summaryrefslogtreecommitdiff
path: root/mm/memblock.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memblock.c')
-rw-r--r--mm/memblock.c2340
1 files changed, 2015 insertions, 325 deletions
diff --git a/mm/memblock.c b/mm/memblock.c
index a847bfe6f3ba..905d06b16348 100644
--- a/mm/memblock.c
+++ b/mm/memblock.c
@@ -1,13 +1,9 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Procedures for maintaining information about logical memory blocks.
*
* Peter Bergner, IBM Corp. June 2001.
* Copyright (C) 2001 Peter Bergner.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
@@ -17,100 +13,268 @@
#include <linux/poison.h>
#include <linux/pfn.h>
#include <linux/debugfs.h>
+#include <linux/kmemleak.h>
#include <linux/seq_file.h>
#include <linux/memblock.h>
+#include <linux/mutex.h>
+
+#ifdef CONFIG_KEXEC_HANDOVER
+#include <linux/libfdt.h>
+#include <linux/kexec_handover.h>
+#endif /* CONFIG_KEXEC_HANDOVER */
+
+#include <asm/sections.h>
+#include <linux/io.h>
+
+#include "internal.h"
+
+#define INIT_MEMBLOCK_REGIONS 128
+#define INIT_PHYSMEM_REGIONS 4
+
+#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
+# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
+#endif
+
+#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
+#define INIT_MEMBLOCK_MEMORY_REGIONS INIT_MEMBLOCK_REGIONS
+#endif
+
+/**
+ * DOC: memblock overview
+ *
+ * Memblock is a method of managing memory regions during the early
+ * boot period when the usual kernel memory allocators are not up and
+ * running.
+ *
+ * Memblock views the system memory as collections of contiguous
+ * regions. There are several types of these collections:
+ *
+ * * ``memory`` - describes the physical memory available to the
+ * kernel; this may differ from the actual physical memory installed
+ * in the system, for instance when the memory is restricted with
+ * ``mem=`` command line parameter
+ * * ``reserved`` - describes the regions that were allocated
+ * * ``physmem`` - describes the actual physical memory available during
+ * boot regardless of the possible restrictions and memory hot(un)plug;
+ * the ``physmem`` type is only available on some architectures.
+ *
+ * Each region is represented by struct memblock_region that
+ * defines the region extents, its attributes and NUMA node id on NUMA
+ * systems. Every memory type is described by the struct memblock_type
+ * which contains an array of memory regions along with
+ * the allocator metadata. The "memory" and "reserved" types are nicely
+ * wrapped with struct memblock. This structure is statically
+ * initialized at build time. The region arrays are initially sized to
+ * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
+ * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
+ * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
+ * The memblock_allow_resize() enables automatic resizing of the region
+ * arrays during addition of new regions. This feature should be used
+ * with care so that memory allocated for the region array will not
+ * overlap with areas that should be reserved, for example initrd.
+ *
+ * The early architecture setup should tell memblock what the physical
+ * memory layout is by using memblock_add() or memblock_add_node()
+ * functions. The first function does not assign the region to a NUMA
+ * node and it is appropriate for UMA systems. Yet, it is possible to
+ * use it on NUMA systems as well and assign the region to a NUMA node
+ * later in the setup process using memblock_set_node(). The
+ * memblock_add_node() performs such an assignment directly.
+ *
+ * Once memblock is setup the memory can be allocated using one of the
+ * API variants:
+ *
+ * * memblock_phys_alloc*() - these functions return the **physical**
+ * address of the allocated memory
+ * * memblock_alloc*() - these functions return the **virtual** address
+ * of the allocated memory.
+ *
+ * Note, that both API variants use implicit assumptions about allowed
+ * memory ranges and the fallback methods. Consult the documentation
+ * of memblock_alloc_internal() and memblock_alloc_range_nid()
+ * functions for more elaborate description.
+ *
+ * As the system boot progresses, the architecture specific mem_init()
+ * function frees all the memory to the buddy page allocator.
+ *
+ * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
+ * memblock data structures (except "physmem") will be discarded after the
+ * system initialization completes.
+ */
-static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
-static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
+#ifndef CONFIG_NUMA
+struct pglist_data __refdata contig_page_data;
+EXPORT_SYMBOL(contig_page_data);
+#endif
+
+unsigned long max_low_pfn;
+unsigned long min_low_pfn;
+unsigned long max_pfn;
+unsigned long long max_possible_pfn;
+
+#ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
+/* When set to true, only allocate from MEMBLOCK_KHO_SCRATCH ranges */
+static bool kho_scratch_only;
+#else
+#define kho_scratch_only false
+#endif
+
+static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
+static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
+#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
+static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
+#endif
struct memblock memblock __initdata_memblock = {
.memory.regions = memblock_memory_init_regions,
- .memory.cnt = 1, /* empty dummy entry */
- .memory.max = INIT_MEMBLOCK_REGIONS,
+ .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
+ .memory.name = "memory",
.reserved.regions = memblock_reserved_init_regions,
- .reserved.cnt = 1, /* empty dummy entry */
- .reserved.max = INIT_MEMBLOCK_REGIONS,
+ .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
+ .reserved.name = "reserved",
+ .bottom_up = false,
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
};
-int memblock_debug __initdata_memblock;
+#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
+struct memblock_type physmem = {
+ .regions = memblock_physmem_init_regions,
+ .max = INIT_PHYSMEM_REGIONS,
+ .name = "physmem",
+};
+#endif
+
+/*
+ * keep a pointer to &memblock.memory in the text section to use it in
+ * __next_mem_range() and its helpers.
+ * For architectures that do not keep memblock data after init, this
+ * pointer will be reset to NULL at memblock_discard()
+ */
+static __refdata struct memblock_type *memblock_memory = &memblock.memory;
+
+#define for_each_memblock_type(i, memblock_type, rgn) \
+ for (i = 0, rgn = &memblock_type->regions[0]; \
+ i < memblock_type->cnt; \
+ i++, rgn = &memblock_type->regions[i])
+
+#define memblock_dbg(fmt, ...) \
+ do { \
+ if (memblock_debug) \
+ pr_info(fmt, ##__VA_ARGS__); \
+ } while (0)
+
+static int memblock_debug __initdata_memblock;
+static bool system_has_some_mirror __initdata_memblock;
static int memblock_can_resize __initdata_memblock;
-static int memblock_memory_in_slab __initdata_memblock = 0;
-static int memblock_reserved_in_slab __initdata_memblock = 0;
+static int memblock_memory_in_slab __initdata_memblock;
+static int memblock_reserved_in_slab __initdata_memblock;
-/* inline so we don't get a warning when pr_debug is compiled out */
-static __init_memblock const char *
-memblock_type_name(struct memblock_type *type)
+bool __init_memblock memblock_has_mirror(void)
{
- if (type == &memblock.memory)
- return "memory";
- else if (type == &memblock.reserved)
- return "reserved";
- else
- return "unknown";
+ return system_has_some_mirror;
+}
+
+static enum memblock_flags __init_memblock choose_memblock_flags(void)
+{
+ /* skip non-scratch memory for kho early boot allocations */
+ if (kho_scratch_only)
+ return MEMBLOCK_KHO_SCRATCH;
+
+ return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
}
/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
{
- return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
+ return *size = min(*size, PHYS_ADDR_MAX - base);
}
/*
* Address comparison utilities
*/
-static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
- phys_addr_t base2, phys_addr_t size2)
+unsigned long __init_memblock
+memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
+ phys_addr_t size2)
{
return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
}
-static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
+bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
phys_addr_t base, phys_addr_t size)
{
unsigned long i;
- for (i = 0; i < type->cnt; i++) {
- phys_addr_t rgnbase = type->regions[i].base;
- phys_addr_t rgnsize = type->regions[i].size;
- if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
- break;
- }
+ memblock_cap_size(base, &size);
- return (i < type->cnt) ? i : -1;
+ for (i = 0; i < type->cnt; i++)
+ if (memblock_addrs_overlap(base, size, type->regions[i].base,
+ type->regions[i].size))
+ return true;
+ return false;
}
/**
- * memblock_find_in_range_node - find free area in given range and node
+ * __memblock_find_range_bottom_up - find free area utility in bottom-up
* @start: start of candidate range
- * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
+ * %MEMBLOCK_ALLOC_ACCESSIBLE
* @size: size of free area to find
* @align: alignment of free area to find
- * @nid: nid of the free area to find, %MAX_NUMNODES for any node
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ * @flags: pick from blocks based on memory attributes
*
- * Find @size free area aligned to @align in the specified range and node.
+ * Utility called from memblock_find_in_range_node(), find free area bottom-up.
*
- * RETURNS:
- * Found address on success, %0 on failure.
+ * Return:
+ * Found address on success, 0 on failure.
*/
-phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
- phys_addr_t end, phys_addr_t size,
- phys_addr_t align, int nid)
+static phys_addr_t __init_memblock
+__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
+ phys_addr_t size, phys_addr_t align, int nid,
+ enum memblock_flags flags)
{
phys_addr_t this_start, this_end, cand;
u64 i;
- /* pump up @end */
- if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
- end = memblock.current_limit;
+ for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
+ this_start = clamp(this_start, start, end);
+ this_end = clamp(this_end, start, end);
- /* avoid allocating the first page */
- start = max_t(phys_addr_t, start, PAGE_SIZE);
- end = max(start, end);
+ cand = round_up(this_start, align);
+ if (cand < this_end && this_end - cand >= size)
+ return cand;
+ }
+
+ return 0;
+}
- for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
+/**
+ * __memblock_find_range_top_down - find free area utility, in top-down
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
+ * %MEMBLOCK_ALLOC_ACCESSIBLE
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ * @flags: pick from blocks based on memory attributes
+ *
+ * Utility called from memblock_find_in_range_node(), find free area top-down.
+ *
+ * Return:
+ * Found address on success, 0 on failure.
+ */
+static phys_addr_t __init_memblock
+__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
+ phys_addr_t size, phys_addr_t align, int nid,
+ enum memblock_flags flags)
+{
+ phys_addr_t this_start, this_end, cand;
+ u64 i;
+
+ for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
+ NULL) {
this_start = clamp(this_start, start, end);
this_end = clamp(this_end, start, end);
@@ -121,27 +285,79 @@ phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
if (cand >= this_start)
return cand;
}
+
return 0;
}
/**
+ * memblock_find_in_range_node - find free area in given range and node
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
+ * %MEMBLOCK_ALLOC_ACCESSIBLE
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ * @flags: pick from blocks based on memory attributes
+ *
+ * Find @size free area aligned to @align in the specified range and node.
+ *
+ * Return:
+ * Found address on success, 0 on failure.
+ */
+static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
+ phys_addr_t align, phys_addr_t start,
+ phys_addr_t end, int nid,
+ enum memblock_flags flags)
+{
+ /* pump up @end */
+ if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
+ end == MEMBLOCK_ALLOC_NOLEAKTRACE)
+ end = memblock.current_limit;
+
+ /* avoid allocating the first page */
+ start = max_t(phys_addr_t, start, PAGE_SIZE);
+ end = max(start, end);
+
+ if (memblock_bottom_up())
+ return __memblock_find_range_bottom_up(start, end, size, align,
+ nid, flags);
+ else
+ return __memblock_find_range_top_down(start, end, size, align,
+ nid, flags);
+}
+
+/**
* memblock_find_in_range - find free area in given range
* @start: start of candidate range
- * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
+ * %MEMBLOCK_ALLOC_ACCESSIBLE
* @size: size of free area to find
* @align: alignment of free area to find
*
* Find @size free area aligned to @align in the specified range.
*
- * RETURNS:
- * Found address on success, %0 on failure.
+ * Return:
+ * Found address on success, 0 on failure.
*/
-phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
+static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
phys_addr_t end, phys_addr_t size,
phys_addr_t align)
{
- return memblock_find_in_range_node(start, end, size, align,
- MAX_NUMNODES);
+ phys_addr_t ret;
+ enum memblock_flags flags = choose_memblock_flags();
+
+again:
+ ret = memblock_find_in_range_node(size, align, start, end,
+ NUMA_NO_NODE, flags);
+
+ if (!ret && (flags & MEMBLOCK_MIRROR)) {
+ pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
+ &size);
+ flags &= ~MEMBLOCK_MIRROR;
+ goto again;
+ }
+
+ return ret;
}
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
@@ -154,24 +370,44 @@ static void __init_memblock memblock_remove_region(struct memblock_type *type, u
/* Special case for empty arrays */
if (type->cnt == 0) {
WARN_ON(type->total_size != 0);
- type->cnt = 1;
type->regions[0].base = 0;
type->regions[0].size = 0;
+ type->regions[0].flags = 0;
memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
}
}
-phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
- phys_addr_t *addr)
+#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
+/**
+ * memblock_discard - discard memory and reserved arrays if they were allocated
+ */
+void __init memblock_discard(void)
{
- if (memblock.reserved.regions == memblock_reserved_init_regions)
- return 0;
+ phys_addr_t addr, size;
+
+ if (memblock.reserved.regions != memblock_reserved_init_regions) {
+ addr = __pa(memblock.reserved.regions);
+ size = PAGE_ALIGN(sizeof(struct memblock_region) *
+ memblock.reserved.max);
+ if (memblock_reserved_in_slab)
+ kfree(memblock.reserved.regions);
+ else
+ memblock_free_late(addr, size);
+ }
- *addr = __pa(memblock.reserved.regions);
+ if (memblock.memory.regions != memblock_memory_init_regions) {
+ addr = __pa(memblock.memory.regions);
+ size = PAGE_ALIGN(sizeof(struct memblock_region) *
+ memblock.memory.max);
+ if (memblock_memory_in_slab)
+ kfree(memblock.memory.regions);
+ else
+ memblock_free_late(addr, size);
+ }
- return PAGE_ALIGN(sizeof(struct memblock_region) *
- memblock.reserved.max);
+ memblock_memory = NULL;
}
+#endif
/**
* memblock_double_array - double the size of the memblock regions array
@@ -181,11 +417,11 @@ phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
*
* Double the size of the @type regions array. If memblock is being used to
* allocate memory for a new reserved regions array and there is a previously
- * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
+ * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
* waiting to be reserved, ensure the memory used by the new array does
* not overlap.
*
- * RETURNS:
+ * Return:
* 0 on success, -1 on failure.
*/
static int __init_memblock memblock_double_array(struct memblock_type *type,
@@ -194,7 +430,7 @@ static int __init_memblock memblock_double_array(struct memblock_type *type,
{
struct memblock_region *new_array, *old_array;
phys_addr_t old_alloc_size, new_alloc_size;
- phys_addr_t old_size, new_size, addr;
+ phys_addr_t old_size, new_size, addr, new_end;
int use_slab = slab_is_available();
int *in_slab;
@@ -202,7 +438,7 @@ static int __init_memblock memblock_double_array(struct memblock_type *type,
* of memory that aren't suitable for allocation
*/
if (!memblock_can_resize)
- return -1;
+ panic("memblock: cannot resize %s array\n", type->name);
/* Calculate new doubled size */
old_size = type->max * sizeof(struct memblock_region);
@@ -220,17 +456,7 @@ static int __init_memblock memblock_double_array(struct memblock_type *type,
else
in_slab = &memblock_reserved_in_slab;
- /* Try to find some space for it.
- *
- * WARNING: We assume that either slab_is_available() and we use it or
- * we use MEMBLOCK for allocations. That means that this is unsafe to
- * use when bootmem is currently active (unless bootmem itself is
- * implemented on top of MEMBLOCK which isn't the case yet)
- *
- * This should however not be an issue for now, as we currently only
- * call into MEMBLOCK while it's still active, or much later when slab
- * is active for memory hotplug operations
- */
+ /* Try to find some space for it */
if (use_slab) {
new_array = kmalloc(new_size, GFP_KERNEL);
addr = new_array ? __pa(new_array) : 0;
@@ -247,17 +473,24 @@ static int __init_memblock memblock_double_array(struct memblock_type *type,
min(new_area_start, memblock.current_limit),
new_alloc_size, PAGE_SIZE);
- new_array = addr ? __va(addr) : NULL;
+ if (addr) {
+ /* The memory may not have been accepted, yet. */
+ accept_memory(addr, new_alloc_size);
+
+ new_array = __va(addr);
+ } else {
+ new_array = NULL;
+ }
}
if (!addr) {
pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
- memblock_type_name(type), type->max, type->max * 2);
+ type->name, type->max, type->max * 2);
return -1;
}
- memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
- memblock_type_name(type), type->max * 2, (u64)addr,
- (u64)addr + new_size - 1);
+ new_end = addr + new_size - 1;
+ memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
+ type->name, type->max * 2, &addr, &new_end);
/*
* Found space, we now need to move the array over before we add the
@@ -275,14 +508,14 @@ static int __init_memblock memblock_double_array(struct memblock_type *type,
kfree(old_array);
else if (old_array != memblock_memory_init_regions &&
old_array != memblock_reserved_init_regions)
- memblock_free(__pa(old_array), old_alloc_size);
+ memblock_free(old_array, old_alloc_size);
/*
* Reserve the new array if that comes from the memblock. Otherwise, we
* needn't do it
*/
if (!use_slab)
- BUG_ON(memblock_reserve(addr, new_alloc_size));
+ BUG_ON(memblock_reserve_kern(addr, new_alloc_size));
/* Update slab flag */
*in_slab = use_slab;
@@ -293,21 +526,26 @@ static int __init_memblock memblock_double_array(struct memblock_type *type,
/**
* memblock_merge_regions - merge neighboring compatible regions
* @type: memblock type to scan
- *
- * Scan @type and merge neighboring compatible regions.
+ * @start_rgn: start scanning from (@start_rgn - 1)
+ * @end_rgn: end scanning at (@end_rgn - 1)
+ * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
*/
-static void __init_memblock memblock_merge_regions(struct memblock_type *type)
+static void __init_memblock memblock_merge_regions(struct memblock_type *type,
+ unsigned long start_rgn,
+ unsigned long end_rgn)
{
int i = 0;
-
- /* cnt never goes below 1 */
- while (i < type->cnt - 1) {
+ if (start_rgn)
+ i = start_rgn - 1;
+ end_rgn = min(end_rgn, type->cnt - 1);
+ while (i < end_rgn) {
struct memblock_region *this = &type->regions[i];
struct memblock_region *next = &type->regions[i + 1];
if (this->base + this->size != next->base ||
memblock_get_region_node(this) !=
- memblock_get_region_node(next)) {
+ memblock_get_region_node(next) ||
+ this->flags != next->flags) {
BUG_ON(this->base + this->size > next->base);
i++;
continue;
@@ -317,6 +555,7 @@ static void __init_memblock memblock_merge_regions(struct memblock_type *type)
/* move forward from next + 1, index of which is i + 2 */
memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
type->cnt--;
+ end_rgn--;
}
}
@@ -327,13 +566,16 @@ static void __init_memblock memblock_merge_regions(struct memblock_type *type)
* @base: base address of the new region
* @size: size of the new region
* @nid: node id of the new region
+ * @flags: flags of the new region
*
- * Insert new memblock region [@base,@base+@size) into @type at @idx.
- * @type must already have extra room to accomodate the new region.
+ * Insert new memblock region [@base, @base + @size) into @type at @idx.
+ * @type must already have extra room to accommodate the new region.
*/
static void __init_memblock memblock_insert_region(struct memblock_type *type,
int idx, phys_addr_t base,
- phys_addr_t size, int nid)
+ phys_addr_t size,
+ int nid,
+ enum memblock_flags flags)
{
struct memblock_region *rgn = &type->regions[idx];
@@ -341,57 +583,73 @@ static void __init_memblock memblock_insert_region(struct memblock_type *type,
memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
rgn->base = base;
rgn->size = size;
+ rgn->flags = flags;
memblock_set_region_node(rgn, nid);
type->cnt++;
type->total_size += size;
}
/**
- * memblock_add_region - add new memblock region
+ * memblock_add_range - add new memblock region
* @type: memblock type to add new region into
* @base: base address of the new region
* @size: size of the new region
* @nid: nid of the new region
+ * @flags: flags of the new region
*
- * Add new memblock region [@base,@base+@size) into @type. The new region
+ * Add new memblock region [@base, @base + @size) into @type. The new region
* is allowed to overlap with existing ones - overlaps don't affect already
* existing regions. @type is guaranteed to be minimal (all neighbouring
* compatible regions are merged) after the addition.
*
- * RETURNS:
+ * Return:
* 0 on success, -errno on failure.
*/
-static int __init_memblock memblock_add_region(struct memblock_type *type,
- phys_addr_t base, phys_addr_t size, int nid)
+static int __init_memblock memblock_add_range(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size,
+ int nid, enum memblock_flags flags)
{
bool insert = false;
phys_addr_t obase = base;
phys_addr_t end = base + memblock_cap_size(base, &size);
- int i, nr_new;
+ int idx, nr_new, start_rgn = -1, end_rgn;
+ struct memblock_region *rgn;
if (!size)
return 0;
/* special case for empty array */
if (type->regions[0].size == 0) {
- WARN_ON(type->cnt != 1 || type->total_size);
+ WARN_ON(type->cnt != 0 || type->total_size);
type->regions[0].base = base;
type->regions[0].size = size;
+ type->regions[0].flags = flags;
memblock_set_region_node(&type->regions[0], nid);
type->total_size = size;
+ type->cnt = 1;
return 0;
}
+
+ /*
+ * The worst case is when new range overlaps all existing regions,
+ * then we'll need type->cnt + 1 empty regions in @type. So if
+ * type->cnt * 2 + 1 is less than or equal to type->max, we know
+ * that there is enough empty regions in @type, and we can insert
+ * regions directly.
+ */
+ if (type->cnt * 2 + 1 <= type->max)
+ insert = true;
+
repeat:
/*
* The following is executed twice. Once with %false @insert and
* then with %true. The first counts the number of regions needed
- * to accomodate the new area. The second actually inserts them.
+ * to accommodate the new area. The second actually inserts them.
*/
base = obase;
nr_new = 0;
- for (i = 0; i < type->cnt; i++) {
- struct memblock_region *rgn = &type->regions[i];
+ for_each_memblock_type(idx, type, rgn) {
phys_addr_t rbase = rgn->base;
phys_addr_t rend = rbase + rgn->size;
@@ -404,10 +662,19 @@ repeat:
* area, insert that portion.
*/
if (rbase > base) {
+#ifdef CONFIG_NUMA
+ WARN_ON(nid != memblock_get_region_node(rgn));
+#endif
+ WARN_ON(flags != MEMBLOCK_NONE && flags != rgn->flags);
nr_new++;
- if (insert)
- memblock_insert_region(type, i++, base,
- rbase - base, nid);
+ if (insert) {
+ if (start_rgn == -1)
+ start_rgn = idx;
+ end_rgn = idx + 1;
+ memblock_insert_region(type, idx++, base,
+ rbase - base, nid,
+ flags);
+ }
}
/* area below @rend is dealt with, forget about it */
base = min(rend, end);
@@ -416,10 +683,18 @@ repeat:
/* insert the remaining portion */
if (base < end) {
nr_new++;
- if (insert)
- memblock_insert_region(type, i, base, end - base, nid);
+ if (insert) {
+ if (start_rgn == -1)
+ start_rgn = idx;
+ end_rgn = idx + 1;
+ memblock_insert_region(type, idx, base, end - base,
+ nid, flags);
+ }
}
+ if (!nr_new)
+ return 0;
+
/*
* If this was the first round, resize array and repeat for actual
* insertions; otherwise, merge and return.
@@ -431,23 +706,91 @@ repeat:
insert = true;
goto repeat;
} else {
- memblock_merge_regions(type);
+ memblock_merge_regions(type, start_rgn, end_rgn);
return 0;
}
}
+/**
+ * memblock_add_node - add new memblock region within a NUMA node
+ * @base: base address of the new region
+ * @size: size of the new region
+ * @nid: nid of the new region
+ * @flags: flags of the new region
+ *
+ * Add new memblock region [@base, @base + @size) to the "memory"
+ * type. See memblock_add_range() description for mode details
+ *
+ * Return:
+ * 0 on success, -errno on failure.
+ */
int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
- int nid)
+ int nid, enum memblock_flags flags)
{
- return memblock_add_region(&memblock.memory, base, size, nid);
+ phys_addr_t end = base + size - 1;
+
+ memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
+ &base, &end, nid, flags, (void *)_RET_IP_);
+
+ return memblock_add_range(&memblock.memory, base, size, nid, flags);
}
+/**
+ * memblock_add - add new memblock region
+ * @base: base address of the new region
+ * @size: size of the new region
+ *
+ * Add new memblock region [@base, @base + @size) to the "memory"
+ * type. See memblock_add_range() description for mode details
+ *
+ * Return:
+ * 0 on success, -errno on failure.
+ */
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
{
- return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
+ phys_addr_t end = base + size - 1;
+
+ memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
+ &base, &end, (void *)_RET_IP_);
+
+ return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
}
/**
+ * memblock_validate_numa_coverage - check if amount of memory with
+ * no node ID assigned is less than a threshold
+ * @threshold_bytes: maximal memory size that can have unassigned node
+ * ID (in bytes).
+ *
+ * A buggy firmware may report memory that does not belong to any node.
+ * Check if amount of such memory is below @threshold_bytes.
+ *
+ * Return: true on success, false on failure.
+ */
+bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
+{
+ unsigned long nr_pages = 0;
+ unsigned long start_pfn, end_pfn, mem_size_mb;
+ int nid, i;
+
+ /* calculate lose page */
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
+ if (!numa_valid_node(nid))
+ nr_pages += end_pfn - start_pfn;
+ }
+
+ if ((nr_pages << PAGE_SHIFT) > threshold_bytes) {
+ mem_size_mb = memblock_phys_mem_size() / SZ_1M;
+ pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
+ (nr_pages << PAGE_SHIFT) / SZ_1M, mem_size_mb);
+ return false;
+ }
+
+ return true;
+}
+
+
+/**
* memblock_isolate_range - isolate given range into disjoint memblocks
* @type: memblock type to isolate range for
* @base: base of range to isolate
@@ -456,11 +799,12 @@ int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
* @end_rgn: out parameter for the end of isolated region
*
* Walk @type and ensure that regions don't cross the boundaries defined by
- * [@base,@base+@size). Crossing regions are split at the boundaries,
+ * [@base, @base + @size). Crossing regions are split at the boundaries,
* which may create at most two more regions. The index of the first
- * region inside the range is returned in *@start_rgn and end in *@end_rgn.
+ * region inside the range is returned in *@start_rgn and the index of the
+ * first region after the range is returned in *@end_rgn.
*
- * RETURNS:
+ * Return:
* 0 on success, -errno on failure.
*/
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
@@ -468,7 +812,8 @@ static int __init_memblock memblock_isolate_range(struct memblock_type *type,
int *start_rgn, int *end_rgn)
{
phys_addr_t end = base + memblock_cap_size(base, &size);
- int i;
+ int idx;
+ struct memblock_region *rgn;
*start_rgn = *end_rgn = 0;
@@ -480,8 +825,7 @@ static int __init_memblock memblock_isolate_range(struct memblock_type *type,
if (memblock_double_array(type, base, size) < 0)
return -ENOMEM;
- for (i = 0; i < type->cnt; i++) {
- struct memblock_region *rgn = &type->regions[i];
+ for_each_memblock_type(idx, type, rgn) {
phys_addr_t rbase = rgn->base;
phys_addr_t rend = rbase + rgn->size;
@@ -498,8 +842,9 @@ static int __init_memblock memblock_isolate_range(struct memblock_type *type,
rgn->base = base;
rgn->size -= base - rbase;
type->total_size -= base - rbase;
- memblock_insert_region(type, i, rbase, base - rbase,
- memblock_get_region_node(rgn));
+ memblock_insert_region(type, idx, rbase, base - rbase,
+ memblock_get_region_node(rgn),
+ rgn->flags);
} else if (rend > end) {
/*
* @rgn intersects from above. Split and redo the
@@ -508,21 +853,22 @@ static int __init_memblock memblock_isolate_range(struct memblock_type *type,
rgn->base = end;
rgn->size -= end - rbase;
type->total_size -= end - rbase;
- memblock_insert_region(type, i--, rbase, end - rbase,
- memblock_get_region_node(rgn));
+ memblock_insert_region(type, idx--, rbase, end - rbase,
+ memblock_get_region_node(rgn),
+ rgn->flags);
} else {
/* @rgn is fully contained, record it */
if (!*end_rgn)
- *start_rgn = i;
- *end_rgn = i + 1;
+ *start_rgn = idx;
+ *end_rgn = idx + 1;
}
}
return 0;
}
-static int __init_memblock __memblock_remove(struct memblock_type *type,
- phys_addr_t base, phys_addr_t size)
+static int __init_memblock memblock_remove_range(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size)
{
int start_rgn, end_rgn;
int i, ret;
@@ -538,43 +884,322 @@ static int __init_memblock __memblock_remove(struct memblock_type *type,
int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
{
- return __memblock_remove(&memblock.memory, base, size);
+ phys_addr_t end = base + size - 1;
+
+ memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
+ &base, &end, (void *)_RET_IP_);
+
+ return memblock_remove_range(&memblock.memory, base, size);
}
-int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
+/**
+ * memblock_free - free boot memory allocation
+ * @ptr: starting address of the boot memory allocation
+ * @size: size of the boot memory block in bytes
+ *
+ * Free boot memory block previously allocated by memblock_alloc_xx() API.
+ * The freeing memory will not be released to the buddy allocator.
+ */
+void __init_memblock memblock_free(void *ptr, size_t size)
{
- memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
- (unsigned long long)base,
- (unsigned long long)base + size,
- (void *)_RET_IP_);
+ if (ptr)
+ memblock_phys_free(__pa(ptr), size);
+}
+
+/**
+ * memblock_phys_free - free boot memory block
+ * @base: phys starting address of the boot memory block
+ * @size: size of the boot memory block in bytes
+ *
+ * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
+ * The freeing memory will not be released to the buddy allocator.
+ */
+int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
+{
+ phys_addr_t end = base + size - 1;
+
+ memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
+ &base, &end, (void *)_RET_IP_);
- return __memblock_remove(&memblock.reserved, base, size);
+ kmemleak_free_part_phys(base, size);
+ return memblock_remove_range(&memblock.reserved, base, size);
}
-int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
+int __init_memblock __memblock_reserve(phys_addr_t base, phys_addr_t size,
+ int nid, enum memblock_flags flags)
{
- struct memblock_type *_rgn = &memblock.reserved;
+ phys_addr_t end = base + size - 1;
- memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
- (unsigned long long)base,
- (unsigned long long)base + size,
- (void *)_RET_IP_);
+ memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
+ &base, &end, nid, flags, (void *)_RET_IP_);
+
+ return memblock_add_range(&memblock.reserved, base, size, nid, flags);
+}
- return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
+#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
+int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
+{
+ phys_addr_t end = base + size - 1;
+
+ memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
+ &base, &end, (void *)_RET_IP_);
+
+ return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
+}
+#endif
+
+#ifdef CONFIG_MEMBLOCK_KHO_SCRATCH
+__init void memblock_set_kho_scratch_only(void)
+{
+ kho_scratch_only = true;
+}
+
+__init void memblock_clear_kho_scratch_only(void)
+{
+ kho_scratch_only = false;
+}
+
+__init void memmap_init_kho_scratch_pages(void)
+{
+ phys_addr_t start, end;
+ unsigned long pfn;
+ int nid;
+ u64 i;
+
+ if (!IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT))
+ return;
+
+ /*
+ * Initialize struct pages for free scratch memory.
+ * The struct pages for reserved scratch memory will be set up in
+ * reserve_bootmem_region()
+ */
+ __for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,
+ MEMBLOCK_KHO_SCRATCH, &start, &end, &nid) {
+ for (pfn = PFN_UP(start); pfn < PFN_DOWN(end); pfn++)
+ init_deferred_page(pfn, nid);
+ }
+}
+#endif
+
+/**
+ * memblock_setclr_flag - set or clear flag for a memory region
+ * @type: memblock type to set/clear flag for
+ * @base: base address of the region
+ * @size: size of the region
+ * @set: set or clear the flag
+ * @flag: the flag to update
+ *
+ * This function isolates region [@base, @base + @size), and sets/clears flag
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
+ phys_addr_t base, phys_addr_t size, int set, int flag)
+{
+ int i, ret, start_rgn, end_rgn;
+
+ ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
+ if (ret)
+ return ret;
+
+ for (i = start_rgn; i < end_rgn; i++) {
+ struct memblock_region *r = &type->regions[i];
+
+ if (set)
+ r->flags |= flag;
+ else
+ r->flags &= ~flag;
+ }
+
+ memblock_merge_regions(type, start_rgn, end_rgn);
+ return 0;
+}
+
+/**
+ * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
+}
+
+/**
+ * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
+}
+
+/**
+ * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
+{
+ if (!mirrored_kernelcore)
+ return 0;
+
+ system_has_some_mirror = true;
+
+ return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
+}
+
+/**
+ * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
+ * direct mapping of the physical memory. These regions will still be
+ * covered by the memory map. The struct page representing NOMAP memory
+ * frames in the memory map will be PageReserved()
+ *
+ * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
+ * memblock, the caller must inform kmemleak to ignore that memory
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
+}
+
+/**
+ * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
+}
+
+/**
+ * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
+ * MEMBLOCK_RSRV_NOINIT
+ *
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * The struct pages for the reserved regions marked %MEMBLOCK_RSRV_NOINIT will
+ * not be fully initialized to allow the caller optimize their initialization.
+ *
+ * When %CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, setting this flag
+ * completely bypasses the initialization of struct pages for such region.
+ *
+ * When %CONFIG_DEFERRED_STRUCT_PAGE_INIT is disabled, struct pages in this
+ * region will be initialized with default values but won't be marked as
+ * reserved.
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_setclr_flag(&memblock.reserved, base, size, 1,
+ MEMBLOCK_RSRV_NOINIT);
+}
+
+/**
+ * memblock_mark_kho_scratch - Mark a memory region as MEMBLOCK_KHO_SCRATCH.
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * Only memory regions marked with %MEMBLOCK_KHO_SCRATCH will be considered
+ * for allocations during early boot with kexec handover.
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+__init int memblock_mark_kho_scratch(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_setclr_flag(&memblock.memory, base, size, 1,
+ MEMBLOCK_KHO_SCRATCH);
+}
+
+/**
+ * memblock_clear_kho_scratch - Clear MEMBLOCK_KHO_SCRATCH flag for a
+ * specified region.
+ * @base: the base phys addr of the region
+ * @size: the size of the region
+ *
+ * Return: 0 on success, -errno on failure.
+ */
+__init int memblock_clear_kho_scratch(phys_addr_t base, phys_addr_t size)
+{
+ return memblock_setclr_flag(&memblock.memory, base, size, 0,
+ MEMBLOCK_KHO_SCRATCH);
+}
+
+static bool should_skip_region(struct memblock_type *type,
+ struct memblock_region *m,
+ int nid, int flags)
+{
+ int m_nid = memblock_get_region_node(m);
+
+ /* we never skip regions when iterating memblock.reserved or physmem */
+ if (type != memblock_memory)
+ return false;
+
+ /* only memory regions are associated with nodes, check it */
+ if (numa_valid_node(nid) && nid != m_nid)
+ return true;
+
+ /* skip hotpluggable memory regions if needed */
+ if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
+ !(flags & MEMBLOCK_HOTPLUG))
+ return true;
+
+ /* if we want mirror memory skip non-mirror memory regions */
+ if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
+ return true;
+
+ /* skip nomap memory unless we were asked for it explicitly */
+ if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
+ return true;
+
+ /* skip driver-managed memory unless we were asked for it explicitly */
+ if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
+ return true;
+
+ /*
+ * In early alloc during kexec handover, we can only consider
+ * MEMBLOCK_KHO_SCRATCH regions for the allocations
+ */
+ if ((flags & MEMBLOCK_KHO_SCRATCH) && !memblock_is_kho_scratch(m))
+ return true;
+
+ return false;
}
/**
- * __next_free_mem_range - next function for for_each_free_mem_range()
+ * __next_mem_range - next function for for_each_free_mem_range() etc.
* @idx: pointer to u64 loop variable
- * @nid: node selector, %MAX_NUMNODES for all nodes
+ * @nid: node selector, %NUMA_NO_NODE for all nodes
+ * @flags: pick from blocks based on memory attributes
+ * @type_a: pointer to memblock_type from where the range is taken
+ * @type_b: pointer to memblock_type which excludes memory from being taken
* @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @out_nid: ptr to int for nid of the range, can be %NULL
*
- * Find the first free area from *@idx which matches @nid, fill the out
+ * Find the first area from *@idx which matches @nid, fill the out
* parameters, and update *@idx for the next iteration. The lower 32bit of
- * *@idx contains index into memory region and the upper 32bit indexes the
- * areas before each reserved region. For example, if reserved regions
+ * *@idx contains index into type_a and the upper 32bit indexes the
+ * areas before each region in type_b. For example, if type_b regions
* look like the following,
*
* 0:[0-16), 1:[32-48), 2:[128-130)
@@ -586,50 +1211,71 @@ int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
* As both region arrays are sorted, the function advances the two indices
* in lockstep and returns each intersection.
*/
-void __init_memblock __next_free_mem_range(u64 *idx, int nid,
- phys_addr_t *out_start,
- phys_addr_t *out_end, int *out_nid)
+void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
+ struct memblock_type *type_a,
+ struct memblock_type *type_b, phys_addr_t *out_start,
+ phys_addr_t *out_end, int *out_nid)
{
- struct memblock_type *mem = &memblock.memory;
- struct memblock_type *rsv = &memblock.reserved;
- int mi = *idx & 0xffffffff;
- int ri = *idx >> 32;
+ int idx_a = *idx & 0xffffffff;
+ int idx_b = *idx >> 32;
+
+ for (; idx_a < type_a->cnt; idx_a++) {
+ struct memblock_region *m = &type_a->regions[idx_a];
- for ( ; mi < mem->cnt; mi++) {
- struct memblock_region *m = &mem->regions[mi];
phys_addr_t m_start = m->base;
phys_addr_t m_end = m->base + m->size;
+ int m_nid = memblock_get_region_node(m);
- /* only memory regions are associated with nodes, check it */
- if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
+ if (should_skip_region(type_a, m, nid, flags))
continue;
- /* scan areas before each reservation for intersection */
- for ( ; ri < rsv->cnt + 1; ri++) {
- struct memblock_region *r = &rsv->regions[ri];
- phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
- phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
+ if (!type_b) {
+ if (out_start)
+ *out_start = m_start;
+ if (out_end)
+ *out_end = m_end;
+ if (out_nid)
+ *out_nid = m_nid;
+ idx_a++;
+ *idx = (u32)idx_a | (u64)idx_b << 32;
+ return;
+ }
+
+ /* scan areas before each reservation */
+ for (; idx_b < type_b->cnt + 1; idx_b++) {
+ struct memblock_region *r;
+ phys_addr_t r_start;
+ phys_addr_t r_end;
- /* if ri advanced past mi, break out to advance mi */
+ r = &type_b->regions[idx_b];
+ r_start = idx_b ? r[-1].base + r[-1].size : 0;
+ r_end = idx_b < type_b->cnt ?
+ r->base : PHYS_ADDR_MAX;
+
+ /*
+ * if idx_b advanced past idx_a,
+ * break out to advance idx_a
+ */
if (r_start >= m_end)
break;
/* if the two regions intersect, we're done */
if (m_start < r_end) {
if (out_start)
- *out_start = max(m_start, r_start);
+ *out_start =
+ max(m_start, r_start);
if (out_end)
*out_end = min(m_end, r_end);
if (out_nid)
- *out_nid = memblock_get_region_node(m);
+ *out_nid = m_nid;
/*
- * The region which ends first is advanced
- * for the next iteration.
+ * The region which ends first is
+ * advanced for the next iteration.
*/
if (m_end <= r_end)
- mi++;
+ idx_a++;
else
- ri++;
- *idx = (u32)mi | (u64)ri << 32;
+ idx_b++;
+ *idx = (u32)idx_a | (u64)idx_b << 32;
return;
}
}
@@ -640,45 +1286,77 @@ void __init_memblock __next_free_mem_range(u64 *idx, int nid,
}
/**
- * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
+ * __next_mem_range_rev - generic next function for for_each_*_range_rev()
+ *
* @idx: pointer to u64 loop variable
- * @nid: nid: node selector, %MAX_NUMNODES for all nodes
+ * @nid: node selector, %NUMA_NO_NODE for all nodes
+ * @flags: pick from blocks based on memory attributes
+ * @type_a: pointer to memblock_type from where the range is taken
+ * @type_b: pointer to memblock_type which excludes memory from being taken
* @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @out_nid: ptr to int for nid of the range, can be %NULL
*
- * Reverse of __next_free_mem_range().
+ * Finds the next range from type_a which is not marked as unsuitable
+ * in type_b.
+ *
+ * Reverse of __next_mem_range().
*/
-void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
- phys_addr_t *out_start,
- phys_addr_t *out_end, int *out_nid)
+void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
+ enum memblock_flags flags,
+ struct memblock_type *type_a,
+ struct memblock_type *type_b,
+ phys_addr_t *out_start,
+ phys_addr_t *out_end, int *out_nid)
{
- struct memblock_type *mem = &memblock.memory;
- struct memblock_type *rsv = &memblock.reserved;
- int mi = *idx & 0xffffffff;
- int ri = *idx >> 32;
+ int idx_a = *idx & 0xffffffff;
+ int idx_b = *idx >> 32;
if (*idx == (u64)ULLONG_MAX) {
- mi = mem->cnt - 1;
- ri = rsv->cnt;
+ idx_a = type_a->cnt - 1;
+ if (type_b != NULL)
+ idx_b = type_b->cnt;
+ else
+ idx_b = 0;
}
- for ( ; mi >= 0; mi--) {
- struct memblock_region *m = &mem->regions[mi];
+ for (; idx_a >= 0; idx_a--) {
+ struct memblock_region *m = &type_a->regions[idx_a];
+
phys_addr_t m_start = m->base;
phys_addr_t m_end = m->base + m->size;
+ int m_nid = memblock_get_region_node(m);
- /* only memory regions are associated with nodes, check it */
- if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
+ if (should_skip_region(type_a, m, nid, flags))
continue;
- /* scan areas before each reservation for intersection */
- for ( ; ri >= 0; ri--) {
- struct memblock_region *r = &rsv->regions[ri];
- phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
- phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
+ if (!type_b) {
+ if (out_start)
+ *out_start = m_start;
+ if (out_end)
+ *out_end = m_end;
+ if (out_nid)
+ *out_nid = m_nid;
+ idx_a--;
+ *idx = (u32)idx_a | (u64)idx_b << 32;
+ return;
+ }
+
+ /* scan areas before each reservation */
+ for (; idx_b >= 0; idx_b--) {
+ struct memblock_region *r;
+ phys_addr_t r_start;
+ phys_addr_t r_end;
+
+ r = &type_b->regions[idx_b];
+ r_start = idx_b ? r[-1].base + r[-1].size : 0;
+ r_end = idx_b < type_b->cnt ?
+ r->base : PHYS_ADDR_MAX;
+ /*
+ * if idx_b advanced past idx_a,
+ * break out to advance idx_a
+ */
- /* if ri advanced past mi, break out to advance mi */
if (r_end <= m_start)
break;
/* if the two regions intersect, we're done */
@@ -688,24 +1366,22 @@ void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
if (out_end)
*out_end = min(m_end, r_end);
if (out_nid)
- *out_nid = memblock_get_region_node(m);
-
+ *out_nid = m_nid;
if (m_start >= r_start)
- mi--;
+ idx_a--;
else
- ri--;
- *idx = (u32)mi | (u64)ri << 32;
+ idx_b--;
+ *idx = (u32)idx_a | (u64)idx_b << 32;
return;
}
}
}
-
+ /* signal end of iteration */
*idx = ULLONG_MAX;
}
-#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
/*
- * Common iterator interface used to define for_each_mem_range().
+ * Common iterator interface used to define for_each_mem_pfn_range().
*/
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
unsigned long *out_start_pfn,
@@ -713,13 +1389,15 @@ void __init_memblock __next_mem_pfn_range(int *idx, int nid,
{
struct memblock_type *type = &memblock.memory;
struct memblock_region *r;
+ int r_nid;
while (++*idx < type->cnt) {
r = &type->regions[*idx];
+ r_nid = memblock_get_region_node(r);
if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
continue;
- if (nid == MAX_NUMNODES || nid == r->nid)
+ if (!numa_valid_node(nid) || nid == r_nid)
break;
}
if (*idx >= type->cnt) {
@@ -732,25 +1410,26 @@ void __init_memblock __next_mem_pfn_range(int *idx, int nid,
if (out_end_pfn)
*out_end_pfn = PFN_DOWN(r->base + r->size);
if (out_nid)
- *out_nid = r->nid;
+ *out_nid = r_nid;
}
/**
* memblock_set_node - set node ID on memblock regions
* @base: base of area to set node ID for
* @size: size of area to set node ID for
+ * @type: memblock type to set node ID for
* @nid: node ID to set
*
- * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
+ * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
* Regions which cross the area boundaries are split as necessary.
*
- * RETURNS:
+ * Return:
* 0 on success, -errno on failure.
*/
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
- int nid)
+ struct memblock_type *type, int nid)
{
- struct memblock_type *type = &memblock.memory;
+#ifdef CONFIG_NUMA
int start_rgn, end_rgn;
int i, ret;
@@ -761,92 +1440,394 @@ int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
for (i = start_rgn; i < end_rgn; i++)
memblock_set_region_node(&type->regions[i], nid);
- memblock_merge_regions(type);
+ memblock_merge_regions(type, start_rgn, end_rgn);
+#endif
return 0;
}
-#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
-static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
- phys_addr_t align, phys_addr_t max_addr,
- int nid)
+/**
+ * memblock_alloc_range_nid - allocate boot memory block
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @start: the lower bound of the memory region to allocate (phys address)
+ * @end: the upper bound of the memory region to allocate (phys address)
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ * @exact_nid: control the allocation fall back to other nodes
+ *
+ * The allocation is performed from memory region limited by
+ * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
+ *
+ * If the specified node can not hold the requested memory and @exact_nid
+ * is false, the allocation falls back to any node in the system.
+ *
+ * For systems with memory mirroring, the allocation is attempted first
+ * from the regions with mirroring enabled and then retried from any
+ * memory region.
+ *
+ * In addition, function using kmemleak_alloc_phys for allocated boot
+ * memory block, it is never reported as leaks.
+ *
+ * Return:
+ * Physical address of allocated memory block on success, %0 on failure.
+ */
+phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
+ phys_addr_t align, phys_addr_t start,
+ phys_addr_t end, int nid,
+ bool exact_nid)
{
+ enum memblock_flags flags = choose_memblock_flags();
phys_addr_t found;
- if (WARN_ON(!align))
- align = __alignof__(long long);
+ /*
+ * Detect any accidental use of these APIs after slab is ready, as at
+ * this moment memblock may be deinitialized already and its
+ * internal data may be destroyed (after execution of memblock_free_all)
+ */
+ if (WARN_ON_ONCE(slab_is_available())) {
+ void *vaddr = kzalloc_node(size, GFP_NOWAIT, nid);
+
+ return vaddr ? virt_to_phys(vaddr) : 0;
+ }
+
+ if (!align) {
+ /* Can't use WARNs this early in boot on powerpc */
+ dump_stack();
+ align = SMP_CACHE_BYTES;
+ }
- /* align @size to avoid excessive fragmentation on reserved array */
- size = round_up(size, align);
+again:
+ found = memblock_find_in_range_node(size, align, start, end, nid,
+ flags);
+ if (found && !__memblock_reserve(found, size, nid, MEMBLOCK_RSRV_KERN))
+ goto done;
+
+ if (numa_valid_node(nid) && !exact_nid) {
+ found = memblock_find_in_range_node(size, align, start,
+ end, NUMA_NO_NODE,
+ flags);
+ if (found && !memblock_reserve_kern(found, size))
+ goto done;
+ }
- found = memblock_find_in_range_node(0, max_addr, size, align, nid);
- if (found && !memblock_reserve(found, size))
- return found;
+ if (flags & MEMBLOCK_MIRROR) {
+ flags &= ~MEMBLOCK_MIRROR;
+ pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
+ &size);
+ goto again;
+ }
return 0;
+
+done:
+ /*
+ * Skip kmemleak for those places like kasan_init() and
+ * early_pgtable_alloc() due to high volume.
+ */
+ if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
+ /*
+ * Memblock allocated blocks are never reported as
+ * leaks. This is because many of these blocks are
+ * only referred via the physical address which is
+ * not looked up by kmemleak.
+ */
+ kmemleak_alloc_phys(found, size, 0);
+
+ /*
+ * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
+ * require memory to be accepted before it can be used by the
+ * guest.
+ *
+ * Accept the memory of the allocated buffer.
+ */
+ accept_memory(found, size);
+
+ return found;
}
-phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
+/**
+ * memblock_phys_alloc_range - allocate a memory block inside specified range
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @start: the lower bound of the memory region to allocate (physical address)
+ * @end: the upper bound of the memory region to allocate (physical address)
+ *
+ * Allocate @size bytes in the between @start and @end.
+ *
+ * Return: physical address of the allocated memory block on success,
+ * %0 on failure.
+ */
+phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
+ phys_addr_t align,
+ phys_addr_t start,
+ phys_addr_t end)
{
- return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
+ memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
+ __func__, (u64)size, (u64)align, &start, &end,
+ (void *)_RET_IP_);
+ return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
+ false);
}
-phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
+/**
+ * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ *
+ * Allocates memory block from the specified NUMA node. If the node
+ * has no available memory, attempts to allocated from any node in the
+ * system.
+ *
+ * Return: physical address of the allocated memory block on success,
+ * %0 on failure.
+ */
+phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
{
- return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
+ return memblock_alloc_range_nid(size, align, 0,
+ MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
}
-phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
+/**
+ * memblock_alloc_internal - allocate boot memory block
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @min_addr: the lower bound of the memory region to allocate (phys address)
+ * @max_addr: the upper bound of the memory region to allocate (phys address)
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ * @exact_nid: control the allocation fall back to other nodes
+ *
+ * Allocates memory block using memblock_alloc_range_nid() and
+ * converts the returned physical address to virtual.
+ *
+ * The @min_addr limit is dropped if it can not be satisfied and the allocation
+ * will fall back to memory below @min_addr. Other constraints, such
+ * as node and mirrored memory will be handled again in
+ * memblock_alloc_range_nid().
+ *
+ * Return:
+ * Virtual address of allocated memory block on success, NULL on failure.
+ */
+static void * __init memblock_alloc_internal(
+ phys_addr_t size, phys_addr_t align,
+ phys_addr_t min_addr, phys_addr_t max_addr,
+ int nid, bool exact_nid)
{
phys_addr_t alloc;
- alloc = __memblock_alloc_base(size, align, max_addr);
- if (alloc == 0)
- panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
- (unsigned long long) size, (unsigned long long) max_addr);
+ if (max_addr > memblock.current_limit)
+ max_addr = memblock.current_limit;
- return alloc;
+ alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
+ exact_nid);
+
+ /* retry allocation without lower limit */
+ if (!alloc && min_addr)
+ alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
+ exact_nid);
+
+ if (!alloc)
+ return NULL;
+
+ return phys_to_virt(alloc);
}
-phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
+/**
+ * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
+ * without zeroing memory
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @min_addr: the lower bound of the memory region from where the allocation
+ * is preferred (phys address)
+ * @max_addr: the upper bound of the memory region from where the allocation
+ * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
+ * allocate only from memory limited by memblock.current_limit value
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ *
+ * Public function, provides additional debug information (including caller
+ * info), if enabled. Does not zero allocated memory.
+ *
+ * Return:
+ * Virtual address of allocated memory block on success, NULL on failure.
+ */
+void * __init memblock_alloc_exact_nid_raw(
+ phys_addr_t size, phys_addr_t align,
+ phys_addr_t min_addr, phys_addr_t max_addr,
+ int nid)
+{
+ memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
+ __func__, (u64)size, (u64)align, nid, &min_addr,
+ &max_addr, (void *)_RET_IP_);
+
+ return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
+ true);
+}
+
+/**
+ * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
+ * memory and without panicking
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @min_addr: the lower bound of the memory region from where the allocation
+ * is preferred (phys address)
+ * @max_addr: the upper bound of the memory region from where the allocation
+ * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
+ * allocate only from memory limited by memblock.current_limit value
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ *
+ * Public function, provides additional debug information (including caller
+ * info), if enabled. Does not zero allocated memory, does not panic if request
+ * cannot be satisfied.
+ *
+ * Return:
+ * Virtual address of allocated memory block on success, NULL on failure.
+ */
+void * __init memblock_alloc_try_nid_raw(
+ phys_addr_t size, phys_addr_t align,
+ phys_addr_t min_addr, phys_addr_t max_addr,
+ int nid)
+{
+ memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
+ __func__, (u64)size, (u64)align, nid, &min_addr,
+ &max_addr, (void *)_RET_IP_);
+
+ return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
+ false);
+}
+
+/**
+ * memblock_alloc_try_nid - allocate boot memory block
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @min_addr: the lower bound of the memory region from where the allocation
+ * is preferred (phys address)
+ * @max_addr: the upper bound of the memory region from where the allocation
+ * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
+ * allocate only from memory limited by memblock.current_limit value
+ * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
+ *
+ * Public function, provides additional debug information (including caller
+ * info), if enabled. This function zeroes the allocated memory.
+ *
+ * Return:
+ * Virtual address of allocated memory block on success, NULL on failure.
+ */
+void * __init memblock_alloc_try_nid(
+ phys_addr_t size, phys_addr_t align,
+ phys_addr_t min_addr, phys_addr_t max_addr,
+ int nid)
{
- return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
+ void *ptr;
+
+ memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
+ __func__, (u64)size, (u64)align, nid, &min_addr,
+ &max_addr, (void *)_RET_IP_);
+ ptr = memblock_alloc_internal(size, align,
+ min_addr, max_addr, nid, false);
+ if (ptr)
+ memset(ptr, 0, size);
+
+ return ptr;
}
-phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
+/**
+ * __memblock_alloc_or_panic - Try to allocate memory and panic on failure
+ * @size: size of memory block to be allocated in bytes
+ * @align: alignment of the region and block's size
+ * @func: caller func name
+ *
+ * This function attempts to allocate memory using memblock_alloc,
+ * and in case of failure, it calls panic with the formatted message.
+ * This function should not be used directly, please use the macro memblock_alloc_or_panic.
+ */
+void *__init __memblock_alloc_or_panic(phys_addr_t size, phys_addr_t align,
+ const char *func)
{
- phys_addr_t res = memblock_alloc_nid(size, align, nid);
+ void *addr = memblock_alloc(size, align);
- if (res)
- return res;
- return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
+ if (unlikely(!addr))
+ panic("%s: Failed to allocate %pap bytes\n", func, &size);
+ return addr;
}
+/**
+ * memblock_free_late - free pages directly to buddy allocator
+ * @base: phys starting address of the boot memory block
+ * @size: size of the boot memory block in bytes
+ *
+ * This is only useful when the memblock allocator has already been torn
+ * down, but we are still initializing the system. Pages are released directly
+ * to the buddy allocator.
+ */
+void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
+{
+ phys_addr_t cursor, end;
+
+ end = base + size - 1;
+ memblock_dbg("%s: [%pa-%pa] %pS\n",
+ __func__, &base, &end, (void *)_RET_IP_);
+ kmemleak_free_part_phys(base, size);
+ cursor = PFN_UP(base);
+ end = PFN_DOWN(base + size);
+
+ for (; cursor < end; cursor++) {
+ memblock_free_pages(pfn_to_page(cursor), cursor, 0);
+ totalram_pages_inc();
+ }
+}
/*
* Remaining API functions
*/
-phys_addr_t __init memblock_phys_mem_size(void)
+phys_addr_t __init_memblock memblock_phys_mem_size(void)
{
return memblock.memory.total_size;
}
-phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
+phys_addr_t __init_memblock memblock_reserved_size(void)
+{
+ return memblock.reserved.total_size;
+}
+
+phys_addr_t __init_memblock memblock_reserved_kern_size(phys_addr_t limit, int nid)
{
- unsigned long pages = 0;
struct memblock_region *r;
- unsigned long start_pfn, end_pfn;
-
- for_each_memblock(memory, r) {
- start_pfn = memblock_region_memory_base_pfn(r);
- end_pfn = memblock_region_memory_end_pfn(r);
- start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
- end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
- pages += end_pfn - start_pfn;
+ phys_addr_t total = 0;
+
+ for_each_reserved_mem_region(r) {
+ phys_addr_t size = r->size;
+
+ if (r->base > limit)
+ break;
+
+ if (r->base + r->size > limit)
+ size = limit - r->base;
+
+ if (nid == memblock_get_region_node(r) || !numa_valid_node(nid))
+ if (r->flags & MEMBLOCK_RSRV_KERN)
+ total += size;
}
- return (phys_addr_t)pages << PAGE_SHIFT;
+ return total;
+}
+
+/**
+ * memblock_estimated_nr_free_pages - return estimated number of free pages
+ * from memblock point of view
+ *
+ * During bootup, subsystems might need a rough estimate of the number of free
+ * pages in the whole system, before precise numbers are available from the
+ * buddy. Especially with CONFIG_DEFERRED_STRUCT_PAGE_INIT, the numbers
+ * obtained from the buddy might be very imprecise during bootup.
+ *
+ * Return:
+ * An estimated number of free pages from memblock point of view.
+ */
+unsigned long __init memblock_estimated_nr_free_pages(void)
+{
+ return PHYS_PFN(memblock_phys_mem_size() -
+ memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE, NUMA_NO_NODE));
}
/* lowest address */
@@ -862,18 +1843,17 @@ phys_addr_t __init_memblock memblock_end_of_DRAM(void)
return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
}
-void __init memblock_enforce_memory_limit(phys_addr_t limit)
+static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
{
- unsigned long i;
- phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
-
- if (!limit)
- return;
-
- /* find out max address */
- for (i = 0; i < memblock.memory.cnt; i++) {
- struct memblock_region *r = &memblock.memory.regions[i];
+ phys_addr_t max_addr = PHYS_ADDR_MAX;
+ struct memblock_region *r;
+ /*
+ * translate the memory @limit size into the max address within one of
+ * the memory memblock regions, if the @limit exceeds the total size
+ * of those regions, max_addr will keep original value PHYS_ADDR_MAX
+ */
+ for_each_mem_region(r) {
if (limit <= r->size) {
max_addr = r->base + limit;
break;
@@ -881,9 +1861,76 @@ void __init memblock_enforce_memory_limit(phys_addr_t limit)
limit -= r->size;
}
+ return max_addr;
+}
+
+void __init memblock_enforce_memory_limit(phys_addr_t limit)
+{
+ phys_addr_t max_addr;
+
+ if (!limit)
+ return;
+
+ max_addr = __find_max_addr(limit);
+
+ /* @limit exceeds the total size of the memory, do nothing */
+ if (max_addr == PHYS_ADDR_MAX)
+ return;
+
/* truncate both memory and reserved regions */
- __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
- __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
+ memblock_remove_range(&memblock.memory, max_addr,
+ PHYS_ADDR_MAX);
+ memblock_remove_range(&memblock.reserved, max_addr,
+ PHYS_ADDR_MAX);
+}
+
+void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
+{
+ int start_rgn, end_rgn;
+ int i, ret;
+
+ if (!size)
+ return;
+
+ if (!memblock_memory->total_size) {
+ pr_warn("%s: No memory registered yet\n", __func__);
+ return;
+ }
+
+ ret = memblock_isolate_range(&memblock.memory, base, size,
+ &start_rgn, &end_rgn);
+ if (ret)
+ return;
+
+ /* remove all the MAP regions */
+ for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
+ if (!memblock_is_nomap(&memblock.memory.regions[i]))
+ memblock_remove_region(&memblock.memory, i);
+
+ for (i = start_rgn - 1; i >= 0; i--)
+ if (!memblock_is_nomap(&memblock.memory.regions[i]))
+ memblock_remove_region(&memblock.memory, i);
+
+ /* truncate the reserved regions */
+ memblock_remove_range(&memblock.reserved, 0, base);
+ memblock_remove_range(&memblock.reserved,
+ base + size, PHYS_ADDR_MAX);
+}
+
+void __init memblock_mem_limit_remove_map(phys_addr_t limit)
+{
+ phys_addr_t max_addr;
+
+ if (!limit)
+ return;
+
+ max_addr = __find_max_addr(limit);
+
+ /* @limit exceeds the total size of the memory, do nothing */
+ if (max_addr == PHYS_ADDR_MAX)
+ return;
+
+ memblock_cap_memory_range(0, max_addr);
}
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
@@ -904,35 +1951,58 @@ static int __init_memblock memblock_search(struct memblock_type *type, phys_addr
return -1;
}
-int __init memblock_is_reserved(phys_addr_t addr)
+bool __init_memblock memblock_is_reserved(phys_addr_t addr)
{
return memblock_search(&memblock.reserved, addr) != -1;
}
-int __init_memblock memblock_is_memory(phys_addr_t addr)
+bool __init_memblock memblock_is_memory(phys_addr_t addr)
{
return memblock_search(&memblock.memory, addr) != -1;
}
+bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
+{
+ int i = memblock_search(&memblock.memory, addr);
+
+ if (i == -1)
+ return false;
+ return !memblock_is_nomap(&memblock.memory.regions[i]);
+}
+
+int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
+ unsigned long *start_pfn, unsigned long *end_pfn)
+{
+ struct memblock_type *type = &memblock.memory;
+ int mid = memblock_search(type, PFN_PHYS(pfn));
+
+ if (mid == -1)
+ return NUMA_NO_NODE;
+
+ *start_pfn = PFN_DOWN(type->regions[mid].base);
+ *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
+
+ return memblock_get_region_node(&type->regions[mid]);
+}
+
/**
* memblock_is_region_memory - check if a region is a subset of memory
* @base: base of region to check
* @size: size of region to check
*
- * Check if the region [@base, @base+@size) is a subset of a memory block.
+ * Check if the region [@base, @base + @size) is a subset of a memory block.
*
- * RETURNS:
+ * Return:
* 0 if false, non-zero if true
*/
-int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
+bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
{
int idx = memblock_search(&memblock.memory, base);
phys_addr_t end = base + memblock_cap_size(base, &size);
if (idx == -1)
- return 0;
- return memblock.memory.regions[idx].base <= base &&
- (memblock.memory.regions[idx].base +
+ return false;
+ return (memblock.memory.regions[idx].base +
memblock.memory.regions[idx].size) >= end;
}
@@ -941,26 +2011,25 @@ int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size
* @base: base of region to check
* @size: size of region to check
*
- * Check if the region [@base, @base+@size) intersects a reserved memory block.
+ * Check if the region [@base, @base + @size) intersects a reserved
+ * memory block.
*
- * RETURNS:
- * 0 if false, non-zero if true
+ * Return:
+ * True if they intersect, false if not.
*/
-int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
+bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
{
- memblock_cap_size(base, &size);
- return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
+ return memblock_overlaps_region(&memblock.reserved, base, size);
}
void __init_memblock memblock_trim_memory(phys_addr_t align)
{
- int i;
phys_addr_t start, end, orig_start, orig_end;
- struct memblock_type *mem = &memblock.memory;
+ struct memblock_region *r;
- for (i = 0; i < mem->cnt; i++) {
- orig_start = mem->regions[i].base;
- orig_end = mem->regions[i].base + mem->regions[i].size;
+ for_each_mem_region(r) {
+ orig_start = r->base;
+ orig_end = r->base + r->size;
start = round_up(orig_start, align);
end = round_down(orig_end, align);
@@ -968,11 +2037,12 @@ void __init_memblock memblock_trim_memory(phys_addr_t align)
continue;
if (start < end) {
- mem->regions[i].base = start;
- mem->regions[i].size = end - start;
+ r->base = start;
+ r->size = end - start;
} else {
- memblock_remove_region(mem, i);
- i--;
+ memblock_remove_region(&memblock.memory,
+ r - memblock.memory.regions);
+ r--;
}
}
}
@@ -982,38 +2052,55 @@ void __init_memblock memblock_set_current_limit(phys_addr_t limit)
memblock.current_limit = limit;
}
-static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
+phys_addr_t __init_memblock memblock_get_current_limit(void)
{
- unsigned long long base, size;
- int i;
+ return memblock.current_limit;
+}
- pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
+static void __init_memblock memblock_dump(struct memblock_type *type)
+{
+ phys_addr_t base, end, size;
+ enum memblock_flags flags;
+ int idx;
+ struct memblock_region *rgn;
- for (i = 0; i < type->cnt; i++) {
- struct memblock_region *rgn = &type->regions[i];
+ pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
+
+ for_each_memblock_type(idx, type, rgn) {
char nid_buf[32] = "";
base = rgn->base;
size = rgn->size;
-#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
- if (memblock_get_region_node(rgn) != MAX_NUMNODES)
+ end = base + size - 1;
+ flags = rgn->flags;
+#ifdef CONFIG_NUMA
+ if (numa_valid_node(memblock_get_region_node(rgn)))
snprintf(nid_buf, sizeof(nid_buf), " on node %d",
memblock_get_region_node(rgn));
#endif
- pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
- name, i, base, base + size - 1, size, nid_buf);
+ pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
+ type->name, idx, &base, &end, &size, nid_buf, flags);
}
}
-void __init_memblock __memblock_dump_all(void)
+static void __init_memblock __memblock_dump_all(void)
{
pr_info("MEMBLOCK configuration:\n");
- pr_info(" memory size = %#llx reserved size = %#llx\n",
- (unsigned long long)memblock.memory.total_size,
- (unsigned long long)memblock.reserved.total_size);
+ pr_info(" memory size = %pa reserved size = %pa\n",
+ &memblock.memory.total_size,
+ &memblock.reserved.total_size);
+
+ memblock_dump(&memblock.memory);
+ memblock_dump(&memblock.reserved);
+#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
+ memblock_dump(&physmem);
+#endif
+}
- memblock_dump(&memblock.memory, "memory");
- memblock_dump(&memblock.reserved, "reserved");
+void __init_memblock memblock_dump_all(void)
+{
+ if (memblock_debug)
+ __memblock_dump_all();
}
void __init memblock_allow_resize(void)
@@ -1029,49 +2116,652 @@ static int __init early_memblock(char *p)
}
early_param("memblock", early_memblock);
-#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
+static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
+{
+ struct page *start_pg, *end_pg;
+ phys_addr_t pg, pgend;
-static int memblock_debug_show(struct seq_file *m, void *private)
+ /*
+ * Convert start_pfn/end_pfn to a struct page pointer.
+ */
+ start_pg = pfn_to_page(start_pfn - 1) + 1;
+ end_pg = pfn_to_page(end_pfn - 1) + 1;
+
+ /*
+ * Convert to physical addresses, and round start upwards and end
+ * downwards.
+ */
+ pg = PAGE_ALIGN(__pa(start_pg));
+ pgend = PAGE_ALIGN_DOWN(__pa(end_pg));
+
+ /*
+ * If there are free pages between these, free the section of the
+ * memmap array.
+ */
+ if (pg < pgend)
+ memblock_phys_free(pg, pgend - pg);
+}
+
+/*
+ * The mem_map array can get very big. Free the unused area of the memory map.
+ */
+static void __init free_unused_memmap(void)
{
- struct memblock_type *type = m->private;
- struct memblock_region *reg;
+ unsigned long start, end, prev_end = 0;
int i;
- for (i = 0; i < type->cnt; i++) {
- reg = &type->regions[i];
- seq_printf(m, "%4d: ", i);
- if (sizeof(phys_addr_t) == 4)
- seq_printf(m, "0x%08lx..0x%08lx\n",
- (unsigned long)reg->base,
- (unsigned long)(reg->base + reg->size - 1));
+ if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
+ IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
+ return;
+
+ /*
+ * This relies on each bank being in address order.
+ * The banks are sorted previously in bootmem_init().
+ */
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
+#ifdef CONFIG_SPARSEMEM
+ /*
+ * Take care not to free memmap entries that don't exist
+ * due to SPARSEMEM sections which aren't present.
+ */
+ start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
+#endif
+ /*
+ * Align down here since many operations in VM subsystem
+ * presume that there are no holes in the memory map inside
+ * a pageblock
+ */
+ start = pageblock_start_pfn(start);
+
+ /*
+ * If we had a previous bank, and there is a space
+ * between the current bank and the previous, free it.
+ */
+ if (prev_end && prev_end < start)
+ free_memmap(prev_end, start);
+
+ /*
+ * Align up here since many operations in VM subsystem
+ * presume that there are no holes in the memory map inside
+ * a pageblock
+ */
+ prev_end = pageblock_align(end);
+ }
+
+#ifdef CONFIG_SPARSEMEM
+ if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
+ prev_end = pageblock_align(end);
+ free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
+ }
+#endif
+}
+
+static void __init __free_pages_memory(unsigned long start, unsigned long end)
+{
+ int order;
+
+ while (start < end) {
+ /*
+ * Free the pages in the largest chunks alignment allows.
+ *
+ * __ffs() behaviour is undefined for 0. start == 0 is
+ * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
+ * the case.
+ */
+ if (start)
+ order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
else
- seq_printf(m, "0x%016llx..0x%016llx\n",
- (unsigned long long)reg->base,
- (unsigned long long)(reg->base + reg->size - 1));
+ order = MAX_PAGE_ORDER;
+ while (start + (1UL << order) > end)
+ order--;
+
+ memblock_free_pages(pfn_to_page(start), start, order);
+
+ start += (1UL << order);
}
+}
+
+static unsigned long __init __free_memory_core(phys_addr_t start,
+ phys_addr_t end)
+{
+ unsigned long start_pfn = PFN_UP(start);
+ unsigned long end_pfn = PFN_DOWN(end);
+
+ if (!IS_ENABLED(CONFIG_HIGHMEM) && end_pfn > max_low_pfn)
+ end_pfn = max_low_pfn;
+
+ if (start_pfn >= end_pfn)
+ return 0;
+
+ __free_pages_memory(start_pfn, end_pfn);
+
+ return end_pfn - start_pfn;
+}
+
+static void __init memmap_init_reserved_pages(void)
+{
+ struct memblock_region *region;
+ phys_addr_t start, end;
+ int nid;
+ unsigned long max_reserved;
+
+ /*
+ * set nid on all reserved pages and also treat struct
+ * pages for the NOMAP regions as PageReserved
+ */
+repeat:
+ max_reserved = memblock.reserved.max;
+ for_each_mem_region(region) {
+ nid = memblock_get_region_node(region);
+ start = region->base;
+ end = start + region->size;
+
+ if (memblock_is_nomap(region))
+ reserve_bootmem_region(start, end, nid);
+
+ memblock_set_node(start, region->size, &memblock.reserved, nid);
+ }
+ /*
+ * 'max' is changed means memblock.reserved has been doubled its
+ * array, which may result a new reserved region before current
+ * 'start'. Now we should repeat the procedure to set its node id.
+ */
+ if (max_reserved != memblock.reserved.max)
+ goto repeat;
+
+ /*
+ * initialize struct pages for reserved regions that don't have
+ * the MEMBLOCK_RSRV_NOINIT flag set
+ */
+ for_each_reserved_mem_region(region) {
+ if (!memblock_is_reserved_noinit(region)) {
+ nid = memblock_get_region_node(region);
+ start = region->base;
+ end = start + region->size;
+
+ if (!numa_valid_node(nid))
+ nid = early_pfn_to_nid(PFN_DOWN(start));
+
+ reserve_bootmem_region(start, end, nid);
+ }
+ }
+}
+
+static unsigned long __init free_low_memory_core_early(void)
+{
+ unsigned long count = 0;
+ phys_addr_t start, end;
+ u64 i;
+
+ memblock_clear_hotplug(0, -1);
+
+ memmap_init_reserved_pages();
+
+ /*
+ * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
+ * because in some case like Node0 doesn't have RAM installed
+ * low ram will be on Node1
+ */
+ for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
+ NULL)
+ count += __free_memory_core(start, end);
+
+ return count;
+}
+
+static int reset_managed_pages_done __initdata;
+
+static void __init reset_node_managed_pages(pg_data_t *pgdat)
+{
+ struct zone *z;
+
+ for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
+ atomic_long_set(&z->managed_pages, 0);
+}
+
+void __init reset_all_zones_managed_pages(void)
+{
+ struct pglist_data *pgdat;
+
+ if (reset_managed_pages_done)
+ return;
+
+ for_each_online_pgdat(pgdat)
+ reset_node_managed_pages(pgdat);
+
+ reset_managed_pages_done = 1;
+}
+
+/**
+ * memblock_free_all - release free pages to the buddy allocator
+ */
+void __init memblock_free_all(void)
+{
+ unsigned long pages;
+
+ free_unused_memmap();
+ reset_all_zones_managed_pages();
+
+ memblock_clear_kho_scratch_only();
+ pages = free_low_memory_core_early();
+ totalram_pages_add(pages);
+}
+
+/* Keep a table to reserve named memory */
+#define RESERVE_MEM_MAX_ENTRIES 8
+#define RESERVE_MEM_NAME_SIZE 16
+struct reserve_mem_table {
+ char name[RESERVE_MEM_NAME_SIZE];
+ phys_addr_t start;
+ phys_addr_t size;
+};
+static struct reserve_mem_table reserved_mem_table[RESERVE_MEM_MAX_ENTRIES];
+static int reserved_mem_count;
+static DEFINE_MUTEX(reserve_mem_lock);
+
+/* Add wildcard region with a lookup name */
+static void __init reserved_mem_add(phys_addr_t start, phys_addr_t size,
+ const char *name)
+{
+ struct reserve_mem_table *map;
+
+ map = &reserved_mem_table[reserved_mem_count++];
+ map->start = start;
+ map->size = size;
+ strscpy(map->name, name);
+}
+
+static struct reserve_mem_table *reserve_mem_find_by_name_nolock(const char *name)
+{
+ struct reserve_mem_table *map;
+ int i;
+
+ for (i = 0; i < reserved_mem_count; i++) {
+ map = &reserved_mem_table[i];
+ if (!map->size)
+ continue;
+ if (strcmp(name, map->name) == 0)
+ return map;
+ }
+ return NULL;
+}
+
+/**
+ * reserve_mem_find_by_name - Find reserved memory region with a given name
+ * @name: The name that is attached to a reserved memory region
+ * @start: If found, holds the start address
+ * @size: If found, holds the size of the address.
+ *
+ * @start and @size are only updated if @name is found.
+ *
+ * Returns: 1 if found or 0 if not found.
+ */
+int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size)
+{
+ struct reserve_mem_table *map;
+
+ guard(mutex)(&reserve_mem_lock);
+ map = reserve_mem_find_by_name_nolock(name);
+ if (!map)
+ return 0;
+
+ *start = map->start;
+ *size = map->size;
+ return 1;
+}
+EXPORT_SYMBOL_GPL(reserve_mem_find_by_name);
+
+/**
+ * reserve_mem_release_by_name - Release reserved memory region with a given name
+ * @name: The name that is attatched to a reserved memory region
+ *
+ * Forcibly release the pages in the reserved memory region so that those memory
+ * can be used as free memory. After released the reserved region size becomes 0.
+ *
+ * Returns: 1 if released or 0 if not found.
+ */
+int reserve_mem_release_by_name(const char *name)
+{
+ char buf[RESERVE_MEM_NAME_SIZE + 12];
+ struct reserve_mem_table *map;
+ void *start, *end;
+
+ guard(mutex)(&reserve_mem_lock);
+ map = reserve_mem_find_by_name_nolock(name);
+ if (!map)
+ return 0;
+
+ start = phys_to_virt(map->start);
+ end = start + map->size - 1;
+ snprintf(buf, sizeof(buf), "reserve_mem:%s", name);
+ free_reserved_area(start, end, 0, buf);
+ map->size = 0;
+
+ return 1;
+}
+
+#ifdef CONFIG_KEXEC_HANDOVER
+#define MEMBLOCK_KHO_FDT "memblock"
+#define MEMBLOCK_KHO_NODE_COMPATIBLE "memblock-v1"
+#define RESERVE_MEM_KHO_NODE_COMPATIBLE "reserve-mem-v1"
+
+static int __init reserved_mem_preserve(void)
+{
+ unsigned int nr_preserved = 0;
+ int err;
+
+ for (unsigned int i = 0; i < reserved_mem_count; i++, nr_preserved++) {
+ struct reserve_mem_table *map = &reserved_mem_table[i];
+ struct page *page = phys_to_page(map->start);
+ unsigned int nr_pages = map->size >> PAGE_SHIFT;
+
+ err = kho_preserve_pages(page, nr_pages);
+ if (err)
+ goto err_unpreserve;
+ }
+
return 0;
+
+err_unpreserve:
+ for (unsigned int i = 0; i < nr_preserved; i++) {
+ struct reserve_mem_table *map = &reserved_mem_table[i];
+ struct page *page = phys_to_page(map->start);
+ unsigned int nr_pages = map->size >> PAGE_SHIFT;
+
+ kho_unpreserve_pages(page, nr_pages);
+ }
+
+ return err;
+}
+
+static int __init prepare_kho_fdt(void)
+{
+ struct page *fdt_page;
+ void *fdt;
+ int err;
+
+ fdt_page = alloc_page(GFP_KERNEL);
+ if (!fdt_page) {
+ err = -ENOMEM;
+ goto err_report;
+ }
+
+ fdt = page_to_virt(fdt_page);
+ err = kho_preserve_pages(fdt_page, 1);
+ if (err)
+ goto err_free_fdt;
+
+ err |= fdt_create(fdt, PAGE_SIZE);
+ err |= fdt_finish_reservemap(fdt);
+ err |= fdt_begin_node(fdt, "");
+ err |= fdt_property_string(fdt, "compatible", MEMBLOCK_KHO_NODE_COMPATIBLE);
+
+ for (unsigned int i = 0; !err && i < reserved_mem_count; i++) {
+ struct reserve_mem_table *map = &reserved_mem_table[i];
+
+ err |= fdt_begin_node(fdt, map->name);
+ err |= fdt_property_string(fdt, "compatible", RESERVE_MEM_KHO_NODE_COMPATIBLE);
+ err |= fdt_property(fdt, "start", &map->start, sizeof(map->start));
+ err |= fdt_property(fdt, "size", &map->size, sizeof(map->size));
+ err |= fdt_end_node(fdt);
+ }
+ err |= fdt_end_node(fdt);
+ err |= fdt_finish(fdt);
+
+ if (err)
+ goto err_unpreserve_fdt;
+
+ err = kho_add_subtree(MEMBLOCK_KHO_FDT, fdt);
+ if (err)
+ goto err_unpreserve_fdt;
+
+ err = reserved_mem_preserve();
+ if (err)
+ goto err_remove_subtree;
+
+ return 0;
+
+err_remove_subtree:
+ kho_remove_subtree(fdt);
+err_unpreserve_fdt:
+ kho_unpreserve_pages(fdt_page, 1);
+err_free_fdt:
+ put_page(fdt_page);
+err_report:
+ pr_err("failed to prepare memblock FDT for KHO: %d\n", err);
+
+ return err;
}
-static int memblock_debug_open(struct inode *inode, struct file *file)
+static int __init reserve_mem_init(void)
+{
+ int err;
+
+ if (!kho_is_enabled() || !reserved_mem_count)
+ return 0;
+
+ err = prepare_kho_fdt();
+ if (err)
+ return err;
+ return err;
+}
+late_initcall(reserve_mem_init);
+
+static void *__init reserve_mem_kho_retrieve_fdt(void)
+{
+ phys_addr_t fdt_phys;
+ static void *fdt;
+ int err;
+
+ if (fdt)
+ return fdt;
+
+ err = kho_retrieve_subtree(MEMBLOCK_KHO_FDT, &fdt_phys);
+ if (err) {
+ if (err != -ENOENT)
+ pr_warn("failed to retrieve FDT '%s' from KHO: %d\n",
+ MEMBLOCK_KHO_FDT, err);
+ return NULL;
+ }
+
+ fdt = phys_to_virt(fdt_phys);
+
+ err = fdt_node_check_compatible(fdt, 0, MEMBLOCK_KHO_NODE_COMPATIBLE);
+ if (err) {
+ pr_warn("FDT '%s' is incompatible with '%s': %d\n",
+ MEMBLOCK_KHO_FDT, MEMBLOCK_KHO_NODE_COMPATIBLE, err);
+ fdt = NULL;
+ }
+
+ return fdt;
+}
+
+static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size,
+ phys_addr_t align)
+{
+ int err, len_start, len_size, offset;
+ const phys_addr_t *p_start, *p_size;
+ const void *fdt;
+
+ fdt = reserve_mem_kho_retrieve_fdt();
+ if (!fdt)
+ return false;
+
+ offset = fdt_subnode_offset(fdt, 0, name);
+ if (offset < 0) {
+ pr_warn("FDT '%s' has no child '%s': %d\n",
+ MEMBLOCK_KHO_FDT, name, offset);
+ return false;
+ }
+ err = fdt_node_check_compatible(fdt, offset, RESERVE_MEM_KHO_NODE_COMPATIBLE);
+ if (err) {
+ pr_warn("Node '%s' is incompatible with '%s': %d\n",
+ name, RESERVE_MEM_KHO_NODE_COMPATIBLE, err);
+ return false;
+ }
+
+ p_start = fdt_getprop(fdt, offset, "start", &len_start);
+ p_size = fdt_getprop(fdt, offset, "size", &len_size);
+ if (!p_start || len_start != sizeof(*p_start) || !p_size ||
+ len_size != sizeof(*p_size)) {
+ return false;
+ }
+
+ if (*p_start & (align - 1)) {
+ pr_warn("KHO reserve-mem '%s' has wrong alignment (0x%lx, 0x%lx)\n",
+ name, (long)align, (long)*p_start);
+ return false;
+ }
+
+ if (*p_size != size) {
+ pr_warn("KHO reserve-mem '%s' has wrong size (0x%lx != 0x%lx)\n",
+ name, (long)*p_size, (long)size);
+ return false;
+ }
+
+ reserved_mem_add(*p_start, size, name);
+ pr_info("Revived memory reservation '%s' from KHO\n", name);
+
+ return true;
+}
+#else
+static bool __init reserve_mem_kho_revive(const char *name, phys_addr_t size,
+ phys_addr_t align)
{
- return single_open(file, memblock_debug_show, inode->i_private);
+ return false;
}
+#endif /* CONFIG_KEXEC_HANDOVER */
+
+/*
+ * Parse reserve_mem=nn:align:name
+ */
+static int __init reserve_mem(char *p)
+{
+ phys_addr_t start, size, align, tmp;
+ char *name;
+ char *oldp;
+ int len;
+
+ if (!p)
+ return -EINVAL;
+
+ /* Check if there's room for more reserved memory */
+ if (reserved_mem_count >= RESERVE_MEM_MAX_ENTRIES)
+ return -EBUSY;
+
+ oldp = p;
+ size = memparse(p, &p);
+ if (!size || p == oldp)
+ return -EINVAL;
+
+ if (*p != ':')
+ return -EINVAL;
+
+ align = memparse(p+1, &p);
+ if (*p != ':')
+ return -EINVAL;
+
+ /*
+ * memblock_phys_alloc() doesn't like a zero size align,
+ * but it is OK for this command to have it.
+ */
+ if (align < SMP_CACHE_BYTES)
+ align = SMP_CACHE_BYTES;
+
+ name = p + 1;
+ len = strlen(name);
+
+ /* name needs to have length but not too big */
+ if (!len || len >= RESERVE_MEM_NAME_SIZE)
+ return -EINVAL;
+
+ /* Make sure that name has text */
+ for (p = name; *p; p++) {
+ if (!isspace(*p))
+ break;
+ }
+ if (!*p)
+ return -EINVAL;
+
+ /* Make sure the name is not already used */
+ if (reserve_mem_find_by_name(name, &start, &tmp))
+ return -EBUSY;
+
+ /* Pick previous allocations up from KHO if available */
+ if (reserve_mem_kho_revive(name, size, align))
+ return 1;
+
+ /* TODO: Allocation must be outside of scratch region */
+ start = memblock_phys_alloc(size, align);
+ if (!start)
+ return -ENOMEM;
-static const struct file_operations memblock_debug_fops = {
- .open = memblock_debug_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = single_release,
+ reserved_mem_add(start, size, name);
+
+ return 1;
+}
+__setup("reserve_mem=", reserve_mem);
+
+#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
+static const char * const flagname[] = {
+ [ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
+ [ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
+ [ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
+ [ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
+ [ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
+ [ilog2(MEMBLOCK_RSRV_KERN)] = "RSV_KERN",
+ [ilog2(MEMBLOCK_KHO_SCRATCH)] = "KHO_SCRATCH",
};
+static int memblock_debug_show(struct seq_file *m, void *private)
+{
+ struct memblock_type *type = m->private;
+ struct memblock_region *reg;
+ int i, j, nid;
+ unsigned int count = ARRAY_SIZE(flagname);
+ phys_addr_t end;
+
+ for (i = 0; i < type->cnt; i++) {
+ reg = &type->regions[i];
+ end = reg->base + reg->size - 1;
+ nid = memblock_get_region_node(reg);
+
+ seq_printf(m, "%4d: ", i);
+ seq_printf(m, "%pa..%pa ", &reg->base, &end);
+ if (numa_valid_node(nid))
+ seq_printf(m, "%4d ", nid);
+ else
+ seq_printf(m, "%4c ", 'x');
+ if (reg->flags) {
+ for (j = 0; j < count; j++) {
+ if (reg->flags & (1U << j)) {
+ seq_printf(m, "%s\n", flagname[j]);
+ break;
+ }
+ }
+ if (j == count)
+ seq_printf(m, "%s\n", "UNKNOWN");
+ } else {
+ seq_printf(m, "%s\n", "NONE");
+ }
+ }
+ return 0;
+}
+DEFINE_SHOW_ATTRIBUTE(memblock_debug);
+
static int __init memblock_init_debugfs(void)
{
struct dentry *root = debugfs_create_dir("memblock", NULL);
- if (!root)
- return -ENXIO;
- debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
- debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
+
+ debugfs_create_file("memory", 0444, root,
+ &memblock.memory, &memblock_debug_fops);
+ debugfs_create_file("reserved", 0444, root,
+ &memblock.reserved, &memblock_debug_fops);
+#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
+ debugfs_create_file("physmem", 0444, root, &physmem,
+ &memblock_debug_fops);
+#endif
return 0;
}