diff options
Diffstat (limited to 'mm/hugetlb.c')
| -rw-r--r-- | mm/hugetlb.c | 7825 |
1 files changed, 5839 insertions, 1986 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 83aff0a4d093..9e7815b4f058 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -1,128 +1,284 @@ +// SPDX-License-Identifier: GPL-2.0-only /* * Generic hugetlb support. * (C) Nadia Yvette Chambers, April 2004 */ #include <linux/list.h> #include <linux/init.h> -#include <linux/module.h> #include <linux/mm.h> #include <linux/seq_file.h> -#include <linux/sysctl.h> #include <linux/highmem.h> #include <linux/mmu_notifier.h> #include <linux/nodemask.h> #include <linux/pagemap.h> #include <linux/mempolicy.h> +#include <linux/compiler.h> +#include <linux/cpumask.h> #include <linux/cpuset.h> #include <linux/mutex.h> -#include <linux/bootmem.h> -#include <linux/sysfs.h> +#include <linux/memblock.h> +#include <linux/minmax.h> #include <linux/slab.h> +#include <linux/sched/mm.h> +#include <linux/mmdebug.h> +#include <linux/sched/signal.h> #include <linux/rmap.h> +#include <linux/string_choices.h> +#include <linux/string_helpers.h> #include <linux/swap.h> -#include <linux/swapops.h> +#include <linux/leafops.h> +#include <linux/jhash.h> +#include <linux/numa.h> +#include <linux/llist.h> +#include <linux/cma.h> +#include <linux/migrate.h> +#include <linux/nospec.h> +#include <linux/delayacct.h> +#include <linux/memory.h> +#include <linux/mm_inline.h> +#include <linux/padata.h> +#include <linux/pgalloc.h> #include <asm/page.h> -#include <asm/pgtable.h> #include <asm/tlb.h> +#include <asm/setup.h> #include <linux/io.h> -#include <linux/hugetlb.h> -#include <linux/hugetlb_cgroup.h> #include <linux/node.h> +#include <linux/page_owner.h> #include "internal.h" - -const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; -static gfp_t htlb_alloc_mask = GFP_HIGHUSER; -unsigned long hugepages_treat_as_movable; +#include "hugetlb_vmemmap.h" +#include "hugetlb_cma.h" +#include "hugetlb_internal.h" +#include <linux/page-isolation.h> int hugetlb_max_hstate __read_mostly; unsigned int default_hstate_idx; struct hstate hstates[HUGE_MAX_HSTATE]; -__initdata LIST_HEAD(huge_boot_pages); +__initdata nodemask_t hugetlb_bootmem_nodes; +__initdata struct list_head huge_boot_pages[MAX_NUMNODES]; +static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; + +/* + * Due to ordering constraints across the init code for various + * architectures, hugetlb hstate cmdline parameters can't simply + * be early_param. early_param might call the setup function + * before valid hugetlb page sizes are determined, leading to + * incorrect rejection of valid hugepagesz= options. + * + * So, record the parameters early and consume them whenever the + * init code is ready for them, by calling hugetlb_parse_params(). + */ + +/* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ +#define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) +struct hugetlb_cmdline { + char *val; + int (*setup)(char *val); +}; /* for command line parsing */ static struct hstate * __initdata parsed_hstate; static unsigned long __initdata default_hstate_max_huge_pages; -static unsigned long __initdata default_hstate_size; +static bool __initdata parsed_valid_hugepagesz = true; +static bool __initdata parsed_default_hugepagesz; +static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; +static unsigned long hugepage_allocation_threads __initdata; + +static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; +static int hstate_cmdline_index __initdata; +static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; +static int hugetlb_param_index __initdata; +static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); +static __init void hugetlb_parse_params(void); + +#define hugetlb_early_param(str, func) \ +static __init int func##args(char *s) \ +{ \ + return hugetlb_add_param(s, func); \ +} \ +early_param(str, func##args) + +/* + * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, + * free_huge_pages, and surplus_huge_pages. + */ +__cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); /* - * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages + * Serializes faults on the same logical page. This is used to + * prevent spurious OOMs when the hugepage pool is fully utilized. */ -DEFINE_SPINLOCK(hugetlb_lock); +static int num_fault_mutexes __ro_after_init; +struct mutex *hugetlb_fault_mutex_table __ro_after_init; + +/* Forward declaration */ +static int hugetlb_acct_memory(struct hstate *h, long delta); +static void hugetlb_vma_lock_free(struct vm_area_struct *vma); +static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); +static void hugetlb_unshare_pmds(struct vm_area_struct *vma, + unsigned long start, unsigned long end, bool take_locks); +static struct resv_map *vma_resv_map(struct vm_area_struct *vma); -static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) +static void hugetlb_free_folio(struct folio *folio) { - bool free = (spool->count == 0) && (spool->used_hpages == 0); + if (folio_test_hugetlb_cma(folio)) { + hugetlb_cma_free_folio(folio); + return; + } + + folio_put(folio); +} + +static inline bool subpool_is_free(struct hugepage_subpool *spool) +{ + if (spool->count) + return false; + if (spool->max_hpages != -1) + return spool->used_hpages == 0; + if (spool->min_hpages != -1) + return spool->rsv_hpages == spool->min_hpages; + + return true; +} - spin_unlock(&spool->lock); +static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, + unsigned long irq_flags) +{ + spin_unlock_irqrestore(&spool->lock, irq_flags); /* If no pages are used, and no other handles to the subpool - * remain, free the subpool the subpool remain */ - if (free) + * remain, give up any reservations based on minimum size and + * free the subpool */ + if (subpool_is_free(spool)) { + if (spool->min_hpages != -1) + hugetlb_acct_memory(spool->hstate, + -spool->min_hpages); kfree(spool); + } } -struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) +struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, + long min_hpages) { struct hugepage_subpool *spool; - spool = kmalloc(sizeof(*spool), GFP_KERNEL); + spool = kzalloc(sizeof(*spool), GFP_KERNEL); if (!spool) return NULL; spin_lock_init(&spool->lock); spool->count = 1; - spool->max_hpages = nr_blocks; - spool->used_hpages = 0; + spool->max_hpages = max_hpages; + spool->hstate = h; + spool->min_hpages = min_hpages; + + if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { + kfree(spool); + return NULL; + } + spool->rsv_hpages = min_hpages; return spool; } void hugepage_put_subpool(struct hugepage_subpool *spool) { - spin_lock(&spool->lock); + unsigned long flags; + + spin_lock_irqsave(&spool->lock, flags); BUG_ON(!spool->count); spool->count--; - unlock_or_release_subpool(spool); + unlock_or_release_subpool(spool, flags); } -static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, +/* + * Subpool accounting for allocating and reserving pages. + * Return -ENOMEM if there are not enough resources to satisfy the + * request. Otherwise, return the number of pages by which the + * global pools must be adjusted (upward). The returned value may + * only be different than the passed value (delta) in the case where + * a subpool minimum size must be maintained. + */ +static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, long delta) { - int ret = 0; + long ret = delta; if (!spool) - return 0; + return ret; - spin_lock(&spool->lock); - if ((spool->used_hpages + delta) <= spool->max_hpages) { - spool->used_hpages += delta; - } else { - ret = -ENOMEM; + spin_lock_irq(&spool->lock); + + if (spool->max_hpages != -1) { /* maximum size accounting */ + if ((spool->used_hpages + delta) <= spool->max_hpages) + spool->used_hpages += delta; + else { + ret = -ENOMEM; + goto unlock_ret; + } + } + + /* minimum size accounting */ + if (spool->min_hpages != -1 && spool->rsv_hpages) { + if (delta > spool->rsv_hpages) { + /* + * Asking for more reserves than those already taken on + * behalf of subpool. Return difference. + */ + ret = delta - spool->rsv_hpages; + spool->rsv_hpages = 0; + } else { + ret = 0; /* reserves already accounted for */ + spool->rsv_hpages -= delta; + } } - spin_unlock(&spool->lock); +unlock_ret: + spin_unlock_irq(&spool->lock); return ret; } -static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, +/* + * Subpool accounting for freeing and unreserving pages. + * Return the number of global page reservations that must be dropped. + * The return value may only be different than the passed value (delta) + * in the case where a subpool minimum size must be maintained. + */ +static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, long delta) { + long ret = delta; + unsigned long flags; + if (!spool) - return; + return delta; - spin_lock(&spool->lock); - spool->used_hpages -= delta; - /* If hugetlbfs_put_super couldn't free spool due to - * an outstanding quota reference, free it now. */ - unlock_or_release_subpool(spool); -} + spin_lock_irqsave(&spool->lock, flags); -static inline struct hugepage_subpool *subpool_inode(struct inode *inode) -{ - return HUGETLBFS_SB(inode->i_sb)->spool; + if (spool->max_hpages != -1) /* maximum size accounting */ + spool->used_hpages -= delta; + + /* minimum size accounting */ + if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { + if (spool->rsv_hpages + delta <= spool->min_hpages) + ret = 0; + else + ret = spool->rsv_hpages + delta - spool->min_hpages; + + spool->rsv_hpages += delta; + if (spool->rsv_hpages > spool->min_hpages) + spool->rsv_hpages = spool->min_hpages; + } + + /* + * If hugetlbfs_put_super couldn't free spool due to an outstanding + * quota reference, free it now. + */ + unlock_or_release_subpool(spool, flags); + + return ret; } static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) @@ -131,145 +287,714 @@ static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) } /* - * Region tracking -- allows tracking of reservations and instantiated pages - * across the pages in a mapping. - * - * The region data structures are protected by a combination of the mmap_sem - * and the hugetlb_instantion_mutex. To access or modify a region the caller - * must either hold the mmap_sem for write, or the mmap_sem for read and - * the hugetlb_instantiation mutex: - * - * down_write(&mm->mmap_sem); - * or - * down_read(&mm->mmap_sem); - * mutex_lock(&hugetlb_instantiation_mutex); - */ -struct file_region { - struct list_head link; - long from; - long to; -}; + * hugetlb vma_lock helper routines + */ +void hugetlb_vma_lock_read(struct vm_area_struct *vma) +{ + if (__vma_shareable_lock(vma)) { + struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; + + down_read(&vma_lock->rw_sema); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + down_read(&resv_map->rw_sema); + } +} -static long region_add(struct list_head *head, long f, long t) +void hugetlb_vma_unlock_read(struct vm_area_struct *vma) { - struct file_region *rg, *nrg, *trg; + if (__vma_shareable_lock(vma)) { + struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; - /* Locate the region we are either in or before. */ - list_for_each_entry(rg, head, link) - if (f <= rg->to) - break; + up_read(&vma_lock->rw_sema); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); - /* Round our left edge to the current segment if it encloses us. */ - if (f > rg->from) - f = rg->from; + up_read(&resv_map->rw_sema); + } +} - /* Check for and consume any regions we now overlap with. */ - nrg = rg; - list_for_each_entry_safe(rg, trg, rg->link.prev, link) { - if (&rg->link == head) - break; - if (rg->from > t) - break; +void hugetlb_vma_lock_write(struct vm_area_struct *vma) +{ + if (__vma_shareable_lock(vma)) { + struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; - /* If this area reaches higher then extend our area to - * include it completely. If this is not the first area - * which we intend to reuse, free it. */ - if (rg->to > t) - t = rg->to; - if (rg != nrg) { - list_del(&rg->link); - kfree(rg); - } + down_write(&vma_lock->rw_sema); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + down_write(&resv_map->rw_sema); + } +} + +void hugetlb_vma_unlock_write(struct vm_area_struct *vma) +{ + if (__vma_shareable_lock(vma)) { + struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; + + up_write(&vma_lock->rw_sema); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + up_write(&resv_map->rw_sema); + } +} + +int hugetlb_vma_trylock_write(struct vm_area_struct *vma) +{ + + if (__vma_shareable_lock(vma)) { + struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; + + return down_write_trylock(&vma_lock->rw_sema); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + return down_write_trylock(&resv_map->rw_sema); + } + + return 1; +} + +void hugetlb_vma_assert_locked(struct vm_area_struct *vma) +{ + if (__vma_shareable_lock(vma)) { + struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; + + lockdep_assert_held(&vma_lock->rw_sema); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + lockdep_assert_held(&resv_map->rw_sema); } - nrg->from = f; - nrg->to = t; +} + +void hugetlb_vma_lock_release(struct kref *kref) +{ + struct hugetlb_vma_lock *vma_lock = container_of(kref, + struct hugetlb_vma_lock, refs); + + kfree(vma_lock); +} + +static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) +{ + struct vm_area_struct *vma = vma_lock->vma; + + /* + * vma_lock structure may or not be released as a result of put, + * it certainly will no longer be attached to vma so clear pointer. + * Semaphore synchronizes access to vma_lock->vma field. + */ + vma_lock->vma = NULL; + vma->vm_private_data = NULL; + up_write(&vma_lock->rw_sema); + kref_put(&vma_lock->refs, hugetlb_vma_lock_release); +} + +static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) +{ + if (__vma_shareable_lock(vma)) { + struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; + + __hugetlb_vma_unlock_write_put(vma_lock); + } else if (__vma_private_lock(vma)) { + struct resv_map *resv_map = vma_resv_map(vma); + + /* no free for anon vmas, but still need to unlock */ + up_write(&resv_map->rw_sema); + } +} + +static void hugetlb_vma_lock_free(struct vm_area_struct *vma) +{ + /* + * Only present in sharable vmas. + */ + if (!vma || !__vma_shareable_lock(vma)) + return; + + if (vma->vm_private_data) { + struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; + + down_write(&vma_lock->rw_sema); + __hugetlb_vma_unlock_write_put(vma_lock); + } +} + +/* + * vma specific semaphore used for pmd sharing and fault/truncation + * synchronization + */ +int hugetlb_vma_lock_alloc(struct vm_area_struct *vma) +{ + struct hugetlb_vma_lock *vma_lock; + + /* Only establish in (flags) sharable vmas */ + if (!vma || !(vma->vm_flags & VM_MAYSHARE)) + return 0; + + /* Should never get here with non-NULL vm_private_data */ + if (vma->vm_private_data) + return -EINVAL; + + vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); + if (!vma_lock) { + /* + * If we can not allocate structure, then vma can not + * participate in pmd sharing. This is only a possible + * performance enhancement and memory saving issue. + * However, the lock is also used to synchronize page + * faults with truncation. If the lock is not present, + * unlikely races could leave pages in a file past i_size + * until the file is removed. Warn in the unlikely case of + * allocation failure. + */ + pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); + return -EINVAL; + } + + kref_init(&vma_lock->refs); + init_rwsem(&vma_lock->rw_sema); + vma_lock->vma = vma; + vma->vm_private_data = vma_lock; + return 0; } -static long region_chg(struct list_head *head, long f, long t) +/* Helper that removes a struct file_region from the resv_map cache and returns + * it for use. + */ +static struct file_region * +get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) { - struct file_region *rg, *nrg; - long chg = 0; + struct file_region *nrg; - /* Locate the region we are before or in. */ - list_for_each_entry(rg, head, link) - if (f <= rg->to) - break; + VM_BUG_ON(resv->region_cache_count <= 0); - /* If we are below the current region then a new region is required. - * Subtle, allocate a new region at the position but make it zero - * size such that we can guarantee to record the reservation. */ - if (&rg->link == head || t < rg->from) { - nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); - if (!nrg) - return -ENOMEM; - nrg->from = f; - nrg->to = f; - INIT_LIST_HEAD(&nrg->link); - list_add(&nrg->link, rg->link.prev); + resv->region_cache_count--; + nrg = list_first_entry(&resv->region_cache, struct file_region, link); + list_del(&nrg->link); + + nrg->from = from; + nrg->to = to; + + return nrg; +} - return t - f; +static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, + struct file_region *rg) +{ +#ifdef CONFIG_CGROUP_HUGETLB + nrg->reservation_counter = rg->reservation_counter; + nrg->css = rg->css; + if (rg->css) + css_get(rg->css); +#endif +} + +/* Helper that records hugetlb_cgroup uncharge info. */ +static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, + struct hstate *h, + struct resv_map *resv, + struct file_region *nrg) +{ +#ifdef CONFIG_CGROUP_HUGETLB + if (h_cg) { + nrg->reservation_counter = + &h_cg->rsvd_hugepage[hstate_index(h)]; + nrg->css = &h_cg->css; + /* + * The caller will hold exactly one h_cg->css reference for the + * whole contiguous reservation region. But this area might be + * scattered when there are already some file_regions reside in + * it. As a result, many file_regions may share only one css + * reference. In order to ensure that one file_region must hold + * exactly one h_cg->css reference, we should do css_get for + * each file_region and leave the reference held by caller + * untouched. + */ + css_get(&h_cg->css); + if (!resv->pages_per_hpage) + resv->pages_per_hpage = pages_per_huge_page(h); + /* pages_per_hpage should be the same for all entries in + * a resv_map. + */ + VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); + } else { + nrg->reservation_counter = NULL; + nrg->css = NULL; + } +#endif +} + +static void put_uncharge_info(struct file_region *rg) +{ +#ifdef CONFIG_CGROUP_HUGETLB + if (rg->css) + css_put(rg->css); +#endif +} + +static bool has_same_uncharge_info(struct file_region *rg, + struct file_region *org) +{ +#ifdef CONFIG_CGROUP_HUGETLB + return rg->reservation_counter == org->reservation_counter && + rg->css == org->css; + +#else + return true; +#endif +} + +static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) +{ + struct file_region *nrg, *prg; + + prg = list_prev_entry(rg, link); + if (&prg->link != &resv->regions && prg->to == rg->from && + has_same_uncharge_info(prg, rg)) { + prg->to = rg->to; + + list_del(&rg->link); + put_uncharge_info(rg); + kfree(rg); + + rg = prg; } - /* Round our left edge to the current segment if it encloses us. */ - if (f > rg->from) - f = rg->from; - chg = t - f; + nrg = list_next_entry(rg, link); + if (&nrg->link != &resv->regions && nrg->from == rg->to && + has_same_uncharge_info(nrg, rg)) { + nrg->from = rg->from; + + list_del(&rg->link); + put_uncharge_info(rg); + kfree(rg); + } +} + +static inline long +hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, + long to, struct hstate *h, struct hugetlb_cgroup *cg, + long *regions_needed) +{ + struct file_region *nrg; - /* Check for and consume any regions we now overlap with. */ - list_for_each_entry(rg, rg->link.prev, link) { - if (&rg->link == head) + if (!regions_needed) { + nrg = get_file_region_entry_from_cache(map, from, to); + record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); + list_add(&nrg->link, rg); + coalesce_file_region(map, nrg); + } else + *regions_needed += 1; + + return to - from; +} + +/* + * Must be called with resv->lock held. + * + * Calling this with regions_needed != NULL will count the number of pages + * to be added but will not modify the linked list. And regions_needed will + * indicate the number of file_regions needed in the cache to carry out to add + * the regions for this range. + */ +static long add_reservation_in_range(struct resv_map *resv, long f, long t, + struct hugetlb_cgroup *h_cg, + struct hstate *h, long *regions_needed) +{ + long add = 0; + struct list_head *head = &resv->regions; + long last_accounted_offset = f; + struct file_region *iter, *trg = NULL; + struct list_head *rg = NULL; + + if (regions_needed) + *regions_needed = 0; + + /* In this loop, we essentially handle an entry for the range + * [last_accounted_offset, iter->from), at every iteration, with some + * bounds checking. + */ + list_for_each_entry_safe(iter, trg, head, link) { + /* Skip irrelevant regions that start before our range. */ + if (iter->from < f) { + /* If this region ends after the last accounted offset, + * then we need to update last_accounted_offset. + */ + if (iter->to > last_accounted_offset) + last_accounted_offset = iter->to; + continue; + } + + /* When we find a region that starts beyond our range, we've + * finished. + */ + if (iter->from >= t) { + rg = iter->link.prev; break; - if (rg->from > t) - return chg; + } + + /* Add an entry for last_accounted_offset -> iter->from, and + * update last_accounted_offset. + */ + if (iter->from > last_accounted_offset) + add += hugetlb_resv_map_add(resv, iter->link.prev, + last_accounted_offset, + iter->from, h, h_cg, + regions_needed); + + last_accounted_offset = iter->to; + } + + /* Handle the case where our range extends beyond + * last_accounted_offset. + */ + if (!rg) + rg = head->prev; + if (last_accounted_offset < t) + add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, + t, h, h_cg, regions_needed); + + return add; +} + +/* Must be called with resv->lock acquired. Will drop lock to allocate entries. + */ +static int allocate_file_region_entries(struct resv_map *resv, + int regions_needed) + __must_hold(&resv->lock) +{ + LIST_HEAD(allocated_regions); + int to_allocate = 0, i = 0; + struct file_region *trg = NULL, *rg = NULL; + + VM_BUG_ON(regions_needed < 0); + + /* + * Check for sufficient descriptors in the cache to accommodate + * the number of in progress add operations plus regions_needed. + * + * This is a while loop because when we drop the lock, some other call + * to region_add or region_del may have consumed some region_entries, + * so we keep looping here until we finally have enough entries for + * (adds_in_progress + regions_needed). + */ + while (resv->region_cache_count < + (resv->adds_in_progress + regions_needed)) { + to_allocate = resv->adds_in_progress + regions_needed - + resv->region_cache_count; + + /* At this point, we should have enough entries in the cache + * for all the existing adds_in_progress. We should only be + * needing to allocate for regions_needed. + */ + VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); + + spin_unlock(&resv->lock); + for (i = 0; i < to_allocate; i++) { + trg = kmalloc(sizeof(*trg), GFP_KERNEL); + if (!trg) + goto out_of_memory; + list_add(&trg->link, &allocated_regions); + } + + spin_lock(&resv->lock); + + list_splice(&allocated_regions, &resv->region_cache); + resv->region_cache_count += to_allocate; + } + + return 0; + +out_of_memory: + list_for_each_entry_safe(rg, trg, &allocated_regions, link) { + list_del(&rg->link); + kfree(rg); + } + return -ENOMEM; +} + +/* + * Add the huge page range represented by [f, t) to the reserve + * map. Regions will be taken from the cache to fill in this range. + * Sufficient regions should exist in the cache due to the previous + * call to region_chg with the same range, but in some cases the cache will not + * have sufficient entries due to races with other code doing region_add or + * region_del. The extra needed entries will be allocated. + * + * regions_needed is the out value provided by a previous call to region_chg. + * + * Return the number of new huge pages added to the map. This number is greater + * than or equal to zero. If file_region entries needed to be allocated for + * this operation and we were not able to allocate, it returns -ENOMEM. + * region_add of regions of length 1 never allocate file_regions and cannot + * fail; region_chg will always allocate at least 1 entry and a region_add for + * 1 page will only require at most 1 entry. + */ +static long region_add(struct resv_map *resv, long f, long t, + long in_regions_needed, struct hstate *h, + struct hugetlb_cgroup *h_cg) +{ + long add = 0, actual_regions_needed = 0; + + spin_lock(&resv->lock); +retry: + + /* Count how many regions are actually needed to execute this add. */ + add_reservation_in_range(resv, f, t, NULL, NULL, + &actual_regions_needed); - /* We overlap with this area, if it extends further than - * us then we must extend ourselves. Account for its - * existing reservation. */ - if (rg->to > t) { - chg += rg->to - t; - t = rg->to; + /* + * Check for sufficient descriptors in the cache to accommodate + * this add operation. Note that actual_regions_needed may be greater + * than in_regions_needed, as the resv_map may have been modified since + * the region_chg call. In this case, we need to make sure that we + * allocate extra entries, such that we have enough for all the + * existing adds_in_progress, plus the excess needed for this + * operation. + */ + if (actual_regions_needed > in_regions_needed && + resv->region_cache_count < + resv->adds_in_progress + + (actual_regions_needed - in_regions_needed)) { + /* region_add operation of range 1 should never need to + * allocate file_region entries. + */ + VM_BUG_ON(t - f <= 1); + + if (allocate_file_region_entries( + resv, actual_regions_needed - in_regions_needed)) { + return -ENOMEM; } - chg -= rg->to - rg->from; + + goto retry; } + + add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); + + resv->adds_in_progress -= in_regions_needed; + + spin_unlock(&resv->lock); + return add; +} + +/* + * Examine the existing reserve map and determine how many + * huge pages in the specified range [f, t) are NOT currently + * represented. This routine is called before a subsequent + * call to region_add that will actually modify the reserve + * map to add the specified range [f, t). region_chg does + * not change the number of huge pages represented by the + * map. A number of new file_region structures is added to the cache as a + * placeholder, for the subsequent region_add call to use. At least 1 + * file_region structure is added. + * + * out_regions_needed is the number of regions added to the + * resv->adds_in_progress. This value needs to be provided to a follow up call + * to region_add or region_abort for proper accounting. + * + * Returns the number of huge pages that need to be added to the existing + * reservation map for the range [f, t). This number is greater or equal to + * zero. -ENOMEM is returned if a new file_region structure or cache entry + * is needed and can not be allocated. + */ +static long region_chg(struct resv_map *resv, long f, long t, + long *out_regions_needed) +{ + long chg = 0; + + spin_lock(&resv->lock); + + /* Count how many hugepages in this range are NOT represented. */ + chg = add_reservation_in_range(resv, f, t, NULL, NULL, + out_regions_needed); + + if (*out_regions_needed == 0) + *out_regions_needed = 1; + + if (allocate_file_region_entries(resv, *out_regions_needed)) + return -ENOMEM; + + resv->adds_in_progress += *out_regions_needed; + + spin_unlock(&resv->lock); return chg; } -static long region_truncate(struct list_head *head, long end) +/* + * Abort the in progress add operation. The adds_in_progress field + * of the resv_map keeps track of the operations in progress between + * calls to region_chg and region_add. Operations are sometimes + * aborted after the call to region_chg. In such cases, region_abort + * is called to decrement the adds_in_progress counter. regions_needed + * is the value returned by the region_chg call, it is used to decrement + * the adds_in_progress counter. + * + * NOTE: The range arguments [f, t) are not needed or used in this + * routine. They are kept to make reading the calling code easier as + * arguments will match the associated region_chg call. + */ +static void region_abort(struct resv_map *resv, long f, long t, + long regions_needed) +{ + spin_lock(&resv->lock); + VM_BUG_ON(!resv->region_cache_count); + resv->adds_in_progress -= regions_needed; + spin_unlock(&resv->lock); +} + +/* + * Delete the specified range [f, t) from the reserve map. If the + * t parameter is LONG_MAX, this indicates that ALL regions after f + * should be deleted. Locate the regions which intersect [f, t) + * and either trim, delete or split the existing regions. + * + * Returns the number of huge pages deleted from the reserve map. + * In the normal case, the return value is zero or more. In the + * case where a region must be split, a new region descriptor must + * be allocated. If the allocation fails, -ENOMEM will be returned. + * NOTE: If the parameter t == LONG_MAX, then we will never split + * a region and possibly return -ENOMEM. Callers specifying + * t == LONG_MAX do not need to check for -ENOMEM error. + */ +static long region_del(struct resv_map *resv, long f, long t) { + struct list_head *head = &resv->regions; struct file_region *rg, *trg; - long chg = 0; + struct file_region *nrg = NULL; + long del = 0; - /* Locate the region we are either in or before. */ - list_for_each_entry(rg, head, link) - if (end <= rg->to) +retry: + spin_lock(&resv->lock); + list_for_each_entry_safe(rg, trg, head, link) { + /* + * Skip regions before the range to be deleted. file_region + * ranges are normally of the form [from, to). However, there + * may be a "placeholder" entry in the map which is of the form + * (from, to) with from == to. Check for placeholder entries + * at the beginning of the range to be deleted. + */ + if (rg->to <= f && (rg->to != rg->from || rg->to != f)) + continue; + + if (rg->from >= t) break; - if (&rg->link == head) - return 0; - /* If we are in the middle of a region then adjust it. */ - if (end > rg->from) { - chg = rg->to - end; - rg->to = end; - rg = list_entry(rg->link.next, typeof(*rg), link); - } + if (f > rg->from && t < rg->to) { /* Must split region */ + /* + * Check for an entry in the cache before dropping + * lock and attempting allocation. + */ + if (!nrg && + resv->region_cache_count > resv->adds_in_progress) { + nrg = list_first_entry(&resv->region_cache, + struct file_region, + link); + list_del(&nrg->link); + resv->region_cache_count--; + } - /* Drop any remaining regions. */ - list_for_each_entry_safe(rg, trg, rg->link.prev, link) { - if (&rg->link == head) + if (!nrg) { + spin_unlock(&resv->lock); + nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); + if (!nrg) + return -ENOMEM; + goto retry; + } + + del += t - f; + hugetlb_cgroup_uncharge_file_region( + resv, rg, t - f, false); + + /* New entry for end of split region */ + nrg->from = t; + nrg->to = rg->to; + + copy_hugetlb_cgroup_uncharge_info(nrg, rg); + + INIT_LIST_HEAD(&nrg->link); + + /* Original entry is trimmed */ + rg->to = f; + + list_add(&nrg->link, &rg->link); + nrg = NULL; break; - chg += rg->to - rg->from; - list_del(&rg->link); - kfree(rg); + } + + if (f <= rg->from && t >= rg->to) { /* Remove entire region */ + del += rg->to - rg->from; + hugetlb_cgroup_uncharge_file_region(resv, rg, + rg->to - rg->from, true); + list_del(&rg->link); + kfree(rg); + continue; + } + + if (f <= rg->from) { /* Trim beginning of region */ + hugetlb_cgroup_uncharge_file_region(resv, rg, + t - rg->from, false); + + del += t - rg->from; + rg->from = t; + } else { /* Trim end of region */ + hugetlb_cgroup_uncharge_file_region(resv, rg, + rg->to - f, false); + + del += rg->to - f; + rg->to = f; + } } - return chg; + + spin_unlock(&resv->lock); + kfree(nrg); + return del; +} + +/* + * A rare out of memory error was encountered which prevented removal of + * the reserve map region for a page. The huge page itself was free'ed + * and removed from the page cache. This routine will adjust the subpool + * usage count, and the global reserve count if needed. By incrementing + * these counts, the reserve map entry which could not be deleted will + * appear as a "reserved" entry instead of simply dangling with incorrect + * counts. + */ +void hugetlb_fix_reserve_counts(struct inode *inode) +{ + struct hugepage_subpool *spool = subpool_inode(inode); + long rsv_adjust; + bool reserved = false; + + rsv_adjust = hugepage_subpool_get_pages(spool, 1); + if (rsv_adjust > 0) { + struct hstate *h = hstate_inode(inode); + + if (!hugetlb_acct_memory(h, 1)) + reserved = true; + } else if (!rsv_adjust) { + reserved = true; + } + + if (!reserved) + pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); } -static long region_count(struct list_head *head, long f, long t) +/* + * Count and return the number of huge pages in the reserve map + * that intersect with the range [f, t). + */ +static long region_count(struct resv_map *resv, long f, long t) { + struct list_head *head = &resv->regions; struct file_region *rg; long chg = 0; + spin_lock(&resv->lock); /* Locate each segment we overlap with, and count that overlap. */ list_for_each_entry(rg, head, link) { long seg_from; @@ -285,13 +1010,14 @@ static long region_count(struct list_head *head, long f, long t) chg += seg_to - seg_from; } + spin_unlock(&resv->lock); return chg; } /* * Convert the address within this vma to the page offset within - * the mapping, in pagecache page units; huge pages here. + * the mapping, huge page units here. */ static pgoff_t vma_hugecache_offset(struct hstate *h, struct vm_area_struct *vma, unsigned long address) @@ -300,41 +1026,33 @@ static pgoff_t vma_hugecache_offset(struct hstate *h, (vma->vm_pgoff >> huge_page_order(h)); } -pgoff_t linear_hugepage_index(struct vm_area_struct *vma, - unsigned long address) -{ - return vma_hugecache_offset(hstate_vma(vma), vma, address); -} - -/* - * Return the size of the pages allocated when backing a VMA. In the majority - * cases this will be same size as used by the page table entries. +/** + * vma_kernel_pagesize - Page size granularity for this VMA. + * @vma: The user mapping. + * + * Folios in this VMA will be aligned to, and at least the size of the + * number of bytes returned by this function. + * + * Return: The default size of the folios allocated when backing a VMA. */ unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) { - struct hstate *hstate; - - if (!is_vm_hugetlb_page(vma)) - return PAGE_SIZE; - - hstate = hstate_vma(vma); - - return 1UL << huge_page_shift(hstate); + if (vma->vm_ops && vma->vm_ops->pagesize) + return vma->vm_ops->pagesize(vma); + return PAGE_SIZE; } EXPORT_SYMBOL_GPL(vma_kernel_pagesize); /* * Return the page size being used by the MMU to back a VMA. In the majority * of cases, the page size used by the kernel matches the MMU size. On - * architectures where it differs, an architecture-specific version of this - * function is required. + * architectures where it differs, an architecture-specific 'strong' + * version of this symbol is required. */ -#ifndef vma_mmu_pagesize -unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) +__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) { return vma_kernel_pagesize(vma); } -#endif /* * Flags for MAP_PRIVATE reservations. These are stored in the bottom @@ -350,7 +1068,7 @@ unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) * faults in a MAP_PRIVATE mapping. Only the process that called mmap() * is guaranteed to have their future faults succeed. * - * With the exception of reset_vma_resv_huge_pages() which is called at fork(), + * With the exception of hugetlb_dup_vma_private() which is called at fork(), * the reserve counters are updated with the hugetlb_lock held. It is safe * to reset the VMA at fork() time as it is not in use yet and there is no * chance of the global counters getting corrupted as a result of the values. @@ -375,599 +1093,1253 @@ static void set_vma_private_data(struct vm_area_struct *vma, vma->vm_private_data = (void *)value; } -struct resv_map { - struct kref refs; - struct list_head regions; -}; +static void +resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, + struct hugetlb_cgroup *h_cg, + struct hstate *h) +{ +#ifdef CONFIG_CGROUP_HUGETLB + if (!h_cg || !h) { + resv_map->reservation_counter = NULL; + resv_map->pages_per_hpage = 0; + resv_map->css = NULL; + } else { + resv_map->reservation_counter = + &h_cg->rsvd_hugepage[hstate_index(h)]; + resv_map->pages_per_hpage = pages_per_huge_page(h); + resv_map->css = &h_cg->css; + } +#endif +} -static struct resv_map *resv_map_alloc(void) +struct resv_map *resv_map_alloc(void) { struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); - if (!resv_map) + struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); + + if (!resv_map || !rg) { + kfree(resv_map); + kfree(rg); return NULL; + } kref_init(&resv_map->refs); + spin_lock_init(&resv_map->lock); INIT_LIST_HEAD(&resv_map->regions); + init_rwsem(&resv_map->rw_sema); + + resv_map->adds_in_progress = 0; + /* + * Initialize these to 0. On shared mappings, 0's here indicate these + * fields don't do cgroup accounting. On private mappings, these will be + * re-initialized to the proper values, to indicate that hugetlb cgroup + * reservations are to be un-charged from here. + */ + resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); + + INIT_LIST_HEAD(&resv_map->region_cache); + list_add(&rg->link, &resv_map->region_cache); + resv_map->region_cache_count = 1; return resv_map; } -static void resv_map_release(struct kref *ref) +void resv_map_release(struct kref *ref) { struct resv_map *resv_map = container_of(ref, struct resv_map, refs); + struct list_head *head = &resv_map->region_cache; + struct file_region *rg, *trg; /* Clear out any active regions before we release the map. */ - region_truncate(&resv_map->regions, 0); + region_del(resv_map, 0, LONG_MAX); + + /* ... and any entries left in the cache */ + list_for_each_entry_safe(rg, trg, head, link) { + list_del(&rg->link); + kfree(rg); + } + + VM_BUG_ON(resv_map->adds_in_progress); + kfree(resv_map); } -static struct resv_map *vma_resv_map(struct vm_area_struct *vma) +static inline struct resv_map *inode_resv_map(struct inode *inode) { - VM_BUG_ON(!is_vm_hugetlb_page(vma)); - if (!(vma->vm_flags & VM_MAYSHARE)) - return (struct resv_map *)(get_vma_private_data(vma) & - ~HPAGE_RESV_MASK); - return NULL; + /* + * At inode evict time, i_mapping may not point to the original + * address space within the inode. This original address space + * contains the pointer to the resv_map. So, always use the + * address space embedded within the inode. + * The VERY common case is inode->mapping == &inode->i_data but, + * this may not be true for device special inodes. + */ + return (struct resv_map *)(&inode->i_data)->i_private_data; } -static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) +static struct resv_map *vma_resv_map(struct vm_area_struct *vma) { - VM_BUG_ON(!is_vm_hugetlb_page(vma)); - VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); + VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); + if (vma->vm_flags & VM_MAYSHARE) { + struct address_space *mapping = vma->vm_file->f_mapping; + struct inode *inode = mapping->host; + + return inode_resv_map(inode); - set_vma_private_data(vma, (get_vma_private_data(vma) & - HPAGE_RESV_MASK) | (unsigned long)map); + } else { + return (struct resv_map *)(get_vma_private_data(vma) & + ~HPAGE_RESV_MASK); + } } static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) { - VM_BUG_ON(!is_vm_hugetlb_page(vma)); - VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); + VM_WARN_ON_ONCE_VMA(!is_vm_hugetlb_page(vma), vma); + VM_WARN_ON_ONCE_VMA(vma->vm_flags & VM_MAYSHARE, vma); set_vma_private_data(vma, get_vma_private_data(vma) | flags); } -static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) +static void set_vma_desc_resv_map(struct vm_area_desc *desc, struct resv_map *map) { - VM_BUG_ON(!is_vm_hugetlb_page(vma)); + VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags)); + VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE); - return (get_vma_private_data(vma) & flag) != 0; + desc->private_data = map; } -/* Decrement the reserved pages in the hugepage pool by one */ -static void decrement_hugepage_resv_vma(struct hstate *h, - struct vm_area_struct *vma) +static void set_vma_desc_resv_flags(struct vm_area_desc *desc, unsigned long flags) { - if (vma->vm_flags & VM_NORESERVE) - return; + VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags)); + VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE); - if (vma->vm_flags & VM_MAYSHARE) { - /* Shared mappings always use reserves */ - h->resv_huge_pages--; - } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { - /* - * Only the process that called mmap() has reserves for - * private mappings. - */ - h->resv_huge_pages--; - } + desc->private_data = (void *)((unsigned long)desc->private_data | flags); } -/* Reset counters to 0 and clear all HPAGE_RESV_* flags */ -void reset_vma_resv_huge_pages(struct vm_area_struct *vma) +static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) { - VM_BUG_ON(!is_vm_hugetlb_page(vma)); - if (!(vma->vm_flags & VM_MAYSHARE)) - vma->vm_private_data = (void *)0; + VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); + + return (get_vma_private_data(vma) & flag) != 0; } -/* Returns true if the VMA has associated reserve pages */ -static int vma_has_reserves(struct vm_area_struct *vma) +static bool is_vma_desc_resv_set(struct vm_area_desc *desc, unsigned long flag) { - if (vma->vm_flags & VM_MAYSHARE) - return 1; - if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) - return 1; - return 0; + VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags)); + + return ((unsigned long)desc->private_data) & flag; } -static void copy_gigantic_page(struct page *dst, struct page *src) +bool __vma_private_lock(struct vm_area_struct *vma) { - int i; - struct hstate *h = page_hstate(src); - struct page *dst_base = dst; - struct page *src_base = src; + return !(vma->vm_flags & VM_MAYSHARE) && + get_vma_private_data(vma) & ~HPAGE_RESV_MASK && + is_vma_resv_set(vma, HPAGE_RESV_OWNER); +} - for (i = 0; i < pages_per_huge_page(h); ) { - cond_resched(); - copy_highpage(dst, src); +void hugetlb_dup_vma_private(struct vm_area_struct *vma) +{ + VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); + /* + * Clear vm_private_data + * - For shared mappings this is a per-vma semaphore that may be + * allocated in a subsequent call to hugetlb_vm_op_open. + * Before clearing, make sure pointer is not associated with vma + * as this will leak the structure. This is the case when called + * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already + * been called to allocate a new structure. + * - For MAP_PRIVATE mappings, this is the reserve map which does + * not apply to children. Faults generated by the children are + * not guaranteed to succeed, even if read-only. + */ + if (vma->vm_flags & VM_MAYSHARE) { + struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; - i++; - dst = mem_map_next(dst, dst_base, i); - src = mem_map_next(src, src_base, i); - } + if (vma_lock && vma_lock->vma != vma) + vma->vm_private_data = NULL; + } else + vma->vm_private_data = NULL; } -void copy_huge_page(struct page *dst, struct page *src) +/* + * Reset and decrement one ref on hugepage private reservation. + * Called with mm->mmap_lock writer semaphore held. + * This function should be only used by mremap and operate on + * same sized vma. It should never come here with last ref on the + * reservation. + */ +void clear_vma_resv_huge_pages(struct vm_area_struct *vma) { - int i; - struct hstate *h = page_hstate(src); + /* + * Clear the old hugetlb private page reservation. + * It has already been transferred to new_vma. + * + * During a mremap() operation of a hugetlb vma we call move_vma() + * which copies vma into new_vma and unmaps vma. After the copy + * operation both new_vma and vma share a reference to the resv_map + * struct, and at that point vma is about to be unmapped. We don't + * want to return the reservation to the pool at unmap of vma because + * the reservation still lives on in new_vma, so simply decrement the + * ref here and remove the resv_map reference from this vma. + */ + struct resv_map *reservations = vma_resv_map(vma); - if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { - copy_gigantic_page(dst, src); - return; + if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { + resv_map_put_hugetlb_cgroup_uncharge_info(reservations); + kref_put(&reservations->refs, resv_map_release); } - might_sleep(); - for (i = 0; i < pages_per_huge_page(h); i++) { - cond_resched(); - copy_highpage(dst + i, src + i); - } + hugetlb_dup_vma_private(vma); } -static void enqueue_huge_page(struct hstate *h, struct page *page) +static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) { - int nid = page_to_nid(page); - list_move(&page->lru, &h->hugepage_freelists[nid]); + int nid = folio_nid(folio); + + lockdep_assert_held(&hugetlb_lock); + VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); + + list_move(&folio->lru, &h->hugepage_freelists[nid]); h->free_huge_pages++; h->free_huge_pages_node[nid]++; + folio_set_hugetlb_freed(folio); } -static struct page *dequeue_huge_page_node(struct hstate *h, int nid) +static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, + int nid) { - struct page *page; + struct folio *folio; + bool pin = !!(current->flags & PF_MEMALLOC_PIN); - if (list_empty(&h->hugepage_freelists[nid])) - return NULL; - page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); - list_move(&page->lru, &h->hugepage_activelist); - set_page_refcounted(page); - h->free_huge_pages--; - h->free_huge_pages_node[nid]--; - return page; + lockdep_assert_held(&hugetlb_lock); + list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { + if (pin && !folio_is_longterm_pinnable(folio)) + continue; + + if (folio_test_hwpoison(folio)) + continue; + + if (is_migrate_isolate_page(&folio->page)) + continue; + + list_move(&folio->lru, &h->hugepage_activelist); + folio_ref_unfreeze(folio, 1); + folio_clear_hugetlb_freed(folio); + h->free_huge_pages--; + h->free_huge_pages_node[nid]--; + return folio; + } + + return NULL; } -static struct page *dequeue_huge_page_vma(struct hstate *h, - struct vm_area_struct *vma, - unsigned long address, int avoid_reserve) +static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, + int nid, nodemask_t *nmask) { - struct page *page = NULL; - struct mempolicy *mpol; - nodemask_t *nodemask; + unsigned int cpuset_mems_cookie; struct zonelist *zonelist; struct zone *zone; struct zoneref *z; - unsigned int cpuset_mems_cookie; + int node = NUMA_NO_NODE; + + /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ + if (nid == NUMA_NO_NODE) + nid = numa_node_id(); + + zonelist = node_zonelist(nid, gfp_mask); retry_cpuset: - cpuset_mems_cookie = get_mems_allowed(); - zonelist = huge_zonelist(vma, address, - htlb_alloc_mask, &mpol, &nodemask); + cpuset_mems_cookie = read_mems_allowed_begin(); + for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { + struct folio *folio; + + if (!cpuset_zone_allowed(zone, gfp_mask)) + continue; + /* + * no need to ask again on the same node. Pool is node rather than + * zone aware + */ + if (zone_to_nid(zone) == node) + continue; + node = zone_to_nid(zone); + + folio = dequeue_hugetlb_folio_node_exact(h, node); + if (folio) + return folio; + } + if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) + goto retry_cpuset; + + return NULL; +} + +static unsigned long available_huge_pages(struct hstate *h) +{ + return h->free_huge_pages - h->resv_huge_pages; +} + +static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, + struct vm_area_struct *vma, + unsigned long address, long gbl_chg) +{ + struct folio *folio = NULL; + struct mempolicy *mpol; + gfp_t gfp_mask; + nodemask_t *nodemask; + int nid; + /* - * A child process with MAP_PRIVATE mappings created by their parent - * have no page reserves. This check ensures that reservations are - * not "stolen". The child may still get SIGKILLed + * gbl_chg==1 means the allocation requires a new page that was not + * reserved before. Making sure there's at least one free page. */ - if (!vma_has_reserves(vma) && - h->free_huge_pages - h->resv_huge_pages == 0) + if (gbl_chg && !available_huge_pages(h)) goto err; - /* If reserves cannot be used, ensure enough pages are in the pool */ - if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) - goto err; + gfp_mask = htlb_alloc_mask(h); + nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); - for_each_zone_zonelist_nodemask(zone, z, zonelist, - MAX_NR_ZONES - 1, nodemask) { - if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { - page = dequeue_huge_page_node(h, zone_to_nid(zone)); - if (page) { - if (!avoid_reserve) - decrement_hugepage_resv_vma(h, vma); - break; - } - } + if (mpol_is_preferred_many(mpol)) { + folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, + nid, nodemask); + + /* Fallback to all nodes if page==NULL */ + nodemask = NULL; } + if (!folio) + folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, + nid, nodemask); + mpol_cond_put(mpol); - if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) - goto retry_cpuset; - return page; + return folio; err: - mpol_cond_put(mpol); return NULL; } -static void update_and_free_page(struct hstate *h, struct page *page) +#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE +#ifdef CONFIG_CONTIG_ALLOC +static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, + int nid, nodemask_t *nodemask) { - int i; + struct folio *folio; + bool retried = false; - VM_BUG_ON(h->order >= MAX_ORDER); +retry: + folio = hugetlb_cma_alloc_folio(order, gfp_mask, nid, nodemask); + if (!folio) { + if (hugetlb_cma_exclusive_alloc()) + return NULL; - h->nr_huge_pages--; - h->nr_huge_pages_node[page_to_nid(page)]--; - for (i = 0; i < pages_per_huge_page(h); i++) { - page[i].flags &= ~(1 << PG_locked | 1 << PG_error | - 1 << PG_referenced | 1 << PG_dirty | - 1 << PG_active | 1 << PG_reserved | - 1 << PG_private | 1 << PG_writeback); + folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask); + if (!folio) + return NULL; } - VM_BUG_ON(hugetlb_cgroup_from_page(page)); - set_compound_page_dtor(page, NULL); - set_page_refcounted(page); - arch_release_hugepage(page); - __free_pages(page, huge_page_order(h)); + + if (folio_ref_freeze(folio, 1)) + return folio; + + pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio)); + hugetlb_free_folio(folio); + if (!retried) { + retried = true; + goto retry; + } + return NULL; } -struct hstate *size_to_hstate(unsigned long size) +#else /* !CONFIG_CONTIG_ALLOC */ +static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid, + nodemask_t *nodemask) { - struct hstate *h; + return NULL; +} +#endif /* CONFIG_CONTIG_ALLOC */ - for_each_hstate(h) { - if (huge_page_size(h) == size) - return h; - } +#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */ +static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid, + nodemask_t *nodemask) +{ return NULL; } +#endif -static void free_huge_page(struct page *page) +/* + * Remove hugetlb folio from lists. + * If vmemmap exists for the folio, clear the hugetlb flag so that the + * folio appears as just a compound page. Otherwise, wait until after + * allocating vmemmap to clear the flag. + * + * Must be called with hugetlb lock held. + */ +void remove_hugetlb_folio(struct hstate *h, struct folio *folio, + bool adjust_surplus) { - /* - * Can't pass hstate in here because it is called from the - * compound page destructor. - */ - struct hstate *h = page_hstate(page); - int nid = page_to_nid(page); - struct hugepage_subpool *spool = - (struct hugepage_subpool *)page_private(page); - - set_page_private(page, 0); - page->mapping = NULL; - BUG_ON(page_count(page)); - BUG_ON(page_mapcount(page)); - - spin_lock(&hugetlb_lock); - hugetlb_cgroup_uncharge_page(hstate_index(h), - pages_per_huge_page(h), page); - if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { - /* remove the page from active list */ - list_del(&page->lru); - update_and_free_page(h, page); + int nid = folio_nid(folio); + + VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); + VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); + + lockdep_assert_held(&hugetlb_lock); + if (hstate_is_gigantic_no_runtime(h)) + return; + + list_del(&folio->lru); + + if (folio_test_hugetlb_freed(folio)) { + folio_clear_hugetlb_freed(folio); + h->free_huge_pages--; + h->free_huge_pages_node[nid]--; + } + if (adjust_surplus) { h->surplus_huge_pages--; h->surplus_huge_pages_node[nid]--; - } else { - arch_clear_hugepage_flags(page); - enqueue_huge_page(h, page); } - spin_unlock(&hugetlb_lock); - hugepage_subpool_put_pages(spool, 1); + + /* + * We can only clear the hugetlb flag after allocating vmemmap + * pages. Otherwise, someone (memory error handling) may try to write + * to tail struct pages. + */ + if (!folio_test_hugetlb_vmemmap_optimized(folio)) + __folio_clear_hugetlb(folio); + + h->nr_huge_pages--; + h->nr_huge_pages_node[nid]--; } -static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) +void add_hugetlb_folio(struct hstate *h, struct folio *folio, + bool adjust_surplus) { - INIT_LIST_HEAD(&page->lru); - set_compound_page_dtor(page, free_huge_page); - spin_lock(&hugetlb_lock); - set_hugetlb_cgroup(page, NULL); + int nid = folio_nid(folio); + + VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); + + lockdep_assert_held(&hugetlb_lock); + + INIT_LIST_HEAD(&folio->lru); h->nr_huge_pages++; h->nr_huge_pages_node[nid]++; - spin_unlock(&hugetlb_lock); - put_page(page); /* free it into the hugepage allocator */ + + if (adjust_surplus) { + h->surplus_huge_pages++; + h->surplus_huge_pages_node[nid]++; + } + + __folio_set_hugetlb(folio); + folio_change_private(folio, NULL); + /* + * We have to set hugetlb_vmemmap_optimized again as above + * folio_change_private(folio, NULL) cleared it. + */ + folio_set_hugetlb_vmemmap_optimized(folio); + + arch_clear_hugetlb_flags(folio); + enqueue_hugetlb_folio(h, folio); } -static void prep_compound_gigantic_page(struct page *page, unsigned long order) +static void __update_and_free_hugetlb_folio(struct hstate *h, + struct folio *folio) { - int i; - int nr_pages = 1 << order; - struct page *p = page + 1; + bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); + + if (hstate_is_gigantic_no_runtime(h)) + return; + + /* + * If we don't know which subpages are hwpoisoned, we can't free + * the hugepage, so it's leaked intentionally. + */ + if (folio_test_hugetlb_raw_hwp_unreliable(folio)) + return; + + /* + * If folio is not vmemmap optimized (!clear_flag), then the folio + * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio + * can only be passed hugetlb pages and will BUG otherwise. + */ + if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { + spin_lock_irq(&hugetlb_lock); + /* + * If we cannot allocate vmemmap pages, just refuse to free the + * page and put the page back on the hugetlb free list and treat + * as a surplus page. + */ + add_hugetlb_folio(h, folio, true); + spin_unlock_irq(&hugetlb_lock); + return; + } - /* we rely on prep_new_huge_page to set the destructor */ - set_compound_order(page, order); - __SetPageHead(page); - for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { - __SetPageTail(p); - set_page_count(p, 0); - p->first_page = page; + /* + * If vmemmap pages were allocated above, then we need to clear the + * hugetlb flag under the hugetlb lock. + */ + if (folio_test_hugetlb(folio)) { + spin_lock_irq(&hugetlb_lock); + __folio_clear_hugetlb(folio); + spin_unlock_irq(&hugetlb_lock); } + + /* + * Move PageHWPoison flag from head page to the raw error pages, + * which makes any healthy subpages reusable. + */ + if (unlikely(folio_test_hwpoison(folio))) + folio_clear_hugetlb_hwpoison(folio); + + folio_ref_unfreeze(folio, 1); + + hugetlb_free_folio(folio); } /* - * PageHuge() only returns true for hugetlbfs pages, but not for normal or - * transparent huge pages. See the PageTransHuge() documentation for more - * details. + * As update_and_free_hugetlb_folio() can be called under any context, so we cannot + * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the + * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate + * the vmemmap pages. + * + * free_hpage_workfn() locklessly retrieves the linked list of pages to be + * freed and frees them one-by-one. As the page->mapping pointer is going + * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node + * structure of a lockless linked list of huge pages to be freed. */ -int PageHuge(struct page *page) +static LLIST_HEAD(hpage_freelist); + +static void free_hpage_workfn(struct work_struct *work) { - compound_page_dtor *dtor; + struct llist_node *node; - if (!PageCompound(page)) - return 0; + node = llist_del_all(&hpage_freelist); + + while (node) { + struct folio *folio; + struct hstate *h; + + folio = container_of((struct address_space **)node, + struct folio, mapping); + node = node->next; + folio->mapping = NULL; + /* + * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in + * folio_hstate() is going to trigger because a previous call to + * remove_hugetlb_folio() will clear the hugetlb bit, so do + * not use folio_hstate() directly. + */ + h = size_to_hstate(folio_size(folio)); - page = compound_head(page); - dtor = get_compound_page_dtor(page); + __update_and_free_hugetlb_folio(h, folio); - return dtor == free_huge_page; + cond_resched(); + } } -EXPORT_SYMBOL_GPL(PageHuge); +static DECLARE_WORK(free_hpage_work, free_hpage_workfn); -pgoff_t __basepage_index(struct page *page) +static inline void flush_free_hpage_work(struct hstate *h) { - struct page *page_head = compound_head(page); - pgoff_t index = page_index(page_head); - unsigned long compound_idx; + if (hugetlb_vmemmap_optimizable(h)) + flush_work(&free_hpage_work); +} - if (!PageHuge(page_head)) - return page_index(page); +static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, + bool atomic) +{ + if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { + __update_and_free_hugetlb_folio(h, folio); + return; + } - if (compound_order(page_head) >= MAX_ORDER) - compound_idx = page_to_pfn(page) - page_to_pfn(page_head); - else - compound_idx = page - page_head; + /* + * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. + * + * Only call schedule_work() if hpage_freelist is previously + * empty. Otherwise, schedule_work() had been called but the workfn + * hasn't retrieved the list yet. + */ + if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) + schedule_work(&free_hpage_work); +} + +static void bulk_vmemmap_restore_error(struct hstate *h, + struct list_head *folio_list, + struct list_head *non_hvo_folios) +{ + struct folio *folio, *t_folio; - return (index << compound_order(page_head)) + compound_idx; + if (!list_empty(non_hvo_folios)) { + /* + * Free any restored hugetlb pages so that restore of the + * entire list can be retried. + * The idea is that in the common case of ENOMEM errors freeing + * hugetlb pages with vmemmap we will free up memory so that we + * can allocate vmemmap for more hugetlb pages. + */ + list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { + list_del(&folio->lru); + spin_lock_irq(&hugetlb_lock); + __folio_clear_hugetlb(folio); + spin_unlock_irq(&hugetlb_lock); + update_and_free_hugetlb_folio(h, folio, false); + cond_resched(); + } + } else { + /* + * In the case where there are no folios which can be + * immediately freed, we loop through the list trying to restore + * vmemmap individually in the hope that someone elsewhere may + * have done something to cause success (such as freeing some + * memory). If unable to restore a hugetlb page, the hugetlb + * page is made a surplus page and removed from the list. + * If are able to restore vmemmap and free one hugetlb page, we + * quit processing the list to retry the bulk operation. + */ + list_for_each_entry_safe(folio, t_folio, folio_list, lru) + if (hugetlb_vmemmap_restore_folio(h, folio)) { + list_del(&folio->lru); + spin_lock_irq(&hugetlb_lock); + add_hugetlb_folio(h, folio, true); + spin_unlock_irq(&hugetlb_lock); + } else { + list_del(&folio->lru); + spin_lock_irq(&hugetlb_lock); + __folio_clear_hugetlb(folio); + spin_unlock_irq(&hugetlb_lock); + update_and_free_hugetlb_folio(h, folio, false); + cond_resched(); + break; + } + } } -static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) +static void update_and_free_pages_bulk(struct hstate *h, + struct list_head *folio_list) { - struct page *page; + long ret; + struct folio *folio, *t_folio; + LIST_HEAD(non_hvo_folios); - if (h->order >= MAX_ORDER) - return NULL; + /* + * First allocate required vmemmmap (if necessary) for all folios. + * Carefully handle errors and free up any available hugetlb pages + * in an effort to make forward progress. + */ +retry: + ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); + if (ret < 0) { + bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); + goto retry; + } - page = alloc_pages_exact_node(nid, - htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| - __GFP_REPEAT|__GFP_NOWARN, - huge_page_order(h)); - if (page) { - if (arch_prepare_hugepage(page)) { - __free_pages(page, huge_page_order(h)); - return NULL; - } - prep_new_huge_page(h, page, nid); + /* + * At this point, list should be empty, ret should be >= 0 and there + * should only be pages on the non_hvo_folios list. + * Do note that the non_hvo_folios list could be empty. + * Without HVO enabled, ret will be 0 and there is no need to call + * __folio_clear_hugetlb as this was done previously. + */ + VM_WARN_ON(!list_empty(folio_list)); + VM_WARN_ON(ret < 0); + if (!list_empty(&non_hvo_folios) && ret) { + spin_lock_irq(&hugetlb_lock); + list_for_each_entry(folio, &non_hvo_folios, lru) + __folio_clear_hugetlb(folio); + spin_unlock_irq(&hugetlb_lock); } - return page; + list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { + update_and_free_hugetlb_folio(h, folio, false); + cond_resched(); + } +} + +struct hstate *size_to_hstate(unsigned long size) +{ + struct hstate *h; + + for_each_hstate(h) { + if (huge_page_size(h) == size) + return h; + } + return NULL; +} + +void free_huge_folio(struct folio *folio) +{ + /* + * Can't pass hstate in here because it is called from the + * generic mm code. + */ + struct hstate *h = folio_hstate(folio); + int nid = folio_nid(folio); + struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); + bool restore_reserve; + unsigned long flags; + + VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); + VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); + + hugetlb_set_folio_subpool(folio, NULL); + if (folio_test_anon(folio)) + __ClearPageAnonExclusive(&folio->page); + folio->mapping = NULL; + restore_reserve = folio_test_hugetlb_restore_reserve(folio); + folio_clear_hugetlb_restore_reserve(folio); + + /* + * If HPageRestoreReserve was set on page, page allocation consumed a + * reservation. If the page was associated with a subpool, there + * would have been a page reserved in the subpool before allocation + * via hugepage_subpool_get_pages(). Since we are 'restoring' the + * reservation, do not call hugepage_subpool_put_pages() as this will + * remove the reserved page from the subpool. + */ + if (!restore_reserve) { + /* + * A return code of zero implies that the subpool will be + * under its minimum size if the reservation is not restored + * after page is free. Therefore, force restore_reserve + * operation. + */ + if (hugepage_subpool_put_pages(spool, 1) == 0) + restore_reserve = true; + } + + spin_lock_irqsave(&hugetlb_lock, flags); + folio_clear_hugetlb_migratable(folio); + hugetlb_cgroup_uncharge_folio(hstate_index(h), + pages_per_huge_page(h), folio); + hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), + pages_per_huge_page(h), folio); + lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); + mem_cgroup_uncharge(folio); + if (restore_reserve) + h->resv_huge_pages++; + + if (folio_test_hugetlb_temporary(folio)) { + remove_hugetlb_folio(h, folio, false); + spin_unlock_irqrestore(&hugetlb_lock, flags); + update_and_free_hugetlb_folio(h, folio, true); + } else if (h->surplus_huge_pages_node[nid]) { + /* remove the page from active list */ + remove_hugetlb_folio(h, folio, true); + spin_unlock_irqrestore(&hugetlb_lock, flags); + update_and_free_hugetlb_folio(h, folio, true); + } else { + arch_clear_hugetlb_flags(folio); + enqueue_hugetlb_folio(h, folio); + spin_unlock_irqrestore(&hugetlb_lock, flags); + } } /* - * common helper functions for hstate_next_node_to_{alloc|free}. - * We may have allocated or freed a huge page based on a different - * nodes_allowed previously, so h->next_node_to_{alloc|free} might - * be outside of *nodes_allowed. Ensure that we use an allowed - * node for alloc or free. + * Must be called with the hugetlb lock held */ -static int next_node_allowed(int nid, nodemask_t *nodes_allowed) +static void account_new_hugetlb_folio(struct hstate *h, struct folio *folio) { - nid = next_node(nid, *nodes_allowed); - if (nid == MAX_NUMNODES) - nid = first_node(*nodes_allowed); - VM_BUG_ON(nid >= MAX_NUMNODES); - - return nid; + lockdep_assert_held(&hugetlb_lock); + h->nr_huge_pages++; + h->nr_huge_pages_node[folio_nid(folio)]++; } -static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) +void init_new_hugetlb_folio(struct folio *folio) { - if (!node_isset(nid, *nodes_allowed)) - nid = next_node_allowed(nid, nodes_allowed); - return nid; + __folio_set_hugetlb(folio); + INIT_LIST_HEAD(&folio->lru); + hugetlb_set_folio_subpool(folio, NULL); + set_hugetlb_cgroup(folio, NULL); + set_hugetlb_cgroup_rsvd(folio, NULL); } /* - * returns the previously saved node ["this node"] from which to - * allocate a persistent huge page for the pool and advance the - * next node from which to allocate, handling wrap at end of node - * mask. + * Find and lock address space (mapping) in write mode. + * + * Upon entry, the folio is locked which means that folio_mapping() is + * stable. Due to locking order, we can only trylock_write. If we can + * not get the lock, simply return NULL to caller. */ -static int hstate_next_node_to_alloc(struct hstate *h, - nodemask_t *nodes_allowed) +struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) { - int nid; + struct address_space *mapping = folio_mapping(folio); - VM_BUG_ON(!nodes_allowed); + if (!mapping) + return mapping; - nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); - h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); + if (i_mmap_trylock_write(mapping)) + return mapping; - return nid; + return NULL; } -static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) +static struct folio *alloc_buddy_hugetlb_folio(int order, gfp_t gfp_mask, + int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry) { - struct page *page; - int start_nid; - int next_nid; - int ret = 0; + struct folio *folio; + bool alloc_try_hard = true; - start_nid = hstate_next_node_to_alloc(h, nodes_allowed); - next_nid = start_nid; + /* + * By default we always try hard to allocate the folio with + * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in + * a loop (to adjust global huge page counts) and previous allocation + * failed, do not continue to try hard on the same node. Use the + * node_alloc_noretry bitmap to manage this state information. + */ + if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) + alloc_try_hard = false; + if (alloc_try_hard) + gfp_mask |= __GFP_RETRY_MAYFAIL; - do { - page = alloc_fresh_huge_page_node(h, next_nid); - if (page) { - ret = 1; - break; - } - next_nid = hstate_next_node_to_alloc(h, nodes_allowed); - } while (next_nid != start_nid); + folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask); - if (ret) - count_vm_event(HTLB_BUDDY_PGALLOC); + /* + * If we did not specify __GFP_RETRY_MAYFAIL, but still got a + * folio this indicates an overall state change. Clear bit so + * that we resume normal 'try hard' allocations. + */ + if (node_alloc_noretry && folio && !alloc_try_hard) + node_clear(nid, *node_alloc_noretry); + + /* + * If we tried hard to get a folio but failed, set bit so that + * subsequent attempts will not try as hard until there is an + * overall state change. + */ + if (node_alloc_noretry && !folio && alloc_try_hard) + node_set(nid, *node_alloc_noretry); + + if (!folio) { + __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); + return NULL; + } + + __count_vm_event(HTLB_BUDDY_PGALLOC); + return folio; +} + +static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, + gfp_t gfp_mask, int nid, nodemask_t *nmask, + nodemask_t *node_alloc_noretry) +{ + struct folio *folio; + int order = huge_page_order(h); + + if (nid == NUMA_NO_NODE) + nid = numa_mem_id(); + + if (order_is_gigantic(order)) + folio = alloc_gigantic_folio(order, gfp_mask, nid, nmask); else - count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); + folio = alloc_buddy_hugetlb_folio(order, gfp_mask, nid, nmask, + node_alloc_noretry); + if (folio) + init_new_hugetlb_folio(folio); + return folio; +} - return ret; +/* + * Common helper to allocate a fresh hugetlb folio. All specific allocators + * should use this function to get new hugetlb folio + * + * Note that returned folio is 'frozen': ref count of head page and all tail + * pages is zero, and the accounting must be done in the caller. + */ +static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, + gfp_t gfp_mask, int nid, nodemask_t *nmask) +{ + struct folio *folio; + + folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); + if (folio) + hugetlb_vmemmap_optimize_folio(h, folio); + return folio; +} + +void prep_and_add_allocated_folios(struct hstate *h, + struct list_head *folio_list) +{ + unsigned long flags; + struct folio *folio, *tmp_f; + + /* Send list for bulk vmemmap optimization processing */ + hugetlb_vmemmap_optimize_folios(h, folio_list); + + /* Add all new pool pages to free lists in one lock cycle */ + spin_lock_irqsave(&hugetlb_lock, flags); + list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { + account_new_hugetlb_folio(h, folio); + enqueue_hugetlb_folio(h, folio); + } + spin_unlock_irqrestore(&hugetlb_lock, flags); } /* - * helper for free_pool_huge_page() - return the previously saved - * node ["this node"] from which to free a huge page. Advance the - * next node id whether or not we find a free huge page to free so - * that the next attempt to free addresses the next node. + * Allocates a fresh hugetlb page in a node interleaved manner. The page + * will later be added to the appropriate hugetlb pool. */ -static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) +static struct folio *alloc_pool_huge_folio(struct hstate *h, + nodemask_t *nodes_allowed, + nodemask_t *node_alloc_noretry, + int *next_node) { - int nid; + gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; + int nr_nodes, node; - VM_BUG_ON(!nodes_allowed); + for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { + struct folio *folio; - nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); - h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); + folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, + nodes_allowed, node_alloc_noretry); + if (folio) + return folio; + } - return nid; + return NULL; } /* - * Free huge page from pool from next node to free. - * Attempt to keep persistent huge pages more or less - * balanced over allowed nodes. + * Remove huge page from pool from next node to free. Attempt to keep + * persistent huge pages more or less balanced over allowed nodes. + * This routine only 'removes' the hugetlb page. The caller must make + * an additional call to free the page to low level allocators. * Called with hugetlb_lock locked. */ -static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, - bool acct_surplus) +static struct folio *remove_pool_hugetlb_folio(struct hstate *h, + nodemask_t *nodes_allowed, bool acct_surplus) { - int start_nid; - int next_nid; - int ret = 0; + int nr_nodes, node; + struct folio *folio = NULL; - start_nid = hstate_next_node_to_free(h, nodes_allowed); - next_nid = start_nid; - - do { + lockdep_assert_held(&hugetlb_lock); + for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { /* * If we're returning unused surplus pages, only examine * nodes with surplus pages. */ - if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && - !list_empty(&h->hugepage_freelists[next_nid])) { - struct page *page = - list_entry(h->hugepage_freelists[next_nid].next, - struct page, lru); - list_del(&page->lru); - h->free_huge_pages--; - h->free_huge_pages_node[next_nid]--; - if (acct_surplus) { - h->surplus_huge_pages--; - h->surplus_huge_pages_node[next_nid]--; - } - update_and_free_page(h, page); - ret = 1; + if ((!acct_surplus || h->surplus_huge_pages_node[node]) && + !list_empty(&h->hugepage_freelists[node])) { + folio = list_entry(h->hugepage_freelists[node].next, + struct folio, lru); + remove_hugetlb_folio(h, folio, acct_surplus); break; } - next_nid = hstate_next_node_to_free(h, nodes_allowed); - } while (next_nid != start_nid); + } - return ret; + return folio; } -static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) +/* + * Dissolve a given free hugetlb folio into free buddy pages. This function + * does nothing for in-use hugetlb folios and non-hugetlb folios. + * This function returns values like below: + * + * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages + * when the system is under memory pressure and the feature of + * freeing unused vmemmap pages associated with each hugetlb page + * is enabled. + * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use + * (allocated or reserved.) + * 0: successfully dissolved free hugepages or the page is not a + * hugepage (considered as already dissolved) + */ +int dissolve_free_hugetlb_folio(struct folio *folio) { - struct page *page; - unsigned int r_nid; + int rc = -EBUSY; + +retry: + /* Not to disrupt normal path by vainly holding hugetlb_lock */ + if (!folio_test_hugetlb(folio)) + return 0; + + spin_lock_irq(&hugetlb_lock); + if (!folio_test_hugetlb(folio)) { + rc = 0; + goto out; + } - if (h->order >= MAX_ORDER) + if (!folio_ref_count(folio)) { + struct hstate *h = folio_hstate(folio); + bool adjust_surplus = false; + + if (!available_huge_pages(h)) + goto out; + + /* + * We should make sure that the page is already on the free list + * when it is dissolved. + */ + if (unlikely(!folio_test_hugetlb_freed(folio))) { + spin_unlock_irq(&hugetlb_lock); + cond_resched(); + + /* + * Theoretically, we should return -EBUSY when we + * encounter this race. In fact, we have a chance + * to successfully dissolve the page if we do a + * retry. Because the race window is quite small. + * If we seize this opportunity, it is an optimization + * for increasing the success rate of dissolving page. + */ + goto retry; + } + + if (h->surplus_huge_pages_node[folio_nid(folio)]) + adjust_surplus = true; + remove_hugetlb_folio(h, folio, adjust_surplus); + h->max_huge_pages--; + spin_unlock_irq(&hugetlb_lock); + + /* + * Normally update_and_free_hugtlb_folio will allocate required vmemmmap + * before freeing the page. update_and_free_hugtlb_folio will fail to + * free the page if it can not allocate required vmemmap. We + * need to adjust max_huge_pages if the page is not freed. + * Attempt to allocate vmemmmap here so that we can take + * appropriate action on failure. + * + * The folio_test_hugetlb check here is because + * remove_hugetlb_folio will clear hugetlb folio flag for + * non-vmemmap optimized hugetlb folios. + */ + if (folio_test_hugetlb(folio)) { + rc = hugetlb_vmemmap_restore_folio(h, folio); + if (rc) { + spin_lock_irq(&hugetlb_lock); + add_hugetlb_folio(h, folio, adjust_surplus); + h->max_huge_pages++; + goto out; + } + } else + rc = 0; + + update_and_free_hugetlb_folio(h, folio, false); + return rc; + } +out: + spin_unlock_irq(&hugetlb_lock); + return rc; +} + +/* + * Dissolve free hugepages in a given pfn range. Used by memory hotplug to + * make specified memory blocks removable from the system. + * Note that this will dissolve a free gigantic hugepage completely, if any + * part of it lies within the given range. + * Also note that if dissolve_free_hugetlb_folio() returns with an error, all + * free hugetlb folios that were dissolved before that error are lost. + */ +int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) +{ + unsigned long pfn; + struct folio *folio; + int rc = 0; + unsigned int order; + struct hstate *h; + + if (!hugepages_supported()) + return rc; + + order = huge_page_order(&default_hstate); + for_each_hstate(h) + order = min(order, huge_page_order(h)); + + for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { + folio = pfn_folio(pfn); + rc = dissolve_free_hugetlb_folio(folio); + if (rc) + break; + } + + return rc; +} + +/* + * Allocates a fresh surplus page from the page allocator. + */ +static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, + gfp_t gfp_mask, int nid, nodemask_t *nmask) +{ + struct folio *folio = NULL; + + if (hstate_is_gigantic_no_runtime(h)) return NULL; + spin_lock_irq(&hugetlb_lock); + if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) + goto out_unlock; + spin_unlock_irq(&hugetlb_lock); + + folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); + if (!folio) + return NULL; + + spin_lock_irq(&hugetlb_lock); /* - * Assume we will successfully allocate the surplus page to - * prevent racing processes from causing the surplus to exceed - * overcommit - * - * This however introduces a different race, where a process B - * tries to grow the static hugepage pool while alloc_pages() is - * called by process A. B will only examine the per-node - * counters in determining if surplus huge pages can be - * converted to normal huge pages in adjust_pool_surplus(). A - * won't be able to increment the per-node counter, until the - * lock is dropped by B, but B doesn't drop hugetlb_lock until - * no more huge pages can be converted from surplus to normal - * state (and doesn't try to convert again). Thus, we have a - * case where a surplus huge page exists, the pool is grown, and - * the surplus huge page still exists after, even though it - * should just have been converted to a normal huge page. This - * does not leak memory, though, as the hugepage will be freed - * once it is out of use. It also does not allow the counters to - * go out of whack in adjust_pool_surplus() as we don't modify - * the node values until we've gotten the hugepage and only the - * per-node value is checked there. - */ - spin_lock(&hugetlb_lock); + * nr_huge_pages needs to be adjusted within the same lock cycle + * as surplus_pages, otherwise it might confuse + * persistent_huge_pages() momentarily. + */ + account_new_hugetlb_folio(h, folio); + + /* + * We could have raced with the pool size change. + * Double check that and simply deallocate the new page + * if we would end up overcommiting the surpluses. Abuse + * temporary page to workaround the nasty free_huge_folio + * codeflow + */ if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { - spin_unlock(&hugetlb_lock); + folio_set_hugetlb_temporary(folio); + spin_unlock_irq(&hugetlb_lock); + free_huge_folio(folio); return NULL; - } else { - h->nr_huge_pages++; - h->surplus_huge_pages++; } - spin_unlock(&hugetlb_lock); - if (nid == NUMA_NO_NODE) - page = alloc_pages(htlb_alloc_mask|__GFP_COMP| - __GFP_REPEAT|__GFP_NOWARN, - huge_page_order(h)); - else - page = alloc_pages_exact_node(nid, - htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| - __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); + h->surplus_huge_pages++; + h->surplus_huge_pages_node[folio_nid(folio)]++; - if (page && arch_prepare_hugepage(page)) { - __free_pages(page, huge_page_order(h)); - page = NULL; - } +out_unlock: + spin_unlock_irq(&hugetlb_lock); - spin_lock(&hugetlb_lock); - if (page) { - INIT_LIST_HEAD(&page->lru); - r_nid = page_to_nid(page); - set_compound_page_dtor(page, free_huge_page); - set_hugetlb_cgroup(page, NULL); - /* - * We incremented the global counters already - */ - h->nr_huge_pages_node[r_nid]++; - h->surplus_huge_pages_node[r_nid]++; - __count_vm_event(HTLB_BUDDY_PGALLOC); - } else { - h->nr_huge_pages--; - h->surplus_huge_pages--; - __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); - } - spin_unlock(&hugetlb_lock); + return folio; +} - return page; +static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, + int nid, nodemask_t *nmask) +{ + struct folio *folio; + + if (hstate_is_gigantic(h)) + return NULL; + + folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); + if (!folio) + return NULL; + + spin_lock_irq(&hugetlb_lock); + account_new_hugetlb_folio(h, folio); + spin_unlock_irq(&hugetlb_lock); + + /* fresh huge pages are frozen */ + folio_ref_unfreeze(folio, 1); + /* + * We do not account these pages as surplus because they are only + * temporary and will be released properly on the last reference + */ + folio_set_hugetlb_temporary(folio); + + return folio; } /* - * This allocation function is useful in the context where vma is irrelevant. - * E.g. soft-offlining uses this function because it only cares physical - * address of error page. + * Use the VMA's mpolicy to allocate a huge page from the buddy. */ -struct page *alloc_huge_page_node(struct hstate *h, int nid) +static +struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, + struct vm_area_struct *vma, unsigned long addr) { - struct page *page; + struct folio *folio = NULL; + struct mempolicy *mpol; + gfp_t gfp_mask = htlb_alloc_mask(h); + int nid; + nodemask_t *nodemask; - spin_lock(&hugetlb_lock); - page = dequeue_huge_page_node(h, nid); - spin_unlock(&hugetlb_lock); + nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); + if (mpol_is_preferred_many(mpol)) { + gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); - if (!page) - page = alloc_buddy_huge_page(h, nid); + folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); - return page; + /* Fallback to all nodes if page==NULL */ + nodemask = NULL; + } + + if (!folio) + folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); + mpol_cond_put(mpol); + return folio; +} + +struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, + nodemask_t *nmask, gfp_t gfp_mask) +{ + struct folio *folio; + + spin_lock_irq(&hugetlb_lock); + if (!h->resv_huge_pages) { + spin_unlock_irq(&hugetlb_lock); + return NULL; + } + + folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, + nmask); + if (folio) + h->resv_huge_pages--; + + spin_unlock_irq(&hugetlb_lock); + return folio; +} + +/* folio migration callback function */ +struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, + nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) +{ + spin_lock_irq(&hugetlb_lock); + if (available_huge_pages(h)) { + struct folio *folio; + + folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, + preferred_nid, nmask); + if (folio) { + spin_unlock_irq(&hugetlb_lock); + return folio; + } + } + spin_unlock_irq(&hugetlb_lock); + + /* We cannot fallback to other nodes, as we could break the per-node pool. */ + if (!allow_alloc_fallback) + gfp_mask |= __GFP_THISNODE; + + return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); +} + +static nodemask_t *policy_mbind_nodemask(gfp_t gfp) +{ +#ifdef CONFIG_NUMA + struct mempolicy *mpol = get_task_policy(current); + + /* + * Only enforce MPOL_BIND policy which overlaps with cpuset policy + * (from policy_nodemask) specifically for hugetlb case + */ + if (mpol->mode == MPOL_BIND && + (apply_policy_zone(mpol, gfp_zone(gfp)) && + cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) + return &mpol->nodes; +#endif + return NULL; } /* * Increase the hugetlb pool such that it can accommodate a reservation * of size 'delta'. */ -static int gather_surplus_pages(struct hstate *h, int delta) +static int gather_surplus_pages(struct hstate *h, long delta) + __must_hold(&hugetlb_lock) { - struct list_head surplus_list; - struct page *page, *tmp; - int ret, i; - int needed, allocated; + LIST_HEAD(surplus_list); + struct folio *folio, *tmp; + int ret; + long i; + long needed, allocated; bool alloc_ok = true; + nodemask_t *mbind_nodemask, alloc_nodemask; + + mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); + if (mbind_nodemask) + nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); + else + alloc_nodemask = cpuset_current_mems_allowed; + lockdep_assert_held(&hugetlb_lock); needed = (h->resv_huge_pages + delta) - h->free_huge_pages; if (needed <= 0) { h->resv_huge_pages += delta; @@ -975,18 +2347,25 @@ static int gather_surplus_pages(struct hstate *h, int delta) } allocated = 0; - INIT_LIST_HEAD(&surplus_list); ret = -ENOMEM; retry: - spin_unlock(&hugetlb_lock); + spin_unlock_irq(&hugetlb_lock); for (i = 0; i < needed; i++) { - page = alloc_buddy_huge_page(h, NUMA_NO_NODE); - if (!page) { + folio = NULL; + + /* + * It is okay to use NUMA_NO_NODE because we use numa_mem_id() + * down the road to pick the current node if that is the case. + */ + folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), + NUMA_NO_NODE, &alloc_nodemask); + if (!folio) { alloc_ok = false; break; } - list_add(&page->lru, &surplus_list); + list_add(&folio->lru, &surplus_list); + cond_resched(); } allocated += i; @@ -994,7 +2373,7 @@ retry: * After retaking hugetlb_lock, we need to recalculate 'needed' * because either resv_huge_pages or free_huge_pages may have changed. */ - spin_lock(&hugetlb_lock); + spin_lock_irq(&hugetlb_lock); needed = (h->resv_huge_pages + delta) - (h->free_huge_pages + allocated); if (needed > 0) { @@ -1020,49 +2399,51 @@ retry: ret = 0; /* Free the needed pages to the hugetlb pool */ - list_for_each_entry_safe(page, tmp, &surplus_list, lru) { + list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { if ((--needed) < 0) break; - /* - * This page is now managed by the hugetlb allocator and has - * no users -- drop the buddy allocator's reference. - */ - put_page_testzero(page); - VM_BUG_ON(page_count(page)); - enqueue_huge_page(h, page); + /* Add the page to the hugetlb allocator */ + enqueue_hugetlb_folio(h, folio); } free: - spin_unlock(&hugetlb_lock); + spin_unlock_irq(&hugetlb_lock); - /* Free unnecessary surplus pages to the buddy allocator */ - if (!list_empty(&surplus_list)) { - list_for_each_entry_safe(page, tmp, &surplus_list, lru) { - put_page(page); - } - } - spin_lock(&hugetlb_lock); + /* + * Free unnecessary surplus pages to the buddy allocator. + * Pages have no ref count, call free_huge_folio directly. + */ + list_for_each_entry_safe(folio, tmp, &surplus_list, lru) + free_huge_folio(folio); + spin_lock_irq(&hugetlb_lock); return ret; } /* - * When releasing a hugetlb pool reservation, any surplus pages that were - * allocated to satisfy the reservation must be explicitly freed if they were - * never used. - * Called with hugetlb_lock held. + * This routine has two main purposes: + * 1) Decrement the reservation count (resv_huge_pages) by the value passed + * in unused_resv_pages. This corresponds to the prior adjustments made + * to the associated reservation map. + * 2) Free any unused surplus pages that may have been allocated to satisfy + * the reservation. As many as unused_resv_pages may be freed. */ static void return_unused_surplus_pages(struct hstate *h, unsigned long unused_resv_pages) { unsigned long nr_pages; + LIST_HEAD(page_list); + lockdep_assert_held(&hugetlb_lock); /* Uncommit the reservation */ h->resv_huge_pages -= unused_resv_pages; - /* Cannot return gigantic pages currently */ - if (h->order >= MAX_ORDER) - return; + if (hstate_is_gigantic_no_runtime(h)) + goto out; + /* + * Part (or even all) of the reservation could have been backed + * by pre-allocated pages. Only free surplus pages. + */ nr_pages = min(unused_resv_pages, h->surplus_huge_pages); /* @@ -1070,249 +2451,1239 @@ static void return_unused_surplus_pages(struct hstate *h, * evenly across all nodes with memory. Iterate across these nodes * until we can no longer free unreserved surplus pages. This occurs * when the nodes with surplus pages have no free pages. - * free_pool_huge_page() will balance the the freed pages across the + * remove_pool_hugetlb_folio() will balance the freed pages across the * on-line nodes with memory and will handle the hstate accounting. */ while (nr_pages--) { - if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) - break; + struct folio *folio; + + folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); + if (!folio) + goto out; + + list_add(&folio->lru, &page_list); } + +out: + spin_unlock_irq(&hugetlb_lock); + update_and_free_pages_bulk(h, &page_list); + spin_lock_irq(&hugetlb_lock); } + /* - * Determine if the huge page at addr within the vma has an associated - * reservation. Where it does not we will need to logically increase - * reservation and actually increase subpool usage before an allocation - * can occur. Where any new reservation would be required the - * reservation change is prepared, but not committed. Once the page - * has been allocated from the subpool and instantiated the change should - * be committed via vma_commit_reservation. No action is required on - * failure. + * vma_needs_reservation, vma_commit_reservation and vma_end_reservation + * are used by the huge page allocation routines to manage reservations. + * + * vma_needs_reservation is called to determine if the huge page at addr + * within the vma has an associated reservation. If a reservation is + * needed, the value 1 is returned. The caller is then responsible for + * managing the global reservation and subpool usage counts. After + * the huge page has been allocated, vma_commit_reservation is called + * to add the page to the reservation map. If the page allocation fails, + * the reservation must be ended instead of committed. vma_end_reservation + * is called in such cases. + * + * In the normal case, vma_commit_reservation returns the same value + * as the preceding vma_needs_reservation call. The only time this + * is not the case is if a reserve map was changed between calls. It + * is the responsibility of the caller to notice the difference and + * take appropriate action. + * + * vma_add_reservation is used in error paths where a reservation must + * be restored when a newly allocated huge page must be freed. It is + * to be called after calling vma_needs_reservation to determine if a + * reservation exists. + * + * vma_del_reservation is used in error paths where an entry in the reserve + * map was created during huge page allocation and must be removed. It is to + * be called after calling vma_needs_reservation to determine if a reservation + * exists. */ +enum vma_resv_mode { + VMA_NEEDS_RESV, + VMA_COMMIT_RESV, + VMA_END_RESV, + VMA_ADD_RESV, + VMA_DEL_RESV, +}; +static long __vma_reservation_common(struct hstate *h, + struct vm_area_struct *vma, unsigned long addr, + enum vma_resv_mode mode) +{ + struct resv_map *resv; + pgoff_t idx; + long ret; + long dummy_out_regions_needed; + + resv = vma_resv_map(vma); + if (!resv) + return 1; + + idx = vma_hugecache_offset(h, vma, addr); + switch (mode) { + case VMA_NEEDS_RESV: + ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); + /* We assume that vma_reservation_* routines always operate on + * 1 page, and that adding to resv map a 1 page entry can only + * ever require 1 region. + */ + VM_BUG_ON(dummy_out_regions_needed != 1); + break; + case VMA_COMMIT_RESV: + ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); + /* region_add calls of range 1 should never fail. */ + VM_BUG_ON(ret < 0); + break; + case VMA_END_RESV: + region_abort(resv, idx, idx + 1, 1); + ret = 0; + break; + case VMA_ADD_RESV: + if (vma->vm_flags & VM_MAYSHARE) { + ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); + /* region_add calls of range 1 should never fail. */ + VM_BUG_ON(ret < 0); + } else { + region_abort(resv, idx, idx + 1, 1); + ret = region_del(resv, idx, idx + 1); + } + break; + case VMA_DEL_RESV: + if (vma->vm_flags & VM_MAYSHARE) { + region_abort(resv, idx, idx + 1, 1); + ret = region_del(resv, idx, idx + 1); + } else { + ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); + /* region_add calls of range 1 should never fail. */ + VM_BUG_ON(ret < 0); + } + break; + default: + BUG(); + } + + if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) + return ret; + /* + * We know private mapping must have HPAGE_RESV_OWNER set. + * + * In most cases, reserves always exist for private mappings. + * However, a file associated with mapping could have been + * hole punched or truncated after reserves were consumed. + * As subsequent fault on such a range will not use reserves. + * Subtle - The reserve map for private mappings has the + * opposite meaning than that of shared mappings. If NO + * entry is in the reserve map, it means a reservation exists. + * If an entry exists in the reserve map, it means the + * reservation has already been consumed. As a result, the + * return value of this routine is the opposite of the + * value returned from reserve map manipulation routines above. + */ + if (ret > 0) + return 0; + if (ret == 0) + return 1; + return ret; +} + static long vma_needs_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { - struct address_space *mapping = vma->vm_file->f_mapping; - struct inode *inode = mapping->host; + return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); +} - if (vma->vm_flags & VM_MAYSHARE) { - pgoff_t idx = vma_hugecache_offset(h, vma, addr); - return region_chg(&inode->i_mapping->private_list, - idx, idx + 1); +static long vma_commit_reservation(struct hstate *h, + struct vm_area_struct *vma, unsigned long addr) +{ + return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); +} - } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { - return 1; +static void vma_end_reservation(struct hstate *h, + struct vm_area_struct *vma, unsigned long addr) +{ + (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); +} - } else { - long err; - pgoff_t idx = vma_hugecache_offset(h, vma, addr); - struct resv_map *reservations = vma_resv_map(vma); +static long vma_add_reservation(struct hstate *h, + struct vm_area_struct *vma, unsigned long addr) +{ + return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); +} - err = region_chg(&reservations->regions, idx, idx + 1); - if (err < 0) - return err; - return 0; +static long vma_del_reservation(struct hstate *h, + struct vm_area_struct *vma, unsigned long addr) +{ + return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); +} + +/* + * This routine is called to restore reservation information on error paths. + * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), + * and the hugetlb mutex should remain held when calling this routine. + * + * It handles two specific cases: + * 1) A reservation was in place and the folio consumed the reservation. + * hugetlb_restore_reserve is set in the folio. + * 2) No reservation was in place for the page, so hugetlb_restore_reserve is + * not set. However, alloc_hugetlb_folio always updates the reserve map. + * + * In case 1, free_huge_folio later in the error path will increment the + * global reserve count. But, free_huge_folio does not have enough context + * to adjust the reservation map. This case deals primarily with private + * mappings. Adjust the reserve map here to be consistent with global + * reserve count adjustments to be made by free_huge_folio. Make sure the + * reserve map indicates there is a reservation present. + * + * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. + */ +void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, + unsigned long address, struct folio *folio) +{ + long rc = vma_needs_reservation(h, vma, address); + + if (folio_test_hugetlb_restore_reserve(folio)) { + if (unlikely(rc < 0)) + /* + * Rare out of memory condition in reserve map + * manipulation. Clear hugetlb_restore_reserve so + * that global reserve count will not be incremented + * by free_huge_folio. This will make it appear + * as though the reservation for this folio was + * consumed. This may prevent the task from + * faulting in the folio at a later time. This + * is better than inconsistent global huge page + * accounting of reserve counts. + */ + folio_clear_hugetlb_restore_reserve(folio); + else if (rc) + (void)vma_add_reservation(h, vma, address); + else + vma_end_reservation(h, vma, address); + } else { + if (!rc) { + /* + * This indicates there is an entry in the reserve map + * not added by alloc_hugetlb_folio. We know it was added + * before the alloc_hugetlb_folio call, otherwise + * hugetlb_restore_reserve would be set on the folio. + * Remove the entry so that a subsequent allocation + * does not consume a reservation. + */ + rc = vma_del_reservation(h, vma, address); + if (rc < 0) + /* + * VERY rare out of memory condition. Since + * we can not delete the entry, set + * hugetlb_restore_reserve so that the reserve + * count will be incremented when the folio + * is freed. This reserve will be consumed + * on a subsequent allocation. + */ + folio_set_hugetlb_restore_reserve(folio); + } else if (rc < 0) { + /* + * Rare out of memory condition from + * vma_needs_reservation call. Memory allocation is + * only attempted if a new entry is needed. Therefore, + * this implies there is not an entry in the + * reserve map. + * + * For shared mappings, no entry in the map indicates + * no reservation. We are done. + */ + if (!(vma->vm_flags & VM_MAYSHARE)) + /* + * For private mappings, no entry indicates + * a reservation is present. Since we can + * not add an entry, set hugetlb_restore_reserve + * on the folio so reserve count will be + * incremented when freed. This reserve will + * be consumed on a subsequent allocation. + */ + folio_set_hugetlb_restore_reserve(folio); + } else + /* + * No reservation present, do nothing + */ + vma_end_reservation(h, vma, address); } } -static void vma_commit_reservation(struct hstate *h, - struct vm_area_struct *vma, unsigned long addr) + +/* + * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve + * the old one + * @old_folio: Old folio to dissolve + * @list: List to isolate the page in case we need to + * Returns 0 on success, otherwise negated error. + */ +static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio, + struct list_head *list) { - struct address_space *mapping = vma->vm_file->f_mapping; - struct inode *inode = mapping->host; + gfp_t gfp_mask; + struct hstate *h; + int nid = folio_nid(old_folio); + struct folio *new_folio = NULL; + int ret = 0; - if (vma->vm_flags & VM_MAYSHARE) { - pgoff_t idx = vma_hugecache_offset(h, vma, addr); - region_add(&inode->i_mapping->private_list, idx, idx + 1); +retry: + /* + * The old_folio might have been dissolved from under our feet, so make sure + * to carefully check the state under the lock. + */ + spin_lock_irq(&hugetlb_lock); + if (!folio_test_hugetlb(old_folio)) { + /* + * Freed from under us. Drop new_folio too. + */ + goto free_new; + } else if (folio_ref_count(old_folio)) { + bool isolated; - } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { - pgoff_t idx = vma_hugecache_offset(h, vma, addr); - struct resv_map *reservations = vma_resv_map(vma); + /* + * Someone has grabbed the folio, try to isolate it here. + * Fail with -EBUSY if not possible. + */ + spin_unlock_irq(&hugetlb_lock); + isolated = folio_isolate_hugetlb(old_folio, list); + ret = isolated ? 0 : -EBUSY; + spin_lock_irq(&hugetlb_lock); + goto free_new; + } else if (!folio_test_hugetlb_freed(old_folio)) { + /* + * Folio's refcount is 0 but it has not been enqueued in the + * freelist yet. Race window is small, so we can succeed here if + * we retry. + */ + spin_unlock_irq(&hugetlb_lock); + cond_resched(); + goto retry; + } else { + h = folio_hstate(old_folio); + if (!new_folio) { + spin_unlock_irq(&hugetlb_lock); + gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; + new_folio = alloc_fresh_hugetlb_folio(h, gfp_mask, + nid, NULL); + if (!new_folio) + return -ENOMEM; + goto retry; + } + + /* + * Ok, old_folio is still a genuine free hugepage. Remove it from + * the freelist and decrease the counters. These will be + * incremented again when calling account_new_hugetlb_folio() + * and enqueue_hugetlb_folio() for new_folio. The counters will + * remain stable since this happens under the lock. + */ + remove_hugetlb_folio(h, old_folio, false); + + /* + * Ref count on new_folio is already zero as it was dropped + * earlier. It can be directly added to the pool free list. + */ + account_new_hugetlb_folio(h, new_folio); + enqueue_hugetlb_folio(h, new_folio); - /* Mark this page used in the map. */ - region_add(&reservations->regions, idx, idx + 1); + /* + * Folio has been replaced, we can safely free the old one. + */ + spin_unlock_irq(&hugetlb_lock); + update_and_free_hugetlb_folio(h, old_folio, false); } + + return ret; + +free_new: + spin_unlock_irq(&hugetlb_lock); + if (new_folio) + update_and_free_hugetlb_folio(h, new_folio, false); + + return ret; +} + +int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list) +{ + int ret = -EBUSY; + + /* Not to disrupt normal path by vainly holding hugetlb_lock */ + if (!folio_test_hugetlb(folio)) + return 0; + + /* + * Fence off gigantic pages as there is a cyclic dependency between + * alloc_contig_range and them. Return -ENOMEM as this has the effect + * of bailing out right away without further retrying. + */ + if (order_is_gigantic(folio_order(folio))) + return -ENOMEM; + + if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) + ret = 0; + else if (!folio_ref_count(folio)) + ret = alloc_and_dissolve_hugetlb_folio(folio, list); + + return ret; } -static struct page *alloc_huge_page(struct vm_area_struct *vma, - unsigned long addr, int avoid_reserve) +/* + * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn + * range with new folios. + * @start_pfn: start pfn of the given pfn range + * @end_pfn: end pfn of the given pfn range + * Returns 0 on success, otherwise negated error. + */ +int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) +{ + struct folio *folio; + int ret = 0; + + LIST_HEAD(isolate_list); + + while (start_pfn < end_pfn) { + folio = pfn_folio(start_pfn); + + /* Not to disrupt normal path by vainly holding hugetlb_lock */ + if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) { + ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list); + if (ret) + break; + + putback_movable_pages(&isolate_list); + } + start_pfn++; + } + + return ret; +} + +void wait_for_freed_hugetlb_folios(void) +{ + if (llist_empty(&hpage_freelist)) + return; + + flush_work(&free_hpage_work); +} + +typedef enum { + /* + * For either 0/1: we checked the per-vma resv map, and one resv + * count either can be reused (0), or an extra needed (1). + */ + MAP_CHG_REUSE = 0, + MAP_CHG_NEEDED = 1, + /* + * Cannot use per-vma resv count can be used, hence a new resv + * count is enforced. + * + * NOTE: This is mostly identical to MAP_CHG_NEEDED, except + * that currently vma_needs_reservation() has an unwanted side + * effect to either use end() or commit() to complete the + * transaction. Hence it needs to differentiate from NEEDED. + */ + MAP_CHG_ENFORCED = 2, +} map_chg_state; + +/* + * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW + * faults of hugetlb private mappings on top of a non-page-cache folio (in + * which case even if there's a private vma resv map it won't cover such + * allocation). New call sites should (probably) never set it to true!! + * When it's set, the allocation will bypass all vma level reservations. + */ +struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, + unsigned long addr, bool cow_from_owner) { struct hugepage_subpool *spool = subpool_vma(vma); struct hstate *h = hstate_vma(vma); - struct page *page; - long chg; + struct folio *folio; + long retval, gbl_chg, gbl_reserve; + map_chg_state map_chg; int ret, idx; - struct hugetlb_cgroup *h_cg; + struct hugetlb_cgroup *h_cg = NULL; + gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; idx = hstate_index(h); + + /* Whether we need a separate per-vma reservation? */ + if (cow_from_owner) { + /* + * Special case! Since it's a CoW on top of a reserved + * page, the private resv map doesn't count. So it cannot + * consume the per-vma resv map even if it's reserved. + */ + map_chg = MAP_CHG_ENFORCED; + } else { + /* + * Examine the region/reserve map to determine if the process + * has a reservation for the page to be allocated. A return + * code of zero indicates a reservation exists (no change). + */ + retval = vma_needs_reservation(h, vma, addr); + if (retval < 0) + return ERR_PTR(-ENOMEM); + map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; + } + /* + * Whether we need a separate global reservation? + * * Processes that did not create the mapping will have no - * reserves and will not have accounted against subpool - * limit. Check that the subpool limit can be made before - * satisfying the allocation MAP_NORESERVE mappings may also - * need pages and subpool limit allocated allocated if no reserve - * mapping overlaps. + * reserves as indicated by the region/reserve map. Check + * that the allocation will not exceed the subpool limit. + * Or if it can get one from the pool reservation directly. */ - chg = vma_needs_reservation(h, vma, addr); - if (chg < 0) - return ERR_PTR(-ENOMEM); - if (chg) - if (hugepage_subpool_get_pages(spool, chg)) - return ERR_PTR(-ENOSPC); + if (map_chg) { + gbl_chg = hugepage_subpool_get_pages(spool, 1); + if (gbl_chg < 0) + goto out_end_reservation; + } else { + /* + * If we have the vma reservation ready, no need for extra + * global reservation. + */ + gbl_chg = 0; + } + + /* + * If this allocation is not consuming a per-vma reservation, + * charge the hugetlb cgroup now. + */ + if (map_chg) { + ret = hugetlb_cgroup_charge_cgroup_rsvd( + idx, pages_per_huge_page(h), &h_cg); + if (ret) + goto out_subpool_put; + } ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); - if (ret) { - hugepage_subpool_put_pages(spool, chg); - return ERR_PTR(-ENOSPC); - } - spin_lock(&hugetlb_lock); - page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); - if (page) { - /* update page cgroup details */ - hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), - h_cg, page); - spin_unlock(&hugetlb_lock); - } else { - spin_unlock(&hugetlb_lock); - page = alloc_buddy_huge_page(h, NUMA_NO_NODE); - if (!page) { - hugetlb_cgroup_uncharge_cgroup(idx, - pages_per_huge_page(h), - h_cg); - hugepage_subpool_put_pages(spool, chg); - return ERR_PTR(-ENOSPC); + if (ret) + goto out_uncharge_cgroup_reservation; + + spin_lock_irq(&hugetlb_lock); + /* + * glb_chg is passed to indicate whether or not a page must be taken + * from the global free pool (global change). gbl_chg == 0 indicates + * a reservation exists for the allocation. + */ + folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); + if (!folio) { + spin_unlock_irq(&hugetlb_lock); + folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); + if (!folio) + goto out_uncharge_cgroup; + spin_lock_irq(&hugetlb_lock); + list_add(&folio->lru, &h->hugepage_activelist); + folio_ref_unfreeze(folio, 1); + /* Fall through */ + } + + /* + * Either dequeued or buddy-allocated folio needs to add special + * mark to the folio when it consumes a global reservation. + */ + if (!gbl_chg) { + folio_set_hugetlb_restore_reserve(folio); + h->resv_huge_pages--; + } + + hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); + /* If allocation is not consuming a reservation, also store the + * hugetlb_cgroup pointer on the page. + */ + if (map_chg) { + hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), + h_cg, folio); + } + + spin_unlock_irq(&hugetlb_lock); + + hugetlb_set_folio_subpool(folio, spool); + + if (map_chg != MAP_CHG_ENFORCED) { + /* commit() is only needed if the map_chg is not enforced */ + retval = vma_commit_reservation(h, vma, addr); + /* + * Check for possible race conditions. When it happens.. + * The page was added to the reservation map between + * vma_needs_reservation and vma_commit_reservation. + * This indicates a race with hugetlb_reserve_pages. + * Adjust for the subpool count incremented above AND + * in hugetlb_reserve_pages for the same page. Also, + * the reservation count added in hugetlb_reserve_pages + * no longer applies. + */ + if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { + long rsv_adjust; + + rsv_adjust = hugepage_subpool_put_pages(spool, 1); + hugetlb_acct_memory(h, -rsv_adjust); + if (map_chg) { + spin_lock_irq(&hugetlb_lock); + hugetlb_cgroup_uncharge_folio_rsvd( + hstate_index(h), pages_per_huge_page(h), + folio); + spin_unlock_irq(&hugetlb_lock); + } } - spin_lock(&hugetlb_lock); - hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), - h_cg, page); - list_move(&page->lru, &h->hugepage_activelist); - spin_unlock(&hugetlb_lock); } - set_page_private(page, (unsigned long)spool); + ret = mem_cgroup_charge_hugetlb(folio, gfp); + /* + * Unconditionally increment NR_HUGETLB here. If it turns out that + * mem_cgroup_charge_hugetlb failed, then immediately free the page and + * decrement NR_HUGETLB. + */ + lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); + + if (ret == -ENOMEM) { + free_huge_folio(folio); + return ERR_PTR(-ENOMEM); + } + + return folio; + +out_uncharge_cgroup: + hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); +out_uncharge_cgroup_reservation: + if (map_chg) + hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), + h_cg); +out_subpool_put: + /* + * put page to subpool iff the quota of subpool's rsv_hpages is used + * during hugepage_subpool_get_pages. + */ + if (map_chg && !gbl_chg) { + gbl_reserve = hugepage_subpool_put_pages(spool, 1); + hugetlb_acct_memory(h, -gbl_reserve); + } - vma_commit_reservation(h, vma, addr); - return page; + +out_end_reservation: + if (map_chg != MAP_CHG_ENFORCED) + vma_end_reservation(h, vma, addr); + return ERR_PTR(-ENOSPC); } -int __weak alloc_bootmem_huge_page(struct hstate *h) +static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) { struct huge_bootmem_page *m; - int nr_nodes = nodes_weight(node_states[N_MEMORY]); - - while (nr_nodes) { - void *addr; - - addr = __alloc_bootmem_node_nopanic( - NODE_DATA(hstate_next_node_to_alloc(h, - &node_states[N_MEMORY])), - huge_page_size(h), huge_page_size(h), 0); + int listnode = nid; - if (addr) { + if (hugetlb_early_cma(h)) + m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); + else { + if (node_exact) + m = memblock_alloc_exact_nid_raw(huge_page_size(h), + huge_page_size(h), 0, + MEMBLOCK_ALLOC_ACCESSIBLE, nid); + else { + m = memblock_alloc_try_nid_raw(huge_page_size(h), + huge_page_size(h), 0, + MEMBLOCK_ALLOC_ACCESSIBLE, nid); /* - * Use the beginning of the huge page to store the - * huge_bootmem_page struct (until gather_bootmem - * puts them into the mem_map). + * For pre-HVO to work correctly, pages need to be on + * the list for the node they were actually allocated + * from. That node may be different in the case of + * fallback by memblock_alloc_try_nid_raw. So, + * extract the actual node first. */ - m = addr; - goto found; + if (m) + listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); + } + + if (m) { + m->flags = 0; + m->cma = NULL; } - nr_nodes--; } - return 0; + + if (m) { + /* + * Use the beginning of the huge page to store the + * huge_bootmem_page struct (until gather_bootmem + * puts them into the mem_map). + * + * Put them into a private list first because mem_map + * is not up yet. + */ + INIT_LIST_HEAD(&m->list); + list_add(&m->list, &huge_boot_pages[listnode]); + m->hstate = h; + } + + return m; +} + +int alloc_bootmem_huge_page(struct hstate *h, int nid) + __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); +int __alloc_bootmem_huge_page(struct hstate *h, int nid) +{ + struct huge_bootmem_page *m = NULL; /* initialize for clang */ + int nr_nodes, node = nid; + + /* do node specific alloc */ + if (nid != NUMA_NO_NODE) { + m = alloc_bootmem(h, node, true); + if (!m) + return 0; + goto found; + } + + /* allocate from next node when distributing huge pages */ + for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, + &hugetlb_bootmem_nodes) { + m = alloc_bootmem(h, node, false); + if (!m) + return 0; + goto found; + } found: - BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); - /* Put them into a private list first because mem_map is not up yet */ - list_add(&m->list, &huge_boot_pages); - m->hstate = h; + + /* + * Only initialize the head struct page in memmap_init_reserved_pages, + * rest of the struct pages will be initialized by the HugeTLB + * subsystem itself. + * The head struct page is used to get folio information by the HugeTLB + * subsystem like zone id and node id. + */ + memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), + huge_page_size(h) - PAGE_SIZE); + return 1; } -static void prep_compound_huge_page(struct page *page, int order) +/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ +static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, + unsigned long start_page_number, + unsigned long end_page_number) { - if (unlikely(order > (MAX_ORDER - 1))) - prep_compound_gigantic_page(page, order); - else - prep_compound_page(page, order); + enum zone_type zone = folio_zonenum(folio); + int nid = folio_nid(folio); + struct page *page = folio_page(folio, start_page_number); + unsigned long head_pfn = folio_pfn(folio); + unsigned long pfn, end_pfn = head_pfn + end_page_number; + + /* + * As we marked all tail pages with memblock_reserved_mark_noinit(), + * we must initialize them ourselves here. + */ + for (pfn = head_pfn + start_page_number; pfn < end_pfn; page++, pfn++) { + __init_single_page(page, pfn, zone, nid); + prep_compound_tail((struct page *)folio, pfn - head_pfn); + set_page_count(page, 0); + } } -/* Put bootmem huge pages into the standard lists after mem_map is up */ -static void __init gather_bootmem_prealloc(void) +static void __init hugetlb_folio_init_vmemmap(struct folio *folio, + struct hstate *h, + unsigned long nr_pages) { - struct huge_bootmem_page *m; + int ret; + + /* + * This is an open-coded prep_compound_page() whereby we avoid + * walking pages twice by initializing/preparing+freezing them in the + * same go. + */ + __folio_clear_reserved(folio); + __folio_set_head(folio); + ret = folio_ref_freeze(folio, 1); + VM_BUG_ON(!ret); + hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); + prep_compound_head(&folio->page, huge_page_order(h)); +} - list_for_each_entry(m, &huge_boot_pages, list) { - struct hstate *h = m->hstate; - struct page *page; +static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) +{ + return m->flags & HUGE_BOOTMEM_HVO; +} -#ifdef CONFIG_HIGHMEM - page = pfn_to_page(m->phys >> PAGE_SHIFT); - free_bootmem_late((unsigned long)m, - sizeof(struct huge_bootmem_page)); -#else - page = virt_to_page(m); -#endif - __ClearPageReserved(page); - WARN_ON(page_count(page) != 1); - prep_compound_huge_page(page, h->order); - prep_new_huge_page(h, page, page_to_nid(page)); +static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) +{ + return m->flags & HUGE_BOOTMEM_CMA; +} + +/* + * memblock-allocated pageblocks might not have the migrate type set + * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) + * here, or MIGRATE_CMA if this was a page allocated through an early CMA + * reservation. + * + * In case of vmemmap optimized folios, the tail vmemmap pages are mapped + * read-only, but that's ok - for sparse vmemmap this does not write to + * the page structure. + */ +static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, + struct hstate *h) +{ + unsigned long nr_pages = pages_per_huge_page(h), i; + + WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); + + for (i = 0; i < nr_pages; i += pageblock_nr_pages) { + if (folio_test_hugetlb_cma(folio)) + init_cma_pageblock(folio_page(folio, i)); + else + init_pageblock_migratetype(folio_page(folio, i), + MIGRATE_MOVABLE, false); + } +} + +static void __init prep_and_add_bootmem_folios(struct hstate *h, + struct list_head *folio_list) +{ + unsigned long flags; + struct folio *folio, *tmp_f; + + /* Send list for bulk vmemmap optimization processing */ + hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); + + list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { + if (!folio_test_hugetlb_vmemmap_optimized(folio)) { + /* + * If HVO fails, initialize all tail struct pages + * We do not worry about potential long lock hold + * time as this is early in boot and there should + * be no contention. + */ + hugetlb_folio_init_tail_vmemmap(folio, + HUGETLB_VMEMMAP_RESERVE_PAGES, + pages_per_huge_page(h)); + } + hugetlb_bootmem_init_migratetype(folio, h); + /* Subdivide locks to achieve better parallel performance */ + spin_lock_irqsave(&hugetlb_lock, flags); + account_new_hugetlb_folio(h, folio); + enqueue_hugetlb_folio(h, folio); + spin_unlock_irqrestore(&hugetlb_lock, flags); + } +} + +bool __init hugetlb_bootmem_page_zones_valid(int nid, + struct huge_bootmem_page *m) +{ + unsigned long start_pfn; + bool valid; + + if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { /* - * If we had gigantic hugepages allocated at boot time, we need - * to restore the 'stolen' pages to totalram_pages in order to - * fix confusing memory reports from free(1) and another - * side-effects, like CommitLimit going negative. + * Already validated, skip check. */ - if (h->order > (MAX_ORDER - 1)) - adjust_managed_page_count(page, 1 << h->order); + return true; } + + if (hugetlb_bootmem_page_earlycma(m)) { + valid = cma_validate_zones(m->cma); + goto out; + } + + start_pfn = virt_to_phys(m) >> PAGE_SHIFT; + + valid = !pfn_range_intersects_zones(nid, start_pfn, + pages_per_huge_page(m->hstate)); +out: + if (!valid) + hstate_boot_nrinvalid[hstate_index(m->hstate)]++; + + return valid; } -static void __init hugetlb_hstate_alloc_pages(struct hstate *h) +/* + * Free a bootmem page that was found to be invalid (intersecting with + * multiple zones). + * + * Since it intersects with multiple zones, we can't just do a free + * operation on all pages at once, but instead have to walk all + * pages, freeing them one by one. + */ +static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, + struct hstate *h) +{ + unsigned long npages = pages_per_huge_page(h); + unsigned long pfn; + + while (npages--) { + pfn = page_to_pfn(page); + __init_page_from_nid(pfn, nid); + free_reserved_page(page); + page++; + } +} + +/* + * Put bootmem huge pages into the standard lists after mem_map is up. + * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. + */ +static void __init gather_bootmem_prealloc_node(unsigned long nid) +{ + LIST_HEAD(folio_list); + struct huge_bootmem_page *m, *tm; + struct hstate *h = NULL, *prev_h = NULL; + + list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { + struct page *page = virt_to_page(m); + struct folio *folio = (void *)page; + + h = m->hstate; + if (!hugetlb_bootmem_page_zones_valid(nid, m)) { + /* + * Can't use this page. Initialize the + * page structures if that hasn't already + * been done, and give them to the page + * allocator. + */ + hugetlb_bootmem_free_invalid_page(nid, page, h); + continue; + } + + /* + * It is possible to have multiple huge page sizes (hstates) + * in this list. If so, process each size separately. + */ + if (h != prev_h && prev_h != NULL) + prep_and_add_bootmem_folios(prev_h, &folio_list); + prev_h = h; + + VM_BUG_ON(!hstate_is_gigantic(h)); + WARN_ON(folio_ref_count(folio) != 1); + + hugetlb_folio_init_vmemmap(folio, h, + HUGETLB_VMEMMAP_RESERVE_PAGES); + init_new_hugetlb_folio(folio); + + if (hugetlb_bootmem_page_prehvo(m)) + /* + * If pre-HVO was done, just set the + * flag, the HVO code will then skip + * this folio. + */ + folio_set_hugetlb_vmemmap_optimized(folio); + + if (hugetlb_bootmem_page_earlycma(m)) + folio_set_hugetlb_cma(folio); + + list_add(&folio->lru, &folio_list); + + /* + * We need to restore the 'stolen' pages to totalram_pages + * in order to fix confusing memory reports from free(1) and + * other side-effects, like CommitLimit going negative. + * + * For CMA pages, this is done in init_cma_pageblock + * (via hugetlb_bootmem_init_migratetype), so skip it here. + */ + if (!folio_test_hugetlb_cma(folio)) + adjust_managed_page_count(page, pages_per_huge_page(h)); + cond_resched(); + } + + prep_and_add_bootmem_folios(h, &folio_list); +} + +static void __init gather_bootmem_prealloc_parallel(unsigned long start, + unsigned long end, void *arg) +{ + int nid; + + for (nid = start; nid < end; nid++) + gather_bootmem_prealloc_node(nid); +} + +static void __init gather_bootmem_prealloc(void) +{ + struct padata_mt_job job = { + .thread_fn = gather_bootmem_prealloc_parallel, + .fn_arg = NULL, + .start = 0, + .size = nr_node_ids, + .align = 1, + .min_chunk = 1, + .max_threads = num_node_state(N_MEMORY), + .numa_aware = true, + }; + + padata_do_multithreaded(&job); +} + +static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) { unsigned long i; + char buf[32]; + LIST_HEAD(folio_list); - for (i = 0; i < h->max_huge_pages; ++i) { - if (h->order >= MAX_ORDER) { - if (!alloc_bootmem_huge_page(h)) + for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { + if (hstate_is_gigantic(h)) { + if (!alloc_bootmem_huge_page(h, nid)) break; - } else if (!alloc_fresh_huge_page(h, - &node_states[N_MEMORY])) + } else { + struct folio *folio; + gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; + + folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, + &node_states[N_MEMORY], NULL); + if (!folio) + break; + list_add(&folio->lru, &folio_list); + } + cond_resched(); + } + + if (!list_empty(&folio_list)) + prep_and_add_allocated_folios(h, &folio_list); + + if (i == h->max_huge_pages_node[nid]) + return; + + string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); + pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", + h->max_huge_pages_node[nid], buf, nid, i); + h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); + h->max_huge_pages_node[nid] = i; +} + +static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) +{ + int i; + bool node_specific_alloc = false; + + for_each_online_node(i) { + if (h->max_huge_pages_node[i] > 0) { + hugetlb_hstate_alloc_pages_onenode(h, i); + node_specific_alloc = true; + } + } + + return node_specific_alloc; +} + +static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) +{ + if (allocated < h->max_huge_pages) { + char buf[32]; + + string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); + pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", + h->max_huge_pages, buf, allocated); + h->max_huge_pages = allocated; + } +} + +static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) +{ + struct hstate *h = (struct hstate *)arg; + int i, num = end - start; + nodemask_t node_alloc_noretry; + LIST_HEAD(folio_list); + int next_node = first_online_node; + + /* Bit mask controlling how hard we retry per-node allocations.*/ + nodes_clear(node_alloc_noretry); + + for (i = 0; i < num; ++i) { + struct folio *folio; + + if (hugetlb_vmemmap_optimizable_size(h) && + (si_mem_available() == 0) && !list_empty(&folio_list)) { + prep_and_add_allocated_folios(h, &folio_list); + INIT_LIST_HEAD(&folio_list); + } + folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], + &node_alloc_noretry, &next_node); + if (!folio) break; + + list_move(&folio->lru, &folio_list); + cond_resched(); } - h->max_huge_pages = i; + + prep_and_add_allocated_folios(h, &folio_list); } -static void __init hugetlb_init_hstates(void) +static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) { - struct hstate *h; + unsigned long i; - for_each_hstate(h) { - /* oversize hugepages were init'ed in early boot */ - if (h->order < MAX_ORDER) - hugetlb_hstate_alloc_pages(h); + for (i = 0; i < h->max_huge_pages; ++i) { + if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) + break; + cond_resched(); } + + return i; } -static char * __init memfmt(char *buf, unsigned long n) +static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) { - if (n >= (1UL << 30)) - sprintf(buf, "%lu GB", n >> 30); - else if (n >= (1UL << 20)) - sprintf(buf, "%lu MB", n >> 20); + struct padata_mt_job job = { + .fn_arg = h, + .align = 1, + .numa_aware = true + }; + + unsigned long jiffies_start; + unsigned long jiffies_end; + unsigned long remaining; + + job.thread_fn = hugetlb_pages_alloc_boot_node; + + /* + * job.max_threads is 25% of the available cpu threads by default. + * + * On large servers with terabytes of memory, huge page allocation + * can consume a considerably amount of time. + * + * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages. + * 2MiB huge pages. Using more threads can significantly improve allocation time. + * + * +-----------------------+-------+-------+-------+-------+-------+ + * | threads | 8 | 16 | 32 | 64 | 128 | + * +-----------------------+-------+-------+-------+-------+-------+ + * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s | + * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s | + * +-----------------------+-------+-------+-------+-------+-------+ + */ + if (hugepage_allocation_threads == 0) { + hugepage_allocation_threads = num_online_cpus() / 4; + hugepage_allocation_threads = max(hugepage_allocation_threads, 1); + } + + job.max_threads = hugepage_allocation_threads; + + jiffies_start = jiffies; + do { + remaining = h->max_huge_pages - h->nr_huge_pages; + + job.start = h->nr_huge_pages; + job.size = remaining; + job.min_chunk = remaining / hugepage_allocation_threads; + padata_do_multithreaded(&job); + + if (h->nr_huge_pages == h->max_huge_pages) + break; + + /* + * Retry only if the vmemmap optimization might have been able to free + * some memory back to the system. + */ + if (!hugetlb_vmemmap_optimizable(h)) + break; + + /* Continue if progress was made in last iteration */ + } while (remaining != (h->max_huge_pages - h->nr_huge_pages)); + + jiffies_end = jiffies; + + pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n", + jiffies_to_msecs(jiffies_end - jiffies_start), + hugepage_allocation_threads); + + return h->nr_huge_pages; +} + +/* + * NOTE: this routine is called in different contexts for gigantic and + * non-gigantic pages. + * - For gigantic pages, this is called early in the boot process and + * pages are allocated from memblock allocated or something similar. + * Gigantic pages are actually added to pools later with the routine + * gather_bootmem_prealloc. + * - For non-gigantic pages, this is called later in the boot process after + * all of mm is up and functional. Pages are allocated from buddy and + * then added to hugetlb pools. + */ +static void __init hugetlb_hstate_alloc_pages(struct hstate *h) +{ + unsigned long allocated; + + /* + * Skip gigantic hugepages allocation if early CMA + * reservations are not available. + */ + if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && + !hugetlb_early_cma(h)) { + pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); + return; + } + + if (!h->max_huge_pages) + return; + + /* do node specific alloc */ + if (hugetlb_hstate_alloc_pages_specific_nodes(h)) + return; + + /* below will do all node balanced alloc */ + if (hstate_is_gigantic(h)) + allocated = hugetlb_gigantic_pages_alloc_boot(h); else - sprintf(buf, "%lu KB", n >> 10); - return buf; + allocated = hugetlb_pages_alloc_boot(h); + + hugetlb_hstate_alloc_pages_errcheck(allocated, h); +} + +static void __init hugetlb_init_hstates(void) +{ + struct hstate *h, *h2; + + for_each_hstate(h) { + /* + * Always reset to first_memory_node here, even if + * next_nid_to_alloc was set before - we can't + * reference hugetlb_bootmem_nodes after init, and + * first_memory_node is right for all further allocations. + */ + h->next_nid_to_alloc = first_memory_node; + h->next_nid_to_free = first_memory_node; + + /* oversize hugepages were init'ed in early boot */ + if (!hstate_is_gigantic(h)) + hugetlb_hstate_alloc_pages(h); + + /* + * Set demote order for each hstate. Note that + * h->demote_order is initially 0. + * - We can not demote gigantic pages if runtime freeing + * is not supported, so skip this. + * - If CMA allocation is possible, we can not demote + * HUGETLB_PAGE_ORDER or smaller size pages. + */ + if (hstate_is_gigantic_no_runtime(h)) + continue; + if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) + continue; + for_each_hstate(h2) { + if (h2 == h) + continue; + if (h2->order < h->order && + h2->order > h->demote_order) + h->demote_order = h2->order; + } + } } static void __init report_hugepages(void) { struct hstate *h; + unsigned long nrinvalid; for_each_hstate(h) { char buf[32]; - pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", - memfmt(buf, huge_page_size(h)), - h->free_huge_pages); + + nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; + h->max_huge_pages -= nrinvalid; + + string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); + pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", + buf, h->nr_huge_pages); + if (nrinvalid) + pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", + buf, nrinvalid, str_plural(nrinvalid)); + pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", + hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); } } @@ -1321,24 +3692,32 @@ static void try_to_free_low(struct hstate *h, unsigned long count, nodemask_t *nodes_allowed) { int i; + LIST_HEAD(page_list); - if (h->order >= MAX_ORDER) + lockdep_assert_held(&hugetlb_lock); + if (hstate_is_gigantic(h)) return; + /* + * Collect pages to be freed on a list, and free after dropping lock + */ for_each_node_mask(i, *nodes_allowed) { - struct page *page, *next; + struct folio *folio, *next; struct list_head *freel = &h->hugepage_freelists[i]; - list_for_each_entry_safe(page, next, freel, lru) { + list_for_each_entry_safe(folio, next, freel, lru) { if (count >= h->nr_huge_pages) - return; - if (PageHighMem(page)) + goto out; + if (folio_test_highmem(folio)) continue; - list_del(&page->lru); - update_and_free_page(h, page); - h->free_huge_pages--; - h->free_huge_pages_node[page_to_nid(page)]--; + remove_hugetlb_folio(h, folio, false); + list_add(&folio->lru, &page_list); } } + +out: + spin_unlock_irq(&hugetlb_lock); + update_and_free_pages_bulk(h, &page_list); + spin_lock_irq(&hugetlb_lock); } #else static inline void try_to_free_low(struct hstate *h, unsigned long count, @@ -1355,91 +3734,154 @@ static inline void try_to_free_low(struct hstate *h, unsigned long count, static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, int delta) { - int start_nid, next_nid; - int ret = 0; + int nr_nodes, node; + lockdep_assert_held(&hugetlb_lock); VM_BUG_ON(delta != -1 && delta != 1); - if (delta < 0) - start_nid = hstate_next_node_to_alloc(h, nodes_allowed); - else - start_nid = hstate_next_node_to_free(h, nodes_allowed); - next_nid = start_nid; - - do { - int nid = next_nid; - if (delta < 0) { - /* - * To shrink on this node, there must be a surplus page - */ - if (!h->surplus_huge_pages_node[nid]) { - next_nid = hstate_next_node_to_alloc(h, - nodes_allowed); - continue; - } + if (delta < 0) { + for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { + if (h->surplus_huge_pages_node[node]) + goto found; } - if (delta > 0) { - /* - * Surplus cannot exceed the total number of pages - */ - if (h->surplus_huge_pages_node[nid] >= - h->nr_huge_pages_node[nid]) { - next_nid = hstate_next_node_to_free(h, - nodes_allowed); - continue; - } + } else { + for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { + if (h->surplus_huge_pages_node[node] < + h->nr_huge_pages_node[node]) + goto found; } + } + return 0; - h->surplus_huge_pages += delta; - h->surplus_huge_pages_node[nid] += delta; - ret = 1; - break; - } while (next_nid != start_nid); - - return ret; +found: + h->surplus_huge_pages += delta; + h->surplus_huge_pages_node[node] += delta; + return 1; } #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) -static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, - nodemask_t *nodes_allowed) +static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, + nodemask_t *nodes_allowed) { - unsigned long min_count, ret; + unsigned long persistent_free_count; + unsigned long min_count; + unsigned long allocated; + struct folio *folio; + LIST_HEAD(page_list); + NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); + + /* + * Bit mask controlling how hard we retry per-node allocations. + * If we can not allocate the bit mask, do not attempt to allocate + * the requested huge pages. + */ + if (node_alloc_noretry) + nodes_clear(*node_alloc_noretry); + else + return -ENOMEM; + + /* + * resize_lock mutex prevents concurrent adjustments to number of + * pages in hstate via the proc/sysfs interfaces. + */ + mutex_lock(&h->resize_lock); + flush_free_hpage_work(h); + spin_lock_irq(&hugetlb_lock); - if (h->order >= MAX_ORDER) - return h->max_huge_pages; + /* + * Check for a node specific request. + * Changing node specific huge page count may require a corresponding + * change to the global count. In any case, the passed node mask + * (nodes_allowed) will restrict alloc/free to the specified node. + */ + if (nid != NUMA_NO_NODE) { + unsigned long old_count = count; + + count += persistent_huge_pages(h) - + (h->nr_huge_pages_node[nid] - + h->surplus_huge_pages_node[nid]); + /* + * User may have specified a large count value which caused the + * above calculation to overflow. In this case, they wanted + * to allocate as many huge pages as possible. Set count to + * largest possible value to align with their intention. + */ + if (count < old_count) + count = ULONG_MAX; + } + + /* + * Gigantic pages runtime allocation depend on the capability for large + * page range allocation. + * If the system does not provide this feature, return an error when + * the user tries to allocate gigantic pages but let the user free the + * boottime allocated gigantic pages. + */ + if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { + if (count > persistent_huge_pages(h)) { + spin_unlock_irq(&hugetlb_lock); + mutex_unlock(&h->resize_lock); + NODEMASK_FREE(node_alloc_noretry); + return -EINVAL; + } + /* Fall through to decrease pool */ + } /* * Increase the pool size * First take pages out of surplus state. Then make up the * remaining difference by allocating fresh huge pages. * - * We might race with alloc_buddy_huge_page() here and be unable + * We might race with alloc_surplus_hugetlb_folio() here and be unable * to convert a surplus huge page to a normal huge page. That is * not critical, though, it just means the overall size of the * pool might be one hugepage larger than it needs to be, but * within all the constraints specified by the sysctls. */ - spin_lock(&hugetlb_lock); while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { if (!adjust_pool_surplus(h, nodes_allowed, -1)) break; } - while (count > persistent_huge_pages(h)) { + allocated = 0; + while (count > (persistent_huge_pages(h) + allocated)) { /* * If this allocation races such that we no longer need the - * page, free_huge_page will handle it by freeing the page + * page, free_huge_folio will handle it by freeing the page * and reducing the surplus. */ - spin_unlock(&hugetlb_lock); - ret = alloc_fresh_huge_page(h, nodes_allowed); - spin_lock(&hugetlb_lock); - if (!ret) + spin_unlock_irq(&hugetlb_lock); + + /* yield cpu to avoid soft lockup */ + cond_resched(); + + folio = alloc_pool_huge_folio(h, nodes_allowed, + node_alloc_noretry, + &h->next_nid_to_alloc); + if (!folio) { + prep_and_add_allocated_folios(h, &page_list); + spin_lock_irq(&hugetlb_lock); goto out; + } + + list_add(&folio->lru, &page_list); + allocated++; /* Bail for signals. Probably ctrl-c from user */ - if (signal_pending(current)) + if (signal_pending(current)) { + prep_and_add_allocated_folios(h, &page_list); + spin_lock_irq(&hugetlb_lock); goto out; + } + + spin_lock_irq(&hugetlb_lock); + } + + /* Add allocated pages to the pool */ + if (!list_empty(&page_list)) { + spin_unlock_irq(&hugetlb_lock); + prep_and_add_allocated_folios(h, &page_list); + spin_lock_irq(&hugetlb_lock); } /* @@ -1452,705 +3894,720 @@ static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, * By placing pages into the surplus state independent of the * overcommit value, we are allowing the surplus pool size to * exceed overcommit. There are few sane options here. Since - * alloc_buddy_huge_page() is checking the global counter, + * alloc_surplus_hugetlb_folio() is checking the global counter, * though, we'll note that we're not allowed to exceed surplus * and won't grow the pool anywhere else. Not until one of the * sysctls are changed, or the surplus pages go out of use. + * + * min_count is the expected number of persistent pages, we + * shouldn't calculate min_count by using + * resv_huge_pages + persistent_huge_pages() - free_huge_pages, + * because there may exist free surplus huge pages, and this will + * lead to subtracting twice. Free surplus huge pages come from HVO + * failing to restore vmemmap, see comments in the callers of + * hugetlb_vmemmap_restore_folio(). Thus, we should calculate + * persistent free count first. */ - min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; + persistent_free_count = h->free_huge_pages; + if (h->free_huge_pages > persistent_huge_pages(h)) { + if (h->free_huge_pages > h->surplus_huge_pages) + persistent_free_count -= h->surplus_huge_pages; + else + persistent_free_count = 0; + } + min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count; min_count = max(count, min_count); try_to_free_low(h, min_count, nodes_allowed); + + /* + * Collect pages to be removed on list without dropping lock + */ while (min_count < persistent_huge_pages(h)) { - if (!free_pool_huge_page(h, nodes_allowed, 0)) + folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); + if (!folio) break; + + list_add(&folio->lru, &page_list); } + /* free the pages after dropping lock */ + spin_unlock_irq(&hugetlb_lock); + update_and_free_pages_bulk(h, &page_list); + flush_free_hpage_work(h); + spin_lock_irq(&hugetlb_lock); + while (count < persistent_huge_pages(h)) { if (!adjust_pool_surplus(h, nodes_allowed, 1)) break; } out: - ret = persistent_huge_pages(h); - spin_unlock(&hugetlb_lock); - return ret; + h->max_huge_pages = persistent_huge_pages(h); + spin_unlock_irq(&hugetlb_lock); + mutex_unlock(&h->resize_lock); + + NODEMASK_FREE(node_alloc_noretry); + + return 0; } -#define HSTATE_ATTR_RO(_name) \ - static struct kobj_attribute _name##_attr = __ATTR_RO(_name) +static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, + struct list_head *src_list) +{ + long rc; + struct folio *folio, *next; + LIST_HEAD(dst_list); + LIST_HEAD(ret_list); -#define HSTATE_ATTR(_name) \ - static struct kobj_attribute _name##_attr = \ - __ATTR(_name, 0644, _name##_show, _name##_store) + rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); + list_splice_init(&ret_list, src_list); -static struct kobject *hugepages_kobj; -static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; + /* + * Taking target hstate mutex synchronizes with set_max_huge_pages. + * Without the mutex, pages added to target hstate could be marked + * as surplus. + * + * Note that we already hold src->resize_lock. To prevent deadlock, + * use the convention of always taking larger size hstate mutex first. + */ + mutex_lock(&dst->resize_lock); -static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); + list_for_each_entry_safe(folio, next, src_list, lru) { + int i; + bool cma; -static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) -{ - int i; + if (folio_test_hugetlb_vmemmap_optimized(folio)) + continue; - for (i = 0; i < HUGE_MAX_HSTATE; i++) - if (hstate_kobjs[i] == kobj) { - if (nidp) - *nidp = NUMA_NO_NODE; - return &hstates[i]; - } + cma = folio_test_hugetlb_cma(folio); - return kobj_to_node_hstate(kobj, nidp); -} + list_del(&folio->lru); -static ssize_t nr_hugepages_show_common(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - struct hstate *h; - unsigned long nr_huge_pages; - int nid; + split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); + pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); - h = kobj_to_hstate(kobj, &nid); - if (nid == NUMA_NO_NODE) - nr_huge_pages = h->nr_huge_pages; - else - nr_huge_pages = h->nr_huge_pages_node[nid]; + for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { + struct page *page = folio_page(folio, i); + /* Careful: see __split_huge_page_tail() */ + struct folio *new_folio = (struct folio *)page; + + clear_compound_head(page); + prep_compound_page(page, dst->order); + + new_folio->mapping = NULL; + init_new_hugetlb_folio(new_folio); + /* Copy the CMA flag so that it is freed correctly */ + if (cma) + folio_set_hugetlb_cma(new_folio); + list_add(&new_folio->lru, &dst_list); + } + } + + prep_and_add_allocated_folios(dst, &dst_list); - return sprintf(buf, "%lu\n", nr_huge_pages); + mutex_unlock(&dst->resize_lock); + + return rc; } -static ssize_t nr_hugepages_store_common(bool obey_mempolicy, - struct kobject *kobj, struct kobj_attribute *attr, - const char *buf, size_t len) +long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, + unsigned long nr_to_demote) + __must_hold(&hugetlb_lock) { - int err; - int nid; - unsigned long count; - struct hstate *h; - NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); + int nr_nodes, node; + struct hstate *dst; + long rc = 0; + long nr_demoted = 0; - err = strict_strtoul(buf, 10, &count); - if (err) - goto out; + lockdep_assert_held(&hugetlb_lock); - h = kobj_to_hstate(kobj, &nid); - if (h->order >= MAX_ORDER) { - err = -EINVAL; - goto out; + /* We should never get here if no demote order */ + if (!src->demote_order) { + pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); + return -EINVAL; /* internal error */ } + dst = size_to_hstate(PAGE_SIZE << src->demote_order); - if (nid == NUMA_NO_NODE) { - /* - * global hstate attribute - */ - if (!(obey_mempolicy && - init_nodemask_of_mempolicy(nodes_allowed))) { - NODEMASK_FREE(nodes_allowed); - nodes_allowed = &node_states[N_MEMORY]; - } - } else if (nodes_allowed) { - /* - * per node hstate attribute: adjust count to global, - * but restrict alloc/free to the specified node. - */ - count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; - init_nodemask_of_node(nodes_allowed, nid); - } else - nodes_allowed = &node_states[N_MEMORY]; + for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { + LIST_HEAD(list); + struct folio *folio, *next; - h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); + list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { + if (folio_test_hwpoison(folio)) + continue; - if (nodes_allowed != &node_states[N_MEMORY]) - NODEMASK_FREE(nodes_allowed); + remove_hugetlb_folio(src, folio, false); + list_add(&folio->lru, &list); - return len; -out: - NODEMASK_FREE(nodes_allowed); - return err; -} + if (++nr_demoted == nr_to_demote) + break; + } -static ssize_t nr_hugepages_show(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - return nr_hugepages_show_common(kobj, attr, buf); -} + spin_unlock_irq(&hugetlb_lock); -static ssize_t nr_hugepages_store(struct kobject *kobj, - struct kobj_attribute *attr, const char *buf, size_t len) -{ - return nr_hugepages_store_common(false, kobj, attr, buf, len); -} -HSTATE_ATTR(nr_hugepages); + rc = demote_free_hugetlb_folios(src, dst, &list); -#ifdef CONFIG_NUMA + spin_lock_irq(&hugetlb_lock); -/* - * hstate attribute for optionally mempolicy-based constraint on persistent - * huge page alloc/free. - */ -static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - return nr_hugepages_show_common(kobj, attr, buf); -} + list_for_each_entry_safe(folio, next, &list, lru) { + list_del(&folio->lru); + add_hugetlb_folio(src, folio, false); -static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, - struct kobj_attribute *attr, const char *buf, size_t len) -{ - return nr_hugepages_store_common(true, kobj, attr, buf, len); -} -HSTATE_ATTR(nr_hugepages_mempolicy); -#endif + nr_demoted--; + } + + if (rc < 0 || nr_demoted == nr_to_demote) + break; + } + /* + * Not absolutely necessary, but for consistency update max_huge_pages + * based on pool changes for the demoted page. + */ + src->max_huge_pages -= nr_demoted; + dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); -static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - struct hstate *h = kobj_to_hstate(kobj, NULL); - return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); + if (rc < 0) + return rc; + + if (nr_demoted) + return nr_demoted; + /* + * Only way to get here is if all pages on free lists are poisoned. + * Return -EBUSY so that caller will not retry. + */ + return -EBUSY; } -static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, - struct kobj_attribute *attr, const char *buf, size_t count) +ssize_t __nr_hugepages_store_common(bool obey_mempolicy, + struct hstate *h, int nid, + unsigned long count, size_t len) { int err; - unsigned long input; - struct hstate *h = kobj_to_hstate(kobj, NULL); + nodemask_t nodes_allowed, *n_mask; - if (h->order >= MAX_ORDER) + if (hstate_is_gigantic_no_runtime(h)) return -EINVAL; - err = strict_strtoul(buf, 10, &input); - if (err) - return err; + if (nid == NUMA_NO_NODE) { + /* + * global hstate attribute + */ + if (!(obey_mempolicy && + init_nodemask_of_mempolicy(&nodes_allowed))) + n_mask = &node_states[N_MEMORY]; + else + n_mask = &nodes_allowed; + } else { + /* + * Node specific request. count adjustment happens in + * set_max_huge_pages() after acquiring hugetlb_lock. + */ + init_nodemask_of_node(&nodes_allowed, nid); + n_mask = &nodes_allowed; + } - spin_lock(&hugetlb_lock); - h->nr_overcommit_huge_pages = input; - spin_unlock(&hugetlb_lock); + err = set_max_huge_pages(h, count, nid, n_mask); - return count; + return err ? err : len; } -HSTATE_ATTR(nr_overcommit_hugepages); -static ssize_t free_hugepages_show(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) +static int __init hugetlb_init(void) { - struct hstate *h; - unsigned long free_huge_pages; - int nid; + int i; - h = kobj_to_hstate(kobj, &nid); - if (nid == NUMA_NO_NODE) - free_huge_pages = h->free_huge_pages; - else - free_huge_pages = h->free_huge_pages_node[nid]; + BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < + __NR_HPAGEFLAGS); + BUILD_BUG_ON_INVALID(HUGETLB_PAGE_ORDER > MAX_FOLIO_ORDER); - return sprintf(buf, "%lu\n", free_huge_pages); -} -HSTATE_ATTR_RO(free_hugepages); + if (!hugepages_supported()) { + if (hugetlb_max_hstate || default_hstate_max_huge_pages) + pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); + return 0; + } -static ssize_t resv_hugepages_show(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - struct hstate *h = kobj_to_hstate(kobj, NULL); - return sprintf(buf, "%lu\n", h->resv_huge_pages); -} -HSTATE_ATTR_RO(resv_hugepages); + /* + * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some + * architectures depend on setup being done here. + */ + hugetlb_add_hstate(HUGETLB_PAGE_ORDER); + if (!parsed_default_hugepagesz) { + /* + * If we did not parse a default huge page size, set + * default_hstate_idx to HPAGE_SIZE hstate. And, if the + * number of huge pages for this default size was implicitly + * specified, set that here as well. + * Note that the implicit setting will overwrite an explicit + * setting. A warning will be printed in this case. + */ + default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); + if (default_hstate_max_huge_pages) { + if (default_hstate.max_huge_pages) { + char buf[32]; + + string_get_size(huge_page_size(&default_hstate), + 1, STRING_UNITS_2, buf, 32); + pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", + default_hstate.max_huge_pages, buf); + pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", + default_hstate_max_huge_pages); + } + default_hstate.max_huge_pages = + default_hstate_max_huge_pages; -static ssize_t surplus_hugepages_show(struct kobject *kobj, - struct kobj_attribute *attr, char *buf) -{ - struct hstate *h; - unsigned long surplus_huge_pages; - int nid; + for_each_online_node(i) + default_hstate.max_huge_pages_node[i] = + default_hugepages_in_node[i]; + } + } - h = kobj_to_hstate(kobj, &nid); - if (nid == NUMA_NO_NODE) - surplus_huge_pages = h->surplus_huge_pages; - else - surplus_huge_pages = h->surplus_huge_pages_node[nid]; + hugetlb_cma_check(); + hugetlb_init_hstates(); + gather_bootmem_prealloc(); + report_hugepages(); - return sprintf(buf, "%lu\n", surplus_huge_pages); -} -HSTATE_ATTR_RO(surplus_hugepages); + hugetlb_sysfs_init(); + hugetlb_cgroup_file_init(); + hugetlb_sysctl_init(); -static struct attribute *hstate_attrs[] = { - &nr_hugepages_attr.attr, - &nr_overcommit_hugepages_attr.attr, - &free_hugepages_attr.attr, - &resv_hugepages_attr.attr, - &surplus_hugepages_attr.attr, -#ifdef CONFIG_NUMA - &nr_hugepages_mempolicy_attr.attr, +#ifdef CONFIG_SMP + num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); +#else + num_fault_mutexes = 1; #endif - NULL, -}; + hugetlb_fault_mutex_table = + kmalloc_array(num_fault_mutexes, sizeof(struct mutex), + GFP_KERNEL); + BUG_ON(!hugetlb_fault_mutex_table); -static struct attribute_group hstate_attr_group = { - .attrs = hstate_attrs, -}; + for (i = 0; i < num_fault_mutexes; i++) + mutex_init(&hugetlb_fault_mutex_table[i]); + return 0; +} +subsys_initcall(hugetlb_init); -static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, - struct kobject **hstate_kobjs, - struct attribute_group *hstate_attr_group) +/* Overwritten by architectures with more huge page sizes */ +bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) { - int retval; - int hi = hstate_index(h); - - hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); - if (!hstate_kobjs[hi]) - return -ENOMEM; - - retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); - if (retval) - kobject_put(hstate_kobjs[hi]); - - return retval; + return size == HPAGE_SIZE; } -static void __init hugetlb_sysfs_init(void) +void __init hugetlb_add_hstate(unsigned int order) { struct hstate *h; - int err; + unsigned long i; - hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); - if (!hugepages_kobj) + if (size_to_hstate(PAGE_SIZE << order)) { return; + } + BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); + BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); + WARN_ON(order > MAX_FOLIO_ORDER); + h = &hstates[hugetlb_max_hstate++]; + __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); + h->order = order; + h->mask = ~(huge_page_size(h) - 1); + for (i = 0; i < MAX_NUMNODES; ++i) + INIT_LIST_HEAD(&h->hugepage_freelists[i]); + INIT_LIST_HEAD(&h->hugepage_activelist); + snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", + huge_page_size(h)/SZ_1K); - for_each_hstate(h) { - err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, - hstate_kobjs, &hstate_attr_group); - if (err) - pr_err("Hugetlb: Unable to add hstate %s", h->name); + parsed_hstate = h; +} + +bool __init __weak hugetlb_node_alloc_supported(void) +{ + return true; +} + +static void __init hugepages_clear_pages_in_node(void) +{ + if (!hugetlb_max_hstate) { + default_hstate_max_huge_pages = 0; + memset(default_hugepages_in_node, 0, + sizeof(default_hugepages_in_node)); + } else { + parsed_hstate->max_huge_pages = 0; + memset(parsed_hstate->max_huge_pages_node, 0, + sizeof(parsed_hstate->max_huge_pages_node)); } } -#ifdef CONFIG_NUMA +static __init int hugetlb_add_param(char *s, int (*setup)(char *)) +{ + size_t len; + char *p; -/* - * node_hstate/s - associate per node hstate attributes, via their kobjects, - * with node devices in node_devices[] using a parallel array. The array - * index of a node device or _hstate == node id. - * This is here to avoid any static dependency of the node device driver, in - * the base kernel, on the hugetlb module. - */ -struct node_hstate { - struct kobject *hugepages_kobj; - struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; -}; -struct node_hstate node_hstates[MAX_NUMNODES]; + if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) + return -EINVAL; -/* - * A subset of global hstate attributes for node devices - */ -static struct attribute *per_node_hstate_attrs[] = { - &nr_hugepages_attr.attr, - &free_hugepages_attr.attr, - &surplus_hugepages_attr.attr, - NULL, -}; + len = strlen(s) + 1; + if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) + return -EINVAL; -static struct attribute_group per_node_hstate_attr_group = { - .attrs = per_node_hstate_attrs, -}; + p = &hstate_cmdline_buf[hstate_cmdline_index]; + memcpy(p, s, len); + hstate_cmdline_index += len; -/* - * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. - * Returns node id via non-NULL nidp. - */ -static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) -{ - int nid; + hugetlb_params[hugetlb_param_index].val = p; + hugetlb_params[hugetlb_param_index].setup = setup; - for (nid = 0; nid < nr_node_ids; nid++) { - struct node_hstate *nhs = &node_hstates[nid]; - int i; - for (i = 0; i < HUGE_MAX_HSTATE; i++) - if (nhs->hstate_kobjs[i] == kobj) { - if (nidp) - *nidp = nid; - return &hstates[i]; - } - } + hugetlb_param_index++; - BUG(); - return NULL; + return 0; } -/* - * Unregister hstate attributes from a single node device. - * No-op if no hstate attributes attached. - */ -static void hugetlb_unregister_node(struct node *node) +static __init void hugetlb_parse_params(void) { - struct hstate *h; - struct node_hstate *nhs = &node_hstates[node->dev.id]; + int i; + struct hugetlb_cmdline *hcp; - if (!nhs->hugepages_kobj) - return; /* no hstate attributes */ + for (i = 0; i < hugetlb_param_index; i++) { + hcp = &hugetlb_params[i]; - for_each_hstate(h) { - int idx = hstate_index(h); - if (nhs->hstate_kobjs[idx]) { - kobject_put(nhs->hstate_kobjs[idx]); - nhs->hstate_kobjs[idx] = NULL; - } + hcp->setup(hcp->val); } - kobject_put(nhs->hugepages_kobj); - nhs->hugepages_kobj = NULL; + hugetlb_cma_validate_params(); } /* - * hugetlb module exit: unregister hstate attributes from node devices - * that have them. + * hugepages command line processing + * hugepages normally follows a valid hugepagsz or default_hugepagsz + * specification. If not, ignore the hugepages value. hugepages can also + * be the first huge page command line option in which case it implicitly + * specifies the number of huge pages for the default size. */ -static void hugetlb_unregister_all_nodes(void) +static int __init hugepages_setup(char *s) { - int nid; + unsigned long *mhp; + static unsigned long *last_mhp; + int node = NUMA_NO_NODE; + int count; + unsigned long tmp; + char *p = s; - /* - * disable node device registrations. - */ - register_hugetlbfs_with_node(NULL, NULL); + if (!parsed_valid_hugepagesz) { + pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); + parsed_valid_hugepagesz = true; + return -EINVAL; + } /* - * remove hstate attributes from any nodes that have them. + * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter + * yet, so this hugepages= parameter goes to the "default hstate". + * Otherwise, it goes with the previously parsed hugepagesz or + * default_hugepagesz. */ - for (nid = 0; nid < nr_node_ids; nid++) - hugetlb_unregister_node(node_devices[nid]); + else if (!hugetlb_max_hstate) + mhp = &default_hstate_max_huge_pages; + else + mhp = &parsed_hstate->max_huge_pages; + + if (mhp == last_mhp) { + pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); + return 1; + } + + while (*p) { + count = 0; + if (sscanf(p, "%lu%n", &tmp, &count) != 1) + goto invalid; + /* Parameter is node format */ + if (p[count] == ':') { + if (!hugetlb_node_alloc_supported()) { + pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); + return 1; + } + if (tmp >= MAX_NUMNODES || !node_online(tmp)) + goto invalid; + node = array_index_nospec(tmp, MAX_NUMNODES); + p += count + 1; + /* Parse hugepages */ + if (sscanf(p, "%lu%n", &tmp, &count) != 1) + goto invalid; + if (!hugetlb_max_hstate) + default_hugepages_in_node[node] = tmp; + else + parsed_hstate->max_huge_pages_node[node] = tmp; + *mhp += tmp; + /* Go to parse next node*/ + if (p[count] == ',') + p += count + 1; + else + break; + } else { + if (p != s) + goto invalid; + *mhp = tmp; + break; + } + } + + last_mhp = mhp; + + return 0; + +invalid: + pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); + hugepages_clear_pages_in_node(); + return -EINVAL; } +hugetlb_early_param("hugepages", hugepages_setup); /* - * Register hstate attributes for a single node device. - * No-op if attributes already registered. + * hugepagesz command line processing + * A specific huge page size can only be specified once with hugepagesz. + * hugepagesz is followed by hugepages on the command line. The global + * variable 'parsed_valid_hugepagesz' is used to determine if prior + * hugepagesz argument was valid. */ -static void hugetlb_register_node(struct node *node) +static int __init hugepagesz_setup(char *s) { + unsigned long size; struct hstate *h; - struct node_hstate *nhs = &node_hstates[node->dev.id]; - int err; - if (nhs->hugepages_kobj) - return; /* already allocated */ + parsed_valid_hugepagesz = false; + size = (unsigned long)memparse(s, NULL); - nhs->hugepages_kobj = kobject_create_and_add("hugepages", - &node->dev.kobj); - if (!nhs->hugepages_kobj) - return; + if (!arch_hugetlb_valid_size(size)) { + pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); + return -EINVAL; + } - for_each_hstate(h) { - err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, - nhs->hstate_kobjs, - &per_node_hstate_attr_group); - if (err) { - pr_err("Hugetlb: Unable to add hstate %s for node %d\n", - h->name, node->dev.id); - hugetlb_unregister_node(node); - break; + h = size_to_hstate(size); + if (h) { + /* + * hstate for this size already exists. This is normally + * an error, but is allowed if the existing hstate is the + * default hstate. More specifically, it is only allowed if + * the number of huge pages for the default hstate was not + * previously specified. + */ + if (!parsed_default_hugepagesz || h != &default_hstate || + default_hstate.max_huge_pages) { + pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); + return -EINVAL; } + + /* + * No need to call hugetlb_add_hstate() as hstate already + * exists. But, do set parsed_hstate so that a following + * hugepages= parameter will be applied to this hstate. + */ + parsed_hstate = h; + parsed_valid_hugepagesz = true; + return 0; } + + hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); + parsed_valid_hugepagesz = true; + return 0; } +hugetlb_early_param("hugepagesz", hugepagesz_setup); /* - * hugetlb init time: register hstate attributes for all registered node - * devices of nodes that have memory. All on-line nodes should have - * registered their associated device by this time. + * default_hugepagesz command line input + * Only one instance of default_hugepagesz allowed on command line. */ -static void hugetlb_register_all_nodes(void) +static int __init default_hugepagesz_setup(char *s) { - int nid; + unsigned long size; + int i; - for_each_node_state(nid, N_MEMORY) { - struct node *node = node_devices[nid]; - if (node->dev.id == nid) - hugetlb_register_node(node); + parsed_valid_hugepagesz = false; + if (parsed_default_hugepagesz) { + pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); + return -EINVAL; } - /* - * Let the node device driver know we're here so it can - * [un]register hstate attributes on node hotplug. - */ - register_hugetlbfs_with_node(hugetlb_register_node, - hugetlb_unregister_node); -} -#else /* !CONFIG_NUMA */ + size = (unsigned long)memparse(s, NULL); -static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) -{ - BUG(); - if (nidp) - *nidp = -1; - return NULL; -} + if (!arch_hugetlb_valid_size(size)) { + pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); + return -EINVAL; + } -static void hugetlb_unregister_all_nodes(void) { } + hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); + parsed_valid_hugepagesz = true; + parsed_default_hugepagesz = true; + default_hstate_idx = hstate_index(size_to_hstate(size)); -static void hugetlb_register_all_nodes(void) { } + /* + * The number of default huge pages (for this size) could have been + * specified as the first hugetlb parameter: hugepages=X. If so, + * then default_hstate_max_huge_pages is set. If the default huge + * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be + * allocated here from bootmem allocator. + */ + if (default_hstate_max_huge_pages) { + default_hstate.max_huge_pages = default_hstate_max_huge_pages; + /* + * Since this is an early parameter, we can't check + * NUMA node state yet, so loop through MAX_NUMNODES. + */ + for (i = 0; i < MAX_NUMNODES; i++) { + if (default_hugepages_in_node[i] != 0) + default_hstate.max_huge_pages_node[i] = + default_hugepages_in_node[i]; + } + default_hstate_max_huge_pages = 0; + } -#endif + return 0; +} +hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); -static void __exit hugetlb_exit(void) +void __init hugetlb_bootmem_set_nodes(void) { - struct hstate *h; + int i, nid; + unsigned long start_pfn, end_pfn; - hugetlb_unregister_all_nodes(); + if (!nodes_empty(hugetlb_bootmem_nodes)) + return; - for_each_hstate(h) { - kobject_put(hstate_kobjs[hstate_index(h)]); + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { + if (end_pfn > start_pfn) + node_set(nid, hugetlb_bootmem_nodes); } +} + +static bool __hugetlb_bootmem_allocated __initdata; - kobject_put(hugepages_kobj); +bool __init hugetlb_bootmem_allocated(void) +{ + return __hugetlb_bootmem_allocated; } -module_exit(hugetlb_exit); -static int __init hugetlb_init(void) +void __init hugetlb_bootmem_alloc(void) { - /* Some platform decide whether they support huge pages at boot - * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when - * there is no such support - */ - if (HPAGE_SHIFT == 0) - return 0; + struct hstate *h; + int i; - if (!size_to_hstate(default_hstate_size)) { - default_hstate_size = HPAGE_SIZE; - if (!size_to_hstate(default_hstate_size)) - hugetlb_add_hstate(HUGETLB_PAGE_ORDER); - } - default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); - if (default_hstate_max_huge_pages) - default_hstate.max_huge_pages = default_hstate_max_huge_pages; + if (__hugetlb_bootmem_allocated) + return; - hugetlb_init_hstates(); - gather_bootmem_prealloc(); - report_hugepages(); + hugetlb_bootmem_set_nodes(); - hugetlb_sysfs_init(); - hugetlb_register_all_nodes(); - hugetlb_cgroup_file_init(); + for (i = 0; i < MAX_NUMNODES; i++) + INIT_LIST_HEAD(&huge_boot_pages[i]); - return 0; -} -module_init(hugetlb_init); + hugetlb_parse_params(); -/* Should be called on processing a hugepagesz=... option */ -void __init hugetlb_add_hstate(unsigned order) -{ - struct hstate *h; - unsigned long i; + for_each_hstate(h) { + h->next_nid_to_alloc = first_online_node; - if (size_to_hstate(PAGE_SIZE << order)) { - pr_warning("hugepagesz= specified twice, ignoring\n"); - return; + if (hstate_is_gigantic(h)) + hugetlb_hstate_alloc_pages(h); } - BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); - BUG_ON(order == 0); - h = &hstates[hugetlb_max_hstate++]; - h->order = order; - h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); - h->nr_huge_pages = 0; - h->free_huge_pages = 0; - for (i = 0; i < MAX_NUMNODES; ++i) - INIT_LIST_HEAD(&h->hugepage_freelists[i]); - INIT_LIST_HEAD(&h->hugepage_activelist); - h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); - h->next_nid_to_free = first_node(node_states[N_MEMORY]); - snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", - huge_page_size(h)/1024); - parsed_hstate = h; + __hugetlb_bootmem_allocated = true; } -static int __init hugetlb_nrpages_setup(char *s) +/* + * hugepage_alloc_threads command line parsing. + * + * When set, use this specific number of threads for the boot + * allocation of hugepages. + */ +static int __init hugepage_alloc_threads_setup(char *s) { - unsigned long *mhp; - static unsigned long *last_mhp; - - /* - * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, - * so this hugepages= parameter goes to the "default hstate". - */ - if (!hugetlb_max_hstate) - mhp = &default_hstate_max_huge_pages; - else - mhp = &parsed_hstate->max_huge_pages; + unsigned long allocation_threads; - if (mhp == last_mhp) { - pr_warning("hugepages= specified twice without " - "interleaving hugepagesz=, ignoring\n"); + if (kstrtoul(s, 0, &allocation_threads) != 0) return 1; - } - if (sscanf(s, "%lu", mhp) <= 0) - *mhp = 0; - - /* - * Global state is always initialized later in hugetlb_init. - * But we need to allocate >= MAX_ORDER hstates here early to still - * use the bootmem allocator. - */ - if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) - hugetlb_hstate_alloc_pages(parsed_hstate); + if (allocation_threads == 0) + return 1; - last_mhp = mhp; + hugepage_allocation_threads = allocation_threads; return 1; } -__setup("hugepages=", hugetlb_nrpages_setup); +__setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup); -static int __init hugetlb_default_setup(char *s) -{ - default_hstate_size = memparse(s, &s); - return 1; -} -__setup("default_hugepagesz=", hugetlb_default_setup); - -static unsigned int cpuset_mems_nr(unsigned int *array) +static unsigned int allowed_mems_nr(struct hstate *h) { int node; unsigned int nr = 0; - - for_each_node_mask(node, cpuset_current_mems_allowed) - nr += array[node]; + nodemask_t *mbind_nodemask; + unsigned int *array = h->free_huge_pages_node; + gfp_t gfp_mask = htlb_alloc_mask(h); + + mbind_nodemask = policy_mbind_nodemask(gfp_mask); + for_each_node_mask(node, cpuset_current_mems_allowed) { + if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) + nr += array[node]; + } return nr; } -#ifdef CONFIG_SYSCTL -static int hugetlb_sysctl_handler_common(bool obey_mempolicy, - struct ctl_table *table, int write, - void __user *buffer, size_t *length, loff_t *ppos) +void hugetlb_report_meminfo(struct seq_file *m) { - struct hstate *h = &default_hstate; - unsigned long tmp; - int ret; - - tmp = h->max_huge_pages; - - if (write && h->order >= MAX_ORDER) - return -EINVAL; - - table->data = &tmp; - table->maxlen = sizeof(unsigned long); - ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); - if (ret) - goto out; + struct hstate *h; + unsigned long total = 0; - if (write) { - NODEMASK_ALLOC(nodemask_t, nodes_allowed, - GFP_KERNEL | __GFP_NORETRY); - if (!(obey_mempolicy && - init_nodemask_of_mempolicy(nodes_allowed))) { - NODEMASK_FREE(nodes_allowed); - nodes_allowed = &node_states[N_MEMORY]; - } - h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); + if (!hugepages_supported()) + return; - if (nodes_allowed != &node_states[N_MEMORY]) - NODEMASK_FREE(nodes_allowed); + for_each_hstate(h) { + unsigned long count = h->nr_huge_pages; + + total += huge_page_size(h) * count; + + if (h == &default_hstate) + seq_printf(m, + "HugePages_Total: %5lu\n" + "HugePages_Free: %5lu\n" + "HugePages_Rsvd: %5lu\n" + "HugePages_Surp: %5lu\n" + "Hugepagesize: %8lu kB\n", + count, + h->free_huge_pages, + h->resv_huge_pages, + h->surplus_huge_pages, + huge_page_size(h) / SZ_1K); } -out: - return ret; -} - -int hugetlb_sysctl_handler(struct ctl_table *table, int write, - void __user *buffer, size_t *length, loff_t *ppos) -{ - - return hugetlb_sysctl_handler_common(false, table, write, - buffer, length, ppos); -} - -#ifdef CONFIG_NUMA -int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, - void __user *buffer, size_t *length, loff_t *ppos) -{ - return hugetlb_sysctl_handler_common(true, table, write, - buffer, length, ppos); -} -#endif /* CONFIG_NUMA */ -int hugetlb_treat_movable_handler(struct ctl_table *table, int write, - void __user *buffer, - size_t *length, loff_t *ppos) -{ - proc_dointvec(table, write, buffer, length, ppos); - if (hugepages_treat_as_movable) - htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; - else - htlb_alloc_mask = GFP_HIGHUSER; - return 0; + seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); } -int hugetlb_overcommit_handler(struct ctl_table *table, int write, - void __user *buffer, - size_t *length, loff_t *ppos) +int hugetlb_report_node_meminfo(char *buf, int len, int nid) { struct hstate *h = &default_hstate; - unsigned long tmp; - int ret; - tmp = h->nr_overcommit_huge_pages; - - if (write && h->order >= MAX_ORDER) - return -EINVAL; - - table->data = &tmp; - table->maxlen = sizeof(unsigned long); - ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); - if (ret) - goto out; + if (!hugepages_supported()) + return 0; - if (write) { - spin_lock(&hugetlb_lock); - h->nr_overcommit_huge_pages = tmp; - spin_unlock(&hugetlb_lock); - } -out: - return ret; + return sysfs_emit_at(buf, len, + "Node %d HugePages_Total: %5u\n" + "Node %d HugePages_Free: %5u\n" + "Node %d HugePages_Surp: %5u\n", + nid, h->nr_huge_pages_node[nid], + nid, h->free_huge_pages_node[nid], + nid, h->surplus_huge_pages_node[nid]); } -#endif /* CONFIG_SYSCTL */ - -void hugetlb_report_meminfo(struct seq_file *m) +void hugetlb_show_meminfo_node(int nid) { - struct hstate *h = &default_hstate; - seq_printf(m, - "HugePages_Total: %5lu\n" - "HugePages_Free: %5lu\n" - "HugePages_Rsvd: %5lu\n" - "HugePages_Surp: %5lu\n" - "Hugepagesize: %8lu kB\n", - h->nr_huge_pages, - h->free_huge_pages, - h->resv_huge_pages, - h->surplus_huge_pages, - 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); -} + struct hstate *h; -int hugetlb_report_node_meminfo(int nid, char *buf) -{ - struct hstate *h = &default_hstate; - return sprintf(buf, - "Node %d HugePages_Total: %5u\n" - "Node %d HugePages_Free: %5u\n" - "Node %d HugePages_Surp: %5u\n", - nid, h->nr_huge_pages_node[nid], - nid, h->free_huge_pages_node[nid], - nid, h->surplus_huge_pages_node[nid]); + if (!hugepages_supported()) + return; + + for_each_hstate(h) + printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", + nid, + h->nr_huge_pages_node[nid], + h->free_huge_pages_node[nid], + h->surplus_huge_pages_node[nid], + huge_page_size(h) / SZ_1K); } -void hugetlb_show_meminfo(void) +void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) { - struct hstate *h; - int nid; - - for_each_node_state(nid, N_MEMORY) - for_each_hstate(h) - pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", - nid, - h->nr_huge_pages_node[nid], - h->free_huge_pages_node[nid], - h->surplus_huge_pages_node[nid], - 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); + seq_printf(m, "HugetlbPages:\t%8lu kB\n", + K(atomic_long_read(&mm->hugetlb_usage))); } /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ @@ -2168,7 +4625,10 @@ static int hugetlb_acct_memory(struct hstate *h, long delta) { int ret = -ENOMEM; - spin_lock(&hugetlb_lock); + if (!delta) + return 0; + + spin_lock_irq(&hugetlb_lock); /* * When cpuset is configured, it breaks the strict hugetlb page * reservation as the accounting is done on a global variable. Such @@ -2185,12 +4645,18 @@ static int hugetlb_acct_memory(struct hstate *h, long delta) * we fall back to check against current free page availability as * a best attempt and hopefully to minimize the impact of changing * semantics that cpuset has. + * + * Apart from cpuset, we also have memory policy mechanism that + * also determines from which node the kernel will allocate memory + * in a NUMA system. So similar to cpuset, we also should consider + * the memory policy of the current task. Similar to the description + * above. */ if (delta > 0) { if (gather_surplus_pages(h, delta) < 0) goto out; - if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { + if (delta > allowed_mems_nr(h)) { return_unused_surplus_pages(h, delta); goto out; } @@ -2201,15 +4667,16 @@ static int hugetlb_acct_memory(struct hstate *h, long delta) return_unused_surplus_pages(h, (unsigned long) -delta); out: - spin_unlock(&hugetlb_lock); + spin_unlock_irq(&hugetlb_lock); return ret; } static void hugetlb_vm_op_open(struct vm_area_struct *vma) { - struct resv_map *reservations = vma_resv_map(vma); + struct resv_map *resv = vma_resv_map(vma); /* + * HPAGE_RESV_OWNER indicates a private mapping. * This new VMA should share its siblings reservation map if present. * The VMA will only ever have a valid reservation map pointer where * it is being copied for another still existing VMA. As that VMA @@ -2217,77 +4684,147 @@ static void hugetlb_vm_op_open(struct vm_area_struct *vma) * after this open call completes. It is therefore safe to take a * new reference here without additional locking. */ - if (reservations) - kref_get(&reservations->refs); -} - -static void resv_map_put(struct vm_area_struct *vma) -{ - struct resv_map *reservations = vma_resv_map(vma); + if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { + resv_map_dup_hugetlb_cgroup_uncharge_info(resv); + kref_get(&resv->refs); + } - if (!reservations) - return; - kref_put(&reservations->refs, resv_map_release); + /* + * vma_lock structure for sharable mappings is vma specific. + * Clear old pointer (if copied via vm_area_dup) and allocate + * new structure. Before clearing, make sure vma_lock is not + * for this vma. + */ + if (vma->vm_flags & VM_MAYSHARE) { + struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; + + if (vma_lock) { + if (vma_lock->vma != vma) { + vma->vm_private_data = NULL; + hugetlb_vma_lock_alloc(vma); + } else + pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); + } else + hugetlb_vma_lock_alloc(vma); + } } static void hugetlb_vm_op_close(struct vm_area_struct *vma) { struct hstate *h = hstate_vma(vma); - struct resv_map *reservations = vma_resv_map(vma); + struct resv_map *resv; struct hugepage_subpool *spool = subpool_vma(vma); - unsigned long reserve; - unsigned long start; - unsigned long end; + unsigned long reserve, start, end; + long gbl_reserve; + + hugetlb_vma_lock_free(vma); + + resv = vma_resv_map(vma); + if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) + return; - if (reservations) { - start = vma_hugecache_offset(h, vma, vma->vm_start); - end = vma_hugecache_offset(h, vma, vma->vm_end); + start = vma_hugecache_offset(h, vma, vma->vm_start); + end = vma_hugecache_offset(h, vma, vma->vm_end); - reserve = (end - start) - - region_count(&reservations->regions, start, end); + reserve = (end - start) - region_count(resv, start, end); + hugetlb_cgroup_uncharge_counter(resv, start, end); + if (reserve) { + /* + * Decrement reserve counts. The global reserve count may be + * adjusted if the subpool has a minimum size. + */ + gbl_reserve = hugepage_subpool_put_pages(spool, reserve); + hugetlb_acct_memory(h, -gbl_reserve); + } + + kref_put(&resv->refs, resv_map_release); +} - resv_map_put(vma); +static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) +{ + if (addr & ~(huge_page_mask(hstate_vma(vma)))) + return -EINVAL; + return 0; +} - if (reserve) { - hugetlb_acct_memory(h, -reserve); - hugepage_subpool_put_pages(spool, reserve); +void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) +{ + /* + * PMD sharing is only possible for PUD_SIZE-aligned address ranges + * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this + * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. + * This function is called in the middle of a VMA split operation, with + * MM, VMA and rmap all write-locked to prevent concurrent page table + * walks (except hardware and gup_fast()). + */ + vma_assert_write_locked(vma); + i_mmap_assert_write_locked(vma->vm_file->f_mapping); + + if (addr & ~PUD_MASK) { + unsigned long floor = addr & PUD_MASK; + unsigned long ceil = floor + PUD_SIZE; + + if (floor >= vma->vm_start && ceil <= vma->vm_end) { + /* + * Locking: + * Use take_locks=false here. + * The file rmap lock is already held. + * The hugetlb VMA lock can't be taken when we already + * hold the file rmap lock, and we don't need it because + * its purpose is to synchronize against concurrent page + * table walks, which are not possible thanks to the + * locks held by our caller. + */ + hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false); } } } +static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) +{ + return huge_page_size(hstate_vma(vma)); +} + /* * We cannot handle pagefaults against hugetlb pages at all. They cause * handle_mm_fault() to try to instantiate regular-sized pages in the - * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get + * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get * this far. */ -static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) +static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) { BUG(); return 0; } +/* + * When a new function is introduced to vm_operations_struct and added + * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. + * This is because under System V memory model, mappings created via + * shmget/shmat with "huge page" specified are backed by hugetlbfs files, + * their original vm_ops are overwritten with shm_vm_ops. + */ const struct vm_operations_struct hugetlb_vm_ops = { .fault = hugetlb_vm_op_fault, .open = hugetlb_vm_op_open, .close = hugetlb_vm_op_close, + .may_split = hugetlb_vm_op_split, + .pagesize = hugetlb_vm_op_pagesize, }; -static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, - int writable) +static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio, + bool try_mkwrite) { - pte_t entry; + pte_t entry = folio_mk_pte(folio, vma->vm_page_prot); + unsigned int shift = huge_page_shift(hstate_vma(vma)); - if (writable) { - entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, - vma->vm_page_prot))); + if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { + entry = pte_mkwrite_novma(pte_mkdirty(entry)); } else { - entry = huge_pte_wrprotect(mk_huge_pte(page, - vma->vm_page_prot)); + entry = pte_wrprotect(entry); } entry = pte_mkyoung(entry); - entry = pte_mkhuge(entry); - entry = arch_make_huge_pte(entry, vma, page, writable); + entry = arch_make_huge_pte(entry, shift, vma->vm_flags); return entry; } @@ -2297,212 +4834,559 @@ static void set_huge_ptep_writable(struct vm_area_struct *vma, { pte_t entry; - entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); + entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) update_mmu_cache(vma, address, ptep); } +static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, + unsigned long address, pte_t *ptep) +{ + if (vma->vm_flags & VM_WRITE) + set_huge_ptep_writable(vma, address, ptep); +} + +static void +hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, + struct folio *new_folio, pte_t old, unsigned long sz) +{ + pte_t newpte = make_huge_pte(vma, new_folio, true); + + __folio_mark_uptodate(new_folio); + hugetlb_add_new_anon_rmap(new_folio, vma, addr); + if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) + newpte = huge_pte_mkuffd_wp(newpte); + set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); + hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); + folio_set_hugetlb_migratable(new_folio); +} int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, - struct vm_area_struct *vma) + struct vm_area_struct *dst_vma, + struct vm_area_struct *src_vma) { pte_t *src_pte, *dst_pte, entry; - struct page *ptepage; + struct folio *pte_folio; unsigned long addr; - int cow; - struct hstate *h = hstate_vma(vma); + bool cow = is_cow_mapping(src_vma->vm_flags); + struct hstate *h = hstate_vma(src_vma); unsigned long sz = huge_page_size(h); + unsigned long npages = pages_per_huge_page(h); + struct mmu_notifier_range range; + unsigned long last_addr_mask; + softleaf_t softleaf; + int ret = 0; - cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; + if (cow) { + mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, + src_vma->vm_start, + src_vma->vm_end); + mmu_notifier_invalidate_range_start(&range); + vma_assert_write_locked(src_vma); + raw_write_seqcount_begin(&src->write_protect_seq); + } else { + /* + * For shared mappings the vma lock must be held before + * calling hugetlb_walk() in the src vma. Otherwise, the + * returned ptep could go away if part of a shared pmd and + * another thread calls huge_pmd_unshare. + */ + hugetlb_vma_lock_read(src_vma); + } - for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { - src_pte = huge_pte_offset(src, addr); - if (!src_pte) + last_addr_mask = hugetlb_mask_last_page(h); + for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { + spinlock_t *src_ptl, *dst_ptl; + src_pte = hugetlb_walk(src_vma, addr, sz); + if (!src_pte) { + addr |= last_addr_mask; continue; - dst_pte = huge_pte_alloc(dst, addr, sz); - if (!dst_pte) - goto nomem; + } + dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); + if (!dst_pte) { + ret = -ENOMEM; + break; + } - /* If the pagetables are shared don't copy or take references */ - if (dst_pte == src_pte) +#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING + /* If the pagetables are shared, there is nothing to do */ + if (ptdesc_pmd_is_shared(virt_to_ptdesc(dst_pte))) { + addr |= last_addr_mask; continue; + } +#endif + + dst_ptl = huge_pte_lock(h, dst, dst_pte); + src_ptl = huge_pte_lockptr(h, src, src_pte); + spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); + entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); +again: + if (huge_pte_none(entry)) { + /* Skip if src entry none. */ + goto next; + } - spin_lock(&dst->page_table_lock); - spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); - if (!huge_pte_none(huge_ptep_get(src_pte))) { - if (cow) + softleaf = softleaf_from_pte(entry); + if (unlikely(softleaf_is_hwpoison(softleaf))) { + if (!userfaultfd_wp(dst_vma)) + entry = huge_pte_clear_uffd_wp(entry); + set_huge_pte_at(dst, addr, dst_pte, entry, sz); + } else if (unlikely(softleaf_is_migration(softleaf))) { + bool uffd_wp = pte_swp_uffd_wp(entry); + + if (!softleaf_is_migration_read(softleaf) && cow) { + /* + * COW mappings require pages in both + * parent and child to be set to read. + */ + softleaf = make_readable_migration_entry( + swp_offset(softleaf)); + entry = swp_entry_to_pte(softleaf); + if (userfaultfd_wp(src_vma) && uffd_wp) + entry = pte_swp_mkuffd_wp(entry); + set_huge_pte_at(src, addr, src_pte, entry, sz); + } + if (!userfaultfd_wp(dst_vma)) + entry = huge_pte_clear_uffd_wp(entry); + set_huge_pte_at(dst, addr, dst_pte, entry, sz); + } else if (unlikely(pte_is_marker(entry))) { + const pte_marker marker = copy_pte_marker(softleaf, dst_vma); + + if (marker) + set_huge_pte_at(dst, addr, dst_pte, + make_pte_marker(marker), sz); + } else { + entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); + pte_folio = page_folio(pte_page(entry)); + folio_get(pte_folio); + + /* + * Failing to duplicate the anon rmap is a rare case + * where we see pinned hugetlb pages while they're + * prone to COW. We need to do the COW earlier during + * fork. + * + * When pre-allocating the page or copying data, we + * need to be without the pgtable locks since we could + * sleep during the process. + */ + if (!folio_test_anon(pte_folio)) { + hugetlb_add_file_rmap(pte_folio); + } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { + pte_t src_pte_old = entry; + struct folio *new_folio; + + spin_unlock(src_ptl); + spin_unlock(dst_ptl); + /* Do not use reserve as it's private owned */ + new_folio = alloc_hugetlb_folio(dst_vma, addr, false); + if (IS_ERR(new_folio)) { + folio_put(pte_folio); + ret = PTR_ERR(new_folio); + break; + } + ret = copy_user_large_folio(new_folio, pte_folio, + addr, dst_vma); + folio_put(pte_folio); + if (ret) { + folio_put(new_folio); + break; + } + + /* Install the new hugetlb folio if src pte stable */ + dst_ptl = huge_pte_lock(h, dst, dst_pte); + src_ptl = huge_pte_lockptr(h, src, src_pte); + spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); + entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); + if (!pte_same(src_pte_old, entry)) { + restore_reserve_on_error(h, dst_vma, addr, + new_folio); + folio_put(new_folio); + /* huge_ptep of dst_pte won't change as in child */ + goto again; + } + hugetlb_install_folio(dst_vma, dst_pte, addr, + new_folio, src_pte_old, sz); + goto next; + } + + if (cow) { + /* + * No need to notify as we are downgrading page + * table protection not changing it to point + * to a new page. + * + * See Documentation/mm/mmu_notifier.rst + */ huge_ptep_set_wrprotect(src, addr, src_pte); - entry = huge_ptep_get(src_pte); - ptepage = pte_page(entry); - get_page(ptepage); - page_dup_rmap(ptepage); - set_huge_pte_at(dst, addr, dst_pte, entry); + entry = huge_pte_wrprotect(entry); + } + + if (!userfaultfd_wp(dst_vma)) + entry = huge_pte_clear_uffd_wp(entry); + + set_huge_pte_at(dst, addr, dst_pte, entry, sz); + hugetlb_count_add(npages, dst); } - spin_unlock(&src->page_table_lock); - spin_unlock(&dst->page_table_lock); + +next: + spin_unlock(src_ptl); + spin_unlock(dst_ptl); } - return 0; -nomem: - return -ENOMEM; + if (cow) { + raw_write_seqcount_end(&src->write_protect_seq); + mmu_notifier_invalidate_range_end(&range); + } else { + hugetlb_vma_unlock_read(src_vma); + } + + return ret; } -static int is_hugetlb_entry_migration(pte_t pte) +static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, + unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, + unsigned long sz) { - swp_entry_t swp; + bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); + struct hstate *h = hstate_vma(vma); + struct mm_struct *mm = vma->vm_mm; + spinlock_t *src_ptl, *dst_ptl; + pte_t pte; - if (huge_pte_none(pte) || pte_present(pte)) - return 0; - swp = pte_to_swp_entry(pte); - if (non_swap_entry(swp) && is_migration_entry(swp)) - return 1; - else - return 0; + dst_ptl = huge_pte_lock(h, mm, dst_pte); + src_ptl = huge_pte_lockptr(h, mm, src_pte); + + /* + * We don't have to worry about the ordering of src and dst ptlocks + * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. + */ + if (src_ptl != dst_ptl) + spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); + + pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); + + if (need_clear_uffd_wp && pte_is_uffd_wp_marker(pte)) { + huge_pte_clear(mm, new_addr, dst_pte, sz); + } else { + if (need_clear_uffd_wp) { + if (pte_present(pte)) + pte = huge_pte_clear_uffd_wp(pte); + else + pte = pte_swp_clear_uffd_wp(pte); + } + set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); + } + + if (src_ptl != dst_ptl) + spin_unlock(src_ptl); + spin_unlock(dst_ptl); } -static int is_hugetlb_entry_hwpoisoned(pte_t pte) +int move_hugetlb_page_tables(struct vm_area_struct *vma, + struct vm_area_struct *new_vma, + unsigned long old_addr, unsigned long new_addr, + unsigned long len) { - swp_entry_t swp; + struct hstate *h = hstate_vma(vma); + struct address_space *mapping = vma->vm_file->f_mapping; + unsigned long sz = huge_page_size(h); + struct mm_struct *mm = vma->vm_mm; + unsigned long old_end = old_addr + len; + unsigned long last_addr_mask; + pte_t *src_pte, *dst_pte; + struct mmu_notifier_range range; + bool shared_pmd = false; + + mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, + old_end); + adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); + /* + * In case of shared PMDs, we should cover the maximum possible + * range. + */ + flush_cache_range(vma, range.start, range.end); + + mmu_notifier_invalidate_range_start(&range); + last_addr_mask = hugetlb_mask_last_page(h); + /* Prevent race with file truncation */ + hugetlb_vma_lock_write(vma); + i_mmap_lock_write(mapping); + for (; old_addr < old_end; old_addr += sz, new_addr += sz) { + src_pte = hugetlb_walk(vma, old_addr, sz); + if (!src_pte) { + old_addr |= last_addr_mask; + new_addr |= last_addr_mask; + continue; + } + if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) + continue; - if (huge_pte_none(pte) || pte_present(pte)) - return 0; - swp = pte_to_swp_entry(pte); - if (non_swap_entry(swp) && is_hwpoison_entry(swp)) - return 1; + if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) { + shared_pmd = true; + old_addr |= last_addr_mask; + new_addr |= last_addr_mask; + continue; + } + + dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); + if (!dst_pte) + break; + + move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); + } + + if (shared_pmd) + flush_hugetlb_tlb_range(vma, range.start, range.end); else - return 0; + flush_hugetlb_tlb_range(vma, old_end - len, old_end); + mmu_notifier_invalidate_range_end(&range); + i_mmap_unlock_write(mapping); + hugetlb_vma_unlock_write(vma); + + return len + old_addr - old_end; } void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start, unsigned long end, - struct page *ref_page) + struct folio *folio, zap_flags_t zap_flags) { - int force_flush = 0; struct mm_struct *mm = vma->vm_mm; + const bool folio_provided = !!folio; unsigned long address; pte_t *ptep; pte_t pte; - struct page *page; + spinlock_t *ptl; struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); - const unsigned long mmun_start = start; /* For mmu_notifiers */ - const unsigned long mmun_end = end; /* For mmu_notifiers */ + bool adjust_reservation; + unsigned long last_addr_mask; + bool force_flush = false; WARN_ON(!is_vm_hugetlb_page(vma)); BUG_ON(start & ~huge_page_mask(h)); BUG_ON(end & ~huge_page_mask(h)); + /* + * This is a hugetlb vma, all the pte entries should point + * to huge page. + */ + tlb_change_page_size(tlb, sz); tlb_start_vma(tlb, vma); - mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); -again: - spin_lock(&mm->page_table_lock); - for (address = start; address < end; address += sz) { - ptep = huge_pte_offset(mm, address); - if (!ptep) + + last_addr_mask = hugetlb_mask_last_page(h); + address = start; + for (; address < end; address += sz) { + ptep = hugetlb_walk(vma, address, sz); + if (!ptep) { + address |= last_addr_mask; continue; + } - if (huge_pmd_unshare(mm, &address, ptep)) + ptl = huge_pte_lock(h, mm, ptep); + if (huge_pmd_unshare(mm, vma, address, ptep)) { + spin_unlock(ptl); + tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE); + force_flush = true; + address |= last_addr_mask; continue; + } - pte = huge_ptep_get(ptep); - if (huge_pte_none(pte)) + pte = huge_ptep_get(mm, address, ptep); + if (huge_pte_none(pte)) { + spin_unlock(ptl); continue; + } /* - * HWPoisoned hugepage is already unmapped and dropped reference + * Migrating hugepage or HWPoisoned hugepage is already + * unmapped and its refcount is dropped, so just clear pte here. */ - if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { - huge_pte_clear(mm, address, ptep); + if (unlikely(!pte_present(pte))) { + /* + * If the pte was wr-protected by uffd-wp in any of the + * swap forms, meanwhile the caller does not want to + * drop the uffd-wp bit in this zap, then replace the + * pte with a marker. + */ + if (pte_swp_uffd_wp_any(pte) && + !(zap_flags & ZAP_FLAG_DROP_MARKER)) + set_huge_pte_at(mm, address, ptep, + make_pte_marker(PTE_MARKER_UFFD_WP), + sz); + else + huge_pte_clear(mm, address, ptep, sz); + spin_unlock(ptl); continue; } - page = pte_page(pte); /* - * If a reference page is supplied, it is because a specific - * page is being unmapped, not a range. Ensure the page we - * are about to unmap is the actual page of interest. + * If a folio is supplied, it is because a specific + * folio is being unmapped, not a range. Ensure the folio we + * are about to unmap is the actual folio of interest. */ - if (ref_page) { - if (page != ref_page) + if (folio_provided) { + if (folio != page_folio(pte_page(pte))) { + spin_unlock(ptl); continue; - + } /* * Mark the VMA as having unmapped its page so that * future faults in this VMA will fail rather than * looking like data was lost */ set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); + } else { + folio = page_folio(pte_page(pte)); } - pte = huge_ptep_get_and_clear(mm, address, ptep); - tlb_remove_tlb_entry(tlb, ptep, address); + pte = huge_ptep_get_and_clear(mm, address, ptep, sz); + tlb_remove_huge_tlb_entry(h, tlb, ptep, address); if (huge_pte_dirty(pte)) - set_page_dirty(page); + folio_mark_dirty(folio); + /* Leave a uffd-wp pte marker if needed */ + if (huge_pte_uffd_wp(pte) && + !(zap_flags & ZAP_FLAG_DROP_MARKER)) + set_huge_pte_at(mm, address, ptep, + make_pte_marker(PTE_MARKER_UFFD_WP), + sz); + hugetlb_count_sub(pages_per_huge_page(h), mm); + hugetlb_remove_rmap(folio); + spin_unlock(ptl); - page_remove_rmap(page); - force_flush = !__tlb_remove_page(tlb, page); - if (force_flush) - break; - /* Bail out after unmapping reference page if supplied */ - if (ref_page) + /* + * Restore the reservation for anonymous page, otherwise the + * backing page could be stolen by someone. + * If there we are freeing a surplus, do not set the restore + * reservation bit. + */ + adjust_reservation = false; + + spin_lock_irq(&hugetlb_lock); + if (!h->surplus_huge_pages && __vma_private_lock(vma) && + folio_test_anon(folio)) { + folio_set_hugetlb_restore_reserve(folio); + /* Reservation to be adjusted after the spin lock */ + adjust_reservation = true; + } + spin_unlock_irq(&hugetlb_lock); + + /* + * Adjust the reservation for the region that will have the + * reserve restored. Keep in mind that vma_needs_reservation() changes + * resv->adds_in_progress if it succeeds. If this is not done, + * do_exit() will not see it, and will keep the reservation + * forever. + */ + if (adjust_reservation) { + int rc = vma_needs_reservation(h, vma, address); + + if (rc < 0) + /* Pressumably allocate_file_region_entries failed + * to allocate a file_region struct. Clear + * hugetlb_restore_reserve so that global reserve + * count will not be incremented by free_huge_folio. + * Act as if we consumed the reservation. + */ + folio_clear_hugetlb_restore_reserve(folio); + else if (rc) + vma_add_reservation(h, vma, address); + } + + tlb_remove_page_size(tlb, folio_page(folio, 0), + folio_size(folio)); + /* + * If we were instructed to unmap a specific folio, we're done. + */ + if (folio_provided) break; } - spin_unlock(&mm->page_table_lock); + tlb_end_vma(tlb, vma); + /* - * mmu_gather ran out of room to batch pages, we break out of - * the PTE lock to avoid doing the potential expensive TLB invalidate - * and page-free while holding it. + * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We + * could defer the flush until now, since by holding i_mmap_rwsem we + * guaranteed that the last reference would not be dropped. But we must + * do the flushing before we return, as otherwise i_mmap_rwsem will be + * dropped and the last reference to the shared PMDs page might be + * dropped as well. + * + * In theory we could defer the freeing of the PMD pages as well, but + * huge_pmd_unshare() relies on the exact page_count for the PMD page to + * detect sharing, so we cannot defer the release of the page either. + * Instead, do flush now. */ - if (force_flush) { - force_flush = 0; - tlb_flush_mmu(tlb); - if (address < end && !ref_page) - goto again; - } - mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); - tlb_end_vma(tlb, vma); + if (force_flush) + tlb_flush_mmu_tlbonly(tlb); } -void __unmap_hugepage_range_final(struct mmu_gather *tlb, - struct vm_area_struct *vma, unsigned long start, - unsigned long end, struct page *ref_page) +void __hugetlb_zap_begin(struct vm_area_struct *vma, + unsigned long *start, unsigned long *end) { - __unmap_hugepage_range(tlb, vma, start, end, ref_page); + if (!vma->vm_file) /* hugetlbfs_file_mmap error */ + return; - /* - * Clear this flag so that x86's huge_pmd_share page_table_shareable - * test will fail on a vma being torn down, and not grab a page table - * on its way out. We're lucky that the flag has such an appropriate - * name, and can in fact be safely cleared here. We could clear it - * before the __unmap_hugepage_range above, but all that's necessary - * is to clear it before releasing the i_mmap_mutex. This works - * because in the context this is called, the VMA is about to be - * destroyed and the i_mmap_mutex is held. - */ - vma->vm_flags &= ~VM_MAYSHARE; + adjust_range_if_pmd_sharing_possible(vma, start, end); + hugetlb_vma_lock_write(vma); + if (vma->vm_file) + i_mmap_lock_write(vma->vm_file->f_mapping); +} + +void __hugetlb_zap_end(struct vm_area_struct *vma, + struct zap_details *details) +{ + zap_flags_t zap_flags = details ? details->zap_flags : 0; + + if (!vma->vm_file) /* hugetlbfs_file_mmap error */ + return; + + if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ + /* + * Unlock and free the vma lock before releasing i_mmap_rwsem. + * When the vma_lock is freed, this makes the vma ineligible + * for pmd sharing. And, i_mmap_rwsem is required to set up + * pmd sharing. This is important as page tables for this + * unmapped range will be asynchrously deleted. If the page + * tables are shared, there will be issues when accessed by + * someone else. + */ + __hugetlb_vma_unlock_write_free(vma); + } else { + hugetlb_vma_unlock_write(vma); + } + + if (vma->vm_file) + i_mmap_unlock_write(vma->vm_file->f_mapping); } void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, - unsigned long end, struct page *ref_page) + unsigned long end, struct folio *folio, + zap_flags_t zap_flags) { - struct mm_struct *mm; + struct mmu_notifier_range range; struct mmu_gather tlb; - mm = vma->vm_mm; + mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, + start, end); + adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); + mmu_notifier_invalidate_range_start(&range); + tlb_gather_mmu(&tlb, vma->vm_mm); - tlb_gather_mmu(&tlb, mm, 0); - __unmap_hugepage_range(&tlb, vma, start, end, ref_page); - tlb_finish_mmu(&tlb, start, end); + __unmap_hugepage_range(&tlb, vma, start, end, + folio, zap_flags); + + mmu_notifier_invalidate_range_end(&range); + tlb_finish_mmu(&tlb); } /* * This is called when the original mapper is failing to COW a MAP_PRIVATE - * mappping it owns the reserve page for. The intention is to unmap the page + * mapping it owns the reserve page for. The intention is to unmap the page * from other VMAs and let the children be SIGKILLed if they are faulting the * same region. */ -static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, - struct page *page, unsigned long address) +static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, + struct folio *folio, unsigned long address) { struct hstate *h = hstate_vma(vma); struct vm_area_struct *iter_vma; @@ -2516,20 +5400,28 @@ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, address = address & huge_page_mask(h); pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; - mapping = file_inode(vma->vm_file)->i_mapping; + mapping = vma->vm_file->f_mapping; /* * Take the mapping lock for the duration of the table walk. As * this mapping should be shared between all the VMAs, * __unmap_hugepage_range() is called as the lock is already held */ - mutex_lock(&mapping->i_mmap_mutex); + i_mmap_lock_write(mapping); vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { /* Do not unmap the current VMA */ if (iter_vma == vma) continue; /* + * Shared VMAs have their own reserves and do not affect + * MAP_PRIVATE accounting but it is possible that a shared + * VMA is using the same page so check and skip such VMAs. + */ + if (iter_vma->vm_flags & VM_MAYSHARE) + continue; + + /* * Unmap the page from other VMAs without their own reserves. * They get marked to be SIGKILLed if they fault in these * areas. This is because a future no-page fault on this VMA @@ -2538,67 +5430,103 @@ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, */ if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) unmap_hugepage_range(iter_vma, address, - address + huge_page_size(h), page); + address + huge_page_size(h), + folio, 0); } - mutex_unlock(&mapping->i_mmap_mutex); - - return 1; + i_mmap_unlock_write(mapping); } /* - * Hugetlb_cow() should be called with page lock of the original hugepage held. - * Called with hugetlb_instantiation_mutex held and pte_page locked so we + * hugetlb_wp() should be called with page lock of the original hugepage held. + * Called with hugetlb_fault_mutex_table held and pte_page locked so we * cannot race with other handlers or page migration. * Keep the pte_same checks anyway to make transition from the mutex easier. */ -static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, - unsigned long address, pte_t *ptep, pte_t pte, - struct page *pagecache_page) +static vm_fault_t hugetlb_wp(struct vm_fault *vmf) { + struct vm_area_struct *vma = vmf->vma; + struct mm_struct *mm = vma->vm_mm; + const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; + pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); struct hstate *h = hstate_vma(vma); - struct page *old_page, *new_page; - int avoidcopy; - int outside_reserve = 0; - unsigned long mmun_start; /* For mmu_notifiers */ - unsigned long mmun_end; /* For mmu_notifiers */ + struct folio *old_folio; + struct folio *new_folio; + bool cow_from_owner = 0; + vm_fault_t ret = 0; + struct mmu_notifier_range range; - old_page = pte_page(pte); + /* + * Never handle CoW for uffd-wp protected pages. It should be only + * handled when the uffd-wp protection is removed. + * + * Note that only the CoW optimization path (in hugetlb_no_page()) + * can trigger this, because hugetlb_fault() will always resolve + * uffd-wp bit first. + */ + if (!unshare && huge_pte_uffd_wp(pte)) + return 0; -retry_avoidcopy: - /* If no-one else is actually using this page, avoid the copy - * and just make the page writable */ - avoidcopy = (page_mapcount(old_page) == 1); - if (avoidcopy) { - if (PageAnon(old_page)) - page_move_anon_rmap(old_page, vma, address); - set_huge_ptep_writable(vma, address, ptep); + /* Let's take out MAP_SHARED mappings first. */ + if (vma->vm_flags & VM_MAYSHARE) { + set_huge_ptep_writable(vma, vmf->address, vmf->pte); return 0; } + old_folio = page_folio(pte_page(pte)); + + delayacct_wpcopy_start(); + +retry_avoidcopy: /* - * If the process that created a MAP_PRIVATE mapping is about to - * perform a COW due to a shared page count, attempt to satisfy - * the allocation without using the existing reserves. The pagecache - * page is used to determine if the reserve at this address was - * consumed or not. If reserves were used, a partial faulted mapping - * at the time of fork() could consume its reserves on COW instead - * of the full address range. + * If no-one else is actually using this page, we're the exclusive + * owner and can reuse this page. + * + * Note that we don't rely on the (safer) folio refcount here, because + * copying the hugetlb folio when there are unexpected (temporary) + * folio references could harm simple fork()+exit() users when + * we run out of free hugetlb folios: we would have to kill processes + * in scenarios that used to work. As a side effect, there can still + * be leaks between processes, for example, with FOLL_GET users. */ - if (!(vma->vm_flags & VM_MAYSHARE) && - is_vma_resv_set(vma, HPAGE_RESV_OWNER) && - old_page != pagecache_page) - outside_reserve = 1; + if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { + if (!PageAnonExclusive(&old_folio->page)) { + folio_move_anon_rmap(old_folio, vma); + SetPageAnonExclusive(&old_folio->page); + } + if (likely(!unshare)) + set_huge_ptep_maybe_writable(vma, vmf->address, + vmf->pte); - page_cache_get(old_page); + delayacct_wpcopy_end(); + return 0; + } + VM_BUG_ON_PAGE(folio_test_anon(old_folio) && + PageAnonExclusive(&old_folio->page), &old_folio->page); - /* Drop page_table_lock as buddy allocator may be called */ - spin_unlock(&mm->page_table_lock); - new_page = alloc_huge_page(vma, address, outside_reserve); + /* + * If the process that created a MAP_PRIVATE mapping is about to perform + * a COW due to a shared page count, attempt to satisfy the allocation + * without using the existing reserves. + * In order to determine where this is a COW on a MAP_PRIVATE mapping it + * is enough to check whether the old_folio is anonymous. This means that + * the reserve for this address was consumed. If reserves were used, a + * partial faulted mapping at the fime of fork() could consume its reserves + * on COW instead of the full address range. + */ + if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && + folio_test_anon(old_folio)) + cow_from_owner = true; + + folio_get(old_folio); - if (IS_ERR(new_page)) { - long err = PTR_ERR(new_page); - page_cache_release(old_page); + /* + * Drop page table lock as buddy allocator may be called. It will + * be acquired again before returning to the caller, as expected. + */ + spin_unlock(vmf->ptl); + new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); + if (IS_ERR(new_folio)) { /* * If a process owning a MAP_PRIVATE mapping fails to COW, * it is due to references held by a child and an insufficient @@ -2606,178 +5534,300 @@ retry_avoidcopy: * reliability, unmap the page from child processes. The child * may get SIGKILLed if it later faults. */ - if (outside_reserve) { - BUG_ON(huge_pte_none(pte)); - if (unmap_ref_private(mm, vma, old_page, address)) { - BUG_ON(huge_pte_none(pte)); - spin_lock(&mm->page_table_lock); - ptep = huge_pte_offset(mm, address & huge_page_mask(h)); - if (likely(pte_same(huge_ptep_get(ptep), pte))) - goto retry_avoidcopy; - /* - * race occurs while re-acquiring page_table_lock, and - * our job is done. - */ - return 0; - } - WARN_ON_ONCE(1); + if (cow_from_owner) { + struct address_space *mapping = vma->vm_file->f_mapping; + pgoff_t idx; + u32 hash; + + folio_put(old_folio); + /* + * Drop hugetlb_fault_mutex and vma_lock before + * unmapping. unmapping needs to hold vma_lock + * in write mode. Dropping vma_lock in read mode + * here is OK as COW mappings do not interact with + * PMD sharing. + * + * Reacquire both after unmap operation. + */ + idx = vma_hugecache_offset(h, vma, vmf->address); + hash = hugetlb_fault_mutex_hash(mapping, idx); + hugetlb_vma_unlock_read(vma); + mutex_unlock(&hugetlb_fault_mutex_table[hash]); + + unmap_ref_private(mm, vma, old_folio, vmf->address); + + mutex_lock(&hugetlb_fault_mutex_table[hash]); + hugetlb_vma_lock_read(vma); + spin_lock(vmf->ptl); + vmf->pte = hugetlb_walk(vma, vmf->address, + huge_page_size(h)); + if (likely(vmf->pte && + pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) + goto retry_avoidcopy; + /* + * race occurs while re-acquiring page table + * lock, and our job is done. + */ + delayacct_wpcopy_end(); + return 0; } - /* Caller expects lock to be held */ - spin_lock(&mm->page_table_lock); - if (err == -ENOMEM) - return VM_FAULT_OOM; - else - return VM_FAULT_SIGBUS; + ret = vmf_error(PTR_ERR(new_folio)); + goto out_release_old; } /* * When the original hugepage is shared one, it does not have * anon_vma prepared. */ - if (unlikely(anon_vma_prepare(vma))) { - page_cache_release(new_page); - page_cache_release(old_page); - /* Caller expects lock to be held */ - spin_lock(&mm->page_table_lock); - return VM_FAULT_OOM; + ret = __vmf_anon_prepare(vmf); + if (unlikely(ret)) + goto out_release_all; + + if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { + ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); + goto out_release_all; } + __folio_mark_uptodate(new_folio); - copy_user_huge_page(new_page, old_page, address, vma, - pages_per_huge_page(h)); - __SetPageUptodate(new_page); + mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, + vmf->address + huge_page_size(h)); + mmu_notifier_invalidate_range_start(&range); - mmun_start = address & huge_page_mask(h); - mmun_end = mmun_start + huge_page_size(h); - mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); /* - * Retake the page_table_lock to check for racing updates + * Retake the page table lock to check for racing updates * before the page tables are altered */ - spin_lock(&mm->page_table_lock); - ptep = huge_pte_offset(mm, address & huge_page_mask(h)); - if (likely(pte_same(huge_ptep_get(ptep), pte))) { - /* Break COW */ - huge_ptep_clear_flush(vma, address, ptep); - set_huge_pte_at(mm, address, ptep, - make_huge_pte(vma, new_page, 1)); - page_remove_rmap(old_page); - hugepage_add_new_anon_rmap(new_page, vma, address); + spin_lock(vmf->ptl); + vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); + if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { + pte_t newpte = make_huge_pte(vma, new_folio, !unshare); + + /* Break COW or unshare */ + huge_ptep_clear_flush(vma, vmf->address, vmf->pte); + hugetlb_remove_rmap(old_folio); + hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); + if (huge_pte_uffd_wp(pte)) + newpte = huge_pte_mkuffd_wp(newpte); + set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, + huge_page_size(h)); + folio_set_hugetlb_migratable(new_folio); /* Make the old page be freed below */ - new_page = old_page; + new_folio = old_folio; } - spin_unlock(&mm->page_table_lock); - mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); - /* Caller expects lock to be held */ - spin_lock(&mm->page_table_lock); - page_cache_release(new_page); - page_cache_release(old_page); - return 0; + spin_unlock(vmf->ptl); + mmu_notifier_invalidate_range_end(&range); +out_release_all: + /* + * No restore in case of successful pagetable update (Break COW or + * unshare) + */ + if (new_folio != old_folio) + restore_reserve_on_error(h, vma, vmf->address, new_folio); + folio_put(new_folio); +out_release_old: + folio_put(old_folio); + + spin_lock(vmf->ptl); /* Caller expects lock to be held */ + + delayacct_wpcopy_end(); + return ret; } -/* Return the pagecache page at a given address within a VMA */ -static struct page *hugetlbfs_pagecache_page(struct hstate *h, - struct vm_area_struct *vma, unsigned long address) +/* + * Return whether there is a pagecache page to back given address within VMA. + */ +bool hugetlbfs_pagecache_present(struct hstate *h, + struct vm_area_struct *vma, unsigned long address) { - struct address_space *mapping; - pgoff_t idx; + struct address_space *mapping = vma->vm_file->f_mapping; + pgoff_t idx = linear_page_index(vma, address); + struct folio *folio; - mapping = vma->vm_file->f_mapping; - idx = vma_hugecache_offset(h, vma, address); + folio = filemap_get_folio(mapping, idx); + if (IS_ERR(folio)) + return false; + folio_put(folio); + return true; +} + +int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, + pgoff_t idx) +{ + struct inode *inode = mapping->host; + struct hstate *h = hstate_inode(inode); + int err; + + idx <<= huge_page_order(h); + __folio_set_locked(folio); + err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); + + if (unlikely(err)) { + __folio_clear_locked(folio); + return err; + } + folio_clear_hugetlb_restore_reserve(folio); - return find_lock_page(mapping, idx); + /* + * mark folio dirty so that it will not be removed from cache/file + * by non-hugetlbfs specific code paths. + */ + folio_mark_dirty(folio); + + spin_lock(&inode->i_lock); + inode->i_blocks += blocks_per_huge_page(h); + spin_unlock(&inode->i_lock); + return 0; +} + +static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, + struct address_space *mapping, + unsigned long reason) +{ + u32 hash; + + /* + * vma_lock and hugetlb_fault_mutex must be dropped before handling + * userfault. Also mmap_lock could be dropped due to handling + * userfault, any vma operation should be careful from here. + */ + hugetlb_vma_unlock_read(vmf->vma); + hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); + mutex_unlock(&hugetlb_fault_mutex_table[hash]); + return handle_userfault(vmf, reason); } /* - * Return whether there is a pagecache page to back given address within VMA. - * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. + * Recheck pte with pgtable lock. Returns true if pte didn't change, or + * false if pte changed or is changing. */ -static bool hugetlbfs_pagecache_present(struct hstate *h, - struct vm_area_struct *vma, unsigned long address) +static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, + pte_t *ptep, pte_t old_pte) { - struct address_space *mapping; - pgoff_t idx; - struct page *page; + spinlock_t *ptl; + bool same; - mapping = vma->vm_file->f_mapping; - idx = vma_hugecache_offset(h, vma, address); + ptl = huge_pte_lock(h, mm, ptep); + same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); + spin_unlock(ptl); - page = find_get_page(mapping, idx); - if (page) - put_page(page); - return page != NULL; + return same; } -static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, - unsigned long address, pte_t *ptep, unsigned int flags) +static vm_fault_t hugetlb_no_page(struct address_space *mapping, + struct vm_fault *vmf) { + u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); + bool new_folio, new_anon_folio = false; + struct vm_area_struct *vma = vmf->vma; + struct mm_struct *mm = vma->vm_mm; struct hstate *h = hstate_vma(vma); - int ret = VM_FAULT_SIGBUS; - int anon_rmap = 0; - pgoff_t idx; + vm_fault_t ret = VM_FAULT_SIGBUS; + bool folio_locked = true; + struct folio *folio; unsigned long size; - struct page *page; - struct address_space *mapping; pte_t new_pte; /* * Currently, we are forced to kill the process in the event the * original mapper has unmapped pages from the child due to a failed - * COW. Warn that such a situation has occurred as it may not be obvious + * COW/unsharing. Warn that such a situation has occurred as it may not + * be obvious. */ if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { - pr_warning("PID %d killed due to inadequate hugepage pool\n", + pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", current->pid); - return ret; + goto out; } - mapping = vma->vm_file->f_mapping; - idx = vma_hugecache_offset(h, vma, address); - /* * Use page lock to guard against racing truncation * before we get page_table_lock. */ -retry: - page = find_lock_page(mapping, idx); - if (!page) { + new_folio = false; + folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); + if (IS_ERR(folio)) { size = i_size_read(mapping->host) >> huge_page_shift(h); - if (idx >= size) + if (vmf->pgoff >= size) goto out; - page = alloc_huge_page(vma, address, 0); - if (IS_ERR(page)) { - ret = PTR_ERR(page); - if (ret == -ENOMEM) - ret = VM_FAULT_OOM; + /* Check for page in userfault range */ + if (userfaultfd_missing(vma)) { + /* + * Since hugetlb_no_page() was examining pte + * without pgtable lock, we need to re-test under + * lock because the pte may not be stable and could + * have changed from under us. Try to detect + * either changed or during-changing ptes and retry + * properly when needed. + * + * Note that userfaultfd is actually fine with + * false positives (e.g. caused by pte changed), + * but not wrong logical events (e.g. caused by + * reading a pte during changing). The latter can + * confuse the userspace, so the strictness is very + * much preferred. E.g., MISSING event should + * never happen on the page after UFFDIO_COPY has + * correctly installed the page and returned. + */ + if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { + ret = 0; + goto out; + } + + return hugetlb_handle_userfault(vmf, mapping, + VM_UFFD_MISSING); + } + + if (!(vma->vm_flags & VM_MAYSHARE)) { + ret = __vmf_anon_prepare(vmf); + if (unlikely(ret)) + goto out; + } + + folio = alloc_hugetlb_folio(vma, vmf->address, false); + if (IS_ERR(folio)) { + /* + * Returning error will result in faulting task being + * sent SIGBUS. The hugetlb fault mutex prevents two + * tasks from racing to fault in the same page which + * could result in false unable to allocate errors. + * Page migration does not take the fault mutex, but + * does a clear then write of pte's under page table + * lock. Page fault code could race with migration, + * notice the clear pte and try to allocate a page + * here. Before returning error, get ptl and make + * sure there really is no pte entry. + */ + if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) + ret = vmf_error(PTR_ERR(folio)); else - ret = VM_FAULT_SIGBUS; + ret = 0; goto out; } - clear_huge_page(page, address, pages_per_huge_page(h)); - __SetPageUptodate(page); + folio_zero_user(folio, vmf->real_address); + __folio_mark_uptodate(folio); + new_folio = true; if (vma->vm_flags & VM_MAYSHARE) { - int err; - struct inode *inode = mapping->host; - - err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); + int err = hugetlb_add_to_page_cache(folio, mapping, + vmf->pgoff); if (err) { - put_page(page); - if (err == -EEXIST) - goto retry; + /* + * err can't be -EEXIST which implies someone + * else consumed the reservation since hugetlb + * fault mutex is held when add a hugetlb page + * to the page cache. So it's safe to call + * restore_reserve_on_error() here. + */ + restore_reserve_on_error(h, vma, vmf->address, + folio); + folio_put(folio); + ret = VM_FAULT_SIGBUS; goto out; } - - spin_lock(&inode->i_lock); - inode->i_blocks += blocks_per_huge_page(h); - spin_unlock(&inode->i_lock); } else { - lock_page(page); - if (unlikely(anon_vma_prepare(vma))) { - ret = VM_FAULT_OOM; - goto backout_unlocked; - } - anon_rmap = 1; + new_anon_folio = true; + folio_lock(folio); } } else { /* @@ -2785,11 +5835,24 @@ retry: * don't have hwpoisoned swap entry for errored virtual address. * So we need to block hugepage fault by PG_hwpoison bit check. */ - if (unlikely(PageHWPoison(page))) { - ret = VM_FAULT_HWPOISON | + if (unlikely(folio_test_hwpoison(folio))) { + ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); goto backout_unlocked; } + + /* Check for page in userfault range. */ + if (userfaultfd_minor(vma)) { + folio_unlock(folio); + folio_put(folio); + /* See comment in userfaultfd_missing() block above */ + if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { + ret = 0; + goto out; + } + return hugetlb_handle_userfault(vmf, mapping, + VM_UFFD_MINOR); + } } /* @@ -2798,302 +5861,730 @@ retry: * any allocations necessary to record that reservation occur outside * the spinlock. */ - if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) - if (vma_needs_reservation(h, vma, address) < 0) { + if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { + if (vma_needs_reservation(h, vma, vmf->address) < 0) { ret = VM_FAULT_OOM; goto backout_unlocked; } + /* Just decrements count, does not deallocate */ + vma_end_reservation(h, vma, vmf->address); + } - spin_lock(&mm->page_table_lock); - size = i_size_read(mapping->host) >> huge_page_shift(h); - if (idx >= size) - goto backout; - + vmf->ptl = huge_pte_lock(h, mm, vmf->pte); ret = 0; - if (!huge_pte_none(huge_ptep_get(ptep))) + /* If pte changed from under us, retry */ + if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) goto backout; - if (anon_rmap) - hugepage_add_new_anon_rmap(page, vma, address); + if (new_anon_folio) + hugetlb_add_new_anon_rmap(folio, vma, vmf->address); else - page_dup_rmap(page); - new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) - && (vma->vm_flags & VM_SHARED))); - set_huge_pte_at(mm, address, ptep, new_pte); + hugetlb_add_file_rmap(folio); + new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED); + /* + * If this pte was previously wr-protected, keep it wr-protected even + * if populated. + */ + if (unlikely(pte_is_uffd_wp_marker(vmf->orig_pte))) + new_pte = huge_pte_mkuffd_wp(new_pte); + set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); - if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { + hugetlb_count_add(pages_per_huge_page(h), mm); + if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { + /* + * No need to keep file folios locked. See comment in + * hugetlb_fault(). + */ + if (!new_anon_folio) { + folio_locked = false; + folio_unlock(folio); + } /* Optimization, do the COW without a second fault */ - ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); + ret = hugetlb_wp(vmf); } - spin_unlock(&mm->page_table_lock); - unlock_page(page); + spin_unlock(vmf->ptl); + + /* + * Only set hugetlb_migratable in newly allocated pages. Existing pages + * found in the pagecache may not have hugetlb_migratable if they have + * been isolated for migration. + */ + if (new_folio) + folio_set_hugetlb_migratable(folio); + + if (folio_locked) + folio_unlock(folio); out: + hugetlb_vma_unlock_read(vma); + + /* + * We must check to release the per-VMA lock. __vmf_anon_prepare() is + * the only way ret can be set to VM_FAULT_RETRY. + */ + if (unlikely(ret & VM_FAULT_RETRY)) + vma_end_read(vma); + + mutex_unlock(&hugetlb_fault_mutex_table[hash]); return ret; backout: - spin_unlock(&mm->page_table_lock); + spin_unlock(vmf->ptl); backout_unlocked: - unlock_page(page); - put_page(page); + /* We only need to restore reservations for private mappings */ + if (new_anon_folio) + restore_reserve_on_error(h, vma, vmf->address, folio); + + folio_unlock(folio); + folio_put(folio); goto out; } -int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, - unsigned long address, unsigned int flags) +#ifdef CONFIG_SMP +u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) { - pte_t *ptep; - pte_t entry; - int ret; - struct page *page = NULL; - struct page *pagecache_page = NULL; - static DEFINE_MUTEX(hugetlb_instantiation_mutex); - struct hstate *h = hstate_vma(vma); + unsigned long key[2]; + u32 hash; - address &= huge_page_mask(h); + key[0] = (unsigned long) mapping; + key[1] = idx; - ptep = huge_pte_offset(mm, address); - if (ptep) { - entry = huge_ptep_get(ptep); - if (unlikely(is_hugetlb_entry_migration(entry))) { - migration_entry_wait_huge(mm, ptep); - return 0; - } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) - return VM_FAULT_HWPOISON_LARGE | - VM_FAULT_SET_HINDEX(hstate_index(h)); - } + hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); - ptep = huge_pte_alloc(mm, address, huge_page_size(h)); - if (!ptep) - return VM_FAULT_OOM; + return hash & (num_fault_mutexes - 1); +} +#else +/* + * For uniprocessor systems we always use a single mutex, so just + * return 0 and avoid the hashing overhead. + */ +u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) +{ + return 0; +} +#endif + +vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, + unsigned long address, unsigned int flags) +{ + vm_fault_t ret; + u32 hash; + struct folio *folio = NULL; + struct hstate *h = hstate_vma(vma); + struct address_space *mapping; + bool need_wait_lock = false; + struct vm_fault vmf = { + .vma = vma, + .address = address & huge_page_mask(h), + .real_address = address, + .flags = flags, + .pgoff = vma_hugecache_offset(h, vma, + address & huge_page_mask(h)), + /* TODO: Track hugetlb faults using vm_fault */ + + /* + * Some fields may not be initialized, be careful as it may + * be hard to debug if called functions make assumptions + */ + }; /* * Serialize hugepage allocation and instantiation, so that we don't * get spurious allocation failures if two CPUs race to instantiate * the same page in the page cache. */ - mutex_lock(&hugetlb_instantiation_mutex); - entry = huge_ptep_get(ptep); - if (huge_pte_none(entry)) { - ret = hugetlb_no_page(mm, vma, address, ptep, flags); - goto out_mutex; + mapping = vma->vm_file->f_mapping; + hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); + mutex_lock(&hugetlb_fault_mutex_table[hash]); + + /* + * Acquire vma lock before calling huge_pte_alloc and hold + * until finished with vmf.pte. This prevents huge_pmd_unshare from + * being called elsewhere and making the vmf.pte no longer valid. + */ + hugetlb_vma_lock_read(vma); + vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); + if (!vmf.pte) { + hugetlb_vma_unlock_read(vma); + mutex_unlock(&hugetlb_fault_mutex_table[hash]); + return VM_FAULT_OOM; + } + + vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); + if (huge_pte_none(vmf.orig_pte)) + /* + * hugetlb_no_page will drop vma lock and hugetlb fault + * mutex internally, which make us return immediately. + */ + return hugetlb_no_page(mapping, &vmf); + + if (pte_is_marker(vmf.orig_pte)) { + const pte_marker marker = + softleaf_to_marker(softleaf_from_pte(vmf.orig_pte)); + + if (marker & PTE_MARKER_POISONED) { + ret = VM_FAULT_HWPOISON_LARGE | + VM_FAULT_SET_HINDEX(hstate_index(h)); + goto out_mutex; + } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { + /* This isn't supported in hugetlb. */ + ret = VM_FAULT_SIGSEGV; + goto out_mutex; + } + + return hugetlb_no_page(mapping, &vmf); } ret = 0; + /* Not present, either a migration or a hwpoisoned entry */ + if (!pte_present(vmf.orig_pte) && !huge_pte_none(vmf.orig_pte)) { + const softleaf_t softleaf = softleaf_from_pte(vmf.orig_pte); + + if (softleaf_is_migration(softleaf)) { + /* + * Release the hugetlb fault lock now, but retain + * the vma lock, because it is needed to guard the + * huge_pte_lockptr() later in + * migration_entry_wait_huge(). The vma lock will + * be released there. + */ + mutex_unlock(&hugetlb_fault_mutex_table[hash]); + migration_entry_wait_huge(vma, vmf.address, vmf.pte); + return 0; + } + if (softleaf_is_hwpoison(softleaf)) { + ret = VM_FAULT_HWPOISON_LARGE | + VM_FAULT_SET_HINDEX(hstate_index(h)); + } + + goto out_mutex; + } + /* - * If we are going to COW the mapping later, we examine the pending - * reservations for this page now. This will ensure that any + * If we are going to COW/unshare the mapping later, we examine the + * pending reservations for this page now. This will ensure that any * allocations necessary to record that reservation occur outside the - * spinlock. For private mappings, we also lookup the pagecache - * page now as it is used to determine if a reservation has been - * consumed. + * spinlock. */ - if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { - if (vma_needs_reservation(h, vma, address) < 0) { + if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && + !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { + if (vma_needs_reservation(h, vma, vmf.address) < 0) { ret = VM_FAULT_OOM; goto out_mutex; } - - if (!(vma->vm_flags & VM_MAYSHARE)) - pagecache_page = hugetlbfs_pagecache_page(h, - vma, address); + /* Just decrements count, does not deallocate */ + vma_end_reservation(h, vma, vmf.address); } - /* - * hugetlb_cow() requires page locks of pte_page(entry) and - * pagecache_page, so here we need take the former one - * when page != pagecache_page or !pagecache_page. - * Note that locking order is always pagecache_page -> page, - * so no worry about deadlock. - */ - page = pte_page(entry); - get_page(page); - if (page != pagecache_page) - lock_page(page); + vmf.ptl = huge_pte_lock(h, mm, vmf.pte); - spin_lock(&mm->page_table_lock); - /* Check for a racing update before calling hugetlb_cow */ - if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) - goto out_page_table_lock; + /* Check for a racing update before calling hugetlb_wp() */ + if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) + goto out_ptl; - - if (flags & FAULT_FLAG_WRITE) { - if (!huge_pte_write(entry)) { - ret = hugetlb_cow(mm, vma, address, ptep, entry, - pagecache_page); - goto out_page_table_lock; + /* Handle userfault-wp first, before trying to lock more pages */ + if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && + (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { + if (!userfaultfd_wp_async(vma)) { + spin_unlock(vmf.ptl); + hugetlb_vma_unlock_read(vma); + mutex_unlock(&hugetlb_fault_mutex_table[hash]); + return handle_userfault(&vmf, VM_UFFD_WP); } - entry = huge_pte_mkdirty(entry); - } - entry = pte_mkyoung(entry); - if (huge_ptep_set_access_flags(vma, address, ptep, entry, - flags & FAULT_FLAG_WRITE)) - update_mmu_cache(vma, address, ptep); - -out_page_table_lock: - spin_unlock(&mm->page_table_lock); - if (pagecache_page) { - unlock_page(pagecache_page); - put_page(pagecache_page); + vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); + set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, + huge_page_size(hstate_vma(vma))); + /* Fallthrough to CoW */ } - if (page != pagecache_page) - unlock_page(page); - put_page(page); + if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { + if (!huge_pte_write(vmf.orig_pte)) { + /* + * Anonymous folios need to be lock since hugetlb_wp() + * checks whether we can re-use the folio exclusively + * for us in case we are the only user of it. + */ + folio = page_folio(pte_page(vmf.orig_pte)); + if (folio_test_anon(folio) && !folio_trylock(folio)) { + need_wait_lock = true; + goto out_ptl; + } + folio_get(folio); + ret = hugetlb_wp(&vmf); + if (folio_test_anon(folio)) + folio_unlock(folio); + folio_put(folio); + goto out_ptl; + } else if (likely(flags & FAULT_FLAG_WRITE)) { + vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); + } + } + vmf.orig_pte = pte_mkyoung(vmf.orig_pte); + if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, + flags & FAULT_FLAG_WRITE)) + update_mmu_cache(vma, vmf.address, vmf.pte); +out_ptl: + spin_unlock(vmf.ptl); out_mutex: - mutex_unlock(&hugetlb_instantiation_mutex); + hugetlb_vma_unlock_read(vma); + /* + * We must check to release the per-VMA lock. __vmf_anon_prepare() in + * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. + */ + if (unlikely(ret & VM_FAULT_RETRY)) + vma_end_read(vma); + + mutex_unlock(&hugetlb_fault_mutex_table[hash]); + /* + * hugetlb_wp drops all the locks, but the folio lock, before trying to + * unmap the folio from other processes. During that window, if another + * process mapping that folio faults in, it will take the mutex and then + * it will wait on folio_lock, causing an ABBA deadlock. + * Use trylock instead and bail out if we fail. + * + * Ideally, we should hold a refcount on the folio we wait for, but we do + * not want to use the folio after it becomes unlocked, but rather just + * wait for it to become unlocked, so hopefully next fault successes on + * the trylock. + */ + if (need_wait_lock) + folio_wait_locked(folio); return ret; } -long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, - struct page **pages, struct vm_area_struct **vmas, - unsigned long *position, unsigned long *nr_pages, - long i, unsigned int flags) +#ifdef CONFIG_USERFAULTFD +/* + * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). + */ +static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, + struct vm_area_struct *vma, unsigned long address) { - unsigned long pfn_offset; - unsigned long vaddr = *position; - unsigned long remainder = *nr_pages; - struct hstate *h = hstate_vma(vma); + struct mempolicy *mpol; + nodemask_t *nodemask; + struct folio *folio; + gfp_t gfp_mask; + int node; - spin_lock(&mm->page_table_lock); - while (vaddr < vma->vm_end && remainder) { - pte_t *pte; - int absent; - struct page *page; + gfp_mask = htlb_alloc_mask(h); + node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); + /* + * This is used to allocate a temporary hugetlb to hold the copied + * content, which will then be copied again to the final hugetlb + * consuming a reservation. Set the alloc_fallback to false to indicate + * that breaking the per-node hugetlb pool is not allowed in this case. + */ + folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); + mpol_cond_put(mpol); - /* - * Some archs (sparc64, sh*) have multiple pte_ts to - * each hugepage. We have to make sure we get the - * first, for the page indexing below to work. - */ - pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); - absent = !pte || huge_pte_none(huge_ptep_get(pte)); + return folio; +} - /* - * When coredumping, it suits get_dump_page if we just return - * an error where there's an empty slot with no huge pagecache - * to back it. This way, we avoid allocating a hugepage, and - * the sparse dumpfile avoids allocating disk blocks, but its - * huge holes still show up with zeroes where they need to be. - */ - if (absent && (flags & FOLL_DUMP) && - !hugetlbfs_pagecache_present(h, vma, vaddr)) { - remainder = 0; - break; +/* + * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte + * with modifications for hugetlb pages. + */ +int hugetlb_mfill_atomic_pte(pte_t *dst_pte, + struct vm_area_struct *dst_vma, + unsigned long dst_addr, + unsigned long src_addr, + uffd_flags_t flags, + struct folio **foliop) +{ + struct mm_struct *dst_mm = dst_vma->vm_mm; + bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); + bool wp_enabled = (flags & MFILL_ATOMIC_WP); + struct hstate *h = hstate_vma(dst_vma); + struct address_space *mapping = dst_vma->vm_file->f_mapping; + pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); + unsigned long size = huge_page_size(h); + int vm_shared = dst_vma->vm_flags & VM_SHARED; + pte_t _dst_pte; + spinlock_t *ptl; + int ret = -ENOMEM; + struct folio *folio; + bool folio_in_pagecache = false; + pte_t dst_ptep; + + if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { + ptl = huge_pte_lock(h, dst_mm, dst_pte); + + /* Don't overwrite any existing PTEs (even markers) */ + if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { + spin_unlock(ptl); + return -EEXIST; } - /* - * We need call hugetlb_fault for both hugepages under migration - * (in which case hugetlb_fault waits for the migration,) and - * hwpoisoned hugepages (in which case we need to prevent the - * caller from accessing to them.) In order to do this, we use - * here is_swap_pte instead of is_hugetlb_entry_migration and - * is_hugetlb_entry_hwpoisoned. This is because it simply covers - * both cases, and because we can't follow correct pages - * directly from any kind of swap entries. - */ - if (absent || is_swap_pte(huge_ptep_get(pte)) || - ((flags & FOLL_WRITE) && - !huge_pte_write(huge_ptep_get(pte)))) { - int ret; - - spin_unlock(&mm->page_table_lock); - ret = hugetlb_fault(mm, vma, vaddr, - (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); - spin_lock(&mm->page_table_lock); - if (!(ret & VM_FAULT_ERROR)) - continue; + _dst_pte = make_pte_marker(PTE_MARKER_POISONED); + set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); - remainder = 0; - break; + /* No need to invalidate - it was non-present before */ + update_mmu_cache(dst_vma, dst_addr, dst_pte); + + spin_unlock(ptl); + return 0; + } + + if (is_continue) { + ret = -EFAULT; + folio = filemap_lock_hugetlb_folio(h, mapping, idx); + if (IS_ERR(folio)) + goto out; + folio_in_pagecache = true; + } else if (!*foliop) { + /* If a folio already exists, then it's UFFDIO_COPY for + * a non-missing case. Return -EEXIST. + */ + if (vm_shared && + hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { + ret = -EEXIST; + goto out; } - pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; - page = pte_page(huge_ptep_get(pte)); -same_page: - if (pages) { - pages[i] = mem_map_offset(page, pfn_offset); - get_page(pages[i]); + folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); + if (IS_ERR(folio)) { + pte_t *actual_pte = hugetlb_walk(dst_vma, dst_addr, PMD_SIZE); + if (actual_pte) { + ret = -EEXIST; + goto out; + } + ret = -ENOMEM; + goto out; } - if (vmas) - vmas[i] = vma; + ret = copy_folio_from_user(folio, (const void __user *) src_addr, + false); - vaddr += PAGE_SIZE; - ++pfn_offset; - --remainder; - ++i; - if (vaddr < vma->vm_end && remainder && - pfn_offset < pages_per_huge_page(h)) { - /* - * We use pfn_offset to avoid touching the pageframes - * of this compound page. + /* fallback to copy_from_user outside mmap_lock */ + if (unlikely(ret)) { + ret = -ENOENT; + /* Free the allocated folio which may have + * consumed a reservation. + */ + restore_reserve_on_error(h, dst_vma, dst_addr, folio); + folio_put(folio); + + /* Allocate a temporary folio to hold the copied + * contents. + */ + folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); + if (!folio) { + ret = -ENOMEM; + goto out; + } + *foliop = folio; + /* Set the outparam foliop and return to the caller to + * copy the contents outside the lock. Don't free the + * folio. */ - goto same_page; + goto out; + } + } else { + if (vm_shared && + hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { + folio_put(*foliop); + ret = -EEXIST; + *foliop = NULL; + goto out; + } + + folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); + if (IS_ERR(folio)) { + folio_put(*foliop); + ret = -ENOMEM; + *foliop = NULL; + goto out; + } + ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); + folio_put(*foliop); + *foliop = NULL; + if (ret) { + folio_put(folio); + goto out; } } - spin_unlock(&mm->page_table_lock); - *nr_pages = remainder; - *position = vaddr; - return i ? i : -EFAULT; + /* + * If we just allocated a new page, we need a memory barrier to ensure + * that preceding stores to the page become visible before the + * set_pte_at() write. The memory barrier inside __folio_mark_uptodate + * is what we need. + * + * In the case where we have not allocated a new page (is_continue), + * the page must already be uptodate. UFFDIO_CONTINUE already includes + * an earlier smp_wmb() to ensure that prior stores will be visible + * before the set_pte_at() write. + */ + if (!is_continue) + __folio_mark_uptodate(folio); + else + WARN_ON_ONCE(!folio_test_uptodate(folio)); + + /* Add shared, newly allocated pages to the page cache. */ + if (vm_shared && !is_continue) { + ret = -EFAULT; + if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) + goto out_release_nounlock; + + /* + * Serialization between remove_inode_hugepages() and + * hugetlb_add_to_page_cache() below happens through the + * hugetlb_fault_mutex_table that here must be hold by + * the caller. + */ + ret = hugetlb_add_to_page_cache(folio, mapping, idx); + if (ret) + goto out_release_nounlock; + folio_in_pagecache = true; + } + + ptl = huge_pte_lock(h, dst_mm, dst_pte); + + ret = -EIO; + if (folio_test_hwpoison(folio)) + goto out_release_unlock; + + ret = -EEXIST; + + dst_ptep = huge_ptep_get(dst_mm, dst_addr, dst_pte); + /* + * See comment about UFFD marker overwriting in + * mfill_atomic_install_pte(). + */ + if (!huge_pte_none(dst_ptep) && !pte_is_uffd_marker(dst_ptep)) + goto out_release_unlock; + + if (folio_in_pagecache) + hugetlb_add_file_rmap(folio); + else + hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); + + /* + * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY + * with wp flag set, don't set pte write bit. + */ + _dst_pte = make_huge_pte(dst_vma, folio, + !wp_enabled && !(is_continue && !vm_shared)); + /* + * Always mark UFFDIO_COPY page dirty; note that this may not be + * extremely important for hugetlbfs for now since swapping is not + * supported, but we should still be clear in that this page cannot be + * thrown away at will, even if write bit not set. + */ + _dst_pte = huge_pte_mkdirty(_dst_pte); + _dst_pte = pte_mkyoung(_dst_pte); + + if (wp_enabled) + _dst_pte = huge_pte_mkuffd_wp(_dst_pte); + + set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); + + hugetlb_count_add(pages_per_huge_page(h), dst_mm); + + /* No need to invalidate - it was non-present before */ + update_mmu_cache(dst_vma, dst_addr, dst_pte); + + spin_unlock(ptl); + if (!is_continue) + folio_set_hugetlb_migratable(folio); + if (vm_shared || is_continue) + folio_unlock(folio); + ret = 0; +out: + return ret; +out_release_unlock: + spin_unlock(ptl); + if (vm_shared || is_continue) + folio_unlock(folio); +out_release_nounlock: + if (!folio_in_pagecache) + restore_reserve_on_error(h, dst_vma, dst_addr, folio); + folio_put(folio); + goto out; } +#endif /* CONFIG_USERFAULTFD */ -unsigned long hugetlb_change_protection(struct vm_area_struct *vma, - unsigned long address, unsigned long end, pgprot_t newprot) +long hugetlb_change_protection(struct vm_area_struct *vma, + unsigned long address, unsigned long end, + pgprot_t newprot, unsigned long cp_flags) { struct mm_struct *mm = vma->vm_mm; unsigned long start = address; pte_t *ptep; pte_t pte; struct hstate *h = hstate_vma(vma); - unsigned long pages = 0; + long pages = 0, psize = huge_page_size(h); + bool shared_pmd = false; + struct mmu_notifier_range range; + unsigned long last_addr_mask; + bool uffd_wp = cp_flags & MM_CP_UFFD_WP; + bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; - BUG_ON(address >= end); - flush_cache_range(vma, address, end); + /* + * In the case of shared PMDs, the area to flush could be beyond + * start/end. Set range.start/range.end to cover the maximum possible + * range if PMD sharing is possible. + */ + mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, + 0, mm, start, end); + adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); - mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); - spin_lock(&mm->page_table_lock); - for (; address < end; address += huge_page_size(h)) { - ptep = huge_pte_offset(mm, address); - if (!ptep) - continue; - if (huge_pmd_unshare(mm, &address, ptep)) { + BUG_ON(address >= end); + flush_cache_range(vma, range.start, range.end); + + mmu_notifier_invalidate_range_start(&range); + hugetlb_vma_lock_write(vma); + i_mmap_lock_write(vma->vm_file->f_mapping); + last_addr_mask = hugetlb_mask_last_page(h); + for (; address < end; address += psize) { + softleaf_t entry; + spinlock_t *ptl; + + ptep = hugetlb_walk(vma, address, psize); + if (!ptep) { + if (!uffd_wp) { + address |= last_addr_mask; + continue; + } + /* + * Userfaultfd wr-protect requires pgtable + * pre-allocations to install pte markers. + */ + ptep = huge_pte_alloc(mm, vma, address, psize); + if (!ptep) { + pages = -ENOMEM; + break; + } + } + ptl = huge_pte_lock(h, mm, ptep); + if (huge_pmd_unshare(mm, vma, address, ptep)) { + /* + * When uffd-wp is enabled on the vma, unshare + * shouldn't happen at all. Warn about it if it + * happened due to some reason. + */ + WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); pages++; + spin_unlock(ptl); + shared_pmd = true; + address |= last_addr_mask; continue; } - if (!huge_pte_none(huge_ptep_get(ptep))) { - pte = huge_ptep_get_and_clear(mm, address, ptep); - pte = pte_mkhuge(huge_pte_modify(pte, newprot)); - pte = arch_make_huge_pte(pte, vma, NULL, 0); - set_huge_pte_at(mm, address, ptep, pte); + pte = huge_ptep_get(mm, address, ptep); + if (huge_pte_none(pte)) { + if (unlikely(uffd_wp)) + /* Safe to modify directly (none->non-present). */ + set_huge_pte_at(mm, address, ptep, + make_pte_marker(PTE_MARKER_UFFD_WP), + psize); + goto next; + } + + entry = softleaf_from_pte(pte); + if (unlikely(softleaf_is_hwpoison(entry))) { + /* Nothing to do. */ + } else if (unlikely(softleaf_is_migration(entry))) { + struct folio *folio = softleaf_to_folio(entry); + pte_t newpte = pte; + + if (softleaf_is_migration_write(entry)) { + if (folio_test_anon(folio)) + entry = make_readable_exclusive_migration_entry( + swp_offset(entry)); + else + entry = make_readable_migration_entry( + swp_offset(entry)); + newpte = swp_entry_to_pte(entry); + pages++; + } + + if (uffd_wp) + newpte = pte_swp_mkuffd_wp(newpte); + else if (uffd_wp_resolve) + newpte = pte_swp_clear_uffd_wp(newpte); + if (!pte_same(pte, newpte)) + set_huge_pte_at(mm, address, ptep, newpte, psize); + } else if (unlikely(pte_is_marker(pte))) { + /* + * Do nothing on a poison marker; page is + * corrupted, permissions do not apply. Here + * pte_marker_uffd_wp()==true implies !poison + * because they're mutual exclusive. + */ + if (pte_is_uffd_wp_marker(pte) && uffd_wp_resolve) + /* Safe to modify directly (non-present->none). */ + huge_pte_clear(mm, address, ptep, psize); + } else { + pte_t old_pte; + unsigned int shift = huge_page_shift(hstate_vma(vma)); + + old_pte = huge_ptep_modify_prot_start(vma, address, ptep); + pte = huge_pte_modify(old_pte, newprot); + pte = arch_make_huge_pte(pte, shift, vma->vm_flags); + if (uffd_wp) + pte = huge_pte_mkuffd_wp(pte); + else if (uffd_wp_resolve) + pte = huge_pte_clear_uffd_wp(pte); + huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); pages++; } + +next: + spin_unlock(ptl); + cond_resched(); } - spin_unlock(&mm->page_table_lock); /* - * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare + * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare * may have cleared our pud entry and done put_page on the page table: - * once we release i_mmap_mutex, another task can do the final put_page - * and that page table be reused and filled with junk. + * once we release i_mmap_rwsem, another task can do the final put_page + * and that page table be reused and filled with junk. If we actually + * did unshare a page of pmds, flush the range corresponding to the pud. + */ + if (shared_pmd) + flush_hugetlb_tlb_range(vma, range.start, range.end); + else + flush_hugetlb_tlb_range(vma, start, end); + /* + * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are + * downgrading page table protection not changing it to point to a new + * page. + * + * See Documentation/mm/mmu_notifier.rst */ - flush_tlb_range(vma, start, end); - mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); + i_mmap_unlock_write(vma->vm_file->f_mapping); + hugetlb_vma_unlock_write(vma); + mmu_notifier_invalidate_range_end(&range); - return pages << h->order; + return pages > 0 ? (pages << h->order) : pages; } -int hugetlb_reserve_pages(struct inode *inode, - long from, long to, - struct vm_area_struct *vma, - vm_flags_t vm_flags) +/* + * Update the reservation map for the range [from, to]. + * + * Returns the number of entries that would be added to the reservation map + * associated with the range [from, to]. This number is greater or equal to + * zero. -EINVAL or -ENOMEM is returned in case of any errors. + */ + +long hugetlb_reserve_pages(struct inode *inode, + long from, long to, + struct vm_area_desc *desc, + vm_flags_t vm_flags) { - long ret, chg; + long chg = -1, add = -1, spool_resv, gbl_resv; struct hstate *h = hstate_inode(inode); struct hugepage_subpool *spool = subpool_inode(inode); + struct resv_map *resv_map; + struct hugetlb_cgroup *h_cg = NULL; + long gbl_reserve, regions_needed = 0; + + /* This should never happen */ + if (from > to) { + VM_WARN(1, "%s called with a negative range\n", __func__); + return -EINVAL; + } /* * Only apply hugepage reservation if asked. At fault time, an @@ -3107,41 +6598,58 @@ int hugetlb_reserve_pages(struct inode *inode, * Shared mappings base their reservation on the number of pages that * are already allocated on behalf of the file. Private mappings need * to reserve the full area even if read-only as mprotect() may be - * called to make the mapping read-write. Assume !vma is a shm mapping + * called to make the mapping read-write. Assume !desc is a shm mapping */ - if (!vma || vma->vm_flags & VM_MAYSHARE) - chg = region_chg(&inode->i_mapping->private_list, from, to); - else { - struct resv_map *resv_map = resv_map_alloc(); + if (!desc || desc->vm_flags & VM_MAYSHARE) { + /* + * resv_map can not be NULL as hugetlb_reserve_pages is only + * called for inodes for which resv_maps were created (see + * hugetlbfs_get_inode). + */ + resv_map = inode_resv_map(inode); + + chg = region_chg(resv_map, from, to, ®ions_needed); + } else { + /* Private mapping. */ + resv_map = resv_map_alloc(); if (!resv_map) - return -ENOMEM; + goto out_err; chg = to - from; - set_vma_resv_map(vma, resv_map); - set_vma_resv_flags(vma, HPAGE_RESV_OWNER); + set_vma_desc_resv_map(desc, resv_map); + set_vma_desc_resv_flags(desc, HPAGE_RESV_OWNER); } - if (chg < 0) { - ret = chg; + if (chg < 0) goto out_err; - } - /* There must be enough pages in the subpool for the mapping */ - if (hugepage_subpool_get_pages(spool, chg)) { - ret = -ENOSPC; + if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), + chg * pages_per_huge_page(h), &h_cg) < 0) goto out_err; + + if (desc && !(desc->vm_flags & VM_MAYSHARE) && h_cg) { + /* For private mappings, the hugetlb_cgroup uncharge info hangs + * of the resv_map. + */ + resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); } /* + * There must be enough pages in the subpool for the mapping. If + * the subpool has a minimum size, there may be some global + * reservations already in place (gbl_reserve). + */ + gbl_reserve = hugepage_subpool_get_pages(spool, chg); + if (gbl_reserve < 0) + goto out_uncharge_cgroup; + + /* * Check enough hugepages are available for the reservation. * Hand the pages back to the subpool if there are not */ - ret = hugetlb_acct_memory(h, chg); - if (ret < 0) { - hugepage_subpool_put_pages(spool, chg); - goto out_err; - } + if (hugetlb_acct_memory(h, gbl_reserve) < 0) + goto out_put_pages; /* * Account for the reservations made. Shared mappings record regions @@ -3154,30 +6662,115 @@ int hugetlb_reserve_pages(struct inode *inode, * consumed reservations are stored in the map. Hence, nothing * else has to be done for private mappings here */ - if (!vma || vma->vm_flags & VM_MAYSHARE) - region_add(&inode->i_mapping->private_list, from, to); - return 0; + if (!desc || desc->vm_flags & VM_MAYSHARE) { + add = region_add(resv_map, from, to, regions_needed, h, h_cg); + + if (unlikely(add < 0)) { + hugetlb_acct_memory(h, -gbl_reserve); + goto out_put_pages; + } else if (unlikely(chg > add)) { + /* + * pages in this range were added to the reserve + * map between region_chg and region_add. This + * indicates a race with alloc_hugetlb_folio. Adjust + * the subpool and reserve counts modified above + * based on the difference. + */ + long rsv_adjust; + + /* + * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the + * reference to h_cg->css. See comment below for detail. + */ + hugetlb_cgroup_uncharge_cgroup_rsvd( + hstate_index(h), + (chg - add) * pages_per_huge_page(h), h_cg); + + rsv_adjust = hugepage_subpool_put_pages(spool, + chg - add); + hugetlb_acct_memory(h, -rsv_adjust); + } else if (h_cg) { + /* + * The file_regions will hold their own reference to + * h_cg->css. So we should release the reference held + * via hugetlb_cgroup_charge_cgroup_rsvd() when we are + * done. + */ + hugetlb_cgroup_put_rsvd_cgroup(h_cg); + } + } + return chg; + +out_put_pages: + spool_resv = chg - gbl_reserve; + if (spool_resv) { + /* put sub pool's reservation back, chg - gbl_reserve */ + gbl_resv = hugepage_subpool_put_pages(spool, spool_resv); + /* + * subpool's reserved pages can not be put back due to race, + * return to hstate. + */ + hugetlb_acct_memory(h, -gbl_resv); + } +out_uncharge_cgroup: + hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), + chg * pages_per_huge_page(h), h_cg); out_err: - if (vma) - resv_map_put(vma); - return ret; + if (!desc || desc->vm_flags & VM_MAYSHARE) + /* Only call region_abort if the region_chg succeeded but the + * region_add failed or didn't run. + */ + if (chg >= 0 && add < 0) + region_abort(resv_map, from, to, regions_needed); + if (desc && is_vma_desc_resv_set(desc, HPAGE_RESV_OWNER)) { + kref_put(&resv_map->refs, resv_map_release); + set_vma_desc_resv_map(desc, NULL); + } + return chg < 0 ? chg : add < 0 ? add : -EINVAL; } -void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) +long hugetlb_unreserve_pages(struct inode *inode, long start, long end, + long freed) { struct hstate *h = hstate_inode(inode); - long chg = region_truncate(&inode->i_mapping->private_list, offset); + struct resv_map *resv_map = inode_resv_map(inode); + long chg = 0; struct hugepage_subpool *spool = subpool_inode(inode); + long gbl_reserve; + + /* + * Since this routine can be called in the evict inode path for all + * hugetlbfs inodes, resv_map could be NULL. + */ + if (resv_map) { + chg = region_del(resv_map, start, end); + /* + * region_del() can fail in the rare case where a region + * must be split and another region descriptor can not be + * allocated. If end == LONG_MAX, it will not fail. + */ + if (chg < 0) + return chg; + } spin_lock(&inode->i_lock); inode->i_blocks -= (blocks_per_huge_page(h) * freed); spin_unlock(&inode->i_lock); - hugepage_subpool_put_pages(spool, (chg - freed)); - hugetlb_acct_memory(h, -(chg - freed)); + /* + * If the subpool has a minimum size, the number of global + * reservations to be released may be adjusted. + * + * Note that !resv_map implies freed == 0. So (chg - freed) + * won't go negative. + */ + gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); + hugetlb_acct_memory(h, -gbl_reserve); + + return 0; } -#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE +#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING static unsigned long page_table_shareable(struct vm_area_struct *svma, struct vm_area_struct *vma, unsigned long addr, pgoff_t idx) @@ -3188,33 +6781,70 @@ static unsigned long page_table_shareable(struct vm_area_struct *svma, unsigned long s_end = sbase + PUD_SIZE; /* Allow segments to share if only one is marked locked */ - unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; - unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; + vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; + vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; /* * match the virtual addresses, permission and the alignment of the * page table page. + * + * Also, vma_lock (vm_private_data) is required for sharing. */ if (pmd_index(addr) != pmd_index(saddr) || vm_flags != svm_flags || - sbase < svma->vm_start || svma->vm_end < s_end) + !range_in_vma(svma, sbase, s_end) || + !svma->vm_private_data) return 0; return saddr; } -static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) +bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) { - unsigned long base = addr & PUD_MASK; - unsigned long end = base + PUD_SIZE; + unsigned long start = addr & PUD_MASK; + unsigned long end = start + PUD_SIZE; +#ifdef CONFIG_USERFAULTFD + if (uffd_disable_huge_pmd_share(vma)) + return false; +#endif /* * check on proper vm_flags and page table alignment */ - if (vma->vm_flags & VM_MAYSHARE && - vma->vm_start <= base && end <= vma->vm_end) - return 1; - return 0; + if (!(vma->vm_flags & VM_MAYSHARE)) + return false; + if (!vma->vm_private_data) /* vma lock required for sharing */ + return false; + if (!range_in_vma(vma, start, end)) + return false; + return true; +} + +/* + * Determine if start,end range within vma could be mapped by shared pmd. + * If yes, adjust start and end to cover range associated with possible + * shared pmd mappings. + */ +void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, + unsigned long *start, unsigned long *end) +{ + unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), + v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); + + /* + * vma needs to span at least one aligned PUD size, and the range + * must be at least partially within in. + */ + if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || + (*end <= v_start) || (*start >= v_end)) + return; + + /* Extend the range to be PUD aligned for a worst case scenario */ + if (*start > v_start) + *start = ALIGN_DOWN(*start, PUD_SIZE); + + if (*end < v_end) + *end = ALIGN(*end, PUD_SIZE); } /* @@ -3222,13 +6852,13 @@ static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) * and returns the corresponding pte. While this is not necessary for the * !shared pmd case because we can allocate the pmd later as well, it makes the * code much cleaner. pmd allocation is essential for the shared case because - * pud has to be populated inside the same i_mmap_mutex section - otherwise + * pud has to be populated inside the same i_mmap_rwsem section - otherwise * racing tasks could either miss the sharing (see huge_pte_offset) or select a * bad pmd for sharing. */ -pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) +pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, + unsigned long addr, pud_t *pud) { - struct vm_area_struct *vma = find_vma(mm, addr); struct address_space *mapping = vma->vm_file->f_mapping; pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; @@ -3237,19 +6867,17 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) pte_t *spte = NULL; pte_t *pte; - if (!vma_shareable(vma, addr)) - return (pte_t *)pmd_alloc(mm, pud, addr); - - mutex_lock(&mapping->i_mmap_mutex); + i_mmap_lock_read(mapping); vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { if (svma == vma) continue; saddr = page_table_shareable(svma, vma, addr, idx); if (saddr) { - spte = huge_pte_offset(svma->vm_mm, saddr); + spte = hugetlb_walk(svma, saddr, + vma_mmu_pagesize(svma)); if (spte) { - get_page(virt_to_page(spte)); + ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); break; } } @@ -3259,175 +6887,400 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) goto out; spin_lock(&mm->page_table_lock); - if (pud_none(*pud)) + if (pud_none(*pud)) { pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK)); - else - put_page(virt_to_page(spte)); + mm_inc_nr_pmds(mm); + } else { + ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); + } spin_unlock(&mm->page_table_lock); out: pte = (pte_t *)pmd_alloc(mm, pud, addr); - mutex_unlock(&mapping->i_mmap_mutex); + i_mmap_unlock_read(mapping); return pte; } /* * unmap huge page backed by shared pte. * - * Hugetlb pte page is ref counted at the time of mapping. If pte is shared - * indicated by page_count > 1, unmap is achieved by clearing pud and - * decrementing the ref count. If count == 1, the pte page is not shared. - * - * called with vma->vm_mm->page_table_lock held. + * Called with page table lock held. * * returns: 1 successfully unmapped a shared pte page * 0 the underlying pte page is not shared, or it is the last user */ -int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) +int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, + unsigned long addr, pte_t *ptep) { - pgd_t *pgd = pgd_offset(mm, *addr); - pud_t *pud = pud_offset(pgd, *addr); + unsigned long sz = huge_page_size(hstate_vma(vma)); + pgd_t *pgd = pgd_offset(mm, addr); + p4d_t *p4d = p4d_offset(pgd, addr); + pud_t *pud = pud_offset(p4d, addr); - BUG_ON(page_count(virt_to_page(ptep)) == 0); - if (page_count(virt_to_page(ptep)) == 1) + if (sz != PMD_SIZE) return 0; - + if (!ptdesc_pmd_is_shared(virt_to_ptdesc(ptep))) + return 0; + i_mmap_assert_write_locked(vma->vm_file->f_mapping); + hugetlb_vma_assert_locked(vma); pud_clear(pud); - put_page(virt_to_page(ptep)); - *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; + /* + * Once our caller drops the rmap lock, some other process might be + * using this page table as a normal, non-hugetlb page table. + * Wait for pending gup_fast() in other threads to finish before letting + * that happen. + */ + tlb_remove_table_sync_one(); + ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep)); + mm_dec_nr_pmds(mm); return 1; } -#define want_pmd_share() (1) -#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ -pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) + +#else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ + +pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, + unsigned long addr, pud_t *pud) { return NULL; } -#define want_pmd_share() (0) -#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ + +int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma, + unsigned long addr, pte_t *ptep) +{ + return 0; +} + +void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, + unsigned long *start, unsigned long *end) +{ +} + +bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) +{ + return false; +} +#endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB -pte_t *huge_pte_alloc(struct mm_struct *mm, +pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long sz) { pgd_t *pgd; + p4d_t *p4d; pud_t *pud; pte_t *pte = NULL; pgd = pgd_offset(mm, addr); - pud = pud_alloc(mm, pgd, addr); + p4d = p4d_alloc(mm, pgd, addr); + if (!p4d) + return NULL; + pud = pud_alloc(mm, p4d, addr); if (pud) { if (sz == PUD_SIZE) { pte = (pte_t *)pud; } else { BUG_ON(sz != PMD_SIZE); - if (want_pmd_share() && pud_none(*pud)) - pte = huge_pmd_share(mm, addr, pud); + if (want_pmd_share(vma, addr) && pud_none(*pud)) + pte = huge_pmd_share(mm, vma, addr, pud); else pte = (pte_t *)pmd_alloc(mm, pud, addr); } } - BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); + + if (pte) { + pte_t pteval = ptep_get_lockless(pte); + + BUG_ON(pte_present(pteval) && !pte_huge(pteval)); + } return pte; } -pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) +/* + * huge_pte_offset() - Walk the page table to resolve the hugepage + * entry at address @addr + * + * Return: Pointer to page table entry (PUD or PMD) for + * address @addr, or NULL if a !p*d_present() entry is encountered and the + * size @sz doesn't match the hugepage size at this level of the page + * table. + */ +pte_t *huge_pte_offset(struct mm_struct *mm, + unsigned long addr, unsigned long sz) { pgd_t *pgd; + p4d_t *p4d; pud_t *pud; - pmd_t *pmd = NULL; + pmd_t *pmd; pgd = pgd_offset(mm, addr); - if (pgd_present(*pgd)) { - pud = pud_offset(pgd, addr); - if (pud_present(*pud)) { - if (pud_huge(*pud)) - return (pte_t *)pud; - pmd = pmd_offset(pud, addr); - } - } - return (pte_t *) pmd; -} + if (!pgd_present(*pgd)) + return NULL; + p4d = p4d_offset(pgd, addr); + if (!p4d_present(*p4d)) + return NULL; -struct page * -follow_huge_pmd(struct mm_struct *mm, unsigned long address, - pmd_t *pmd, int write) -{ - struct page *page; + pud = pud_offset(p4d, addr); + if (sz == PUD_SIZE) + /* must be pud huge, non-present or none */ + return (pte_t *)pud; + if (!pud_present(*pud)) + return NULL; + /* must have a valid entry and size to go further */ - page = pte_page(*(pte_t *)pmd); - if (page) - page += ((address & ~PMD_MASK) >> PAGE_SHIFT); - return page; + pmd = pmd_offset(pud, addr); + /* must be pmd huge, non-present or none */ + return (pte_t *)pmd; } -struct page * -follow_huge_pud(struct mm_struct *mm, unsigned long address, - pud_t *pud, int write) +/* + * Return a mask that can be used to update an address to the last huge + * page in a page table page mapping size. Used to skip non-present + * page table entries when linearly scanning address ranges. Architectures + * with unique huge page to page table relationships can define their own + * version of this routine. + */ +unsigned long hugetlb_mask_last_page(struct hstate *h) { - struct page *page; + unsigned long hp_size = huge_page_size(h); - page = pte_page(*(pte_t *)pud); - if (page) - page += ((address & ~PUD_MASK) >> PAGE_SHIFT); - return page; + if (hp_size == PUD_SIZE) + return P4D_SIZE - PUD_SIZE; + else if (hp_size == PMD_SIZE) + return PUD_SIZE - PMD_SIZE; + else + return 0UL; } -#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */ +#else -/* Can be overriden by architectures */ -__attribute__((weak)) struct page * -follow_huge_pud(struct mm_struct *mm, unsigned long address, - pud_t *pud, int write) +/* See description above. Architectures can provide their own version. */ +__weak unsigned long hugetlb_mask_last_page(struct hstate *h) { - BUG(); - return NULL; +#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING + if (huge_page_size(h) == PMD_SIZE) + return PUD_SIZE - PMD_SIZE; +#endif + return 0UL; } #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ -#ifdef CONFIG_MEMORY_FAILURE +/** + * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio + * @folio: the folio to isolate + * @list: the list to add the folio to on success + * + * Isolate an allocated (refcount > 0) hugetlb folio, marking it as + * isolated/non-migratable, and moving it from the active list to the + * given list. + * + * Isolation will fail if @folio is not an allocated hugetlb folio, or if + * it is already isolated/non-migratable. + * + * On success, an additional folio reference is taken that must be dropped + * using folio_putback_hugetlb() to undo the isolation. + * + * Return: True if isolation worked, otherwise False. + */ +bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) +{ + bool ret = true; + + spin_lock_irq(&hugetlb_lock); + if (!folio_test_hugetlb(folio) || + !folio_test_hugetlb_migratable(folio) || + !folio_try_get(folio)) { + ret = false; + goto unlock; + } + folio_clear_hugetlb_migratable(folio); + list_move_tail(&folio->lru, list); +unlock: + spin_unlock_irq(&hugetlb_lock); + return ret; +} + +int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) +{ + int ret = 0; -/* Should be called in hugetlb_lock */ -static int is_hugepage_on_freelist(struct page *hpage) + *hugetlb = false; + spin_lock_irq(&hugetlb_lock); + if (folio_test_hugetlb(folio)) { + *hugetlb = true; + if (folio_test_hugetlb_freed(folio)) + ret = 0; + else if (folio_test_hugetlb_migratable(folio) || unpoison) + ret = folio_try_get(folio); + else + ret = -EBUSY; + } + spin_unlock_irq(&hugetlb_lock); + return ret; +} + +int get_huge_page_for_hwpoison(unsigned long pfn, int flags, + bool *migratable_cleared) { - struct page *page; - struct page *tmp; - struct hstate *h = page_hstate(hpage); - int nid = page_to_nid(hpage); + int ret; - list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) - if (page == hpage) - return 1; - return 0; + spin_lock_irq(&hugetlb_lock); + ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); + spin_unlock_irq(&hugetlb_lock); + return ret; } -/* - * This function is called from memory failure code. - * Assume the caller holds page lock of the head page. +/** + * folio_putback_hugetlb - unisolate a hugetlb folio + * @folio: the isolated hugetlb folio + * + * Putback/un-isolate the hugetlb folio that was previous isolated using + * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it + * back onto the active list. + * + * Will drop the additional folio reference obtained through + * folio_isolate_hugetlb(). */ -int dequeue_hwpoisoned_huge_page(struct page *hpage) +void folio_putback_hugetlb(struct folio *folio) { - struct hstate *h = page_hstate(hpage); - int nid = page_to_nid(hpage); - int ret = -EBUSY; + spin_lock_irq(&hugetlb_lock); + folio_set_hugetlb_migratable(folio); + list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); + spin_unlock_irq(&hugetlb_lock); + folio_put(folio); +} + +void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) +{ + struct hstate *h = folio_hstate(old_folio); + + hugetlb_cgroup_migrate(old_folio, new_folio); + folio_set_owner_migrate_reason(new_folio, reason); + + /* + * transfer temporary state of the new hugetlb folio. This is + * reverse to other transitions because the newpage is going to + * be final while the old one will be freed so it takes over + * the temporary status. + * + * Also note that we have to transfer the per-node surplus state + * here as well otherwise the global surplus count will not match + * the per-node's. + */ + if (folio_test_hugetlb_temporary(new_folio)) { + int old_nid = folio_nid(old_folio); + int new_nid = folio_nid(new_folio); + + folio_set_hugetlb_temporary(old_folio); + folio_clear_hugetlb_temporary(new_folio); + - spin_lock(&hugetlb_lock); - if (is_hugepage_on_freelist(hpage)) { /* - * Hwpoisoned hugepage isn't linked to activelist or freelist, - * but dangling hpage->lru can trigger list-debug warnings - * (this happens when we call unpoison_memory() on it), - * so let it point to itself with list_del_init(). + * There is no need to transfer the per-node surplus state + * when we do not cross the node. */ - list_del_init(&hpage->lru); - set_page_refcounted(hpage); - h->free_huge_pages--; - h->free_huge_pages_node[nid]--; - ret = 0; + if (new_nid == old_nid) + return; + spin_lock_irq(&hugetlb_lock); + if (h->surplus_huge_pages_node[old_nid]) { + h->surplus_huge_pages_node[old_nid]--; + h->surplus_huge_pages_node[new_nid]++; + } + spin_unlock_irq(&hugetlb_lock); } - spin_unlock(&hugetlb_lock); - return ret; + + /* + * Our old folio is isolated and has "migratable" cleared until it + * is putback. As migration succeeded, set the new folio "migratable" + * and add it to the active list. + */ + spin_lock_irq(&hugetlb_lock); + folio_set_hugetlb_migratable(new_folio); + list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); + spin_unlock_irq(&hugetlb_lock); +} + +/* + * If @take_locks is false, the caller must ensure that no concurrent page table + * access can happen (except for gup_fast() and hardware page walks). + * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like + * concurrent page fault handling) and the file rmap lock. + */ +static void hugetlb_unshare_pmds(struct vm_area_struct *vma, + unsigned long start, + unsigned long end, + bool take_locks) +{ + struct hstate *h = hstate_vma(vma); + unsigned long sz = huge_page_size(h); + struct mm_struct *mm = vma->vm_mm; + struct mmu_notifier_range range; + unsigned long address; + spinlock_t *ptl; + pte_t *ptep; + + if (!(vma->vm_flags & VM_MAYSHARE)) + return; + + if (start >= end) + return; + + flush_cache_range(vma, start, end); + /* + * No need to call adjust_range_if_pmd_sharing_possible(), because + * we have already done the PUD_SIZE alignment. + */ + mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, + start, end); + mmu_notifier_invalidate_range_start(&range); + if (take_locks) { + hugetlb_vma_lock_write(vma); + i_mmap_lock_write(vma->vm_file->f_mapping); + } else { + i_mmap_assert_write_locked(vma->vm_file->f_mapping); + } + for (address = start; address < end; address += PUD_SIZE) { + ptep = hugetlb_walk(vma, address, sz); + if (!ptep) + continue; + ptl = huge_pte_lock(h, mm, ptep); + huge_pmd_unshare(mm, vma, address, ptep); + spin_unlock(ptl); + } + flush_hugetlb_tlb_range(vma, start, end); + if (take_locks) { + i_mmap_unlock_write(vma->vm_file->f_mapping); + hugetlb_vma_unlock_write(vma); + } + /* + * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see + * Documentation/mm/mmu_notifier.rst. + */ + mmu_notifier_invalidate_range_end(&range); +} + +/* + * This function will unconditionally remove all the shared pmd pgtable entries + * within the specific vma for a hugetlbfs memory range. + */ +void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) +{ + hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), + ALIGN_DOWN(vma->vm_end, PUD_SIZE), + /* take_locks = */ true); +} + +/* + * For hugetlb, mremap() is an odd edge case - while the VMA copying is + * performed, we permit both the old and new VMAs to reference the same + * reservation. + * + * We fix this up after the operation succeeds, or if a newly allocated VMA + * is closed as a result of a failure to allocate memory. + */ +void fixup_hugetlb_reservations(struct vm_area_struct *vma) +{ + if (is_vm_hugetlb_page(vma)) + clear_vma_resv_huge_pages(vma); } -#endif |
