diff options
Diffstat (limited to 'mm/hugetlb.c')
| -rw-r--r-- | mm/hugetlb.c | 5118 |
1 files changed, 2421 insertions, 2697 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 7fcdb98c9e68..9e7815b4f058 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -7,25 +7,26 @@ #include <linux/init.h> #include <linux/mm.h> #include <linux/seq_file.h> -#include <linux/sysctl.h> #include <linux/highmem.h> #include <linux/mmu_notifier.h> #include <linux/nodemask.h> #include <linux/pagemap.h> #include <linux/mempolicy.h> #include <linux/compiler.h> +#include <linux/cpumask.h> #include <linux/cpuset.h> #include <linux/mutex.h> #include <linux/memblock.h> -#include <linux/sysfs.h> +#include <linux/minmax.h> #include <linux/slab.h> #include <linux/sched/mm.h> #include <linux/mmdebug.h> #include <linux/sched/signal.h> #include <linux/rmap.h> +#include <linux/string_choices.h> #include <linux/string_helpers.h> #include <linux/swap.h> -#include <linux/swapops.h> +#include <linux/leafops.h> #include <linux/jhash.h> #include <linux/numa.h> #include <linux/llist.h> @@ -34,40 +35,48 @@ #include <linux/nospec.h> #include <linux/delayacct.h> #include <linux/memory.h> +#include <linux/mm_inline.h> +#include <linux/padata.h> +#include <linux/pgalloc.h> #include <asm/page.h> -#include <asm/pgalloc.h> #include <asm/tlb.h> +#include <asm/setup.h> #include <linux/io.h> -#include <linux/hugetlb.h> -#include <linux/hugetlb_cgroup.h> #include <linux/node.h> #include <linux/page_owner.h> #include "internal.h" #include "hugetlb_vmemmap.h" +#include "hugetlb_cma.h" +#include "hugetlb_internal.h" +#include <linux/page-isolation.h> int hugetlb_max_hstate __read_mostly; unsigned int default_hstate_idx; struct hstate hstates[HUGE_MAX_HSTATE]; -#ifdef CONFIG_CMA -static struct cma *hugetlb_cma[MAX_NUMNODES]; -static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata; -static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) -{ - return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page, - 1 << order); -} -#else -static bool hugetlb_cma_folio(struct folio *folio, unsigned int order) -{ - return false; -} -#endif -static unsigned long hugetlb_cma_size __initdata; +__initdata nodemask_t hugetlb_bootmem_nodes; +__initdata struct list_head huge_boot_pages[MAX_NUMNODES]; +static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; -__initdata LIST_HEAD(huge_boot_pages); +/* + * Due to ordering constraints across the init code for various + * architectures, hugetlb hstate cmdline parameters can't simply + * be early_param. early_param might call the setup function + * before valid hugetlb page sizes are determined, leading to + * incorrect rejection of valid hugepagesz= options. + * + * So, record the parameters early and consume them whenever the + * init code is ready for them, by calling hugetlb_parse_params(). + */ + +/* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ +#define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) +struct hugetlb_cmdline { + char *val; + int (*setup)(char *val); +}; /* for command line parsing */ static struct hstate * __initdata parsed_hstate; @@ -75,27 +84,52 @@ static unsigned long __initdata default_hstate_max_huge_pages; static bool __initdata parsed_valid_hugepagesz = true; static bool __initdata parsed_default_hugepagesz; static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; +static unsigned long hugepage_allocation_threads __initdata; + +static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; +static int hstate_cmdline_index __initdata; +static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; +static int hugetlb_param_index __initdata; +static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); +static __init void hugetlb_parse_params(void); + +#define hugetlb_early_param(str, func) \ +static __init int func##args(char *s) \ +{ \ + return hugetlb_add_param(s, func); \ +} \ +early_param(str, func##args) /* * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, * free_huge_pages, and surplus_huge_pages. */ -DEFINE_SPINLOCK(hugetlb_lock); +__cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); /* * Serializes faults on the same logical page. This is used to * prevent spurious OOMs when the hugepage pool is fully utilized. */ -static int num_fault_mutexes; -struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; +static int num_fault_mutexes __ro_after_init; +struct mutex *hugetlb_fault_mutex_table __ro_after_init; /* Forward declaration */ static int hugetlb_acct_memory(struct hstate *h, long delta); static void hugetlb_vma_lock_free(struct vm_area_struct *vma); -static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma); static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); static void hugetlb_unshare_pmds(struct vm_area_struct *vma, - unsigned long start, unsigned long end); + unsigned long start, unsigned long end, bool take_locks); +static struct resv_map *vma_resv_map(struct vm_area_struct *vma); + +static void hugetlb_free_folio(struct folio *folio) +{ + if (folio_test_hugetlb_cma(folio)) { + hugetlb_cma_free_folio(folio); + return; + } + + folio_put(folio); +} static inline bool subpool_is_free(struct hugepage_subpool *spool) { @@ -247,11 +281,6 @@ static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, return ret; } -static inline struct hugepage_subpool *subpool_inode(struct inode *inode) -{ - return HUGETLBFS_SB(inode->i_sb)->spool; -} - static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) { return subpool_inode(file_inode(vma->vm_file)); @@ -260,18 +289,16 @@ static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) /* * hugetlb vma_lock helper routines */ -static bool __vma_shareable_lock(struct vm_area_struct *vma) -{ - return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) && - vma->vm_private_data; -} - void hugetlb_vma_lock_read(struct vm_area_struct *vma) { if (__vma_shareable_lock(vma)) { struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; down_read(&vma_lock->rw_sema); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + down_read(&resv_map->rw_sema); } } @@ -281,6 +308,10 @@ void hugetlb_vma_unlock_read(struct vm_area_struct *vma) struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; up_read(&vma_lock->rw_sema); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + up_read(&resv_map->rw_sema); } } @@ -290,6 +321,10 @@ void hugetlb_vma_lock_write(struct vm_area_struct *vma) struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; down_write(&vma_lock->rw_sema); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + down_write(&resv_map->rw_sema); } } @@ -299,17 +334,27 @@ void hugetlb_vma_unlock_write(struct vm_area_struct *vma) struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; up_write(&vma_lock->rw_sema); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + up_write(&resv_map->rw_sema); } } int hugetlb_vma_trylock_write(struct vm_area_struct *vma) { - struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; - if (!__vma_shareable_lock(vma)) - return 1; + if (__vma_shareable_lock(vma)) { + struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; + + return down_write_trylock(&vma_lock->rw_sema); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + return down_write_trylock(&resv_map->rw_sema); + } - return down_write_trylock(&vma_lock->rw_sema); + return 1; } void hugetlb_vma_assert_locked(struct vm_area_struct *vma) @@ -318,6 +363,10 @@ void hugetlb_vma_assert_locked(struct vm_area_struct *vma) struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; lockdep_assert_held(&vma_lock->rw_sema); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + lockdep_assert_held(&resv_map->rw_sema); } } @@ -350,6 +399,11 @@ static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; __hugetlb_vma_unlock_write_put(vma_lock); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + /* no free for anon vmas, but still need to unlock */ + up_write(&resv_map->rw_sema); } } @@ -369,17 +423,21 @@ static void hugetlb_vma_lock_free(struct vm_area_struct *vma) } } -static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) +/* + * vma specific semaphore used for pmd sharing and fault/truncation + * synchronization + */ +int hugetlb_vma_lock_alloc(struct vm_area_struct *vma) { struct hugetlb_vma_lock *vma_lock; /* Only establish in (flags) sharable vmas */ if (!vma || !(vma->vm_flags & VM_MAYSHARE)) - return; + return 0; /* Should never get here with non-NULL vm_private_data */ if (vma->vm_private_data) - return; + return -EINVAL; vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); if (!vma_lock) { @@ -394,13 +452,15 @@ static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma) * allocation failure. */ pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); - return; + return -EINVAL; } kref_init(&vma_lock->refs); init_rwsem(&vma_lock->rw_sema); vma_lock->vma = vma; vma->vm_private_data = vma_lock; + + return 0; } /* Helper that removes a struct file_region from the resv_map cache and returns @@ -957,7 +1017,7 @@ static long region_count(struct resv_map *resv, long f, long t) /* * Convert the address within this vma to the page offset within - * the mapping, in pagecache page units; huge pages here. + * the mapping, huge page units here. */ static pgoff_t vma_hugecache_offset(struct hstate *h, struct vm_area_struct *vma, unsigned long address) @@ -966,16 +1026,14 @@ static pgoff_t vma_hugecache_offset(struct hstate *h, (vma->vm_pgoff >> huge_page_order(h)); } -pgoff_t linear_hugepage_index(struct vm_area_struct *vma, - unsigned long address) -{ - return vma_hugecache_offset(hstate_vma(vma), vma, address); -} -EXPORT_SYMBOL_GPL(linear_hugepage_index); - -/* - * Return the size of the pages allocated when backing a VMA. In the majority - * cases this will be same size as used by the page table entries. +/** + * vma_kernel_pagesize - Page size granularity for this VMA. + * @vma: The user mapping. + * + * Folios in this VMA will be aligned to, and at least the size of the + * number of bytes returned by this function. + * + * Return: The default size of the folios allocated when backing a VMA. */ unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) { @@ -1068,6 +1126,7 @@ struct resv_map *resv_map_alloc(void) kref_init(&resv_map->refs); spin_lock_init(&resv_map->lock); INIT_LIST_HEAD(&resv_map->regions); + init_rwsem(&resv_map->rw_sema); resv_map->adds_in_progress = 0; /* @@ -1115,7 +1174,7 @@ static inline struct resv_map *inode_resv_map(struct inode *inode) * The VERY common case is inode->mapping == &inode->i_data but, * this may not be true for device special inodes. */ - return (struct resv_map *)(&inode->i_data)->private_data; + return (struct resv_map *)(&inode->i_data)->i_private_data; } static struct resv_map *vma_resv_map(struct vm_area_struct *vma) @@ -1133,21 +1192,28 @@ static struct resv_map *vma_resv_map(struct vm_area_struct *vma) } } -static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) +static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) { - VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); - VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); + VM_WARN_ON_ONCE_VMA(!is_vm_hugetlb_page(vma), vma); + VM_WARN_ON_ONCE_VMA(vma->vm_flags & VM_MAYSHARE, vma); - set_vma_private_data(vma, (get_vma_private_data(vma) & - HPAGE_RESV_MASK) | (unsigned long)map); + set_vma_private_data(vma, get_vma_private_data(vma) | flags); } -static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) +static void set_vma_desc_resv_map(struct vm_area_desc *desc, struct resv_map *map) { - VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); - VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma); + VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags)); + VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE); - set_vma_private_data(vma, get_vma_private_data(vma) | flags); + desc->private_data = map; +} + +static void set_vma_desc_resv_flags(struct vm_area_desc *desc, unsigned long flags) +{ + VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags)); + VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE); + + desc->private_data = (void *)((unsigned long)desc->private_data | flags); } static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) @@ -1157,6 +1223,20 @@ static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) return (get_vma_private_data(vma) & flag) != 0; } +static bool is_vma_desc_resv_set(struct vm_area_desc *desc, unsigned long flag) +{ + VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags)); + + return ((unsigned long)desc->private_data) & flag; +} + +bool __vma_private_lock(struct vm_area_struct *vma) +{ + return !(vma->vm_flags & VM_MAYSHARE) && + get_vma_private_data(vma) & ~HPAGE_RESV_MASK && + is_vma_resv_set(vma, HPAGE_RESV_OWNER); +} + void hugetlb_dup_vma_private(struct vm_area_struct *vma) { VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); @@ -1184,7 +1264,7 @@ void hugetlb_dup_vma_private(struct vm_area_struct *vma) /* * Reset and decrement one ref on hugepage private reservation. * Called with mm->mmap_lock writer semaphore held. - * This function should be only used by move_vma() and operate on + * This function should be only used by mremap and operate on * same sized vma. It should never come here with last ref on the * reservation. */ @@ -1212,69 +1292,6 @@ void clear_vma_resv_huge_pages(struct vm_area_struct *vma) hugetlb_dup_vma_private(vma); } -/* Returns true if the VMA has associated reserve pages */ -static bool vma_has_reserves(struct vm_area_struct *vma, long chg) -{ - if (vma->vm_flags & VM_NORESERVE) { - /* - * This address is already reserved by other process(chg == 0), - * so, we should decrement reserved count. Without decrementing, - * reserve count remains after releasing inode, because this - * allocated page will go into page cache and is regarded as - * coming from reserved pool in releasing step. Currently, we - * don't have any other solution to deal with this situation - * properly, so add work-around here. - */ - if (vma->vm_flags & VM_MAYSHARE && chg == 0) - return true; - else - return false; - } - - /* Shared mappings always use reserves */ - if (vma->vm_flags & VM_MAYSHARE) { - /* - * We know VM_NORESERVE is not set. Therefore, there SHOULD - * be a region map for all pages. The only situation where - * there is no region map is if a hole was punched via - * fallocate. In this case, there really are no reserves to - * use. This situation is indicated if chg != 0. - */ - if (chg) - return false; - else - return true; - } - - /* - * Only the process that called mmap() has reserves for - * private mappings. - */ - if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { - /* - * Like the shared case above, a hole punch or truncate - * could have been performed on the private mapping. - * Examine the value of chg to determine if reserves - * actually exist or were previously consumed. - * Very Subtle - The value of chg comes from a previous - * call to vma_needs_reserves(). The reserve map for - * private mappings has different (opposite) semantics - * than that of shared mappings. vma_needs_reserves() - * has already taken this difference in semantics into - * account. Therefore, the meaning of chg is the same - * as in the shared case above. Code could easily be - * combined, but keeping it separate draws attention to - * subtle differences. - */ - if (chg) - return false; - else - return true; - } - - return false; -} - static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) { int nid = folio_nid(folio); @@ -1288,32 +1305,36 @@ static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) folio_set_hugetlb_freed(folio); } -static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) +static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, + int nid) { - struct page *page; + struct folio *folio; bool pin = !!(current->flags & PF_MEMALLOC_PIN); lockdep_assert_held(&hugetlb_lock); - list_for_each_entry(page, &h->hugepage_freelists[nid], lru) { - if (pin && !is_longterm_pinnable_page(page)) + list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { + if (pin && !folio_is_longterm_pinnable(folio)) + continue; + + if (folio_test_hwpoison(folio)) continue; - if (PageHWPoison(page)) + if (is_migrate_isolate_page(&folio->page)) continue; - list_move(&page->lru, &h->hugepage_activelist); - set_page_refcounted(page); - ClearHPageFreed(page); + list_move(&folio->lru, &h->hugepage_activelist); + folio_ref_unfreeze(folio, 1); + folio_clear_hugetlb_freed(folio); h->free_huge_pages--; h->free_huge_pages_node[nid]--; - return page; + return folio; } return NULL; } -static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid, - nodemask_t *nmask) +static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, + int nid, nodemask_t *nmask) { unsigned int cpuset_mems_cookie; struct zonelist *zonelist; @@ -1321,12 +1342,16 @@ static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, struct zoneref *z; int node = NUMA_NO_NODE; + /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ + if (nid == NUMA_NO_NODE) + nid = numa_node_id(); + zonelist = node_zonelist(nid, gfp_mask); retry_cpuset: cpuset_mems_cookie = read_mems_allowed_begin(); for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { - struct page *page; + struct folio *folio; if (!cpuset_zone_allowed(zone, gfp_mask)) continue; @@ -1338,9 +1363,9 @@ retry_cpuset: continue; node = zone_to_nid(zone); - page = dequeue_huge_page_node_exact(h, node); - if (page) - return page; + folio = dequeue_hugetlb_folio_node_exact(h, node); + if (folio) + return folio; } if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) goto retry_cpuset; @@ -1353,247 +1378,102 @@ static unsigned long available_huge_pages(struct hstate *h) return h->free_huge_pages - h->resv_huge_pages; } -static struct page *dequeue_huge_page_vma(struct hstate *h, +static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma, - unsigned long address, int avoid_reserve, - long chg) + unsigned long address, long gbl_chg) { - struct page *page = NULL; + struct folio *folio = NULL; struct mempolicy *mpol; gfp_t gfp_mask; nodemask_t *nodemask; int nid; /* - * A child process with MAP_PRIVATE mappings created by their parent - * have no page reserves. This check ensures that reservations are - * not "stolen". The child may still get SIGKILLed + * gbl_chg==1 means the allocation requires a new page that was not + * reserved before. Making sure there's at least one free page. */ - if (!vma_has_reserves(vma, chg) && !available_huge_pages(h)) - goto err; - - /* If reserves cannot be used, ensure enough pages are in the pool */ - if (avoid_reserve && !available_huge_pages(h)) + if (gbl_chg && !available_huge_pages(h)) goto err; gfp_mask = htlb_alloc_mask(h); nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); if (mpol_is_preferred_many(mpol)) { - page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); + folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, + nid, nodemask); /* Fallback to all nodes if page==NULL */ nodemask = NULL; } - if (!page) - page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); - - if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { - SetHPageRestoreReserve(page); - h->resv_huge_pages--; - } + if (!folio) + folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, + nid, nodemask); mpol_cond_put(mpol); - return page; + return folio; err: return NULL; } -/* - * common helper functions for hstate_next_node_to_{alloc|free}. - * We may have allocated or freed a huge page based on a different - * nodes_allowed previously, so h->next_node_to_{alloc|free} might - * be outside of *nodes_allowed. Ensure that we use an allowed - * node for alloc or free. - */ -static int next_node_allowed(int nid, nodemask_t *nodes_allowed) -{ - nid = next_node_in(nid, *nodes_allowed); - VM_BUG_ON(nid >= MAX_NUMNODES); - - return nid; -} - -static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) -{ - if (!node_isset(nid, *nodes_allowed)) - nid = next_node_allowed(nid, nodes_allowed); - return nid; -} - -/* - * returns the previously saved node ["this node"] from which to - * allocate a persistent huge page for the pool and advance the - * next node from which to allocate, handling wrap at end of node - * mask. - */ -static int hstate_next_node_to_alloc(struct hstate *h, - nodemask_t *nodes_allowed) -{ - int nid; - - VM_BUG_ON(!nodes_allowed); - - nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); - h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); - - return nid; -} - -/* - * helper for remove_pool_huge_page() - return the previously saved - * node ["this node"] from which to free a huge page. Advance the - * next node id whether or not we find a free huge page to free so - * that the next attempt to free addresses the next node. - */ -static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) -{ - int nid; - - VM_BUG_ON(!nodes_allowed); - - nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); - h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); - - return nid; -} - -#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ - for (nr_nodes = nodes_weight(*mask); \ - nr_nodes > 0 && \ - ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ - nr_nodes--) - -#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ - for (nr_nodes = nodes_weight(*mask); \ - nr_nodes > 0 && \ - ((node = hstate_next_node_to_free(hs, mask)) || 1); \ - nr_nodes--) - -/* used to demote non-gigantic_huge pages as well */ -static void __destroy_compound_gigantic_folio(struct folio *folio, - unsigned int order, bool demote) -{ - int i; - int nr_pages = 1 << order; - struct page *p; - - atomic_set(folio_mapcount_ptr(folio), 0); - atomic_set(folio_subpages_mapcount_ptr(folio), 0); - atomic_set(folio_pincount_ptr(folio), 0); - - for (i = 1; i < nr_pages; i++) { - p = folio_page(folio, i); - p->mapping = NULL; - clear_compound_head(p); - if (!demote) - set_page_refcounted(p); - } - - folio_set_compound_order(folio, 0); - __folio_clear_head(folio); -} - -static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio, - unsigned int order) -{ - __destroy_compound_gigantic_folio(folio, order, true); -} - #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE -static void destroy_compound_gigantic_folio(struct folio *folio, - unsigned int order) -{ - __destroy_compound_gigantic_folio(folio, order, false); -} - -static void free_gigantic_folio(struct folio *folio, unsigned int order) -{ - /* - * If the page isn't allocated using the cma allocator, - * cma_release() returns false. - */ -#ifdef CONFIG_CMA - int nid = folio_nid(folio); - - if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order)) - return; -#endif - - free_contig_range(folio_pfn(folio), 1 << order); -} - #ifdef CONFIG_CONTIG_ALLOC -static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, +static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid, nodemask_t *nodemask) { - struct page *page; - unsigned long nr_pages = pages_per_huge_page(h); - if (nid == NUMA_NO_NODE) - nid = numa_mem_id(); + struct folio *folio; + bool retried = false; -#ifdef CONFIG_CMA - { - int node; +retry: + folio = hugetlb_cma_alloc_folio(order, gfp_mask, nid, nodemask); + if (!folio) { + if (hugetlb_cma_exclusive_alloc()) + return NULL; - if (hugetlb_cma[nid]) { - page = cma_alloc(hugetlb_cma[nid], nr_pages, - huge_page_order(h), true); - if (page) - return page_folio(page); - } + folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); + if (!folio) + return NULL; + } - if (!(gfp_mask & __GFP_THISNODE)) { - for_each_node_mask(node, *nodemask) { - if (node == nid || !hugetlb_cma[node]) - continue; + if (folio_ref_freeze(folio, 1)) + return folio; - page = cma_alloc(hugetlb_cma[node], nr_pages, - huge_page_order(h), true); - if (page) - return page_folio(page); - } - } + pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); + hugetlb_free_folio(folio); + if (!retried) { + retried = true; + goto retry; } -#endif - - page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask); - return page ? page_folio(page) : NULL; + return NULL; } #else /* !CONFIG_CONTIG_ALLOC */ -static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, - int nid, nodemask_t *nodemask) +static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid, + nodemask_t *nodemask) { return NULL; } #endif /* CONFIG_CONTIG_ALLOC */ #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ -static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask, - int nid, nodemask_t *nodemask) +static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid, + nodemask_t *nodemask) { return NULL; } -static inline void free_gigantic_folio(struct folio *folio, - unsigned int order) { } -static inline void destroy_compound_gigantic_folio(struct folio *folio, - unsigned int order) { } #endif /* - * Remove hugetlb folio from lists, and update dtor so that the folio appears - * as just a compound page. - * - * A reference is held on the folio, except in the case of demote. + * Remove hugetlb folio from lists. + * If vmemmap exists for the folio, clear the hugetlb flag so that the + * folio appears as just a compound page. Otherwise, wait until after + * allocating vmemmap to clear the flag. * * Must be called with hugetlb lock held. */ -static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, - bool adjust_surplus, - bool demote) +void remove_hugetlb_folio(struct hstate *h, struct folio *folio, + bool adjust_surplus) { int nid = folio_nid(folio); @@ -1601,12 +1481,13 @@ static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); lockdep_assert_held(&hugetlb_lock); - if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) + if (hstate_is_gigantic_no_runtime(h)) return; list_del(&folio->lru); if (folio_test_hugetlb_freed(folio)) { + folio_clear_hugetlb_freed(folio); h->free_huge_pages--; h->free_huge_pages_node[nid]--; } @@ -1616,52 +1497,20 @@ static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio, } /* - * Very subtle - * - * For non-gigantic pages set the destructor to the normal compound - * page dtor. This is needed in case someone takes an additional - * temporary ref to the page, and freeing is delayed until they drop - * their reference. - * - * For gigantic pages set the destructor to the null dtor. This - * destructor will never be called. Before freeing the gigantic - * page destroy_compound_gigantic_folio will turn the folio into a - * simple group of pages. After this the destructor does not - * apply. - * - * This handles the case where more than one ref is held when and - * after update_and_free_hugetlb_folio is called. - * - * In the case of demote we do not ref count the page as it will soon - * be turned into a page of smaller size. + * We can only clear the hugetlb flag after allocating vmemmap + * pages. Otherwise, someone (memory error handling) may try to write + * to tail struct pages. */ - if (!demote) - folio_ref_unfreeze(folio, 1); - if (hstate_is_gigantic(h)) - folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR); - else - folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR); + if (!folio_test_hugetlb_vmemmap_optimized(folio)) + __folio_clear_hugetlb(folio); h->nr_huge_pages--; h->nr_huge_pages_node[nid]--; } -static void remove_hugetlb_folio(struct hstate *h, struct folio *folio, - bool adjust_surplus) -{ - __remove_hugetlb_folio(h, folio, adjust_surplus, false); -} - -static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio, - bool adjust_surplus) -{ - __remove_hugetlb_folio(h, folio, adjust_surplus, true); -} - -static void add_hugetlb_folio(struct hstate *h, struct folio *folio, - bool adjust_surplus) +void add_hugetlb_folio(struct hstate *h, struct folio *folio, + bool adjust_surplus) { - int zeroed; int nid = folio_nid(folio); VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); @@ -1677,7 +1526,7 @@ static void add_hugetlb_folio(struct hstate *h, struct folio *folio, h->surplus_huge_pages_node[nid]++; } - folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); + __folio_set_hugetlb(folio); folio_change_private(folio, NULL); /* * We have to set hugetlb_vmemmap_optimized again as above @@ -1685,32 +1534,16 @@ static void add_hugetlb_folio(struct hstate *h, struct folio *folio, */ folio_set_hugetlb_vmemmap_optimized(folio); - /* - * This folio is about to be managed by the hugetlb allocator and - * should have no users. Drop our reference, and check for others - * just in case. - */ - zeroed = folio_put_testzero(folio); - if (unlikely(!zeroed)) - /* - * It is VERY unlikely soneone else has taken a ref on - * the page. In this case, we simply return as the - * hugetlb destructor (free_huge_page) will be called - * when this other ref is dropped. - */ - return; - - arch_clear_hugepage_flags(&folio->page); + arch_clear_hugetlb_flags(folio); enqueue_hugetlb_folio(h, folio); } -static void __update_and_free_page(struct hstate *h, struct page *page) +static void __update_and_free_hugetlb_folio(struct hstate *h, + struct folio *folio) { - int i; - struct folio *folio = page_folio(page); - struct page *subpage; + bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); - if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) + if (hstate_is_gigantic_no_runtime(h)) return; /* @@ -1720,7 +1553,12 @@ static void __update_and_free_page(struct hstate *h, struct page *page) if (folio_test_hugetlb_raw_hwp_unreliable(folio)) return; - if (hugetlb_vmemmap_restore(h, page)) { + /* + * If folio is not vmemmap optimized (!clear_flag), then the folio + * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio + * can only be passed hugetlb pages and will BUG otherwise. + */ + if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { spin_lock_irq(&hugetlb_lock); /* * If we cannot allocate vmemmap pages, just refuse to free the @@ -1733,31 +1571,25 @@ static void __update_and_free_page(struct hstate *h, struct page *page) } /* + * If vmemmap pages were allocated above, then we need to clear the + * hugetlb flag under the hugetlb lock. + */ + if (folio_test_hugetlb(folio)) { + spin_lock_irq(&hugetlb_lock); + __folio_clear_hugetlb(folio); + spin_unlock_irq(&hugetlb_lock); + } + + /* * Move PageHWPoison flag from head page to the raw error pages, * which makes any healthy subpages reusable. */ if (unlikely(folio_test_hwpoison(folio))) - hugetlb_clear_page_hwpoison(&folio->page); + folio_clear_hugetlb_hwpoison(folio); - for (i = 0; i < pages_per_huge_page(h); i++) { - subpage = folio_page(folio, i); - subpage->flags &= ~(1 << PG_locked | 1 << PG_error | - 1 << PG_referenced | 1 << PG_dirty | - 1 << PG_active | 1 << PG_private | - 1 << PG_writeback); - } + folio_ref_unfreeze(folio, 1); - /* - * Non-gigantic pages demoted from CMA allocated gigantic pages - * need to be given back to CMA in free_gigantic_folio. - */ - if (hstate_is_gigantic(h) || - hugetlb_cma_folio(folio, huge_page_order(h))) { - destroy_compound_gigantic_folio(folio, huge_page_order(h)); - free_gigantic_folio(folio, huge_page_order(h)); - } else { - __free_pages(page, huge_page_order(h)); - } + hugetlb_free_folio(folio); } /* @@ -1780,23 +1612,22 @@ static void free_hpage_workfn(struct work_struct *work) node = llist_del_all(&hpage_freelist); while (node) { - struct page *page; + struct folio *folio; struct hstate *h; - page = container_of((struct address_space **)node, - struct page, mapping); + folio = container_of((struct address_space **)node, + struct folio, mapping); node = node->next; - page->mapping = NULL; + folio->mapping = NULL; /* - * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate() - * is going to trigger because a previous call to - * remove_hugetlb_folio() will call folio_set_compound_dtor - * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate() - * directly. + * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in + * folio_hstate() is going to trigger because a previous call to + * remove_hugetlb_folio() will clear the hugetlb bit, so do + * not use folio_hstate() directly. */ - h = size_to_hstate(page_size(page)); + h = size_to_hstate(folio_size(folio)); - __update_and_free_page(h, page); + __update_and_free_hugetlb_folio(h, folio); cond_resched(); } @@ -1813,7 +1644,7 @@ static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, bool atomic) { if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { - __update_and_free_page(h, &folio->page); + __update_and_free_hugetlb_folio(h, folio); return; } @@ -1828,13 +1659,93 @@ static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, schedule_work(&free_hpage_work); } -static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list) +static void bulk_vmemmap_restore_error(struct hstate *h, + struct list_head *folio_list, + struct list_head *non_hvo_folios) { - struct page *page, *t_page; - struct folio *folio; + struct folio *folio, *t_folio; + + if (!list_empty(non_hvo_folios)) { + /* + * Free any restored hugetlb pages so that restore of the + * entire list can be retried. + * The idea is that in the common case of ENOMEM errors freeing + * hugetlb pages with vmemmap we will free up memory so that we + * can allocate vmemmap for more hugetlb pages. + */ + list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { + list_del(&folio->lru); + spin_lock_irq(&hugetlb_lock); + __folio_clear_hugetlb(folio); + spin_unlock_irq(&hugetlb_lock); + update_and_free_hugetlb_folio(h, folio, false); + cond_resched(); + } + } else { + /* + * In the case where there are no folios which can be + * immediately freed, we loop through the list trying to restore + * vmemmap individually in the hope that someone elsewhere may + * have done something to cause success (such as freeing some + * memory). If unable to restore a hugetlb page, the hugetlb + * page is made a surplus page and removed from the list. + * If are able to restore vmemmap and free one hugetlb page, we + * quit processing the list to retry the bulk operation. + */ + list_for_each_entry_safe(folio, t_folio, folio_list, lru) + if (hugetlb_vmemmap_restore_folio(h, folio)) { + list_del(&folio->lru); + spin_lock_irq(&hugetlb_lock); + add_hugetlb_folio(h, folio, true); + spin_unlock_irq(&hugetlb_lock); + } else { + list_del(&folio->lru); + spin_lock_irq(&hugetlb_lock); + __folio_clear_hugetlb(folio); + spin_unlock_irq(&hugetlb_lock); + update_and_free_hugetlb_folio(h, folio, false); + cond_resched(); + break; + } + } +} + +static void update_and_free_pages_bulk(struct hstate *h, + struct list_head *folio_list) +{ + long ret; + struct folio *folio, *t_folio; + LIST_HEAD(non_hvo_folios); + + /* + * First allocate required vmemmmap (if necessary) for all folios. + * Carefully handle errors and free up any available hugetlb pages + * in an effort to make forward progress. + */ +retry: + ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); + if (ret < 0) { + bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); + goto retry; + } + + /* + * At this point, list should be empty, ret should be >= 0 and there + * should only be pages on the non_hvo_folios list. + * Do note that the non_hvo_folios list could be empty. + * Without HVO enabled, ret will be 0 and there is no need to call + * __folio_clear_hugetlb as this was done previously. + */ + VM_WARN_ON(!list_empty(folio_list)); + VM_WARN_ON(ret < 0); + if (!list_empty(&non_hvo_folios) && ret) { + spin_lock_irq(&hugetlb_lock); + list_for_each_entry(folio, &non_hvo_folios, lru) + __folio_clear_hugetlb(folio); + spin_unlock_irq(&hugetlb_lock); + } - list_for_each_entry_safe(page, t_page, list, lru) { - folio = page_folio(page); + list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { update_and_free_hugetlb_folio(h, folio, false); cond_resched(); } @@ -1851,13 +1762,12 @@ struct hstate *size_to_hstate(unsigned long size) return NULL; } -void free_huge_page(struct page *page) +void free_huge_folio(struct folio *folio) { /* * Can't pass hstate in here because it is called from the - * compound page destructor. + * generic mm code. */ - struct folio *folio = page_folio(page); struct hstate *h = folio_hstate(folio); int nid = folio_nid(folio); struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); @@ -1899,6 +1809,8 @@ void free_huge_page(struct page *page) pages_per_huge_page(h), folio); hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), pages_per_huge_page(h), folio); + lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); + mem_cgroup_uncharge(folio); if (restore_reserve) h->resv_huge_pages++; @@ -1912,7 +1824,7 @@ void free_huge_page(struct page *page) spin_unlock_irqrestore(&hugetlb_lock, flags); update_and_free_hugetlb_folio(h, folio, true); } else { - arch_clear_hugepage_flags(page); + arch_clear_hugetlb_flags(folio); enqueue_hugetlb_folio(h, folio); spin_unlock_irqrestore(&hugetlb_lock, flags); } @@ -1921,160 +1833,32 @@ void free_huge_page(struct page *page) /* * Must be called with the hugetlb lock held */ -static void __prep_account_new_huge_page(struct hstate *h, int nid) +static void account_new_hugetlb_folio(struct hstate *h, struct folio *folio) { lockdep_assert_held(&hugetlb_lock); h->nr_huge_pages++; - h->nr_huge_pages_node[nid]++; + h->nr_huge_pages_node[folio_nid(folio)]++; } -static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio) +void init_new_hugetlb_folio(struct folio *folio) { - hugetlb_vmemmap_optimize(h, &folio->page); + __folio_set_hugetlb(folio); INIT_LIST_HEAD(&folio->lru); - folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR); hugetlb_set_folio_subpool(folio, NULL); set_hugetlb_cgroup(folio, NULL); set_hugetlb_cgroup_rsvd(folio, NULL); } -static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid) -{ - __prep_new_hugetlb_folio(h, folio); - spin_lock_irq(&hugetlb_lock); - __prep_account_new_huge_page(h, nid); - spin_unlock_irq(&hugetlb_lock); -} - -static bool __prep_compound_gigantic_folio(struct folio *folio, - unsigned int order, bool demote) -{ - int i, j; - int nr_pages = 1 << order; - struct page *p; - - __folio_clear_reserved(folio); - __folio_set_head(folio); - /* we rely on prep_new_hugetlb_folio to set the destructor */ - folio_set_compound_order(folio, order); - for (i = 0; i < nr_pages; i++) { - p = folio_page(folio, i); - - /* - * For gigantic hugepages allocated through bootmem at - * boot, it's safer to be consistent with the not-gigantic - * hugepages and clear the PG_reserved bit from all tail pages - * too. Otherwise drivers using get_user_pages() to access tail - * pages may get the reference counting wrong if they see - * PG_reserved set on a tail page (despite the head page not - * having PG_reserved set). Enforcing this consistency between - * head and tail pages allows drivers to optimize away a check - * on the head page when they need know if put_page() is needed - * after get_user_pages(). - */ - if (i != 0) /* head page cleared above */ - __ClearPageReserved(p); - /* - * Subtle and very unlikely - * - * Gigantic 'page allocators' such as memblock or cma will - * return a set of pages with each page ref counted. We need - * to turn this set of pages into a compound page with tail - * page ref counts set to zero. Code such as speculative page - * cache adding could take a ref on a 'to be' tail page. - * We need to respect any increased ref count, and only set - * the ref count to zero if count is currently 1. If count - * is not 1, we return an error. An error return indicates - * the set of pages can not be converted to a gigantic page. - * The caller who allocated the pages should then discard the - * pages using the appropriate free interface. - * - * In the case of demote, the ref count will be zero. - */ - if (!demote) { - if (!page_ref_freeze(p, 1)) { - pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n"); - goto out_error; - } - } else { - VM_BUG_ON_PAGE(page_count(p), p); - } - if (i != 0) - set_compound_head(p, &folio->page); - } - atomic_set(folio_mapcount_ptr(folio), -1); - atomic_set(folio_subpages_mapcount_ptr(folio), 0); - atomic_set(folio_pincount_ptr(folio), 0); - return true; - -out_error: - /* undo page modifications made above */ - for (j = 0; j < i; j++) { - p = folio_page(folio, j); - if (j != 0) - clear_compound_head(p); - set_page_refcounted(p); - } - /* need to clear PG_reserved on remaining tail pages */ - for (; j < nr_pages; j++) { - p = folio_page(folio, j); - __ClearPageReserved(p); - } - folio_set_compound_order(folio, 0); - __folio_clear_head(folio); - return false; -} - -static bool prep_compound_gigantic_folio(struct folio *folio, - unsigned int order) -{ - return __prep_compound_gigantic_folio(folio, order, false); -} - -static bool prep_compound_gigantic_folio_for_demote(struct folio *folio, - unsigned int order) -{ - return __prep_compound_gigantic_folio(folio, order, true); -} - -/* - * PageHuge() only returns true for hugetlbfs pages, but not for normal or - * transparent huge pages. See the PageTransHuge() documentation for more - * details. - */ -int PageHuge(struct page *page) -{ - if (!PageCompound(page)) - return 0; - - page = compound_head(page); - return page[1].compound_dtor == HUGETLB_PAGE_DTOR; -} -EXPORT_SYMBOL_GPL(PageHuge); - -/* - * PageHeadHuge() only returns true for hugetlbfs head page, but not for - * normal or transparent huge pages. - */ -int PageHeadHuge(struct page *page_head) -{ - if (!PageHead(page_head)) - return 0; - - return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR; -} -EXPORT_SYMBOL_GPL(PageHeadHuge); - /* * Find and lock address space (mapping) in write mode. * - * Upon entry, the page is locked which means that page_mapping() is + * Upon entry, the folio is locked which means that folio_mapping() is * stable. Due to locking order, we can only trylock_write. If we can * not get the lock, simply return NULL to caller. */ -struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) +struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) { - struct address_space *mapping = page_mapping(hpage); + struct address_space *mapping = folio_mapping(folio); if (!mapping) return mapping; @@ -2085,145 +1869,129 @@ struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) return NULL; } -pgoff_t hugetlb_basepage_index(struct page *page) -{ - struct page *page_head = compound_head(page); - pgoff_t index = page_index(page_head); - unsigned long compound_idx; - - if (compound_order(page_head) >= MAX_ORDER) - compound_idx = page_to_pfn(page) - page_to_pfn(page_head); - else - compound_idx = page - page_head; - - return (index << compound_order(page_head)) + compound_idx; -} - -static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h, - gfp_t gfp_mask, int nid, nodemask_t *nmask, - nodemask_t *node_alloc_noretry) +static struct folio *alloc_buddy_hugetlb_folio(int order, gfp_t gfp_mask, + int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry) { - int order = huge_page_order(h); - struct page *page; + struct folio *folio; bool alloc_try_hard = true; - bool retry = true; /* - * By default we always try hard to allocate the page with - * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in + * By default we always try hard to allocate the folio with + * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in * a loop (to adjust global huge page counts) and previous allocation * failed, do not continue to try hard on the same node. Use the * node_alloc_noretry bitmap to manage this state information. */ if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) alloc_try_hard = false; - gfp_mask |= __GFP_COMP|__GFP_NOWARN; if (alloc_try_hard) gfp_mask |= __GFP_RETRY_MAYFAIL; - if (nid == NUMA_NO_NODE) - nid = numa_mem_id(); -retry: - page = __alloc_pages(gfp_mask, order, nid, nmask); - /* Freeze head page */ - if (page && !page_ref_freeze(page, 1)) { - __free_pages(page, order); - if (retry) { /* retry once */ - retry = false; - goto retry; - } - /* WOW! twice in a row. */ - pr_warn("HugeTLB head page unexpected inflated ref count\n"); - page = NULL; - } + folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask); /* - * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this - * indicates an overall state change. Clear bit so that we resume - * normal 'try hard' allocations. + * If we did not specify __GFP_RETRY_MAYFAIL, but still got a + * folio this indicates an overall state change. Clear bit so + * that we resume normal 'try hard' allocations. */ - if (node_alloc_noretry && page && !alloc_try_hard) + if (node_alloc_noretry && folio && !alloc_try_hard) node_clear(nid, *node_alloc_noretry); /* - * If we tried hard to get a page but failed, set bit so that + * If we tried hard to get a folio but failed, set bit so that * subsequent attempts will not try as hard until there is an * overall state change. */ - if (node_alloc_noretry && !page && alloc_try_hard) + if (node_alloc_noretry && !folio && alloc_try_hard) node_set(nid, *node_alloc_noretry); - if (!page) { + if (!folio) { __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); return NULL; } __count_vm_event(HTLB_BUDDY_PGALLOC); - return page_folio(page); + return folio; } -/* - * Common helper to allocate a fresh hugetlb page. All specific allocators - * should use this function to get new hugetlb pages - * - * Note that returned page is 'frozen': ref count of head page and all tail - * pages is zero. - */ -static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, +static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry) { struct folio *folio; - bool retry = false; + int order = huge_page_order(h); -retry: - if (hstate_is_gigantic(h)) - folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask); - else - folio = alloc_buddy_hugetlb_folio(h, gfp_mask, - nid, nmask, node_alloc_noretry); - if (!folio) - return NULL; - if (hstate_is_gigantic(h)) { - if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) { - /* - * Rare failure to convert pages to compound page. - * Free pages and try again - ONCE! - */ - free_gigantic_folio(folio, huge_page_order(h)); - if (!retry) { - retry = true; - goto retry; - } - return NULL; - } - } - prep_new_hugetlb_folio(h, folio, folio_nid(folio)); + if (nid == NUMA_NO_NODE) + nid = numa_mem_id(); + if (order_is_gigantic(order)) + folio = alloc_gigantic_folio(order, gfp_mask, nid, nmask); + else + folio = alloc_buddy_hugetlb_folio(order, gfp_mask, nid, nmask, + node_alloc_noretry); + if (folio) + init_new_hugetlb_folio(folio); return folio; } /* - * Allocates a fresh page to the hugetlb allocator pool in the node interleaved - * manner. + * Common helper to allocate a fresh hugetlb folio. All specific allocators + * should use this function to get new hugetlb folio + * + * Note that returned folio is 'frozen': ref count of head page and all tail + * pages is zero, and the accounting must be done in the caller. */ -static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, - nodemask_t *node_alloc_noretry) +static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, + gfp_t gfp_mask, int nid, nodemask_t *nmask) { struct folio *folio; - int nr_nodes, node; + + folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); + if (folio) + hugetlb_vmemmap_optimize_folio(h, folio); + return folio; +} + +void prep_and_add_allocated_folios(struct hstate *h, + struct list_head *folio_list) +{ + unsigned long flags; + struct folio *folio, *tmp_f; + + /* Send list for bulk vmemmap optimization processing */ + hugetlb_vmemmap_optimize_folios(h, folio_list); + + /* Add all new pool pages to free lists in one lock cycle */ + spin_lock_irqsave(&hugetlb_lock, flags); + list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { + account_new_hugetlb_folio(h, folio); + enqueue_hugetlb_folio(h, folio); + } + spin_unlock_irqrestore(&hugetlb_lock, flags); +} + +/* + * Allocates a fresh hugetlb page in a node interleaved manner. The page + * will later be added to the appropriate hugetlb pool. + */ +static struct folio *alloc_pool_huge_folio(struct hstate *h, + nodemask_t *nodes_allowed, + nodemask_t *node_alloc_noretry, + int *next_node) +{ gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; + int nr_nodes, node; - for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { - folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node, + for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { + struct folio *folio; + + folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, nodes_allowed, node_alloc_noretry); - if (folio) { - free_huge_page(&folio->page); /* free it into the hugepage allocator */ - return 1; - } + if (folio) + return folio; } - return 0; + return NULL; } /* @@ -2233,13 +2001,11 @@ static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, * an additional call to free the page to low level allocators. * Called with hugetlb_lock locked. */ -static struct page *remove_pool_huge_page(struct hstate *h, - nodemask_t *nodes_allowed, - bool acct_surplus) +static struct folio *remove_pool_hugetlb_folio(struct hstate *h, + nodemask_t *nodes_allowed, bool acct_surplus) { int nr_nodes, node; - struct page *page = NULL; - struct folio *folio; + struct folio *folio = NULL; lockdep_assert_held(&hugetlb_lock); for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { @@ -2249,20 +2015,19 @@ static struct page *remove_pool_huge_page(struct hstate *h, */ if ((!acct_surplus || h->surplus_huge_pages_node[node]) && !list_empty(&h->hugepage_freelists[node])) { - page = list_entry(h->hugepage_freelists[node].next, - struct page, lru); - folio = page_folio(page); + folio = list_entry(h->hugepage_freelists[node].next, + struct folio, lru); remove_hugetlb_folio(h, folio, acct_surplus); break; } } - return page; + return folio; } /* - * Dissolve a given free hugepage into free buddy pages. This function does - * nothing for in-use hugepages and non-hugepages. + * Dissolve a given free hugetlb folio into free buddy pages. This function + * does nothing for in-use hugetlb folios and non-hugetlb folios. * This function returns values like below: * * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages @@ -2274,10 +2039,9 @@ static struct page *remove_pool_huge_page(struct hstate *h, * 0: successfully dissolved free hugepages or the page is not a * hugepage (considered as already dissolved) */ -int dissolve_free_huge_page(struct page *page) +int dissolve_free_hugetlb_folio(struct folio *folio) { int rc = -EBUSY; - struct folio *folio = page_folio(page); retry: /* Not to disrupt normal path by vainly holding hugetlb_lock */ @@ -2292,6 +2056,8 @@ retry: if (!folio_ref_count(folio)) { struct hstate *h = folio_hstate(folio); + bool adjust_surplus = false; + if (!available_huge_pages(h)) goto out; @@ -2314,7 +2080,9 @@ retry: goto retry; } - remove_hugetlb_folio(h, folio, false); + if (h->surplus_huge_pages_node[folio_nid(folio)]) + adjust_surplus = true; + remove_hugetlb_folio(h, folio, adjust_surplus); h->max_huge_pages--; spin_unlock_irq(&hugetlb_lock); @@ -2325,17 +2093,23 @@ retry: * need to adjust max_huge_pages if the page is not freed. * Attempt to allocate vmemmmap here so that we can take * appropriate action on failure. + * + * The folio_test_hugetlb check here is because + * remove_hugetlb_folio will clear hugetlb folio flag for + * non-vmemmap optimized hugetlb folios. */ - rc = hugetlb_vmemmap_restore(h, &folio->page); - if (!rc) { - update_and_free_hugetlb_folio(h, folio, false); - } else { - spin_lock_irq(&hugetlb_lock); - add_hugetlb_folio(h, folio, false); - h->max_huge_pages++; - spin_unlock_irq(&hugetlb_lock); - } + if (folio_test_hugetlb(folio)) { + rc = hugetlb_vmemmap_restore_folio(h, folio); + if (rc) { + spin_lock_irq(&hugetlb_lock); + add_hugetlb_folio(h, folio, adjust_surplus); + h->max_huge_pages++; + goto out; + } + } else + rc = 0; + update_and_free_hugetlb_folio(h, folio, false); return rc; } out: @@ -2348,13 +2122,13 @@ out: * make specified memory blocks removable from the system. * Note that this will dissolve a free gigantic hugepage completely, if any * part of it lies within the given range. - * Also note that if dissolve_free_huge_page() returns with an error, all - * free hugepages that were dissolved before that error are lost. + * Also note that if dissolve_free_hugetlb_folio() returns with an error, all + * free hugetlb folios that were dissolved before that error are lost. */ -int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) +int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) { unsigned long pfn; - struct page *page; + struct folio *folio; int rc = 0; unsigned int order; struct hstate *h; @@ -2367,8 +2141,8 @@ int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) order = min(order, huge_page_order(h)); for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { - page = pfn_to_page(pfn); - rc = dissolve_free_huge_page(page); + folio = pfn_folio(pfn); + rc = dissolve_free_hugetlb_folio(folio); if (rc) break; } @@ -2379,12 +2153,12 @@ int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) /* * Allocates a fresh surplus page from the page allocator. */ -static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, - int nid, nodemask_t *nmask) +static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, + gfp_t gfp_mask, int nid, nodemask_t *nmask) { struct folio *folio = NULL; - if (hstate_is_gigantic(h)) + if (hstate_is_gigantic_no_runtime(h)) return NULL; spin_lock_irq(&hugetlb_lock); @@ -2392,22 +2166,29 @@ static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, goto out_unlock; spin_unlock_irq(&hugetlb_lock); - folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); + folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); if (!folio) return NULL; spin_lock_irq(&hugetlb_lock); /* + * nr_huge_pages needs to be adjusted within the same lock cycle + * as surplus_pages, otherwise it might confuse + * persistent_huge_pages() momentarily. + */ + account_new_hugetlb_folio(h, folio); + + /* * We could have raced with the pool size change. * Double check that and simply deallocate the new page * if we would end up overcommiting the surpluses. Abuse - * temporary page to workaround the nasty free_huge_page + * temporary page to workaround the nasty free_huge_folio * codeflow */ if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { folio_set_hugetlb_temporary(folio); spin_unlock_irq(&hugetlb_lock); - free_huge_page(&folio->page); + free_huge_folio(folio); return NULL; } @@ -2417,10 +2198,10 @@ static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, out_unlock: spin_unlock_irq(&hugetlb_lock); - return &folio->page; + return folio; } -static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, +static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, int nid, nodemask_t *nmask) { struct folio *folio; @@ -2428,10 +2209,14 @@ static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, if (hstate_is_gigantic(h)) return NULL; - folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); + folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); if (!folio) return NULL; + spin_lock_irq(&hugetlb_lock); + account_new_hugetlb_folio(h, folio); + spin_unlock_irq(&hugetlb_lock); + /* fresh huge pages are frozen */ folio_ref_unfreeze(folio, 1); /* @@ -2440,17 +2225,17 @@ static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, */ folio_set_hugetlb_temporary(folio); - return &folio->page; + return folio; } /* * Use the VMA's mpolicy to allocate a huge page from the buddy. */ static -struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, +struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { - struct page *page = NULL; + struct folio *folio = NULL; struct mempolicy *mpol; gfp_t gfp_mask = htlb_alloc_mask(h); int nid; @@ -2458,56 +2243,79 @@ struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h, nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); if (mpol_is_preferred_many(mpol)) { - gfp_t gfp = gfp_mask | __GFP_NOWARN; + gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); - gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); - page = alloc_surplus_huge_page(h, gfp, nid, nodemask); + folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); /* Fallback to all nodes if page==NULL */ nodemask = NULL; } - if (!page) - page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask); + if (!folio) + folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); mpol_cond_put(mpol); - return page; + return folio; } -/* page migration callback function */ -struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid, +struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, nodemask_t *nmask, gfp_t gfp_mask) { + struct folio *folio; + + spin_lock_irq(&hugetlb_lock); + if (!h->resv_huge_pages) { + spin_unlock_irq(&hugetlb_lock); + return NULL; + } + + folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, + nmask); + if (folio) + h->resv_huge_pages--; + + spin_unlock_irq(&hugetlb_lock); + return folio; +} + +/* folio migration callback function */ +struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, + nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) +{ spin_lock_irq(&hugetlb_lock); if (available_huge_pages(h)) { - struct page *page; + struct folio *folio; - page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask); - if (page) { + folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, + preferred_nid, nmask); + if (folio) { spin_unlock_irq(&hugetlb_lock); - return page; + return folio; } } spin_unlock_irq(&hugetlb_lock); - return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask); + /* We cannot fallback to other nodes, as we could break the per-node pool. */ + if (!allow_alloc_fallback) + gfp_mask |= __GFP_THISNODE; + + return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); } -/* mempolicy aware migration callback */ -struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, - unsigned long address) +static nodemask_t *policy_mbind_nodemask(gfp_t gfp) { - struct mempolicy *mpol; - nodemask_t *nodemask; - struct page *page; - gfp_t gfp_mask; - int node; - - gfp_mask = htlb_alloc_mask(h); - node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); - page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask); - mpol_cond_put(mpol); +#ifdef CONFIG_NUMA + struct mempolicy *mpol = get_task_policy(current); - return page; + /* + * Only enforce MPOL_BIND policy which overlaps with cpuset policy + * (from policy_nodemask) specifically for hugetlb case + */ + if (mpol->mode == MPOL_BIND && + (apply_policy_zone(mpol, gfp_zone(gfp)) && + cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) + return &mpol->nodes; +#endif + return NULL; } /* @@ -2518,11 +2326,18 @@ static int gather_surplus_pages(struct hstate *h, long delta) __must_hold(&hugetlb_lock) { LIST_HEAD(surplus_list); - struct page *page, *tmp; + struct folio *folio, *tmp; int ret; long i; long needed, allocated; bool alloc_ok = true; + nodemask_t *mbind_nodemask, alloc_nodemask; + + mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); + if (mbind_nodemask) + nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); + else + alloc_nodemask = cpuset_current_mems_allowed; lockdep_assert_held(&hugetlb_lock); needed = (h->resv_huge_pages + delta) - h->free_huge_pages; @@ -2537,13 +2352,19 @@ static int gather_surplus_pages(struct hstate *h, long delta) retry: spin_unlock_irq(&hugetlb_lock); for (i = 0; i < needed; i++) { - page = alloc_surplus_huge_page(h, htlb_alloc_mask(h), - NUMA_NO_NODE, NULL); - if (!page) { + folio = NULL; + + /* + * It is okay to use NUMA_NO_NODE because we use numa_mem_id() + * down the road to pick the current node if that is the case. + */ + folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), + NUMA_NO_NODE, &alloc_nodemask); + if (!folio) { alloc_ok = false; break; } - list_add(&page->lru, &surplus_list); + list_add(&folio->lru, &surplus_list); cond_resched(); } allocated += i; @@ -2578,21 +2399,21 @@ retry: ret = 0; /* Free the needed pages to the hugetlb pool */ - list_for_each_entry_safe(page, tmp, &surplus_list, lru) { + list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { if ((--needed) < 0) break; /* Add the page to the hugetlb allocator */ - enqueue_hugetlb_folio(h, page_folio(page)); + enqueue_hugetlb_folio(h, folio); } free: spin_unlock_irq(&hugetlb_lock); /* * Free unnecessary surplus pages to the buddy allocator. - * Pages have no ref count, call free_huge_page directly. + * Pages have no ref count, call free_huge_folio directly. */ - list_for_each_entry_safe(page, tmp, &surplus_list, lru) - free_huge_page(page); + list_for_each_entry_safe(folio, tmp, &surplus_list, lru) + free_huge_folio(folio); spin_lock_irq(&hugetlb_lock); return ret; @@ -2610,14 +2431,13 @@ static void return_unused_surplus_pages(struct hstate *h, unsigned long unused_resv_pages) { unsigned long nr_pages; - struct page *page; LIST_HEAD(page_list); lockdep_assert_held(&hugetlb_lock); /* Uncommit the reservation */ h->resv_huge_pages -= unused_resv_pages; - if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) + if (hstate_is_gigantic_no_runtime(h)) goto out; /* @@ -2631,15 +2451,17 @@ static void return_unused_surplus_pages(struct hstate *h, * evenly across all nodes with memory. Iterate across these nodes * until we can no longer free unreserved surplus pages. This occurs * when the nodes with surplus pages have no free pages. - * remove_pool_huge_page() will balance the freed pages across the + * remove_pool_hugetlb_folio() will balance the freed pages across the * on-line nodes with memory and will handle the hstate accounting. */ while (nr_pages--) { - page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1); - if (!page) + struct folio *folio; + + folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); + if (!folio) goto out; - list_add(&page->lru, &page_list); + list_add(&folio->lru, &page_list); } out: @@ -2797,43 +2619,43 @@ static long vma_del_reservation(struct hstate *h, /* * This routine is called to restore reservation information on error paths. - * It should ONLY be called for pages allocated via alloc_huge_page(), and - * the hugetlb mutex should remain held when calling this routine. + * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), + * and the hugetlb mutex should remain held when calling this routine. * * It handles two specific cases: - * 1) A reservation was in place and the page consumed the reservation. - * HPageRestoreReserve is set in the page. - * 2) No reservation was in place for the page, so HPageRestoreReserve is - * not set. However, alloc_huge_page always updates the reserve map. + * 1) A reservation was in place and the folio consumed the reservation. + * hugetlb_restore_reserve is set in the folio. + * 2) No reservation was in place for the page, so hugetlb_restore_reserve is + * not set. However, alloc_hugetlb_folio always updates the reserve map. * - * In case 1, free_huge_page later in the error path will increment the - * global reserve count. But, free_huge_page does not have enough context + * In case 1, free_huge_folio later in the error path will increment the + * global reserve count. But, free_huge_folio does not have enough context * to adjust the reservation map. This case deals primarily with private * mappings. Adjust the reserve map here to be consistent with global - * reserve count adjustments to be made by free_huge_page. Make sure the + * reserve count adjustments to be made by free_huge_folio. Make sure the * reserve map indicates there is a reservation present. * - * In case 2, simply undo reserve map modifications done by alloc_huge_page. + * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. */ void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, - unsigned long address, struct page *page) + unsigned long address, struct folio *folio) { long rc = vma_needs_reservation(h, vma, address); - if (HPageRestoreReserve(page)) { + if (folio_test_hugetlb_restore_reserve(folio)) { if (unlikely(rc < 0)) /* * Rare out of memory condition in reserve map - * manipulation. Clear HPageRestoreReserve so that - * global reserve count will not be incremented - * by free_huge_page. This will make it appear - * as though the reservation for this page was + * manipulation. Clear hugetlb_restore_reserve so + * that global reserve count will not be incremented + * by free_huge_folio. This will make it appear + * as though the reservation for this folio was * consumed. This may prevent the task from - * faulting in the page at a later time. This + * faulting in the folio at a later time. This * is better than inconsistent global huge page * accounting of reserve counts. */ - ClearHPageRestoreReserve(page); + folio_clear_hugetlb_restore_reserve(folio); else if (rc) (void)vma_add_reservation(h, vma, address); else @@ -2842,9 +2664,9 @@ void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, if (!rc) { /* * This indicates there is an entry in the reserve map - * not added by alloc_huge_page. We know it was added - * before the alloc_huge_page call, otherwise - * HPageRestoreReserve would be set on the page. + * not added by alloc_hugetlb_folio. We know it was added + * before the alloc_hugetlb_folio call, otherwise + * hugetlb_restore_reserve would be set on the folio. * Remove the entry so that a subsequent allocation * does not consume a reservation. */ @@ -2853,12 +2675,12 @@ void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, /* * VERY rare out of memory condition. Since * we can not delete the entry, set - * HPageRestoreReserve so that the reserve - * count will be incremented when the page + * hugetlb_restore_reserve so that the reserve + * count will be incremented when the folio * is freed. This reserve will be consumed * on a subsequent allocation. */ - SetHPageRestoreReserve(page); + folio_set_hugetlb_restore_reserve(folio); } else if (rc < 0) { /* * Rare out of memory condition from @@ -2874,12 +2696,12 @@ void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, /* * For private mappings, no entry indicates * a reservation is present. Since we can - * not add an entry, set SetHPageRestoreReserve - * on the page so reserve count will be + * not add an entry, set hugetlb_restore_reserve + * on the folio so reserve count will be * incremented when freed. This reserve will * be consumed on a subsequent allocation. */ - SetHPageRestoreReserve(page); + folio_set_hugetlb_restore_reserve(folio); } else /* * No reservation present, do nothing @@ -2891,32 +2713,24 @@ void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, /* * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve * the old one - * @h: struct hstate old page belongs to * @old_folio: Old folio to dissolve * @list: List to isolate the page in case we need to * Returns 0 on success, otherwise negated error. */ -static int alloc_and_dissolve_hugetlb_folio(struct hstate *h, - struct folio *old_folio, struct list_head *list) +static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio, + struct list_head *list) { - gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; + gfp_t gfp_mask; + struct hstate *h; int nid = folio_nid(old_folio); - struct folio *new_folio; + struct folio *new_folio = NULL; int ret = 0; +retry: /* - * Before dissolving the folio, we need to allocate a new one for the - * pool to remain stable. Here, we allocate the folio and 'prep' it - * by doing everything but actually updating counters and adding to - * the pool. This simplifies and let us do most of the processing - * under the lock. + * The old_folio might have been dissolved from under our feet, so make sure + * to carefully check the state under the lock. */ - new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL); - if (!new_folio) - return -ENOMEM; - __prep_new_hugetlb_folio(h, new_folio); - -retry: spin_lock_irq(&hugetlb_lock); if (!folio_test_hugetlb(old_folio)) { /* @@ -2924,12 +2738,15 @@ retry: */ goto free_new; } else if (folio_ref_count(old_folio)) { + bool isolated; + /* * Someone has grabbed the folio, try to isolate it here. * Fail with -EBUSY if not possible. */ spin_unlock_irq(&hugetlb_lock); - ret = isolate_hugetlb(&old_folio->page, list); + isolated = folio_isolate_hugetlb(old_folio, list); + ret = isolated ? 0 : -EBUSY; spin_lock_irq(&hugetlb_lock); goto free_new; } else if (!folio_test_hugetlb_freed(old_folio)) { @@ -2942,10 +2759,21 @@ retry: cond_resched(); goto retry; } else { + h = folio_hstate(old_folio); + if (!new_folio) { + spin_unlock_irq(&hugetlb_lock); + gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; + new_folio = alloc_fresh_hugetlb_folio(h, gfp_mask, + nid, NULL); + if (!new_folio) + return -ENOMEM; + goto retry; + } + /* * Ok, old_folio is still a genuine free hugepage. Remove it from * the freelist and decrease the counters. These will be - * incremented again when calling __prep_account_new_huge_page() + * incremented again when calling account_new_hugetlb_folio() * and enqueue_hugetlb_folio() for new_folio. The counters will * remain stable since this happens under the lock. */ @@ -2955,7 +2783,7 @@ retry: * Ref count on new_folio is already zero as it was dropped * earlier. It can be directly added to the pool free list. */ - __prep_account_new_huge_page(h, nid); + account_new_hugetlb_folio(h, new_folio); enqueue_hugetlb_folio(h, new_folio); /* @@ -2969,102 +2797,160 @@ retry: free_new: spin_unlock_irq(&hugetlb_lock); - /* Folio has a zero ref count, but needs a ref to be freed */ - folio_ref_unfreeze(new_folio, 1); - update_and_free_hugetlb_folio(h, new_folio, false); + if (new_folio) + update_and_free_hugetlb_folio(h, new_folio, false); return ret; } -int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list) +int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list) { - struct hstate *h; - struct folio *folio = page_folio(page); int ret = -EBUSY; - /* - * The page might have been dissolved from under our feet, so make sure - * to carefully check the state under the lock. - * Return success when racing as if we dissolved the page ourselves. - */ - spin_lock_irq(&hugetlb_lock); - if (folio_test_hugetlb(folio)) { - h = folio_hstate(folio); - } else { - spin_unlock_irq(&hugetlb_lock); + /* Not to disrupt normal path by vainly holding hugetlb_lock */ + if (!folio_test_hugetlb(folio)) return 0; - } - spin_unlock_irq(&hugetlb_lock); /* * Fence off gigantic pages as there is a cyclic dependency between * alloc_contig_range and them. Return -ENOMEM as this has the effect * of bailing out right away without further retrying. */ - if (hstate_is_gigantic(h)) + if (order_is_gigantic(folio_order(folio))) return -ENOMEM; - if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list)) + if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) ret = 0; else if (!folio_ref_count(folio)) - ret = alloc_and_dissolve_hugetlb_folio(h, folio, list); + ret = alloc_and_dissolve_hugetlb_folio(folio, list); + + return ret; +} + +/* + * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn + * range with new folios. + * @start_pfn: start pfn of the given pfn range + * @end_pfn: end pfn of the given pfn range + * Returns 0 on success, otherwise negated error. + */ +int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) +{ + struct folio *folio; + int ret = 0; + + LIST_HEAD(isolate_list); + + while (start_pfn < end_pfn) { + folio = pfn_folio(start_pfn); + + /* Not to disrupt normal path by vainly holding hugetlb_lock */ + if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) { + ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list); + if (ret) + break; + + putback_movable_pages(&isolate_list); + } + start_pfn++; + } return ret; } -struct page *alloc_huge_page(struct vm_area_struct *vma, - unsigned long addr, int avoid_reserve) +void wait_for_freed_hugetlb_folios(void) +{ + if (llist_empty(&hpage_freelist)) + return; + + flush_work(&free_hpage_work); +} + +typedef enum { + /* + * For either 0/1: we checked the per-vma resv map, and one resv + * count either can be reused (0), or an extra needed (1). + */ + MAP_CHG_REUSE = 0, + MAP_CHG_NEEDED = 1, + /* + * Cannot use per-vma resv count can be used, hence a new resv + * count is enforced. + * + * NOTE: This is mostly identical to MAP_CHG_NEEDED, except + * that currently vma_needs_reservation() has an unwanted side + * effect to either use end() or commit() to complete the + * transaction. Hence it needs to differentiate from NEEDED. + */ + MAP_CHG_ENFORCED = 2, +} map_chg_state; + +/* + * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW + * faults of hugetlb private mappings on top of a non-page-cache folio (in + * which case even if there's a private vma resv map it won't cover such + * allocation). New call sites should (probably) never set it to true!! + * When it's set, the allocation will bypass all vma level reservations. + */ +struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, + unsigned long addr, bool cow_from_owner) { struct hugepage_subpool *spool = subpool_vma(vma); struct hstate *h = hstate_vma(vma); - struct page *page; struct folio *folio; - long map_chg, map_commit; - long gbl_chg; + long retval, gbl_chg, gbl_reserve; + map_chg_state map_chg; int ret, idx; - struct hugetlb_cgroup *h_cg; - bool deferred_reserve; + struct hugetlb_cgroup *h_cg = NULL; + gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; idx = hstate_index(h); - /* - * Examine the region/reserve map to determine if the process - * has a reservation for the page to be allocated. A return - * code of zero indicates a reservation exists (no change). - */ - map_chg = gbl_chg = vma_needs_reservation(h, vma, addr); - if (map_chg < 0) - return ERR_PTR(-ENOMEM); + + /* Whether we need a separate per-vma reservation? */ + if (cow_from_owner) { + /* + * Special case! Since it's a CoW on top of a reserved + * page, the private resv map doesn't count. So it cannot + * consume the per-vma resv map even if it's reserved. + */ + map_chg = MAP_CHG_ENFORCED; + } else { + /* + * Examine the region/reserve map to determine if the process + * has a reservation for the page to be allocated. A return + * code of zero indicates a reservation exists (no change). + */ + retval = vma_needs_reservation(h, vma, addr); + if (retval < 0) + return ERR_PTR(-ENOMEM); + map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; + } /* + * Whether we need a separate global reservation? + * * Processes that did not create the mapping will have no * reserves as indicated by the region/reserve map. Check * that the allocation will not exceed the subpool limit. - * Allocations for MAP_NORESERVE mappings also need to be - * checked against any subpool limit. + * Or if it can get one from the pool reservation directly. */ - if (map_chg || avoid_reserve) { + if (map_chg) { gbl_chg = hugepage_subpool_get_pages(spool, 1); - if (gbl_chg < 0) { - vma_end_reservation(h, vma, addr); - return ERR_PTR(-ENOSPC); - } - + if (gbl_chg < 0) + goto out_end_reservation; + } else { /* - * Even though there was no reservation in the region/reserve - * map, there could be reservations associated with the - * subpool that can be used. This would be indicated if the - * return value of hugepage_subpool_get_pages() is zero. - * However, if avoid_reserve is specified we still avoid even - * the subpool reservations. + * If we have the vma reservation ready, no need for extra + * global reservation. */ - if (avoid_reserve) - gbl_chg = 1; + gbl_chg = 0; } - /* If this allocation is not consuming a reservation, charge it now. + /* + * If this allocation is not consuming a per-vma reservation, + * charge the hugetlb cgroup now. */ - deferred_reserve = map_chg || avoid_reserve; - if (deferred_reserve) { + if (map_chg) { ret = hugetlb_cgroup_charge_cgroup_rsvd( idx, pages_per_huge_page(h), &h_cg); if (ret) @@ -3081,144 +2967,453 @@ struct page *alloc_huge_page(struct vm_area_struct *vma, * from the global free pool (global change). gbl_chg == 0 indicates * a reservation exists for the allocation. */ - page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg); - if (!page) { + folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); + if (!folio) { spin_unlock_irq(&hugetlb_lock); - page = alloc_buddy_huge_page_with_mpol(h, vma, addr); - if (!page) + folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); + if (!folio) goto out_uncharge_cgroup; spin_lock_irq(&hugetlb_lock); - if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { - SetHPageRestoreReserve(page); - h->resv_huge_pages--; - } - list_add(&page->lru, &h->hugepage_activelist); - set_page_refcounted(page); + list_add(&folio->lru, &h->hugepage_activelist); + folio_ref_unfreeze(folio, 1); /* Fall through */ } - folio = page_folio(page); - hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); + + /* + * Either dequeued or buddy-allocated folio needs to add special + * mark to the folio when it consumes a global reservation. + */ + if (!gbl_chg) { + folio_set_hugetlb_restore_reserve(folio); + h->resv_huge_pages--; + } + + hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); /* If allocation is not consuming a reservation, also store the * hugetlb_cgroup pointer on the page. */ - if (deferred_reserve) { + if (map_chg) { hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), - h_cg, page); + h_cg, folio); } spin_unlock_irq(&hugetlb_lock); - hugetlb_set_page_subpool(page, spool); + hugetlb_set_folio_subpool(folio, spool); - map_commit = vma_commit_reservation(h, vma, addr); - if (unlikely(map_chg > map_commit)) { + if (map_chg != MAP_CHG_ENFORCED) { + /* commit() is only needed if the map_chg is not enforced */ + retval = vma_commit_reservation(h, vma, addr); /* + * Check for possible race conditions. When it happens.. * The page was added to the reservation map between * vma_needs_reservation and vma_commit_reservation. * This indicates a race with hugetlb_reserve_pages. * Adjust for the subpool count incremented above AND - * in hugetlb_reserve_pages for the same page. Also, + * in hugetlb_reserve_pages for the same page. Also, * the reservation count added in hugetlb_reserve_pages * no longer applies. */ - long rsv_adjust; + if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { + long rsv_adjust; + + rsv_adjust = hugepage_subpool_put_pages(spool, 1); + hugetlb_acct_memory(h, -rsv_adjust); + if (map_chg) { + spin_lock_irq(&hugetlb_lock); + hugetlb_cgroup_uncharge_folio_rsvd( + hstate_index(h), pages_per_huge_page(h), + folio); + spin_unlock_irq(&hugetlb_lock); + } + } + } + + ret = mem_cgroup_charge_hugetlb(folio, gfp); + /* + * Unconditionally increment NR_HUGETLB here. If it turns out that + * mem_cgroup_charge_hugetlb failed, then immediately free the page and + * decrement NR_HUGETLB. + */ + lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); - rsv_adjust = hugepage_subpool_put_pages(spool, 1); - hugetlb_acct_memory(h, -rsv_adjust); - if (deferred_reserve) - hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), - pages_per_huge_page(h), folio); + if (ret == -ENOMEM) { + free_huge_folio(folio); + return ERR_PTR(-ENOMEM); } - return page; + + return folio; out_uncharge_cgroup: hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); out_uncharge_cgroup_reservation: - if (deferred_reserve) + if (map_chg) hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), h_cg); out_subpool_put: - if (map_chg || avoid_reserve) - hugepage_subpool_put_pages(spool, 1); - vma_end_reservation(h, vma, addr); + /* + * put page to subpool iff the quota of subpool's rsv_hpages is used + * during hugepage_subpool_get_pages. + */ + if (map_chg && !gbl_chg) { + gbl_reserve = hugepage_subpool_put_pages(spool, 1); + hugetlb_acct_memory(h, -gbl_reserve); + } + + +out_end_reservation: + if (map_chg != MAP_CHG_ENFORCED) + vma_end_reservation(h, vma, addr); return ERR_PTR(-ENOSPC); } +static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) +{ + struct huge_bootmem_page *m; + int listnode = nid; + + if (hugetlb_early_cma(h)) + m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); + else { + if (node_exact) + m = memblock_alloc_exact_nid_raw(huge_page_size(h), + huge_page_size(h), 0, + MEMBLOCK_ALLOC_ACCESSIBLE, nid); + else { + m = memblock_alloc_try_nid_raw(huge_page_size(h), + huge_page_size(h), 0, + MEMBLOCK_ALLOC_ACCESSIBLE, nid); + /* + * For pre-HVO to work correctly, pages need to be on + * the list for the node they were actually allocated + * from. That node may be different in the case of + * fallback by memblock_alloc_try_nid_raw. So, + * extract the actual node first. + */ + if (m) + listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); + } + + if (m) { + m->flags = 0; + m->cma = NULL; + } + } + + if (m) { + /* + * Use the beginning of the huge page to store the + * huge_bootmem_page struct (until gather_bootmem + * puts them into the mem_map). + * + * Put them into a private list first because mem_map + * is not up yet. + */ + INIT_LIST_HEAD(&m->list); + list_add(&m->list, &huge_boot_pages[listnode]); + m->hstate = h; + } + + return m; +} + int alloc_bootmem_huge_page(struct hstate *h, int nid) __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); int __alloc_bootmem_huge_page(struct hstate *h, int nid) { struct huge_bootmem_page *m = NULL; /* initialize for clang */ - int nr_nodes, node; + int nr_nodes, node = nid; /* do node specific alloc */ if (nid != NUMA_NO_NODE) { - m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h), - 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); + m = alloc_bootmem(h, node, true); if (!m) return 0; goto found; } + /* allocate from next node when distributing huge pages */ - for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { - m = memblock_alloc_try_nid_raw( - huge_page_size(h), huge_page_size(h), - 0, MEMBLOCK_ALLOC_ACCESSIBLE, node); - /* - * Use the beginning of the huge page to store the - * huge_bootmem_page struct (until gather_bootmem - * puts them into the mem_map). - */ + for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, + &hugetlb_bootmem_nodes) { + m = alloc_bootmem(h, node, false); if (!m) return 0; goto found; } found: - /* Put them into a private list first because mem_map is not up yet */ - INIT_LIST_HEAD(&m->list); - list_add(&m->list, &huge_boot_pages); - m->hstate = h; + + /* + * Only initialize the head struct page in memmap_init_reserved_pages, + * rest of the struct pages will be initialized by the HugeTLB + * subsystem itself. + * The head struct page is used to get folio information by the HugeTLB + * subsystem like zone id and node id. + */ + memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), + huge_page_size(h) - PAGE_SIZE); + return 1; } +/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ +static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, + unsigned long start_page_number, + unsigned long end_page_number) +{ + enum zone_type zone = folio_zonenum(folio); + int nid = folio_nid(folio); + struct page *page = folio_page(folio, start_page_number); + unsigned long head_pfn = folio_pfn(folio); + unsigned long pfn, end_pfn = head_pfn + end_page_number; + + /* + * As we marked all tail pages with memblock_reserved_mark_noinit(), + * we must initialize them ourselves here. + */ + for (pfn = head_pfn + start_page_number; pfn < end_pfn; page++, pfn++) { + __init_single_page(page, pfn, zone, nid); + prep_compound_tail((struct page *)folio, pfn - head_pfn); + set_page_count(page, 0); + } +} + +static void __init hugetlb_folio_init_vmemmap(struct folio *folio, + struct hstate *h, + unsigned long nr_pages) +{ + int ret; + + /* + * This is an open-coded prep_compound_page() whereby we avoid + * walking pages twice by initializing/preparing+freezing them in the + * same go. + */ + __folio_clear_reserved(folio); + __folio_set_head(folio); + ret = folio_ref_freeze(folio, 1); + VM_BUG_ON(!ret); + hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); + prep_compound_head(&folio->page, huge_page_order(h)); +} + +static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) +{ + return m->flags & HUGE_BOOTMEM_HVO; +} + +static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) +{ + return m->flags & HUGE_BOOTMEM_CMA; +} + +/* + * memblock-allocated pageblocks might not have the migrate type set + * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) + * here, or MIGRATE_CMA if this was a page allocated through an early CMA + * reservation. + * + * In case of vmemmap optimized folios, the tail vmemmap pages are mapped + * read-only, but that's ok - for sparse vmemmap this does not write to + * the page structure. + */ +static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, + struct hstate *h) +{ + unsigned long nr_pages = pages_per_huge_page(h), i; + + WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); + + for (i = 0; i < nr_pages; i += pageblock_nr_pages) { + if (folio_test_hugetlb_cma(folio)) + init_cma_pageblock(folio_page(folio, i)); + else + init_pageblock_migratetype(folio_page(folio, i), + MIGRATE_MOVABLE, false); + } +} + +static void __init prep_and_add_bootmem_folios(struct hstate *h, + struct list_head *folio_list) +{ + unsigned long flags; + struct folio *folio, *tmp_f; + + /* Send list for bulk vmemmap optimization processing */ + hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); + + list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { + if (!folio_test_hugetlb_vmemmap_optimized(folio)) { + /* + * If HVO fails, initialize all tail struct pages + * We do not worry about potential long lock hold + * time as this is early in boot and there should + * be no contention. + */ + hugetlb_folio_init_tail_vmemmap(folio, + HUGETLB_VMEMMAP_RESERVE_PAGES, + pages_per_huge_page(h)); + } + hugetlb_bootmem_init_migratetype(folio, h); + /* Subdivide locks to achieve better parallel performance */ + spin_lock_irqsave(&hugetlb_lock, flags); + account_new_hugetlb_folio(h, folio); + enqueue_hugetlb_folio(h, folio); + spin_unlock_irqrestore(&hugetlb_lock, flags); + } +} + +bool __init hugetlb_bootmem_page_zones_valid(int nid, + struct huge_bootmem_page *m) +{ + unsigned long start_pfn; + bool valid; + + if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { + /* + * Already validated, skip check. + */ + return true; + } + + if (hugetlb_bootmem_page_earlycma(m)) { + valid = cma_validate_zones(m->cma); + goto out; + } + + start_pfn = virt_to_phys(m) >> PAGE_SHIFT; + + valid = !pfn_range_intersects_zones(nid, start_pfn, + pages_per_huge_page(m->hstate)); +out: + if (!valid) + hstate_boot_nrinvalid[hstate_index(m->hstate)]++; + + return valid; +} + +/* + * Free a bootmem page that was found to be invalid (intersecting with + * multiple zones). + * + * Since it intersects with multiple zones, we can't just do a free + * operation on all pages at once, but instead have to walk all + * pages, freeing them one by one. + */ +static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, + struct hstate *h) +{ + unsigned long npages = pages_per_huge_page(h); + unsigned long pfn; + + while (npages--) { + pfn = page_to_pfn(page); + __init_page_from_nid(pfn, nid); + free_reserved_page(page); + page++; + } +} + /* * Put bootmem huge pages into the standard lists after mem_map is up. - * Note: This only applies to gigantic (order > MAX_ORDER) pages. + * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. */ -static void __init gather_bootmem_prealloc(void) +static void __init gather_bootmem_prealloc_node(unsigned long nid) { - struct huge_bootmem_page *m; + LIST_HEAD(folio_list); + struct huge_bootmem_page *m, *tm; + struct hstate *h = NULL, *prev_h = NULL; - list_for_each_entry(m, &huge_boot_pages, list) { + list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { struct page *page = virt_to_page(m); - struct folio *folio = page_folio(page); - struct hstate *h = m->hstate; + struct folio *folio = (void *)page; + + h = m->hstate; + if (!hugetlb_bootmem_page_zones_valid(nid, m)) { + /* + * Can't use this page. Initialize the + * page structures if that hasn't already + * been done, and give them to the page + * allocator. + */ + hugetlb_bootmem_free_invalid_page(nid, page, h); + continue; + } + + /* + * It is possible to have multiple huge page sizes (hstates) + * in this list. If so, process each size separately. + */ + if (h != prev_h && prev_h != NULL) + prep_and_add_bootmem_folios(prev_h, &folio_list); + prev_h = h; VM_BUG_ON(!hstate_is_gigantic(h)); WARN_ON(folio_ref_count(folio) != 1); - if (prep_compound_gigantic_folio(folio, huge_page_order(h))) { - WARN_ON(folio_test_reserved(folio)); - prep_new_hugetlb_folio(h, folio, folio_nid(folio)); - free_huge_page(page); /* add to the hugepage allocator */ - } else { - /* VERY unlikely inflated ref count on a tail page */ - free_gigantic_folio(folio, huge_page_order(h)); - } + + hugetlb_folio_init_vmemmap(folio, h, + HUGETLB_VMEMMAP_RESERVE_PAGES); + init_new_hugetlb_folio(folio); + + if (hugetlb_bootmem_page_prehvo(m)) + /* + * If pre-HVO was done, just set the + * flag, the HVO code will then skip + * this folio. + */ + folio_set_hugetlb_vmemmap_optimized(folio); + + if (hugetlb_bootmem_page_earlycma(m)) + folio_set_hugetlb_cma(folio); + + list_add(&folio->lru, &folio_list); /* * We need to restore the 'stolen' pages to totalram_pages * in order to fix confusing memory reports from free(1) and * other side-effects, like CommitLimit going negative. + * + * For CMA pages, this is done in init_cma_pageblock + * (via hugetlb_bootmem_init_migratetype), so skip it here. */ - adjust_managed_page_count(page, pages_per_huge_page(h)); + if (!folio_test_hugetlb_cma(folio)) + adjust_managed_page_count(page, pages_per_huge_page(h)); cond_resched(); } + + prep_and_add_bootmem_folios(h, &folio_list); +} + +static void __init gather_bootmem_prealloc_parallel(unsigned long start, + unsigned long end, void *arg) +{ + int nid; + + for (nid = start; nid < end; nid++) + gather_bootmem_prealloc_node(nid); +} + +static void __init gather_bootmem_prealloc(void) +{ + struct padata_mt_job job = { + .thread_fn = gather_bootmem_prealloc_parallel, + .fn_arg = NULL, + .start = 0, + .size = nr_node_ids, + .align = 1, + .min_chunk = 1, + .max_threads = num_node_state(N_MEMORY), + .numa_aware = true, + }; + + padata_do_multithreaded(&job); } + static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) { unsigned long i; char buf[32]; + LIST_HEAD(folio_list); for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { if (hstate_is_gigantic(h)) { @@ -3228,14 +3423,18 @@ static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) struct folio *folio; gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; - folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, + folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, &node_states[N_MEMORY], NULL); if (!folio) break; - free_huge_page(&folio->page); /* free it into the hugepage allocator */ + list_add(&folio->lru, &folio_list); } cond_resched(); } + + if (!list_empty(&folio_list)) + prep_and_add_allocated_folios(h, &folio_list); + if (i == h->max_huge_pages_node[nid]) return; @@ -3246,19 +3445,11 @@ static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) h->max_huge_pages_node[nid] = i; } -static void __init hugetlb_hstate_alloc_pages(struct hstate *h) +static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) { - unsigned long i; - nodemask_t *node_alloc_noretry; + int i; bool node_specific_alloc = false; - /* skip gigantic hugepages allocation if hugetlb_cma enabled */ - if (hstate_is_gigantic(h) && hugetlb_cma_size) { - pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); - return; - } - - /* do node specific alloc */ for_each_online_node(i) { if (h->max_huge_pages_node[i] > 0) { hugetlb_hstate_alloc_pages_onenode(h, i); @@ -3266,47 +3457,172 @@ static void __init hugetlb_hstate_alloc_pages(struct hstate *h) } } - if (node_specific_alloc) - return; + return node_specific_alloc; +} - /* below will do all node balanced alloc */ - if (!hstate_is_gigantic(h)) { - /* - * Bit mask controlling how hard we retry per-node allocations. - * Ignore errors as lower level routines can deal with - * node_alloc_noretry == NULL. If this kmalloc fails at boot - * time, we are likely in bigger trouble. - */ - node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry), - GFP_KERNEL); - } else { - /* allocations done at boot time */ - node_alloc_noretry = NULL; +static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) +{ + if (allocated < h->max_huge_pages) { + char buf[32]; + + string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); + pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", + h->max_huge_pages, buf, allocated); + h->max_huge_pages = allocated; } +} - /* bit mask controlling how hard we retry per-node allocations */ - if (node_alloc_noretry) - nodes_clear(*node_alloc_noretry); +static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) +{ + struct hstate *h = (struct hstate *)arg; + int i, num = end - start; + nodemask_t node_alloc_noretry; + LIST_HEAD(folio_list); + int next_node = first_online_node; + + /* Bit mask controlling how hard we retry per-node allocations.*/ + nodes_clear(node_alloc_noretry); + + for (i = 0; i < num; ++i) { + struct folio *folio; + + if (hugetlb_vmemmap_optimizable_size(h) && + (si_mem_available() == 0) && !list_empty(&folio_list)) { + prep_and_add_allocated_folios(h, &folio_list); + INIT_LIST_HEAD(&folio_list); + } + folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], + &node_alloc_noretry, &next_node); + if (!folio) + break; + + list_move(&folio->lru, &folio_list); + cond_resched(); + } + + prep_and_add_allocated_folios(h, &folio_list); +} + +static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) +{ + unsigned long i; for (i = 0; i < h->max_huge_pages; ++i) { - if (hstate_is_gigantic(h)) { - if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) - break; - } else if (!alloc_pool_huge_page(h, - &node_states[N_MEMORY], - node_alloc_noretry)) + if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) break; cond_resched(); } - if (i < h->max_huge_pages) { - char buf[32]; - string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); - pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", - h->max_huge_pages, buf, i); - h->max_huge_pages = i; + return i; +} + +static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) +{ + struct padata_mt_job job = { + .fn_arg = h, + .align = 1, + .numa_aware = true + }; + + unsigned long jiffies_start; + unsigned long jiffies_end; + unsigned long remaining; + + job.thread_fn = hugetlb_pages_alloc_boot_node; + + /* + * job.max_threads is 25% of the available cpu threads by default. + * + * On large servers with terabytes of memory, huge page allocation + * can consume a considerably amount of time. + * + * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages. + * 2MiB huge pages. Using more threads can significantly improve allocation time. + * + * +-----------------------+-------+-------+-------+-------+-------+ + * | threads | 8 | 16 | 32 | 64 | 128 | + * +-----------------------+-------+-------+-------+-------+-------+ + * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s | + * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s | + * +-----------------------+-------+-------+-------+-------+-------+ + */ + if (hugepage_allocation_threads == 0) { + hugepage_allocation_threads = num_online_cpus() / 4; + hugepage_allocation_threads = max(hugepage_allocation_threads, 1); + } + + job.max_threads = hugepage_allocation_threads; + + jiffies_start = jiffies; + do { + remaining = h->max_huge_pages - h->nr_huge_pages; + + job.start = h->nr_huge_pages; + job.size = remaining; + job.min_chunk = remaining / hugepage_allocation_threads; + padata_do_multithreaded(&job); + + if (h->nr_huge_pages == h->max_huge_pages) + break; + + /* + * Retry only if the vmemmap optimization might have been able to free + * some memory back to the system. + */ + if (!hugetlb_vmemmap_optimizable(h)) + break; + + /* Continue if progress was made in last iteration */ + } while (remaining != (h->max_huge_pages - h->nr_huge_pages)); + + jiffies_end = jiffies; + + pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n", + jiffies_to_msecs(jiffies_end - jiffies_start), + hugepage_allocation_threads); + + return h->nr_huge_pages; +} + +/* + * NOTE: this routine is called in different contexts for gigantic and + * non-gigantic pages. + * - For gigantic pages, this is called early in the boot process and + * pages are allocated from memblock allocated or something similar. + * Gigantic pages are actually added to pools later with the routine + * gather_bootmem_prealloc. + * - For non-gigantic pages, this is called later in the boot process after + * all of mm is up and functional. Pages are allocated from buddy and + * then added to hugetlb pools. + */ +static void __init hugetlb_hstate_alloc_pages(struct hstate *h) +{ + unsigned long allocated; + + /* + * Skip gigantic hugepages allocation if early CMA + * reservations are not available. + */ + if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && + !hugetlb_early_cma(h)) { + pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); + return; } - kfree(node_alloc_noretry); + + if (!h->max_huge_pages) + return; + + /* do node specific alloc */ + if (hugetlb_hstate_alloc_pages_specific_nodes(h)) + return; + + /* below will do all node balanced alloc */ + if (hstate_is_gigantic(h)) + allocated = hugetlb_gigantic_pages_alloc_boot(h); + else + allocated = hugetlb_pages_alloc_boot(h); + + hugetlb_hstate_alloc_pages_errcheck(allocated, h); } static void __init hugetlb_init_hstates(void) @@ -3314,6 +3630,15 @@ static void __init hugetlb_init_hstates(void) struct hstate *h, *h2; for_each_hstate(h) { + /* + * Always reset to first_memory_node here, even if + * next_nid_to_alloc was set before - we can't + * reference hugetlb_bootmem_nodes after init, and + * first_memory_node is right for all further allocations. + */ + h->next_nid_to_alloc = first_memory_node; + h->next_nid_to_free = first_memory_node; + /* oversize hugepages were init'ed in early boot */ if (!hstate_is_gigantic(h)) hugetlb_hstate_alloc_pages(h); @@ -3326,9 +3651,9 @@ static void __init hugetlb_init_hstates(void) * - If CMA allocation is possible, we can not demote * HUGETLB_PAGE_ORDER or smaller size pages. */ - if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) + if (hstate_is_gigantic_no_runtime(h)) continue; - if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER) + if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) continue; for_each_hstate(h2) { if (h2 == h) @@ -3343,13 +3668,20 @@ static void __init hugetlb_init_hstates(void) static void __init report_hugepages(void) { struct hstate *h; + unsigned long nrinvalid; for_each_hstate(h) { char buf[32]; + nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; + h->max_huge_pages -= nrinvalid; + string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", - buf, h->free_huge_pages); + buf, h->nr_huge_pages); + if (nrinvalid) + pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", + buf, nrinvalid, str_plural(nrinvalid)); pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); } @@ -3370,15 +3702,15 @@ static void try_to_free_low(struct hstate *h, unsigned long count, * Collect pages to be freed on a list, and free after dropping lock */ for_each_node_mask(i, *nodes_allowed) { - struct page *page, *next; + struct folio *folio, *next; struct list_head *freel = &h->hugepage_freelists[i]; - list_for_each_entry_safe(page, next, freel, lru) { + list_for_each_entry_safe(folio, next, freel, lru) { if (count >= h->nr_huge_pages) goto out; - if (PageHighMem(page)) + if (folio_test_highmem(folio)) continue; - remove_hugetlb_folio(h, page_folio(page), false); - list_add(&page->lru, &page_list); + remove_hugetlb_folio(h, folio, false); + list_add(&folio->lru, &page_list); } } @@ -3408,7 +3740,7 @@ static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, VM_BUG_ON(delta != -1 && delta != 1); if (delta < 0) { - for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { + for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { if (h->surplus_huge_pages_node[node]) goto found; } @@ -3431,8 +3763,10 @@ found: static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, nodemask_t *nodes_allowed) { - unsigned long min_count, ret; - struct page *page; + unsigned long persistent_free_count; + unsigned long min_count; + unsigned long allocated; + struct folio *folio; LIST_HEAD(page_list); NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); @@ -3463,7 +3797,9 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, if (nid != NUMA_NO_NODE) { unsigned long old_count = count; - count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; + count += persistent_huge_pages(h) - + (h->nr_huge_pages_node[nid] - + h->surplus_huge_pages_node[nid]); /* * User may have specified a large count value which caused the * above calculation to overflow. In this case, they wanted @@ -3496,7 +3832,7 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, * First take pages out of surplus state. Then make up the * remaining difference by allocating fresh huge pages. * - * We might race with alloc_surplus_huge_page() here and be unable + * We might race with alloc_surplus_hugetlb_folio() here and be unable * to convert a surplus huge page to a normal huge page. That is * not critical, though, it just means the overall size of the * pool might be one hugepage larger than it needs to be, but @@ -3507,10 +3843,11 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, break; } - while (count > persistent_huge_pages(h)) { + allocated = 0; + while (count > (persistent_huge_pages(h) + allocated)) { /* * If this allocation races such that we no longer need the - * page, free_huge_page will handle it by freeing the page + * page, free_huge_folio will handle it by freeing the page * and reducing the surplus. */ spin_unlock_irq(&hugetlb_lock); @@ -3518,15 +3855,33 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, /* yield cpu to avoid soft lockup */ cond_resched(); - ret = alloc_pool_huge_page(h, nodes_allowed, - node_alloc_noretry); - spin_lock_irq(&hugetlb_lock); - if (!ret) + folio = alloc_pool_huge_folio(h, nodes_allowed, + node_alloc_noretry, + &h->next_nid_to_alloc); + if (!folio) { + prep_and_add_allocated_folios(h, &page_list); + spin_lock_irq(&hugetlb_lock); goto out; + } + + list_add(&folio->lru, &page_list); + allocated++; /* Bail for signals. Probably ctrl-c from user */ - if (signal_pending(current)) + if (signal_pending(current)) { + prep_and_add_allocated_folios(h, &page_list); + spin_lock_irq(&hugetlb_lock); goto out; + } + + spin_lock_irq(&hugetlb_lock); + } + + /* Add allocated pages to the pool */ + if (!list_empty(&page_list)) { + spin_unlock_irq(&hugetlb_lock); + prep_and_add_allocated_folios(h, &page_list); + spin_lock_irq(&hugetlb_lock); } /* @@ -3539,12 +3894,28 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, * By placing pages into the surplus state independent of the * overcommit value, we are allowing the surplus pool size to * exceed overcommit. There are few sane options here. Since - * alloc_surplus_huge_page() is checking the global counter, + * alloc_surplus_hugetlb_folio() is checking the global counter, * though, we'll note that we're not allowed to exceed surplus * and won't grow the pool anywhere else. Not until one of the * sysctls are changed, or the surplus pages go out of use. + * + * min_count is the expected number of persistent pages, we + * shouldn't calculate min_count by using + * resv_huge_pages + persistent_huge_pages() - free_huge_pages, + * because there may exist free surplus huge pages, and this will + * lead to subtracting twice. Free surplus huge pages come from HVO + * failing to restore vmemmap, see comments in the callers of + * hugetlb_vmemmap_restore_folio(). Thus, we should calculate + * persistent free count first. */ - min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; + persistent_free_count = h->free_huge_pages; + if (h->free_huge_pages > persistent_huge_pages(h)) { + if (h->free_huge_pages > h->surplus_huge_pages) + persistent_free_count -= h->surplus_huge_pages; + else + persistent_free_count = 0; + } + min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count; min_count = max(count, min_count); try_to_free_low(h, min_count, nodes_allowed); @@ -3552,11 +3923,11 @@ static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, * Collect pages to be removed on list without dropping lock */ while (min_count < persistent_huge_pages(h)) { - page = remove_pool_huge_page(h, nodes_allowed, 0); - if (!page) + folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); + if (!folio) break; - list_add(&page->lru, &page_list); + list_add(&folio->lru, &page_list); } /* free the pages after dropping lock */ spin_unlock_irq(&hugetlb_lock); @@ -3578,153 +3949,142 @@ out: return 0; } -static int demote_free_huge_page(struct hstate *h, struct page *page) +static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, + struct list_head *src_list) { - int i, nid = page_to_nid(page); - struct hstate *target_hstate; - struct folio *folio = page_folio(page); - struct page *subpage; - int rc = 0; - - target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order); - - remove_hugetlb_folio_for_demote(h, folio, false); - spin_unlock_irq(&hugetlb_lock); + long rc; + struct folio *folio, *next; + LIST_HEAD(dst_list); + LIST_HEAD(ret_list); - rc = hugetlb_vmemmap_restore(h, page); - if (rc) { - /* Allocation of vmemmmap failed, we can not demote page */ - spin_lock_irq(&hugetlb_lock); - set_page_refcounted(page); - add_hugetlb_folio(h, page_folio(page), false); - return rc; - } - - /* - * Use destroy_compound_hugetlb_folio_for_demote for all huge page - * sizes as it will not ref count pages. - */ - destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h)); + rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); + list_splice_init(&ret_list, src_list); /* * Taking target hstate mutex synchronizes with set_max_huge_pages. * Without the mutex, pages added to target hstate could be marked * as surplus. * - * Note that we already hold h->resize_lock. To prevent deadlock, + * Note that we already hold src->resize_lock. To prevent deadlock, * use the convention of always taking larger size hstate mutex first. */ - mutex_lock(&target_hstate->resize_lock); - for (i = 0; i < pages_per_huge_page(h); - i += pages_per_huge_page(target_hstate)) { - subpage = nth_page(page, i); - folio = page_folio(subpage); - if (hstate_is_gigantic(target_hstate)) - prep_compound_gigantic_folio_for_demote(folio, - target_hstate->order); - else - prep_compound_page(subpage, target_hstate->order); - set_page_private(subpage, 0); - prep_new_hugetlb_folio(target_hstate, folio, nid); - free_huge_page(subpage); + mutex_lock(&dst->resize_lock); + + list_for_each_entry_safe(folio, next, src_list, lru) { + int i; + bool cma; + + if (folio_test_hugetlb_vmemmap_optimized(folio)) + continue; + + cma = folio_test_hugetlb_cma(folio); + + list_del(&folio->lru); + + split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); + pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); + + for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { + struct page *page = folio_page(folio, i); + /* Careful: see __split_huge_page_tail() */ + struct folio *new_folio = (struct folio *)page; + + clear_compound_head(page); + prep_compound_page(page, dst->order); + + new_folio->mapping = NULL; + init_new_hugetlb_folio(new_folio); + /* Copy the CMA flag so that it is freed correctly */ + if (cma) + folio_set_hugetlb_cma(new_folio); + list_add(&new_folio->lru, &dst_list); + } } - mutex_unlock(&target_hstate->resize_lock); - spin_lock_irq(&hugetlb_lock); + prep_and_add_allocated_folios(dst, &dst_list); - /* - * Not absolutely necessary, but for consistency update max_huge_pages - * based on pool changes for the demoted page. - */ - h->max_huge_pages--; - target_hstate->max_huge_pages += - pages_per_huge_page(h) / pages_per_huge_page(target_hstate); + mutex_unlock(&dst->resize_lock); return rc; } -static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed) +long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, + unsigned long nr_to_demote) __must_hold(&hugetlb_lock) { int nr_nodes, node; - struct page *page; + struct hstate *dst; + long rc = 0; + long nr_demoted = 0; lockdep_assert_held(&hugetlb_lock); /* We should never get here if no demote order */ - if (!h->demote_order) { + if (!src->demote_order) { pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); return -EINVAL; /* internal error */ } + dst = size_to_hstate(PAGE_SIZE << src->demote_order); - for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { - list_for_each_entry(page, &h->hugepage_freelists[node], lru) { - if (PageHWPoison(page)) - continue; - - return demote_free_huge_page(h, page); - } - } + for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { + LIST_HEAD(list); + struct folio *folio, *next; - /* - * Only way to get here is if all pages on free lists are poisoned. - * Return -EBUSY so that caller will not retry. - */ - return -EBUSY; -} + list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { + if (folio_test_hwpoison(folio)) + continue; -#define HSTATE_ATTR_RO(_name) \ - static struct kobj_attribute _name##_attr = __ATTR_RO(_name) + remove_hugetlb_folio(src, folio, false); + list_add(&folio->lru, &list); -#define HSTATE_ATTR_WO(_name) \ - static struct kobj_attribute _name##_attr = __ATTR_WO(_name) + if (++nr_demoted == nr_to_demote) + break; + } -#define HSTATE_ATTR(_name) \ - static struct kobj_attribute _name##_attr = __ATTR_RW(_name) + spin_unlock_irq(&hugetlb_lock); -static struct kobject *hugepages_kobj; -static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; + rc = demote_free_hugetlb_folios(src, dst, &list); -static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); + spin_lock_irq(&hugetlb_lock); -static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) -{ - int i; + list_for_each_entry_safe(folio, next, &list, lru) { + list_del(&folio->lru); + add_hugetlb_folio(src, folio, false); - for (i = 0; i < HUGE_MAX_HSTATE; i++) - if (hstate_kobjs[i] == kobj) { - if (nidp) - *nidp = NUMA_NO_NODE; - return &hstates[i]; + nr_demoted--; } - return kobj_to_node_hstate(kobj, nidp); -} + if (rc < 0 || nr_demoted == nr_to_demote) + break; + } -static ssize_t nr_hugepages_show_common(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - struct hstate *h; - unsigned long nr_huge_pages; - int nid; + /* + * Not absolutely necessary, but for consistency update max_huge_pages + * based on pool changes for the demoted page. + */ + src->max_huge_pages -= nr_demoted; + dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); - h = kobj_to_hstate(kobj, &nid); - if (nid == NUMA_NO_NODE) - nr_huge_pages = h->nr_huge_pages; - else - nr_huge_pages = h->nr_huge_pages_node[nid]; + if (rc < 0) + return rc; - return sysfs_emit(buf, "%lu\n", nr_huge_pages); + if (nr_demoted) + return nr_demoted; + /* + * Only way to get here is if all pages on free lists are poisoned. + * Return -EBUSY so that caller will not retry. + */ + return -EBUSY; } -static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, +ssize_t __nr_hugepages_store_common(bool obey_mempolicy, struct hstate *h, int nid, unsigned long count, size_t len) { int err; nodemask_t nodes_allowed, *n_mask; - if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) + if (hstate_is_gigantic_no_runtime(h)) return -EINVAL; if (nid == NUMA_NO_NODE) { @@ -3750,462 +4110,13 @@ static ssize_t __nr_hugepages_store_common(bool obey_mempolicy, return err ? err : len; } -static ssize_t nr_hugepages_store_common(bool obey_mempolicy, - struct kobject *kobj, const char *buf, - size_t len) -{ - struct hstate *h; - unsigned long count; - int nid; - int err; - - err = kstrtoul(buf, 10, &count); - if (err) - return err; - - h = kobj_to_hstate(kobj, &nid); - return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len); -} - -static ssize_t nr_hugepages_show(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - return nr_hugepages_show_common(kobj, attr, buf); -} - -static ssize_t nr_hugepages_store(struct kobject *kobj, - struct kobj_attribute *attr, const char *buf, size_t len) -{ - return nr_hugepages_store_common(false, kobj, buf, len); -} -HSTATE_ATTR(nr_hugepages); - -#ifdef CONFIG_NUMA - -/* - * hstate attribute for optionally mempolicy-based constraint on persistent - * huge page alloc/free. - */ -static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, - struct kobj_attribute *attr, - char *buf) -{ - return nr_hugepages_show_common(kobj, attr, buf); -} - -static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, - struct kobj_attribute *attr, const char *buf, size_t len) -{ - return nr_hugepages_store_common(true, kobj, buf, len); -} -HSTATE_ATTR(nr_hugepages_mempolicy); -#endif - - -static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - struct hstate *h = kobj_to_hstate(kobj, NULL); - return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages); -} - -static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, - struct kobj_attribute *attr, const char *buf, size_t count) -{ - int err; - unsigned long input; - struct hstate *h = kobj_to_hstate(kobj, NULL); - - if (hstate_is_gigantic(h)) - return -EINVAL; - - err = kstrtoul(buf, 10, &input); - if (err) - return err; - - spin_lock_irq(&hugetlb_lock); - h->nr_overcommit_huge_pages = input; - spin_unlock_irq(&hugetlb_lock); - - return count; -} -HSTATE_ATTR(nr_overcommit_hugepages); - -static ssize_t free_hugepages_show(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - struct hstate *h; - unsigned long free_huge_pages; - int nid; - - h = kobj_to_hstate(kobj, &nid); - if (nid == NUMA_NO_NODE) - free_huge_pages = h->free_huge_pages; - else - free_huge_pages = h->free_huge_pages_node[nid]; - - return sysfs_emit(buf, "%lu\n", free_huge_pages); -} -HSTATE_ATTR_RO(free_hugepages); - -static ssize_t resv_hugepages_show(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - struct hstate *h = kobj_to_hstate(kobj, NULL); - return sysfs_emit(buf, "%lu\n", h->resv_huge_pages); -} -HSTATE_ATTR_RO(resv_hugepages); - -static ssize_t surplus_hugepages_show(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - struct hstate *h; - unsigned long surplus_huge_pages; - int nid; - - h = kobj_to_hstate(kobj, &nid); - if (nid == NUMA_NO_NODE) - surplus_huge_pages = h->surplus_huge_pages; - else - surplus_huge_pages = h->surplus_huge_pages_node[nid]; - - return sysfs_emit(buf, "%lu\n", surplus_huge_pages); -} -HSTATE_ATTR_RO(surplus_hugepages); - -static ssize_t demote_store(struct kobject *kobj, - struct kobj_attribute *attr, const char *buf, size_t len) -{ - unsigned long nr_demote; - unsigned long nr_available; - nodemask_t nodes_allowed, *n_mask; - struct hstate *h; - int err; - int nid; - - err = kstrtoul(buf, 10, &nr_demote); - if (err) - return err; - h = kobj_to_hstate(kobj, &nid); - - if (nid != NUMA_NO_NODE) { - init_nodemask_of_node(&nodes_allowed, nid); - n_mask = &nodes_allowed; - } else { - n_mask = &node_states[N_MEMORY]; - } - - /* Synchronize with other sysfs operations modifying huge pages */ - mutex_lock(&h->resize_lock); - spin_lock_irq(&hugetlb_lock); - - while (nr_demote) { - /* - * Check for available pages to demote each time thorough the - * loop as demote_pool_huge_page will drop hugetlb_lock. - */ - if (nid != NUMA_NO_NODE) - nr_available = h->free_huge_pages_node[nid]; - else - nr_available = h->free_huge_pages; - nr_available -= h->resv_huge_pages; - if (!nr_available) - break; - - err = demote_pool_huge_page(h, n_mask); - if (err) - break; - - nr_demote--; - } - - spin_unlock_irq(&hugetlb_lock); - mutex_unlock(&h->resize_lock); - - if (err) - return err; - return len; -} -HSTATE_ATTR_WO(demote); - -static ssize_t demote_size_show(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - struct hstate *h = kobj_to_hstate(kobj, NULL); - unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K; - - return sysfs_emit(buf, "%lukB\n", demote_size); -} - -static ssize_t demote_size_store(struct kobject *kobj, - struct kobj_attribute *attr, - const char *buf, size_t count) -{ - struct hstate *h, *demote_hstate; - unsigned long demote_size; - unsigned int demote_order; - - demote_size = (unsigned long)memparse(buf, NULL); - - demote_hstate = size_to_hstate(demote_size); - if (!demote_hstate) - return -EINVAL; - demote_order = demote_hstate->order; - if (demote_order < HUGETLB_PAGE_ORDER) - return -EINVAL; - - /* demote order must be smaller than hstate order */ - h = kobj_to_hstate(kobj, NULL); - if (demote_order >= h->order) - return -EINVAL; - - /* resize_lock synchronizes access to demote size and writes */ - mutex_lock(&h->resize_lock); - h->demote_order = demote_order; - mutex_unlock(&h->resize_lock); - - return count; -} -HSTATE_ATTR(demote_size); - -static struct attribute *hstate_attrs[] = { - &nr_hugepages_attr.attr, - &nr_overcommit_hugepages_attr.attr, - &free_hugepages_attr.attr, - &resv_hugepages_attr.attr, - &surplus_hugepages_attr.attr, -#ifdef CONFIG_NUMA - &nr_hugepages_mempolicy_attr.attr, -#endif - NULL, -}; - -static const struct attribute_group hstate_attr_group = { - .attrs = hstate_attrs, -}; - -static struct attribute *hstate_demote_attrs[] = { - &demote_size_attr.attr, - &demote_attr.attr, - NULL, -}; - -static const struct attribute_group hstate_demote_attr_group = { - .attrs = hstate_demote_attrs, -}; - -static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, - struct kobject **hstate_kobjs, - const struct attribute_group *hstate_attr_group) -{ - int retval; - int hi = hstate_index(h); - - hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); - if (!hstate_kobjs[hi]) - return -ENOMEM; - - retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); - if (retval) { - kobject_put(hstate_kobjs[hi]); - hstate_kobjs[hi] = NULL; - return retval; - } - - if (h->demote_order) { - retval = sysfs_create_group(hstate_kobjs[hi], - &hstate_demote_attr_group); - if (retval) { - pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name); - sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group); - kobject_put(hstate_kobjs[hi]); - hstate_kobjs[hi] = NULL; - return retval; - } - } - - return 0; -} - -#ifdef CONFIG_NUMA -static bool hugetlb_sysfs_initialized __ro_after_init; - -/* - * node_hstate/s - associate per node hstate attributes, via their kobjects, - * with node devices in node_devices[] using a parallel array. The array - * index of a node device or _hstate == node id. - * This is here to avoid any static dependency of the node device driver, in - * the base kernel, on the hugetlb module. - */ -struct node_hstate { - struct kobject *hugepages_kobj; - struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; -}; -static struct node_hstate node_hstates[MAX_NUMNODES]; - -/* - * A subset of global hstate attributes for node devices - */ -static struct attribute *per_node_hstate_attrs[] = { - &nr_hugepages_attr.attr, - &free_hugepages_attr.attr, - &surplus_hugepages_attr.attr, - NULL, -}; - -static const struct attribute_group per_node_hstate_attr_group = { - .attrs = per_node_hstate_attrs, -}; - -/* - * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. - * Returns node id via non-NULL nidp. - */ -static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) -{ - int nid; - - for (nid = 0; nid < nr_node_ids; nid++) { - struct node_hstate *nhs = &node_hstates[nid]; - int i; - for (i = 0; i < HUGE_MAX_HSTATE; i++) - if (nhs->hstate_kobjs[i] == kobj) { - if (nidp) - *nidp = nid; - return &hstates[i]; - } - } - - BUG(); - return NULL; -} - -/* - * Unregister hstate attributes from a single node device. - * No-op if no hstate attributes attached. - */ -void hugetlb_unregister_node(struct node *node) -{ - struct hstate *h; - struct node_hstate *nhs = &node_hstates[node->dev.id]; - - if (!nhs->hugepages_kobj) - return; /* no hstate attributes */ - - for_each_hstate(h) { - int idx = hstate_index(h); - struct kobject *hstate_kobj = nhs->hstate_kobjs[idx]; - - if (!hstate_kobj) - continue; - if (h->demote_order) - sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group); - sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group); - kobject_put(hstate_kobj); - nhs->hstate_kobjs[idx] = NULL; - } - - kobject_put(nhs->hugepages_kobj); - nhs->hugepages_kobj = NULL; -} - - -/* - * Register hstate attributes for a single node device. - * No-op if attributes already registered. - */ -void hugetlb_register_node(struct node *node) -{ - struct hstate *h; - struct node_hstate *nhs = &node_hstates[node->dev.id]; - int err; - - if (!hugetlb_sysfs_initialized) - return; - - if (nhs->hugepages_kobj) - return; /* already allocated */ - - nhs->hugepages_kobj = kobject_create_and_add("hugepages", - &node->dev.kobj); - if (!nhs->hugepages_kobj) - return; - - for_each_hstate(h) { - err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, - nhs->hstate_kobjs, - &per_node_hstate_attr_group); - if (err) { - pr_err("HugeTLB: Unable to add hstate %s for node %d\n", - h->name, node->dev.id); - hugetlb_unregister_node(node); - break; - } - } -} - -/* - * hugetlb init time: register hstate attributes for all registered node - * devices of nodes that have memory. All on-line nodes should have - * registered their associated device by this time. - */ -static void __init hugetlb_register_all_nodes(void) -{ - int nid; - - for_each_online_node(nid) - hugetlb_register_node(node_devices[nid]); -} -#else /* !CONFIG_NUMA */ - -static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) -{ - BUG(); - if (nidp) - *nidp = -1; - return NULL; -} - -static void hugetlb_register_all_nodes(void) { } - -#endif - -#ifdef CONFIG_CMA -static void __init hugetlb_cma_check(void); -#else -static inline __init void hugetlb_cma_check(void) -{ -} -#endif - -static void __init hugetlb_sysfs_init(void) -{ - struct hstate *h; - int err; - - hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); - if (!hugepages_kobj) - return; - - for_each_hstate(h) { - err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, - hstate_kobjs, &hstate_attr_group); - if (err) - pr_err("HugeTLB: Unable to add hstate %s", h->name); - } - -#ifdef CONFIG_NUMA - hugetlb_sysfs_initialized = true; -#endif - hugetlb_register_all_nodes(); -} - static int __init hugetlb_init(void) { int i; BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < __NR_HPAGEFLAGS); + BUILD_BUG_ON_INVALID(HUGETLB_PAGE_ORDER > MAX_FOLIO_ORDER); if (!hugepages_supported()) { if (hugetlb_max_hstate || default_hstate_max_huge_pages) @@ -4255,6 +4166,7 @@ static int __init hugetlb_init(void) hugetlb_sysfs_init(); hugetlb_cgroup_file_init(); + hugetlb_sysctl_init(); #ifdef CONFIG_SMP num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); @@ -4287,16 +4199,15 @@ void __init hugetlb_add_hstate(unsigned int order) return; } BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); - BUG_ON(order == 0); + BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); + WARN_ON(order > MAX_FOLIO_ORDER); h = &hstates[hugetlb_max_hstate++]; - mutex_init(&h->resize_lock); + __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); h->order = order; h->mask = ~(huge_page_size(h) - 1); for (i = 0; i < MAX_NUMNODES; ++i) INIT_LIST_HEAD(&h->hugepage_freelists[i]); INIT_LIST_HEAD(&h->hugepage_activelist); - h->next_nid_to_alloc = first_memory_node; - h->next_nid_to_free = first_memory_node; snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", huge_page_size(h)/SZ_1K); @@ -4321,6 +4232,44 @@ static void __init hugepages_clear_pages_in_node(void) } } +static __init int hugetlb_add_param(char *s, int (*setup)(char *)) +{ + size_t len; + char *p; + + if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) + return -EINVAL; + + len = strlen(s) + 1; + if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) + return -EINVAL; + + p = &hstate_cmdline_buf[hstate_cmdline_index]; + memcpy(p, s, len); + hstate_cmdline_index += len; + + hugetlb_params[hugetlb_param_index].val = p; + hugetlb_params[hugetlb_param_index].setup = setup; + + hugetlb_param_index++; + + return 0; +} + +static __init void hugetlb_parse_params(void) +{ + int i; + struct hugetlb_cmdline *hcp; + + for (i = 0; i < hugetlb_param_index; i++) { + hcp = &hugetlb_params[i]; + + hcp->setup(hcp->val); + } + + hugetlb_cma_validate_params(); +} + /* * hugepages command line processing * hugepages normally follows a valid hugepagsz or default_hugepagsz @@ -4340,7 +4289,7 @@ static int __init hugepages_setup(char *s) if (!parsed_valid_hugepagesz) { pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); parsed_valid_hugepagesz = true; - return 1; + return -EINVAL; } /* @@ -4394,24 +4343,16 @@ static int __init hugepages_setup(char *s) } } - /* - * Global state is always initialized later in hugetlb_init. - * But we need to allocate gigantic hstates here early to still - * use the bootmem allocator. - */ - if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate)) - hugetlb_hstate_alloc_pages(parsed_hstate); - last_mhp = mhp; - return 1; + return 0; invalid: pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); hugepages_clear_pages_in_node(); - return 1; + return -EINVAL; } -__setup("hugepages=", hugepages_setup); +hugetlb_early_param("hugepages", hugepages_setup); /* * hugepagesz command line processing @@ -4430,7 +4371,7 @@ static int __init hugepagesz_setup(char *s) if (!arch_hugetlb_valid_size(size)) { pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); - return 1; + return -EINVAL; } h = size_to_hstate(size); @@ -4445,7 +4386,7 @@ static int __init hugepagesz_setup(char *s) if (!parsed_default_hugepagesz || h != &default_hstate || default_hstate.max_huge_pages) { pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); - return 1; + return -EINVAL; } /* @@ -4455,14 +4396,14 @@ static int __init hugepagesz_setup(char *s) */ parsed_hstate = h; parsed_valid_hugepagesz = true; - return 1; + return 0; } hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); parsed_valid_hugepagesz = true; - return 1; + return 0; } -__setup("hugepagesz=", hugepagesz_setup); +hugetlb_early_param("hugepagesz", hugepagesz_setup); /* * default_hugepagesz command line input @@ -4476,14 +4417,14 @@ static int __init default_hugepagesz_setup(char *s) parsed_valid_hugepagesz = false; if (parsed_default_hugepagesz) { pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); - return 1; + return -EINVAL; } size = (unsigned long)memparse(s, NULL); if (!arch_hugetlb_valid_size(size)) { pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); - return 1; + return -EINVAL; } hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); @@ -4495,144 +4436,111 @@ static int __init default_hugepagesz_setup(char *s) * The number of default huge pages (for this size) could have been * specified as the first hugetlb parameter: hugepages=X. If so, * then default_hstate_max_huge_pages is set. If the default huge - * page size is gigantic (>= MAX_ORDER), then the pages must be + * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be * allocated here from bootmem allocator. */ if (default_hstate_max_huge_pages) { default_hstate.max_huge_pages = default_hstate_max_huge_pages; - for_each_online_node(i) - default_hstate.max_huge_pages_node[i] = - default_hugepages_in_node[i]; - if (hstate_is_gigantic(&default_hstate)) - hugetlb_hstate_alloc_pages(&default_hstate); + /* + * Since this is an early parameter, we can't check + * NUMA node state yet, so loop through MAX_NUMNODES. + */ + for (i = 0; i < MAX_NUMNODES; i++) { + if (default_hugepages_in_node[i] != 0) + default_hstate.max_huge_pages_node[i] = + default_hugepages_in_node[i]; + } default_hstate_max_huge_pages = 0; } - return 1; + return 0; } -__setup("default_hugepagesz=", default_hugepagesz_setup); +hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); -static nodemask_t *policy_mbind_nodemask(gfp_t gfp) +void __init hugetlb_bootmem_set_nodes(void) { -#ifdef CONFIG_NUMA - struct mempolicy *mpol = get_task_policy(current); - - /* - * Only enforce MPOL_BIND policy which overlaps with cpuset policy - * (from policy_nodemask) specifically for hugetlb case - */ - if (mpol->mode == MPOL_BIND && - (apply_policy_zone(mpol, gfp_zone(gfp)) && - cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) - return &mpol->nodes; -#endif - return NULL; -} + int i, nid; + unsigned long start_pfn, end_pfn; -static unsigned int allowed_mems_nr(struct hstate *h) -{ - int node; - unsigned int nr = 0; - nodemask_t *mbind_nodemask; - unsigned int *array = h->free_huge_pages_node; - gfp_t gfp_mask = htlb_alloc_mask(h); + if (!nodes_empty(hugetlb_bootmem_nodes)) + return; - mbind_nodemask = policy_mbind_nodemask(gfp_mask); - for_each_node_mask(node, cpuset_current_mems_allowed) { - if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) - nr += array[node]; + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { + if (end_pfn > start_pfn) + node_set(nid, hugetlb_bootmem_nodes); } - - return nr; } -#ifdef CONFIG_SYSCTL -static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write, - void *buffer, size_t *length, - loff_t *ppos, unsigned long *out) -{ - struct ctl_table dup_table; +static bool __hugetlb_bootmem_allocated __initdata; - /* - * In order to avoid races with __do_proc_doulongvec_minmax(), we - * can duplicate the @table and alter the duplicate of it. - */ - dup_table = *table; - dup_table.data = out; - - return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos); +bool __init hugetlb_bootmem_allocated(void) +{ + return __hugetlb_bootmem_allocated; } -static int hugetlb_sysctl_handler_common(bool obey_mempolicy, - struct ctl_table *table, int write, - void *buffer, size_t *length, loff_t *ppos) +void __init hugetlb_bootmem_alloc(void) { - struct hstate *h = &default_hstate; - unsigned long tmp = h->max_huge_pages; - int ret; + struct hstate *h; + int i; - if (!hugepages_supported()) - return -EOPNOTSUPP; + if (__hugetlb_bootmem_allocated) + return; - ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, - &tmp); - if (ret) - goto out; + hugetlb_bootmem_set_nodes(); - if (write) - ret = __nr_hugepages_store_common(obey_mempolicy, h, - NUMA_NO_NODE, tmp, *length); -out: - return ret; -} + for (i = 0; i < MAX_NUMNODES; i++) + INIT_LIST_HEAD(&huge_boot_pages[i]); -int hugetlb_sysctl_handler(struct ctl_table *table, int write, - void *buffer, size_t *length, loff_t *ppos) -{ + hugetlb_parse_params(); - return hugetlb_sysctl_handler_common(false, table, write, - buffer, length, ppos); -} + for_each_hstate(h) { + h->next_nid_to_alloc = first_online_node; -#ifdef CONFIG_NUMA -int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, - void *buffer, size_t *length, loff_t *ppos) -{ - return hugetlb_sysctl_handler_common(true, table, write, - buffer, length, ppos); + if (hstate_is_gigantic(h)) + hugetlb_hstate_alloc_pages(h); + } + + __hugetlb_bootmem_allocated = true; } -#endif /* CONFIG_NUMA */ -int hugetlb_overcommit_handler(struct ctl_table *table, int write, - void *buffer, size_t *length, loff_t *ppos) +/* + * hugepage_alloc_threads command line parsing. + * + * When set, use this specific number of threads for the boot + * allocation of hugepages. + */ +static int __init hugepage_alloc_threads_setup(char *s) { - struct hstate *h = &default_hstate; - unsigned long tmp; - int ret; + unsigned long allocation_threads; - if (!hugepages_supported()) - return -EOPNOTSUPP; + if (kstrtoul(s, 0, &allocation_threads) != 0) + return 1; - tmp = h->nr_overcommit_huge_pages; + if (allocation_threads == 0) + return 1; - if (write && hstate_is_gigantic(h)) - return -EINVAL; + hugepage_allocation_threads = allocation_threads; - ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos, - &tmp); - if (ret) - goto out; + return 1; +} +__setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup); - if (write) { - spin_lock_irq(&hugetlb_lock); - h->nr_overcommit_huge_pages = tmp; - spin_unlock_irq(&hugetlb_lock); +static unsigned int allowed_mems_nr(struct hstate *h) +{ + int node; + unsigned int nr = 0; + nodemask_t *mbind_nodemask; + unsigned int *array = h->free_huge_pages_node; + gfp_t gfp_mask = htlb_alloc_mask(h); + + mbind_nodemask = policy_mbind_nodemask(gfp_mask); + for_each_node_mask(node, cpuset_current_mems_allowed) { + if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) + nr += array[node]; } -out: - return ret; -} -#endif /* CONFIG_SYSCTL */ + return nr; +} void hugetlb_report_meminfo(struct seq_file *m) { @@ -4699,7 +4607,7 @@ void hugetlb_show_meminfo_node(int nid) void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) { seq_printf(m, "HugetlbPages:\t%8lu kB\n", - atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10)); + K(atomic_long_read(&mm->hugetlb_usage))); } /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ @@ -4836,26 +4744,40 @@ static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) { if (addr & ~(huge_page_mask(hstate_vma(vma)))) return -EINVAL; + return 0; +} +void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) +{ /* * PMD sharing is only possible for PUD_SIZE-aligned address ranges * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. + * This function is called in the middle of a VMA split operation, with + * MM, VMA and rmap all write-locked to prevent concurrent page table + * walks (except hardware and gup_fast()). */ + vma_assert_write_locked(vma); + i_mmap_assert_write_locked(vma->vm_file->f_mapping); + if (addr & ~PUD_MASK) { - /* - * hugetlb_vm_op_split is called right before we attempt to - * split the VMA. We will need to unshare PMDs in the old and - * new VMAs, so let's unshare before we split. - */ unsigned long floor = addr & PUD_MASK; unsigned long ceil = floor + PUD_SIZE; - if (floor >= vma->vm_start && ceil <= vma->vm_end) - hugetlb_unshare_pmds(vma, floor, ceil); + if (floor >= vma->vm_start && ceil <= vma->vm_end) { + /* + * Locking: + * Use take_locks=false here. + * The file rmap lock is already held. + * The hugetlb VMA lock can't be taken when we already + * hold the file rmap lock, and we don't need it because + * its purpose is to synchronize against concurrent page + * table walks, which are not possible thanks to the + * locks held by our caller. + */ + hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false); + } } - - return 0; } static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) @@ -4890,18 +4812,16 @@ const struct vm_operations_struct hugetlb_vm_ops = { .pagesize = hugetlb_vm_op_pagesize, }; -static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, - int writable) +static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio, + bool try_mkwrite) { - pte_t entry; + pte_t entry = folio_mk_pte(folio, vma->vm_page_prot); unsigned int shift = huge_page_shift(hstate_vma(vma)); - if (writable) { - entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, - vma->vm_page_prot))); + if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { + entry = pte_mkwrite_novma(pte_mkdirty(entry)); } else { - entry = huge_pte_wrprotect(mk_huge_pte(page, - vma->vm_page_prot)); + entry = pte_wrprotect(entry); } entry = pte_mkyoung(entry); entry = arch_make_huge_pte(entry, shift, vma->vm_flags); @@ -4914,46 +4834,31 @@ static void set_huge_ptep_writable(struct vm_area_struct *vma, { pte_t entry; - entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); + entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) update_mmu_cache(vma, address, ptep); } -bool is_hugetlb_entry_migration(pte_t pte) -{ - swp_entry_t swp; - - if (huge_pte_none(pte) || pte_present(pte)) - return false; - swp = pte_to_swp_entry(pte); - if (is_migration_entry(swp)) - return true; - else - return false; -} - -static bool is_hugetlb_entry_hwpoisoned(pte_t pte) +static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, + unsigned long address, pte_t *ptep) { - swp_entry_t swp; - - if (huge_pte_none(pte) || pte_present(pte)) - return false; - swp = pte_to_swp_entry(pte); - if (is_hwpoison_entry(swp)) - return true; - else - return false; + if (vma->vm_flags & VM_WRITE) + set_huge_ptep_writable(vma, address, ptep); } static void -hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, - struct page *new_page) +hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, + struct folio *new_folio, pte_t old, unsigned long sz) { - __SetPageUptodate(new_page); - hugepage_add_new_anon_rmap(new_page, vma, addr); - set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); + pte_t newpte = make_huge_pte(vma, new_folio, true); + + __folio_mark_uptodate(new_folio); + hugetlb_add_new_anon_rmap(new_folio, vma, addr); + if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) + newpte = huge_pte_mkuffd_wp(newpte); + set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); - SetHPageMigratable(new_page); + folio_set_hugetlb_migratable(new_folio); } int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, @@ -4961,7 +4866,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *src_vma) { pte_t *src_pte, *dst_pte, entry; - struct page *ptepage; + struct folio *pte_folio; unsigned long addr; bool cow = is_cow_mapping(src_vma->vm_flags); struct hstate *h = hstate_vma(src_vma); @@ -4969,19 +4874,20 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, unsigned long npages = pages_per_huge_page(h); struct mmu_notifier_range range; unsigned long last_addr_mask; + softleaf_t softleaf; int ret = 0; if (cow) { - mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src, + mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, src_vma->vm_start, src_vma->vm_end); mmu_notifier_invalidate_range_start(&range); - mmap_assert_write_locked(src); + vma_assert_write_locked(src_vma); raw_write_seqcount_begin(&src->write_protect_seq); } else { /* * For shared mappings the vma lock must be held before - * calling huge_pte_offset in the src vma. Otherwise, the + * calling hugetlb_walk() in the src vma. Otherwise, the * returned ptep could go away if part of a shared pmd and * another thread calls huge_pmd_unshare. */ @@ -4991,7 +4897,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, last_addr_mask = hugetlb_mask_last_page(h); for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { spinlock_t *src_ptl, *dst_ptl; - src_pte = huge_pte_offset(src, addr, sz); + src_pte = hugetlb_walk(src_vma, addr, sz); if (!src_pte) { addr |= last_addr_mask; continue; @@ -5002,65 +4908,57 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, break; } - /* - * If the pagetables are shared don't copy or take references. - * - * dst_pte == src_pte is the common case of src/dest sharing. - * However, src could have 'unshared' and dst shares with - * another vma. So page_count of ptep page is checked instead - * to reliably determine whether pte is shared. - */ - if (page_count(virt_to_page(dst_pte)) > 1) { +#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING + /* If the pagetables are shared, there is nothing to do */ + if (ptdesc_pmd_is_shared(virt_to_ptdesc(dst_pte))) { addr |= last_addr_mask; continue; } +#endif dst_ptl = huge_pte_lock(h, dst, dst_pte); src_ptl = huge_pte_lockptr(h, src, src_pte); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); - entry = huge_ptep_get(src_pte); + entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); again: if (huge_pte_none(entry)) { - /* - * Skip if src entry none. - */ - ; - } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) { - bool uffd_wp = huge_pte_uffd_wp(entry); + /* Skip if src entry none. */ + goto next; + } - if (!userfaultfd_wp(dst_vma) && uffd_wp) + softleaf = softleaf_from_pte(entry); + if (unlikely(softleaf_is_hwpoison(softleaf))) { + if (!userfaultfd_wp(dst_vma)) entry = huge_pte_clear_uffd_wp(entry); - set_huge_pte_at(dst, addr, dst_pte, entry); - } else if (unlikely(is_hugetlb_entry_migration(entry))) { - swp_entry_t swp_entry = pte_to_swp_entry(entry); - bool uffd_wp = huge_pte_uffd_wp(entry); + set_huge_pte_at(dst, addr, dst_pte, entry, sz); + } else if (unlikely(softleaf_is_migration(softleaf))) { + bool uffd_wp = pte_swp_uffd_wp(entry); - if (!is_readable_migration_entry(swp_entry) && cow) { + if (!softleaf_is_migration_read(softleaf) && cow) { /* * COW mappings require pages in both * parent and child to be set to read. */ - swp_entry = make_readable_migration_entry( - swp_offset(swp_entry)); - entry = swp_entry_to_pte(swp_entry); + softleaf = make_readable_migration_entry( + swp_offset(softleaf)); + entry = swp_entry_to_pte(softleaf); if (userfaultfd_wp(src_vma) && uffd_wp) - entry = huge_pte_mkuffd_wp(entry); - set_huge_pte_at(src, addr, src_pte, entry); + entry = pte_swp_mkuffd_wp(entry); + set_huge_pte_at(src, addr, src_pte, entry, sz); } - if (!userfaultfd_wp(dst_vma) && uffd_wp) + if (!userfaultfd_wp(dst_vma)) entry = huge_pte_clear_uffd_wp(entry); - set_huge_pte_at(dst, addr, dst_pte, entry); - } else if (unlikely(is_pte_marker(entry))) { - /* - * We copy the pte marker only if the dst vma has - * uffd-wp enabled. - */ - if (userfaultfd_wp(dst_vma)) - set_huge_pte_at(dst, addr, dst_pte, entry); + set_huge_pte_at(dst, addr, dst_pte, entry, sz); + } else if (unlikely(pte_is_marker(entry))) { + const pte_marker marker = copy_pte_marker(softleaf, dst_vma); + + if (marker) + set_huge_pte_at(dst, addr, dst_pte, + make_pte_marker(marker), sz); } else { - entry = huge_ptep_get(src_pte); - ptepage = pte_page(entry); - get_page(ptepage); + entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); + pte_folio = page_folio(pte_page(entry)); + folio_get(pte_folio); /* * Failing to duplicate the anon rmap is a rare case @@ -5072,42 +4970,44 @@ again: * need to be without the pgtable locks since we could * sleep during the process. */ - if (!PageAnon(ptepage)) { - page_dup_file_rmap(ptepage, true); - } else if (page_try_dup_anon_rmap(ptepage, true, - src_vma)) { + if (!folio_test_anon(pte_folio)) { + hugetlb_add_file_rmap(pte_folio); + } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { pte_t src_pte_old = entry; - struct page *new; + struct folio *new_folio; spin_unlock(src_ptl); spin_unlock(dst_ptl); /* Do not use reserve as it's private owned */ - new = alloc_huge_page(dst_vma, addr, 1); - if (IS_ERR(new)) { - put_page(ptepage); - ret = PTR_ERR(new); + new_folio = alloc_hugetlb_folio(dst_vma, addr, false); + if (IS_ERR(new_folio)) { + folio_put(pte_folio); + ret = PTR_ERR(new_folio); + break; + } + ret = copy_user_large_folio(new_folio, pte_folio, + addr, dst_vma); + folio_put(pte_folio); + if (ret) { + folio_put(new_folio); break; } - copy_user_huge_page(new, ptepage, addr, dst_vma, - npages); - put_page(ptepage); - /* Install the new huge page if src pte stable */ + /* Install the new hugetlb folio if src pte stable */ dst_ptl = huge_pte_lock(h, dst, dst_pte); src_ptl = huge_pte_lockptr(h, src, src_pte); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); - entry = huge_ptep_get(src_pte); + entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); if (!pte_same(src_pte_old, entry)) { restore_reserve_on_error(h, dst_vma, addr, - new); - put_page(new); + new_folio); + folio_put(new_folio); /* huge_ptep of dst_pte won't change as in child */ goto again; } - hugetlb_install_page(dst_vma, dst_pte, addr, new); - spin_unlock(src_ptl); - spin_unlock(dst_ptl); - continue; + hugetlb_install_folio(dst_vma, dst_pte, addr, + new_folio, src_pte_old, sz); + goto next; } if (cow) { @@ -5122,9 +5022,14 @@ again: entry = huge_pte_wrprotect(entry); } - set_huge_pte_at(dst, addr, dst_pte, entry); + if (!userfaultfd_wp(dst_vma)) + entry = huge_pte_clear_uffd_wp(entry); + + set_huge_pte_at(dst, addr, dst_pte, entry, sz); hugetlb_count_add(npages, dst); } + +next: spin_unlock(src_ptl); spin_unlock(dst_ptl); } @@ -5140,8 +5045,10 @@ again: } static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, - unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte) + unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, + unsigned long sz) { + bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); struct hstate *h = hstate_vma(vma); struct mm_struct *mm = vma->vm_mm; spinlock_t *src_ptl, *dst_ptl; @@ -5157,8 +5064,19 @@ static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, if (src_ptl != dst_ptl) spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); - pte = huge_ptep_get_and_clear(mm, old_addr, src_pte); - set_huge_pte_at(mm, new_addr, dst_pte, pte); + pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); + + if (need_clear_uffd_wp && pte_is_uffd_wp_marker(pte)) { + huge_pte_clear(mm, new_addr, dst_pte, sz); + } else { + if (need_clear_uffd_wp) { + if (pte_present(pte)) + pte = huge_pte_clear_uffd_wp(pte); + else + pte = pte_swp_clear_uffd_wp(pte); + } + set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); + } if (src_ptl != dst_ptl) spin_unlock(src_ptl); @@ -5180,7 +5098,7 @@ int move_hugetlb_page_tables(struct vm_area_struct *vma, struct mmu_notifier_range range; bool shared_pmd = false; - mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr, + mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, old_end); adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); /* @@ -5195,13 +5113,13 @@ int move_hugetlb_page_tables(struct vm_area_struct *vma, hugetlb_vma_lock_write(vma); i_mmap_lock_write(mapping); for (; old_addr < old_end; old_addr += sz, new_addr += sz) { - src_pte = huge_pte_offset(mm, old_addr, sz); + src_pte = hugetlb_walk(vma, old_addr, sz); if (!src_pte) { old_addr |= last_addr_mask; new_addr |= last_addr_mask; continue; } - if (huge_pte_none(huge_ptep_get(src_pte))) + if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) continue; if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { @@ -5215,13 +5133,13 @@ int move_hugetlb_page_tables(struct vm_area_struct *vma, if (!dst_pte) break; - move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte); + move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); } if (shared_pmd) - flush_tlb_range(vma, range.start, range.end); + flush_hugetlb_tlb_range(vma, range.start, range.end); else - flush_tlb_range(vma, old_end - len, old_end); + flush_hugetlb_tlb_range(vma, old_end - len, old_end); mmu_notifier_invalidate_range_end(&range); i_mmap_unlock_write(mapping); hugetlb_vma_unlock_write(vma); @@ -5229,18 +5147,19 @@ int move_hugetlb_page_tables(struct vm_area_struct *vma, return len + old_addr - old_end; } -static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, - unsigned long start, unsigned long end, - struct page *ref_page, zap_flags_t zap_flags) +void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, + unsigned long start, unsigned long end, + struct folio *folio, zap_flags_t zap_flags) { struct mm_struct *mm = vma->vm_mm; + const bool folio_provided = !!folio; unsigned long address; pte_t *ptep; pte_t pte; spinlock_t *ptl; - struct page *page; struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); + bool adjust_reservation; unsigned long last_addr_mask; bool force_flush = false; @@ -5258,7 +5177,7 @@ static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct last_addr_mask = hugetlb_mask_last_page(h); address = start; for (; address < end; address += sz) { - ptep = huge_pte_offset(mm, address, sz); + ptep = hugetlb_walk(vma, address, sz); if (!ptep) { address |= last_addr_mask; continue; @@ -5273,7 +5192,7 @@ static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct continue; } - pte = huge_ptep_get(ptep); + pte = huge_ptep_get(mm, address, ptep); if (huge_pte_none(pte)) { spin_unlock(ptl); continue; @@ -5293,21 +5212,21 @@ static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct if (pte_swp_uffd_wp_any(pte) && !(zap_flags & ZAP_FLAG_DROP_MARKER)) set_huge_pte_at(mm, address, ptep, - make_pte_marker(PTE_MARKER_UFFD_WP)); + make_pte_marker(PTE_MARKER_UFFD_WP), + sz); else huge_pte_clear(mm, address, ptep, sz); spin_unlock(ptl); continue; } - page = pte_page(pte); /* - * If a reference page is supplied, it is because a specific - * page is being unmapped, not a range. Ensure the page we - * are about to unmap is the actual page of interest. + * If a folio is supplied, it is because a specific + * folio is being unmapped, not a range. Ensure the folio we + * are about to unmap is the actual folio of interest. */ - if (ref_page) { - if (page != ref_page) { + if (folio_provided) { + if (folio != page_folio(pte_page(pte))) { spin_unlock(ptl); continue; } @@ -5317,26 +5236,69 @@ static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct * looking like data was lost */ set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); + } else { + folio = page_folio(pte_page(pte)); } - pte = huge_ptep_get_and_clear(mm, address, ptep); + pte = huge_ptep_get_and_clear(mm, address, ptep, sz); tlb_remove_huge_tlb_entry(h, tlb, ptep, address); if (huge_pte_dirty(pte)) - set_page_dirty(page); + folio_mark_dirty(folio); /* Leave a uffd-wp pte marker if needed */ if (huge_pte_uffd_wp(pte) && !(zap_flags & ZAP_FLAG_DROP_MARKER)) set_huge_pte_at(mm, address, ptep, - make_pte_marker(PTE_MARKER_UFFD_WP)); + make_pte_marker(PTE_MARKER_UFFD_WP), + sz); hugetlb_count_sub(pages_per_huge_page(h), mm); - page_remove_rmap(page, vma, true); - + hugetlb_remove_rmap(folio); spin_unlock(ptl); - tlb_remove_page_size(tlb, page, huge_page_size(h)); + + /* + * Restore the reservation for anonymous page, otherwise the + * backing page could be stolen by someone. + * If there we are freeing a surplus, do not set the restore + * reservation bit. + */ + adjust_reservation = false; + + spin_lock_irq(&hugetlb_lock); + if (!h->surplus_huge_pages && __vma_private_lock(vma) && + folio_test_anon(folio)) { + folio_set_hugetlb_restore_reserve(folio); + /* Reservation to be adjusted after the spin lock */ + adjust_reservation = true; + } + spin_unlock_irq(&hugetlb_lock); + + /* + * Adjust the reservation for the region that will have the + * reserve restored. Keep in mind that vma_needs_reservation() changes + * resv->adds_in_progress if it succeeds. If this is not done, + * do_exit() will not see it, and will keep the reservation + * forever. + */ + if (adjust_reservation) { + int rc = vma_needs_reservation(h, vma, address); + + if (rc < 0) + /* Pressumably allocate_file_region_entries failed + * to allocate a file_region struct. Clear + * hugetlb_restore_reserve so that global reserve + * count will not be incremented by free_huge_folio. + * Act as if we consumed the reservation. + */ + folio_clear_hugetlb_restore_reserve(folio); + else if (rc) + vma_add_reservation(h, vma, address); + } + + tlb_remove_page_size(tlb, folio_page(folio, 0), + folio_size(folio)); /* - * Bail out after unmapping reference page if supplied + * If we were instructed to unmap a specific folio, we're done. */ - if (ref_page) + if (folio_provided) break; } tlb_end_vma(tlb, vma); @@ -5344,7 +5306,7 @@ static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct /* * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We * could defer the flush until now, since by holding i_mmap_rwsem we - * guaranteed that the last refernece would not be dropped. But we must + * guaranteed that the last reference would not be dropped. But we must * do the flushing before we return, as otherwise i_mmap_rwsem will be * dropped and the last reference to the shared PMDs page might be * dropped as well. @@ -5358,16 +5320,25 @@ static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct tlb_flush_mmu_tlbonly(tlb); } -void __unmap_hugepage_range_final(struct mmu_gather *tlb, - struct vm_area_struct *vma, unsigned long start, - unsigned long end, struct page *ref_page, - zap_flags_t zap_flags) +void __hugetlb_zap_begin(struct vm_area_struct *vma, + unsigned long *start, unsigned long *end) { + if (!vma->vm_file) /* hugetlbfs_file_mmap error */ + return; + + adjust_range_if_pmd_sharing_possible(vma, start, end); hugetlb_vma_lock_write(vma); - i_mmap_lock_write(vma->vm_file->f_mapping); + if (vma->vm_file) + i_mmap_lock_write(vma->vm_file->f_mapping); +} - /* mmu notification performed in caller */ - __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags); +void __hugetlb_zap_end(struct vm_area_struct *vma, + struct zap_details *details) +{ + zap_flags_t zap_flags = details ? details->zap_flags : 0; + + if (!vma->vm_file) /* hugetlbfs_file_mmap error */ + return; if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ /* @@ -5380,27 +5351,29 @@ void __unmap_hugepage_range_final(struct mmu_gather *tlb, * someone else. */ __hugetlb_vma_unlock_write_free(vma); - i_mmap_unlock_write(vma->vm_file->f_mapping); } else { - i_mmap_unlock_write(vma->vm_file->f_mapping); hugetlb_vma_unlock_write(vma); } + + if (vma->vm_file) + i_mmap_unlock_write(vma->vm_file->f_mapping); } void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, - unsigned long end, struct page *ref_page, + unsigned long end, struct folio *folio, zap_flags_t zap_flags) { struct mmu_notifier_range range; struct mmu_gather tlb; - mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, + mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, start, end); adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); mmu_notifier_invalidate_range_start(&range); tlb_gather_mmu(&tlb, vma->vm_mm); - __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags); + __unmap_hugepage_range(&tlb, vma, start, end, + folio, zap_flags); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb); @@ -5413,7 +5386,7 @@ void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, * same region. */ static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, - struct page *page, unsigned long address) + struct folio *folio, unsigned long address) { struct hstate *h = hstate_vma(vma); struct vm_area_struct *iter_vma; @@ -5457,7 +5430,8 @@ static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, */ if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) unmap_hugepage_range(iter_vma, address, - address + huge_page_size(h), page, 0); + address + huge_page_size(h), + folio, 0); } i_mmap_unlock_write(mapping); } @@ -5468,34 +5442,37 @@ static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, * cannot race with other handlers or page migration. * Keep the pte_same checks anyway to make transition from the mutex easier. */ -static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, - unsigned long address, pte_t *ptep, unsigned int flags, - struct page *pagecache_page, spinlock_t *ptl) +static vm_fault_t hugetlb_wp(struct vm_fault *vmf) { - const bool unshare = flags & FAULT_FLAG_UNSHARE; - pte_t pte; + struct vm_area_struct *vma = vmf->vma; + struct mm_struct *mm = vma->vm_mm; + const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; + pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); struct hstate *h = hstate_vma(vma); - struct page *old_page, *new_page; - int outside_reserve = 0; + struct folio *old_folio; + struct folio *new_folio; + bool cow_from_owner = 0; vm_fault_t ret = 0; - unsigned long haddr = address & huge_page_mask(h); struct mmu_notifier_range range; /* - * hugetlb does not support FOLL_FORCE-style write faults that keep the - * PTE mapped R/O such as maybe_mkwrite() would do. + * Never handle CoW for uffd-wp protected pages. It should be only + * handled when the uffd-wp protection is removed. + * + * Note that only the CoW optimization path (in hugetlb_no_page()) + * can trigger this, because hugetlb_fault() will always resolve + * uffd-wp bit first. */ - if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE))) - return VM_FAULT_SIGSEGV; + if (!unshare && huge_pte_uffd_wp(pte)) + return 0; /* Let's take out MAP_SHARED mappings first. */ if (vma->vm_flags & VM_MAYSHARE) { - set_huge_ptep_writable(vma, haddr, ptep); + set_huge_ptep_writable(vma, vmf->address, vmf->pte); return 0; } - pte = huge_ptep_get(ptep); - old_page = pte_page(pte); + old_folio = page_folio(pte_page(pte)); delayacct_wpcopy_start(); @@ -5503,42 +5480,53 @@ retry_avoidcopy: /* * If no-one else is actually using this page, we're the exclusive * owner and can reuse this page. + * + * Note that we don't rely on the (safer) folio refcount here, because + * copying the hugetlb folio when there are unexpected (temporary) + * folio references could harm simple fork()+exit() users when + * we run out of free hugetlb folios: we would have to kill processes + * in scenarios that used to work. As a side effect, there can still + * be leaks between processes, for example, with FOLL_GET users. */ - if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { - if (!PageAnonExclusive(old_page)) - page_move_anon_rmap(old_page, vma); + if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { + if (!PageAnonExclusive(&old_folio->page)) { + folio_move_anon_rmap(old_folio, vma); + SetPageAnonExclusive(&old_folio->page); + } if (likely(!unshare)) - set_huge_ptep_writable(vma, haddr, ptep); + set_huge_ptep_maybe_writable(vma, vmf->address, + vmf->pte); delayacct_wpcopy_end(); return 0; } - VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page), - old_page); + VM_BUG_ON_PAGE(folio_test_anon(old_folio) && + PageAnonExclusive(&old_folio->page), &old_folio->page); /* - * If the process that created a MAP_PRIVATE mapping is about to - * perform a COW due to a shared page count, attempt to satisfy - * the allocation without using the existing reserves. The pagecache - * page is used to determine if the reserve at this address was - * consumed or not. If reserves were used, a partial faulted mapping - * at the time of fork() could consume its reserves on COW instead - * of the full address range. + * If the process that created a MAP_PRIVATE mapping is about to perform + * a COW due to a shared page count, attempt to satisfy the allocation + * without using the existing reserves. + * In order to determine where this is a COW on a MAP_PRIVATE mapping it + * is enough to check whether the old_folio is anonymous. This means that + * the reserve for this address was consumed. If reserves were used, a + * partial faulted mapping at the fime of fork() could consume its reserves + * on COW instead of the full address range. */ if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && - old_page != pagecache_page) - outside_reserve = 1; + folio_test_anon(old_folio)) + cow_from_owner = true; - get_page(old_page); + folio_get(old_folio); /* * Drop page table lock as buddy allocator may be called. It will * be acquired again before returning to the caller, as expected. */ - spin_unlock(ptl); - new_page = alloc_huge_page(vma, haddr, outside_reserve); + spin_unlock(vmf->ptl); + new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); - if (IS_ERR(new_page)) { + if (IS_ERR(new_folio)) { /* * If a process owning a MAP_PRIVATE mapping fails to COW, * it is due to references held by a child and an insufficient @@ -5546,12 +5534,12 @@ retry_avoidcopy: * reliability, unmap the page from child processes. The child * may get SIGKILLed if it later faults. */ - if (outside_reserve) { + if (cow_from_owner) { struct address_space *mapping = vma->vm_file->f_mapping; pgoff_t idx; u32 hash; - put_page(old_page); + folio_put(old_folio); /* * Drop hugetlb_fault_mutex and vma_lock before * unmapping. unmapping needs to hold vma_lock @@ -5561,19 +5549,20 @@ retry_avoidcopy: * * Reacquire both after unmap operation. */ - idx = vma_hugecache_offset(h, vma, haddr); + idx = vma_hugecache_offset(h, vma, vmf->address); hash = hugetlb_fault_mutex_hash(mapping, idx); hugetlb_vma_unlock_read(vma); mutex_unlock(&hugetlb_fault_mutex_table[hash]); - unmap_ref_private(mm, vma, old_page, haddr); + unmap_ref_private(mm, vma, old_folio, vmf->address); mutex_lock(&hugetlb_fault_mutex_table[hash]); hugetlb_vma_lock_read(vma); - spin_lock(ptl); - ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); - if (likely(ptep && - pte_same(huge_ptep_get(ptep), pte))) + spin_lock(vmf->ptl); + vmf->pte = hugetlb_walk(vma, vmf->address, + huge_page_size(h)); + if (likely(vmf->pte && + pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) goto retry_avoidcopy; /* * race occurs while re-acquiring page table @@ -5583,7 +5572,7 @@ retry_avoidcopy: return 0; } - ret = vmf_error(PTR_ERR(new_page)); + ret = vmf_error(PTR_ERR(new_folio)); goto out_release_old; } @@ -5591,51 +5580,55 @@ retry_avoidcopy: * When the original hugepage is shared one, it does not have * anon_vma prepared. */ - if (unlikely(anon_vma_prepare(vma))) { - ret = VM_FAULT_OOM; + ret = __vmf_anon_prepare(vmf); + if (unlikely(ret)) goto out_release_all; - } - copy_user_huge_page(new_page, old_page, address, vma, - pages_per_huge_page(h)); - __SetPageUptodate(new_page); + if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { + ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); + goto out_release_all; + } + __folio_mark_uptodate(new_folio); - mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr, - haddr + huge_page_size(h)); + mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, + vmf->address + huge_page_size(h)); mmu_notifier_invalidate_range_start(&range); /* * Retake the page table lock to check for racing updates * before the page tables are altered */ - spin_lock(ptl); - ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); - if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { + spin_lock(vmf->ptl); + vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); + if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { + pte_t newpte = make_huge_pte(vma, new_folio, !unshare); + /* Break COW or unshare */ - huge_ptep_clear_flush(vma, haddr, ptep); - mmu_notifier_invalidate_range(mm, range.start, range.end); - page_remove_rmap(old_page, vma, true); - hugepage_add_new_anon_rmap(new_page, vma, haddr); - set_huge_pte_at(mm, haddr, ptep, - make_huge_pte(vma, new_page, !unshare)); - SetHPageMigratable(new_page); + huge_ptep_clear_flush(vma, vmf->address, vmf->pte); + hugetlb_remove_rmap(old_folio); + hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); + if (huge_pte_uffd_wp(pte)) + newpte = huge_pte_mkuffd_wp(newpte); + set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, + huge_page_size(h)); + folio_set_hugetlb_migratable(new_folio); /* Make the old page be freed below */ - new_page = old_page; + new_folio = old_folio; } - spin_unlock(ptl); + spin_unlock(vmf->ptl); mmu_notifier_invalidate_range_end(&range); out_release_all: /* * No restore in case of successful pagetable update (Break COW or * unshare) */ - if (new_page != old_page) - restore_reserve_on_error(h, vma, haddr, new_page); - put_page(new_page); + if (new_folio != old_folio) + restore_reserve_on_error(h, vma, vmf->address, new_folio); + folio_put(new_folio); out_release_old: - put_page(old_page); + folio_put(old_folio); - spin_lock(ptl); /* Caller expects lock to be held */ + spin_lock(vmf->ptl); /* Caller expects lock to be held */ delayacct_wpcopy_end(); return ret; @@ -5643,32 +5636,29 @@ out_release_old: /* * Return whether there is a pagecache page to back given address within VMA. - * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. */ -static bool hugetlbfs_pagecache_present(struct hstate *h, - struct vm_area_struct *vma, unsigned long address) +bool hugetlbfs_pagecache_present(struct hstate *h, + struct vm_area_struct *vma, unsigned long address) { - struct address_space *mapping; - pgoff_t idx; - struct page *page; - - mapping = vma->vm_file->f_mapping; - idx = vma_hugecache_offset(h, vma, address); + struct address_space *mapping = vma->vm_file->f_mapping; + pgoff_t idx = linear_page_index(vma, address); + struct folio *folio; - page = find_get_page(mapping, idx); - if (page) - put_page(page); - return page != NULL; + folio = filemap_get_folio(mapping, idx); + if (IS_ERR(folio)) + return false; + folio_put(folio); + return true; } -int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping, +int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, pgoff_t idx) { - struct folio *folio = page_folio(page); struct inode *inode = mapping->host; struct hstate *h = hstate_inode(inode); int err; + idx <<= huge_page_order(h); __folio_set_locked(folio); err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); @@ -5676,7 +5666,7 @@ int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping, __folio_clear_locked(folio); return err; } - ClearHPageRestoreReserve(page); + folio_clear_hugetlb_restore_reserve(folio); /* * mark folio dirty so that it will not be removed from cache/file @@ -5690,74 +5680,53 @@ int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping, return 0; } -static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, +static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, struct address_space *mapping, - pgoff_t idx, - unsigned int flags, - unsigned long haddr, - unsigned long addr, unsigned long reason) { u32 hash; - struct vm_fault vmf = { - .vma = vma, - .address = haddr, - .real_address = addr, - .flags = flags, - - /* - * Hard to debug if it ends up being - * used by a callee that assumes - * something about the other - * uninitialized fields... same as in - * memory.c - */ - }; /* * vma_lock and hugetlb_fault_mutex must be dropped before handling * userfault. Also mmap_lock could be dropped due to handling * userfault, any vma operation should be careful from here. */ - hugetlb_vma_unlock_read(vma); - hash = hugetlb_fault_mutex_hash(mapping, idx); + hugetlb_vma_unlock_read(vmf->vma); + hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); mutex_unlock(&hugetlb_fault_mutex_table[hash]); - return handle_userfault(&vmf, reason); + return handle_userfault(vmf, reason); } /* * Recheck pte with pgtable lock. Returns true if pte didn't change, or * false if pte changed or is changing. */ -static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, +static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t old_pte) { spinlock_t *ptl; bool same; ptl = huge_pte_lock(h, mm, ptep); - same = pte_same(huge_ptep_get(ptep), old_pte); + same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); spin_unlock(ptl); return same; } -static vm_fault_t hugetlb_no_page(struct mm_struct *mm, - struct vm_area_struct *vma, - struct address_space *mapping, pgoff_t idx, - unsigned long address, pte_t *ptep, - pte_t old_pte, unsigned int flags) +static vm_fault_t hugetlb_no_page(struct address_space *mapping, + struct vm_fault *vmf) { + u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); + bool new_folio, new_anon_folio = false; + struct vm_area_struct *vma = vmf->vma; + struct mm_struct *mm = vma->vm_mm; struct hstate *h = hstate_vma(vma); vm_fault_t ret = VM_FAULT_SIGBUS; - int anon_rmap = 0; + bool folio_locked = true; + struct folio *folio; unsigned long size; - struct page *page; pte_t new_pte; - spinlock_t *ptl; - unsigned long haddr = address & huge_page_mask(h); - bool new_page, new_pagecache_page = false; - u32 hash = hugetlb_fault_mutex_hash(mapping, idx); /* * Currently, we are forced to kill the process in the event the @@ -5775,11 +5744,11 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm, * Use page lock to guard against racing truncation * before we get page_table_lock. */ - new_page = false; - page = find_lock_page(mapping, idx); - if (!page) { + new_folio = false; + folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); + if (IS_ERR(folio)) { size = i_size_read(mapping->host) >> huge_page_shift(h); - if (idx >= size) + if (vmf->pgoff >= size) goto out; /* Check for page in userfault range */ if (userfaultfd_missing(vma)) { @@ -5800,18 +5769,23 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm, * never happen on the page after UFFDIO_COPY has * correctly installed the page and returned. */ - if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { + if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { ret = 0; goto out; } - return hugetlb_handle_userfault(vma, mapping, idx, flags, - haddr, address, + return hugetlb_handle_userfault(vmf, mapping, VM_UFFD_MISSING); } - page = alloc_huge_page(vma, haddr, 0); - if (IS_ERR(page)) { + if (!(vma->vm_flags & VM_MAYSHARE)) { + ret = __vmf_anon_prepare(vmf); + if (unlikely(ret)) + goto out; + } + + folio = alloc_hugetlb_folio(vma, vmf->address, false); + if (IS_ERR(folio)) { /* * Returning error will result in faulting task being * sent SIGBUS. The hugetlb fault mutex prevents two @@ -5824,18 +5798,19 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm, * here. Before returning error, get ptl and make * sure there really is no pte entry. */ - if (hugetlb_pte_stable(h, mm, ptep, old_pte)) - ret = vmf_error(PTR_ERR(page)); + if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) + ret = vmf_error(PTR_ERR(folio)); else ret = 0; goto out; } - clear_huge_page(page, address, pages_per_huge_page(h)); - __SetPageUptodate(page); - new_page = true; + folio_zero_user(folio, vmf->real_address); + __folio_mark_uptodate(folio); + new_folio = true; if (vma->vm_flags & VM_MAYSHARE) { - int err = hugetlb_add_to_page_cache(page, mapping, idx); + int err = hugetlb_add_to_page_cache(folio, mapping, + vmf->pgoff); if (err) { /* * err can't be -EEXIST which implies someone @@ -5844,18 +5819,15 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm, * to the page cache. So it's safe to call * restore_reserve_on_error() here. */ - restore_reserve_on_error(h, vma, haddr, page); - put_page(page); + restore_reserve_on_error(h, vma, vmf->address, + folio); + folio_put(folio); + ret = VM_FAULT_SIGBUS; goto out; } - new_pagecache_page = true; } else { - lock_page(page); - if (unlikely(anon_vma_prepare(vma))) { - ret = VM_FAULT_OOM; - goto backout_unlocked; - } - anon_rmap = 1; + new_anon_folio = true; + folio_lock(folio); } } else { /* @@ -5863,7 +5835,7 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm, * don't have hwpoisoned swap entry for errored virtual address. * So we need to block hugepage fault by PG_hwpoison bit check. */ - if (unlikely(PageHWPoison(page))) { + if (unlikely(folio_test_hwpoison(folio))) { ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); goto backout_unlocked; @@ -5871,15 +5843,14 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm, /* Check for page in userfault range. */ if (userfaultfd_minor(vma)) { - unlock_page(page); - put_page(page); + folio_unlock(folio); + folio_put(folio); /* See comment in userfaultfd_missing() block above */ - if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) { + if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { ret = 0; goto out; } - return hugetlb_handle_userfault(vma, mapping, idx, flags, - haddr, address, + return hugetlb_handle_userfault(vmf, mapping, VM_UFFD_MINOR); } } @@ -5890,65 +5861,82 @@ static vm_fault_t hugetlb_no_page(struct mm_struct *mm, * any allocations necessary to record that reservation occur outside * the spinlock. */ - if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { - if (vma_needs_reservation(h, vma, haddr) < 0) { + if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { + if (vma_needs_reservation(h, vma, vmf->address) < 0) { ret = VM_FAULT_OOM; goto backout_unlocked; } /* Just decrements count, does not deallocate */ - vma_end_reservation(h, vma, haddr); + vma_end_reservation(h, vma, vmf->address); } - ptl = huge_pte_lock(h, mm, ptep); + vmf->ptl = huge_pte_lock(h, mm, vmf->pte); ret = 0; /* If pte changed from under us, retry */ - if (!pte_same(huge_ptep_get(ptep), old_pte)) + if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) goto backout; - if (anon_rmap) - hugepage_add_new_anon_rmap(page, vma, haddr); + if (new_anon_folio) + hugetlb_add_new_anon_rmap(folio, vma, vmf->address); else - page_dup_file_rmap(page, true); - new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) - && (vma->vm_flags & VM_SHARED))); + hugetlb_add_file_rmap(folio); + new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED); /* * If this pte was previously wr-protected, keep it wr-protected even * if populated. */ - if (unlikely(pte_marker_uffd_wp(old_pte))) - new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte)); - set_huge_pte_at(mm, haddr, ptep, new_pte); + if (unlikely(pte_is_uffd_wp_marker(vmf->orig_pte))) + new_pte = huge_pte_mkuffd_wp(new_pte); + set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); hugetlb_count_add(pages_per_huge_page(h), mm); - if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { + if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { + /* + * No need to keep file folios locked. See comment in + * hugetlb_fault(). + */ + if (!new_anon_folio) { + folio_locked = false; + folio_unlock(folio); + } /* Optimization, do the COW without a second fault */ - ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl); + ret = hugetlb_wp(vmf); } - spin_unlock(ptl); + spin_unlock(vmf->ptl); /* - * Only set HPageMigratable in newly allocated pages. Existing pages - * found in the pagecache may not have HPageMigratableset if they have + * Only set hugetlb_migratable in newly allocated pages. Existing pages + * found in the pagecache may not have hugetlb_migratable if they have * been isolated for migration. */ - if (new_page) - SetHPageMigratable(page); + if (new_folio) + folio_set_hugetlb_migratable(folio); - unlock_page(page); + if (folio_locked) + folio_unlock(folio); out: hugetlb_vma_unlock_read(vma); + + /* + * We must check to release the per-VMA lock. __vmf_anon_prepare() is + * the only way ret can be set to VM_FAULT_RETRY. + */ + if (unlikely(ret & VM_FAULT_RETRY)) + vma_end_read(vma); + mutex_unlock(&hugetlb_fault_mutex_table[hash]); return ret; backout: - spin_unlock(ptl); + spin_unlock(vmf->ptl); backout_unlocked: - if (new_page && !new_pagecache_page) - restore_reserve_on_error(h, vma, haddr, page); + /* We only need to restore reservations for private mappings */ + if (new_anon_folio) + restore_reserve_on_error(h, vma, vmf->address, folio); - unlock_page(page); - put_page(page); + folio_unlock(folio); + folio_put(folio); goto out; } @@ -5979,33 +5967,26 @@ u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, unsigned int flags) { - pte_t *ptep, entry; - spinlock_t *ptl; vm_fault_t ret; u32 hash; - pgoff_t idx; - struct page *page = NULL; - struct page *pagecache_page = NULL; + struct folio *folio = NULL; struct hstate *h = hstate_vma(vma); struct address_space *mapping; - int need_wait_lock = 0; - unsigned long haddr = address & huge_page_mask(h); + bool need_wait_lock = false; + struct vm_fault vmf = { + .vma = vma, + .address = address & huge_page_mask(h), + .real_address = address, + .flags = flags, + .pgoff = vma_hugecache_offset(h, vma, + address & huge_page_mask(h)), + /* TODO: Track hugetlb faults using vm_fault */ - ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); - if (ptep) { /* - * Since we hold no locks, ptep could be stale. That is - * OK as we are only making decisions based on content and - * not actually modifying content here. + * Some fields may not be initialized, be careful as it may + * be hard to debug if called functions make assumptions */ - entry = huge_ptep_get(ptep); - if (unlikely(is_hugetlb_entry_migration(entry))) { - migration_entry_wait_huge(vma, ptep); - return 0; - } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) - return VM_FAULT_HWPOISON_LARGE | - VM_FAULT_SET_HINDEX(hstate_index(h)); - } + }; /* * Serialize hugepage allocation and instantiation, so that we don't @@ -6013,182 +5994,247 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, * the same page in the page cache. */ mapping = vma->vm_file->f_mapping; - idx = vma_hugecache_offset(h, vma, haddr); - hash = hugetlb_fault_mutex_hash(mapping, idx); + hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); mutex_lock(&hugetlb_fault_mutex_table[hash]); /* * Acquire vma lock before calling huge_pte_alloc and hold - * until finished with ptep. This prevents huge_pmd_unshare from - * being called elsewhere and making the ptep no longer valid. - * - * ptep could have already be assigned via huge_pte_offset. That - * is OK, as huge_pte_alloc will return the same value unless - * something has changed. + * until finished with vmf.pte. This prevents huge_pmd_unshare from + * being called elsewhere and making the vmf.pte no longer valid. */ hugetlb_vma_lock_read(vma); - ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h)); - if (!ptep) { + vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); + if (!vmf.pte) { hugetlb_vma_unlock_read(vma); mutex_unlock(&hugetlb_fault_mutex_table[hash]); return VM_FAULT_OOM; } - entry = huge_ptep_get(ptep); - /* PTE markers should be handled the same way as none pte */ - if (huge_pte_none_mostly(entry)) + vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); + if (huge_pte_none(vmf.orig_pte)) /* * hugetlb_no_page will drop vma lock and hugetlb fault * mutex internally, which make us return immediately. */ - return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, - entry, flags); + return hugetlb_no_page(mapping, &vmf); + + if (pte_is_marker(vmf.orig_pte)) { + const pte_marker marker = + softleaf_to_marker(softleaf_from_pte(vmf.orig_pte)); + + if (marker & PTE_MARKER_POISONED) { + ret = VM_FAULT_HWPOISON_LARGE | + VM_FAULT_SET_HINDEX(hstate_index(h)); + goto out_mutex; + } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { + /* This isn't supported in hugetlb. */ + ret = VM_FAULT_SIGSEGV; + goto out_mutex; + } + + return hugetlb_no_page(mapping, &vmf); + } ret = 0; - /* - * entry could be a migration/hwpoison entry at this point, so this - * check prevents the kernel from going below assuming that we have - * an active hugepage in pagecache. This goto expects the 2nd page - * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will - * properly handle it. - */ - if (!pte_present(entry)) + /* Not present, either a migration or a hwpoisoned entry */ + if (!pte_present(vmf.orig_pte) && !huge_pte_none(vmf.orig_pte)) { + const softleaf_t softleaf = softleaf_from_pte(vmf.orig_pte); + + if (softleaf_is_migration(softleaf)) { + /* + * Release the hugetlb fault lock now, but retain + * the vma lock, because it is needed to guard the + * huge_pte_lockptr() later in + * migration_entry_wait_huge(). The vma lock will + * be released there. + */ + mutex_unlock(&hugetlb_fault_mutex_table[hash]); + migration_entry_wait_huge(vma, vmf.address, vmf.pte); + return 0; + } + if (softleaf_is_hwpoison(softleaf)) { + ret = VM_FAULT_HWPOISON_LARGE | + VM_FAULT_SET_HINDEX(hstate_index(h)); + } + goto out_mutex; + } /* * If we are going to COW/unshare the mapping later, we examine the * pending reservations for this page now. This will ensure that any * allocations necessary to record that reservation occur outside the - * spinlock. Also lookup the pagecache page now as it is used to - * determine if a reservation has been consumed. + * spinlock. */ if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && - !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) { - if (vma_needs_reservation(h, vma, haddr) < 0) { + !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { + if (vma_needs_reservation(h, vma, vmf.address) < 0) { ret = VM_FAULT_OOM; goto out_mutex; } /* Just decrements count, does not deallocate */ - vma_end_reservation(h, vma, haddr); - - pagecache_page = find_lock_page(mapping, idx); + vma_end_reservation(h, vma, vmf.address); } - ptl = huge_pte_lock(h, mm, ptep); + vmf.ptl = huge_pte_lock(h, mm, vmf.pte); /* Check for a racing update before calling hugetlb_wp() */ - if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) + if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) goto out_ptl; /* Handle userfault-wp first, before trying to lock more pages */ - if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) && - (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { - struct vm_fault vmf = { - .vma = vma, - .address = haddr, - .real_address = address, - .flags = flags, - }; - - spin_unlock(ptl); - if (pagecache_page) { - unlock_page(pagecache_page); - put_page(pagecache_page); - } - hugetlb_vma_unlock_read(vma); - mutex_unlock(&hugetlb_fault_mutex_table[hash]); - return handle_userfault(&vmf, VM_UFFD_WP); - } - - /* - * hugetlb_wp() requires page locks of pte_page(entry) and - * pagecache_page, so here we need take the former one - * when page != pagecache_page or !pagecache_page. - */ - page = pte_page(entry); - if (page != pagecache_page) - if (!trylock_page(page)) { - need_wait_lock = 1; - goto out_ptl; + if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && + (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { + if (!userfaultfd_wp_async(vma)) { + spin_unlock(vmf.ptl); + hugetlb_vma_unlock_read(vma); + mutex_unlock(&hugetlb_fault_mutex_table[hash]); + return handle_userfault(&vmf, VM_UFFD_WP); } - get_page(page); + vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); + set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, + huge_page_size(hstate_vma(vma))); + /* Fallthrough to CoW */ + } if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { - if (!huge_pte_write(entry)) { - ret = hugetlb_wp(mm, vma, address, ptep, flags, - pagecache_page, ptl); - goto out_put_page; + if (!huge_pte_write(vmf.orig_pte)) { + /* + * Anonymous folios need to be lock since hugetlb_wp() + * checks whether we can re-use the folio exclusively + * for us in case we are the only user of it. + */ + folio = page_folio(pte_page(vmf.orig_pte)); + if (folio_test_anon(folio) && !folio_trylock(folio)) { + need_wait_lock = true; + goto out_ptl; + } + folio_get(folio); + ret = hugetlb_wp(&vmf); + if (folio_test_anon(folio)) + folio_unlock(folio); + folio_put(folio); + goto out_ptl; } else if (likely(flags & FAULT_FLAG_WRITE)) { - entry = huge_pte_mkdirty(entry); + vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); } } - entry = pte_mkyoung(entry); - if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, + vmf.orig_pte = pte_mkyoung(vmf.orig_pte); + if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, flags & FAULT_FLAG_WRITE)) - update_mmu_cache(vma, haddr, ptep); -out_put_page: - if (page != pagecache_page) - unlock_page(page); - put_page(page); + update_mmu_cache(vma, vmf.address, vmf.pte); out_ptl: - spin_unlock(ptl); - - if (pagecache_page) { - unlock_page(pagecache_page); - put_page(pagecache_page); - } + spin_unlock(vmf.ptl); out_mutex: hugetlb_vma_unlock_read(vma); + + /* + * We must check to release the per-VMA lock. __vmf_anon_prepare() in + * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. + */ + if (unlikely(ret & VM_FAULT_RETRY)) + vma_end_read(vma); + mutex_unlock(&hugetlb_fault_mutex_table[hash]); /* - * Generally it's safe to hold refcount during waiting page lock. But - * here we just wait to defer the next page fault to avoid busy loop and - * the page is not used after unlocked before returning from the current - * page fault. So we are safe from accessing freed page, even if we wait - * here without taking refcount. + * hugetlb_wp drops all the locks, but the folio lock, before trying to + * unmap the folio from other processes. During that window, if another + * process mapping that folio faults in, it will take the mutex and then + * it will wait on folio_lock, causing an ABBA deadlock. + * Use trylock instead and bail out if we fail. + * + * Ideally, we should hold a refcount on the folio we wait for, but we do + * not want to use the folio after it becomes unlocked, but rather just + * wait for it to become unlocked, so hopefully next fault successes on + * the trylock. */ if (need_wait_lock) - wait_on_page_locked(page); + folio_wait_locked(folio); return ret; } #ifdef CONFIG_USERFAULTFD /* - * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with - * modifications for huge pages. + * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). */ -int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, - pte_t *dst_pte, - struct vm_area_struct *dst_vma, - unsigned long dst_addr, - unsigned long src_addr, - enum mcopy_atomic_mode mode, - struct page **pagep, - bool wp_copy) +static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, + struct vm_area_struct *vma, unsigned long address) { - bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE); + struct mempolicy *mpol; + nodemask_t *nodemask; + struct folio *folio; + gfp_t gfp_mask; + int node; + + gfp_mask = htlb_alloc_mask(h); + node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); + /* + * This is used to allocate a temporary hugetlb to hold the copied + * content, which will then be copied again to the final hugetlb + * consuming a reservation. Set the alloc_fallback to false to indicate + * that breaking the per-node hugetlb pool is not allowed in this case. + */ + folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); + mpol_cond_put(mpol); + + return folio; +} + +/* + * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte + * with modifications for hugetlb pages. + */ +int hugetlb_mfill_atomic_pte(pte_t *dst_pte, + struct vm_area_struct *dst_vma, + unsigned long dst_addr, + unsigned long src_addr, + uffd_flags_t flags, + struct folio **foliop) +{ + struct mm_struct *dst_mm = dst_vma->vm_mm; + bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); + bool wp_enabled = (flags & MFILL_ATOMIC_WP); struct hstate *h = hstate_vma(dst_vma); struct address_space *mapping = dst_vma->vm_file->f_mapping; pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); - unsigned long size; + unsigned long size = huge_page_size(h); int vm_shared = dst_vma->vm_flags & VM_SHARED; pte_t _dst_pte; spinlock_t *ptl; int ret = -ENOMEM; - struct page *page; - int writable; - bool page_in_pagecache = false; + struct folio *folio; + bool folio_in_pagecache = false; + pte_t dst_ptep; + + if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { + ptl = huge_pte_lock(h, dst_mm, dst_pte); + + /* Don't overwrite any existing PTEs (even markers) */ + if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { + spin_unlock(ptl); + return -EEXIST; + } + + _dst_pte = make_pte_marker(PTE_MARKER_POISONED); + set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); + + /* No need to invalidate - it was non-present before */ + update_mmu_cache(dst_vma, dst_addr, dst_pte); + + spin_unlock(ptl); + return 0; + } if (is_continue) { ret = -EFAULT; - page = find_lock_page(mapping, idx); - if (!page) + folio = filemap_lock_hugetlb_folio(h, mapping, idx); + if (IS_ERR(folio)) goto out; - page_in_pagecache = true; - } else if (!*pagep) { - /* If a page already exists, then it's UFFDIO_COPY for + folio_in_pagecache = true; + } else if (!*foliop) { + /* If a folio already exists, then it's UFFDIO_COPY for * a non-missing case. Return -EEXIST. */ if (vm_shared && @@ -6197,74 +6243,89 @@ int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, goto out; } - page = alloc_huge_page(dst_vma, dst_addr, 0); - if (IS_ERR(page)) { + folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); + if (IS_ERR(folio)) { + pte_t *actual_pte = hugetlb_walk(dst_vma, dst_addr, PMD_SIZE); + if (actual_pte) { + ret = -EEXIST; + goto out; + } ret = -ENOMEM; goto out; } - ret = copy_huge_page_from_user(page, - (const void __user *) src_addr, - pages_per_huge_page(h), false); + ret = copy_folio_from_user(folio, (const void __user *) src_addr, + false); /* fallback to copy_from_user outside mmap_lock */ if (unlikely(ret)) { ret = -ENOENT; - /* Free the allocated page which may have + /* Free the allocated folio which may have * consumed a reservation. */ - restore_reserve_on_error(h, dst_vma, dst_addr, page); - put_page(page); + restore_reserve_on_error(h, dst_vma, dst_addr, folio); + folio_put(folio); - /* Allocate a temporary page to hold the copied + /* Allocate a temporary folio to hold the copied * contents. */ - page = alloc_huge_page_vma(h, dst_vma, dst_addr); - if (!page) { + folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); + if (!folio) { ret = -ENOMEM; goto out; } - *pagep = page; - /* Set the outparam pagep and return to the caller to + *foliop = folio; + /* Set the outparam foliop and return to the caller to * copy the contents outside the lock. Don't free the - * page. + * folio. */ goto out; } } else { if (vm_shared && hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { - put_page(*pagep); + folio_put(*foliop); ret = -EEXIST; - *pagep = NULL; + *foliop = NULL; goto out; } - page = alloc_huge_page(dst_vma, dst_addr, 0); - if (IS_ERR(page)) { - put_page(*pagep); + folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); + if (IS_ERR(folio)) { + folio_put(*foliop); ret = -ENOMEM; - *pagep = NULL; + *foliop = NULL; + goto out; + } + ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); + folio_put(*foliop); + *foliop = NULL; + if (ret) { + folio_put(folio); goto out; } - copy_user_huge_page(page, *pagep, dst_addr, dst_vma, - pages_per_huge_page(h)); - put_page(*pagep); - *pagep = NULL; } /* - * The memory barrier inside __SetPageUptodate makes sure that - * preceding stores to the page contents become visible before - * the set_pte_at() write. + * If we just allocated a new page, we need a memory barrier to ensure + * that preceding stores to the page become visible before the + * set_pte_at() write. The memory barrier inside __folio_mark_uptodate + * is what we need. + * + * In the case where we have not allocated a new page (is_continue), + * the page must already be uptodate. UFFDIO_CONTINUE already includes + * an earlier smp_wmb() to ensure that prior stores will be visible + * before the set_pte_at() write. */ - __SetPageUptodate(page); + if (!is_continue) + __folio_mark_uptodate(folio); + else + WARN_ON_ONCE(!folio_test_uptodate(folio)); /* Add shared, newly allocated pages to the page cache. */ if (vm_shared && !is_continue) { - size = i_size_read(mapping->host) >> huge_page_shift(h); ret = -EFAULT; - if (idx >= size) + if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) goto out_release_nounlock; /* @@ -6273,42 +6334,39 @@ int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, * hugetlb_fault_mutex_table that here must be hold by * the caller. */ - ret = hugetlb_add_to_page_cache(page, mapping, idx); + ret = hugetlb_add_to_page_cache(folio, mapping, idx); if (ret) goto out_release_nounlock; - page_in_pagecache = true; + folio_in_pagecache = true; } ptl = huge_pte_lock(h, dst_mm, dst_pte); ret = -EIO; - if (PageHWPoison(page)) + if (folio_test_hwpoison(folio)) goto out_release_unlock; + ret = -EEXIST; + + dst_ptep = huge_ptep_get(dst_mm, dst_addr, dst_pte); /* - * We allow to overwrite a pte marker: consider when both MISSING|WP - * registered, we firstly wr-protect a none pte which has no page cache - * page backing it, then access the page. + * See comment about UFFD marker overwriting in + * mfill_atomic_install_pte(). */ - ret = -EEXIST; - if (!huge_pte_none_mostly(huge_ptep_get(dst_pte))) + if (!huge_pte_none(dst_ptep) && !pte_is_uffd_marker(dst_ptep)) goto out_release_unlock; - if (page_in_pagecache) - page_dup_file_rmap(page, true); + if (folio_in_pagecache) + hugetlb_add_file_rmap(folio); else - hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); + hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); /* * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY * with wp flag set, don't set pte write bit. */ - if (wp_copy || (is_continue && !vm_shared)) - writable = 0; - else - writable = dst_vma->vm_flags & VM_WRITE; - - _dst_pte = make_huge_pte(dst_vma, page, writable); + _dst_pte = make_huge_pte(dst_vma, folio, + !wp_enabled && !(is_continue && !vm_shared)); /* * Always mark UFFDIO_COPY page dirty; note that this may not be * extremely important for hugetlbfs for now since swapping is not @@ -6318,10 +6376,10 @@ int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, _dst_pte = huge_pte_mkdirty(_dst_pte); _dst_pte = pte_mkyoung(_dst_pte); - if (wp_copy) + if (wp_enabled) _dst_pte = huge_pte_mkuffd_wp(_dst_pte); - set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); + set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); hugetlb_count_add(pages_per_huge_page(h), dst_mm); @@ -6330,301 +6388,25 @@ int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, spin_unlock(ptl); if (!is_continue) - SetHPageMigratable(page); + folio_set_hugetlb_migratable(folio); if (vm_shared || is_continue) - unlock_page(page); + folio_unlock(folio); ret = 0; out: return ret; out_release_unlock: spin_unlock(ptl); if (vm_shared || is_continue) - unlock_page(page); + folio_unlock(folio); out_release_nounlock: - if (!page_in_pagecache) - restore_reserve_on_error(h, dst_vma, dst_addr, page); - put_page(page); + if (!folio_in_pagecache) + restore_reserve_on_error(h, dst_vma, dst_addr, folio); + folio_put(folio); goto out; } #endif /* CONFIG_USERFAULTFD */ -static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, - int refs, struct page **pages, - struct vm_area_struct **vmas) -{ - int nr; - - for (nr = 0; nr < refs; nr++) { - if (likely(pages)) - pages[nr] = nth_page(page, nr); - if (vmas) - vmas[nr] = vma; - } -} - -static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma, - unsigned int flags, pte_t *pte, - bool *unshare) -{ - pte_t pteval = huge_ptep_get(pte); - - *unshare = false; - if (is_swap_pte(pteval)) - return true; - if (huge_pte_write(pteval)) - return false; - if (flags & FOLL_WRITE) - return true; - if (gup_must_unshare(vma, flags, pte_page(pteval))) { - *unshare = true; - return true; - } - return false; -} - -struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma, - unsigned long address, unsigned int flags) -{ - struct hstate *h = hstate_vma(vma); - struct mm_struct *mm = vma->vm_mm; - unsigned long haddr = address & huge_page_mask(h); - struct page *page = NULL; - spinlock_t *ptl; - pte_t *pte, entry; - - /* - * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via - * follow_hugetlb_page(). - */ - if (WARN_ON_ONCE(flags & FOLL_PIN)) - return NULL; - -retry: - pte = huge_pte_offset(mm, haddr, huge_page_size(h)); - if (!pte) - return NULL; - - ptl = huge_pte_lock(h, mm, pte); - entry = huge_ptep_get(pte); - if (pte_present(entry)) { - page = pte_page(entry) + - ((address & ~huge_page_mask(h)) >> PAGE_SHIFT); - /* - * Note that page may be a sub-page, and with vmemmap - * optimizations the page struct may be read only. - * try_grab_page() will increase the ref count on the - * head page, so this will be OK. - * - * try_grab_page() should always be able to get the page here, - * because we hold the ptl lock and have verified pte_present(). - */ - if (try_grab_page(page, flags)) { - page = NULL; - goto out; - } - } else { - if (is_hugetlb_entry_migration(entry)) { - spin_unlock(ptl); - __migration_entry_wait_huge(pte, ptl); - goto retry; - } - /* - * hwpoisoned entry is treated as no_page_table in - * follow_page_mask(). - */ - } -out: - spin_unlock(ptl); - return page; -} - -long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, - struct page **pages, struct vm_area_struct **vmas, - unsigned long *position, unsigned long *nr_pages, - long i, unsigned int flags, int *locked) -{ - unsigned long pfn_offset; - unsigned long vaddr = *position; - unsigned long remainder = *nr_pages; - struct hstate *h = hstate_vma(vma); - int err = -EFAULT, refs; - - while (vaddr < vma->vm_end && remainder) { - pte_t *pte; - spinlock_t *ptl = NULL; - bool unshare = false; - int absent; - struct page *page; - - /* - * If we have a pending SIGKILL, don't keep faulting pages and - * potentially allocating memory. - */ - if (fatal_signal_pending(current)) { - remainder = 0; - break; - } - - /* - * Some archs (sparc64, sh*) have multiple pte_ts to - * each hugepage. We have to make sure we get the - * first, for the page indexing below to work. - * - * Note that page table lock is not held when pte is null. - */ - pte = huge_pte_offset(mm, vaddr & huge_page_mask(h), - huge_page_size(h)); - if (pte) - ptl = huge_pte_lock(h, mm, pte); - absent = !pte || huge_pte_none(huge_ptep_get(pte)); - - /* - * When coredumping, it suits get_dump_page if we just return - * an error where there's an empty slot with no huge pagecache - * to back it. This way, we avoid allocating a hugepage, and - * the sparse dumpfile avoids allocating disk blocks, but its - * huge holes still show up with zeroes where they need to be. - */ - if (absent && (flags & FOLL_DUMP) && - !hugetlbfs_pagecache_present(h, vma, vaddr)) { - if (pte) - spin_unlock(ptl); - remainder = 0; - break; - } - - /* - * We need call hugetlb_fault for both hugepages under migration - * (in which case hugetlb_fault waits for the migration,) and - * hwpoisoned hugepages (in which case we need to prevent the - * caller from accessing to them.) In order to do this, we use - * here is_swap_pte instead of is_hugetlb_entry_migration and - * is_hugetlb_entry_hwpoisoned. This is because it simply covers - * both cases, and because we can't follow correct pages - * directly from any kind of swap entries. - */ - if (absent || - __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) { - vm_fault_t ret; - unsigned int fault_flags = 0; - - if (pte) - spin_unlock(ptl); - if (flags & FOLL_WRITE) - fault_flags |= FAULT_FLAG_WRITE; - else if (unshare) - fault_flags |= FAULT_FLAG_UNSHARE; - if (locked) { - fault_flags |= FAULT_FLAG_ALLOW_RETRY | - FAULT_FLAG_KILLABLE; - if (flags & FOLL_INTERRUPTIBLE) - fault_flags |= FAULT_FLAG_INTERRUPTIBLE; - } - if (flags & FOLL_NOWAIT) - fault_flags |= FAULT_FLAG_ALLOW_RETRY | - FAULT_FLAG_RETRY_NOWAIT; - if (flags & FOLL_TRIED) { - /* - * Note: FAULT_FLAG_ALLOW_RETRY and - * FAULT_FLAG_TRIED can co-exist - */ - fault_flags |= FAULT_FLAG_TRIED; - } - ret = hugetlb_fault(mm, vma, vaddr, fault_flags); - if (ret & VM_FAULT_ERROR) { - err = vm_fault_to_errno(ret, flags); - remainder = 0; - break; - } - if (ret & VM_FAULT_RETRY) { - if (locked && - !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) - *locked = 0; - *nr_pages = 0; - /* - * VM_FAULT_RETRY must not return an - * error, it will return zero - * instead. - * - * No need to update "position" as the - * caller will not check it after - * *nr_pages is set to 0. - */ - return i; - } - continue; - } - - pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; - page = pte_page(huge_ptep_get(pte)); - - VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && - !PageAnonExclusive(page), page); - - /* - * If subpage information not requested, update counters - * and skip the same_page loop below. - */ - if (!pages && !vmas && !pfn_offset && - (vaddr + huge_page_size(h) < vma->vm_end) && - (remainder >= pages_per_huge_page(h))) { - vaddr += huge_page_size(h); - remainder -= pages_per_huge_page(h); - i += pages_per_huge_page(h); - spin_unlock(ptl); - continue; - } - - /* vaddr may not be aligned to PAGE_SIZE */ - refs = min3(pages_per_huge_page(h) - pfn_offset, remainder, - (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT); - - if (pages || vmas) - record_subpages_vmas(nth_page(page, pfn_offset), - vma, refs, - likely(pages) ? pages + i : NULL, - vmas ? vmas + i : NULL); - - if (pages) { - /* - * try_grab_folio() should always succeed here, - * because: a) we hold the ptl lock, and b) we've just - * checked that the huge page is present in the page - * tables. If the huge page is present, then the tail - * pages must also be present. The ptl prevents the - * head page and tail pages from being rearranged in - * any way. As this is hugetlb, the pages will never - * be p2pdma or not longterm pinable. So this page - * must be available at this point, unless the page - * refcount overflowed: - */ - if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs, - flags))) { - spin_unlock(ptl); - remainder = 0; - err = -ENOMEM; - break; - } - } - - vaddr += (refs << PAGE_SHIFT); - remainder -= refs; - i += refs; - - spin_unlock(ptl); - } - *nr_pages = remainder; - /* - * setting position is actually required only if remainder is - * not zero but it's faster not to add a "if (remainder)" - * branch. - */ - *position = vaddr; - - return i ? i : err; -} - -unsigned long hugetlb_change_protection(struct vm_area_struct *vma, +long hugetlb_change_protection(struct vm_area_struct *vma, unsigned long address, unsigned long end, pgprot_t newprot, unsigned long cp_flags) { @@ -6633,7 +6415,7 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma, pte_t *ptep; pte_t pte; struct hstate *h = hstate_vma(vma); - unsigned long pages = 0, psize = huge_page_size(h); + long pages = 0, psize = huge_page_size(h); bool shared_pmd = false; struct mmu_notifier_range range; unsigned long last_addr_mask; @@ -6646,7 +6428,7 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma, * range if PMD sharing is possible. */ mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, - 0, vma, mm, start, end); + 0, mm, start, end); adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); BUG_ON(address >= end); @@ -6657,8 +6439,10 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma, i_mmap_lock_write(vma->vm_file->f_mapping); last_addr_mask = hugetlb_mask_last_page(h); for (; address < end; address += psize) { + softleaf_t entry; spinlock_t *ptl; - ptep = huge_pte_offset(mm, address, psize); + + ptep = hugetlb_walk(vma, address, psize); if (!ptep) { if (!uffd_wp) { address |= last_addr_mask; @@ -6669,8 +6453,10 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma, * pre-allocations to install pte markers. */ ptep = huge_pte_alloc(mm, vma, address, psize); - if (!ptep) + if (!ptep) { + pages = -ENOMEM; break; + } } ptl = huge_pte_lock(h, mm, ptep); if (huge_pmd_unshare(mm, vma, address, ptep)) { @@ -6686,16 +6472,25 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma, address |= last_addr_mask; continue; } - pte = huge_ptep_get(ptep); - if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { + pte = huge_ptep_get(mm, address, ptep); + if (huge_pte_none(pte)) { + if (unlikely(uffd_wp)) + /* Safe to modify directly (none->non-present). */ + set_huge_pte_at(mm, address, ptep, + make_pte_marker(PTE_MARKER_UFFD_WP), + psize); + goto next; + } + + entry = softleaf_from_pte(pte); + if (unlikely(softleaf_is_hwpoison(entry))) { /* Nothing to do. */ - } else if (unlikely(is_hugetlb_entry_migration(pte))) { - swp_entry_t entry = pte_to_swp_entry(pte); - struct page *page = pfn_swap_entry_to_page(entry); + } else if (unlikely(softleaf_is_migration(entry))) { + struct folio *folio = softleaf_to_folio(entry); pte_t newpte = pte; - if (is_writable_migration_entry(entry)) { - if (PageAnon(page)) + if (softleaf_is_migration_write(entry)) { + if (folio_test_anon(folio)) entry = make_readable_exclusive_migration_entry( swp_offset(entry)); else @@ -6710,14 +6505,18 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma, else if (uffd_wp_resolve) newpte = pte_swp_clear_uffd_wp(newpte); if (!pte_same(pte, newpte)) - set_huge_pte_at(mm, address, ptep, newpte); - } else if (unlikely(is_pte_marker(pte))) { - /* No other markers apply for now. */ - WARN_ON_ONCE(!pte_marker_uffd_wp(pte)); - if (uffd_wp_resolve) + set_huge_pte_at(mm, address, ptep, newpte, psize); + } else if (unlikely(pte_is_marker(pte))) { + /* + * Do nothing on a poison marker; page is + * corrupted, permissions do not apply. Here + * pte_marker_uffd_wp()==true implies !poison + * because they're mutual exclusive. + */ + if (pte_is_uffd_wp_marker(pte) && uffd_wp_resolve) /* Safe to modify directly (non-present->none). */ huge_pte_clear(mm, address, ptep, psize); - } else if (!huge_pte_none(pte)) { + } else { pte_t old_pte; unsigned int shift = huge_page_shift(hstate_vma(vma)); @@ -6725,19 +6524,16 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma, pte = huge_pte_modify(old_pte, newprot); pte = arch_make_huge_pte(pte, shift, vma->vm_flags); if (uffd_wp) - pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte)); + pte = huge_pte_mkuffd_wp(pte); else if (uffd_wp_resolve) pte = huge_pte_clear_uffd_wp(pte); huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); pages++; - } else { - /* None pte */ - if (unlikely(uffd_wp)) - /* Safe to modify directly (none->non-present). */ - set_huge_pte_at(mm, address, ptep, - make_pte_marker(PTE_MARKER_UFFD_WP)); } + +next: spin_unlock(ptl); + cond_resched(); } /* * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare @@ -6751,8 +6547,9 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma, else flush_hugetlb_tlb_range(vma, start, end); /* - * No need to call mmu_notifier_invalidate_range() we are downgrading - * page table protection not changing it to point to a new page. + * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are + * downgrading page table protection not changing it to point to a new + * page. * * See Documentation/mm/mmu_notifier.rst */ @@ -6760,16 +6557,23 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma, hugetlb_vma_unlock_write(vma); mmu_notifier_invalidate_range_end(&range); - return pages << h->order; + return pages > 0 ? (pages << h->order) : pages; } -/* Return true if reservation was successful, false otherwise. */ -bool hugetlb_reserve_pages(struct inode *inode, - long from, long to, - struct vm_area_struct *vma, - vm_flags_t vm_flags) +/* + * Update the reservation map for the range [from, to]. + * + * Returns the number of entries that would be added to the reservation map + * associated with the range [from, to]. This number is greater or equal to + * zero. -EINVAL or -ENOMEM is returned in case of any errors. + */ + +long hugetlb_reserve_pages(struct inode *inode, + long from, long to, + struct vm_area_desc *desc, + vm_flags_t vm_flags) { - long chg, add = -1; + long chg = -1, add = -1, spool_resv, gbl_resv; struct hstate *h = hstate_inode(inode); struct hugepage_subpool *spool = subpool_inode(inode); struct resv_map *resv_map; @@ -6779,30 +6583,24 @@ bool hugetlb_reserve_pages(struct inode *inode, /* This should never happen */ if (from > to) { VM_WARN(1, "%s called with a negative range\n", __func__); - return false; + return -EINVAL; } /* - * vma specific semaphore used for pmd sharing and fault/truncation - * synchronization - */ - hugetlb_vma_lock_alloc(vma); - - /* * Only apply hugepage reservation if asked. At fault time, an * attempt will be made for VM_NORESERVE to allocate a page * without using reserves */ if (vm_flags & VM_NORESERVE) - return true; + return 0; /* * Shared mappings base their reservation on the number of pages that * are already allocated on behalf of the file. Private mappings need * to reserve the full area even if read-only as mprotect() may be - * called to make the mapping read-write. Assume !vma is a shm mapping + * called to make the mapping read-write. Assume !desc is a shm mapping */ - if (!vma || vma->vm_flags & VM_MAYSHARE) { + if (!desc || desc->vm_flags & VM_MAYSHARE) { /* * resv_map can not be NULL as hugetlb_reserve_pages is only * called for inodes for which resv_maps were created (see @@ -6819,8 +6617,8 @@ bool hugetlb_reserve_pages(struct inode *inode, chg = to - from; - set_vma_resv_map(vma, resv_map); - set_vma_resv_flags(vma, HPAGE_RESV_OWNER); + set_vma_desc_resv_map(desc, resv_map); + set_vma_desc_resv_flags(desc, HPAGE_RESV_OWNER); } if (chg < 0) @@ -6830,7 +6628,7 @@ bool hugetlb_reserve_pages(struct inode *inode, chg * pages_per_huge_page(h), &h_cg) < 0) goto out_err; - if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { + if (desc && !(desc->vm_flags & VM_MAYSHARE) && h_cg) { /* For private mappings, the hugetlb_cgroup uncharge info hangs * of the resv_map. */ @@ -6864,7 +6662,7 @@ bool hugetlb_reserve_pages(struct inode *inode, * consumed reservations are stored in the map. Hence, nothing * else has to be done for private mappings here */ - if (!vma || vma->vm_flags & VM_MAYSHARE) { + if (!desc || desc->vm_flags & VM_MAYSHARE) { add = region_add(resv_map, from, to, regions_needed, h, h_cg); if (unlikely(add < 0)) { @@ -6874,7 +6672,7 @@ bool hugetlb_reserve_pages(struct inode *inode, /* * pages in this range were added to the reserve * map between region_chg and region_add. This - * indicates a race with alloc_huge_page. Adjust + * indicates a race with alloc_hugetlb_folio. Adjust * the subpool and reserve counts modified above * based on the difference. */ @@ -6901,25 +6699,34 @@ bool hugetlb_reserve_pages(struct inode *inode, hugetlb_cgroup_put_rsvd_cgroup(h_cg); } } - return true; + return chg; out_put_pages: - /* put back original number of pages, chg */ - (void)hugepage_subpool_put_pages(spool, chg); + spool_resv = chg - gbl_reserve; + if (spool_resv) { + /* put sub pool's reservation back, chg - gbl_reserve */ + gbl_resv = hugepage_subpool_put_pages(spool, spool_resv); + /* + * subpool's reserved pages can not be put back due to race, + * return to hstate. + */ + hugetlb_acct_memory(h, -gbl_resv); + } out_uncharge_cgroup: hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), chg * pages_per_huge_page(h), h_cg); out_err: - hugetlb_vma_lock_free(vma); - if (!vma || vma->vm_flags & VM_MAYSHARE) + if (!desc || desc->vm_flags & VM_MAYSHARE) /* Only call region_abort if the region_chg succeeded but the * region_add failed or didn't run. */ if (chg >= 0 && add < 0) region_abort(resv_map, from, to, regions_needed); - if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) + if (desc && is_vma_desc_resv_set(desc, HPAGE_RESV_OWNER)) { kref_put(&resv_map->refs, resv_map_release); - return false; + set_vma_desc_resv_map(desc, NULL); + } + return chg < 0 ? chg : add < 0 ? add : -EINVAL; } long hugetlb_unreserve_pages(struct inode *inode, long start, long end, @@ -6963,7 +6770,7 @@ long hugetlb_unreserve_pages(struct inode *inode, long start, long end, return 0; } -#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE +#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING static unsigned long page_table_shareable(struct vm_area_struct *svma, struct vm_area_struct *vma, unsigned long addr, pgoff_t idx) @@ -6974,8 +6781,8 @@ static unsigned long page_table_shareable(struct vm_area_struct *svma, unsigned long s_end = sbase + PUD_SIZE; /* Allow segments to share if only one is marked locked */ - unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; - unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK; + vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; + vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; /* * match the virtual addresses, permission and the alignment of the @@ -7059,7 +6866,6 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long saddr; pte_t *spte = NULL; pte_t *pte; - spinlock_t *ptl; i_mmap_lock_read(mapping); vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { @@ -7068,10 +6874,10 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, saddr = page_table_shareable(svma, vma, addr, idx); if (saddr) { - spte = huge_pte_offset(svma->vm_mm, saddr, - vma_mmu_pagesize(svma)); + spte = hugetlb_walk(svma, saddr, + vma_mmu_pagesize(svma)); if (spte) { - get_page(virt_to_page(spte)); + ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); break; } } @@ -7080,15 +6886,15 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, if (!spte) goto out; - ptl = huge_pte_lock(hstate_vma(vma), mm, spte); + spin_lock(&mm->page_table_lock); if (pud_none(*pud)) { pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK)); mm_inc_nr_pmds(mm); } else { - put_page(virt_to_page(spte)); + ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); } - spin_unlock(ptl); + spin_unlock(&mm->page_table_lock); out: pte = (pte_t *)pmd_alloc(mm, pud, addr); i_mmap_unlock_read(mapping); @@ -7098,10 +6904,6 @@ out: /* * unmap huge page backed by shared pte. * - * Hugetlb pte page is ref counted at the time of mapping. If pte is shared - * indicated by page_count > 1, unmap is achieved by clearing pud and - * decrementing the ref count. If count == 1, the pte page is not shared. - * * Called with page table lock held. * * returns: 1 successfully unmapped a shared pte page @@ -7110,23 +6912,31 @@ out: int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { + unsigned long sz = huge_page_size(hstate_vma(vma)); pgd_t *pgd = pgd_offset(mm, addr); p4d_t *p4d = p4d_offset(pgd, addr); pud_t *pud = pud_offset(p4d, addr); + if (sz != PMD_SIZE) + return 0; + if (!ptdesc_pmd_is_shared(virt_to_ptdesc(ptep))) + return 0; i_mmap_assert_write_locked(vma->vm_file->f_mapping); hugetlb_vma_assert_locked(vma); - BUG_ON(page_count(virt_to_page(ptep)) == 0); - if (page_count(virt_to_page(ptep)) == 1) - return 0; - pud_clear(pud); - put_page(virt_to_page(ptep)); + /* + * Once our caller drops the rmap lock, some other process might be + * using this page table as a normal, non-hugetlb page table. + * Wait for pending gup_fast() in other threads to finish before letting + * that happen. + */ + tlb_remove_table_sync_one(); + ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); mm_dec_nr_pmds(mm); return 1; } -#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ +#else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pud_t *pud) @@ -7149,7 +6959,7 @@ bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) { return false; } -#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ +#endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, @@ -7176,7 +6986,12 @@ pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, pte = (pte_t *)pmd_alloc(mm, pud, addr); } } - BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte)); + + if (pte) { + pte_t pteval = ptep_get_lockless(pte); + + BUG_ON(pte_present(pteval) && !pte_huge(pteval)); + } return pte; } @@ -7242,7 +7057,7 @@ unsigned long hugetlb_mask_last_page(struct hstate *h) /* See description above. Architectures can provide their own version. */ __weak unsigned long hugetlb_mask_last_page(struct hstate *h) { -#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE +#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING if (huge_page_size(h) == PMD_SIZE) return PUD_SIZE - PMD_SIZE; #endif @@ -7251,40 +7066,53 @@ __weak unsigned long hugetlb_mask_last_page(struct hstate *h) #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ -/* - * These functions are overwritable if your architecture needs its own - * behavior. +/** + * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio + * @folio: the folio to isolate + * @list: the list to add the folio to on success + * + * Isolate an allocated (refcount > 0) hugetlb folio, marking it as + * isolated/non-migratable, and moving it from the active list to the + * given list. + * + * Isolation will fail if @folio is not an allocated hugetlb folio, or if + * it is already isolated/non-migratable. + * + * On success, an additional folio reference is taken that must be dropped + * using folio_putback_hugetlb() to undo the isolation. + * + * Return: True if isolation worked, otherwise False. */ -int isolate_hugetlb(struct page *page, struct list_head *list) +bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) { - int ret = 0; + bool ret = true; spin_lock_irq(&hugetlb_lock); - if (!PageHeadHuge(page) || - !HPageMigratable(page) || - !get_page_unless_zero(page)) { - ret = -EBUSY; + if (!folio_test_hugetlb(folio) || + !folio_test_hugetlb_migratable(folio) || + !folio_try_get(folio)) { + ret = false; goto unlock; } - ClearHPageMigratable(page); - list_move_tail(&page->lru, list); + folio_clear_hugetlb_migratable(folio); + list_move_tail(&folio->lru, list); unlock: spin_unlock_irq(&hugetlb_lock); return ret; } -int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison) +int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) { int ret = 0; *hugetlb = false; spin_lock_irq(&hugetlb_lock); - if (PageHeadHuge(page)) { + if (folio_test_hugetlb(folio)) { *hugetlb = true; - if (HPageFreed(page)) + if (folio_test_hugetlb_freed(folio)) ret = 0; - else if (HPageMigratable(page) || unpoison) - ret = get_page_unless_zero(page); + else if (folio_test_hugetlb_migratable(folio) || unpoison) + ret = folio_try_get(folio); else ret = -EBUSY; } @@ -7303,13 +7131,24 @@ int get_huge_page_for_hwpoison(unsigned long pfn, int flags, return ret; } -void putback_active_hugepage(struct page *page) +/** + * folio_putback_hugetlb - unisolate a hugetlb folio + * @folio: the isolated hugetlb folio + * + * Putback/un-isolate the hugetlb folio that was previous isolated using + * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it + * back onto the active list. + * + * Will drop the additional folio reference obtained through + * folio_isolate_hugetlb(). + */ +void folio_putback_hugetlb(struct folio *folio) { spin_lock_irq(&hugetlb_lock); - SetHPageMigratable(page); - list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); + folio_set_hugetlb_migratable(folio); + list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); spin_unlock_irq(&hugetlb_lock); - put_page(page); + folio_put(folio); } void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) @@ -7317,7 +7156,7 @@ void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int re struct hstate *h = folio_hstate(old_folio); hugetlb_cgroup_migrate(old_folio, new_folio); - set_page_owner_migrate_reason(&new_folio->page, reason); + folio_set_owner_migrate_reason(new_folio, reason); /* * transfer temporary state of the new hugetlb folio. This is @@ -7350,11 +7189,28 @@ void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int re } spin_unlock_irq(&hugetlb_lock); } + + /* + * Our old folio is isolated and has "migratable" cleared until it + * is putback. As migration succeeded, set the new folio "migratable" + * and add it to the active list. + */ + spin_lock_irq(&hugetlb_lock); + folio_set_hugetlb_migratable(new_folio); + list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); + spin_unlock_irq(&hugetlb_lock); } +/* + * If @take_locks is false, the caller must ensure that no concurrent page table + * access can happen (except for gup_fast() and hardware page walks). + * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like + * concurrent page fault handling) and the file rmap lock. + */ static void hugetlb_unshare_pmds(struct vm_area_struct *vma, unsigned long start, - unsigned long end) + unsigned long end, + bool take_locks) { struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); @@ -7375,13 +7231,17 @@ static void hugetlb_unshare_pmds(struct vm_area_struct *vma, * No need to call adjust_range_if_pmd_sharing_possible(), because * we have already done the PUD_SIZE alignment. */ - mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, + mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, start, end); mmu_notifier_invalidate_range_start(&range); - hugetlb_vma_lock_write(vma); - i_mmap_lock_write(vma->vm_file->f_mapping); + if (take_locks) { + hugetlb_vma_lock_write(vma); + i_mmap_lock_write(vma->vm_file->f_mapping); + } else { + i_mmap_assert_write_locked(vma->vm_file->f_mapping); + } for (address = start; address < end; address += PUD_SIZE) { - ptep = huge_pte_offset(mm, address, sz); + ptep = hugetlb_walk(vma, address, sz); if (!ptep) continue; ptl = huge_pte_lock(h, mm, ptep); @@ -7389,10 +7249,12 @@ static void hugetlb_unshare_pmds(struct vm_area_struct *vma, spin_unlock(ptl); } flush_hugetlb_tlb_range(vma, start, end); - i_mmap_unlock_write(vma->vm_file->f_mapping); - hugetlb_vma_unlock_write(vma); + if (take_locks) { + i_mmap_unlock_write(vma->vm_file->f_mapping); + hugetlb_vma_unlock_write(vma); + } /* - * No need to call mmu_notifier_invalidate_range(), see + * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see * Documentation/mm/mmu_notifier.rst. */ mmu_notifier_invalidate_range_end(&range); @@ -7405,158 +7267,20 @@ static void hugetlb_unshare_pmds(struct vm_area_struct *vma, void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), - ALIGN_DOWN(vma->vm_end, PUD_SIZE)); -} - -#ifdef CONFIG_CMA -static bool cma_reserve_called __initdata; - -static int __init cmdline_parse_hugetlb_cma(char *p) -{ - int nid, count = 0; - unsigned long tmp; - char *s = p; - - while (*s) { - if (sscanf(s, "%lu%n", &tmp, &count) != 1) - break; - - if (s[count] == ':') { - if (tmp >= MAX_NUMNODES) - break; - nid = array_index_nospec(tmp, MAX_NUMNODES); - - s += count + 1; - tmp = memparse(s, &s); - hugetlb_cma_size_in_node[nid] = tmp; - hugetlb_cma_size += tmp; - - /* - * Skip the separator if have one, otherwise - * break the parsing. - */ - if (*s == ',') - s++; - else - break; - } else { - hugetlb_cma_size = memparse(p, &p); - break; - } - } - - return 0; -} - -early_param("hugetlb_cma", cmdline_parse_hugetlb_cma); - -void __init hugetlb_cma_reserve(int order) -{ - unsigned long size, reserved, per_node; - bool node_specific_cma_alloc = false; - int nid; - - cma_reserve_called = true; - - if (!hugetlb_cma_size) - return; - - for (nid = 0; nid < MAX_NUMNODES; nid++) { - if (hugetlb_cma_size_in_node[nid] == 0) - continue; - - if (!node_online(nid)) { - pr_warn("hugetlb_cma: invalid node %d specified\n", nid); - hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; - hugetlb_cma_size_in_node[nid] = 0; - continue; - } - - if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) { - pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n", - nid, (PAGE_SIZE << order) / SZ_1M); - hugetlb_cma_size -= hugetlb_cma_size_in_node[nid]; - hugetlb_cma_size_in_node[nid] = 0; - } else { - node_specific_cma_alloc = true; - } - } - - /* Validate the CMA size again in case some invalid nodes specified. */ - if (!hugetlb_cma_size) - return; - - if (hugetlb_cma_size < (PAGE_SIZE << order)) { - pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n", - (PAGE_SIZE << order) / SZ_1M); - hugetlb_cma_size = 0; - return; - } - - if (!node_specific_cma_alloc) { - /* - * If 3 GB area is requested on a machine with 4 numa nodes, - * let's allocate 1 GB on first three nodes and ignore the last one. - */ - per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes); - pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n", - hugetlb_cma_size / SZ_1M, per_node / SZ_1M); - } - - reserved = 0; - for_each_online_node(nid) { - int res; - char name[CMA_MAX_NAME]; - - if (node_specific_cma_alloc) { - if (hugetlb_cma_size_in_node[nid] == 0) - continue; - - size = hugetlb_cma_size_in_node[nid]; - } else { - size = min(per_node, hugetlb_cma_size - reserved); - } - - size = round_up(size, PAGE_SIZE << order); - - snprintf(name, sizeof(name), "hugetlb%d", nid); - /* - * Note that 'order per bit' is based on smallest size that - * may be returned to CMA allocator in the case of - * huge page demotion. - */ - res = cma_declare_contiguous_nid(0, size, 0, - PAGE_SIZE << HUGETLB_PAGE_ORDER, - 0, false, name, - &hugetlb_cma[nid], nid); - if (res) { - pr_warn("hugetlb_cma: reservation failed: err %d, node %d", - res, nid); - continue; - } - - reserved += size; - pr_info("hugetlb_cma: reserved %lu MiB on node %d\n", - size / SZ_1M, nid); - - if (reserved >= hugetlb_cma_size) - break; - } - - if (!reserved) - /* - * hugetlb_cma_size is used to determine if allocations from - * cma are possible. Set to zero if no cma regions are set up. - */ - hugetlb_cma_size = 0; + ALIGN_DOWN(vma->vm_end, PUD_SIZE), + /* take_locks = */ true); } -static void __init hugetlb_cma_check(void) +/* + * For hugetlb, mremap() is an odd edge case - while the VMA copying is + * performed, we permit both the old and new VMAs to reference the same + * reservation. + * + * We fix this up after the operation succeeds, or if a newly allocated VMA + * is closed as a result of a failure to allocate memory. + */ +void fixup_hugetlb_reservations(struct vm_area_struct *vma) { - if (!hugetlb_cma_size || cma_reserve_called) - return; - - pr_warn("hugetlb_cma: the option isn't supported by current arch\n"); + if (is_vm_hugetlb_page(vma)) + clear_vma_resv_huge_pages(vma); } - -#endif /* CONFIG_CMA */ |
