summaryrefslogtreecommitdiff
path: root/mm/hugetlb.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/hugetlb.c')
-rw-r--r--mm/hugetlb.c5118
1 files changed, 2421 insertions, 2697 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 7fcdb98c9e68..9e7815b4f058 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -7,25 +7,26 @@
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/seq_file.h>
-#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/mmu_notifier.h>
#include <linux/nodemask.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/compiler.h>
+#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/mutex.h>
#include <linux/memblock.h>
-#include <linux/sysfs.h>
+#include <linux/minmax.h>
#include <linux/slab.h>
#include <linux/sched/mm.h>
#include <linux/mmdebug.h>
#include <linux/sched/signal.h>
#include <linux/rmap.h>
+#include <linux/string_choices.h>
#include <linux/string_helpers.h>
#include <linux/swap.h>
-#include <linux/swapops.h>
+#include <linux/leafops.h>
#include <linux/jhash.h>
#include <linux/numa.h>
#include <linux/llist.h>
@@ -34,40 +35,48 @@
#include <linux/nospec.h>
#include <linux/delayacct.h>
#include <linux/memory.h>
+#include <linux/mm_inline.h>
+#include <linux/padata.h>
+#include <linux/pgalloc.h>
#include <asm/page.h>
-#include <asm/pgalloc.h>
#include <asm/tlb.h>
+#include <asm/setup.h>
#include <linux/io.h>
-#include <linux/hugetlb.h>
-#include <linux/hugetlb_cgroup.h>
#include <linux/node.h>
#include <linux/page_owner.h>
#include "internal.h"
#include "hugetlb_vmemmap.h"
+#include "hugetlb_cma.h"
+#include "hugetlb_internal.h"
+#include <linux/page-isolation.h>
int hugetlb_max_hstate __read_mostly;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
-#ifdef CONFIG_CMA
-static struct cma *hugetlb_cma[MAX_NUMNODES];
-static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
-static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
-{
- return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
- 1 << order);
-}
-#else
-static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
-{
- return false;
-}
-#endif
-static unsigned long hugetlb_cma_size __initdata;
+__initdata nodemask_t hugetlb_bootmem_nodes;
+__initdata struct list_head huge_boot_pages[MAX_NUMNODES];
+static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
-__initdata LIST_HEAD(huge_boot_pages);
+/*
+ * Due to ordering constraints across the init code for various
+ * architectures, hugetlb hstate cmdline parameters can't simply
+ * be early_param. early_param might call the setup function
+ * before valid hugetlb page sizes are determined, leading to
+ * incorrect rejection of valid hugepagesz= options.
+ *
+ * So, record the parameters early and consume them whenever the
+ * init code is ready for them, by calling hugetlb_parse_params().
+ */
+
+/* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
+#define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1)
+struct hugetlb_cmdline {
+ char *val;
+ int (*setup)(char *val);
+};
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
@@ -75,27 +84,52 @@ static unsigned long __initdata default_hstate_max_huge_pages;
static bool __initdata parsed_valid_hugepagesz = true;
static bool __initdata parsed_default_hugepagesz;
static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
+static unsigned long hugepage_allocation_threads __initdata;
+
+static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
+static int hstate_cmdline_index __initdata;
+static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
+static int hugetlb_param_index __initdata;
+static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
+static __init void hugetlb_parse_params(void);
+
+#define hugetlb_early_param(str, func) \
+static __init int func##args(char *s) \
+{ \
+ return hugetlb_add_param(s, func); \
+} \
+early_param(str, func##args)
/*
* Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
* free_huge_pages, and surplus_huge_pages.
*/
-DEFINE_SPINLOCK(hugetlb_lock);
+__cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
/*
* Serializes faults on the same logical page. This is used to
* prevent spurious OOMs when the hugepage pool is fully utilized.
*/
-static int num_fault_mutexes;
-struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
+static int num_fault_mutexes __ro_after_init;
+struct mutex *hugetlb_fault_mutex_table __ro_after_init;
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);
static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
-static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
- unsigned long start, unsigned long end);
+ unsigned long start, unsigned long end, bool take_locks);
+static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
+
+static void hugetlb_free_folio(struct folio *folio)
+{
+ if (folio_test_hugetlb_cma(folio)) {
+ hugetlb_cma_free_folio(folio);
+ return;
+ }
+
+ folio_put(folio);
+}
static inline bool subpool_is_free(struct hugepage_subpool *spool)
{
@@ -247,11 +281,6 @@ static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
return ret;
}
-static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
-{
- return HUGETLBFS_SB(inode->i_sb)->spool;
-}
-
static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
return subpool_inode(file_inode(vma->vm_file));
@@ -260,18 +289,16 @@ static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
/*
* hugetlb vma_lock helper routines
*/
-static bool __vma_shareable_lock(struct vm_area_struct *vma)
-{
- return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
- vma->vm_private_data;
-}
-
void hugetlb_vma_lock_read(struct vm_area_struct *vma)
{
if (__vma_shareable_lock(vma)) {
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
down_read(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ down_read(&resv_map->rw_sema);
}
}
@@ -281,6 +308,10 @@ void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
up_read(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ up_read(&resv_map->rw_sema);
}
}
@@ -290,6 +321,10 @@ void hugetlb_vma_lock_write(struct vm_area_struct *vma)
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
down_write(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ down_write(&resv_map->rw_sema);
}
}
@@ -299,17 +334,27 @@ void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
up_write(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ up_write(&resv_map->rw_sema);
}
}
int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
{
- struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
- if (!__vma_shareable_lock(vma))
- return 1;
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ return down_write_trylock(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ return down_write_trylock(&resv_map->rw_sema);
+ }
- return down_write_trylock(&vma_lock->rw_sema);
+ return 1;
}
void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
@@ -318,6 +363,10 @@ void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
lockdep_assert_held(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ lockdep_assert_held(&resv_map->rw_sema);
}
}
@@ -350,6 +399,11 @@ static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
__hugetlb_vma_unlock_write_put(vma_lock);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ /* no free for anon vmas, but still need to unlock */
+ up_write(&resv_map->rw_sema);
}
}
@@ -369,17 +423,21 @@ static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
}
}
-static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
+/*
+ * vma specific semaphore used for pmd sharing and fault/truncation
+ * synchronization
+ */
+int hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
{
struct hugetlb_vma_lock *vma_lock;
/* Only establish in (flags) sharable vmas */
if (!vma || !(vma->vm_flags & VM_MAYSHARE))
- return;
+ return 0;
/* Should never get here with non-NULL vm_private_data */
if (vma->vm_private_data)
- return;
+ return -EINVAL;
vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
if (!vma_lock) {
@@ -394,13 +452,15 @@ static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
* allocation failure.
*/
pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
- return;
+ return -EINVAL;
}
kref_init(&vma_lock->refs);
init_rwsem(&vma_lock->rw_sema);
vma_lock->vma = vma;
vma->vm_private_data = vma_lock;
+
+ return 0;
}
/* Helper that removes a struct file_region from the resv_map cache and returns
@@ -957,7 +1017,7 @@ static long region_count(struct resv_map *resv, long f, long t)
/*
* Convert the address within this vma to the page offset within
- * the mapping, in pagecache page units; huge pages here.
+ * the mapping, huge page units here.
*/
static pgoff_t vma_hugecache_offset(struct hstate *h,
struct vm_area_struct *vma, unsigned long address)
@@ -966,16 +1026,14 @@ static pgoff_t vma_hugecache_offset(struct hstate *h,
(vma->vm_pgoff >> huge_page_order(h));
}
-pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
- unsigned long address)
-{
- return vma_hugecache_offset(hstate_vma(vma), vma, address);
-}
-EXPORT_SYMBOL_GPL(linear_hugepage_index);
-
-/*
- * Return the size of the pages allocated when backing a VMA. In the majority
- * cases this will be same size as used by the page table entries.
+/**
+ * vma_kernel_pagesize - Page size granularity for this VMA.
+ * @vma: The user mapping.
+ *
+ * Folios in this VMA will be aligned to, and at least the size of the
+ * number of bytes returned by this function.
+ *
+ * Return: The default size of the folios allocated when backing a VMA.
*/
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
@@ -1068,6 +1126,7 @@ struct resv_map *resv_map_alloc(void)
kref_init(&resv_map->refs);
spin_lock_init(&resv_map->lock);
INIT_LIST_HEAD(&resv_map->regions);
+ init_rwsem(&resv_map->rw_sema);
resv_map->adds_in_progress = 0;
/*
@@ -1115,7 +1174,7 @@ static inline struct resv_map *inode_resv_map(struct inode *inode)
* The VERY common case is inode->mapping == &inode->i_data but,
* this may not be true for device special inodes.
*/
- return (struct resv_map *)(&inode->i_data)->private_data;
+ return (struct resv_map *)(&inode->i_data)->i_private_data;
}
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
@@ -1133,21 +1192,28 @@ static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
}
}
-static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
+static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
- VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
- VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
+ VM_WARN_ON_ONCE_VMA(!is_vm_hugetlb_page(vma), vma);
+ VM_WARN_ON_ONCE_VMA(vma->vm_flags & VM_MAYSHARE, vma);
- set_vma_private_data(vma, (get_vma_private_data(vma) &
- HPAGE_RESV_MASK) | (unsigned long)map);
+ set_vma_private_data(vma, get_vma_private_data(vma) | flags);
}
-static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
+static void set_vma_desc_resv_map(struct vm_area_desc *desc, struct resv_map *map)
{
- VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
- VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
+ VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags));
+ VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE);
- set_vma_private_data(vma, get_vma_private_data(vma) | flags);
+ desc->private_data = map;
+}
+
+static void set_vma_desc_resv_flags(struct vm_area_desc *desc, unsigned long flags)
+{
+ VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags));
+ VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE);
+
+ desc->private_data = (void *)((unsigned long)desc->private_data | flags);
}
static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
@@ -1157,6 +1223,20 @@ static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
return (get_vma_private_data(vma) & flag) != 0;
}
+static bool is_vma_desc_resv_set(struct vm_area_desc *desc, unsigned long flag)
+{
+ VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags));
+
+ return ((unsigned long)desc->private_data) & flag;
+}
+
+bool __vma_private_lock(struct vm_area_struct *vma)
+{
+ return !(vma->vm_flags & VM_MAYSHARE) &&
+ get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
+ is_vma_resv_set(vma, HPAGE_RESV_OWNER);
+}
+
void hugetlb_dup_vma_private(struct vm_area_struct *vma)
{
VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
@@ -1184,7 +1264,7 @@ void hugetlb_dup_vma_private(struct vm_area_struct *vma)
/*
* Reset and decrement one ref on hugepage private reservation.
* Called with mm->mmap_lock writer semaphore held.
- * This function should be only used by move_vma() and operate on
+ * This function should be only used by mremap and operate on
* same sized vma. It should never come here with last ref on the
* reservation.
*/
@@ -1212,69 +1292,6 @@ void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
hugetlb_dup_vma_private(vma);
}
-/* Returns true if the VMA has associated reserve pages */
-static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
-{
- if (vma->vm_flags & VM_NORESERVE) {
- /*
- * This address is already reserved by other process(chg == 0),
- * so, we should decrement reserved count. Without decrementing,
- * reserve count remains after releasing inode, because this
- * allocated page will go into page cache and is regarded as
- * coming from reserved pool in releasing step. Currently, we
- * don't have any other solution to deal with this situation
- * properly, so add work-around here.
- */
- if (vma->vm_flags & VM_MAYSHARE && chg == 0)
- return true;
- else
- return false;
- }
-
- /* Shared mappings always use reserves */
- if (vma->vm_flags & VM_MAYSHARE) {
- /*
- * We know VM_NORESERVE is not set. Therefore, there SHOULD
- * be a region map for all pages. The only situation where
- * there is no region map is if a hole was punched via
- * fallocate. In this case, there really are no reserves to
- * use. This situation is indicated if chg != 0.
- */
- if (chg)
- return false;
- else
- return true;
- }
-
- /*
- * Only the process that called mmap() has reserves for
- * private mappings.
- */
- if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
- /*
- * Like the shared case above, a hole punch or truncate
- * could have been performed on the private mapping.
- * Examine the value of chg to determine if reserves
- * actually exist or were previously consumed.
- * Very Subtle - The value of chg comes from a previous
- * call to vma_needs_reserves(). The reserve map for
- * private mappings has different (opposite) semantics
- * than that of shared mappings. vma_needs_reserves()
- * has already taken this difference in semantics into
- * account. Therefore, the meaning of chg is the same
- * as in the shared case above. Code could easily be
- * combined, but keeping it separate draws attention to
- * subtle differences.
- */
- if (chg)
- return false;
- else
- return true;
- }
-
- return false;
-}
-
static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
{
int nid = folio_nid(folio);
@@ -1288,32 +1305,36 @@ static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
folio_set_hugetlb_freed(folio);
}
-static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
+static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
+ int nid)
{
- struct page *page;
+ struct folio *folio;
bool pin = !!(current->flags & PF_MEMALLOC_PIN);
lockdep_assert_held(&hugetlb_lock);
- list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
- if (pin && !is_longterm_pinnable_page(page))
+ list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
+ if (pin && !folio_is_longterm_pinnable(folio))
+ continue;
+
+ if (folio_test_hwpoison(folio))
continue;
- if (PageHWPoison(page))
+ if (is_migrate_isolate_page(&folio->page))
continue;
- list_move(&page->lru, &h->hugepage_activelist);
- set_page_refcounted(page);
- ClearHPageFreed(page);
+ list_move(&folio->lru, &h->hugepage_activelist);
+ folio_ref_unfreeze(folio, 1);
+ folio_clear_hugetlb_freed(folio);
h->free_huge_pages--;
h->free_huge_pages_node[nid]--;
- return page;
+ return folio;
}
return NULL;
}
-static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
- nodemask_t *nmask)
+static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
+ int nid, nodemask_t *nmask)
{
unsigned int cpuset_mems_cookie;
struct zonelist *zonelist;
@@ -1321,12 +1342,16 @@ static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask,
struct zoneref *z;
int node = NUMA_NO_NODE;
+ /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
+ if (nid == NUMA_NO_NODE)
+ nid = numa_node_id();
+
zonelist = node_zonelist(nid, gfp_mask);
retry_cpuset:
cpuset_mems_cookie = read_mems_allowed_begin();
for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
- struct page *page;
+ struct folio *folio;
if (!cpuset_zone_allowed(zone, gfp_mask))
continue;
@@ -1338,9 +1363,9 @@ retry_cpuset:
continue;
node = zone_to_nid(zone);
- page = dequeue_huge_page_node_exact(h, node);
- if (page)
- return page;
+ folio = dequeue_hugetlb_folio_node_exact(h, node);
+ if (folio)
+ return folio;
}
if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
goto retry_cpuset;
@@ -1353,247 +1378,102 @@ static unsigned long available_huge_pages(struct hstate *h)
return h->free_huge_pages - h->resv_huge_pages;
}
-static struct page *dequeue_huge_page_vma(struct hstate *h,
+static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
struct vm_area_struct *vma,
- unsigned long address, int avoid_reserve,
- long chg)
+ unsigned long address, long gbl_chg)
{
- struct page *page = NULL;
+ struct folio *folio = NULL;
struct mempolicy *mpol;
gfp_t gfp_mask;
nodemask_t *nodemask;
int nid;
/*
- * A child process with MAP_PRIVATE mappings created by their parent
- * have no page reserves. This check ensures that reservations are
- * not "stolen". The child may still get SIGKILLed
+ * gbl_chg==1 means the allocation requires a new page that was not
+ * reserved before. Making sure there's at least one free page.
*/
- if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
- goto err;
-
- /* If reserves cannot be used, ensure enough pages are in the pool */
- if (avoid_reserve && !available_huge_pages(h))
+ if (gbl_chg && !available_huge_pages(h))
goto err;
gfp_mask = htlb_alloc_mask(h);
nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
if (mpol_is_preferred_many(mpol)) {
- page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
+ folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
+ nid, nodemask);
/* Fallback to all nodes if page==NULL */
nodemask = NULL;
}
- if (!page)
- page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
-
- if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
- SetHPageRestoreReserve(page);
- h->resv_huge_pages--;
- }
+ if (!folio)
+ folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
+ nid, nodemask);
mpol_cond_put(mpol);
- return page;
+ return folio;
err:
return NULL;
}
-/*
- * common helper functions for hstate_next_node_to_{alloc|free}.
- * We may have allocated or freed a huge page based on a different
- * nodes_allowed previously, so h->next_node_to_{alloc|free} might
- * be outside of *nodes_allowed. Ensure that we use an allowed
- * node for alloc or free.
- */
-static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
-{
- nid = next_node_in(nid, *nodes_allowed);
- VM_BUG_ON(nid >= MAX_NUMNODES);
-
- return nid;
-}
-
-static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
-{
- if (!node_isset(nid, *nodes_allowed))
- nid = next_node_allowed(nid, nodes_allowed);
- return nid;
-}
-
-/*
- * returns the previously saved node ["this node"] from which to
- * allocate a persistent huge page for the pool and advance the
- * next node from which to allocate, handling wrap at end of node
- * mask.
- */
-static int hstate_next_node_to_alloc(struct hstate *h,
- nodemask_t *nodes_allowed)
-{
- int nid;
-
- VM_BUG_ON(!nodes_allowed);
-
- nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
- h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
-
- return nid;
-}
-
-/*
- * helper for remove_pool_huge_page() - return the previously saved
- * node ["this node"] from which to free a huge page. Advance the
- * next node id whether or not we find a free huge page to free so
- * that the next attempt to free addresses the next node.
- */
-static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
-{
- int nid;
-
- VM_BUG_ON(!nodes_allowed);
-
- nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
- h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
-
- return nid;
-}
-
-#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
- for (nr_nodes = nodes_weight(*mask); \
- nr_nodes > 0 && \
- ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
- nr_nodes--)
-
-#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
- for (nr_nodes = nodes_weight(*mask); \
- nr_nodes > 0 && \
- ((node = hstate_next_node_to_free(hs, mask)) || 1); \
- nr_nodes--)
-
-/* used to demote non-gigantic_huge pages as well */
-static void __destroy_compound_gigantic_folio(struct folio *folio,
- unsigned int order, bool demote)
-{
- int i;
- int nr_pages = 1 << order;
- struct page *p;
-
- atomic_set(folio_mapcount_ptr(folio), 0);
- atomic_set(folio_subpages_mapcount_ptr(folio), 0);
- atomic_set(folio_pincount_ptr(folio), 0);
-
- for (i = 1; i < nr_pages; i++) {
- p = folio_page(folio, i);
- p->mapping = NULL;
- clear_compound_head(p);
- if (!demote)
- set_page_refcounted(p);
- }
-
- folio_set_compound_order(folio, 0);
- __folio_clear_head(folio);
-}
-
-static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
- unsigned int order)
-{
- __destroy_compound_gigantic_folio(folio, order, true);
-}
-
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
-static void destroy_compound_gigantic_folio(struct folio *folio,
- unsigned int order)
-{
- __destroy_compound_gigantic_folio(folio, order, false);
-}
-
-static void free_gigantic_folio(struct folio *folio, unsigned int order)
-{
- /*
- * If the page isn't allocated using the cma allocator,
- * cma_release() returns false.
- */
-#ifdef CONFIG_CMA
- int nid = folio_nid(folio);
-
- if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
- return;
-#endif
-
- free_contig_range(folio_pfn(folio), 1 << order);
-}
-
#ifdef CONFIG_CONTIG_ALLOC
-static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
+static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask,
int nid, nodemask_t *nodemask)
{
- struct page *page;
- unsigned long nr_pages = pages_per_huge_page(h);
- if (nid == NUMA_NO_NODE)
- nid = numa_mem_id();
+ struct folio *folio;
+ bool retried = false;
-#ifdef CONFIG_CMA
- {
- int node;
+retry:
+ folio = hugetlb_cma_alloc_folio(order, gfp_mask, nid, nodemask);
+ if (!folio) {
+ if (hugetlb_cma_exclusive_alloc())
+ return NULL;
- if (hugetlb_cma[nid]) {
- page = cma_alloc(hugetlb_cma[nid], nr_pages,
- huge_page_order(h), true);
- if (page)
- return page_folio(page);
- }
+ folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
+ if (!folio)
+ return NULL;
+ }
- if (!(gfp_mask & __GFP_THISNODE)) {
- for_each_node_mask(node, *nodemask) {
- if (node == nid || !hugetlb_cma[node])
- continue;
+ if (folio_ref_freeze(folio, 1))
+ return folio;
- page = cma_alloc(hugetlb_cma[node], nr_pages,
- huge_page_order(h), true);
- if (page)
- return page_folio(page);
- }
- }
+ pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
+ hugetlb_free_folio(folio);
+ if (!retried) {
+ retried = true;
+ goto retry;
}
-#endif
-
- page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
- return page ? page_folio(page) : NULL;
+ return NULL;
}
#else /* !CONFIG_CONTIG_ALLOC */
-static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
- int nid, nodemask_t *nodemask)
+static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid,
+ nodemask_t *nodemask)
{
return NULL;
}
#endif /* CONFIG_CONTIG_ALLOC */
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
-static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
- int nid, nodemask_t *nodemask)
+static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid,
+ nodemask_t *nodemask)
{
return NULL;
}
-static inline void free_gigantic_folio(struct folio *folio,
- unsigned int order) { }
-static inline void destroy_compound_gigantic_folio(struct folio *folio,
- unsigned int order) { }
#endif
/*
- * Remove hugetlb folio from lists, and update dtor so that the folio appears
- * as just a compound page.
- *
- * A reference is held on the folio, except in the case of demote.
+ * Remove hugetlb folio from lists.
+ * If vmemmap exists for the folio, clear the hugetlb flag so that the
+ * folio appears as just a compound page. Otherwise, wait until after
+ * allocating vmemmap to clear the flag.
*
* Must be called with hugetlb lock held.
*/
-static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
- bool adjust_surplus,
- bool demote)
+void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
+ bool adjust_surplus)
{
int nid = folio_nid(folio);
@@ -1601,12 +1481,13 @@ static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
lockdep_assert_held(&hugetlb_lock);
- if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
+ if (hstate_is_gigantic_no_runtime(h))
return;
list_del(&folio->lru);
if (folio_test_hugetlb_freed(folio)) {
+ folio_clear_hugetlb_freed(folio);
h->free_huge_pages--;
h->free_huge_pages_node[nid]--;
}
@@ -1616,52 +1497,20 @@ static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
}
/*
- * Very subtle
- *
- * For non-gigantic pages set the destructor to the normal compound
- * page dtor. This is needed in case someone takes an additional
- * temporary ref to the page, and freeing is delayed until they drop
- * their reference.
- *
- * For gigantic pages set the destructor to the null dtor. This
- * destructor will never be called. Before freeing the gigantic
- * page destroy_compound_gigantic_folio will turn the folio into a
- * simple group of pages. After this the destructor does not
- * apply.
- *
- * This handles the case where more than one ref is held when and
- * after update_and_free_hugetlb_folio is called.
- *
- * In the case of demote we do not ref count the page as it will soon
- * be turned into a page of smaller size.
+ * We can only clear the hugetlb flag after allocating vmemmap
+ * pages. Otherwise, someone (memory error handling) may try to write
+ * to tail struct pages.
*/
- if (!demote)
- folio_ref_unfreeze(folio, 1);
- if (hstate_is_gigantic(h))
- folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
- else
- folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
+ if (!folio_test_hugetlb_vmemmap_optimized(folio))
+ __folio_clear_hugetlb(folio);
h->nr_huge_pages--;
h->nr_huge_pages_node[nid]--;
}
-static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
- bool adjust_surplus)
-{
- __remove_hugetlb_folio(h, folio, adjust_surplus, false);
-}
-
-static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
- bool adjust_surplus)
-{
- __remove_hugetlb_folio(h, folio, adjust_surplus, true);
-}
-
-static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
- bool adjust_surplus)
+void add_hugetlb_folio(struct hstate *h, struct folio *folio,
+ bool adjust_surplus)
{
- int zeroed;
int nid = folio_nid(folio);
VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
@@ -1677,7 +1526,7 @@ static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
h->surplus_huge_pages_node[nid]++;
}
- folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
+ __folio_set_hugetlb(folio);
folio_change_private(folio, NULL);
/*
* We have to set hugetlb_vmemmap_optimized again as above
@@ -1685,32 +1534,16 @@ static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
*/
folio_set_hugetlb_vmemmap_optimized(folio);
- /*
- * This folio is about to be managed by the hugetlb allocator and
- * should have no users. Drop our reference, and check for others
- * just in case.
- */
- zeroed = folio_put_testzero(folio);
- if (unlikely(!zeroed))
- /*
- * It is VERY unlikely soneone else has taken a ref on
- * the page. In this case, we simply return as the
- * hugetlb destructor (free_huge_page) will be called
- * when this other ref is dropped.
- */
- return;
-
- arch_clear_hugepage_flags(&folio->page);
+ arch_clear_hugetlb_flags(folio);
enqueue_hugetlb_folio(h, folio);
}
-static void __update_and_free_page(struct hstate *h, struct page *page)
+static void __update_and_free_hugetlb_folio(struct hstate *h,
+ struct folio *folio)
{
- int i;
- struct folio *folio = page_folio(page);
- struct page *subpage;
+ bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
- if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
+ if (hstate_is_gigantic_no_runtime(h))
return;
/*
@@ -1720,7 +1553,12 @@ static void __update_and_free_page(struct hstate *h, struct page *page)
if (folio_test_hugetlb_raw_hwp_unreliable(folio))
return;
- if (hugetlb_vmemmap_restore(h, page)) {
+ /*
+ * If folio is not vmemmap optimized (!clear_flag), then the folio
+ * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
+ * can only be passed hugetlb pages and will BUG otherwise.
+ */
+ if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
spin_lock_irq(&hugetlb_lock);
/*
* If we cannot allocate vmemmap pages, just refuse to free the
@@ -1733,31 +1571,25 @@ static void __update_and_free_page(struct hstate *h, struct page *page)
}
/*
+ * If vmemmap pages were allocated above, then we need to clear the
+ * hugetlb flag under the hugetlb lock.
+ */
+ if (folio_test_hugetlb(folio)) {
+ spin_lock_irq(&hugetlb_lock);
+ __folio_clear_hugetlb(folio);
+ spin_unlock_irq(&hugetlb_lock);
+ }
+
+ /*
* Move PageHWPoison flag from head page to the raw error pages,
* which makes any healthy subpages reusable.
*/
if (unlikely(folio_test_hwpoison(folio)))
- hugetlb_clear_page_hwpoison(&folio->page);
+ folio_clear_hugetlb_hwpoison(folio);
- for (i = 0; i < pages_per_huge_page(h); i++) {
- subpage = folio_page(folio, i);
- subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
- 1 << PG_referenced | 1 << PG_dirty |
- 1 << PG_active | 1 << PG_private |
- 1 << PG_writeback);
- }
+ folio_ref_unfreeze(folio, 1);
- /*
- * Non-gigantic pages demoted from CMA allocated gigantic pages
- * need to be given back to CMA in free_gigantic_folio.
- */
- if (hstate_is_gigantic(h) ||
- hugetlb_cma_folio(folio, huge_page_order(h))) {
- destroy_compound_gigantic_folio(folio, huge_page_order(h));
- free_gigantic_folio(folio, huge_page_order(h));
- } else {
- __free_pages(page, huge_page_order(h));
- }
+ hugetlb_free_folio(folio);
}
/*
@@ -1780,23 +1612,22 @@ static void free_hpage_workfn(struct work_struct *work)
node = llist_del_all(&hpage_freelist);
while (node) {
- struct page *page;
+ struct folio *folio;
struct hstate *h;
- page = container_of((struct address_space **)node,
- struct page, mapping);
+ folio = container_of((struct address_space **)node,
+ struct folio, mapping);
node = node->next;
- page->mapping = NULL;
+ folio->mapping = NULL;
/*
- * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
- * is going to trigger because a previous call to
- * remove_hugetlb_folio() will call folio_set_compound_dtor
- * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
- * directly.
+ * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
+ * folio_hstate() is going to trigger because a previous call to
+ * remove_hugetlb_folio() will clear the hugetlb bit, so do
+ * not use folio_hstate() directly.
*/
- h = size_to_hstate(page_size(page));
+ h = size_to_hstate(folio_size(folio));
- __update_and_free_page(h, page);
+ __update_and_free_hugetlb_folio(h, folio);
cond_resched();
}
@@ -1813,7 +1644,7 @@ static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
bool atomic)
{
if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
- __update_and_free_page(h, &folio->page);
+ __update_and_free_hugetlb_folio(h, folio);
return;
}
@@ -1828,13 +1659,93 @@ static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
schedule_work(&free_hpage_work);
}
-static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
+static void bulk_vmemmap_restore_error(struct hstate *h,
+ struct list_head *folio_list,
+ struct list_head *non_hvo_folios)
{
- struct page *page, *t_page;
- struct folio *folio;
+ struct folio *folio, *t_folio;
+
+ if (!list_empty(non_hvo_folios)) {
+ /*
+ * Free any restored hugetlb pages so that restore of the
+ * entire list can be retried.
+ * The idea is that in the common case of ENOMEM errors freeing
+ * hugetlb pages with vmemmap we will free up memory so that we
+ * can allocate vmemmap for more hugetlb pages.
+ */
+ list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
+ list_del(&folio->lru);
+ spin_lock_irq(&hugetlb_lock);
+ __folio_clear_hugetlb(folio);
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_hugetlb_folio(h, folio, false);
+ cond_resched();
+ }
+ } else {
+ /*
+ * In the case where there are no folios which can be
+ * immediately freed, we loop through the list trying to restore
+ * vmemmap individually in the hope that someone elsewhere may
+ * have done something to cause success (such as freeing some
+ * memory). If unable to restore a hugetlb page, the hugetlb
+ * page is made a surplus page and removed from the list.
+ * If are able to restore vmemmap and free one hugetlb page, we
+ * quit processing the list to retry the bulk operation.
+ */
+ list_for_each_entry_safe(folio, t_folio, folio_list, lru)
+ if (hugetlb_vmemmap_restore_folio(h, folio)) {
+ list_del(&folio->lru);
+ spin_lock_irq(&hugetlb_lock);
+ add_hugetlb_folio(h, folio, true);
+ spin_unlock_irq(&hugetlb_lock);
+ } else {
+ list_del(&folio->lru);
+ spin_lock_irq(&hugetlb_lock);
+ __folio_clear_hugetlb(folio);
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_hugetlb_folio(h, folio, false);
+ cond_resched();
+ break;
+ }
+ }
+}
+
+static void update_and_free_pages_bulk(struct hstate *h,
+ struct list_head *folio_list)
+{
+ long ret;
+ struct folio *folio, *t_folio;
+ LIST_HEAD(non_hvo_folios);
+
+ /*
+ * First allocate required vmemmmap (if necessary) for all folios.
+ * Carefully handle errors and free up any available hugetlb pages
+ * in an effort to make forward progress.
+ */
+retry:
+ ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
+ if (ret < 0) {
+ bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
+ goto retry;
+ }
+
+ /*
+ * At this point, list should be empty, ret should be >= 0 and there
+ * should only be pages on the non_hvo_folios list.
+ * Do note that the non_hvo_folios list could be empty.
+ * Without HVO enabled, ret will be 0 and there is no need to call
+ * __folio_clear_hugetlb as this was done previously.
+ */
+ VM_WARN_ON(!list_empty(folio_list));
+ VM_WARN_ON(ret < 0);
+ if (!list_empty(&non_hvo_folios) && ret) {
+ spin_lock_irq(&hugetlb_lock);
+ list_for_each_entry(folio, &non_hvo_folios, lru)
+ __folio_clear_hugetlb(folio);
+ spin_unlock_irq(&hugetlb_lock);
+ }
- list_for_each_entry_safe(page, t_page, list, lru) {
- folio = page_folio(page);
+ list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
update_and_free_hugetlb_folio(h, folio, false);
cond_resched();
}
@@ -1851,13 +1762,12 @@ struct hstate *size_to_hstate(unsigned long size)
return NULL;
}
-void free_huge_page(struct page *page)
+void free_huge_folio(struct folio *folio)
{
/*
* Can't pass hstate in here because it is called from the
- * compound page destructor.
+ * generic mm code.
*/
- struct folio *folio = page_folio(page);
struct hstate *h = folio_hstate(folio);
int nid = folio_nid(folio);
struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
@@ -1899,6 +1809,8 @@ void free_huge_page(struct page *page)
pages_per_huge_page(h), folio);
hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
pages_per_huge_page(h), folio);
+ lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
+ mem_cgroup_uncharge(folio);
if (restore_reserve)
h->resv_huge_pages++;
@@ -1912,7 +1824,7 @@ void free_huge_page(struct page *page)
spin_unlock_irqrestore(&hugetlb_lock, flags);
update_and_free_hugetlb_folio(h, folio, true);
} else {
- arch_clear_hugepage_flags(page);
+ arch_clear_hugetlb_flags(folio);
enqueue_hugetlb_folio(h, folio);
spin_unlock_irqrestore(&hugetlb_lock, flags);
}
@@ -1921,160 +1833,32 @@ void free_huge_page(struct page *page)
/*
* Must be called with the hugetlb lock held
*/
-static void __prep_account_new_huge_page(struct hstate *h, int nid)
+static void account_new_hugetlb_folio(struct hstate *h, struct folio *folio)
{
lockdep_assert_held(&hugetlb_lock);
h->nr_huge_pages++;
- h->nr_huge_pages_node[nid]++;
+ h->nr_huge_pages_node[folio_nid(folio)]++;
}
-static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
+void init_new_hugetlb_folio(struct folio *folio)
{
- hugetlb_vmemmap_optimize(h, &folio->page);
+ __folio_set_hugetlb(folio);
INIT_LIST_HEAD(&folio->lru);
- folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
hugetlb_set_folio_subpool(folio, NULL);
set_hugetlb_cgroup(folio, NULL);
set_hugetlb_cgroup_rsvd(folio, NULL);
}
-static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
-{
- __prep_new_hugetlb_folio(h, folio);
- spin_lock_irq(&hugetlb_lock);
- __prep_account_new_huge_page(h, nid);
- spin_unlock_irq(&hugetlb_lock);
-}
-
-static bool __prep_compound_gigantic_folio(struct folio *folio,
- unsigned int order, bool demote)
-{
- int i, j;
- int nr_pages = 1 << order;
- struct page *p;
-
- __folio_clear_reserved(folio);
- __folio_set_head(folio);
- /* we rely on prep_new_hugetlb_folio to set the destructor */
- folio_set_compound_order(folio, order);
- for (i = 0; i < nr_pages; i++) {
- p = folio_page(folio, i);
-
- /*
- * For gigantic hugepages allocated through bootmem at
- * boot, it's safer to be consistent with the not-gigantic
- * hugepages and clear the PG_reserved bit from all tail pages
- * too. Otherwise drivers using get_user_pages() to access tail
- * pages may get the reference counting wrong if they see
- * PG_reserved set on a tail page (despite the head page not
- * having PG_reserved set). Enforcing this consistency between
- * head and tail pages allows drivers to optimize away a check
- * on the head page when they need know if put_page() is needed
- * after get_user_pages().
- */
- if (i != 0) /* head page cleared above */
- __ClearPageReserved(p);
- /*
- * Subtle and very unlikely
- *
- * Gigantic 'page allocators' such as memblock or cma will
- * return a set of pages with each page ref counted. We need
- * to turn this set of pages into a compound page with tail
- * page ref counts set to zero. Code such as speculative page
- * cache adding could take a ref on a 'to be' tail page.
- * We need to respect any increased ref count, and only set
- * the ref count to zero if count is currently 1. If count
- * is not 1, we return an error. An error return indicates
- * the set of pages can not be converted to a gigantic page.
- * The caller who allocated the pages should then discard the
- * pages using the appropriate free interface.
- *
- * In the case of demote, the ref count will be zero.
- */
- if (!demote) {
- if (!page_ref_freeze(p, 1)) {
- pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
- goto out_error;
- }
- } else {
- VM_BUG_ON_PAGE(page_count(p), p);
- }
- if (i != 0)
- set_compound_head(p, &folio->page);
- }
- atomic_set(folio_mapcount_ptr(folio), -1);
- atomic_set(folio_subpages_mapcount_ptr(folio), 0);
- atomic_set(folio_pincount_ptr(folio), 0);
- return true;
-
-out_error:
- /* undo page modifications made above */
- for (j = 0; j < i; j++) {
- p = folio_page(folio, j);
- if (j != 0)
- clear_compound_head(p);
- set_page_refcounted(p);
- }
- /* need to clear PG_reserved on remaining tail pages */
- for (; j < nr_pages; j++) {
- p = folio_page(folio, j);
- __ClearPageReserved(p);
- }
- folio_set_compound_order(folio, 0);
- __folio_clear_head(folio);
- return false;
-}
-
-static bool prep_compound_gigantic_folio(struct folio *folio,
- unsigned int order)
-{
- return __prep_compound_gigantic_folio(folio, order, false);
-}
-
-static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
- unsigned int order)
-{
- return __prep_compound_gigantic_folio(folio, order, true);
-}
-
-/*
- * PageHuge() only returns true for hugetlbfs pages, but not for normal or
- * transparent huge pages. See the PageTransHuge() documentation for more
- * details.
- */
-int PageHuge(struct page *page)
-{
- if (!PageCompound(page))
- return 0;
-
- page = compound_head(page);
- return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
-}
-EXPORT_SYMBOL_GPL(PageHuge);
-
-/*
- * PageHeadHuge() only returns true for hugetlbfs head page, but not for
- * normal or transparent huge pages.
- */
-int PageHeadHuge(struct page *page_head)
-{
- if (!PageHead(page_head))
- return 0;
-
- return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
-}
-EXPORT_SYMBOL_GPL(PageHeadHuge);
-
/*
* Find and lock address space (mapping) in write mode.
*
- * Upon entry, the page is locked which means that page_mapping() is
+ * Upon entry, the folio is locked which means that folio_mapping() is
* stable. Due to locking order, we can only trylock_write. If we can
* not get the lock, simply return NULL to caller.
*/
-struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
+struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
{
- struct address_space *mapping = page_mapping(hpage);
+ struct address_space *mapping = folio_mapping(folio);
if (!mapping)
return mapping;
@@ -2085,145 +1869,129 @@ struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
return NULL;
}
-pgoff_t hugetlb_basepage_index(struct page *page)
-{
- struct page *page_head = compound_head(page);
- pgoff_t index = page_index(page_head);
- unsigned long compound_idx;
-
- if (compound_order(page_head) >= MAX_ORDER)
- compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
- else
- compound_idx = page - page_head;
-
- return (index << compound_order(page_head)) + compound_idx;
-}
-
-static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
- gfp_t gfp_mask, int nid, nodemask_t *nmask,
- nodemask_t *node_alloc_noretry)
+static struct folio *alloc_buddy_hugetlb_folio(int order, gfp_t gfp_mask,
+ int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry)
{
- int order = huge_page_order(h);
- struct page *page;
+ struct folio *folio;
bool alloc_try_hard = true;
- bool retry = true;
/*
- * By default we always try hard to allocate the page with
- * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
+ * By default we always try hard to allocate the folio with
+ * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
* a loop (to adjust global huge page counts) and previous allocation
* failed, do not continue to try hard on the same node. Use the
* node_alloc_noretry bitmap to manage this state information.
*/
if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
alloc_try_hard = false;
- gfp_mask |= __GFP_COMP|__GFP_NOWARN;
if (alloc_try_hard)
gfp_mask |= __GFP_RETRY_MAYFAIL;
- if (nid == NUMA_NO_NODE)
- nid = numa_mem_id();
-retry:
- page = __alloc_pages(gfp_mask, order, nid, nmask);
- /* Freeze head page */
- if (page && !page_ref_freeze(page, 1)) {
- __free_pages(page, order);
- if (retry) { /* retry once */
- retry = false;
- goto retry;
- }
- /* WOW! twice in a row. */
- pr_warn("HugeTLB head page unexpected inflated ref count\n");
- page = NULL;
- }
+ folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask);
/*
- * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
- * indicates an overall state change. Clear bit so that we resume
- * normal 'try hard' allocations.
+ * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
+ * folio this indicates an overall state change. Clear bit so
+ * that we resume normal 'try hard' allocations.
*/
- if (node_alloc_noretry && page && !alloc_try_hard)
+ if (node_alloc_noretry && folio && !alloc_try_hard)
node_clear(nid, *node_alloc_noretry);
/*
- * If we tried hard to get a page but failed, set bit so that
+ * If we tried hard to get a folio but failed, set bit so that
* subsequent attempts will not try as hard until there is an
* overall state change.
*/
- if (node_alloc_noretry && !page && alloc_try_hard)
+ if (node_alloc_noretry && !folio && alloc_try_hard)
node_set(nid, *node_alloc_noretry);
- if (!page) {
+ if (!folio) {
__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
return NULL;
}
__count_vm_event(HTLB_BUDDY_PGALLOC);
- return page_folio(page);
+ return folio;
}
-/*
- * Common helper to allocate a fresh hugetlb page. All specific allocators
- * should use this function to get new hugetlb pages
- *
- * Note that returned page is 'frozen': ref count of head page and all tail
- * pages is zero.
- */
-static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
+static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
gfp_t gfp_mask, int nid, nodemask_t *nmask,
nodemask_t *node_alloc_noretry)
{
struct folio *folio;
- bool retry = false;
+ int order = huge_page_order(h);
-retry:
- if (hstate_is_gigantic(h))
- folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
- else
- folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
- nid, nmask, node_alloc_noretry);
- if (!folio)
- return NULL;
- if (hstate_is_gigantic(h)) {
- if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
- /*
- * Rare failure to convert pages to compound page.
- * Free pages and try again - ONCE!
- */
- free_gigantic_folio(folio, huge_page_order(h));
- if (!retry) {
- retry = true;
- goto retry;
- }
- return NULL;
- }
- }
- prep_new_hugetlb_folio(h, folio, folio_nid(folio));
+ if (nid == NUMA_NO_NODE)
+ nid = numa_mem_id();
+ if (order_is_gigantic(order))
+ folio = alloc_gigantic_folio(order, gfp_mask, nid, nmask);
+ else
+ folio = alloc_buddy_hugetlb_folio(order, gfp_mask, nid, nmask,
+ node_alloc_noretry);
+ if (folio)
+ init_new_hugetlb_folio(folio);
return folio;
}
/*
- * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
- * manner.
+ * Common helper to allocate a fresh hugetlb folio. All specific allocators
+ * should use this function to get new hugetlb folio
+ *
+ * Note that returned folio is 'frozen': ref count of head page and all tail
+ * pages is zero, and the accounting must be done in the caller.
*/
-static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
- nodemask_t *node_alloc_noretry)
+static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
+ gfp_t gfp_mask, int nid, nodemask_t *nmask)
{
struct folio *folio;
- int nr_nodes, node;
+
+ folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
+ if (folio)
+ hugetlb_vmemmap_optimize_folio(h, folio);
+ return folio;
+}
+
+void prep_and_add_allocated_folios(struct hstate *h,
+ struct list_head *folio_list)
+{
+ unsigned long flags;
+ struct folio *folio, *tmp_f;
+
+ /* Send list for bulk vmemmap optimization processing */
+ hugetlb_vmemmap_optimize_folios(h, folio_list);
+
+ /* Add all new pool pages to free lists in one lock cycle */
+ spin_lock_irqsave(&hugetlb_lock, flags);
+ list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
+ account_new_hugetlb_folio(h, folio);
+ enqueue_hugetlb_folio(h, folio);
+ }
+ spin_unlock_irqrestore(&hugetlb_lock, flags);
+}
+
+/*
+ * Allocates a fresh hugetlb page in a node interleaved manner. The page
+ * will later be added to the appropriate hugetlb pool.
+ */
+static struct folio *alloc_pool_huge_folio(struct hstate *h,
+ nodemask_t *nodes_allowed,
+ nodemask_t *node_alloc_noretry,
+ int *next_node)
+{
gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
+ int nr_nodes, node;
- for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
- folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
+ for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
+ struct folio *folio;
+
+ folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
nodes_allowed, node_alloc_noretry);
- if (folio) {
- free_huge_page(&folio->page); /* free it into the hugepage allocator */
- return 1;
- }
+ if (folio)
+ return folio;
}
- return 0;
+ return NULL;
}
/*
@@ -2233,13 +2001,11 @@ static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
* an additional call to free the page to low level allocators.
* Called with hugetlb_lock locked.
*/
-static struct page *remove_pool_huge_page(struct hstate *h,
- nodemask_t *nodes_allowed,
- bool acct_surplus)
+static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
+ nodemask_t *nodes_allowed, bool acct_surplus)
{
int nr_nodes, node;
- struct page *page = NULL;
- struct folio *folio;
+ struct folio *folio = NULL;
lockdep_assert_held(&hugetlb_lock);
for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
@@ -2249,20 +2015,19 @@ static struct page *remove_pool_huge_page(struct hstate *h,
*/
if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
!list_empty(&h->hugepage_freelists[node])) {
- page = list_entry(h->hugepage_freelists[node].next,
- struct page, lru);
- folio = page_folio(page);
+ folio = list_entry(h->hugepage_freelists[node].next,
+ struct folio, lru);
remove_hugetlb_folio(h, folio, acct_surplus);
break;
}
}
- return page;
+ return folio;
}
/*
- * Dissolve a given free hugepage into free buddy pages. This function does
- * nothing for in-use hugepages and non-hugepages.
+ * Dissolve a given free hugetlb folio into free buddy pages. This function
+ * does nothing for in-use hugetlb folios and non-hugetlb folios.
* This function returns values like below:
*
* -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
@@ -2274,10 +2039,9 @@ static struct page *remove_pool_huge_page(struct hstate *h,
* 0: successfully dissolved free hugepages or the page is not a
* hugepage (considered as already dissolved)
*/
-int dissolve_free_huge_page(struct page *page)
+int dissolve_free_hugetlb_folio(struct folio *folio)
{
int rc = -EBUSY;
- struct folio *folio = page_folio(page);
retry:
/* Not to disrupt normal path by vainly holding hugetlb_lock */
@@ -2292,6 +2056,8 @@ retry:
if (!folio_ref_count(folio)) {
struct hstate *h = folio_hstate(folio);
+ bool adjust_surplus = false;
+
if (!available_huge_pages(h))
goto out;
@@ -2314,7 +2080,9 @@ retry:
goto retry;
}
- remove_hugetlb_folio(h, folio, false);
+ if (h->surplus_huge_pages_node[folio_nid(folio)])
+ adjust_surplus = true;
+ remove_hugetlb_folio(h, folio, adjust_surplus);
h->max_huge_pages--;
spin_unlock_irq(&hugetlb_lock);
@@ -2325,17 +2093,23 @@ retry:
* need to adjust max_huge_pages if the page is not freed.
* Attempt to allocate vmemmmap here so that we can take
* appropriate action on failure.
+ *
+ * The folio_test_hugetlb check here is because
+ * remove_hugetlb_folio will clear hugetlb folio flag for
+ * non-vmemmap optimized hugetlb folios.
*/
- rc = hugetlb_vmemmap_restore(h, &folio->page);
- if (!rc) {
- update_and_free_hugetlb_folio(h, folio, false);
- } else {
- spin_lock_irq(&hugetlb_lock);
- add_hugetlb_folio(h, folio, false);
- h->max_huge_pages++;
- spin_unlock_irq(&hugetlb_lock);
- }
+ if (folio_test_hugetlb(folio)) {
+ rc = hugetlb_vmemmap_restore_folio(h, folio);
+ if (rc) {
+ spin_lock_irq(&hugetlb_lock);
+ add_hugetlb_folio(h, folio, adjust_surplus);
+ h->max_huge_pages++;
+ goto out;
+ }
+ } else
+ rc = 0;
+ update_and_free_hugetlb_folio(h, folio, false);
return rc;
}
out:
@@ -2348,13 +2122,13 @@ out:
* make specified memory blocks removable from the system.
* Note that this will dissolve a free gigantic hugepage completely, if any
* part of it lies within the given range.
- * Also note that if dissolve_free_huge_page() returns with an error, all
- * free hugepages that were dissolved before that error are lost.
+ * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
+ * free hugetlb folios that were dissolved before that error are lost.
*/
-int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
+int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
- struct page *page;
+ struct folio *folio;
int rc = 0;
unsigned int order;
struct hstate *h;
@@ -2367,8 +2141,8 @@ int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
order = min(order, huge_page_order(h));
for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
- page = pfn_to_page(pfn);
- rc = dissolve_free_huge_page(page);
+ folio = pfn_folio(pfn);
+ rc = dissolve_free_hugetlb_folio(folio);
if (rc)
break;
}
@@ -2379,12 +2153,12 @@ int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
/*
* Allocates a fresh surplus page from the page allocator.
*/
-static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
- int nid, nodemask_t *nmask)
+static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
+ gfp_t gfp_mask, int nid, nodemask_t *nmask)
{
struct folio *folio = NULL;
- if (hstate_is_gigantic(h))
+ if (hstate_is_gigantic_no_runtime(h))
return NULL;
spin_lock_irq(&hugetlb_lock);
@@ -2392,22 +2166,29 @@ static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
goto out_unlock;
spin_unlock_irq(&hugetlb_lock);
- folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
+ folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
if (!folio)
return NULL;
spin_lock_irq(&hugetlb_lock);
/*
+ * nr_huge_pages needs to be adjusted within the same lock cycle
+ * as surplus_pages, otherwise it might confuse
+ * persistent_huge_pages() momentarily.
+ */
+ account_new_hugetlb_folio(h, folio);
+
+ /*
* We could have raced with the pool size change.
* Double check that and simply deallocate the new page
* if we would end up overcommiting the surpluses. Abuse
- * temporary page to workaround the nasty free_huge_page
+ * temporary page to workaround the nasty free_huge_folio
* codeflow
*/
if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
folio_set_hugetlb_temporary(folio);
spin_unlock_irq(&hugetlb_lock);
- free_huge_page(&folio->page);
+ free_huge_folio(folio);
return NULL;
}
@@ -2417,10 +2198,10 @@ static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
out_unlock:
spin_unlock_irq(&hugetlb_lock);
- return &folio->page;
+ return folio;
}
-static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
+static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
int nid, nodemask_t *nmask)
{
struct folio *folio;
@@ -2428,10 +2209,14 @@ static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
if (hstate_is_gigantic(h))
return NULL;
- folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
+ folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
if (!folio)
return NULL;
+ spin_lock_irq(&hugetlb_lock);
+ account_new_hugetlb_folio(h, folio);
+ spin_unlock_irq(&hugetlb_lock);
+
/* fresh huge pages are frozen */
folio_ref_unfreeze(folio, 1);
/*
@@ -2440,17 +2225,17 @@ static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
*/
folio_set_hugetlb_temporary(folio);
- return &folio->page;
+ return folio;
}
/*
* Use the VMA's mpolicy to allocate a huge page from the buddy.
*/
static
-struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
+struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
struct vm_area_struct *vma, unsigned long addr)
{
- struct page *page = NULL;
+ struct folio *folio = NULL;
struct mempolicy *mpol;
gfp_t gfp_mask = htlb_alloc_mask(h);
int nid;
@@ -2458,56 +2243,79 @@ struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
if (mpol_is_preferred_many(mpol)) {
- gfp_t gfp = gfp_mask | __GFP_NOWARN;
+ gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
- gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
- page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
+ folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
/* Fallback to all nodes if page==NULL */
nodemask = NULL;
}
- if (!page)
- page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
+ if (!folio)
+ folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
mpol_cond_put(mpol);
- return page;
+ return folio;
}
-/* page migration callback function */
-struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
+struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
nodemask_t *nmask, gfp_t gfp_mask)
{
+ struct folio *folio;
+
+ spin_lock_irq(&hugetlb_lock);
+ if (!h->resv_huge_pages) {
+ spin_unlock_irq(&hugetlb_lock);
+ return NULL;
+ }
+
+ folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
+ nmask);
+ if (folio)
+ h->resv_huge_pages--;
+
+ spin_unlock_irq(&hugetlb_lock);
+ return folio;
+}
+
+/* folio migration callback function */
+struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
+ nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
+{
spin_lock_irq(&hugetlb_lock);
if (available_huge_pages(h)) {
- struct page *page;
+ struct folio *folio;
- page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
- if (page) {
+ folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
+ preferred_nid, nmask);
+ if (folio) {
spin_unlock_irq(&hugetlb_lock);
- return page;
+ return folio;
}
}
spin_unlock_irq(&hugetlb_lock);
- return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
+ /* We cannot fallback to other nodes, as we could break the per-node pool. */
+ if (!allow_alloc_fallback)
+ gfp_mask |= __GFP_THISNODE;
+
+ return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
}
-/* mempolicy aware migration callback */
-struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
- unsigned long address)
+static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
{
- struct mempolicy *mpol;
- nodemask_t *nodemask;
- struct page *page;
- gfp_t gfp_mask;
- int node;
-
- gfp_mask = htlb_alloc_mask(h);
- node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
- page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
- mpol_cond_put(mpol);
+#ifdef CONFIG_NUMA
+ struct mempolicy *mpol = get_task_policy(current);
- return page;
+ /*
+ * Only enforce MPOL_BIND policy which overlaps with cpuset policy
+ * (from policy_nodemask) specifically for hugetlb case
+ */
+ if (mpol->mode == MPOL_BIND &&
+ (apply_policy_zone(mpol, gfp_zone(gfp)) &&
+ cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
+ return &mpol->nodes;
+#endif
+ return NULL;
}
/*
@@ -2518,11 +2326,18 @@ static int gather_surplus_pages(struct hstate *h, long delta)
__must_hold(&hugetlb_lock)
{
LIST_HEAD(surplus_list);
- struct page *page, *tmp;
+ struct folio *folio, *tmp;
int ret;
long i;
long needed, allocated;
bool alloc_ok = true;
+ nodemask_t *mbind_nodemask, alloc_nodemask;
+
+ mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
+ if (mbind_nodemask)
+ nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
+ else
+ alloc_nodemask = cpuset_current_mems_allowed;
lockdep_assert_held(&hugetlb_lock);
needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
@@ -2537,13 +2352,19 @@ static int gather_surplus_pages(struct hstate *h, long delta)
retry:
spin_unlock_irq(&hugetlb_lock);
for (i = 0; i < needed; i++) {
- page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
- NUMA_NO_NODE, NULL);
- if (!page) {
+ folio = NULL;
+
+ /*
+ * It is okay to use NUMA_NO_NODE because we use numa_mem_id()
+ * down the road to pick the current node if that is the case.
+ */
+ folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
+ NUMA_NO_NODE, &alloc_nodemask);
+ if (!folio) {
alloc_ok = false;
break;
}
- list_add(&page->lru, &surplus_list);
+ list_add(&folio->lru, &surplus_list);
cond_resched();
}
allocated += i;
@@ -2578,21 +2399,21 @@ retry:
ret = 0;
/* Free the needed pages to the hugetlb pool */
- list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
+ list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
if ((--needed) < 0)
break;
/* Add the page to the hugetlb allocator */
- enqueue_hugetlb_folio(h, page_folio(page));
+ enqueue_hugetlb_folio(h, folio);
}
free:
spin_unlock_irq(&hugetlb_lock);
/*
* Free unnecessary surplus pages to the buddy allocator.
- * Pages have no ref count, call free_huge_page directly.
+ * Pages have no ref count, call free_huge_folio directly.
*/
- list_for_each_entry_safe(page, tmp, &surplus_list, lru)
- free_huge_page(page);
+ list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
+ free_huge_folio(folio);
spin_lock_irq(&hugetlb_lock);
return ret;
@@ -2610,14 +2431,13 @@ static void return_unused_surplus_pages(struct hstate *h,
unsigned long unused_resv_pages)
{
unsigned long nr_pages;
- struct page *page;
LIST_HEAD(page_list);
lockdep_assert_held(&hugetlb_lock);
/* Uncommit the reservation */
h->resv_huge_pages -= unused_resv_pages;
- if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
+ if (hstate_is_gigantic_no_runtime(h))
goto out;
/*
@@ -2631,15 +2451,17 @@ static void return_unused_surplus_pages(struct hstate *h,
* evenly across all nodes with memory. Iterate across these nodes
* until we can no longer free unreserved surplus pages. This occurs
* when the nodes with surplus pages have no free pages.
- * remove_pool_huge_page() will balance the freed pages across the
+ * remove_pool_hugetlb_folio() will balance the freed pages across the
* on-line nodes with memory and will handle the hstate accounting.
*/
while (nr_pages--) {
- page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
- if (!page)
+ struct folio *folio;
+
+ folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
+ if (!folio)
goto out;
- list_add(&page->lru, &page_list);
+ list_add(&folio->lru, &page_list);
}
out:
@@ -2797,43 +2619,43 @@ static long vma_del_reservation(struct hstate *h,
/*
* This routine is called to restore reservation information on error paths.
- * It should ONLY be called for pages allocated via alloc_huge_page(), and
- * the hugetlb mutex should remain held when calling this routine.
+ * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
+ * and the hugetlb mutex should remain held when calling this routine.
*
* It handles two specific cases:
- * 1) A reservation was in place and the page consumed the reservation.
- * HPageRestoreReserve is set in the page.
- * 2) No reservation was in place for the page, so HPageRestoreReserve is
- * not set. However, alloc_huge_page always updates the reserve map.
+ * 1) A reservation was in place and the folio consumed the reservation.
+ * hugetlb_restore_reserve is set in the folio.
+ * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
+ * not set. However, alloc_hugetlb_folio always updates the reserve map.
*
- * In case 1, free_huge_page later in the error path will increment the
- * global reserve count. But, free_huge_page does not have enough context
+ * In case 1, free_huge_folio later in the error path will increment the
+ * global reserve count. But, free_huge_folio does not have enough context
* to adjust the reservation map. This case deals primarily with private
* mappings. Adjust the reserve map here to be consistent with global
- * reserve count adjustments to be made by free_huge_page. Make sure the
+ * reserve count adjustments to be made by free_huge_folio. Make sure the
* reserve map indicates there is a reservation present.
*
- * In case 2, simply undo reserve map modifications done by alloc_huge_page.
+ * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
*/
void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
- unsigned long address, struct page *page)
+ unsigned long address, struct folio *folio)
{
long rc = vma_needs_reservation(h, vma, address);
- if (HPageRestoreReserve(page)) {
+ if (folio_test_hugetlb_restore_reserve(folio)) {
if (unlikely(rc < 0))
/*
* Rare out of memory condition in reserve map
- * manipulation. Clear HPageRestoreReserve so that
- * global reserve count will not be incremented
- * by free_huge_page. This will make it appear
- * as though the reservation for this page was
+ * manipulation. Clear hugetlb_restore_reserve so
+ * that global reserve count will not be incremented
+ * by free_huge_folio. This will make it appear
+ * as though the reservation for this folio was
* consumed. This may prevent the task from
- * faulting in the page at a later time. This
+ * faulting in the folio at a later time. This
* is better than inconsistent global huge page
* accounting of reserve counts.
*/
- ClearHPageRestoreReserve(page);
+ folio_clear_hugetlb_restore_reserve(folio);
else if (rc)
(void)vma_add_reservation(h, vma, address);
else
@@ -2842,9 +2664,9 @@ void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
if (!rc) {
/*
* This indicates there is an entry in the reserve map
- * not added by alloc_huge_page. We know it was added
- * before the alloc_huge_page call, otherwise
- * HPageRestoreReserve would be set on the page.
+ * not added by alloc_hugetlb_folio. We know it was added
+ * before the alloc_hugetlb_folio call, otherwise
+ * hugetlb_restore_reserve would be set on the folio.
* Remove the entry so that a subsequent allocation
* does not consume a reservation.
*/
@@ -2853,12 +2675,12 @@ void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
/*
* VERY rare out of memory condition. Since
* we can not delete the entry, set
- * HPageRestoreReserve so that the reserve
- * count will be incremented when the page
+ * hugetlb_restore_reserve so that the reserve
+ * count will be incremented when the folio
* is freed. This reserve will be consumed
* on a subsequent allocation.
*/
- SetHPageRestoreReserve(page);
+ folio_set_hugetlb_restore_reserve(folio);
} else if (rc < 0) {
/*
* Rare out of memory condition from
@@ -2874,12 +2696,12 @@ void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
/*
* For private mappings, no entry indicates
* a reservation is present. Since we can
- * not add an entry, set SetHPageRestoreReserve
- * on the page so reserve count will be
+ * not add an entry, set hugetlb_restore_reserve
+ * on the folio so reserve count will be
* incremented when freed. This reserve will
* be consumed on a subsequent allocation.
*/
- SetHPageRestoreReserve(page);
+ folio_set_hugetlb_restore_reserve(folio);
} else
/*
* No reservation present, do nothing
@@ -2891,32 +2713,24 @@ void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
/*
* alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
* the old one
- * @h: struct hstate old page belongs to
* @old_folio: Old folio to dissolve
* @list: List to isolate the page in case we need to
* Returns 0 on success, otherwise negated error.
*/
-static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
- struct folio *old_folio, struct list_head *list)
+static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio,
+ struct list_head *list)
{
- gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
+ gfp_t gfp_mask;
+ struct hstate *h;
int nid = folio_nid(old_folio);
- struct folio *new_folio;
+ struct folio *new_folio = NULL;
int ret = 0;
+retry:
/*
- * Before dissolving the folio, we need to allocate a new one for the
- * pool to remain stable. Here, we allocate the folio and 'prep' it
- * by doing everything but actually updating counters and adding to
- * the pool. This simplifies and let us do most of the processing
- * under the lock.
+ * The old_folio might have been dissolved from under our feet, so make sure
+ * to carefully check the state under the lock.
*/
- new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
- if (!new_folio)
- return -ENOMEM;
- __prep_new_hugetlb_folio(h, new_folio);
-
-retry:
spin_lock_irq(&hugetlb_lock);
if (!folio_test_hugetlb(old_folio)) {
/*
@@ -2924,12 +2738,15 @@ retry:
*/
goto free_new;
} else if (folio_ref_count(old_folio)) {
+ bool isolated;
+
/*
* Someone has grabbed the folio, try to isolate it here.
* Fail with -EBUSY if not possible.
*/
spin_unlock_irq(&hugetlb_lock);
- ret = isolate_hugetlb(&old_folio->page, list);
+ isolated = folio_isolate_hugetlb(old_folio, list);
+ ret = isolated ? 0 : -EBUSY;
spin_lock_irq(&hugetlb_lock);
goto free_new;
} else if (!folio_test_hugetlb_freed(old_folio)) {
@@ -2942,10 +2759,21 @@ retry:
cond_resched();
goto retry;
} else {
+ h = folio_hstate(old_folio);
+ if (!new_folio) {
+ spin_unlock_irq(&hugetlb_lock);
+ gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
+ new_folio = alloc_fresh_hugetlb_folio(h, gfp_mask,
+ nid, NULL);
+ if (!new_folio)
+ return -ENOMEM;
+ goto retry;
+ }
+
/*
* Ok, old_folio is still a genuine free hugepage. Remove it from
* the freelist and decrease the counters. These will be
- * incremented again when calling __prep_account_new_huge_page()
+ * incremented again when calling account_new_hugetlb_folio()
* and enqueue_hugetlb_folio() for new_folio. The counters will
* remain stable since this happens under the lock.
*/
@@ -2955,7 +2783,7 @@ retry:
* Ref count on new_folio is already zero as it was dropped
* earlier. It can be directly added to the pool free list.
*/
- __prep_account_new_huge_page(h, nid);
+ account_new_hugetlb_folio(h, new_folio);
enqueue_hugetlb_folio(h, new_folio);
/*
@@ -2969,102 +2797,160 @@ retry:
free_new:
spin_unlock_irq(&hugetlb_lock);
- /* Folio has a zero ref count, but needs a ref to be freed */
- folio_ref_unfreeze(new_folio, 1);
- update_and_free_hugetlb_folio(h, new_folio, false);
+ if (new_folio)
+ update_and_free_hugetlb_folio(h, new_folio, false);
return ret;
}
-int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
+int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list)
{
- struct hstate *h;
- struct folio *folio = page_folio(page);
int ret = -EBUSY;
- /*
- * The page might have been dissolved from under our feet, so make sure
- * to carefully check the state under the lock.
- * Return success when racing as if we dissolved the page ourselves.
- */
- spin_lock_irq(&hugetlb_lock);
- if (folio_test_hugetlb(folio)) {
- h = folio_hstate(folio);
- } else {
- spin_unlock_irq(&hugetlb_lock);
+ /* Not to disrupt normal path by vainly holding hugetlb_lock */
+ if (!folio_test_hugetlb(folio))
return 0;
- }
- spin_unlock_irq(&hugetlb_lock);
/*
* Fence off gigantic pages as there is a cyclic dependency between
* alloc_contig_range and them. Return -ENOMEM as this has the effect
* of bailing out right away without further retrying.
*/
- if (hstate_is_gigantic(h))
+ if (order_is_gigantic(folio_order(folio)))
return -ENOMEM;
- if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
+ if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
ret = 0;
else if (!folio_ref_count(folio))
- ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
+ ret = alloc_and_dissolve_hugetlb_folio(folio, list);
+
+ return ret;
+}
+
+/*
+ * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
+ * range with new folios.
+ * @start_pfn: start pfn of the given pfn range
+ * @end_pfn: end pfn of the given pfn range
+ * Returns 0 on success, otherwise negated error.
+ */
+int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
+{
+ struct folio *folio;
+ int ret = 0;
+
+ LIST_HEAD(isolate_list);
+
+ while (start_pfn < end_pfn) {
+ folio = pfn_folio(start_pfn);
+
+ /* Not to disrupt normal path by vainly holding hugetlb_lock */
+ if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) {
+ ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list);
+ if (ret)
+ break;
+
+ putback_movable_pages(&isolate_list);
+ }
+ start_pfn++;
+ }
return ret;
}
-struct page *alloc_huge_page(struct vm_area_struct *vma,
- unsigned long addr, int avoid_reserve)
+void wait_for_freed_hugetlb_folios(void)
+{
+ if (llist_empty(&hpage_freelist))
+ return;
+
+ flush_work(&free_hpage_work);
+}
+
+typedef enum {
+ /*
+ * For either 0/1: we checked the per-vma resv map, and one resv
+ * count either can be reused (0), or an extra needed (1).
+ */
+ MAP_CHG_REUSE = 0,
+ MAP_CHG_NEEDED = 1,
+ /*
+ * Cannot use per-vma resv count can be used, hence a new resv
+ * count is enforced.
+ *
+ * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
+ * that currently vma_needs_reservation() has an unwanted side
+ * effect to either use end() or commit() to complete the
+ * transaction. Hence it needs to differentiate from NEEDED.
+ */
+ MAP_CHG_ENFORCED = 2,
+} map_chg_state;
+
+/*
+ * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
+ * faults of hugetlb private mappings on top of a non-page-cache folio (in
+ * which case even if there's a private vma resv map it won't cover such
+ * allocation). New call sites should (probably) never set it to true!!
+ * When it's set, the allocation will bypass all vma level reservations.
+ */
+struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
+ unsigned long addr, bool cow_from_owner)
{
struct hugepage_subpool *spool = subpool_vma(vma);
struct hstate *h = hstate_vma(vma);
- struct page *page;
struct folio *folio;
- long map_chg, map_commit;
- long gbl_chg;
+ long retval, gbl_chg, gbl_reserve;
+ map_chg_state map_chg;
int ret, idx;
- struct hugetlb_cgroup *h_cg;
- bool deferred_reserve;
+ struct hugetlb_cgroup *h_cg = NULL;
+ gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
idx = hstate_index(h);
- /*
- * Examine the region/reserve map to determine if the process
- * has a reservation for the page to be allocated. A return
- * code of zero indicates a reservation exists (no change).
- */
- map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
- if (map_chg < 0)
- return ERR_PTR(-ENOMEM);
+
+ /* Whether we need a separate per-vma reservation? */
+ if (cow_from_owner) {
+ /*
+ * Special case! Since it's a CoW on top of a reserved
+ * page, the private resv map doesn't count. So it cannot
+ * consume the per-vma resv map even if it's reserved.
+ */
+ map_chg = MAP_CHG_ENFORCED;
+ } else {
+ /*
+ * Examine the region/reserve map to determine if the process
+ * has a reservation for the page to be allocated. A return
+ * code of zero indicates a reservation exists (no change).
+ */
+ retval = vma_needs_reservation(h, vma, addr);
+ if (retval < 0)
+ return ERR_PTR(-ENOMEM);
+ map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
+ }
/*
+ * Whether we need a separate global reservation?
+ *
* Processes that did not create the mapping will have no
* reserves as indicated by the region/reserve map. Check
* that the allocation will not exceed the subpool limit.
- * Allocations for MAP_NORESERVE mappings also need to be
- * checked against any subpool limit.
+ * Or if it can get one from the pool reservation directly.
*/
- if (map_chg || avoid_reserve) {
+ if (map_chg) {
gbl_chg = hugepage_subpool_get_pages(spool, 1);
- if (gbl_chg < 0) {
- vma_end_reservation(h, vma, addr);
- return ERR_PTR(-ENOSPC);
- }
-
+ if (gbl_chg < 0)
+ goto out_end_reservation;
+ } else {
/*
- * Even though there was no reservation in the region/reserve
- * map, there could be reservations associated with the
- * subpool that can be used. This would be indicated if the
- * return value of hugepage_subpool_get_pages() is zero.
- * However, if avoid_reserve is specified we still avoid even
- * the subpool reservations.
+ * If we have the vma reservation ready, no need for extra
+ * global reservation.
*/
- if (avoid_reserve)
- gbl_chg = 1;
+ gbl_chg = 0;
}
- /* If this allocation is not consuming a reservation, charge it now.
+ /*
+ * If this allocation is not consuming a per-vma reservation,
+ * charge the hugetlb cgroup now.
*/
- deferred_reserve = map_chg || avoid_reserve;
- if (deferred_reserve) {
+ if (map_chg) {
ret = hugetlb_cgroup_charge_cgroup_rsvd(
idx, pages_per_huge_page(h), &h_cg);
if (ret)
@@ -3081,144 +2967,453 @@ struct page *alloc_huge_page(struct vm_area_struct *vma,
* from the global free pool (global change). gbl_chg == 0 indicates
* a reservation exists for the allocation.
*/
- page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
- if (!page) {
+ folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
+ if (!folio) {
spin_unlock_irq(&hugetlb_lock);
- page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
- if (!page)
+ folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
+ if (!folio)
goto out_uncharge_cgroup;
spin_lock_irq(&hugetlb_lock);
- if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
- SetHPageRestoreReserve(page);
- h->resv_huge_pages--;
- }
- list_add(&page->lru, &h->hugepage_activelist);
- set_page_refcounted(page);
+ list_add(&folio->lru, &h->hugepage_activelist);
+ folio_ref_unfreeze(folio, 1);
/* Fall through */
}
- folio = page_folio(page);
- hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
+
+ /*
+ * Either dequeued or buddy-allocated folio needs to add special
+ * mark to the folio when it consumes a global reservation.
+ */
+ if (!gbl_chg) {
+ folio_set_hugetlb_restore_reserve(folio);
+ h->resv_huge_pages--;
+ }
+
+ hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
/* If allocation is not consuming a reservation, also store the
* hugetlb_cgroup pointer on the page.
*/
- if (deferred_reserve) {
+ if (map_chg) {
hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
- h_cg, page);
+ h_cg, folio);
}
spin_unlock_irq(&hugetlb_lock);
- hugetlb_set_page_subpool(page, spool);
+ hugetlb_set_folio_subpool(folio, spool);
- map_commit = vma_commit_reservation(h, vma, addr);
- if (unlikely(map_chg > map_commit)) {
+ if (map_chg != MAP_CHG_ENFORCED) {
+ /* commit() is only needed if the map_chg is not enforced */
+ retval = vma_commit_reservation(h, vma, addr);
/*
+ * Check for possible race conditions. When it happens..
* The page was added to the reservation map between
* vma_needs_reservation and vma_commit_reservation.
* This indicates a race with hugetlb_reserve_pages.
* Adjust for the subpool count incremented above AND
- * in hugetlb_reserve_pages for the same page. Also,
+ * in hugetlb_reserve_pages for the same page. Also,
* the reservation count added in hugetlb_reserve_pages
* no longer applies.
*/
- long rsv_adjust;
+ if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
+ long rsv_adjust;
+
+ rsv_adjust = hugepage_subpool_put_pages(spool, 1);
+ hugetlb_acct_memory(h, -rsv_adjust);
+ if (map_chg) {
+ spin_lock_irq(&hugetlb_lock);
+ hugetlb_cgroup_uncharge_folio_rsvd(
+ hstate_index(h), pages_per_huge_page(h),
+ folio);
+ spin_unlock_irq(&hugetlb_lock);
+ }
+ }
+ }
+
+ ret = mem_cgroup_charge_hugetlb(folio, gfp);
+ /*
+ * Unconditionally increment NR_HUGETLB here. If it turns out that
+ * mem_cgroup_charge_hugetlb failed, then immediately free the page and
+ * decrement NR_HUGETLB.
+ */
+ lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
- rsv_adjust = hugepage_subpool_put_pages(spool, 1);
- hugetlb_acct_memory(h, -rsv_adjust);
- if (deferred_reserve)
- hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
- pages_per_huge_page(h), folio);
+ if (ret == -ENOMEM) {
+ free_huge_folio(folio);
+ return ERR_PTR(-ENOMEM);
}
- return page;
+
+ return folio;
out_uncharge_cgroup:
hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_uncharge_cgroup_reservation:
- if (deferred_reserve)
+ if (map_chg)
hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
h_cg);
out_subpool_put:
- if (map_chg || avoid_reserve)
- hugepage_subpool_put_pages(spool, 1);
- vma_end_reservation(h, vma, addr);
+ /*
+ * put page to subpool iff the quota of subpool's rsv_hpages is used
+ * during hugepage_subpool_get_pages.
+ */
+ if (map_chg && !gbl_chg) {
+ gbl_reserve = hugepage_subpool_put_pages(spool, 1);
+ hugetlb_acct_memory(h, -gbl_reserve);
+ }
+
+
+out_end_reservation:
+ if (map_chg != MAP_CHG_ENFORCED)
+ vma_end_reservation(h, vma, addr);
return ERR_PTR(-ENOSPC);
}
+static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
+{
+ struct huge_bootmem_page *m;
+ int listnode = nid;
+
+ if (hugetlb_early_cma(h))
+ m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
+ else {
+ if (node_exact)
+ m = memblock_alloc_exact_nid_raw(huge_page_size(h),
+ huge_page_size(h), 0,
+ MEMBLOCK_ALLOC_ACCESSIBLE, nid);
+ else {
+ m = memblock_alloc_try_nid_raw(huge_page_size(h),
+ huge_page_size(h), 0,
+ MEMBLOCK_ALLOC_ACCESSIBLE, nid);
+ /*
+ * For pre-HVO to work correctly, pages need to be on
+ * the list for the node they were actually allocated
+ * from. That node may be different in the case of
+ * fallback by memblock_alloc_try_nid_raw. So,
+ * extract the actual node first.
+ */
+ if (m)
+ listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
+ }
+
+ if (m) {
+ m->flags = 0;
+ m->cma = NULL;
+ }
+ }
+
+ if (m) {
+ /*
+ * Use the beginning of the huge page to store the
+ * huge_bootmem_page struct (until gather_bootmem
+ * puts them into the mem_map).
+ *
+ * Put them into a private list first because mem_map
+ * is not up yet.
+ */
+ INIT_LIST_HEAD(&m->list);
+ list_add(&m->list, &huge_boot_pages[listnode]);
+ m->hstate = h;
+ }
+
+ return m;
+}
+
int alloc_bootmem_huge_page(struct hstate *h, int nid)
__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h, int nid)
{
struct huge_bootmem_page *m = NULL; /* initialize for clang */
- int nr_nodes, node;
+ int nr_nodes, node = nid;
/* do node specific alloc */
if (nid != NUMA_NO_NODE) {
- m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
- 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
+ m = alloc_bootmem(h, node, true);
if (!m)
return 0;
goto found;
}
+
/* allocate from next node when distributing huge pages */
- for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
- m = memblock_alloc_try_nid_raw(
- huge_page_size(h), huge_page_size(h),
- 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
- /*
- * Use the beginning of the huge page to store the
- * huge_bootmem_page struct (until gather_bootmem
- * puts them into the mem_map).
- */
+ for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node,
+ &hugetlb_bootmem_nodes) {
+ m = alloc_bootmem(h, node, false);
if (!m)
return 0;
goto found;
}
found:
- /* Put them into a private list first because mem_map is not up yet */
- INIT_LIST_HEAD(&m->list);
- list_add(&m->list, &huge_boot_pages);
- m->hstate = h;
+
+ /*
+ * Only initialize the head struct page in memmap_init_reserved_pages,
+ * rest of the struct pages will be initialized by the HugeTLB
+ * subsystem itself.
+ * The head struct page is used to get folio information by the HugeTLB
+ * subsystem like zone id and node id.
+ */
+ memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
+ huge_page_size(h) - PAGE_SIZE);
+
return 1;
}
+/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
+static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
+ unsigned long start_page_number,
+ unsigned long end_page_number)
+{
+ enum zone_type zone = folio_zonenum(folio);
+ int nid = folio_nid(folio);
+ struct page *page = folio_page(folio, start_page_number);
+ unsigned long head_pfn = folio_pfn(folio);
+ unsigned long pfn, end_pfn = head_pfn + end_page_number;
+
+ /*
+ * As we marked all tail pages with memblock_reserved_mark_noinit(),
+ * we must initialize them ourselves here.
+ */
+ for (pfn = head_pfn + start_page_number; pfn < end_pfn; page++, pfn++) {
+ __init_single_page(page, pfn, zone, nid);
+ prep_compound_tail((struct page *)folio, pfn - head_pfn);
+ set_page_count(page, 0);
+ }
+}
+
+static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
+ struct hstate *h,
+ unsigned long nr_pages)
+{
+ int ret;
+
+ /*
+ * This is an open-coded prep_compound_page() whereby we avoid
+ * walking pages twice by initializing/preparing+freezing them in the
+ * same go.
+ */
+ __folio_clear_reserved(folio);
+ __folio_set_head(folio);
+ ret = folio_ref_freeze(folio, 1);
+ VM_BUG_ON(!ret);
+ hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
+ prep_compound_head(&folio->page, huge_page_order(h));
+}
+
+static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
+{
+ return m->flags & HUGE_BOOTMEM_HVO;
+}
+
+static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
+{
+ return m->flags & HUGE_BOOTMEM_CMA;
+}
+
+/*
+ * memblock-allocated pageblocks might not have the migrate type set
+ * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
+ * here, or MIGRATE_CMA if this was a page allocated through an early CMA
+ * reservation.
+ *
+ * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
+ * read-only, but that's ok - for sparse vmemmap this does not write to
+ * the page structure.
+ */
+static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
+ struct hstate *h)
+{
+ unsigned long nr_pages = pages_per_huge_page(h), i;
+
+ WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
+
+ for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
+ if (folio_test_hugetlb_cma(folio))
+ init_cma_pageblock(folio_page(folio, i));
+ else
+ init_pageblock_migratetype(folio_page(folio, i),
+ MIGRATE_MOVABLE, false);
+ }
+}
+
+static void __init prep_and_add_bootmem_folios(struct hstate *h,
+ struct list_head *folio_list)
+{
+ unsigned long flags;
+ struct folio *folio, *tmp_f;
+
+ /* Send list for bulk vmemmap optimization processing */
+ hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
+
+ list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
+ if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
+ /*
+ * If HVO fails, initialize all tail struct pages
+ * We do not worry about potential long lock hold
+ * time as this is early in boot and there should
+ * be no contention.
+ */
+ hugetlb_folio_init_tail_vmemmap(folio,
+ HUGETLB_VMEMMAP_RESERVE_PAGES,
+ pages_per_huge_page(h));
+ }
+ hugetlb_bootmem_init_migratetype(folio, h);
+ /* Subdivide locks to achieve better parallel performance */
+ spin_lock_irqsave(&hugetlb_lock, flags);
+ account_new_hugetlb_folio(h, folio);
+ enqueue_hugetlb_folio(h, folio);
+ spin_unlock_irqrestore(&hugetlb_lock, flags);
+ }
+}
+
+bool __init hugetlb_bootmem_page_zones_valid(int nid,
+ struct huge_bootmem_page *m)
+{
+ unsigned long start_pfn;
+ bool valid;
+
+ if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
+ /*
+ * Already validated, skip check.
+ */
+ return true;
+ }
+
+ if (hugetlb_bootmem_page_earlycma(m)) {
+ valid = cma_validate_zones(m->cma);
+ goto out;
+ }
+
+ start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
+
+ valid = !pfn_range_intersects_zones(nid, start_pfn,
+ pages_per_huge_page(m->hstate));
+out:
+ if (!valid)
+ hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
+
+ return valid;
+}
+
+/*
+ * Free a bootmem page that was found to be invalid (intersecting with
+ * multiple zones).
+ *
+ * Since it intersects with multiple zones, we can't just do a free
+ * operation on all pages at once, but instead have to walk all
+ * pages, freeing them one by one.
+ */
+static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
+ struct hstate *h)
+{
+ unsigned long npages = pages_per_huge_page(h);
+ unsigned long pfn;
+
+ while (npages--) {
+ pfn = page_to_pfn(page);
+ __init_page_from_nid(pfn, nid);
+ free_reserved_page(page);
+ page++;
+ }
+}
+
/*
* Put bootmem huge pages into the standard lists after mem_map is up.
- * Note: This only applies to gigantic (order > MAX_ORDER) pages.
+ * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
*/
-static void __init gather_bootmem_prealloc(void)
+static void __init gather_bootmem_prealloc_node(unsigned long nid)
{
- struct huge_bootmem_page *m;
+ LIST_HEAD(folio_list);
+ struct huge_bootmem_page *m, *tm;
+ struct hstate *h = NULL, *prev_h = NULL;
- list_for_each_entry(m, &huge_boot_pages, list) {
+ list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
struct page *page = virt_to_page(m);
- struct folio *folio = page_folio(page);
- struct hstate *h = m->hstate;
+ struct folio *folio = (void *)page;
+
+ h = m->hstate;
+ if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
+ /*
+ * Can't use this page. Initialize the
+ * page structures if that hasn't already
+ * been done, and give them to the page
+ * allocator.
+ */
+ hugetlb_bootmem_free_invalid_page(nid, page, h);
+ continue;
+ }
+
+ /*
+ * It is possible to have multiple huge page sizes (hstates)
+ * in this list. If so, process each size separately.
+ */
+ if (h != prev_h && prev_h != NULL)
+ prep_and_add_bootmem_folios(prev_h, &folio_list);
+ prev_h = h;
VM_BUG_ON(!hstate_is_gigantic(h));
WARN_ON(folio_ref_count(folio) != 1);
- if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
- WARN_ON(folio_test_reserved(folio));
- prep_new_hugetlb_folio(h, folio, folio_nid(folio));
- free_huge_page(page); /* add to the hugepage allocator */
- } else {
- /* VERY unlikely inflated ref count on a tail page */
- free_gigantic_folio(folio, huge_page_order(h));
- }
+
+ hugetlb_folio_init_vmemmap(folio, h,
+ HUGETLB_VMEMMAP_RESERVE_PAGES);
+ init_new_hugetlb_folio(folio);
+
+ if (hugetlb_bootmem_page_prehvo(m))
+ /*
+ * If pre-HVO was done, just set the
+ * flag, the HVO code will then skip
+ * this folio.
+ */
+ folio_set_hugetlb_vmemmap_optimized(folio);
+
+ if (hugetlb_bootmem_page_earlycma(m))
+ folio_set_hugetlb_cma(folio);
+
+ list_add(&folio->lru, &folio_list);
/*
* We need to restore the 'stolen' pages to totalram_pages
* in order to fix confusing memory reports from free(1) and
* other side-effects, like CommitLimit going negative.
+ *
+ * For CMA pages, this is done in init_cma_pageblock
+ * (via hugetlb_bootmem_init_migratetype), so skip it here.
*/
- adjust_managed_page_count(page, pages_per_huge_page(h));
+ if (!folio_test_hugetlb_cma(folio))
+ adjust_managed_page_count(page, pages_per_huge_page(h));
cond_resched();
}
+
+ prep_and_add_bootmem_folios(h, &folio_list);
+}
+
+static void __init gather_bootmem_prealloc_parallel(unsigned long start,
+ unsigned long end, void *arg)
+{
+ int nid;
+
+ for (nid = start; nid < end; nid++)
+ gather_bootmem_prealloc_node(nid);
+}
+
+static void __init gather_bootmem_prealloc(void)
+{
+ struct padata_mt_job job = {
+ .thread_fn = gather_bootmem_prealloc_parallel,
+ .fn_arg = NULL,
+ .start = 0,
+ .size = nr_node_ids,
+ .align = 1,
+ .min_chunk = 1,
+ .max_threads = num_node_state(N_MEMORY),
+ .numa_aware = true,
+ };
+
+ padata_do_multithreaded(&job);
}
+
static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
{
unsigned long i;
char buf[32];
+ LIST_HEAD(folio_list);
for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
if (hstate_is_gigantic(h)) {
@@ -3228,14 +3423,18 @@ static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
struct folio *folio;
gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
- folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
+ folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
&node_states[N_MEMORY], NULL);
if (!folio)
break;
- free_huge_page(&folio->page); /* free it into the hugepage allocator */
+ list_add(&folio->lru, &folio_list);
}
cond_resched();
}
+
+ if (!list_empty(&folio_list))
+ prep_and_add_allocated_folios(h, &folio_list);
+
if (i == h->max_huge_pages_node[nid])
return;
@@ -3246,19 +3445,11 @@ static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
h->max_huge_pages_node[nid] = i;
}
-static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
+static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
{
- unsigned long i;
- nodemask_t *node_alloc_noretry;
+ int i;
bool node_specific_alloc = false;
- /* skip gigantic hugepages allocation if hugetlb_cma enabled */
- if (hstate_is_gigantic(h) && hugetlb_cma_size) {
- pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
- return;
- }
-
- /* do node specific alloc */
for_each_online_node(i) {
if (h->max_huge_pages_node[i] > 0) {
hugetlb_hstate_alloc_pages_onenode(h, i);
@@ -3266,47 +3457,172 @@ static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
}
}
- if (node_specific_alloc)
- return;
+ return node_specific_alloc;
+}
- /* below will do all node balanced alloc */
- if (!hstate_is_gigantic(h)) {
- /*
- * Bit mask controlling how hard we retry per-node allocations.
- * Ignore errors as lower level routines can deal with
- * node_alloc_noretry == NULL. If this kmalloc fails at boot
- * time, we are likely in bigger trouble.
- */
- node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
- GFP_KERNEL);
- } else {
- /* allocations done at boot time */
- node_alloc_noretry = NULL;
+static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
+{
+ if (allocated < h->max_huge_pages) {
+ char buf[32];
+
+ string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
+ pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
+ h->max_huge_pages, buf, allocated);
+ h->max_huge_pages = allocated;
}
+}
- /* bit mask controlling how hard we retry per-node allocations */
- if (node_alloc_noretry)
- nodes_clear(*node_alloc_noretry);
+static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
+{
+ struct hstate *h = (struct hstate *)arg;
+ int i, num = end - start;
+ nodemask_t node_alloc_noretry;
+ LIST_HEAD(folio_list);
+ int next_node = first_online_node;
+
+ /* Bit mask controlling how hard we retry per-node allocations.*/
+ nodes_clear(node_alloc_noretry);
+
+ for (i = 0; i < num; ++i) {
+ struct folio *folio;
+
+ if (hugetlb_vmemmap_optimizable_size(h) &&
+ (si_mem_available() == 0) && !list_empty(&folio_list)) {
+ prep_and_add_allocated_folios(h, &folio_list);
+ INIT_LIST_HEAD(&folio_list);
+ }
+ folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
+ &node_alloc_noretry, &next_node);
+ if (!folio)
+ break;
+
+ list_move(&folio->lru, &folio_list);
+ cond_resched();
+ }
+
+ prep_and_add_allocated_folios(h, &folio_list);
+}
+
+static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
+{
+ unsigned long i;
for (i = 0; i < h->max_huge_pages; ++i) {
- if (hstate_is_gigantic(h)) {
- if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
- break;
- } else if (!alloc_pool_huge_page(h,
- &node_states[N_MEMORY],
- node_alloc_noretry))
+ if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
break;
cond_resched();
}
- if (i < h->max_huge_pages) {
- char buf[32];
- string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
- pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
- h->max_huge_pages, buf, i);
- h->max_huge_pages = i;
+ return i;
+}
+
+static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
+{
+ struct padata_mt_job job = {
+ .fn_arg = h,
+ .align = 1,
+ .numa_aware = true
+ };
+
+ unsigned long jiffies_start;
+ unsigned long jiffies_end;
+ unsigned long remaining;
+
+ job.thread_fn = hugetlb_pages_alloc_boot_node;
+
+ /*
+ * job.max_threads is 25% of the available cpu threads by default.
+ *
+ * On large servers with terabytes of memory, huge page allocation
+ * can consume a considerably amount of time.
+ *
+ * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
+ * 2MiB huge pages. Using more threads can significantly improve allocation time.
+ *
+ * +-----------------------+-------+-------+-------+-------+-------+
+ * | threads | 8 | 16 | 32 | 64 | 128 |
+ * +-----------------------+-------+-------+-------+-------+-------+
+ * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s |
+ * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s |
+ * +-----------------------+-------+-------+-------+-------+-------+
+ */
+ if (hugepage_allocation_threads == 0) {
+ hugepage_allocation_threads = num_online_cpus() / 4;
+ hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
+ }
+
+ job.max_threads = hugepage_allocation_threads;
+
+ jiffies_start = jiffies;
+ do {
+ remaining = h->max_huge_pages - h->nr_huge_pages;
+
+ job.start = h->nr_huge_pages;
+ job.size = remaining;
+ job.min_chunk = remaining / hugepage_allocation_threads;
+ padata_do_multithreaded(&job);
+
+ if (h->nr_huge_pages == h->max_huge_pages)
+ break;
+
+ /*
+ * Retry only if the vmemmap optimization might have been able to free
+ * some memory back to the system.
+ */
+ if (!hugetlb_vmemmap_optimizable(h))
+ break;
+
+ /* Continue if progress was made in last iteration */
+ } while (remaining != (h->max_huge_pages - h->nr_huge_pages));
+
+ jiffies_end = jiffies;
+
+ pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
+ jiffies_to_msecs(jiffies_end - jiffies_start),
+ hugepage_allocation_threads);
+
+ return h->nr_huge_pages;
+}
+
+/*
+ * NOTE: this routine is called in different contexts for gigantic and
+ * non-gigantic pages.
+ * - For gigantic pages, this is called early in the boot process and
+ * pages are allocated from memblock allocated or something similar.
+ * Gigantic pages are actually added to pools later with the routine
+ * gather_bootmem_prealloc.
+ * - For non-gigantic pages, this is called later in the boot process after
+ * all of mm is up and functional. Pages are allocated from buddy and
+ * then added to hugetlb pools.
+ */
+static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
+{
+ unsigned long allocated;
+
+ /*
+ * Skip gigantic hugepages allocation if early CMA
+ * reservations are not available.
+ */
+ if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
+ !hugetlb_early_cma(h)) {
+ pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
+ return;
}
- kfree(node_alloc_noretry);
+
+ if (!h->max_huge_pages)
+ return;
+
+ /* do node specific alloc */
+ if (hugetlb_hstate_alloc_pages_specific_nodes(h))
+ return;
+
+ /* below will do all node balanced alloc */
+ if (hstate_is_gigantic(h))
+ allocated = hugetlb_gigantic_pages_alloc_boot(h);
+ else
+ allocated = hugetlb_pages_alloc_boot(h);
+
+ hugetlb_hstate_alloc_pages_errcheck(allocated, h);
}
static void __init hugetlb_init_hstates(void)
@@ -3314,6 +3630,15 @@ static void __init hugetlb_init_hstates(void)
struct hstate *h, *h2;
for_each_hstate(h) {
+ /*
+ * Always reset to first_memory_node here, even if
+ * next_nid_to_alloc was set before - we can't
+ * reference hugetlb_bootmem_nodes after init, and
+ * first_memory_node is right for all further allocations.
+ */
+ h->next_nid_to_alloc = first_memory_node;
+ h->next_nid_to_free = first_memory_node;
+
/* oversize hugepages were init'ed in early boot */
if (!hstate_is_gigantic(h))
hugetlb_hstate_alloc_pages(h);
@@ -3326,9 +3651,9 @@ static void __init hugetlb_init_hstates(void)
* - If CMA allocation is possible, we can not demote
* HUGETLB_PAGE_ORDER or smaller size pages.
*/
- if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
+ if (hstate_is_gigantic_no_runtime(h))
continue;
- if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
+ if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
continue;
for_each_hstate(h2) {
if (h2 == h)
@@ -3343,13 +3668,20 @@ static void __init hugetlb_init_hstates(void)
static void __init report_hugepages(void)
{
struct hstate *h;
+ unsigned long nrinvalid;
for_each_hstate(h) {
char buf[32];
+ nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
+ h->max_huge_pages -= nrinvalid;
+
string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
- buf, h->free_huge_pages);
+ buf, h->nr_huge_pages);
+ if (nrinvalid)
+ pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
+ buf, nrinvalid, str_plural(nrinvalid));
pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
}
@@ -3370,15 +3702,15 @@ static void try_to_free_low(struct hstate *h, unsigned long count,
* Collect pages to be freed on a list, and free after dropping lock
*/
for_each_node_mask(i, *nodes_allowed) {
- struct page *page, *next;
+ struct folio *folio, *next;
struct list_head *freel = &h->hugepage_freelists[i];
- list_for_each_entry_safe(page, next, freel, lru) {
+ list_for_each_entry_safe(folio, next, freel, lru) {
if (count >= h->nr_huge_pages)
goto out;
- if (PageHighMem(page))
+ if (folio_test_highmem(folio))
continue;
- remove_hugetlb_folio(h, page_folio(page), false);
- list_add(&page->lru, &page_list);
+ remove_hugetlb_folio(h, folio, false);
+ list_add(&folio->lru, &page_list);
}
}
@@ -3408,7 +3740,7 @@ static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
VM_BUG_ON(delta != -1 && delta != 1);
if (delta < 0) {
- for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
+ for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
if (h->surplus_huge_pages_node[node])
goto found;
}
@@ -3431,8 +3763,10 @@ found:
static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
nodemask_t *nodes_allowed)
{
- unsigned long min_count, ret;
- struct page *page;
+ unsigned long persistent_free_count;
+ unsigned long min_count;
+ unsigned long allocated;
+ struct folio *folio;
LIST_HEAD(page_list);
NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
@@ -3463,7 +3797,9 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
if (nid != NUMA_NO_NODE) {
unsigned long old_count = count;
- count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
+ count += persistent_huge_pages(h) -
+ (h->nr_huge_pages_node[nid] -
+ h->surplus_huge_pages_node[nid]);
/*
* User may have specified a large count value which caused the
* above calculation to overflow. In this case, they wanted
@@ -3496,7 +3832,7 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
* First take pages out of surplus state. Then make up the
* remaining difference by allocating fresh huge pages.
*
- * We might race with alloc_surplus_huge_page() here and be unable
+ * We might race with alloc_surplus_hugetlb_folio() here and be unable
* to convert a surplus huge page to a normal huge page. That is
* not critical, though, it just means the overall size of the
* pool might be one hugepage larger than it needs to be, but
@@ -3507,10 +3843,11 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
break;
}
- while (count > persistent_huge_pages(h)) {
+ allocated = 0;
+ while (count > (persistent_huge_pages(h) + allocated)) {
/*
* If this allocation races such that we no longer need the
- * page, free_huge_page will handle it by freeing the page
+ * page, free_huge_folio will handle it by freeing the page
* and reducing the surplus.
*/
spin_unlock_irq(&hugetlb_lock);
@@ -3518,15 +3855,33 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
/* yield cpu to avoid soft lockup */
cond_resched();
- ret = alloc_pool_huge_page(h, nodes_allowed,
- node_alloc_noretry);
- spin_lock_irq(&hugetlb_lock);
- if (!ret)
+ folio = alloc_pool_huge_folio(h, nodes_allowed,
+ node_alloc_noretry,
+ &h->next_nid_to_alloc);
+ if (!folio) {
+ prep_and_add_allocated_folios(h, &page_list);
+ spin_lock_irq(&hugetlb_lock);
goto out;
+ }
+
+ list_add(&folio->lru, &page_list);
+ allocated++;
/* Bail for signals. Probably ctrl-c from user */
- if (signal_pending(current))
+ if (signal_pending(current)) {
+ prep_and_add_allocated_folios(h, &page_list);
+ spin_lock_irq(&hugetlb_lock);
goto out;
+ }
+
+ spin_lock_irq(&hugetlb_lock);
+ }
+
+ /* Add allocated pages to the pool */
+ if (!list_empty(&page_list)) {
+ spin_unlock_irq(&hugetlb_lock);
+ prep_and_add_allocated_folios(h, &page_list);
+ spin_lock_irq(&hugetlb_lock);
}
/*
@@ -3539,12 +3894,28 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
* By placing pages into the surplus state independent of the
* overcommit value, we are allowing the surplus pool size to
* exceed overcommit. There are few sane options here. Since
- * alloc_surplus_huge_page() is checking the global counter,
+ * alloc_surplus_hugetlb_folio() is checking the global counter,
* though, we'll note that we're not allowed to exceed surplus
* and won't grow the pool anywhere else. Not until one of the
* sysctls are changed, or the surplus pages go out of use.
+ *
+ * min_count is the expected number of persistent pages, we
+ * shouldn't calculate min_count by using
+ * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
+ * because there may exist free surplus huge pages, and this will
+ * lead to subtracting twice. Free surplus huge pages come from HVO
+ * failing to restore vmemmap, see comments in the callers of
+ * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
+ * persistent free count first.
*/
- min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
+ persistent_free_count = h->free_huge_pages;
+ if (h->free_huge_pages > persistent_huge_pages(h)) {
+ if (h->free_huge_pages > h->surplus_huge_pages)
+ persistent_free_count -= h->surplus_huge_pages;
+ else
+ persistent_free_count = 0;
+ }
+ min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
min_count = max(count, min_count);
try_to_free_low(h, min_count, nodes_allowed);
@@ -3552,11 +3923,11 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
* Collect pages to be removed on list without dropping lock
*/
while (min_count < persistent_huge_pages(h)) {
- page = remove_pool_huge_page(h, nodes_allowed, 0);
- if (!page)
+ folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
+ if (!folio)
break;
- list_add(&page->lru, &page_list);
+ list_add(&folio->lru, &page_list);
}
/* free the pages after dropping lock */
spin_unlock_irq(&hugetlb_lock);
@@ -3578,153 +3949,142 @@ out:
return 0;
}
-static int demote_free_huge_page(struct hstate *h, struct page *page)
+static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
+ struct list_head *src_list)
{
- int i, nid = page_to_nid(page);
- struct hstate *target_hstate;
- struct folio *folio = page_folio(page);
- struct page *subpage;
- int rc = 0;
-
- target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
-
- remove_hugetlb_folio_for_demote(h, folio, false);
- spin_unlock_irq(&hugetlb_lock);
+ long rc;
+ struct folio *folio, *next;
+ LIST_HEAD(dst_list);
+ LIST_HEAD(ret_list);
- rc = hugetlb_vmemmap_restore(h, page);
- if (rc) {
- /* Allocation of vmemmmap failed, we can not demote page */
- spin_lock_irq(&hugetlb_lock);
- set_page_refcounted(page);
- add_hugetlb_folio(h, page_folio(page), false);
- return rc;
- }
-
- /*
- * Use destroy_compound_hugetlb_folio_for_demote for all huge page
- * sizes as it will not ref count pages.
- */
- destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
+ rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
+ list_splice_init(&ret_list, src_list);
/*
* Taking target hstate mutex synchronizes with set_max_huge_pages.
* Without the mutex, pages added to target hstate could be marked
* as surplus.
*
- * Note that we already hold h->resize_lock. To prevent deadlock,
+ * Note that we already hold src->resize_lock. To prevent deadlock,
* use the convention of always taking larger size hstate mutex first.
*/
- mutex_lock(&target_hstate->resize_lock);
- for (i = 0; i < pages_per_huge_page(h);
- i += pages_per_huge_page(target_hstate)) {
- subpage = nth_page(page, i);
- folio = page_folio(subpage);
- if (hstate_is_gigantic(target_hstate))
- prep_compound_gigantic_folio_for_demote(folio,
- target_hstate->order);
- else
- prep_compound_page(subpage, target_hstate->order);
- set_page_private(subpage, 0);
- prep_new_hugetlb_folio(target_hstate, folio, nid);
- free_huge_page(subpage);
+ mutex_lock(&dst->resize_lock);
+
+ list_for_each_entry_safe(folio, next, src_list, lru) {
+ int i;
+ bool cma;
+
+ if (folio_test_hugetlb_vmemmap_optimized(folio))
+ continue;
+
+ cma = folio_test_hugetlb_cma(folio);
+
+ list_del(&folio->lru);
+
+ split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
+ pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
+
+ for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
+ struct page *page = folio_page(folio, i);
+ /* Careful: see __split_huge_page_tail() */
+ struct folio *new_folio = (struct folio *)page;
+
+ clear_compound_head(page);
+ prep_compound_page(page, dst->order);
+
+ new_folio->mapping = NULL;
+ init_new_hugetlb_folio(new_folio);
+ /* Copy the CMA flag so that it is freed correctly */
+ if (cma)
+ folio_set_hugetlb_cma(new_folio);
+ list_add(&new_folio->lru, &dst_list);
+ }
}
- mutex_unlock(&target_hstate->resize_lock);
- spin_lock_irq(&hugetlb_lock);
+ prep_and_add_allocated_folios(dst, &dst_list);
- /*
- * Not absolutely necessary, but for consistency update max_huge_pages
- * based on pool changes for the demoted page.
- */
- h->max_huge_pages--;
- target_hstate->max_huge_pages +=
- pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
+ mutex_unlock(&dst->resize_lock);
return rc;
}
-static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
+long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
+ unsigned long nr_to_demote)
__must_hold(&hugetlb_lock)
{
int nr_nodes, node;
- struct page *page;
+ struct hstate *dst;
+ long rc = 0;
+ long nr_demoted = 0;
lockdep_assert_held(&hugetlb_lock);
/* We should never get here if no demote order */
- if (!h->demote_order) {
+ if (!src->demote_order) {
pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
return -EINVAL; /* internal error */
}
+ dst = size_to_hstate(PAGE_SIZE << src->demote_order);
- for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
- list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
- if (PageHWPoison(page))
- continue;
-
- return demote_free_huge_page(h, page);
- }
- }
+ for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
+ LIST_HEAD(list);
+ struct folio *folio, *next;
- /*
- * Only way to get here is if all pages on free lists are poisoned.
- * Return -EBUSY so that caller will not retry.
- */
- return -EBUSY;
-}
+ list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
+ if (folio_test_hwpoison(folio))
+ continue;
-#define HSTATE_ATTR_RO(_name) \
- static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
+ remove_hugetlb_folio(src, folio, false);
+ list_add(&folio->lru, &list);
-#define HSTATE_ATTR_WO(_name) \
- static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
+ if (++nr_demoted == nr_to_demote)
+ break;
+ }
-#define HSTATE_ATTR(_name) \
- static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
+ spin_unlock_irq(&hugetlb_lock);
-static struct kobject *hugepages_kobj;
-static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
+ rc = demote_free_hugetlb_folios(src, dst, &list);
-static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
+ spin_lock_irq(&hugetlb_lock);
-static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
-{
- int i;
+ list_for_each_entry_safe(folio, next, &list, lru) {
+ list_del(&folio->lru);
+ add_hugetlb_folio(src, folio, false);
- for (i = 0; i < HUGE_MAX_HSTATE; i++)
- if (hstate_kobjs[i] == kobj) {
- if (nidp)
- *nidp = NUMA_NO_NODE;
- return &hstates[i];
+ nr_demoted--;
}
- return kobj_to_node_hstate(kobj, nidp);
-}
+ if (rc < 0 || nr_demoted == nr_to_demote)
+ break;
+ }
-static ssize_t nr_hugepages_show_common(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- struct hstate *h;
- unsigned long nr_huge_pages;
- int nid;
+ /*
+ * Not absolutely necessary, but for consistency update max_huge_pages
+ * based on pool changes for the demoted page.
+ */
+ src->max_huge_pages -= nr_demoted;
+ dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
- h = kobj_to_hstate(kobj, &nid);
- if (nid == NUMA_NO_NODE)
- nr_huge_pages = h->nr_huge_pages;
- else
- nr_huge_pages = h->nr_huge_pages_node[nid];
+ if (rc < 0)
+ return rc;
- return sysfs_emit(buf, "%lu\n", nr_huge_pages);
+ if (nr_demoted)
+ return nr_demoted;
+ /*
+ * Only way to get here is if all pages on free lists are poisoned.
+ * Return -EBUSY so that caller will not retry.
+ */
+ return -EBUSY;
}
-static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
+ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
struct hstate *h, int nid,
unsigned long count, size_t len)
{
int err;
nodemask_t nodes_allowed, *n_mask;
- if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
+ if (hstate_is_gigantic_no_runtime(h))
return -EINVAL;
if (nid == NUMA_NO_NODE) {
@@ -3750,462 +4110,13 @@ static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
return err ? err : len;
}
-static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
- struct kobject *kobj, const char *buf,
- size_t len)
-{
- struct hstate *h;
- unsigned long count;
- int nid;
- int err;
-
- err = kstrtoul(buf, 10, &count);
- if (err)
- return err;
-
- h = kobj_to_hstate(kobj, &nid);
- return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
-}
-
-static ssize_t nr_hugepages_show(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- return nr_hugepages_show_common(kobj, attr, buf);
-}
-
-static ssize_t nr_hugepages_store(struct kobject *kobj,
- struct kobj_attribute *attr, const char *buf, size_t len)
-{
- return nr_hugepages_store_common(false, kobj, buf, len);
-}
-HSTATE_ATTR(nr_hugepages);
-
-#ifdef CONFIG_NUMA
-
-/*
- * hstate attribute for optionally mempolicy-based constraint on persistent
- * huge page alloc/free.
- */
-static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
- struct kobj_attribute *attr,
- char *buf)
-{
- return nr_hugepages_show_common(kobj, attr, buf);
-}
-
-static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
- struct kobj_attribute *attr, const char *buf, size_t len)
-{
- return nr_hugepages_store_common(true, kobj, buf, len);
-}
-HSTATE_ATTR(nr_hugepages_mempolicy);
-#endif
-
-
-static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- struct hstate *h = kobj_to_hstate(kobj, NULL);
- return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
-}
-
-static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
- struct kobj_attribute *attr, const char *buf, size_t count)
-{
- int err;
- unsigned long input;
- struct hstate *h = kobj_to_hstate(kobj, NULL);
-
- if (hstate_is_gigantic(h))
- return -EINVAL;
-
- err = kstrtoul(buf, 10, &input);
- if (err)
- return err;
-
- spin_lock_irq(&hugetlb_lock);
- h->nr_overcommit_huge_pages = input;
- spin_unlock_irq(&hugetlb_lock);
-
- return count;
-}
-HSTATE_ATTR(nr_overcommit_hugepages);
-
-static ssize_t free_hugepages_show(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- struct hstate *h;
- unsigned long free_huge_pages;
- int nid;
-
- h = kobj_to_hstate(kobj, &nid);
- if (nid == NUMA_NO_NODE)
- free_huge_pages = h->free_huge_pages;
- else
- free_huge_pages = h->free_huge_pages_node[nid];
-
- return sysfs_emit(buf, "%lu\n", free_huge_pages);
-}
-HSTATE_ATTR_RO(free_hugepages);
-
-static ssize_t resv_hugepages_show(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- struct hstate *h = kobj_to_hstate(kobj, NULL);
- return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
-}
-HSTATE_ATTR_RO(resv_hugepages);
-
-static ssize_t surplus_hugepages_show(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- struct hstate *h;
- unsigned long surplus_huge_pages;
- int nid;
-
- h = kobj_to_hstate(kobj, &nid);
- if (nid == NUMA_NO_NODE)
- surplus_huge_pages = h->surplus_huge_pages;
- else
- surplus_huge_pages = h->surplus_huge_pages_node[nid];
-
- return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
-}
-HSTATE_ATTR_RO(surplus_hugepages);
-
-static ssize_t demote_store(struct kobject *kobj,
- struct kobj_attribute *attr, const char *buf, size_t len)
-{
- unsigned long nr_demote;
- unsigned long nr_available;
- nodemask_t nodes_allowed, *n_mask;
- struct hstate *h;
- int err;
- int nid;
-
- err = kstrtoul(buf, 10, &nr_demote);
- if (err)
- return err;
- h = kobj_to_hstate(kobj, &nid);
-
- if (nid != NUMA_NO_NODE) {
- init_nodemask_of_node(&nodes_allowed, nid);
- n_mask = &nodes_allowed;
- } else {
- n_mask = &node_states[N_MEMORY];
- }
-
- /* Synchronize with other sysfs operations modifying huge pages */
- mutex_lock(&h->resize_lock);
- spin_lock_irq(&hugetlb_lock);
-
- while (nr_demote) {
- /*
- * Check for available pages to demote each time thorough the
- * loop as demote_pool_huge_page will drop hugetlb_lock.
- */
- if (nid != NUMA_NO_NODE)
- nr_available = h->free_huge_pages_node[nid];
- else
- nr_available = h->free_huge_pages;
- nr_available -= h->resv_huge_pages;
- if (!nr_available)
- break;
-
- err = demote_pool_huge_page(h, n_mask);
- if (err)
- break;
-
- nr_demote--;
- }
-
- spin_unlock_irq(&hugetlb_lock);
- mutex_unlock(&h->resize_lock);
-
- if (err)
- return err;
- return len;
-}
-HSTATE_ATTR_WO(demote);
-
-static ssize_t demote_size_show(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
-{
- struct hstate *h = kobj_to_hstate(kobj, NULL);
- unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
-
- return sysfs_emit(buf, "%lukB\n", demote_size);
-}
-
-static ssize_t demote_size_store(struct kobject *kobj,
- struct kobj_attribute *attr,
- const char *buf, size_t count)
-{
- struct hstate *h, *demote_hstate;
- unsigned long demote_size;
- unsigned int demote_order;
-
- demote_size = (unsigned long)memparse(buf, NULL);
-
- demote_hstate = size_to_hstate(demote_size);
- if (!demote_hstate)
- return -EINVAL;
- demote_order = demote_hstate->order;
- if (demote_order < HUGETLB_PAGE_ORDER)
- return -EINVAL;
-
- /* demote order must be smaller than hstate order */
- h = kobj_to_hstate(kobj, NULL);
- if (demote_order >= h->order)
- return -EINVAL;
-
- /* resize_lock synchronizes access to demote size and writes */
- mutex_lock(&h->resize_lock);
- h->demote_order = demote_order;
- mutex_unlock(&h->resize_lock);
-
- return count;
-}
-HSTATE_ATTR(demote_size);
-
-static struct attribute *hstate_attrs[] = {
- &nr_hugepages_attr.attr,
- &nr_overcommit_hugepages_attr.attr,
- &free_hugepages_attr.attr,
- &resv_hugepages_attr.attr,
- &surplus_hugepages_attr.attr,
-#ifdef CONFIG_NUMA
- &nr_hugepages_mempolicy_attr.attr,
-#endif
- NULL,
-};
-
-static const struct attribute_group hstate_attr_group = {
- .attrs = hstate_attrs,
-};
-
-static struct attribute *hstate_demote_attrs[] = {
- &demote_size_attr.attr,
- &demote_attr.attr,
- NULL,
-};
-
-static const struct attribute_group hstate_demote_attr_group = {
- .attrs = hstate_demote_attrs,
-};
-
-static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
- struct kobject **hstate_kobjs,
- const struct attribute_group *hstate_attr_group)
-{
- int retval;
- int hi = hstate_index(h);
-
- hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
- if (!hstate_kobjs[hi])
- return -ENOMEM;
-
- retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
- if (retval) {
- kobject_put(hstate_kobjs[hi]);
- hstate_kobjs[hi] = NULL;
- return retval;
- }
-
- if (h->demote_order) {
- retval = sysfs_create_group(hstate_kobjs[hi],
- &hstate_demote_attr_group);
- if (retval) {
- pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
- sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
- kobject_put(hstate_kobjs[hi]);
- hstate_kobjs[hi] = NULL;
- return retval;
- }
- }
-
- return 0;
-}
-
-#ifdef CONFIG_NUMA
-static bool hugetlb_sysfs_initialized __ro_after_init;
-
-/*
- * node_hstate/s - associate per node hstate attributes, via their kobjects,
- * with node devices in node_devices[] using a parallel array. The array
- * index of a node device or _hstate == node id.
- * This is here to avoid any static dependency of the node device driver, in
- * the base kernel, on the hugetlb module.
- */
-struct node_hstate {
- struct kobject *hugepages_kobj;
- struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
-};
-static struct node_hstate node_hstates[MAX_NUMNODES];
-
-/*
- * A subset of global hstate attributes for node devices
- */
-static struct attribute *per_node_hstate_attrs[] = {
- &nr_hugepages_attr.attr,
- &free_hugepages_attr.attr,
- &surplus_hugepages_attr.attr,
- NULL,
-};
-
-static const struct attribute_group per_node_hstate_attr_group = {
- .attrs = per_node_hstate_attrs,
-};
-
-/*
- * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
- * Returns node id via non-NULL nidp.
- */
-static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
-{
- int nid;
-
- for (nid = 0; nid < nr_node_ids; nid++) {
- struct node_hstate *nhs = &node_hstates[nid];
- int i;
- for (i = 0; i < HUGE_MAX_HSTATE; i++)
- if (nhs->hstate_kobjs[i] == kobj) {
- if (nidp)
- *nidp = nid;
- return &hstates[i];
- }
- }
-
- BUG();
- return NULL;
-}
-
-/*
- * Unregister hstate attributes from a single node device.
- * No-op if no hstate attributes attached.
- */
-void hugetlb_unregister_node(struct node *node)
-{
- struct hstate *h;
- struct node_hstate *nhs = &node_hstates[node->dev.id];
-
- if (!nhs->hugepages_kobj)
- return; /* no hstate attributes */
-
- for_each_hstate(h) {
- int idx = hstate_index(h);
- struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
-
- if (!hstate_kobj)
- continue;
- if (h->demote_order)
- sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
- sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
- kobject_put(hstate_kobj);
- nhs->hstate_kobjs[idx] = NULL;
- }
-
- kobject_put(nhs->hugepages_kobj);
- nhs->hugepages_kobj = NULL;
-}
-
-
-/*
- * Register hstate attributes for a single node device.
- * No-op if attributes already registered.
- */
-void hugetlb_register_node(struct node *node)
-{
- struct hstate *h;
- struct node_hstate *nhs = &node_hstates[node->dev.id];
- int err;
-
- if (!hugetlb_sysfs_initialized)
- return;
-
- if (nhs->hugepages_kobj)
- return; /* already allocated */
-
- nhs->hugepages_kobj = kobject_create_and_add("hugepages",
- &node->dev.kobj);
- if (!nhs->hugepages_kobj)
- return;
-
- for_each_hstate(h) {
- err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
- nhs->hstate_kobjs,
- &per_node_hstate_attr_group);
- if (err) {
- pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
- h->name, node->dev.id);
- hugetlb_unregister_node(node);
- break;
- }
- }
-}
-
-/*
- * hugetlb init time: register hstate attributes for all registered node
- * devices of nodes that have memory. All on-line nodes should have
- * registered their associated device by this time.
- */
-static void __init hugetlb_register_all_nodes(void)
-{
- int nid;
-
- for_each_online_node(nid)
- hugetlb_register_node(node_devices[nid]);
-}
-#else /* !CONFIG_NUMA */
-
-static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
-{
- BUG();
- if (nidp)
- *nidp = -1;
- return NULL;
-}
-
-static void hugetlb_register_all_nodes(void) { }
-
-#endif
-
-#ifdef CONFIG_CMA
-static void __init hugetlb_cma_check(void);
-#else
-static inline __init void hugetlb_cma_check(void)
-{
-}
-#endif
-
-static void __init hugetlb_sysfs_init(void)
-{
- struct hstate *h;
- int err;
-
- hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
- if (!hugepages_kobj)
- return;
-
- for_each_hstate(h) {
- err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
- hstate_kobjs, &hstate_attr_group);
- if (err)
- pr_err("HugeTLB: Unable to add hstate %s", h->name);
- }
-
-#ifdef CONFIG_NUMA
- hugetlb_sysfs_initialized = true;
-#endif
- hugetlb_register_all_nodes();
-}
-
static int __init hugetlb_init(void)
{
int i;
BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
__NR_HPAGEFLAGS);
+ BUILD_BUG_ON_INVALID(HUGETLB_PAGE_ORDER > MAX_FOLIO_ORDER);
if (!hugepages_supported()) {
if (hugetlb_max_hstate || default_hstate_max_huge_pages)
@@ -4255,6 +4166,7 @@ static int __init hugetlb_init(void)
hugetlb_sysfs_init();
hugetlb_cgroup_file_init();
+ hugetlb_sysctl_init();
#ifdef CONFIG_SMP
num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
@@ -4287,16 +4199,15 @@ void __init hugetlb_add_hstate(unsigned int order)
return;
}
BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
- BUG_ON(order == 0);
+ BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
+ WARN_ON(order > MAX_FOLIO_ORDER);
h = &hstates[hugetlb_max_hstate++];
- mutex_init(&h->resize_lock);
+ __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
h->order = order;
h->mask = ~(huge_page_size(h) - 1);
for (i = 0; i < MAX_NUMNODES; ++i)
INIT_LIST_HEAD(&h->hugepage_freelists[i]);
INIT_LIST_HEAD(&h->hugepage_activelist);
- h->next_nid_to_alloc = first_memory_node;
- h->next_nid_to_free = first_memory_node;
snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
huge_page_size(h)/SZ_1K);
@@ -4321,6 +4232,44 @@ static void __init hugepages_clear_pages_in_node(void)
}
}
+static __init int hugetlb_add_param(char *s, int (*setup)(char *))
+{
+ size_t len;
+ char *p;
+
+ if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
+ return -EINVAL;
+
+ len = strlen(s) + 1;
+ if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
+ return -EINVAL;
+
+ p = &hstate_cmdline_buf[hstate_cmdline_index];
+ memcpy(p, s, len);
+ hstate_cmdline_index += len;
+
+ hugetlb_params[hugetlb_param_index].val = p;
+ hugetlb_params[hugetlb_param_index].setup = setup;
+
+ hugetlb_param_index++;
+
+ return 0;
+}
+
+static __init void hugetlb_parse_params(void)
+{
+ int i;
+ struct hugetlb_cmdline *hcp;
+
+ for (i = 0; i < hugetlb_param_index; i++) {
+ hcp = &hugetlb_params[i];
+
+ hcp->setup(hcp->val);
+ }
+
+ hugetlb_cma_validate_params();
+}
+
/*
* hugepages command line processing
* hugepages normally follows a valid hugepagsz or default_hugepagsz
@@ -4340,7 +4289,7 @@ static int __init hugepages_setup(char *s)
if (!parsed_valid_hugepagesz) {
pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
parsed_valid_hugepagesz = true;
- return 1;
+ return -EINVAL;
}
/*
@@ -4394,24 +4343,16 @@ static int __init hugepages_setup(char *s)
}
}
- /*
- * Global state is always initialized later in hugetlb_init.
- * But we need to allocate gigantic hstates here early to still
- * use the bootmem allocator.
- */
- if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
- hugetlb_hstate_alloc_pages(parsed_hstate);
-
last_mhp = mhp;
- return 1;
+ return 0;
invalid:
pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
hugepages_clear_pages_in_node();
- return 1;
+ return -EINVAL;
}
-__setup("hugepages=", hugepages_setup);
+hugetlb_early_param("hugepages", hugepages_setup);
/*
* hugepagesz command line processing
@@ -4430,7 +4371,7 @@ static int __init hugepagesz_setup(char *s)
if (!arch_hugetlb_valid_size(size)) {
pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
- return 1;
+ return -EINVAL;
}
h = size_to_hstate(size);
@@ -4445,7 +4386,7 @@ static int __init hugepagesz_setup(char *s)
if (!parsed_default_hugepagesz || h != &default_hstate ||
default_hstate.max_huge_pages) {
pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
- return 1;
+ return -EINVAL;
}
/*
@@ -4455,14 +4396,14 @@ static int __init hugepagesz_setup(char *s)
*/
parsed_hstate = h;
parsed_valid_hugepagesz = true;
- return 1;
+ return 0;
}
hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
parsed_valid_hugepagesz = true;
- return 1;
+ return 0;
}
-__setup("hugepagesz=", hugepagesz_setup);
+hugetlb_early_param("hugepagesz", hugepagesz_setup);
/*
* default_hugepagesz command line input
@@ -4476,14 +4417,14 @@ static int __init default_hugepagesz_setup(char *s)
parsed_valid_hugepagesz = false;
if (parsed_default_hugepagesz) {
pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
- return 1;
+ return -EINVAL;
}
size = (unsigned long)memparse(s, NULL);
if (!arch_hugetlb_valid_size(size)) {
pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
- return 1;
+ return -EINVAL;
}
hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
@@ -4495,144 +4436,111 @@ static int __init default_hugepagesz_setup(char *s)
* The number of default huge pages (for this size) could have been
* specified as the first hugetlb parameter: hugepages=X. If so,
* then default_hstate_max_huge_pages is set. If the default huge
- * page size is gigantic (>= MAX_ORDER), then the pages must be
+ * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
* allocated here from bootmem allocator.
*/
if (default_hstate_max_huge_pages) {
default_hstate.max_huge_pages = default_hstate_max_huge_pages;
- for_each_online_node(i)
- default_hstate.max_huge_pages_node[i] =
- default_hugepages_in_node[i];
- if (hstate_is_gigantic(&default_hstate))
- hugetlb_hstate_alloc_pages(&default_hstate);
+ /*
+ * Since this is an early parameter, we can't check
+ * NUMA node state yet, so loop through MAX_NUMNODES.
+ */
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ if (default_hugepages_in_node[i] != 0)
+ default_hstate.max_huge_pages_node[i] =
+ default_hugepages_in_node[i];
+ }
default_hstate_max_huge_pages = 0;
}
- return 1;
+ return 0;
}
-__setup("default_hugepagesz=", default_hugepagesz_setup);
+hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
-static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
+void __init hugetlb_bootmem_set_nodes(void)
{
-#ifdef CONFIG_NUMA
- struct mempolicy *mpol = get_task_policy(current);
-
- /*
- * Only enforce MPOL_BIND policy which overlaps with cpuset policy
- * (from policy_nodemask) specifically for hugetlb case
- */
- if (mpol->mode == MPOL_BIND &&
- (apply_policy_zone(mpol, gfp_zone(gfp)) &&
- cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
- return &mpol->nodes;
-#endif
- return NULL;
-}
+ int i, nid;
+ unsigned long start_pfn, end_pfn;
-static unsigned int allowed_mems_nr(struct hstate *h)
-{
- int node;
- unsigned int nr = 0;
- nodemask_t *mbind_nodemask;
- unsigned int *array = h->free_huge_pages_node;
- gfp_t gfp_mask = htlb_alloc_mask(h);
+ if (!nodes_empty(hugetlb_bootmem_nodes))
+ return;
- mbind_nodemask = policy_mbind_nodemask(gfp_mask);
- for_each_node_mask(node, cpuset_current_mems_allowed) {
- if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
- nr += array[node];
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
+ if (end_pfn > start_pfn)
+ node_set(nid, hugetlb_bootmem_nodes);
}
-
- return nr;
}
-#ifdef CONFIG_SYSCTL
-static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
- void *buffer, size_t *length,
- loff_t *ppos, unsigned long *out)
-{
- struct ctl_table dup_table;
+static bool __hugetlb_bootmem_allocated __initdata;
- /*
- * In order to avoid races with __do_proc_doulongvec_minmax(), we
- * can duplicate the @table and alter the duplicate of it.
- */
- dup_table = *table;
- dup_table.data = out;
-
- return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
+bool __init hugetlb_bootmem_allocated(void)
+{
+ return __hugetlb_bootmem_allocated;
}
-static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
- struct ctl_table *table, int write,
- void *buffer, size_t *length, loff_t *ppos)
+void __init hugetlb_bootmem_alloc(void)
{
- struct hstate *h = &default_hstate;
- unsigned long tmp = h->max_huge_pages;
- int ret;
+ struct hstate *h;
+ int i;
- if (!hugepages_supported())
- return -EOPNOTSUPP;
+ if (__hugetlb_bootmem_allocated)
+ return;
- ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
- &tmp);
- if (ret)
- goto out;
+ hugetlb_bootmem_set_nodes();
- if (write)
- ret = __nr_hugepages_store_common(obey_mempolicy, h,
- NUMA_NO_NODE, tmp, *length);
-out:
- return ret;
-}
+ for (i = 0; i < MAX_NUMNODES; i++)
+ INIT_LIST_HEAD(&huge_boot_pages[i]);
-int hugetlb_sysctl_handler(struct ctl_table *table, int write,
- void *buffer, size_t *length, loff_t *ppos)
-{
+ hugetlb_parse_params();
- return hugetlb_sysctl_handler_common(false, table, write,
- buffer, length, ppos);
-}
+ for_each_hstate(h) {
+ h->next_nid_to_alloc = first_online_node;
-#ifdef CONFIG_NUMA
-int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
- void *buffer, size_t *length, loff_t *ppos)
-{
- return hugetlb_sysctl_handler_common(true, table, write,
- buffer, length, ppos);
+ if (hstate_is_gigantic(h))
+ hugetlb_hstate_alloc_pages(h);
+ }
+
+ __hugetlb_bootmem_allocated = true;
}
-#endif /* CONFIG_NUMA */
-int hugetlb_overcommit_handler(struct ctl_table *table, int write,
- void *buffer, size_t *length, loff_t *ppos)
+/*
+ * hugepage_alloc_threads command line parsing.
+ *
+ * When set, use this specific number of threads for the boot
+ * allocation of hugepages.
+ */
+static int __init hugepage_alloc_threads_setup(char *s)
{
- struct hstate *h = &default_hstate;
- unsigned long tmp;
- int ret;
+ unsigned long allocation_threads;
- if (!hugepages_supported())
- return -EOPNOTSUPP;
+ if (kstrtoul(s, 0, &allocation_threads) != 0)
+ return 1;
- tmp = h->nr_overcommit_huge_pages;
+ if (allocation_threads == 0)
+ return 1;
- if (write && hstate_is_gigantic(h))
- return -EINVAL;
+ hugepage_allocation_threads = allocation_threads;
- ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
- &tmp);
- if (ret)
- goto out;
+ return 1;
+}
+__setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
- if (write) {
- spin_lock_irq(&hugetlb_lock);
- h->nr_overcommit_huge_pages = tmp;
- spin_unlock_irq(&hugetlb_lock);
+static unsigned int allowed_mems_nr(struct hstate *h)
+{
+ int node;
+ unsigned int nr = 0;
+ nodemask_t *mbind_nodemask;
+ unsigned int *array = h->free_huge_pages_node;
+ gfp_t gfp_mask = htlb_alloc_mask(h);
+
+ mbind_nodemask = policy_mbind_nodemask(gfp_mask);
+ for_each_node_mask(node, cpuset_current_mems_allowed) {
+ if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
+ nr += array[node];
}
-out:
- return ret;
-}
-#endif /* CONFIG_SYSCTL */
+ return nr;
+}
void hugetlb_report_meminfo(struct seq_file *m)
{
@@ -4699,7 +4607,7 @@ void hugetlb_show_meminfo_node(int nid)
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
seq_printf(m, "HugetlbPages:\t%8lu kB\n",
- atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
+ K(atomic_long_read(&mm->hugetlb_usage)));
}
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
@@ -4836,26 +4744,40 @@ static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
if (addr & ~(huge_page_mask(hstate_vma(vma))))
return -EINVAL;
+ return 0;
+}
+void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
+{
/*
* PMD sharing is only possible for PUD_SIZE-aligned address ranges
* in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
* split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
+ * This function is called in the middle of a VMA split operation, with
+ * MM, VMA and rmap all write-locked to prevent concurrent page table
+ * walks (except hardware and gup_fast()).
*/
+ vma_assert_write_locked(vma);
+ i_mmap_assert_write_locked(vma->vm_file->f_mapping);
+
if (addr & ~PUD_MASK) {
- /*
- * hugetlb_vm_op_split is called right before we attempt to
- * split the VMA. We will need to unshare PMDs in the old and
- * new VMAs, so let's unshare before we split.
- */
unsigned long floor = addr & PUD_MASK;
unsigned long ceil = floor + PUD_SIZE;
- if (floor >= vma->vm_start && ceil <= vma->vm_end)
- hugetlb_unshare_pmds(vma, floor, ceil);
+ if (floor >= vma->vm_start && ceil <= vma->vm_end) {
+ /*
+ * Locking:
+ * Use take_locks=false here.
+ * The file rmap lock is already held.
+ * The hugetlb VMA lock can't be taken when we already
+ * hold the file rmap lock, and we don't need it because
+ * its purpose is to synchronize against concurrent page
+ * table walks, which are not possible thanks to the
+ * locks held by our caller.
+ */
+ hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
+ }
}
-
- return 0;
}
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
@@ -4890,18 +4812,16 @@ const struct vm_operations_struct hugetlb_vm_ops = {
.pagesize = hugetlb_vm_op_pagesize,
};
-static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
- int writable)
+static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio,
+ bool try_mkwrite)
{
- pte_t entry;
+ pte_t entry = folio_mk_pte(folio, vma->vm_page_prot);
unsigned int shift = huge_page_shift(hstate_vma(vma));
- if (writable) {
- entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
- vma->vm_page_prot)));
+ if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
+ entry = pte_mkwrite_novma(pte_mkdirty(entry));
} else {
- entry = huge_pte_wrprotect(mk_huge_pte(page,
- vma->vm_page_prot));
+ entry = pte_wrprotect(entry);
}
entry = pte_mkyoung(entry);
entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
@@ -4914,46 +4834,31 @@ static void set_huge_ptep_writable(struct vm_area_struct *vma,
{
pte_t entry;
- entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
+ entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
update_mmu_cache(vma, address, ptep);
}
-bool is_hugetlb_entry_migration(pte_t pte)
-{
- swp_entry_t swp;
-
- if (huge_pte_none(pte) || pte_present(pte))
- return false;
- swp = pte_to_swp_entry(pte);
- if (is_migration_entry(swp))
- return true;
- else
- return false;
-}
-
-static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
+static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
+ unsigned long address, pte_t *ptep)
{
- swp_entry_t swp;
-
- if (huge_pte_none(pte) || pte_present(pte))
- return false;
- swp = pte_to_swp_entry(pte);
- if (is_hwpoison_entry(swp))
- return true;
- else
- return false;
+ if (vma->vm_flags & VM_WRITE)
+ set_huge_ptep_writable(vma, address, ptep);
}
static void
-hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
- struct page *new_page)
+hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
+ struct folio *new_folio, pte_t old, unsigned long sz)
{
- __SetPageUptodate(new_page);
- hugepage_add_new_anon_rmap(new_page, vma, addr);
- set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
+ pte_t newpte = make_huge_pte(vma, new_folio, true);
+
+ __folio_mark_uptodate(new_folio);
+ hugetlb_add_new_anon_rmap(new_folio, vma, addr);
+ if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
+ newpte = huge_pte_mkuffd_wp(newpte);
+ set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
- SetHPageMigratable(new_page);
+ folio_set_hugetlb_migratable(new_folio);
}
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
@@ -4961,7 +4866,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
struct vm_area_struct *src_vma)
{
pte_t *src_pte, *dst_pte, entry;
- struct page *ptepage;
+ struct folio *pte_folio;
unsigned long addr;
bool cow = is_cow_mapping(src_vma->vm_flags);
struct hstate *h = hstate_vma(src_vma);
@@ -4969,19 +4874,20 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
unsigned long npages = pages_per_huge_page(h);
struct mmu_notifier_range range;
unsigned long last_addr_mask;
+ softleaf_t softleaf;
int ret = 0;
if (cow) {
- mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
src_vma->vm_start,
src_vma->vm_end);
mmu_notifier_invalidate_range_start(&range);
- mmap_assert_write_locked(src);
+ vma_assert_write_locked(src_vma);
raw_write_seqcount_begin(&src->write_protect_seq);
} else {
/*
* For shared mappings the vma lock must be held before
- * calling huge_pte_offset in the src vma. Otherwise, the
+ * calling hugetlb_walk() in the src vma. Otherwise, the
* returned ptep could go away if part of a shared pmd and
* another thread calls huge_pmd_unshare.
*/
@@ -4991,7 +4897,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
last_addr_mask = hugetlb_mask_last_page(h);
for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
spinlock_t *src_ptl, *dst_ptl;
- src_pte = huge_pte_offset(src, addr, sz);
+ src_pte = hugetlb_walk(src_vma, addr, sz);
if (!src_pte) {
addr |= last_addr_mask;
continue;
@@ -5002,65 +4908,57 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
break;
}
- /*
- * If the pagetables are shared don't copy or take references.
- *
- * dst_pte == src_pte is the common case of src/dest sharing.
- * However, src could have 'unshared' and dst shares with
- * another vma. So page_count of ptep page is checked instead
- * to reliably determine whether pte is shared.
- */
- if (page_count(virt_to_page(dst_pte)) > 1) {
+#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
+ /* If the pagetables are shared, there is nothing to do */
+ if (ptdesc_pmd_is_shared(virt_to_ptdesc(dst_pte))) {
addr |= last_addr_mask;
continue;
}
+#endif
dst_ptl = huge_pte_lock(h, dst, dst_pte);
src_ptl = huge_pte_lockptr(h, src, src_pte);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
- entry = huge_ptep_get(src_pte);
+ entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
again:
if (huge_pte_none(entry)) {
- /*
- * Skip if src entry none.
- */
- ;
- } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
- bool uffd_wp = huge_pte_uffd_wp(entry);
+ /* Skip if src entry none. */
+ goto next;
+ }
- if (!userfaultfd_wp(dst_vma) && uffd_wp)
+ softleaf = softleaf_from_pte(entry);
+ if (unlikely(softleaf_is_hwpoison(softleaf))) {
+ if (!userfaultfd_wp(dst_vma))
entry = huge_pte_clear_uffd_wp(entry);
- set_huge_pte_at(dst, addr, dst_pte, entry);
- } else if (unlikely(is_hugetlb_entry_migration(entry))) {
- swp_entry_t swp_entry = pte_to_swp_entry(entry);
- bool uffd_wp = huge_pte_uffd_wp(entry);
+ set_huge_pte_at(dst, addr, dst_pte, entry, sz);
+ } else if (unlikely(softleaf_is_migration(softleaf))) {
+ bool uffd_wp = pte_swp_uffd_wp(entry);
- if (!is_readable_migration_entry(swp_entry) && cow) {
+ if (!softleaf_is_migration_read(softleaf) && cow) {
/*
* COW mappings require pages in both
* parent and child to be set to read.
*/
- swp_entry = make_readable_migration_entry(
- swp_offset(swp_entry));
- entry = swp_entry_to_pte(swp_entry);
+ softleaf = make_readable_migration_entry(
+ swp_offset(softleaf));
+ entry = swp_entry_to_pte(softleaf);
if (userfaultfd_wp(src_vma) && uffd_wp)
- entry = huge_pte_mkuffd_wp(entry);
- set_huge_pte_at(src, addr, src_pte, entry);
+ entry = pte_swp_mkuffd_wp(entry);
+ set_huge_pte_at(src, addr, src_pte, entry, sz);
}
- if (!userfaultfd_wp(dst_vma) && uffd_wp)
+ if (!userfaultfd_wp(dst_vma))
entry = huge_pte_clear_uffd_wp(entry);
- set_huge_pte_at(dst, addr, dst_pte, entry);
- } else if (unlikely(is_pte_marker(entry))) {
- /*
- * We copy the pte marker only if the dst vma has
- * uffd-wp enabled.
- */
- if (userfaultfd_wp(dst_vma))
- set_huge_pte_at(dst, addr, dst_pte, entry);
+ set_huge_pte_at(dst, addr, dst_pte, entry, sz);
+ } else if (unlikely(pte_is_marker(entry))) {
+ const pte_marker marker = copy_pte_marker(softleaf, dst_vma);
+
+ if (marker)
+ set_huge_pte_at(dst, addr, dst_pte,
+ make_pte_marker(marker), sz);
} else {
- entry = huge_ptep_get(src_pte);
- ptepage = pte_page(entry);
- get_page(ptepage);
+ entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
+ pte_folio = page_folio(pte_page(entry));
+ folio_get(pte_folio);
/*
* Failing to duplicate the anon rmap is a rare case
@@ -5072,42 +4970,44 @@ again:
* need to be without the pgtable locks since we could
* sleep during the process.
*/
- if (!PageAnon(ptepage)) {
- page_dup_file_rmap(ptepage, true);
- } else if (page_try_dup_anon_rmap(ptepage, true,
- src_vma)) {
+ if (!folio_test_anon(pte_folio)) {
+ hugetlb_add_file_rmap(pte_folio);
+ } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
pte_t src_pte_old = entry;
- struct page *new;
+ struct folio *new_folio;
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
/* Do not use reserve as it's private owned */
- new = alloc_huge_page(dst_vma, addr, 1);
- if (IS_ERR(new)) {
- put_page(ptepage);
- ret = PTR_ERR(new);
+ new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
+ if (IS_ERR(new_folio)) {
+ folio_put(pte_folio);
+ ret = PTR_ERR(new_folio);
+ break;
+ }
+ ret = copy_user_large_folio(new_folio, pte_folio,
+ addr, dst_vma);
+ folio_put(pte_folio);
+ if (ret) {
+ folio_put(new_folio);
break;
}
- copy_user_huge_page(new, ptepage, addr, dst_vma,
- npages);
- put_page(ptepage);
- /* Install the new huge page if src pte stable */
+ /* Install the new hugetlb folio if src pte stable */
dst_ptl = huge_pte_lock(h, dst, dst_pte);
src_ptl = huge_pte_lockptr(h, src, src_pte);
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
- entry = huge_ptep_get(src_pte);
+ entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
if (!pte_same(src_pte_old, entry)) {
restore_reserve_on_error(h, dst_vma, addr,
- new);
- put_page(new);
+ new_folio);
+ folio_put(new_folio);
/* huge_ptep of dst_pte won't change as in child */
goto again;
}
- hugetlb_install_page(dst_vma, dst_pte, addr, new);
- spin_unlock(src_ptl);
- spin_unlock(dst_ptl);
- continue;
+ hugetlb_install_folio(dst_vma, dst_pte, addr,
+ new_folio, src_pte_old, sz);
+ goto next;
}
if (cow) {
@@ -5122,9 +5022,14 @@ again:
entry = huge_pte_wrprotect(entry);
}
- set_huge_pte_at(dst, addr, dst_pte, entry);
+ if (!userfaultfd_wp(dst_vma))
+ entry = huge_pte_clear_uffd_wp(entry);
+
+ set_huge_pte_at(dst, addr, dst_pte, entry, sz);
hugetlb_count_add(npages, dst);
}
+
+next:
spin_unlock(src_ptl);
spin_unlock(dst_ptl);
}
@@ -5140,8 +5045,10 @@ again:
}
static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
- unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
+ unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
+ unsigned long sz)
{
+ bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
struct hstate *h = hstate_vma(vma);
struct mm_struct *mm = vma->vm_mm;
spinlock_t *src_ptl, *dst_ptl;
@@ -5157,8 +5064,19 @@ static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
if (src_ptl != dst_ptl)
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
- pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
- set_huge_pte_at(mm, new_addr, dst_pte, pte);
+ pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
+
+ if (need_clear_uffd_wp && pte_is_uffd_wp_marker(pte)) {
+ huge_pte_clear(mm, new_addr, dst_pte, sz);
+ } else {
+ if (need_clear_uffd_wp) {
+ if (pte_present(pte))
+ pte = huge_pte_clear_uffd_wp(pte);
+ else
+ pte = pte_swp_clear_uffd_wp(pte);
+ }
+ set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
+ }
if (src_ptl != dst_ptl)
spin_unlock(src_ptl);
@@ -5180,7 +5098,7 @@ int move_hugetlb_page_tables(struct vm_area_struct *vma,
struct mmu_notifier_range range;
bool shared_pmd = false;
- mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
old_end);
adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
/*
@@ -5195,13 +5113,13 @@ int move_hugetlb_page_tables(struct vm_area_struct *vma,
hugetlb_vma_lock_write(vma);
i_mmap_lock_write(mapping);
for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
- src_pte = huge_pte_offset(mm, old_addr, sz);
+ src_pte = hugetlb_walk(vma, old_addr, sz);
if (!src_pte) {
old_addr |= last_addr_mask;
new_addr |= last_addr_mask;
continue;
}
- if (huge_pte_none(huge_ptep_get(src_pte)))
+ if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
continue;
if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
@@ -5215,13 +5133,13 @@ int move_hugetlb_page_tables(struct vm_area_struct *vma,
if (!dst_pte)
break;
- move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
+ move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
}
if (shared_pmd)
- flush_tlb_range(vma, range.start, range.end);
+ flush_hugetlb_tlb_range(vma, range.start, range.end);
else
- flush_tlb_range(vma, old_end - len, old_end);
+ flush_hugetlb_tlb_range(vma, old_end - len, old_end);
mmu_notifier_invalidate_range_end(&range);
i_mmap_unlock_write(mapping);
hugetlb_vma_unlock_write(vma);
@@ -5229,18 +5147,19 @@ int move_hugetlb_page_tables(struct vm_area_struct *vma,
return len + old_addr - old_end;
}
-static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
- unsigned long start, unsigned long end,
- struct page *ref_page, zap_flags_t zap_flags)
+void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
+ unsigned long start, unsigned long end,
+ struct folio *folio, zap_flags_t zap_flags)
{
struct mm_struct *mm = vma->vm_mm;
+ const bool folio_provided = !!folio;
unsigned long address;
pte_t *ptep;
pte_t pte;
spinlock_t *ptl;
- struct page *page;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
+ bool adjust_reservation;
unsigned long last_addr_mask;
bool force_flush = false;
@@ -5258,7 +5177,7 @@ static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct
last_addr_mask = hugetlb_mask_last_page(h);
address = start;
for (; address < end; address += sz) {
- ptep = huge_pte_offset(mm, address, sz);
+ ptep = hugetlb_walk(vma, address, sz);
if (!ptep) {
address |= last_addr_mask;
continue;
@@ -5273,7 +5192,7 @@ static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct
continue;
}
- pte = huge_ptep_get(ptep);
+ pte = huge_ptep_get(mm, address, ptep);
if (huge_pte_none(pte)) {
spin_unlock(ptl);
continue;
@@ -5293,21 +5212,21 @@ static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct
if (pte_swp_uffd_wp_any(pte) &&
!(zap_flags & ZAP_FLAG_DROP_MARKER))
set_huge_pte_at(mm, address, ptep,
- make_pte_marker(PTE_MARKER_UFFD_WP));
+ make_pte_marker(PTE_MARKER_UFFD_WP),
+ sz);
else
huge_pte_clear(mm, address, ptep, sz);
spin_unlock(ptl);
continue;
}
- page = pte_page(pte);
/*
- * If a reference page is supplied, it is because a specific
- * page is being unmapped, not a range. Ensure the page we
- * are about to unmap is the actual page of interest.
+ * If a folio is supplied, it is because a specific
+ * folio is being unmapped, not a range. Ensure the folio we
+ * are about to unmap is the actual folio of interest.
*/
- if (ref_page) {
- if (page != ref_page) {
+ if (folio_provided) {
+ if (folio != page_folio(pte_page(pte))) {
spin_unlock(ptl);
continue;
}
@@ -5317,26 +5236,69 @@ static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct
* looking like data was lost
*/
set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
+ } else {
+ folio = page_folio(pte_page(pte));
}
- pte = huge_ptep_get_and_clear(mm, address, ptep);
+ pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
if (huge_pte_dirty(pte))
- set_page_dirty(page);
+ folio_mark_dirty(folio);
/* Leave a uffd-wp pte marker if needed */
if (huge_pte_uffd_wp(pte) &&
!(zap_flags & ZAP_FLAG_DROP_MARKER))
set_huge_pte_at(mm, address, ptep,
- make_pte_marker(PTE_MARKER_UFFD_WP));
+ make_pte_marker(PTE_MARKER_UFFD_WP),
+ sz);
hugetlb_count_sub(pages_per_huge_page(h), mm);
- page_remove_rmap(page, vma, true);
-
+ hugetlb_remove_rmap(folio);
spin_unlock(ptl);
- tlb_remove_page_size(tlb, page, huge_page_size(h));
+
+ /*
+ * Restore the reservation for anonymous page, otherwise the
+ * backing page could be stolen by someone.
+ * If there we are freeing a surplus, do not set the restore
+ * reservation bit.
+ */
+ adjust_reservation = false;
+
+ spin_lock_irq(&hugetlb_lock);
+ if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
+ folio_test_anon(folio)) {
+ folio_set_hugetlb_restore_reserve(folio);
+ /* Reservation to be adjusted after the spin lock */
+ adjust_reservation = true;
+ }
+ spin_unlock_irq(&hugetlb_lock);
+
+ /*
+ * Adjust the reservation for the region that will have the
+ * reserve restored. Keep in mind that vma_needs_reservation() changes
+ * resv->adds_in_progress if it succeeds. If this is not done,
+ * do_exit() will not see it, and will keep the reservation
+ * forever.
+ */
+ if (adjust_reservation) {
+ int rc = vma_needs_reservation(h, vma, address);
+
+ if (rc < 0)
+ /* Pressumably allocate_file_region_entries failed
+ * to allocate a file_region struct. Clear
+ * hugetlb_restore_reserve so that global reserve
+ * count will not be incremented by free_huge_folio.
+ * Act as if we consumed the reservation.
+ */
+ folio_clear_hugetlb_restore_reserve(folio);
+ else if (rc)
+ vma_add_reservation(h, vma, address);
+ }
+
+ tlb_remove_page_size(tlb, folio_page(folio, 0),
+ folio_size(folio));
/*
- * Bail out after unmapping reference page if supplied
+ * If we were instructed to unmap a specific folio, we're done.
*/
- if (ref_page)
+ if (folio_provided)
break;
}
tlb_end_vma(tlb, vma);
@@ -5344,7 +5306,7 @@ static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct
/*
* If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
* could defer the flush until now, since by holding i_mmap_rwsem we
- * guaranteed that the last refernece would not be dropped. But we must
+ * guaranteed that the last reference would not be dropped. But we must
* do the flushing before we return, as otherwise i_mmap_rwsem will be
* dropped and the last reference to the shared PMDs page might be
* dropped as well.
@@ -5358,16 +5320,25 @@ static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct
tlb_flush_mmu_tlbonly(tlb);
}
-void __unmap_hugepage_range_final(struct mmu_gather *tlb,
- struct vm_area_struct *vma, unsigned long start,
- unsigned long end, struct page *ref_page,
- zap_flags_t zap_flags)
+void __hugetlb_zap_begin(struct vm_area_struct *vma,
+ unsigned long *start, unsigned long *end)
{
+ if (!vma->vm_file) /* hugetlbfs_file_mmap error */
+ return;
+
+ adjust_range_if_pmd_sharing_possible(vma, start, end);
hugetlb_vma_lock_write(vma);
- i_mmap_lock_write(vma->vm_file->f_mapping);
+ if (vma->vm_file)
+ i_mmap_lock_write(vma->vm_file->f_mapping);
+}
- /* mmu notification performed in caller */
- __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
+void __hugetlb_zap_end(struct vm_area_struct *vma,
+ struct zap_details *details)
+{
+ zap_flags_t zap_flags = details ? details->zap_flags : 0;
+
+ if (!vma->vm_file) /* hugetlbfs_file_mmap error */
+ return;
if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
/*
@@ -5380,27 +5351,29 @@ void __unmap_hugepage_range_final(struct mmu_gather *tlb,
* someone else.
*/
__hugetlb_vma_unlock_write_free(vma);
- i_mmap_unlock_write(vma->vm_file->f_mapping);
} else {
- i_mmap_unlock_write(vma->vm_file->f_mapping);
hugetlb_vma_unlock_write(vma);
}
+
+ if (vma->vm_file)
+ i_mmap_unlock_write(vma->vm_file->f_mapping);
}
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
- unsigned long end, struct page *ref_page,
+ unsigned long end, struct folio *folio,
zap_flags_t zap_flags)
{
struct mmu_notifier_range range;
struct mmu_gather tlb;
- mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
start, end);
adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
mmu_notifier_invalidate_range_start(&range);
tlb_gather_mmu(&tlb, vma->vm_mm);
- __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
+ __unmap_hugepage_range(&tlb, vma, start, end,
+ folio, zap_flags);
mmu_notifier_invalidate_range_end(&range);
tlb_finish_mmu(&tlb);
@@ -5413,7 +5386,7 @@ void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
* same region.
*/
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
- struct page *page, unsigned long address)
+ struct folio *folio, unsigned long address)
{
struct hstate *h = hstate_vma(vma);
struct vm_area_struct *iter_vma;
@@ -5457,7 +5430,8 @@ static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
*/
if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
unmap_hugepage_range(iter_vma, address,
- address + huge_page_size(h), page, 0);
+ address + huge_page_size(h),
+ folio, 0);
}
i_mmap_unlock_write(mapping);
}
@@ -5468,34 +5442,37 @@ static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
* cannot race with other handlers or page migration.
* Keep the pte_same checks anyway to make transition from the mutex easier.
*/
-static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *ptep, unsigned int flags,
- struct page *pagecache_page, spinlock_t *ptl)
+static vm_fault_t hugetlb_wp(struct vm_fault *vmf)
{
- const bool unshare = flags & FAULT_FLAG_UNSHARE;
- pte_t pte;
+ struct vm_area_struct *vma = vmf->vma;
+ struct mm_struct *mm = vma->vm_mm;
+ const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
+ pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
struct hstate *h = hstate_vma(vma);
- struct page *old_page, *new_page;
- int outside_reserve = 0;
+ struct folio *old_folio;
+ struct folio *new_folio;
+ bool cow_from_owner = 0;
vm_fault_t ret = 0;
- unsigned long haddr = address & huge_page_mask(h);
struct mmu_notifier_range range;
/*
- * hugetlb does not support FOLL_FORCE-style write faults that keep the
- * PTE mapped R/O such as maybe_mkwrite() would do.
+ * Never handle CoW for uffd-wp protected pages. It should be only
+ * handled when the uffd-wp protection is removed.
+ *
+ * Note that only the CoW optimization path (in hugetlb_no_page())
+ * can trigger this, because hugetlb_fault() will always resolve
+ * uffd-wp bit first.
*/
- if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
- return VM_FAULT_SIGSEGV;
+ if (!unshare && huge_pte_uffd_wp(pte))
+ return 0;
/* Let's take out MAP_SHARED mappings first. */
if (vma->vm_flags & VM_MAYSHARE) {
- set_huge_ptep_writable(vma, haddr, ptep);
+ set_huge_ptep_writable(vma, vmf->address, vmf->pte);
return 0;
}
- pte = huge_ptep_get(ptep);
- old_page = pte_page(pte);
+ old_folio = page_folio(pte_page(pte));
delayacct_wpcopy_start();
@@ -5503,42 +5480,53 @@ retry_avoidcopy:
/*
* If no-one else is actually using this page, we're the exclusive
* owner and can reuse this page.
+ *
+ * Note that we don't rely on the (safer) folio refcount here, because
+ * copying the hugetlb folio when there are unexpected (temporary)
+ * folio references could harm simple fork()+exit() users when
+ * we run out of free hugetlb folios: we would have to kill processes
+ * in scenarios that used to work. As a side effect, there can still
+ * be leaks between processes, for example, with FOLL_GET users.
*/
- if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
- if (!PageAnonExclusive(old_page))
- page_move_anon_rmap(old_page, vma);
+ if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
+ if (!PageAnonExclusive(&old_folio->page)) {
+ folio_move_anon_rmap(old_folio, vma);
+ SetPageAnonExclusive(&old_folio->page);
+ }
if (likely(!unshare))
- set_huge_ptep_writable(vma, haddr, ptep);
+ set_huge_ptep_maybe_writable(vma, vmf->address,
+ vmf->pte);
delayacct_wpcopy_end();
return 0;
}
- VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
- old_page);
+ VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
+ PageAnonExclusive(&old_folio->page), &old_folio->page);
/*
- * If the process that created a MAP_PRIVATE mapping is about to
- * perform a COW due to a shared page count, attempt to satisfy
- * the allocation without using the existing reserves. The pagecache
- * page is used to determine if the reserve at this address was
- * consumed or not. If reserves were used, a partial faulted mapping
- * at the time of fork() could consume its reserves on COW instead
- * of the full address range.
+ * If the process that created a MAP_PRIVATE mapping is about to perform
+ * a COW due to a shared page count, attempt to satisfy the allocation
+ * without using the existing reserves.
+ * In order to determine where this is a COW on a MAP_PRIVATE mapping it
+ * is enough to check whether the old_folio is anonymous. This means that
+ * the reserve for this address was consumed. If reserves were used, a
+ * partial faulted mapping at the fime of fork() could consume its reserves
+ * on COW instead of the full address range.
*/
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
- old_page != pagecache_page)
- outside_reserve = 1;
+ folio_test_anon(old_folio))
+ cow_from_owner = true;
- get_page(old_page);
+ folio_get(old_folio);
/*
* Drop page table lock as buddy allocator may be called. It will
* be acquired again before returning to the caller, as expected.
*/
- spin_unlock(ptl);
- new_page = alloc_huge_page(vma, haddr, outside_reserve);
+ spin_unlock(vmf->ptl);
+ new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
- if (IS_ERR(new_page)) {
+ if (IS_ERR(new_folio)) {
/*
* If a process owning a MAP_PRIVATE mapping fails to COW,
* it is due to references held by a child and an insufficient
@@ -5546,12 +5534,12 @@ retry_avoidcopy:
* reliability, unmap the page from child processes. The child
* may get SIGKILLed if it later faults.
*/
- if (outside_reserve) {
+ if (cow_from_owner) {
struct address_space *mapping = vma->vm_file->f_mapping;
pgoff_t idx;
u32 hash;
- put_page(old_page);
+ folio_put(old_folio);
/*
* Drop hugetlb_fault_mutex and vma_lock before
* unmapping. unmapping needs to hold vma_lock
@@ -5561,19 +5549,20 @@ retry_avoidcopy:
*
* Reacquire both after unmap operation.
*/
- idx = vma_hugecache_offset(h, vma, haddr);
+ idx = vma_hugecache_offset(h, vma, vmf->address);
hash = hugetlb_fault_mutex_hash(mapping, idx);
hugetlb_vma_unlock_read(vma);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
- unmap_ref_private(mm, vma, old_page, haddr);
+ unmap_ref_private(mm, vma, old_folio, vmf->address);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
hugetlb_vma_lock_read(vma);
- spin_lock(ptl);
- ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
- if (likely(ptep &&
- pte_same(huge_ptep_get(ptep), pte)))
+ spin_lock(vmf->ptl);
+ vmf->pte = hugetlb_walk(vma, vmf->address,
+ huge_page_size(h));
+ if (likely(vmf->pte &&
+ pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
goto retry_avoidcopy;
/*
* race occurs while re-acquiring page table
@@ -5583,7 +5572,7 @@ retry_avoidcopy:
return 0;
}
- ret = vmf_error(PTR_ERR(new_page));
+ ret = vmf_error(PTR_ERR(new_folio));
goto out_release_old;
}
@@ -5591,51 +5580,55 @@ retry_avoidcopy:
* When the original hugepage is shared one, it does not have
* anon_vma prepared.
*/
- if (unlikely(anon_vma_prepare(vma))) {
- ret = VM_FAULT_OOM;
+ ret = __vmf_anon_prepare(vmf);
+ if (unlikely(ret))
goto out_release_all;
- }
- copy_user_huge_page(new_page, old_page, address, vma,
- pages_per_huge_page(h));
- __SetPageUptodate(new_page);
+ if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
+ ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
+ goto out_release_all;
+ }
+ __folio_mark_uptodate(new_folio);
- mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
- haddr + huge_page_size(h));
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
+ vmf->address + huge_page_size(h));
mmu_notifier_invalidate_range_start(&range);
/*
* Retake the page table lock to check for racing updates
* before the page tables are altered
*/
- spin_lock(ptl);
- ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
- if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
+ spin_lock(vmf->ptl);
+ vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
+ if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
+ pte_t newpte = make_huge_pte(vma, new_folio, !unshare);
+
/* Break COW or unshare */
- huge_ptep_clear_flush(vma, haddr, ptep);
- mmu_notifier_invalidate_range(mm, range.start, range.end);
- page_remove_rmap(old_page, vma, true);
- hugepage_add_new_anon_rmap(new_page, vma, haddr);
- set_huge_pte_at(mm, haddr, ptep,
- make_huge_pte(vma, new_page, !unshare));
- SetHPageMigratable(new_page);
+ huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
+ hugetlb_remove_rmap(old_folio);
+ hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
+ if (huge_pte_uffd_wp(pte))
+ newpte = huge_pte_mkuffd_wp(newpte);
+ set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
+ huge_page_size(h));
+ folio_set_hugetlb_migratable(new_folio);
/* Make the old page be freed below */
- new_page = old_page;
+ new_folio = old_folio;
}
- spin_unlock(ptl);
+ spin_unlock(vmf->ptl);
mmu_notifier_invalidate_range_end(&range);
out_release_all:
/*
* No restore in case of successful pagetable update (Break COW or
* unshare)
*/
- if (new_page != old_page)
- restore_reserve_on_error(h, vma, haddr, new_page);
- put_page(new_page);
+ if (new_folio != old_folio)
+ restore_reserve_on_error(h, vma, vmf->address, new_folio);
+ folio_put(new_folio);
out_release_old:
- put_page(old_page);
+ folio_put(old_folio);
- spin_lock(ptl); /* Caller expects lock to be held */
+ spin_lock(vmf->ptl); /* Caller expects lock to be held */
delayacct_wpcopy_end();
return ret;
@@ -5643,32 +5636,29 @@ out_release_old:
/*
* Return whether there is a pagecache page to back given address within VMA.
- * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
*/
-static bool hugetlbfs_pagecache_present(struct hstate *h,
- struct vm_area_struct *vma, unsigned long address)
+bool hugetlbfs_pagecache_present(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long address)
{
- struct address_space *mapping;
- pgoff_t idx;
- struct page *page;
-
- mapping = vma->vm_file->f_mapping;
- idx = vma_hugecache_offset(h, vma, address);
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ pgoff_t idx = linear_page_index(vma, address);
+ struct folio *folio;
- page = find_get_page(mapping, idx);
- if (page)
- put_page(page);
- return page != NULL;
+ folio = filemap_get_folio(mapping, idx);
+ if (IS_ERR(folio))
+ return false;
+ folio_put(folio);
+ return true;
}
-int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
+int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
pgoff_t idx)
{
- struct folio *folio = page_folio(page);
struct inode *inode = mapping->host;
struct hstate *h = hstate_inode(inode);
int err;
+ idx <<= huge_page_order(h);
__folio_set_locked(folio);
err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
@@ -5676,7 +5666,7 @@ int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
__folio_clear_locked(folio);
return err;
}
- ClearHPageRestoreReserve(page);
+ folio_clear_hugetlb_restore_reserve(folio);
/*
* mark folio dirty so that it will not be removed from cache/file
@@ -5690,74 +5680,53 @@ int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
return 0;
}
-static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
+static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
struct address_space *mapping,
- pgoff_t idx,
- unsigned int flags,
- unsigned long haddr,
- unsigned long addr,
unsigned long reason)
{
u32 hash;
- struct vm_fault vmf = {
- .vma = vma,
- .address = haddr,
- .real_address = addr,
- .flags = flags,
-
- /*
- * Hard to debug if it ends up being
- * used by a callee that assumes
- * something about the other
- * uninitialized fields... same as in
- * memory.c
- */
- };
/*
* vma_lock and hugetlb_fault_mutex must be dropped before handling
* userfault. Also mmap_lock could be dropped due to handling
* userfault, any vma operation should be careful from here.
*/
- hugetlb_vma_unlock_read(vma);
- hash = hugetlb_fault_mutex_hash(mapping, idx);
+ hugetlb_vma_unlock_read(vmf->vma);
+ hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
- return handle_userfault(&vmf, reason);
+ return handle_userfault(vmf, reason);
}
/*
* Recheck pte with pgtable lock. Returns true if pte didn't change, or
* false if pte changed or is changing.
*/
-static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
+static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t old_pte)
{
spinlock_t *ptl;
bool same;
ptl = huge_pte_lock(h, mm, ptep);
- same = pte_same(huge_ptep_get(ptep), old_pte);
+ same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
spin_unlock(ptl);
return same;
}
-static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
- struct vm_area_struct *vma,
- struct address_space *mapping, pgoff_t idx,
- unsigned long address, pte_t *ptep,
- pte_t old_pte, unsigned int flags)
+static vm_fault_t hugetlb_no_page(struct address_space *mapping,
+ struct vm_fault *vmf)
{
+ u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
+ bool new_folio, new_anon_folio = false;
+ struct vm_area_struct *vma = vmf->vma;
+ struct mm_struct *mm = vma->vm_mm;
struct hstate *h = hstate_vma(vma);
vm_fault_t ret = VM_FAULT_SIGBUS;
- int anon_rmap = 0;
+ bool folio_locked = true;
+ struct folio *folio;
unsigned long size;
- struct page *page;
pte_t new_pte;
- spinlock_t *ptl;
- unsigned long haddr = address & huge_page_mask(h);
- bool new_page, new_pagecache_page = false;
- u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
/*
* Currently, we are forced to kill the process in the event the
@@ -5775,11 +5744,11 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
* Use page lock to guard against racing truncation
* before we get page_table_lock.
*/
- new_page = false;
- page = find_lock_page(mapping, idx);
- if (!page) {
+ new_folio = false;
+ folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
+ if (IS_ERR(folio)) {
size = i_size_read(mapping->host) >> huge_page_shift(h);
- if (idx >= size)
+ if (vmf->pgoff >= size)
goto out;
/* Check for page in userfault range */
if (userfaultfd_missing(vma)) {
@@ -5800,18 +5769,23 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
* never happen on the page after UFFDIO_COPY has
* correctly installed the page and returned.
*/
- if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
+ if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
ret = 0;
goto out;
}
- return hugetlb_handle_userfault(vma, mapping, idx, flags,
- haddr, address,
+ return hugetlb_handle_userfault(vmf, mapping,
VM_UFFD_MISSING);
}
- page = alloc_huge_page(vma, haddr, 0);
- if (IS_ERR(page)) {
+ if (!(vma->vm_flags & VM_MAYSHARE)) {
+ ret = __vmf_anon_prepare(vmf);
+ if (unlikely(ret))
+ goto out;
+ }
+
+ folio = alloc_hugetlb_folio(vma, vmf->address, false);
+ if (IS_ERR(folio)) {
/*
* Returning error will result in faulting task being
* sent SIGBUS. The hugetlb fault mutex prevents two
@@ -5824,18 +5798,19 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
* here. Before returning error, get ptl and make
* sure there really is no pte entry.
*/
- if (hugetlb_pte_stable(h, mm, ptep, old_pte))
- ret = vmf_error(PTR_ERR(page));
+ if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
+ ret = vmf_error(PTR_ERR(folio));
else
ret = 0;
goto out;
}
- clear_huge_page(page, address, pages_per_huge_page(h));
- __SetPageUptodate(page);
- new_page = true;
+ folio_zero_user(folio, vmf->real_address);
+ __folio_mark_uptodate(folio);
+ new_folio = true;
if (vma->vm_flags & VM_MAYSHARE) {
- int err = hugetlb_add_to_page_cache(page, mapping, idx);
+ int err = hugetlb_add_to_page_cache(folio, mapping,
+ vmf->pgoff);
if (err) {
/*
* err can't be -EEXIST which implies someone
@@ -5844,18 +5819,15 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
* to the page cache. So it's safe to call
* restore_reserve_on_error() here.
*/
- restore_reserve_on_error(h, vma, haddr, page);
- put_page(page);
+ restore_reserve_on_error(h, vma, vmf->address,
+ folio);
+ folio_put(folio);
+ ret = VM_FAULT_SIGBUS;
goto out;
}
- new_pagecache_page = true;
} else {
- lock_page(page);
- if (unlikely(anon_vma_prepare(vma))) {
- ret = VM_FAULT_OOM;
- goto backout_unlocked;
- }
- anon_rmap = 1;
+ new_anon_folio = true;
+ folio_lock(folio);
}
} else {
/*
@@ -5863,7 +5835,7 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
* don't have hwpoisoned swap entry for errored virtual address.
* So we need to block hugepage fault by PG_hwpoison bit check.
*/
- if (unlikely(PageHWPoison(page))) {
+ if (unlikely(folio_test_hwpoison(folio))) {
ret = VM_FAULT_HWPOISON_LARGE |
VM_FAULT_SET_HINDEX(hstate_index(h));
goto backout_unlocked;
@@ -5871,15 +5843,14 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
/* Check for page in userfault range. */
if (userfaultfd_minor(vma)) {
- unlock_page(page);
- put_page(page);
+ folio_unlock(folio);
+ folio_put(folio);
/* See comment in userfaultfd_missing() block above */
- if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
+ if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
ret = 0;
goto out;
}
- return hugetlb_handle_userfault(vma, mapping, idx, flags,
- haddr, address,
+ return hugetlb_handle_userfault(vmf, mapping,
VM_UFFD_MINOR);
}
}
@@ -5890,65 +5861,82 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
* any allocations necessary to record that reservation occur outside
* the spinlock.
*/
- if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
- if (vma_needs_reservation(h, vma, haddr) < 0) {
+ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
+ if (vma_needs_reservation(h, vma, vmf->address) < 0) {
ret = VM_FAULT_OOM;
goto backout_unlocked;
}
/* Just decrements count, does not deallocate */
- vma_end_reservation(h, vma, haddr);
+ vma_end_reservation(h, vma, vmf->address);
}
- ptl = huge_pte_lock(h, mm, ptep);
+ vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
ret = 0;
/* If pte changed from under us, retry */
- if (!pte_same(huge_ptep_get(ptep), old_pte))
+ if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
goto backout;
- if (anon_rmap)
- hugepage_add_new_anon_rmap(page, vma, haddr);
+ if (new_anon_folio)
+ hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
else
- page_dup_file_rmap(page, true);
- new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
- && (vma->vm_flags & VM_SHARED)));
+ hugetlb_add_file_rmap(folio);
+ new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED);
/*
* If this pte was previously wr-protected, keep it wr-protected even
* if populated.
*/
- if (unlikely(pte_marker_uffd_wp(old_pte)))
- new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
- set_huge_pte_at(mm, haddr, ptep, new_pte);
+ if (unlikely(pte_is_uffd_wp_marker(vmf->orig_pte)))
+ new_pte = huge_pte_mkuffd_wp(new_pte);
+ set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
hugetlb_count_add(pages_per_huge_page(h), mm);
- if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
+ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
+ /*
+ * No need to keep file folios locked. See comment in
+ * hugetlb_fault().
+ */
+ if (!new_anon_folio) {
+ folio_locked = false;
+ folio_unlock(folio);
+ }
/* Optimization, do the COW without a second fault */
- ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
+ ret = hugetlb_wp(vmf);
}
- spin_unlock(ptl);
+ spin_unlock(vmf->ptl);
/*
- * Only set HPageMigratable in newly allocated pages. Existing pages
- * found in the pagecache may not have HPageMigratableset if they have
+ * Only set hugetlb_migratable in newly allocated pages. Existing pages
+ * found in the pagecache may not have hugetlb_migratable if they have
* been isolated for migration.
*/
- if (new_page)
- SetHPageMigratable(page);
+ if (new_folio)
+ folio_set_hugetlb_migratable(folio);
- unlock_page(page);
+ if (folio_locked)
+ folio_unlock(folio);
out:
hugetlb_vma_unlock_read(vma);
+
+ /*
+ * We must check to release the per-VMA lock. __vmf_anon_prepare() is
+ * the only way ret can be set to VM_FAULT_RETRY.
+ */
+ if (unlikely(ret & VM_FAULT_RETRY))
+ vma_end_read(vma);
+
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
return ret;
backout:
- spin_unlock(ptl);
+ spin_unlock(vmf->ptl);
backout_unlocked:
- if (new_page && !new_pagecache_page)
- restore_reserve_on_error(h, vma, haddr, page);
+ /* We only need to restore reservations for private mappings */
+ if (new_anon_folio)
+ restore_reserve_on_error(h, vma, vmf->address, folio);
- unlock_page(page);
- put_page(page);
+ folio_unlock(folio);
+ folio_put(folio);
goto out;
}
@@ -5979,33 +5967,26 @@ u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, unsigned int flags)
{
- pte_t *ptep, entry;
- spinlock_t *ptl;
vm_fault_t ret;
u32 hash;
- pgoff_t idx;
- struct page *page = NULL;
- struct page *pagecache_page = NULL;
+ struct folio *folio = NULL;
struct hstate *h = hstate_vma(vma);
struct address_space *mapping;
- int need_wait_lock = 0;
- unsigned long haddr = address & huge_page_mask(h);
+ bool need_wait_lock = false;
+ struct vm_fault vmf = {
+ .vma = vma,
+ .address = address & huge_page_mask(h),
+ .real_address = address,
+ .flags = flags,
+ .pgoff = vma_hugecache_offset(h, vma,
+ address & huge_page_mask(h)),
+ /* TODO: Track hugetlb faults using vm_fault */
- ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
- if (ptep) {
/*
- * Since we hold no locks, ptep could be stale. That is
- * OK as we are only making decisions based on content and
- * not actually modifying content here.
+ * Some fields may not be initialized, be careful as it may
+ * be hard to debug if called functions make assumptions
*/
- entry = huge_ptep_get(ptep);
- if (unlikely(is_hugetlb_entry_migration(entry))) {
- migration_entry_wait_huge(vma, ptep);
- return 0;
- } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
- return VM_FAULT_HWPOISON_LARGE |
- VM_FAULT_SET_HINDEX(hstate_index(h));
- }
+ };
/*
* Serialize hugepage allocation and instantiation, so that we don't
@@ -6013,182 +5994,247 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
* the same page in the page cache.
*/
mapping = vma->vm_file->f_mapping;
- idx = vma_hugecache_offset(h, vma, haddr);
- hash = hugetlb_fault_mutex_hash(mapping, idx);
+ hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
/*
* Acquire vma lock before calling huge_pte_alloc and hold
- * until finished with ptep. This prevents huge_pmd_unshare from
- * being called elsewhere and making the ptep no longer valid.
- *
- * ptep could have already be assigned via huge_pte_offset. That
- * is OK, as huge_pte_alloc will return the same value unless
- * something has changed.
+ * until finished with vmf.pte. This prevents huge_pmd_unshare from
+ * being called elsewhere and making the vmf.pte no longer valid.
*/
hugetlb_vma_lock_read(vma);
- ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
- if (!ptep) {
+ vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
+ if (!vmf.pte) {
hugetlb_vma_unlock_read(vma);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
return VM_FAULT_OOM;
}
- entry = huge_ptep_get(ptep);
- /* PTE markers should be handled the same way as none pte */
- if (huge_pte_none_mostly(entry))
+ vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
+ if (huge_pte_none(vmf.orig_pte))
/*
* hugetlb_no_page will drop vma lock and hugetlb fault
* mutex internally, which make us return immediately.
*/
- return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
- entry, flags);
+ return hugetlb_no_page(mapping, &vmf);
+
+ if (pte_is_marker(vmf.orig_pte)) {
+ const pte_marker marker =
+ softleaf_to_marker(softleaf_from_pte(vmf.orig_pte));
+
+ if (marker & PTE_MARKER_POISONED) {
+ ret = VM_FAULT_HWPOISON_LARGE |
+ VM_FAULT_SET_HINDEX(hstate_index(h));
+ goto out_mutex;
+ } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
+ /* This isn't supported in hugetlb. */
+ ret = VM_FAULT_SIGSEGV;
+ goto out_mutex;
+ }
+
+ return hugetlb_no_page(mapping, &vmf);
+ }
ret = 0;
- /*
- * entry could be a migration/hwpoison entry at this point, so this
- * check prevents the kernel from going below assuming that we have
- * an active hugepage in pagecache. This goto expects the 2nd page
- * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
- * properly handle it.
- */
- if (!pte_present(entry))
+ /* Not present, either a migration or a hwpoisoned entry */
+ if (!pte_present(vmf.orig_pte) && !huge_pte_none(vmf.orig_pte)) {
+ const softleaf_t softleaf = softleaf_from_pte(vmf.orig_pte);
+
+ if (softleaf_is_migration(softleaf)) {
+ /*
+ * Release the hugetlb fault lock now, but retain
+ * the vma lock, because it is needed to guard the
+ * huge_pte_lockptr() later in
+ * migration_entry_wait_huge(). The vma lock will
+ * be released there.
+ */
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ migration_entry_wait_huge(vma, vmf.address, vmf.pte);
+ return 0;
+ }
+ if (softleaf_is_hwpoison(softleaf)) {
+ ret = VM_FAULT_HWPOISON_LARGE |
+ VM_FAULT_SET_HINDEX(hstate_index(h));
+ }
+
goto out_mutex;
+ }
/*
* If we are going to COW/unshare the mapping later, we examine the
* pending reservations for this page now. This will ensure that any
* allocations necessary to record that reservation occur outside the
- * spinlock. Also lookup the pagecache page now as it is used to
- * determine if a reservation has been consumed.
+ * spinlock.
*/
if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
- !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
- if (vma_needs_reservation(h, vma, haddr) < 0) {
+ !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
+ if (vma_needs_reservation(h, vma, vmf.address) < 0) {
ret = VM_FAULT_OOM;
goto out_mutex;
}
/* Just decrements count, does not deallocate */
- vma_end_reservation(h, vma, haddr);
-
- pagecache_page = find_lock_page(mapping, idx);
+ vma_end_reservation(h, vma, vmf.address);
}
- ptl = huge_pte_lock(h, mm, ptep);
+ vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
/* Check for a racing update before calling hugetlb_wp() */
- if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
+ if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
goto out_ptl;
/* Handle userfault-wp first, before trying to lock more pages */
- if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
- (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
- struct vm_fault vmf = {
- .vma = vma,
- .address = haddr,
- .real_address = address,
- .flags = flags,
- };
-
- spin_unlock(ptl);
- if (pagecache_page) {
- unlock_page(pagecache_page);
- put_page(pagecache_page);
- }
- hugetlb_vma_unlock_read(vma);
- mutex_unlock(&hugetlb_fault_mutex_table[hash]);
- return handle_userfault(&vmf, VM_UFFD_WP);
- }
-
- /*
- * hugetlb_wp() requires page locks of pte_page(entry) and
- * pagecache_page, so here we need take the former one
- * when page != pagecache_page or !pagecache_page.
- */
- page = pte_page(entry);
- if (page != pagecache_page)
- if (!trylock_page(page)) {
- need_wait_lock = 1;
- goto out_ptl;
+ if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
+ (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
+ if (!userfaultfd_wp_async(vma)) {
+ spin_unlock(vmf.ptl);
+ hugetlb_vma_unlock_read(vma);
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ return handle_userfault(&vmf, VM_UFFD_WP);
}
- get_page(page);
+ vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
+ set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
+ huge_page_size(hstate_vma(vma)));
+ /* Fallthrough to CoW */
+ }
if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
- if (!huge_pte_write(entry)) {
- ret = hugetlb_wp(mm, vma, address, ptep, flags,
- pagecache_page, ptl);
- goto out_put_page;
+ if (!huge_pte_write(vmf.orig_pte)) {
+ /*
+ * Anonymous folios need to be lock since hugetlb_wp()
+ * checks whether we can re-use the folio exclusively
+ * for us in case we are the only user of it.
+ */
+ folio = page_folio(pte_page(vmf.orig_pte));
+ if (folio_test_anon(folio) && !folio_trylock(folio)) {
+ need_wait_lock = true;
+ goto out_ptl;
+ }
+ folio_get(folio);
+ ret = hugetlb_wp(&vmf);
+ if (folio_test_anon(folio))
+ folio_unlock(folio);
+ folio_put(folio);
+ goto out_ptl;
} else if (likely(flags & FAULT_FLAG_WRITE)) {
- entry = huge_pte_mkdirty(entry);
+ vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
}
}
- entry = pte_mkyoung(entry);
- if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
+ vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
+ if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
flags & FAULT_FLAG_WRITE))
- update_mmu_cache(vma, haddr, ptep);
-out_put_page:
- if (page != pagecache_page)
- unlock_page(page);
- put_page(page);
+ update_mmu_cache(vma, vmf.address, vmf.pte);
out_ptl:
- spin_unlock(ptl);
-
- if (pagecache_page) {
- unlock_page(pagecache_page);
- put_page(pagecache_page);
- }
+ spin_unlock(vmf.ptl);
out_mutex:
hugetlb_vma_unlock_read(vma);
+
+ /*
+ * We must check to release the per-VMA lock. __vmf_anon_prepare() in
+ * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
+ */
+ if (unlikely(ret & VM_FAULT_RETRY))
+ vma_end_read(vma);
+
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
/*
- * Generally it's safe to hold refcount during waiting page lock. But
- * here we just wait to defer the next page fault to avoid busy loop and
- * the page is not used after unlocked before returning from the current
- * page fault. So we are safe from accessing freed page, even if we wait
- * here without taking refcount.
+ * hugetlb_wp drops all the locks, but the folio lock, before trying to
+ * unmap the folio from other processes. During that window, if another
+ * process mapping that folio faults in, it will take the mutex and then
+ * it will wait on folio_lock, causing an ABBA deadlock.
+ * Use trylock instead and bail out if we fail.
+ *
+ * Ideally, we should hold a refcount on the folio we wait for, but we do
+ * not want to use the folio after it becomes unlocked, but rather just
+ * wait for it to become unlocked, so hopefully next fault successes on
+ * the trylock.
*/
if (need_wait_lock)
- wait_on_page_locked(page);
+ folio_wait_locked(folio);
return ret;
}
#ifdef CONFIG_USERFAULTFD
/*
- * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
- * modifications for huge pages.
+ * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
*/
-int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
- pte_t *dst_pte,
- struct vm_area_struct *dst_vma,
- unsigned long dst_addr,
- unsigned long src_addr,
- enum mcopy_atomic_mode mode,
- struct page **pagep,
- bool wp_copy)
+static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long address)
{
- bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
+ struct mempolicy *mpol;
+ nodemask_t *nodemask;
+ struct folio *folio;
+ gfp_t gfp_mask;
+ int node;
+
+ gfp_mask = htlb_alloc_mask(h);
+ node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
+ /*
+ * This is used to allocate a temporary hugetlb to hold the copied
+ * content, which will then be copied again to the final hugetlb
+ * consuming a reservation. Set the alloc_fallback to false to indicate
+ * that breaking the per-node hugetlb pool is not allowed in this case.
+ */
+ folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
+ mpol_cond_put(mpol);
+
+ return folio;
+}
+
+/*
+ * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
+ * with modifications for hugetlb pages.
+ */
+int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
+ struct vm_area_struct *dst_vma,
+ unsigned long dst_addr,
+ unsigned long src_addr,
+ uffd_flags_t flags,
+ struct folio **foliop)
+{
+ struct mm_struct *dst_mm = dst_vma->vm_mm;
+ bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
+ bool wp_enabled = (flags & MFILL_ATOMIC_WP);
struct hstate *h = hstate_vma(dst_vma);
struct address_space *mapping = dst_vma->vm_file->f_mapping;
pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
- unsigned long size;
+ unsigned long size = huge_page_size(h);
int vm_shared = dst_vma->vm_flags & VM_SHARED;
pte_t _dst_pte;
spinlock_t *ptl;
int ret = -ENOMEM;
- struct page *page;
- int writable;
- bool page_in_pagecache = false;
+ struct folio *folio;
+ bool folio_in_pagecache = false;
+ pte_t dst_ptep;
+
+ if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
+ ptl = huge_pte_lock(h, dst_mm, dst_pte);
+
+ /* Don't overwrite any existing PTEs (even markers) */
+ if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
+ spin_unlock(ptl);
+ return -EEXIST;
+ }
+
+ _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
+ set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
+
+ /* No need to invalidate - it was non-present before */
+ update_mmu_cache(dst_vma, dst_addr, dst_pte);
+
+ spin_unlock(ptl);
+ return 0;
+ }
if (is_continue) {
ret = -EFAULT;
- page = find_lock_page(mapping, idx);
- if (!page)
+ folio = filemap_lock_hugetlb_folio(h, mapping, idx);
+ if (IS_ERR(folio))
goto out;
- page_in_pagecache = true;
- } else if (!*pagep) {
- /* If a page already exists, then it's UFFDIO_COPY for
+ folio_in_pagecache = true;
+ } else if (!*foliop) {
+ /* If a folio already exists, then it's UFFDIO_COPY for
* a non-missing case. Return -EEXIST.
*/
if (vm_shared &&
@@ -6197,74 +6243,89 @@ int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
goto out;
}
- page = alloc_huge_page(dst_vma, dst_addr, 0);
- if (IS_ERR(page)) {
+ folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
+ if (IS_ERR(folio)) {
+ pte_t *actual_pte = hugetlb_walk(dst_vma, dst_addr, PMD_SIZE);
+ if (actual_pte) {
+ ret = -EEXIST;
+ goto out;
+ }
ret = -ENOMEM;
goto out;
}
- ret = copy_huge_page_from_user(page,
- (const void __user *) src_addr,
- pages_per_huge_page(h), false);
+ ret = copy_folio_from_user(folio, (const void __user *) src_addr,
+ false);
/* fallback to copy_from_user outside mmap_lock */
if (unlikely(ret)) {
ret = -ENOENT;
- /* Free the allocated page which may have
+ /* Free the allocated folio which may have
* consumed a reservation.
*/
- restore_reserve_on_error(h, dst_vma, dst_addr, page);
- put_page(page);
+ restore_reserve_on_error(h, dst_vma, dst_addr, folio);
+ folio_put(folio);
- /* Allocate a temporary page to hold the copied
+ /* Allocate a temporary folio to hold the copied
* contents.
*/
- page = alloc_huge_page_vma(h, dst_vma, dst_addr);
- if (!page) {
+ folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
+ if (!folio) {
ret = -ENOMEM;
goto out;
}
- *pagep = page;
- /* Set the outparam pagep and return to the caller to
+ *foliop = folio;
+ /* Set the outparam foliop and return to the caller to
* copy the contents outside the lock. Don't free the
- * page.
+ * folio.
*/
goto out;
}
} else {
if (vm_shared &&
hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
- put_page(*pagep);
+ folio_put(*foliop);
ret = -EEXIST;
- *pagep = NULL;
+ *foliop = NULL;
goto out;
}
- page = alloc_huge_page(dst_vma, dst_addr, 0);
- if (IS_ERR(page)) {
- put_page(*pagep);
+ folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
+ if (IS_ERR(folio)) {
+ folio_put(*foliop);
ret = -ENOMEM;
- *pagep = NULL;
+ *foliop = NULL;
+ goto out;
+ }
+ ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
+ folio_put(*foliop);
+ *foliop = NULL;
+ if (ret) {
+ folio_put(folio);
goto out;
}
- copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
- pages_per_huge_page(h));
- put_page(*pagep);
- *pagep = NULL;
}
/*
- * The memory barrier inside __SetPageUptodate makes sure that
- * preceding stores to the page contents become visible before
- * the set_pte_at() write.
+ * If we just allocated a new page, we need a memory barrier to ensure
+ * that preceding stores to the page become visible before the
+ * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
+ * is what we need.
+ *
+ * In the case where we have not allocated a new page (is_continue),
+ * the page must already be uptodate. UFFDIO_CONTINUE already includes
+ * an earlier smp_wmb() to ensure that prior stores will be visible
+ * before the set_pte_at() write.
*/
- __SetPageUptodate(page);
+ if (!is_continue)
+ __folio_mark_uptodate(folio);
+ else
+ WARN_ON_ONCE(!folio_test_uptodate(folio));
/* Add shared, newly allocated pages to the page cache. */
if (vm_shared && !is_continue) {
- size = i_size_read(mapping->host) >> huge_page_shift(h);
ret = -EFAULT;
- if (idx >= size)
+ if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
goto out_release_nounlock;
/*
@@ -6273,42 +6334,39 @@ int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
* hugetlb_fault_mutex_table that here must be hold by
* the caller.
*/
- ret = hugetlb_add_to_page_cache(page, mapping, idx);
+ ret = hugetlb_add_to_page_cache(folio, mapping, idx);
if (ret)
goto out_release_nounlock;
- page_in_pagecache = true;
+ folio_in_pagecache = true;
}
ptl = huge_pte_lock(h, dst_mm, dst_pte);
ret = -EIO;
- if (PageHWPoison(page))
+ if (folio_test_hwpoison(folio))
goto out_release_unlock;
+ ret = -EEXIST;
+
+ dst_ptep = huge_ptep_get(dst_mm, dst_addr, dst_pte);
/*
- * We allow to overwrite a pte marker: consider when both MISSING|WP
- * registered, we firstly wr-protect a none pte which has no page cache
- * page backing it, then access the page.
+ * See comment about UFFD marker overwriting in
+ * mfill_atomic_install_pte().
*/
- ret = -EEXIST;
- if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
+ if (!huge_pte_none(dst_ptep) && !pte_is_uffd_marker(dst_ptep))
goto out_release_unlock;
- if (page_in_pagecache)
- page_dup_file_rmap(page, true);
+ if (folio_in_pagecache)
+ hugetlb_add_file_rmap(folio);
else
- hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
+ hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
/*
* For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
* with wp flag set, don't set pte write bit.
*/
- if (wp_copy || (is_continue && !vm_shared))
- writable = 0;
- else
- writable = dst_vma->vm_flags & VM_WRITE;
-
- _dst_pte = make_huge_pte(dst_vma, page, writable);
+ _dst_pte = make_huge_pte(dst_vma, folio,
+ !wp_enabled && !(is_continue && !vm_shared));
/*
* Always mark UFFDIO_COPY page dirty; note that this may not be
* extremely important for hugetlbfs for now since swapping is not
@@ -6318,10 +6376,10 @@ int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
_dst_pte = huge_pte_mkdirty(_dst_pte);
_dst_pte = pte_mkyoung(_dst_pte);
- if (wp_copy)
+ if (wp_enabled)
_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
- set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
+ set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
hugetlb_count_add(pages_per_huge_page(h), dst_mm);
@@ -6330,301 +6388,25 @@ int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
spin_unlock(ptl);
if (!is_continue)
- SetHPageMigratable(page);
+ folio_set_hugetlb_migratable(folio);
if (vm_shared || is_continue)
- unlock_page(page);
+ folio_unlock(folio);
ret = 0;
out:
return ret;
out_release_unlock:
spin_unlock(ptl);
if (vm_shared || is_continue)
- unlock_page(page);
+ folio_unlock(folio);
out_release_nounlock:
- if (!page_in_pagecache)
- restore_reserve_on_error(h, dst_vma, dst_addr, page);
- put_page(page);
+ if (!folio_in_pagecache)
+ restore_reserve_on_error(h, dst_vma, dst_addr, folio);
+ folio_put(folio);
goto out;
}
#endif /* CONFIG_USERFAULTFD */
-static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
- int refs, struct page **pages,
- struct vm_area_struct **vmas)
-{
- int nr;
-
- for (nr = 0; nr < refs; nr++) {
- if (likely(pages))
- pages[nr] = nth_page(page, nr);
- if (vmas)
- vmas[nr] = vma;
- }
-}
-
-static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
- unsigned int flags, pte_t *pte,
- bool *unshare)
-{
- pte_t pteval = huge_ptep_get(pte);
-
- *unshare = false;
- if (is_swap_pte(pteval))
- return true;
- if (huge_pte_write(pteval))
- return false;
- if (flags & FOLL_WRITE)
- return true;
- if (gup_must_unshare(vma, flags, pte_page(pteval))) {
- *unshare = true;
- return true;
- }
- return false;
-}
-
-struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
- unsigned long address, unsigned int flags)
-{
- struct hstate *h = hstate_vma(vma);
- struct mm_struct *mm = vma->vm_mm;
- unsigned long haddr = address & huge_page_mask(h);
- struct page *page = NULL;
- spinlock_t *ptl;
- pte_t *pte, entry;
-
- /*
- * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
- * follow_hugetlb_page().
- */
- if (WARN_ON_ONCE(flags & FOLL_PIN))
- return NULL;
-
-retry:
- pte = huge_pte_offset(mm, haddr, huge_page_size(h));
- if (!pte)
- return NULL;
-
- ptl = huge_pte_lock(h, mm, pte);
- entry = huge_ptep_get(pte);
- if (pte_present(entry)) {
- page = pte_page(entry) +
- ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
- /*
- * Note that page may be a sub-page, and with vmemmap
- * optimizations the page struct may be read only.
- * try_grab_page() will increase the ref count on the
- * head page, so this will be OK.
- *
- * try_grab_page() should always be able to get the page here,
- * because we hold the ptl lock and have verified pte_present().
- */
- if (try_grab_page(page, flags)) {
- page = NULL;
- goto out;
- }
- } else {
- if (is_hugetlb_entry_migration(entry)) {
- spin_unlock(ptl);
- __migration_entry_wait_huge(pte, ptl);
- goto retry;
- }
- /*
- * hwpoisoned entry is treated as no_page_table in
- * follow_page_mask().
- */
- }
-out:
- spin_unlock(ptl);
- return page;
-}
-
-long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
- struct page **pages, struct vm_area_struct **vmas,
- unsigned long *position, unsigned long *nr_pages,
- long i, unsigned int flags, int *locked)
-{
- unsigned long pfn_offset;
- unsigned long vaddr = *position;
- unsigned long remainder = *nr_pages;
- struct hstate *h = hstate_vma(vma);
- int err = -EFAULT, refs;
-
- while (vaddr < vma->vm_end && remainder) {
- pte_t *pte;
- spinlock_t *ptl = NULL;
- bool unshare = false;
- int absent;
- struct page *page;
-
- /*
- * If we have a pending SIGKILL, don't keep faulting pages and
- * potentially allocating memory.
- */
- if (fatal_signal_pending(current)) {
- remainder = 0;
- break;
- }
-
- /*
- * Some archs (sparc64, sh*) have multiple pte_ts to
- * each hugepage. We have to make sure we get the
- * first, for the page indexing below to work.
- *
- * Note that page table lock is not held when pte is null.
- */
- pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
- huge_page_size(h));
- if (pte)
- ptl = huge_pte_lock(h, mm, pte);
- absent = !pte || huge_pte_none(huge_ptep_get(pte));
-
- /*
- * When coredumping, it suits get_dump_page if we just return
- * an error where there's an empty slot with no huge pagecache
- * to back it. This way, we avoid allocating a hugepage, and
- * the sparse dumpfile avoids allocating disk blocks, but its
- * huge holes still show up with zeroes where they need to be.
- */
- if (absent && (flags & FOLL_DUMP) &&
- !hugetlbfs_pagecache_present(h, vma, vaddr)) {
- if (pte)
- spin_unlock(ptl);
- remainder = 0;
- break;
- }
-
- /*
- * We need call hugetlb_fault for both hugepages under migration
- * (in which case hugetlb_fault waits for the migration,) and
- * hwpoisoned hugepages (in which case we need to prevent the
- * caller from accessing to them.) In order to do this, we use
- * here is_swap_pte instead of is_hugetlb_entry_migration and
- * is_hugetlb_entry_hwpoisoned. This is because it simply covers
- * both cases, and because we can't follow correct pages
- * directly from any kind of swap entries.
- */
- if (absent ||
- __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
- vm_fault_t ret;
- unsigned int fault_flags = 0;
-
- if (pte)
- spin_unlock(ptl);
- if (flags & FOLL_WRITE)
- fault_flags |= FAULT_FLAG_WRITE;
- else if (unshare)
- fault_flags |= FAULT_FLAG_UNSHARE;
- if (locked) {
- fault_flags |= FAULT_FLAG_ALLOW_RETRY |
- FAULT_FLAG_KILLABLE;
- if (flags & FOLL_INTERRUPTIBLE)
- fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
- }
- if (flags & FOLL_NOWAIT)
- fault_flags |= FAULT_FLAG_ALLOW_RETRY |
- FAULT_FLAG_RETRY_NOWAIT;
- if (flags & FOLL_TRIED) {
- /*
- * Note: FAULT_FLAG_ALLOW_RETRY and
- * FAULT_FLAG_TRIED can co-exist
- */
- fault_flags |= FAULT_FLAG_TRIED;
- }
- ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
- if (ret & VM_FAULT_ERROR) {
- err = vm_fault_to_errno(ret, flags);
- remainder = 0;
- break;
- }
- if (ret & VM_FAULT_RETRY) {
- if (locked &&
- !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
- *locked = 0;
- *nr_pages = 0;
- /*
- * VM_FAULT_RETRY must not return an
- * error, it will return zero
- * instead.
- *
- * No need to update "position" as the
- * caller will not check it after
- * *nr_pages is set to 0.
- */
- return i;
- }
- continue;
- }
-
- pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
- page = pte_page(huge_ptep_get(pte));
-
- VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
- !PageAnonExclusive(page), page);
-
- /*
- * If subpage information not requested, update counters
- * and skip the same_page loop below.
- */
- if (!pages && !vmas && !pfn_offset &&
- (vaddr + huge_page_size(h) < vma->vm_end) &&
- (remainder >= pages_per_huge_page(h))) {
- vaddr += huge_page_size(h);
- remainder -= pages_per_huge_page(h);
- i += pages_per_huge_page(h);
- spin_unlock(ptl);
- continue;
- }
-
- /* vaddr may not be aligned to PAGE_SIZE */
- refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
- (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
-
- if (pages || vmas)
- record_subpages_vmas(nth_page(page, pfn_offset),
- vma, refs,
- likely(pages) ? pages + i : NULL,
- vmas ? vmas + i : NULL);
-
- if (pages) {
- /*
- * try_grab_folio() should always succeed here,
- * because: a) we hold the ptl lock, and b) we've just
- * checked that the huge page is present in the page
- * tables. If the huge page is present, then the tail
- * pages must also be present. The ptl prevents the
- * head page and tail pages from being rearranged in
- * any way. As this is hugetlb, the pages will never
- * be p2pdma or not longterm pinable. So this page
- * must be available at this point, unless the page
- * refcount overflowed:
- */
- if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
- flags))) {
- spin_unlock(ptl);
- remainder = 0;
- err = -ENOMEM;
- break;
- }
- }
-
- vaddr += (refs << PAGE_SHIFT);
- remainder -= refs;
- i += refs;
-
- spin_unlock(ptl);
- }
- *nr_pages = remainder;
- /*
- * setting position is actually required only if remainder is
- * not zero but it's faster not to add a "if (remainder)"
- * branch.
- */
- *position = vaddr;
-
- return i ? i : err;
-}
-
-unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
+long hugetlb_change_protection(struct vm_area_struct *vma,
unsigned long address, unsigned long end,
pgprot_t newprot, unsigned long cp_flags)
{
@@ -6633,7 +6415,7 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
pte_t *ptep;
pte_t pte;
struct hstate *h = hstate_vma(vma);
- unsigned long pages = 0, psize = huge_page_size(h);
+ long pages = 0, psize = huge_page_size(h);
bool shared_pmd = false;
struct mmu_notifier_range range;
unsigned long last_addr_mask;
@@ -6646,7 +6428,7 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
* range if PMD sharing is possible.
*/
mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
- 0, vma, mm, start, end);
+ 0, mm, start, end);
adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
BUG_ON(address >= end);
@@ -6657,8 +6439,10 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
i_mmap_lock_write(vma->vm_file->f_mapping);
last_addr_mask = hugetlb_mask_last_page(h);
for (; address < end; address += psize) {
+ softleaf_t entry;
spinlock_t *ptl;
- ptep = huge_pte_offset(mm, address, psize);
+
+ ptep = hugetlb_walk(vma, address, psize);
if (!ptep) {
if (!uffd_wp) {
address |= last_addr_mask;
@@ -6669,8 +6453,10 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
* pre-allocations to install pte markers.
*/
ptep = huge_pte_alloc(mm, vma, address, psize);
- if (!ptep)
+ if (!ptep) {
+ pages = -ENOMEM;
break;
+ }
}
ptl = huge_pte_lock(h, mm, ptep);
if (huge_pmd_unshare(mm, vma, address, ptep)) {
@@ -6686,16 +6472,25 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
address |= last_addr_mask;
continue;
}
- pte = huge_ptep_get(ptep);
- if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
+ pte = huge_ptep_get(mm, address, ptep);
+ if (huge_pte_none(pte)) {
+ if (unlikely(uffd_wp))
+ /* Safe to modify directly (none->non-present). */
+ set_huge_pte_at(mm, address, ptep,
+ make_pte_marker(PTE_MARKER_UFFD_WP),
+ psize);
+ goto next;
+ }
+
+ entry = softleaf_from_pte(pte);
+ if (unlikely(softleaf_is_hwpoison(entry))) {
/* Nothing to do. */
- } else if (unlikely(is_hugetlb_entry_migration(pte))) {
- swp_entry_t entry = pte_to_swp_entry(pte);
- struct page *page = pfn_swap_entry_to_page(entry);
+ } else if (unlikely(softleaf_is_migration(entry))) {
+ struct folio *folio = softleaf_to_folio(entry);
pte_t newpte = pte;
- if (is_writable_migration_entry(entry)) {
- if (PageAnon(page))
+ if (softleaf_is_migration_write(entry)) {
+ if (folio_test_anon(folio))
entry = make_readable_exclusive_migration_entry(
swp_offset(entry));
else
@@ -6710,14 +6505,18 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
else if (uffd_wp_resolve)
newpte = pte_swp_clear_uffd_wp(newpte);
if (!pte_same(pte, newpte))
- set_huge_pte_at(mm, address, ptep, newpte);
- } else if (unlikely(is_pte_marker(pte))) {
- /* No other markers apply for now. */
- WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
- if (uffd_wp_resolve)
+ set_huge_pte_at(mm, address, ptep, newpte, psize);
+ } else if (unlikely(pte_is_marker(pte))) {
+ /*
+ * Do nothing on a poison marker; page is
+ * corrupted, permissions do not apply. Here
+ * pte_marker_uffd_wp()==true implies !poison
+ * because they're mutual exclusive.
+ */
+ if (pte_is_uffd_wp_marker(pte) && uffd_wp_resolve)
/* Safe to modify directly (non-present->none). */
huge_pte_clear(mm, address, ptep, psize);
- } else if (!huge_pte_none(pte)) {
+ } else {
pte_t old_pte;
unsigned int shift = huge_page_shift(hstate_vma(vma));
@@ -6725,19 +6524,16 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
pte = huge_pte_modify(old_pte, newprot);
pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
if (uffd_wp)
- pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
+ pte = huge_pte_mkuffd_wp(pte);
else if (uffd_wp_resolve)
pte = huge_pte_clear_uffd_wp(pte);
huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
pages++;
- } else {
- /* None pte */
- if (unlikely(uffd_wp))
- /* Safe to modify directly (none->non-present). */
- set_huge_pte_at(mm, address, ptep,
- make_pte_marker(PTE_MARKER_UFFD_WP));
}
+
+next:
spin_unlock(ptl);
+ cond_resched();
}
/*
* Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
@@ -6751,8 +6547,9 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
else
flush_hugetlb_tlb_range(vma, start, end);
/*
- * No need to call mmu_notifier_invalidate_range() we are downgrading
- * page table protection not changing it to point to a new page.
+ * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
+ * downgrading page table protection not changing it to point to a new
+ * page.
*
* See Documentation/mm/mmu_notifier.rst
*/
@@ -6760,16 +6557,23 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
hugetlb_vma_unlock_write(vma);
mmu_notifier_invalidate_range_end(&range);
- return pages << h->order;
+ return pages > 0 ? (pages << h->order) : pages;
}
-/* Return true if reservation was successful, false otherwise. */
-bool hugetlb_reserve_pages(struct inode *inode,
- long from, long to,
- struct vm_area_struct *vma,
- vm_flags_t vm_flags)
+/*
+ * Update the reservation map for the range [from, to].
+ *
+ * Returns the number of entries that would be added to the reservation map
+ * associated with the range [from, to]. This number is greater or equal to
+ * zero. -EINVAL or -ENOMEM is returned in case of any errors.
+ */
+
+long hugetlb_reserve_pages(struct inode *inode,
+ long from, long to,
+ struct vm_area_desc *desc,
+ vm_flags_t vm_flags)
{
- long chg, add = -1;
+ long chg = -1, add = -1, spool_resv, gbl_resv;
struct hstate *h = hstate_inode(inode);
struct hugepage_subpool *spool = subpool_inode(inode);
struct resv_map *resv_map;
@@ -6779,30 +6583,24 @@ bool hugetlb_reserve_pages(struct inode *inode,
/* This should never happen */
if (from > to) {
VM_WARN(1, "%s called with a negative range\n", __func__);
- return false;
+ return -EINVAL;
}
/*
- * vma specific semaphore used for pmd sharing and fault/truncation
- * synchronization
- */
- hugetlb_vma_lock_alloc(vma);
-
- /*
* Only apply hugepage reservation if asked. At fault time, an
* attempt will be made for VM_NORESERVE to allocate a page
* without using reserves
*/
if (vm_flags & VM_NORESERVE)
- return true;
+ return 0;
/*
* Shared mappings base their reservation on the number of pages that
* are already allocated on behalf of the file. Private mappings need
* to reserve the full area even if read-only as mprotect() may be
- * called to make the mapping read-write. Assume !vma is a shm mapping
+ * called to make the mapping read-write. Assume !desc is a shm mapping
*/
- if (!vma || vma->vm_flags & VM_MAYSHARE) {
+ if (!desc || desc->vm_flags & VM_MAYSHARE) {
/*
* resv_map can not be NULL as hugetlb_reserve_pages is only
* called for inodes for which resv_maps were created (see
@@ -6819,8 +6617,8 @@ bool hugetlb_reserve_pages(struct inode *inode,
chg = to - from;
- set_vma_resv_map(vma, resv_map);
- set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
+ set_vma_desc_resv_map(desc, resv_map);
+ set_vma_desc_resv_flags(desc, HPAGE_RESV_OWNER);
}
if (chg < 0)
@@ -6830,7 +6628,7 @@ bool hugetlb_reserve_pages(struct inode *inode,
chg * pages_per_huge_page(h), &h_cg) < 0)
goto out_err;
- if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
+ if (desc && !(desc->vm_flags & VM_MAYSHARE) && h_cg) {
/* For private mappings, the hugetlb_cgroup uncharge info hangs
* of the resv_map.
*/
@@ -6864,7 +6662,7 @@ bool hugetlb_reserve_pages(struct inode *inode,
* consumed reservations are stored in the map. Hence, nothing
* else has to be done for private mappings here
*/
- if (!vma || vma->vm_flags & VM_MAYSHARE) {
+ if (!desc || desc->vm_flags & VM_MAYSHARE) {
add = region_add(resv_map, from, to, regions_needed, h, h_cg);
if (unlikely(add < 0)) {
@@ -6874,7 +6672,7 @@ bool hugetlb_reserve_pages(struct inode *inode,
/*
* pages in this range were added to the reserve
* map between region_chg and region_add. This
- * indicates a race with alloc_huge_page. Adjust
+ * indicates a race with alloc_hugetlb_folio. Adjust
* the subpool and reserve counts modified above
* based on the difference.
*/
@@ -6901,25 +6699,34 @@ bool hugetlb_reserve_pages(struct inode *inode,
hugetlb_cgroup_put_rsvd_cgroup(h_cg);
}
}
- return true;
+ return chg;
out_put_pages:
- /* put back original number of pages, chg */
- (void)hugepage_subpool_put_pages(spool, chg);
+ spool_resv = chg - gbl_reserve;
+ if (spool_resv) {
+ /* put sub pool's reservation back, chg - gbl_reserve */
+ gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
+ /*
+ * subpool's reserved pages can not be put back due to race,
+ * return to hstate.
+ */
+ hugetlb_acct_memory(h, -gbl_resv);
+ }
out_uncharge_cgroup:
hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
chg * pages_per_huge_page(h), h_cg);
out_err:
- hugetlb_vma_lock_free(vma);
- if (!vma || vma->vm_flags & VM_MAYSHARE)
+ if (!desc || desc->vm_flags & VM_MAYSHARE)
/* Only call region_abort if the region_chg succeeded but the
* region_add failed or didn't run.
*/
if (chg >= 0 && add < 0)
region_abort(resv_map, from, to, regions_needed);
- if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
+ if (desc && is_vma_desc_resv_set(desc, HPAGE_RESV_OWNER)) {
kref_put(&resv_map->refs, resv_map_release);
- return false;
+ set_vma_desc_resv_map(desc, NULL);
+ }
+ return chg < 0 ? chg : add < 0 ? add : -EINVAL;
}
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
@@ -6963,7 +6770,7 @@ long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
return 0;
}
-#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
+#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
static unsigned long page_table_shareable(struct vm_area_struct *svma,
struct vm_area_struct *vma,
unsigned long addr, pgoff_t idx)
@@ -6974,8 +6781,8 @@ static unsigned long page_table_shareable(struct vm_area_struct *svma,
unsigned long s_end = sbase + PUD_SIZE;
/* Allow segments to share if only one is marked locked */
- unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
- unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
+ vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
+ vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
/*
* match the virtual addresses, permission and the alignment of the
@@ -7059,7 +6866,6 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long saddr;
pte_t *spte = NULL;
pte_t *pte;
- spinlock_t *ptl;
i_mmap_lock_read(mapping);
vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
@@ -7068,10 +6874,10 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
saddr = page_table_shareable(svma, vma, addr, idx);
if (saddr) {
- spte = huge_pte_offset(svma->vm_mm, saddr,
- vma_mmu_pagesize(svma));
+ spte = hugetlb_walk(svma, saddr,
+ vma_mmu_pagesize(svma));
if (spte) {
- get_page(virt_to_page(spte));
+ ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
break;
}
}
@@ -7080,15 +6886,15 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
if (!spte)
goto out;
- ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
+ spin_lock(&mm->page_table_lock);
if (pud_none(*pud)) {
pud_populate(mm, pud,
(pmd_t *)((unsigned long)spte & PAGE_MASK));
mm_inc_nr_pmds(mm);
} else {
- put_page(virt_to_page(spte));
+ ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
}
- spin_unlock(ptl);
+ spin_unlock(&mm->page_table_lock);
out:
pte = (pte_t *)pmd_alloc(mm, pud, addr);
i_mmap_unlock_read(mapping);
@@ -7098,10 +6904,6 @@ out:
/*
* unmap huge page backed by shared pte.
*
- * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
- * indicated by page_count > 1, unmap is achieved by clearing pud and
- * decrementing the ref count. If count == 1, the pte page is not shared.
- *
* Called with page table lock held.
*
* returns: 1 successfully unmapped a shared pte page
@@ -7110,23 +6912,31 @@ out:
int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
+ unsigned long sz = huge_page_size(hstate_vma(vma));
pgd_t *pgd = pgd_offset(mm, addr);
p4d_t *p4d = p4d_offset(pgd, addr);
pud_t *pud = pud_offset(p4d, addr);
+ if (sz != PMD_SIZE)
+ return 0;
+ if (!ptdesc_pmd_is_shared(virt_to_ptdesc(ptep)))
+ return 0;
i_mmap_assert_write_locked(vma->vm_file->f_mapping);
hugetlb_vma_assert_locked(vma);
- BUG_ON(page_count(virt_to_page(ptep)) == 0);
- if (page_count(virt_to_page(ptep)) == 1)
- return 0;
-
pud_clear(pud);
- put_page(virt_to_page(ptep));
+ /*
+ * Once our caller drops the rmap lock, some other process might be
+ * using this page table as a normal, non-hugetlb page table.
+ * Wait for pending gup_fast() in other threads to finish before letting
+ * that happen.
+ */
+ tlb_remove_table_sync_one();
+ ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
mm_dec_nr_pmds(mm);
return 1;
}
-#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
+#else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pud_t *pud)
@@ -7149,7 +6959,7 @@ bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
{
return false;
}
-#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
+#endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
@@ -7176,7 +6986,12 @@ pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
pte = (pte_t *)pmd_alloc(mm, pud, addr);
}
}
- BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
+
+ if (pte) {
+ pte_t pteval = ptep_get_lockless(pte);
+
+ BUG_ON(pte_present(pteval) && !pte_huge(pteval));
+ }
return pte;
}
@@ -7242,7 +7057,7 @@ unsigned long hugetlb_mask_last_page(struct hstate *h)
/* See description above. Architectures can provide their own version. */
__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
{
-#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
+#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
if (huge_page_size(h) == PMD_SIZE)
return PUD_SIZE - PMD_SIZE;
#endif
@@ -7251,40 +7066,53 @@ __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
-/*
- * These functions are overwritable if your architecture needs its own
- * behavior.
+/**
+ * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
+ * @folio: the folio to isolate
+ * @list: the list to add the folio to on success
+ *
+ * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
+ * isolated/non-migratable, and moving it from the active list to the
+ * given list.
+ *
+ * Isolation will fail if @folio is not an allocated hugetlb folio, or if
+ * it is already isolated/non-migratable.
+ *
+ * On success, an additional folio reference is taken that must be dropped
+ * using folio_putback_hugetlb() to undo the isolation.
+ *
+ * Return: True if isolation worked, otherwise False.
*/
-int isolate_hugetlb(struct page *page, struct list_head *list)
+bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
{
- int ret = 0;
+ bool ret = true;
spin_lock_irq(&hugetlb_lock);
- if (!PageHeadHuge(page) ||
- !HPageMigratable(page) ||
- !get_page_unless_zero(page)) {
- ret = -EBUSY;
+ if (!folio_test_hugetlb(folio) ||
+ !folio_test_hugetlb_migratable(folio) ||
+ !folio_try_get(folio)) {
+ ret = false;
goto unlock;
}
- ClearHPageMigratable(page);
- list_move_tail(&page->lru, list);
+ folio_clear_hugetlb_migratable(folio);
+ list_move_tail(&folio->lru, list);
unlock:
spin_unlock_irq(&hugetlb_lock);
return ret;
}
-int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
+int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
{
int ret = 0;
*hugetlb = false;
spin_lock_irq(&hugetlb_lock);
- if (PageHeadHuge(page)) {
+ if (folio_test_hugetlb(folio)) {
*hugetlb = true;
- if (HPageFreed(page))
+ if (folio_test_hugetlb_freed(folio))
ret = 0;
- else if (HPageMigratable(page) || unpoison)
- ret = get_page_unless_zero(page);
+ else if (folio_test_hugetlb_migratable(folio) || unpoison)
+ ret = folio_try_get(folio);
else
ret = -EBUSY;
}
@@ -7303,13 +7131,24 @@ int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
return ret;
}
-void putback_active_hugepage(struct page *page)
+/**
+ * folio_putback_hugetlb - unisolate a hugetlb folio
+ * @folio: the isolated hugetlb folio
+ *
+ * Putback/un-isolate the hugetlb folio that was previous isolated using
+ * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
+ * back onto the active list.
+ *
+ * Will drop the additional folio reference obtained through
+ * folio_isolate_hugetlb().
+ */
+void folio_putback_hugetlb(struct folio *folio)
{
spin_lock_irq(&hugetlb_lock);
- SetHPageMigratable(page);
- list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
+ folio_set_hugetlb_migratable(folio);
+ list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
spin_unlock_irq(&hugetlb_lock);
- put_page(page);
+ folio_put(folio);
}
void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
@@ -7317,7 +7156,7 @@ void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int re
struct hstate *h = folio_hstate(old_folio);
hugetlb_cgroup_migrate(old_folio, new_folio);
- set_page_owner_migrate_reason(&new_folio->page, reason);
+ folio_set_owner_migrate_reason(new_folio, reason);
/*
* transfer temporary state of the new hugetlb folio. This is
@@ -7350,11 +7189,28 @@ void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int re
}
spin_unlock_irq(&hugetlb_lock);
}
+
+ /*
+ * Our old folio is isolated and has "migratable" cleared until it
+ * is putback. As migration succeeded, set the new folio "migratable"
+ * and add it to the active list.
+ */
+ spin_lock_irq(&hugetlb_lock);
+ folio_set_hugetlb_migratable(new_folio);
+ list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
+ spin_unlock_irq(&hugetlb_lock);
}
+/*
+ * If @take_locks is false, the caller must ensure that no concurrent page table
+ * access can happen (except for gup_fast() and hardware page walks).
+ * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
+ * concurrent page fault handling) and the file rmap lock.
+ */
static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
unsigned long start,
- unsigned long end)
+ unsigned long end,
+ bool take_locks)
{
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
@@ -7375,13 +7231,17 @@ static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
* No need to call adjust_range_if_pmd_sharing_possible(), because
* we have already done the PUD_SIZE alignment.
*/
- mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
start, end);
mmu_notifier_invalidate_range_start(&range);
- hugetlb_vma_lock_write(vma);
- i_mmap_lock_write(vma->vm_file->f_mapping);
+ if (take_locks) {
+ hugetlb_vma_lock_write(vma);
+ i_mmap_lock_write(vma->vm_file->f_mapping);
+ } else {
+ i_mmap_assert_write_locked(vma->vm_file->f_mapping);
+ }
for (address = start; address < end; address += PUD_SIZE) {
- ptep = huge_pte_offset(mm, address, sz);
+ ptep = hugetlb_walk(vma, address, sz);
if (!ptep)
continue;
ptl = huge_pte_lock(h, mm, ptep);
@@ -7389,10 +7249,12 @@ static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
spin_unlock(ptl);
}
flush_hugetlb_tlb_range(vma, start, end);
- i_mmap_unlock_write(vma->vm_file->f_mapping);
- hugetlb_vma_unlock_write(vma);
+ if (take_locks) {
+ i_mmap_unlock_write(vma->vm_file->f_mapping);
+ hugetlb_vma_unlock_write(vma);
+ }
/*
- * No need to call mmu_notifier_invalidate_range(), see
+ * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
* Documentation/mm/mmu_notifier.rst.
*/
mmu_notifier_invalidate_range_end(&range);
@@ -7405,158 +7267,20 @@ static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
{
hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
- ALIGN_DOWN(vma->vm_end, PUD_SIZE));
-}
-
-#ifdef CONFIG_CMA
-static bool cma_reserve_called __initdata;
-
-static int __init cmdline_parse_hugetlb_cma(char *p)
-{
- int nid, count = 0;
- unsigned long tmp;
- char *s = p;
-
- while (*s) {
- if (sscanf(s, "%lu%n", &tmp, &count) != 1)
- break;
-
- if (s[count] == ':') {
- if (tmp >= MAX_NUMNODES)
- break;
- nid = array_index_nospec(tmp, MAX_NUMNODES);
-
- s += count + 1;
- tmp = memparse(s, &s);
- hugetlb_cma_size_in_node[nid] = tmp;
- hugetlb_cma_size += tmp;
-
- /*
- * Skip the separator if have one, otherwise
- * break the parsing.
- */
- if (*s == ',')
- s++;
- else
- break;
- } else {
- hugetlb_cma_size = memparse(p, &p);
- break;
- }
- }
-
- return 0;
-}
-
-early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
-
-void __init hugetlb_cma_reserve(int order)
-{
- unsigned long size, reserved, per_node;
- bool node_specific_cma_alloc = false;
- int nid;
-
- cma_reserve_called = true;
-
- if (!hugetlb_cma_size)
- return;
-
- for (nid = 0; nid < MAX_NUMNODES; nid++) {
- if (hugetlb_cma_size_in_node[nid] == 0)
- continue;
-
- if (!node_online(nid)) {
- pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
- hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
- hugetlb_cma_size_in_node[nid] = 0;
- continue;
- }
-
- if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
- pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
- nid, (PAGE_SIZE << order) / SZ_1M);
- hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
- hugetlb_cma_size_in_node[nid] = 0;
- } else {
- node_specific_cma_alloc = true;
- }
- }
-
- /* Validate the CMA size again in case some invalid nodes specified. */
- if (!hugetlb_cma_size)
- return;
-
- if (hugetlb_cma_size < (PAGE_SIZE << order)) {
- pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
- (PAGE_SIZE << order) / SZ_1M);
- hugetlb_cma_size = 0;
- return;
- }
-
- if (!node_specific_cma_alloc) {
- /*
- * If 3 GB area is requested on a machine with 4 numa nodes,
- * let's allocate 1 GB on first three nodes and ignore the last one.
- */
- per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
- pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
- hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
- }
-
- reserved = 0;
- for_each_online_node(nid) {
- int res;
- char name[CMA_MAX_NAME];
-
- if (node_specific_cma_alloc) {
- if (hugetlb_cma_size_in_node[nid] == 0)
- continue;
-
- size = hugetlb_cma_size_in_node[nid];
- } else {
- size = min(per_node, hugetlb_cma_size - reserved);
- }
-
- size = round_up(size, PAGE_SIZE << order);
-
- snprintf(name, sizeof(name), "hugetlb%d", nid);
- /*
- * Note that 'order per bit' is based on smallest size that
- * may be returned to CMA allocator in the case of
- * huge page demotion.
- */
- res = cma_declare_contiguous_nid(0, size, 0,
- PAGE_SIZE << HUGETLB_PAGE_ORDER,
- 0, false, name,
- &hugetlb_cma[nid], nid);
- if (res) {
- pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
- res, nid);
- continue;
- }
-
- reserved += size;
- pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
- size / SZ_1M, nid);
-
- if (reserved >= hugetlb_cma_size)
- break;
- }
-
- if (!reserved)
- /*
- * hugetlb_cma_size is used to determine if allocations from
- * cma are possible. Set to zero if no cma regions are set up.
- */
- hugetlb_cma_size = 0;
+ ALIGN_DOWN(vma->vm_end, PUD_SIZE),
+ /* take_locks = */ true);
}
-static void __init hugetlb_cma_check(void)
+/*
+ * For hugetlb, mremap() is an odd edge case - while the VMA copying is
+ * performed, we permit both the old and new VMAs to reference the same
+ * reservation.
+ *
+ * We fix this up after the operation succeeds, or if a newly allocated VMA
+ * is closed as a result of a failure to allocate memory.
+ */
+void fixup_hugetlb_reservations(struct vm_area_struct *vma)
{
- if (!hugetlb_cma_size || cma_reserve_called)
- return;
-
- pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
+ if (is_vm_hugetlb_page(vma))
+ clear_vma_resv_huge_pages(vma);
}
-
-#endif /* CONFIG_CMA */