summaryrefslogtreecommitdiff
path: root/mm/hugetlb_vmemmap.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/hugetlb_vmemmap.c')
-rw-r--r--mm/hugetlb_vmemmap.c773
1 files changed, 540 insertions, 233 deletions
diff --git a/mm/hugetlb_vmemmap.c b/mm/hugetlb_vmemmap.c
index 45e93a545dd7..9d01f883fd71 100644
--- a/mm/hugetlb_vmemmap.c
+++ b/mm/hugetlb_vmemmap.c
@@ -13,7 +13,10 @@
#include <linux/pgtable.h>
#include <linux/moduleparam.h>
#include <linux/bootmem_info.h>
-#include <asm/pgalloc.h>
+#include <linux/mmdebug.h>
+#include <linux/pagewalk.h>
+#include <linux/pgalloc.h>
+
#include <asm/tlbflush.h>
#include "hugetlb_vmemmap.h"
@@ -26,6 +29,8 @@
* @reuse_addr: the virtual address of the @reuse_page page.
* @vmemmap_pages: the list head of the vmemmap pages that can be freed
* or is mapped from.
+ * @flags: used to modify behavior in vmemmap page table walking
+ * operations.
*/
struct vmemmap_remap_walk {
void (*remap_pte)(pte_t *pte, unsigned long addr,
@@ -34,16 +39,25 @@ struct vmemmap_remap_walk {
struct page *reuse_page;
unsigned long reuse_addr;
struct list_head *vmemmap_pages;
+
+/* Skip the TLB flush when we split the PMD */
+#define VMEMMAP_SPLIT_NO_TLB_FLUSH BIT(0)
+/* Skip the TLB flush when we remap the PTE */
+#define VMEMMAP_REMAP_NO_TLB_FLUSH BIT(1)
+/* synchronize_rcu() to avoid writes from page_ref_add_unless() */
+#define VMEMMAP_SYNCHRONIZE_RCU BIT(2)
+ unsigned long flags;
};
-static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
+static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
+ struct vmemmap_remap_walk *walk)
{
pmd_t __pmd;
int i;
unsigned long addr = start;
- struct page *page = pmd_page(*pmd);
- pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
+ pte_t *pgtable;
+ pgtable = pte_alloc_one_kernel(&init_mm);
if (!pgtable)
return -ENOMEM;
@@ -53,7 +67,7 @@ static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
pte_t entry, *pte;
pgprot_t pgprot = PAGE_KERNEL;
- entry = mk_pte(page + i, pgprot);
+ entry = mk_pte(head + i, pgprot);
pte = pte_offset_kernel(&__pmd, addr);
set_pte_at(&init_mm, addr, pte, entry);
}
@@ -62,16 +76,17 @@ static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
if (likely(pmd_leaf(*pmd))) {
/*
* Higher order allocations from buddy allocator must be able to
- * be treated as indepdenent small pages (as they can be freed
+ * be treated as independent small pages (as they can be freed
* individually).
*/
- if (!PageReserved(page))
- split_page(page, get_order(PMD_SIZE));
+ if (!PageReserved(head))
+ split_page(head, get_order(PMD_SIZE));
/* Make pte visible before pmd. See comment in pmd_install(). */
smp_wmb();
pmd_populate_kernel(&init_mm, pmd, pgtable);
- flush_tlb_kernel_range(start, start + PMD_SIZE);
+ if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
+ flush_tlb_kernel_range(start, start + PMD_SIZE);
} else {
pte_free_kernel(&init_mm, pgtable);
}
@@ -80,130 +95,86 @@ static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
return 0;
}
-static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
+static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
+ unsigned long next, struct mm_walk *walk)
{
- int leaf;
-
- spin_lock(&init_mm.page_table_lock);
- leaf = pmd_leaf(*pmd);
- spin_unlock(&init_mm.page_table_lock);
-
- if (!leaf)
- return 0;
+ int ret = 0;
+ struct page *head;
+ struct vmemmap_remap_walk *vmemmap_walk = walk->private;
- return __split_vmemmap_huge_pmd(pmd, start);
-}
-
-static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
- unsigned long end,
- struct vmemmap_remap_walk *walk)
-{
- pte_t *pte = pte_offset_kernel(pmd, addr);
+ /* Only splitting, not remapping the vmemmap pages. */
+ if (!vmemmap_walk->remap_pte)
+ walk->action = ACTION_CONTINUE;
+ spin_lock(&init_mm.page_table_lock);
+ head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
/*
- * The reuse_page is found 'first' in table walk before we start
- * remapping (which is calling @walk->remap_pte).
+ * Due to HugeTLB alignment requirements and the vmemmap
+ * pages being at the start of the hotplugged memory
+ * region in memory_hotplug.memmap_on_memory case. Checking
+ * the vmemmap page associated with the first vmemmap page
+ * if it is self-hosted is sufficient.
+ *
+ * [ hotplugged memory ]
+ * [ section ][...][ section ]
+ * [ vmemmap ][ usable memory ]
+ * ^ | ^ |
+ * +--+ | |
+ * +------------------------+
*/
- if (!walk->reuse_page) {
- walk->reuse_page = pte_page(*pte);
- /*
- * Because the reuse address is part of the range that we are
- * walking, skip the reuse address range.
- */
- addr += PAGE_SIZE;
- pte++;
- walk->nr_walked++;
- }
+ if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
+ struct page *page = head ? head + pte_index(addr) :
+ pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
- for (; addr != end; addr += PAGE_SIZE, pte++) {
- walk->remap_pte(pte, addr, walk);
- walk->nr_walked++;
+ if (PageVmemmapSelfHosted(page))
+ ret = -ENOTSUPP;
}
-}
-
-static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
- unsigned long end,
- struct vmemmap_remap_walk *walk)
-{
- pmd_t *pmd;
- unsigned long next;
-
- pmd = pmd_offset(pud, addr);
- do {
- int ret;
-
- ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
- if (ret)
- return ret;
-
- next = pmd_addr_end(addr, end);
- vmemmap_pte_range(pmd, addr, next, walk);
- } while (pmd++, addr = next, addr != end);
+ spin_unlock(&init_mm.page_table_lock);
+ if (!head || ret)
+ return ret;
- return 0;
+ return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
}
-static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
- unsigned long end,
- struct vmemmap_remap_walk *walk)
+static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
+ unsigned long next, struct mm_walk *walk)
{
- pud_t *pud;
- unsigned long next;
+ struct vmemmap_remap_walk *vmemmap_walk = walk->private;
- pud = pud_offset(p4d, addr);
- do {
- int ret;
-
- next = pud_addr_end(addr, end);
- ret = vmemmap_pmd_range(pud, addr, next, walk);
- if (ret)
- return ret;
- } while (pud++, addr = next, addr != end);
+ /*
+ * The reuse_page is found 'first' in page table walking before
+ * starting remapping.
+ */
+ if (!vmemmap_walk->reuse_page)
+ vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
+ else
+ vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
+ vmemmap_walk->nr_walked++;
return 0;
}
-static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
- unsigned long end,
- struct vmemmap_remap_walk *walk)
-{
- p4d_t *p4d;
- unsigned long next;
-
- p4d = p4d_offset(pgd, addr);
- do {
- int ret;
-
- next = p4d_addr_end(addr, end);
- ret = vmemmap_pud_range(p4d, addr, next, walk);
- if (ret)
- return ret;
- } while (p4d++, addr = next, addr != end);
-
- return 0;
-}
+static const struct mm_walk_ops vmemmap_remap_ops = {
+ .pmd_entry = vmemmap_pmd_entry,
+ .pte_entry = vmemmap_pte_entry,
+};
static int vmemmap_remap_range(unsigned long start, unsigned long end,
struct vmemmap_remap_walk *walk)
{
- unsigned long addr = start;
- unsigned long next;
- pgd_t *pgd;
-
- VM_BUG_ON(!PAGE_ALIGNED(start));
- VM_BUG_ON(!PAGE_ALIGNED(end));
+ int ret;
- pgd = pgd_offset_k(addr);
- do {
- int ret;
+ VM_BUG_ON(!PAGE_ALIGNED(start | end));
- next = pgd_addr_end(addr, end);
- ret = vmemmap_p4d_range(pgd, addr, next, walk);
- if (ret)
- return ret;
- } while (pgd++, addr = next, addr != end);
+ mmap_read_lock(&init_mm);
+ ret = walk_kernel_page_table_range(start, end, &vmemmap_remap_ops,
+ NULL, walk);
+ mmap_read_unlock(&init_mm);
+ if (ret)
+ return ret;
- flush_tlb_kernel_range(start, end);
+ if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
+ flush_tlb_kernel_range(start, end);
return 0;
}
@@ -216,10 +187,13 @@ static int vmemmap_remap_range(unsigned long start, unsigned long end,
*/
static inline void free_vmemmap_page(struct page *page)
{
- if (PageReserved(page))
+ if (PageReserved(page)) {
+ memmap_boot_pages_add(-1);
free_bootmem_page(page);
- else
+ } else {
+ memmap_pages_add(-1);
__free_page(page);
+ }
}
/* Free a list of the vmemmap pages */
@@ -239,7 +213,7 @@ static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
* to the tail pages.
*/
pgprot_t pgprot = PAGE_KERNEL_RO;
- struct page *page = pte_page(*pte);
+ struct page *page = pte_page(ptep_get(pte));
pte_t entry;
/* Remapping the head page requires r/w */
@@ -256,7 +230,7 @@ static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
}
entry = mk_pte(walk->reuse_page, pgprot);
- list_add_tail(&page->lru, walk->vmemmap_pages);
+ list_add(&page->lru, walk->vmemmap_pages);
set_pte_at(&init_mm, addr, pte, entry);
}
@@ -264,12 +238,12 @@ static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
* How many struct page structs need to be reset. When we reuse the head
* struct page, the special metadata (e.g. page->flags or page->mapping)
* cannot copy to the tail struct page structs. The invalid value will be
- * checked in the free_tail_pages_check(). In order to avoid the message
- * of "corrupted mapping in tail page". We need to reset at least 3 (one
- * head struct page struct and two tail struct page structs) struct page
+ * checked in the free_tail_page_prepare(). In order to avoid the message
+ * of "corrupted mapping in tail page". We need to reset at least 4 (one
+ * head struct page struct and three tail struct page structs) struct page
* structs.
*/
-#define NR_RESET_STRUCT_PAGE 3
+#define NR_RESET_STRUCT_PAGE 4
static inline void reset_struct_pages(struct page *start)
{
@@ -286,7 +260,7 @@ static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
struct page *page;
void *to;
- BUG_ON(pte_page(*pte) != walk->reuse_page);
+ BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
page = list_first_entry(walk->vmemmap_pages, struct page, lru);
list_del(&page->lru);
@@ -303,6 +277,31 @@ static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
}
/**
+ * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
+ * backing PMDs of the directmap into PTEs
+ * @start: start address of the vmemmap virtual address range that we want
+ * to remap.
+ * @end: end address of the vmemmap virtual address range that we want to
+ * remap.
+ * @reuse: reuse address.
+ *
+ * Return: %0 on success, negative error code otherwise.
+ */
+static int vmemmap_remap_split(unsigned long start, unsigned long end,
+ unsigned long reuse)
+{
+ struct vmemmap_remap_walk walk = {
+ .remap_pte = NULL,
+ .flags = VMEMMAP_SPLIT_NO_TLB_FLUSH,
+ };
+
+ /* See the comment in the vmemmap_remap_free(). */
+ BUG_ON(start - reuse != PAGE_SIZE);
+
+ return vmemmap_remap_range(reuse, end, &walk);
+}
+
+/**
* vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
* to the page which @reuse is mapped to, then free vmemmap
* which the range are mapped to.
@@ -311,22 +310,26 @@ static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
* @end: end address of the vmemmap virtual address range that we want to
* remap.
* @reuse: reuse address.
+ * @vmemmap_pages: list to deposit vmemmap pages to be freed. It is callers
+ * responsibility to free pages.
+ * @flags: modifications to vmemmap_remap_walk flags
*
* Return: %0 on success, negative error code otherwise.
*/
static int vmemmap_remap_free(unsigned long start, unsigned long end,
- unsigned long reuse)
+ unsigned long reuse,
+ struct list_head *vmemmap_pages,
+ unsigned long flags)
{
int ret;
- LIST_HEAD(vmemmap_pages);
struct vmemmap_remap_walk walk = {
.remap_pte = vmemmap_remap_pte,
.reuse_addr = reuse,
- .vmemmap_pages = &vmemmap_pages,
+ .vmemmap_pages = vmemmap_pages,
+ .flags = flags,
};
- int nid = page_to_nid((struct page *)start);
- gfp_t gfp_mask = GFP_KERNEL | __GFP_THISNODE | __GFP_NORETRY |
- __GFP_NOWARN;
+ int nid = page_to_nid((struct page *)reuse);
+ gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
/*
* Allocate a new head vmemmap page to avoid breaking a contiguous
@@ -340,7 +343,8 @@ static int vmemmap_remap_free(unsigned long start, unsigned long end,
if (walk.reuse_page) {
copy_page(page_to_virt(walk.reuse_page),
(void *)walk.reuse_addr);
- list_add(&walk.reuse_page->lru, &vmemmap_pages);
+ list_add(&walk.reuse_page->lru, vmemmap_pages);
+ memmap_pages_add(1);
}
/*
@@ -358,7 +362,6 @@ static int vmemmap_remap_free(unsigned long start, unsigned long end,
*/
BUG_ON(start - reuse != PAGE_SIZE);
- mmap_read_lock(&init_mm);
ret = vmemmap_remap_range(reuse, end, &walk);
if (ret && walk.nr_walked) {
end = reuse + walk.nr_walked * PAGE_SIZE;
@@ -371,36 +374,37 @@ static int vmemmap_remap_free(unsigned long start, unsigned long end,
walk = (struct vmemmap_remap_walk) {
.remap_pte = vmemmap_restore_pte,
.reuse_addr = reuse,
- .vmemmap_pages = &vmemmap_pages,
+ .vmemmap_pages = vmemmap_pages,
+ .flags = 0,
};
vmemmap_remap_range(reuse, end, &walk);
}
- mmap_read_unlock(&init_mm);
-
- free_vmemmap_page_list(&vmemmap_pages);
return ret;
}
static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
- gfp_t gfp_mask, struct list_head *list)
+ struct list_head *list)
{
+ gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
int nid = page_to_nid((struct page *)start);
struct page *page, *next;
+ int i;
- while (nr_pages--) {
+ for (i = 0; i < nr_pages; i++) {
page = alloc_pages_node(nid, gfp_mask, 0);
if (!page)
goto out;
- list_add_tail(&page->lru, list);
+ list_add(&page->lru, list);
}
+ memmap_pages_add(nr_pages);
return 0;
out:
list_for_each_entry_safe(page, next, list, lru)
- __free_pages(page, 0);
+ __free_page(page);
return -ENOMEM;
}
@@ -413,58 +417,56 @@ out:
* @end: end address of the vmemmap virtual address range that we want to
* remap.
* @reuse: reuse address.
- * @gfp_mask: GFP flag for allocating vmemmap pages.
+ * @flags: modifications to vmemmap_remap_walk flags
*
* Return: %0 on success, negative error code otherwise.
*/
static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
- unsigned long reuse, gfp_t gfp_mask)
+ unsigned long reuse, unsigned long flags)
{
LIST_HEAD(vmemmap_pages);
struct vmemmap_remap_walk walk = {
.remap_pte = vmemmap_restore_pte,
.reuse_addr = reuse,
.vmemmap_pages = &vmemmap_pages,
+ .flags = flags,
};
/* See the comment in the vmemmap_remap_free(). */
BUG_ON(start - reuse != PAGE_SIZE);
- if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
+ if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
return -ENOMEM;
- mmap_read_lock(&init_mm);
- vmemmap_remap_range(reuse, end, &walk);
- mmap_read_unlock(&init_mm);
-
- return 0;
+ return vmemmap_remap_range(reuse, end, &walk);
}
DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
-core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
+static int __init hugetlb_vmemmap_optimize_param(char *buf)
+{
+ return kstrtobool(buf, &vmemmap_optimize_enabled);
+}
+early_param("hugetlb_free_vmemmap", hugetlb_vmemmap_optimize_param);
-/**
- * hugetlb_vmemmap_restore - restore previously optimized (by
- * hugetlb_vmemmap_optimize()) vmemmap pages which
- * will be reallocated and remapped.
- * @h: struct hstate.
- * @head: the head page whose vmemmap pages will be restored.
- *
- * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
- * negative error code otherwise.
- */
-int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
+static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
+ struct folio *folio, unsigned long flags)
{
int ret;
- unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
+ unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
unsigned long vmemmap_reuse;
- if (!HPageVmemmapOptimized(head))
+ VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
+
+ if (!folio_test_hugetlb_vmemmap_optimized(folio))
return 0;
+ if (flags & VMEMMAP_SYNCHRONIZE_RCU)
+ synchronize_rcu();
+
vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
vmemmap_reuse = vmemmap_start;
vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
@@ -476,131 +478,436 @@ int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
* When a HugeTLB page is freed to the buddy allocator, previously
* discarded vmemmap pages must be allocated and remapping.
*/
- ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse,
- GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
+ ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
if (!ret) {
- ClearHPageVmemmapOptimized(head);
+ folio_clear_hugetlb_vmemmap_optimized(folio);
static_branch_dec(&hugetlb_optimize_vmemmap_key);
}
return ret;
}
+/**
+ * hugetlb_vmemmap_restore_folio - restore previously optimized (by
+ * hugetlb_vmemmap_optimize_folio()) vmemmap pages which
+ * will be reallocated and remapped.
+ * @h: struct hstate.
+ * @folio: the folio whose vmemmap pages will be restored.
+ *
+ * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
+ * negative error code otherwise.
+ */
+int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
+{
+ return __hugetlb_vmemmap_restore_folio(h, folio, VMEMMAP_SYNCHRONIZE_RCU);
+}
+
+/**
+ * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
+ * @h: hstate.
+ * @folio_list: list of folios.
+ * @non_hvo_folios: Output list of folios for which vmemmap exists.
+ *
+ * Return: number of folios for which vmemmap was restored, or an error code
+ * if an error was encountered restoring vmemmap for a folio.
+ * Folios that have vmemmap are moved to the non_hvo_folios
+ * list. Processing of entries stops when the first error is
+ * encountered. The folio that experienced the error and all
+ * non-processed folios will remain on folio_list.
+ */
+long hugetlb_vmemmap_restore_folios(const struct hstate *h,
+ struct list_head *folio_list,
+ struct list_head *non_hvo_folios)
+{
+ struct folio *folio, *t_folio;
+ long restored = 0;
+ long ret = 0;
+ unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
+
+ list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
+ if (folio_test_hugetlb_vmemmap_optimized(folio)) {
+ ret = __hugetlb_vmemmap_restore_folio(h, folio, flags);
+ /* only need to synchronize_rcu() once for each batch */
+ flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
+
+ if (ret)
+ break;
+ restored++;
+ }
+
+ /* Add non-optimized folios to output list */
+ list_move(&folio->lru, non_hvo_folios);
+ }
+
+ if (restored)
+ flush_tlb_all();
+ if (!ret)
+ ret = restored;
+ return ret;
+}
+
/* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
-static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
+static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
{
+ if (folio_test_hugetlb_vmemmap_optimized(folio))
+ return false;
+
if (!READ_ONCE(vmemmap_optimize_enabled))
return false;
if (!hugetlb_vmemmap_optimizable(h))
return false;
- if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
- pmd_t *pmdp, pmd;
- struct page *vmemmap_page;
- unsigned long vaddr = (unsigned long)head;
+ return true;
+}
- /*
- * Only the vmemmap page's vmemmap page can be self-hosted.
- * Walking the page tables to find the backing page of the
- * vmemmap page.
- */
- pmdp = pmd_off_k(vaddr);
- /*
- * The READ_ONCE() is used to stabilize *pmdp in a register or
- * on the stack so that it will stop changing under the code.
- * The only concurrent operation where it can be changed is
- * split_vmemmap_huge_pmd() (*pmdp will be stable after this
- * operation).
- */
- pmd = READ_ONCE(*pmdp);
- if (pmd_leaf(pmd))
- vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
- else
- vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
- /*
- * Due to HugeTLB alignment requirements and the vmemmap pages
- * being at the start of the hotplugged memory region in
- * memory_hotplug.memmap_on_memory case. Checking any vmemmap
- * page's vmemmap page if it is marked as VmemmapSelfHosted is
- * sufficient.
- *
- * [ hotplugged memory ]
- * [ section ][...][ section ]
- * [ vmemmap ][ usable memory ]
- * ^ | | |
- * +---+ | |
- * ^ | |
- * +-------+ |
- * ^ |
- * +-------------------------------------------+
- */
- if (PageVmemmapSelfHosted(vmemmap_page))
- return false;
+static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
+ struct folio *folio,
+ struct list_head *vmemmap_pages,
+ unsigned long flags)
+{
+ int ret = 0;
+ unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
+ unsigned long vmemmap_reuse;
+
+ VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
+
+ if (!vmemmap_should_optimize_folio(h, folio))
+ return ret;
+
+ static_branch_inc(&hugetlb_optimize_vmemmap_key);
+
+ if (flags & VMEMMAP_SYNCHRONIZE_RCU)
+ synchronize_rcu();
+ /*
+ * Very Subtle
+ * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
+ * immediately after remapping. As a result, subsequent accesses
+ * and modifications to struct pages associated with the hugetlb
+ * page could be to the OLD struct pages. Set the vmemmap optimized
+ * flag here so that it is copied to the new head page. This keeps
+ * the old and new struct pages in sync.
+ * If there is an error during optimization, we will immediately FLUSH
+ * the TLB and clear the flag below.
+ */
+ folio_set_hugetlb_vmemmap_optimized(folio);
+
+ vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
+ vmemmap_reuse = vmemmap_start;
+ vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
+
+ /*
+ * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
+ * to the page which @vmemmap_reuse is mapped to. Add pages previously
+ * mapping the range to vmemmap_pages list so that they can be freed by
+ * the caller.
+ */
+ ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
+ vmemmap_pages, flags);
+ if (ret) {
+ static_branch_dec(&hugetlb_optimize_vmemmap_key);
+ folio_clear_hugetlb_vmemmap_optimized(folio);
}
- return true;
+ return ret;
}
/**
- * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
+ * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
* @h: struct hstate.
- * @head: the head page whose vmemmap pages will be optimized.
+ * @folio: the folio whose vmemmap pages will be optimized.
*
- * This function only tries to optimize @head's vmemmap pages and does not
+ * This function only tries to optimize @folio's vmemmap pages and does not
* guarantee that the optimization will succeed after it returns. The caller
- * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
- * have been optimized.
+ * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
+ * vmemmap pages have been optimized.
*/
-void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
+void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
{
- unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
- unsigned long vmemmap_reuse;
+ LIST_HEAD(vmemmap_pages);
- if (!vmemmap_should_optimize(h, head))
- return;
+ __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, VMEMMAP_SYNCHRONIZE_RCU);
+ free_vmemmap_page_list(&vmemmap_pages);
+}
- static_branch_inc(&hugetlb_optimize_vmemmap_key);
+static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
+{
+ unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
+ unsigned long vmemmap_reuse;
+
+ if (!vmemmap_should_optimize_folio(h, folio))
+ return 0;
vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
vmemmap_reuse = vmemmap_start;
vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
/*
- * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
- * to the page which @vmemmap_reuse is mapped to, then free the pages
- * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
+ * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
+ * @vmemmap_end]
*/
- if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
- static_branch_dec(&hugetlb_optimize_vmemmap_key);
- else
- SetHPageVmemmapOptimized(head);
+ return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
+}
+
+static void __hugetlb_vmemmap_optimize_folios(struct hstate *h,
+ struct list_head *folio_list,
+ bool boot)
+{
+ struct folio *folio;
+ int nr_to_optimize;
+ LIST_HEAD(vmemmap_pages);
+ unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
+
+ nr_to_optimize = 0;
+ list_for_each_entry(folio, folio_list, lru) {
+ int ret;
+ unsigned long spfn, epfn;
+
+ if (boot && folio_test_hugetlb_vmemmap_optimized(folio)) {
+ /*
+ * Already optimized by pre-HVO, just map the
+ * mirrored tail page structs RO.
+ */
+ spfn = (unsigned long)&folio->page;
+ epfn = spfn + pages_per_huge_page(h);
+ vmemmap_wrprotect_hvo(spfn, epfn, folio_nid(folio),
+ HUGETLB_VMEMMAP_RESERVE_SIZE);
+ register_page_bootmem_memmap(pfn_to_section_nr(spfn),
+ &folio->page,
+ HUGETLB_VMEMMAP_RESERVE_SIZE);
+ static_branch_inc(&hugetlb_optimize_vmemmap_key);
+ continue;
+ }
+
+ nr_to_optimize++;
+
+ ret = hugetlb_vmemmap_split_folio(h, folio);
+
+ /*
+ * Splitting the PMD requires allocating a page, thus let's fail
+ * early once we encounter the first OOM. No point in retrying
+ * as it can be dynamically done on remap with the memory
+ * we get back from the vmemmap deduplication.
+ */
+ if (ret == -ENOMEM)
+ break;
+ }
+
+ if (!nr_to_optimize)
+ /*
+ * All pre-HVO folios, nothing left to do. It's ok if
+ * there is a mix of pre-HVO and not yet HVO-ed folios
+ * here, as __hugetlb_vmemmap_optimize_folio() will
+ * skip any folios that already have the optimized flag
+ * set, see vmemmap_should_optimize_folio().
+ */
+ goto out;
+
+ flush_tlb_all();
+
+ list_for_each_entry(folio, folio_list, lru) {
+ int ret;
+
+ ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
+ /* only need to synchronize_rcu() once for each batch */
+ flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
+
+ /*
+ * Pages to be freed may have been accumulated. If we
+ * encounter an ENOMEM, free what we have and try again.
+ * This can occur in the case that both splitting fails
+ * halfway and head page allocation also failed. In this
+ * case __hugetlb_vmemmap_optimize_folio() would free memory
+ * allowing more vmemmap remaps to occur.
+ */
+ if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
+ flush_tlb_all();
+ free_vmemmap_page_list(&vmemmap_pages);
+ INIT_LIST_HEAD(&vmemmap_pages);
+ __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
+ }
+ }
+
+out:
+ flush_tlb_all();
+ free_vmemmap_page_list(&vmemmap_pages);
+}
+
+void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
+{
+ __hugetlb_vmemmap_optimize_folios(h, folio_list, false);
+}
+
+void hugetlb_vmemmap_optimize_bootmem_folios(struct hstate *h, struct list_head *folio_list)
+{
+ __hugetlb_vmemmap_optimize_folios(h, folio_list, true);
}
-static struct ctl_table hugetlb_vmemmap_sysctls[] = {
+#ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
+
+/* Return true of a bootmem allocated HugeTLB page should be pre-HVO-ed */
+static bool vmemmap_should_optimize_bootmem_page(struct huge_bootmem_page *m)
+{
+ unsigned long section_size, psize, pmd_vmemmap_size;
+ phys_addr_t paddr;
+
+ if (!READ_ONCE(vmemmap_optimize_enabled))
+ return false;
+
+ if (!hugetlb_vmemmap_optimizable(m->hstate))
+ return false;
+
+ psize = huge_page_size(m->hstate);
+ paddr = virt_to_phys(m);
+
+ /*
+ * Pre-HVO only works if the bootmem huge page
+ * is aligned to the section size.
+ */
+ section_size = (1UL << PA_SECTION_SHIFT);
+ if (!IS_ALIGNED(paddr, section_size) ||
+ !IS_ALIGNED(psize, section_size))
+ return false;
+
+ /*
+ * The pre-HVO code does not deal with splitting PMDS,
+ * so the bootmem page must be aligned to the number
+ * of base pages that can be mapped with one vmemmap PMD.
+ */
+ pmd_vmemmap_size = (PMD_SIZE / (sizeof(struct page))) << PAGE_SHIFT;
+ if (!IS_ALIGNED(paddr, pmd_vmemmap_size) ||
+ !IS_ALIGNED(psize, pmd_vmemmap_size))
+ return false;
+
+ return true;
+}
+
+/*
+ * Initialize memmap section for a gigantic page, HVO-style.
+ */
+void __init hugetlb_vmemmap_init_early(int nid)
+{
+ unsigned long psize, paddr, section_size;
+ unsigned long ns, i, pnum, pfn, nr_pages;
+ unsigned long start, end;
+ struct huge_bootmem_page *m = NULL;
+ void *map;
+
+ /*
+ * Noting to do if bootmem pages were not allocated
+ * early in boot, or if HVO wasn't enabled in the
+ * first place.
+ */
+ if (!hugetlb_bootmem_allocated())
+ return;
+
+ if (!READ_ONCE(vmemmap_optimize_enabled))
+ return;
+
+ section_size = (1UL << PA_SECTION_SHIFT);
+
+ list_for_each_entry(m, &huge_boot_pages[nid], list) {
+ if (!vmemmap_should_optimize_bootmem_page(m))
+ continue;
+
+ nr_pages = pages_per_huge_page(m->hstate);
+ psize = nr_pages << PAGE_SHIFT;
+ paddr = virt_to_phys(m);
+ pfn = PHYS_PFN(paddr);
+ map = pfn_to_page(pfn);
+ start = (unsigned long)map;
+ end = start + nr_pages * sizeof(struct page);
+
+ if (vmemmap_populate_hvo(start, end, nid,
+ HUGETLB_VMEMMAP_RESERVE_SIZE) < 0)
+ continue;
+
+ memmap_boot_pages_add(HUGETLB_VMEMMAP_RESERVE_SIZE / PAGE_SIZE);
+
+ pnum = pfn_to_section_nr(pfn);
+ ns = psize / section_size;
+
+ for (i = 0; i < ns; i++) {
+ sparse_init_early_section(nid, map, pnum,
+ SECTION_IS_VMEMMAP_PREINIT);
+ map += section_map_size();
+ pnum++;
+ }
+
+ m->flags |= HUGE_BOOTMEM_HVO;
+ }
+}
+
+void __init hugetlb_vmemmap_init_late(int nid)
+{
+ struct huge_bootmem_page *m, *tm;
+ unsigned long phys, nr_pages, start, end;
+ unsigned long pfn, nr_mmap;
+ struct hstate *h;
+ void *map;
+
+ if (!hugetlb_bootmem_allocated())
+ return;
+
+ if (!READ_ONCE(vmemmap_optimize_enabled))
+ return;
+
+ list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
+ if (!(m->flags & HUGE_BOOTMEM_HVO))
+ continue;
+
+ phys = virt_to_phys(m);
+ h = m->hstate;
+ pfn = PHYS_PFN(phys);
+ nr_pages = pages_per_huge_page(h);
+
+ if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
+ /*
+ * Oops, the hugetlb page spans multiple zones.
+ * Remove it from the list, and undo HVO.
+ */
+ list_del(&m->list);
+
+ map = pfn_to_page(pfn);
+
+ start = (unsigned long)map;
+ end = start + nr_pages * sizeof(struct page);
+
+ vmemmap_undo_hvo(start, end, nid,
+ HUGETLB_VMEMMAP_RESERVE_SIZE);
+ nr_mmap = end - start - HUGETLB_VMEMMAP_RESERVE_SIZE;
+ memmap_boot_pages_add(DIV_ROUND_UP(nr_mmap, PAGE_SIZE));
+
+ memblock_phys_free(phys, huge_page_size(h));
+ continue;
+ } else
+ m->flags |= HUGE_BOOTMEM_ZONES_VALID;
+ }
+}
+#endif
+
+static const struct ctl_table hugetlb_vmemmap_sysctls[] = {
{
.procname = "hugetlb_optimize_vmemmap",
.data = &vmemmap_optimize_enabled,
- .maxlen = sizeof(int),
+ .maxlen = sizeof(vmemmap_optimize_enabled),
.mode = 0644,
.proc_handler = proc_dobool,
},
- { }
};
static int __init hugetlb_vmemmap_init(void)
{
- /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
- BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
+ const struct hstate *h;
- if (IS_ENABLED(CONFIG_PROC_SYSCTL)) {
- const struct hstate *h;
+ /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
+ BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
- for_each_hstate(h) {
- if (hugetlb_vmemmap_optimizable(h)) {
- register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
- break;
- }
+ for_each_hstate(h) {
+ if (hugetlb_vmemmap_optimizable(h)) {
+ register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
+ break;
}
}
return 0;