
+ * Collect pages to be removed on list without dropping lock
+ */
while (min_count < persistent_huge_pages(h)) {
- if (!free_pool_huge_page(h, nodes_allowed, 0))
+ folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
+ if (!folio)
break;
- cond_resched_lock(&hugetlb_lock);
+
+ list_add(&folio->lru, &page_list);
}
+ /* free the pages after dropping lock */
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_pages_bulk(h, &page_list);
+ flush_free_hpage_work(h);
+ spin_lock_irq(&hugetlb_lock);
+
while (count < persistent_huge_pages(h)) {
if (!adjust_pool_surplus(h, nodes_allowed, 1))
break;
}
out:
- ret = persistent_huge_pages(h);
- spin_unlock(&hugetlb_lock);
- return ret;
-}
-
-#define HSTATE_ATTR_RO(_name) \
- static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
+ h->max_huge_pages = persistent_huge_pages(h);
+ spin_unlock_irq(&hugetlb_lock);
+ mutex_unlock(&h->resize_lock);
-#define HSTATE_ATTR(_name) \
- static struct kobj_attribute _name##_attr = \
- __ATTR(_name, 0644, _name##_show, _name##_store)
+ NODEMASK_FREE(node_alloc_noretry);
-static struct kobject *hugepages_kobj;
-static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
-
-static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
-
-static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
-{
- int i;
-
- for (i = 0; i < HUGE_MAX_HSTATE; i++)
- if (hstate_kobjs[i] == kobj) {
- if (nidp)
- *nidp = NUMA_NO_NODE;
- return &hstates[i];
- }
-
- return kobj_to_node_hstate(kobj, nidp);
-}
-
-static ssize_t nr_hugepages_show_common(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- struct hstate *h;
- unsigned long nr_huge_pages;
- int nid;
-
- h = kobj_to_hstate(kobj, &nid);
- if (nid == NUMA_NO_NODE)
- nr_huge_pages = h->nr_huge_pages;
- else
- nr_huge_pages = h->nr_huge_pages_node[nid];
-
- return sprintf(buf, "%lu\n", nr_huge_pages);
+ return 0;
}
-static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
- struct hstate *h, int nid,
- unsigned long count, size_t len)
+static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
+ struct list_head *src_list)
{
- int err;
- NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
+ long rc;
+ struct folio *folio, *next;
+ LIST_HEAD(dst_list);
+ LIST_HEAD(ret_list);
- if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
- err = -EINVAL;
- goto out;
- }
+ rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
+ list_splice_init(&ret_list, src_list);
- if (nid == NUMA_NO_NODE) {
- /*
- * global hstate attribute
- */
- if (!(obey_mempolicy &&
- init_nodemask_of_mempolicy(nodes_allowed))) {
- NODEMASK_FREE(nodes_allowed);
- nodes_allowed = &node_states[N_MEMORY];
- }
- } else if (nodes_allowed) {
- /*
- * per node hstate attribute: adjust count to global,
- * but restrict alloc/free to the specified node.
- */
- count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
- init_nodemask_of_node(nodes_allowed, nid);
- } else
- nodes_allowed = &node_states[N_MEMORY];
-
- h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
-
- if (nodes_allowed != &node_states[N_MEMORY])
- NODEMASK_FREE(nodes_allowed);
+ /*
+ * Taking target hstate mutex synchronizes with set_max_huge_pages.
+ * Without the mutex, pages added to target hstate could be marked
+ * as surplus.
+ *
+ * Note that we already hold src->resize_lock. To prevent deadlock,
+ * use the convention of always taking larger size hstate mutex first.
+ */
+ mutex_lock(&dst->resize_lock);
- return len;
-out:
- NODEMASK_FREE(nodes_allowed);
- return err;
-}
+ list_for_each_entry_safe(folio, next, src_list, lru) {
+ int i;
+ bool cma;
-static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
- struct kobject *kobj, const char *buf,
- size_t len)
-{
- struct hstate *h;
- unsigned long count;
- int nid;
- int err;
+ if (folio_test_hugetlb_vmemmap_optimized(folio))
+ continue;
- err = kstrtoul(buf, 10, &count);
- if (err)
- return err;
+ cma = folio_test_hugetlb_cma(folio);
- h = kobj_to_hstate(kobj, &nid);
- return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
-}
+ list_del(&folio->lru);
-static ssize_t nr_hugepages_show(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- return nr_hugepages_show_common(kobj, attr, buf);
-}
+ split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
+ pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
-static ssize_t nr_hugepages_store(struct kobject *kobj,
- struct kobj_attribute *attr, const char *buf, size_t len)
-{
- return nr_hugepages_store_common(false, kobj, buf, len);
-}
-HSTATE_ATTR(nr_hugepages);
+ for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
+ struct page *page = folio_page(folio, i);
+ /* Careful: see __split_huge_page_tail() */
+ struct folio *new_folio = (struct folio *)page;
-#ifdef CONFIG_NUMA
+ clear_compound_head(page);
+ prep_compound_page(page, dst->order);
-/*
- * hstate attribute for optionally mempolicy-based constraint on persistent
- * huge page alloc/free.
- */
-static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- return nr_hugepages_show_common(kobj, attr, buf);
-}
+ new_folio->mapping = NULL;
+ init_new_hugetlb_folio(new_folio);
+ /* Copy the CMA flag so that it is freed correctly */
+ if (cma)
+ folio_set_hugetlb_cma(new_folio);
+ list_add(&new_folio->lru, &dst_list);
+ }
+ }
-static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
- struct kobj_attribute *attr, const char *buf, size_t len)
-{
- return nr_hugepages_store_common(true, kobj, buf, len);
-}
-HSTATE_ATTR(nr_hugepages_mempolicy);
-#endif
+ prep_and_add_allocated_folios(dst, &dst_list);
+ mutex_unlock(&dst->resize_lock);
-static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- struct hstate *h = kobj_to_hstate(kobj, NULL);
- return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
+ return rc;
}
-static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
- struct kobj_attribute *attr, const char *buf, size_t count)
+long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
+ unsigned long nr_to_demote)
+ __must_hold(&hugetlb_lock)
{
- int err;
- unsigned long input;
- struct hstate *h = kobj_to_hstate(kobj, NULL);
+ int nr_nodes, node;
+ struct hstate *dst;
+ long rc = 0;
+ long nr_demoted = 0;
- if (hstate_is_gigantic(h))
- return -EINVAL;
+ lockdep_assert_held(&hugetlb_lock);
- err = kstrtoul(buf, 10, &input);
- if (err)
- return err;
+ /* We should never get here if no demote order */
+ if (!src->demote_order) {
+ pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
+ return -EINVAL; /* internal error */
+ }
+ dst = size_to_hstate(PAGE_SIZE << src->demote_order);
- spin_lock(&hugetlb_lock);
- h->nr_overcommit_huge_pages = input;
- spin_unlock(&hugetlb_lock);
+ for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
+ LIST_HEAD(list);
+ struct folio *folio, *next;
- return count;
-}
-HSTATE_ATTR(nr_overcommit_hugepages);
+ list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
+ if (folio_test_hwpoison(folio))
+ continue;
-static ssize_t free_hugepages_show(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- struct hstate *h;
- unsigned long free_huge_pages;
- int nid;
+ remove_hugetlb_folio(src, folio, false);
+ list_add(&folio->lru, &list);
- h = kobj_to_hstate(kobj, &nid);
- if (nid == NUMA_NO_NODE)
- free_huge_pages = h->free_huge_pages;
- else
- free_huge_pages = h->free_huge_pages_node[nid];
+ if (++nr_demoted == nr_to_demote)
+ break;
+ }
- return sprintf(buf, "%lu\n", free_huge_pages);
-}
-HSTATE_ATTR_RO(free_hugepages);
+ spin_unlock_irq(&hugetlb_lock);
-static ssize_t resv_hugepages_show(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- struct hstate *h = kobj_to_hstate(kobj, NULL);
- return sprintf(buf, "%lu\n", h->resv_huge_pages);
-}
-HSTATE_ATTR_RO(resv_hugepages);
+ rc = demote_free_hugetlb_folios(src, dst, &list);
-static ssize_t surplus_hugepages_show(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- struct hstate *h;
- unsigned long surplus_huge_pages;
- int nid;
+ spin_lock_irq(&hugetlb_lock);
- h = kobj_to_hstate(kobj, &nid);
- if (nid == NUMA_NO_NODE)
- surplus_huge_pages = h->surplus_huge_pages;
- else
- surplus_huge_pages = h->surplus_huge_pages_node[nid];
+ list_for_each_entry_safe(folio, next, &list, lru) {
+ list_del(&folio->lru);
+ add_hugetlb_folio(src, folio, false);
- return sprintf(buf, "%lu\n", surplus_huge_pages);
-}
-HSTATE_ATTR_RO(surplus_hugepages);
-
-static struct attribute *hstate_attrs[] = {
- &nr_hugepages_attr.attr,
- &nr_overcommit_hugepages_attr.attr,
- &free_hugepages_attr.attr,
- &resv_hugepages_attr.attr,
- &surplus_hugepages_attr.attr,
-#ifdef CONFIG_NUMA
- &nr_hugepages_mempolicy_attr.attr,
-#endif
- NULL,
-};
-
-static const struct attribute_group hstate_attr_group = {
- .attrs = hstate_attrs,
-};
+ nr_demoted--;
+ }
-static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
- struct kobject **hstate_kobjs,
- const struct attribute_group *hstate_attr_group)
-{
- int retval;
- int hi = hstate_index(h);
+ if (rc < 0 || nr_demoted == nr_to_demote)
+ break;
+ }
- hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
- if (!hstate_kobjs[hi])
- return -ENOMEM;
+ /*
+ * Not absolutely necessary, but for consistency update max_huge_pages
+ * based on pool changes for the demoted page.
+ */
+ src->max_huge_pages -= nr_demoted;
+ dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
- retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
- if (retval)
- kobject_put(hstate_kobjs[hi]);
+ if (rc < 0)
+ return rc;
- return retval;
+ if (nr_demoted)
+ return nr_demoted;
+ /*
+ * Only way to get here is if all pages on free lists are poisoned.
+ * Return -EBUSY so that caller will not retry.
+ */
+ return -EBUSY;
}
-static void __init hugetlb_sysfs_init(void)
+ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
+ struct hstate *h, int nid,
+ unsigned long count, size_t len)
{
- struct hstate *h;
int err;
+ nodemask_t nodes_allowed, *n_mask;
- hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
- if (!hugepages_kobj)
- return;
-
- for_each_hstate(h) {
- err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
- hstate_kobjs, &hstate_attr_group);
- if (err)
- pr_err("Hugetlb: Unable to add hstate %s", h->name);
- }
-}
-
-#ifdef CONFIG_NUMA
-
-/*
- * node_hstate/s - associate per node hstate attributes, via their kobjects,
- * with node devices in node_devices[] using a parallel array. The array
- * index of a node device or _hstate == node id.
- * This is here to avoid any static dependency of the node device driver, in
- * the base kernel, on the hugetlb module.
- */
-struct node_hstate {
- struct kobject *hugepages_kobj;
- struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
-};
-static struct node_hstate node_hstates[MAX_NUMNODES];
-
-/*
- * A subset of global hstate attributes for node devices
- */
-static struct attribute *per_node_hstate_attrs[] = {
- &nr_hugepages_attr.attr,
- &free_hugepages_attr.attr,
- &surplus_hugepages_attr.attr,
- NULL,
-};
-
-static const struct attribute_group per_node_hstate_attr_group = {
- .attrs = per_node_hstate_attrs,
-};
-
-/*
- * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
- * Returns node id via non-NULL nidp.
- */
-static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
-{
- int nid;
+ if (hstate_is_gigantic_no_runtime(h))
+ return -EINVAL;
- for (nid = 0; nid < nr_node_ids; nid++) {
- struct node_hstate *nhs = &node_hstates[nid];
- int i;
- for (i = 0; i < HUGE_MAX_HSTATE; i++)
- if (nhs->hstate_kobjs[i] == kobj) {
- if (nidp)
- *nidp = nid;
- return &hstates[i];
- }
+ if (nid == NUMA_NO_NODE) {
+ /*
+ * global hstate attribute
+ */
+ if (!(obey_mempolicy &&
+ init_nodemask_of_mempolicy(&nodes_allowed)))
+ n_mask = &node_states[N_MEMORY];
+ else
+ n_mask = &nodes_allowed;
+ } else {
+ /*
+ * Node specific request. count adjustment happens in
+ * set_max_huge_pages() after acquiring hugetlb_lock.
+ */
+ init_nodemask_of_node(&nodes_allowed, nid);
+ n_mask = &nodes_allowed;
}
- BUG();
- return NULL;
-}
-
-/*
- * Unregister hstate attributes from a single node device.
- * No-op if no hstate attributes attached.
- */
-static void hugetlb_unregister_node(struct node *node)
-{
- struct hstate *h;
- struct node_hstate *nhs = &node_hstates[node->dev.id];
+ err = set_max_huge_pages(h, count, nid, n_mask);
- if (!nhs->hugepages_kobj)
- return; /* no hstate attributes */
-
- for_each_hstate(h) {
- int idx = hstate_index(h);
- if (nhs->hstate_kobjs[idx]) {
- kobject_put(nhs->hstate_kobjs[idx]);
- nhs->hstate_kobjs[idx] = NULL;
- }
- }
-
- kobject_put(nhs->hugepages_kobj);
- nhs->hugepages_kobj = NULL;
+ return err ? err : len;
}
-
-/*
- * Register hstate attributes for a single node device.
- * No-op if attributes already registered.
- */
-static void hugetlb_register_node(struct node *node)
+static int __init hugetlb_init(void)
{
- struct hstate *h;
- struct node_hstate *nhs = &node_hstates[node->dev.id];
- int err;
-
- if (nhs->hugepages_kobj)
- return; /* already allocated */
-
- nhs->hugepages_kobj = kobject_create_and_add("hugepages",
- &node->dev.kobj);
- if (!nhs->hugepages_kobj)
- return;
-
- for_each_hstate(h) {
- err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
- nhs->hstate_kobjs,
- &per_node_hstate_attr_group);
- if (err) {
- pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
- h->name, node->dev.id);
- hugetlb_unregister_node(node);
- break;
- }
- }
-}
+ int i;
-/*
- * hugetlb init time: register hstate attributes for all registered node
- * devices of nodes that have memory. All on-line nodes should have
- * registered their associated device by this time.
- */
-static void __init hugetlb_register_all_nodes(void)
-{
- int nid;
+ BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
+ __NR_HPAGEFLAGS);
+ BUILD_BUG_ON_INVALID(HUGETLB_PAGE_ORDER > MAX_FOLIO_ORDER);
- for_each_node_state(nid, N_MEMORY) {
- struct node *node = node_devices[nid];
- if (node->dev.id == nid)
- hugetlb_register_node(node);
+ if (!hugepages_supported()) {
+ if (hugetlb_max_hstate || default_hstate_max_huge_pages)
+ pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
+ return 0;
}
/*
- * Let the node device driver know we're here so it can
- * [un]register hstate attributes on node hotplug.
+ * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
+ * architectures depend on setup being done here.
*/
- register_hugetlbfs_with_node(hugetlb_register_node,
- hugetlb_unregister_node);
-}
-#else /* !CONFIG_NUMA */
-
-static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
-{
- BUG();
- if (nidp)
- *nidp = -1;
- return NULL;
-}
-
-static void hugetlb_register_all_nodes(void) { }
-
-#endif
-
-static int __init hugetlb_init(void)
-{
- int i;
-
- if (!hugepages_supported())
- return 0;
+ hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
+ if (!parsed_default_hugepagesz) {
+ /*
+ * If we did not parse a default huge page size, set
+ * default_hstate_idx to HPAGE_SIZE hstate. And, if the
+ * number of huge pages for this default size was implicitly
+ * specified, set that here as well.
+ * Note that the implicit setting will overwrite an explicit
+ * setting. A warning will be printed in this case.
+ */
+ default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
+ if (default_hstate_max_huge_pages) {
+ if (default_hstate.max_huge_pages) {
+ char buf[32];
+
+ string_get_size(huge_page_size(&default_hstate),
+ 1, STRING_UNITS_2, buf, 32);
+ pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
+ default_hstate.max_huge_pages, buf);
+ pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
+ default_hstate_max_huge_pages);
+ }
+ default_hstate.max_huge_pages =
+ default_hstate_max_huge_pages;
- if (!size_to_hstate(default_hstate_size)) {
- if (default_hstate_size != 0) {
- pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
- default_hstate_size, HPAGE_SIZE);
+ for_each_online_node(i)
+ default_hstate.max_huge_pages_node[i] =
+ default_hugepages_in_node[i];
}
-
- default_hstate_size = HPAGE_SIZE;
- if (!size_to_hstate(default_hstate_size))
- hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
- }
- default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
- if (default_hstate_max_huge_pages) {
- if (!default_hstate.max_huge_pages)
- default_hstate.max_huge_pages = default_hstate_max_huge_pages;
}
+ hugetlb_cma_check();
hugetlb_init_hstates();
gather_bootmem_prealloc();
report_hugepages();
hugetlb_sysfs_init();
- hugetlb_register_all_nodes();
hugetlb_cgroup_file_init();
+ hugetlb_sysctl_init();
#ifdef CONFIG_SMP
num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
@@ -2803,10 +4184,10 @@ static int __init hugetlb_init(void)
}
subsys_initcall(hugetlb_init);
-/* Should be called on processing a hugepagesz=... option */
-void __init hugetlb_bad_size(void)
+/* Overwritten by architectures with more huge page sizes */
+bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
{
- parsed_valid_hugepagesz = false;
+ return size == HPAGE_SIZE;
}
void __init hugetlb_add_hstate(unsigned int order)
@@ -2815,41 +4196,107 @@ void __init hugetlb_add_hstate(unsigned int order)
unsigned long i;
if (size_to_hstate(PAGE_SIZE << order)) {
- pr_warn("hugepagesz= specified twice, ignoring\n");
return;
}
BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
- BUG_ON(order == 0);
+ BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
+ WARN_ON(order > MAX_FOLIO_ORDER);
h = &hstates[hugetlb_max_hstate++];
+ __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
h->order = order;
- h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
- h->nr_huge_pages = 0;
- h->free_huge_pages = 0;
+ h->mask = ~(huge_page_size(h) - 1);
for (i = 0; i < MAX_NUMNODES; ++i)
INIT_LIST_HEAD(&h->hugepage_freelists[i]);
INIT_LIST_HEAD(&h->hugepage_activelist);
- h->next_nid_to_alloc = first_memory_node;
- h->next_nid_to_free = first_memory_node;
snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
- huge_page_size(h)/1024);
+ huge_page_size(h)/SZ_1K);
parsed_hstate = h;
}
-static int __init hugetlb_nrpages_setup(char *s)
+bool __init __weak hugetlb_node_alloc_supported(void)
+{
+ return true;
+}
+
+static void __init hugepages_clear_pages_in_node(void)
+{
+ if (!hugetlb_max_hstate) {
+ default_hstate_max_huge_pages = 0;
+ memset(default_hugepages_in_node, 0,
+ sizeof(default_hugepages_in_node));
+ } else {
+ parsed_hstate->max_huge_pages = 0;
+ memset(parsed_hstate->max_huge_pages_node, 0,
+ sizeof(parsed_hstate->max_huge_pages_node));
+ }
+}
+
+static __init int hugetlb_add_param(char *s, int (*setup)(char *))
+{
+ size_t len;
+ char *p;
+
+ if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
+ return -EINVAL;
+
+ len = strlen(s) + 1;
+ if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
+ return -EINVAL;
+
+ p = &hstate_cmdline_buf[hstate_cmdline_index];
+ memcpy(p, s, len);
+ hstate_cmdline_index += len;
+
+ hugetlb_params[hugetlb_param_index].val = p;
+ hugetlb_params[hugetlb_param_index].setup = setup;
+
+ hugetlb_param_index++;
+
+ return 0;
+}
+
+static __init void hugetlb_parse_params(void)
+{
+ int i;
+ struct hugetlb_cmdline *hcp;
+
+ for (i = 0; i < hugetlb_param_index; i++) {
+ hcp = &hugetlb_params[i];
+
+ hcp->setup(hcp->val);
+ }
+
+ hugetlb_cma_validate_params();
+}
+
+/*
+ * hugepages command line processing
+ * hugepages normally follows a valid hugepagsz or default_hugepagsz
+ * specification. If not, ignore the hugepages value. hugepages can also
+ * be the first huge page command line option in which case it implicitly
+ * specifies the number of huge pages for the default size.
+ */
+static int __init hugepages_setup(char *s)
{
unsigned long *mhp;
static unsigned long *last_mhp;
+ int node = NUMA_NO_NODE;
+ int count;
+ unsigned long tmp;
+ char *p = s;
if (!parsed_valid_hugepagesz) {
- pr_warn("hugepages = %s preceded by "
- "an unsupported hugepagesz, ignoring\n", s);
+ pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
parsed_valid_hugepagesz = true;
- return 1;
+ return -EINVAL;
}
+
/*
- * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
- * so this hugepages= parameter goes to the "default hstate".
+ * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
+ * yet, so this hugepages= parameter goes to the "default hstate".
+ * Otherwise, it goes with the previously parsed hugepagesz or
+ * default_hugepagesz.
*/
else if (!hugetlb_max_hstate)
mhp = &default_hstate_max_huge_pages;
@@ -2857,119 +4304,243 @@ static int __init hugetlb_nrpages_setup(char *s)
mhp = &parsed_hstate->max_huge_pages;
if (mhp == last_mhp) {
- pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
+ pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
return 1;
}
- if (sscanf(s, "%lu", mhp) <= 0)
- *mhp = 0;
-
- /*
- * Global state is always initialized later in hugetlb_init.
- * But we need to allocate >= MAX_ORDER hstates here early to still
- * use the bootmem allocator.
- */
- if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
- hugetlb_hstate_alloc_pages(parsed_hstate);
+ while (*p) {
+ count = 0;
+ if (sscanf(p, "%lu%n", &tmp, &count) != 1)
+ goto invalid;
+ /* Parameter is node format */
+ if (p[count] == ':') {
+ if (!hugetlb_node_alloc_supported()) {
+ pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
+ return 1;
+ }
+ if (tmp >= MAX_NUMNODES || !node_online(tmp))
+ goto invalid;
+ node = array_index_nospec(tmp, MAX_NUMNODES);
+ p += count + 1;
+ /* Parse hugepages */
+ if (sscanf(p, "%lu%n", &tmp, &count) != 1)
+ goto invalid;
+ if (!hugetlb_max_hstate)
+ default_hugepages_in_node[node] = tmp;
+ else
+ parsed_hstate->max_huge_pages_node[node] = tmp;
+ *mhp += tmp;
+ /* Go to parse next node*/
+ if (p[count] == ',')
+ p += count + 1;
+ else
+ break;
+ } else {
+ if (p != s)
+ goto invalid;
+ *mhp = tmp;
+ break;
+ }
+ }
last_mhp = mhp;
- return 1;
-}
-__setup("hugepages=", hugetlb_nrpages_setup);
+ return 0;
-static int __init hugetlb_default_setup(char *s)
-{
- default_hstate_size = memparse(s, &s);
- return 1;
+invalid:
+ pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
+ hugepages_clear_pages_in_node();
+ return -EINVAL;
}
-__setup("default_hugepagesz=", hugetlb_default_setup);
+hugetlb_early_param("hugepages", hugepages_setup);
-static unsigned int cpuset_mems_nr(unsigned int *array)
+/*
+ * hugepagesz command line processing
+ * A specific huge page size can only be specified once with hugepagesz.
+ * hugepagesz is followed by hugepages on the command line. The global
+ * variable 'parsed_valid_hugepagesz' is used to determine if prior
+ * hugepagesz argument was valid.
+ */
+static int __init hugepagesz_setup(char *s)
{
- int node;
- unsigned int nr = 0;
+ unsigned long size;
+ struct hstate *h;
- for_each_node_mask(node, cpuset_current_mems_allowed)
- nr += array[node];
+ parsed_valid_hugepagesz = false;
+ size = (unsigned long)memparse(s, NULL);
- return nr;
+ if (!arch_hugetlb_valid_size(size)) {
+ pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
+ return -EINVAL;
+ }
+
+ h = size_to_hstate(size);
+ if (h) {
+ /*
+ * hstate for this size already exists. This is normally
+ * an error, but is allowed if the existing hstate is the
+ * default hstate. More specifically, it is only allowed if
+ * the number of huge pages for the default hstate was not
+ * previously specified.
+ */
+ if (!parsed_default_hugepagesz || h != &default_hstate ||
+ default_hstate.max_huge_pages) {
+ pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
+ return -EINVAL;
+ }
+
+ /*
+ * No need to call hugetlb_add_hstate() as hstate already
+ * exists. But, do set parsed_hstate so that a following
+ * hugepages= parameter will be applied to this hstate.
+ */
+ parsed_hstate = h;
+ parsed_valid_hugepagesz = true;
+ return 0;
+ }
+
+ hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
+ parsed_valid_hugepagesz = true;
+ return 0;
}
+hugetlb_early_param("hugepagesz", hugepagesz_setup);
-#ifdef CONFIG_SYSCTL
-static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
- struct ctl_table *table, int write,
- void __user *buffer, size_t *length, loff_t *ppos)
+/*
+ * default_hugepagesz command line input
+ * Only one instance of default_hugepagesz allowed on command line.
+ */
+static int __init default_hugepagesz_setup(char *s)
{
- struct hstate *h = &default_hstate;
- unsigned long tmp = h->max_huge_pages;
- int ret;
+ unsigned long size;
+ int i;
- if (!hugepages_supported())
- return -EOPNOTSUPP;
+ parsed_valid_hugepagesz = false;
+ if (parsed_default_hugepagesz) {
+ pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
+ return -EINVAL;
+ }
- table->data = &tmp;
- table->maxlen = sizeof(unsigned long);
- ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
- if (ret)
- goto out;
+ size = (unsigned long)memparse(s, NULL);
- if (write)
- ret = __nr_hugepages_store_common(obey_mempolicy, h,
- NUMA_NO_NODE, tmp, *length);
-out:
- return ret;
+ if (!arch_hugetlb_valid_size(size)) {
+ pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
+ return -EINVAL;
+ }
+
+ hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
+ parsed_valid_hugepagesz = true;
+ parsed_default_hugepagesz = true;
+ default_hstate_idx = hstate_index(size_to_hstate(size));
+
+ /*
+ * The number of default huge pages (for this size) could have been
+ * specified as the first hugetlb parameter: hugepages=X. If so,
+ * then default_hstate_max_huge_pages is set. If the default huge
+ * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
+ * allocated here from bootmem allocator.
+ */
+ if (default_hstate_max_huge_pages) {
+ default_hstate.max_huge_pages = default_hstate_max_huge_pages;
+ /*
+ * Since this is an early parameter, we can't check
+ * NUMA node state yet, so loop through MAX_NUMNODES.
+ */
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ if (default_hugepages_in_node[i] != 0)
+ default_hstate.max_huge_pages_node[i] =
+ default_hugepages_in_node[i];
+ }
+ default_hstate_max_huge_pages = 0;
+ }
+
+ return 0;
}
+hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
-int hugetlb_sysctl_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *length, loff_t *ppos)
+void __init hugetlb_bootmem_set_nodes(void)
{
+ int i, nid;
+ unsigned long start_pfn, end_pfn;
+
+ if (!nodes_empty(hugetlb_bootmem_nodes))
+ return;
- return hugetlb_sysctl_handler_common(false, table, write,
- buffer, length, ppos);
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
+ if (end_pfn > start_pfn)
+ node_set(nid, hugetlb_bootmem_nodes);
+ }
}
-#ifdef CONFIG_NUMA
-int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *length, loff_t *ppos)
+static bool __hugetlb_bootmem_allocated __initdata;
+
+bool __init hugetlb_bootmem_allocated(void)
{
- return hugetlb_sysctl_handler_common(true, table, write,
- buffer, length, ppos);
+ return __hugetlb_bootmem_allocated;
}
-#endif /* CONFIG_NUMA */
-int hugetlb_overcommit_handler(struct ctl_table *table, int write,
- void __user *buffer,
- size_t *length, loff_t *ppos)
+void __init hugetlb_bootmem_alloc(void)
{
- struct hstate *h = &default_hstate;
- unsigned long tmp;
- int ret;
+ struct hstate *h;
+ int i;
- if (!hugepages_supported())
- return -EOPNOTSUPP;
+ if (__hugetlb_bootmem_allocated)
+ return;
- tmp = h->nr_overcommit_huge_pages;
+ hugetlb_bootmem_set_nodes();
- if (write && hstate_is_gigantic(h))
- return -EINVAL;
+ for (i = 0; i < MAX_NUMNODES; i++)
+ INIT_LIST_HEAD(&huge_boot_pages[i]);
- table->data = &tmp;
- table->maxlen = sizeof(unsigned long);
- ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
- if (ret)
- goto out;
+ hugetlb_parse_params();
+
+ for_each_hstate(h) {
+ h->next_nid_to_alloc = first_online_node;
- if (write) {
- spin_lock(&hugetlb_lock);
- h->nr_overcommit_huge_pages = tmp;
- spin_unlock(&hugetlb_lock);
+ if (hstate_is_gigantic(h))
+ hugetlb_hstate_alloc_pages(h);
}
-out:
- return ret;
+
+ __hugetlb_bootmem_allocated = true;
}
-#endif /* CONFIG_SYSCTL */
+/*
+ * hugepage_alloc_threads command line parsing.
+ *
+ * When set, use this specific number of threads for the boot
+ * allocation of hugepages.
+ */
+static int __init hugepage_alloc_threads_setup(char *s)
+{
+ unsigned long allocation_threads;
+
+ if (kstrtoul(s, 0, &allocation_threads) != 0)
+ return 1;
+
+ if (allocation_threads == 0)
+ return 1;
+
+ hugepage_allocation_threads = allocation_threads;
+
+ return 1;
+}
+__setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
+
+static unsigned int allowed_mems_nr(struct hstate *h)
+{
+ int node;
+ unsigned int nr = 0;
+ nodemask_t *mbind_nodemask;
+ unsigned int *array = h->free_huge_pages_node;
+ gfp_t gfp_mask = htlb_alloc_mask(h);
+
+ mbind_nodemask = policy_mbind_nodemask(gfp_mask);
+ for_each_node_mask(node, cpuset_current_mems_allowed) {
+ if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
+ nr += array[node];
+ }
+
+ return nr;
+}
void hugetlb_report_meminfo(struct seq_file *m)
{
@@ -2982,7 +4553,7 @@ void hugetlb_report_meminfo(struct seq_file *m)
for_each_hstate(h) {
unsigned long count = h->nr_huge_pages;
- total += (PAGE_SIZE << huge_page_order(h)) * count;
+ total += huge_page_size(h) * count;
if (h == &default_hstate)
seq_printf(m,
@@ -2995,48 +4566,48 @@ void hugetlb_report_meminfo(struct seq_file *m)
h->free_huge_pages,
h->resv_huge_pages,
h->surplus_huge_pages,
- (PAGE_SIZE << huge_page_order(h)) / 1024);
+ huge_page_size(h) / SZ_1K);
}
- seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
+ seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
}
-int hugetlb_report_node_meminfo(int nid, char *buf)
+int hugetlb_report_node_meminfo(char *buf, int len, int nid)
{
struct hstate *h = &default_hstate;
+
if (!hugepages_supported())
return 0;
- return sprintf(buf,
- "Node %d HugePages_Total: %5u\n"
- "Node %d HugePages_Free: %5u\n"
- "Node %d HugePages_Surp: %5u\n",
- nid, h->nr_huge_pages_node[nid],
- nid, h->free_huge_pages_node[nid],
- nid, h->surplus_huge_pages_node[nid]);
+
+ return sysfs_emit_at(buf, len,
+ "Node %d HugePages_Total: %5u\n"
+ "Node %d HugePages_Free: %5u\n"
+ "Node %d HugePages_Surp: %5u\n",
+ nid, h->nr_huge_pages_node[nid],
+ nid, h->free_huge_pages_node[nid],
+ nid, h->surplus_huge_pages_node[nid]);
}
-void hugetlb_show_meminfo(void)
+void hugetlb_show_meminfo_node(int nid)
{
struct hstate *h;
- int nid;
if (!hugepages_supported())
return;
- for_each_node_state(nid, N_MEMORY)
- for_each_hstate(h)
- pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
- nid,
- h->nr_huge_pages_node[nid],
- h->free_huge_pages_node[nid],
- h->surplus_huge_pages_node[nid],
- 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
+ for_each_hstate(h)
+ printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
+ nid,
+ h->nr_huge_pages_node[nid],
+ h->free_huge_pages_node[nid],
+ h->surplus_huge_pages_node[nid],
+ huge_page_size(h) / SZ_1K);
}
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
seq_printf(m, "HugetlbPages:\t%8lu kB\n",
- atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
+ K(atomic_long_read(&mm->hugetlb_usage)));
}
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
@@ -3054,7 +4625,10 @@ static int hugetlb_acct_memory(struct hstate *h, long delta)
{
int ret = -ENOMEM;
- spin_lock(&hugetlb_lock);
+ if (!delta)
+ return 0;
+
+ spin_lock_irq(&hugetlb_lock);
/*
* When cpuset is configured, it breaks the strict hugetlb page
* reservation as the accounting is done on a global variable. Such
@@ -3071,12 +4645,18 @@ static int hugetlb_acct_memory(struct hstate *h, long delta)
* we fall back to check against current free page availability as
* a best attempt and hopefully to minimize the impact of changing
* semantics that cpuset has.
+ *
+ * Apart from cpuset, we also have memory policy mechanism that
+ * also determines from which node the kernel will allocate memory
+ * in a NUMA system. So similar to cpuset, we also should consider
+ * the memory policy of the current task. Similar to the description
+ * above.
*/
if (delta > 0) {
if (gather_surplus_pages(h, delta) < 0)
goto out;
- if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
+ if (delta > allowed_mems_nr(h)) {
return_unused_surplus_pages(h, delta);
goto out;
}
@@ -3087,7 +4667,7 @@ static int hugetlb_acct_memory(struct hstate *h, long delta)
return_unused_surplus_pages(h, (unsigned long) -delta);
out:
- spin_unlock(&hugetlb_lock);
+ spin_unlock_irq(&hugetlb_lock);
return ret;
}
@@ -3096,6 +4676,7 @@ static void hugetlb_vm_op_open(struct vm_area_struct *vma)
struct resv_map *resv = vma_resv_map(vma);
/*
+ * HPAGE_RESV_OWNER indicates a private mapping.
* This new VMA should share its siblings reservation map if present.
* The VMA will only ever have a valid reservation map pointer where
* it is being copied for another still existing VMA. As that VMA
@@ -3103,18 +4684,42 @@ static void hugetlb_vm_op_open(struct vm_area_struct *vma)
* after this open call completes. It is therefore safe to take a
* new reference here without additional locking.
*/
- if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
+ if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
+ resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
kref_get(&resv->refs);
+ }
+
+ /*
+ * vma_lock structure for sharable mappings is vma specific.
+ * Clear old pointer (if copied via vm_area_dup) and allocate
+ * new structure. Before clearing, make sure vma_lock is not
+ * for this vma.
+ */
+ if (vma->vm_flags & VM_MAYSHARE) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ if (vma_lock) {
+ if (vma_lock->vma != vma) {
+ vma->vm_private_data = NULL;
+ hugetlb_vma_lock_alloc(vma);
+ } else
+ pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
+ } else
+ hugetlb_vma_lock_alloc(vma);
+ }
}
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
struct hstate *h = hstate_vma(vma);
- struct resv_map *resv = vma_resv_map(vma);
+ struct resv_map *resv;
struct hugepage_subpool *spool = subpool_vma(vma);
unsigned long reserve, start, end;
long gbl_reserve;
+ hugetlb_vma_lock_free(vma);
+
+ resv = vma_resv_map(vma);
if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
return;
@@ -3122,9 +4727,7 @@ static void hugetlb_vm_op_close(struct vm_area_struct *vma)
end = vma_hugecache_offset(h, vma, vma->vm_end);
reserve = (end - start) - region_count(resv, start, end);
-
- kref_put(&resv->refs, resv_map_release);
-
+ hugetlb_cgroup_uncharge_counter(resv, start, end);
if (reserve) {
/*
* Decrement reserve counts. The global reserve count may be
@@ -3133,6 +4736,8 @@ static void hugetlb_vm_op_close(struct vm_area_struct *vma)
gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
hugetlb_acct_memory(h, -gbl_reserve);
}
+
+ kref_put(&resv->refs, resv_map_release);
}
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
@@ -3142,17 +4747,48 @@ static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
return 0;
}
-static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
+void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
{
- struct hstate *hstate = hstate_vma(vma);
+ /*
+ * PMD sharing is only possible for PUD_SIZE-aligned address ranges
+ * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
+ * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
+ * This function is called in the middle of a VMA split operation, with
+ * MM, VMA and rmap all write-locked to prevent concurrent page table
+ * walks (except hardware and gup_fast()).
+ */
+ vma_assert_write_locked(vma);
+ i_mmap_assert_write_locked(vma->vm_file->f_mapping);
+
+ if (addr & ~PUD_MASK) {
+ unsigned long floor = addr & PUD_MASK;
+ unsigned long ceil = floor + PUD_SIZE;
+
+ if (floor >= vma->vm_start && ceil <= vma->vm_end) {
+ /*
+ * Locking:
+ * Use take_locks=false here.
+ * The file rmap lock is already held.
+ * The hugetlb VMA lock can't be taken when we already
+ * hold the file rmap lock, and we don't need it because
+ * its purpose is to synchronize against concurrent page
+ * table walks, which are not possible thanks to the
+ * locks held by our caller.
+ */
+ hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
+ }
+ }
+}
- return 1UL << huge_page_shift(hstate);
+static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
+{
+ return huge_page_size(hstate_vma(vma));
}
/*
* We cannot handle pagefaults against hugetlb pages at all. They cause
* handle_mm_fault() to try to instantiate regular-sized pages in the
- * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
+ * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
* this far.
*/
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
@@ -3172,25 +4808,23 @@ const struct vm_operations_struct hugetlb_vm_ops = {
.fault = hugetlb_vm_op_fault,
.open = hugetlb_vm_op_open,
.close = hugetlb_vm_op_close,
- .split = hugetlb_vm_op_split,
+ .may_split = hugetlb_vm_op_split,
.pagesize = hugetlb_vm_op_pagesize,
};
-static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
- int writable)
+static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio,
+ bool try_mkwrite)
{
- pte_t entry;
+ pte_t entry = folio_mk_pte(folio, vma->vm_page_prot);
+ unsigned int shift = huge_page_shift(hstate_vma(vma));
- if (writable) {
- entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
- vma->vm_page_prot)));
+ if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
+ entry = pte_mkwrite_novma(pte_mkdirty(entry));
} else {
- entry = huge_pte_wrprotect(mk_huge_pte(page,
- vma->vm_page_prot));
+ entry = pte_wrprotect(entry);
}
entry = pte_mkyoung(entry);
- entry = pte_mkhuge(entry);
- entry = arch_make_huge_pte(entry, vma, page, writable);
+ entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
return entry;
}
@@ -3200,149 +4834,334 @@ static void set_huge_ptep_writable(struct vm_area_struct *vma,
{
pte_t entry;
- entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
+ entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
update_mmu_cache(vma, address, ptep);
}
-bool is_hugetlb_entry_migration(pte_t pte)
+static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
+ unsigned long address, pte_t *ptep)
{
- swp_entry_t swp;
-
- if (huge_pte_none(pte) || pte_present(pte))
- return false;
- swp = pte_to_swp_entry(pte);
- if (non_swap_entry(swp) && is_migration_entry(swp))
- return true;
- else
- return false;
+ if (vma->vm_flags & VM_WRITE)
+ set_huge_ptep_writable(vma, address, ptep);
}
-static int is_hugetlb_entry_hwpoisoned(pte_t pte)
+static void
+hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
+ struct folio *new_folio, pte_t old, unsigned long sz)
{
- swp_entry_t swp;
+ pte_t newpte = make_huge_pte(vma, new_folio, true);
- if (huge_pte_none(pte) || pte_present(pte))
- return 0;
- swp = pte_to_swp_entry(pte);
- if (non_swap_entry(swp) && is_hwpoison_entry(swp))
- return 1;
- else
- return 0;
+ __folio_mark_uptodate(new_folio);
+ hugetlb_add_new_anon_rmap(new_folio, vma, addr);
+ if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
+ newpte = huge_pte_mkuffd_wp(newpte);
+ set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
+ hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
+ folio_set_hugetlb_migratable(new_folio);
}
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
- struct vm_area_struct *vma)
+ struct vm_area_struct *dst_vma,
+ struct vm_area_struct *src_vma)
{
- pte_t *src_pte, *dst_pte, entry, dst_entry;
- struct page *ptepage;
+ pte_t *src_pte, *dst_pte, entry;
+ struct folio *pte_folio;
unsigned long addr;
- int cow;
- struct hstate *h = hstate_vma(vma);
+ bool cow = is_cow_mapping(src_vma->vm_flags);
+ struct hstate *h = hstate_vma(src_vma);
unsigned long sz = huge_page_size(h);
+ unsigned long npages = pages_per_huge_page(h);
struct mmu_notifier_range range;
+ unsigned long last_addr_mask;
+ softleaf_t softleaf;
int ret = 0;
- cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
-
if (cow) {
- mmu_notifier_range_init(&range, src, vma->vm_start,
- vma->vm_end);
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
+ src_vma->vm_start,
+ src_vma->vm_end);
mmu_notifier_invalidate_range_start(&range);
+ vma_assert_write_locked(src_vma);
+ raw_write_seqcount_begin(&src->write_protect_seq);
+ } else {
+ /*
+ * For shared mappings the vma lock must be held before
+ * calling hugetlb_walk() in the src vma. Otherwise, the
+ * returned ptep could go away if part of a shared pmd and
+ * another thread calls huge_pmd_unshare.
+ */
+ hugetlb_vma_lock_read(src_vma);
}
- for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
+ last_addr_mask = hugetlb_mask_last_page(h);
+ for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
spinlock_t *src_ptl, *dst_ptl;
- src_pte = huge_pte_offset(src, addr, sz);
- if (!src_pte)
+ src_pte = hugetlb_walk(src_vma, addr, sz);
+ if (!src_pte) {
+ addr |= last_addr_mask;
continue;
- dst_pte = huge_pte_alloc(dst, addr, sz);
+ }
+ dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
if (!dst_pte) {
ret = -ENOMEM;
break;
}
- /*
- * If the pagetables are shared don't copy or take references.
- * dst_pte == src_pte is the common case of src/dest sharing.
- *
- * However, src could have 'unshared' and dst shares with
- * another vma. If dst_pte !none, this implies sharing.
- * Check here before taking page table lock, and once again
- * after taking the lock below.
- */
- dst_entry = huge_ptep_get(dst_pte);
- if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
+#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
+ /* If the pagetables are shared, there is nothing to do */
+ if (ptdesc_pmd_is_shared(virt_to_ptdesc(dst_pte))) {
+ addr |= last_addr_mask;
continue;
+ }
+#endif
dst_ptl = huge_pte_lock(h, dst, dst_pte);
src_ptl = huge_pte_lockptr(h, src, src_pte);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
- entry = huge_ptep_get(src_pte);
- dst_entry = huge_ptep_get(dst_pte);
- if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
- /*
- * Skip if src entry none. Also, skip in the
- * unlikely case dst entry !none as this implies
- * sharing with another vma.
- */
- ;
- } else if (unlikely(is_hugetlb_entry_migration(entry) ||
- is_hugetlb_entry_hwpoisoned(entry))) {
- swp_entry_t swp_entry = pte_to_swp_entry(entry);
+ entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
+again:
+ if (huge_pte_none(entry)) {
+ /* Skip if src entry none. */
+ goto next;
+ }
+
+ softleaf = softleaf_from_pte(entry);
+ if (unlikely(softleaf_is_hwpoison(softleaf))) {
+ if (!userfaultfd_wp(dst_vma))
+ entry = huge_pte_clear_uffd_wp(entry);
+ set_huge_pte_at(dst, addr, dst_pte, entry, sz);
+ } else if (unlikely(softleaf_is_migration(softleaf))) {
+ bool uffd_wp = pte_swp_uffd_wp(entry);
- if (is_write_migration_entry(swp_entry) && cow) {
+ if (!softleaf_is_migration_read(softleaf) && cow) {
/*
* COW mappings require pages in both
* parent and child to be set to read.
*/
- make_migration_entry_read(&swp_entry);
- entry = swp_entry_to_pte(swp_entry);
- set_huge_swap_pte_at(src, addr, src_pte,
- entry, sz);
+ softleaf = make_readable_migration_entry(
+ swp_offset(softleaf));
+ entry = swp_entry_to_pte(softleaf);
+ if (userfaultfd_wp(src_vma) && uffd_wp)
+ entry = pte_swp_mkuffd_wp(entry);
+ set_huge_pte_at(src, addr, src_pte, entry, sz);
}
- set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
+ if (!userfaultfd_wp(dst_vma))
+ entry = huge_pte_clear_uffd_wp(entry);
+ set_huge_pte_at(dst, addr, dst_pte, entry, sz);
+ } else if (unlikely(pte_is_marker(entry))) {
+ const pte_marker marker = copy_pte_marker(softleaf, dst_vma);
+
+ if (marker)
+ set_huge_pte_at(dst, addr, dst_pte,
+ make_pte_marker(marker), sz);
} else {
+ entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
+ pte_folio = page_folio(pte_page(entry));
+ folio_get(pte_folio);
+
+ /*
+ * Failing to duplicate the anon rmap is a rare case
+ * where we see pinned hugetlb pages while they're
+ * prone to COW. We need to do the COW earlier during
+ * fork.
+ *
+ * When pre-allocating the page or copying data, we
+ * need to be without the pgtable locks since we could
+ * sleep during the process.
+ */
+ if (!folio_test_anon(pte_folio)) {
+ hugetlb_add_file_rmap(pte_folio);
+ } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
+ pte_t src_pte_old = entry;
+ struct folio *new_folio;
+
+ spin_unlock(src_ptl);
+ spin_unlock(dst_ptl);
+ /* Do not use reserve as it's private owned */
+ new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
+ if (IS_ERR(new_folio)) {
+ folio_put(pte_folio);
+ ret = PTR_ERR(new_folio);
+ break;
+ }
+ ret = copy_user_large_folio(new_folio, pte_folio,
+ addr, dst_vma);
+ folio_put(pte_folio);
+ if (ret) {
+ folio_put(new_folio);
+ break;
+ }
+
+ /* Install the new hugetlb folio if src pte stable */
+ dst_ptl = huge_pte_lock(h, dst, dst_pte);
+ src_ptl = huge_pte_lockptr(h, src, src_pte);
+ spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
+ entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
+ if (!pte_same(src_pte_old, entry)) {
+ restore_reserve_on_error(h, dst_vma, addr,
+ new_folio);
+ folio_put(new_folio);
+ /* huge_ptep of dst_pte won't change as in child */
+ goto again;
+ }
+ hugetlb_install_folio(dst_vma, dst_pte, addr,
+ new_folio, src_pte_old, sz);
+ goto next;
+ }
+
if (cow) {
/*
* No need to notify as we are downgrading page
* table protection not changing it to point
* to a new page.
*
- * See Documentation/vm/mmu_notifier.rst
+ * See Documentation/mm/mmu_notifier.rst
*/
huge_ptep_set_wrprotect(src, addr, src_pte);
+ entry = huge_pte_wrprotect(entry);
}
- entry = huge_ptep_get(src_pte);
- ptepage = pte_page(entry);
- get_page(ptepage);
- page_dup_rmap(ptepage, true);
- set_huge_pte_at(dst, addr, dst_pte, entry);
- hugetlb_count_add(pages_per_huge_page(h), dst);
+
+ if (!userfaultfd_wp(dst_vma))
+ entry = huge_pte_clear_uffd_wp(entry);
+
+ set_huge_pte_at(dst, addr, dst_pte, entry, sz);
+ hugetlb_count_add(npages, dst);
}
+
+next:
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
}
- if (cow)
+ if (cow) {
+ raw_write_seqcount_end(&src->write_protect_seq);
mmu_notifier_invalidate_range_end(&range);
+ } else {
+ hugetlb_vma_unlock_read(src_vma);
+ }
return ret;
}
+static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
+ unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
+ unsigned long sz)
+{
+ bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
+ struct hstate *h = hstate_vma(vma);
+ struct mm_struct *mm = vma->vm_mm;
+ spinlock_t *src_ptl, *dst_ptl;
+ pte_t pte;
+
+ dst_ptl = huge_pte_lock(h, mm, dst_pte);
+ src_ptl = huge_pte_lockptr(h, mm, src_pte);
+
+ /*
+ * We don't have to worry about the ordering of src and dst ptlocks
+ * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
+ */
+ if (src_ptl != dst_ptl)
+ spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
+
+ pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
+
+ if (need_clear_uffd_wp && pte_is_uffd_wp_marker(pte)) {
+ huge_pte_clear(mm, new_addr, dst_pte, sz);
+ } else {
+ if (need_clear_uffd_wp) {
+ if (pte_present(pte))
+ pte = huge_pte_clear_uffd_wp(pte);
+ else
+ pte = pte_swp_clear_uffd_wp(pte);
+ }
+ set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
+ }
+
+ if (src_ptl != dst_ptl)
+ spin_unlock(src_ptl);
+ spin_unlock(dst_ptl);
+}
+
+int move_hugetlb_page_tables(struct vm_area_struct *vma,
+ struct vm_area_struct *new_vma,
+ unsigned long old_addr, unsigned long new_addr,
+ unsigned long len)
+{
+ struct hstate *h = hstate_vma(vma);
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ unsigned long sz = huge_page_size(h);
+ struct mm_struct *mm = vma->vm_mm;
+ unsigned long old_end = old_addr + len;
+ unsigned long last_addr_mask;
+ pte_t *src_pte, *dst_pte;
+ struct mmu_notifier_range range;
+ bool shared_pmd = false;
+
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
+ old_end);
+ adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
+ /*
+ * In case of shared PMDs, we should cover the maximum possible
+ * range.
+ */
+ flush_cache_range(vma, range.start, range.end);
+
+ mmu_notifier_invalidate_range_start(&range);
+ last_addr_mask = hugetlb_mask_last_page(h);
+ /* Prevent race with file truncation */
+ hugetlb_vma_lock_write(vma);
+ i_mmap_lock_write(mapping);
+ for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
+ src_pte = hugetlb_walk(vma, old_addr, sz);
+ if (!src_pte) {
+ old_addr |= last_addr_mask;
+ new_addr |= last_addr_mask;
+ continue;
+ }
+ if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
+ continue;
+
+ if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
+ shared_pmd = true;
+ old_addr |= last_addr_mask;
+ new_addr |= last_addr_mask;
+ continue;
+ }
+
+ dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
+ if (!dst_pte)
+ break;
+
+ move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
+ }
+
+ if (shared_pmd)
+ flush_hugetlb_tlb_range(vma, range.start, range.end);
+ else
+ flush_hugetlb_tlb_range(vma, old_end - len, old_end);
+ mmu_notifier_invalidate_range_end(&range);
+ i_mmap_unlock_write(mapping);
+ hugetlb_vma_unlock_write(vma);
+
+ return len + old_addr - old_end;
+}
+
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
unsigned long start, unsigned long end,
- struct page *ref_page)
+ struct folio *folio, zap_flags_t zap_flags)
{
struct mm_struct *mm = vma->vm_mm;
+ const bool folio_provided = !!folio;
unsigned long address;
pte_t *ptep;
pte_t pte;
spinlock_t *ptl;
- struct page *page;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
- struct mmu_notifier_range range;
+ bool adjust_reservation;
+ unsigned long last_addr_mask;
+ bool force_flush = false;
WARN_ON(!is_vm_hugetlb_page(vma));
BUG_ON(start & ~huge_page_mask(h));
@@ -3352,32 +5171,28 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
* This is a hugetlb vma, all the pte entries should point
* to huge page.
*/
- tlb_remove_check_page_size_change(tlb, sz);
+ tlb_change_page_size(tlb, sz);
tlb_start_vma(tlb, vma);
- /*
- * If sharing possible, alert mmu notifiers of worst case.
- */
- mmu_notifier_range_init(&range, mm, start, end);
- adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
- mmu_notifier_invalidate_range_start(&range);
+ last_addr_mask = hugetlb_mask_last_page(h);
address = start;
for (; address < end; address += sz) {
- ptep = huge_pte_offset(mm, address, sz);
- if (!ptep)
+ ptep = hugetlb_walk(vma, address, sz);
+ if (!ptep) {
+ address |= last_addr_mask;
continue;
+ }
ptl = huge_pte_lock(h, mm, ptep);
- if (huge_pmd_unshare(mm, &address, ptep)) {
+ if (huge_pmd_unshare(mm, vma, address, ptep)) {
spin_unlock(ptl);
- /*
- * We just unmapped a page of PMDs by clearing a PUD.
- * The caller's TLB flush range should cover this area.
- */
+ tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
+ force_flush = true;
+ address |= last_addr_mask;
continue;
}
- pte = huge_ptep_get(ptep);
+ pte = huge_ptep_get(mm, address, ptep);
if (huge_pte_none(pte)) {
spin_unlock(ptl);
continue;
@@ -3388,19 +5203,30 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
* unmapped and its refcount is dropped, so just clear pte here.
*/
if (unlikely(!pte_present(pte))) {
- huge_pte_clear(mm, address, ptep, sz);
+ /*
+ * If the pte was wr-protected by uffd-wp in any of the
+ * swap forms, meanwhile the caller does not want to
+ * drop the uffd-wp bit in this zap, then replace the
+ * pte with a marker.
+ */
+ if (pte_swp_uffd_wp_any(pte) &&
+ !(zap_flags & ZAP_FLAG_DROP_MARKER))
+ set_huge_pte_at(mm, address, ptep,
+ make_pte_marker(PTE_MARKER_UFFD_WP),
+ sz);
+ else
+ huge_pte_clear(mm, address, ptep, sz);
spin_unlock(ptl);
continue;
}
- page = pte_page(pte);
/*
- * If a reference page is supplied, it is because a specific
- * page is being unmapped, not a range. Ensure the page we
- * are about to unmap is the actual page of interest.
+ * If a folio is supplied, it is because a specific
+ * folio is being unmapped, not a range. Ensure the folio we
+ * are about to unmap is the actual folio of interest.
*/
- if (ref_page) {
- if (page != ref_page) {
+ if (folio_provided) {
+ if (folio != page_folio(pte_page(pte))) {
spin_unlock(ptl);
continue;
}
@@ -3410,79 +5236,157 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
* looking like data was lost
*/
set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
+ } else {
+ folio = page_folio(pte_page(pte));
}
- pte = huge_ptep_get_and_clear(mm, address, ptep);
+ pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
if (huge_pte_dirty(pte))
- set_page_dirty(page);
-
+ folio_mark_dirty(folio);
+ /* Leave a uffd-wp pte marker if needed */
+ if (huge_pte_uffd_wp(pte) &&
+ !(zap_flags & ZAP_FLAG_DROP_MARKER))
+ set_huge_pte_at(mm, address, ptep,
+ make_pte_marker(PTE_MARKER_UFFD_WP),
+ sz);
hugetlb_count_sub(pages_per_huge_page(h), mm);
- page_remove_rmap(page, true);
-
+ hugetlb_remove_rmap(folio);
spin_unlock(ptl);
- tlb_remove_page_size(tlb, page, huge_page_size(h));
+
+ /*
+ * Restore the reservation for anonymous page, otherwise the
+ * backing page could be stolen by someone.
+ * If there we are freeing a surplus, do not set the restore
+ * reservation bit.
+ */
+ adjust_reservation = false;
+
+ spin_lock_irq(&hugetlb_lock);
+ if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
+ folio_test_anon(folio)) {
+ folio_set_hugetlb_restore_reserve(folio);
+ /* Reservation to be adjusted after the spin lock */
+ adjust_reservation = true;
+ }
+ spin_unlock_irq(&hugetlb_lock);
+
+ /*
+ * Adjust the reservation for the region that will have the
+ * reserve restored. Keep in mind that vma_needs_reservation() changes
+ * resv->adds_in_progress if it succeeds. If this is not done,
+ * do_exit() will not see it, and will keep the reservation
+ * forever.
+ */
+ if (adjust_reservation) {
+ int rc = vma_needs_reservation(h, vma, address);
+
+ if (rc < 0)
+ /* Pressumably allocate_file_region_entries failed
+ * to allocate a file_region struct. Clear
+ * hugetlb_restore_reserve so that global reserve
+ * count will not be incremented by free_huge_folio.
+ * Act as if we consumed the reservation.
+ */
+ folio_clear_hugetlb_restore_reserve(folio);
+ else if (rc)
+ vma_add_reservation(h, vma, address);
+ }
+
+ tlb_remove_page_size(tlb, folio_page(folio, 0),
+ folio_size(folio));
/*
- * Bail out after unmapping reference page if supplied
+ * If we were instructed to unmap a specific folio, we're done.
*/
- if (ref_page)
+ if (folio_provided)
break;
}
- mmu_notifier_invalidate_range_end(&range);
tlb_end_vma(tlb, vma);
+
+ /*
+ * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
+ * could defer the flush until now, since by holding i_mmap_rwsem we
+ * guaranteed that the last reference would not be dropped. But we must
+ * do the flushing before we return, as otherwise i_mmap_rwsem will be
+ * dropped and the last reference to the shared PMDs page might be
+ * dropped as well.
+ *
+ * In theory we could defer the freeing of the PMD pages as well, but
+ * huge_pmd_unshare() relies on the exact page_count for the PMD page to
+ * detect sharing, so we cannot defer the release of the page either.
+ * Instead, do flush now.
+ */
+ if (force_flush)
+ tlb_flush_mmu_tlbonly(tlb);
}
-void __unmap_hugepage_range_final(struct mmu_gather *tlb,
- struct vm_area_struct *vma, unsigned long start,
- unsigned long end, struct page *ref_page)
+void __hugetlb_zap_begin(struct vm_area_struct *vma,
+ unsigned long *start, unsigned long *end)
{
- __unmap_hugepage_range(tlb, vma, start, end, ref_page);
+ if (!vma->vm_file) /* hugetlbfs_file_mmap error */
+ return;
- /*
- * Clear this flag so that x86's huge_pmd_share page_table_shareable
- * test will fail on a vma being torn down, and not grab a page table
- * on its way out. We're lucky that the flag has such an appropriate
- * name, and can in fact be safely cleared here. We could clear it
- * before the __unmap_hugepage_range above, but all that's necessary
- * is to clear it before releasing the i_mmap_rwsem. This works
- * because in the context this is called, the VMA is about to be
- * destroyed and the i_mmap_rwsem is held.
- */
- vma->vm_flags &= ~VM_MAYSHARE;
+ adjust_range_if_pmd_sharing_possible(vma, start, end);
+ hugetlb_vma_lock_write(vma);
+ if (vma->vm_file)
+ i_mmap_lock_write(vma->vm_file->f_mapping);
+}
+
+void __hugetlb_zap_end(struct vm_area_struct *vma,
+ struct zap_details *details)
+{
+ zap_flags_t zap_flags = details ? details->zap_flags : 0;
+
+ if (!vma->vm_file) /* hugetlbfs_file_mmap error */
+ return;
+
+ if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
+ /*
+ * Unlock and free the vma lock before releasing i_mmap_rwsem.
+ * When the vma_lock is freed, this makes the vma ineligible
+ * for pmd sharing. And, i_mmap_rwsem is required to set up
+ * pmd sharing. This is important as page tables for this
+ * unmapped range will be asynchrously deleted. If the page
+ * tables are shared, there will be issues when accessed by
+ * someone else.
+ */
+ __hugetlb_vma_unlock_write_free(vma);
+ } else {
+ hugetlb_vma_unlock_write(vma);
+ }
+
+ if (vma->vm_file)
+ i_mmap_unlock_write(vma->vm_file->f_mapping);
}
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
- unsigned long end, struct page *ref_page)
+ unsigned long end, struct folio *folio,
+ zap_flags_t zap_flags)
{
- struct mm_struct *mm;
+ struct mmu_notifier_range range;
struct mmu_gather tlb;
- unsigned long tlb_start = start;
- unsigned long tlb_end = end;
- /*
- * If shared PMDs were possibly used within this vma range, adjust
- * start/end for worst case tlb flushing.
- * Note that we can not be sure if PMDs are shared until we try to
- * unmap pages. However, we want to make sure TLB flushing covers
- * the largest possible range.
- */
- adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
+ start, end);
+ adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
+ mmu_notifier_invalidate_range_start(&range);
+ tlb_gather_mmu(&tlb, vma->vm_mm);
- mm = vma->vm_mm;
+ __unmap_hugepage_range(&tlb, vma, start, end,
+ folio, zap_flags);
- tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
- __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
- tlb_finish_mmu(&tlb, tlb_start, tlb_end);
+ mmu_notifier_invalidate_range_end(&range);
+ tlb_finish_mmu(&tlb);
}
/*
* This is called when the original mapper is failing to COW a MAP_PRIVATE
- * mappping it owns the reserve page for. The intention is to unmap the page
+ * mapping it owns the reserve page for. The intention is to unmap the page
* from other VMAs and let the children be SIGKILLed if they are faulting the
* same region.
*/
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
- struct page *page, unsigned long address)
+ struct folio *folio, unsigned long address)
{
struct hstate *h = hstate_vma(vma);
struct vm_area_struct *iter_vma;
@@ -3526,64 +5430,103 @@ static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
*/
if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
unmap_hugepage_range(iter_vma, address,
- address + huge_page_size(h), page);
+ address + huge_page_size(h),
+ folio, 0);
}
i_mmap_unlock_write(mapping);
}
/*
- * Hugetlb_cow() should be called with page lock of the original hugepage held.
- * Called with hugetlb_instantiation_mutex held and pte_page locked so we
+ * hugetlb_wp() should be called with page lock of the original hugepage held.
+ * Called with hugetlb_fault_mutex_table held and pte_page locked so we
* cannot race with other handlers or page migration.
* Keep the pte_same checks anyway to make transition from the mutex easier.
*/
-static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *ptep,
- struct page *pagecache_page, spinlock_t *ptl)
+static vm_fault_t hugetlb_wp(struct vm_fault *vmf)
{
- pte_t pte;
+ struct vm_area_struct *vma = vmf->vma;
+ struct mm_struct *mm = vma->vm_mm;
+ const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
+ pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
struct hstate *h = hstate_vma(vma);
- struct page *old_page, *new_page;
- int outside_reserve = 0;
+ struct folio *old_folio;
+ struct folio *new_folio;
+ bool cow_from_owner = 0;
vm_fault_t ret = 0;
- unsigned long haddr = address & huge_page_mask(h);
struct mmu_notifier_range range;
- pte = huge_ptep_get(ptep);
- old_page = pte_page(pte);
+ /*
+ * Never handle CoW for uffd-wp protected pages. It should be only
+ * handled when the uffd-wp protection is removed.
+ *
+ * Note that only the CoW optimization path (in hugetlb_no_page())
+ * can trigger this, because hugetlb_fault() will always resolve
+ * uffd-wp bit first.
+ */
+ if (!unshare && huge_pte_uffd_wp(pte))
+ return 0;
+
+ /* Let's take out MAP_SHARED mappings first. */
+ if (vma->vm_flags & VM_MAYSHARE) {
+ set_huge_ptep_writable(vma, vmf->address, vmf->pte);
+ return 0;
+ }
+
+ old_folio = page_folio(pte_page(pte));
+
+ delayacct_wpcopy_start();
retry_avoidcopy:
- /* If no-one else is actually using this page, avoid the copy
- * and just make the page writable */
- if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
- page_move_anon_rmap(old_page, vma);
- set_huge_ptep_writable(vma, haddr, ptep);
+ /*
+ * If no-one else is actually using this page, we're the exclusive
+ * owner and can reuse this page.
+ *
+ * Note that we don't rely on the (safer) folio refcount here, because
+ * copying the hugetlb folio when there are unexpected (temporary)
+ * folio references could harm simple fork()+exit() users when
+ * we run out of free hugetlb folios: we would have to kill processes
+ * in scenarios that used to work. As a side effect, there can still
+ * be leaks between processes, for example, with FOLL_GET users.
+ */
+ if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
+ if (!PageAnonExclusive(&old_folio->page)) {
+ folio_move_anon_rmap(old_folio, vma);
+ SetPageAnonExclusive(&old_folio->page);
+ }
+ if (likely(!unshare))
+ set_huge_ptep_maybe_writable(vma, vmf->address,
+ vmf->pte);
+
+ delayacct_wpcopy_end();
return 0;
}
+ VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
+ PageAnonExclusive(&old_folio->page), &old_folio->page);
/*
- * If the process that created a MAP_PRIVATE mapping is about to
- * perform a COW due to a shared page count, attempt to satisfy
- * the allocation without using the existing reserves. The pagecache
- * page is used to determine if the reserve at this address was
- * consumed or not. If reserves were used, a partial faulted mapping
- * at the time of fork() could consume its reserves on COW instead
- * of the full address range.
+ * If the process that created a MAP_PRIVATE mapping is about to perform
+ * a COW due to a shared page count, attempt to satisfy the allocation
+ * without using the existing reserves.
+ * In order to determine where this is a COW on a MAP_PRIVATE mapping it
+ * is enough to check whether the old_folio is anonymous. This means that
+ * the reserve for this address was consumed. If reserves were used, a
+ * partial faulted mapping at the fime of fork() could consume its reserves
+ * on COW instead of the full address range.
*/
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
- old_page != pagecache_page)
- outside_reserve = 1;
+ folio_test_anon(old_folio))
+ cow_from_owner = true;
- get_page(old_page);
+ folio_get(old_folio);
/*
* Drop page table lock as buddy allocator may be called. It will
* be acquired again before returning to the caller, as expected.
*/
- spin_unlock(ptl);
- new_page = alloc_huge_page(vma, haddr, outside_reserve);
+ spin_unlock(vmf->ptl);
+ new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
- if (IS_ERR(new_page)) {
+ if (IS_ERR(new_folio)) {
/*
* If a process owning a MAP_PRIVATE mapping fails to COW,
* it is due to references held by a child and an insufficient
@@ -3591,24 +5534,45 @@ retry_avoidcopy:
* reliability, unmap the page from child processes. The child
* may get SIGKILLed if it later faults.
*/
- if (outside_reserve) {
- put_page(old_page);
- BUG_ON(huge_pte_none(pte));
- unmap_ref_private(mm, vma, old_page, haddr);
- BUG_ON(huge_pte_none(pte));
- spin_lock(ptl);
- ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
- if (likely(ptep &&
- pte_same(huge_ptep_get(ptep), pte)))
+ if (cow_from_owner) {
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ pgoff_t idx;
+ u32 hash;
+
+ folio_put(old_folio);
+ /*
+ * Drop hugetlb_fault_mutex and vma_lock before
+ * unmapping. unmapping needs to hold vma_lock
+ * in write mode. Dropping vma_lock in read mode
+ * here is OK as COW mappings do not interact with
+ * PMD sharing.
+ *
+ * Reacquire both after unmap operation.
+ */
+ idx = vma_hugecache_offset(h, vma, vmf->address);
+ hash = hugetlb_fault_mutex_hash(mapping, idx);
+ hugetlb_vma_unlock_read(vma);
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+
+ unmap_ref_private(mm, vma, old_folio, vmf->address);
+
+ mutex_lock(&hugetlb_fault_mutex_table[hash]);
+ hugetlb_vma_lock_read(vma);
+ spin_lock(vmf->ptl);
+ vmf->pte = hugetlb_walk(vma, vmf->address,
+ huge_page_size(h));
+ if (likely(vmf->pte &&
+ pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
goto retry_avoidcopy;
/*
* race occurs while re-acquiring page table
* lock, and our job is done.
*/
+ delayacct_wpcopy_end();
return 0;
}
- ret = vmf_error(PTR_ERR(new_page));
+ ret = vmf_error(PTR_ERR(new_folio));
goto out_release_old;
}
@@ -3616,99 +5580,99 @@ retry_avoidcopy:
* When the original hugepage is shared one, it does not have
* anon_vma prepared.
*/
- if (unlikely(anon_vma_prepare(vma))) {
- ret = VM_FAULT_OOM;
+ ret = __vmf_anon_prepare(vmf);
+ if (unlikely(ret))
goto out_release_all;
- }
- copy_user_huge_page(new_page, old_page, address, vma,
- pages_per_huge_page(h));
- __SetPageUptodate(new_page);
- set_page_huge_active(new_page);
+ if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
+ ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
+ goto out_release_all;
+ }
+ __folio_mark_uptodate(new_folio);
- mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
+ vmf->address + huge_page_size(h));
mmu_notifier_invalidate_range_start(&range);
/*
* Retake the page table lock to check for racing updates
* before the page tables are altered
*/
- spin_lock(ptl);
- ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
- if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
- ClearPagePrivate(new_page);
-
- /* Break COW */
- huge_ptep_clear_flush(vma, haddr, ptep);
- mmu_notifier_invalidate_range(mm, range.start, range.end);
- set_huge_pte_at(mm, haddr, ptep,
- make_huge_pte(vma, new_page, 1));
- page_remove_rmap(old_page, true);
- hugepage_add_new_anon_rmap(new_page, vma, haddr);
+ spin_lock(vmf->ptl);
+ vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
+ if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
+ pte_t newpte = make_huge_pte(vma, new_folio, !unshare);
+
+ /* Break COW or unshare */
+ huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
+ hugetlb_remove_rmap(old_folio);
+ hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
+ if (huge_pte_uffd_wp(pte))
+ newpte = huge_pte_mkuffd_wp(newpte);
+ set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
+ huge_page_size(h));
+ folio_set_hugetlb_migratable(new_folio);
/* Make the old page be freed below */
- new_page = old_page;
+ new_folio = old_folio;
}
- spin_unlock(ptl);
+ spin_unlock(vmf->ptl);
mmu_notifier_invalidate_range_end(&range);
out_release_all:
- restore_reserve_on_error(h, vma, haddr, new_page);
- put_page(new_page);
+ /*
+ * No restore in case of successful pagetable update (Break COW or
+ * unshare)
+ */
+ if (new_folio != old_folio)
+ restore_reserve_on_error(h, vma, vmf->address, new_folio);
+ folio_put(new_folio);
out_release_old:
- put_page(old_page);
-
- spin_lock(ptl); /* Caller expects lock to be held */
- return ret;
-}
-
-/* Return the pagecache page at a given address within a VMA */
-static struct page *hugetlbfs_pagecache_page(struct hstate *h,
- struct vm_area_struct *vma, unsigned long address)
-{
- struct address_space *mapping;
- pgoff_t idx;
+ folio_put(old_folio);
- mapping = vma->vm_file->f_mapping;
- idx = vma_hugecache_offset(h, vma, address);
+ spin_lock(vmf->ptl); /* Caller expects lock to be held */
- return find_lock_page(mapping, idx);
+ delayacct_wpcopy_end();
+ return ret;
}
/*
* Return whether there is a pagecache page to back given address within VMA.
- * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
*/
-static bool hugetlbfs_pagecache_present(struct hstate *h,
- struct vm_area_struct *vma, unsigned long address)
+bool hugetlbfs_pagecache_present(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long address)
{
- struct address_space *mapping;
- pgoff_t idx;
- struct page *page;
-
- mapping = vma->vm_file->f_mapping;
- idx = vma_hugecache_offset(h, vma, address);
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ pgoff_t idx = linear_page_index(vma, address);
+ struct folio *folio;
- page = find_get_page(mapping, idx);
- if (page)
- put_page(page);
- return page != NULL;
+ folio = filemap_get_folio(mapping, idx);
+ if (IS_ERR(folio))
+ return false;
+ folio_put(folio);
+ return true;
}
-int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
+int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
pgoff_t idx)
{
struct inode *inode = mapping->host;
struct hstate *h = hstate_inode(inode);
- int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
+ int err;
- if (err)
+ idx <<= huge_page_order(h);
+ __folio_set_locked(folio);
+ err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
+
+ if (unlikely(err)) {
+ __folio_clear_locked(folio);
return err;
- ClearPagePrivate(page);
+ }
+ folio_clear_hugetlb_restore_reserve(folio);
/*
- * set page dirty so that it will not be removed from cache/file
+ * mark folio dirty so that it will not be removed from cache/file
* by non-hugetlbfs specific code paths.
*/
- set_page_dirty(page);
+ folio_mark_dirty(folio);
spin_lock(&inode->i_lock);
inode->i_blocks += blocks_per_huge_page(h);
@@ -3716,97 +5680,154 @@ int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
return 0;
}
-static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
- struct vm_area_struct *vma,
- struct address_space *mapping, pgoff_t idx,
- unsigned long address, pte_t *ptep, unsigned int flags)
+static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
+ struct address_space *mapping,
+ unsigned long reason)
+{
+ u32 hash;
+
+ /*
+ * vma_lock and hugetlb_fault_mutex must be dropped before handling
+ * userfault. Also mmap_lock could be dropped due to handling
+ * userfault, any vma operation should be careful from here.
+ */
+ hugetlb_vma_unlock_read(vmf->vma);
+ hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ return handle_userfault(vmf, reason);
+}
+
+/*
+ * Recheck pte with pgtable lock. Returns true if pte didn't change, or
+ * false if pte changed or is changing.
+ */
+static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
+ pte_t *ptep, pte_t old_pte)
{
+ spinlock_t *ptl;
+ bool same;
+
+ ptl = huge_pte_lock(h, mm, ptep);
+ same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
+ spin_unlock(ptl);
+
+ return same;
+}
+
+static vm_fault_t hugetlb_no_page(struct address_space *mapping,
+ struct vm_fault *vmf)
+{
+ u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
+ bool new_folio, new_anon_folio = false;
+ struct vm_area_struct *vma = vmf->vma;
+ struct mm_struct *mm = vma->vm_mm;
struct hstate *h = hstate_vma(vma);
vm_fault_t ret = VM_FAULT_SIGBUS;
- int anon_rmap = 0;
+ bool folio_locked = true;
+ struct folio *folio;
unsigned long size;
- struct page *page;
pte_t new_pte;
- spinlock_t *ptl;
- unsigned long haddr = address & huge_page_mask(h);
/*
* Currently, we are forced to kill the process in the event the
* original mapper has unmapped pages from the child due to a failed
- * COW. Warn that such a situation has occurred as it may not be obvious
+ * COW/unsharing. Warn that such a situation has occurred as it may not
+ * be obvious.
*/
if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
current->pid);
- return ret;
+ goto out;
}
/*
* Use page lock to guard against racing truncation
* before we get page_table_lock.
*/
-retry:
- page = find_lock_page(mapping, idx);
- if (!page) {
+ new_folio = false;
+ folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
+ if (IS_ERR(folio)) {
size = i_size_read(mapping->host) >> huge_page_shift(h);
- if (idx >= size)
+ if (vmf->pgoff >= size)
goto out;
-
- /*
- * Check for page in userfault range
- */
+ /* Check for page in userfault range */
if (userfaultfd_missing(vma)) {
- u32 hash;
- struct vm_fault vmf = {
- .vma = vma,
- .address = haddr,
- .flags = flags,
- /*
- * Hard to debug if it ends up being
- * used by a callee that assumes
- * something about the other
- * uninitialized fields... same as in
- * memory.c
- */
- };
-
/*
- * hugetlb_fault_mutex must be dropped before
- * handling userfault. Reacquire after handling
- * fault to make calling code simpler.
+ * Since hugetlb_no_page() was examining pte
+ * without pgtable lock, we need to re-test under
+ * lock because the pte may not be stable and could
+ * have changed from under us. Try to detect
+ * either changed or during-changing ptes and retry
+ * properly when needed.
+ *
+ * Note that userfaultfd is actually fine with
+ * false positives (e.g. caused by pte changed),
+ * but not wrong logical events (e.g. caused by
+ * reading a pte during changing). The latter can
+ * confuse the userspace, so the strictness is very
+ * much preferred. E.g., MISSING event should
+ * never happen on the page after UFFDIO_COPY has
+ * correctly installed the page and returned.
*/
- hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
- idx, haddr);
- mutex_unlock(&hugetlb_fault_mutex_table[hash]);
- ret = handle_userfault(&vmf, VM_UFFD_MISSING);
- mutex_lock(&hugetlb_fault_mutex_table[hash]);
- goto out;
+ if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
+ ret = 0;
+ goto out;
+ }
+
+ return hugetlb_handle_userfault(vmf, mapping,
+ VM_UFFD_MISSING);
}
- page = alloc_huge_page(vma, haddr, 0);
- if (IS_ERR(page)) {
- ret = vmf_error(PTR_ERR(page));
+ if (!(vma->vm_flags & VM_MAYSHARE)) {
+ ret = __vmf_anon_prepare(vmf);
+ if (unlikely(ret))
+ goto out;
+ }
+
+ folio = alloc_hugetlb_folio(vma, vmf->address, false);
+ if (IS_ERR(folio)) {
+ /*
+ * Returning error will result in faulting task being
+ * sent SIGBUS. The hugetlb fault mutex prevents two
+ * tasks from racing to fault in the same page which
+ * could result in false unable to allocate errors.
+ * Page migration does not take the fault mutex, but
+ * does a clear then write of pte's under page table
+ * lock. Page fault code could race with migration,
+ * notice the clear pte and try to allocate a page
+ * here. Before returning error, get ptl and make
+ * sure there really is no pte entry.
+ */
+ if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
+ ret = vmf_error(PTR_ERR(folio));
+ else
+ ret = 0;
goto out;
}
- clear_huge_page(page, address, pages_per_huge_page(h));
- __SetPageUptodate(page);
- set_page_huge_active(page);
+ folio_zero_user(folio, vmf->real_address);
+ __folio_mark_uptodate(folio);
+ new_folio = true;
if (vma->vm_flags & VM_MAYSHARE) {
- int err = huge_add_to_page_cache(page, mapping, idx);
+ int err = hugetlb_add_to_page_cache(folio, mapping,
+ vmf->pgoff);
if (err) {
- put_page(page);
- if (err == -EEXIST)
- goto retry;
+ /*
+ * err can't be -EEXIST which implies someone
+ * else consumed the reservation since hugetlb
+ * fault mutex is held when add a hugetlb page
+ * to the page cache. So it's safe to call
+ * restore_reserve_on_error() here.
+ */
+ restore_reserve_on_error(h, vma, vmf->address,
+ folio);
+ folio_put(folio);
+ ret = VM_FAULT_SIGBUS;
goto out;
}
} else {
- lock_page(page);
- if (unlikely(anon_vma_prepare(vma))) {
- ret = VM_FAULT_OOM;
- goto backout_unlocked;
- }
- anon_rmap = 1;
+ new_anon_folio = true;
+ folio_lock(folio);
}
} else {
/*
@@ -3814,11 +5835,24 @@ retry:
* don't have hwpoisoned swap entry for errored virtual address.
* So we need to block hugepage fault by PG_hwpoison bit check.
*/
- if (unlikely(PageHWPoison(page))) {
- ret = VM_FAULT_HWPOISON |
+ if (unlikely(folio_test_hwpoison(folio))) {
+ ret = VM_FAULT_HWPOISON_LARGE |
VM_FAULT_SET_HINDEX(hstate_index(h));
goto backout_unlocked;
}
+
+ /* Check for page in userfault range. */
+ if (userfaultfd_minor(vma)) {
+ folio_unlock(folio);
+ folio_put(folio);
+ /* See comment in userfaultfd_missing() block above */
+ if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
+ ret = 0;
+ goto out;
+ }
+ return hugetlb_handle_userfault(vmf, mapping,
+ VM_UFFD_MINOR);
+ }
}
/*
@@ -3827,83 +5861,104 @@ retry:
* any allocations necessary to record that reservation occur outside
* the spinlock.
*/
- if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
- if (vma_needs_reservation(h, vma, haddr) < 0) {
+ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
+ if (vma_needs_reservation(h, vma, vmf->address) < 0) {
ret = VM_FAULT_OOM;
goto backout_unlocked;
}
/* Just decrements count, does not deallocate */
- vma_end_reservation(h, vma, haddr);
+ vma_end_reservation(h, vma, vmf->address);
}
- ptl = huge_pte_lock(h, mm, ptep);
- size = i_size_read(mapping->host) >> huge_page_shift(h);
- if (idx >= size)
- goto backout;
-
+ vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
ret = 0;
- if (!huge_pte_none(huge_ptep_get(ptep)))
+ /* If pte changed from under us, retry */
+ if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
goto backout;
- if (anon_rmap) {
- ClearPagePrivate(page);
- hugepage_add_new_anon_rmap(page, vma, haddr);
- } else
- page_dup_rmap(page, true);
- new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
- && (vma->vm_flags & VM_SHARED)));
- set_huge_pte_at(mm, haddr, ptep, new_pte);
+ if (new_anon_folio)
+ hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
+ else
+ hugetlb_add_file_rmap(folio);
+ new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED);
+ /*
+ * If this pte was previously wr-protected, keep it wr-protected even
+ * if populated.
+ */
+ if (unlikely(pte_is_uffd_wp_marker(vmf->orig_pte)))
+ new_pte = huge_pte_mkuffd_wp(new_pte);
+ set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
hugetlb_count_add(pages_per_huge_page(h), mm);
- if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
+ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
+ /*
+ * No need to keep file folios locked. See comment in
+ * hugetlb_fault().
+ */
+ if (!new_anon_folio) {
+ folio_locked = false;
+ folio_unlock(folio);
+ }
/* Optimization, do the COW without a second fault */
- ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
+ ret = hugetlb_wp(vmf);
}
- spin_unlock(ptl);
- unlock_page(page);
+ spin_unlock(vmf->ptl);
+
+ /*
+ * Only set hugetlb_migratable in newly allocated pages. Existing pages
+ * found in the pagecache may not have hugetlb_migratable if they have
+ * been isolated for migration.
+ */
+ if (new_folio)
+ folio_set_hugetlb_migratable(folio);
+
+ if (folio_locked)
+ folio_unlock(folio);
out:
+ hugetlb_vma_unlock_read(vma);
+
+ /*
+ * We must check to release the per-VMA lock. __vmf_anon_prepare() is
+ * the only way ret can be set to VM_FAULT_RETRY.
+ */
+ if (unlikely(ret & VM_FAULT_RETRY))
+ vma_end_read(vma);
+
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
return ret;
backout:
- spin_unlock(ptl);
+ spin_unlock(vmf->ptl);
backout_unlocked:
- unlock_page(page);
- restore_reserve_on_error(h, vma, haddr, page);
- put_page(page);
+ /* We only need to restore reservations for private mappings */
+ if (new_anon_folio)
+ restore_reserve_on_error(h, vma, vmf->address, folio);
+
+ folio_unlock(folio);
+ folio_put(folio);
goto out;
}
#ifdef CONFIG_SMP
-u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
- struct vm_area_struct *vma,
- struct address_space *mapping,
- pgoff_t idx, unsigned long address)
+u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
{
unsigned long key[2];
u32 hash;
- if (vma->vm_flags & VM_SHARED) {
- key[0] = (unsigned long) mapping;
- key[1] = idx;
- } else {
- key[0] = (unsigned long) mm;
- key[1] = address >> huge_page_shift(h);
- }
+ key[0] = (unsigned long) mapping;
+ key[1] = idx;
- hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
+ hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
return hash & (num_fault_mutexes - 1);
}
#else
/*
- * For uniprocesor systems we always use a single mutex, so just
+ * For uniprocessor systems we always use a single mutex, so just
* return 0 and avoid the hashing overhead.
*/
-u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
- struct vm_area_struct *vma,
- struct address_space *mapping,
- pgoff_t idx, unsigned long address)
+u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
{
return 0;
}
@@ -3912,488 +5967,573 @@ u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, unsigned int flags)
{
- pte_t *ptep, entry;
- spinlock_t *ptl;
vm_fault_t ret;
u32 hash;
- pgoff_t idx;
- struct page *page = NULL;
- struct page *pagecache_page = NULL;
+ struct folio *folio = NULL;
struct hstate *h = hstate_vma(vma);
struct address_space *mapping;
- int need_wait_lock = 0;
- unsigned long haddr = address & huge_page_mask(h);
-
- ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
- if (ptep) {
- entry = huge_ptep_get(ptep);
- if (unlikely(is_hugetlb_entry_migration(entry))) {
- migration_entry_wait_huge(vma, mm, ptep);
- return 0;
- } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
- return VM_FAULT_HWPOISON_LARGE |
- VM_FAULT_SET_HINDEX(hstate_index(h));
- } else {
- ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
- if (!ptep)
- return VM_FAULT_OOM;
- }
+ bool need_wait_lock = false;
+ struct vm_fault vmf = {
+ .vma = vma,
+ .address = address & huge_page_mask(h),
+ .real_address = address,
+ .flags = flags,
+ .pgoff = vma_hugecache_offset(h, vma,
+ address & huge_page_mask(h)),
+ /* TODO: Track hugetlb faults using vm_fault */
- mapping = vma->vm_file->f_mapping;
- idx = vma_hugecache_offset(h, vma, haddr);
+ /*
+ * Some fields may not be initialized, be careful as it may
+ * be hard to debug if called functions make assumptions
+ */
+ };
/*
* Serialize hugepage allocation and instantiation, so that we don't
* get spurious allocation failures if two CPUs race to instantiate
* the same page in the page cache.
*/
- hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
+ mapping = vma->vm_file->f_mapping;
+ hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
- entry = huge_ptep_get(ptep);
- if (huge_pte_none(entry)) {
- ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
- goto out_mutex;
+ /*
+ * Acquire vma lock before calling huge_pte_alloc and hold
+ * until finished with vmf.pte. This prevents huge_pmd_unshare from
+ * being called elsewhere and making the vmf.pte no longer valid.
+ */
+ hugetlb_vma_lock_read(vma);
+ vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
+ if (!vmf.pte) {
+ hugetlb_vma_unlock_read(vma);
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ return VM_FAULT_OOM;
+ }
+
+ vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
+ if (huge_pte_none(vmf.orig_pte))
+ /*
+ * hugetlb_no_page will drop vma lock and hugetlb fault
+ * mutex internally, which make us return immediately.
+ */
+ return hugetlb_no_page(mapping, &vmf);
+
+ if (pte_is_marker(vmf.orig_pte)) {
+ const pte_marker marker =
+ softleaf_to_marker(softleaf_from_pte(vmf.orig_pte));
+
+ if (marker & PTE_MARKER_POISONED) {
+ ret = VM_FAULT_HWPOISON_LARGE |
+ VM_FAULT_SET_HINDEX(hstate_index(h));
+ goto out_mutex;
+ } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
+ /* This isn't supported in hugetlb. */
+ ret = VM_FAULT_SIGSEGV;
+ goto out_mutex;
+ }
+
+ return hugetlb_no_page(mapping, &vmf);
}
ret = 0;
- /*
- * entry could be a migration/hwpoison entry at this point, so this
- * check prevents the kernel from going below assuming that we have
- * a active hugepage in pagecache. This goto expects the 2nd page fault,
- * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
- * handle it.
- */
- if (!pte_present(entry))
+ /* Not present, either a migration or a hwpoisoned entry */
+ if (!pte_present(vmf.orig_pte) && !huge_pte_none(vmf.orig_pte)) {
+ const softleaf_t softleaf = softleaf_from_pte(vmf.orig_pte);
+
+ if (softleaf_is_migration(softleaf)) {
+ /*
+ * Release the hugetlb fault lock now, but retain
+ * the vma lock, because it is needed to guard the
+ * huge_pte_lockptr() later in
+ * migration_entry_wait_huge(). The vma lock will
+ * be released there.
+ */
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ migration_entry_wait_huge(vma, vmf.address, vmf.pte);
+ return 0;
+ }
+ if (softleaf_is_hwpoison(softleaf)) {
+ ret = VM_FAULT_HWPOISON_LARGE |
+ VM_FAULT_SET_HINDEX(hstate_index(h));
+ }
+
goto out_mutex;
+ }
/*
- * If we are going to COW the mapping later, we examine the pending
- * reservations for this page now. This will ensure that any
+ * If we are going to COW/unshare the mapping later, we examine the
+ * pending reservations for this page now. This will ensure that any
* allocations necessary to record that reservation occur outside the
- * spinlock. For private mappings, we also lookup the pagecache
- * page now as it is used to determine if a reservation has been
- * consumed.
+ * spinlock.
*/
- if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
- if (vma_needs_reservation(h, vma, haddr) < 0) {
+ if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
+ !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
+ if (vma_needs_reservation(h, vma, vmf.address) < 0) {
ret = VM_FAULT_OOM;
goto out_mutex;
}
/* Just decrements count, does not deallocate */
- vma_end_reservation(h, vma, haddr);
-
- if (!(vma->vm_flags & VM_MAYSHARE))
- pagecache_page = hugetlbfs_pagecache_page(h,
- vma, haddr);
+ vma_end_reservation(h, vma, vmf.address);
}
- ptl = huge_pte_lock(h, mm, ptep);
+ vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
- /* Check for a racing update before calling hugetlb_cow */
- if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
+ /* Check for a racing update before calling hugetlb_wp() */
+ if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
goto out_ptl;
- /*
- * hugetlb_cow() requires page locks of pte_page(entry) and
- * pagecache_page, so here we need take the former one
- * when page != pagecache_page or !pagecache_page.
- */
- page = pte_page(entry);
- if (page != pagecache_page)
- if (!trylock_page(page)) {
- need_wait_lock = 1;
- goto out_ptl;
+ /* Handle userfault-wp first, before trying to lock more pages */
+ if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
+ (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
+ if (!userfaultfd_wp_async(vma)) {
+ spin_unlock(vmf.ptl);
+ hugetlb_vma_unlock_read(vma);
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ return handle_userfault(&vmf, VM_UFFD_WP);
}
- get_page(page);
+ vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
+ set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
+ huge_page_size(hstate_vma(vma)));
+ /* Fallthrough to CoW */
+ }
- if (flags & FAULT_FLAG_WRITE) {
- if (!huge_pte_write(entry)) {
- ret = hugetlb_cow(mm, vma, address, ptep,
- pagecache_page, ptl);
- goto out_put_page;
+ if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
+ if (!huge_pte_write(vmf.orig_pte)) {
+ /*
+ * Anonymous folios need to be lock since hugetlb_wp()
+ * checks whether we can re-use the folio exclusively
+ * for us in case we are the only user of it.
+ */
+ folio = page_folio(pte_page(vmf.orig_pte));
+ if (folio_test_anon(folio) && !folio_trylock(folio)) {
+ need_wait_lock = true;
+ goto out_ptl;
+ }
+ folio_get(folio);
+ ret = hugetlb_wp(&vmf);
+ if (folio_test_anon(folio))
+ folio_unlock(folio);
+ folio_put(folio);
+ goto out_ptl;
+ } else if (likely(flags & FAULT_FLAG_WRITE)) {
+ vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
}
- entry = huge_pte_mkdirty(entry);
}
- entry = pte_mkyoung(entry);
- if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
+ vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
+ if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
flags & FAULT_FLAG_WRITE))
- update_mmu_cache(vma, haddr, ptep);
-out_put_page:
- if (page != pagecache_page)
- unlock_page(page);
- put_page(page);
+ update_mmu_cache(vma, vmf.address, vmf.pte);
out_ptl:
- spin_unlock(ptl);
-
- if (pagecache_page) {
- unlock_page(pagecache_page);
- put_page(pagecache_page);
- }
+ spin_unlock(vmf.ptl);
out_mutex:
+ hugetlb_vma_unlock_read(vma);
+
+ /*
+ * We must check to release the per-VMA lock. __vmf_anon_prepare() in
+ * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
+ */
+ if (unlikely(ret & VM_FAULT_RETRY))
+ vma_end_read(vma);
+
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
/*
- * Generally it's safe to hold refcount during waiting page lock. But
- * here we just wait to defer the next page fault to avoid busy loop and
- * the page is not used after unlocked before returning from the current
- * page fault. So we are safe from accessing freed page, even if we wait
- * here without taking refcount.
+ * hugetlb_wp drops all the locks, but the folio lock, before trying to
+ * unmap the folio from other processes. During that window, if another
+ * process mapping that folio faults in, it will take the mutex and then
+ * it will wait on folio_lock, causing an ABBA deadlock.
+ * Use trylock instead and bail out if we fail.
+ *
+ * Ideally, we should hold a refcount on the folio we wait for, but we do
+ * not want to use the folio after it becomes unlocked, but rather just
+ * wait for it to become unlocked, so hopefully next fault successes on
+ * the trylock.
*/
if (need_wait_lock)
- wait_on_page_locked(page);
+ folio_wait_locked(folio);
return ret;
}
+#ifdef CONFIG_USERFAULTFD
/*
- * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
- * modifications for huge pages.
+ * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
*/
-int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
- pte_t *dst_pte,
- struct vm_area_struct *dst_vma,
- unsigned long dst_addr,
- unsigned long src_addr,
- struct page **pagep)
+static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long address)
{
- struct address_space *mapping;
- pgoff_t idx;
- unsigned long size;
- int vm_shared = dst_vma->vm_flags & VM_SHARED;
+ struct mempolicy *mpol;
+ nodemask_t *nodemask;
+ struct folio *folio;
+ gfp_t gfp_mask;
+ int node;
+
+ gfp_mask = htlb_alloc_mask(h);
+ node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
+ /*
+ * This is used to allocate a temporary hugetlb to hold the copied
+ * content, which will then be copied again to the final hugetlb
+ * consuming a reservation. Set the alloc_fallback to false to indicate
+ * that breaking the per-node hugetlb pool is not allowed in this case.
+ */
+ folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
+ mpol_cond_put(mpol);
+
+ return folio;
+}
+
+/*
+ * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
+ * with modifications for hugetlb pages.
+ */
+int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
+ struct vm_area_struct *dst_vma,
+ unsigned long dst_addr,
+ unsigned long src_addr,
+ uffd_flags_t flags,
+ struct folio **foliop)
+{
+ struct mm_struct *dst_mm = dst_vma->vm_mm;
+ bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
+ bool wp_enabled = (flags & MFILL_ATOMIC_WP);
struct hstate *h = hstate_vma(dst_vma);
+ struct address_space *mapping = dst_vma->vm_file->f_mapping;
+ pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
+ unsigned long size = huge_page_size(h);
+ int vm_shared = dst_vma->vm_flags & VM_SHARED;
pte_t _dst_pte;
spinlock_t *ptl;
- int ret;
- struct page *page;
+ int ret = -ENOMEM;
+ struct folio *folio;
+ bool folio_in_pagecache = false;
+ pte_t dst_ptep;
+
+ if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
+ ptl = huge_pte_lock(h, dst_mm, dst_pte);
+
+ /* Don't overwrite any existing PTEs (even markers) */
+ if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
+ spin_unlock(ptl);
+ return -EEXIST;
+ }
+
+ _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
+ set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
+
+ /* No need to invalidate - it was non-present before */
+ update_mmu_cache(dst_vma, dst_addr, dst_pte);
+
+ spin_unlock(ptl);
+ return 0;
+ }
- if (!*pagep) {
- ret = -ENOMEM;
- page = alloc_huge_page(dst_vma, dst_addr, 0);
- if (IS_ERR(page))
+ if (is_continue) {
+ ret = -EFAULT;
+ folio = filemap_lock_hugetlb_folio(h, mapping, idx);
+ if (IS_ERR(folio))
goto out;
+ folio_in_pagecache = true;
+ } else if (!*foliop) {
+ /* If a folio already exists, then it's UFFDIO_COPY for
+ * a non-missing case. Return -EEXIST.
+ */
+ if (vm_shared &&
+ hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
+ ret = -EEXIST;
+ goto out;
+ }
- ret = copy_huge_page_from_user(page,
- (const void __user *) src_addr,
- pages_per_huge_page(h), false);
+ folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
+ if (IS_ERR(folio)) {
+ pte_t *actual_pte = hugetlb_walk(dst_vma, dst_addr, PMD_SIZE);
+ if (actual_pte) {
+ ret = -EEXIST;
+ goto out;
+ }
+ ret = -ENOMEM;
+ goto out;
+ }
- /* fallback to copy_from_user outside mmap_sem */
+ ret = copy_folio_from_user(folio, (const void __user *) src_addr,
+ false);
+
+ /* fallback to copy_from_user outside mmap_lock */
if (unlikely(ret)) {
ret = -ENOENT;
- *pagep = page;
- /* don't free the page */
+ /* Free the allocated folio which may have
+ * consumed a reservation.
+ */
+ restore_reserve_on_error(h, dst_vma, dst_addr, folio);
+ folio_put(folio);
+
+ /* Allocate a temporary folio to hold the copied
+ * contents.
+ */
+ folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
+ if (!folio) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ *foliop = folio;
+ /* Set the outparam foliop and return to the caller to
+ * copy the contents outside the lock. Don't free the
+ * folio.
+ */
goto out;
}
} else {
- page = *pagep;
- *pagep = NULL;
+ if (vm_shared &&
+ hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
+ folio_put(*foliop);
+ ret = -EEXIST;
+ *foliop = NULL;
+ goto out;
+ }
+
+ folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
+ if (IS_ERR(folio)) {
+ folio_put(*foliop);
+ ret = -ENOMEM;
+ *foliop = NULL;
+ goto out;
+ }
+ ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
+ folio_put(*foliop);
+ *foliop = NULL;
+ if (ret) {
+ folio_put(folio);
+ goto out;
+ }
}
/*
- * The memory barrier inside __SetPageUptodate makes sure that
- * preceding stores to the page contents become visible before
- * the set_pte_at() write.
+ * If we just allocated a new page, we need a memory barrier to ensure
+ * that preceding stores to the page become visible before the
+ * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
+ * is what we need.
+ *
+ * In the case where we have not allocated a new page (is_continue),
+ * the page must already be uptodate. UFFDIO_CONTINUE already includes
+ * an earlier smp_wmb() to ensure that prior stores will be visible
+ * before the set_pte_at() write.
*/
- __SetPageUptodate(page);
- set_page_huge_active(page);
-
- mapping = dst_vma->vm_file->f_mapping;
- idx = vma_hugecache_offset(h, dst_vma, dst_addr);
+ if (!is_continue)
+ __folio_mark_uptodate(folio);
+ else
+ WARN_ON_ONCE(!folio_test_uptodate(folio));
- /*
- * If shared, add to page cache
- */
- if (vm_shared) {
- size = i_size_read(mapping->host) >> huge_page_shift(h);
+ /* Add shared, newly allocated pages to the page cache. */
+ if (vm_shared && !is_continue) {
ret = -EFAULT;
- if (idx >= size)
+ if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
goto out_release_nounlock;
/*
* Serialization between remove_inode_hugepages() and
- * huge_add_to_page_cache() below happens through the
+ * hugetlb_add_to_page_cache() below happens through the
* hugetlb_fault_mutex_table that here must be hold by
* the caller.
*/
- ret = huge_add_to_page_cache(page, mapping, idx);
+ ret = hugetlb_add_to_page_cache(folio, mapping, idx);
if (ret)
goto out_release_nounlock;
+ folio_in_pagecache = true;
}
- ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
- spin_lock(ptl);
+ ptl = huge_pte_lock(h, dst_mm, dst_pte);
- /*
- * Recheck the i_size after holding PT lock to make sure not
- * to leave any page mapped (as page_mapped()) beyond the end
- * of the i_size (remove_inode_hugepages() is strict about
- * enforcing that). If we bail out here, we'll also leave a
- * page in the radix tree in the vm_shared case beyond the end
- * of the i_size, but remove_inode_hugepages() will take care
- * of it as soon as we drop the hugetlb_fault_mutex_table.
- */
- size = i_size_read(mapping->host) >> huge_page_shift(h);
- ret = -EFAULT;
- if (idx >= size)
+ ret = -EIO;
+ if (folio_test_hwpoison(folio))
goto out_release_unlock;
ret = -EEXIST;
- if (!huge_pte_none(huge_ptep_get(dst_pte)))
+
+ dst_ptep = huge_ptep_get(dst_mm, dst_addr, dst_pte);
+ /*
+ * See comment about UFFD marker overwriting in
+ * mfill_atomic_install_pte().
+ */
+ if (!huge_pte_none(dst_ptep) && !pte_is_uffd_marker(dst_ptep))
goto out_release_unlock;
- if (vm_shared) {
- page_dup_rmap(page, true);
- } else {
- ClearPagePrivate(page);
- hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
- }
+ if (folio_in_pagecache)
+ hugetlb_add_file_rmap(folio);
+ else
+ hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
- _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
- if (dst_vma->vm_flags & VM_WRITE)
- _dst_pte = huge_pte_mkdirty(_dst_pte);
+ /*
+ * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
+ * with wp flag set, don't set pte write bit.
+ */
+ _dst_pte = make_huge_pte(dst_vma, folio,
+ !wp_enabled && !(is_continue && !vm_shared));
+ /*
+ * Always mark UFFDIO_COPY page dirty; note that this may not be
+ * extremely important for hugetlbfs for now since swapping is not
+ * supported, but we should still be clear in that this page cannot be
+ * thrown away at will, even if write bit not set.
+ */
+ _dst_pte = huge_pte_mkdirty(_dst_pte);
_dst_pte = pte_mkyoung(_dst_pte);
- set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
+ if (wp_enabled)
+ _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
+
+ set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
- (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
- dst_vma->vm_flags & VM_WRITE);
hugetlb_count_add(pages_per_huge_page(h), dst_mm);
/* No need to invalidate - it was non-present before */
update_mmu_cache(dst_vma, dst_addr, dst_pte);
spin_unlock(ptl);
- if (vm_shared)
- unlock_page(page);
+ if (!is_continue)
+ folio_set_hugetlb_migratable(folio);
+ if (vm_shared || is_continue)
+ folio_unlock(folio);
ret = 0;
out:
return ret;
out_release_unlock:
spin_unlock(ptl);
- if (vm_shared)
- unlock_page(page);
+ if (vm_shared || is_continue)
+ folio_unlock(folio);
out_release_nounlock:
- put_page(page);
+ if (!folio_in_pagecache)
+ restore_reserve_on_error(h, dst_vma, dst_addr, folio);
+ folio_put(folio);
goto out;
}
+#endif /* CONFIG_USERFAULTFD */
-long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
- struct page **pages, struct vm_area_struct **vmas,
- unsigned long *position, unsigned long *nr_pages,
- long i, unsigned int flags, int *nonblocking)
-{
- unsigned long pfn_offset;
- unsigned long vaddr = *position;
- unsigned long remainder = *nr_pages;
- struct hstate *h = hstate_vma(vma);
- int err = -EFAULT;
-
- while (vaddr < vma->vm_end && remainder) {
- pte_t *pte;
- spinlock_t *ptl = NULL;
- int absent;
- struct page *page;
-
- /*
- * If we have a pending SIGKILL, don't keep faulting pages and
- * potentially allocating memory.
- */
- if (fatal_signal_pending(current)) {
- remainder = 0;
- break;
- }
-
- /*
- * Some archs (sparc64, sh*) have multiple pte_ts to
- * each hugepage. We have to make sure we get the
- * first, for the page indexing below to work.
- *
- * Note that page table lock is not held when pte is null.
- */
- pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
- huge_page_size(h));
- if (pte)
- ptl = huge_pte_lock(h, mm, pte);
- absent = !pte || huge_pte_none(huge_ptep_get(pte));
-
- /*
- * When coredumping, it suits get_dump_page if we just return
- * an error where there's an empty slot with no huge pagecache
- * to back it. This way, we avoid allocating a hugepage, and
- * the sparse dumpfile avoids allocating disk blocks, but its
- * huge holes still show up with zeroes where they need to be.
- */
- if (absent && (flags & FOLL_DUMP) &&
- !hugetlbfs_pagecache_present(h, vma, vaddr)) {
- if (pte)
- spin_unlock(ptl);
- remainder = 0;
- break;
- }
-
- /*
- * We need call hugetlb_fault for both hugepages under migration
- * (in which case hugetlb_fault waits for the migration,) and
- * hwpoisoned hugepages (in which case we need to prevent the
- * caller from accessing to them.) In order to do this, we use
- * here is_swap_pte instead of is_hugetlb_entry_migration and
- * is_hugetlb_entry_hwpoisoned. This is because it simply covers
- * both cases, and because we can't follow correct pages
- * directly from any kind of swap entries.
- */
- if (absent || is_swap_pte(huge_ptep_get(pte)) ||
- ((flags & FOLL_WRITE) &&
- !huge_pte_write(huge_ptep_get(pte)))) {
- vm_fault_t ret;
- unsigned int fault_flags = 0;
-
- if (pte)
- spin_unlock(ptl);
- if (flags & FOLL_WRITE)
- fault_flags |= FAULT_FLAG_WRITE;
- if (nonblocking)
- fault_flags |= FAULT_FLAG_ALLOW_RETRY;
- if (flags & FOLL_NOWAIT)
- fault_flags |= FAULT_FLAG_ALLOW_RETRY |
- FAULT_FLAG_RETRY_NOWAIT;
- if (flags & FOLL_TRIED) {
- VM_WARN_ON_ONCE(fault_flags &
- FAULT_FLAG_ALLOW_RETRY);
- fault_flags |= FAULT_FLAG_TRIED;
- }
- ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
- if (ret & VM_FAULT_ERROR) {
- err = vm_fault_to_errno(ret, flags);
- remainder = 0;
- break;
- }
- if (ret & VM_FAULT_RETRY) {
- if (nonblocking)
- *nonblocking = 0;
- *nr_pages = 0;
- /*
- * VM_FAULT_RETRY must not return an
- * error, it will return zero
- * instead.
- *
- * No need to update "position" as the
- * caller will not check it after
- * *nr_pages is set to 0.
- */
- return i;
- }
- continue;
- }
-
- pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
- page = pte_page(huge_ptep_get(pte));
-same_page:
- if (pages) {
- pages[i] = mem_map_offset(page, pfn_offset);
- get_page(pages[i]);
- }
-
- if (vmas)
- vmas[i] = vma;
-
- vaddr += PAGE_SIZE;
- ++pfn_offset;
- --remainder;
- ++i;
- if (vaddr < vma->vm_end && remainder &&
- pfn_offset < pages_per_huge_page(h)) {
- /*
- * We use pfn_offset to avoid touching the pageframes
- * of this compound page.
- */
- goto same_page;
- }
- spin_unlock(ptl);
- }
- *nr_pages = remainder;
- /*
- * setting position is actually required only if remainder is
- * not zero but it's faster not to add a "if (remainder)"
- * branch.
- */
- *position = vaddr;
-
- return i ? i : err;
-}
-
-#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
-/*
- * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
- * implement this.
- */
-#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
-#endif
-
-unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
- unsigned long address, unsigned long end, pgprot_t newprot)
+long hugetlb_change_protection(struct vm_area_struct *vma,
+ unsigned long address, unsigned long end,
+ pgprot_t newprot, unsigned long cp_flags)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long start = address;
pte_t *ptep;
pte_t pte;
struct hstate *h = hstate_vma(vma);
- unsigned long pages = 0;
+ long pages = 0, psize = huge_page_size(h);
bool shared_pmd = false;
struct mmu_notifier_range range;
+ unsigned long last_addr_mask;
+ bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
+ bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
/*
* In the case of shared PMDs, the area to flush could be beyond
* start/end. Set range.start/range.end to cover the maximum possible
* range if PMD sharing is possible.
*/
- mmu_notifier_range_init(&range, mm, start, end);
+ mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
+ 0, mm, start, end);
adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
BUG_ON(address >= end);
flush_cache_range(vma, range.start, range.end);
mmu_notifier_invalidate_range_start(&range);
+ hugetlb_vma_lock_write(vma);
i_mmap_lock_write(vma->vm_file->f_mapping);
- for (; address < end; address += huge_page_size(h)) {
+ last_addr_mask = hugetlb_mask_last_page(h);
+ for (; address < end; address += psize) {
+ softleaf_t entry;
spinlock_t *ptl;
- ptep = huge_pte_offset(mm, address, huge_page_size(h));
- if (!ptep)
- continue;
+
+ ptep = hugetlb_walk(vma, address, psize);
+ if (!ptep) {
+ if (!uffd_wp) {
+ address |= last_addr_mask;
+ continue;
+ }
+ /*
+ * Userfaultfd wr-protect requires pgtable
+ * pre-allocations to install pte markers.
+ */
+ ptep = huge_pte_alloc(mm, vma, address, psize);
+ if (!ptep) {
+ pages = -ENOMEM;
+ break;
+ }
+ }
ptl = huge_pte_lock(h, mm, ptep);
- if (huge_pmd_unshare(mm, &address, ptep)) {
+ if (huge_pmd_unshare(mm, vma, address, ptep)) {
+ /*
+ * When uffd-wp is enabled on the vma, unshare
+ * shouldn't happen at all. Warn about it if it
+ * happened due to some reason.
+ */
+ WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
pages++;
spin_unlock(ptl);
shared_pmd = true;
+ address |= last_addr_mask;
continue;
}
- pte = huge_ptep_get(ptep);
- if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
- spin_unlock(ptl);
- continue;
+ pte = huge_ptep_get(mm, address, ptep);
+ if (huge_pte_none(pte)) {
+ if (unlikely(uffd_wp))
+ /* Safe to modify directly (none->non-present). */
+ set_huge_pte_at(mm, address, ptep,
+ make_pte_marker(PTE_MARKER_UFFD_WP),
+ psize);
+ goto next;
}
- if (unlikely(is_hugetlb_entry_migration(pte))) {
- swp_entry_t entry = pte_to_swp_entry(pte);
-
- if (is_write_migration_entry(entry)) {
- pte_t newpte;
- make_migration_entry_read(&entry);
+ entry = softleaf_from_pte(pte);
+ if (unlikely(softleaf_is_hwpoison(entry))) {
+ /* Nothing to do. */
+ } else if (unlikely(softleaf_is_migration(entry))) {
+ struct folio *folio = softleaf_to_folio(entry);
+ pte_t newpte = pte;
+
+ if (softleaf_is_migration_write(entry)) {
+ if (folio_test_anon(folio))
+ entry = make_readable_exclusive_migration_entry(
+ swp_offset(entry));
+ else
+ entry = make_readable_migration_entry(
+ swp_offset(entry));
newpte = swp_entry_to_pte(entry);
- set_huge_swap_pte_at(mm, address, ptep,
- newpte, huge_page_size(h));
pages++;
}
- spin_unlock(ptl);
- continue;
- }
- if (!huge_pte_none(pte)) {
- pte = huge_ptep_get_and_clear(mm, address, ptep);
- pte = pte_mkhuge(huge_pte_modify(pte, newprot));
- pte = arch_make_huge_pte(pte, vma, NULL, 0);
- set_huge_pte_at(mm, address, ptep, pte);
+
+ if (uffd_wp)
+ newpte = pte_swp_mkuffd_wp(newpte);
+ else if (uffd_wp_resolve)
+ newpte = pte_swp_clear_uffd_wp(newpte);
+ if (!pte_same(pte, newpte))
+ set_huge_pte_at(mm, address, ptep, newpte, psize);
+ } else if (unlikely(pte_is_marker(pte))) {
+ /*
+ * Do nothing on a poison marker; page is
+ * corrupted, permissions do not apply. Here
+ * pte_marker_uffd_wp()==true implies !poison
+ * because they're mutual exclusive.
+ */
+ if (pte_is_uffd_wp_marker(pte) && uffd_wp_resolve)
+ /* Safe to modify directly (non-present->none). */
+ huge_pte_clear(mm, address, ptep, psize);
+ } else {
+ pte_t old_pte;
+ unsigned int shift = huge_page_shift(hstate_vma(vma));
+
+ old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
+ pte = huge_pte_modify(old_pte, newprot);
+ pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
+ if (uffd_wp)
+ pte = huge_pte_mkuffd_wp(pte);
+ else if (uffd_wp_resolve)
+ pte = huge_pte_clear_uffd_wp(pte);
+ huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
pages++;
}
+
+next:
spin_unlock(ptl);
+ cond_resched();
}
/*
* Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
@@ -4407,27 +6547,38 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
else
flush_hugetlb_tlb_range(vma, start, end);
/*
- * No need to call mmu_notifier_invalidate_range() we are downgrading
- * page table protection not changing it to point to a new page.
+ * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
+ * downgrading page table protection not changing it to point to a new
+ * page.
*
- * See Documentation/vm/mmu_notifier.rst
+ * See Documentation/mm/mmu_notifier.rst
*/
i_mmap_unlock_write(vma->vm_file->f_mapping);
+ hugetlb_vma_unlock_write(vma);
mmu_notifier_invalidate_range_end(&range);
- return pages << h->order;
+ return pages > 0 ? (pages << h->order) : pages;
}
-int hugetlb_reserve_pages(struct inode *inode,
- long from, long to,
- struct vm_area_struct *vma,
- vm_flags_t vm_flags)
+/*
+ * Update the reservation map for the range [from, to].
+ *
+ * Returns the number of entries that would be added to the reservation map
+ * associated with the range [from, to]. This number is greater or equal to
+ * zero. -EINVAL or -ENOMEM is returned in case of any errors.
+ */
+
+long hugetlb_reserve_pages(struct inode *inode,
+ long from, long to,
+ struct vm_area_desc *desc,
+ vm_flags_t vm_flags)
{
- long ret, chg;
+ long chg = -1, add = -1, spool_resv, gbl_resv;
struct hstate *h = hstate_inode(inode);
struct hugepage_subpool *spool = subpool_inode(inode);
struct resv_map *resv_map;
- long gbl_reserve;
+ struct hugetlb_cgroup *h_cg = NULL;
+ long gbl_reserve, regions_needed = 0;
/* This should never happen */
if (from > to) {
@@ -4447,27 +6598,41 @@ int hugetlb_reserve_pages(struct inode *inode,
* Shared mappings base their reservation on the number of pages that
* are already allocated on behalf of the file. Private mappings need
* to reserve the full area even if read-only as mprotect() may be
- * called to make the mapping read-write. Assume !vma is a shm mapping
+ * called to make the mapping read-write. Assume !desc is a shm mapping
*/
- if (!vma || vma->vm_flags & VM_MAYSHARE) {
+ if (!desc || desc->vm_flags & VM_MAYSHARE) {
+ /*
+ * resv_map can not be NULL as hugetlb_reserve_pages is only
+ * called for inodes for which resv_maps were created (see
+ * hugetlbfs_get_inode).
+ */
resv_map = inode_resv_map(inode);
- chg = region_chg(resv_map, from, to);
-
+ chg = region_chg(resv_map, from, to, &regions_needed);
} else {
+ /* Private mapping. */
resv_map = resv_map_alloc();
if (!resv_map)
- return -ENOMEM;
+ goto out_err;
chg = to - from;
- set_vma_resv_map(vma, resv_map);
- set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
+ set_vma_desc_resv_map(desc, resv_map);
+ set_vma_desc_resv_flags(desc, HPAGE_RESV_OWNER);
}
- if (chg < 0) {
- ret = chg;
+ if (chg < 0)
goto out_err;
+
+ if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
+ chg * pages_per_huge_page(h), &h_cg) < 0)
+ goto out_err;
+
+ if (desc && !(desc->vm_flags & VM_MAYSHARE) && h_cg) {
+ /* For private mappings, the hugetlb_cgroup uncharge info hangs
+ * of the resv_map.
+ */
+ resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
}
/*
@@ -4476,21 +6641,15 @@ int hugetlb_reserve_pages(struct inode *inode,
* reservations already in place (gbl_reserve).
*/
gbl_reserve = hugepage_subpool_get_pages(spool, chg);
- if (gbl_reserve < 0) {
- ret = -ENOSPC;
- goto out_err;
- }
+ if (gbl_reserve < 0)
+ goto out_uncharge_cgroup;
/*
* Check enough hugepages are available for the reservation.
* Hand the pages back to the subpool if there are not
*/
- ret = hugetlb_acct_memory(h, gbl_reserve);
- if (ret < 0) {
- /* put back original number of pages, chg */
- (void)hugepage_subpool_put_pages(spool, chg);
- goto out_err;
- }
+ if (hugetlb_acct_memory(h, gbl_reserve) < 0)
+ goto out_put_pages;
/*
* Account for the reservations made. Shared mappings record regions
@@ -4503,33 +6662,71 @@ int hugetlb_reserve_pages(struct inode *inode,
* consumed reservations are stored in the map. Hence, nothing
* else has to be done for private mappings here
*/
- if (!vma || vma->vm_flags & VM_MAYSHARE) {
- long add = region_add(resv_map, from, to);
+ if (!desc || desc->vm_flags & VM_MAYSHARE) {
+ add = region_add(resv_map, from, to, regions_needed, h, h_cg);
- if (unlikely(chg > add)) {
+ if (unlikely(add < 0)) {
+ hugetlb_acct_memory(h, -gbl_reserve);
+ goto out_put_pages;
+ } else if (unlikely(chg > add)) {
/*
* pages in this range were added to the reserve
* map between region_chg and region_add. This
- * indicates a race with alloc_huge_page. Adjust
+ * indicates a race with alloc_hugetlb_folio. Adjust
* the subpool and reserve counts modified above
* based on the difference.
*/
long rsv_adjust;
+ /*
+ * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
+ * reference to h_cg->css. See comment below for detail.
+ */
+ hugetlb_cgroup_uncharge_cgroup_rsvd(
+ hstate_index(h),
+ (chg - add) * pages_per_huge_page(h), h_cg);
+
rsv_adjust = hugepage_subpool_put_pages(spool,
chg - add);
hugetlb_acct_memory(h, -rsv_adjust);
+ } else if (h_cg) {
+ /*
+ * The file_regions will hold their own reference to
+ * h_cg->css. So we should release the reference held
+ * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
+ * done.
+ */
+ hugetlb_cgroup_put_rsvd_cgroup(h_cg);
}
}
- return 0;
+ return chg;
+
+out_put_pages:
+ spool_resv = chg - gbl_reserve;
+ if (spool_resv) {
+ /* put sub pool's reservation back, chg - gbl_reserve */
+ gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
+ /*
+ * subpool's reserved pages can not be put back due to race,
+ * return to hstate.
+ */
+ hugetlb_acct_memory(h, -gbl_resv);
+ }
+out_uncharge_cgroup:
+ hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
+ chg * pages_per_huge_page(h), h_cg);
out_err:
- if (!vma || vma->vm_flags & VM_MAYSHARE)
- /* Don't call region_abort if region_chg failed */
- if (chg >= 0)
- region_abort(resv_map, from, to);
- if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
+ if (!desc || desc->vm_flags & VM_MAYSHARE)
+ /* Only call region_abort if the region_chg succeeded but the
+ * region_add failed or didn't run.
+ */
+ if (chg >= 0 && add < 0)
+ region_abort(resv_map, from, to, regions_needed);
+ if (desc && is_vma_desc_resv_set(desc, HPAGE_RESV_OWNER)) {
kref_put(&resv_map->refs, resv_map_release);
- return ret;
+ set_vma_desc_resv_map(desc, NULL);
+ }
+ return chg < 0 ? chg : add < 0 ? add : -EINVAL;
}
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
@@ -4541,6 +6738,10 @@ long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
struct hugepage_subpool *spool = subpool_inode(inode);
long gbl_reserve;
+ /*
+ * Since this routine can be called in the evict inode path for all
+ * hugetlbfs inodes, resv_map could be NULL.
+ */
if (resv_map) {
chg = region_del(resv_map, start, end);
/*
@@ -4559,6 +6760,9 @@ long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
/*
* If the subpool has a minimum size, the number of global
* reservations to be released may be adjusted.
+ *
+ * Note that !resv_map implies freed == 0. So (chg - freed)
+ * won't go negative.
*/
gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
hugetlb_acct_memory(h, -gbl_reserve);
@@ -4566,7 +6770,7 @@ long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
return 0;
}
-#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
+#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
static unsigned long page_table_shareable(struct vm_area_struct *svma,
struct vm_area_struct *vma,
unsigned long addr, pgoff_t idx)
@@ -4577,32 +6781,43 @@ static unsigned long page_table_shareable(struct vm_area_struct *svma,
unsigned long s_end = sbase + PUD_SIZE;
/* Allow segments to share if only one is marked locked */
- unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
- unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
+ vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
+ vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
/*
* match the virtual addresses, permission and the alignment of the
* page table page.
+ *
+ * Also, vma_lock (vm_private_data) is required for sharing.
*/
if (pmd_index(addr) != pmd_index(saddr) ||
vm_flags != svm_flags ||
- sbase < svma->vm_start || svma->vm_end < s_end)
+ !range_in_vma(svma, sbase, s_end) ||
+ !svma->vm_private_data)
return 0;
return saddr;
}
-static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
+bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
- unsigned long base = addr & PUD_MASK;
- unsigned long end = base + PUD_SIZE;
+ unsigned long start = addr & PUD_MASK;
+ unsigned long end = start + PUD_SIZE;
+#ifdef CONFIG_USERFAULTFD
+ if (uffd_disable_huge_pmd_share(vma))
+ return false;
+#endif
/*
* check on proper vm_flags and page table alignment
*/
- if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
- return true;
- return false;
+ if (!(vma->vm_flags & VM_MAYSHARE))
+ return false;
+ if (!vma->vm_private_data) /* vma lock required for sharing */
+ return false;
+ if (!range_in_vma(vma, start, end))
+ return false;
+ return true;
}
/*
@@ -4613,25 +6828,23 @@ static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
unsigned long *start, unsigned long *end)
{
- unsigned long check_addr = *start;
+ unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
+ v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
- if (!(vma->vm_flags & VM_MAYSHARE))
+ /*
+ * vma needs to span at least one aligned PUD size, and the range
+ * must be at least partially within in.
+ */
+ if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
+ (*end <= v_start) || (*start >= v_end))
return;
- for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
- unsigned long a_start = check_addr & PUD_MASK;
- unsigned long a_end = a_start + PUD_SIZE;
+ /* Extend the range to be PUD aligned for a worst case scenario */
+ if (*start > v_start)
+ *start = ALIGN_DOWN(*start, PUD_SIZE);
- /*
- * If sharing is possible, adjust start/end if necessary.
- */
- if (range_in_vma(vma, a_start, a_end)) {
- if (a_start < *start)
- *start = a_start;
- if (a_end > *end)
- *end = a_end;
- }
- }
+ if (*end < v_end)
+ *end = ALIGN(*end, PUD_SIZE);
}
/*
@@ -4643,9 +6856,9 @@ void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
* racing tasks could either miss the sharing (see huge_pte_offset) or select a
* bad pmd for sharing.
*/
-pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
+pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long addr, pud_t *pud)
{
- struct vm_area_struct *vma = find_vma(mm, addr);
struct address_space *mapping = vma->vm_file->f_mapping;
pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
vma->vm_pgoff;
@@ -4653,22 +6866,18 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
unsigned long saddr;
pte_t *spte = NULL;
pte_t *pte;
- spinlock_t *ptl;
- if (!vma_shareable(vma, addr))
- return (pte_t *)pmd_alloc(mm, pud, addr);
-
- i_mmap_lock_write(mapping);
+ i_mmap_lock_read(mapping);
vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
if (svma == vma)
continue;
saddr = page_table_shareable(svma, vma, addr, idx);
if (saddr) {
- spte = huge_pte_offset(svma->vm_mm, saddr,
- vma_mmu_pagesize(svma));
+ spte = hugetlb_walk(svma, saddr,
+ vma_mmu_pagesize(svma));
if (spte) {
- get_page(virt_to_page(spte));
+ ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
break;
}
}
@@ -4677,57 +6886,66 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
if (!spte)
goto out;
- ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
+ spin_lock(&mm->page_table_lock);
if (pud_none(*pud)) {
pud_populate(mm, pud,
(pmd_t *)((unsigned long)spte & PAGE_MASK));
mm_inc_nr_pmds(mm);
} else {
- put_page(virt_to_page(spte));
+ ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
}
- spin_unlock(ptl);
+ spin_unlock(&mm->page_table_lock);
out:
pte = (pte_t *)pmd_alloc(mm, pud, addr);
- i_mmap_unlock_write(mapping);
+ i_mmap_unlock_read(mapping);
return pte;
}
/*
* unmap huge page backed by shared pte.
*
- * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
- * indicated by page_count > 1, unmap is achieved by clearing pud and
- * decrementing the ref count. If count == 1, the pte page is not shared.
- *
- * called with page table lock held.
+ * Called with page table lock held.
*
* returns: 1 successfully unmapped a shared pte page
* 0 the underlying pte page is not shared, or it is the last user
*/
-int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
+int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long addr, pte_t *ptep)
{
- pgd_t *pgd = pgd_offset(mm, *addr);
- p4d_t *p4d = p4d_offset(pgd, *addr);
- pud_t *pud = pud_offset(p4d, *addr);
+ unsigned long sz = huge_page_size(hstate_vma(vma));
+ pgd_t *pgd = pgd_offset(mm, addr);
+ p4d_t *p4d = p4d_offset(pgd, addr);
+ pud_t *pud = pud_offset(p4d, addr);
- BUG_ON(page_count(virt_to_page(ptep)) == 0);
- if (page_count(virt_to_page(ptep)) == 1)
+ if (sz != PMD_SIZE)
return 0;
-
+ if (!ptdesc_pmd_is_shared(virt_to_ptdesc(ptep)))
+ return 0;
+ i_mmap_assert_write_locked(vma->vm_file->f_mapping);
+ hugetlb_vma_assert_locked(vma);
pud_clear(pud);
- put_page(virt_to_page(ptep));
+ /*
+ * Once our caller drops the rmap lock, some other process might be
+ * using this page table as a normal, non-hugetlb page table.
+ * Wait for pending gup_fast() in other threads to finish before letting
+ * that happen.
+ */
+ tlb_remove_table_sync_one();
+ ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
mm_dec_nr_pmds(mm);
- *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
return 1;
}
-#define want_pmd_share() (1)
-#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
-pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
+
+#else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
+
+pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long addr, pud_t *pud)
{
return NULL;
}
-int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
+int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long addr, pte_t *ptep)
{
return 0;
}
@@ -4736,11 +6954,15 @@ void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
unsigned long *start, unsigned long *end)
{
}
-#define want_pmd_share() (0)
-#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
+
+bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
+{
+ return false;
+}
+#endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
-pte_t *huge_pte_alloc(struct mm_struct *mm,
+pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, unsigned long sz)
{
pgd_t *pgd;
@@ -4758,13 +6980,18 @@ pte_t *huge_pte_alloc(struct mm_struct *mm,
pte = (pte_t *)pud;
} else {
BUG_ON(sz != PMD_SIZE);
- if (want_pmd_share() && pud_none(*pud))
- pte = huge_pmd_share(mm, addr, pud);
+ if (want_pmd_share(vma, addr) && pud_none(*pud))
+ pte = huge_pmd_share(mm, vma, addr, pud);
else
pte = (pte_t *)pmd_alloc(mm, pud, addr);
}
}
- BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
+
+ if (pte) {
+ pte_t pteval = ptep_get_lockless(pte);
+
+ BUG_ON(pte_present(pteval) && !pte_huge(pteval));
+ }
return pte;
}
@@ -4773,8 +7000,8 @@ pte_t *huge_pte_alloc(struct mm_struct *mm,
* huge_pte_offset() - Walk the page table to resolve the hugepage
* entry at address @addr
*
- * Return: Pointer to page table or swap entry (PUD or PMD) for
- * address @addr, or NULL if a p*d_none() entry is encountered and the
+ * Return: Pointer to page table entry (PUD or PMD) for
+ * address @addr, or NULL if a !p*d_present() entry is encountered and the
* size @sz doesn't match the hugepage size at this level of the page
* table.
*/
@@ -4794,135 +7021,145 @@ pte_t *huge_pte_offset(struct mm_struct *mm,
return NULL;
pud = pud_offset(p4d, addr);
- if (sz != PUD_SIZE && pud_none(*pud))
- return NULL;
- /* hugepage or swap? */
- if (pud_huge(*pud) || !pud_present(*pud))
+ if (sz == PUD_SIZE)
+ /* must be pud huge, non-present or none */
return (pte_t *)pud;
-
- pmd = pmd_offset(pud, addr);
- if (sz != PMD_SIZE && pmd_none(*pmd))
+ if (!pud_present(*pud))
return NULL;
- /* hugepage or swap? */
- if (pmd_huge(*pmd) || !pmd_present(*pmd))
- return (pte_t *)pmd;
+ /* must have a valid entry and size to go further */
- return NULL;
+ pmd = pmd_offset(pud, addr);
+ /* must be pmd huge, non-present or none */
+ return (pte_t *)pmd;
}
-#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
-
/*
- * These functions are overwritable if your architecture needs its own
- * behavior.
+ * Return a mask that can be used to update an address to the last huge
+ * page in a page table page mapping size. Used to skip non-present
+ * page table entries when linearly scanning address ranges. Architectures
+ * with unique huge page to page table relationships can define their own
+ * version of this routine.
*/
-struct page * __weak
-follow_huge_addr(struct mm_struct *mm, unsigned long address,
- int write)
+unsigned long hugetlb_mask_last_page(struct hstate *h)
{
- return ERR_PTR(-EINVAL);
-}
+ unsigned long hp_size = huge_page_size(h);
-struct page * __weak
-follow_huge_pd(struct vm_area_struct *vma,
- unsigned long address, hugepd_t hpd, int flags, int pdshift)
-{
- WARN(1, "hugepd follow called with no support for hugepage directory format\n");
- return NULL;
+ if (hp_size == PUD_SIZE)
+ return P4D_SIZE - PUD_SIZE;
+ else if (hp_size == PMD_SIZE)
+ return PUD_SIZE - PMD_SIZE;
+ else
+ return 0UL;
}
-struct page * __weak
-follow_huge_pmd(struct mm_struct *mm, unsigned long address,
- pmd_t *pmd, int flags)
+#else
+
+/* See description above. Architectures can provide their own version. */
+__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
{
- struct page *page = NULL;
- spinlock_t *ptl;
- pte_t pte;
-retry:
- ptl = pmd_lockptr(mm, pmd);
- spin_lock(ptl);
- /*
- * make sure that the address range covered by this pmd is not
- * unmapped from other threads.
- */
- if (!pmd_huge(*pmd))
- goto out;
- pte = huge_ptep_get((pte_t *)pmd);
- if (pte_present(pte)) {
- page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
- if (flags & FOLL_GET)
- get_page(page);
- } else {
- if (is_hugetlb_entry_migration(pte)) {
- spin_unlock(ptl);
- __migration_entry_wait(mm, (pte_t *)pmd, ptl);
- goto retry;
- }
- /*
- * hwpoisoned entry is treated as no_page_table in
- * follow_page_mask().
- */
- }
-out:
- spin_unlock(ptl);
- return page;
+#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
+ if (huge_page_size(h) == PMD_SIZE)
+ return PUD_SIZE - PMD_SIZE;
+#endif
+ return 0UL;
}
-struct page * __weak
-follow_huge_pud(struct mm_struct *mm, unsigned long address,
- pud_t *pud, int flags)
+#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
+
+/**
+ * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
+ * @folio: the folio to isolate
+ * @list: the list to add the folio to on success
+ *
+ * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
+ * isolated/non-migratable, and moving it from the active list to the
+ * given list.
+ *
+ * Isolation will fail if @folio is not an allocated hugetlb folio, or if
+ * it is already isolated/non-migratable.
+ *
+ * On success, an additional folio reference is taken that must be dropped
+ * using folio_putback_hugetlb() to undo the isolation.
+ *
+ * Return: True if isolation worked, otherwise False.
+ */
+bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
{
- if (flags & FOLL_GET)
- return NULL;
+ bool ret = true;
- return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
+ spin_lock_irq(&hugetlb_lock);
+ if (!folio_test_hugetlb(folio) ||
+ !folio_test_hugetlb_migratable(folio) ||
+ !folio_try_get(folio)) {
+ ret = false;
+ goto unlock;
+ }
+ folio_clear_hugetlb_migratable(folio);
+ list_move_tail(&folio->lru, list);
+unlock:
+ spin_unlock_irq(&hugetlb_lock);
+ return ret;
}
-struct page * __weak
-follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
+int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
{
- if (flags & FOLL_GET)
- return NULL;
+ int ret = 0;
- return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
+ *hugetlb = false;
+ spin_lock_irq(&hugetlb_lock);
+ if (folio_test_hugetlb(folio)) {
+ *hugetlb = true;
+ if (folio_test_hugetlb_freed(folio))
+ ret = 0;
+ else if (folio_test_hugetlb_migratable(folio) || unpoison)
+ ret = folio_try_get(folio);
+ else
+ ret = -EBUSY;
+ }
+ spin_unlock_irq(&hugetlb_lock);
+ return ret;
}
-bool isolate_huge_page(struct page *page, struct list_head *list)
+int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
+ bool *migratable_cleared)
{
- bool ret = true;
+ int ret;
- VM_BUG_ON_PAGE(!PageHead(page), page);
- spin_lock(&hugetlb_lock);
- if (!page_huge_active(page) || !get_page_unless_zero(page)) {
- ret = false;
- goto unlock;
- }
- clear_page_huge_active(page);
- list_move_tail(&page->lru, list);
-unlock:
- spin_unlock(&hugetlb_lock);
+ spin_lock_irq(&hugetlb_lock);
+ ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
+ spin_unlock_irq(&hugetlb_lock);
return ret;
}
-void putback_active_hugepage(struct page *page)
+/**
+ * folio_putback_hugetlb - unisolate a hugetlb folio
+ * @folio: the isolated hugetlb folio
+ *
+ * Putback/un-isolate the hugetlb folio that was previous isolated using
+ * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
+ * back onto the active list.
+ *
+ * Will drop the additional folio reference obtained through
+ * folio_isolate_hugetlb().
+ */
+void folio_putback_hugetlb(struct folio *folio)
{
- VM_BUG_ON_PAGE(!PageHead(page), page);
- spin_lock(&hugetlb_lock);
- set_page_huge_active(page);
- list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
- spin_unlock(&hugetlb_lock);
- put_page(page);
+ spin_lock_irq(&hugetlb_lock);
+ folio_set_hugetlb_migratable(folio);
+ list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
+ spin_unlock_irq(&hugetlb_lock);
+ folio_put(folio);
}
-void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
+void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
{
- struct hstate *h = page_hstate(oldpage);
+ struct hstate *h = folio_hstate(old_folio);
- hugetlb_cgroup_migrate(oldpage, newpage);
- set_page_owner_migrate_reason(newpage, reason);
+ hugetlb_cgroup_migrate(old_folio, new_folio);
+ folio_set_owner_migrate_reason(new_folio, reason);
/*
- * transfer temporary state of the new huge page. This is
+ * transfer temporary state of the new hugetlb folio. This is
* reverse to other transitions because the newpage is going to
* be final while the old one will be freed so it takes over
* the temporary status.
@@ -4931,18 +7168,119 @@ void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
* here as well otherwise the global surplus count will not match
* the per-node's.
*/
- if (PageHugeTemporary(newpage)) {
- int old_nid = page_to_nid(oldpage);
- int new_nid = page_to_nid(newpage);
+ if (folio_test_hugetlb_temporary(new_folio)) {
+ int old_nid = folio_nid(old_folio);
+ int new_nid = folio_nid(new_folio);
+
+ folio_set_hugetlb_temporary(old_folio);
+ folio_clear_hugetlb_temporary(new_folio);
- SetPageHugeTemporary(oldpage);
- ClearPageHugeTemporary(newpage);
- spin_lock(&hugetlb_lock);
+ /*
+ * There is no need to transfer the per-node surplus state
+ * when we do not cross the node.
+ */
+ if (new_nid == old_nid)
+ return;
+ spin_lock_irq(&hugetlb_lock);
if (h->surplus_huge_pages_node[old_nid]) {
h->surplus_huge_pages_node[old_nid]--;
h->surplus_huge_pages_node[new_nid]++;
}
- spin_unlock(&hugetlb_lock);
+ spin_unlock_irq(&hugetlb_lock);
}
+
+ /*
+ * Our old folio is isolated and has "migratable" cleared until it
+ * is putback. As migration succeeded, set the new folio "migratable"
+ * and add it to the active list.
+ */
+ spin_lock_irq(&hugetlb_lock);
+ folio_set_hugetlb_migratable(new_folio);
+ list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
+ spin_unlock_irq(&hugetlb_lock);
+}
+
+/*
+ * If @take_locks is false, the caller must ensure that no concurrent page table
+ * access can happen (except for gup_fast() and hardware page walks).
+ * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
+ * concurrent page fault handling) and the file rmap lock.
+ */
+static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
+ unsigned long start,
+ unsigned long end,
+ bool take_locks)
+{
+ struct hstate *h = hstate_vma(vma);
+ unsigned long sz = huge_page_size(h);
+ struct mm_struct *mm = vma->vm_mm;
+ struct mmu_notifier_range range;
+ unsigned long address;
+ spinlock_t *ptl;
+ pte_t *ptep;
+
+ if (!(vma->vm_flags & VM_MAYSHARE))
+ return;
+
+ if (start >= end)
+ return;
+
+ flush_cache_range(vma, start, end);
+ /*
+ * No need to call adjust_range_if_pmd_sharing_possible(), because
+ * we have already done the PUD_SIZE alignment.
+ */
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
+ start, end);
+ mmu_notifier_invalidate_range_start(&range);
+ if (take_locks) {
+ hugetlb_vma_lock_write(vma);
+ i_mmap_lock_write(vma->vm_file->f_mapping);
+ } else {
+ i_mmap_assert_write_locked(vma->vm_file->f_mapping);
+ }
+ for (address = start; address < end; address += PUD_SIZE) {
+ ptep = hugetlb_walk(vma, address, sz);
+ if (!ptep)
+ continue;
+ ptl = huge_pte_lock(h, mm, ptep);
+ huge_pmd_unshare(mm, vma, address, ptep);
+ spin_unlock(ptl);
+ }
+ flush_hugetlb_tlb_range(vma, start, end);
+ if (take_locks) {
+ i_mmap_unlock_write(vma->vm_file->f_mapping);
+ hugetlb_vma_unlock_write(vma);
+ }
+ /*
+ * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
+ * Documentation/mm/mmu_notifier.rst.
+ */
+ mmu_notifier_invalidate_range_end(&range);
+}
+
+/*
+ * This function will unconditionally remove all the shared pmd pgtable entries
+ * within the specific vma for a hugetlbfs memory range.
+ */
+void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
+{
+ hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
+ ALIGN_DOWN(vma->vm_end, PUD_SIZE),
+ /* take_locks = */ true);
+}
+
+/*
+ * For hugetlb, mremap() is an odd edge case - while the VMA copying is
+ * performed, we permit both the old and new VMAs to reference the same
+ * reservation.
+ *
+ * We fix this up after the operation succeeds, or if a newly allocated VMA
+ * is closed as a result of a failure to allocate memory.
+ */
+void fixup_hugetlb_reservations(struct vm_area_struct *vma)
+{
+ if (is_vm_hugetlb_page(vma))
+ clear_vma_resv_huge_pages(vma);
}