summaryrefslogtreecommitdiff
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c8158
1 files changed, 3548 insertions, 4610 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index af7f18b32389..be810c1fbfc3 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
/* memcontrol.c - Memory Controller
*
* Copyright IBM Corporation, 2007
@@ -20,25 +21,21 @@
* Unified hierarchy configuration model
* Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
+ * Per memcg lru locking
+ * Copyright (C) 2020 Alibaba, Inc, Alex Shi
*/
+#include <linux/cgroup-defs.h>
#include <linux/page_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
-#include <linux/mm.h>
+#include <linux/cpuset.h>
#include <linux/sched/mm.h>
#include <linux/shmem_fs.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
+#include <linux/pagevec.h>
+#include <linux/vm_event_item.h>
#include <linux/smp.h>
#include <linux/page-flags.h>
#include <linux/backing-dev.h>
@@ -46,208 +43,72 @@
#include <linux/rcupdate.h>
#include <linux/limits.h>
#include <linux/export.h>
+#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
-#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/spinlock.h>
-#include <linux/eventfd.h>
-#include <linux/poll.h>
-#include <linux/sort.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/vmpressure.h>
+#include <linux/memremap.h>
#include <linux/mm_inline.h>
#include <linux/swap_cgroup.h>
#include <linux/cpu.h>
#include <linux/oom.h>
#include <linux/lockdep.h>
-#include <linux/file.h>
-#include <linux/tracehook.h>
+#include <linux/resume_user_mode.h>
+#include <linux/psi.h>
+#include <linux/seq_buf.h>
+#include <linux/sched/isolation.h>
+#include <linux/kmemleak.h>
#include "internal.h"
#include <net/sock.h>
#include <net/ip.h>
#include "slab.h"
+#include "memcontrol-v1.h"
#include <linux/uaccess.h>
+#define CREATE_TRACE_POINTS
+#include <trace/events/memcg.h>
+#undef CREATE_TRACE_POINTS
+
#include <trace/events/vmscan.h>
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
struct mem_cgroup *root_mem_cgroup __read_mostly;
+EXPORT_SYMBOL(root_mem_cgroup);
-#define MEM_CGROUP_RECLAIM_RETRIES 5
+/* Active memory cgroup to use from an interrupt context */
+DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
+EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
/* Socket memory accounting disabled? */
-static bool cgroup_memory_nosocket;
+static bool cgroup_memory_nosocket __ro_after_init;
/* Kernel memory accounting disabled? */
-static bool cgroup_memory_nokmem;
+static bool cgroup_memory_nokmem __ro_after_init;
-/* Whether the swap controller is active */
-#ifdef CONFIG_MEMCG_SWAP
-int do_swap_account __read_mostly;
-#else
-#define do_swap_account 0
+/* BPF memory accounting disabled? */
+static bool cgroup_memory_nobpf __ro_after_init;
+
+static struct kmem_cache *memcg_cachep;
+static struct kmem_cache *memcg_pn_cachep;
+
+#ifdef CONFIG_CGROUP_WRITEBACK
+static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif
-/* Whether legacy memory+swap accounting is active */
-static bool do_memsw_account(void)
+static inline bool task_is_dying(void)
{
- return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
+ return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
+ (current->flags & PF_EXITING);
}
-static const char *const mem_cgroup_lru_names[] = {
- "inactive_anon",
- "active_anon",
- "inactive_file",
- "active_file",
- "unevictable",
-};
-
-#define THRESHOLDS_EVENTS_TARGET 128
-#define SOFTLIMIT_EVENTS_TARGET 1024
-#define NUMAINFO_EVENTS_TARGET 1024
-
-/*
- * Cgroups above their limits are maintained in a RB-Tree, independent of
- * their hierarchy representation
- */
-
-struct mem_cgroup_tree_per_node {
- struct rb_root rb_root;
- struct rb_node *rb_rightmost;
- spinlock_t lock;
-};
-
-struct mem_cgroup_tree {
- struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
-};
-
-static struct mem_cgroup_tree soft_limit_tree __read_mostly;
-
-/* for OOM */
-struct mem_cgroup_eventfd_list {
- struct list_head list;
- struct eventfd_ctx *eventfd;
-};
-
-/*
- * cgroup_event represents events which userspace want to receive.
- */
-struct mem_cgroup_event {
- /*
- * memcg which the event belongs to.
- */
- struct mem_cgroup *memcg;
- /*
- * eventfd to signal userspace about the event.
- */
- struct eventfd_ctx *eventfd;
- /*
- * Each of these stored in a list by the cgroup.
- */
- struct list_head list;
- /*
- * register_event() callback will be used to add new userspace
- * waiter for changes related to this event. Use eventfd_signal()
- * on eventfd to send notification to userspace.
- */
- int (*register_event)(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd, const char *args);
- /*
- * unregister_event() callback will be called when userspace closes
- * the eventfd or on cgroup removing. This callback must be set,
- * if you want provide notification functionality.
- */
- void (*unregister_event)(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd);
- /*
- * All fields below needed to unregister event when
- * userspace closes eventfd.
- */
- poll_table pt;
- wait_queue_head_t *wqh;
- wait_queue_entry_t wait;
- struct work_struct remove;
-};
-
-static void mem_cgroup_threshold(struct mem_cgroup *memcg);
-static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
-
-/* Stuffs for move charges at task migration. */
-/*
- * Types of charges to be moved.
- */
-#define MOVE_ANON 0x1U
-#define MOVE_FILE 0x2U
-#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
-
-/* "mc" and its members are protected by cgroup_mutex */
-static struct move_charge_struct {
- spinlock_t lock; /* for from, to */
- struct mm_struct *mm;
- struct mem_cgroup *from;
- struct mem_cgroup *to;
- unsigned long flags;
- unsigned long precharge;
- unsigned long moved_charge;
- unsigned long moved_swap;
- struct task_struct *moving_task; /* a task moving charges */
- wait_queue_head_t waitq; /* a waitq for other context */
-} mc = {
- .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
- .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
-};
-
-/*
- * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
- * limit reclaim to prevent infinite loops, if they ever occur.
- */
-#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
-#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
-
-enum charge_type {
- MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
- MEM_CGROUP_CHARGE_TYPE_ANON,
- MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
- MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
- NR_CHARGE_TYPE,
-};
-
-/* for encoding cft->private value on file */
-enum res_type {
- _MEM,
- _MEMSWAP,
- _OOM_TYPE,
- _KMEM,
- _TCP,
-};
-
-#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
-#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
-#define MEMFILE_ATTR(val) ((val) & 0xffff)
-/* Used for OOM nofiier */
-#define OOM_CONTROL (0)
-
-/*
- * Iteration constructs for visiting all cgroups (under a tree). If
- * loops are exited prematurely (break), mem_cgroup_iter_break() must
- * be used for reference counting.
- */
-#define for_each_mem_cgroup_tree(iter, root) \
- for (iter = mem_cgroup_iter(root, NULL, NULL); \
- iter != NULL; \
- iter = mem_cgroup_iter(root, iter, NULL))
-
-#define for_each_mem_cgroup(iter) \
- for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
- iter != NULL; \
- iter = mem_cgroup_iter(NULL, iter, NULL))
-
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
@@ -256,211 +117,141 @@ struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
return &memcg->vmpressure;
}
-struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
+struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
{
- return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
+ return container_of(vmpr, struct mem_cgroup, vmpressure);
}
-#ifdef CONFIG_MEMCG_KMEM
-/*
- * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
- * The main reason for not using cgroup id for this:
- * this works better in sparse environments, where we have a lot of memcgs,
- * but only a few kmem-limited. Or also, if we have, for instance, 200
- * memcgs, and none but the 200th is kmem-limited, we'd have to have a
- * 200 entry array for that.
- *
- * The current size of the caches array is stored in memcg_nr_cache_ids. It
- * will double each time we have to increase it.
- */
-static DEFINE_IDA(memcg_cache_ida);
-int memcg_nr_cache_ids;
-
-/* Protects memcg_nr_cache_ids */
-static DECLARE_RWSEM(memcg_cache_ids_sem);
+#define SEQ_BUF_SIZE SZ_4K
+#define CURRENT_OBJCG_UPDATE_BIT 0
+#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
-void memcg_get_cache_ids(void)
-{
- down_read(&memcg_cache_ids_sem);
-}
+static DEFINE_SPINLOCK(objcg_lock);
-void memcg_put_cache_ids(void)
+bool mem_cgroup_kmem_disabled(void)
{
- up_read(&memcg_cache_ids_sem);
+ return cgroup_memory_nokmem;
}
-/*
- * MIN_SIZE is different than 1, because we would like to avoid going through
- * the alloc/free process all the time. In a small machine, 4 kmem-limited
- * cgroups is a reasonable guess. In the future, it could be a parameter or
- * tunable, but that is strictly not necessary.
- *
- * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
- * this constant directly from cgroup, but it is understandable that this is
- * better kept as an internal representation in cgroup.c. In any case, the
- * cgrp_id space is not getting any smaller, and we don't have to necessarily
- * increase ours as well if it increases.
- */
-#define MEMCG_CACHES_MIN_SIZE 4
-#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
-
-/*
- * A lot of the calls to the cache allocation functions are expected to be
- * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
- * conditional to this static branch, we'll have to allow modules that does
- * kmem_cache_alloc and the such to see this symbol as well
- */
-DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
-EXPORT_SYMBOL(memcg_kmem_enabled_key);
-
-struct workqueue_struct *memcg_kmem_cache_wq;
-
-static int memcg_shrinker_map_size;
-static DEFINE_MUTEX(memcg_shrinker_map_mutex);
+static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
-static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
+static void obj_cgroup_release(struct percpu_ref *ref)
{
- kvfree(container_of(head, struct memcg_shrinker_map, rcu));
-}
-
-static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
- int size, int old_size)
-{
- struct memcg_shrinker_map *new, *old;
- int nid;
-
- lockdep_assert_held(&memcg_shrinker_map_mutex);
-
- for_each_node(nid) {
- old = rcu_dereference_protected(
- mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
- /* Not yet online memcg */
- if (!old)
- return 0;
+ struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
+ unsigned int nr_bytes;
+ unsigned int nr_pages;
+ unsigned long flags;
- new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
- if (!new)
- return -ENOMEM;
+ /*
+ * At this point all allocated objects are freed, and
+ * objcg->nr_charged_bytes can't have an arbitrary byte value.
+ * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
+ *
+ * The following sequence can lead to it:
+ * 1) CPU0: objcg == stock->cached_objcg
+ * 2) CPU1: we do a small allocation (e.g. 92 bytes),
+ * PAGE_SIZE bytes are charged
+ * 3) CPU1: a process from another memcg is allocating something,
+ * the stock if flushed,
+ * objcg->nr_charged_bytes = PAGE_SIZE - 92
+ * 5) CPU0: we do release this object,
+ * 92 bytes are added to stock->nr_bytes
+ * 6) CPU0: stock is flushed,
+ * 92 bytes are added to objcg->nr_charged_bytes
+ *
+ * In the result, nr_charged_bytes == PAGE_SIZE.
+ * This page will be uncharged in obj_cgroup_release().
+ */
+ nr_bytes = atomic_read(&objcg->nr_charged_bytes);
+ WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
+ nr_pages = nr_bytes >> PAGE_SHIFT;
- /* Set all old bits, clear all new bits */
- memset(new->map, (int)0xff, old_size);
- memset((void *)new->map + old_size, 0, size - old_size);
+ if (nr_pages) {
+ struct mem_cgroup *memcg;
- rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
- call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
+ memcg = get_mem_cgroup_from_objcg(objcg);
+ mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
+ memcg1_account_kmem(memcg, -nr_pages);
+ if (!mem_cgroup_is_root(memcg))
+ memcg_uncharge(memcg, nr_pages);
+ mem_cgroup_put(memcg);
}
- return 0;
-}
-
-static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
-{
- struct mem_cgroup_per_node *pn;
- struct memcg_shrinker_map *map;
- int nid;
+ spin_lock_irqsave(&objcg_lock, flags);
+ list_del(&objcg->list);
+ spin_unlock_irqrestore(&objcg_lock, flags);
- if (mem_cgroup_is_root(memcg))
- return;
-
- for_each_node(nid) {
- pn = mem_cgroup_nodeinfo(memcg, nid);
- map = rcu_dereference_protected(pn->shrinker_map, true);
- if (map)
- kvfree(map);
- rcu_assign_pointer(pn->shrinker_map, NULL);
- }
+ percpu_ref_exit(ref);
+ kfree_rcu(objcg, rcu);
}
-static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
+static struct obj_cgroup *obj_cgroup_alloc(void)
{
- struct memcg_shrinker_map *map;
- int nid, size, ret = 0;
+ struct obj_cgroup *objcg;
+ int ret;
- if (mem_cgroup_is_root(memcg))
- return 0;
+ objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
+ if (!objcg)
+ return NULL;
- mutex_lock(&memcg_shrinker_map_mutex);
- size = memcg_shrinker_map_size;
- for_each_node(nid) {
- map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
- if (!map) {
- memcg_free_shrinker_maps(memcg);
- ret = -ENOMEM;
- break;
- }
- rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
+ ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
+ GFP_KERNEL);
+ if (ret) {
+ kfree(objcg);
+ return NULL;
}
- mutex_unlock(&memcg_shrinker_map_mutex);
-
- return ret;
+ INIT_LIST_HEAD(&objcg->list);
+ return objcg;
}
-int memcg_expand_shrinker_maps(int new_id)
+static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
+ struct mem_cgroup *parent)
{
- int size, old_size, ret = 0;
- struct mem_cgroup *memcg;
+ struct obj_cgroup *objcg, *iter;
- size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
- old_size = memcg_shrinker_map_size;
- if (size <= old_size)
- return 0;
+ objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
- mutex_lock(&memcg_shrinker_map_mutex);
- if (!root_mem_cgroup)
- goto unlock;
+ spin_lock_irq(&objcg_lock);
- for_each_mem_cgroup(memcg) {
- if (mem_cgroup_is_root(memcg))
- continue;
- ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
- if (ret)
- goto unlock;
- }
-unlock:
- if (!ret)
- memcg_shrinker_map_size = size;
- mutex_unlock(&memcg_shrinker_map_mutex);
- return ret;
-}
+ /* 1) Ready to reparent active objcg. */
+ list_add(&objcg->list, &memcg->objcg_list);
+ /* 2) Reparent active objcg and already reparented objcgs to parent. */
+ list_for_each_entry(iter, &memcg->objcg_list, list)
+ WRITE_ONCE(iter->memcg, parent);
+ /* 3) Move already reparented objcgs to the parent's list */
+ list_splice(&memcg->objcg_list, &parent->objcg_list);
-void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
-{
- if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
- struct memcg_shrinker_map *map;
+ spin_unlock_irq(&objcg_lock);
- rcu_read_lock();
- map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
- /* Pairs with smp mb in shrink_slab() */
- smp_mb__before_atomic();
- set_bit(shrinker_id, map->map);
- rcu_read_unlock();
- }
+ percpu_ref_kill(&objcg->refcnt);
}
-#else /* CONFIG_MEMCG_KMEM */
-static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
-{
- return 0;
-}
-static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
-#endif /* CONFIG_MEMCG_KMEM */
+/*
+ * A lot of the calls to the cache allocation functions are expected to be
+ * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
+ * conditional to this static branch, we'll have to allow modules that does
+ * kmem_cache_alloc and the such to see this symbol as well
+ */
+DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
+EXPORT_SYMBOL(memcg_kmem_online_key);
+
+DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
+EXPORT_SYMBOL(memcg_bpf_enabled_key);
/**
- * mem_cgroup_css_from_page - css of the memcg associated with a page
- * @page: page of interest
+ * mem_cgroup_css_from_folio - css of the memcg associated with a folio
+ * @folio: folio of interest
*
* If memcg is bound to the default hierarchy, css of the memcg associated
- * with @page is returned. The returned css remains associated with @page
+ * with @folio is returned. The returned css remains associated with @folio
* until it is released.
*
* If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
* is returned.
*/
-struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
+struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
{
- struct mem_cgroup *memcg;
-
- memcg = page->mem_cgroup;
+ struct mem_cgroup *memcg = folio_memcg(folio);
if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
memcg = root_mem_cgroup;
@@ -487,7 +278,9 @@ ino_t page_cgroup_ino(struct page *page)
unsigned long ino = 0;
rcu_read_lock();
- memcg = READ_ONCE(page->mem_cgroup);
+ /* page_folio() is racy here, but the entire function is racy anyway */
+ memcg = folio_memcg_check(page_folio(page));
+
while (memcg && !(memcg->css.flags & CSS_ONLINE))
memcg = parent_mem_cgroup(memcg);
if (memcg)
@@ -495,312 +288,589 @@ ino_t page_cgroup_ino(struct page *page)
rcu_read_unlock();
return ino;
}
+EXPORT_SYMBOL_GPL(page_cgroup_ino);
+
+/* Subset of node_stat_item for memcg stats */
+static const unsigned int memcg_node_stat_items[] = {
+ NR_INACTIVE_ANON,
+ NR_ACTIVE_ANON,
+ NR_INACTIVE_FILE,
+ NR_ACTIVE_FILE,
+ NR_UNEVICTABLE,
+ NR_SLAB_RECLAIMABLE_B,
+ NR_SLAB_UNRECLAIMABLE_B,
+ WORKINGSET_REFAULT_ANON,
+ WORKINGSET_REFAULT_FILE,
+ WORKINGSET_ACTIVATE_ANON,
+ WORKINGSET_ACTIVATE_FILE,
+ WORKINGSET_RESTORE_ANON,
+ WORKINGSET_RESTORE_FILE,
+ WORKINGSET_NODERECLAIM,
+ NR_ANON_MAPPED,
+ NR_FILE_MAPPED,
+ NR_FILE_PAGES,
+ NR_FILE_DIRTY,
+ NR_WRITEBACK,
+ NR_SHMEM,
+ NR_SHMEM_THPS,
+ NR_FILE_THPS,
+ NR_ANON_THPS,
+ NR_KERNEL_STACK_KB,
+ NR_PAGETABLE,
+ NR_SECONDARY_PAGETABLE,
+#ifdef CONFIG_SWAP
+ NR_SWAPCACHE,
+#endif
+#ifdef CONFIG_NUMA_BALANCING
+ PGPROMOTE_SUCCESS,
+#endif
+ PGDEMOTE_KSWAPD,
+ PGDEMOTE_DIRECT,
+ PGDEMOTE_KHUGEPAGED,
+ PGDEMOTE_PROACTIVE,
+#ifdef CONFIG_HUGETLB_PAGE
+ NR_HUGETLB,
+#endif
+};
+
+static const unsigned int memcg_stat_items[] = {
+ MEMCG_SWAP,
+ MEMCG_SOCK,
+ MEMCG_PERCPU_B,
+ MEMCG_VMALLOC,
+ MEMCG_KMEM,
+ MEMCG_ZSWAP_B,
+ MEMCG_ZSWAPPED,
+};
-static struct mem_cgroup_per_node *
-mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
+#define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
+#define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
+ ARRAY_SIZE(memcg_stat_items))
+#define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
+static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
+
+static void init_memcg_stats(void)
{
- int nid = page_to_nid(page);
+ u8 i, j = 0;
+
+ BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
+
+ memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
- return memcg->nodeinfo[nid];
+ for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
+ mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
+
+ for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
+ mem_cgroup_stats_index[memcg_stat_items[i]] = j;
}
-static struct mem_cgroup_tree_per_node *
-soft_limit_tree_node(int nid)
+static inline int memcg_stats_index(int idx)
{
- return soft_limit_tree.rb_tree_per_node[nid];
+ return mem_cgroup_stats_index[idx];
}
-static struct mem_cgroup_tree_per_node *
-soft_limit_tree_from_page(struct page *page)
+struct lruvec_stats_percpu {
+ /* Local (CPU and cgroup) state */
+ long state[NR_MEMCG_NODE_STAT_ITEMS];
+
+ /* Delta calculation for lockless upward propagation */
+ long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
+};
+
+struct lruvec_stats {
+ /* Aggregated (CPU and subtree) state */
+ long state[NR_MEMCG_NODE_STAT_ITEMS];
+
+ /* Non-hierarchical (CPU aggregated) state */
+ long state_local[NR_MEMCG_NODE_STAT_ITEMS];
+
+ /* Pending child counts during tree propagation */
+ long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
+};
+
+unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
{
- int nid = page_to_nid(page);
+ struct mem_cgroup_per_node *pn;
+ long x;
+ int i;
- return soft_limit_tree.rb_tree_per_node[nid];
+ if (mem_cgroup_disabled())
+ return node_page_state(lruvec_pgdat(lruvec), idx);
+
+ i = memcg_stats_index(idx);
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return 0;
+
+ pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
+ x = READ_ONCE(pn->lruvec_stats->state[i]);
+#ifdef CONFIG_SMP
+ if (x < 0)
+ x = 0;
+#endif
+ return x;
}
-static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
- struct mem_cgroup_tree_per_node *mctz,
- unsigned long new_usage_in_excess)
+unsigned long lruvec_page_state_local(struct lruvec *lruvec,
+ enum node_stat_item idx)
{
- struct rb_node **p = &mctz->rb_root.rb_node;
- struct rb_node *parent = NULL;
- struct mem_cgroup_per_node *mz_node;
- bool rightmost = true;
+ struct mem_cgroup_per_node *pn;
+ long x;
+ int i;
- if (mz->on_tree)
- return;
+ if (mem_cgroup_disabled())
+ return node_page_state(lruvec_pgdat(lruvec), idx);
+
+ i = memcg_stats_index(idx);
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return 0;
+
+ pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
+ x = READ_ONCE(pn->lruvec_stats->state_local[i]);
+#ifdef CONFIG_SMP
+ if (x < 0)
+ x = 0;
+#endif
+ return x;
+}
+
+/* Subset of vm_event_item to report for memcg event stats */
+static const unsigned int memcg_vm_event_stat[] = {
+#ifdef CONFIG_MEMCG_V1
+ PGPGIN,
+ PGPGOUT,
+#endif
+ PSWPIN,
+ PSWPOUT,
+ PGSCAN_KSWAPD,
+ PGSCAN_DIRECT,
+ PGSCAN_KHUGEPAGED,
+ PGSCAN_PROACTIVE,
+ PGSTEAL_KSWAPD,
+ PGSTEAL_DIRECT,
+ PGSTEAL_KHUGEPAGED,
+ PGSTEAL_PROACTIVE,
+ PGFAULT,
+ PGMAJFAULT,
+ PGREFILL,
+ PGACTIVATE,
+ PGDEACTIVATE,
+ PGLAZYFREE,
+ PGLAZYFREED,
+#ifdef CONFIG_SWAP
+ SWPIN_ZERO,
+ SWPOUT_ZERO,
+#endif
+#ifdef CONFIG_ZSWAP
+ ZSWPIN,
+ ZSWPOUT,
+ ZSWPWB,
+#endif
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ THP_FAULT_ALLOC,
+ THP_COLLAPSE_ALLOC,
+ THP_SWPOUT,
+ THP_SWPOUT_FALLBACK,
+#endif
+#ifdef CONFIG_NUMA_BALANCING
+ NUMA_PAGE_MIGRATE,
+ NUMA_PTE_UPDATES,
+ NUMA_HINT_FAULTS,
+#endif
+};
+
+#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
+static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
+
+static void init_memcg_events(void)
+{
+ u8 i;
- mz->usage_in_excess = new_usage_in_excess;
- if (!mz->usage_in_excess)
+ BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
+
+ memset(mem_cgroup_events_index, U8_MAX,
+ sizeof(mem_cgroup_events_index));
+
+ for (i = 0; i < NR_MEMCG_EVENTS; ++i)
+ mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
+}
+
+static inline int memcg_events_index(enum vm_event_item idx)
+{
+ return mem_cgroup_events_index[idx];
+}
+
+struct memcg_vmstats_percpu {
+ /* Stats updates since the last flush */
+ unsigned int stats_updates;
+
+ /* Cached pointers for fast iteration in memcg_rstat_updated() */
+ struct memcg_vmstats_percpu __percpu *parent_pcpu;
+ struct memcg_vmstats *vmstats;
+
+ /* The above should fit a single cacheline for memcg_rstat_updated() */
+
+ /* Local (CPU and cgroup) page state & events */
+ long state[MEMCG_VMSTAT_SIZE];
+ unsigned long events[NR_MEMCG_EVENTS];
+
+ /* Delta calculation for lockless upward propagation */
+ long state_prev[MEMCG_VMSTAT_SIZE];
+ unsigned long events_prev[NR_MEMCG_EVENTS];
+} ____cacheline_aligned;
+
+struct memcg_vmstats {
+ /* Aggregated (CPU and subtree) page state & events */
+ long state[MEMCG_VMSTAT_SIZE];
+ unsigned long events[NR_MEMCG_EVENTS];
+
+ /* Non-hierarchical (CPU aggregated) page state & events */
+ long state_local[MEMCG_VMSTAT_SIZE];
+ unsigned long events_local[NR_MEMCG_EVENTS];
+
+ /* Pending child counts during tree propagation */
+ long state_pending[MEMCG_VMSTAT_SIZE];
+ unsigned long events_pending[NR_MEMCG_EVENTS];
+
+ /* Stats updates since the last flush */
+ atomic_t stats_updates;
+};
+
+/*
+ * memcg and lruvec stats flushing
+ *
+ * Many codepaths leading to stats update or read are performance sensitive and
+ * adding stats flushing in such codepaths is not desirable. So, to optimize the
+ * flushing the kernel does:
+ *
+ * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
+ * rstat update tree grow unbounded.
+ *
+ * 2) Flush the stats synchronously on reader side only when there are more than
+ * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
+ * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
+ * only for 2 seconds due to (1).
+ */
+static void flush_memcg_stats_dwork(struct work_struct *w);
+static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
+static u64 flush_last_time;
+
+#define FLUSH_TIME (2UL*HZ)
+
+static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
+{
+ return atomic_read(&vmstats->stats_updates) >
+ MEMCG_CHARGE_BATCH * num_online_cpus();
+}
+
+static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
+ int cpu)
+{
+ struct memcg_vmstats_percpu __percpu *statc_pcpu;
+ struct memcg_vmstats_percpu *statc;
+ unsigned int stats_updates;
+
+ if (!val)
return;
- while (*p) {
- parent = *p;
- mz_node = rb_entry(parent, struct mem_cgroup_per_node,
- tree_node);
- if (mz->usage_in_excess < mz_node->usage_in_excess) {
- p = &(*p)->rb_left;
- rightmost = false;
- }
+ css_rstat_updated(&memcg->css, cpu);
+ statc_pcpu = memcg->vmstats_percpu;
+ for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
+ statc = this_cpu_ptr(statc_pcpu);
/*
- * We can't avoid mem cgroups that are over their soft
- * limit by the same amount
+ * If @memcg is already flushable then all its ancestors are
+ * flushable as well and also there is no need to increase
+ * stats_updates.
*/
- else if (mz->usage_in_excess >= mz_node->usage_in_excess)
- p = &(*p)->rb_right;
+ if (memcg_vmstats_needs_flush(statc->vmstats))
+ break;
+
+ stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
+ abs(val));
+ if (stats_updates < MEMCG_CHARGE_BATCH)
+ continue;
+
+ stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
+ atomic_add(stats_updates, &statc->vmstats->stats_updates);
}
+}
- if (rightmost)
- mctz->rb_rightmost = &mz->tree_node;
+static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
+{
+ bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
- rb_link_node(&mz->tree_node, parent, p);
- rb_insert_color(&mz->tree_node, &mctz->rb_root);
- mz->on_tree = true;
+ trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
+ force, needs_flush);
+
+ if (!force && !needs_flush)
+ return;
+
+ if (mem_cgroup_is_root(memcg))
+ WRITE_ONCE(flush_last_time, jiffies_64);
+
+ css_rstat_flush(&memcg->css);
}
-static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
- struct mem_cgroup_tree_per_node *mctz)
+/*
+ * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
+ * @memcg: root of the subtree to flush
+ *
+ * Flushing is serialized by the underlying global rstat lock. There is also a
+ * minimum amount of work to be done even if there are no stat updates to flush.
+ * Hence, we only flush the stats if the updates delta exceeds a threshold. This
+ * avoids unnecessary work and contention on the underlying lock.
+ */
+void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
{
- if (!mz->on_tree)
+ if (mem_cgroup_disabled())
return;
- if (&mz->tree_node == mctz->rb_rightmost)
- mctz->rb_rightmost = rb_prev(&mz->tree_node);
+ if (!memcg)
+ memcg = root_mem_cgroup;
- rb_erase(&mz->tree_node, &mctz->rb_root);
- mz->on_tree = false;
+ __mem_cgroup_flush_stats(memcg, false);
}
-static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
- struct mem_cgroup_tree_per_node *mctz)
+void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
{
- unsigned long flags;
+ /* Only flush if the periodic flusher is one full cycle late */
+ if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
+ mem_cgroup_flush_stats(memcg);
+}
- spin_lock_irqsave(&mctz->lock, flags);
- __mem_cgroup_remove_exceeded(mz, mctz);
- spin_unlock_irqrestore(&mctz->lock, flags);
+static void flush_memcg_stats_dwork(struct work_struct *w)
+{
+ /*
+ * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
+ * in latency-sensitive paths is as cheap as possible.
+ */
+ __mem_cgroup_flush_stats(root_mem_cgroup, true);
+ queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
}
-static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
+unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
{
- unsigned long nr_pages = page_counter_read(&memcg->memory);
- unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
- unsigned long excess = 0;
+ long x;
+ int i = memcg_stats_index(idx);
- if (nr_pages > soft_limit)
- excess = nr_pages - soft_limit;
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return 0;
- return excess;
+ x = READ_ONCE(memcg->vmstats->state[i]);
+#ifdef CONFIG_SMP
+ if (x < 0)
+ x = 0;
+#endif
+ return x;
}
-static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
+static int memcg_page_state_unit(int item);
+
+/*
+ * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
+ * up non-zero sub-page updates to 1 page as zero page updates are ignored.
+ */
+static int memcg_state_val_in_pages(int idx, int val)
{
- unsigned long excess;
- struct mem_cgroup_per_node *mz;
- struct mem_cgroup_tree_per_node *mctz;
+ int unit = memcg_page_state_unit(idx);
+
+ if (!val || unit == PAGE_SIZE)
+ return val;
+ else
+ return max(val * unit / PAGE_SIZE, 1UL);
+}
+
+/**
+ * mod_memcg_state - update cgroup memory statistics
+ * @memcg: the memory cgroup
+ * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
+ * @val: delta to add to the counter, can be negative
+ */
+void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
+ int val)
+{
+ int i = memcg_stats_index(idx);
+ int cpu;
- mctz = soft_limit_tree_from_page(page);
- if (!mctz)
+ if (mem_cgroup_disabled())
return;
- /*
- * Necessary to update all ancestors when hierarchy is used.
- * because their event counter is not touched.
- */
- for (; memcg; memcg = parent_mem_cgroup(memcg)) {
- mz = mem_cgroup_page_nodeinfo(memcg, page);
- excess = soft_limit_excess(memcg);
- /*
- * We have to update the tree if mz is on RB-tree or
- * mem is over its softlimit.
- */
- if (excess || mz->on_tree) {
- unsigned long flags;
- spin_lock_irqsave(&mctz->lock, flags);
- /* if on-tree, remove it */
- if (mz->on_tree)
- __mem_cgroup_remove_exceeded(mz, mctz);
- /*
- * Insert again. mz->usage_in_excess will be updated.
- * If excess is 0, no tree ops.
- */
- __mem_cgroup_insert_exceeded(mz, mctz, excess);
- spin_unlock_irqrestore(&mctz->lock, flags);
- }
- }
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return;
+
+ cpu = get_cpu();
+
+ this_cpu_add(memcg->vmstats_percpu->state[i], val);
+ val = memcg_state_val_in_pages(idx, val);
+ memcg_rstat_updated(memcg, val, cpu);
+ trace_mod_memcg_state(memcg, idx, val);
+
+ put_cpu();
}
-static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
+#ifdef CONFIG_MEMCG_V1
+/* idx can be of type enum memcg_stat_item or node_stat_item. */
+unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
{
- struct mem_cgroup_tree_per_node *mctz;
- struct mem_cgroup_per_node *mz;
- int nid;
+ long x;
+ int i = memcg_stats_index(idx);
- for_each_node(nid) {
- mz = mem_cgroup_nodeinfo(memcg, nid);
- mctz = soft_limit_tree_node(nid);
- if (mctz)
- mem_cgroup_remove_exceeded(mz, mctz);
- }
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return 0;
+
+ x = READ_ONCE(memcg->vmstats->state_local[i]);
+#ifdef CONFIG_SMP
+ if (x < 0)
+ x = 0;
+#endif
+ return x;
}
+#endif
-static struct mem_cgroup_per_node *
-__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
+static void mod_memcg_lruvec_state(struct lruvec *lruvec,
+ enum node_stat_item idx,
+ int val)
{
- struct mem_cgroup_per_node *mz;
+ struct mem_cgroup_per_node *pn;
+ struct mem_cgroup *memcg;
+ int i = memcg_stats_index(idx);
+ int cpu;
-retry:
- mz = NULL;
- if (!mctz->rb_rightmost)
- goto done; /* Nothing to reclaim from */
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return;
- mz = rb_entry(mctz->rb_rightmost,
- struct mem_cgroup_per_node, tree_node);
- /*
- * Remove the node now but someone else can add it back,
- * we will to add it back at the end of reclaim to its correct
- * position in the tree.
- */
- __mem_cgroup_remove_exceeded(mz, mctz);
- if (!soft_limit_excess(mz->memcg) ||
- !css_tryget_online(&mz->memcg->css))
- goto retry;
-done:
- return mz;
+ pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
+ memcg = pn->memcg;
+
+ cpu = get_cpu();
+
+ /* Update memcg */
+ this_cpu_add(memcg->vmstats_percpu->state[i], val);
+
+ /* Update lruvec */
+ this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
+
+ val = memcg_state_val_in_pages(idx, val);
+ memcg_rstat_updated(memcg, val, cpu);
+ trace_mod_memcg_lruvec_state(memcg, idx, val);
+
+ put_cpu();
}
-static struct mem_cgroup_per_node *
-mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
+/**
+ * mod_lruvec_state - update lruvec memory statistics
+ * @lruvec: the lruvec
+ * @idx: the stat item
+ * @val: delta to add to the counter, can be negative
+ *
+ * The lruvec is the intersection of the NUMA node and a cgroup. This
+ * function updates the all three counters that are affected by a
+ * change of state at this level: per-node, per-cgroup, per-lruvec.
+ */
+void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
+ int val)
{
- struct mem_cgroup_per_node *mz;
+ /* Update node */
+ mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
- spin_lock_irq(&mctz->lock);
- mz = __mem_cgroup_largest_soft_limit_node(mctz);
- spin_unlock_irq(&mctz->lock);
- return mz;
+ /* Update memcg and lruvec */
+ if (!mem_cgroup_disabled())
+ mod_memcg_lruvec_state(lruvec, idx, val);
}
-static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
- int event)
+void lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
+ int val)
{
- return atomic_long_read(&memcg->events[event]);
+ struct mem_cgroup *memcg;
+ pg_data_t *pgdat = folio_pgdat(folio);
+ struct lruvec *lruvec;
+
+ rcu_read_lock();
+ memcg = folio_memcg(folio);
+ /* Untracked pages have no memcg, no lruvec. Update only the node */
+ if (!memcg) {
+ rcu_read_unlock();
+ mod_node_page_state(pgdat, idx, val);
+ return;
+ }
+
+ lruvec = mem_cgroup_lruvec(memcg, pgdat);
+ mod_lruvec_state(lruvec, idx, val);
+ rcu_read_unlock();
}
+EXPORT_SYMBOL(lruvec_stat_mod_folio);
-static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
- struct page *page,
- bool compound, int nr_pages)
+void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
{
+ pg_data_t *pgdat = page_pgdat(virt_to_page(p));
+ struct mem_cgroup *memcg;
+ struct lruvec *lruvec;
+
+ rcu_read_lock();
+ memcg = mem_cgroup_from_slab_obj(p);
+
/*
- * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
- * counted as CACHE even if it's on ANON LRU.
+ * Untracked pages have no memcg, no lruvec. Update only the
+ * node. If we reparent the slab objects to the root memcg,
+ * when we free the slab object, we need to update the per-memcg
+ * vmstats to keep it correct for the root memcg.
*/
- if (PageAnon(page))
- __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
- else {
- __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
- if (PageSwapBacked(page))
- __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
+ if (!memcg) {
+ mod_node_page_state(pgdat, idx, val);
+ } else {
+ lruvec = mem_cgroup_lruvec(memcg, pgdat);
+ mod_lruvec_state(lruvec, idx, val);
}
+ rcu_read_unlock();
+}
- if (compound) {
- VM_BUG_ON_PAGE(!PageTransHuge(page), page);
- __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
- }
+/**
+ * count_memcg_events - account VM events in a cgroup
+ * @memcg: the memory cgroup
+ * @idx: the event item
+ * @count: the number of events that occurred
+ */
+void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
+ unsigned long count)
+{
+ int i = memcg_events_index(idx);
+ int cpu;
- /* pagein of a big page is an event. So, ignore page size */
- if (nr_pages > 0)
- __count_memcg_events(memcg, PGPGIN, 1);
- else {
- __count_memcg_events(memcg, PGPGOUT, 1);
- nr_pages = -nr_pages; /* for event */
- }
+ if (mem_cgroup_disabled())
+ return;
- __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
-}
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return;
-unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
- int nid, unsigned int lru_mask)
-{
- struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
- unsigned long nr = 0;
- enum lru_list lru;
+ cpu = get_cpu();
- VM_BUG_ON((unsigned)nid >= nr_node_ids);
+ this_cpu_add(memcg->vmstats_percpu->events[i], count);
+ memcg_rstat_updated(memcg, count, cpu);
+ trace_count_memcg_events(memcg, idx, count);
- for_each_lru(lru) {
- if (!(BIT(lru) & lru_mask))
- continue;
- nr += mem_cgroup_get_lru_size(lruvec, lru);
- }
- return nr;
+ put_cpu();
}
-static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
- unsigned int lru_mask)
+unsigned long memcg_events(struct mem_cgroup *memcg, int event)
{
- unsigned long nr = 0;
- int nid;
+ int i = memcg_events_index(event);
+
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
+ return 0;
- for_each_node_state(nid, N_MEMORY)
- nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
- return nr;
+ return READ_ONCE(memcg->vmstats->events[i]);
}
-static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
- enum mem_cgroup_events_target target)
+#ifdef CONFIG_MEMCG_V1
+unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
- unsigned long val, next;
+ int i = memcg_events_index(event);
- val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
- next = __this_cpu_read(memcg->stat_cpu->targets[target]);
- /* from time_after() in jiffies.h */
- if ((long)(next - val) < 0) {
- switch (target) {
- case MEM_CGROUP_TARGET_THRESH:
- next = val + THRESHOLDS_EVENTS_TARGET;
- break;
- case MEM_CGROUP_TARGET_SOFTLIMIT:
- next = val + SOFTLIMIT_EVENTS_TARGET;
- break;
- case MEM_CGROUP_TARGET_NUMAINFO:
- next = val + NUMAINFO_EVENTS_TARGET;
- break;
- default:
- break;
- }
- __this_cpu_write(memcg->stat_cpu->targets[target], next);
- return true;
- }
- return false;
-}
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
+ return 0;
-/*
- * Check events in order.
- *
- */
-static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
-{
- /* threshold event is triggered in finer grain than soft limit */
- if (unlikely(mem_cgroup_event_ratelimit(memcg,
- MEM_CGROUP_TARGET_THRESH))) {
- bool do_softlimit;
- bool do_numainfo __maybe_unused;
-
- do_softlimit = mem_cgroup_event_ratelimit(memcg,
- MEM_CGROUP_TARGET_SOFTLIMIT);
-#if MAX_NUMNODES > 1
- do_numainfo = mem_cgroup_event_ratelimit(memcg,
- MEM_CGROUP_TARGET_NUMAINFO);
-#endif
- mem_cgroup_threshold(memcg);
- if (unlikely(do_softlimit))
- mem_cgroup_update_tree(memcg, page);
-#if MAX_NUMNODES > 1
- if (unlikely(do_numainfo))
- atomic_inc(&memcg->numainfo_events);
-#endif
- }
+ return READ_ONCE(memcg->vmstats->events_local[i]);
}
+#endif
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
@@ -816,13 +886,24 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
}
EXPORT_SYMBOL(mem_cgroup_from_task);
+static __always_inline struct mem_cgroup *active_memcg(void)
+{
+ if (!in_task())
+ return this_cpu_read(int_active_memcg);
+ else
+ return current->active_memcg;
+}
+
/**
* get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
* @mm: mm from which memcg should be extracted. It can be NULL.
*
- * Obtain a reference on mm->memcg and returns it if successful. Otherwise
- * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
- * returned.
+ * Obtain a reference on mm->memcg and returns it if successful. If mm
+ * is NULL, then the memcg is chosen as follows:
+ * 1) The active memcg, if set.
+ * 2) current->mm->memcg, if available
+ * 3) root memcg
+ * If mem_cgroup is disabled, NULL is returned.
*/
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
{
@@ -831,63 +912,75 @@ struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
if (mem_cgroup_disabled())
return NULL;
+ /*
+ * Page cache insertions can happen without an
+ * actual mm context, e.g. during disk probing
+ * on boot, loopback IO, acct() writes etc.
+ *
+ * No need to css_get on root memcg as the reference
+ * counting is disabled on the root level in the
+ * cgroup core. See CSS_NO_REF.
+ */
+ if (unlikely(!mm)) {
+ memcg = active_memcg();
+ if (unlikely(memcg)) {
+ /* remote memcg must hold a ref */
+ css_get(&memcg->css);
+ return memcg;
+ }
+ mm = current->mm;
+ if (unlikely(!mm))
+ return root_mem_cgroup;
+ }
+
rcu_read_lock();
do {
- /*
- * Page cache insertions can happen withou an
- * actual mm context, e.g. during disk probing
- * on boot, loopback IO, acct() writes etc.
- */
- if (unlikely(!mm))
+ memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
+ if (unlikely(!memcg))
memcg = root_mem_cgroup;
- else {
- memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
- if (unlikely(!memcg))
- memcg = root_mem_cgroup;
- }
- } while (!css_tryget_online(&memcg->css));
+ } while (!css_tryget(&memcg->css));
rcu_read_unlock();
return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_mm);
/**
- * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
- * @page: page from which memcg should be extracted.
- *
- * Obtain a reference on page->memcg and returns it if successful. Otherwise
- * root_mem_cgroup is returned.
+ * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
*/
-struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
+struct mem_cgroup *get_mem_cgroup_from_current(void)
{
- struct mem_cgroup *memcg = page->mem_cgroup;
+ struct mem_cgroup *memcg;
if (mem_cgroup_disabled())
return NULL;
+again:
rcu_read_lock();
- if (!memcg || !css_tryget_online(&memcg->css))
- memcg = root_mem_cgroup;
+ memcg = mem_cgroup_from_task(current);
+ if (!css_tryget(&memcg->css)) {
+ rcu_read_unlock();
+ goto again;
+ }
rcu_read_unlock();
return memcg;
}
-EXPORT_SYMBOL(get_mem_cgroup_from_page);
/**
- * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
+ * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
+ * @folio: folio from which memcg should be extracted.
*/
-static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
+struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
{
- if (unlikely(current->active_memcg)) {
- struct mem_cgroup *memcg = root_mem_cgroup;
+ struct mem_cgroup *memcg = folio_memcg(folio);
- rcu_read_lock();
- if (css_tryget_online(&current->active_memcg->css))
- memcg = current->active_memcg;
- rcu_read_unlock();
- return memcg;
- }
- return get_mem_cgroup_from_mm(current->mm);
+ if (mem_cgroup_disabled())
+ return NULL;
+
+ rcu_read_lock();
+ if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
+ memcg = root_mem_cgroup;
+ rcu_read_unlock();
+ return memcg;
}
/**
@@ -903,18 +996,18 @@ static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
* invocations for reference counting, or use mem_cgroup_iter_break()
* to cancel a hierarchy walk before the round-trip is complete.
*
- * Reclaimers can specify a node and a priority level in @reclaim to
- * divide up the memcgs in the hierarchy among all concurrent
- * reclaimers operating on the same node and priority.
+ * Reclaimers can specify a node in @reclaim to divide up the memcgs
+ * in the hierarchy among all concurrent reclaimers operating on the
+ * same node.
*/
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup *prev,
struct mem_cgroup_reclaim_cookie *reclaim)
{
- struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
- struct cgroup_subsys_state *css = NULL;
- struct mem_cgroup *memcg = NULL;
- struct mem_cgroup *pos = NULL;
+ struct mem_cgroup_reclaim_iter *iter;
+ struct cgroup_subsys_state *css;
+ struct mem_cgroup *pos;
+ struct mem_cgroup *next;
if (mem_cgroup_disabled())
return NULL;
@@ -922,99 +1015,76 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
if (!root)
root = root_mem_cgroup;
- if (prev && !reclaim)
- pos = prev;
-
- if (!root->use_hierarchy && root != root_mem_cgroup) {
- if (prev)
- goto out;
- return root;
- }
-
rcu_read_lock();
+restart:
+ next = NULL;
if (reclaim) {
- struct mem_cgroup_per_node *mz;
+ int gen;
+ int nid = reclaim->pgdat->node_id;
- mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
- iter = &mz->iter[reclaim->priority];
+ iter = &root->nodeinfo[nid]->iter;
+ gen = atomic_read(&iter->generation);
- if (prev && reclaim->generation != iter->generation)
+ /*
+ * On start, join the current reclaim iteration cycle.
+ * Exit when a concurrent walker completes it.
+ */
+ if (!prev)
+ reclaim->generation = gen;
+ else if (reclaim->generation != gen)
goto out_unlock;
- while (1) {
- pos = READ_ONCE(iter->position);
- if (!pos || css_tryget(&pos->css))
- break;
- /*
- * css reference reached zero, so iter->position will
- * be cleared by ->css_released. However, we should not
- * rely on this happening soon, because ->css_released
- * is called from a work queue, and by busy-waiting we
- * might block it. So we clear iter->position right
- * away.
- */
- (void)cmpxchg(&iter->position, pos, NULL);
- }
- }
-
- if (pos)
- css = &pos->css;
+ pos = READ_ONCE(iter->position);
+ } else
+ pos = prev;
- for (;;) {
- css = css_next_descendant_pre(css, &root->css);
- if (!css) {
- /*
- * Reclaimers share the hierarchy walk, and a
- * new one might jump in right at the end of
- * the hierarchy - make sure they see at least
- * one group and restart from the beginning.
- */
- if (!prev)
- continue;
- break;
- }
+ css = pos ? &pos->css : NULL;
+ while ((css = css_next_descendant_pre(css, &root->css))) {
/*
* Verify the css and acquire a reference. The root
* is provided by the caller, so we know it's alive
* and kicking, and don't take an extra reference.
*/
- memcg = mem_cgroup_from_css(css);
-
- if (css == &root->css)
- break;
-
- if (css_tryget(css))
+ if (css == &root->css || css_tryget(css))
break;
-
- memcg = NULL;
}
+ next = mem_cgroup_from_css(css);
+
if (reclaim) {
/*
* The position could have already been updated by a competing
* thread, so check that the value hasn't changed since we read
* it to avoid reclaiming from the same cgroup twice.
*/
- (void)cmpxchg(&iter->position, pos, memcg);
+ if (cmpxchg(&iter->position, pos, next) != pos) {
+ if (css && css != &root->css)
+ css_put(css);
+ goto restart;
+ }
- if (pos)
- css_put(&pos->css);
+ if (!next) {
+ atomic_inc(&iter->generation);
- if (!memcg)
- iter->generation++;
- else if (!prev)
- reclaim->generation = iter->generation;
+ /*
+ * Reclaimers share the hierarchy walk, and a
+ * new one might jump in right at the end of
+ * the hierarchy - make sure they see at least
+ * one group and restart from the beginning.
+ */
+ if (!prev)
+ goto restart;
+ }
}
out_unlock:
rcu_read_unlock();
-out:
if (prev && prev != root)
css_put(&prev->css);
- return memcg;
+ return next;
}
/**
@@ -1031,26 +1101,41 @@ void mem_cgroup_iter_break(struct mem_cgroup *root,
css_put(&prev->css);
}
-static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
+static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
+ struct mem_cgroup *dead_memcg)
{
- struct mem_cgroup *memcg = dead_memcg;
struct mem_cgroup_reclaim_iter *iter;
struct mem_cgroup_per_node *mz;
int nid;
- int i;
- for (; memcg; memcg = parent_mem_cgroup(memcg)) {
- for_each_node(nid) {
- mz = mem_cgroup_nodeinfo(memcg, nid);
- for (i = 0; i <= DEF_PRIORITY; i++) {
- iter = &mz->iter[i];
- cmpxchg(&iter->position,
- dead_memcg, NULL);
- }
- }
+ for_each_node(nid) {
+ mz = from->nodeinfo[nid];
+ iter = &mz->iter;
+ cmpxchg(&iter->position, dead_memcg, NULL);
}
}
+static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
+{
+ struct mem_cgroup *memcg = dead_memcg;
+ struct mem_cgroup *last;
+
+ do {
+ __invalidate_reclaim_iterators(memcg, dead_memcg);
+ last = memcg;
+ } while ((memcg = parent_mem_cgroup(memcg)));
+
+ /*
+ * When cgroup1 non-hierarchy mode is used,
+ * parent_mem_cgroup() does not walk all the way up to the
+ * cgroup root (root_mem_cgroup). So we have to handle
+ * dead_memcg from cgroup root separately.
+ */
+ if (!mem_cgroup_is_root(last))
+ __invalidate_reclaim_iterators(root_mem_cgroup,
+ dead_memcg);
+}
+
/**
* mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
* @memcg: hierarchy root
@@ -1059,73 +1144,118 @@ static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
*
* This function iterates over tasks attached to @memcg or to any of its
* descendants and calls @fn for each task. If @fn returns a non-zero
- * value, the function breaks the iteration loop and returns the value.
- * Otherwise, it will iterate over all tasks and return 0.
+ * value, the function breaks the iteration loop. Otherwise, it will iterate
+ * over all tasks and return 0.
*
* This function must not be called for the root memory cgroup.
*/
-int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
- int (*fn)(struct task_struct *, void *), void *arg)
+void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
+ int (*fn)(struct task_struct *, void *), void *arg)
{
struct mem_cgroup *iter;
int ret = 0;
- BUG_ON(memcg == root_mem_cgroup);
+ BUG_ON(mem_cgroup_is_root(memcg));
for_each_mem_cgroup_tree(iter, memcg) {
struct css_task_iter it;
struct task_struct *task;
- css_task_iter_start(&iter->css, 0, &it);
- while (!ret && (task = css_task_iter_next(&it)))
+ css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
+ while (!ret && (task = css_task_iter_next(&it))) {
ret = fn(task, arg);
+ /* Avoid potential softlockup warning */
+ cond_resched();
+ }
css_task_iter_end(&it);
if (ret) {
mem_cgroup_iter_break(memcg, iter);
break;
}
}
- return ret;
}
+#ifdef CONFIG_DEBUG_VM
+void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
+{
+ struct mem_cgroup *memcg;
+
+ if (mem_cgroup_disabled())
+ return;
+
+ memcg = folio_memcg(folio);
+
+ if (!memcg)
+ VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
+ else
+ VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
+}
+#endif
+
/**
- * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
- * @page: the page
- * @pgdat: pgdat of the page
+ * folio_lruvec_lock - Lock the lruvec for a folio.
+ * @folio: Pointer to the folio.
+ *
+ * These functions are safe to use under any of the following conditions:
+ * - folio locked
+ * - folio_test_lru false
+ * - folio frozen (refcount of 0)
*
- * This function is only safe when following the LRU page isolation
- * and putback protocol: the LRU lock must be held, and the page must
- * either be PageLRU() or the caller must have isolated/allocated it.
+ * Return: The lruvec this folio is on with its lock held.
*/
-struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
+struct lruvec *folio_lruvec_lock(struct folio *folio)
{
- struct mem_cgroup_per_node *mz;
- struct mem_cgroup *memcg;
- struct lruvec *lruvec;
+ struct lruvec *lruvec = folio_lruvec(folio);
- if (mem_cgroup_disabled()) {
- lruvec = &pgdat->lruvec;
- goto out;
- }
+ spin_lock(&lruvec->lru_lock);
+ lruvec_memcg_debug(lruvec, folio);
- memcg = page->mem_cgroup;
- /*
- * Swapcache readahead pages are added to the LRU - and
- * possibly migrated - before they are charged.
- */
- if (!memcg)
- memcg = root_mem_cgroup;
+ return lruvec;
+}
+
+/**
+ * folio_lruvec_lock_irq - Lock the lruvec for a folio.
+ * @folio: Pointer to the folio.
+ *
+ * These functions are safe to use under any of the following conditions:
+ * - folio locked
+ * - folio_test_lru false
+ * - folio frozen (refcount of 0)
+ *
+ * Return: The lruvec this folio is on with its lock held and interrupts
+ * disabled.
+ */
+struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
+{
+ struct lruvec *lruvec = folio_lruvec(folio);
+
+ spin_lock_irq(&lruvec->lru_lock);
+ lruvec_memcg_debug(lruvec, folio);
+
+ return lruvec;
+}
+
+/**
+ * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
+ * @folio: Pointer to the folio.
+ * @flags: Pointer to irqsave flags.
+ *
+ * These functions are safe to use under any of the following conditions:
+ * - folio locked
+ * - folio_test_lru false
+ * - folio frozen (refcount of 0)
+ *
+ * Return: The lruvec this folio is on with its lock held and interrupts
+ * disabled.
+ */
+struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
+ unsigned long *flags)
+{
+ struct lruvec *lruvec = folio_lruvec(folio);
+
+ spin_lock_irqsave(&lruvec->lru_lock, *flags);
+ lruvec_memcg_debug(lruvec, folio);
- mz = mem_cgroup_page_nodeinfo(memcg, page);
- lruvec = &mz->lruvec;
-out:
- /*
- * Since a node can be onlined after the mem_cgroup was created,
- * we have to be prepared to initialize lruvec->zone here;
- * and if offlined then reonlined, we need to reinitialize it.
- */
- if (unlikely(lruvec->pgdat != pgdat))
- lruvec->pgdat = pgdat;
return lruvec;
}
@@ -1137,8 +1267,7 @@ out:
* @nr_pages: positive when adding or negative when removing
*
* This function must be called under lru_lock, just before a page is added
- * to or just after a page is removed from an lru list (that ordering being
- * so as to allow it to check that lru_size 0 is consistent with list_empty).
+ * to or just after a page is removed from an lru list.
*/
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
int zid, int nr_pages)
@@ -1168,32 +1297,6 @@ void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
*lru_size += nr_pages;
}
-bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
-{
- struct mem_cgroup *task_memcg;
- struct task_struct *p;
- bool ret;
-
- p = find_lock_task_mm(task);
- if (p) {
- task_memcg = get_mem_cgroup_from_mm(p->mm);
- task_unlock(p);
- } else {
- /*
- * All threads may have already detached their mm's, but the oom
- * killer still needs to detect if they have already been oom
- * killed to prevent needlessly killing additional tasks.
- */
- rcu_read_lock();
- task_memcg = mem_cgroup_from_task(task);
- css_get(&task_memcg->css);
- rcu_read_unlock();
- }
- ret = mem_cgroup_is_descendant(task_memcg, memcg);
- css_put(&task_memcg->css);
- return ret;
-}
-
/**
* mem_cgroup_margin - calculate chargeable space of a memory cgroup
* @memcg: the memory cgroup
@@ -1215,7 +1318,7 @@ static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
if (do_memsw_account()) {
count = page_counter_read(&memcg->memsw);
limit = READ_ONCE(memcg->memsw.max);
- if (count <= limit)
+ if (count < limit)
margin = min(margin, limit - count);
else
margin = 0;
@@ -1224,74 +1327,207 @@ static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
return margin;
}
-/*
- * A routine for checking "mem" is under move_account() or not.
- *
- * Checking a cgroup is mc.from or mc.to or under hierarchy of
- * moving cgroups. This is for waiting at high-memory pressure
- * caused by "move".
- */
-static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
+struct memory_stat {
+ const char *name;
+ unsigned int idx;
+};
+
+static const struct memory_stat memory_stats[] = {
+ { "anon", NR_ANON_MAPPED },
+ { "file", NR_FILE_PAGES },
+ { "kernel", MEMCG_KMEM },
+ { "kernel_stack", NR_KERNEL_STACK_KB },
+ { "pagetables", NR_PAGETABLE },
+ { "sec_pagetables", NR_SECONDARY_PAGETABLE },
+ { "percpu", MEMCG_PERCPU_B },
+ { "sock", MEMCG_SOCK },
+ { "vmalloc", MEMCG_VMALLOC },
+ { "shmem", NR_SHMEM },
+#ifdef CONFIG_ZSWAP
+ { "zswap", MEMCG_ZSWAP_B },
+ { "zswapped", MEMCG_ZSWAPPED },
+#endif
+ { "file_mapped", NR_FILE_MAPPED },
+ { "file_dirty", NR_FILE_DIRTY },
+ { "file_writeback", NR_WRITEBACK },
+#ifdef CONFIG_SWAP
+ { "swapcached", NR_SWAPCACHE },
+#endif
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ { "anon_thp", NR_ANON_THPS },
+ { "file_thp", NR_FILE_THPS },
+ { "shmem_thp", NR_SHMEM_THPS },
+#endif
+ { "inactive_anon", NR_INACTIVE_ANON },
+ { "active_anon", NR_ACTIVE_ANON },
+ { "inactive_file", NR_INACTIVE_FILE },
+ { "active_file", NR_ACTIVE_FILE },
+ { "unevictable", NR_UNEVICTABLE },
+ { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
+ { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
+#ifdef CONFIG_HUGETLB_PAGE
+ { "hugetlb", NR_HUGETLB },
+#endif
+
+ /* The memory events */
+ { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
+ { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
+ { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
+ { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
+ { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
+ { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
+ { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
+
+ { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
+ { "pgdemote_direct", PGDEMOTE_DIRECT },
+ { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
+ { "pgdemote_proactive", PGDEMOTE_PROACTIVE },
+#ifdef CONFIG_NUMA_BALANCING
+ { "pgpromote_success", PGPROMOTE_SUCCESS },
+#endif
+};
+
+/* The actual unit of the state item, not the same as the output unit */
+static int memcg_page_state_unit(int item)
+{
+ switch (item) {
+ case MEMCG_PERCPU_B:
+ case MEMCG_ZSWAP_B:
+ case NR_SLAB_RECLAIMABLE_B:
+ case NR_SLAB_UNRECLAIMABLE_B:
+ return 1;
+ case NR_KERNEL_STACK_KB:
+ return SZ_1K;
+ default:
+ return PAGE_SIZE;
+ }
+}
+
+/* Translate stat items to the correct unit for memory.stat output */
+static int memcg_page_state_output_unit(int item)
{
- struct mem_cgroup *from;
- struct mem_cgroup *to;
- bool ret = false;
/*
- * Unlike task_move routines, we access mc.to, mc.from not under
- * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
+ * Workingset state is actually in pages, but we export it to userspace
+ * as a scalar count of events, so special case it here.
+ *
+ * Demotion and promotion activities are exported in pages, consistent
+ * with their global counterparts.
*/
- spin_lock(&mc.lock);
- from = mc.from;
- to = mc.to;
- if (!from)
- goto unlock;
+ switch (item) {
+ case WORKINGSET_REFAULT_ANON:
+ case WORKINGSET_REFAULT_FILE:
+ case WORKINGSET_ACTIVATE_ANON:
+ case WORKINGSET_ACTIVATE_FILE:
+ case WORKINGSET_RESTORE_ANON:
+ case WORKINGSET_RESTORE_FILE:
+ case WORKINGSET_NODERECLAIM:
+ case PGDEMOTE_KSWAPD:
+ case PGDEMOTE_DIRECT:
+ case PGDEMOTE_KHUGEPAGED:
+ case PGDEMOTE_PROACTIVE:
+#ifdef CONFIG_NUMA_BALANCING
+ case PGPROMOTE_SUCCESS:
+#endif
+ return 1;
+ default:
+ return memcg_page_state_unit(item);
+ }
+}
- ret = mem_cgroup_is_descendant(from, memcg) ||
- mem_cgroup_is_descendant(to, memcg);
-unlock:
- spin_unlock(&mc.lock);
- return ret;
+unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
+{
+ return memcg_page_state(memcg, item) *
+ memcg_page_state_output_unit(item);
}
-static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
+#ifdef CONFIG_MEMCG_V1
+unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
+{
+ return memcg_page_state_local(memcg, item) *
+ memcg_page_state_output_unit(item);
+}
+#endif
+
+#ifdef CONFIG_HUGETLB_PAGE
+static bool memcg_accounts_hugetlb(void)
+{
+ return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
+}
+#else /* CONFIG_HUGETLB_PAGE */
+static bool memcg_accounts_hugetlb(void)
{
- if (mc.moving_task && current != mc.moving_task) {
- if (mem_cgroup_under_move(memcg)) {
- DEFINE_WAIT(wait);
- prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
- /* moving charge context might have finished. */
- if (mc.moving_task)
- schedule();
- finish_wait(&mc.waitq, &wait);
- return true;
- }
- }
return false;
}
+#endif /* CONFIG_HUGETLB_PAGE */
-static const unsigned int memcg1_stats[] = {
- MEMCG_CACHE,
- MEMCG_RSS,
- MEMCG_RSS_HUGE,
- NR_SHMEM,
- NR_FILE_MAPPED,
- NR_FILE_DIRTY,
- NR_WRITEBACK,
- MEMCG_SWAP,
-};
+static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
+{
+ int i;
-static const char *const memcg1_stat_names[] = {
- "cache",
- "rss",
- "rss_huge",
- "shmem",
- "mapped_file",
- "dirty",
- "writeback",
- "swap",
-};
+ /*
+ * Provide statistics on the state of the memory subsystem as
+ * well as cumulative event counters that show past behavior.
+ *
+ * This list is ordered following a combination of these gradients:
+ * 1) generic big picture -> specifics and details
+ * 2) reflecting userspace activity -> reflecting kernel heuristics
+ *
+ * Current memory state:
+ */
+ mem_cgroup_flush_stats(memcg);
+
+ for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
+ u64 size;
+
+#ifdef CONFIG_HUGETLB_PAGE
+ if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
+ !memcg_accounts_hugetlb())
+ continue;
+#endif
+ size = memcg_page_state_output(memcg, memory_stats[i].idx);
+ seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
+
+ if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
+ size += memcg_page_state_output(memcg,
+ NR_SLAB_RECLAIMABLE_B);
+ seq_buf_printf(s, "slab %llu\n", size);
+ }
+ }
+
+ /* Accumulated memory events */
+ seq_buf_printf(s, "pgscan %lu\n",
+ memcg_events(memcg, PGSCAN_KSWAPD) +
+ memcg_events(memcg, PGSCAN_DIRECT) +
+ memcg_events(memcg, PGSCAN_PROACTIVE) +
+ memcg_events(memcg, PGSCAN_KHUGEPAGED));
+ seq_buf_printf(s, "pgsteal %lu\n",
+ memcg_events(memcg, PGSTEAL_KSWAPD) +
+ memcg_events(memcg, PGSTEAL_DIRECT) +
+ memcg_events(memcg, PGSTEAL_PROACTIVE) +
+ memcg_events(memcg, PGSTEAL_KHUGEPAGED));
+
+ for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
+#ifdef CONFIG_MEMCG_V1
+ if (memcg_vm_event_stat[i] == PGPGIN ||
+ memcg_vm_event_stat[i] == PGPGOUT)
+ continue;
+#endif
+ seq_buf_printf(s, "%s %lu\n",
+ vm_event_name(memcg_vm_event_stat[i]),
+ memcg_events(memcg, memcg_vm_event_stat[i]));
+ }
+}
+
+static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
+{
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ memcg_stat_format(memcg, s);
+ else
+ memcg1_stat_format(memcg, s);
+ if (seq_buf_has_overflowed(s))
+ pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
+}
-#define K(x) ((x) << (PAGE_SHIFT-10))
/**
* mem_cgroup_print_oom_context: Print OOM information relevant to
* memory controller.
@@ -1324,37 +1560,43 @@ void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *
*/
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
- struct mem_cgroup *iter;
- unsigned int i;
-
- pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
- K((u64)page_counter_read(&memcg->memory)),
- K((u64)memcg->memory.max), memcg->memory.failcnt);
- pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
- K((u64)page_counter_read(&memcg->memsw)),
- K((u64)memcg->memsw.max), memcg->memsw.failcnt);
- pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
- K((u64)page_counter_read(&memcg->kmem)),
- K((u64)memcg->kmem.max), memcg->kmem.failcnt);
+ /* Use static buffer, for the caller is holding oom_lock. */
+ static char buf[SEQ_BUF_SIZE];
+ struct seq_buf s;
+ unsigned long memory_failcnt;
- for_each_mem_cgroup_tree(iter, memcg) {
- pr_info("Memory cgroup stats for ");
- pr_cont_cgroup_path(iter->css.cgroup);
- pr_cont(":");
-
- for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
- if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
- continue;
- pr_cont(" %s:%luKB", memcg1_stat_names[i],
- K(memcg_page_state(iter, memcg1_stats[i])));
- }
+ lockdep_assert_held(&oom_lock);
- for (i = 0; i < NR_LRU_LISTS; i++)
- pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
- K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
+ else
+ memory_failcnt = memcg->memory.failcnt;
- pr_cont("\n");
+ pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
+ K((u64)page_counter_read(&memcg->memory)),
+ K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
+ K((u64)page_counter_read(&memcg->swap)),
+ K((u64)READ_ONCE(memcg->swap.max)),
+ atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
+#ifdef CONFIG_MEMCG_V1
+ else {
+ pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
+ K((u64)page_counter_read(&memcg->memsw)),
+ K((u64)memcg->memsw.max), memcg->memsw.failcnt);
+ pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
+ K((u64)page_counter_read(&memcg->kmem)),
+ K((u64)memcg->kmem.max), memcg->kmem.failcnt);
}
+#endif
+
+ pr_info("Memory cgroup stats for ");
+ pr_cont_cgroup_path(memcg->css.cgroup);
+ pr_cont(":");
+ seq_buf_init(&s, buf, SEQ_BUF_SIZE);
+ memory_stat_format(memcg, &s);
+ seq_buf_do_printk(&s, KERN_INFO);
}
/*
@@ -1362,441 +1604,109 @@ void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
*/
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
{
- unsigned long max;
+ unsigned long max = READ_ONCE(memcg->memory.max);
- max = memcg->memory.max;
- if (mem_cgroup_swappiness(memcg)) {
- unsigned long memsw_max;
- unsigned long swap_max;
+ if (do_memsw_account()) {
+ if (mem_cgroup_swappiness(memcg)) {
+ /* Calculate swap excess capacity from memsw limit */
+ unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
- memsw_max = memcg->memsw.max;
- swap_max = memcg->swap.max;
- swap_max = min(swap_max, (unsigned long)total_swap_pages);
- max = min(max + swap_max, memsw_max);
+ max += min(swap, (unsigned long)total_swap_pages);
+ }
+ } else {
+ if (mem_cgroup_swappiness(memcg))
+ max += min(READ_ONCE(memcg->swap.max),
+ (unsigned long)total_swap_pages);
}
return max;
}
-static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
- int order)
-{
- struct oom_control oc = {
- .zonelist = NULL,
- .nodemask = NULL,
- .memcg = memcg,
- .gfp_mask = gfp_mask,
- .order = order,
- };
- bool ret;
-
- mutex_lock(&oom_lock);
- ret = out_of_memory(&oc);
- mutex_unlock(&oom_lock);
- return ret;
-}
-
-#if MAX_NUMNODES > 1
-
-/**
- * test_mem_cgroup_node_reclaimable
- * @memcg: the target memcg
- * @nid: the node ID to be checked.
- * @noswap : specify true here if the user wants flle only information.
- *
- * This function returns whether the specified memcg contains any
- * reclaimable pages on a node. Returns true if there are any reclaimable
- * pages in the node.
- */
-static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
- int nid, bool noswap)
-{
- if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
- return true;
- if (noswap || !total_swap_pages)
- return false;
- if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
- return true;
- return false;
-
-}
-
-/*
- * Always updating the nodemask is not very good - even if we have an empty
- * list or the wrong list here, we can start from some node and traverse all
- * nodes based on the zonelist. So update the list loosely once per 10 secs.
- *
- */
-static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
+unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
- int nid;
- /*
- * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
- * pagein/pageout changes since the last update.
- */
- if (!atomic_read(&memcg->numainfo_events))
- return;
- if (atomic_inc_return(&memcg->numainfo_updating) > 1)
- return;
-
- /* make a nodemask where this memcg uses memory from */
- memcg->scan_nodes = node_states[N_MEMORY];
-
- for_each_node_mask(nid, node_states[N_MEMORY]) {
-
- if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
- node_clear(nid, memcg->scan_nodes);
- }
-
- atomic_set(&memcg->numainfo_events, 0);
- atomic_set(&memcg->numainfo_updating, 0);
+ return page_counter_read(&memcg->memory);
}
-/*
- * Selecting a node where we start reclaim from. Because what we need is just
- * reducing usage counter, start from anywhere is O,K. Considering
- * memory reclaim from current node, there are pros. and cons.
- *
- * Freeing memory from current node means freeing memory from a node which
- * we'll use or we've used. So, it may make LRU bad. And if several threads
- * hit limits, it will see a contention on a node. But freeing from remote
- * node means more costs for memory reclaim because of memory latency.
- *
- * Now, we use round-robin. Better algorithm is welcomed.
- */
-int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
+void __memcg_memory_event(struct mem_cgroup *memcg,
+ enum memcg_memory_event event, bool allow_spinning)
{
- int node;
-
- mem_cgroup_may_update_nodemask(memcg);
- node = memcg->last_scanned_node;
+ bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
+ event == MEMCG_SWAP_FAIL;
- node = next_node_in(node, memcg->scan_nodes);
- /*
- * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
- * last time it really checked all the LRUs due to rate limiting.
- * Fallback to the current node in that case for simplicity.
- */
- if (unlikely(node == MAX_NUMNODES))
- node = numa_node_id();
-
- memcg->last_scanned_node = node;
- return node;
-}
-#else
-int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
-{
- return 0;
-}
-#endif
+ /* For now only MEMCG_MAX can happen with !allow_spinning context. */
+ VM_WARN_ON_ONCE(!allow_spinning && event != MEMCG_MAX);
-static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
- pg_data_t *pgdat,
- gfp_t gfp_mask,
- unsigned long *total_scanned)
-{
- struct mem_cgroup *victim = NULL;
- int total = 0;
- int loop = 0;
- unsigned long excess;
- unsigned long nr_scanned;
- struct mem_cgroup_reclaim_cookie reclaim = {
- .pgdat = pgdat,
- .priority = 0,
- };
+ atomic_long_inc(&memcg->memory_events_local[event]);
+ if (!swap_event && allow_spinning)
+ cgroup_file_notify(&memcg->events_local_file);
- excess = soft_limit_excess(root_memcg);
-
- while (1) {
- victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
- if (!victim) {
- loop++;
- if (loop >= 2) {
- /*
- * If we have not been able to reclaim
- * anything, it might because there are
- * no reclaimable pages under this hierarchy
- */
- if (!total)
- break;
- /*
- * We want to do more targeted reclaim.
- * excess >> 2 is not to excessive so as to
- * reclaim too much, nor too less that we keep
- * coming back to reclaim from this cgroup
- */
- if (total >= (excess >> 2) ||
- (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
- break;
- }
- continue;
+ do {
+ atomic_long_inc(&memcg->memory_events[event]);
+ if (allow_spinning) {
+ if (swap_event)
+ cgroup_file_notify(&memcg->swap_events_file);
+ else
+ cgroup_file_notify(&memcg->events_file);
}
- total += mem_cgroup_shrink_node(victim, gfp_mask, false,
- pgdat, &nr_scanned);
- *total_scanned += nr_scanned;
- if (!soft_limit_excess(root_memcg))
- break;
- }
- mem_cgroup_iter_break(root_memcg, victim);
- return total;
-}
-
-#ifdef CONFIG_LOCKDEP
-static struct lockdep_map memcg_oom_lock_dep_map = {
- .name = "memcg_oom_lock",
-};
-#endif
-
-static DEFINE_SPINLOCK(memcg_oom_lock);
-
-/*
- * Check OOM-Killer is already running under our hierarchy.
- * If someone is running, return false.
- */
-static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
-{
- struct mem_cgroup *iter, *failed = NULL;
-
- spin_lock(&memcg_oom_lock);
- for_each_mem_cgroup_tree(iter, memcg) {
- if (iter->oom_lock) {
- /*
- * this subtree of our hierarchy is already locked
- * so we cannot give a lock.
- */
- failed = iter;
- mem_cgroup_iter_break(memcg, iter);
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
break;
- } else
- iter->oom_lock = true;
- }
-
- if (failed) {
- /*
- * OK, we failed to lock the whole subtree so we have
- * to clean up what we set up to the failing subtree
- */
- for_each_mem_cgroup_tree(iter, memcg) {
- if (iter == failed) {
- mem_cgroup_iter_break(memcg, iter);
- break;
- }
- iter->oom_lock = false;
- }
- } else
- mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
-
- spin_unlock(&memcg_oom_lock);
-
- return !failed;
-}
-
-static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
-{
- struct mem_cgroup *iter;
-
- spin_lock(&memcg_oom_lock);
- mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
- for_each_mem_cgroup_tree(iter, memcg)
- iter->oom_lock = false;
- spin_unlock(&memcg_oom_lock);
-}
-
-static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
-{
- struct mem_cgroup *iter;
-
- spin_lock(&memcg_oom_lock);
- for_each_mem_cgroup_tree(iter, memcg)
- iter->under_oom++;
- spin_unlock(&memcg_oom_lock);
-}
-
-static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
-{
- struct mem_cgroup *iter;
-
- /*
- * When a new child is created while the hierarchy is under oom,
- * mem_cgroup_oom_lock() may not be called. Watch for underflow.
- */
- spin_lock(&memcg_oom_lock);
- for_each_mem_cgroup_tree(iter, memcg)
- if (iter->under_oom > 0)
- iter->under_oom--;
- spin_unlock(&memcg_oom_lock);
-}
-
-static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
-
-struct oom_wait_info {
- struct mem_cgroup *memcg;
- wait_queue_entry_t wait;
-};
-
-static int memcg_oom_wake_function(wait_queue_entry_t *wait,
- unsigned mode, int sync, void *arg)
-{
- struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
- struct mem_cgroup *oom_wait_memcg;
- struct oom_wait_info *oom_wait_info;
-
- oom_wait_info = container_of(wait, struct oom_wait_info, wait);
- oom_wait_memcg = oom_wait_info->memcg;
-
- if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
- !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
- return 0;
- return autoremove_wake_function(wait, mode, sync, arg);
-}
-
-static void memcg_oom_recover(struct mem_cgroup *memcg)
-{
- /*
- * For the following lockless ->under_oom test, the only required
- * guarantee is that it must see the state asserted by an OOM when
- * this function is called as a result of userland actions
- * triggered by the notification of the OOM. This is trivially
- * achieved by invoking mem_cgroup_mark_under_oom() before
- * triggering notification.
- */
- if (memcg && memcg->under_oom)
- __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
+ if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
+ break;
+ } while ((memcg = parent_mem_cgroup(memcg)) &&
+ !mem_cgroup_is_root(memcg));
}
+EXPORT_SYMBOL_GPL(__memcg_memory_event);
-enum oom_status {
- OOM_SUCCESS,
- OOM_FAILED,
- OOM_ASYNC,
- OOM_SKIPPED
-};
-
-static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
+static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
+ int order)
{
- enum oom_status ret;
- bool locked;
+ struct oom_control oc = {
+ .zonelist = NULL,
+ .nodemask = NULL,
+ .memcg = memcg,
+ .gfp_mask = gfp_mask,
+ .order = order,
+ };
+ bool ret = true;
- if (order > PAGE_ALLOC_COSTLY_ORDER)
- return OOM_SKIPPED;
+ if (mutex_lock_killable(&oom_lock))
+ return true;
- memcg_memory_event(memcg, MEMCG_OOM);
+ if (mem_cgroup_margin(memcg) >= (1 << order))
+ goto unlock;
/*
- * We are in the middle of the charge context here, so we
- * don't want to block when potentially sitting on a callstack
- * that holds all kinds of filesystem and mm locks.
- *
- * cgroup1 allows disabling the OOM killer and waiting for outside
- * handling until the charge can succeed; remember the context and put
- * the task to sleep at the end of the page fault when all locks are
- * released.
- *
- * On the other hand, in-kernel OOM killer allows for an async victim
- * memory reclaim (oom_reaper) and that means that we are not solely
- * relying on the oom victim to make a forward progress and we can
- * invoke the oom killer here.
- *
- * Please note that mem_cgroup_out_of_memory might fail to find a
- * victim and then we have to bail out from the charge path.
+ * A few threads which were not waiting at mutex_lock_killable() can
+ * fail to bail out. Therefore, check again after holding oom_lock.
*/
- if (memcg->oom_kill_disable) {
- if (!current->in_user_fault)
- return OOM_SKIPPED;
- css_get(&memcg->css);
- current->memcg_in_oom = memcg;
- current->memcg_oom_gfp_mask = mask;
- current->memcg_oom_order = order;
-
- return OOM_ASYNC;
- }
-
- mem_cgroup_mark_under_oom(memcg);
-
- locked = mem_cgroup_oom_trylock(memcg);
-
- if (locked)
- mem_cgroup_oom_notify(memcg);
-
- mem_cgroup_unmark_under_oom(memcg);
- if (mem_cgroup_out_of_memory(memcg, mask, order))
- ret = OOM_SUCCESS;
- else
- ret = OOM_FAILED;
-
- if (locked)
- mem_cgroup_oom_unlock(memcg);
+ ret = out_of_memory(&oc);
+unlock:
+ mutex_unlock(&oom_lock);
return ret;
}
-/**
- * mem_cgroup_oom_synchronize - complete memcg OOM handling
- * @handle: actually kill/wait or just clean up the OOM state
- *
- * This has to be called at the end of a page fault if the memcg OOM
- * handler was enabled.
- *
- * Memcg supports userspace OOM handling where failed allocations must
- * sleep on a waitqueue until the userspace task resolves the
- * situation. Sleeping directly in the charge context with all kinds
- * of locks held is not a good idea, instead we remember an OOM state
- * in the task and mem_cgroup_oom_synchronize() has to be called at
- * the end of the page fault to complete the OOM handling.
- *
- * Returns %true if an ongoing memcg OOM situation was detected and
- * completed, %false otherwise.
+/*
+ * Returns true if successfully killed one or more processes. Though in some
+ * corner cases it can return true even without killing any process.
*/
-bool mem_cgroup_oom_synchronize(bool handle)
+static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
{
- struct mem_cgroup *memcg = current->memcg_in_oom;
- struct oom_wait_info owait;
- bool locked;
+ bool locked, ret;
- /* OOM is global, do not handle */
- if (!memcg)
+ if (order > PAGE_ALLOC_COSTLY_ORDER)
return false;
- if (!handle)
- goto cleanup;
-
- owait.memcg = memcg;
- owait.wait.flags = 0;
- owait.wait.func = memcg_oom_wake_function;
- owait.wait.private = current;
- INIT_LIST_HEAD(&owait.wait.entry);
-
- prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
- mem_cgroup_mark_under_oom(memcg);
+ memcg_memory_event(memcg, MEMCG_OOM);
- locked = mem_cgroup_oom_trylock(memcg);
+ if (!memcg1_oom_prepare(memcg, &locked))
+ return false;
- if (locked)
- mem_cgroup_oom_notify(memcg);
+ ret = mem_cgroup_out_of_memory(memcg, mask, order);
- if (locked && !memcg->oom_kill_disable) {
- mem_cgroup_unmark_under_oom(memcg);
- finish_wait(&memcg_oom_waitq, &owait.wait);
- mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
- current->memcg_oom_order);
- } else {
- schedule();
- mem_cgroup_unmark_under_oom(memcg);
- finish_wait(&memcg_oom_waitq, &owait.wait);
- }
+ memcg1_oom_finish(memcg, locked);
- if (locked) {
- mem_cgroup_oom_unlock(memcg);
- /*
- * There is no guarantee that an OOM-lock contender
- * sees the wakeups triggered by the OOM kill
- * uncharges. Wake any sleepers explicitely.
- */
- memcg_oom_recover(memcg);
- }
-cleanup:
- current->memcg_in_oom = NULL;
- css_put(&memcg->css);
- return true;
+ return ret;
}
/**
@@ -1824,7 +1734,15 @@ struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
rcu_read_lock();
memcg = mem_cgroup_from_task(victim);
- if (memcg == root_mem_cgroup)
+ if (mem_cgroup_is_root(memcg))
+ goto out;
+
+ /*
+ * If the victim task has been asynchronously moved to a different
+ * memory cgroup, we might end up killing tasks outside oom_domain.
+ * In this case it's better to ignore memory.group.oom.
+ */
+ if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
goto out;
/*
@@ -1833,7 +1751,7 @@ struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
* highest-level memory cgroup with oom.group set.
*/
for (; memcg; memcg = parent_mem_cgroup(memcg)) {
- if (memcg->oom_group)
+ if (READ_ONCE(memcg->oom_group))
oom_group = memcg;
if (memcg == oom_domain)
@@ -1855,200 +1773,241 @@ void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
pr_cont(" are going to be killed due to memory.oom.group set\n");
}
-/**
- * lock_page_memcg - lock a page->mem_cgroup binding
- * @page: the page
- *
- * This function protects unlocked LRU pages from being moved to
- * another cgroup.
- *
- * It ensures lifetime of the returned memcg. Caller is responsible
- * for the lifetime of the page; __unlock_page_memcg() is available
- * when @page might get freed inside the locked section.
- */
-struct mem_cgroup *lock_page_memcg(struct page *page)
-{
- struct mem_cgroup *memcg;
- unsigned long flags;
-
- /*
- * The RCU lock is held throughout the transaction. The fast
- * path can get away without acquiring the memcg->move_lock
- * because page moving starts with an RCU grace period.
- *
- * The RCU lock also protects the memcg from being freed when
- * the page state that is going to change is the only thing
- * preventing the page itself from being freed. E.g. writeback
- * doesn't hold a page reference and relies on PG_writeback to
- * keep off truncation, migration and so forth.
- */
- rcu_read_lock();
-
- if (mem_cgroup_disabled())
- return NULL;
-again:
- memcg = page->mem_cgroup;
- if (unlikely(!memcg))
- return NULL;
-
- if (atomic_read(&memcg->moving_account) <= 0)
- return memcg;
-
- spin_lock_irqsave(&memcg->move_lock, flags);
- if (memcg != page->mem_cgroup) {
- spin_unlock_irqrestore(&memcg->move_lock, flags);
- goto again;
- }
-
- /*
- * When charge migration first begins, we can have locked and
- * unlocked page stat updates happening concurrently. Track
- * the task who has the lock for unlock_page_memcg().
- */
- memcg->move_lock_task = current;
- memcg->move_lock_flags = flags;
-
- return memcg;
-}
-EXPORT_SYMBOL(lock_page_memcg);
-
-/**
- * __unlock_page_memcg - unlock and unpin a memcg
- * @memcg: the memcg
- *
- * Unlock and unpin a memcg returned by lock_page_memcg().
+/*
+ * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
+ * nr_pages in a single cacheline. This may change in future.
*/
-void __unlock_page_memcg(struct mem_cgroup *memcg)
-{
- if (memcg && memcg->move_lock_task == current) {
- unsigned long flags = memcg->move_lock_flags;
-
- memcg->move_lock_task = NULL;
- memcg->move_lock_flags = 0;
+#define NR_MEMCG_STOCK 7
+#define FLUSHING_CACHED_CHARGE 0
+struct memcg_stock_pcp {
+ local_trylock_t lock;
+ uint8_t nr_pages[NR_MEMCG_STOCK];
+ struct mem_cgroup *cached[NR_MEMCG_STOCK];
- spin_unlock_irqrestore(&memcg->move_lock, flags);
- }
+ struct work_struct work;
+ unsigned long flags;
+};
- rcu_read_unlock();
-}
+static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
+ .lock = INIT_LOCAL_TRYLOCK(lock),
+};
-/**
- * unlock_page_memcg - unlock a page->mem_cgroup binding
- * @page: the page
- */
-void unlock_page_memcg(struct page *page)
-{
- __unlock_page_memcg(page->mem_cgroup);
-}
-EXPORT_SYMBOL(unlock_page_memcg);
+struct obj_stock_pcp {
+ local_trylock_t lock;
+ unsigned int nr_bytes;
+ struct obj_cgroup *cached_objcg;
+ struct pglist_data *cached_pgdat;
+ int nr_slab_reclaimable_b;
+ int nr_slab_unreclaimable_b;
-struct memcg_stock_pcp {
- struct mem_cgroup *cached; /* this never be root cgroup */
- unsigned int nr_pages;
struct work_struct work;
unsigned long flags;
-#define FLUSHING_CACHED_CHARGE 0
};
-static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
+
+static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
+ .lock = INIT_LOCAL_TRYLOCK(lock),
+};
+
static DEFINE_MUTEX(percpu_charge_mutex);
+static void drain_obj_stock(struct obj_stock_pcp *stock);
+static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
+ struct mem_cgroup *root_memcg);
+
/**
* consume_stock: Try to consume stocked charge on this cpu.
* @memcg: memcg to consume from.
* @nr_pages: how many pages to charge.
*
- * The charges will only happen if @memcg matches the current cpu's memcg
- * stock, and at least @nr_pages are available in that stock. Failure to
- * service an allocation will refill the stock.
+ * Consume the cached charge if enough nr_pages are present otherwise return
+ * failure. Also return failure for charge request larger than
+ * MEMCG_CHARGE_BATCH or if the local lock is already taken.
*
* returns true if successful, false otherwise.
*/
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
{
struct memcg_stock_pcp *stock;
- unsigned long flags;
+ uint8_t stock_pages;
bool ret = false;
+ int i;
- if (nr_pages > MEMCG_CHARGE_BATCH)
+ if (nr_pages > MEMCG_CHARGE_BATCH ||
+ !local_trylock(&memcg_stock.lock))
return ret;
- local_irq_save(flags);
-
stock = this_cpu_ptr(&memcg_stock);
- if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
- stock->nr_pages -= nr_pages;
- ret = true;
+
+ for (i = 0; i < NR_MEMCG_STOCK; ++i) {
+ if (memcg != READ_ONCE(stock->cached[i]))
+ continue;
+
+ stock_pages = READ_ONCE(stock->nr_pages[i]);
+ if (stock_pages >= nr_pages) {
+ WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
+ ret = true;
+ }
+ break;
}
- local_irq_restore(flags);
+ local_unlock(&memcg_stock.lock);
return ret;
}
+static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
+{
+ page_counter_uncharge(&memcg->memory, nr_pages);
+ if (do_memsw_account())
+ page_counter_uncharge(&memcg->memsw, nr_pages);
+}
+
/*
* Returns stocks cached in percpu and reset cached information.
*/
-static void drain_stock(struct memcg_stock_pcp *stock)
+static void drain_stock(struct memcg_stock_pcp *stock, int i)
{
- struct mem_cgroup *old = stock->cached;
+ struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
+ uint8_t stock_pages;
- if (stock->nr_pages) {
- page_counter_uncharge(&old->memory, stock->nr_pages);
- if (do_memsw_account())
- page_counter_uncharge(&old->memsw, stock->nr_pages);
- css_put_many(&old->css, stock->nr_pages);
- stock->nr_pages = 0;
+ if (!old)
+ return;
+
+ stock_pages = READ_ONCE(stock->nr_pages[i]);
+ if (stock_pages) {
+ memcg_uncharge(old, stock_pages);
+ WRITE_ONCE(stock->nr_pages[i], 0);
}
- stock->cached = NULL;
+
+ css_put(&old->css);
+ WRITE_ONCE(stock->cached[i], NULL);
}
-static void drain_local_stock(struct work_struct *dummy)
+static void drain_stock_fully(struct memcg_stock_pcp *stock)
+{
+ int i;
+
+ for (i = 0; i < NR_MEMCG_STOCK; ++i)
+ drain_stock(stock, i);
+}
+
+static void drain_local_memcg_stock(struct work_struct *dummy)
{
struct memcg_stock_pcp *stock;
- unsigned long flags;
- /*
- * The only protection from memory hotplug vs. drain_stock races is
- * that we always operate on local CPU stock here with IRQ disabled
- */
- local_irq_save(flags);
+ if (WARN_ONCE(!in_task(), "drain in non-task context"))
+ return;
+
+ local_lock(&memcg_stock.lock);
stock = this_cpu_ptr(&memcg_stock);
- drain_stock(stock);
+ drain_stock_fully(stock);
clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
- local_irq_restore(flags);
+ local_unlock(&memcg_stock.lock);
+}
+
+static void drain_local_obj_stock(struct work_struct *dummy)
+{
+ struct obj_stock_pcp *stock;
+
+ if (WARN_ONCE(!in_task(), "drain in non-task context"))
+ return;
+
+ local_lock(&obj_stock.lock);
+
+ stock = this_cpu_ptr(&obj_stock);
+ drain_obj_stock(stock);
+ clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
+
+ local_unlock(&obj_stock.lock);
}
-/*
- * Cache charges(val) to local per_cpu area.
- * This will be consumed by consume_stock() function, later.
- */
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
{
struct memcg_stock_pcp *stock;
- unsigned long flags;
+ struct mem_cgroup *cached;
+ uint8_t stock_pages;
+ bool success = false;
+ int empty_slot = -1;
+ int i;
- local_irq_save(flags);
+ /*
+ * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
+ * decide to increase it more than 127 then we will need more careful
+ * handling of nr_pages[] in struct memcg_stock_pcp.
+ */
+ BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
+
+ VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
+
+ if (nr_pages > MEMCG_CHARGE_BATCH ||
+ !local_trylock(&memcg_stock.lock)) {
+ /*
+ * In case of larger than batch refill or unlikely failure to
+ * lock the percpu memcg_stock.lock, uncharge memcg directly.
+ */
+ memcg_uncharge(memcg, nr_pages);
+ return;
+ }
stock = this_cpu_ptr(&memcg_stock);
- if (stock->cached != memcg) { /* reset if necessary */
- drain_stock(stock);
- stock->cached = memcg;
+ for (i = 0; i < NR_MEMCG_STOCK; ++i) {
+ cached = READ_ONCE(stock->cached[i]);
+ if (!cached && empty_slot == -1)
+ empty_slot = i;
+ if (memcg == READ_ONCE(stock->cached[i])) {
+ stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
+ WRITE_ONCE(stock->nr_pages[i], stock_pages);
+ if (stock_pages > MEMCG_CHARGE_BATCH)
+ drain_stock(stock, i);
+ success = true;
+ break;
+ }
}
- stock->nr_pages += nr_pages;
- if (stock->nr_pages > MEMCG_CHARGE_BATCH)
- drain_stock(stock);
+ if (!success) {
+ i = empty_slot;
+ if (i == -1) {
+ i = get_random_u32_below(NR_MEMCG_STOCK);
+ drain_stock(stock, i);
+ }
+ css_get(&memcg->css);
+ WRITE_ONCE(stock->cached[i], memcg);
+ WRITE_ONCE(stock->nr_pages[i], nr_pages);
+ }
- local_irq_restore(flags);
+ local_unlock(&memcg_stock.lock);
+}
+
+static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
+ struct mem_cgroup *root_memcg)
+{
+ struct mem_cgroup *memcg;
+ bool flush = false;
+ int i;
+
+ rcu_read_lock();
+ for (i = 0; i < NR_MEMCG_STOCK; ++i) {
+ memcg = READ_ONCE(stock->cached[i]);
+ if (!memcg)
+ continue;
+
+ if (READ_ONCE(stock->nr_pages[i]) &&
+ mem_cgroup_is_descendant(memcg, root_memcg)) {
+ flush = true;
+ break;
+ }
+ }
+ rcu_read_unlock();
+ return flush;
}
/*
* Drains all per-CPU charge caches for given root_memcg resp. subtree
* of the hierarchy under it.
*/
-static void drain_all_stock(struct mem_cgroup *root_memcg)
+void drain_all_stock(struct mem_cgroup *root_memcg)
{
int cpu, curcpu;
@@ -2061,131 +2020,335 @@ static void drain_all_stock(struct mem_cgroup *root_memcg)
* as well as workers from this path always operate on the local
* per-cpu data. CPU up doesn't touch memcg_stock at all.
*/
- curcpu = get_cpu();
+ migrate_disable();
+ curcpu = smp_processor_id();
for_each_online_cpu(cpu) {
- struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
- struct mem_cgroup *memcg;
+ struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
+ struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
- memcg = stock->cached;
- if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
- continue;
- if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
- css_put(&memcg->css);
- continue;
+ if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
+ is_memcg_drain_needed(memcg_st, root_memcg) &&
+ !test_and_set_bit(FLUSHING_CACHED_CHARGE,
+ &memcg_st->flags)) {
+ if (cpu == curcpu)
+ drain_local_memcg_stock(&memcg_st->work);
+ else if (!cpu_is_isolated(cpu))
+ schedule_work_on(cpu, &memcg_st->work);
}
- if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
+
+ if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
+ obj_stock_flush_required(obj_st, root_memcg) &&
+ !test_and_set_bit(FLUSHING_CACHED_CHARGE,
+ &obj_st->flags)) {
if (cpu == curcpu)
- drain_local_stock(&stock->work);
- else
- schedule_work_on(cpu, &stock->work);
+ drain_local_obj_stock(&obj_st->work);
+ else if (!cpu_is_isolated(cpu))
+ schedule_work_on(cpu, &obj_st->work);
}
- css_put(&memcg->css);
}
- put_cpu();
+ migrate_enable();
mutex_unlock(&percpu_charge_mutex);
}
static int memcg_hotplug_cpu_dead(unsigned int cpu)
{
- struct memcg_stock_pcp *stock;
+ /* no need for the local lock */
+ drain_obj_stock(&per_cpu(obj_stock, cpu));
+ drain_stock_fully(&per_cpu(memcg_stock, cpu));
+
+ return 0;
+}
+
+static unsigned long reclaim_high(struct mem_cgroup *memcg,
+ unsigned int nr_pages,
+ gfp_t gfp_mask)
+{
+ unsigned long nr_reclaimed = 0;
+
+ do {
+ unsigned long pflags;
+
+ if (page_counter_read(&memcg->memory) <=
+ READ_ONCE(memcg->memory.high))
+ continue;
+
+ memcg_memory_event(memcg, MEMCG_HIGH);
+
+ psi_memstall_enter(&pflags);
+ nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
+ gfp_mask,
+ MEMCG_RECLAIM_MAY_SWAP,
+ NULL);
+ psi_memstall_leave(&pflags);
+ } while ((memcg = parent_mem_cgroup(memcg)) &&
+ !mem_cgroup_is_root(memcg));
+
+ return nr_reclaimed;
+}
+
+static void high_work_func(struct work_struct *work)
+{
struct mem_cgroup *memcg;
- stock = &per_cpu(memcg_stock, cpu);
- drain_stock(stock);
+ memcg = container_of(work, struct mem_cgroup, high_work);
+ reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
+}
- for_each_mem_cgroup(memcg) {
- int i;
+/*
+ * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
+ * enough to still cause a significant slowdown in most cases, while still
+ * allowing diagnostics and tracing to proceed without becoming stuck.
+ */
+#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
- for (i = 0; i < MEMCG_NR_STAT; i++) {
- int nid;
- long x;
+/*
+ * When calculating the delay, we use these either side of the exponentiation to
+ * maintain precision and scale to a reasonable number of jiffies (see the table
+ * below.
+ *
+ * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
+ * overage ratio to a delay.
+ * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
+ * proposed penalty in order to reduce to a reasonable number of jiffies, and
+ * to produce a reasonable delay curve.
+ *
+ * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
+ * reasonable delay curve compared to precision-adjusted overage, not
+ * penalising heavily at first, but still making sure that growth beyond the
+ * limit penalises misbehaviour cgroups by slowing them down exponentially. For
+ * example, with a high of 100 megabytes:
+ *
+ * +-------+------------------------+
+ * | usage | time to allocate in ms |
+ * +-------+------------------------+
+ * | 100M | 0 |
+ * | 101M | 6 |
+ * | 102M | 25 |
+ * | 103M | 57 |
+ * | 104M | 102 |
+ * | 105M | 159 |
+ * | 106M | 230 |
+ * | 107M | 313 |
+ * | 108M | 409 |
+ * | 109M | 518 |
+ * | 110M | 639 |
+ * | 111M | 774 |
+ * | 112M | 921 |
+ * | 113M | 1081 |
+ * | 114M | 1254 |
+ * | 115M | 1439 |
+ * | 116M | 1638 |
+ * | 117M | 1849 |
+ * | 118M | 2000 |
+ * | 119M | 2000 |
+ * | 120M | 2000 |
+ * +-------+------------------------+
+ */
+ #define MEMCG_DELAY_PRECISION_SHIFT 20
+ #define MEMCG_DELAY_SCALING_SHIFT 14
- x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
- if (x)
- atomic_long_add(x, &memcg->stat[i]);
+static u64 calculate_overage(unsigned long usage, unsigned long high)
+{
+ u64 overage;
- if (i >= NR_VM_NODE_STAT_ITEMS)
- continue;
+ if (usage <= high)
+ return 0;
- for_each_node(nid) {
- struct mem_cgroup_per_node *pn;
+ /*
+ * Prevent division by 0 in overage calculation by acting as if
+ * it was a threshold of 1 page
+ */
+ high = max(high, 1UL);
- pn = mem_cgroup_nodeinfo(memcg, nid);
- x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
- if (x)
- atomic_long_add(x, &pn->lruvec_stat[i]);
- }
- }
+ overage = usage - high;
+ overage <<= MEMCG_DELAY_PRECISION_SHIFT;
+ return div64_u64(overage, high);
+}
- for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
- long x;
+static u64 mem_find_max_overage(struct mem_cgroup *memcg)
+{
+ u64 overage, max_overage = 0;
- x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
- if (x)
- atomic_long_add(x, &memcg->events[i]);
- }
- }
+ do {
+ overage = calculate_overage(page_counter_read(&memcg->memory),
+ READ_ONCE(memcg->memory.high));
+ max_overage = max(overage, max_overage);
+ } while ((memcg = parent_mem_cgroup(memcg)) &&
+ !mem_cgroup_is_root(memcg));
- return 0;
+ return max_overage;
}
-static void reclaim_high(struct mem_cgroup *memcg,
- unsigned int nr_pages,
- gfp_t gfp_mask)
+static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
+ u64 overage, max_overage = 0;
+
do {
- if (page_counter_read(&memcg->memory) <= memcg->high)
- continue;
- memcg_memory_event(memcg, MEMCG_HIGH);
- try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
- } while ((memcg = parent_mem_cgroup(memcg)));
+ overage = calculate_overage(page_counter_read(&memcg->swap),
+ READ_ONCE(memcg->swap.high));
+ if (overage)
+ memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
+ max_overage = max(overage, max_overage);
+ } while ((memcg = parent_mem_cgroup(memcg)) &&
+ !mem_cgroup_is_root(memcg));
+
+ return max_overage;
}
-static void high_work_func(struct work_struct *work)
+/*
+ * Get the number of jiffies that we should penalise a mischievous cgroup which
+ * is exceeding its memory.high by checking both it and its ancestors.
+ */
+static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
+ unsigned int nr_pages,
+ u64 max_overage)
{
- struct mem_cgroup *memcg;
+ unsigned long penalty_jiffies;
- memcg = container_of(work, struct mem_cgroup, high_work);
- reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
+ if (!max_overage)
+ return 0;
+
+ /*
+ * We use overage compared to memory.high to calculate the number of
+ * jiffies to sleep (penalty_jiffies). Ideally this value should be
+ * fairly lenient on small overages, and increasingly harsh when the
+ * memcg in question makes it clear that it has no intention of stopping
+ * its crazy behaviour, so we exponentially increase the delay based on
+ * overage amount.
+ */
+ penalty_jiffies = max_overage * max_overage * HZ;
+ penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
+ penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
+
+ /*
+ * Factor in the task's own contribution to the overage, such that four
+ * N-sized allocations are throttled approximately the same as one
+ * 4N-sized allocation.
+ *
+ * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
+ * larger the current charge patch is than that.
+ */
+ return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
}
/*
- * Scheduled by try_charge() to be executed from the userland return path
- * and reclaims memory over the high limit.
+ * Reclaims memory over the high limit. Called directly from
+ * try_charge() (context permitting), as well as from the userland
+ * return path where reclaim is always able to block.
*/
-void mem_cgroup_handle_over_high(void)
+void __mem_cgroup_handle_over_high(gfp_t gfp_mask)
{
+ unsigned long penalty_jiffies;
+ unsigned long pflags;
+ unsigned long nr_reclaimed;
unsigned int nr_pages = current->memcg_nr_pages_over_high;
+ int nr_retries = MAX_RECLAIM_RETRIES;
struct mem_cgroup *memcg;
-
- if (likely(!nr_pages))
- return;
+ bool in_retry = false;
memcg = get_mem_cgroup_from_mm(current->mm);
- reclaim_high(memcg, nr_pages, GFP_KERNEL);
- css_put(&memcg->css);
current->memcg_nr_pages_over_high = 0;
+
+retry_reclaim:
+ /*
+ * Bail if the task is already exiting. Unlike memory.max,
+ * memory.high enforcement isn't as strict, and there is no
+ * OOM killer involved, which means the excess could already
+ * be much bigger (and still growing) than it could for
+ * memory.max; the dying task could get stuck in fruitless
+ * reclaim for a long time, which isn't desirable.
+ */
+ if (task_is_dying())
+ goto out;
+
+ /*
+ * The allocating task should reclaim at least the batch size, but for
+ * subsequent retries we only want to do what's necessary to prevent oom
+ * or breaching resource isolation.
+ *
+ * This is distinct from memory.max or page allocator behaviour because
+ * memory.high is currently batched, whereas memory.max and the page
+ * allocator run every time an allocation is made.
+ */
+ nr_reclaimed = reclaim_high(memcg,
+ in_retry ? SWAP_CLUSTER_MAX : nr_pages,
+ gfp_mask);
+
+ /*
+ * memory.high is breached and reclaim is unable to keep up. Throttle
+ * allocators proactively to slow down excessive growth.
+ */
+ penalty_jiffies = calculate_high_delay(memcg, nr_pages,
+ mem_find_max_overage(memcg));
+
+ penalty_jiffies += calculate_high_delay(memcg, nr_pages,
+ swap_find_max_overage(memcg));
+
+ /*
+ * Clamp the max delay per usermode return so as to still keep the
+ * application moving forwards and also permit diagnostics, albeit
+ * extremely slowly.
+ */
+ penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
+
+ /*
+ * Don't sleep if the amount of jiffies this memcg owes us is so low
+ * that it's not even worth doing, in an attempt to be nice to those who
+ * go only a small amount over their memory.high value and maybe haven't
+ * been aggressively reclaimed enough yet.
+ */
+ if (penalty_jiffies <= HZ / 100)
+ goto out;
+
+ /*
+ * If reclaim is making forward progress but we're still over
+ * memory.high, we want to encourage that rather than doing allocator
+ * throttling.
+ */
+ if (nr_reclaimed || nr_retries--) {
+ in_retry = true;
+ goto retry_reclaim;
+ }
+
+ /*
+ * Reclaim didn't manage to push usage below the limit, slow
+ * this allocating task down.
+ *
+ * If we exit early, we're guaranteed to die (since
+ * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
+ * need to account for any ill-begotten jiffies to pay them off later.
+ */
+ psi_memstall_enter(&pflags);
+ schedule_timeout_killable(penalty_jiffies);
+ psi_memstall_leave(&pflags);
+
+out:
+ css_put(&memcg->css);
}
-static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
- unsigned int nr_pages)
+static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
+ unsigned int nr_pages)
{
unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
- int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ int nr_retries = MAX_RECLAIM_RETRIES;
struct mem_cgroup *mem_over_limit;
struct page_counter *counter;
unsigned long nr_reclaimed;
- bool may_swap = true;
+ bool passed_oom = false;
+ unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
bool drained = false;
- bool oomed = false;
- enum oom_status oom_status;
+ bool raised_max_event = false;
+ unsigned long pflags;
+ bool allow_spinning = gfpflags_allow_spinning(gfp_mask);
- if (mem_cgroup_is_root(memcg))
- return 0;
retry:
if (consume_stock(memcg, nr_pages))
return 0;
+ if (!allow_spinning)
+ /* Avoid the refill and flush of the older stock */
+ batch = nr_pages;
+
if (!do_memsw_account() ||
page_counter_try_charge(&memcg->memsw, batch, &counter)) {
if (page_counter_try_charge(&memcg->memory, batch, &counter))
@@ -2195,7 +2358,7 @@ retry:
mem_over_limit = mem_cgroup_from_counter(counter, memory);
} else {
mem_over_limit = mem_cgroup_from_counter(counter, memsw);
- may_swap = false;
+ reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
}
if (batch > nr_pages) {
@@ -2204,17 +2367,6 @@ retry:
}
/*
- * Unlike in global OOM situations, memcg is not in a physical
- * memory shortage. Allow dying and OOM-killed tasks to
- * bypass the last charges so that they can exit quickly and
- * free their memory.
- */
- if (unlikely(tsk_is_oom_victim(current) ||
- fatal_signal_pending(current) ||
- current->flags & PF_EXITING))
- goto force;
-
- /*
* Prevent unbounded recursion when reclaim operations need to
* allocate memory. This might exceed the limits temporarily,
* but we prefer facilitating memory reclaim and getting back
@@ -2229,10 +2381,13 @@ retry:
if (!gfpflags_allow_blocking(gfp_mask))
goto nomem;
- memcg_memory_event(mem_over_limit, MEMCG_MAX);
+ __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
+ raised_max_event = true;
+ psi_memstall_enter(&pflags);
nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
- gfp_mask, may_swap);
+ gfp_mask, reclaim_options, NULL);
+ psi_memstall_leave(&pflags);
if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
goto retry;
@@ -2256,47 +2411,46 @@ retry:
*/
if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
goto retry;
- /*
- * At task move, charge accounts can be doubly counted. So, it's
- * better to wait until the end of task_move if something is going on.
- */
- if (mem_cgroup_wait_acct_move(mem_over_limit))
- goto retry;
if (nr_retries--)
goto retry;
- if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
+ if (gfp_mask & __GFP_RETRY_MAYFAIL)
goto nomem;
- if (gfp_mask & __GFP_NOFAIL)
- goto force;
-
- if (fatal_signal_pending(current))
- goto force;
+ /* Avoid endless loop for tasks bypassed by the oom killer */
+ if (passed_oom && task_is_dying())
+ goto nomem;
/*
* keep retrying as long as the memcg oom killer is able to make
* a forward progress or bypass the charge if the oom killer
* couldn't make any progress.
*/
- oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
- get_order(nr_pages * PAGE_SIZE));
- switch (oom_status) {
- case OOM_SUCCESS:
- nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
- oomed = true;
+ if (mem_cgroup_oom(mem_over_limit, gfp_mask,
+ get_order(nr_pages * PAGE_SIZE))) {
+ passed_oom = true;
+ nr_retries = MAX_RECLAIM_RETRIES;
goto retry;
- case OOM_FAILED:
- goto force;
- default:
- goto nomem;
}
nomem:
- if (!(gfp_mask & __GFP_NOFAIL))
+ /*
+ * Memcg doesn't have a dedicated reserve for atomic
+ * allocations. But like the global atomic pool, we need to
+ * put the burden of reclaim on regular allocation requests
+ * and let these go through as privileged allocations.
+ */
+ if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
return -ENOMEM;
force:
/*
+ * If the allocation has to be enforced, don't forget to raise
+ * a MEMCG_MAX event.
+ */
+ if (!raised_max_event)
+ __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
+
+ /*
* The allocation either can't fail or will lead to more memory
* being freed very soon. Allow memory usage go over the limit
* temporarily by force charging it.
@@ -2304,12 +2458,10 @@ force:
page_counter_charge(&memcg->memory, nr_pages);
if (do_memsw_account())
page_counter_charge(&memcg->memsw, nr_pages);
- css_get_many(&memcg->css, nr_pages);
return 0;
done_restock:
- css_get_many(&memcg->css, batch);
if (batch > nr_pages)
refill_stock(memcg, batch - nr_pages);
@@ -2323,1531 +2475,878 @@ done_restock:
* reclaim, the cost of mismatch is negligible.
*/
do {
- if (page_counter_read(&memcg->memory) > memcg->high) {
- /* Don't bother a random interrupted task */
- if (in_interrupt()) {
+ bool mem_high, swap_high;
+
+ mem_high = page_counter_read(&memcg->memory) >
+ READ_ONCE(memcg->memory.high);
+ swap_high = page_counter_read(&memcg->swap) >
+ READ_ONCE(memcg->swap.high);
+
+ /* Don't bother a random interrupted task */
+ if (!in_task()) {
+ if (mem_high) {
schedule_work(&memcg->high_work);
break;
}
+ continue;
+ }
+
+ if (mem_high || swap_high) {
+ /*
+ * The allocating tasks in this cgroup will need to do
+ * reclaim or be throttled to prevent further growth
+ * of the memory or swap footprints.
+ *
+ * Target some best-effort fairness between the tasks,
+ * and distribute reclaim work and delay penalties
+ * based on how much each task is actually allocating.
+ */
current->memcg_nr_pages_over_high += batch;
set_notify_resume(current);
break;
}
} while ((memcg = parent_mem_cgroup(memcg)));
+ /*
+ * Reclaim is set up above to be called from the userland
+ * return path. But also attempt synchronous reclaim to avoid
+ * excessive overrun while the task is still inside the
+ * kernel. If this is successful, the return path will see it
+ * when it rechecks the overage and simply bail out.
+ */
+ if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
+ !(current->flags & PF_MEMALLOC) &&
+ gfpflags_allow_blocking(gfp_mask))
+ __mem_cgroup_handle_over_high(gfp_mask);
return 0;
}
-static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
+static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
+ unsigned int nr_pages)
{
if (mem_cgroup_is_root(memcg))
- return;
-
- page_counter_uncharge(&memcg->memory, nr_pages);
- if (do_memsw_account())
- page_counter_uncharge(&memcg->memsw, nr_pages);
-
- css_put_many(&memcg->css, nr_pages);
-}
-
-static void lock_page_lru(struct page *page, int *isolated)
-{
- struct zone *zone = page_zone(page);
-
- spin_lock_irq(zone_lru_lock(zone));
- if (PageLRU(page)) {
- struct lruvec *lruvec;
-
- lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
- ClearPageLRU(page);
- del_page_from_lru_list(page, lruvec, page_lru(page));
- *isolated = 1;
- } else
- *isolated = 0;
-}
-
-static void unlock_page_lru(struct page *page, int isolated)
-{
- struct zone *zone = page_zone(page);
-
- if (isolated) {
- struct lruvec *lruvec;
+ return 0;
- lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
- VM_BUG_ON_PAGE(PageLRU(page), page);
- SetPageLRU(page);
- add_page_to_lru_list(page, lruvec, page_lru(page));
- }
- spin_unlock_irq(zone_lru_lock(zone));
+ return try_charge_memcg(memcg, gfp_mask, nr_pages);
}
-static void commit_charge(struct page *page, struct mem_cgroup *memcg,
- bool lrucare)
+static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
{
- int isolated;
-
- VM_BUG_ON_PAGE(page->mem_cgroup, page);
-
+ VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
/*
- * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
- * may already be on some other mem_cgroup's LRU. Take care of it.
- */
- if (lrucare)
- lock_page_lru(page, &isolated);
-
- /*
- * Nobody should be changing or seriously looking at
- * page->mem_cgroup at this point:
- *
- * - the page is uncharged
- *
- * - the page is off-LRU
- *
- * - an anonymous fault has exclusive page access, except for
- * a locked page table
+ * Any of the following ensures page's memcg stability:
*
- * - a page cache insertion, a swapin fault, or a migration
- * have the page locked
+ * - the page lock
+ * - LRU isolation
+ * - exclusive reference
*/
- page->mem_cgroup = memcg;
-
- if (lrucare)
- unlock_page_lru(page, isolated);
+ folio->memcg_data = (unsigned long)memcg;
}
-#ifdef CONFIG_MEMCG_KMEM
-static int memcg_alloc_cache_id(void)
+#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
+static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
+ struct pglist_data *pgdat,
+ enum node_stat_item idx, int nr)
{
- int id, size;
- int err;
-
- id = ida_simple_get(&memcg_cache_ida,
- 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
- if (id < 0)
- return id;
-
- if (id < memcg_nr_cache_ids)
- return id;
-
- /*
- * There's no space for the new id in memcg_caches arrays,
- * so we have to grow them.
- */
- down_write(&memcg_cache_ids_sem);
-
- size = 2 * (id + 1);
- if (size < MEMCG_CACHES_MIN_SIZE)
- size = MEMCG_CACHES_MIN_SIZE;
- else if (size > MEMCG_CACHES_MAX_SIZE)
- size = MEMCG_CACHES_MAX_SIZE;
-
- err = memcg_update_all_caches(size);
- if (!err)
- err = memcg_update_all_list_lrus(size);
- if (!err)
- memcg_nr_cache_ids = size;
+ struct lruvec *lruvec;
- up_write(&memcg_cache_ids_sem);
+ if (likely(!in_nmi())) {
+ lruvec = mem_cgroup_lruvec(memcg, pgdat);
+ mod_memcg_lruvec_state(lruvec, idx, nr);
+ } else {
+ struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
- if (err) {
- ida_simple_remove(&memcg_cache_ida, id);
- return err;
+ /* preemption is disabled in_nmi(). */
+ css_rstat_updated(&memcg->css, smp_processor_id());
+ if (idx == NR_SLAB_RECLAIMABLE_B)
+ atomic_add(nr, &pn->slab_reclaimable);
+ else
+ atomic_add(nr, &pn->slab_unreclaimable);
}
- return id;
-}
-
-static void memcg_free_cache_id(int id)
-{
- ida_simple_remove(&memcg_cache_ida, id);
}
-
-struct memcg_kmem_cache_create_work {
- struct mem_cgroup *memcg;
- struct kmem_cache *cachep;
- struct work_struct work;
-};
-
-static void memcg_kmem_cache_create_func(struct work_struct *w)
+#else
+static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
+ struct pglist_data *pgdat,
+ enum node_stat_item idx, int nr)
{
- struct memcg_kmem_cache_create_work *cw =
- container_of(w, struct memcg_kmem_cache_create_work, work);
- struct mem_cgroup *memcg = cw->memcg;
- struct kmem_cache *cachep = cw->cachep;
-
- memcg_create_kmem_cache(memcg, cachep);
+ struct lruvec *lruvec;
- css_put(&memcg->css);
- kfree(cw);
+ lruvec = mem_cgroup_lruvec(memcg, pgdat);
+ mod_memcg_lruvec_state(lruvec, idx, nr);
}
+#endif
-/*
- * Enqueue the creation of a per-memcg kmem_cache.
- */
-static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
- struct kmem_cache *cachep)
+static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
+ struct pglist_data *pgdat,
+ enum node_stat_item idx, int nr)
{
- struct memcg_kmem_cache_create_work *cw;
-
- cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
- if (!cw)
- return;
-
- css_get(&memcg->css);
-
- cw->memcg = memcg;
- cw->cachep = cachep;
- INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
-
- queue_work(memcg_kmem_cache_wq, &cw->work);
-}
+ struct mem_cgroup *memcg;
-static inline bool memcg_kmem_bypass(void)
-{
- if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
- return true;
- return false;
+ rcu_read_lock();
+ memcg = obj_cgroup_memcg(objcg);
+ account_slab_nmi_safe(memcg, pgdat, idx, nr);
+ rcu_read_unlock();
}
-/**
- * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
- * @cachep: the original global kmem cache
- *
- * Return the kmem_cache we're supposed to use for a slab allocation.
- * We try to use the current memcg's version of the cache.
- *
- * If the cache does not exist yet, if we are the first user of it, we
- * create it asynchronously in a workqueue and let the current allocation
- * go through with the original cache.
- *
- * This function takes a reference to the cache it returns to assure it
- * won't get destroyed while we are working with it. Once the caller is
- * done with it, memcg_kmem_put_cache() must be called to release the
- * reference.
- */
-struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
+static __always_inline
+struct mem_cgroup *mem_cgroup_from_obj_slab(struct slab *slab, void *p)
{
- struct mem_cgroup *memcg;
- struct kmem_cache *memcg_cachep;
- int kmemcg_id;
-
- VM_BUG_ON(!is_root_cache(cachep));
-
- if (memcg_kmem_bypass())
- return cachep;
-
- memcg = get_mem_cgroup_from_current();
- kmemcg_id = READ_ONCE(memcg->kmemcg_id);
- if (kmemcg_id < 0)
- goto out;
-
- memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
- if (likely(memcg_cachep))
- return memcg_cachep;
-
/*
- * If we are in a safe context (can wait, and not in interrupt
- * context), we could be be predictable and return right away.
- * This would guarantee that the allocation being performed
- * already belongs in the new cache.
- *
- * However, there are some clashes that can arrive from locking.
- * For instance, because we acquire the slab_mutex while doing
- * memcg_create_kmem_cache, this means no further allocation
- * could happen with the slab_mutex held. So it's better to
- * defer everything.
+ * Slab objects are accounted individually, not per-page.
+ * Memcg membership data for each individual object is saved in
+ * slab->obj_exts.
*/
- memcg_schedule_kmem_cache_create(memcg, cachep);
-out:
- css_put(&memcg->css);
- return cachep;
-}
-
-/**
- * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
- * @cachep: the cache returned by memcg_kmem_get_cache
- */
-void memcg_kmem_put_cache(struct kmem_cache *cachep)
-{
- if (!is_root_cache(cachep))
- css_put(&cachep->memcg_params.memcg->css);
-}
-
-/**
- * memcg_kmem_charge_memcg: charge a kmem page
- * @page: page to charge
- * @gfp: reclaim mode
- * @order: allocation order
- * @memcg: memory cgroup to charge
- *
- * Returns 0 on success, an error code on failure.
- */
-int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
- struct mem_cgroup *memcg)
-{
- unsigned int nr_pages = 1 << order;
- struct page_counter *counter;
- int ret;
-
- ret = try_charge(memcg, gfp, nr_pages);
- if (ret)
- return ret;
-
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
- !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
- cancel_charge(memcg, nr_pages);
- return -ENOMEM;
- }
-
- page->mem_cgroup = memcg;
-
- return 0;
-}
-
-/**
- * memcg_kmem_charge: charge a kmem page to the current memory cgroup
- * @page: page to charge
- * @gfp: reclaim mode
- * @order: allocation order
- *
- * Returns 0 on success, an error code on failure.
- */
-int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
-{
- struct mem_cgroup *memcg;
- int ret = 0;
-
- if (mem_cgroup_disabled() || memcg_kmem_bypass())
- return 0;
-
- memcg = get_mem_cgroup_from_current();
- if (!mem_cgroup_is_root(memcg)) {
- ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
- if (!ret)
- __SetPageKmemcg(page);
- }
- css_put(&memcg->css);
- return ret;
-}
-/**
- * memcg_kmem_uncharge: uncharge a kmem page
- * @page: page to uncharge
- * @order: allocation order
- */
-void memcg_kmem_uncharge(struct page *page, int order)
-{
- struct mem_cgroup *memcg = page->mem_cgroup;
- unsigned int nr_pages = 1 << order;
+ struct slabobj_ext *obj_exts;
+ unsigned int off;
- if (!memcg)
- return;
-
- VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
-
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
- page_counter_uncharge(&memcg->kmem, nr_pages);
-
- page_counter_uncharge(&memcg->memory, nr_pages);
- if (do_memsw_account())
- page_counter_uncharge(&memcg->memsw, nr_pages);
-
- page->mem_cgroup = NULL;
+ obj_exts = slab_obj_exts(slab);
+ if (!obj_exts)
+ return NULL;
- /* slab pages do not have PageKmemcg flag set */
- if (PageKmemcg(page))
- __ClearPageKmemcg(page);
+ off = obj_to_index(slab->slab_cache, slab, p);
+ if (obj_exts[off].objcg)
+ return obj_cgroup_memcg(obj_exts[off].objcg);
- css_put_many(&memcg->css, nr_pages);
+ return NULL;
}
-#endif /* CONFIG_MEMCG_KMEM */
-
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
- * Because tail pages are not marked as "used", set it. We're under
- * zone_lru_lock and migration entries setup in all page mappings.
+ * Returns a pointer to the memory cgroup to which the kernel object is charged.
+ * It is not suitable for objects allocated using vmalloc().
+ *
+ * A passed kernel object must be a slab object or a generic kernel page.
+ *
+ * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
+ * cgroup_mutex, etc.
*/
-void mem_cgroup_split_huge_fixup(struct page *head)
+struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
{
- int i;
+ struct slab *slab;
if (mem_cgroup_disabled())
- return;
-
- for (i = 1; i < HPAGE_PMD_NR; i++)
- head[i].mem_cgroup = head->mem_cgroup;
+ return NULL;
- __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
+ slab = virt_to_slab(p);
+ if (slab)
+ return mem_cgroup_from_obj_slab(slab, p);
+ return folio_memcg_check(virt_to_folio(p));
}
-#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
-#ifdef CONFIG_MEMCG_SWAP
-/**
- * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
- * @entry: swap entry to be moved
- * @from: mem_cgroup which the entry is moved from
- * @to: mem_cgroup which the entry is moved to
- *
- * It succeeds only when the swap_cgroup's record for this entry is the same
- * as the mem_cgroup's id of @from.
- *
- * Returns 0 on success, -EINVAL on failure.
- *
- * The caller must have charged to @to, IOW, called page_counter_charge() about
- * both res and memsw, and called css_get().
- */
-static int mem_cgroup_move_swap_account(swp_entry_t entry,
- struct mem_cgroup *from, struct mem_cgroup *to)
+static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
{
- unsigned short old_id, new_id;
+ struct obj_cgroup *objcg = NULL;
- old_id = mem_cgroup_id(from);
- new_id = mem_cgroup_id(to);
-
- if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
- mod_memcg_state(from, MEMCG_SWAP, -1);
- mod_memcg_state(to, MEMCG_SWAP, 1);
- return 0;
+ for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
+ objcg = rcu_dereference(memcg->objcg);
+ if (likely(objcg && obj_cgroup_tryget(objcg)))
+ break;
+ objcg = NULL;
}
- return -EINVAL;
+ return objcg;
}
-#else
-static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
- struct mem_cgroup *from, struct mem_cgroup *to)
-{
- return -EINVAL;
-}
-#endif
-static DEFINE_MUTEX(memcg_max_mutex);
-
-static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
- unsigned long max, bool memsw)
+static struct obj_cgroup *current_objcg_update(void)
{
- bool enlarge = false;
- bool drained = false;
- int ret;
- bool limits_invariant;
- struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
+ struct mem_cgroup *memcg;
+ struct obj_cgroup *old, *objcg = NULL;
do {
- if (signal_pending(current)) {
- ret = -EINTR;
- break;
+ /* Atomically drop the update bit. */
+ old = xchg(&current->objcg, NULL);
+ if (old) {
+ old = (struct obj_cgroup *)
+ ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
+ obj_cgroup_put(old);
+
+ old = NULL;
}
- mutex_lock(&memcg_max_mutex);
+ /* If new objcg is NULL, no reason for the second atomic update. */
+ if (!current->mm || (current->flags & PF_KTHREAD))
+ return NULL;
+
/*
- * Make sure that the new limit (memsw or memory limit) doesn't
- * break our basic invariant rule memory.max <= memsw.max.
+ * Release the objcg pointer from the previous iteration,
+ * if try_cmpxcg() below fails.
*/
- limits_invariant = memsw ? max >= memcg->memory.max :
- max <= memcg->memsw.max;
- if (!limits_invariant) {
- mutex_unlock(&memcg_max_mutex);
- ret = -EINVAL;
- break;
+ if (unlikely(objcg)) {
+ obj_cgroup_put(objcg);
+ objcg = NULL;
}
- if (max > counter->max)
- enlarge = true;
- ret = page_counter_set_max(counter, max);
- mutex_unlock(&memcg_max_mutex);
- if (!ret)
- break;
-
- if (!drained) {
- drain_all_stock(memcg);
- drained = true;
- continue;
- }
+ /*
+ * Obtain the new objcg pointer. The current task can be
+ * asynchronously moved to another memcg and the previous
+ * memcg can be offlined. So let's get the memcg pointer
+ * and try get a reference to objcg under a rcu read lock.
+ */
- if (!try_to_free_mem_cgroup_pages(memcg, 1,
- GFP_KERNEL, !memsw)) {
- ret = -EBUSY;
- break;
- }
- } while (true);
+ rcu_read_lock();
+ memcg = mem_cgroup_from_task(current);
+ objcg = __get_obj_cgroup_from_memcg(memcg);
+ rcu_read_unlock();
- if (!ret && enlarge)
- memcg_oom_recover(memcg);
+ /*
+ * Try set up a new objcg pointer atomically. If it
+ * fails, it means the update flag was set concurrently, so
+ * the whole procedure should be repeated.
+ */
+ } while (!try_cmpxchg(&current->objcg, &old, objcg));
- return ret;
+ return objcg;
}
-unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
- gfp_t gfp_mask,
- unsigned long *total_scanned)
+__always_inline struct obj_cgroup *current_obj_cgroup(void)
{
- unsigned long nr_reclaimed = 0;
- struct mem_cgroup_per_node *mz, *next_mz = NULL;
- unsigned long reclaimed;
- int loop = 0;
- struct mem_cgroup_tree_per_node *mctz;
- unsigned long excess;
- unsigned long nr_scanned;
-
- if (order > 0)
- return 0;
-
- mctz = soft_limit_tree_node(pgdat->node_id);
-
- /*
- * Do not even bother to check the largest node if the root
- * is empty. Do it lockless to prevent lock bouncing. Races
- * are acceptable as soft limit is best effort anyway.
- */
- if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
- return 0;
+ struct mem_cgroup *memcg;
+ struct obj_cgroup *objcg;
- /*
- * This loop can run a while, specially if mem_cgroup's continuously
- * keep exceeding their soft limit and putting the system under
- * pressure
- */
- do {
- if (next_mz)
- mz = next_mz;
- else
- mz = mem_cgroup_largest_soft_limit_node(mctz);
- if (!mz)
- break;
+ if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
+ return NULL;
- nr_scanned = 0;
- reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
- gfp_mask, &nr_scanned);
- nr_reclaimed += reclaimed;
- *total_scanned += nr_scanned;
- spin_lock_irq(&mctz->lock);
- __mem_cgroup_remove_exceeded(mz, mctz);
+ if (in_task()) {
+ memcg = current->active_memcg;
+ if (unlikely(memcg))
+ goto from_memcg;
+ objcg = READ_ONCE(current->objcg);
+ if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
+ objcg = current_objcg_update();
/*
- * If we failed to reclaim anything from this memory cgroup
- * it is time to move on to the next cgroup
+ * Objcg reference is kept by the task, so it's safe
+ * to use the objcg by the current task.
*/
- next_mz = NULL;
- if (!reclaimed)
- next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
+ return objcg;
+ }
- excess = soft_limit_excess(mz->memcg);
- /*
- * One school of thought says that we should not add
- * back the node to the tree if reclaim returns 0.
- * But our reclaim could return 0, simply because due
- * to priority we are exposing a smaller subset of
- * memory to reclaim from. Consider this as a longer
- * term TODO.
- */
- /* If excess == 0, no tree ops */
- __mem_cgroup_insert_exceeded(mz, mctz, excess);
- spin_unlock_irq(&mctz->lock);
- css_put(&mz->memcg->css);
- loop++;
+ memcg = this_cpu_read(int_active_memcg);
+ if (unlikely(memcg))
+ goto from_memcg;
+
+ return NULL;
+
+from_memcg:
+ objcg = NULL;
+ for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
/*
- * Could not reclaim anything and there are no more
- * mem cgroups to try or we seem to be looping without
- * reclaiming anything.
+ * Memcg pointer is protected by scope (see set_active_memcg())
+ * and is pinning the corresponding objcg, so objcg can't go
+ * away and can be used within the scope without any additional
+ * protection.
*/
- if (!nr_reclaimed &&
- (next_mz == NULL ||
- loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
+ objcg = rcu_dereference_check(memcg->objcg, 1);
+ if (likely(objcg))
break;
- } while (!nr_reclaimed);
- if (next_mz)
- css_put(&next_mz->memcg->css);
- return nr_reclaimed;
-}
-
-/*
- * Test whether @memcg has children, dead or alive. Note that this
- * function doesn't care whether @memcg has use_hierarchy enabled and
- * returns %true if there are child csses according to the cgroup
- * hierarchy. Testing use_hierarchy is the caller's responsiblity.
- */
-static inline bool memcg_has_children(struct mem_cgroup *memcg)
-{
- bool ret;
+ }
- rcu_read_lock();
- ret = css_next_child(NULL, &memcg->css);
- rcu_read_unlock();
- return ret;
+ return objcg;
}
-/*
- * Reclaims as many pages from the given memcg as possible.
- *
- * Caller is responsible for holding css reference for memcg.
- */
-static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
+struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
{
- int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
-
- /* we call try-to-free pages for make this cgroup empty */
- lru_add_drain_all();
+ struct obj_cgroup *objcg;
- drain_all_stock(memcg);
-
- /* try to free all pages in this cgroup */
- while (nr_retries && page_counter_read(&memcg->memory)) {
- int progress;
+ if (!memcg_kmem_online())
+ return NULL;
- if (signal_pending(current))
- return -EINTR;
-
- progress = try_to_free_mem_cgroup_pages(memcg, 1,
- GFP_KERNEL, true);
- if (!progress) {
- nr_retries--;
- /* maybe some writeback is necessary */
- congestion_wait(BLK_RW_ASYNC, HZ/10);
- }
+ if (folio_memcg_kmem(folio)) {
+ objcg = __folio_objcg(folio);
+ obj_cgroup_get(objcg);
+ } else {
+ struct mem_cgroup *memcg;
+ rcu_read_lock();
+ memcg = __folio_memcg(folio);
+ if (memcg)
+ objcg = __get_obj_cgroup_from_memcg(memcg);
+ else
+ objcg = NULL;
+ rcu_read_unlock();
}
-
- return 0;
+ return objcg;
}
-static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
- char *buf, size_t nbytes,
- loff_t off)
+#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
+static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
-
- if (mem_cgroup_is_root(memcg))
- return -EINVAL;
- return mem_cgroup_force_empty(memcg) ?: nbytes;
+ if (likely(!in_nmi())) {
+ mod_memcg_state(memcg, MEMCG_KMEM, val);
+ } else {
+ /* preemption is disabled in_nmi(). */
+ css_rstat_updated(&memcg->css, smp_processor_id());
+ atomic_add(val, &memcg->kmem_stat);
+ }
}
-
-static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
- struct cftype *cft)
+#else
+static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
{
- return mem_cgroup_from_css(css)->use_hierarchy;
+ mod_memcg_state(memcg, MEMCG_KMEM, val);
}
+#endif
-static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
- struct cftype *cft, u64 val)
+/*
+ * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
+ * @objcg: object cgroup to uncharge
+ * @nr_pages: number of pages to uncharge
+ */
+static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
+ unsigned int nr_pages)
{
- int retval = 0;
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
+ struct mem_cgroup *memcg;
- if (memcg->use_hierarchy == val)
- return 0;
+ memcg = get_mem_cgroup_from_objcg(objcg);
- /*
- * If parent's use_hierarchy is set, we can't make any modifications
- * in the child subtrees. If it is unset, then the change can
- * occur, provided the current cgroup has no children.
- *
- * For the root cgroup, parent_mem is NULL, we allow value to be
- * set if there are no children.
- */
- if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
- (val == 1 || val == 0)) {
- if (!memcg_has_children(memcg))
- memcg->use_hierarchy = val;
- else
- retval = -EBUSY;
- } else
- retval = -EINVAL;
+ account_kmem_nmi_safe(memcg, -nr_pages);
+ memcg1_account_kmem(memcg, -nr_pages);
+ if (!mem_cgroup_is_root(memcg))
+ refill_stock(memcg, nr_pages);
- return retval;
+ css_put(&memcg->css);
}
-struct accumulated_stats {
- unsigned long stat[MEMCG_NR_STAT];
- unsigned long events[NR_VM_EVENT_ITEMS];
- unsigned long lru_pages[NR_LRU_LISTS];
- const unsigned int *stats_array;
- const unsigned int *events_array;
- int stats_size;
- int events_size;
-};
-
-static void accumulate_memcg_tree(struct mem_cgroup *memcg,
- struct accumulated_stats *acc)
+/*
+ * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
+ * @objcg: object cgroup to charge
+ * @gfp: reclaim mode
+ * @nr_pages: number of pages to charge
+ *
+ * Returns 0 on success, an error code on failure.
+ */
+static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
+ unsigned int nr_pages)
{
- struct mem_cgroup *mi;
- int i;
+ struct mem_cgroup *memcg;
+ int ret;
- for_each_mem_cgroup_tree(mi, memcg) {
- for (i = 0; i < acc->stats_size; i++)
- acc->stat[i] += memcg_page_state(mi,
- acc->stats_array ? acc->stats_array[i] : i);
+ memcg = get_mem_cgroup_from_objcg(objcg);
+
+ ret = try_charge_memcg(memcg, gfp, nr_pages);
+ if (ret)
+ goto out;
- for (i = 0; i < acc->events_size; i++)
- acc->events[i] += memcg_sum_events(mi,
- acc->events_array ? acc->events_array[i] : i);
+ account_kmem_nmi_safe(memcg, nr_pages);
+ memcg1_account_kmem(memcg, nr_pages);
+out:
+ css_put(&memcg->css);
- for (i = 0; i < NR_LRU_LISTS; i++)
- acc->lru_pages[i] +=
- mem_cgroup_nr_lru_pages(mi, BIT(i));
- }
+ return ret;
}
-static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
+static struct obj_cgroup *page_objcg(const struct page *page)
{
- unsigned long val = 0;
+ unsigned long memcg_data = page->memcg_data;
- if (mem_cgroup_is_root(memcg)) {
- struct mem_cgroup *iter;
+ if (mem_cgroup_disabled() || !memcg_data)
+ return NULL;
- for_each_mem_cgroup_tree(iter, memcg) {
- val += memcg_page_state(iter, MEMCG_CACHE);
- val += memcg_page_state(iter, MEMCG_RSS);
- if (swap)
- val += memcg_page_state(iter, MEMCG_SWAP);
- }
- } else {
- if (!swap)
- val = page_counter_read(&memcg->memory);
- else
- val = page_counter_read(&memcg->memsw);
- }
- return val;
+ VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
+ page);
+ return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
}
-enum {
- RES_USAGE,
- RES_LIMIT,
- RES_MAX_USAGE,
- RES_FAILCNT,
- RES_SOFT_LIMIT,
-};
-
-static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
- struct cftype *cft)
+static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- struct page_counter *counter;
+ page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
+}
- switch (MEMFILE_TYPE(cft->private)) {
- case _MEM:
- counter = &memcg->memory;
- break;
- case _MEMSWAP:
- counter = &memcg->memsw;
- break;
- case _KMEM:
- counter = &memcg->kmem;
- break;
- case _TCP:
- counter = &memcg->tcpmem;
- break;
- default:
- BUG();
- }
+/**
+ * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
+ * @page: page to charge
+ * @gfp: reclaim mode
+ * @order: allocation order
+ *
+ * Returns 0 on success, an error code on failure.
+ */
+int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
+{
+ struct obj_cgroup *objcg;
+ int ret = 0;
- switch (MEMFILE_ATTR(cft->private)) {
- case RES_USAGE:
- if (counter == &memcg->memory)
- return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
- if (counter == &memcg->memsw)
- return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
- return (u64)page_counter_read(counter) * PAGE_SIZE;
- case RES_LIMIT:
- return (u64)counter->max * PAGE_SIZE;
- case RES_MAX_USAGE:
- return (u64)counter->watermark * PAGE_SIZE;
- case RES_FAILCNT:
- return counter->failcnt;
- case RES_SOFT_LIMIT:
- return (u64)memcg->soft_limit * PAGE_SIZE;
- default:
- BUG();
+ objcg = current_obj_cgroup();
+ if (objcg) {
+ ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
+ if (!ret) {
+ obj_cgroup_get(objcg);
+ page_set_objcg(page, objcg);
+ return 0;
+ }
}
+ return ret;
}
-#ifdef CONFIG_MEMCG_KMEM
-static int memcg_online_kmem(struct mem_cgroup *memcg)
+/**
+ * __memcg_kmem_uncharge_page: uncharge a kmem page
+ * @page: page to uncharge
+ * @order: allocation order
+ */
+void __memcg_kmem_uncharge_page(struct page *page, int order)
{
- int memcg_id;
-
- if (cgroup_memory_nokmem)
- return 0;
-
- BUG_ON(memcg->kmemcg_id >= 0);
- BUG_ON(memcg->kmem_state);
-
- memcg_id = memcg_alloc_cache_id();
- if (memcg_id < 0)
- return memcg_id;
+ struct obj_cgroup *objcg = page_objcg(page);
+ unsigned int nr_pages = 1 << order;
- static_branch_inc(&memcg_kmem_enabled_key);
- /*
- * A memory cgroup is considered kmem-online as soon as it gets
- * kmemcg_id. Setting the id after enabling static branching will
- * guarantee no one starts accounting before all call sites are
- * patched.
- */
- memcg->kmemcg_id = memcg_id;
- memcg->kmem_state = KMEM_ONLINE;
- INIT_LIST_HEAD(&memcg->kmem_caches);
+ if (!objcg)
+ return;
- return 0;
+ obj_cgroup_uncharge_pages(objcg, nr_pages);
+ page->memcg_data = 0;
+ obj_cgroup_put(objcg);
}
-static void memcg_offline_kmem(struct mem_cgroup *memcg)
+static void __account_obj_stock(struct obj_cgroup *objcg,
+ struct obj_stock_pcp *stock, int nr,
+ struct pglist_data *pgdat, enum node_stat_item idx)
{
- struct cgroup_subsys_state *css;
- struct mem_cgroup *parent, *child;
- int kmemcg_id;
+ int *bytes;
- if (memcg->kmem_state != KMEM_ONLINE)
- return;
/*
- * Clear the online state before clearing memcg_caches array
- * entries. The slab_mutex in memcg_deactivate_kmem_caches()
- * guarantees that no cache will be created for this cgroup
- * after we are done (see memcg_create_kmem_cache()).
+ * Save vmstat data in stock and skip vmstat array update unless
+ * accumulating over a page of vmstat data or when pgdat changes.
*/
- memcg->kmem_state = KMEM_ALLOCATED;
-
- memcg_deactivate_kmem_caches(memcg);
-
- kmemcg_id = memcg->kmemcg_id;
- BUG_ON(kmemcg_id < 0);
-
- parent = parent_mem_cgroup(memcg);
- if (!parent)
- parent = root_mem_cgroup;
+ if (stock->cached_pgdat != pgdat) {
+ /* Flush the existing cached vmstat data */
+ struct pglist_data *oldpg = stock->cached_pgdat;
+
+ if (stock->nr_slab_reclaimable_b) {
+ mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
+ stock->nr_slab_reclaimable_b);
+ stock->nr_slab_reclaimable_b = 0;
+ }
+ if (stock->nr_slab_unreclaimable_b) {
+ mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
+ stock->nr_slab_unreclaimable_b);
+ stock->nr_slab_unreclaimable_b = 0;
+ }
+ stock->cached_pgdat = pgdat;
+ }
+ bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
+ : &stock->nr_slab_unreclaimable_b;
/*
- * Change kmemcg_id of this cgroup and all its descendants to the
- * parent's id, and then move all entries from this cgroup's list_lrus
- * to ones of the parent. After we have finished, all list_lrus
- * corresponding to this cgroup are guaranteed to remain empty. The
- * ordering is imposed by list_lru_node->lock taken by
- * memcg_drain_all_list_lrus().
+ * Even for large object >= PAGE_SIZE, the vmstat data will still be
+ * cached locally at least once before pushing it out.
*/
- rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
- css_for_each_descendant_pre(css, &memcg->css) {
- child = mem_cgroup_from_css(css);
- BUG_ON(child->kmemcg_id != kmemcg_id);
- child->kmemcg_id = parent->kmemcg_id;
- if (!memcg->use_hierarchy)
- break;
+ if (!*bytes) {
+ *bytes = nr;
+ nr = 0;
+ } else {
+ *bytes += nr;
+ if (abs(*bytes) > PAGE_SIZE) {
+ nr = *bytes;
+ *bytes = 0;
+ } else {
+ nr = 0;
+ }
}
- rcu_read_unlock();
-
- memcg_drain_all_list_lrus(kmemcg_id, parent);
-
- memcg_free_cache_id(kmemcg_id);
+ if (nr)
+ mod_objcg_mlstate(objcg, pgdat, idx, nr);
}
-static void memcg_free_kmem(struct mem_cgroup *memcg)
+static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
+ struct pglist_data *pgdat, enum node_stat_item idx)
{
- /* css_alloc() failed, offlining didn't happen */
- if (unlikely(memcg->kmem_state == KMEM_ONLINE))
- memcg_offline_kmem(memcg);
+ struct obj_stock_pcp *stock;
+ bool ret = false;
- if (memcg->kmem_state == KMEM_ALLOCATED) {
- memcg_destroy_kmem_caches(memcg);
- static_branch_dec(&memcg_kmem_enabled_key);
- WARN_ON(page_counter_read(&memcg->kmem));
+ if (!local_trylock(&obj_stock.lock))
+ return ret;
+
+ stock = this_cpu_ptr(&obj_stock);
+ if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
+ stock->nr_bytes -= nr_bytes;
+ ret = true;
+
+ if (pgdat)
+ __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
}
-}
-#else
-static int memcg_online_kmem(struct mem_cgroup *memcg)
-{
- return 0;
-}
-static void memcg_offline_kmem(struct mem_cgroup *memcg)
-{
-}
-static void memcg_free_kmem(struct mem_cgroup *memcg)
-{
-}
-#endif /* CONFIG_MEMCG_KMEM */
-static int memcg_update_kmem_max(struct mem_cgroup *memcg,
- unsigned long max)
-{
- int ret;
+ local_unlock(&obj_stock.lock);
- mutex_lock(&memcg_max_mutex);
- ret = page_counter_set_max(&memcg->kmem, max);
- mutex_unlock(&memcg_max_mutex);
return ret;
}
-static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
+static void drain_obj_stock(struct obj_stock_pcp *stock)
{
- int ret;
+ struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
- mutex_lock(&memcg_max_mutex);
+ if (!old)
+ return;
- ret = page_counter_set_max(&memcg->tcpmem, max);
- if (ret)
- goto out;
+ if (stock->nr_bytes) {
+ unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
+ unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
- if (!memcg->tcpmem_active) {
- /*
- * The active flag needs to be written after the static_key
- * update. This is what guarantees that the socket activation
- * function is the last one to run. See mem_cgroup_sk_alloc()
- * for details, and note that we don't mark any socket as
- * belonging to this memcg until that flag is up.
- *
- * We need to do this, because static_keys will span multiple
- * sites, but we can't control their order. If we mark a socket
- * as accounted, but the accounting functions are not patched in
- * yet, we'll lose accounting.
- *
- * We never race with the readers in mem_cgroup_sk_alloc(),
- * because when this value change, the code to process it is not
- * patched in yet.
- */
- static_branch_inc(&memcg_sockets_enabled_key);
- memcg->tcpmem_active = true;
- }
-out:
- mutex_unlock(&memcg_max_mutex);
- return ret;
-}
+ if (nr_pages) {
+ struct mem_cgroup *memcg;
-/*
- * The user of this function is...
- * RES_LIMIT.
- */
-static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
- char *buf, size_t nbytes, loff_t off)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- unsigned long nr_pages;
- int ret;
+ memcg = get_mem_cgroup_from_objcg(old);
- buf = strstrip(buf);
- ret = page_counter_memparse(buf, "-1", &nr_pages);
- if (ret)
- return ret;
+ mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
+ memcg1_account_kmem(memcg, -nr_pages);
+ if (!mem_cgroup_is_root(memcg))
+ memcg_uncharge(memcg, nr_pages);
- switch (MEMFILE_ATTR(of_cft(of)->private)) {
- case RES_LIMIT:
- if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
- ret = -EINVAL;
- break;
- }
- switch (MEMFILE_TYPE(of_cft(of)->private)) {
- case _MEM:
- ret = mem_cgroup_resize_max(memcg, nr_pages, false);
- break;
- case _MEMSWAP:
- ret = mem_cgroup_resize_max(memcg, nr_pages, true);
- break;
- case _KMEM:
- ret = memcg_update_kmem_max(memcg, nr_pages);
- break;
- case _TCP:
- ret = memcg_update_tcp_max(memcg, nr_pages);
- break;
+ css_put(&memcg->css);
}
- break;
- case RES_SOFT_LIMIT:
- memcg->soft_limit = nr_pages;
- ret = 0;
- break;
- }
- return ret ?: nbytes;
-}
-static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
- size_t nbytes, loff_t off)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- struct page_counter *counter;
-
- switch (MEMFILE_TYPE(of_cft(of)->private)) {
- case _MEM:
- counter = &memcg->memory;
- break;
- case _MEMSWAP:
- counter = &memcg->memsw;
- break;
- case _KMEM:
- counter = &memcg->kmem;
- break;
- case _TCP:
- counter = &memcg->tcpmem;
- break;
- default:
- BUG();
- }
-
- switch (MEMFILE_ATTR(of_cft(of)->private)) {
- case RES_MAX_USAGE:
- page_counter_reset_watermark(counter);
- break;
- case RES_FAILCNT:
- counter->failcnt = 0;
- break;
- default:
- BUG();
+ /*
+ * The leftover is flushed to the centralized per-memcg value.
+ * On the next attempt to refill obj stock it will be moved
+ * to a per-cpu stock (probably, on an other CPU), see
+ * refill_obj_stock().
+ *
+ * How often it's flushed is a trade-off between the memory
+ * limit enforcement accuracy and potential CPU contention,
+ * so it might be changed in the future.
+ */
+ atomic_add(nr_bytes, &old->nr_charged_bytes);
+ stock->nr_bytes = 0;
}
- return nbytes;
-}
-
-static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
- struct cftype *cft)
-{
- return mem_cgroup_from_css(css)->move_charge_at_immigrate;
-}
-
-#ifdef CONFIG_MMU
-static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
- struct cftype *cft, u64 val)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
-
- if (val & ~MOVE_MASK)
- return -EINVAL;
-
/*
- * No kind of locking is needed in here, because ->can_attach() will
- * check this value once in the beginning of the process, and then carry
- * on with stale data. This means that changes to this value will only
- * affect task migrations starting after the change.
+ * Flush the vmstat data in current stock
*/
- memcg->move_charge_at_immigrate = val;
- return 0;
-}
-#else
-static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
- struct cftype *cft, u64 val)
-{
- return -ENOSYS;
-}
-#endif
-
-#ifdef CONFIG_NUMA
-static int memcg_numa_stat_show(struct seq_file *m, void *v)
-{
- struct numa_stat {
- const char *name;
- unsigned int lru_mask;
- };
-
- static const struct numa_stat stats[] = {
- { "total", LRU_ALL },
- { "file", LRU_ALL_FILE },
- { "anon", LRU_ALL_ANON },
- { "unevictable", BIT(LRU_UNEVICTABLE) },
- };
- const struct numa_stat *stat;
- int nid;
- unsigned long nr;
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
-
- for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
- nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
- seq_printf(m, "%s=%lu", stat->name, nr);
- for_each_node_state(nid, N_MEMORY) {
- nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- stat->lru_mask);
- seq_printf(m, " N%d=%lu", nid, nr);
+ if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
+ if (stock->nr_slab_reclaimable_b) {
+ mod_objcg_mlstate(old, stock->cached_pgdat,
+ NR_SLAB_RECLAIMABLE_B,
+ stock->nr_slab_reclaimable_b);
+ stock->nr_slab_reclaimable_b = 0;
}
- seq_putc(m, '\n');
- }
-
- for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
- struct mem_cgroup *iter;
-
- nr = 0;
- for_each_mem_cgroup_tree(iter, memcg)
- nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
- seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
- for_each_node_state(nid, N_MEMORY) {
- nr = 0;
- for_each_mem_cgroup_tree(iter, memcg)
- nr += mem_cgroup_node_nr_lru_pages(
- iter, nid, stat->lru_mask);
- seq_printf(m, " N%d=%lu", nid, nr);
+ if (stock->nr_slab_unreclaimable_b) {
+ mod_objcg_mlstate(old, stock->cached_pgdat,
+ NR_SLAB_UNRECLAIMABLE_B,
+ stock->nr_slab_unreclaimable_b);
+ stock->nr_slab_unreclaimable_b = 0;
}
- seq_putc(m, '\n');
+ stock->cached_pgdat = NULL;
}
- return 0;
+ WRITE_ONCE(stock->cached_objcg, NULL);
+ obj_cgroup_put(old);
}
-#endif /* CONFIG_NUMA */
-/* Universal VM events cgroup1 shows, original sort order */
-static const unsigned int memcg1_events[] = {
- PGPGIN,
- PGPGOUT,
- PGFAULT,
- PGMAJFAULT,
-};
-
-static const char *const memcg1_event_names[] = {
- "pgpgin",
- "pgpgout",
- "pgfault",
- "pgmajfault",
-};
-
-static int memcg_stat_show(struct seq_file *m, void *v)
+static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
+ struct mem_cgroup *root_memcg)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
- unsigned long memory, memsw;
- struct mem_cgroup *mi;
- unsigned int i;
- struct accumulated_stats acc;
-
- BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
- BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
+ struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
+ struct mem_cgroup *memcg;
+ bool flush = false;
- for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
- if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
- continue;
- seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
- memcg_page_state(memcg, memcg1_stats[i]) *
- PAGE_SIZE);
+ rcu_read_lock();
+ if (objcg) {
+ memcg = obj_cgroup_memcg(objcg);
+ if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
+ flush = true;
}
+ rcu_read_unlock();
- for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
- seq_printf(m, "%s %lu\n", memcg1_event_names[i],
- memcg_sum_events(memcg, memcg1_events[i]));
+ return flush;
+}
- for (i = 0; i < NR_LRU_LISTS; i++)
- seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
- mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
+static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
+ bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
+ enum node_stat_item idx)
+{
+ struct obj_stock_pcp *stock;
+ unsigned int nr_pages = 0;
- /* Hierarchical information */
- memory = memsw = PAGE_COUNTER_MAX;
- for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
- memory = min(memory, mi->memory.max);
- memsw = min(memsw, mi->memsw.max);
- }
- seq_printf(m, "hierarchical_memory_limit %llu\n",
- (u64)memory * PAGE_SIZE);
- if (do_memsw_account())
- seq_printf(m, "hierarchical_memsw_limit %llu\n",
- (u64)memsw * PAGE_SIZE);
-
- memset(&acc, 0, sizeof(acc));
- acc.stats_size = ARRAY_SIZE(memcg1_stats);
- acc.stats_array = memcg1_stats;
- acc.events_size = ARRAY_SIZE(memcg1_events);
- acc.events_array = memcg1_events;
- accumulate_memcg_tree(memcg, &acc);
-
- for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
- if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
- continue;
- seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
- (u64)acc.stat[i] * PAGE_SIZE);
+ if (!local_trylock(&obj_stock.lock)) {
+ if (pgdat)
+ mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
+ nr_pages = nr_bytes >> PAGE_SHIFT;
+ nr_bytes = nr_bytes & (PAGE_SIZE - 1);
+ atomic_add(nr_bytes, &objcg->nr_charged_bytes);
+ goto out;
}
- for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
- seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
- (u64)acc.events[i]);
-
- for (i = 0; i < NR_LRU_LISTS; i++)
- seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
- (u64)acc.lru_pages[i] * PAGE_SIZE);
+ stock = this_cpu_ptr(&obj_stock);
+ if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
+ drain_obj_stock(stock);
+ obj_cgroup_get(objcg);
+ stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
+ ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
+ WRITE_ONCE(stock->cached_objcg, objcg);
-#ifdef CONFIG_DEBUG_VM
- {
- pg_data_t *pgdat;
- struct mem_cgroup_per_node *mz;
- struct zone_reclaim_stat *rstat;
- unsigned long recent_rotated[2] = {0, 0};
- unsigned long recent_scanned[2] = {0, 0};
-
- for_each_online_pgdat(pgdat) {
- mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
- rstat = &mz->lruvec.reclaim_stat;
-
- recent_rotated[0] += rstat->recent_rotated[0];
- recent_rotated[1] += rstat->recent_rotated[1];
- recent_scanned[0] += rstat->recent_scanned[0];
- recent_scanned[1] += rstat->recent_scanned[1];
- }
- seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
- seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
- seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
- seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
+ allow_uncharge = true; /* Allow uncharge when objcg changes */
}
-#endif
-
- return 0;
-}
-
-static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
- struct cftype *cft)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
-
- return mem_cgroup_swappiness(memcg);
-}
-
-static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
- struct cftype *cft, u64 val)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ stock->nr_bytes += nr_bytes;
- if (val > 100)
- return -EINVAL;
+ if (pgdat)
+ __account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
- if (css->parent)
- memcg->swappiness = val;
- else
- vm_swappiness = val;
+ if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
+ nr_pages = stock->nr_bytes >> PAGE_SHIFT;
+ stock->nr_bytes &= (PAGE_SIZE - 1);
+ }
- return 0;
+ local_unlock(&obj_stock.lock);
+out:
+ if (nr_pages)
+ obj_cgroup_uncharge_pages(objcg, nr_pages);
}
-static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
+static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
+ struct pglist_data *pgdat, enum node_stat_item idx)
{
- struct mem_cgroup_threshold_ary *t;
- unsigned long usage;
- int i;
-
- rcu_read_lock();
- if (!swap)
- t = rcu_dereference(memcg->thresholds.primary);
- else
- t = rcu_dereference(memcg->memsw_thresholds.primary);
-
- if (!t)
- goto unlock;
-
- usage = mem_cgroup_usage(memcg, swap);
-
- /*
- * current_threshold points to threshold just below or equal to usage.
- * If it's not true, a threshold was crossed after last
- * call of __mem_cgroup_threshold().
- */
- i = t->current_threshold;
-
- /*
- * Iterate backward over array of thresholds starting from
- * current_threshold and check if a threshold is crossed.
- * If none of thresholds below usage is crossed, we read
- * only one element of the array here.
- */
- for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
- eventfd_signal(t->entries[i].eventfd, 1);
+ unsigned int nr_pages, nr_bytes;
+ int ret;
- /* i = current_threshold + 1 */
- i++;
+ if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
+ return 0;
/*
- * Iterate forward over array of thresholds starting from
- * current_threshold+1 and check if a threshold is crossed.
- * If none of thresholds above usage is crossed, we read
- * only one element of the array here.
+ * In theory, objcg->nr_charged_bytes can have enough
+ * pre-charged bytes to satisfy the allocation. However,
+ * flushing objcg->nr_charged_bytes requires two atomic
+ * operations, and objcg->nr_charged_bytes can't be big.
+ * The shared objcg->nr_charged_bytes can also become a
+ * performance bottleneck if all tasks of the same memcg are
+ * trying to update it. So it's better to ignore it and try
+ * grab some new pages. The stock's nr_bytes will be flushed to
+ * objcg->nr_charged_bytes later on when objcg changes.
+ *
+ * The stock's nr_bytes may contain enough pre-charged bytes
+ * to allow one less page from being charged, but we can't rely
+ * on the pre-charged bytes not being changed outside of
+ * consume_obj_stock() or refill_obj_stock(). So ignore those
+ * pre-charged bytes as well when charging pages. To avoid a
+ * page uncharge right after a page charge, we set the
+ * allow_uncharge flag to false when calling refill_obj_stock()
+ * to temporarily allow the pre-charged bytes to exceed the page
+ * size limit. The maximum reachable value of the pre-charged
+ * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
+ * race.
*/
- for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
- eventfd_signal(t->entries[i].eventfd, 1);
+ nr_pages = size >> PAGE_SHIFT;
+ nr_bytes = size & (PAGE_SIZE - 1);
- /* Update current_threshold */
- t->current_threshold = i - 1;
-unlock:
- rcu_read_unlock();
-}
+ if (nr_bytes)
+ nr_pages += 1;
-static void mem_cgroup_threshold(struct mem_cgroup *memcg)
-{
- while (memcg) {
- __mem_cgroup_threshold(memcg, false);
- if (do_memsw_account())
- __mem_cgroup_threshold(memcg, true);
+ ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
+ if (!ret && (nr_bytes || pgdat))
+ refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
+ false, size, pgdat, idx);
- memcg = parent_mem_cgroup(memcg);
- }
+ return ret;
}
-static int compare_thresholds(const void *a, const void *b)
+int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
- const struct mem_cgroup_threshold *_a = a;
- const struct mem_cgroup_threshold *_b = b;
-
- if (_a->threshold > _b->threshold)
- return 1;
-
- if (_a->threshold < _b->threshold)
- return -1;
-
- return 0;
+ return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
}
-static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
+void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
- struct mem_cgroup_eventfd_list *ev;
-
- spin_lock(&memcg_oom_lock);
-
- list_for_each_entry(ev, &memcg->oom_notify, list)
- eventfd_signal(ev->eventfd, 1);
-
- spin_unlock(&memcg_oom_lock);
- return 0;
+ refill_obj_stock(objcg, size, true, 0, NULL, 0);
}
-static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
+static inline size_t obj_full_size(struct kmem_cache *s)
{
- struct mem_cgroup *iter;
-
- for_each_mem_cgroup_tree(iter, memcg)
- mem_cgroup_oom_notify_cb(iter);
+ /*
+ * For each accounted object there is an extra space which is used
+ * to store obj_cgroup membership. Charge it too.
+ */
+ return s->size + sizeof(struct obj_cgroup *);
}
-static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd, const char *args, enum res_type type)
+bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
+ gfp_t flags, size_t size, void **p)
{
- struct mem_cgroup_thresholds *thresholds;
- struct mem_cgroup_threshold_ary *new;
- unsigned long threshold;
- unsigned long usage;
- int i, size, ret;
-
- ret = page_counter_memparse(args, "-1", &threshold);
- if (ret)
- return ret;
+ struct obj_cgroup *objcg;
+ struct slab *slab;
+ unsigned long off;
+ size_t i;
- mutex_lock(&memcg->thresholds_lock);
+ /*
+ * The obtained objcg pointer is safe to use within the current scope,
+ * defined by current task or set_active_memcg() pair.
+ * obj_cgroup_get() is used to get a permanent reference.
+ */
+ objcg = current_obj_cgroup();
+ if (!objcg)
+ return true;
- if (type == _MEM) {
- thresholds = &memcg->thresholds;
- usage = mem_cgroup_usage(memcg, false);
- } else if (type == _MEMSWAP) {
- thresholds = &memcg->memsw_thresholds;
- usage = mem_cgroup_usage(memcg, true);
- } else
- BUG();
+ /*
+ * slab_alloc_node() avoids the NULL check, so we might be called with a
+ * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
+ * the whole requested size.
+ * return success as there's nothing to free back
+ */
+ if (unlikely(*p == NULL))
+ return true;
- /* Check if a threshold crossed before adding a new one */
- if (thresholds->primary)
- __mem_cgroup_threshold(memcg, type == _MEMSWAP);
+ flags &= gfp_allowed_mask;
- size = thresholds->primary ? thresholds->primary->size + 1 : 1;
+ if (lru) {
+ int ret;
+ struct mem_cgroup *memcg;
- /* Allocate memory for new array of thresholds */
- new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
- GFP_KERNEL);
- if (!new) {
- ret = -ENOMEM;
- goto unlock;
- }
- new->size = size;
+ memcg = get_mem_cgroup_from_objcg(objcg);
+ ret = memcg_list_lru_alloc(memcg, lru, flags);
+ css_put(&memcg->css);
- /* Copy thresholds (if any) to new array */
- if (thresholds->primary) {
- memcpy(new->entries, thresholds->primary->entries, (size - 1) *
- sizeof(struct mem_cgroup_threshold));
+ if (ret)
+ return false;
}
- /* Add new threshold */
- new->entries[size - 1].eventfd = eventfd;
- new->entries[size - 1].threshold = threshold;
-
- /* Sort thresholds. Registering of new threshold isn't time-critical */
- sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
- compare_thresholds, NULL);
-
- /* Find current threshold */
- new->current_threshold = -1;
for (i = 0; i < size; i++) {
- if (new->entries[i].threshold <= usage) {
- /*
- * new->current_threshold will not be used until
- * rcu_assign_pointer(), so it's safe to increment
- * it here.
- */
- ++new->current_threshold;
- } else
- break;
- }
-
- /* Free old spare buffer and save old primary buffer as spare */
- kfree(thresholds->spare);
- thresholds->spare = thresholds->primary;
-
- rcu_assign_pointer(thresholds->primary, new);
+ slab = virt_to_slab(p[i]);
- /* To be sure that nobody uses thresholds */
- synchronize_rcu();
+ if (!slab_obj_exts(slab) &&
+ alloc_slab_obj_exts(slab, s, flags, false)) {
+ continue;
+ }
-unlock:
- mutex_unlock(&memcg->thresholds_lock);
+ /*
+ * if we fail and size is 1, memcg_alloc_abort_single() will
+ * just free the object, which is ok as we have not assigned
+ * objcg to its obj_ext yet
+ *
+ * for larger sizes, kmem_cache_free_bulk() will uncharge
+ * any objects that were already charged and obj_ext assigned
+ *
+ * TODO: we could batch this until slab_pgdat(slab) changes
+ * between iterations, with a more complicated undo
+ */
+ if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
+ slab_pgdat(slab), cache_vmstat_idx(s)))
+ return false;
- return ret;
-}
+ off = obj_to_index(s, slab, p[i]);
+ obj_cgroup_get(objcg);
+ slab_obj_exts(slab)[off].objcg = objcg;
+ }
-static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd, const char *args)
-{
- return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
+ return true;
}
-static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd, const char *args)
+void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
+ void **p, int objects, struct slabobj_ext *obj_exts)
{
- return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
-}
+ size_t obj_size = obj_full_size(s);
-static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd, enum res_type type)
-{
- struct mem_cgroup_thresholds *thresholds;
- struct mem_cgroup_threshold_ary *new;
- unsigned long usage;
- int i, j, size;
+ for (int i = 0; i < objects; i++) {
+ struct obj_cgroup *objcg;
+ unsigned int off;
- mutex_lock(&memcg->thresholds_lock);
-
- if (type == _MEM) {
- thresholds = &memcg->thresholds;
- usage = mem_cgroup_usage(memcg, false);
- } else if (type == _MEMSWAP) {
- thresholds = &memcg->memsw_thresholds;
- usage = mem_cgroup_usage(memcg, true);
- } else
- BUG();
-
- if (!thresholds->primary)
- goto unlock;
-
- /* Check if a threshold crossed before removing */
- __mem_cgroup_threshold(memcg, type == _MEMSWAP);
+ off = obj_to_index(s, slab, p[i]);
+ objcg = obj_exts[off].objcg;
+ if (!objcg)
+ continue;
- /* Calculate new number of threshold */
- size = 0;
- for (i = 0; i < thresholds->primary->size; i++) {
- if (thresholds->primary->entries[i].eventfd != eventfd)
- size++;
+ obj_exts[off].objcg = NULL;
+ refill_obj_stock(objcg, obj_size, true, -obj_size,
+ slab_pgdat(slab), cache_vmstat_idx(s));
+ obj_cgroup_put(objcg);
}
+}
- new = thresholds->spare;
+/*
+ * The objcg is only set on the first page, so transfer it to all the
+ * other pages.
+ */
+void split_page_memcg(struct page *page, unsigned order)
+{
+ struct obj_cgroup *objcg = page_objcg(page);
+ unsigned int i, nr = 1 << order;
- /* Set thresholds array to NULL if we don't have thresholds */
- if (!size) {
- kfree(new);
- new = NULL;
- goto swap_buffers;
- }
+ if (!objcg)
+ return;
- new->size = size;
+ for (i = 1; i < nr; i++)
+ page_set_objcg(&page[i], objcg);
- /* Copy thresholds and find current threshold */
- new->current_threshold = -1;
- for (i = 0, j = 0; i < thresholds->primary->size; i++) {
- if (thresholds->primary->entries[i].eventfd == eventfd)
- continue;
+ obj_cgroup_get_many(objcg, nr - 1);
+}
- new->entries[j] = thresholds->primary->entries[i];
- if (new->entries[j].threshold <= usage) {
- /*
- * new->current_threshold will not be used
- * until rcu_assign_pointer(), so it's safe to increment
- * it here.
- */
- ++new->current_threshold;
- }
- j++;
- }
+void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
+ unsigned new_order)
+{
+ unsigned new_refs;
-swap_buffers:
- /* Swap primary and spare array */
- thresholds->spare = thresholds->primary;
+ if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
+ return;
- rcu_assign_pointer(thresholds->primary, new);
+ new_refs = (1 << (old_order - new_order)) - 1;
+ css_get_many(&__folio_memcg(folio)->css, new_refs);
+}
- /* To be sure that nobody uses thresholds */
- synchronize_rcu();
+unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
+{
+ unsigned long val;
- /* If all events are unregistered, free the spare array */
- if (!new) {
- kfree(thresholds->spare);
- thresholds->spare = NULL;
+ if (mem_cgroup_is_root(memcg)) {
+ /*
+ * Approximate root's usage from global state. This isn't
+ * perfect, but the root usage was always an approximation.
+ */
+ val = global_node_page_state(NR_FILE_PAGES) +
+ global_node_page_state(NR_ANON_MAPPED);
+ if (swap)
+ val += total_swap_pages - get_nr_swap_pages();
+ } else {
+ if (!swap)
+ val = page_counter_read(&memcg->memory);
+ else
+ val = page_counter_read(&memcg->memsw);
}
-unlock:
- mutex_unlock(&memcg->thresholds_lock);
+ return val;
}
-static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd)
+static int memcg_online_kmem(struct mem_cgroup *memcg)
{
- return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
-}
+ struct obj_cgroup *objcg;
-static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd)
-{
- return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
-}
+ if (mem_cgroup_kmem_disabled())
+ return 0;
-static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd, const char *args)
-{
- struct mem_cgroup_eventfd_list *event;
+ if (unlikely(mem_cgroup_is_root(memcg)))
+ return 0;
- event = kmalloc(sizeof(*event), GFP_KERNEL);
- if (!event)
+ objcg = obj_cgroup_alloc();
+ if (!objcg)
return -ENOMEM;
- spin_lock(&memcg_oom_lock);
+ objcg->memcg = memcg;
+ rcu_assign_pointer(memcg->objcg, objcg);
+ obj_cgroup_get(objcg);
+ memcg->orig_objcg = objcg;
- event->eventfd = eventfd;
- list_add(&event->list, &memcg->oom_notify);
+ static_branch_enable(&memcg_kmem_online_key);
- /* already in OOM ? */
- if (memcg->under_oom)
- eventfd_signal(eventfd, 1);
- spin_unlock(&memcg_oom_lock);
+ memcg->kmemcg_id = memcg->id.id;
return 0;
}
-static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd)
-{
- struct mem_cgroup_eventfd_list *ev, *tmp;
-
- spin_lock(&memcg_oom_lock);
-
- list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
- if (ev->eventfd == eventfd) {
- list_del(&ev->list);
- kfree(ev);
- }
- }
-
- spin_unlock(&memcg_oom_lock);
-}
-
-static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
+static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
+ struct mem_cgroup *parent;
- seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
- seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
- seq_printf(sf, "oom_kill %lu\n",
- atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
- return 0;
-}
+ if (mem_cgroup_kmem_disabled())
+ return;
-static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
- struct cftype *cft, u64 val)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ if (unlikely(mem_cgroup_is_root(memcg)))
+ return;
- /* cannot set to root cgroup and only 0 and 1 are allowed */
- if (!css->parent || !((val == 0) || (val == 1)))
- return -EINVAL;
+ parent = parent_mem_cgroup(memcg);
+ if (!parent)
+ parent = root_mem_cgroup;
- memcg->oom_kill_disable = val;
- if (!val)
- memcg_oom_recover(memcg);
+ memcg_reparent_list_lrus(memcg, parent);
- return 0;
+ /*
+ * Objcg's reparenting must be after list_lru's, make sure list_lru
+ * helpers won't use parent's list_lru until child is drained.
+ */
+ memcg_reparent_objcgs(memcg, parent);
}
#ifdef CONFIG_CGROUP_WRITEBACK
+#include <trace/events/writeback.h>
+
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
return wb_domain_init(&memcg->cgwb_domain, gfp);
@@ -3898,16 +3397,17 @@ void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
struct mem_cgroup *parent;
- *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
+ mem_cgroup_flush_stats_ratelimited(memcg);
- /* this should eventually include NR_UNSTABLE_NFS */
+ *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
- *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
- (1 << LRU_ACTIVE_FILE));
- *pheadroom = PAGE_COUNTER_MAX;
+ *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
+ memcg_page_state(memcg, NR_ACTIVE_FILE);
+ *pheadroom = PAGE_COUNTER_MAX;
while ((parent = parent_mem_cgroup(memcg))) {
- unsigned long ceiling = min(memcg->memory.max, memcg->high);
+ unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
+ READ_ONCE(memcg->memory.high));
unsigned long used = page_counter_read(&memcg->memory);
*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
@@ -3915,376 +3415,146 @@ void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
}
}
-#else /* CONFIG_CGROUP_WRITEBACK */
-
-static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
-{
- return 0;
-}
-
-static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
-{
-}
-
-static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
-{
-}
-
-#endif /* CONFIG_CGROUP_WRITEBACK */
-
/*
- * DO NOT USE IN NEW FILES.
+ * Foreign dirty flushing
*
- * "cgroup.event_control" implementation.
+ * There's an inherent mismatch between memcg and writeback. The former
+ * tracks ownership per-page while the latter per-inode. This was a
+ * deliberate design decision because honoring per-page ownership in the
+ * writeback path is complicated, may lead to higher CPU and IO overheads
+ * and deemed unnecessary given that write-sharing an inode across
+ * different cgroups isn't a common use-case.
*
- * This is way over-engineered. It tries to support fully configurable
- * events for each user. Such level of flexibility is completely
- * unnecessary especially in the light of the planned unified hierarchy.
+ * Combined with inode majority-writer ownership switching, this works well
+ * enough in most cases but there are some pathological cases. For
+ * example, let's say there are two cgroups A and B which keep writing to
+ * different but confined parts of the same inode. B owns the inode and
+ * A's memory is limited far below B's. A's dirty ratio can rise enough to
+ * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
+ * triggering background writeback. A will be slowed down without a way to
+ * make writeback of the dirty pages happen.
*
- * Please deprecate this and replace with something simpler if at all
- * possible.
- */
-
-/*
- * Unregister event and free resources.
+ * Conditions like the above can lead to a cgroup getting repeatedly and
+ * severely throttled after making some progress after each
+ * dirty_expire_interval while the underlying IO device is almost
+ * completely idle.
+ *
+ * Solving this problem completely requires matching the ownership tracking
+ * granularities between memcg and writeback in either direction. However,
+ * the more egregious behaviors can be avoided by simply remembering the
+ * most recent foreign dirtying events and initiating remote flushes on
+ * them when local writeback isn't enough to keep the memory clean enough.
*
- * Gets called from workqueue.
+ * The following two functions implement such mechanism. When a foreign
+ * page - a page whose memcg and writeback ownerships don't match - is
+ * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
+ * bdi_writeback on the page owning memcg. When balance_dirty_pages()
+ * decides that the memcg needs to sleep due to high dirty ratio, it calls
+ * mem_cgroup_flush_foreign() which queues writeback on the recorded
+ * foreign bdi_writebacks which haven't expired. Both the numbers of
+ * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
+ * limited to MEMCG_CGWB_FRN_CNT.
+ *
+ * The mechanism only remembers IDs and doesn't hold any object references.
+ * As being wrong occasionally doesn't matter, updates and accesses to the
+ * records are lockless and racy.
*/
-static void memcg_event_remove(struct work_struct *work)
-{
- struct mem_cgroup_event *event =
- container_of(work, struct mem_cgroup_event, remove);
- struct mem_cgroup *memcg = event->memcg;
+void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
+ struct bdi_writeback *wb)
+{
+ struct mem_cgroup *memcg = folio_memcg(folio);
+ struct memcg_cgwb_frn *frn;
+ u64 now = get_jiffies_64();
+ u64 oldest_at = now;
+ int oldest = -1;
+ int i;
- remove_wait_queue(event->wqh, &event->wait);
+ trace_track_foreign_dirty(folio, wb);
- event->unregister_event(memcg, event->eventfd);
+ /*
+ * Pick the slot to use. If there is already a slot for @wb, keep
+ * using it. If not replace the oldest one which isn't being
+ * written out.
+ */
+ for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
+ frn = &memcg->cgwb_frn[i];
+ if (frn->bdi_id == wb->bdi->id &&
+ frn->memcg_id == wb->memcg_css->id)
+ break;
+ if (time_before64(frn->at, oldest_at) &&
+ atomic_read(&frn->done.cnt) == 1) {
+ oldest = i;
+ oldest_at = frn->at;
+ }
+ }
- /* Notify userspace the event is going away. */
- eventfd_signal(event->eventfd, 1);
+ if (i < MEMCG_CGWB_FRN_CNT) {
+ /*
+ * Re-using an existing one. Update timestamp lazily to
+ * avoid making the cacheline hot. We want them to be
+ * reasonably up-to-date and significantly shorter than
+ * dirty_expire_interval as that's what expires the record.
+ * Use the shorter of 1s and dirty_expire_interval / 8.
+ */
+ unsigned long update_intv =
+ min_t(unsigned long, HZ,
+ msecs_to_jiffies(dirty_expire_interval * 10) / 8);
- eventfd_ctx_put(event->eventfd);
- kfree(event);
- css_put(&memcg->css);
+ if (time_before64(frn->at, now - update_intv))
+ frn->at = now;
+ } else if (oldest >= 0) {
+ /* replace the oldest free one */
+ frn = &memcg->cgwb_frn[oldest];
+ frn->bdi_id = wb->bdi->id;
+ frn->memcg_id = wb->memcg_css->id;
+ frn->at = now;
+ }
}
-/*
- * Gets called on EPOLLHUP on eventfd when user closes it.
- *
- * Called with wqh->lock held and interrupts disabled.
- */
-static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
- int sync, void *key)
+/* issue foreign writeback flushes for recorded foreign dirtying events */
+void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
- struct mem_cgroup_event *event =
- container_of(wait, struct mem_cgroup_event, wait);
- struct mem_cgroup *memcg = event->memcg;
- __poll_t flags = key_to_poll(key);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
+ unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
+ u64 now = jiffies_64;
+ int i;
+
+ for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
+ struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
- if (flags & EPOLLHUP) {
/*
- * If the event has been detached at cgroup removal, we
- * can simply return knowing the other side will cleanup
- * for us.
- *
- * We can't race against event freeing since the other
- * side will require wqh->lock via remove_wait_queue(),
- * which we hold.
+ * If the record is older than dirty_expire_interval,
+ * writeback on it has already started. No need to kick it
+ * off again. Also, don't start a new one if there's
+ * already one in flight.
*/
- spin_lock(&memcg->event_list_lock);
- if (!list_empty(&event->list)) {
- list_del_init(&event->list);
- /*
- * We are in atomic context, but cgroup_event_remove()
- * may sleep, so we have to call it in workqueue.
- */
- schedule_work(&event->remove);
+ if (time_after64(frn->at, now - intv) &&
+ atomic_read(&frn->done.cnt) == 1) {
+ frn->at = 0;
+ trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
+ cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
+ WB_REASON_FOREIGN_FLUSH,
+ &frn->done);
}
- spin_unlock(&memcg->event_list_lock);
}
+}
+#else /* CONFIG_CGROUP_WRITEBACK */
+
+static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
+{
return 0;
}
-static void memcg_event_ptable_queue_proc(struct file *file,
- wait_queue_head_t *wqh, poll_table *pt)
+static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
- struct mem_cgroup_event *event =
- container_of(pt, struct mem_cgroup_event, pt);
-
- event->wqh = wqh;
- add_wait_queue(wqh, &event->wait);
}
-/*
- * DO NOT USE IN NEW FILES.
- *
- * Parse input and register new cgroup event handler.
- *
- * Input must be in format '<event_fd> <control_fd> <args>'.
- * Interpretation of args is defined by control file implementation.
- */
-static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
- char *buf, size_t nbytes, loff_t off)
+static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
- struct cgroup_subsys_state *css = of_css(of);
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- struct mem_cgroup_event *event;
- struct cgroup_subsys_state *cfile_css;
- unsigned int efd, cfd;
- struct fd efile;
- struct fd cfile;
- const char *name;
- char *endp;
- int ret;
-
- buf = strstrip(buf);
-
- efd = simple_strtoul(buf, &endp, 10);
- if (*endp != ' ')
- return -EINVAL;
- buf = endp + 1;
-
- cfd = simple_strtoul(buf, &endp, 10);
- if ((*endp != ' ') && (*endp != '\0'))
- return -EINVAL;
- buf = endp + 1;
-
- event = kzalloc(sizeof(*event), GFP_KERNEL);
- if (!event)
- return -ENOMEM;
-
- event->memcg = memcg;
- INIT_LIST_HEAD(&event->list);
- init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
- init_waitqueue_func_entry(&event->wait, memcg_event_wake);
- INIT_WORK(&event->remove, memcg_event_remove);
-
- efile = fdget(efd);
- if (!efile.file) {
- ret = -EBADF;
- goto out_kfree;
- }
-
- event->eventfd = eventfd_ctx_fileget(efile.file);
- if (IS_ERR(event->eventfd)) {
- ret = PTR_ERR(event->eventfd);
- goto out_put_efile;
- }
-
- cfile = fdget(cfd);
- if (!cfile.file) {
- ret = -EBADF;
- goto out_put_eventfd;
- }
-
- /* the process need read permission on control file */
- /* AV: shouldn't we check that it's been opened for read instead? */
- ret = inode_permission(file_inode(cfile.file), MAY_READ);
- if (ret < 0)
- goto out_put_cfile;
-
- /*
- * Determine the event callbacks and set them in @event. This used
- * to be done via struct cftype but cgroup core no longer knows
- * about these events. The following is crude but the whole thing
- * is for compatibility anyway.
- *
- * DO NOT ADD NEW FILES.
- */
- name = cfile.file->f_path.dentry->d_name.name;
-
- if (!strcmp(name, "memory.usage_in_bytes")) {
- event->register_event = mem_cgroup_usage_register_event;
- event->unregister_event = mem_cgroup_usage_unregister_event;
- } else if (!strcmp(name, "memory.oom_control")) {
- event->register_event = mem_cgroup_oom_register_event;
- event->unregister_event = mem_cgroup_oom_unregister_event;
- } else if (!strcmp(name, "memory.pressure_level")) {
- event->register_event = vmpressure_register_event;
- event->unregister_event = vmpressure_unregister_event;
- } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
- event->register_event = memsw_cgroup_usage_register_event;
- event->unregister_event = memsw_cgroup_usage_unregister_event;
- } else {
- ret = -EINVAL;
- goto out_put_cfile;
- }
-
- /*
- * Verify @cfile should belong to @css. Also, remaining events are
- * automatically removed on cgroup destruction but the removal is
- * asynchronous, so take an extra ref on @css.
- */
- cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
- &memory_cgrp_subsys);
- ret = -EINVAL;
- if (IS_ERR(cfile_css))
- goto out_put_cfile;
- if (cfile_css != css) {
- css_put(cfile_css);
- goto out_put_cfile;
- }
-
- ret = event->register_event(memcg, event->eventfd, buf);
- if (ret)
- goto out_put_css;
-
- vfs_poll(efile.file, &event->pt);
-
- spin_lock(&memcg->event_list_lock);
- list_add(&event->list, &memcg->event_list);
- spin_unlock(&memcg->event_list_lock);
-
- fdput(cfile);
- fdput(efile);
-
- return nbytes;
-
-out_put_css:
- css_put(css);
-out_put_cfile:
- fdput(cfile);
-out_put_eventfd:
- eventfd_ctx_put(event->eventfd);
-out_put_efile:
- fdput(efile);
-out_kfree:
- kfree(event);
-
- return ret;
}
-static struct cftype mem_cgroup_legacy_files[] = {
- {
- .name = "usage_in_bytes",
- .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "max_usage_in_bytes",
- .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "limit_in_bytes",
- .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
- .write = mem_cgroup_write,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "soft_limit_in_bytes",
- .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
- .write = mem_cgroup_write,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "failcnt",
- .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "stat",
- .seq_show = memcg_stat_show,
- },
- {
- .name = "force_empty",
- .write = mem_cgroup_force_empty_write,
- },
- {
- .name = "use_hierarchy",
- .write_u64 = mem_cgroup_hierarchy_write,
- .read_u64 = mem_cgroup_hierarchy_read,
- },
- {
- .name = "cgroup.event_control", /* XXX: for compat */
- .write = memcg_write_event_control,
- .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
- },
- {
- .name = "swappiness",
- .read_u64 = mem_cgroup_swappiness_read,
- .write_u64 = mem_cgroup_swappiness_write,
- },
- {
- .name = "move_charge_at_immigrate",
- .read_u64 = mem_cgroup_move_charge_read,
- .write_u64 = mem_cgroup_move_charge_write,
- },
- {
- .name = "oom_control",
- .seq_show = mem_cgroup_oom_control_read,
- .write_u64 = mem_cgroup_oom_control_write,
- .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
- },
- {
- .name = "pressure_level",
- },
-#ifdef CONFIG_NUMA
- {
- .name = "numa_stat",
- .seq_show = memcg_numa_stat_show,
- },
-#endif
- {
- .name = "kmem.limit_in_bytes",
- .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
- .write = mem_cgroup_write,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "kmem.usage_in_bytes",
- .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "kmem.failcnt",
- .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "kmem.max_usage_in_bytes",
- .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
-#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
- {
- .name = "kmem.slabinfo",
- .seq_start = memcg_slab_start,
- .seq_next = memcg_slab_next,
- .seq_stop = memcg_slab_stop,
- .seq_show = memcg_slab_show,
- },
-#endif
- {
- .name = "kmem.tcp.limit_in_bytes",
- .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
- .write = mem_cgroup_write,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "kmem.tcp.usage_in_bytes",
- .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "kmem.tcp.failcnt",
- .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "kmem.tcp.max_usage_in_bytes",
- .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
- { }, /* terminate */
-};
+#endif /* CONFIG_CGROUP_WRITEBACK */
/*
* Private memory cgroup IDR
@@ -4294,7 +3564,7 @@ static struct cftype mem_cgroup_legacy_files[] = {
* limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
* memory-controlled cgroups to 64k.
*
- * However, there usually are many references to the oflline CSS after
+ * However, there usually are many references to the offline CSS after
* the cgroup has been destroyed, such as page cache or reclaimable
* slab objects, that don't need to hang on to the ID. We want to keep
* those dead CSS from occupying IDs, or we might quickly exhaust the
@@ -4310,17 +3580,19 @@ static struct cftype mem_cgroup_legacy_files[] = {
* those references are manageable from userspace.
*/
-static DEFINE_IDR(mem_cgroup_idr);
+#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
+static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
if (memcg->id.id > 0) {
- idr_remove(&mem_cgroup_idr, memcg->id.id);
+ xa_erase(&mem_cgroup_ids, memcg->id.id);
memcg->id.id = 0;
}
}
-static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
+void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
+ unsigned int n)
{
refcount_add(n, &memcg->id.ref);
}
@@ -4335,14 +3607,27 @@ static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
}
}
-static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
+static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
- mem_cgroup_id_get_many(memcg, 1);
+ mem_cgroup_id_put_many(memcg, 1);
}
-static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
+struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
- mem_cgroup_id_put_many(memcg, 1);
+ while (!refcount_inc_not_zero(&memcg->id.ref)) {
+ /*
+ * The root cgroup cannot be destroyed, so it's refcount must
+ * always be >= 1.
+ */
+ if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
+ VM_BUG_ON(1);
+ break;
+ }
+ memcg = parent_mem_cgroup(memcg);
+ if (!memcg)
+ memcg = root_mem_cgroup;
+ }
+ return memcg;
}
/**
@@ -4354,223 +3639,283 @@ static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
WARN_ON_ONCE(!rcu_read_lock_held());
- return idr_find(&mem_cgroup_idr, id);
+ return xa_load(&mem_cgroup_ids, id);
}
-static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
+#ifdef CONFIG_SHRINKER_DEBUG
+struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
{
- struct mem_cgroup_per_node *pn;
- int tmp = node;
- /*
- * This routine is called against possible nodes.
- * But it's BUG to call kmalloc() against offline node.
- *
- * TODO: this routine can waste much memory for nodes which will
- * never be onlined. It's better to use memory hotplug callback
- * function.
- */
- if (!node_state(node, N_NORMAL_MEMORY))
- tmp = -1;
- pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
- if (!pn)
- return 1;
+ struct cgroup *cgrp;
+ struct cgroup_subsys_state *css;
+ struct mem_cgroup *memcg;
- pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
- if (!pn->lruvec_stat_cpu) {
- kfree(pn);
- return 1;
- }
+ cgrp = cgroup_get_from_id(ino);
+ if (IS_ERR(cgrp))
+ return ERR_CAST(cgrp);
- lruvec_init(&pn->lruvec);
- pn->usage_in_excess = 0;
- pn->on_tree = false;
- pn->memcg = memcg;
+ css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
+ if (css)
+ memcg = container_of(css, struct mem_cgroup, css);
+ else
+ memcg = ERR_PTR(-ENOENT);
- memcg->nodeinfo[node] = pn;
- return 0;
+ cgroup_put(cgrp);
+
+ return memcg;
}
+#endif
-static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
+static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
{
- struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
-
if (!pn)
return;
- free_percpu(pn->lruvec_stat_cpu);
+ free_percpu(pn->lruvec_stats_percpu);
+ kfree(pn->lruvec_stats);
kfree(pn);
}
+static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
+{
+ struct mem_cgroup_per_node *pn;
+
+ pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
+ node);
+ if (!pn)
+ return false;
+
+ pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
+ GFP_KERNEL_ACCOUNT, node);
+ if (!pn->lruvec_stats)
+ goto fail;
+
+ pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
+ GFP_KERNEL_ACCOUNT);
+ if (!pn->lruvec_stats_percpu)
+ goto fail;
+
+ lruvec_init(&pn->lruvec);
+ pn->memcg = memcg;
+
+ memcg->nodeinfo[node] = pn;
+ return true;
+fail:
+ free_mem_cgroup_per_node_info(pn);
+ return false;
+}
+
static void __mem_cgroup_free(struct mem_cgroup *memcg)
{
int node;
+ obj_cgroup_put(memcg->orig_objcg);
+
for_each_node(node)
- free_mem_cgroup_per_node_info(memcg, node);
- free_percpu(memcg->stat_cpu);
+ free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
+ memcg1_free_events(memcg);
+ kfree(memcg->vmstats);
+ free_percpu(memcg->vmstats_percpu);
kfree(memcg);
}
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
+ lru_gen_exit_memcg(memcg);
memcg_wb_domain_exit(memcg);
__mem_cgroup_free(memcg);
}
-static struct mem_cgroup *mem_cgroup_alloc(void)
+static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
{
+ struct memcg_vmstats_percpu *statc;
+ struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
struct mem_cgroup *memcg;
- size_t size;
- int node;
-
- size = sizeof(struct mem_cgroup);
- size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
+ int node, cpu;
+ int __maybe_unused i;
+ long error;
- memcg = kzalloc(size, GFP_KERNEL);
+ memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
if (!memcg)
- return NULL;
+ return ERR_PTR(-ENOMEM);
- memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
- 1, MEM_CGROUP_ID_MAX,
- GFP_KERNEL);
- if (memcg->id.id < 0)
+ error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
+ XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
+ if (error)
goto fail;
+ error = -ENOMEM;
- memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
- if (!memcg->stat_cpu)
+ memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
+ GFP_KERNEL_ACCOUNT);
+ if (!memcg->vmstats)
goto fail;
+ memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
+ GFP_KERNEL_ACCOUNT);
+ if (!memcg->vmstats_percpu)
+ goto fail;
+
+ if (!memcg1_alloc_events(memcg))
+ goto fail;
+
+ for_each_possible_cpu(cpu) {
+ if (parent)
+ pstatc_pcpu = parent->vmstats_percpu;
+ statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
+ statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
+ statc->vmstats = memcg->vmstats;
+ }
+
for_each_node(node)
- if (alloc_mem_cgroup_per_node_info(memcg, node))
+ if (!alloc_mem_cgroup_per_node_info(memcg, node))
goto fail;
if (memcg_wb_domain_init(memcg, GFP_KERNEL))
goto fail;
INIT_WORK(&memcg->high_work, high_work_func);
- memcg->last_scanned_node = MAX_NUMNODES;
- INIT_LIST_HEAD(&memcg->oom_notify);
- mutex_init(&memcg->thresholds_lock);
- spin_lock_init(&memcg->move_lock);
vmpressure_init(&memcg->vmpressure);
- INIT_LIST_HEAD(&memcg->event_list);
- spin_lock_init(&memcg->event_list_lock);
- memcg->socket_pressure = jiffies;
-#ifdef CONFIG_MEMCG_KMEM
- memcg->kmemcg_id = -1;
+ INIT_LIST_HEAD(&memcg->memory_peaks);
+ INIT_LIST_HEAD(&memcg->swap_peaks);
+ spin_lock_init(&memcg->peaks_lock);
+ memcg->socket_pressure = get_jiffies_64();
+#if BITS_PER_LONG < 64
+ seqlock_init(&memcg->socket_pressure_seqlock);
#endif
+ memcg1_memcg_init(memcg);
+ memcg->kmemcg_id = -1;
+ INIT_LIST_HEAD(&memcg->objcg_list);
#ifdef CONFIG_CGROUP_WRITEBACK
INIT_LIST_HEAD(&memcg->cgwb_list);
+ for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
+ memcg->cgwb_frn[i].done =
+ __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
#endif
- idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
+ INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
+ memcg->deferred_split_queue.split_queue_len = 0;
+#endif
+ lru_gen_init_memcg(memcg);
return memcg;
fail:
mem_cgroup_id_remove(memcg);
__mem_cgroup_free(memcg);
- return NULL;
+ return ERR_PTR(error);
}
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
{
struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
- struct mem_cgroup *memcg;
- long error = -ENOMEM;
-
- memcg = mem_cgroup_alloc();
- if (!memcg)
- return ERR_PTR(error);
-
- memcg->high = PAGE_COUNTER_MAX;
- memcg->soft_limit = PAGE_COUNTER_MAX;
+ struct mem_cgroup *memcg, *old_memcg;
+ bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
+
+ old_memcg = set_active_memcg(parent);
+ memcg = mem_cgroup_alloc(parent);
+ set_active_memcg(old_memcg);
+ if (IS_ERR(memcg))
+ return ERR_CAST(memcg);
+
+ page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
+ memcg1_soft_limit_reset(memcg);
+#ifdef CONFIG_ZSWAP
+ memcg->zswap_max = PAGE_COUNTER_MAX;
+ WRITE_ONCE(memcg->zswap_writeback, true);
+#endif
+ page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
if (parent) {
- memcg->swappiness = mem_cgroup_swappiness(parent);
- memcg->oom_kill_disable = parent->oom_kill_disable;
- }
- if (parent && parent->use_hierarchy) {
- memcg->use_hierarchy = true;
- page_counter_init(&memcg->memory, &parent->memory);
- page_counter_init(&memcg->swap, &parent->swap);
- page_counter_init(&memcg->memsw, &parent->memsw);
- page_counter_init(&memcg->kmem, &parent->kmem);
- page_counter_init(&memcg->tcpmem, &parent->tcpmem);
+ WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
+
+ page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
+ page_counter_init(&memcg->swap, &parent->swap, false);
+#ifdef CONFIG_MEMCG_V1
+ memcg->memory.track_failcnt = !memcg_on_dfl;
+ WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
+ page_counter_init(&memcg->kmem, &parent->kmem, false);
+ page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
+#endif
} else {
- page_counter_init(&memcg->memory, NULL);
- page_counter_init(&memcg->swap, NULL);
- page_counter_init(&memcg->memsw, NULL);
- page_counter_init(&memcg->kmem, NULL);
- page_counter_init(&memcg->tcpmem, NULL);
- /*
- * Deeper hierachy with use_hierarchy == false doesn't make
- * much sense so let cgroup subsystem know about this
- * unfortunate state in our controller.
- */
- if (parent != root_mem_cgroup)
- memory_cgrp_subsys.broken_hierarchy = true;
- }
-
- /* The following stuff does not apply to the root */
- if (!parent) {
+ init_memcg_stats();
+ init_memcg_events();
+ page_counter_init(&memcg->memory, NULL, true);
+ page_counter_init(&memcg->swap, NULL, false);
+#ifdef CONFIG_MEMCG_V1
+ page_counter_init(&memcg->kmem, NULL, false);
+ page_counter_init(&memcg->tcpmem, NULL, false);
+#endif
root_mem_cgroup = memcg;
return &memcg->css;
}
- error = memcg_online_kmem(memcg);
- if (error)
- goto fail;
-
- if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
+ if (memcg_on_dfl && !cgroup_memory_nosocket)
static_branch_inc(&memcg_sockets_enabled_key);
+ if (!cgroup_memory_nobpf)
+ static_branch_inc(&memcg_bpf_enabled_key);
+
return &memcg->css;
-fail:
- mem_cgroup_id_remove(memcg);
- mem_cgroup_free(memcg);
- return ERR_PTR(-ENOMEM);
}
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ if (memcg_online_kmem(memcg))
+ goto remove_id;
+
/*
- * A memcg must be visible for memcg_expand_shrinker_maps()
+ * A memcg must be visible for expand_shrinker_info()
* by the time the maps are allocated. So, we allocate maps
* here, when for_each_mem_cgroup() can't skip it.
*/
- if (memcg_alloc_shrinker_maps(memcg)) {
- mem_cgroup_id_remove(memcg);
- return -ENOMEM;
- }
+ if (alloc_shrinker_info(memcg))
+ goto offline_kmem;
+
+ if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
+ queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
+ FLUSH_TIME);
+ lru_gen_online_memcg(memcg);
/* Online state pins memcg ID, memcg ID pins CSS */
refcount_set(&memcg->id.ref, 1);
css_get(css);
+
+ /*
+ * Ensure mem_cgroup_from_id() works once we're fully online.
+ *
+ * We could do this earlier and require callers to filter with
+ * css_tryget_online(). But right now there are no users that
+ * need earlier access, and the workingset code relies on the
+ * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
+ * publish it here at the end of onlining. This matches the
+ * regular ID destruction during offlining.
+ */
+ xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
+
return 0;
+offline_kmem:
+ memcg_offline_kmem(memcg);
+remove_id:
+ mem_cgroup_id_remove(memcg);
+ return -ENOMEM;
}
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- struct mem_cgroup_event *event, *tmp;
- /*
- * Unregister events and notify userspace.
- * Notify userspace about cgroup removing only after rmdir of cgroup
- * directory to avoid race between userspace and kernelspace.
- */
- spin_lock(&memcg->event_list_lock);
- list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
- list_del_init(&event->list);
- schedule_work(&event->remove);
- }
- spin_unlock(&memcg->event_list_lock);
+ memcg1_css_offline(memcg);
page_counter_set_min(&memcg->memory, 0);
page_counter_set_low(&memcg->memory, 0);
+ zswap_memcg_offline_cleanup(memcg);
+
memcg_offline_kmem(memcg);
+ reparent_deferred_split_queue(memcg);
+ reparent_shrinker_deferred(memcg);
wb_memcg_offline(memcg);
+ lru_gen_offline_memcg(memcg);
drain_all_stock(memcg);
@@ -4582,23 +3927,31 @@ static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
invalidate_reclaim_iterators(memcg);
+ lru_gen_release_memcg(memcg);
}
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ int __maybe_unused i;
+#ifdef CONFIG_CGROUP_WRITEBACK
+ for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
+ wb_wait_for_completion(&memcg->cgwb_frn[i].done);
+#endif
if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
static_branch_dec(&memcg_sockets_enabled_key);
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
static_branch_dec(&memcg_sockets_enabled_key);
+ if (!cgroup_memory_nobpf)
+ static_branch_dec(&memcg_bpf_enabled_key);
+
vmpressure_cleanup(&memcg->vmpressure);
cancel_work_sync(&memcg->high_work);
- mem_cgroup_remove_from_trees(memcg);
- memcg_free_shrinker_maps(memcg);
- memcg_free_kmem(memcg);
+ memcg1_remove_from_trees(memcg);
+ free_shrinker_info(memcg);
mem_cgroup_free(memcg);
}
@@ -4621,758 +3974,355 @@ static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
- page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
+#ifdef CONFIG_MEMCG_V1
page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
+#endif
page_counter_set_min(&memcg->memory, 0);
page_counter_set_low(&memcg->memory, 0);
- memcg->high = PAGE_COUNTER_MAX;
- memcg->soft_limit = PAGE_COUNTER_MAX;
+ page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
+ memcg1_soft_limit_reset(memcg);
+ page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
memcg_wb_domain_size_changed(memcg);
}
-#ifdef CONFIG_MMU
-/* Handlers for move charge at task migration. */
-static int mem_cgroup_do_precharge(unsigned long count)
-{
- int ret;
-
- /* Try a single bulk charge without reclaim first, kswapd may wake */
- ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
- if (!ret) {
- mc.precharge += count;
- return ret;
- }
-
- /* Try charges one by one with reclaim, but do not retry */
- while (count--) {
- ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
- if (ret)
- return ret;
- mc.precharge++;
- cond_resched();
- }
- return 0;
-}
-
-union mc_target {
- struct page *page;
- swp_entry_t ent;
+struct aggregate_control {
+ /* pointer to the aggregated (CPU and subtree aggregated) counters */
+ long *aggregate;
+ /* pointer to the non-hierarchichal (CPU aggregated) counters */
+ long *local;
+ /* pointer to the pending child counters during tree propagation */
+ long *pending;
+ /* pointer to the parent's pending counters, could be NULL */
+ long *ppending;
+ /* pointer to the percpu counters to be aggregated */
+ long *cstat;
+ /* pointer to the percpu counters of the last aggregation*/
+ long *cstat_prev;
+ /* size of the above counters */
+ int size;
};
-enum mc_target_type {
- MC_TARGET_NONE = 0,
- MC_TARGET_PAGE,
- MC_TARGET_SWAP,
- MC_TARGET_DEVICE,
-};
-
-static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
- unsigned long addr, pte_t ptent)
+static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
{
- struct page *page = _vm_normal_page(vma, addr, ptent, true);
+ int i;
+ long delta, delta_cpu, v;
- if (!page || !page_mapped(page))
- return NULL;
- if (PageAnon(page)) {
- if (!(mc.flags & MOVE_ANON))
- return NULL;
- } else {
- if (!(mc.flags & MOVE_FILE))
- return NULL;
- }
- if (!get_page_unless_zero(page))
- return NULL;
+ for (i = 0; i < ac->size; i++) {
+ /*
+ * Collect the aggregated propagation counts of groups
+ * below us. We're in a per-cpu loop here and this is
+ * a global counter, so the first cycle will get them.
+ */
+ delta = ac->pending[i];
+ if (delta)
+ ac->pending[i] = 0;
+
+ /* Add CPU changes on this level since the last flush */
+ delta_cpu = 0;
+ v = READ_ONCE(ac->cstat[i]);
+ if (v != ac->cstat_prev[i]) {
+ delta_cpu = v - ac->cstat_prev[i];
+ delta += delta_cpu;
+ ac->cstat_prev[i] = v;
+ }
+
+ /* Aggregate counts on this level and propagate upwards */
+ if (delta_cpu)
+ ac->local[i] += delta_cpu;
- return page;
+ if (delta) {
+ ac->aggregate[i] += delta;
+ if (ac->ppending)
+ ac->ppending[i] += delta;
+ }
+ }
}
-#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
-static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
- pte_t ptent, swp_entry_t *entry)
+#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
+static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
+ int cpu)
{
- struct page *page = NULL;
- swp_entry_t ent = pte_to_swp_entry(ptent);
+ int nid;
- if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
- return NULL;
+ if (atomic_read(&memcg->kmem_stat)) {
+ int kmem = atomic_xchg(&memcg->kmem_stat, 0);
+ int index = memcg_stats_index(MEMCG_KMEM);
- /*
- * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
- * a device and because they are not accessible by CPU they are store
- * as special swap entry in the CPU page table.
- */
- if (is_device_private_entry(ent)) {
- page = device_private_entry_to_page(ent);
- /*
- * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
- * a refcount of 1 when free (unlike normal page)
- */
- if (!page_ref_add_unless(page, 1, 1))
- return NULL;
- return page;
+ memcg->vmstats->state[index] += kmem;
+ if (parent)
+ parent->vmstats->state_pending[index] += kmem;
}
- /*
- * Because lookup_swap_cache() updates some statistics counter,
- * we call find_get_page() with swapper_space directly.
- */
- page = find_get_page(swap_address_space(ent), swp_offset(ent));
- if (do_memsw_account())
- entry->val = ent.val;
+ for_each_node_state(nid, N_MEMORY) {
+ struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
+ struct lruvec_stats *lstats = pn->lruvec_stats;
+ struct lruvec_stats *plstats = NULL;
- return page;
-}
-#else
-static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
- pte_t ptent, swp_entry_t *entry)
-{
- return NULL;
-}
-#endif
+ if (parent)
+ plstats = parent->nodeinfo[nid]->lruvec_stats;
-static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
- unsigned long addr, pte_t ptent, swp_entry_t *entry)
-{
- struct page *page = NULL;
- struct address_space *mapping;
- pgoff_t pgoff;
+ if (atomic_read(&pn->slab_reclaimable)) {
+ int slab = atomic_xchg(&pn->slab_reclaimable, 0);
+ int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
- if (!vma->vm_file) /* anonymous vma */
- return NULL;
- if (!(mc.flags & MOVE_FILE))
- return NULL;
-
- mapping = vma->vm_file->f_mapping;
- pgoff = linear_page_index(vma, addr);
+ lstats->state[index] += slab;
+ if (plstats)
+ plstats->state_pending[index] += slab;
+ }
+ if (atomic_read(&pn->slab_unreclaimable)) {
+ int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
+ int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
- /* page is moved even if it's not RSS of this task(page-faulted). */
-#ifdef CONFIG_SWAP
- /* shmem/tmpfs may report page out on swap: account for that too. */
- if (shmem_mapping(mapping)) {
- page = find_get_entry(mapping, pgoff);
- if (xa_is_value(page)) {
- swp_entry_t swp = radix_to_swp_entry(page);
- if (do_memsw_account())
- *entry = swp;
- page = find_get_page(swap_address_space(swp),
- swp_offset(swp));
+ lstats->state[index] += slab;
+ if (plstats)
+ plstats->state_pending[index] += slab;
}
- } else
- page = find_get_page(mapping, pgoff);
+ }
+}
#else
- page = find_get_page(mapping, pgoff);
+static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
+ int cpu)
+{}
#endif
- return page;
-}
-/**
- * mem_cgroup_move_account - move account of the page
- * @page: the page
- * @compound: charge the page as compound or small page
- * @from: mem_cgroup which the page is moved from.
- * @to: mem_cgroup which the page is moved to. @from != @to.
- *
- * The caller must make sure the page is not on LRU (isolate_page() is useful.)
- *
- * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
- * from old cgroup.
- */
-static int mem_cgroup_move_account(struct page *page,
- bool compound,
- struct mem_cgroup *from,
- struct mem_cgroup *to)
+static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
{
- unsigned long flags;
- unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
- int ret;
- bool anon;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ struct mem_cgroup *parent = parent_mem_cgroup(memcg);
+ struct memcg_vmstats_percpu *statc;
+ struct aggregate_control ac;
+ int nid;
- VM_BUG_ON(from == to);
- VM_BUG_ON_PAGE(PageLRU(page), page);
- VM_BUG_ON(compound && !PageTransHuge(page));
+ flush_nmi_stats(memcg, parent, cpu);
- /*
- * Prevent mem_cgroup_migrate() from looking at
- * page->mem_cgroup of its source page while we change it.
- */
- ret = -EBUSY;
- if (!trylock_page(page))
- goto out;
-
- ret = -EINVAL;
- if (page->mem_cgroup != from)
- goto out_unlock;
+ statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
- anon = PageAnon(page);
+ ac = (struct aggregate_control) {
+ .aggregate = memcg->vmstats->state,
+ .local = memcg->vmstats->state_local,
+ .pending = memcg->vmstats->state_pending,
+ .ppending = parent ? parent->vmstats->state_pending : NULL,
+ .cstat = statc->state,
+ .cstat_prev = statc->state_prev,
+ .size = MEMCG_VMSTAT_SIZE,
+ };
+ mem_cgroup_stat_aggregate(&ac);
+
+ ac = (struct aggregate_control) {
+ .aggregate = memcg->vmstats->events,
+ .local = memcg->vmstats->events_local,
+ .pending = memcg->vmstats->events_pending,
+ .ppending = parent ? parent->vmstats->events_pending : NULL,
+ .cstat = statc->events,
+ .cstat_prev = statc->events_prev,
+ .size = NR_MEMCG_EVENTS,
+ };
+ mem_cgroup_stat_aggregate(&ac);
- spin_lock_irqsave(&from->move_lock, flags);
+ for_each_node_state(nid, N_MEMORY) {
+ struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
+ struct lruvec_stats *lstats = pn->lruvec_stats;
+ struct lruvec_stats *plstats = NULL;
+ struct lruvec_stats_percpu *lstatc;
- if (!anon && page_mapped(page)) {
- __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
- __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
- }
+ if (parent)
+ plstats = parent->nodeinfo[nid]->lruvec_stats;
- /*
- * move_lock grabbed above and caller set from->moving_account, so
- * mod_memcg_page_state will serialize updates to PageDirty.
- * So mapping should be stable for dirty pages.
- */
- if (!anon && PageDirty(page)) {
- struct address_space *mapping = page_mapping(page);
+ lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
- if (mapping_cap_account_dirty(mapping)) {
- __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
- __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
- }
- }
+ ac = (struct aggregate_control) {
+ .aggregate = lstats->state,
+ .local = lstats->state_local,
+ .pending = lstats->state_pending,
+ .ppending = plstats ? plstats->state_pending : NULL,
+ .cstat = lstatc->state,
+ .cstat_prev = lstatc->state_prev,
+ .size = NR_MEMCG_NODE_STAT_ITEMS,
+ };
+ mem_cgroup_stat_aggregate(&ac);
- if (PageWriteback(page)) {
- __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
- __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
}
+ WRITE_ONCE(statc->stats_updates, 0);
+ /* We are in a per-cpu loop here, only do the atomic write once */
+ if (atomic_read(&memcg->vmstats->stats_updates))
+ atomic_set(&memcg->vmstats->stats_updates, 0);
+}
+static void mem_cgroup_fork(struct task_struct *task)
+{
/*
- * It is safe to change page->mem_cgroup here because the page
- * is referenced, charged, and isolated - we can't race with
- * uncharging, charging, migration, or LRU putback.
+ * Set the update flag to cause task->objcg to be initialized lazily
+ * on the first allocation. It can be done without any synchronization
+ * because it's always performed on the current task, so does
+ * current_objcg_update().
*/
-
- /* caller should have done css_get */
- page->mem_cgroup = to;
- spin_unlock_irqrestore(&from->move_lock, flags);
-
- ret = 0;
-
- local_irq_disable();
- mem_cgroup_charge_statistics(to, page, compound, nr_pages);
- memcg_check_events(to, page);
- mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
- memcg_check_events(from, page);
- local_irq_enable();
-out_unlock:
- unlock_page(page);
-out:
- return ret;
+ task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
}
-/**
- * get_mctgt_type - get target type of moving charge
- * @vma: the vma the pte to be checked belongs
- * @addr: the address corresponding to the pte to be checked
- * @ptent: the pte to be checked
- * @target: the pointer the target page or swap ent will be stored(can be NULL)
- *
- * Returns
- * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
- * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
- * move charge. if @target is not NULL, the page is stored in target->page
- * with extra refcnt got(Callers should handle it).
- * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
- * target for charge migration. if @target is not NULL, the entry is stored
- * in target->ent.
- * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
- * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
- * For now we such page is charge like a regular page would be as for all
- * intent and purposes it is just special memory taking the place of a
- * regular page.
- *
- * See Documentations/vm/hmm.txt and include/linux/hmm.h
- *
- * Called with pte lock held.
- */
-
-static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
- unsigned long addr, pte_t ptent, union mc_target *target)
+static void mem_cgroup_exit(struct task_struct *task)
{
- struct page *page = NULL;
- enum mc_target_type ret = MC_TARGET_NONE;
- swp_entry_t ent = { .val = 0 };
+ struct obj_cgroup *objcg = task->objcg;
- if (pte_present(ptent))
- page = mc_handle_present_pte(vma, addr, ptent);
- else if (is_swap_pte(ptent))
- page = mc_handle_swap_pte(vma, ptent, &ent);
- else if (pte_none(ptent))
- page = mc_handle_file_pte(vma, addr, ptent, &ent);
+ objcg = (struct obj_cgroup *)
+ ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
+ obj_cgroup_put(objcg);
- if (!page && !ent.val)
- return ret;
- if (page) {
- /*
- * Do only loose check w/o serialization.
- * mem_cgroup_move_account() checks the page is valid or
- * not under LRU exclusion.
- */
- if (page->mem_cgroup == mc.from) {
- ret = MC_TARGET_PAGE;
- if (is_device_private_page(page) ||
- is_device_public_page(page))
- ret = MC_TARGET_DEVICE;
- if (target)
- target->page = page;
- }
- if (!ret || !target)
- put_page(page);
- }
/*
- * There is a swap entry and a page doesn't exist or isn't charged.
- * But we cannot move a tail-page in a THP.
+ * Some kernel allocations can happen after this point,
+ * but let's ignore them. It can be done without any synchronization
+ * because it's always performed on the current task, so does
+ * current_objcg_update().
*/
- if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
- mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
- ret = MC_TARGET_SWAP;
- if (target)
- target->ent = ent;
- }
- return ret;
+ task->objcg = NULL;
}
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
-/*
- * We don't consider PMD mapped swapping or file mapped pages because THP does
- * not support them for now.
- * Caller should make sure that pmd_trans_huge(pmd) is true.
- */
-static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
- unsigned long addr, pmd_t pmd, union mc_target *target)
+#ifdef CONFIG_LRU_GEN
+static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
{
- struct page *page = NULL;
- enum mc_target_type ret = MC_TARGET_NONE;
+ struct task_struct *task;
+ struct cgroup_subsys_state *css;
- if (unlikely(is_swap_pmd(pmd))) {
- VM_BUG_ON(thp_migration_supported() &&
- !is_pmd_migration_entry(pmd));
- return ret;
- }
- page = pmd_page(pmd);
- VM_BUG_ON_PAGE(!page || !PageHead(page), page);
- if (!(mc.flags & MOVE_ANON))
- return ret;
- if (page->mem_cgroup == mc.from) {
- ret = MC_TARGET_PAGE;
- if (target) {
- get_page(page);
- target->page = page;
- }
- }
- return ret;
+ /* find the first leader if there is any */
+ cgroup_taskset_for_each_leader(task, css, tset)
+ break;
+
+ if (!task)
+ return;
+
+ task_lock(task);
+ if (task->mm && READ_ONCE(task->mm->owner) == task)
+ lru_gen_migrate_mm(task->mm);
+ task_unlock(task);
}
#else
-static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
- unsigned long addr, pmd_t pmd, union mc_target *target)
-{
- return MC_TARGET_NONE;
-}
-#endif
+static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
+#endif /* CONFIG_LRU_GEN */
-static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
- unsigned long addr, unsigned long end,
- struct mm_walk *walk)
+static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
{
- struct vm_area_struct *vma = walk->vma;
- pte_t *pte;
- spinlock_t *ptl;
+ struct task_struct *task;
+ struct cgroup_subsys_state *css;
- ptl = pmd_trans_huge_lock(pmd, vma);
- if (ptl) {
- /*
- * Note their can not be MC_TARGET_DEVICE for now as we do not
- * support transparent huge page with MEMORY_DEVICE_PUBLIC or
- * MEMORY_DEVICE_PRIVATE but this might change.
- */
- if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
- mc.precharge += HPAGE_PMD_NR;
- spin_unlock(ptl);
- return 0;
+ cgroup_taskset_for_each(task, css, tset) {
+ /* atomically set the update bit */
+ set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
}
-
- if (pmd_trans_unstable(pmd))
- return 0;
- pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
- for (; addr != end; pte++, addr += PAGE_SIZE)
- if (get_mctgt_type(vma, addr, *pte, NULL))
- mc.precharge++; /* increment precharge temporarily */
- pte_unmap_unlock(pte - 1, ptl);
- cond_resched();
-
- return 0;
}
-static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
+static void mem_cgroup_attach(struct cgroup_taskset *tset)
{
- unsigned long precharge;
-
- struct mm_walk mem_cgroup_count_precharge_walk = {
- .pmd_entry = mem_cgroup_count_precharge_pte_range,
- .mm = mm,
- };
- down_read(&mm->mmap_sem);
- walk_page_range(0, mm->highest_vm_end,
- &mem_cgroup_count_precharge_walk);
- up_read(&mm->mmap_sem);
-
- precharge = mc.precharge;
- mc.precharge = 0;
-
- return precharge;
+ mem_cgroup_lru_gen_attach(tset);
+ mem_cgroup_kmem_attach(tset);
}
-static int mem_cgroup_precharge_mc(struct mm_struct *mm)
+static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
- unsigned long precharge = mem_cgroup_count_precharge(mm);
+ if (value == PAGE_COUNTER_MAX)
+ seq_puts(m, "max\n");
+ else
+ seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
- VM_BUG_ON(mc.moving_task);
- mc.moving_task = current;
- return mem_cgroup_do_precharge(precharge);
+ return 0;
}
-/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
-static void __mem_cgroup_clear_mc(void)
+static u64 memory_current_read(struct cgroup_subsys_state *css,
+ struct cftype *cft)
{
- struct mem_cgroup *from = mc.from;
- struct mem_cgroup *to = mc.to;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- /* we must uncharge all the leftover precharges from mc.to */
- if (mc.precharge) {
- cancel_charge(mc.to, mc.precharge);
- mc.precharge = 0;
- }
- /*
- * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
- * we must uncharge here.
- */
- if (mc.moved_charge) {
- cancel_charge(mc.from, mc.moved_charge);
- mc.moved_charge = 0;
- }
- /* we must fixup refcnts and charges */
- if (mc.moved_swap) {
- /* uncharge swap account from the old cgroup */
- if (!mem_cgroup_is_root(mc.from))
- page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
+ return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
+}
- mem_cgroup_id_put_many(mc.from, mc.moved_swap);
+#define OFP_PEAK_UNSET (((-1UL)))
- /*
- * we charged both to->memory and to->memsw, so we
- * should uncharge to->memory.
- */
- if (!mem_cgroup_is_root(mc.to))
- page_counter_uncharge(&mc.to->memory, mc.moved_swap);
+static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
+{
+ struct cgroup_of_peak *ofp = of_peak(sf->private);
+ u64 fd_peak = READ_ONCE(ofp->value), peak;
- mem_cgroup_id_get_many(mc.to, mc.moved_swap);
- css_put_many(&mc.to->css, mc.moved_swap);
+ /* User wants global or local peak? */
+ if (fd_peak == OFP_PEAK_UNSET)
+ peak = pc->watermark;
+ else
+ peak = max(fd_peak, READ_ONCE(pc->local_watermark));
- mc.moved_swap = 0;
- }
- memcg_oom_recover(from);
- memcg_oom_recover(to);
- wake_up_all(&mc.waitq);
+ seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
+ return 0;
}
-static void mem_cgroup_clear_mc(void)
+static int memory_peak_show(struct seq_file *sf, void *v)
{
- struct mm_struct *mm = mc.mm;
-
- /*
- * we must clear moving_task before waking up waiters at the end of
- * task migration.
- */
- mc.moving_task = NULL;
- __mem_cgroup_clear_mc();
- spin_lock(&mc.lock);
- mc.from = NULL;
- mc.to = NULL;
- mc.mm = NULL;
- spin_unlock(&mc.lock);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
- mmput(mm);
+ return peak_show(sf, v, &memcg->memory);
}
-static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
+static int peak_open(struct kernfs_open_file *of)
{
- struct cgroup_subsys_state *css;
- struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
- struct mem_cgroup *from;
- struct task_struct *leader, *p;
- struct mm_struct *mm;
- unsigned long move_flags;
- int ret = 0;
-
- /* charge immigration isn't supported on the default hierarchy */
- if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
- return 0;
-
- /*
- * Multi-process migrations only happen on the default hierarchy
- * where charge immigration is not used. Perform charge
- * immigration if @tset contains a leader and whine if there are
- * multiple.
- */
- p = NULL;
- cgroup_taskset_for_each_leader(leader, css, tset) {
- WARN_ON_ONCE(p);
- p = leader;
- memcg = mem_cgroup_from_css(css);
- }
- if (!p)
- return 0;
-
- /*
- * We are now commited to this value whatever it is. Changes in this
- * tunable will only affect upcoming migrations, not the current one.
- * So we need to save it, and keep it going.
- */
- move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
- if (!move_flags)
- return 0;
+ struct cgroup_of_peak *ofp = of_peak(of);
- from = mem_cgroup_from_task(p);
-
- VM_BUG_ON(from == memcg);
-
- mm = get_task_mm(p);
- if (!mm)
- return 0;
- /* We move charges only when we move a owner of the mm */
- if (mm->owner == p) {
- VM_BUG_ON(mc.from);
- VM_BUG_ON(mc.to);
- VM_BUG_ON(mc.precharge);
- VM_BUG_ON(mc.moved_charge);
- VM_BUG_ON(mc.moved_swap);
-
- spin_lock(&mc.lock);
- mc.mm = mm;
- mc.from = from;
- mc.to = memcg;
- mc.flags = move_flags;
- spin_unlock(&mc.lock);
- /* We set mc.moving_task later */
-
- ret = mem_cgroup_precharge_mc(mm);
- if (ret)
- mem_cgroup_clear_mc();
- } else {
- mmput(mm);
- }
- return ret;
+ ofp->value = OFP_PEAK_UNSET;
+ return 0;
}
-static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
+static void peak_release(struct kernfs_open_file *of)
{
- if (mc.to)
- mem_cgroup_clear_mc();
-}
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ struct cgroup_of_peak *ofp = of_peak(of);
-static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
- unsigned long addr, unsigned long end,
- struct mm_walk *walk)
-{
- int ret = 0;
- struct vm_area_struct *vma = walk->vma;
- pte_t *pte;
- spinlock_t *ptl;
- enum mc_target_type target_type;
- union mc_target target;
- struct page *page;
-
- ptl = pmd_trans_huge_lock(pmd, vma);
- if (ptl) {
- if (mc.precharge < HPAGE_PMD_NR) {
- spin_unlock(ptl);
- return 0;
- }
- target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
- if (target_type == MC_TARGET_PAGE) {
- page = target.page;
- if (!isolate_lru_page(page)) {
- if (!mem_cgroup_move_account(page, true,
- mc.from, mc.to)) {
- mc.precharge -= HPAGE_PMD_NR;
- mc.moved_charge += HPAGE_PMD_NR;
- }
- putback_lru_page(page);
- }
- put_page(page);
- } else if (target_type == MC_TARGET_DEVICE) {
- page = target.page;
- if (!mem_cgroup_move_account(page, true,
- mc.from, mc.to)) {
- mc.precharge -= HPAGE_PMD_NR;
- mc.moved_charge += HPAGE_PMD_NR;
- }
- put_page(page);
- }
- spin_unlock(ptl);
- return 0;
+ if (ofp->value == OFP_PEAK_UNSET) {
+ /* fast path (no writes on this fd) */
+ return;
}
+ spin_lock(&memcg->peaks_lock);
+ list_del(&ofp->list);
+ spin_unlock(&memcg->peaks_lock);
+}
- if (pmd_trans_unstable(pmd))
- return 0;
-retry:
- pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
- for (; addr != end; addr += PAGE_SIZE) {
- pte_t ptent = *(pte++);
- bool device = false;
- swp_entry_t ent;
-
- if (!mc.precharge)
- break;
+static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
+ loff_t off, struct page_counter *pc,
+ struct list_head *watchers)
+{
+ unsigned long usage;
+ struct cgroup_of_peak *peer_ctx;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ struct cgroup_of_peak *ofp = of_peak(of);
- switch (get_mctgt_type(vma, addr, ptent, &target)) {
- case MC_TARGET_DEVICE:
- device = true;
- /* fall through */
- case MC_TARGET_PAGE:
- page = target.page;
- /*
- * We can have a part of the split pmd here. Moving it
- * can be done but it would be too convoluted so simply
- * ignore such a partial THP and keep it in original
- * memcg. There should be somebody mapping the head.
- */
- if (PageTransCompound(page))
- goto put;
- if (!device && isolate_lru_page(page))
- goto put;
- if (!mem_cgroup_move_account(page, false,
- mc.from, mc.to)) {
- mc.precharge--;
- /* we uncharge from mc.from later. */
- mc.moved_charge++;
- }
- if (!device)
- putback_lru_page(page);
-put: /* get_mctgt_type() gets the page */
- put_page(page);
- break;
- case MC_TARGET_SWAP:
- ent = target.ent;
- if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
- mc.precharge--;
- /* we fixup refcnts and charges later. */
- mc.moved_swap++;
- }
- break;
- default:
- break;
- }
- }
- pte_unmap_unlock(pte - 1, ptl);
- cond_resched();
+ spin_lock(&memcg->peaks_lock);
- if (addr != end) {
- /*
- * We have consumed all precharges we got in can_attach().
- * We try charge one by one, but don't do any additional
- * charges to mc.to if we have failed in charge once in attach()
- * phase.
- */
- ret = mem_cgroup_do_precharge(1);
- if (!ret)
- goto retry;
- }
+ usage = page_counter_read(pc);
+ WRITE_ONCE(pc->local_watermark, usage);
- return ret;
-}
+ list_for_each_entry(peer_ctx, watchers, list)
+ if (usage > peer_ctx->value)
+ WRITE_ONCE(peer_ctx->value, usage);
-static void mem_cgroup_move_charge(void)
-{
- struct mm_walk mem_cgroup_move_charge_walk = {
- .pmd_entry = mem_cgroup_move_charge_pte_range,
- .mm = mc.mm,
- };
+ /* initial write, register watcher */
+ if (ofp->value == OFP_PEAK_UNSET)
+ list_add(&ofp->list, watchers);
- lru_add_drain_all();
- /*
- * Signal lock_page_memcg() to take the memcg's move_lock
- * while we're moving its pages to another memcg. Then wait
- * for already started RCU-only updates to finish.
- */
- atomic_inc(&mc.from->moving_account);
- synchronize_rcu();
-retry:
- if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
- /*
- * Someone who are holding the mmap_sem might be waiting in
- * waitq. So we cancel all extra charges, wake up all waiters,
- * and retry. Because we cancel precharges, we might not be able
- * to move enough charges, but moving charge is a best-effort
- * feature anyway, so it wouldn't be a big problem.
- */
- __mem_cgroup_clear_mc();
- cond_resched();
- goto retry;
- }
- /*
- * When we have consumed all precharges and failed in doing
- * additional charge, the page walk just aborts.
- */
- walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
+ WRITE_ONCE(ofp->value, usage);
+ spin_unlock(&memcg->peaks_lock);
- up_read(&mc.mm->mmap_sem);
- atomic_dec(&mc.from->moving_account);
+ return nbytes;
}
-static void mem_cgroup_move_task(void)
-{
- if (mc.to) {
- mem_cgroup_move_charge();
- mem_cgroup_clear_mc();
- }
-}
-#else /* !CONFIG_MMU */
-static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
-{
- return 0;
-}
-static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
+static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
{
-}
-static void mem_cgroup_move_task(void)
-{
-}
-#endif
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
-/*
- * Cgroup retains root cgroups across [un]mount cycles making it necessary
- * to verify whether we're attached to the default hierarchy on each mount
- * attempt.
- */
-static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
-{
- /*
- * use_hierarchy is forced on the default hierarchy. cgroup core
- * guarantees that @root doesn't have any children, so turning it
- * on for the root memcg is enough.
- */
- if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
- root_mem_cgroup->use_hierarchy = true;
- else
- root_mem_cgroup->use_hierarchy = false;
+ return peak_write(of, buf, nbytes, off, &memcg->memory,
+ &memcg->memory_peaks);
}
-static u64 memory_current_read(struct cgroup_subsys_state *css,
- struct cftype *cft)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
-
- return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
-}
+#undef OFP_PEAK_UNSET
static int memory_min_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
- unsigned long min = READ_ONCE(memcg->memory.min);
-
- if (min == PAGE_COUNTER_MAX)
- seq_puts(m, "max\n");
- else
- seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
-
- return 0;
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
}
static ssize_t memory_min_write(struct kernfs_open_file *of,
@@ -5394,15 +4344,8 @@ static ssize_t memory_min_write(struct kernfs_open_file *of,
static int memory_low_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
- unsigned long low = READ_ONCE(memcg->memory.low);
-
- if (low == PAGE_COUNTER_MAX)
- seq_puts(m, "max\n");
- else
- seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
-
- return 0;
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
}
static ssize_t memory_low_write(struct kernfs_open_file *of,
@@ -5424,22 +4367,16 @@ static ssize_t memory_low_write(struct kernfs_open_file *of,
static int memory_high_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
- unsigned long high = READ_ONCE(memcg->high);
-
- if (high == PAGE_COUNTER_MAX)
- seq_puts(m, "max\n");
- else
- seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
-
- return 0;
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
}
static ssize_t memory_high_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- unsigned long nr_pages;
+ unsigned int nr_retries = MAX_RECLAIM_RETRIES;
+ bool drained = false;
unsigned long high;
int err;
@@ -5448,35 +4385,49 @@ static ssize_t memory_high_write(struct kernfs_open_file *of,
if (err)
return err;
- memcg->high = high;
+ page_counter_set_high(&memcg->memory, high);
+
+ if (of->file->f_flags & O_NONBLOCK)
+ goto out;
+
+ for (;;) {
+ unsigned long nr_pages = page_counter_read(&memcg->memory);
+ unsigned long reclaimed;
+
+ if (nr_pages <= high)
+ break;
+
+ if (signal_pending(current))
+ break;
+
+ if (!drained) {
+ drain_all_stock(memcg);
+ drained = true;
+ continue;
+ }
- nr_pages = page_counter_read(&memcg->memory);
- if (nr_pages > high)
- try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
- GFP_KERNEL, true);
+ reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
+ GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
+ if (!reclaimed && !nr_retries--)
+ break;
+ }
+out:
memcg_wb_domain_size_changed(memcg);
return nbytes;
}
static int memory_max_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
- unsigned long max = READ_ONCE(memcg->memory.max);
-
- if (max == PAGE_COUNTER_MAX)
- seq_puts(m, "max\n");
- else
- seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
-
- return 0;
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
}
static ssize_t memory_max_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
+ unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
bool drained = false;
unsigned long max;
int err;
@@ -5488,16 +4439,17 @@ static ssize_t memory_max_write(struct kernfs_open_file *of,
xchg(&memcg->memory.max, max);
+ if (of->file->f_flags & O_NONBLOCK)
+ goto out;
+
for (;;) {
unsigned long nr_pages = page_counter_read(&memcg->memory);
if (nr_pages <= max)
break;
- if (signal_pending(current)) {
- err = -EINTR;
+ if (signal_pending(current))
break;
- }
if (!drained) {
drain_all_stock(memcg);
@@ -5507,7 +4459,7 @@ static ssize_t memory_max_write(struct kernfs_open_file *of,
if (nr_reclaims) {
if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
- GFP_KERNEL, true))
+ GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
nr_reclaims--;
continue;
}
@@ -5515,112 +4467,105 @@ static ssize_t memory_max_write(struct kernfs_open_file *of,
memcg_memory_event(memcg, MEMCG_OOM);
if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
break;
+ cond_resched();
}
-
+out:
memcg_wb_domain_size_changed(memcg);
return nbytes;
}
+/*
+ * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
+ * if any new events become available.
+ */
+static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
+{
+ seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
+ seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
+ seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
+ seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
+ seq_printf(m, "oom_kill %lu\n",
+ atomic_long_read(&events[MEMCG_OOM_KILL]));
+ seq_printf(m, "oom_group_kill %lu\n",
+ atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
+ seq_printf(m, "sock_throttled %lu\n",
+ atomic_long_read(&events[MEMCG_SOCK_THROTTLED]));
+}
+
static int memory_events_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
- seq_printf(m, "low %lu\n",
- atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
- seq_printf(m, "high %lu\n",
- atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
- seq_printf(m, "max %lu\n",
- atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
- seq_printf(m, "oom %lu\n",
- atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
- seq_printf(m, "oom_kill %lu\n",
- atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
+ __memory_events_show(m, memcg->memory_events);
+ return 0;
+}
+static int memory_events_local_show(struct seq_file *m, void *v)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
+
+ __memory_events_show(m, memcg->memory_events_local);
+ return 0;
+}
+
+int memory_stat_show(struct seq_file *m, void *v)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
+ char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
+ struct seq_buf s;
+
+ if (!buf)
+ return -ENOMEM;
+ seq_buf_init(&s, buf, SEQ_BUF_SIZE);
+ memory_stat_format(memcg, &s);
+ seq_puts(m, buf);
+ kfree(buf);
return 0;
}
-static int memory_stat_show(struct seq_file *m, void *v)
+#ifdef CONFIG_NUMA
+static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
+ int item)
+{
+ return lruvec_page_state(lruvec, item) *
+ memcg_page_state_output_unit(item);
+}
+
+static int memory_numa_stat_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
- struct accumulated_stats acc;
int i;
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
- /*
- * Provide statistics on the state of the memory subsystem as
- * well as cumulative event counters that show past behavior.
- *
- * This list is ordered following a combination of these gradients:
- * 1) generic big picture -> specifics and details
- * 2) reflecting userspace activity -> reflecting kernel heuristics
- *
- * Current memory state:
- */
+ mem_cgroup_flush_stats(memcg);
- memset(&acc, 0, sizeof(acc));
- acc.stats_size = MEMCG_NR_STAT;
- acc.events_size = NR_VM_EVENT_ITEMS;
- accumulate_memcg_tree(memcg, &acc);
-
- seq_printf(m, "anon %llu\n",
- (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
- seq_printf(m, "file %llu\n",
- (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
- seq_printf(m, "kernel_stack %llu\n",
- (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
- seq_printf(m, "slab %llu\n",
- (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
- acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
- seq_printf(m, "sock %llu\n",
- (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
-
- seq_printf(m, "shmem %llu\n",
- (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
- seq_printf(m, "file_mapped %llu\n",
- (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
- seq_printf(m, "file_dirty %llu\n",
- (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
- seq_printf(m, "file_writeback %llu\n",
- (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
-
- for (i = 0; i < NR_LRU_LISTS; i++)
- seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
- (u64)acc.lru_pages[i] * PAGE_SIZE);
-
- seq_printf(m, "slab_reclaimable %llu\n",
- (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
- seq_printf(m, "slab_unreclaimable %llu\n",
- (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
+ for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
+ int nid;
- /* Accumulated memory events */
+ if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
+ continue;
+
+ seq_printf(m, "%s", memory_stats[i].name);
+ for_each_node_state(nid, N_MEMORY) {
+ u64 size;
+ struct lruvec *lruvec;
- seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
- seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
-
- seq_printf(m, "workingset_refault %lu\n",
- acc.stat[WORKINGSET_REFAULT]);
- seq_printf(m, "workingset_activate %lu\n",
- acc.stat[WORKINGSET_ACTIVATE]);
- seq_printf(m, "workingset_nodereclaim %lu\n",
- acc.stat[WORKINGSET_NODERECLAIM]);
-
- seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
- seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
- acc.events[PGSCAN_DIRECT]);
- seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
- acc.events[PGSTEAL_DIRECT]);
- seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
- seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
- seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
- seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
+ lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
+ size = lruvec_page_state_output(lruvec,
+ memory_stats[i].idx);
+ seq_printf(m, " N%d=%llu", nid, size);
+ }
+ seq_putc(m, '\n');
+ }
return 0;
}
+#endif
static int memory_oom_group_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
- seq_printf(m, "%d\n", memcg->oom_group);
+ seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
return 0;
}
@@ -5642,7 +4587,20 @@ static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
if (oom_group != 0 && oom_group != 1)
return -EINVAL;
- memcg->oom_group = oom_group;
+ WRITE_ONCE(memcg->oom_group, oom_group);
+
+ return nbytes;
+}
+
+static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ int ret;
+
+ ret = user_proactive_reclaim(buf, memcg, NULL);
+ if (ret)
+ return ret;
return nbytes;
}
@@ -5654,6 +4612,14 @@ static struct cftype memory_files[] = {
.read_u64 = memory_current_read,
},
{
+ .name = "peak",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .open = peak_open,
+ .release = peak_release,
+ .seq_show = memory_peak_show,
+ .write = memory_peak_write,
+ },
+ {
.name = "min",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = memory_min_show,
@@ -5684,16 +4650,32 @@ static struct cftype memory_files[] = {
.seq_show = memory_events_show,
},
{
- .name = "stat",
+ .name = "events.local",
.flags = CFTYPE_NOT_ON_ROOT,
+ .file_offset = offsetof(struct mem_cgroup, events_local_file),
+ .seq_show = memory_events_local_show,
+ },
+ {
+ .name = "stat",
.seq_show = memory_stat_show,
},
+#ifdef CONFIG_NUMA
+ {
+ .name = "numa_stat",
+ .seq_show = memory_numa_stat_show,
+ },
+#endif
{
.name = "oom.group",
.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
.seq_show = memory_oom_group_show,
.write = memory_oom_group_write,
},
+ {
+ .name = "reclaim",
+ .flags = CFTYPE_NS_DELEGATABLE,
+ .write = memory_reclaim,
+ },
{ } /* terminate */
};
@@ -5704,321 +4686,143 @@ struct cgroup_subsys memory_cgrp_subsys = {
.css_released = mem_cgroup_css_released,
.css_free = mem_cgroup_css_free,
.css_reset = mem_cgroup_css_reset,
- .can_attach = mem_cgroup_can_attach,
- .cancel_attach = mem_cgroup_cancel_attach,
- .post_attach = mem_cgroup_move_task,
- .bind = mem_cgroup_bind,
+ .css_rstat_flush = mem_cgroup_css_rstat_flush,
+ .attach = mem_cgroup_attach,
+ .fork = mem_cgroup_fork,
+ .exit = mem_cgroup_exit,
.dfl_cftypes = memory_files,
+#ifdef CONFIG_MEMCG_V1
.legacy_cftypes = mem_cgroup_legacy_files,
+#endif
.early_init = 0,
};
/**
- * mem_cgroup_protected - check if memory consumption is in the normal range
+ * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
* @root: the top ancestor of the sub-tree being checked
* @memcg: the memory cgroup to check
*
* WARNING: This function is not stateless! It can only be used as part
* of a top-down tree iteration, not for isolated queries.
- *
- * Returns one of the following:
- * MEMCG_PROT_NONE: cgroup memory is not protected
- * MEMCG_PROT_LOW: cgroup memory is protected as long there is
- * an unprotected supply of reclaimable memory from other cgroups.
- * MEMCG_PROT_MIN: cgroup memory is protected
- *
- * @root is exclusive; it is never protected when looked at directly
- *
- * To provide a proper hierarchical behavior, effective memory.min/low values
- * are used. Below is the description of how effective memory.low is calculated.
- * Effective memory.min values is calculated in the same way.
- *
- * Effective memory.low is always equal or less than the original memory.low.
- * If there is no memory.low overcommittment (which is always true for
- * top-level memory cgroups), these two values are equal.
- * Otherwise, it's a part of parent's effective memory.low,
- * calculated as a cgroup's memory.low usage divided by sum of sibling's
- * memory.low usages, where memory.low usage is the size of actually
- * protected memory.
- *
- * low_usage
- * elow = min( memory.low, parent->elow * ------------------ ),
- * siblings_low_usage
- *
- * | memory.current, if memory.current < memory.low
- * low_usage = |
- | 0, otherwise.
- *
- *
- * Such definition of the effective memory.low provides the expected
- * hierarchical behavior: parent's memory.low value is limiting
- * children, unprotected memory is reclaimed first and cgroups,
- * which are not using their guarantee do not affect actual memory
- * distribution.
- *
- * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
- *
- * A A/memory.low = 2G, A/memory.current = 6G
- * //\\
- * BC DE B/memory.low = 3G B/memory.current = 2G
- * C/memory.low = 1G C/memory.current = 2G
- * D/memory.low = 0 D/memory.current = 2G
- * E/memory.low = 10G E/memory.current = 0
- *
- * and the memory pressure is applied, the following memory distribution
- * is expected (approximately):
- *
- * A/memory.current = 2G
- *
- * B/memory.current = 1.3G
- * C/memory.current = 0.6G
- * D/memory.current = 0
- * E/memory.current = 0
- *
- * These calculations require constant tracking of the actual low usages
- * (see propagate_protected_usage()), as well as recursive calculation of
- * effective memory.low values. But as we do call mem_cgroup_protected()
- * path for each memory cgroup top-down from the reclaim,
- * it's possible to optimize this part, and save calculated elow
- * for next usage. This part is intentionally racy, but it's ok,
- * as memory.low is a best-effort mechanism.
*/
-enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
- struct mem_cgroup *memcg)
+void mem_cgroup_calculate_protection(struct mem_cgroup *root,
+ struct mem_cgroup *memcg)
{
- struct mem_cgroup *parent;
- unsigned long emin, parent_emin;
- unsigned long elow, parent_elow;
- unsigned long usage;
+ bool recursive_protection =
+ cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
if (mem_cgroup_disabled())
- return MEMCG_PROT_NONE;
+ return;
if (!root)
root = root_mem_cgroup;
- if (memcg == root)
- return MEMCG_PROT_NONE;
- usage = page_counter_read(&memcg->memory);
- if (!usage)
- return MEMCG_PROT_NONE;
-
- emin = memcg->memory.min;
- elow = memcg->memory.low;
-
- parent = parent_mem_cgroup(memcg);
- /* No parent means a non-hierarchical mode on v1 memcg */
- if (!parent)
- return MEMCG_PROT_NONE;
-
- if (parent == root)
- goto exit;
-
- parent_emin = READ_ONCE(parent->memory.emin);
- emin = min(emin, parent_emin);
- if (emin && parent_emin) {
- unsigned long min_usage, siblings_min_usage;
-
- min_usage = min(usage, memcg->memory.min);
- siblings_min_usage = atomic_long_read(
- &parent->memory.children_min_usage);
-
- if (min_usage && siblings_min_usage)
- emin = min(emin, parent_emin * min_usage /
- siblings_min_usage);
- }
-
- parent_elow = READ_ONCE(parent->memory.elow);
- elow = min(elow, parent_elow);
- if (elow && parent_elow) {
- unsigned long low_usage, siblings_low_usage;
-
- low_usage = min(usage, memcg->memory.low);
- siblings_low_usage = atomic_long_read(
- &parent->memory.children_low_usage);
-
- if (low_usage && siblings_low_usage)
- elow = min(elow, parent_elow * low_usage /
- siblings_low_usage);
- }
-
-exit:
- memcg->memory.emin = emin;
- memcg->memory.elow = elow;
-
- if (usage <= emin)
- return MEMCG_PROT_MIN;
- else if (usage <= elow)
- return MEMCG_PROT_LOW;
- else
- return MEMCG_PROT_NONE;
+ page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
}
-/**
- * mem_cgroup_try_charge - try charging a page
- * @page: page to charge
- * @mm: mm context of the victim
- * @gfp_mask: reclaim mode
- * @memcgp: charged memcg return
- * @compound: charge the page as compound or small page
- *
- * Try to charge @page to the memcg that @mm belongs to, reclaiming
- * pages according to @gfp_mask if necessary.
- *
- * Returns 0 on success, with *@memcgp pointing to the charged memcg.
- * Otherwise, an error code is returned.
- *
- * After page->mapping has been set up, the caller must finalize the
- * charge with mem_cgroup_commit_charge(). Or abort the transaction
- * with mem_cgroup_cancel_charge() in case page instantiation fails.
- */
-int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
- gfp_t gfp_mask, struct mem_cgroup **memcgp,
- bool compound)
+static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
+ gfp_t gfp)
{
- struct mem_cgroup *memcg = NULL;
- unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
- int ret = 0;
+ int ret;
- if (mem_cgroup_disabled())
+ ret = try_charge(memcg, gfp, folio_nr_pages(folio));
+ if (ret)
goto out;
- if (PageSwapCache(page)) {
- /*
- * Every swap fault against a single page tries to charge the
- * page, bail as early as possible. shmem_unuse() encounters
- * already charged pages, too. The USED bit is protected by
- * the page lock, which serializes swap cache removal, which
- * in turn serializes uncharging.
- */
- VM_BUG_ON_PAGE(!PageLocked(page), page);
- if (compound_head(page)->mem_cgroup)
- goto out;
-
- if (do_swap_account) {
- swp_entry_t ent = { .val = page_private(page), };
- unsigned short id = lookup_swap_cgroup_id(ent);
-
- rcu_read_lock();
- memcg = mem_cgroup_from_id(id);
- if (memcg && !css_tryget_online(&memcg->css))
- memcg = NULL;
- rcu_read_unlock();
- }
- }
-
- if (!memcg)
- memcg = get_mem_cgroup_from_mm(mm);
-
- ret = try_charge(memcg, gfp_mask, nr_pages);
-
- css_put(&memcg->css);
+ css_get(&memcg->css);
+ commit_charge(folio, memcg);
+ memcg1_commit_charge(folio, memcg);
out:
- *memcgp = memcg;
return ret;
}
-int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
- gfp_t gfp_mask, struct mem_cgroup **memcgp,
- bool compound)
+int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
{
struct mem_cgroup *memcg;
int ret;
- ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
- memcg = *memcgp;
- mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
+ memcg = get_mem_cgroup_from_mm(mm);
+ ret = charge_memcg(folio, memcg, gfp);
+ css_put(&memcg->css);
+
return ret;
}
/**
- * mem_cgroup_commit_charge - commit a page charge
- * @page: page to charge
- * @memcg: memcg to charge the page to
- * @lrucare: page might be on LRU already
- * @compound: charge the page as compound or small page
- *
- * Finalize a charge transaction started by mem_cgroup_try_charge(),
- * after page->mapping has been set up. This must happen atomically
- * as part of the page instantiation, i.e. under the page table lock
- * for anonymous pages, under the page lock for page and swap cache.
+ * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
+ * @folio: folio being charged
+ * @gfp: reclaim mode
*
- * In addition, the page must not be on the LRU during the commit, to
- * prevent racing with task migration. If it might be, use @lrucare.
+ * This function is called when allocating a huge page folio, after the page has
+ * already been obtained and charged to the appropriate hugetlb cgroup
+ * controller (if it is enabled).
*
- * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
+ * Returns ENOMEM if the memcg is already full.
+ * Returns 0 if either the charge was successful, or if we skip the charging.
*/
-void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
- bool lrucare, bool compound)
+int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
{
- unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
-
- VM_BUG_ON_PAGE(!page->mapping, page);
- VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
+ struct mem_cgroup *memcg = get_mem_cgroup_from_current();
+ int ret = 0;
- if (mem_cgroup_disabled())
- return;
/*
- * Swap faults will attempt to charge the same page multiple
- * times. But reuse_swap_page() might have removed the page
- * from swapcache already, so we can't check PageSwapCache().
+ * Even memcg does not account for hugetlb, we still want to update
+ * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
+ * charging the memcg.
*/
- if (!memcg)
- return;
-
- commit_charge(page, memcg, lrucare);
+ if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
+ !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ goto out;
- local_irq_disable();
- mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
- memcg_check_events(memcg, page);
- local_irq_enable();
+ if (charge_memcg(folio, memcg, gfp))
+ ret = -ENOMEM;
- if (do_memsw_account() && PageSwapCache(page)) {
- swp_entry_t entry = { .val = page_private(page) };
- /*
- * The swap entry might not get freed for a long time,
- * let's not wait for it. The page already received a
- * memory+swap charge, drop the swap entry duplicate.
- */
- mem_cgroup_uncharge_swap(entry, nr_pages);
- }
+out:
+ mem_cgroup_put(memcg);
+ return ret;
}
/**
- * mem_cgroup_cancel_charge - cancel a page charge
- * @page: page to charge
- * @memcg: memcg to charge the page to
- * @compound: charge the page as compound or small page
+ * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
+ * @folio: folio to charge.
+ * @mm: mm context of the victim
+ * @gfp: reclaim mode
+ * @entry: swap entry for which the folio is allocated
*
- * Cancel a charge transaction started by mem_cgroup_try_charge().
+ * This function charges a folio allocated for swapin. Please call this before
+ * adding the folio to the swapcache.
+ *
+ * Returns 0 on success. Otherwise, an error code is returned.
*/
-void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
- bool compound)
+int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
+ gfp_t gfp, swp_entry_t entry)
{
- unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
+ struct mem_cgroup *memcg;
+ unsigned short id;
+ int ret;
if (mem_cgroup_disabled())
- return;
- /*
- * Swap faults will attempt to charge the same page multiple
- * times. But reuse_swap_page() might have removed the page
- * from swapcache already, so we can't check PageSwapCache().
- */
- if (!memcg)
- return;
+ return 0;
+
+ id = lookup_swap_cgroup_id(entry);
+ rcu_read_lock();
+ memcg = mem_cgroup_from_id(id);
+ if (!memcg || !css_tryget_online(&memcg->css))
+ memcg = get_mem_cgroup_from_mm(mm);
+ rcu_read_unlock();
- cancel_charge(memcg, nr_pages);
+ ret = charge_memcg(folio, memcg, gfp);
+
+ css_put(&memcg->css);
+ return ret;
}
struct uncharge_gather {
struct mem_cgroup *memcg;
+ unsigned long nr_memory;
unsigned long pgpgout;
- unsigned long nr_anon;
- unsigned long nr_file;
unsigned long nr_kmem;
- unsigned long nr_huge;
- unsigned long nr_shmem;
- struct page *dummy_page;
+ int nid;
};
static inline void uncharge_gather_clear(struct uncharge_gather *ug)
@@ -6028,193 +4832,190 @@ static inline void uncharge_gather_clear(struct uncharge_gather *ug)
static void uncharge_batch(const struct uncharge_gather *ug)
{
- unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
- unsigned long flags;
-
- if (!mem_cgroup_is_root(ug->memcg)) {
- page_counter_uncharge(&ug->memcg->memory, nr_pages);
- if (do_memsw_account())
- page_counter_uncharge(&ug->memcg->memsw, nr_pages);
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
- page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
- memcg_oom_recover(ug->memcg);
+ if (ug->nr_memory) {
+ memcg_uncharge(ug->memcg, ug->nr_memory);
+ if (ug->nr_kmem) {
+ mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
+ memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
+ }
+ memcg1_oom_recover(ug->memcg);
}
- local_irq_save(flags);
- __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
- __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
- __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
- __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
- __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
- __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
- memcg_check_events(ug->memcg, ug->dummy_page);
- local_irq_restore(flags);
+ memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
- if (!mem_cgroup_is_root(ug->memcg))
- css_put_many(&ug->memcg->css, nr_pages);
+ /* drop reference from uncharge_folio */
+ css_put(&ug->memcg->css);
}
-static void uncharge_page(struct page *page, struct uncharge_gather *ug)
+static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
{
- VM_BUG_ON_PAGE(PageLRU(page), page);
- VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
- !PageHWPoison(page) , page);
+ long nr_pages;
+ struct mem_cgroup *memcg;
+ struct obj_cgroup *objcg;
- if (!page->mem_cgroup)
- return;
+ VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
/*
* Nobody should be changing or seriously looking at
- * page->mem_cgroup at this point, we have fully
- * exclusive access to the page.
+ * folio memcg or objcg at this point, we have fully
+ * exclusive access to the folio.
*/
+ if (folio_memcg_kmem(folio)) {
+ objcg = __folio_objcg(folio);
+ /*
+ * This get matches the put at the end of the function and
+ * kmem pages do not hold memcg references anymore.
+ */
+ memcg = get_mem_cgroup_from_objcg(objcg);
+ } else {
+ memcg = __folio_memcg(folio);
+ }
- if (ug->memcg != page->mem_cgroup) {
+ if (!memcg)
+ return;
+
+ if (ug->memcg != memcg) {
if (ug->memcg) {
uncharge_batch(ug);
uncharge_gather_clear(ug);
}
- ug->memcg = page->mem_cgroup;
+ ug->memcg = memcg;
+ ug->nid = folio_nid(folio);
+
+ /* pairs with css_put in uncharge_batch */
+ css_get(&memcg->css);
}
- if (!PageKmemcg(page)) {
- unsigned int nr_pages = 1;
+ nr_pages = folio_nr_pages(folio);
- if (PageTransHuge(page)) {
- nr_pages <<= compound_order(page);
- ug->nr_huge += nr_pages;
- }
- if (PageAnon(page))
- ug->nr_anon += nr_pages;
- else {
- ug->nr_file += nr_pages;
- if (PageSwapBacked(page))
- ug->nr_shmem += nr_pages;
- }
- ug->pgpgout++;
+ if (folio_memcg_kmem(folio)) {
+ ug->nr_memory += nr_pages;
+ ug->nr_kmem += nr_pages;
+
+ folio->memcg_data = 0;
+ obj_cgroup_put(objcg);
} else {
- ug->nr_kmem += 1 << compound_order(page);
- __ClearPageKmemcg(page);
+ /* LRU pages aren't accounted at the root level */
+ if (!mem_cgroup_is_root(memcg))
+ ug->nr_memory += nr_pages;
+ ug->pgpgout++;
+
+ WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
+ folio->memcg_data = 0;
}
- ug->dummy_page = page;
- page->mem_cgroup = NULL;
+ css_put(&memcg->css);
}
-static void uncharge_list(struct list_head *page_list)
+void __mem_cgroup_uncharge(struct folio *folio)
{
struct uncharge_gather ug;
- struct list_head *next;
- uncharge_gather_clear(&ug);
-
- /*
- * Note that the list can be a single page->lru; hence the
- * do-while loop instead of a simple list_for_each_entry().
- */
- next = page_list->next;
- do {
- struct page *page;
+ /* Don't touch folio->lru of any random page, pre-check: */
+ if (!folio_memcg_charged(folio))
+ return;
- page = list_entry(next, struct page, lru);
- next = page->lru.next;
+ uncharge_gather_clear(&ug);
+ uncharge_folio(folio, &ug);
+ uncharge_batch(&ug);
+}
- uncharge_page(page, &ug);
- } while (next != page_list);
+void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
+{
+ struct uncharge_gather ug;
+ unsigned int i;
+ uncharge_gather_clear(&ug);
+ for (i = 0; i < folios->nr; i++)
+ uncharge_folio(folios->folios[i], &ug);
if (ug.memcg)
uncharge_batch(&ug);
}
/**
- * mem_cgroup_uncharge - uncharge a page
- * @page: page to uncharge
+ * mem_cgroup_replace_folio - Charge a folio's replacement.
+ * @old: Currently circulating folio.
+ * @new: Replacement folio.
*
- * Uncharge a page previously charged with mem_cgroup_try_charge() and
- * mem_cgroup_commit_charge().
+ * Charge @new as a replacement folio for @old. @old will
+ * be uncharged upon free.
+ *
+ * Both folios must be locked, @new->mapping must be set up.
*/
-void mem_cgroup_uncharge(struct page *page)
+void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
{
- struct uncharge_gather ug;
+ struct mem_cgroup *memcg;
+ long nr_pages = folio_nr_pages(new);
+
+ VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
+ VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
+ VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
+ VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
if (mem_cgroup_disabled())
return;
- /* Don't touch page->lru of any random page, pre-check: */
- if (!page->mem_cgroup)
+ /* Page cache replacement: new folio already charged? */
+ if (folio_memcg_charged(new))
return;
- uncharge_gather_clear(&ug);
- uncharge_page(page, &ug);
- uncharge_batch(&ug);
-}
-
-/**
- * mem_cgroup_uncharge_list - uncharge a list of page
- * @page_list: list of pages to uncharge
- *
- * Uncharge a list of pages previously charged with
- * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
- */
-void mem_cgroup_uncharge_list(struct list_head *page_list)
-{
- if (mem_cgroup_disabled())
+ memcg = folio_memcg(old);
+ VM_WARN_ON_ONCE_FOLIO(!memcg, old);
+ if (!memcg)
return;
- if (!list_empty(page_list))
- uncharge_list(page_list);
+ /* Force-charge the new page. The old one will be freed soon */
+ if (!mem_cgroup_is_root(memcg)) {
+ page_counter_charge(&memcg->memory, nr_pages);
+ if (do_memsw_account())
+ page_counter_charge(&memcg->memsw, nr_pages);
+ }
+
+ css_get(&memcg->css);
+ commit_charge(new, memcg);
+ memcg1_commit_charge(new, memcg);
}
/**
- * mem_cgroup_migrate - charge a page's replacement
- * @oldpage: currently circulating page
- * @newpage: replacement page
+ * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
+ * @old: Currently circulating folio.
+ * @new: Replacement folio.
*
- * Charge @newpage as a replacement page for @oldpage. @oldpage will
- * be uncharged upon free.
+ * Transfer the memcg data from the old folio to the new folio for migration.
+ * The old folio's data info will be cleared. Note that the memory counters
+ * will remain unchanged throughout the process.
*
- * Both pages must be locked, @newpage->mapping must be set up.
+ * Both folios must be locked, @new->mapping must be set up.
*/
-void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
+void mem_cgroup_migrate(struct folio *old, struct folio *new)
{
struct mem_cgroup *memcg;
- unsigned int nr_pages;
- bool compound;
- unsigned long flags;
- VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
- VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
- VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
- VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
- newpage);
+ VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
+ VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
+ VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
+ VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
+ VM_BUG_ON_FOLIO(folio_test_lru(old), old);
if (mem_cgroup_disabled())
return;
- /* Page cache replacement: new page already charged? */
- if (newpage->mem_cgroup)
- return;
-
- /* Swapcache readahead pages can get replaced before being charged */
- memcg = oldpage->mem_cgroup;
+ memcg = folio_memcg(old);
+ /*
+ * Note that it is normal to see !memcg for a hugetlb folio.
+ * For e.g, itt could have been allocated when memory_hugetlb_accounting
+ * was not selected.
+ */
+ VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
if (!memcg)
return;
- /* Force-charge the new page. The old one will be freed soon */
- compound = PageTransHuge(newpage);
- nr_pages = compound ? hpage_nr_pages(newpage) : 1;
+ /* Transfer the charge and the css ref */
+ commit_charge(new, memcg);
- page_counter_charge(&memcg->memory, nr_pages);
- if (do_memsw_account())
- page_counter_charge(&memcg->memsw, nr_pages);
- css_get_many(&memcg->css, nr_pages);
-
- commit_charge(newpage, memcg, false);
-
- local_irq_save(flags);
- mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
- memcg_check_events(memcg, newpage);
- local_irq_restore(flags);
+ /* Warning should never happen, so don't worry about refcount non-0 */
+ WARN_ON_ONCE(folio_unqueue_deferred_split(old));
+ old->memcg_data = 0;
}
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
@@ -6227,27 +5028,17 @@ void mem_cgroup_sk_alloc(struct sock *sk)
if (!mem_cgroup_sockets_enabled)
return;
- /*
- * Socket cloning can throw us here with sk_memcg already
- * filled. It won't however, necessarily happen from
- * process context. So the test for root memcg given
- * the current task's memcg won't help us in this case.
- *
- * Respecting the original socket's memcg is a better
- * decision in this case.
- */
- if (sk->sk_memcg) {
- css_get(&sk->sk_memcg->css);
+ /* Do not associate the sock with unrelated interrupted task's memcg. */
+ if (!in_task())
return;
- }
rcu_read_lock();
memcg = mem_cgroup_from_task(current);
- if (memcg == root_mem_cgroup)
+ if (mem_cgroup_is_root(memcg))
goto out;
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
goto out;
- if (css_tryget_online(&memcg->css))
+ if (css_tryget(&memcg->css))
sk->sk_memcg = memcg;
out:
rcu_read_unlock();
@@ -6255,56 +5046,64 @@ out:
void mem_cgroup_sk_free(struct sock *sk)
{
- if (sk->sk_memcg)
- css_put(&sk->sk_memcg->css);
+ struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
+
+ if (memcg)
+ css_put(&memcg->css);
+}
+
+void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
+{
+ struct mem_cgroup *memcg;
+
+ if (sk->sk_memcg == newsk->sk_memcg)
+ return;
+
+ mem_cgroup_sk_free(newsk);
+
+ memcg = mem_cgroup_from_sk(sk);
+ if (memcg)
+ css_get(&memcg->css);
+
+ newsk->sk_memcg = sk->sk_memcg;
}
/**
- * mem_cgroup_charge_skmem - charge socket memory
- * @memcg: memcg to charge
+ * mem_cgroup_sk_charge - charge socket memory
+ * @sk: socket in memcg to charge
* @nr_pages: number of pages to charge
+ * @gfp_mask: reclaim mode
*
* Charges @nr_pages to @memcg. Returns %true if the charge fit within
- * @memcg's configured limit, %false if the charge had to be forced.
+ * @memcg's configured limit, %false if it doesn't.
*/
-bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
+bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
+ gfp_t gfp_mask)
{
- gfp_t gfp_mask = GFP_KERNEL;
-
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
- struct page_counter *fail;
+ struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
- if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
- memcg->tcpmem_pressure = 0;
- return true;
- }
- page_counter_charge(&memcg->tcpmem, nr_pages);
- memcg->tcpmem_pressure = 1;
- return false;
- }
-
- /* Don't block in the packet receive path */
- if (in_softirq())
- gfp_mask = GFP_NOWAIT;
-
- mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
- if (try_charge(memcg, gfp_mask, nr_pages) == 0)
+ if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
+ mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
return true;
+ }
- try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
return false;
}
/**
- * mem_cgroup_uncharge_skmem - uncharge socket memory
- * @memcg: memcg to uncharge
+ * mem_cgroup_sk_uncharge - uncharge socket memory
+ * @sk: socket in memcg to uncharge
* @nr_pages: number of pages to uncharge
*/
-void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
+void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages)
{
+ struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
+
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
- page_counter_uncharge(&memcg->tcpmem, nr_pages);
+ memcg1_uncharge_skmem(memcg, nr_pages);
return;
}
@@ -6324,164 +5123,76 @@ static int __init cgroup_memory(char *s)
cgroup_memory_nosocket = true;
if (!strcmp(token, "nokmem"))
cgroup_memory_nokmem = true;
+ if (!strcmp(token, "nobpf"))
+ cgroup_memory_nobpf = true;
}
- return 0;
+ return 1;
}
__setup("cgroup.memory=", cgroup_memory);
/*
- * subsys_initcall() for memory controller.
+ * Memory controller init before cgroup_init() initialize root_mem_cgroup.
*
* Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
* context because of lock dependencies (cgroup_lock -> cpu hotplug) but
* basically everything that doesn't depend on a specific mem_cgroup structure
* should be initialized from here.
*/
-static int __init mem_cgroup_init(void)
+int __init mem_cgroup_init(void)
{
- int cpu, node;
+ unsigned int memcg_size;
+ int cpu;
-#ifdef CONFIG_MEMCG_KMEM
/*
- * Kmem cache creation is mostly done with the slab_mutex held,
- * so use a workqueue with limited concurrency to avoid stalling
- * all worker threads in case lots of cgroups are created and
- * destroyed simultaneously.
+ * Currently s32 type (can refer to struct batched_lruvec_stat) is
+ * used for per-memcg-per-cpu caching of per-node statistics. In order
+ * to work fine, we should make sure that the overfill threshold can't
+ * exceed S32_MAX / PAGE_SIZE.
*/
- memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
- BUG_ON(!memcg_kmem_cache_wq);
-#endif
+ BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
memcg_hotplug_cpu_dead);
- for_each_possible_cpu(cpu)
+ for_each_possible_cpu(cpu) {
INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
- drain_local_stock);
-
- for_each_node(node) {
- struct mem_cgroup_tree_per_node *rtpn;
-
- rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
- node_online(node) ? node : NUMA_NO_NODE);
-
- rtpn->rb_root = RB_ROOT;
- rtpn->rb_rightmost = NULL;
- spin_lock_init(&rtpn->lock);
- soft_limit_tree.rb_tree_per_node[node] = rtpn;
- }
-
- return 0;
-}
-subsys_initcall(mem_cgroup_init);
-
-#ifdef CONFIG_MEMCG_SWAP
-static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
-{
- while (!refcount_inc_not_zero(&memcg->id.ref)) {
- /*
- * The root cgroup cannot be destroyed, so it's refcount must
- * always be >= 1.
- */
- if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
- VM_BUG_ON(1);
- break;
- }
- memcg = parent_mem_cgroup(memcg);
- if (!memcg)
- memcg = root_mem_cgroup;
+ drain_local_memcg_stock);
+ INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
+ drain_local_obj_stock);
}
- return memcg;
-}
-
-/**
- * mem_cgroup_swapout - transfer a memsw charge to swap
- * @page: page whose memsw charge to transfer
- * @entry: swap entry to move the charge to
- *
- * Transfer the memsw charge of @page to @entry.
- */
-void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
-{
- struct mem_cgroup *memcg, *swap_memcg;
- unsigned int nr_entries;
- unsigned short oldid;
-
- VM_BUG_ON_PAGE(PageLRU(page), page);
- VM_BUG_ON_PAGE(page_count(page), page);
-
- if (!do_memsw_account())
- return;
-
- memcg = page->mem_cgroup;
- /* Readahead page, never charged */
- if (!memcg)
- return;
-
- /*
- * In case the memcg owning these pages has been offlined and doesn't
- * have an ID allocated to it anymore, charge the closest online
- * ancestor for the swap instead and transfer the memory+swap charge.
- */
- swap_memcg = mem_cgroup_id_get_online(memcg);
- nr_entries = hpage_nr_pages(page);
- /* Get references for the tail pages, too */
- if (nr_entries > 1)
- mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
- oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
- nr_entries);
- VM_BUG_ON_PAGE(oldid, page);
- mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
+ memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
+ memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
+ SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
- page->mem_cgroup = NULL;
+ memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
+ SLAB_PANIC | SLAB_HWCACHE_ALIGN);
- if (!mem_cgroup_is_root(memcg))
- page_counter_uncharge(&memcg->memory, nr_entries);
-
- if (memcg != swap_memcg) {
- if (!mem_cgroup_is_root(swap_memcg))
- page_counter_charge(&swap_memcg->memsw, nr_entries);
- page_counter_uncharge(&memcg->memsw, nr_entries);
- }
-
- /*
- * Interrupts should be disabled here because the caller holds the
- * i_pages lock which is taken with interrupts-off. It is
- * important here to have the interrupts disabled because it is the
- * only synchronisation we have for updating the per-CPU variables.
- */
- VM_BUG_ON(!irqs_disabled());
- mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
- -nr_entries);
- memcg_check_events(memcg, page);
-
- if (!mem_cgroup_is_root(memcg))
- css_put_many(&memcg->css, nr_entries);
+ return 0;
}
+#ifdef CONFIG_SWAP
/**
- * mem_cgroup_try_charge_swap - try charging swap space for a page
- * @page: page being added to swap
+ * __mem_cgroup_try_charge_swap - try charging swap space for a folio
+ * @folio: folio being added to swap
* @entry: swap entry to charge
*
- * Try to charge @page's memcg for the swap space at @entry.
+ * Try to charge @folio's memcg for the swap space at @entry.
*
* Returns 0 on success, -ENOMEM on failure.
*/
-int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
+int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
{
- unsigned int nr_pages = hpage_nr_pages(page);
+ unsigned int nr_pages = folio_nr_pages(folio);
struct page_counter *counter;
struct mem_cgroup *memcg;
- unsigned short oldid;
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
+ if (do_memsw_account())
return 0;
- memcg = page->mem_cgroup;
+ memcg = folio_memcg(folio);
- /* Readahead page, never charged */
+ VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
if (!memcg)
return 0;
@@ -6503,35 +5214,32 @@ int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
/* Get references for the tail pages, too */
if (nr_pages > 1)
mem_cgroup_id_get_many(memcg, nr_pages - 1);
- oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
- VM_BUG_ON_PAGE(oldid, page);
mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
+ swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
+
return 0;
}
/**
- * mem_cgroup_uncharge_swap - uncharge swap space
+ * __mem_cgroup_uncharge_swap - uncharge swap space
* @entry: swap entry to uncharge
* @nr_pages: the amount of swap space to uncharge
*/
-void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
+void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
{
struct mem_cgroup *memcg;
unsigned short id;
- if (!do_swap_account)
- return;
-
- id = swap_cgroup_record(entry, 0, nr_pages);
+ id = swap_cgroup_clear(entry, nr_pages);
rcu_read_lock();
memcg = mem_cgroup_from_id(id);
if (memcg) {
if (!mem_cgroup_is_root(memcg)) {
- if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
- page_counter_uncharge(&memcg->swap, nr_pages);
- else
+ if (do_memsw_account())
page_counter_uncharge(&memcg->memsw, nr_pages);
+ else
+ page_counter_uncharge(&memcg->swap, nr_pages);
}
mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
mem_cgroup_id_put_many(memcg, nr_pages);
@@ -6543,53 +5251,53 @@ long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
long nr_swap_pages = get_nr_swap_pages();
- if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ if (mem_cgroup_disabled() || do_memsw_account())
return nr_swap_pages;
- for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
+ for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
nr_swap_pages = min_t(long, nr_swap_pages,
READ_ONCE(memcg->swap.max) -
page_counter_read(&memcg->swap));
return nr_swap_pages;
}
-bool mem_cgroup_swap_full(struct page *page)
+bool mem_cgroup_swap_full(struct folio *folio)
{
struct mem_cgroup *memcg;
- VM_BUG_ON_PAGE(!PageLocked(page), page);
+ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
if (vm_swap_full())
return true;
- if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ if (do_memsw_account())
return false;
- memcg = page->mem_cgroup;
+ memcg = folio_memcg(folio);
if (!memcg)
return false;
- for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
- if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
+ for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
+ unsigned long usage = page_counter_read(&memcg->swap);
+
+ if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
+ usage * 2 >= READ_ONCE(memcg->swap.max))
return true;
+ }
return false;
}
-/* for remember boot option*/
-#ifdef CONFIG_MEMCG_SWAP_ENABLED
-static int really_do_swap_account __initdata = 1;
-#else
-static int really_do_swap_account __initdata;
-#endif
-
-static int __init enable_swap_account(char *s)
+static int __init setup_swap_account(char *s)
{
- if (!strcmp(s, "1"))
- really_do_swap_account = 1;
- else if (!strcmp(s, "0"))
- really_do_swap_account = 0;
+ bool res;
+
+ if (!kstrtobool(s, &res) && !res)
+ pr_warn_once("The swapaccount=0 commandline option is deprecated "
+ "in favor of configuring swap control via cgroupfs. "
+ "Please report your usecase to linux-mm@kvack.org if you "
+ "depend on this functionality.\n");
return 1;
}
-__setup("swapaccount=", enable_swap_account);
+__setup("swapaccount=", setup_swap_account);
static u64 swap_current_read(struct cgroup_subsys_state *css,
struct cftype *cft)
@@ -6599,17 +5307,49 @@ static u64 swap_current_read(struct cgroup_subsys_state *css,
return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}
-static int swap_max_show(struct seq_file *m, void *v)
+static int swap_peak_show(struct seq_file *sf, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
- unsigned long max = READ_ONCE(memcg->swap.max);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
- if (max == PAGE_COUNTER_MAX)
- seq_puts(m, "max\n");
- else
- seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
+ return peak_show(sf, v, &memcg->swap);
+}
- return 0;
+static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+
+ return peak_write(of, buf, nbytes, off, &memcg->swap,
+ &memcg->swap_peaks);
+}
+
+static int swap_high_show(struct seq_file *m, void *v)
+{
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
+}
+
+static ssize_t swap_high_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ unsigned long high;
+ int err;
+
+ buf = strstrip(buf);
+ err = page_counter_memparse(buf, "max", &high);
+ if (err)
+ return err;
+
+ page_counter_set_high(&memcg->swap, high);
+
+ return nbytes;
+}
+
+static int swap_max_show(struct seq_file *m, void *v)
+{
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
}
static ssize_t swap_max_write(struct kernfs_open_file *of,
@@ -6631,8 +5371,10 @@ static ssize_t swap_max_write(struct kernfs_open_file *of,
static int swap_events_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
+ seq_printf(m, "high %lu\n",
+ atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
seq_printf(m, "max %lu\n",
atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
seq_printf(m, "fail %lu\n",
@@ -6648,12 +5390,26 @@ static struct cftype swap_files[] = {
.read_u64 = swap_current_read,
},
{
+ .name = "swap.high",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .seq_show = swap_high_show,
+ .write = swap_high_write,
+ },
+ {
.name = "swap.max",
.flags = CFTYPE_NOT_ON_ROOT,
.seq_show = swap_max_show,
.write = swap_max_write,
},
{
+ .name = "swap.peak",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .open = peak_open,
+ .release = peak_release,
+ .seq_show = swap_peak_show,
+ .write = swap_peak_write,
+ },
+ {
.name = "swap.events",
.flags = CFTYPE_NOT_ON_ROOT,
.file_offset = offsetof(struct mem_cgroup, swap_events_file),
@@ -6662,44 +5418,226 @@ static struct cftype swap_files[] = {
{ } /* terminate */
};
-static struct cftype memsw_cgroup_files[] = {
- {
- .name = "memsw.usage_in_bytes",
- .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
- .read_u64 = mem_cgroup_read_u64,
- },
+#ifdef CONFIG_ZSWAP
+/**
+ * obj_cgroup_may_zswap - check if this cgroup can zswap
+ * @objcg: the object cgroup
+ *
+ * Check if the hierarchical zswap limit has been reached.
+ *
+ * This doesn't check for specific headroom, and it is not atomic
+ * either. But with zswap, the size of the allocation is only known
+ * once compression has occurred, and this optimistic pre-check avoids
+ * spending cycles on compression when there is already no room left
+ * or zswap is disabled altogether somewhere in the hierarchy.
+ */
+bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
+{
+ struct mem_cgroup *memcg, *original_memcg;
+ bool ret = true;
+
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return true;
+
+ original_memcg = get_mem_cgroup_from_objcg(objcg);
+ for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
+ memcg = parent_mem_cgroup(memcg)) {
+ unsigned long max = READ_ONCE(memcg->zswap_max);
+ unsigned long pages;
+
+ if (max == PAGE_COUNTER_MAX)
+ continue;
+ if (max == 0) {
+ ret = false;
+ break;
+ }
+
+ /* Force flush to get accurate stats for charging */
+ __mem_cgroup_flush_stats(memcg, true);
+ pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
+ if (pages < max)
+ continue;
+ ret = false;
+ break;
+ }
+ mem_cgroup_put(original_memcg);
+ return ret;
+}
+
+/**
+ * obj_cgroup_charge_zswap - charge compression backend memory
+ * @objcg: the object cgroup
+ * @size: size of compressed object
+ *
+ * This forces the charge after obj_cgroup_may_zswap() allowed
+ * compression and storage in zswap for this cgroup to go ahead.
+ */
+void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
+{
+ struct mem_cgroup *memcg;
+
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return;
+
+ VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
+
+ /* PF_MEMALLOC context, charging must succeed */
+ if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
+ VM_WARN_ON_ONCE(1);
+
+ rcu_read_lock();
+ memcg = obj_cgroup_memcg(objcg);
+ mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
+ mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
+ rcu_read_unlock();
+}
+
+/**
+ * obj_cgroup_uncharge_zswap - uncharge compression backend memory
+ * @objcg: the object cgroup
+ * @size: size of compressed object
+ *
+ * Uncharges zswap memory on page in.
+ */
+void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
+{
+ struct mem_cgroup *memcg;
+
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return;
+
+ obj_cgroup_uncharge(objcg, size);
+
+ rcu_read_lock();
+ memcg = obj_cgroup_memcg(objcg);
+ mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
+ mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
+ rcu_read_unlock();
+}
+
+bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
+{
+ /* if zswap is disabled, do not block pages going to the swapping device */
+ if (!zswap_is_enabled())
+ return true;
+
+ for (; memcg; memcg = parent_mem_cgroup(memcg))
+ if (!READ_ONCE(memcg->zswap_writeback))
+ return false;
+
+ return true;
+}
+
+static u64 zswap_current_read(struct cgroup_subsys_state *css,
+ struct cftype *cft)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+ mem_cgroup_flush_stats(memcg);
+ return memcg_page_state(memcg, MEMCG_ZSWAP_B);
+}
+
+static int zswap_max_show(struct seq_file *m, void *v)
+{
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
+}
+
+static ssize_t zswap_max_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ unsigned long max;
+ int err;
+
+ buf = strstrip(buf);
+ err = page_counter_memparse(buf, "max", &max);
+ if (err)
+ return err;
+
+ xchg(&memcg->zswap_max, max);
+
+ return nbytes;
+}
+
+static int zswap_writeback_show(struct seq_file *m, void *v)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
+
+ seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
+ return 0;
+}
+
+static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ int zswap_writeback;
+ ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
+
+ if (parse_ret)
+ return parse_ret;
+
+ if (zswap_writeback != 0 && zswap_writeback != 1)
+ return -EINVAL;
+
+ WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
+ return nbytes;
+}
+
+static struct cftype zswap_files[] = {
{
- .name = "memsw.max_usage_in_bytes",
- .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
+ .name = "zswap.current",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .read_u64 = zswap_current_read,
},
{
- .name = "memsw.limit_in_bytes",
- .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
- .write = mem_cgroup_write,
- .read_u64 = mem_cgroup_read_u64,
+ .name = "zswap.max",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .seq_show = zswap_max_show,
+ .write = zswap_max_write,
},
{
- .name = "memsw.failcnt",
- .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
+ .name = "zswap.writeback",
+ .seq_show = zswap_writeback_show,
+ .write = zswap_writeback_write,
},
- { }, /* terminate */
+ { } /* terminate */
};
+#endif /* CONFIG_ZSWAP */
static int __init mem_cgroup_swap_init(void)
{
- if (!mem_cgroup_disabled() && really_do_swap_account) {
- do_swap_account = 1;
- WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
- swap_files));
- WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
- memsw_cgroup_files));
- }
+ if (mem_cgroup_disabled())
+ return 0;
+
+ WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
+#ifdef CONFIG_MEMCG_V1
+ WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
+#endif
+#ifdef CONFIG_ZSWAP
+ WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
+#endif
return 0;
}
subsys_initcall(mem_cgroup_swap_init);
-#endif /* CONFIG_MEMCG_SWAP */
+#endif /* CONFIG_SWAP */
+
+bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
+{
+ return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
+}
+
+void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg)
+{
+ if (mem_cgroup_disabled() || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return;
+
+ if (!memcg)
+ memcg = root_mem_cgroup;
+
+ pr_warn("Memory cgroup min protection %lukB -- low protection %lukB",
+ K(atomic_long_read(&memcg->memory.children_min_usage)*PAGE_SIZE),
+ K(atomic_long_read(&memcg->memory.children_low_usage)*PAGE_SIZE));
+}