summaryrefslogtreecommitdiff
path: root/mm/hugetlb.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/hugetlb.c')
-rw-r--r--mm/hugetlb.c2381
1 files changed, 1226 insertions, 1155 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index ce7be5c24442..a0d285d20992 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -14,9 +14,11 @@
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/compiler.h>
+#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/mutex.h>
#include <linux/memblock.h>
+#include <linux/minmax.h>
#include <linux/sysfs.h>
#include <linux/slab.h>
#include <linux/sched/mm.h>
@@ -40,6 +42,7 @@
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
+#include <asm/setup.h>
#include <linux/io.h>
#include <linux/hugetlb.h>
@@ -48,28 +51,34 @@
#include <linux/page_owner.h>
#include "internal.h"
#include "hugetlb_vmemmap.h"
+#include "hugetlb_cma.h"
+#include <linux/page-isolation.h>
int hugetlb_max_hstate __read_mostly;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
-#ifdef CONFIG_CMA
-static struct cma *hugetlb_cma[MAX_NUMNODES];
-static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
-static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
-{
- return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
- 1 << order);
-}
-#else
-static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
-{
- return false;
-}
-#endif
-static unsigned long hugetlb_cma_size __initdata;
-
+__initdata nodemask_t hugetlb_bootmem_nodes;
__initdata struct list_head huge_boot_pages[MAX_NUMNODES];
+static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
+
+/*
+ * Due to ordering constraints across the init code for various
+ * architectures, hugetlb hstate cmdline parameters can't simply
+ * be early_param. early_param might call the setup function
+ * before valid hugetlb page sizes are determined, leading to
+ * incorrect rejection of valid hugepagesz= options.
+ *
+ * So, record the parameters early and consume them whenever the
+ * init code is ready for them, by calling hugetlb_parse_params().
+ */
+
+/* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
+#define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1)
+struct hugetlb_cmdline {
+ char *val;
+ int (*setup)(char *val);
+};
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
@@ -77,19 +86,34 @@ static unsigned long __initdata default_hstate_max_huge_pages;
static bool __initdata parsed_valid_hugepagesz = true;
static bool __initdata parsed_default_hugepagesz;
static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
+static unsigned long hugepage_allocation_threads __initdata;
+
+static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
+static int hstate_cmdline_index __initdata;
+static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
+static int hugetlb_param_index __initdata;
+static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
+static __init void hugetlb_parse_params(void);
+
+#define hugetlb_early_param(str, func) \
+static __init int func##args(char *s) \
+{ \
+ return hugetlb_add_param(s, func); \
+} \
+early_param(str, func##args)
/*
* Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
* free_huge_pages, and surplus_huge_pages.
*/
-DEFINE_SPINLOCK(hugetlb_lock);
+__cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
/*
* Serializes faults on the same logical page. This is used to
* prevent spurious OOMs when the hugepage pool is fully utilized.
*/
-static int num_fault_mutexes;
-struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
+static int num_fault_mutexes __ro_after_init;
+struct mutex *hugetlb_fault_mutex_table __ro_after_init;
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);
@@ -97,9 +121,19 @@ static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
- unsigned long start, unsigned long end);
+ unsigned long start, unsigned long end, bool take_locks);
static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
+static void hugetlb_free_folio(struct folio *folio)
+{
+ if (folio_test_hugetlb_cma(folio)) {
+ hugetlb_cma_free_folio(folio);
+ return;
+ }
+
+ folio_put(folio);
+}
+
static inline bool subpool_is_free(struct hugepage_subpool *spool)
{
if (spool->count)
@@ -1217,7 +1251,7 @@ void hugetlb_dup_vma_private(struct vm_area_struct *vma)
/*
* Reset and decrement one ref on hugepage private reservation.
* Called with mm->mmap_lock writer semaphore held.
- * This function should be only used by move_vma() and operate on
+ * This function should be only used by mremap and operate on
* same sized vma. It should never come here with last ref on the
* reservation.
*/
@@ -1245,69 +1279,6 @@ void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
hugetlb_dup_vma_private(vma);
}
-/* Returns true if the VMA has associated reserve pages */
-static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
-{
- if (vma->vm_flags & VM_NORESERVE) {
- /*
- * This address is already reserved by other process(chg == 0),
- * so, we should decrement reserved count. Without decrementing,
- * reserve count remains after releasing inode, because this
- * allocated page will go into page cache and is regarded as
- * coming from reserved pool in releasing step. Currently, we
- * don't have any other solution to deal with this situation
- * properly, so add work-around here.
- */
- if (vma->vm_flags & VM_MAYSHARE && chg == 0)
- return true;
- else
- return false;
- }
-
- /* Shared mappings always use reserves */
- if (vma->vm_flags & VM_MAYSHARE) {
- /*
- * We know VM_NORESERVE is not set. Therefore, there SHOULD
- * be a region map for all pages. The only situation where
- * there is no region map is if a hole was punched via
- * fallocate. In this case, there really are no reserves to
- * use. This situation is indicated if chg != 0.
- */
- if (chg)
- return false;
- else
- return true;
- }
-
- /*
- * Only the process that called mmap() has reserves for
- * private mappings.
- */
- if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
- /*
- * Like the shared case above, a hole punch or truncate
- * could have been performed on the private mapping.
- * Examine the value of chg to determine if reserves
- * actually exist or were previously consumed.
- * Very Subtle - The value of chg comes from a previous
- * call to vma_needs_reserves(). The reserve map for
- * private mappings has different (opposite) semantics
- * than that of shared mappings. vma_needs_reserves()
- * has already taken this difference in semantics into
- * account. Therefore, the meaning of chg is the same
- * as in the shared case above. Code could easily be
- * combined, but keeping it separate draws attention to
- * subtle differences.
- */
- if (chg)
- return false;
- else
- return true;
- }
-
- return false;
-}
-
static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
{
int nid = folio_nid(folio);
@@ -1335,6 +1306,9 @@ static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
if (folio_test_hwpoison(folio))
continue;
+ if (is_migrate_isolate_page(&folio->page))
+ continue;
+
list_move(&folio->lru, &h->hugepage_activelist);
folio_ref_unfreeze(folio, 1);
folio_clear_hugetlb_freed(folio);
@@ -1355,6 +1329,10 @@ static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_
struct zoneref *z;
int node = NUMA_NO_NODE;
+ /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
+ if (nid == NUMA_NO_NODE)
+ nid = numa_node_id();
+
zonelist = node_zonelist(nid, gfp_mask);
retry_cpuset:
@@ -1389,8 +1367,7 @@ static unsigned long available_huge_pages(struct hstate *h)
static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
struct vm_area_struct *vma,
- unsigned long address, int avoid_reserve,
- long chg)
+ unsigned long address, long gbl_chg)
{
struct folio *folio = NULL;
struct mempolicy *mpol;
@@ -1399,15 +1376,10 @@ static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
int nid;
/*
- * A child process with MAP_PRIVATE mappings created by their parent
- * have no page reserves. This check ensures that reservations are
- * not "stolen". The child may still get SIGKILLed
+ * gbl_chg==1 means the allocation requires a new page that was not
+ * reserved before. Making sure there's at least one free page.
*/
- if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
- goto err;
-
- /* If reserves cannot be used, ensure enough pages are in the pool */
- if (avoid_reserve && !available_huge_pages(h))
+ if (gbl_chg && !available_huge_pages(h))
goto err;
gfp_mask = htlb_alloc_mask(h);
@@ -1425,11 +1397,6 @@ static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
nid, nodemask);
- if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
- folio_set_hugetlb_restore_reserve(folio);
- h->resv_huge_pages--;
- }
-
mpol_cond_put(mpol);
return folio;
@@ -1508,95 +1475,38 @@ static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
((node = hstate_next_node_to_free(hs, mask)) || 1); \
nr_nodes--)
-/* used to demote non-gigantic_huge pages as well */
-static void __destroy_compound_gigantic_folio(struct folio *folio,
- unsigned int order, bool demote)
-{
- int i;
- int nr_pages = 1 << order;
- struct page *p;
-
- atomic_set(&folio->_entire_mapcount, 0);
- atomic_set(&folio->_nr_pages_mapped, 0);
- atomic_set(&folio->_pincount, 0);
-
- for (i = 1; i < nr_pages; i++) {
- p = folio_page(folio, i);
- p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
- p->mapping = NULL;
- clear_compound_head(p);
- if (!demote)
- set_page_refcounted(p);
- }
-
- __folio_clear_head(folio);
-}
-
-static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
- unsigned int order)
-{
- __destroy_compound_gigantic_folio(folio, order, true);
-}
-
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
-static void destroy_compound_gigantic_folio(struct folio *folio,
- unsigned int order)
-{
- __destroy_compound_gigantic_folio(folio, order, false);
-}
-
-static void free_gigantic_folio(struct folio *folio, unsigned int order)
-{
- /*
- * If the page isn't allocated using the cma allocator,
- * cma_release() returns false.
- */
-#ifdef CONFIG_CMA
- int nid = folio_nid(folio);
-
- if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
- return;
-#endif
-
- free_contig_range(folio_pfn(folio), 1 << order);
-}
-
#ifdef CONFIG_CONTIG_ALLOC
static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
int nid, nodemask_t *nodemask)
{
- struct page *page;
- unsigned long nr_pages = pages_per_huge_page(h);
+ struct folio *folio;
+ int order = huge_page_order(h);
+ bool retried = false;
+
if (nid == NUMA_NO_NODE)
nid = numa_mem_id();
+retry:
+ folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask);
+ if (!folio) {
+ if (hugetlb_cma_exclusive_alloc())
+ return NULL;
-#ifdef CONFIG_CMA
- {
- int node;
-
- if (hugetlb_cma[nid]) {
- page = cma_alloc(hugetlb_cma[nid], nr_pages,
- huge_page_order(h), true);
- if (page)
- return page_folio(page);
- }
+ folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
+ if (!folio)
+ return NULL;
+ }
- if (!(gfp_mask & __GFP_THISNODE)) {
- for_each_node_mask(node, *nodemask) {
- if (node == nid || !hugetlb_cma[node])
- continue;
+ if (folio_ref_freeze(folio, 1))
+ return folio;
- page = cma_alloc(hugetlb_cma[node], nr_pages,
- huge_page_order(h), true);
- if (page)
- return page_folio(page);
- }
- }
+ pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
+ hugetlb_free_folio(folio);
+ if (!retried) {
+ retried = true;
+ goto retry;
}
-#endif
-
- page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
- return page ? page_folio(page) : NULL;
+ return NULL;
}
#else /* !CONFIG_CONTIG_ALLOC */
@@ -1613,33 +1523,18 @@ static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
{
return NULL;
}
-static inline void free_gigantic_folio(struct folio *folio,
- unsigned int order) { }
-static inline void destroy_compound_gigantic_folio(struct folio *folio,
- unsigned int order) { }
#endif
-static inline void __clear_hugetlb_destructor(struct hstate *h,
- struct folio *folio)
-{
- lockdep_assert_held(&hugetlb_lock);
-
- __folio_clear_hugetlb(folio);
-}
-
/*
* Remove hugetlb folio from lists.
- * If vmemmap exists for the folio, update dtor so that the folio appears
- * as just a compound page. Otherwise, wait until after allocating vmemmap
- * to update dtor.
- *
- * A reference is held on the folio, except in the case of demote.
+ * If vmemmap exists for the folio, clear the hugetlb flag so that the
+ * folio appears as just a compound page. Otherwise, wait until after
+ * allocating vmemmap to clear the flag.
*
* Must be called with hugetlb lock held.
*/
-static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
- bool adjust_surplus,
- bool demote)
+static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
+ bool adjust_surplus)
{
int nid = folio_nid(folio);
@@ -1653,6 +1548,7 @@ static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
list_del(&folio->lru);
if (folio_test_hugetlb_freed(folio)) {
+ folio_clear_hugetlb_freed(folio);
h->free_huge_pages--;
h->free_huge_pages_node[nid]--;
}
@@ -1662,40 +1558,20 @@ static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
}
/*
- * We can only clear the hugetlb destructor after allocating vmemmap
+ * We can only clear the hugetlb flag after allocating vmemmap
* pages. Otherwise, someone (memory error handling) may try to write
* to tail struct pages.
*/
if (!folio_test_hugetlb_vmemmap_optimized(folio))
- __clear_hugetlb_destructor(h, folio);
-
- /*
- * In the case of demote we do not ref count the page as it will soon
- * be turned into a page of smaller size.
- */
- if (!demote)
- folio_ref_unfreeze(folio, 1);
+ __folio_clear_hugetlb(folio);
h->nr_huge_pages--;
h->nr_huge_pages_node[nid]--;
}
-static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
- bool adjust_surplus)
-{
- __remove_hugetlb_folio(h, folio, adjust_surplus, false);
-}
-
-static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
- bool adjust_surplus)
-{
- __remove_hugetlb_folio(h, folio, adjust_surplus, true);
-}
-
static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
bool adjust_surplus)
{
- int zeroed;
int nid = folio_nid(folio);
VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
@@ -1719,29 +1595,14 @@ static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
*/
folio_set_hugetlb_vmemmap_optimized(folio);
- /*
- * This folio is about to be managed by the hugetlb allocator and
- * should have no users. Drop our reference, and check for others
- * just in case.
- */
- zeroed = folio_put_testzero(folio);
- if (unlikely(!zeroed))
- /*
- * It is VERY unlikely soneone else has taken a ref
- * on the folio. In this case, we simply return as
- * free_huge_folio() will be called when this other ref
- * is dropped.
- */
- return;
-
- arch_clear_hugepage_flags(&folio->page);
+ arch_clear_hugetlb_flags(folio);
enqueue_hugetlb_folio(h, folio);
}
static void __update_and_free_hugetlb_folio(struct hstate *h,
struct folio *folio)
{
- bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
+ bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
return;
@@ -1754,11 +1615,11 @@ static void __update_and_free_hugetlb_folio(struct hstate *h,
return;
/*
- * If folio is not vmemmap optimized (!clear_dtor), then the folio
+ * If folio is not vmemmap optimized (!clear_flag), then the folio
* is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
* can only be passed hugetlb pages and will BUG otherwise.
*/
- if (clear_dtor && hugetlb_vmemmap_restore_folio(h, folio)) {
+ if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
spin_lock_irq(&hugetlb_lock);
/*
* If we cannot allocate vmemmap pages, just refuse to free the
@@ -1771,33 +1632,25 @@ static void __update_and_free_hugetlb_folio(struct hstate *h,
}
/*
- * Move PageHWPoison flag from head page to the raw error pages,
- * which makes any healthy subpages reusable.
- */
- if (unlikely(folio_test_hwpoison(folio)))
- folio_clear_hugetlb_hwpoison(folio);
-
- /*
* If vmemmap pages were allocated above, then we need to clear the
- * hugetlb destructor under the hugetlb lock.
+ * hugetlb flag under the hugetlb lock.
*/
if (folio_test_hugetlb(folio)) {
spin_lock_irq(&hugetlb_lock);
- __clear_hugetlb_destructor(h, folio);
+ __folio_clear_hugetlb(folio);
spin_unlock_irq(&hugetlb_lock);
}
/*
- * Non-gigantic pages demoted from CMA allocated gigantic pages
- * need to be given back to CMA in free_gigantic_folio.
+ * Move PageHWPoison flag from head page to the raw error pages,
+ * which makes any healthy subpages reusable.
*/
- if (hstate_is_gigantic(h) ||
- hugetlb_cma_folio(folio, huge_page_order(h))) {
- destroy_compound_gigantic_folio(folio, huge_page_order(h));
- free_gigantic_folio(folio, huge_page_order(h));
- } else {
- __free_pages(&folio->page, huge_page_order(h));
- }
+ if (unlikely(folio_test_hwpoison(folio)))
+ folio_clear_hugetlb_hwpoison(folio);
+
+ folio_ref_unfreeze(folio, 1);
+
+ hugetlb_free_folio(folio);
}
/*
@@ -1884,7 +1737,7 @@ static void bulk_vmemmap_restore_error(struct hstate *h,
list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
list_del(&folio->lru);
spin_lock_irq(&hugetlb_lock);
- __clear_hugetlb_destructor(h, folio);
+ __folio_clear_hugetlb(folio);
spin_unlock_irq(&hugetlb_lock);
update_and_free_hugetlb_folio(h, folio, false);
cond_resched();
@@ -1909,7 +1762,7 @@ static void bulk_vmemmap_restore_error(struct hstate *h,
} else {
list_del(&folio->lru);
spin_lock_irq(&hugetlb_lock);
- __clear_hugetlb_destructor(h, folio);
+ __folio_clear_hugetlb(folio);
spin_unlock_irq(&hugetlb_lock);
update_and_free_hugetlb_folio(h, folio, false);
cond_resched();
@@ -1942,14 +1795,14 @@ retry:
* should only be pages on the non_hvo_folios list.
* Do note that the non_hvo_folios list could be empty.
* Without HVO enabled, ret will be 0 and there is no need to call
- * __clear_hugetlb_destructor as this was done previously.
+ * __folio_clear_hugetlb as this was done previously.
*/
VM_WARN_ON(!list_empty(folio_list));
VM_WARN_ON(ret < 0);
if (!list_empty(&non_hvo_folios) && ret) {
spin_lock_irq(&hugetlb_lock);
list_for_each_entry(folio, &non_hvo_folios, lru)
- __clear_hugetlb_destructor(h, folio);
+ __folio_clear_hugetlb(folio);
spin_unlock_irq(&hugetlb_lock);
}
@@ -1974,7 +1827,7 @@ void free_huge_folio(struct folio *folio)
{
/*
* Can't pass hstate in here because it is called from the
- * compound page destructor.
+ * generic mm code.
*/
struct hstate *h = folio_hstate(folio);
int nid = folio_nid(folio);
@@ -2017,6 +1870,7 @@ void free_huge_folio(struct folio *folio)
pages_per_huge_page(h), folio);
hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
pages_per_huge_page(h), folio);
+ lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
mem_cgroup_uncharge(folio);
if (restore_reserve)
h->resv_huge_pages++;
@@ -2031,7 +1885,7 @@ void free_huge_folio(struct folio *folio)
spin_unlock_irqrestore(&hugetlb_lock, flags);
update_and_free_hugetlb_folio(h, folio, true);
} else {
- arch_clear_hugepage_flags(&folio->page);
+ arch_clear_hugetlb_flags(folio);
enqueue_hugetlb_folio(h, folio);
spin_unlock_irqrestore(&hugetlb_lock, flags);
}
@@ -2070,105 +1924,16 @@ static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int ni
spin_unlock_irq(&hugetlb_lock);
}
-static bool __prep_compound_gigantic_folio(struct folio *folio,
- unsigned int order, bool demote)
-{
- int i, j;
- int nr_pages = 1 << order;
- struct page *p;
-
- __folio_clear_reserved(folio);
- for (i = 0; i < nr_pages; i++) {
- p = folio_page(folio, i);
-
- /*
- * For gigantic hugepages allocated through bootmem at
- * boot, it's safer to be consistent with the not-gigantic
- * hugepages and clear the PG_reserved bit from all tail pages
- * too. Otherwise drivers using get_user_pages() to access tail
- * pages may get the reference counting wrong if they see
- * PG_reserved set on a tail page (despite the head page not
- * having PG_reserved set). Enforcing this consistency between
- * head and tail pages allows drivers to optimize away a check
- * on the head page when they need know if put_page() is needed
- * after get_user_pages().
- */
- if (i != 0) /* head page cleared above */
- __ClearPageReserved(p);
- /*
- * Subtle and very unlikely
- *
- * Gigantic 'page allocators' such as memblock or cma will
- * return a set of pages with each page ref counted. We need
- * to turn this set of pages into a compound page with tail
- * page ref counts set to zero. Code such as speculative page
- * cache adding could take a ref on a 'to be' tail page.
- * We need to respect any increased ref count, and only set
- * the ref count to zero if count is currently 1. If count
- * is not 1, we return an error. An error return indicates
- * the set of pages can not be converted to a gigantic page.
- * The caller who allocated the pages should then discard the
- * pages using the appropriate free interface.
- *
- * In the case of demote, the ref count will be zero.
- */
- if (!demote) {
- if (!page_ref_freeze(p, 1)) {
- pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
- goto out_error;
- }
- } else {
- VM_BUG_ON_PAGE(page_count(p), p);
- }
- if (i != 0)
- set_compound_head(p, &folio->page);
- }
- __folio_set_head(folio);
- /* we rely on prep_new_hugetlb_folio to set the destructor */
- folio_set_order(folio, order);
- atomic_set(&folio->_entire_mapcount, -1);
- atomic_set(&folio->_nr_pages_mapped, 0);
- atomic_set(&folio->_pincount, 0);
- return true;
-
-out_error:
- /* undo page modifications made above */
- for (j = 0; j < i; j++) {
- p = folio_page(folio, j);
- if (j != 0)
- clear_compound_head(p);
- set_page_refcounted(p);
- }
- /* need to clear PG_reserved on remaining tail pages */
- for (; j < nr_pages; j++) {
- p = folio_page(folio, j);
- __ClearPageReserved(p);
- }
- return false;
-}
-
-static bool prep_compound_gigantic_folio(struct folio *folio,
- unsigned int order)
-{
- return __prep_compound_gigantic_folio(folio, order, false);
-}
-
-static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
- unsigned int order)
-{
- return __prep_compound_gigantic_folio(folio, order, true);
-}
-
/*
* Find and lock address space (mapping) in write mode.
*
- * Upon entry, the page is locked which means that page_mapping() is
+ * Upon entry, the folio is locked which means that folio_mapping() is
* stable. Due to locking order, we can only trylock_write. If we can
* not get the lock, simply return NULL to caller.
*/
-struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
+struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
{
- struct address_space *mapping = page_mapping(hpage);
+ struct address_space *mapping = folio_mapping(folio);
if (!mapping)
return mapping;
@@ -2184,95 +1949,47 @@ static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
nodemask_t *node_alloc_noretry)
{
int order = huge_page_order(h);
- struct page *page;
+ struct folio *folio;
bool alloc_try_hard = true;
- bool retry = true;
/*
- * By default we always try hard to allocate the page with
- * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
+ * By default we always try hard to allocate the folio with
+ * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
* a loop (to adjust global huge page counts) and previous allocation
* failed, do not continue to try hard on the same node. Use the
* node_alloc_noretry bitmap to manage this state information.
*/
if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
alloc_try_hard = false;
- gfp_mask |= __GFP_COMP|__GFP_NOWARN;
if (alloc_try_hard)
gfp_mask |= __GFP_RETRY_MAYFAIL;
if (nid == NUMA_NO_NODE)
nid = numa_mem_id();
-retry:
- page = __alloc_pages(gfp_mask, order, nid, nmask);
- /* Freeze head page */
- if (page && !page_ref_freeze(page, 1)) {
- __free_pages(page, order);
- if (retry) { /* retry once */
- retry = false;
- goto retry;
- }
- /* WOW! twice in a row. */
- pr_warn("HugeTLB head page unexpected inflated ref count\n");
- page = NULL;
- }
+ folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask);
/*
- * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
- * indicates an overall state change. Clear bit so that we resume
- * normal 'try hard' allocations.
+ * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
+ * folio this indicates an overall state change. Clear bit so
+ * that we resume normal 'try hard' allocations.
*/
- if (node_alloc_noretry && page && !alloc_try_hard)
+ if (node_alloc_noretry && folio && !alloc_try_hard)
node_clear(nid, *node_alloc_noretry);
/*
- * If we tried hard to get a page but failed, set bit so that
+ * If we tried hard to get a folio but failed, set bit so that
* subsequent attempts will not try as hard until there is an
* overall state change.
*/
- if (node_alloc_noretry && !page && alloc_try_hard)
+ if (node_alloc_noretry && !folio && alloc_try_hard)
node_set(nid, *node_alloc_noretry);
- if (!page) {
+ if (!folio) {
__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
return NULL;
}
__count_vm_event(HTLB_BUDDY_PGALLOC);
- return page_folio(page);
-}
-
-static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
- gfp_t gfp_mask, int nid, nodemask_t *nmask,
- nodemask_t *node_alloc_noretry)
-{
- struct folio *folio;
- bool retry = false;
-
-retry:
- if (hstate_is_gigantic(h))
- folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
- else
- folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
- nid, nmask, node_alloc_noretry);
- if (!folio)
- return NULL;
-
- if (hstate_is_gigantic(h)) {
- if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
- /*
- * Rare failure to convert pages to compound page.
- * Free pages and try again - ONCE!
- */
- free_gigantic_folio(folio, huge_page_order(h));
- if (!retry) {
- retry = true;
- goto retry;
- }
- return NULL;
- }
- }
-
return folio;
}
@@ -2282,8 +1999,10 @@ static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
{
struct folio *folio;
- folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
- node_alloc_noretry);
+ if (hstate_is_gigantic(h))
+ folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
+ else
+ folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
if (folio)
init_new_hugetlb_folio(h, folio);
return folio;
@@ -2297,13 +2016,14 @@ static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
* pages is zero.
*/
static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
- gfp_t gfp_mask, int nid, nodemask_t *nmask,
- nodemask_t *node_alloc_noretry)
+ gfp_t gfp_mask, int nid, nodemask_t *nmask)
{
struct folio *folio;
- folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
- node_alloc_noretry);
+ if (hstate_is_gigantic(h))
+ folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
+ else
+ folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
if (!folio)
return NULL;
@@ -2385,8 +2105,8 @@ static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
}
/*
- * Dissolve a given free hugepage into free buddy pages. This function does
- * nothing for in-use hugepages and non-hugepages.
+ * Dissolve a given free hugetlb folio into free buddy pages. This function
+ * does nothing for in-use hugetlb folios and non-hugetlb folios.
* This function returns values like below:
*
* -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
@@ -2398,10 +2118,9 @@ static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
* 0: successfully dissolved free hugepages or the page is not a
* hugepage (considered as already dissolved)
*/
-int dissolve_free_huge_page(struct page *page)
+int dissolve_free_hugetlb_folio(struct folio *folio)
{
int rc = -EBUSY;
- struct folio *folio = page_folio(page);
retry:
/* Not to disrupt normal path by vainly holding hugetlb_lock */
@@ -2416,6 +2135,8 @@ retry:
if (!folio_ref_count(folio)) {
struct hstate *h = folio_hstate(folio);
+ bool adjust_surplus = false;
+
if (!available_huge_pages(h))
goto out;
@@ -2438,7 +2159,9 @@ retry:
goto retry;
}
- remove_hugetlb_folio(h, folio, false);
+ if (h->surplus_huge_pages_node[folio_nid(folio)])
+ adjust_surplus = true;
+ remove_hugetlb_folio(h, folio, adjust_surplus);
h->max_huge_pages--;
spin_unlock_irq(&hugetlb_lock);
@@ -2458,7 +2181,7 @@ retry:
rc = hugetlb_vmemmap_restore_folio(h, folio);
if (rc) {
spin_lock_irq(&hugetlb_lock);
- add_hugetlb_folio(h, folio, false);
+ add_hugetlb_folio(h, folio, adjust_surplus);
h->max_huge_pages++;
goto out;
}
@@ -2478,13 +2201,13 @@ out:
* make specified memory blocks removable from the system.
* Note that this will dissolve a free gigantic hugepage completely, if any
* part of it lies within the given range.
- * Also note that if dissolve_free_huge_page() returns with an error, all
- * free hugepages that were dissolved before that error are lost.
+ * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
+ * free hugetlb folios that were dissolved before that error are lost.
*/
-int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
+int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
- struct page *page;
+ struct folio *folio;
int rc = 0;
unsigned int order;
struct hstate *h;
@@ -2497,8 +2220,8 @@ int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
order = min(order, huge_page_order(h));
for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
- page = pfn_to_page(pfn);
- rc = dissolve_free_huge_page(page);
+ folio = pfn_folio(pfn);
+ rc = dissolve_free_hugetlb_folio(folio);
if (rc)
break;
}
@@ -2522,12 +2245,21 @@ static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
goto out_unlock;
spin_unlock_irq(&hugetlb_lock);
- folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
+ folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
if (!folio)
return NULL;
+ hugetlb_vmemmap_optimize_folio(h, folio);
+
spin_lock_irq(&hugetlb_lock);
/*
+ * nr_huge_pages needs to be adjusted within the same lock cycle
+ * as surplus_pages, otherwise it might confuse
+ * persistent_huge_pages() momentarily.
+ */
+ __prep_account_new_huge_page(h, folio_nid(folio));
+
+ /*
* We could have raced with the pool size change.
* Double check that and simply deallocate the new page
* if we would end up overcommiting the surpluses. Abuse
@@ -2558,7 +2290,7 @@ static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mas
if (hstate_is_gigantic(h))
return NULL;
- folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
+ folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
if (!folio)
return NULL;
@@ -2588,9 +2320,8 @@ struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
if (mpol_is_preferred_many(mpol)) {
- gfp_t gfp = gfp_mask | __GFP_NOWARN;
+ gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
- gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
/* Fallback to all nodes if page==NULL */
@@ -2603,9 +2334,29 @@ struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
return folio;
}
+struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
+ nodemask_t *nmask, gfp_t gfp_mask)
+{
+ struct folio *folio;
+
+ spin_lock_irq(&hugetlb_lock);
+ if (!h->resv_huge_pages) {
+ spin_unlock_irq(&hugetlb_lock);
+ return NULL;
+ }
+
+ folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
+ nmask);
+ if (folio)
+ h->resv_huge_pages--;
+
+ spin_unlock_irq(&hugetlb_lock);
+ return folio;
+}
+
/* folio migration callback function */
struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
- nodemask_t *nmask, gfp_t gfp_mask)
+ nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
{
spin_lock_irq(&hugetlb_lock);
if (available_huge_pages(h)) {
@@ -2620,9 +2371,30 @@ struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
}
spin_unlock_irq(&hugetlb_lock);
+ /* We cannot fallback to other nodes, as we could break the per-node pool. */
+ if (!allow_alloc_fallback)
+ gfp_mask |= __GFP_THISNODE;
+
return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
}
+static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
+{
+#ifdef CONFIG_NUMA
+ struct mempolicy *mpol = get_task_policy(current);
+
+ /*
+ * Only enforce MPOL_BIND policy which overlaps with cpuset policy
+ * (from policy_nodemask) specifically for hugetlb case
+ */
+ if (mpol->mode == MPOL_BIND &&
+ (apply_policy_zone(mpol, gfp_zone(gfp)) &&
+ cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
+ return &mpol->nodes;
+#endif
+ return NULL;
+}
+
/*
* Increase the hugetlb pool such that it can accommodate a reservation
* of size 'delta'.
@@ -2636,6 +2408,13 @@ static int gather_surplus_pages(struct hstate *h, long delta)
long i;
long needed, allocated;
bool alloc_ok = true;
+ nodemask_t *mbind_nodemask, alloc_nodemask;
+
+ mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
+ if (mbind_nodemask)
+ nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
+ else
+ alloc_nodemask = cpuset_current_mems_allowed;
lockdep_assert_held(&hugetlb_lock);
needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
@@ -2650,8 +2429,14 @@ static int gather_surplus_pages(struct hstate *h, long delta)
retry:
spin_unlock_irq(&hugetlb_lock);
for (i = 0; i < needed; i++) {
+ folio = NULL;
+
+ /*
+ * It is okay to use NUMA_NO_NODE because we use numa_mem_id()
+ * down the road to pick the current node if that is the case.
+ */
folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
- NUMA_NO_NODE, NULL);
+ NUMA_NO_NODE, &alloc_nodemask);
if (!folio) {
alloc_ok = false;
break;
@@ -3005,20 +2790,24 @@ void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
/*
* alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
* the old one
- * @h: struct hstate old page belongs to
* @old_folio: Old folio to dissolve
* @list: List to isolate the page in case we need to
* Returns 0 on success, otherwise negated error.
*/
-static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
- struct folio *old_folio, struct list_head *list)
+static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio,
+ struct list_head *list)
{
- gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
+ gfp_t gfp_mask;
+ struct hstate *h;
int nid = folio_nid(old_folio);
struct folio *new_folio = NULL;
int ret = 0;
retry:
+ /*
+ * The old_folio might have been dissolved from under our feet, so make sure
+ * to carefully check the state under the lock.
+ */
spin_lock_irq(&hugetlb_lock);
if (!folio_test_hugetlb(old_folio)) {
/*
@@ -3033,7 +2822,7 @@ retry:
* Fail with -EBUSY if not possible.
*/
spin_unlock_irq(&hugetlb_lock);
- isolated = isolate_hugetlb(old_folio, list);
+ isolated = folio_isolate_hugetlb(old_folio, list);
ret = isolated ? 0 : -EBUSY;
spin_lock_irq(&hugetlb_lock);
goto free_new;
@@ -3047,8 +2836,10 @@ retry:
cond_resched();
goto retry;
} else {
+ h = folio_hstate(old_folio);
if (!new_folio) {
spin_unlock_irq(&hugetlb_lock);
+ gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
NULL, NULL);
if (!new_folio)
@@ -3084,114 +2875,160 @@ retry:
free_new:
spin_unlock_irq(&hugetlb_lock);
- if (new_folio) {
- /* Folio has a zero ref count, but needs a ref to be freed */
- folio_ref_unfreeze(new_folio, 1);
+ if (new_folio)
update_and_free_hugetlb_folio(h, new_folio, false);
- }
return ret;
}
-int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
+int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list)
{
- struct hstate *h;
- struct folio *folio = page_folio(page);
int ret = -EBUSY;
- /*
- * The page might have been dissolved from under our feet, so make sure
- * to carefully check the state under the lock.
- * Return success when racing as if we dissolved the page ourselves.
- */
- spin_lock_irq(&hugetlb_lock);
- if (folio_test_hugetlb(folio)) {
- h = folio_hstate(folio);
- } else {
- spin_unlock_irq(&hugetlb_lock);
+ /* Not to disrupt normal path by vainly holding hugetlb_lock */
+ if (!folio_test_hugetlb(folio))
return 0;
- }
- spin_unlock_irq(&hugetlb_lock);
/*
* Fence off gigantic pages as there is a cyclic dependency between
* alloc_contig_range and them. Return -ENOMEM as this has the effect
* of bailing out right away without further retrying.
*/
- if (hstate_is_gigantic(h))
+ if (folio_order(folio) > MAX_PAGE_ORDER)
return -ENOMEM;
- if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
+ if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
ret = 0;
else if (!folio_ref_count(folio))
- ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
+ ret = alloc_and_dissolve_hugetlb_folio(folio, list);
return ret;
}
+/*
+ * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
+ * range with new folios.
+ * @start_pfn: start pfn of the given pfn range
+ * @end_pfn: end pfn of the given pfn range
+ * Returns 0 on success, otherwise negated error.
+ */
+int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
+{
+ struct folio *folio;
+ int ret = 0;
+
+ LIST_HEAD(isolate_list);
+
+ while (start_pfn < end_pfn) {
+ folio = pfn_folio(start_pfn);
+
+ /* Not to disrupt normal path by vainly holding hugetlb_lock */
+ if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) {
+ ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list);
+ if (ret)
+ break;
+
+ putback_movable_pages(&isolate_list);
+ }
+ start_pfn++;
+ }
+
+ return ret;
+}
+
+void wait_for_freed_hugetlb_folios(void)
+{
+ if (llist_empty(&hpage_freelist))
+ return;
+
+ flush_work(&free_hpage_work);
+}
+
+typedef enum {
+ /*
+ * For either 0/1: we checked the per-vma resv map, and one resv
+ * count either can be reused (0), or an extra needed (1).
+ */
+ MAP_CHG_REUSE = 0,
+ MAP_CHG_NEEDED = 1,
+ /*
+ * Cannot use per-vma resv count can be used, hence a new resv
+ * count is enforced.
+ *
+ * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
+ * that currently vma_needs_reservation() has an unwanted side
+ * effect to either use end() or commit() to complete the
+ * transaction. Hence it needs to differenciate from NEEDED.
+ */
+ MAP_CHG_ENFORCED = 2,
+} map_chg_state;
+
+/*
+ * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
+ * faults of hugetlb private mappings on top of a non-page-cache folio (in
+ * which case even if there's a private vma resv map it won't cover such
+ * allocation). New call sites should (probably) never set it to true!!
+ * When it's set, the allocation will bypass all vma level reservations.
+ */
struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
- unsigned long addr, int avoid_reserve)
+ unsigned long addr, bool cow_from_owner)
{
struct hugepage_subpool *spool = subpool_vma(vma);
struct hstate *h = hstate_vma(vma);
struct folio *folio;
- long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
- long gbl_chg;
- int memcg_charge_ret, ret, idx;
+ long retval, gbl_chg, gbl_reserve;
+ map_chg_state map_chg;
+ int ret, idx;
struct hugetlb_cgroup *h_cg = NULL;
- struct mem_cgroup *memcg;
- bool deferred_reserve;
gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
- memcg = get_mem_cgroup_from_current();
- memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
- if (memcg_charge_ret == -ENOMEM) {
- mem_cgroup_put(memcg);
- return ERR_PTR(-ENOMEM);
- }
-
idx = hstate_index(h);
- /*
- * Examine the region/reserve map to determine if the process
- * has a reservation for the page to be allocated. A return
- * code of zero indicates a reservation exists (no change).
- */
- map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
- if (map_chg < 0) {
- if (!memcg_charge_ret)
- mem_cgroup_cancel_charge(memcg, nr_pages);
- mem_cgroup_put(memcg);
- return ERR_PTR(-ENOMEM);
+
+ /* Whether we need a separate per-vma reservation? */
+ if (cow_from_owner) {
+ /*
+ * Special case! Since it's a CoW on top of a reserved
+ * page, the private resv map doesn't count. So it cannot
+ * consume the per-vma resv map even if it's reserved.
+ */
+ map_chg = MAP_CHG_ENFORCED;
+ } else {
+ /*
+ * Examine the region/reserve map to determine if the process
+ * has a reservation for the page to be allocated. A return
+ * code of zero indicates a reservation exists (no change).
+ */
+ retval = vma_needs_reservation(h, vma, addr);
+ if (retval < 0)
+ return ERR_PTR(-ENOMEM);
+ map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
}
/*
+ * Whether we need a separate global reservation?
+ *
* Processes that did not create the mapping will have no
* reserves as indicated by the region/reserve map. Check
* that the allocation will not exceed the subpool limit.
- * Allocations for MAP_NORESERVE mappings also need to be
- * checked against any subpool limit.
+ * Or if it can get one from the pool reservation directly.
*/
- if (map_chg || avoid_reserve) {
+ if (map_chg) {
gbl_chg = hugepage_subpool_get_pages(spool, 1);
if (gbl_chg < 0)
goto out_end_reservation;
-
+ } else {
/*
- * Even though there was no reservation in the region/reserve
- * map, there could be reservations associated with the
- * subpool that can be used. This would be indicated if the
- * return value of hugepage_subpool_get_pages() is zero.
- * However, if avoid_reserve is specified we still avoid even
- * the subpool reservations.
+ * If we have the vma reservation ready, no need for extra
+ * global reservation.
*/
- if (avoid_reserve)
- gbl_chg = 1;
+ gbl_chg = 0;
}
- /* If this allocation is not consuming a reservation, charge it now.
+ /*
+ * If this allocation is not consuming a per-vma reservation,
+ * charge the hugetlb cgroup now.
*/
- deferred_reserve = map_chg || avoid_reserve;
- if (deferred_reserve) {
+ if (map_chg) {
ret = hugetlb_cgroup_charge_cgroup_rsvd(
idx, pages_per_huge_page(h), &h_cg);
if (ret)
@@ -3208,27 +3045,32 @@ struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
* from the global free pool (global change). gbl_chg == 0 indicates
* a reservation exists for the allocation.
*/
- folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
+ folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
if (!folio) {
spin_unlock_irq(&hugetlb_lock);
folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
if (!folio)
goto out_uncharge_cgroup;
spin_lock_irq(&hugetlb_lock);
- if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
- folio_set_hugetlb_restore_reserve(folio);
- h->resv_huge_pages--;
- }
list_add(&folio->lru, &h->hugepage_activelist);
folio_ref_unfreeze(folio, 1);
/* Fall through */
}
+ /*
+ * Either dequeued or buddy-allocated folio needs to add special
+ * mark to the folio when it consumes a global reservation.
+ */
+ if (!gbl_chg) {
+ folio_set_hugetlb_restore_reserve(folio);
+ h->resv_huge_pages--;
+ }
+
hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
/* If allocation is not consuming a reservation, also store the
* hugetlb_cgroup pointer on the page.
*/
- if (deferred_reserve) {
+ if (map_chg) {
hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
h_cg, folio);
}
@@ -3237,52 +3079,122 @@ struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
hugetlb_set_folio_subpool(folio, spool);
- map_commit = vma_commit_reservation(h, vma, addr);
- if (unlikely(map_chg > map_commit)) {
+ if (map_chg != MAP_CHG_ENFORCED) {
+ /* commit() is only needed if the map_chg is not enforced */
+ retval = vma_commit_reservation(h, vma, addr);
/*
+ * Check for possible race conditions. When it happens..
* The page was added to the reservation map between
* vma_needs_reservation and vma_commit_reservation.
* This indicates a race with hugetlb_reserve_pages.
* Adjust for the subpool count incremented above AND
- * in hugetlb_reserve_pages for the same page. Also,
+ * in hugetlb_reserve_pages for the same page. Also,
* the reservation count added in hugetlb_reserve_pages
* no longer applies.
*/
- long rsv_adjust;
+ if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
+ long rsv_adjust;
- rsv_adjust = hugepage_subpool_put_pages(spool, 1);
- hugetlb_acct_memory(h, -rsv_adjust);
- if (deferred_reserve) {
- spin_lock_irq(&hugetlb_lock);
- hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
- pages_per_huge_page(h), folio);
- spin_unlock_irq(&hugetlb_lock);
+ rsv_adjust = hugepage_subpool_put_pages(spool, 1);
+ hugetlb_acct_memory(h, -rsv_adjust);
+ if (map_chg) {
+ spin_lock_irq(&hugetlb_lock);
+ hugetlb_cgroup_uncharge_folio_rsvd(
+ hstate_index(h), pages_per_huge_page(h),
+ folio);
+ spin_unlock_irq(&hugetlb_lock);
+ }
}
}
- if (!memcg_charge_ret)
- mem_cgroup_commit_charge(folio, memcg);
- mem_cgroup_put(memcg);
+ ret = mem_cgroup_charge_hugetlb(folio, gfp);
+ /*
+ * Unconditionally increment NR_HUGETLB here. If it turns out that
+ * mem_cgroup_charge_hugetlb failed, then immediately free the page and
+ * decrement NR_HUGETLB.
+ */
+ lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
+
+ if (ret == -ENOMEM) {
+ free_huge_folio(folio);
+ return ERR_PTR(-ENOMEM);
+ }
return folio;
out_uncharge_cgroup:
hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_uncharge_cgroup_reservation:
- if (deferred_reserve)
+ if (map_chg)
hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
h_cg);
out_subpool_put:
- if (map_chg || avoid_reserve)
- hugepage_subpool_put_pages(spool, 1);
+ /*
+ * put page to subpool iff the quota of subpool's rsv_hpages is used
+ * during hugepage_subpool_get_pages.
+ */
+ if (map_chg && !gbl_chg) {
+ gbl_reserve = hugepage_subpool_put_pages(spool, 1);
+ hugetlb_acct_memory(h, -gbl_reserve);
+ }
+
+
out_end_reservation:
- vma_end_reservation(h, vma, addr);
- if (!memcg_charge_ret)
- mem_cgroup_cancel_charge(memcg, nr_pages);
- mem_cgroup_put(memcg);
+ if (map_chg != MAP_CHG_ENFORCED)
+ vma_end_reservation(h, vma, addr);
return ERR_PTR(-ENOSPC);
}
+static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
+{
+ struct huge_bootmem_page *m;
+ int listnode = nid;
+
+ if (hugetlb_early_cma(h))
+ m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
+ else {
+ if (node_exact)
+ m = memblock_alloc_exact_nid_raw(huge_page_size(h),
+ huge_page_size(h), 0,
+ MEMBLOCK_ALLOC_ACCESSIBLE, nid);
+ else {
+ m = memblock_alloc_try_nid_raw(huge_page_size(h),
+ huge_page_size(h), 0,
+ MEMBLOCK_ALLOC_ACCESSIBLE, nid);
+ /*
+ * For pre-HVO to work correctly, pages need to be on
+ * the list for the node they were actually allocated
+ * from. That node may be different in the case of
+ * fallback by memblock_alloc_try_nid_raw. So,
+ * extract the actual node first.
+ */
+ if (m)
+ listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
+ }
+
+ if (m) {
+ m->flags = 0;
+ m->cma = NULL;
+ }
+ }
+
+ if (m) {
+ /*
+ * Use the beginning of the huge page to store the
+ * huge_bootmem_page struct (until gather_bootmem
+ * puts them into the mem_map).
+ *
+ * Put them into a private list first because mem_map
+ * is not up yet.
+ */
+ INIT_LIST_HEAD(&m->list);
+ list_add(&m->list, &huge_boot_pages[listnode]);
+ m->hstate = h;
+ }
+
+ return m;
+}
+
int alloc_bootmem_huge_page(struct hstate *h, int nid)
__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h, int nid)
@@ -3292,22 +3204,16 @@ int __alloc_bootmem_huge_page(struct hstate *h, int nid)
/* do node specific alloc */
if (nid != NUMA_NO_NODE) {
- m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
- 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
+ m = alloc_bootmem(h, node, true);
if (!m)
return 0;
goto found;
}
+
/* allocate from next node when distributing huge pages */
- for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
- m = memblock_alloc_try_nid_raw(
- huge_page_size(h), huge_page_size(h),
- 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
- /*
- * Use the beginning of the huge page to store the
- * huge_bootmem_page struct (until gather_bootmem
- * puts them into the mem_map).
- */
+ for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node,
+ &hugetlb_bootmem_nodes) {
+ m = alloc_bootmem(h, node, false);
if (!m)
return 0;
goto found;
@@ -3324,10 +3230,7 @@ found:
*/
memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
huge_page_size(h) - PAGE_SIZE);
- /* Put them into a private list first because mem_map is not up yet */
- INIT_LIST_HEAD(&m->list);
- list_add(&m->list, &huge_boot_pages[node]);
- m->hstate = h;
+
return 1;
}
@@ -3368,6 +3271,42 @@ static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
prep_compound_head((struct page *)folio, huge_page_order(h));
}
+static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
+{
+ return m->flags & HUGE_BOOTMEM_HVO;
+}
+
+static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
+{
+ return m->flags & HUGE_BOOTMEM_CMA;
+}
+
+/*
+ * memblock-allocated pageblocks might not have the migrate type set
+ * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
+ * here, or MIGRATE_CMA if this was a page allocated through an early CMA
+ * reservation.
+ *
+ * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
+ * read-only, but that's ok - for sparse vmemmap this does not write to
+ * the page structure.
+ */
+static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
+ struct hstate *h)
+{
+ unsigned long nr_pages = pages_per_huge_page(h), i;
+
+ WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
+
+ for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
+ if (folio_test_hugetlb_cma(folio))
+ init_cma_pageblock(folio_page(folio, i));
+ else
+ set_pageblock_migratetype(folio_page(folio, i),
+ MIGRATE_MOVABLE);
+ }
+}
+
static void __init prep_and_add_bootmem_folios(struct hstate *h,
struct list_head *folio_list)
{
@@ -3375,7 +3314,7 @@ static void __init prep_and_add_bootmem_folios(struct hstate *h,
struct folio *folio, *tmp_f;
/* Send list for bulk vmemmap optimization processing */
- hugetlb_vmemmap_optimize_folios(h, folio_list);
+ hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
@@ -3389,6 +3328,7 @@ static void __init prep_and_add_bootmem_folios(struct hstate *h,
HUGETLB_VMEMMAP_RESERVE_PAGES,
pages_per_huge_page(h));
}
+ hugetlb_bootmem_init_migratetype(folio, h);
/* Subdivide locks to achieve better parallel performance */
spin_lock_irqsave(&hugetlb_lock, flags);
__prep_account_new_huge_page(h, folio_nid(folio));
@@ -3397,6 +3337,57 @@ static void __init prep_and_add_bootmem_folios(struct hstate *h,
}
}
+bool __init hugetlb_bootmem_page_zones_valid(int nid,
+ struct huge_bootmem_page *m)
+{
+ unsigned long start_pfn;
+ bool valid;
+
+ if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
+ /*
+ * Already validated, skip check.
+ */
+ return true;
+ }
+
+ if (hugetlb_bootmem_page_earlycma(m)) {
+ valid = cma_validate_zones(m->cma);
+ goto out;
+ }
+
+ start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
+
+ valid = !pfn_range_intersects_zones(nid, start_pfn,
+ pages_per_huge_page(m->hstate));
+out:
+ if (!valid)
+ hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
+
+ return valid;
+}
+
+/*
+ * Free a bootmem page that was found to be invalid (intersecting with
+ * multiple zones).
+ *
+ * Since it intersects with multiple zones, we can't just do a free
+ * operation on all pages at once, but instead have to walk all
+ * pages, freeing them one by one.
+ */
+static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
+ struct hstate *h)
+{
+ unsigned long npages = pages_per_huge_page(h);
+ unsigned long pfn;
+
+ while (npages--) {
+ pfn = page_to_pfn(page);
+ __init_page_from_nid(pfn, nid);
+ free_reserved_page(page);
+ page++;
+ }
+}
+
/*
* Put bootmem huge pages into the standard lists after mem_map is up.
* Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
@@ -3404,14 +3395,25 @@ static void __init prep_and_add_bootmem_folios(struct hstate *h,
static void __init gather_bootmem_prealloc_node(unsigned long nid)
{
LIST_HEAD(folio_list);
- struct huge_bootmem_page *m;
+ struct huge_bootmem_page *m, *tm;
struct hstate *h = NULL, *prev_h = NULL;
- list_for_each_entry(m, &huge_boot_pages[nid], list) {
+ list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
struct page *page = virt_to_page(m);
struct folio *folio = (void *)page;
h = m->hstate;
+ if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
+ /*
+ * Can't use this page. Initialize the
+ * page structures if that hasn't already
+ * been done, and give them to the page
+ * allocator.
+ */
+ hugetlb_bootmem_free_invalid_page(nid, page, h);
+ continue;
+ }
+
/*
* It is possible to have multiple huge page sizes (hstates)
* in this list. If so, process each size separately.
@@ -3426,14 +3428,30 @@ static void __init gather_bootmem_prealloc_node(unsigned long nid)
hugetlb_folio_init_vmemmap(folio, h,
HUGETLB_VMEMMAP_RESERVE_PAGES);
init_new_hugetlb_folio(h, folio);
+
+ if (hugetlb_bootmem_page_prehvo(m))
+ /*
+ * If pre-HVO was done, just set the
+ * flag, the HVO code will then skip
+ * this folio.
+ */
+ folio_set_hugetlb_vmemmap_optimized(folio);
+
+ if (hugetlb_bootmem_page_earlycma(m))
+ folio_set_hugetlb_cma(folio);
+
list_add(&folio->lru, &folio_list);
/*
* We need to restore the 'stolen' pages to totalram_pages
* in order to fix confusing memory reports from free(1) and
* other side-effects, like CommitLimit going negative.
+ *
+ * For CMA pages, this is done in init_cma_pageblock
+ * (via hugetlb_bootmem_init_migratetype), so skip it here.
*/
- adjust_managed_page_count(page, pages_per_huge_page(h));
+ if (!folio_test_hugetlb_cma(folio))
+ adjust_managed_page_count(page, pages_per_huge_page(h));
cond_resched();
}
@@ -3455,7 +3473,7 @@ static void __init gather_bootmem_prealloc(void)
.thread_fn = gather_bootmem_prealloc_parallel,
.fn_arg = NULL,
.start = 0,
- .size = num_node_state(N_MEMORY),
+ .size = nr_node_ids,
.align = 1,
.min_chunk = 1,
.max_threads = num_node_state(N_MEMORY),
@@ -3469,6 +3487,7 @@ static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
{
unsigned long i;
char buf[32];
+ LIST_HEAD(folio_list);
for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
if (hstate_is_gigantic(h)) {
@@ -3478,14 +3497,18 @@ static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
struct folio *folio;
gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
- folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
+ folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
&node_states[N_MEMORY], NULL);
if (!folio)
break;
- free_huge_folio(folio); /* free it into the hugepage allocator */
+ list_add(&folio->lru, &folio_list);
}
cond_resched();
}
+
+ if (!list_empty(&folio_list))
+ prep_and_add_allocated_folios(h, &folio_list);
+
if (i == h->max_huge_pages_node[nid])
return;
@@ -3568,32 +3591,44 @@ static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
.numa_aware = true
};
+ unsigned long jiffies_start;
+ unsigned long jiffies_end;
+
job.thread_fn = hugetlb_pages_alloc_boot_node;
job.start = 0;
job.size = h->max_huge_pages;
/*
- * job.max_threads is twice the num_node_state(N_MEMORY),
+ * job.max_threads is 25% of the available cpu threads by default.
*
- * Tests below indicate that a multiplier of 2 significantly improves
- * performance, and although larger values also provide improvements,
- * the gains are marginal.
+ * On large servers with terabytes of memory, huge page allocation
+ * can consume a considerably amount of time.
*
- * Therefore, choosing 2 as the multiplier strikes a good balance between
- * enhancing parallel processing capabilities and maintaining efficient
- * resource management.
+ * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
+ * 2MiB huge pages. Using more threads can significantly improve allocation time.
*
- * +------------+-------+-------+-------+-------+-------+
- * | multiplier | 1 | 2 | 3 | 4 | 5 |
- * +------------+-------+-------+-------+-------+-------+
- * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
- * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms |
- * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms |
- * +------------+-------+-------+-------+-------+-------+
+ * +-----------------------+-------+-------+-------+-------+-------+
+ * | threads | 8 | 16 | 32 | 64 | 128 |
+ * +-----------------------+-------+-------+-------+-------+-------+
+ * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s |
+ * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s |
+ * +-----------------------+-------+-------+-------+-------+-------+
*/
- job.max_threads = num_node_state(N_MEMORY) * 2;
- job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
+ if (hugepage_allocation_threads == 0) {
+ hugepage_allocation_threads = num_online_cpus() / 4;
+ hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
+ }
+
+ job.max_threads = hugepage_allocation_threads;
+ job.min_chunk = h->max_huge_pages / hugepage_allocation_threads;
+
+ jiffies_start = jiffies;
padata_do_multithreaded(&job);
+ jiffies_end = jiffies;
+
+ pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
+ jiffies_to_msecs(jiffies_end - jiffies_start),
+ hugepage_allocation_threads);
return h->nr_huge_pages;
}
@@ -3612,23 +3647,17 @@ static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
{
unsigned long allocated;
- static bool initialized __initdata;
- /* skip gigantic hugepages allocation if hugetlb_cma enabled */
- if (hstate_is_gigantic(h) && hugetlb_cma_size) {
+ /*
+ * Skip gigantic hugepages allocation if early CMA
+ * reservations are not available.
+ */
+ if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
+ !hugetlb_early_cma(h)) {
pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
return;
}
- /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
- if (!initialized) {
- int i = 0;
-
- for (i = 0; i < MAX_NUMNODES; i++)
- INIT_LIST_HEAD(&huge_boot_pages[i]);
- initialized = true;
- }
-
/* do node specific alloc */
if (hugetlb_hstate_alloc_pages_specific_nodes(h))
return;
@@ -3647,6 +3676,15 @@ static void __init hugetlb_init_hstates(void)
struct hstate *h, *h2;
for_each_hstate(h) {
+ /*
+ * Always reset to first_memory_node here, even if
+ * next_nid_to_alloc was set before - we can't
+ * reference hugetlb_bootmem_nodes after init, and
+ * first_memory_node is right for all further allocations.
+ */
+ h->next_nid_to_alloc = first_memory_node;
+ h->next_nid_to_free = first_memory_node;
+
/* oversize hugepages were init'ed in early boot */
if (!hstate_is_gigantic(h))
hugetlb_hstate_alloc_pages(h);
@@ -3661,7 +3699,7 @@ static void __init hugetlb_init_hstates(void)
*/
if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
continue;
- if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
+ if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
continue;
for_each_hstate(h2) {
if (h2 == h)
@@ -3676,13 +3714,20 @@ static void __init hugetlb_init_hstates(void)
static void __init report_hugepages(void)
{
struct hstate *h;
+ unsigned long nrinvalid;
for_each_hstate(h) {
char buf[32];
+ nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
+ h->max_huge_pages -= nrinvalid;
+
string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
- buf, h->free_huge_pages);
+ buf, h->nr_huge_pages);
+ if (nrinvalid)
+ pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
+ buf, nrinvalid, nrinvalid > 1 ? "s" : "");
pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
}
@@ -3764,6 +3809,7 @@ found:
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
nodemask_t *nodes_allowed)
{
+ unsigned long persistent_free_count;
unsigned long min_count;
unsigned long allocated;
struct folio *folio;
@@ -3898,8 +3944,24 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
* though, we'll note that we're not allowed to exceed surplus
* and won't grow the pool anywhere else. Not until one of the
* sysctls are changed, or the surplus pages go out of use.
+ *
+ * min_count is the expected number of persistent pages, we
+ * shouldn't calculate min_count by using
+ * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
+ * because there may exist free surplus huge pages, and this will
+ * lead to subtracting twice. Free surplus huge pages come from HVO
+ * failing to restore vmemmap, see comments in the callers of
+ * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
+ * persistent free count first.
*/
- min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
+ persistent_free_count = h->free_huge_pages;
+ if (h->free_huge_pages > persistent_huge_pages(h)) {
+ if (h->free_huge_pages > h->surplus_huge_pages)
+ persistent_free_count -= h->surplus_huge_pages;
+ else
+ persistent_free_count = 0;
+ }
+ min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
min_count = max(count, min_count);
try_to_free_low(h, min_count, nodes_allowed);
@@ -3933,102 +3995,128 @@ out:
return 0;
}
-static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
+static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
+ struct list_head *src_list)
{
- int i, nid = folio_nid(folio);
- struct hstate *target_hstate;
- struct page *subpage;
- struct folio *inner_folio;
- int rc = 0;
-
- target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
-
- remove_hugetlb_folio_for_demote(h, folio, false);
- spin_unlock_irq(&hugetlb_lock);
-
- /*
- * If vmemmap already existed for folio, the remove routine above would
- * have cleared the hugetlb folio flag. Hence the folio is technically
- * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be
- * passed hugetlb folios and will BUG otherwise.
- */
- if (folio_test_hugetlb(folio)) {
- rc = hugetlb_vmemmap_restore_folio(h, folio);
- if (rc) {
- /* Allocation of vmemmmap failed, we can not demote folio */
- spin_lock_irq(&hugetlb_lock);
- folio_ref_unfreeze(folio, 1);
- add_hugetlb_folio(h, folio, false);
- return rc;
- }
- }
+ long rc;
+ struct folio *folio, *next;
+ LIST_HEAD(dst_list);
+ LIST_HEAD(ret_list);
- /*
- * Use destroy_compound_hugetlb_folio_for_demote for all huge page
- * sizes as it will not ref count folios.
- */
- destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
+ rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
+ list_splice_init(&ret_list, src_list);
/*
* Taking target hstate mutex synchronizes with set_max_huge_pages.
* Without the mutex, pages added to target hstate could be marked
* as surplus.
*
- * Note that we already hold h->resize_lock. To prevent deadlock,
+ * Note that we already hold src->resize_lock. To prevent deadlock,
* use the convention of always taking larger size hstate mutex first.
*/
- mutex_lock(&target_hstate->resize_lock);
- for (i = 0; i < pages_per_huge_page(h);
- i += pages_per_huge_page(target_hstate)) {
- subpage = folio_page(folio, i);
- inner_folio = page_folio(subpage);
- if (hstate_is_gigantic(target_hstate))
- prep_compound_gigantic_folio_for_demote(inner_folio,
- target_hstate->order);
- else
- prep_compound_page(subpage, target_hstate->order);
- folio_change_private(inner_folio, NULL);
- prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
- free_huge_folio(inner_folio);
+ mutex_lock(&dst->resize_lock);
+
+ list_for_each_entry_safe(folio, next, src_list, lru) {
+ int i;
+ bool cma;
+
+ if (folio_test_hugetlb_vmemmap_optimized(folio))
+ continue;
+
+ cma = folio_test_hugetlb_cma(folio);
+
+ list_del(&folio->lru);
+
+ split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
+ pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
+
+ for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
+ struct page *page = folio_page(folio, i);
+ /* Careful: see __split_huge_page_tail() */
+ struct folio *new_folio = (struct folio *)page;
+
+ clear_compound_head(page);
+ prep_compound_page(page, dst->order);
+
+ new_folio->mapping = NULL;
+ init_new_hugetlb_folio(dst, new_folio);
+ /* Copy the CMA flag so that it is freed correctly */
+ if (cma)
+ folio_set_hugetlb_cma(new_folio);
+ list_add(&new_folio->lru, &dst_list);
+ }
}
- mutex_unlock(&target_hstate->resize_lock);
- spin_lock_irq(&hugetlb_lock);
+ prep_and_add_allocated_folios(dst, &dst_list);
- /*
- * Not absolutely necessary, but for consistency update max_huge_pages
- * based on pool changes for the demoted page.
- */
- h->max_huge_pages--;
- target_hstate->max_huge_pages +=
- pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
+ mutex_unlock(&dst->resize_lock);
return rc;
}
-static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
+static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
+ unsigned long nr_to_demote)
__must_hold(&hugetlb_lock)
{
int nr_nodes, node;
- struct folio *folio;
+ struct hstate *dst;
+ long rc = 0;
+ long nr_demoted = 0;
lockdep_assert_held(&hugetlb_lock);
/* We should never get here if no demote order */
- if (!h->demote_order) {
+ if (!src->demote_order) {
pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
return -EINVAL; /* internal error */
}
+ dst = size_to_hstate(PAGE_SIZE << src->demote_order);
- for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
- list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
+ for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
+ LIST_HEAD(list);
+ struct folio *folio, *next;
+
+ list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
if (folio_test_hwpoison(folio))
continue;
- return demote_free_hugetlb_folio(h, folio);
+
+ remove_hugetlb_folio(src, folio, false);
+ list_add(&folio->lru, &list);
+
+ if (++nr_demoted == nr_to_demote)
+ break;
}
+
+ spin_unlock_irq(&hugetlb_lock);
+
+ rc = demote_free_hugetlb_folios(src, dst, &list);
+
+ spin_lock_irq(&hugetlb_lock);
+
+ list_for_each_entry_safe(folio, next, &list, lru) {
+ list_del(&folio->lru);
+ add_hugetlb_folio(src, folio, false);
+
+ nr_demoted--;
+ }
+
+ if (rc < 0 || nr_demoted == nr_to_demote)
+ break;
}
/*
+ * Not absolutely necessary, but for consistency update max_huge_pages
+ * based on pool changes for the demoted page.
+ */
+ src->max_huge_pages -= nr_demoted;
+ dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
+
+ if (rc < 0)
+ return rc;
+
+ if (nr_demoted)
+ return nr_demoted;
+ /*
* Only way to get here is if all pages on free lists are poisoned.
* Return -EBUSY so that caller will not retry.
*/
@@ -4262,6 +4350,8 @@ static ssize_t demote_store(struct kobject *kobj,
spin_lock_irq(&hugetlb_lock);
while (nr_demote) {
+ long rc;
+
/*
* Check for available pages to demote each time thorough the
* loop as demote_pool_huge_page will drop hugetlb_lock.
@@ -4274,11 +4364,13 @@ static ssize_t demote_store(struct kobject *kobj,
if (!nr_available)
break;
- err = demote_pool_huge_page(h, n_mask);
- if (err)
+ rc = demote_pool_huge_page(h, n_mask, nr_demote);
+ if (rc < 0) {
+ err = rc;
break;
+ }
- nr_demote--;
+ nr_demote -= rc;
}
spin_unlock_irq(&hugetlb_lock);
@@ -4532,14 +4624,6 @@ static void hugetlb_register_all_nodes(void) { }
#endif
-#ifdef CONFIG_CMA
-static void __init hugetlb_cma_check(void);
-#else
-static inline __init void hugetlb_cma_check(void)
-{
-}
-#endif
-
static void __init hugetlb_sysfs_init(void)
{
struct hstate *h;
@@ -4553,7 +4637,7 @@ static void __init hugetlb_sysfs_init(void)
err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
hstate_kobjs, &hstate_attr_group);
if (err)
- pr_err("HugeTLB: Unable to add hstate %s", h->name);
+ pr_err("HugeTLB: Unable to add hstate %s\n", h->name);
}
#ifdef CONFIG_NUMA
@@ -4658,14 +4742,12 @@ void __init hugetlb_add_hstate(unsigned int order)
BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
h = &hstates[hugetlb_max_hstate++];
- mutex_init(&h->resize_lock);
+ __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
h->order = order;
h->mask = ~(huge_page_size(h) - 1);
for (i = 0; i < MAX_NUMNODES; ++i)
INIT_LIST_HEAD(&h->hugepage_freelists[i]);
INIT_LIST_HEAD(&h->hugepage_activelist);
- h->next_nid_to_alloc = first_memory_node;
- h->next_nid_to_free = first_memory_node;
snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
huge_page_size(h)/SZ_1K);
@@ -4690,6 +4772,44 @@ static void __init hugepages_clear_pages_in_node(void)
}
}
+static __init int hugetlb_add_param(char *s, int (*setup)(char *))
+{
+ size_t len;
+ char *p;
+
+ if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
+ return -EINVAL;
+
+ len = strlen(s) + 1;
+ if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
+ return -EINVAL;
+
+ p = &hstate_cmdline_buf[hstate_cmdline_index];
+ memcpy(p, s, len);
+ hstate_cmdline_index += len;
+
+ hugetlb_params[hugetlb_param_index].val = p;
+ hugetlb_params[hugetlb_param_index].setup = setup;
+
+ hugetlb_param_index++;
+
+ return 0;
+}
+
+static __init void hugetlb_parse_params(void)
+{
+ int i;
+ struct hugetlb_cmdline *hcp;
+
+ for (i = 0; i < hugetlb_param_index; i++) {
+ hcp = &hugetlb_params[i];
+
+ hcp->setup(hcp->val);
+ }
+
+ hugetlb_cma_validate_params();
+}
+
/*
* hugepages command line processing
* hugepages normally follows a valid hugepagsz or default_hugepagsz
@@ -4709,7 +4829,7 @@ static int __init hugepages_setup(char *s)
if (!parsed_valid_hugepagesz) {
pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
parsed_valid_hugepagesz = true;
- return 1;
+ return -EINVAL;
}
/*
@@ -4763,24 +4883,16 @@ static int __init hugepages_setup(char *s)
}
}
- /*
- * Global state is always initialized later in hugetlb_init.
- * But we need to allocate gigantic hstates here early to still
- * use the bootmem allocator.
- */
- if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
- hugetlb_hstate_alloc_pages(parsed_hstate);
-
last_mhp = mhp;
- return 1;
+ return 0;
invalid:
pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
hugepages_clear_pages_in_node();
- return 1;
+ return -EINVAL;
}
-__setup("hugepages=", hugepages_setup);
+hugetlb_early_param("hugepages", hugepages_setup);
/*
* hugepagesz command line processing
@@ -4799,7 +4911,7 @@ static int __init hugepagesz_setup(char *s)
if (!arch_hugetlb_valid_size(size)) {
pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
- return 1;
+ return -EINVAL;
}
h = size_to_hstate(size);
@@ -4814,7 +4926,7 @@ static int __init hugepagesz_setup(char *s)
if (!parsed_default_hugepagesz || h != &default_hstate ||
default_hstate.max_huge_pages) {
pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
- return 1;
+ return -EINVAL;
}
/*
@@ -4824,14 +4936,14 @@ static int __init hugepagesz_setup(char *s)
*/
parsed_hstate = h;
parsed_valid_hugepagesz = true;
- return 1;
+ return 0;
}
hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
parsed_valid_hugepagesz = true;
- return 1;
+ return 0;
}
-__setup("hugepagesz=", hugepagesz_setup);
+hugetlb_early_param("hugepagesz", hugepagesz_setup);
/*
* default_hugepagesz command line input
@@ -4845,14 +4957,14 @@ static int __init default_hugepagesz_setup(char *s)
parsed_valid_hugepagesz = false;
if (parsed_default_hugepagesz) {
pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
- return 1;
+ return -EINVAL;
}
size = (unsigned long)memparse(s, NULL);
if (!arch_hugetlb_valid_size(size)) {
pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
- return 1;
+ return -EINVAL;
}
hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
@@ -4869,35 +4981,90 @@ static int __init default_hugepagesz_setup(char *s)
*/
if (default_hstate_max_huge_pages) {
default_hstate.max_huge_pages = default_hstate_max_huge_pages;
- for_each_online_node(i)
- default_hstate.max_huge_pages_node[i] =
- default_hugepages_in_node[i];
- if (hstate_is_gigantic(&default_hstate))
- hugetlb_hstate_alloc_pages(&default_hstate);
+ /*
+ * Since this is an early parameter, we can't check
+ * NUMA node state yet, so loop through MAX_NUMNODES.
+ */
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ if (default_hugepages_in_node[i] != 0)
+ default_hstate.max_huge_pages_node[i] =
+ default_hugepages_in_node[i];
+ }
default_hstate_max_huge_pages = 0;
}
- return 1;
+ return 0;
}
-__setup("default_hugepagesz=", default_hugepagesz_setup);
+hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
-static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
+void __init hugetlb_bootmem_set_nodes(void)
{
-#ifdef CONFIG_NUMA
- struct mempolicy *mpol = get_task_policy(current);
+ int i, nid;
+ unsigned long start_pfn, end_pfn;
- /*
- * Only enforce MPOL_BIND policy which overlaps with cpuset policy
- * (from policy_nodemask) specifically for hugetlb case
- */
- if (mpol->mode == MPOL_BIND &&
- (apply_policy_zone(mpol, gfp_zone(gfp)) &&
- cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
- return &mpol->nodes;
-#endif
- return NULL;
+ if (!nodes_empty(hugetlb_bootmem_nodes))
+ return;
+
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
+ if (end_pfn > start_pfn)
+ node_set(nid, hugetlb_bootmem_nodes);
+ }
+}
+
+static bool __hugetlb_bootmem_allocated __initdata;
+
+bool __init hugetlb_bootmem_allocated(void)
+{
+ return __hugetlb_bootmem_allocated;
+}
+
+void __init hugetlb_bootmem_alloc(void)
+{
+ struct hstate *h;
+ int i;
+
+ if (__hugetlb_bootmem_allocated)
+ return;
+
+ hugetlb_bootmem_set_nodes();
+
+ for (i = 0; i < MAX_NUMNODES; i++)
+ INIT_LIST_HEAD(&huge_boot_pages[i]);
+
+ hugetlb_parse_params();
+
+ for_each_hstate(h) {
+ h->next_nid_to_alloc = first_online_node;
+
+ if (hstate_is_gigantic(h))
+ hugetlb_hstate_alloc_pages(h);
+ }
+
+ __hugetlb_bootmem_allocated = true;
}
+/*
+ * hugepage_alloc_threads command line parsing.
+ *
+ * When set, use this specific number of threads for the boot
+ * allocation of hugepages.
+ */
+static int __init hugepage_alloc_threads_setup(char *s)
+{
+ unsigned long allocation_threads;
+
+ if (kstrtoul(s, 0, &allocation_threads) != 0)
+ return 1;
+
+ if (allocation_threads == 0)
+ return 1;
+
+ hugepage_allocation_threads = allocation_threads;
+
+ return 1;
+}
+__setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
+
static unsigned int allowed_mems_nr(struct hstate *h)
{
int node;
@@ -4916,7 +5083,7 @@ static unsigned int allowed_mems_nr(struct hstate *h)
}
#ifdef CONFIG_SYSCTL
-static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
+static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
void *buffer, size_t *length,
loff_t *ppos, unsigned long *out)
{
@@ -4933,7 +5100,7 @@ static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
}
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
- struct ctl_table *table, int write,
+ const struct ctl_table *table, int write,
void *buffer, size_t *length, loff_t *ppos)
{
struct hstate *h = &default_hstate;
@@ -4955,7 +5122,7 @@ out:
return ret;
}
-static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
+static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
void *buffer, size_t *length, loff_t *ppos)
{
@@ -4964,7 +5131,7 @@ static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
}
#ifdef CONFIG_NUMA
-static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
+static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
void *buffer, size_t *length, loff_t *ppos)
{
return hugetlb_sysctl_handler_common(true, table, write,
@@ -4972,7 +5139,7 @@ static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
}
#endif /* CONFIG_NUMA */
-static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
+static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
void *buffer, size_t *length, loff_t *ppos)
{
struct hstate *h = &default_hstate;
@@ -5001,7 +5168,7 @@ out:
return ret;
}
-static struct ctl_table hugetlb_table[] = {
+static const struct ctl_table hugetlb_table[] = {
{
.procname = "nr_hugepages",
.data = NULL,
@@ -5032,10 +5199,9 @@ static struct ctl_table hugetlb_table[] = {
.mode = 0644,
.proc_handler = hugetlb_overcommit_handler,
},
- { }
};
-static void hugetlb_sysctl_init(void)
+static void __init hugetlb_sysctl_init(void)
{
register_sysctl_init("vm", hugetlb_table);
}
@@ -5243,26 +5409,40 @@ static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
if (addr & ~(huge_page_mask(hstate_vma(vma))))
return -EINVAL;
+ return 0;
+}
+void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
+{
/*
* PMD sharing is only possible for PUD_SIZE-aligned address ranges
* in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
* split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
+ * This function is called in the middle of a VMA split operation, with
+ * MM, VMA and rmap all write-locked to prevent concurrent page table
+ * walks (except hardware and gup_fast()).
*/
+ vma_assert_write_locked(vma);
+ i_mmap_assert_write_locked(vma->vm_file->f_mapping);
+
if (addr & ~PUD_MASK) {
- /*
- * hugetlb_vm_op_split is called right before we attempt to
- * split the VMA. We will need to unshare PMDs in the old and
- * new VMAs, so let's unshare before we split.
- */
unsigned long floor = addr & PUD_MASK;
unsigned long ceil = floor + PUD_SIZE;
- if (floor >= vma->vm_start && ceil <= vma->vm_end)
- hugetlb_unshare_pmds(vma, floor, ceil);
+ if (floor >= vma->vm_start && ceil <= vma->vm_end) {
+ /*
+ * Locking:
+ * Use take_locks=false here.
+ * The file rmap lock is already held.
+ * The hugetlb VMA lock can't be taken when we already
+ * hold the file rmap lock, and we don't need it because
+ * its purpose is to synchronize against concurrent page
+ * table walks, which are not possible thanks to the
+ * locks held by our caller.
+ */
+ hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
+ }
}
-
- return 0;
}
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
@@ -5297,18 +5477,16 @@ const struct vm_operations_struct hugetlb_vm_ops = {
.pagesize = hugetlb_vm_op_pagesize,
};
-static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
- int writable)
+static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio,
+ bool try_mkwrite)
{
- pte_t entry;
+ pte_t entry = folio_mk_pte(folio, vma->vm_page_prot);
unsigned int shift = huge_page_shift(hstate_vma(vma));
- if (writable) {
- entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
- vma->vm_page_prot)));
+ if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
+ entry = pte_mkwrite_novma(pte_mkdirty(entry));
} else {
- entry = huge_pte_wrprotect(mk_huge_pte(page,
- vma->vm_page_prot));
+ entry = pte_wrprotect(entry);
}
entry = pte_mkyoung(entry);
entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
@@ -5321,11 +5499,18 @@ static void set_huge_ptep_writable(struct vm_area_struct *vma,
{
pte_t entry;
- entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
+ entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
update_mmu_cache(vma, address, ptep);
}
+static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
+ unsigned long address, pte_t *ptep)
+{
+ if (vma->vm_flags & VM_WRITE)
+ set_huge_ptep_writable(vma, address, ptep);
+}
+
bool is_hugetlb_entry_migration(pte_t pte)
{
swp_entry_t swp;
@@ -5356,7 +5541,7 @@ static void
hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
struct folio *new_folio, pte_t old, unsigned long sz)
{
- pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
+ pte_t newpte = make_huge_pte(vma, new_folio, true);
__folio_mark_uptodate(new_folio);
hugetlb_add_new_anon_rmap(new_folio, vma, addr);
@@ -5429,7 +5614,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
dst_ptl = huge_pte_lock(h, dst, dst_pte);
src_ptl = huge_pte_lockptr(h, src, src_pte);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
- entry = huge_ptep_get(src_pte);
+ entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
again:
if (huge_pte_none(entry)) {
/*
@@ -5467,7 +5652,7 @@ again:
set_huge_pte_at(dst, addr, dst_pte,
make_pte_marker(marker), sz);
} else {
- entry = huge_ptep_get(src_pte);
+ entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
pte_folio = page_folio(pte_page(entry));
folio_get(pte_folio);
@@ -5490,14 +5675,13 @@ again:
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
/* Do not use reserve as it's private owned */
- new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
+ new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
if (IS_ERR(new_folio)) {
folio_put(pte_folio);
ret = PTR_ERR(new_folio);
break;
}
- ret = copy_user_large_folio(new_folio,
- pte_folio,
+ ret = copy_user_large_folio(new_folio, pte_folio,
addr, dst_vma);
folio_put(pte_folio);
if (ret) {
@@ -5509,7 +5693,7 @@ again:
dst_ptl = huge_pte_lock(h, dst, dst_pte);
src_ptl = huge_pte_lockptr(h, src, src_pte);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
- entry = huge_ptep_get(src_pte);
+ entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
if (!pte_same(src_pte_old, entry)) {
restore_reserve_on_error(h, dst_vma, addr,
new_folio);
@@ -5560,6 +5744,7 @@ static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
unsigned long sz)
{
+ bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
struct hstate *h = hstate_vma(vma);
struct mm_struct *mm = vma->vm_mm;
spinlock_t *src_ptl, *dst_ptl;
@@ -5575,8 +5760,19 @@ static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
if (src_ptl != dst_ptl)
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
- pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
- set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
+ pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
+
+ if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
+ huge_pte_clear(mm, new_addr, dst_pte, sz);
+ else {
+ if (need_clear_uffd_wp) {
+ if (pte_present(pte))
+ pte = huge_pte_clear_uffd_wp(pte);
+ else if (is_swap_pte(pte))
+ pte = pte_swp_clear_uffd_wp(pte);
+ }
+ set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
+ }
if (src_ptl != dst_ptl)
spin_unlock(src_ptl);
@@ -5619,7 +5815,7 @@ int move_hugetlb_page_tables(struct vm_area_struct *vma,
new_addr |= last_addr_mask;
continue;
}
- if (huge_pte_none(huge_ptep_get(src_pte)))
+ if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
continue;
if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
@@ -5649,14 +5845,14 @@ int move_hugetlb_page_tables(struct vm_area_struct *vma,
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
unsigned long start, unsigned long end,
- struct page *ref_page, zap_flags_t zap_flags)
+ struct folio *folio, zap_flags_t zap_flags)
{
struct mm_struct *mm = vma->vm_mm;
+ const bool folio_provided = !!folio;
unsigned long address;
pte_t *ptep;
pte_t pte;
spinlock_t *ptl;
- struct page *page;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
bool adjust_reservation = false;
@@ -5692,7 +5888,7 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
continue;
}
- pte = huge_ptep_get(ptep);
+ pte = huge_ptep_get(mm, address, ptep);
if (huge_pte_none(pte)) {
spin_unlock(ptl);
continue;
@@ -5720,14 +5916,13 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
continue;
}
- page = pte_page(pte);
/*
- * If a reference page is supplied, it is because a specific
- * page is being unmapped, not a range. Ensure the page we
- * are about to unmap is the actual page of interest.
+ * If a folio is supplied, it is because a specific
+ * folio is being unmapped, not a range. Ensure the folio we
+ * are about to unmap is the actual folio of interest.
*/
- if (ref_page) {
- if (page != ref_page) {
+ if (folio_provided) {
+ if (folio != page_folio(pte_page(pte))) {
spin_unlock(ptl);
continue;
}
@@ -5737,12 +5932,14 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
* looking like data was lost
*/
set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
+ } else {
+ folio = page_folio(pte_page(pte));
}
- pte = huge_ptep_get_and_clear(mm, address, ptep);
+ pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
if (huge_pte_dirty(pte))
- set_page_dirty(page);
+ folio_mark_dirty(folio);
/* Leave a uffd-wp pte marker if needed */
if (huge_pte_uffd_wp(pte) &&
!(zap_flags & ZAP_FLAG_DROP_MARKER))
@@ -5750,7 +5947,7 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
make_pte_marker(PTE_MARKER_UFFD_WP),
sz);
hugetlb_count_sub(pages_per_huge_page(h), mm);
- hugetlb_remove_rmap(page_folio(page));
+ hugetlb_remove_rmap(folio);
/*
* Restore the reservation for anonymous page, otherwise the
@@ -5759,8 +5956,8 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
* reservation bit.
*/
if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
- folio_test_anon(page_folio(page))) {
- folio_set_hugetlb_restore_reserve(page_folio(page));
+ folio_test_anon(folio)) {
+ folio_set_hugetlb_restore_reserve(folio);
/* Reservation to be adjusted after the spin lock */
adjust_reservation = true;
}
@@ -5774,14 +5971,27 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
* do_exit() will not see it, and will keep the reservation
* forever.
*/
- if (adjust_reservation && vma_needs_reservation(h, vma, address))
- vma_add_reservation(h, vma, address);
+ if (adjust_reservation) {
+ int rc = vma_needs_reservation(h, vma, address);
+
+ if (rc < 0)
+ /* Pressumably allocate_file_region_entries failed
+ * to allocate a file_region struct. Clear
+ * hugetlb_restore_reserve so that global reserve
+ * count will not be incremented by free_huge_folio.
+ * Act as if we consumed the reservation.
+ */
+ folio_clear_hugetlb_restore_reserve(folio);
+ else if (rc)
+ vma_add_reservation(h, vma, address);
+ }
- tlb_remove_page_size(tlb, page, huge_page_size(h));
+ tlb_remove_page_size(tlb, folio_page(folio, 0),
+ folio_size(folio));
/*
- * Bail out after unmapping reference page if supplied
+ * If we were instructed to unmap a specific folio, we're done.
*/
- if (ref_page)
+ if (folio_provided)
break;
}
tlb_end_vma(tlb, vma);
@@ -5843,7 +6053,7 @@ void __hugetlb_zap_end(struct vm_area_struct *vma,
}
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
- unsigned long end, struct page *ref_page,
+ unsigned long end, struct folio *folio,
zap_flags_t zap_flags)
{
struct mmu_notifier_range range;
@@ -5855,7 +6065,8 @@ void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
mmu_notifier_invalidate_range_start(&range);
tlb_gather_mmu(&tlb, vma->vm_mm);
- __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
+ __unmap_hugepage_range(&tlb, vma, start, end,
+ folio, zap_flags);
mmu_notifier_invalidate_range_end(&range);
tlb_finish_mmu(&tlb);
@@ -5868,7 +6079,7 @@ void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
* same region.
*/
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
- struct page *page, unsigned long address)
+ struct folio *folio, unsigned long address)
{
struct hstate *h = hstate_vma(vma);
struct vm_area_struct *iter_vma;
@@ -5912,7 +6123,8 @@ static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
*/
if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
unmap_hugepage_range(iter_vma, address,
- address + huge_page_size(h), page, 0);
+ address + huge_page_size(h),
+ folio, 0);
}
i_mmap_unlock_write(mapping);
}
@@ -5923,19 +6135,18 @@ static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
* cannot race with other handlers or page migration.
* Keep the pte_same checks anyway to make transition from the mutex easier.
*/
-static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *ptep, unsigned int flags,
- struct folio *pagecache_folio, spinlock_t *ptl,
+static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
struct vm_fault *vmf)
{
- const bool unshare = flags & FAULT_FLAG_UNSHARE;
- pte_t pte = huge_ptep_get(ptep);
+ struct vm_area_struct *vma = vmf->vma;
+ struct mm_struct *mm = vma->vm_mm;
+ const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
+ pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
struct hstate *h = hstate_vma(vma);
struct folio *old_folio;
struct folio *new_folio;
- int outside_reserve = 0;
+ bool cow_from_owner = 0;
vm_fault_t ret = 0;
- unsigned long haddr = address & huge_page_mask(h);
struct mmu_notifier_range range;
/*
@@ -5949,16 +6160,9 @@ static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
if (!unshare && huge_pte_uffd_wp(pte))
return 0;
- /*
- * hugetlb does not support FOLL_FORCE-style write faults that keep the
- * PTE mapped R/O such as maybe_mkwrite() would do.
- */
- if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
- return VM_FAULT_SIGSEGV;
-
/* Let's take out MAP_SHARED mappings first. */
if (vma->vm_flags & VM_MAYSHARE) {
- set_huge_ptep_writable(vma, haddr, ptep);
+ set_huge_ptep_writable(vma, vmf->address, vmf->pte);
return 0;
}
@@ -5970,6 +6174,13 @@ retry_avoidcopy:
/*
* If no-one else is actually using this page, we're the exclusive
* owner and can reuse this page.
+ *
+ * Note that we don't rely on the (safer) folio refcount here, because
+ * copying the hugetlb folio when there are unexpected (temporary)
+ * folio references could harm simple fork()+exit() users when
+ * we run out of free hugetlb folios: we would have to kill processes
+ * in scenarios that used to work. As a side effect, there can still
+ * be leaks between processes, for example, with FOLL_GET users.
*/
if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
if (!PageAnonExclusive(&old_folio->page)) {
@@ -5977,7 +6188,8 @@ retry_avoidcopy:
SetPageAnonExclusive(&old_folio->page);
}
if (likely(!unshare))
- set_huge_ptep_writable(vma, haddr, ptep);
+ set_huge_ptep_maybe_writable(vma, vmf->address,
+ vmf->pte);
delayacct_wpcopy_end();
return 0;
@@ -5996,7 +6208,7 @@ retry_avoidcopy:
*/
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
old_folio != pagecache_folio)
- outside_reserve = 1;
+ cow_from_owner = true;
folio_get(old_folio);
@@ -6004,8 +6216,8 @@ retry_avoidcopy:
* Drop page table lock as buddy allocator may be called. It will
* be acquired again before returning to the caller, as expected.
*/
- spin_unlock(ptl);
- new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
+ spin_unlock(vmf->ptl);
+ new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
if (IS_ERR(new_folio)) {
/*
@@ -6015,7 +6227,7 @@ retry_avoidcopy:
* reliability, unmap the page from child processes. The child
* may get SIGKILLed if it later faults.
*/
- if (outside_reserve) {
+ if (cow_from_owner) {
struct address_space *mapping = vma->vm_file->f_mapping;
pgoff_t idx;
u32 hash;
@@ -6030,19 +6242,20 @@ retry_avoidcopy:
*
* Reacquire both after unmap operation.
*/
- idx = vma_hugecache_offset(h, vma, haddr);
+ idx = vma_hugecache_offset(h, vma, vmf->address);
hash = hugetlb_fault_mutex_hash(mapping, idx);
hugetlb_vma_unlock_read(vma);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
- unmap_ref_private(mm, vma, &old_folio->page, haddr);
+ unmap_ref_private(mm, vma, old_folio, vmf->address);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
hugetlb_vma_lock_read(vma);
- spin_lock(ptl);
- ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
- if (likely(ptep &&
- pte_same(huge_ptep_get(ptep), pte)))
+ spin_lock(vmf->ptl);
+ vmf->pte = hugetlb_walk(vma, vmf->address,
+ huge_page_size(h));
+ if (likely(vmf->pte &&
+ pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
goto retry_avoidcopy;
/*
* race occurs while re-acquiring page table
@@ -6060,41 +6273,42 @@ retry_avoidcopy:
* When the original hugepage is shared one, it does not have
* anon_vma prepared.
*/
- ret = vmf_anon_prepare(vmf);
+ ret = __vmf_anon_prepare(vmf);
if (unlikely(ret))
goto out_release_all;
- if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
- ret = VM_FAULT_HWPOISON_LARGE;
+ if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
+ ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
goto out_release_all;
}
__folio_mark_uptodate(new_folio);
- mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
- haddr + huge_page_size(h));
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
+ vmf->address + huge_page_size(h));
mmu_notifier_invalidate_range_start(&range);
/*
* Retake the page table lock to check for racing updates
* before the page tables are altered
*/
- spin_lock(ptl);
- ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
- if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
- pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
+ spin_lock(vmf->ptl);
+ vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
+ if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
+ pte_t newpte = make_huge_pte(vma, new_folio, !unshare);
/* Break COW or unshare */
- huge_ptep_clear_flush(vma, haddr, ptep);
+ huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
hugetlb_remove_rmap(old_folio);
- hugetlb_add_new_anon_rmap(new_folio, vma, haddr);
+ hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
if (huge_pte_uffd_wp(pte))
newpte = huge_pte_mkuffd_wp(newpte);
- set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
+ set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
+ huge_page_size(h));
folio_set_hugetlb_migratable(new_folio);
/* Make the old page be freed below */
new_folio = old_folio;
}
- spin_unlock(ptl);
+ spin_unlock(vmf->ptl);
mmu_notifier_invalidate_range_end(&range);
out_release_all:
/*
@@ -6102,12 +6316,12 @@ out_release_all:
* unshare)
*/
if (new_folio != old_folio)
- restore_reserve_on_error(h, vma, haddr, new_folio);
+ restore_reserve_on_error(h, vma, vmf->address, new_folio);
folio_put(new_folio);
out_release_old:
folio_put(old_folio);
- spin_lock(ptl); /* Caller expects lock to be held */
+ spin_lock(vmf->ptl); /* Caller expects lock to be held */
delayacct_wpcopy_end();
return ret;
@@ -6116,8 +6330,8 @@ out_release_old:
/*
* Return whether there is a pagecache page to back given address within VMA.
*/
-static bool hugetlbfs_pagecache_present(struct hstate *h,
- struct vm_area_struct *vma, unsigned long address)
+bool hugetlbfs_pagecache_present(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long address)
{
struct address_space *mapping = vma->vm_file->f_mapping;
pgoff_t idx = linear_page_index(vma, address);
@@ -6180,36 +6394,32 @@ static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
* Recheck pte with pgtable lock. Returns true if pte didn't change, or
* false if pte changed or is changing.
*/
-static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
+static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t old_pte)
{
spinlock_t *ptl;
bool same;
ptl = huge_pte_lock(h, mm, ptep);
- same = pte_same(huge_ptep_get(ptep), old_pte);
+ same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
spin_unlock(ptl);
return same;
}
-static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
- struct vm_area_struct *vma,
- struct address_space *mapping, pgoff_t idx,
- unsigned long address, pte_t *ptep,
- pte_t old_pte, unsigned int flags,
+static vm_fault_t hugetlb_no_page(struct address_space *mapping,
struct vm_fault *vmf)
{
+ struct vm_area_struct *vma = vmf->vma;
+ struct mm_struct *mm = vma->vm_mm;
struct hstate *h = hstate_vma(vma);
vm_fault_t ret = VM_FAULT_SIGBUS;
int anon_rmap = 0;
unsigned long size;
struct folio *folio;
pte_t new_pte;
- spinlock_t *ptl;
- unsigned long haddr = address & huge_page_mask(h);
bool new_folio, new_pagecache_folio = false;
- u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
+ u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
/*
* Currently, we are forced to kill the process in the event the
@@ -6228,10 +6438,10 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
* before we get page_table_lock.
*/
new_folio = false;
- folio = filemap_lock_hugetlb_folio(h, mapping, idx);
+ folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
if (IS_ERR(folio)) {
size = i_size_read(mapping->host) >> huge_page_shift(h);
- if (idx >= size)
+ if (vmf->pgoff >= size)
goto out;
/* Check for page in userfault range */
if (userfaultfd_missing(vma)) {
@@ -6252,7 +6462,7 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
* never happen on the page after UFFDIO_COPY has
* correctly installed the page and returned.
*/
- if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
+ if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
ret = 0;
goto out;
}
@@ -6262,12 +6472,12 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
}
if (!(vma->vm_flags & VM_MAYSHARE)) {
- ret = vmf_anon_prepare(vmf);
+ ret = __vmf_anon_prepare(vmf);
if (unlikely(ret))
goto out;
}
- folio = alloc_hugetlb_folio(vma, haddr, 0);
+ folio = alloc_hugetlb_folio(vma, vmf->address, false);
if (IS_ERR(folio)) {
/*
* Returning error will result in faulting task being
@@ -6281,18 +6491,19 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
* here. Before returning error, get ptl and make
* sure there really is no pte entry.
*/
- if (hugetlb_pte_stable(h, mm, ptep, old_pte))
+ if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
ret = vmf_error(PTR_ERR(folio));
else
ret = 0;
goto out;
}
- clear_huge_page(&folio->page, address, pages_per_huge_page(h));
+ folio_zero_user(folio, vmf->real_address);
__folio_mark_uptodate(folio);
new_folio = true;
if (vma->vm_flags & VM_MAYSHARE) {
- int err = hugetlb_add_to_page_cache(folio, mapping, idx);
+ int err = hugetlb_add_to_page_cache(folio, mapping,
+ vmf->pgoff);
if (err) {
/*
* err can't be -EEXIST which implies someone
@@ -6301,7 +6512,8 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
* to the page cache. So it's safe to call
* restore_reserve_on_error() here.
*/
- restore_reserve_on_error(h, vma, haddr, folio);
+ restore_reserve_on_error(h, vma, vmf->address,
+ folio);
folio_put(folio);
ret = VM_FAULT_SIGBUS;
goto out;
@@ -6328,7 +6540,7 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
folio_unlock(folio);
folio_put(folio);
/* See comment in userfaultfd_missing() block above */
- if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
+ if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
ret = 0;
goto out;
}
@@ -6343,42 +6555,41 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
* any allocations necessary to record that reservation occur outside
* the spinlock.
*/
- if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
- if (vma_needs_reservation(h, vma, haddr) < 0) {
+ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
+ if (vma_needs_reservation(h, vma, vmf->address) < 0) {
ret = VM_FAULT_OOM;
goto backout_unlocked;
}
/* Just decrements count, does not deallocate */
- vma_end_reservation(h, vma, haddr);
+ vma_end_reservation(h, vma, vmf->address);
}
- ptl = huge_pte_lock(h, mm, ptep);
+ vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
ret = 0;
/* If pte changed from under us, retry */
- if (!pte_same(huge_ptep_get(ptep), old_pte))
+ if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
goto backout;
if (anon_rmap)
- hugetlb_add_new_anon_rmap(folio, vma, haddr);
+ hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
else
hugetlb_add_file_rmap(folio);
- new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
- && (vma->vm_flags & VM_SHARED)));
+ new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED);
/*
* If this pte was previously wr-protected, keep it wr-protected even
* if populated.
*/
- if (unlikely(pte_marker_uffd_wp(old_pte)))
+ if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
new_pte = huge_pte_mkuffd_wp(new_pte);
- set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
+ set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
hugetlb_count_add(pages_per_huge_page(h), mm);
- if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
+ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
/* Optimization, do the COW without a second fault */
- ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl, vmf);
+ ret = hugetlb_wp(folio, vmf);
}
- spin_unlock(ptl);
+ spin_unlock(vmf->ptl);
/*
* Only set hugetlb_migratable in newly allocated pages. Existing pages
@@ -6391,14 +6602,22 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
folio_unlock(folio);
out:
hugetlb_vma_unlock_read(vma);
+
+ /*
+ * We must check to release the per-VMA lock. __vmf_anon_prepare() is
+ * the only way ret can be set to VM_FAULT_RETRY.
+ */
+ if (unlikely(ret & VM_FAULT_RETRY))
+ vma_end_read(vma);
+
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
return ret;
backout:
- spin_unlock(ptl);
+ spin_unlock(vmf->ptl);
backout_unlocked:
if (new_folio && !new_pagecache_folio)
- restore_reserve_on_error(h, vma, haddr, folio);
+ restore_reserve_on_error(h, vma, vmf->address, folio);
folio_unlock(folio);
folio_put(folio);
@@ -6432,8 +6651,6 @@ u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, unsigned int flags)
{
- pte_t *ptep, entry;
- spinlock_t *ptl;
vm_fault_t ret;
u32 hash;
struct folio *folio = NULL;
@@ -6441,13 +6658,13 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
struct hstate *h = hstate_vma(vma);
struct address_space *mapping;
int need_wait_lock = 0;
- unsigned long haddr = address & huge_page_mask(h);
struct vm_fault vmf = {
.vma = vma,
- .address = haddr,
+ .address = address & huge_page_mask(h),
.real_address = address,
.flags = flags,
- .pgoff = vma_hugecache_offset(h, vma, haddr),
+ .pgoff = vma_hugecache_offset(h, vma,
+ address & huge_page_mask(h)),
/* TODO: Track hugetlb faults using vm_fault */
/*
@@ -6467,25 +6684,30 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
/*
* Acquire vma lock before calling huge_pte_alloc and hold
- * until finished with ptep. This prevents huge_pmd_unshare from
- * being called elsewhere and making the ptep no longer valid.
+ * until finished with vmf.pte. This prevents huge_pmd_unshare from
+ * being called elsewhere and making the vmf.pte no longer valid.
*/
hugetlb_vma_lock_read(vma);
- ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
- if (!ptep) {
+ vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
+ if (!vmf.pte) {
hugetlb_vma_unlock_read(vma);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
return VM_FAULT_OOM;
}
- entry = huge_ptep_get(ptep);
- if (huge_pte_none_mostly(entry)) {
- if (is_pte_marker(entry)) {
+ vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
+ if (huge_pte_none_mostly(vmf.orig_pte)) {
+ if (is_pte_marker(vmf.orig_pte)) {
pte_marker marker =
- pte_marker_get(pte_to_swp_entry(entry));
+ pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
if (marker & PTE_MARKER_POISONED) {
- ret = VM_FAULT_HWPOISON_LARGE;
+ ret = VM_FAULT_HWPOISON_LARGE |
+ VM_FAULT_SET_HINDEX(hstate_index(h));
+ goto out_mutex;
+ } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
+ /* This isn't supported in hugetlb. */
+ ret = VM_FAULT_SIGSEGV;
goto out_mutex;
}
}
@@ -6496,21 +6718,20 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
* hugetlb_no_page will drop vma lock and hugetlb fault
* mutex internally, which make us return immediately.
*/
- return hugetlb_no_page(mm, vma, mapping, vmf.pgoff, address,
- ptep, entry, flags, &vmf);
+ return hugetlb_no_page(mapping, &vmf);
}
ret = 0;
/*
- * entry could be a migration/hwpoison entry at this point, so this
- * check prevents the kernel from going below assuming that we have
- * an active hugepage in pagecache. This goto expects the 2nd page
- * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
- * properly handle it.
+ * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
+ * point, so this check prevents the kernel from going below assuming
+ * that we have an active hugepage in pagecache. This goto expects
+ * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
+ * check will properly handle it.
*/
- if (!pte_present(entry)) {
- if (unlikely(is_hugetlb_entry_migration(entry))) {
+ if (!pte_present(vmf.orig_pte)) {
+ if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
/*
* Release the hugetlb fault lock now, but retain
* the vma lock, because it is needed to guard the
@@ -6519,9 +6740,9 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
* be released there.
*/
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
- migration_entry_wait_huge(vma, ptep);
+ migration_entry_wait_huge(vma, vmf.address, vmf.pte);
return 0;
- } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
+ } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
ret = VM_FAULT_HWPOISON_LARGE |
VM_FAULT_SET_HINDEX(hstate_index(h));
goto out_mutex;
@@ -6535,13 +6756,13 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
* determine if a reservation has been consumed.
*/
if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
- !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
- if (vma_needs_reservation(h, vma, haddr) < 0) {
+ !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
+ if (vma_needs_reservation(h, vma, vmf.address) < 0) {
ret = VM_FAULT_OOM;
goto out_mutex;
}
/* Just decrements count, does not deallocate */
- vma_end_reservation(h, vma, haddr);
+ vma_end_reservation(h, vma, vmf.address);
pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
vmf.pgoff);
@@ -6549,17 +6770,17 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
pagecache_folio = NULL;
}
- ptl = huge_pte_lock(h, mm, ptep);
+ vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
/* Check for a racing update before calling hugetlb_wp() */
- if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
+ if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
goto out_ptl;
/* Handle userfault-wp first, before trying to lock more pages */
- if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
- (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
+ if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
+ (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
if (!userfaultfd_wp_async(vma)) {
- spin_unlock(ptl);
+ spin_unlock(vmf.ptl);
if (pagecache_folio) {
folio_unlock(pagecache_folio);
folio_put(pagecache_folio);
@@ -6569,18 +6790,18 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
return handle_userfault(&vmf, VM_UFFD_WP);
}
- entry = huge_pte_clear_uffd_wp(entry);
- set_huge_pte_at(mm, haddr, ptep, entry,
+ vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
+ set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
huge_page_size(hstate_vma(vma)));
/* Fallthrough to CoW */
}
/*
- * hugetlb_wp() requires page locks of pte_page(entry) and
+ * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
* pagecache_folio, so here we need take the former one
* when folio != pagecache_folio or !pagecache_folio.
*/
- folio = page_folio(pte_page(entry));
+ folio = page_folio(pte_page(vmf.orig_pte));
if (folio != pagecache_folio)
if (!folio_trylock(folio)) {
need_wait_lock = 1;
@@ -6590,24 +6811,23 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
folio_get(folio);
if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
- if (!huge_pte_write(entry)) {
- ret = hugetlb_wp(mm, vma, address, ptep, flags,
- pagecache_folio, ptl, &vmf);
+ if (!huge_pte_write(vmf.orig_pte)) {
+ ret = hugetlb_wp(pagecache_folio, &vmf);
goto out_put_page;
} else if (likely(flags & FAULT_FLAG_WRITE)) {
- entry = huge_pte_mkdirty(entry);
+ vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
}
}
- entry = pte_mkyoung(entry);
- if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
+ vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
+ if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
flags & FAULT_FLAG_WRITE))
- update_mmu_cache(vma, haddr, ptep);
+ update_mmu_cache(vma, vmf.address, vmf.pte);
out_put_page:
if (folio != pagecache_folio)
folio_unlock(folio);
folio_put(folio);
out_ptl:
- spin_unlock(ptl);
+ spin_unlock(vmf.ptl);
if (pagecache_folio) {
folio_unlock(pagecache_folio);
@@ -6615,6 +6835,14 @@ out_ptl:
}
out_mutex:
hugetlb_vma_unlock_read(vma);
+
+ /*
+ * We must check to release the per-VMA lock. __vmf_anon_prepare() in
+ * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
+ */
+ if (unlikely(ret & VM_FAULT_RETRY))
+ vma_end_read(vma);
+
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
/*
* Generally it's safe to hold refcount during waiting page lock. But
@@ -6643,7 +6871,13 @@ static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
gfp_mask = htlb_alloc_mask(h);
node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
- folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
+ /*
+ * This is used to allocate a temporary hugetlb to hold the copied
+ * content, which will then be copied again to the final hugetlb
+ * consuming a reservation. Set the alloc_fallback to false to indicate
+ * that breaking the per-node hugetlb pool is not allowed in this case.
+ */
+ folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
mpol_cond_put(mpol);
return folio;
@@ -6666,27 +6900,25 @@ int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
struct hstate *h = hstate_vma(dst_vma);
struct address_space *mapping = dst_vma->vm_file->f_mapping;
pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
- unsigned long size;
+ unsigned long size = huge_page_size(h);
int vm_shared = dst_vma->vm_flags & VM_SHARED;
pte_t _dst_pte;
spinlock_t *ptl;
int ret = -ENOMEM;
struct folio *folio;
- int writable;
bool folio_in_pagecache = false;
if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
ptl = huge_pte_lock(h, dst_mm, dst_pte);
/* Don't overwrite any existing PTEs (even markers) */
- if (!huge_pte_none(huge_ptep_get(dst_pte))) {
+ if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
spin_unlock(ptl);
return -EEXIST;
}
_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
- set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
- huge_page_size(h));
+ set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
/* No need to invalidate - it was non-present before */
update_mmu_cache(dst_vma, dst_addr, dst_pte);
@@ -6711,7 +6943,7 @@ int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
goto out;
}
- folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
+ folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
if (IS_ERR(folio)) {
ret = -ENOMEM;
goto out;
@@ -6753,7 +6985,7 @@ int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
goto out;
}
- folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
+ folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
if (IS_ERR(folio)) {
folio_put(*foliop);
ret = -ENOMEM;
@@ -6787,9 +7019,8 @@ int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
/* Add shared, newly allocated pages to the page cache. */
if (vm_shared && !is_continue) {
- size = i_size_read(mapping->host) >> huge_page_shift(h);
ret = -EFAULT;
- if (idx >= size)
+ if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
goto out_release_nounlock;
/*
@@ -6816,7 +7047,7 @@ int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
* page backing it, then access the page.
*/
ret = -EEXIST;
- if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
+ if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
goto out_release_unlock;
if (folio_in_pagecache)
@@ -6828,12 +7059,8 @@ int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
* For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
* with wp flag set, don't set pte write bit.
*/
- if (wp_enabled || (is_continue && !vm_shared))
- writable = 0;
- else
- writable = dst_vma->vm_flags & VM_WRITE;
-
- _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
+ _dst_pte = make_huge_pte(dst_vma, folio,
+ !wp_enabled && !(is_continue && !vm_shared));
/*
* Always mark UFFDIO_COPY page dirty; note that this may not be
* extremely important for hugetlbfs for now since swapping is not
@@ -6846,7 +7073,7 @@ int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
if (wp_enabled)
_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
- set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
+ set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
hugetlb_count_add(pages_per_huge_page(h), dst_mm);
@@ -6873,77 +7100,6 @@ out_release_nounlock:
}
#endif /* CONFIG_USERFAULTFD */
-struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
- unsigned long address, unsigned int flags,
- unsigned int *page_mask)
-{
- struct hstate *h = hstate_vma(vma);
- struct mm_struct *mm = vma->vm_mm;
- unsigned long haddr = address & huge_page_mask(h);
- struct page *page = NULL;
- spinlock_t *ptl;
- pte_t *pte, entry;
- int ret;
-
- hugetlb_vma_lock_read(vma);
- pte = hugetlb_walk(vma, haddr, huge_page_size(h));
- if (!pte)
- goto out_unlock;
-
- ptl = huge_pte_lock(h, mm, pte);
- entry = huge_ptep_get(pte);
- if (pte_present(entry)) {
- page = pte_page(entry);
-
- if (!huge_pte_write(entry)) {
- if (flags & FOLL_WRITE) {
- page = NULL;
- goto out;
- }
-
- if (gup_must_unshare(vma, flags, page)) {
- /* Tell the caller to do unsharing */
- page = ERR_PTR(-EMLINK);
- goto out;
- }
- }
-
- page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
-
- /*
- * Note that page may be a sub-page, and with vmemmap
- * optimizations the page struct may be read only.
- * try_grab_page() will increase the ref count on the
- * head page, so this will be OK.
- *
- * try_grab_page() should always be able to get the page here,
- * because we hold the ptl lock and have verified pte_present().
- */
- ret = try_grab_page(page, flags);
-
- if (WARN_ON_ONCE(ret)) {
- page = ERR_PTR(ret);
- goto out;
- }
-
- *page_mask = (1U << huge_page_order(h)) - 1;
- }
-out:
- spin_unlock(ptl);
-out_unlock:
- hugetlb_vma_unlock_read(vma);
-
- /*
- * Fixup retval for dump requests: if pagecache doesn't exist,
- * don't try to allocate a new page but just skip it.
- */
- if (!page && (flags & FOLL_DUMP) &&
- !hugetlbfs_pagecache_present(h, vma, address))
- page = ERR_PTR(-EFAULT);
-
- return page;
-}
-
long hugetlb_change_protection(struct vm_area_struct *vma,
unsigned long address, unsigned long end,
pgprot_t newprot, unsigned long cp_flags)
@@ -7008,7 +7164,7 @@ long hugetlb_change_protection(struct vm_area_struct *vma,
address |= last_addr_mask;
continue;
}
- pte = huge_ptep_get(ptep);
+ pte = huge_ptep_get(mm, address, ptep);
if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
/* Nothing to do. */
} else if (unlikely(is_hugetlb_entry_migration(pte))) {
@@ -7097,7 +7253,7 @@ bool hugetlb_reserve_pages(struct inode *inode,
struct vm_area_struct *vma,
vm_flags_t vm_flags)
{
- long chg = -1, add = -1;
+ long chg = -1, add = -1, spool_resv, gbl_resv;
struct hstate *h = hstate_inode(inode);
struct hugepage_subpool *spool = subpool_inode(inode);
struct resv_map *resv_map;
@@ -7232,8 +7388,16 @@ bool hugetlb_reserve_pages(struct inode *inode,
return true;
out_put_pages:
- /* put back original number of pages, chg */
- (void)hugepage_subpool_put_pages(spool, chg);
+ spool_resv = chg - gbl_reserve;
+ if (spool_resv) {
+ /* put sub pool's reservation back, chg - gbl_reserve */
+ gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
+ /*
+ * subpool's reserved pages can not be put back due to race,
+ * return to hstate.
+ */
+ hugetlb_acct_memory(h, -gbl_resv);
+ }
out_uncharge_cgroup:
hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
chg * pages_per_huge_page(h), h_cg);
@@ -7293,7 +7457,7 @@ long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
return 0;
}
-#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
+#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
static unsigned long page_table_shareable(struct vm_area_struct *svma,
struct vm_area_struct *vma,
unsigned long addr, pgoff_t idx)
@@ -7400,7 +7564,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
spte = hugetlb_walk(svma, saddr,
vma_mmu_pagesize(svma));
if (spte) {
- get_page(virt_to_page(spte));
+ ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
break;
}
}
@@ -7415,7 +7579,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
(pmd_t *)((unsigned long)spte & PAGE_MASK));
mm_inc_nr_pmds(mm);
} else {
- put_page(virt_to_page(spte));
+ ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
}
spin_unlock(&mm->page_table_lock);
out:
@@ -7427,10 +7591,6 @@ out:
/*
* unmap huge page backed by shared pte.
*
- * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
- * indicated by page_count > 1, unmap is achieved by clearing pud and
- * decrementing the ref count. If count == 1, the pte page is not shared.
- *
* Called with page table lock held.
*
* returns: 1 successfully unmapped a shared pte page
@@ -7439,23 +7599,32 @@ out:
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
+ unsigned long sz = huge_page_size(hstate_vma(vma));
pgd_t *pgd = pgd_offset(mm, addr);
p4d_t *p4d = p4d_offset(pgd, addr);
pud_t *pud = pud_offset(p4d, addr);
i_mmap_assert_write_locked(vma->vm_file->f_mapping);
hugetlb_vma_assert_locked(vma);
- BUG_ON(page_count(virt_to_page(ptep)) == 0);
- if (page_count(virt_to_page(ptep)) == 1)
+ if (sz != PMD_SIZE)
+ return 0;
+ if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
return 0;
pud_clear(pud);
- put_page(virt_to_page(ptep));
+ /*
+ * Once our caller drops the rmap lock, some other process might be
+ * using this page table as a normal, non-hugetlb page table.
+ * Wait for pending gup_fast() in other threads to finish before letting
+ * that happen.
+ */
+ tlb_remove_table_sync_one();
+ ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
mm_dec_nr_pmds(mm);
return 1;
}
-#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
+#else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pud_t *pud)
@@ -7478,7 +7647,7 @@ bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
return false;
}
-#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
+#endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
@@ -7576,7 +7745,7 @@ unsigned long hugetlb_mask_last_page(struct hstate *h)
/* See description above. Architectures can provide their own version. */
__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
{
-#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
+#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
if (huge_page_size(h) == PMD_SIZE)
return PUD_SIZE - PMD_SIZE;
#endif
@@ -7585,11 +7754,24 @@ __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
-/*
- * These functions are overwritable if your architecture needs its own
- * behavior.
+/**
+ * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
+ * @folio: the folio to isolate
+ * @list: the list to add the folio to on success
+ *
+ * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
+ * isolated/non-migratable, and moving it from the active list to the
+ * given list.
+ *
+ * Isolation will fail if @folio is not an allocated hugetlb folio, or if
+ * it is already isolated/non-migratable.
+ *
+ * On success, an additional folio reference is taken that must be dropped
+ * using folio_putback_hugetlb() to undo the isolation.
+ *
+ * Return: True if isolation worked, otherwise False.
*/
-bool isolate_hugetlb(struct folio *folio, struct list_head *list)
+bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
{
bool ret = true;
@@ -7637,7 +7819,18 @@ int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
return ret;
}
-void folio_putback_active_hugetlb(struct folio *folio)
+/**
+ * folio_putback_hugetlb - unisolate a hugetlb folio
+ * @folio: the isolated hugetlb folio
+ *
+ * Putback/un-isolate the hugetlb folio that was previous isolated using
+ * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
+ * back onto the active list.
+ *
+ * Will drop the additional folio reference obtained through
+ * folio_isolate_hugetlb().
+ */
+void folio_putback_hugetlb(struct folio *folio)
{
spin_lock_irq(&hugetlb_lock);
folio_set_hugetlb_migratable(folio);
@@ -7684,11 +7877,28 @@ void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int re
}
spin_unlock_irq(&hugetlb_lock);
}
+
+ /*
+ * Our old folio is isolated and has "migratable" cleared until it
+ * is putback. As migration succeeded, set the new folio "migratable"
+ * and add it to the active list.
+ */
+ spin_lock_irq(&hugetlb_lock);
+ folio_set_hugetlb_migratable(new_folio);
+ list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
+ spin_unlock_irq(&hugetlb_lock);
}
+/*
+ * If @take_locks is false, the caller must ensure that no concurrent page table
+ * access can happen (except for gup_fast() and hardware page walks).
+ * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
+ * concurrent page fault handling) and the file rmap lock.
+ */
static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
unsigned long start,
- unsigned long end)
+ unsigned long end,
+ bool take_locks)
{
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
@@ -7712,8 +7922,12 @@ static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
start, end);
mmu_notifier_invalidate_range_start(&range);
- hugetlb_vma_lock_write(vma);
- i_mmap_lock_write(vma->vm_file->f_mapping);
+ if (take_locks) {
+ hugetlb_vma_lock_write(vma);
+ i_mmap_lock_write(vma->vm_file->f_mapping);
+ } else {
+ i_mmap_assert_write_locked(vma->vm_file->f_mapping);
+ }
for (address = start; address < end; address += PUD_SIZE) {
ptep = hugetlb_walk(vma, address, sz);
if (!ptep)
@@ -7723,8 +7937,10 @@ static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
spin_unlock(ptl);
}
flush_hugetlb_tlb_range(vma, start, end);
- i_mmap_unlock_write(vma->vm_file->f_mapping);
- hugetlb_vma_unlock_write(vma);
+ if (take_locks) {
+ i_mmap_unlock_write(vma->vm_file->f_mapping);
+ hugetlb_vma_unlock_write(vma);
+ }
/*
* No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
* Documentation/mm/mmu_notifier.rst.
@@ -7739,165 +7955,20 @@ static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
{
hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
- ALIGN_DOWN(vma->vm_end, PUD_SIZE));
+ ALIGN_DOWN(vma->vm_end, PUD_SIZE),
+ /* take_locks = */ true);
}
-#ifdef CONFIG_CMA
-static bool cma_reserve_called __initdata;
-
-static int __init cmdline_parse_hugetlb_cma(char *p)
-{
- int nid, count = 0;
- unsigned long tmp;
- char *s = p;
-
- while (*s) {
- if (sscanf(s, "%lu%n", &tmp, &count) != 1)
- break;
-
- if (s[count] == ':') {
- if (tmp >= MAX_NUMNODES)
- break;
- nid = array_index_nospec(tmp, MAX_NUMNODES);
-
- s += count + 1;
- tmp = memparse(s, &s);
- hugetlb_cma_size_in_node[nid] = tmp;
- hugetlb_cma_size += tmp;
-
- /*
- * Skip the separator if have one, otherwise
- * break the parsing.
- */
- if (*s == ',')
- s++;
- else
- break;
- } else {
- hugetlb_cma_size = memparse(p, &p);
- break;
- }
- }
-
- return 0;
-}
-
-early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
-
-void __init hugetlb_cma_reserve(int order)
-{
- unsigned long size, reserved, per_node;
- bool node_specific_cma_alloc = false;
- int nid;
-
- /*
- * HugeTLB CMA reservation is required for gigantic
- * huge pages which could not be allocated via the
- * page allocator. Just warn if there is any change
- * breaking this assumption.
- */
- VM_WARN_ON(order <= MAX_PAGE_ORDER);
- cma_reserve_called = true;
-
- if (!hugetlb_cma_size)
- return;
-
- for (nid = 0; nid < MAX_NUMNODES; nid++) {
- if (hugetlb_cma_size_in_node[nid] == 0)
- continue;
-
- if (!node_online(nid)) {
- pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
- hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
- hugetlb_cma_size_in_node[nid] = 0;
- continue;
- }
-
- if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
- pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
- nid, (PAGE_SIZE << order) / SZ_1M);
- hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
- hugetlb_cma_size_in_node[nid] = 0;
- } else {
- node_specific_cma_alloc = true;
- }
- }
-
- /* Validate the CMA size again in case some invalid nodes specified. */
- if (!hugetlb_cma_size)
- return;
-
- if (hugetlb_cma_size < (PAGE_SIZE << order)) {
- pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
- (PAGE_SIZE << order) / SZ_1M);
- hugetlb_cma_size = 0;
- return;
- }
-
- if (!node_specific_cma_alloc) {
- /*
- * If 3 GB area is requested on a machine with 4 numa nodes,
- * let's allocate 1 GB on first three nodes and ignore the last one.
- */
- per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
- pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
- hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
- }
-
- reserved = 0;
- for_each_online_node(nid) {
- int res;
- char name[CMA_MAX_NAME];
-
- if (node_specific_cma_alloc) {
- if (hugetlb_cma_size_in_node[nid] == 0)
- continue;
-
- size = hugetlb_cma_size_in_node[nid];
- } else {
- size = min(per_node, hugetlb_cma_size - reserved);
- }
-
- size = round_up(size, PAGE_SIZE << order);
-
- snprintf(name, sizeof(name), "hugetlb%d", nid);
- /*
- * Note that 'order per bit' is based on smallest size that
- * may be returned to CMA allocator in the case of
- * huge page demotion.
- */
- res = cma_declare_contiguous_nid(0, size, 0,
- PAGE_SIZE << HUGETLB_PAGE_ORDER,
- 0, false, name,
- &hugetlb_cma[nid], nid);
- if (res) {
- pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
- res, nid);
- continue;
- }
-
- reserved += size;
- pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
- size / SZ_1M, nid);
-
- if (reserved >= hugetlb_cma_size)
- break;
- }
-
- if (!reserved)
- /*
- * hugetlb_cma_size is used to determine if allocations from
- * cma are possible. Set to zero if no cma regions are set up.
- */
- hugetlb_cma_size = 0;
-}
-
-static void __init hugetlb_cma_check(void)
+/*
+ * For hugetlb, mremap() is an odd edge case - while the VMA copying is
+ * performed, we permit both the old and new VMAs to reference the same
+ * reservation.
+ *
+ * We fix this up after the operation succeeds, or if a newly allocated VMA
+ * is closed as a result of a failure to allocate memory.
+ */
+void fixup_hugetlb_reservations(struct vm_area_struct *vma)
{
- if (!hugetlb_cma_size || cma_reserve_called)
- return;
-
- pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
+ if (is_vm_hugetlb_page(vma))
+ clear_vma_resv_huge_pages(vma);
}
-
-#endif /* CONFIG_CMA */