diff options
Diffstat (limited to 'mm/memblock.c')
| -rw-r--r-- | mm/memblock.c | 2340 |
1 files changed, 2015 insertions, 325 deletions
diff --git a/mm/memblock.c b/mm/memblock.c index a847bfe6f3ba..905d06b16348 100644 --- a/mm/memblock.c +++ b/mm/memblock.c @@ -1,13 +1,9 @@ +// SPDX-License-Identifier: GPL-2.0-or-later /* * Procedures for maintaining information about logical memory blocks. * * Peter Bergner, IBM Corp. June 2001. * Copyright (C) 2001 Peter Bergner. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version - * 2 of the License, or (at your option) any later version. */ #include <linux/kernel.h> @@ -17,100 +13,268 @@ #include <linux/poison.h> #include <linux/pfn.h> #include <linux/debugfs.h> +#include <linux/kmemleak.h> #include <linux/seq_file.h> #include <linux/memblock.h> +#include <linux/mutex.h> + +#ifdef CONFIG_KEXEC_HANDOVER +#include <linux/libfdt.h> +#include <linux/kexec_handover.h> +#endif /* CONFIG_KEXEC_HANDOVER */ + +#include <asm/sections.h> +#include <linux/io.h> + +#include "internal.h" + +#define INIT_MEMBLOCK_REGIONS 128 +#define INIT_PHYSMEM_REGIONS 4 + +#ifndef INIT_MEMBLOCK_RESERVED_REGIONS +# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS +#endif + +#ifndef INIT_MEMBLOCK_MEMORY_REGIONS +#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS +#endif + +/** + * DOC: memblock overview + * + * Memblock is a method of managing memory regions during the early + * boot period when the usual kernel memory allocators are not up and + * running. + * + * Memblock views the system memory as collections of contiguous + * regions. There are several types of these collections: + * + * * ``memory`` - describes the physical memory available to the + * kernel; this may differ from the actual physical memory installed + * in the system, for instance when the memory is restricted with + * ``mem=`` command line parameter + * * ``reserved`` - describes the regions that were allocated + * * ``physmem`` - describes the actual physical memory available during + * boot regardless of the possible restrictions and memory hot(un)plug; + * the ``physmem`` type is only available on some architectures. + * + * Each region is represented by struct memblock_region that + * defines the region extents, its attributes and NUMA node id on NUMA + * systems. Every memory type is described by the struct memblock_type + * which contains an array of memory regions along with + * the allocator metadata. The "memory" and "reserved" types are nicely + * wrapped with struct memblock. This structure is statically + * initialized at build time. The region arrays are initially sized to + * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and + * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array + * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS. + * The memblock_allow_resize() enables automatic resizing of the region + * arrays during addition of new regions. This feature should be used + * with care so that memory allocated for the region array will not + * overlap with areas that should be reserved, for example initrd. + * + * The early architecture setup should tell memblock what the physical + * memory layout is by using memblock_add() or memblock_add_node() + * functions. The first function does not assign the region to a NUMA + * node and it is appropriate for UMA systems. Yet, it is possible to + * use it on NUMA systems as well and assign the region to a NUMA node + * later in the setup process using memblock_set_node(). The + * memblock_add_node() performs such an assignment directly. + * + * Once memblock is setup the memory can be allocated using one of the + * API variants: + * + * * memblock_phys_alloc*() - these functions return the **physical** + * address of the allocated memory + * * memblock_alloc*() - these functions return the **virtual** address + * of the allocated memory. + * + * Note, that both API variants use implicit assumptions about allowed + * memory ranges and the fallback methods. Consult the documentation + * of memblock_alloc_internal() and memblock_alloc_range_nid() + * functions for more elaborate description. + * + * As the system boot progresses, the architecture specific mem_init() + * function frees all the memory to the buddy page allocator. + * + * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the + * memblock data structures (except "physmem") will be discarded after the + * system initialization completes. + */ -static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; -static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; +#ifndef CONFIG_NUMA +struct pglist_data __refdata contig_page_data; +EXPORT_SYMBOL(contig_page_data); +#endif + +unsigned long max_low_pfn; +unsigned long min_low_pfn; +unsigned long max_pfn; +unsigned long long max_possible_pfn; + +#ifdef CONFIG_MEMBLOCK_KHO_SCRATCH +/* When set to true, only allocate from MEMBLOCK_KHO_SCRATCH ranges */ +static bool kho_scratch_only; +#else +#define kho_scratch_only false +#endif + +static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock; +static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; +#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP +static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; +#endif struct memblock memblock __initdata_memblock = { .memory.regions = memblock_memory_init_regions, - .memory.cnt = 1, /* empty dummy entry */ - .memory.max = INIT_MEMBLOCK_REGIONS, + .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS, + .memory.name = "memory", .reserved.regions = memblock_reserved_init_regions, - .reserved.cnt = 1, /* empty dummy entry */ - .reserved.max = INIT_MEMBLOCK_REGIONS, + .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, + .reserved.name = "reserved", + .bottom_up = false, .current_limit = MEMBLOCK_ALLOC_ANYWHERE, }; -int memblock_debug __initdata_memblock; +#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP +struct memblock_type physmem = { + .regions = memblock_physmem_init_regions, + .max = INIT_PHYSMEM_REGIONS, + .name = "physmem", +}; +#endif + +/* + * keep a pointer to &memblock.memory in the text section to use it in + * __next_mem_range() and its helpers. + * For architectures that do not keep memblock data after init, this + * pointer will be reset to NULL at memblock_discard() + */ +static __refdata struct memblock_type *memblock_memory = &memblock.memory; + +#define for_each_memblock_type(i, memblock_type, rgn) \ + for (i = 0, rgn = &memblock_type->regions[0]; \ + i < memblock_type->cnt; \ + i++, rgn = &memblock_type->regions[i]) + +#define memblock_dbg(fmt, ...) \ + do { \ + if (memblock_debug) \ + pr_info(fmt, ##__VA_ARGS__); \ + } while (0) + +static int memblock_debug __initdata_memblock; +static bool system_has_some_mirror __initdata_memblock; static int memblock_can_resize __initdata_memblock; -static int memblock_memory_in_slab __initdata_memblock = 0; -static int memblock_reserved_in_slab __initdata_memblock = 0; +static int memblock_memory_in_slab __initdata_memblock; +static int memblock_reserved_in_slab __initdata_memblock; -/* inline so we don't get a warning when pr_debug is compiled out */ -static __init_memblock const char * -memblock_type_name(struct memblock_type *type) +bool __init_memblock memblock_has_mirror(void) { - if (type == &memblock.memory) - return "memory"; - else if (type == &memblock.reserved) - return "reserved"; - else - return "unknown"; + return system_has_some_mirror; +} + +static enum memblock_flags __init_memblock choose_memblock_flags(void) +{ + /* skip non-scratch memory for kho early boot allocations */ + if (kho_scratch_only) + return MEMBLOCK_KHO_SCRATCH; + + return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; } /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) { - return *size = min(*size, (phys_addr_t)ULLONG_MAX - base); + return *size = min(*size, PHYS_ADDR_MAX - base); } /* * Address comparison utilities */ -static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, - phys_addr_t base2, phys_addr_t size2) +unsigned long __init_memblock +memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2, + phys_addr_t size2) { return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); } -static long __init_memblock memblock_overlaps_region(struct memblock_type *type, +bool __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size) { unsigned long i; - for (i = 0; i < type->cnt; i++) { - phys_addr_t rgnbase = type->regions[i].base; - phys_addr_t rgnsize = type->regions[i].size; - if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) - break; - } + memblock_cap_size(base, &size); - return (i < type->cnt) ? i : -1; + for (i = 0; i < type->cnt; i++) + if (memblock_addrs_overlap(base, size, type->regions[i].base, + type->regions[i].size)) + return true; + return false; } /** - * memblock_find_in_range_node - find free area in given range and node + * __memblock_find_range_bottom_up - find free area utility in bottom-up * @start: start of candidate range - * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} + * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or + * %MEMBLOCK_ALLOC_ACCESSIBLE * @size: size of free area to find * @align: alignment of free area to find - * @nid: nid of the free area to find, %MAX_NUMNODES for any node + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * @flags: pick from blocks based on memory attributes * - * Find @size free area aligned to @align in the specified range and node. + * Utility called from memblock_find_in_range_node(), find free area bottom-up. * - * RETURNS: - * Found address on success, %0 on failure. + * Return: + * Found address on success, 0 on failure. */ -phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, - phys_addr_t end, phys_addr_t size, - phys_addr_t align, int nid) +static phys_addr_t __init_memblock +__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, + phys_addr_t size, phys_addr_t align, int nid, + enum memblock_flags flags) { phys_addr_t this_start, this_end, cand; u64 i; - /* pump up @end */ - if (end == MEMBLOCK_ALLOC_ACCESSIBLE) - end = memblock.current_limit; + for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { + this_start = clamp(this_start, start, end); + this_end = clamp(this_end, start, end); - /* avoid allocating the first page */ - start = max_t(phys_addr_t, start, PAGE_SIZE); - end = max(start, end); + cand = round_up(this_start, align); + if (cand < this_end && this_end - cand >= size) + return cand; + } + + return 0; +} - for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) { +/** + * __memblock_find_range_top_down - find free area utility, in top-down + * @start: start of candidate range + * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or + * %MEMBLOCK_ALLOC_ACCESSIBLE + * @size: size of free area to find + * @align: alignment of free area to find + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * @flags: pick from blocks based on memory attributes + * + * Utility called from memblock_find_in_range_node(), find free area top-down. + * + * Return: + * Found address on success, 0 on failure. + */ +static phys_addr_t __init_memblock +__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, + phys_addr_t size, phys_addr_t align, int nid, + enum memblock_flags flags) +{ + phys_addr_t this_start, this_end, cand; + u64 i; + + for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, + NULL) { this_start = clamp(this_start, start, end); this_end = clamp(this_end, start, end); @@ -121,27 +285,79 @@ phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, if (cand >= this_start) return cand; } + return 0; } /** + * memblock_find_in_range_node - find free area in given range and node + * @size: size of free area to find + * @align: alignment of free area to find + * @start: start of candidate range + * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or + * %MEMBLOCK_ALLOC_ACCESSIBLE + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * @flags: pick from blocks based on memory attributes + * + * Find @size free area aligned to @align in the specified range and node. + * + * Return: + * Found address on success, 0 on failure. + */ +static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, + phys_addr_t align, phys_addr_t start, + phys_addr_t end, int nid, + enum memblock_flags flags) +{ + /* pump up @end */ + if (end == MEMBLOCK_ALLOC_ACCESSIBLE || + end == MEMBLOCK_ALLOC_NOLEAKTRACE) + end = memblock.current_limit; + + /* avoid allocating the first page */ + start = max_t(phys_addr_t, start, PAGE_SIZE); + end = max(start, end); + + if (memblock_bottom_up()) + return __memblock_find_range_bottom_up(start, end, size, align, + nid, flags); + else + return __memblock_find_range_top_down(start, end, size, align, + nid, flags); +} + +/** * memblock_find_in_range - find free area in given range * @start: start of candidate range - * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} + * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or + * %MEMBLOCK_ALLOC_ACCESSIBLE * @size: size of free area to find * @align: alignment of free area to find * * Find @size free area aligned to @align in the specified range. * - * RETURNS: - * Found address on success, %0 on failure. + * Return: + * Found address on success, 0 on failure. */ -phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, +static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, phys_addr_t end, phys_addr_t size, phys_addr_t align) { - return memblock_find_in_range_node(start, end, size, align, - MAX_NUMNODES); + phys_addr_t ret; + enum memblock_flags flags = choose_memblock_flags(); + +again: + ret = memblock_find_in_range_node(size, align, start, end, + NUMA_NO_NODE, flags); + + if (!ret && (flags & MEMBLOCK_MIRROR)) { + pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", + &size); + flags &= ~MEMBLOCK_MIRROR; + goto again; + } + + return ret; } static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) @@ -154,24 +370,44 @@ static void __init_memblock memblock_remove_region(struct memblock_type *type, u /* Special case for empty arrays */ if (type->cnt == 0) { WARN_ON(type->total_size != 0); - type->cnt = 1; type->regions[0].base = 0; type->regions[0].size = 0; + type->regions[0].flags = 0; memblock_set_region_node(&type->regions[0], MAX_NUMNODES); } } -phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( - phys_addr_t *addr) +#ifndef CONFIG_ARCH_KEEP_MEMBLOCK +/** + * memblock_discard - discard memory and reserved arrays if they were allocated + */ +void __init memblock_discard(void) { - if (memblock.reserved.regions == memblock_reserved_init_regions) - return 0; + phys_addr_t addr, size; + + if (memblock.reserved.regions != memblock_reserved_init_regions) { + addr = __pa(memblock.reserved.regions); + size = PAGE_ALIGN(sizeof(struct memblock_region) * + memblock.reserved.max); + if (memblock_reserved_in_slab) + kfree(memblock.reserved.regions); + else + memblock_free_late(addr, size); + } - *addr = __pa(memblock.reserved.regions); + if (memblock.memory.regions != memblock_memory_init_regions) { + addr = __pa(memblock.memory.regions); + size = PAGE_ALIGN(sizeof(struct memblock_region) * + memblock.memory.max); + if (memblock_memory_in_slab) + kfree(memblock.memory.regions); + else + memblock_free_late(addr, size); + } - return PAGE_ALIGN(sizeof(struct memblock_region) * - memblock.reserved.max); + memblock_memory = NULL; } +#endif /** * memblock_double_array - double the size of the memblock regions array @@ -181,11 +417,11 @@ phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( * * Double the size of the @type regions array. If memblock is being used to * allocate memory for a new reserved regions array and there is a previously - * allocated memory range [@new_area_start,@new_area_start+@new_area_size] + * allocated memory range [@new_area_start, @new_area_start + @new_area_size] * waiting to be reserved, ensure the memory used by the new array does * not overlap. * - * RETURNS: + * Return: * 0 on success, -1 on failure. */ static int __init_memblock memblock_double_array(struct memblock_type *type, @@ -194,7 +430,7 @@ static int __init_memblock memblock_double_array(struct memblock_type *type, { struct memblock_region *new_array, *old_array; phys_addr_t old_alloc_size, new_alloc_size; - phys_addr_t old_size, new_size, addr; + phys_addr_t old_size, new_size, addr, new_end; int use_slab = slab_is_available(); int *in_slab; @@ -202,7 +438,7 @@ static int __init_memblock memblock_double_array(struct memblock_type *type, * of memory that aren't suitable for allocation */ if (!memblock_can_resize) - return -1; + panic("memblock: cannot resize %s array\n", type->name); /* Calculate new doubled size */ old_size = type->max * sizeof(struct memblock_region); @@ -220,17 +456,7 @@ static int __init_memblock memblock_double_array(struct memblock_type *type, else in_slab = &memblock_reserved_in_slab; - /* Try to find some space for it. - * - * WARNING: We assume that either slab_is_available() and we use it or - * we use MEMBLOCK for allocations. That means that this is unsafe to - * use when bootmem is currently active (unless bootmem itself is - * implemented on top of MEMBLOCK which isn't the case yet) - * - * This should however not be an issue for now, as we currently only - * call into MEMBLOCK while it's still active, or much later when slab - * is active for memory hotplug operations - */ + /* Try to find some space for it */ if (use_slab) { new_array = kmalloc(new_size, GFP_KERNEL); addr = new_array ? __pa(new_array) : 0; @@ -247,17 +473,24 @@ static int __init_memblock memblock_double_array(struct memblock_type *type, min(new_area_start, memblock.current_limit), new_alloc_size, PAGE_SIZE); - new_array = addr ? __va(addr) : NULL; + if (addr) { + /* The memory may not have been accepted, yet. */ + accept_memory(addr, new_alloc_size); + + new_array = __va(addr); + } else { + new_array = NULL; + } } if (!addr) { pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", - memblock_type_name(type), type->max, type->max * 2); + type->name, type->max, type->max * 2); return -1; } - memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]", - memblock_type_name(type), type->max * 2, (u64)addr, - (u64)addr + new_size - 1); + new_end = addr + new_size - 1; + memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", + type->name, type->max * 2, &addr, &new_end); /* * Found space, we now need to move the array over before we add the @@ -275,14 +508,14 @@ static int __init_memblock memblock_double_array(struct memblock_type *type, kfree(old_array); else if (old_array != memblock_memory_init_regions && old_array != memblock_reserved_init_regions) - memblock_free(__pa(old_array), old_alloc_size); + memblock_free(old_array, old_alloc_size); /* * Reserve the new array if that comes from the memblock. Otherwise, we * needn't do it */ if (!use_slab) - BUG_ON(memblock_reserve(addr, new_alloc_size)); + BUG_ON(memblock_reserve_kern(addr, new_alloc_size)); /* Update slab flag */ *in_slab = use_slab; @@ -293,21 +526,26 @@ static int __init_memblock memblock_double_array(struct memblock_type *type, /** * memblock_merge_regions - merge neighboring compatible regions * @type: memblock type to scan - * - * Scan @type and merge neighboring compatible regions. + * @start_rgn: start scanning from (@start_rgn - 1) + * @end_rgn: end scanning at (@end_rgn - 1) + * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn) */ -static void __init_memblock memblock_merge_regions(struct memblock_type *type) +static void __init_memblock memblock_merge_regions(struct memblock_type *type, + unsigned long start_rgn, + unsigned long end_rgn) { int i = 0; - - /* cnt never goes below 1 */ - while (i < type->cnt - 1) { + if (start_rgn) + i = start_rgn - 1; + end_rgn = min(end_rgn, type->cnt - 1); + while (i < end_rgn) { struct memblock_region *this = &type->regions[i]; struct memblock_region *next = &type->regions[i + 1]; if (this->base + this->size != next->base || memblock_get_region_node(this) != - memblock_get_region_node(next)) { + memblock_get_region_node(next) || + this->flags != next->flags) { BUG_ON(this->base + this->size > next->base); i++; continue; @@ -317,6 +555,7 @@ static void __init_memblock memblock_merge_regions(struct memblock_type *type) /* move forward from next + 1, index of which is i + 2 */ memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); type->cnt--; + end_rgn--; } } @@ -327,13 +566,16 @@ static void __init_memblock memblock_merge_regions(struct memblock_type *type) * @base: base address of the new region * @size: size of the new region * @nid: node id of the new region + * @flags: flags of the new region * - * Insert new memblock region [@base,@base+@size) into @type at @idx. - * @type must already have extra room to accomodate the new region. + * Insert new memblock region [@base, @base + @size) into @type at @idx. + * @type must already have extra room to accommodate the new region. */ static void __init_memblock memblock_insert_region(struct memblock_type *type, int idx, phys_addr_t base, - phys_addr_t size, int nid) + phys_addr_t size, + int nid, + enum memblock_flags flags) { struct memblock_region *rgn = &type->regions[idx]; @@ -341,57 +583,73 @@ static void __init_memblock memblock_insert_region(struct memblock_type *type, memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); rgn->base = base; rgn->size = size; + rgn->flags = flags; memblock_set_region_node(rgn, nid); type->cnt++; type->total_size += size; } /** - * memblock_add_region - add new memblock region + * memblock_add_range - add new memblock region * @type: memblock type to add new region into * @base: base address of the new region * @size: size of the new region * @nid: nid of the new region + * @flags: flags of the new region * - * Add new memblock region [@base,@base+@size) into @type. The new region + * Add new memblock region [@base, @base + @size) into @type. The new region * is allowed to overlap with existing ones - overlaps don't affect already * existing regions. @type is guaranteed to be minimal (all neighbouring * compatible regions are merged) after the addition. * - * RETURNS: + * Return: * 0 on success, -errno on failure. */ -static int __init_memblock memblock_add_region(struct memblock_type *type, - phys_addr_t base, phys_addr_t size, int nid) +static int __init_memblock memblock_add_range(struct memblock_type *type, + phys_addr_t base, phys_addr_t size, + int nid, enum memblock_flags flags) { bool insert = false; phys_addr_t obase = base; phys_addr_t end = base + memblock_cap_size(base, &size); - int i, nr_new; + int idx, nr_new, start_rgn = -1, end_rgn; + struct memblock_region *rgn; if (!size) return 0; /* special case for empty array */ if (type->regions[0].size == 0) { - WARN_ON(type->cnt != 1 || type->total_size); + WARN_ON(type->cnt != 0 || type->total_size); type->regions[0].base = base; type->regions[0].size = size; + type->regions[0].flags = flags; memblock_set_region_node(&type->regions[0], nid); type->total_size = size; + type->cnt = 1; return 0; } + + /* + * The worst case is when new range overlaps all existing regions, + * then we'll need type->cnt + 1 empty regions in @type. So if + * type->cnt * 2 + 1 is less than or equal to type->max, we know + * that there is enough empty regions in @type, and we can insert + * regions directly. + */ + if (type->cnt * 2 + 1 <= type->max) + insert = true; + repeat: /* * The following is executed twice. Once with %false @insert and * then with %true. The first counts the number of regions needed - * to accomodate the new area. The second actually inserts them. + * to accommodate the new area. The second actually inserts them. */ base = obase; nr_new = 0; - for (i = 0; i < type->cnt; i++) { - struct memblock_region *rgn = &type->regions[i]; + for_each_memblock_type(idx, type, rgn) { phys_addr_t rbase = rgn->base; phys_addr_t rend = rbase + rgn->size; @@ -404,10 +662,19 @@ repeat: * area, insert that portion. */ if (rbase > base) { +#ifdef CONFIG_NUMA + WARN_ON(nid != memblock_get_region_node(rgn)); +#endif + WARN_ON(flags != MEMBLOCK_NONE && flags != rgn->flags); nr_new++; - if (insert) - memblock_insert_region(type, i++, base, - rbase - base, nid); + if (insert) { + if (start_rgn == -1) + start_rgn = idx; + end_rgn = idx + 1; + memblock_insert_region(type, idx++, base, + rbase - base, nid, + flags); + } } /* area below @rend is dealt with, forget about it */ base = min(rend, end); @@ -416,10 +683,18 @@ repeat: /* insert the remaining portion */ if (base < end) { nr_new++; - if (insert) - memblock_insert_region(type, i, base, end - base, nid); + if (insert) { + if (start_rgn == -1) + start_rgn = idx; + end_rgn = idx + 1; + memblock_insert_region(type, idx, base, end - base, + nid, flags); + } } + if (!nr_new) + return 0; + /* * If this was the first round, resize array and repeat for actual * insertions; otherwise, merge and return. @@ -431,23 +706,91 @@ repeat: insert = true; goto repeat; } else { - memblock_merge_regions(type); + memblock_merge_regions(type, start_rgn, end_rgn); return 0; } } +/** + * memblock_add_node - add new memblock region within a NUMA node + * @base: base address of the new region + * @size: size of the new region + * @nid: nid of the new region + * @flags: flags of the new region + * + * Add new memblock region [@base, @base + @size) to the "memory" + * type. See memblock_add_range() description for mode details + * + * Return: + * 0 on success, -errno on failure. + */ int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, - int nid) + int nid, enum memblock_flags flags) { - return memblock_add_region(&memblock.memory, base, size, nid); + phys_addr_t end = base + size - 1; + + memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, + &base, &end, nid, flags, (void *)_RET_IP_); + + return memblock_add_range(&memblock.memory, base, size, nid, flags); } +/** + * memblock_add - add new memblock region + * @base: base address of the new region + * @size: size of the new region + * + * Add new memblock region [@base, @base + @size) to the "memory" + * type. See memblock_add_range() description for mode details + * + * Return: + * 0 on success, -errno on failure. + */ int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) { - return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); + phys_addr_t end = base + size - 1; + + memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, + &base, &end, (void *)_RET_IP_); + + return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); } /** + * memblock_validate_numa_coverage - check if amount of memory with + * no node ID assigned is less than a threshold + * @threshold_bytes: maximal memory size that can have unassigned node + * ID (in bytes). + * + * A buggy firmware may report memory that does not belong to any node. + * Check if amount of such memory is below @threshold_bytes. + * + * Return: true on success, false on failure. + */ +bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes) +{ + unsigned long nr_pages = 0; + unsigned long start_pfn, end_pfn, mem_size_mb; + int nid, i; + + /* calculate lose page */ + for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { + if (!numa_valid_node(nid)) + nr_pages += end_pfn - start_pfn; + } + + if ((nr_pages << PAGE_SHIFT) > threshold_bytes) { + mem_size_mb = memblock_phys_mem_size() / SZ_1M; + pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n", + (nr_pages << PAGE_SHIFT) / SZ_1M, mem_size_mb); + return false; + } + + return true; +} + + +/** * memblock_isolate_range - isolate given range into disjoint memblocks * @type: memblock type to isolate range for * @base: base of range to isolate @@ -456,11 +799,12 @@ int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) * @end_rgn: out parameter for the end of isolated region * * Walk @type and ensure that regions don't cross the boundaries defined by - * [@base,@base+@size). Crossing regions are split at the boundaries, + * [@base, @base + @size). Crossing regions are split at the boundaries, * which may create at most two more regions. The index of the first - * region inside the range is returned in *@start_rgn and end in *@end_rgn. + * region inside the range is returned in *@start_rgn and the index of the + * first region after the range is returned in *@end_rgn. * - * RETURNS: + * Return: * 0 on success, -errno on failure. */ static int __init_memblock memblock_isolate_range(struct memblock_type *type, @@ -468,7 +812,8 @@ static int __init_memblock memblock_isolate_range(struct memblock_type *type, int *start_rgn, int *end_rgn) { phys_addr_t end = base + memblock_cap_size(base, &size); - int i; + int idx; + struct memblock_region *rgn; *start_rgn = *end_rgn = 0; @@ -480,8 +825,7 @@ static int __init_memblock memblock_isolate_range(struct memblock_type *type, if (memblock_double_array(type, base, size) < 0) return -ENOMEM; - for (i = 0; i < type->cnt; i++) { - struct memblock_region *rgn = &type->regions[i]; + for_each_memblock_type(idx, type, rgn) { phys_addr_t rbase = rgn->base; phys_addr_t rend = rbase + rgn->size; @@ -498,8 +842,9 @@ static int __init_memblock memblock_isolate_range(struct memblock_type *type, rgn->base = base; rgn->size -= base - rbase; type->total_size -= base - rbase; - memblock_insert_region(type, i, rbase, base - rbase, - memblock_get_region_node(rgn)); + memblock_insert_region(type, idx, rbase, base - rbase, + memblock_get_region_node(rgn), + rgn->flags); } else if (rend > end) { /* * @rgn intersects from above. Split and redo the @@ -508,21 +853,22 @@ static int __init_memblock memblock_isolate_range(struct memblock_type *type, rgn->base = end; rgn->size -= end - rbase; type->total_size -= end - rbase; - memblock_insert_region(type, i--, rbase, end - rbase, - memblock_get_region_node(rgn)); + memblock_insert_region(type, idx--, rbase, end - rbase, + memblock_get_region_node(rgn), + rgn->flags); } else { /* @rgn is fully contained, record it */ if (!*end_rgn) - *start_rgn = i; - *end_rgn = i + 1; + *start_rgn = idx; + *end_rgn = idx + 1; } } return 0; } -static int __init_memblock __memblock_remove(struct memblock_type *type, - phys_addr_t base, phys_addr_t size) +static int __init_memblock memblock_remove_range(struct memblock_type *type, + phys_addr_t base, phys_addr_t size) { int start_rgn, end_rgn; int i, ret; @@ -538,43 +884,322 @@ static int __init_memblock __memblock_remove(struct memblock_type *type, int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) { - return __memblock_remove(&memblock.memory, base, size); + phys_addr_t end = base + size - 1; + + memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, + &base, &end, (void *)_RET_IP_); + + return memblock_remove_range(&memblock.memory, base, size); } -int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) +/** + * memblock_free - free boot memory allocation + * @ptr: starting address of the boot memory allocation + * @size: size of the boot memory block in bytes + * + * Free boot memory block previously allocated by memblock_alloc_xx() API. + * The freeing memory will not be released to the buddy allocator. + */ +void __init_memblock memblock_free(void *ptr, size_t size) { - memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", - (unsigned long long)base, - (unsigned long long)base + size, - (void *)_RET_IP_); + if (ptr) + memblock_phys_free(__pa(ptr), size); +} + +/** + * memblock_phys_free - free boot memory block + * @base: phys starting address of the boot memory block + * @size: size of the boot memory block in bytes + * + * Free boot memory block previously allocated by memblock_phys_alloc_xx() API. + * The freeing memory will not be released to the buddy allocator. + */ +int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size) +{ + phys_addr_t end = base + size - 1; + + memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, + &base, &end, (void *)_RET_IP_); - return __memblock_remove(&memblock.reserved, base, size); + kmemleak_free_part_phys(base, size); + return memblock_remove_range(&memblock.reserved, base, size); } -int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) +int __init_memblock __memblock_reserve(phys_addr_t base, phys_addr_t size, + int nid, enum memblock_flags flags) { - struct memblock_type *_rgn = &memblock.reserved; + phys_addr_t end = base + size - 1; - memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", - (unsigned long long)base, - (unsigned long long)base + size, - (void *)_RET_IP_); + memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, + &base, &end, nid, flags, (void *)_RET_IP_); + + return memblock_add_range(&memblock.reserved, base, size, nid, flags); +} - return memblock_add_region(_rgn, base, size, MAX_NUMNODES); +#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP +int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) +{ + phys_addr_t end = base + size - 1; + + memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, + &base, &end, (void *)_RET_IP_); + + return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); +} +#endif + +#ifdef CONFIG_MEMBLOCK_KHO_SCRATCH +__init void memblock_set_kho_scratch_only(void) +{ + kho_scratch_only = true; +} + +__init void memblock_clear_kho_scratch_only(void) +{ + kho_scratch_only = false; +} + +__init void memmap_init_kho_scratch_pages(void) +{ + phys_addr_t start, end; + unsigned long pfn; + int nid; + u64 i; + + if (!IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) + return; + + /* + * Initialize struct pages for free scratch memory. + * The struct pages for reserved scratch memory will be set up in + * reserve_bootmem_region() + */ + __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE, + MEMBLOCK_KHO_SCRATCH, &start, &end, &nid) { + for (pfn = PFN_UP(start); pfn < PFN_DOWN(end); pfn++) + init_deferred_page(pfn, nid); + } +} +#endif + +/** + * memblock_setclr_flag - set or clear flag for a memory region + * @type: memblock type to set/clear flag for + * @base: base address of the region + * @size: size of the region + * @set: set or clear the flag + * @flag: the flag to update + * + * This function isolates region [@base, @base + @size), and sets/clears flag + * + * Return: 0 on success, -errno on failure. + */ +static int __init_memblock memblock_setclr_flag(struct memblock_type *type, + phys_addr_t base, phys_addr_t size, int set, int flag) +{ + int i, ret, start_rgn, end_rgn; + + ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); + if (ret) + return ret; + + for (i = start_rgn; i < end_rgn; i++) { + struct memblock_region *r = &type->regions[i]; + + if (set) + r->flags |= flag; + else + r->flags &= ~flag; + } + + memblock_merge_regions(type, start_rgn, end_rgn); + return 0; +} + +/** + * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. + * @base: the base phys addr of the region + * @size: the size of the region + * + * Return: 0 on success, -errno on failure. + */ +int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) +{ + return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG); +} + +/** + * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. + * @base: the base phys addr of the region + * @size: the size of the region + * + * Return: 0 on success, -errno on failure. + */ +int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) +{ + return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG); +} + +/** + * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. + * @base: the base phys addr of the region + * @size: the size of the region + * + * Return: 0 on success, -errno on failure. + */ +int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) +{ + if (!mirrored_kernelcore) + return 0; + + system_has_some_mirror = true; + + return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR); +} + +/** + * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. + * @base: the base phys addr of the region + * @size: the size of the region + * + * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the + * direct mapping of the physical memory. These regions will still be + * covered by the memory map. The struct page representing NOMAP memory + * frames in the memory map will be PageReserved() + * + * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from + * memblock, the caller must inform kmemleak to ignore that memory + * + * Return: 0 on success, -errno on failure. + */ +int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) +{ + return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP); +} + +/** + * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. + * @base: the base phys addr of the region + * @size: the size of the region + * + * Return: 0 on success, -errno on failure. + */ +int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) +{ + return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP); +} + +/** + * memblock_reserved_mark_noinit - Mark a reserved memory region with flag + * MEMBLOCK_RSRV_NOINIT + * + * @base: the base phys addr of the region + * @size: the size of the region + * + * The struct pages for the reserved regions marked %MEMBLOCK_RSRV_NOINIT will + * not be fully initialized to allow the caller optimize their initialization. + * + * When %CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, setting this flag + * completely bypasses the initialization of struct pages for such region. + * + * When %CONFIG_DEFERRED_STRUCT_PAGE_INIT is disabled, struct pages in this + * region will be initialized with default values but won't be marked as + * reserved. + * + * Return: 0 on success, -errno on failure. + */ +int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size) +{ + return memblock_setclr_flag(&memblock.reserved, base, size, 1, + MEMBLOCK_RSRV_NOINIT); +} + +/** + * memblock_mark_kho_scratch - Mark a memory region as MEMBLOCK_KHO_SCRATCH. + * @base: the base phys addr of the region + * @size: the size of the region + * + * Only memory regions marked with %MEMBLOCK_KHO_SCRATCH will be considered + * for allocations during early boot with kexec handover. + * + * Return: 0 on success, -errno on failure. + */ +__init int memblock_mark_kho_scratch(phys_addr_t base, phys_addr_t size) +{ + return memblock_setclr_flag(&memblock.memory, base, size, 1, + MEMBLOCK_KHO_SCRATCH); +} + +/** + * memblock_clear_kho_scratch - Clear MEMBLOCK_KHO_SCRATCH flag for a + * specified region. + * @base: the base phys addr of the region + * @size: the size of the region + * + * Return: 0 on success, -errno on failure. + */ +__init int memblock_clear_kho_scratch(phys_addr_t base, phys_addr_t size) +{ + return memblock_setclr_flag(&memblock.memory, base, size, 0, + MEMBLOCK_KHO_SCRATCH); +} + +static bool should_skip_region(struct memblock_type *type, + struct memblock_region *m, + int nid, int flags) +{ + int m_nid = memblock_get_region_node(m); + + /* we never skip regions when iterating memblock.reserved or physmem */ + if (type != memblock_memory) + return false; + + /* only memory regions are associated with nodes, check it */ + if (numa_valid_node(nid) && nid != m_nid) + return true; + + /* skip hotpluggable memory regions if needed */ + if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && + !(flags & MEMBLOCK_HOTPLUG)) + return true; + + /* if we want mirror memory skip non-mirror memory regions */ + if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) + return true; + + /* skip nomap memory unless we were asked for it explicitly */ + if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) + return true; + + /* skip driver-managed memory unless we were asked for it explicitly */ + if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m)) + return true; + + /* + * In early alloc during kexec handover, we can only consider + * MEMBLOCK_KHO_SCRATCH regions for the allocations + */ + if ((flags & MEMBLOCK_KHO_SCRATCH) && !memblock_is_kho_scratch(m)) + return true; + + return false; } /** - * __next_free_mem_range - next function for for_each_free_mem_range() + * __next_mem_range - next function for for_each_free_mem_range() etc. * @idx: pointer to u64 loop variable - * @nid: node selector, %MAX_NUMNODES for all nodes + * @nid: node selector, %NUMA_NO_NODE for all nodes + * @flags: pick from blocks based on memory attributes + * @type_a: pointer to memblock_type from where the range is taken + * @type_b: pointer to memblock_type which excludes memory from being taken * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL * @out_nid: ptr to int for nid of the range, can be %NULL * - * Find the first free area from *@idx which matches @nid, fill the out + * Find the first area from *@idx which matches @nid, fill the out * parameters, and update *@idx for the next iteration. The lower 32bit of - * *@idx contains index into memory region and the upper 32bit indexes the - * areas before each reserved region. For example, if reserved regions + * *@idx contains index into type_a and the upper 32bit indexes the + * areas before each region in type_b. For example, if type_b regions * look like the following, * * 0:[0-16), 1:[32-48), 2:[128-130) @@ -586,50 +1211,71 @@ int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) * As both region arrays are sorted, the function advances the two indices * in lockstep and returns each intersection. */ -void __init_memblock __next_free_mem_range(u64 *idx, int nid, - phys_addr_t *out_start, - phys_addr_t *out_end, int *out_nid) +void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, + struct memblock_type *type_a, + struct memblock_type *type_b, phys_addr_t *out_start, + phys_addr_t *out_end, int *out_nid) { - struct memblock_type *mem = &memblock.memory; - struct memblock_type *rsv = &memblock.reserved; - int mi = *idx & 0xffffffff; - int ri = *idx >> 32; + int idx_a = *idx & 0xffffffff; + int idx_b = *idx >> 32; + + for (; idx_a < type_a->cnt; idx_a++) { + struct memblock_region *m = &type_a->regions[idx_a]; - for ( ; mi < mem->cnt; mi++) { - struct memblock_region *m = &mem->regions[mi]; phys_addr_t m_start = m->base; phys_addr_t m_end = m->base + m->size; + int m_nid = memblock_get_region_node(m); - /* only memory regions are associated with nodes, check it */ - if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) + if (should_skip_region(type_a, m, nid, flags)) continue; - /* scan areas before each reservation for intersection */ - for ( ; ri < rsv->cnt + 1; ri++) { - struct memblock_region *r = &rsv->regions[ri]; - phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; - phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; + if (!type_b) { + if (out_start) + *out_start = m_start; + if (out_end) + *out_end = m_end; + if (out_nid) + *out_nid = m_nid; + idx_a++; + *idx = (u32)idx_a | (u64)idx_b << 32; + return; + } + + /* scan areas before each reservation */ + for (; idx_b < type_b->cnt + 1; idx_b++) { + struct memblock_region *r; + phys_addr_t r_start; + phys_addr_t r_end; - /* if ri advanced past mi, break out to advance mi */ + r = &type_b->regions[idx_b]; + r_start = idx_b ? r[-1].base + r[-1].size : 0; + r_end = idx_b < type_b->cnt ? + r->base : PHYS_ADDR_MAX; + + /* + * if idx_b advanced past idx_a, + * break out to advance idx_a + */ if (r_start >= m_end) break; /* if the two regions intersect, we're done */ if (m_start < r_end) { if (out_start) - *out_start = max(m_start, r_start); + *out_start = + max(m_start, r_start); if (out_end) *out_end = min(m_end, r_end); if (out_nid) - *out_nid = memblock_get_region_node(m); + *out_nid = m_nid; /* - * The region which ends first is advanced - * for the next iteration. + * The region which ends first is + * advanced for the next iteration. */ if (m_end <= r_end) - mi++; + idx_a++; else - ri++; - *idx = (u32)mi | (u64)ri << 32; + idx_b++; + *idx = (u32)idx_a | (u64)idx_b << 32; return; } } @@ -640,45 +1286,77 @@ void __init_memblock __next_free_mem_range(u64 *idx, int nid, } /** - * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() + * __next_mem_range_rev - generic next function for for_each_*_range_rev() + * * @idx: pointer to u64 loop variable - * @nid: nid: node selector, %MAX_NUMNODES for all nodes + * @nid: node selector, %NUMA_NO_NODE for all nodes + * @flags: pick from blocks based on memory attributes + * @type_a: pointer to memblock_type from where the range is taken + * @type_b: pointer to memblock_type which excludes memory from being taken * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL * @out_nid: ptr to int for nid of the range, can be %NULL * - * Reverse of __next_free_mem_range(). + * Finds the next range from type_a which is not marked as unsuitable + * in type_b. + * + * Reverse of __next_mem_range(). */ -void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, - phys_addr_t *out_start, - phys_addr_t *out_end, int *out_nid) +void __init_memblock __next_mem_range_rev(u64 *idx, int nid, + enum memblock_flags flags, + struct memblock_type *type_a, + struct memblock_type *type_b, + phys_addr_t *out_start, + phys_addr_t *out_end, int *out_nid) { - struct memblock_type *mem = &memblock.memory; - struct memblock_type *rsv = &memblock.reserved; - int mi = *idx & 0xffffffff; - int ri = *idx >> 32; + int idx_a = *idx & 0xffffffff; + int idx_b = *idx >> 32; if (*idx == (u64)ULLONG_MAX) { - mi = mem->cnt - 1; - ri = rsv->cnt; + idx_a = type_a->cnt - 1; + if (type_b != NULL) + idx_b = type_b->cnt; + else + idx_b = 0; } - for ( ; mi >= 0; mi--) { - struct memblock_region *m = &mem->regions[mi]; + for (; idx_a >= 0; idx_a--) { + struct memblock_region *m = &type_a->regions[idx_a]; + phys_addr_t m_start = m->base; phys_addr_t m_end = m->base + m->size; + int m_nid = memblock_get_region_node(m); - /* only memory regions are associated with nodes, check it */ - if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) + if (should_skip_region(type_a, m, nid, flags)) continue; - /* scan areas before each reservation for intersection */ - for ( ; ri >= 0; ri--) { - struct memblock_region *r = &rsv->regions[ri]; - phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0; - phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX; + if (!type_b) { + if (out_start) + *out_start = m_start; + if (out_end) + *out_end = m_end; + if (out_nid) + *out_nid = m_nid; + idx_a--; + *idx = (u32)idx_a | (u64)idx_b << 32; + return; + } + + /* scan areas before each reservation */ + for (; idx_b >= 0; idx_b--) { + struct memblock_region *r; + phys_addr_t r_start; + phys_addr_t r_end; + + r = &type_b->regions[idx_b]; + r_start = idx_b ? r[-1].base + r[-1].size : 0; + r_end = idx_b < type_b->cnt ? + r->base : PHYS_ADDR_MAX; + /* + * if idx_b advanced past idx_a, + * break out to advance idx_a + */ - /* if ri advanced past mi, break out to advance mi */ if (r_end <= m_start) break; /* if the two regions intersect, we're done */ @@ -688,24 +1366,22 @@ void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, if (out_end) *out_end = min(m_end, r_end); if (out_nid) - *out_nid = memblock_get_region_node(m); - + *out_nid = m_nid; if (m_start >= r_start) - mi--; + idx_a--; else - ri--; - *idx = (u32)mi | (u64)ri << 32; + idx_b--; + *idx = (u32)idx_a | (u64)idx_b << 32; return; } } } - + /* signal end of iteration */ *idx = ULLONG_MAX; } -#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP /* - * Common iterator interface used to define for_each_mem_range(). + * Common iterator interface used to define for_each_mem_pfn_range(). */ void __init_memblock __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn, @@ -713,13 +1389,15 @@ void __init_memblock __next_mem_pfn_range(int *idx, int nid, { struct memblock_type *type = &memblock.memory; struct memblock_region *r; + int r_nid; while (++*idx < type->cnt) { r = &type->regions[*idx]; + r_nid = memblock_get_region_node(r); if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) continue; - if (nid == MAX_NUMNODES || nid == r->nid) + if (!numa_valid_node(nid) || nid == r_nid) break; } if (*idx >= type->cnt) { @@ -732,25 +1410,26 @@ void __init_memblock __next_mem_pfn_range(int *idx, int nid, if (out_end_pfn) *out_end_pfn = PFN_DOWN(r->base + r->size); if (out_nid) - *out_nid = r->nid; + *out_nid = r_nid; } /** * memblock_set_node - set node ID on memblock regions * @base: base of area to set node ID for * @size: size of area to set node ID for + * @type: memblock type to set node ID for * @nid: node ID to set * - * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. + * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. * Regions which cross the area boundaries are split as necessary. * - * RETURNS: + * Return: * 0 on success, -errno on failure. */ int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, - int nid) + struct memblock_type *type, int nid) { - struct memblock_type *type = &memblock.memory; +#ifdef CONFIG_NUMA int start_rgn, end_rgn; int i, ret; @@ -761,92 +1440,394 @@ int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, for (i = start_rgn; i < end_rgn; i++) memblock_set_region_node(&type->regions[i], nid); - memblock_merge_regions(type); + memblock_merge_regions(type, start_rgn, end_rgn); +#endif return 0; } -#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ -static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, - phys_addr_t align, phys_addr_t max_addr, - int nid) +/** + * memblock_alloc_range_nid - allocate boot memory block + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @start: the lower bound of the memory region to allocate (phys address) + * @end: the upper bound of the memory region to allocate (phys address) + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * @exact_nid: control the allocation fall back to other nodes + * + * The allocation is performed from memory region limited by + * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. + * + * If the specified node can not hold the requested memory and @exact_nid + * is false, the allocation falls back to any node in the system. + * + * For systems with memory mirroring, the allocation is attempted first + * from the regions with mirroring enabled and then retried from any + * memory region. + * + * In addition, function using kmemleak_alloc_phys for allocated boot + * memory block, it is never reported as leaks. + * + * Return: + * Physical address of allocated memory block on success, %0 on failure. + */ +phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, + phys_addr_t align, phys_addr_t start, + phys_addr_t end, int nid, + bool exact_nid) { + enum memblock_flags flags = choose_memblock_flags(); phys_addr_t found; - if (WARN_ON(!align)) - align = __alignof__(long long); + /* + * Detect any accidental use of these APIs after slab is ready, as at + * this moment memblock may be deinitialized already and its + * internal data may be destroyed (after execution of memblock_free_all) + */ + if (WARN_ON_ONCE(slab_is_available())) { + void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid); + + return vaddr ? virt_to_phys(vaddr) : 0; + } + + if (!align) { + /* Can't use WARNs this early in boot on powerpc */ + dump_stack(); + align = SMP_CACHE_BYTES; + } - /* align @size to avoid excessive fragmentation on reserved array */ - size = round_up(size, align); +again: + found = memblock_find_in_range_node(size, align, start, end, nid, + flags); + if (found && !__memblock_reserve(found, size, nid, MEMBLOCK_RSRV_KERN)) + goto done; + + if (numa_valid_node(nid) && !exact_nid) { + found = memblock_find_in_range_node(size, align, start, + end, NUMA_NO_NODE, + flags); + if (found && !memblock_reserve_kern(found, size)) + goto done; + } - found = memblock_find_in_range_node(0, max_addr, size, align, nid); - if (found && !memblock_reserve(found, size)) - return found; + if (flags & MEMBLOCK_MIRROR) { + flags &= ~MEMBLOCK_MIRROR; + pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", + &size); + goto again; + } return 0; + +done: + /* + * Skip kmemleak for those places like kasan_init() and + * early_pgtable_alloc() due to high volume. + */ + if (end != MEMBLOCK_ALLOC_NOLEAKTRACE) + /* + * Memblock allocated blocks are never reported as + * leaks. This is because many of these blocks are + * only referred via the physical address which is + * not looked up by kmemleak. + */ + kmemleak_alloc_phys(found, size, 0); + + /* + * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP, + * require memory to be accepted before it can be used by the + * guest. + * + * Accept the memory of the allocated buffer. + */ + accept_memory(found, size); + + return found; } -phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid) +/** + * memblock_phys_alloc_range - allocate a memory block inside specified range + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @start: the lower bound of the memory region to allocate (physical address) + * @end: the upper bound of the memory region to allocate (physical address) + * + * Allocate @size bytes in the between @start and @end. + * + * Return: physical address of the allocated memory block on success, + * %0 on failure. + */ +phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, + phys_addr_t align, + phys_addr_t start, + phys_addr_t end) { - return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid); + memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n", + __func__, (u64)size, (u64)align, &start, &end, + (void *)_RET_IP_); + return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, + false); } -phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) +/** + * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * + * Allocates memory block from the specified NUMA node. If the node + * has no available memory, attempts to allocated from any node in the + * system. + * + * Return: physical address of the allocated memory block on success, + * %0 on failure. + */ +phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) { - return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); + return memblock_alloc_range_nid(size, align, 0, + MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); } -phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) +/** + * memblock_alloc_internal - allocate boot memory block + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @min_addr: the lower bound of the memory region to allocate (phys address) + * @max_addr: the upper bound of the memory region to allocate (phys address) + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * @exact_nid: control the allocation fall back to other nodes + * + * Allocates memory block using memblock_alloc_range_nid() and + * converts the returned physical address to virtual. + * + * The @min_addr limit is dropped if it can not be satisfied and the allocation + * will fall back to memory below @min_addr. Other constraints, such + * as node and mirrored memory will be handled again in + * memblock_alloc_range_nid(). + * + * Return: + * Virtual address of allocated memory block on success, NULL on failure. + */ +static void * __init memblock_alloc_internal( + phys_addr_t size, phys_addr_t align, + phys_addr_t min_addr, phys_addr_t max_addr, + int nid, bool exact_nid) { phys_addr_t alloc; - alloc = __memblock_alloc_base(size, align, max_addr); - if (alloc == 0) - panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", - (unsigned long long) size, (unsigned long long) max_addr); + if (max_addr > memblock.current_limit) + max_addr = memblock.current_limit; - return alloc; + alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, + exact_nid); + + /* retry allocation without lower limit */ + if (!alloc && min_addr) + alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, + exact_nid); + + if (!alloc) + return NULL; + + return phys_to_virt(alloc); } -phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align) +/** + * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node + * without zeroing memory + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @min_addr: the lower bound of the memory region from where the allocation + * is preferred (phys address) + * @max_addr: the upper bound of the memory region from where the allocation + * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to + * allocate only from memory limited by memblock.current_limit value + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * + * Public function, provides additional debug information (including caller + * info), if enabled. Does not zero allocated memory. + * + * Return: + * Virtual address of allocated memory block on success, NULL on failure. + */ +void * __init memblock_alloc_exact_nid_raw( + phys_addr_t size, phys_addr_t align, + phys_addr_t min_addr, phys_addr_t max_addr, + int nid) +{ + memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", + __func__, (u64)size, (u64)align, nid, &min_addr, + &max_addr, (void *)_RET_IP_); + + return memblock_alloc_internal(size, align, min_addr, max_addr, nid, + true); +} + +/** + * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing + * memory and without panicking + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @min_addr: the lower bound of the memory region from where the allocation + * is preferred (phys address) + * @max_addr: the upper bound of the memory region from where the allocation + * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to + * allocate only from memory limited by memblock.current_limit value + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * + * Public function, provides additional debug information (including caller + * info), if enabled. Does not zero allocated memory, does not panic if request + * cannot be satisfied. + * + * Return: + * Virtual address of allocated memory block on success, NULL on failure. + */ +void * __init memblock_alloc_try_nid_raw( + phys_addr_t size, phys_addr_t align, + phys_addr_t min_addr, phys_addr_t max_addr, + int nid) +{ + memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", + __func__, (u64)size, (u64)align, nid, &min_addr, + &max_addr, (void *)_RET_IP_); + + return memblock_alloc_internal(size, align, min_addr, max_addr, nid, + false); +} + +/** + * memblock_alloc_try_nid - allocate boot memory block + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @min_addr: the lower bound of the memory region from where the allocation + * is preferred (phys address) + * @max_addr: the upper bound of the memory region from where the allocation + * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to + * allocate only from memory limited by memblock.current_limit value + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * + * Public function, provides additional debug information (including caller + * info), if enabled. This function zeroes the allocated memory. + * + * Return: + * Virtual address of allocated memory block on success, NULL on failure. + */ +void * __init memblock_alloc_try_nid( + phys_addr_t size, phys_addr_t align, + phys_addr_t min_addr, phys_addr_t max_addr, + int nid) { - return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); + void *ptr; + + memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", + __func__, (u64)size, (u64)align, nid, &min_addr, + &max_addr, (void *)_RET_IP_); + ptr = memblock_alloc_internal(size, align, + min_addr, max_addr, nid, false); + if (ptr) + memset(ptr, 0, size); + + return ptr; } -phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) +/** + * __memblock_alloc_or_panic - Try to allocate memory and panic on failure + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @func: caller func name + * + * This function attempts to allocate memory using memblock_alloc, + * and in case of failure, it calls panic with the formatted message. + * This function should not be used directly, please use the macro memblock_alloc_or_panic. + */ +void *__init __memblock_alloc_or_panic(phys_addr_t size, phys_addr_t align, + const char *func) { - phys_addr_t res = memblock_alloc_nid(size, align, nid); + void *addr = memblock_alloc(size, align); - if (res) - return res; - return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); + if (unlikely(!addr)) + panic("%s: Failed to allocate %pap bytes\n", func, &size); + return addr; } +/** + * memblock_free_late - free pages directly to buddy allocator + * @base: phys starting address of the boot memory block + * @size: size of the boot memory block in bytes + * + * This is only useful when the memblock allocator has already been torn + * down, but we are still initializing the system. Pages are released directly + * to the buddy allocator. + */ +void __init memblock_free_late(phys_addr_t base, phys_addr_t size) +{ + phys_addr_t cursor, end; + + end = base + size - 1; + memblock_dbg("%s: [%pa-%pa] %pS\n", + __func__, &base, &end, (void *)_RET_IP_); + kmemleak_free_part_phys(base, size); + cursor = PFN_UP(base); + end = PFN_DOWN(base + size); + + for (; cursor < end; cursor++) { + memblock_free_pages(pfn_to_page(cursor), cursor, 0); + totalram_pages_inc(); + } +} /* * Remaining API functions */ -phys_addr_t __init memblock_phys_mem_size(void) +phys_addr_t __init_memblock memblock_phys_mem_size(void) { return memblock.memory.total_size; } -phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) +phys_addr_t __init_memblock memblock_reserved_size(void) +{ + return memblock.reserved.total_size; +} + +phys_addr_t __init_memblock memblock_reserved_kern_size(phys_addr_t limit, int nid) { - unsigned long pages = 0; struct memblock_region *r; - unsigned long start_pfn, end_pfn; - - for_each_memblock(memory, r) { - start_pfn = memblock_region_memory_base_pfn(r); - end_pfn = memblock_region_memory_end_pfn(r); - start_pfn = min_t(unsigned long, start_pfn, limit_pfn); - end_pfn = min_t(unsigned long, end_pfn, limit_pfn); - pages += end_pfn - start_pfn; + phys_addr_t total = 0; + + for_each_reserved_mem_region(r) { + phys_addr_t size = r->size; + + if (r->base > limit) + break; + + if (r->base + r->size > limit) + size = limit - r->base; + + if (nid == memblock_get_region_node(r) || !numa_valid_node(nid)) + if (r->flags & MEMBLOCK_RSRV_KERN) + total += size; } - return (phys_addr_t)pages << PAGE_SHIFT; + return total; +} + +/** + * memblock_estimated_nr_free_pages - return estimated number of free pages + * from memblock point of view + * + * During bootup, subsystems might need a rough estimate of the number of free + * pages in the whole system, before precise numbers are available from the + * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers + * obtained from the buddy might be very imprecise during bootup. + * + * Return: + * An estimated number of free pages from memblock point of view. + */ +unsigned long __init memblock_estimated_nr_free_pages(void) +{ + return PHYS_PFN(memblock_phys_mem_size() - + memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE, NUMA_NO_NODE)); } /* lowest address */ @@ -862,18 +1843,17 @@ phys_addr_t __init_memblock memblock_end_of_DRAM(void) return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); } -void __init memblock_enforce_memory_limit(phys_addr_t limit) +static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) { - unsigned long i; - phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX; - - if (!limit) - return; - - /* find out max address */ - for (i = 0; i < memblock.memory.cnt; i++) { - struct memblock_region *r = &memblock.memory.regions[i]; + phys_addr_t max_addr = PHYS_ADDR_MAX; + struct memblock_region *r; + /* + * translate the memory @limit size into the max address within one of + * the memory memblock regions, if the @limit exceeds the total size + * of those regions, max_addr will keep original value PHYS_ADDR_MAX + */ + for_each_mem_region(r) { if (limit <= r->size) { max_addr = r->base + limit; break; @@ -881,9 +1861,76 @@ void __init memblock_enforce_memory_limit(phys_addr_t limit) limit -= r->size; } + return max_addr; +} + +void __init memblock_enforce_memory_limit(phys_addr_t limit) +{ + phys_addr_t max_addr; + + if (!limit) + return; + + max_addr = __find_max_addr(limit); + + /* @limit exceeds the total size of the memory, do nothing */ + if (max_addr == PHYS_ADDR_MAX) + return; + /* truncate both memory and reserved regions */ - __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX); - __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX); + memblock_remove_range(&memblock.memory, max_addr, + PHYS_ADDR_MAX); + memblock_remove_range(&memblock.reserved, max_addr, + PHYS_ADDR_MAX); +} + +void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) +{ + int start_rgn, end_rgn; + int i, ret; + + if (!size) + return; + + if (!memblock_memory->total_size) { + pr_warn("%s: No memory registered yet\n", __func__); + return; + } + + ret = memblock_isolate_range(&memblock.memory, base, size, + &start_rgn, &end_rgn); + if (ret) + return; + + /* remove all the MAP regions */ + for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) + if (!memblock_is_nomap(&memblock.memory.regions[i])) + memblock_remove_region(&memblock.memory, i); + + for (i = start_rgn - 1; i >= 0; i--) + if (!memblock_is_nomap(&memblock.memory.regions[i])) + memblock_remove_region(&memblock.memory, i); + + /* truncate the reserved regions */ + memblock_remove_range(&memblock.reserved, 0, base); + memblock_remove_range(&memblock.reserved, + base + size, PHYS_ADDR_MAX); +} + +void __init memblock_mem_limit_remove_map(phys_addr_t limit) +{ + phys_addr_t max_addr; + + if (!limit) + return; + + max_addr = __find_max_addr(limit); + + /* @limit exceeds the total size of the memory, do nothing */ + if (max_addr == PHYS_ADDR_MAX) + return; + + memblock_cap_memory_range(0, max_addr); } static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) @@ -904,35 +1951,58 @@ static int __init_memblock memblock_search(struct memblock_type *type, phys_addr return -1; } -int __init memblock_is_reserved(phys_addr_t addr) +bool __init_memblock memblock_is_reserved(phys_addr_t addr) { return memblock_search(&memblock.reserved, addr) != -1; } -int __init_memblock memblock_is_memory(phys_addr_t addr) +bool __init_memblock memblock_is_memory(phys_addr_t addr) { return memblock_search(&memblock.memory, addr) != -1; } +bool __init_memblock memblock_is_map_memory(phys_addr_t addr) +{ + int i = memblock_search(&memblock.memory, addr); + + if (i == -1) + return false; + return !memblock_is_nomap(&memblock.memory.regions[i]); +} + +int __init_memblock memblock_search_pfn_nid(unsigned long pfn, + unsigned long *start_pfn, unsigned long *end_pfn) +{ + struct memblock_type *type = &memblock.memory; + int mid = memblock_search(type, PFN_PHYS(pfn)); + + if (mid == -1) + return NUMA_NO_NODE; + + *start_pfn = PFN_DOWN(type->regions[mid].base); + *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); + + return memblock_get_region_node(&type->regions[mid]); +} + /** * memblock_is_region_memory - check if a region is a subset of memory * @base: base of region to check * @size: size of region to check * - * Check if the region [@base, @base+@size) is a subset of a memory block. + * Check if the region [@base, @base + @size) is a subset of a memory block. * - * RETURNS: + * Return: * 0 if false, non-zero if true */ -int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) +bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) { int idx = memblock_search(&memblock.memory, base); phys_addr_t end = base + memblock_cap_size(base, &size); if (idx == -1) - return 0; - return memblock.memory.regions[idx].base <= base && - (memblock.memory.regions[idx].base + + return false; + return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size) >= end; } @@ -941,26 +2011,25 @@ int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size * @base: base of region to check * @size: size of region to check * - * Check if the region [@base, @base+@size) intersects a reserved memory block. + * Check if the region [@base, @base + @size) intersects a reserved + * memory block. * - * RETURNS: - * 0 if false, non-zero if true + * Return: + * True if they intersect, false if not. */ -int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) +bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) { - memblock_cap_size(base, &size); - return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; + return memblock_overlaps_region(&memblock.reserved, base, size); } void __init_memblock memblock_trim_memory(phys_addr_t align) { - int i; phys_addr_t start, end, orig_start, orig_end; - struct memblock_type *mem = &memblock.memory; + struct memblock_region *r; - for (i = 0; i < mem->cnt; i++) { - orig_start = mem->regions[i].base; - orig_end = mem->regions[i].base + mem->regions[i].size; + for_each_mem_region(r) { + orig_start = r->base; + orig_end = r->base + r->size; start = round_up(orig_start, align); end = round_down(orig_end, align); @@ -968,11 +2037,12 @@ void __init_memblock memblock_trim_memory(phys_addr_t align) continue; if (start < end) { - mem->regions[i].base = start; - mem->regions[i].size = end - start; + r->base = start; + r->size = end - start; } else { - memblock_remove_region(mem, i); - i--; + memblock_remove_region(&memblock.memory, + r - memblock.memory.regions); + r--; } } } @@ -982,38 +2052,55 @@ void __init_memblock memblock_set_current_limit(phys_addr_t limit) memblock.current_limit = limit; } -static void __init_memblock memblock_dump(struct memblock_type *type, char *name) +phys_addr_t __init_memblock memblock_get_current_limit(void) { - unsigned long long base, size; - int i; + return memblock.current_limit; +} - pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); +static void __init_memblock memblock_dump(struct memblock_type *type) +{ + phys_addr_t base, end, size; + enum memblock_flags flags; + int idx; + struct memblock_region *rgn; - for (i = 0; i < type->cnt; i++) { - struct memblock_region *rgn = &type->regions[i]; + pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); + + for_each_memblock_type(idx, type, rgn) { char nid_buf[32] = ""; base = rgn->base; size = rgn->size; -#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP - if (memblock_get_region_node(rgn) != MAX_NUMNODES) + end = base + size - 1; + flags = rgn->flags; +#ifdef CONFIG_NUMA + if (numa_valid_node(memblock_get_region_node(rgn))) snprintf(nid_buf, sizeof(nid_buf), " on node %d", memblock_get_region_node(rgn)); #endif - pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", - name, i, base, base + size - 1, size, nid_buf); + pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", + type->name, idx, &base, &end, &size, nid_buf, flags); } } -void __init_memblock __memblock_dump_all(void) +static void __init_memblock __memblock_dump_all(void) { pr_info("MEMBLOCK configuration:\n"); - pr_info(" memory size = %#llx reserved size = %#llx\n", - (unsigned long long)memblock.memory.total_size, - (unsigned long long)memblock.reserved.total_size); + pr_info(" memory size = %pa reserved size = %pa\n", + &memblock.memory.total_size, + &memblock.reserved.total_size); + + memblock_dump(&memblock.memory); + memblock_dump(&memblock.reserved); +#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP + memblock_dump(&physmem); +#endif +} - memblock_dump(&memblock.memory, "memory"); - memblock_dump(&memblock.reserved, "reserved"); +void __init_memblock memblock_dump_all(void) +{ + if (memblock_debug) + __memblock_dump_all(); } void __init memblock_allow_resize(void) @@ -1029,49 +2116,652 @@ static int __init early_memblock(char *p) } early_param("memblock", early_memblock); -#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK) +static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn) +{ + struct page *start_pg, *end_pg; + phys_addr_t pg, pgend; -static int memblock_debug_show(struct seq_file *m, void *private) + /* + * Convert start_pfn/end_pfn to a struct page pointer. + */ + start_pg = pfn_to_page(start_pfn - 1) + 1; + end_pg = pfn_to_page(end_pfn - 1) + 1; + + /* + * Convert to physical addresses, and round start upwards and end + * downwards. + */ + pg = PAGE_ALIGN(__pa(start_pg)); + pgend = PAGE_ALIGN_DOWN(__pa(end_pg)); + + /* + * If there are free pages between these, free the section of the + * memmap array. + */ + if (pg < pgend) + memblock_phys_free(pg, pgend - pg); +} + +/* + * The mem_map array can get very big. Free the unused area of the memory map. + */ +static void __init free_unused_memmap(void) { - struct memblock_type *type = m->private; - struct memblock_region *reg; + unsigned long start, end, prev_end = 0; int i; - for (i = 0; i < type->cnt; i++) { - reg = &type->regions[i]; - seq_printf(m, "%4d: ", i); - if (sizeof(phys_addr_t) == 4) - seq_printf(m, "0x%08lx..0x%08lx\n", - (unsigned long)reg->base, - (unsigned long)(reg->base + reg->size - 1)); + if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) || + IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) + return; + + /* + * This relies on each bank being in address order. + * The banks are sorted previously in bootmem_init(). + */ + for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { +#ifdef CONFIG_SPARSEMEM + /* + * Take care not to free memmap entries that don't exist + * due to SPARSEMEM sections which aren't present. + */ + start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); +#endif + /* + * Align down here since many operations in VM subsystem + * presume that there are no holes in the memory map inside + * a pageblock + */ + start = pageblock_start_pfn(start); + + /* + * If we had a previous bank, and there is a space + * between the current bank and the previous, free it. + */ + if (prev_end && prev_end < start) + free_memmap(prev_end, start); + + /* + * Align up here since many operations in VM subsystem + * presume that there are no holes in the memory map inside + * a pageblock + */ + prev_end = pageblock_align(end); + } + +#ifdef CONFIG_SPARSEMEM + if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) { + prev_end = pageblock_align(end); + free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); + } +#endif +} + +static void __init __free_pages_memory(unsigned long start, unsigned long end) +{ + int order; + + while (start < end) { + /* + * Free the pages in the largest chunks alignment allows. + * + * __ffs() behaviour is undefined for 0. start == 0 is + * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for + * the case. + */ + if (start) + order = min_t(int, MAX_PAGE_ORDER, __ffs(start)); else - seq_printf(m, "0x%016llx..0x%016llx\n", - (unsigned long long)reg->base, - (unsigned long long)(reg->base + reg->size - 1)); + order = MAX_PAGE_ORDER; + while (start + (1UL << order) > end) + order--; + + memblock_free_pages(pfn_to_page(start), start, order); + + start += (1UL << order); } +} + +static unsigned long __init __free_memory_core(phys_addr_t start, + phys_addr_t end) +{ + unsigned long start_pfn = PFN_UP(start); + unsigned long end_pfn = PFN_DOWN(end); + + if (!IS_ENABLED(CONFIG_HIGHMEM) && end_pfn > max_low_pfn) + end_pfn = max_low_pfn; + + if (start_pfn >= end_pfn) + return 0; + + __free_pages_memory(start_pfn, end_pfn); + + return end_pfn - start_pfn; +} + +static void __init memmap_init_reserved_pages(void) +{ + struct memblock_region *region; + phys_addr_t start, end; + int nid; + unsigned long max_reserved; + + /* + * set nid on all reserved pages and also treat struct + * pages for the NOMAP regions as PageReserved + */ +repeat: + max_reserved = memblock.reserved.max; + for_each_mem_region(region) { + nid = memblock_get_region_node(region); + start = region->base; + end = start + region->size; + + if (memblock_is_nomap(region)) + reserve_bootmem_region(start, end, nid); + + memblock_set_node(start, region->size, &memblock.reserved, nid); + } + /* + * 'max' is changed means memblock.reserved has been doubled its + * array, which may result a new reserved region before current + * 'start'. Now we should repeat the procedure to set its node id. + */ + if (max_reserved != memblock.reserved.max) + goto repeat; + + /* + * initialize struct pages for reserved regions that don't have + * the MEMBLOCK_RSRV_NOINIT flag set + */ + for_each_reserved_mem_region(region) { + if (!memblock_is_reserved_noinit(region)) { + nid = memblock_get_region_node(region); + start = region->base; + end = start + region->size; + + if (!numa_valid_node(nid)) + nid = early_pfn_to_nid(PFN_DOWN(start)); + + reserve_bootmem_region(start, end, nid); + } + } +} + +static unsigned long __init free_low_memory_core_early(void) +{ + unsigned long count = 0; + phys_addr_t start, end; + u64 i; + + memblock_clear_hotplug(0, -1); + + memmap_init_reserved_pages(); + + /* + * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id + * because in some case like Node0 doesn't have RAM installed + * low ram will be on Node1 + */ + for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, + NULL) + count += __free_memory_core(start, end); + + return count; +} + +static int reset_managed_pages_done __initdata; + +static void __init reset_node_managed_pages(pg_data_t *pgdat) +{ + struct zone *z; + + for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) + atomic_long_set(&z->managed_pages, 0); +} + +void __init reset_all_zones_managed_pages(void) +{ + struct pglist_data *pgdat; + + if (reset_managed_pages_done) + return; + + for_each_online_pgdat(pgdat) + reset_node_managed_pages(pgdat); + + reset_managed_pages_done = 1; +} + +/** + * memblock_free_all - release free pages to the buddy allocator + */ +void __init memblock_free_all(void) +{ + unsigned long pages; + + free_unused_memmap(); + reset_all_zones_managed_pages(); + + memblock_clear_kho_scratch_only(); + pages = free_low_memory_core_early(); + totalram_pages_add(pages); +} + +/* Keep a table to reserve named memory */ +#define RESERVE_MEM_MAX_ENTRIES 8 +#define RESERVE_MEM_NAME_SIZE 16 +struct reserve_mem_table { + char name[RESERVE_MEM_NAME_SIZE]; + phys_addr_t start; + phys_addr_t size; +}; +static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES]; +static int reserved_mem_count; +static DEFINE_MUTEX(reserve_mem_lock); + +/* Add wildcard region with a lookup name */ +static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size, + const char *name) +{ + struct reserve_mem_table *map; + + map = &reserved_mem_table[reserved_mem_count++]; + map->start = start; + map->size = size; + strscpy(map->name, name); +} + +static struct reserve_mem_table *reserve_mem_find_by_name_nolock(const char *name) +{ + struct reserve_mem_table *map; + int i; + + for (i = 0; i < reserved_mem_count; i++) { + map = &reserved_mem_table[i]; + if (!map->size) + continue; + if (strcmp(name, map->name) == 0) + return map; + } + return NULL; +} + +/** + * reserve_mem_find_by_name - Find reserved memory region with a given name + * @name: The name that is attached to a reserved memory region + * @start: If found, holds the start address + * @size: If found, holds the size of the address. + * + * @start and @size are only updated if @name is found. + * + * Returns: 1 if found or 0 if not found. + */ +int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size) +{ + struct reserve_mem_table *map; + + guard(mutex)(&reserve_mem_lock); + map = reserve_mem_find_by_name_nolock(name); + if (!map) + return 0; + + *start = map->start; + *size = map->size; + return 1; +} +EXPORT_SYMBOL_GPL(reserve_mem_find_by_name); + +/** + * reserve_mem_release_by_name - Release reserved memory region with a given name + * @name: The name that is attatched to a reserved memory region + * + * Forcibly release the pages in the reserved memory region so that those memory + * can be used as free memory. After released the reserved region size becomes 0. + * + * Returns: 1 if released or 0 if not found. + */ +int reserve_mem_release_by_name(const char *name) +{ + char buf[RESERVE_MEM_NAME_SIZE + 12]; + struct reserve_mem_table *map; + void *start, *end; + + guard(mutex)(&reserve_mem_lock); + map = reserve_mem_find_by_name_nolock(name); + if (!map) + return 0; + + start = phys_to_virt(map->start); + end = start + map->size - 1; + snprintf(buf, sizeof(buf), "reserve_mem:%s", name); + free_reserved_area(start, end, 0, buf); + map->size = 0; + + return 1; +} + +#ifdef CONFIG_KEXEC_HANDOVER +#define MEMBLOCK_KHO_FDT "memblock" +#define MEMBLOCK_KHO_NODE_COMPATIBLE "memblock-v1" +#define RESERVE_MEM_KHO_NODE_COMPATIBLE "reserve-mem-v1" + +static int __init reserved_mem_preserve(void) +{ + unsigned int nr_preserved = 0; + int err; + + for (unsigned int i = 0; i < reserved_mem_count; i++, nr_preserved++) { + struct reserve_mem_table *map = &reserved_mem_table[i]; + struct page *page = phys_to_page(map->start); + unsigned int nr_pages = map->size >> PAGE_SHIFT; + + err = kho_preserve_pages(page, nr_pages); + if (err) + goto err_unpreserve; + } + return 0; + +err_unpreserve: + for (unsigned int i = 0; i < nr_preserved; i++) { + struct reserve_mem_table *map = &reserved_mem_table[i]; + struct page *page = phys_to_page(map->start); + unsigned int nr_pages = map->size >> PAGE_SHIFT; + + kho_unpreserve_pages(page, nr_pages); + } + + return err; +} + +static int __init prepare_kho_fdt(void) +{ + struct page *fdt_page; + void *fdt; + int err; + + fdt_page = alloc_page(GFP_KERNEL); + if (!fdt_page) { + err = -ENOMEM; + goto err_report; + } + + fdt = page_to_virt(fdt_page); + err = kho_preserve_pages(fdt_page, 1); + if (err) + goto err_free_fdt; + + err |= fdt_create(fdt, PAGE_SIZE); + err |= fdt_finish_reservemap(fdt); + err |= fdt_begin_node(fdt, ""); + err |= fdt_property_string(fdt, "compatible", MEMBLOCK_KHO_NODE_COMPATIBLE); + + for (unsigned int i = 0; !err && i < reserved_mem_count; i++) { + struct reserve_mem_table *map = &reserved_mem_table[i]; + + err |= fdt_begin_node(fdt, map->name); + err |= fdt_property_string(fdt, "compatible", RESERVE_MEM_KHO_NODE_COMPATIBLE); + err |= fdt_property(fdt, "start", &map->start, sizeof(map->start)); + err |= fdt_property(fdt, "size", &map->size, sizeof(map->size)); + err |= fdt_end_node(fdt); + } + err |= fdt_end_node(fdt); + err |= fdt_finish(fdt); + + if (err) + goto err_unpreserve_fdt; + + err = kho_add_subtree(MEMBLOCK_KHO_FDT, fdt); + if (err) + goto err_unpreserve_fdt; + + err = reserved_mem_preserve(); + if (err) + goto err_remove_subtree; + + return 0; + +err_remove_subtree: + kho_remove_subtree(fdt); +err_unpreserve_fdt: + kho_unpreserve_pages(fdt_page, 1); +err_free_fdt: + put_page(fdt_page); +err_report: + pr_err("failed to prepare memblock FDT for KHO: %d\n", err); + + return err; } -static int memblock_debug_open(struct inode *inode, struct file *file) +static int __init reserve_mem_init(void) +{ + int err; + + if (!kho_is_enabled() || !reserved_mem_count) + return 0; + + err = prepare_kho_fdt(); + if (err) + return err; + return err; +} +late_initcall(reserve_mem_init); + +static void *__init reserve_mem_kho_retrieve_fdt(void) +{ + phys_addr_t fdt_phys; + static void *fdt; + int err; + + if (fdt) + return fdt; + + err = kho_retrieve_subtree(MEMBLOCK_KHO_FDT, &fdt_phys); + if (err) { + if (err != -ENOENT) + pr_warn("failed to retrieve FDT '%s' from KHO: %d\n", + MEMBLOCK_KHO_FDT, err); + return NULL; + } + + fdt = phys_to_virt(fdt_phys); + + err = fdt_node_check_compatible(fdt, 0, MEMBLOCK_KHO_NODE_COMPATIBLE); + if (err) { + pr_warn("FDT '%s' is incompatible with '%s': %d\n", + MEMBLOCK_KHO_FDT, MEMBLOCK_KHO_NODE_COMPATIBLE, err); + fdt = NULL; + } + + return fdt; +} + +static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size, + phys_addr_t align) +{ + int err, len_start, len_size, offset; + const phys_addr_t *p_start, *p_size; + const void *fdt; + + fdt = reserve_mem_kho_retrieve_fdt(); + if (!fdt) + return false; + + offset = fdt_subnode_offset(fdt, 0, name); + if (offset < 0) { + pr_warn("FDT '%s' has no child '%s': %d\n", + MEMBLOCK_KHO_FDT, name, offset); + return false; + } + err = fdt_node_check_compatible(fdt, offset, RESERVE_MEM_KHO_NODE_COMPATIBLE); + if (err) { + pr_warn("Node '%s' is incompatible with '%s': %d\n", + name, RESERVE_MEM_KHO_NODE_COMPATIBLE, err); + return false; + } + + p_start = fdt_getprop(fdt, offset, "start", &len_start); + p_size = fdt_getprop(fdt, offset, "size", &len_size); + if (!p_start || len_start != sizeof(*p_start) || !p_size || + len_size != sizeof(*p_size)) { + return false; + } + + if (*p_start & (align - 1)) { + pr_warn("KHO reserve-mem '%s' has wrong alignment (0x%lx, 0x%lx)\n", + name, (long)align, (long)*p_start); + return false; + } + + if (*p_size != size) { + pr_warn("KHO reserve-mem '%s' has wrong size (0x%lx != 0x%lx)\n", + name, (long)*p_size, (long)size); + return false; + } + + reserved_mem_add(*p_start, size, name); + pr_info("Revived memory reservation '%s' from KHO\n", name); + + return true; +} +#else +static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size, + phys_addr_t align) { - return single_open(file, memblock_debug_show, inode->i_private); + return false; } +#endif /* CONFIG_KEXEC_HANDOVER */ + +/* + * Parse reserve_mem=nn:align:name + */ +static int __init reserve_mem(char *p) +{ + phys_addr_t start, size, align, tmp; + char *name; + char *oldp; + int len; + + if (!p) + return -EINVAL; + + /* Check if there's room for more reserved memory */ + if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES) + return -EBUSY; + + oldp = p; + size = memparse(p, &p); + if (!size || p == oldp) + return -EINVAL; + + if (*p != ':') + return -EINVAL; + + align = memparse(p+1, &p); + if (*p != ':') + return -EINVAL; + + /* + * memblock_phys_alloc() doesn't like a zero size align, + * but it is OK for this command to have it. + */ + if (align < SMP_CACHE_BYTES) + align = SMP_CACHE_BYTES; + + name = p + 1; + len = strlen(name); + + /* name needs to have length but not too big */ + if (!len || len >= RESERVE_MEM_NAME_SIZE) + return -EINVAL; + + /* Make sure that name has text */ + for (p = name; *p; p++) { + if (!isspace(*p)) + break; + } + if (!*p) + return -EINVAL; + + /* Make sure the name is not already used */ + if (reserve_mem_find_by_name(name, &start, &tmp)) + return -EBUSY; + + /* Pick previous allocations up from KHO if available */ + if (reserve_mem_kho_revive(name, size, align)) + return 1; + + /* TODO: Allocation must be outside of scratch region */ + start = memblock_phys_alloc(size, align); + if (!start) + return -ENOMEM; -static const struct file_operations memblock_debug_fops = { - .open = memblock_debug_open, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, + reserved_mem_add(start, size, name); + + return 1; +} +__setup("reserve_mem=", reserve_mem); + +#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) +static const char * const flagname[] = { + [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG", + [ilog2(MEMBLOCK_MIRROR)] = "MIRROR", + [ilog2(MEMBLOCK_NOMAP)] = "NOMAP", + [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG", + [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT", + [ilog2(MEMBLOCK_RSRV_KERN)] = "RSV_KERN", + [ilog2(MEMBLOCK_KHO_SCRATCH)] = "KHO_SCRATCH", }; +static int memblock_debug_show(struct seq_file *m, void *private) +{ + struct memblock_type *type = m->private; + struct memblock_region *reg; + int i, j, nid; + unsigned int count = ARRAY_SIZE(flagname); + phys_addr_t end; + + for (i = 0; i < type->cnt; i++) { + reg = &type->regions[i]; + end = reg->base + reg->size - 1; + nid = memblock_get_region_node(reg); + + seq_printf(m, "%4d: ", i); + seq_printf(m, "%pa..%pa ", ®->base, &end); + if (numa_valid_node(nid)) + seq_printf(m, "%4d ", nid); + else + seq_printf(m, "%4c ", 'x'); + if (reg->flags) { + for (j = 0; j < count; j++) { + if (reg->flags & (1U << j)) { + seq_printf(m, "%s\n", flagname[j]); + break; + } + } + if (j == count) + seq_printf(m, "%s\n", "UNKNOWN"); + } else { + seq_printf(m, "%s\n", "NONE"); + } + } + return 0; +} +DEFINE_SHOW_ATTRIBUTE(memblock_debug); + static int __init memblock_init_debugfs(void) { struct dentry *root = debugfs_create_dir("memblock", NULL); - if (!root) - return -ENXIO; - debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops); - debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops); + + debugfs_create_file("memory", 0444, root, + &memblock.memory, &memblock_debug_fops); + debugfs_create_file("reserved", 0444, root, + &memblock.reserved, &memblock_debug_fops); +#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP + debugfs_create_file("physmem", 0444, root, &physmem, + &memblock_debug_fops); +#endif return 0; } |
