summaryrefslogtreecommitdiff
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c5978
1 files changed, 1884 insertions, 4094 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index ab457f0394ab..be810c1fbfc3 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -25,14 +25,16 @@
* Copyright (C) 2020 Alibaba, Inc, Alex Shi
*/
+#include <linux/cgroup-defs.h>
#include <linux/page_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
-#include <linux/pagewalk.h>
+#include <linux/cpuset.h>
#include <linux/sched/mm.h>
#include <linux/shmem_fs.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
+#include <linux/pagevec.h>
#include <linux/vm_event_item.h>
#include <linux/smp.h>
#include <linux/page-flags.h>
@@ -41,15 +43,12 @@
#include <linux/rcupdate.h>
#include <linux/limits.h>
#include <linux/export.h>
+#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
-#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/spinlock.h>
-#include <linux/eventfd.h>
-#include <linux/poll.h>
-#include <linux/sort.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/vmpressure.h>
@@ -59,25 +58,30 @@
#include <linux/cpu.h>
#include <linux/oom.h>
#include <linux/lockdep.h>
-#include <linux/file.h>
#include <linux/resume_user_mode.h>
#include <linux/psi.h>
#include <linux/seq_buf.h>
-#include <linux/parser.h>
+#include <linux/sched/isolation.h>
+#include <linux/kmemleak.h>
#include "internal.h"
#include <net/sock.h>
#include <net/ip.h>
#include "slab.h"
-#include "swap.h"
+#include "memcontrol-v1.h"
#include <linux/uaccess.h>
+#define CREATE_TRACE_POINTS
+#include <trace/events/memcg.h>
+#undef CREATE_TRACE_POINTS
+
#include <trace/events/vmscan.h>
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
struct mem_cgroup *root_mem_cgroup __read_mostly;
+EXPORT_SYMBOL(root_mem_cgroup);
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
@@ -89,144 +93,16 @@ static bool cgroup_memory_nosocket __ro_after_init;
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem __ro_after_init;
+/* BPF memory accounting disabled? */
+static bool cgroup_memory_nobpf __ro_after_init;
+
+static struct kmem_cache *memcg_cachep;
+static struct kmem_cache *memcg_pn_cachep;
+
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif
-/* Whether legacy memory+swap accounting is active */
-static bool do_memsw_account(void)
-{
- return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
-}
-
-#define THRESHOLDS_EVENTS_TARGET 128
-#define SOFTLIMIT_EVENTS_TARGET 1024
-
-/*
- * Cgroups above their limits are maintained in a RB-Tree, independent of
- * their hierarchy representation
- */
-
-struct mem_cgroup_tree_per_node {
- struct rb_root rb_root;
- struct rb_node *rb_rightmost;
- spinlock_t lock;
-};
-
-struct mem_cgroup_tree {
- struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
-};
-
-static struct mem_cgroup_tree soft_limit_tree __read_mostly;
-
-/* for OOM */
-struct mem_cgroup_eventfd_list {
- struct list_head list;
- struct eventfd_ctx *eventfd;
-};
-
-/*
- * cgroup_event represents events which userspace want to receive.
- */
-struct mem_cgroup_event {
- /*
- * memcg which the event belongs to.
- */
- struct mem_cgroup *memcg;
- /*
- * eventfd to signal userspace about the event.
- */
- struct eventfd_ctx *eventfd;
- /*
- * Each of these stored in a list by the cgroup.
- */
- struct list_head list;
- /*
- * register_event() callback will be used to add new userspace
- * waiter for changes related to this event. Use eventfd_signal()
- * on eventfd to send notification to userspace.
- */
- int (*register_event)(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd, const char *args);
- /*
- * unregister_event() callback will be called when userspace closes
- * the eventfd or on cgroup removing. This callback must be set,
- * if you want provide notification functionality.
- */
- void (*unregister_event)(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd);
- /*
- * All fields below needed to unregister event when
- * userspace closes eventfd.
- */
- poll_table pt;
- wait_queue_head_t *wqh;
- wait_queue_entry_t wait;
- struct work_struct remove;
-};
-
-static void mem_cgroup_threshold(struct mem_cgroup *memcg);
-static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
-
-/* Stuffs for move charges at task migration. */
-/*
- * Types of charges to be moved.
- */
-#define MOVE_ANON 0x1U
-#define MOVE_FILE 0x2U
-#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
-
-/* "mc" and its members are protected by cgroup_mutex */
-static struct move_charge_struct {
- spinlock_t lock; /* for from, to */
- struct mm_struct *mm;
- struct mem_cgroup *from;
- struct mem_cgroup *to;
- unsigned long flags;
- unsigned long precharge;
- unsigned long moved_charge;
- unsigned long moved_swap;
- struct task_struct *moving_task; /* a task moving charges */
- wait_queue_head_t waitq; /* a waitq for other context */
-} mc = {
- .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
- .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
-};
-
-/*
- * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
- * limit reclaim to prevent infinite loops, if they ever occur.
- */
-#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
-#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
-
-/* for encoding cft->private value on file */
-enum res_type {
- _MEM,
- _MEMSWAP,
- _KMEM,
- _TCP,
-};
-
-#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
-#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
-#define MEMFILE_ATTR(val) ((val) & 0xffff)
-
-/*
- * Iteration constructs for visiting all cgroups (under a tree). If
- * loops are exited prematurely (break), mem_cgroup_iter_break() must
- * be used for reference counting.
- */
-#define for_each_mem_cgroup_tree(iter, root) \
- for (iter = mem_cgroup_iter(root, NULL, NULL); \
- iter != NULL; \
- iter = mem_cgroup_iter(root, iter, NULL))
-
-#define for_each_mem_cgroup(iter) \
- for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
- iter != NULL; \
- iter = mem_cgroup_iter(NULL, iter, NULL))
-
static inline bool task_is_dying(void)
{
return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
@@ -246,7 +122,10 @@ struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
return container_of(vmpr, struct mem_cgroup, vmpressure);
}
-#ifdef CONFIG_MEMCG_KMEM
+#define SEQ_BUF_SIZE SZ_4K
+#define CURRENT_OBJCG_UPDATE_BIT 0
+#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
+
static DEFINE_SPINLOCK(objcg_lock);
bool mem_cgroup_kmem_disabled(void)
@@ -254,8 +133,7 @@ bool mem_cgroup_kmem_disabled(void)
return cgroup_memory_nokmem;
}
-static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
- unsigned int nr_pages);
+static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
static void obj_cgroup_release(struct percpu_ref *ref)
{
@@ -288,8 +166,16 @@ static void obj_cgroup_release(struct percpu_ref *ref)
WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
nr_pages = nr_bytes >> PAGE_SHIFT;
- if (nr_pages)
- obj_cgroup_uncharge_pages(objcg, nr_pages);
+ if (nr_pages) {
+ struct mem_cgroup *memcg;
+
+ memcg = get_mem_cgroup_from_objcg(objcg);
+ mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
+ memcg1_account_kmem(memcg, -nr_pages);
+ if (!mem_cgroup_is_root(memcg))
+ memcg_uncharge(memcg, nr_pages);
+ mem_cgroup_put(memcg);
+ }
spin_lock_irqsave(&objcg_lock, flags);
list_del(&objcg->list);
@@ -342,30 +228,30 @@ static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
/*
* A lot of the calls to the cache allocation functions are expected to be
- * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
+ * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
* conditional to this static branch, we'll have to allow modules that does
* kmem_cache_alloc and the such to see this symbol as well
*/
-DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
-EXPORT_SYMBOL(memcg_kmem_enabled_key);
-#endif
+DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
+EXPORT_SYMBOL(memcg_kmem_online_key);
+
+DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
+EXPORT_SYMBOL(memcg_bpf_enabled_key);
/**
- * mem_cgroup_css_from_page - css of the memcg associated with a page
- * @page: page of interest
+ * mem_cgroup_css_from_folio - css of the memcg associated with a folio
+ * @folio: folio of interest
*
* If memcg is bound to the default hierarchy, css of the memcg associated
- * with @page is returned. The returned css remains associated with @page
+ * with @folio is returned. The returned css remains associated with @folio
* until it is released.
*
* If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
* is returned.
*/
-struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
+struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
{
- struct mem_cgroup *memcg;
-
- memcg = page_memcg(page);
+ struct mem_cgroup *memcg = folio_memcg(folio);
if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
memcg = root_mem_cgroup;
@@ -392,7 +278,8 @@ ino_t page_cgroup_ino(struct page *page)
unsigned long ino = 0;
rcu_read_lock();
- memcg = page_memcg_check(page);
+ /* page_folio() is racy here, but the entire function is racy anyway */
+ memcg = folio_memcg_check(page_folio(page));
while (memcg && !(memcg->css.flags & CSS_ONLINE))
memcg = parent_mem_cgroup(memcg);
@@ -401,271 +288,167 @@ ino_t page_cgroup_ino(struct page *page)
rcu_read_unlock();
return ino;
}
+EXPORT_SYMBOL_GPL(page_cgroup_ino);
+
+/* Subset of node_stat_item for memcg stats */
+static const unsigned int memcg_node_stat_items[] = {
+ NR_INACTIVE_ANON,
+ NR_ACTIVE_ANON,
+ NR_INACTIVE_FILE,
+ NR_ACTIVE_FILE,
+ NR_UNEVICTABLE,
+ NR_SLAB_RECLAIMABLE_B,
+ NR_SLAB_UNRECLAIMABLE_B,
+ WORKINGSET_REFAULT_ANON,
+ WORKINGSET_REFAULT_FILE,
+ WORKINGSET_ACTIVATE_ANON,
+ WORKINGSET_ACTIVATE_FILE,
+ WORKINGSET_RESTORE_ANON,
+ WORKINGSET_RESTORE_FILE,
+ WORKINGSET_NODERECLAIM,
+ NR_ANON_MAPPED,
+ NR_FILE_MAPPED,
+ NR_FILE_PAGES,
+ NR_FILE_DIRTY,
+ NR_WRITEBACK,
+ NR_SHMEM,
+ NR_SHMEM_THPS,
+ NR_FILE_THPS,
+ NR_ANON_THPS,
+ NR_KERNEL_STACK_KB,
+ NR_PAGETABLE,
+ NR_SECONDARY_PAGETABLE,
+#ifdef CONFIG_SWAP
+ NR_SWAPCACHE,
+#endif
+#ifdef CONFIG_NUMA_BALANCING
+ PGPROMOTE_SUCCESS,
+#endif
+ PGDEMOTE_KSWAPD,
+ PGDEMOTE_DIRECT,
+ PGDEMOTE_KHUGEPAGED,
+ PGDEMOTE_PROACTIVE,
+#ifdef CONFIG_HUGETLB_PAGE
+ NR_HUGETLB,
+#endif
+};
-static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
- struct mem_cgroup_tree_per_node *mctz,
- unsigned long new_usage_in_excess)
-{
- struct rb_node **p = &mctz->rb_root.rb_node;
- struct rb_node *parent = NULL;
- struct mem_cgroup_per_node *mz_node;
- bool rightmost = true;
-
- if (mz->on_tree)
- return;
-
- mz->usage_in_excess = new_usage_in_excess;
- if (!mz->usage_in_excess)
- return;
- while (*p) {
- parent = *p;
- mz_node = rb_entry(parent, struct mem_cgroup_per_node,
- tree_node);
- if (mz->usage_in_excess < mz_node->usage_in_excess) {
- p = &(*p)->rb_left;
- rightmost = false;
- } else {
- p = &(*p)->rb_right;
- }
- }
-
- if (rightmost)
- mctz->rb_rightmost = &mz->tree_node;
-
- rb_link_node(&mz->tree_node, parent, p);
- rb_insert_color(&mz->tree_node, &mctz->rb_root);
- mz->on_tree = true;
-}
-
-static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
- struct mem_cgroup_tree_per_node *mctz)
-{
- if (!mz->on_tree)
- return;
-
- if (&mz->tree_node == mctz->rb_rightmost)
- mctz->rb_rightmost = rb_prev(&mz->tree_node);
+static const unsigned int memcg_stat_items[] = {
+ MEMCG_SWAP,
+ MEMCG_SOCK,
+ MEMCG_PERCPU_B,
+ MEMCG_VMALLOC,
+ MEMCG_KMEM,
+ MEMCG_ZSWAP_B,
+ MEMCG_ZSWAPPED,
+};
- rb_erase(&mz->tree_node, &mctz->rb_root);
- mz->on_tree = false;
-}
+#define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
+#define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
+ ARRAY_SIZE(memcg_stat_items))
+#define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
+static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
-static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
- struct mem_cgroup_tree_per_node *mctz)
+static void init_memcg_stats(void)
{
- unsigned long flags;
+ u8 i, j = 0;
- spin_lock_irqsave(&mctz->lock, flags);
- __mem_cgroup_remove_exceeded(mz, mctz);
- spin_unlock_irqrestore(&mctz->lock, flags);
-}
+ BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
-static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
-{
- unsigned long nr_pages = page_counter_read(&memcg->memory);
- unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
- unsigned long excess = 0;
+ memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
- if (nr_pages > soft_limit)
- excess = nr_pages - soft_limit;
+ for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
+ mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
- return excess;
+ for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
+ mem_cgroup_stats_index[memcg_stat_items[i]] = j;
}
-static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
+static inline int memcg_stats_index(int idx)
{
- unsigned long excess;
- struct mem_cgroup_per_node *mz;
- struct mem_cgroup_tree_per_node *mctz;
-
- mctz = soft_limit_tree.rb_tree_per_node[nid];
- if (!mctz)
- return;
- /*
- * Necessary to update all ancestors when hierarchy is used.
- * because their event counter is not touched.
- */
- for (; memcg; memcg = parent_mem_cgroup(memcg)) {
- mz = memcg->nodeinfo[nid];
- excess = soft_limit_excess(memcg);
- /*
- * We have to update the tree if mz is on RB-tree or
- * mem is over its softlimit.
- */
- if (excess || mz->on_tree) {
- unsigned long flags;
-
- spin_lock_irqsave(&mctz->lock, flags);
- /* if on-tree, remove it */
- if (mz->on_tree)
- __mem_cgroup_remove_exceeded(mz, mctz);
- /*
- * Insert again. mz->usage_in_excess will be updated.
- * If excess is 0, no tree ops.
- */
- __mem_cgroup_insert_exceeded(mz, mctz, excess);
- spin_unlock_irqrestore(&mctz->lock, flags);
- }
- }
-}
-
-static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
-{
- struct mem_cgroup_tree_per_node *mctz;
- struct mem_cgroup_per_node *mz;
- int nid;
-
- for_each_node(nid) {
- mz = memcg->nodeinfo[nid];
- mctz = soft_limit_tree.rb_tree_per_node[nid];
- if (mctz)
- mem_cgroup_remove_exceeded(mz, mctz);
- }
+ return mem_cgroup_stats_index[idx];
}
-static struct mem_cgroup_per_node *
-__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
-{
- struct mem_cgroup_per_node *mz;
+struct lruvec_stats_percpu {
+ /* Local (CPU and cgroup) state */
+ long state[NR_MEMCG_NODE_STAT_ITEMS];
-retry:
- mz = NULL;
- if (!mctz->rb_rightmost)
- goto done; /* Nothing to reclaim from */
-
- mz = rb_entry(mctz->rb_rightmost,
- struct mem_cgroup_per_node, tree_node);
- /*
- * Remove the node now but someone else can add it back,
- * we will to add it back at the end of reclaim to its correct
- * position in the tree.
- */
- __mem_cgroup_remove_exceeded(mz, mctz);
- if (!soft_limit_excess(mz->memcg) ||
- !css_tryget(&mz->memcg->css))
- goto retry;
-done:
- return mz;
-}
-
-static struct mem_cgroup_per_node *
-mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
-{
- struct mem_cgroup_per_node *mz;
-
- spin_lock_irq(&mctz->lock);
- mz = __mem_cgroup_largest_soft_limit_node(mctz);
- spin_unlock_irq(&mctz->lock);
- return mz;
-}
-
-/*
- * memcg and lruvec stats flushing
- *
- * Many codepaths leading to stats update or read are performance sensitive and
- * adding stats flushing in such codepaths is not desirable. So, to optimize the
- * flushing the kernel does:
- *
- * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
- * rstat update tree grow unbounded.
- *
- * 2) Flush the stats synchronously on reader side only when there are more than
- * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
- * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
- * only for 2 seconds due to (1).
- */
-static void flush_memcg_stats_dwork(struct work_struct *w);
-static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
-static DEFINE_SPINLOCK(stats_flush_lock);
-static DEFINE_PER_CPU(unsigned int, stats_updates);
-static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
-static u64 flush_next_time;
+ /* Delta calculation for lockless upward propagation */
+ long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
+};
-#define FLUSH_TIME (2UL*HZ)
+struct lruvec_stats {
+ /* Aggregated (CPU and subtree) state */
+ long state[NR_MEMCG_NODE_STAT_ITEMS];
-/*
- * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
- * not rely on this as part of an acquired spinlock_t lock. These functions are
- * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
- * is sufficient.
- */
-static void memcg_stats_lock(void)
-{
- preempt_disable_nested();
- VM_WARN_ON_IRQS_ENABLED();
-}
+ /* Non-hierarchical (CPU aggregated) state */
+ long state_local[NR_MEMCG_NODE_STAT_ITEMS];
-static void __memcg_stats_lock(void)
-{
- preempt_disable_nested();
-}
+ /* Pending child counts during tree propagation */
+ long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
+};
-static void memcg_stats_unlock(void)
+unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
{
- preempt_enable_nested();
-}
+ struct mem_cgroup_per_node *pn;
+ long x;
+ int i;
-static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
-{
- unsigned int x;
+ if (mem_cgroup_disabled())
+ return node_page_state(lruvec_pgdat(lruvec), idx);
- cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
+ i = memcg_stats_index(idx);
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return 0;
- x = __this_cpu_add_return(stats_updates, abs(val));
- if (x > MEMCG_CHARGE_BATCH) {
- /*
- * If stats_flush_threshold exceeds the threshold
- * (>num_online_cpus()), cgroup stats update will be triggered
- * in __mem_cgroup_flush_stats(). Increasing this var further
- * is redundant and simply adds overhead in atomic update.
- */
- if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
- atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
- __this_cpu_write(stats_updates, 0);
- }
+ pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
+ x = READ_ONCE(pn->lruvec_stats->state[i]);
+#ifdef CONFIG_SMP
+ if (x < 0)
+ x = 0;
+#endif
+ return x;
}
-static void __mem_cgroup_flush_stats(void)
+unsigned long lruvec_page_state_local(struct lruvec *lruvec,
+ enum node_stat_item idx)
{
- unsigned long flag;
-
- if (!spin_trylock_irqsave(&stats_flush_lock, flag))
- return;
-
- flush_next_time = jiffies_64 + 2*FLUSH_TIME;
- cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
- atomic_set(&stats_flush_threshold, 0);
- spin_unlock_irqrestore(&stats_flush_lock, flag);
-}
+ struct mem_cgroup_per_node *pn;
+ long x;
+ int i;
-void mem_cgroup_flush_stats(void)
-{
- if (atomic_read(&stats_flush_threshold) > num_online_cpus())
- __mem_cgroup_flush_stats();
-}
+ if (mem_cgroup_disabled())
+ return node_page_state(lruvec_pgdat(lruvec), idx);
-void mem_cgroup_flush_stats_delayed(void)
-{
- if (time_after64(jiffies_64, flush_next_time))
- mem_cgroup_flush_stats();
-}
+ i = memcg_stats_index(idx);
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return 0;
-static void flush_memcg_stats_dwork(struct work_struct *w)
-{
- __mem_cgroup_flush_stats();
- queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
+ pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
+ x = READ_ONCE(pn->lruvec_stats->state_local[i]);
+#ifdef CONFIG_SMP
+ if (x < 0)
+ x = 0;
+#endif
+ return x;
}
/* Subset of vm_event_item to report for memcg event stats */
static const unsigned int memcg_vm_event_stat[] = {
+#ifdef CONFIG_MEMCG_V1
PGPGIN,
PGPGOUT,
+#endif
+ PSWPIN,
+ PSWPOUT,
PGSCAN_KSWAPD,
PGSCAN_DIRECT,
PGSCAN_KHUGEPAGED,
+ PGSCAN_PROACTIVE,
PGSTEAL_KSWAPD,
PGSTEAL_DIRECT,
PGSTEAL_KHUGEPAGED,
+ PGSTEAL_PROACTIVE,
PGFAULT,
PGMAJFAULT,
PGREFILL,
@@ -673,59 +456,206 @@ static const unsigned int memcg_vm_event_stat[] = {
PGDEACTIVATE,
PGLAZYFREE,
PGLAZYFREED,
-#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
+#ifdef CONFIG_SWAP
+ SWPIN_ZERO,
+ SWPOUT_ZERO,
+#endif
+#ifdef CONFIG_ZSWAP
ZSWPIN,
ZSWPOUT,
+ ZSWPWB,
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
THP_FAULT_ALLOC,
THP_COLLAPSE_ALLOC,
+ THP_SWPOUT,
+ THP_SWPOUT_FALLBACK,
+#endif
+#ifdef CONFIG_NUMA_BALANCING
+ NUMA_PAGE_MIGRATE,
+ NUMA_PTE_UPDATES,
+ NUMA_HINT_FAULTS,
#endif
};
#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
-static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
+static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
static void init_memcg_events(void)
{
- int i;
+ u8 i;
+
+ BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
+
+ memset(mem_cgroup_events_index, U8_MAX,
+ sizeof(mem_cgroup_events_index));
for (i = 0; i < NR_MEMCG_EVENTS; ++i)
- mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
+ mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
}
static inline int memcg_events_index(enum vm_event_item idx)
{
- return mem_cgroup_events_index[idx] - 1;
+ return mem_cgroup_events_index[idx];
}
struct memcg_vmstats_percpu {
+ /* Stats updates since the last flush */
+ unsigned int stats_updates;
+
+ /* Cached pointers for fast iteration in memcg_rstat_updated() */
+ struct memcg_vmstats_percpu __percpu *parent_pcpu;
+ struct memcg_vmstats *vmstats;
+
+ /* The above should fit a single cacheline for memcg_rstat_updated() */
+
/* Local (CPU and cgroup) page state & events */
- long state[MEMCG_NR_STAT];
+ long state[MEMCG_VMSTAT_SIZE];
unsigned long events[NR_MEMCG_EVENTS];
/* Delta calculation for lockless upward propagation */
- long state_prev[MEMCG_NR_STAT];
+ long state_prev[MEMCG_VMSTAT_SIZE];
unsigned long events_prev[NR_MEMCG_EVENTS];
-
- /* Cgroup1: threshold notifications & softlimit tree updates */
- unsigned long nr_page_events;
- unsigned long targets[MEM_CGROUP_NTARGETS];
-};
+} ____cacheline_aligned;
struct memcg_vmstats {
/* Aggregated (CPU and subtree) page state & events */
- long state[MEMCG_NR_STAT];
+ long state[MEMCG_VMSTAT_SIZE];
unsigned long events[NR_MEMCG_EVENTS];
+ /* Non-hierarchical (CPU aggregated) page state & events */
+ long state_local[MEMCG_VMSTAT_SIZE];
+ unsigned long events_local[NR_MEMCG_EVENTS];
+
/* Pending child counts during tree propagation */
- long state_pending[MEMCG_NR_STAT];
+ long state_pending[MEMCG_VMSTAT_SIZE];
unsigned long events_pending[NR_MEMCG_EVENTS];
+
+ /* Stats updates since the last flush */
+ atomic_t stats_updates;
};
+/*
+ * memcg and lruvec stats flushing
+ *
+ * Many codepaths leading to stats update or read are performance sensitive and
+ * adding stats flushing in such codepaths is not desirable. So, to optimize the
+ * flushing the kernel does:
+ *
+ * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
+ * rstat update tree grow unbounded.
+ *
+ * 2) Flush the stats synchronously on reader side only when there are more than
+ * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
+ * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
+ * only for 2 seconds due to (1).
+ */
+static void flush_memcg_stats_dwork(struct work_struct *w);
+static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
+static u64 flush_last_time;
+
+#define FLUSH_TIME (2UL*HZ)
+
+static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
+{
+ return atomic_read(&vmstats->stats_updates) >
+ MEMCG_CHARGE_BATCH * num_online_cpus();
+}
+
+static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
+ int cpu)
+{
+ struct memcg_vmstats_percpu __percpu *statc_pcpu;
+ struct memcg_vmstats_percpu *statc;
+ unsigned int stats_updates;
+
+ if (!val)
+ return;
+
+ css_rstat_updated(&memcg->css, cpu);
+ statc_pcpu = memcg->vmstats_percpu;
+ for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
+ statc = this_cpu_ptr(statc_pcpu);
+ /*
+ * If @memcg is already flushable then all its ancestors are
+ * flushable as well and also there is no need to increase
+ * stats_updates.
+ */
+ if (memcg_vmstats_needs_flush(statc->vmstats))
+ break;
+
+ stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
+ abs(val));
+ if (stats_updates < MEMCG_CHARGE_BATCH)
+ continue;
+
+ stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
+ atomic_add(stats_updates, &statc->vmstats->stats_updates);
+ }
+}
+
+static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
+{
+ bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
+
+ trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
+ force, needs_flush);
+
+ if (!force && !needs_flush)
+ return;
+
+ if (mem_cgroup_is_root(memcg))
+ WRITE_ONCE(flush_last_time, jiffies_64);
+
+ css_rstat_flush(&memcg->css);
+}
+
+/*
+ * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
+ * @memcg: root of the subtree to flush
+ *
+ * Flushing is serialized by the underlying global rstat lock. There is also a
+ * minimum amount of work to be done even if there are no stat updates to flush.
+ * Hence, we only flush the stats if the updates delta exceeds a threshold. This
+ * avoids unnecessary work and contention on the underlying lock.
+ */
+void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
+{
+ if (mem_cgroup_disabled())
+ return;
+
+ if (!memcg)
+ memcg = root_mem_cgroup;
+
+ __mem_cgroup_flush_stats(memcg, false);
+}
+
+void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
+{
+ /* Only flush if the periodic flusher is one full cycle late */
+ if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
+ mem_cgroup_flush_stats(memcg);
+}
+
+static void flush_memcg_stats_dwork(struct work_struct *w)
+{
+ /*
+ * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
+ * in latency-sensitive paths is as cheap as possible.
+ */
+ __mem_cgroup_flush_stats(root_mem_cgroup, true);
+ queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
+}
+
unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
{
- long x = READ_ONCE(memcg->vmstats->state[idx]);
+ long x;
+ int i = memcg_stats_index(idx);
+
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return 0;
+
+ x = READ_ONCE(memcg->vmstats->state[i]);
#ifdef CONFIG_SMP
if (x < 0)
x = 0;
@@ -733,78 +663,101 @@ unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
return x;
}
+static int memcg_page_state_unit(int item);
+
+/*
+ * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
+ * up non-zero sub-page updates to 1 page as zero page updates are ignored.
+ */
+static int memcg_state_val_in_pages(int idx, int val)
+{
+ int unit = memcg_page_state_unit(idx);
+
+ if (!val || unit == PAGE_SIZE)
+ return val;
+ else
+ return max(val * unit / PAGE_SIZE, 1UL);
+}
+
/**
- * __mod_memcg_state - update cgroup memory statistics
+ * mod_memcg_state - update cgroup memory statistics
* @memcg: the memory cgroup
* @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
* @val: delta to add to the counter, can be negative
*/
-void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
+void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
+ int val)
{
+ int i = memcg_stats_index(idx);
+ int cpu;
+
if (mem_cgroup_disabled())
return;
- __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
- memcg_rstat_updated(memcg, val);
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return;
+
+ cpu = get_cpu();
+
+ this_cpu_add(memcg->vmstats_percpu->state[i], val);
+ val = memcg_state_val_in_pages(idx, val);
+ memcg_rstat_updated(memcg, val, cpu);
+ trace_mod_memcg_state(memcg, idx, val);
+
+ put_cpu();
}
+#ifdef CONFIG_MEMCG_V1
/* idx can be of type enum memcg_stat_item or node_stat_item. */
-static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
+unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
{
- long x = 0;
- int cpu;
+ long x;
+ int i = memcg_stats_index(idx);
- for_each_possible_cpu(cpu)
- x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return 0;
+
+ x = READ_ONCE(memcg->vmstats->state_local[i]);
#ifdef CONFIG_SMP
if (x < 0)
x = 0;
#endif
return x;
}
+#endif
-void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
- int val)
+static void mod_memcg_lruvec_state(struct lruvec *lruvec,
+ enum node_stat_item idx,
+ int val)
{
struct mem_cgroup_per_node *pn;
struct mem_cgroup *memcg;
+ int i = memcg_stats_index(idx);
+ int cpu;
+
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return;
pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
memcg = pn->memcg;
- /*
- * The caller from rmap relay on disabled preemption becase they never
- * update their counter from in-interrupt context. For these two
- * counters we check that the update is never performed from an
- * interrupt context while other caller need to have disabled interrupt.
- */
- __memcg_stats_lock();
- if (IS_ENABLED(CONFIG_DEBUG_VM)) {
- switch (idx) {
- case NR_ANON_MAPPED:
- case NR_FILE_MAPPED:
- case NR_ANON_THPS:
- case NR_SHMEM_PMDMAPPED:
- case NR_FILE_PMDMAPPED:
- WARN_ON_ONCE(!in_task());
- break;
- default:
- VM_WARN_ON_IRQS_ENABLED();
- }
- }
+ cpu = get_cpu();
/* Update memcg */
- __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
+ this_cpu_add(memcg->vmstats_percpu->state[i], val);
/* Update lruvec */
- __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
+ this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
- memcg_rstat_updated(memcg, val);
- memcg_stats_unlock();
+ val = memcg_state_val_in_pages(idx, val);
+ memcg_rstat_updated(memcg, val, cpu);
+ trace_mod_memcg_lruvec_state(memcg, idx, val);
+
+ put_cpu();
}
/**
- * __mod_lruvec_state - update lruvec memory statistics
+ * mod_lruvec_state - update lruvec memory statistics
* @lruvec: the lruvec
* @idx: the stat item
* @val: delta to add to the counter, can be negative
@@ -813,41 +766,40 @@ void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
* function updates the all three counters that are affected by a
* change of state at this level: per-node, per-cgroup, per-lruvec.
*/
-void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
+void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
int val)
{
/* Update node */
- __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
+ mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
/* Update memcg and lruvec */
if (!mem_cgroup_disabled())
- __mod_memcg_lruvec_state(lruvec, idx, val);
+ mod_memcg_lruvec_state(lruvec, idx, val);
}
-void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
+void lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
int val)
{
- struct page *head = compound_head(page); /* rmap on tail pages */
struct mem_cgroup *memcg;
- pg_data_t *pgdat = page_pgdat(page);
+ pg_data_t *pgdat = folio_pgdat(folio);
struct lruvec *lruvec;
rcu_read_lock();
- memcg = page_memcg(head);
+ memcg = folio_memcg(folio);
/* Untracked pages have no memcg, no lruvec. Update only the node */
if (!memcg) {
rcu_read_unlock();
- __mod_node_page_state(pgdat, idx, val);
+ mod_node_page_state(pgdat, idx, val);
return;
}
lruvec = mem_cgroup_lruvec(memcg, pgdat);
- __mod_lruvec_state(lruvec, idx, val);
+ mod_lruvec_state(lruvec, idx, val);
rcu_read_unlock();
}
-EXPORT_SYMBOL(__mod_lruvec_page_state);
+EXPORT_SYMBOL(lruvec_stat_mod_folio);
-void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
+void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
{
pg_data_t *pgdat = page_pgdat(virt_to_page(p));
struct mem_cgroup *memcg;
@@ -863,117 +815,62 @@ void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
* vmstats to keep it correct for the root memcg.
*/
if (!memcg) {
- __mod_node_page_state(pgdat, idx, val);
+ mod_node_page_state(pgdat, idx, val);
} else {
lruvec = mem_cgroup_lruvec(memcg, pgdat);
- __mod_lruvec_state(lruvec, idx, val);
+ mod_lruvec_state(lruvec, idx, val);
}
rcu_read_unlock();
}
/**
- * __count_memcg_events - account VM events in a cgroup
+ * count_memcg_events - account VM events in a cgroup
* @memcg: the memory cgroup
* @idx: the event item
* @count: the number of events that occurred
*/
-void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
+void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
unsigned long count)
{
- int index = memcg_events_index(idx);
+ int i = memcg_events_index(idx);
+ int cpu;
- if (mem_cgroup_disabled() || index < 0)
+ if (mem_cgroup_disabled())
return;
- memcg_stats_lock();
- __this_cpu_add(memcg->vmstats_percpu->events[index], count);
- memcg_rstat_updated(memcg, count);
- memcg_stats_unlock();
-}
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return;
-static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
-{
- int index = memcg_events_index(event);
+ cpu = get_cpu();
- if (index < 0)
- return 0;
- return READ_ONCE(memcg->vmstats->events[index]);
-}
+ this_cpu_add(memcg->vmstats_percpu->events[i], count);
+ memcg_rstat_updated(memcg, count, cpu);
+ trace_count_memcg_events(memcg, idx, count);
-static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
-{
- long x = 0;
- int cpu;
- int index = memcg_events_index(event);
-
- if (index < 0)
- return 0;
-
- for_each_possible_cpu(cpu)
- x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
- return x;
+ put_cpu();
}
-static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
- int nr_pages)
+unsigned long memcg_events(struct mem_cgroup *memcg, int event)
{
- /* pagein of a big page is an event. So, ignore page size */
- if (nr_pages > 0)
- __count_memcg_events(memcg, PGPGIN, 1);
- else {
- __count_memcg_events(memcg, PGPGOUT, 1);
- nr_pages = -nr_pages; /* for event */
- }
-
- __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
-}
+ int i = memcg_events_index(event);
-static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
- enum mem_cgroup_events_target target)
-{
- unsigned long val, next;
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
+ return 0;
- val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
- next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
- /* from time_after() in jiffies.h */
- if ((long)(next - val) < 0) {
- switch (target) {
- case MEM_CGROUP_TARGET_THRESH:
- next = val + THRESHOLDS_EVENTS_TARGET;
- break;
- case MEM_CGROUP_TARGET_SOFTLIMIT:
- next = val + SOFTLIMIT_EVENTS_TARGET;
- break;
- default:
- break;
- }
- __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
- return true;
- }
- return false;
+ return READ_ONCE(memcg->vmstats->events[i]);
}
-/*
- * Check events in order.
- *
- */
-static void memcg_check_events(struct mem_cgroup *memcg, int nid)
+#ifdef CONFIG_MEMCG_V1
+unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
- if (IS_ENABLED(CONFIG_PREEMPT_RT))
- return;
+ int i = memcg_events_index(event);
- /* threshold event is triggered in finer grain than soft limit */
- if (unlikely(mem_cgroup_event_ratelimit(memcg,
- MEM_CGROUP_TARGET_THRESH))) {
- bool do_softlimit;
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
+ return 0;
- do_softlimit = mem_cgroup_event_ratelimit(memcg,
- MEM_CGROUP_TARGET_SOFTLIMIT);
- mem_cgroup_threshold(memcg);
- if (unlikely(do_softlimit))
- mem_cgroup_update_tree(memcg, nid);
- }
+ return READ_ONCE(memcg->vmstats->events_local[i]);
}
+#endif
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
@@ -1047,17 +944,43 @@ struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
}
EXPORT_SYMBOL(get_mem_cgroup_from_mm);
-static __always_inline bool memcg_kmem_bypass(void)
+/**
+ * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
+ */
+struct mem_cgroup *get_mem_cgroup_from_current(void)
{
- /* Allow remote memcg charging from any context. */
- if (unlikely(active_memcg()))
- return false;
+ struct mem_cgroup *memcg;
- /* Memcg to charge can't be determined. */
- if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
- return true;
+ if (mem_cgroup_disabled())
+ return NULL;
- return false;
+again:
+ rcu_read_lock();
+ memcg = mem_cgroup_from_task(current);
+ if (!css_tryget(&memcg->css)) {
+ rcu_read_unlock();
+ goto again;
+ }
+ rcu_read_unlock();
+ return memcg;
+}
+
+/**
+ * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
+ * @folio: folio from which memcg should be extracted.
+ */
+struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
+{
+ struct mem_cgroup *memcg = folio_memcg(folio);
+
+ if (mem_cgroup_disabled())
+ return NULL;
+
+ rcu_read_lock();
+ if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
+ memcg = root_mem_cgroup;
+ rcu_read_unlock();
+ return memcg;
}
/**
@@ -1082,9 +1005,9 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup_reclaim_cookie *reclaim)
{
struct mem_cgroup_reclaim_iter *iter;
- struct cgroup_subsys_state *css = NULL;
- struct mem_cgroup *memcg = NULL;
- struct mem_cgroup *pos = NULL;
+ struct cgroup_subsys_state *css;
+ struct mem_cgroup *pos;
+ struct mem_cgroup *next;
if (mem_cgroup_disabled())
return NULL;
@@ -1093,81 +1016,67 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
root = root_mem_cgroup;
rcu_read_lock();
+restart:
+ next = NULL;
if (reclaim) {
- struct mem_cgroup_per_node *mz;
+ int gen;
+ int nid = reclaim->pgdat->node_id;
- mz = root->nodeinfo[reclaim->pgdat->node_id];
- iter = &mz->iter;
+ iter = &root->nodeinfo[nid]->iter;
+ gen = atomic_read(&iter->generation);
/*
* On start, join the current reclaim iteration cycle.
* Exit when a concurrent walker completes it.
*/
if (!prev)
- reclaim->generation = iter->generation;
- else if (reclaim->generation != iter->generation)
+ reclaim->generation = gen;
+ else if (reclaim->generation != gen)
goto out_unlock;
- while (1) {
- pos = READ_ONCE(iter->position);
- if (!pos || css_tryget(&pos->css))
- break;
- /*
- * css reference reached zero, so iter->position will
- * be cleared by ->css_released. However, we should not
- * rely on this happening soon, because ->css_released
- * is called from a work queue, and by busy-waiting we
- * might block it. So we clear iter->position right
- * away.
- */
- (void)cmpxchg(&iter->position, pos, NULL);
- }
- } else if (prev) {
+ pos = READ_ONCE(iter->position);
+ } else
pos = prev;
- }
- if (pos)
- css = &pos->css;
-
- for (;;) {
- css = css_next_descendant_pre(css, &root->css);
- if (!css) {
- /*
- * Reclaimers share the hierarchy walk, and a
- * new one might jump in right at the end of
- * the hierarchy - make sure they see at least
- * one group and restart from the beginning.
- */
- if (!prev)
- continue;
- break;
- }
+ css = pos ? &pos->css : NULL;
+ while ((css = css_next_descendant_pre(css, &root->css))) {
/*
* Verify the css and acquire a reference. The root
* is provided by the caller, so we know it's alive
* and kicking, and don't take an extra reference.
*/
- if (css == &root->css || css_tryget(css)) {
- memcg = mem_cgroup_from_css(css);
+ if (css == &root->css || css_tryget(css))
break;
- }
}
+ next = mem_cgroup_from_css(css);
+
if (reclaim) {
/*
* The position could have already been updated by a competing
* thread, so check that the value hasn't changed since we read
* it to avoid reclaiming from the same cgroup twice.
*/
- (void)cmpxchg(&iter->position, pos, memcg);
+ if (cmpxchg(&iter->position, pos, next) != pos) {
+ if (css && css != &root->css)
+ css_put(css);
+ goto restart;
+ }
- if (pos)
- css_put(&pos->css);
+ if (!next) {
+ atomic_inc(&iter->generation);
- if (!memcg)
- iter->generation++;
+ /*
+ * Reclaimers share the hierarchy walk, and a
+ * new one might jump in right at the end of
+ * the hierarchy - make sure they see at least
+ * one group and restart from the beginning.
+ */
+ if (!prev)
+ goto restart;
+ }
}
out_unlock:
@@ -1175,7 +1084,7 @@ out_unlock:
if (prev && prev != root)
css_put(&prev->css);
- return memcg;
+ return next;
}
/**
@@ -1235,13 +1144,13 @@ static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
*
* This function iterates over tasks attached to @memcg or to any of its
* descendants and calls @fn for each task. If @fn returns a non-zero
- * value, the function breaks the iteration loop and returns the value.
- * Otherwise, it will iterate over all tasks and return 0.
+ * value, the function breaks the iteration loop. Otherwise, it will iterate
+ * over all tasks and return 0.
*
* This function must not be called for the root memory cgroup.
*/
-int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
- int (*fn)(struct task_struct *, void *), void *arg)
+void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
+ int (*fn)(struct task_struct *, void *), void *arg)
{
struct mem_cgroup *iter;
int ret = 0;
@@ -1253,15 +1162,17 @@ int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
struct task_struct *task;
css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
- while (!ret && (task = css_task_iter_next(&it)))
+ while (!ret && (task = css_task_iter_next(&it))) {
ret = fn(task, arg);
+ /* Avoid potential softlockup warning */
+ cond_resched();
+ }
css_task_iter_end(&it);
if (ret) {
mem_cgroup_iter_break(memcg, iter);
break;
}
}
- return ret;
}
#ifdef CONFIG_DEBUG_VM
@@ -1288,7 +1199,6 @@ void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
* These functions are safe to use under any of the following conditions:
* - folio locked
* - folio_test_lru false
- * - folio_memcg_lock()
* - folio frozen (refcount of 0)
*
* Return: The lruvec this folio is on with its lock held.
@@ -1310,7 +1220,6 @@ struct lruvec *folio_lruvec_lock(struct folio *folio)
* These functions are safe to use under any of the following conditions:
* - folio locked
* - folio_test_lru false
- * - folio_memcg_lock()
* - folio frozen (refcount of 0)
*
* Return: The lruvec this folio is on with its lock held and interrupts
@@ -1334,7 +1243,6 @@ struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
* These functions are safe to use under any of the following conditions:
* - folio locked
* - folio_test_lru false
- * - folio_memcg_lock()
* - folio frozen (refcount of 0)
*
* Return: The lruvec this folio is on with its lock held and interrupts
@@ -1419,51 +1327,6 @@ static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
return margin;
}
-/*
- * A routine for checking "mem" is under move_account() or not.
- *
- * Checking a cgroup is mc.from or mc.to or under hierarchy of
- * moving cgroups. This is for waiting at high-memory pressure
- * caused by "move".
- */
-static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
-{
- struct mem_cgroup *from;
- struct mem_cgroup *to;
- bool ret = false;
- /*
- * Unlike task_move routines, we access mc.to, mc.from not under
- * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
- */
- spin_lock(&mc.lock);
- from = mc.from;
- to = mc.to;
- if (!from)
- goto unlock;
-
- ret = mem_cgroup_is_descendant(from, memcg) ||
- mem_cgroup_is_descendant(to, memcg);
-unlock:
- spin_unlock(&mc.lock);
- return ret;
-}
-
-static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
-{
- if (mc.moving_task && current != mc.moving_task) {
- if (mem_cgroup_under_move(memcg)) {
- DEFINE_WAIT(wait);
- prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
- /* moving charge context might have finished. */
- if (mc.moving_task)
- schedule();
- finish_wait(&mc.waitq, &wait);
- return true;
- }
- }
- return false;
-}
-
struct memory_stat {
const char *name;
unsigned int idx;
@@ -1480,7 +1343,7 @@ static const struct memory_stat memory_stats[] = {
{ "sock", MEMCG_SOCK },
{ "vmalloc", MEMCG_VMALLOC },
{ "shmem", NR_SHMEM },
-#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
+#ifdef CONFIG_ZSWAP
{ "zswap", MEMCG_ZSWAP_B },
{ "zswapped", MEMCG_ZSWAPPED },
#endif
@@ -1502,6 +1365,9 @@ static const struct memory_stat memory_stats[] = {
{ "unevictable", NR_UNEVICTABLE },
{ "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
{ "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
+#ifdef CONFIG_HUGETLB_PAGE
+ { "hugetlb", NR_HUGETLB },
+#endif
/* The memory events */
{ "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
@@ -1511,9 +1377,17 @@ static const struct memory_stat memory_stats[] = {
{ "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
{ "workingset_restore_file", WORKINGSET_RESTORE_FILE },
{ "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
+
+ { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
+ { "pgdemote_direct", PGDEMOTE_DIRECT },
+ { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
+ { "pgdemote_proactive", PGDEMOTE_PROACTIVE },
+#ifdef CONFIG_NUMA_BALANCING
+ { "pgpromote_success", PGPROMOTE_SUCCESS },
+#endif
};
-/* Translate stat items to the correct unit for memory.stat output */
+/* The actual unit of the state item, not the same as the output unit */
static int memcg_page_state_unit(int item)
{
switch (item) {
@@ -1521,6 +1395,25 @@ static int memcg_page_state_unit(int item)
case MEMCG_ZSWAP_B:
case NR_SLAB_RECLAIMABLE_B:
case NR_SLAB_UNRECLAIMABLE_B:
+ return 1;
+ case NR_KERNEL_STACK_KB:
+ return SZ_1K;
+ default:
+ return PAGE_SIZE;
+ }
+}
+
+/* Translate stat items to the correct unit for memory.stat output */
+static int memcg_page_state_output_unit(int item)
+{
+ /*
+ * Workingset state is actually in pages, but we export it to userspace
+ * as a scalar count of events, so special case it here.
+ *
+ * Demotion and promotion activities are exported in pages, consistent
+ * with their global counterparts.
+ */
+ switch (item) {
case WORKINGSET_REFAULT_ANON:
case WORKINGSET_REFAULT_FILE:
case WORKINGSET_ACTIVATE_ANON:
@@ -1528,26 +1421,48 @@ static int memcg_page_state_unit(int item)
case WORKINGSET_RESTORE_ANON:
case WORKINGSET_RESTORE_FILE:
case WORKINGSET_NODERECLAIM:
+ case PGDEMOTE_KSWAPD:
+ case PGDEMOTE_DIRECT:
+ case PGDEMOTE_KHUGEPAGED:
+ case PGDEMOTE_PROACTIVE:
+#ifdef CONFIG_NUMA_BALANCING
+ case PGPROMOTE_SUCCESS:
+#endif
return 1;
- case NR_KERNEL_STACK_KB:
- return SZ_1K;
default:
- return PAGE_SIZE;
+ return memcg_page_state_unit(item);
}
}
-static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
- int item)
+unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
{
- return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
+ return memcg_page_state(memcg, item) *
+ memcg_page_state_output_unit(item);
}
-static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
+#ifdef CONFIG_MEMCG_V1
+unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
{
- struct seq_buf s;
- int i;
+ return memcg_page_state_local(memcg, item) *
+ memcg_page_state_output_unit(item);
+}
+#endif
- seq_buf_init(&s, buf, bufsize);
+#ifdef CONFIG_HUGETLB_PAGE
+static bool memcg_accounts_hugetlb(void)
+{
+ return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
+}
+#else /* CONFIG_HUGETLB_PAGE */
+static bool memcg_accounts_hugetlb(void)
+{
+ return false;
+}
+#endif /* CONFIG_HUGETLB_PAGE */
+
+static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
+{
+ int i;
/*
* Provide statistics on the state of the memory subsystem as
@@ -1559,46 +1474,60 @@ static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
*
* Current memory state:
*/
- mem_cgroup_flush_stats();
+ mem_cgroup_flush_stats(memcg);
for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
u64 size;
+#ifdef CONFIG_HUGETLB_PAGE
+ if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
+ !memcg_accounts_hugetlb())
+ continue;
+#endif
size = memcg_page_state_output(memcg, memory_stats[i].idx);
- seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
+ seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
size += memcg_page_state_output(memcg,
NR_SLAB_RECLAIMABLE_B);
- seq_buf_printf(&s, "slab %llu\n", size);
+ seq_buf_printf(s, "slab %llu\n", size);
}
}
/* Accumulated memory events */
- seq_buf_printf(&s, "pgscan %lu\n",
+ seq_buf_printf(s, "pgscan %lu\n",
memcg_events(memcg, PGSCAN_KSWAPD) +
memcg_events(memcg, PGSCAN_DIRECT) +
+ memcg_events(memcg, PGSCAN_PROACTIVE) +
memcg_events(memcg, PGSCAN_KHUGEPAGED));
- seq_buf_printf(&s, "pgsteal %lu\n",
+ seq_buf_printf(s, "pgsteal %lu\n",
memcg_events(memcg, PGSTEAL_KSWAPD) +
memcg_events(memcg, PGSTEAL_DIRECT) +
+ memcg_events(memcg, PGSTEAL_PROACTIVE) +
memcg_events(memcg, PGSTEAL_KHUGEPAGED));
for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
+#ifdef CONFIG_MEMCG_V1
if (memcg_vm_event_stat[i] == PGPGIN ||
memcg_vm_event_stat[i] == PGPGOUT)
continue;
-
- seq_buf_printf(&s, "%s %lu\n",
+#endif
+ seq_buf_printf(s, "%s %lu\n",
vm_event_name(memcg_vm_event_stat[i]),
memcg_events(memcg, memcg_vm_event_stat[i]));
}
+}
- /* The above should easily fit into one page */
- WARN_ON_ONCE(seq_buf_has_overflowed(&s));
+static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
+{
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ memcg_stat_format(memcg, s);
+ else
+ memcg1_stat_format(memcg, s);
+ if (seq_buf_has_overflowed(s))
+ pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
}
-#define K(x) ((x) << (PAGE_SHIFT-10))
/**
* mem_cgroup_print_oom_context: Print OOM information relevant to
* memory controller.
@@ -1632,17 +1561,26 @@ void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
/* Use static buffer, for the caller is holding oom_lock. */
- static char buf[PAGE_SIZE];
+ static char buf[SEQ_BUF_SIZE];
+ struct seq_buf s;
+ unsigned long memory_failcnt;
lockdep_assert_held(&oom_lock);
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
+ else
+ memory_failcnt = memcg->memory.failcnt;
+
pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
K((u64)page_counter_read(&memcg->memory)),
- K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
+ K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
K((u64)page_counter_read(&memcg->swap)),
- K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
+ K((u64)READ_ONCE(memcg->swap.max)),
+ atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
+#ifdef CONFIG_MEMCG_V1
else {
pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
K((u64)page_counter_read(&memcg->memsw)),
@@ -1651,12 +1589,14 @@ void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
K((u64)page_counter_read(&memcg->kmem)),
K((u64)memcg->kmem.max), memcg->kmem.failcnt);
}
+#endif
pr_info("Memory cgroup stats for ");
pr_cont_cgroup_path(memcg->css.cgroup);
pr_cont(":");
- memory_stat_format(memcg, buf, sizeof(buf));
- pr_info("%s", buf);
+ seq_buf_init(&s, buf, SEQ_BUF_SIZE);
+ memory_stat_format(memcg, &s);
+ seq_buf_do_printk(&s, KERN_INFO);
}
/*
@@ -1686,6 +1626,37 @@ unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
return page_counter_read(&memcg->memory);
}
+void __memcg_memory_event(struct mem_cgroup *memcg,
+ enum memcg_memory_event event, bool allow_spinning)
+{
+ bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
+ event == MEMCG_SWAP_FAIL;
+
+ /* For now only MEMCG_MAX can happen with !allow_spinning context. */
+ VM_WARN_ON_ONCE(!allow_spinning && event != MEMCG_MAX);
+
+ atomic_long_inc(&memcg->memory_events_local[event]);
+ if (!swap_event && allow_spinning)
+ cgroup_file_notify(&memcg->events_local_file);
+
+ do {
+ atomic_long_inc(&memcg->memory_events[event]);
+ if (allow_spinning) {
+ if (swap_event)
+ cgroup_file_notify(&memcg->swap_events_file);
+ else
+ cgroup_file_notify(&memcg->events_file);
+ }
+
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ break;
+ if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
+ break;
+ } while ((memcg = parent_mem_cgroup(memcg)) &&
+ !mem_cgroup_is_root(memcg));
+}
+EXPORT_SYMBOL_GPL(__memcg_memory_event);
+
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
int order)
{
@@ -1708,187 +1679,13 @@ static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
* A few threads which were not waiting at mutex_lock_killable() can
* fail to bail out. Therefore, check again after holding oom_lock.
*/
- ret = task_is_dying() || out_of_memory(&oc);
+ ret = out_of_memory(&oc);
unlock:
mutex_unlock(&oom_lock);
return ret;
}
-static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
- pg_data_t *pgdat,
- gfp_t gfp_mask,
- unsigned long *total_scanned)
-{
- struct mem_cgroup *victim = NULL;
- int total = 0;
- int loop = 0;
- unsigned long excess;
- unsigned long nr_scanned;
- struct mem_cgroup_reclaim_cookie reclaim = {
- .pgdat = pgdat,
- };
-
- excess = soft_limit_excess(root_memcg);
-
- while (1) {
- victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
- if (!victim) {
- loop++;
- if (loop >= 2) {
- /*
- * If we have not been able to reclaim
- * anything, it might because there are
- * no reclaimable pages under this hierarchy
- */
- if (!total)
- break;
- /*
- * We want to do more targeted reclaim.
- * excess >> 2 is not to excessive so as to
- * reclaim too much, nor too less that we keep
- * coming back to reclaim from this cgroup
- */
- if (total >= (excess >> 2) ||
- (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
- break;
- }
- continue;
- }
- total += mem_cgroup_shrink_node(victim, gfp_mask, false,
- pgdat, &nr_scanned);
- *total_scanned += nr_scanned;
- if (!soft_limit_excess(root_memcg))
- break;
- }
- mem_cgroup_iter_break(root_memcg, victim);
- return total;
-}
-
-#ifdef CONFIG_LOCKDEP
-static struct lockdep_map memcg_oom_lock_dep_map = {
- .name = "memcg_oom_lock",
-};
-#endif
-
-static DEFINE_SPINLOCK(memcg_oom_lock);
-
-/*
- * Check OOM-Killer is already running under our hierarchy.
- * If someone is running, return false.
- */
-static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
-{
- struct mem_cgroup *iter, *failed = NULL;
-
- spin_lock(&memcg_oom_lock);
-
- for_each_mem_cgroup_tree(iter, memcg) {
- if (iter->oom_lock) {
- /*
- * this subtree of our hierarchy is already locked
- * so we cannot give a lock.
- */
- failed = iter;
- mem_cgroup_iter_break(memcg, iter);
- break;
- } else
- iter->oom_lock = true;
- }
-
- if (failed) {
- /*
- * OK, we failed to lock the whole subtree so we have
- * to clean up what we set up to the failing subtree
- */
- for_each_mem_cgroup_tree(iter, memcg) {
- if (iter == failed) {
- mem_cgroup_iter_break(memcg, iter);
- break;
- }
- iter->oom_lock = false;
- }
- } else
- mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
-
- spin_unlock(&memcg_oom_lock);
-
- return !failed;
-}
-
-static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
-{
- struct mem_cgroup *iter;
-
- spin_lock(&memcg_oom_lock);
- mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
- for_each_mem_cgroup_tree(iter, memcg)
- iter->oom_lock = false;
- spin_unlock(&memcg_oom_lock);
-}
-
-static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
-{
- struct mem_cgroup *iter;
-
- spin_lock(&memcg_oom_lock);
- for_each_mem_cgroup_tree(iter, memcg)
- iter->under_oom++;
- spin_unlock(&memcg_oom_lock);
-}
-
-static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
-{
- struct mem_cgroup *iter;
-
- /*
- * Be careful about under_oom underflows because a child memcg
- * could have been added after mem_cgroup_mark_under_oom.
- */
- spin_lock(&memcg_oom_lock);
- for_each_mem_cgroup_tree(iter, memcg)
- if (iter->under_oom > 0)
- iter->under_oom--;
- spin_unlock(&memcg_oom_lock);
-}
-
-static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
-
-struct oom_wait_info {
- struct mem_cgroup *memcg;
- wait_queue_entry_t wait;
-};
-
-static int memcg_oom_wake_function(wait_queue_entry_t *wait,
- unsigned mode, int sync, void *arg)
-{
- struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
- struct mem_cgroup *oom_wait_memcg;
- struct oom_wait_info *oom_wait_info;
-
- oom_wait_info = container_of(wait, struct oom_wait_info, wait);
- oom_wait_memcg = oom_wait_info->memcg;
-
- if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
- !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
- return 0;
- return autoremove_wake_function(wait, mode, sync, arg);
-}
-
-static void memcg_oom_recover(struct mem_cgroup *memcg)
-{
- /*
- * For the following lockless ->under_oom test, the only required
- * guarantee is that it must see the state asserted by an OOM when
- * this function is called as a result of userland actions
- * triggered by the notification of the OOM. This is trivially
- * achieved by invoking mem_cgroup_mark_under_oom() before
- * triggering notification.
- */
- if (memcg && memcg->under_oom)
- __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
-}
-
/*
* Returns true if successfully killed one or more processes. Though in some
* corner cases it can return true even without killing any process.
@@ -1902,121 +1699,17 @@ static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
memcg_memory_event(memcg, MEMCG_OOM);
- /*
- * We are in the middle of the charge context here, so we
- * don't want to block when potentially sitting on a callstack
- * that holds all kinds of filesystem and mm locks.
- *
- * cgroup1 allows disabling the OOM killer and waiting for outside
- * handling until the charge can succeed; remember the context and put
- * the task to sleep at the end of the page fault when all locks are
- * released.
- *
- * On the other hand, in-kernel OOM killer allows for an async victim
- * memory reclaim (oom_reaper) and that means that we are not solely
- * relying on the oom victim to make a forward progress and we can
- * invoke the oom killer here.
- *
- * Please note that mem_cgroup_out_of_memory might fail to find a
- * victim and then we have to bail out from the charge path.
- */
- if (memcg->oom_kill_disable) {
- if (current->in_user_fault) {
- css_get(&memcg->css);
- current->memcg_in_oom = memcg;
- current->memcg_oom_gfp_mask = mask;
- current->memcg_oom_order = order;
- }
+ if (!memcg1_oom_prepare(memcg, &locked))
return false;
- }
-
- mem_cgroup_mark_under_oom(memcg);
-
- locked = mem_cgroup_oom_trylock(memcg);
- if (locked)
- mem_cgroup_oom_notify(memcg);
-
- mem_cgroup_unmark_under_oom(memcg);
ret = mem_cgroup_out_of_memory(memcg, mask, order);
- if (locked)
- mem_cgroup_oom_unlock(memcg);
+ memcg1_oom_finish(memcg, locked);
return ret;
}
/**
- * mem_cgroup_oom_synchronize - complete memcg OOM handling
- * @handle: actually kill/wait or just clean up the OOM state
- *
- * This has to be called at the end of a page fault if the memcg OOM
- * handler was enabled.
- *
- * Memcg supports userspace OOM handling where failed allocations must
- * sleep on a waitqueue until the userspace task resolves the
- * situation. Sleeping directly in the charge context with all kinds
- * of locks held is not a good idea, instead we remember an OOM state
- * in the task and mem_cgroup_oom_synchronize() has to be called at
- * the end of the page fault to complete the OOM handling.
- *
- * Returns %true if an ongoing memcg OOM situation was detected and
- * completed, %false otherwise.
- */
-bool mem_cgroup_oom_synchronize(bool handle)
-{
- struct mem_cgroup *memcg = current->memcg_in_oom;
- struct oom_wait_info owait;
- bool locked;
-
- /* OOM is global, do not handle */
- if (!memcg)
- return false;
-
- if (!handle)
- goto cleanup;
-
- owait.memcg = memcg;
- owait.wait.flags = 0;
- owait.wait.func = memcg_oom_wake_function;
- owait.wait.private = current;
- INIT_LIST_HEAD(&owait.wait.entry);
-
- prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
- mem_cgroup_mark_under_oom(memcg);
-
- locked = mem_cgroup_oom_trylock(memcg);
-
- if (locked)
- mem_cgroup_oom_notify(memcg);
-
- if (locked && !memcg->oom_kill_disable) {
- mem_cgroup_unmark_under_oom(memcg);
- finish_wait(&memcg_oom_waitq, &owait.wait);
- mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
- current->memcg_oom_order);
- } else {
- schedule();
- mem_cgroup_unmark_under_oom(memcg);
- finish_wait(&memcg_oom_waitq, &owait.wait);
- }
-
- if (locked) {
- mem_cgroup_oom_unlock(memcg);
- /*
- * There is no guarantee that an OOM-lock contender
- * sees the wakeups triggered by the OOM kill
- * uncharges. Wake any sleepers explicitly.
- */
- memcg_oom_recover(memcg);
- }
-cleanup:
- current->memcg_in_oom = NULL;
- css_put(&memcg->css);
- return true;
-}
-
-/**
* mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
* @victim: task to be killed by the OOM killer
* @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
@@ -2058,7 +1751,7 @@ struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
* highest-level memory cgroup with oom.group set.
*/
for (; memcg; memcg = parent_mem_cgroup(memcg)) {
- if (memcg->oom_group)
+ if (READ_ONCE(memcg->oom_group))
oom_group = memcg;
if (memcg == oom_domain)
@@ -2080,251 +1773,241 @@ void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
pr_cont(" are going to be killed due to memory.oom.group set\n");
}
-/**
- * folio_memcg_lock - Bind a folio to its memcg.
- * @folio: The folio.
- *
- * This function prevents unlocked LRU folios from being moved to
- * another cgroup.
- *
- * It ensures lifetime of the bound memcg. The caller is responsible
- * for the lifetime of the folio.
- */
-void folio_memcg_lock(struct folio *folio)
-{
- struct mem_cgroup *memcg;
- unsigned long flags;
-
- /*
- * The RCU lock is held throughout the transaction. The fast
- * path can get away without acquiring the memcg->move_lock
- * because page moving starts with an RCU grace period.
- */
- rcu_read_lock();
-
- if (mem_cgroup_disabled())
- return;
-again:
- memcg = folio_memcg(folio);
- if (unlikely(!memcg))
- return;
-
-#ifdef CONFIG_PROVE_LOCKING
- local_irq_save(flags);
- might_lock(&memcg->move_lock);
- local_irq_restore(flags);
-#endif
-
- if (atomic_read(&memcg->moving_account) <= 0)
- return;
-
- spin_lock_irqsave(&memcg->move_lock, flags);
- if (memcg != folio_memcg(folio)) {
- spin_unlock_irqrestore(&memcg->move_lock, flags);
- goto again;
- }
-
- /*
- * When charge migration first begins, we can have multiple
- * critical sections holding the fast-path RCU lock and one
- * holding the slowpath move_lock. Track the task who has the
- * move_lock for unlock_page_memcg().
- */
- memcg->move_lock_task = current;
- memcg->move_lock_flags = flags;
-}
-
-void lock_page_memcg(struct page *page)
-{
- folio_memcg_lock(page_folio(page));
-}
-
-static void __folio_memcg_unlock(struct mem_cgroup *memcg)
-{
- if (memcg && memcg->move_lock_task == current) {
- unsigned long flags = memcg->move_lock_flags;
-
- memcg->move_lock_task = NULL;
- memcg->move_lock_flags = 0;
-
- spin_unlock_irqrestore(&memcg->move_lock, flags);
- }
-
- rcu_read_unlock();
-}
-
-/**
- * folio_memcg_unlock - Release the binding between a folio and its memcg.
- * @folio: The folio.
- *
- * This releases the binding created by folio_memcg_lock(). This does
- * not change the accounting of this folio to its memcg, but it does
- * permit others to change it.
+/*
+ * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
+ * nr_pages in a single cacheline. This may change in future.
*/
-void folio_memcg_unlock(struct folio *folio)
-{
- __folio_memcg_unlock(folio_memcg(folio));
-}
+#define NR_MEMCG_STOCK 7
+#define FLUSHING_CACHED_CHARGE 0
+struct memcg_stock_pcp {
+ local_trylock_t lock;
+ uint8_t nr_pages[NR_MEMCG_STOCK];
+ struct mem_cgroup *cached[NR_MEMCG_STOCK];
-void unlock_page_memcg(struct page *page)
-{
- folio_memcg_unlock(page_folio(page));
-}
+ struct work_struct work;
+ unsigned long flags;
+};
-struct memcg_stock_pcp {
- local_lock_t stock_lock;
- struct mem_cgroup *cached; /* this never be root cgroup */
- unsigned int nr_pages;
+static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
+ .lock = INIT_LOCAL_TRYLOCK(lock),
+};
-#ifdef CONFIG_MEMCG_KMEM
+struct obj_stock_pcp {
+ local_trylock_t lock;
+ unsigned int nr_bytes;
struct obj_cgroup *cached_objcg;
struct pglist_data *cached_pgdat;
- unsigned int nr_bytes;
int nr_slab_reclaimable_b;
int nr_slab_unreclaimable_b;
-#endif
struct work_struct work;
unsigned long flags;
-#define FLUSHING_CACHED_CHARGE 0
};
-static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
- .stock_lock = INIT_LOCAL_LOCK(stock_lock),
+
+static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
+ .lock = INIT_LOCAL_TRYLOCK(lock),
};
+
static DEFINE_MUTEX(percpu_charge_mutex);
-#ifdef CONFIG_MEMCG_KMEM
-static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
-static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
+static void drain_obj_stock(struct obj_stock_pcp *stock);
+static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
struct mem_cgroup *root_memcg);
-static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
-
-#else
-static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
-{
- return NULL;
-}
-static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
- struct mem_cgroup *root_memcg)
-{
- return false;
-}
-static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
-{
-}
-#endif
/**
* consume_stock: Try to consume stocked charge on this cpu.
* @memcg: memcg to consume from.
* @nr_pages: how many pages to charge.
*
- * The charges will only happen if @memcg matches the current cpu's memcg
- * stock, and at least @nr_pages are available in that stock. Failure to
- * service an allocation will refill the stock.
+ * Consume the cached charge if enough nr_pages are present otherwise return
+ * failure. Also return failure for charge request larger than
+ * MEMCG_CHARGE_BATCH or if the local lock is already taken.
*
* returns true if successful, false otherwise.
*/
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
{
struct memcg_stock_pcp *stock;
- unsigned long flags;
+ uint8_t stock_pages;
bool ret = false;
+ int i;
- if (nr_pages > MEMCG_CHARGE_BATCH)
+ if (nr_pages > MEMCG_CHARGE_BATCH ||
+ !local_trylock(&memcg_stock.lock))
return ret;
- local_lock_irqsave(&memcg_stock.stock_lock, flags);
-
stock = this_cpu_ptr(&memcg_stock);
- if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
- stock->nr_pages -= nr_pages;
- ret = true;
+
+ for (i = 0; i < NR_MEMCG_STOCK; ++i) {
+ if (memcg != READ_ONCE(stock->cached[i]))
+ continue;
+
+ stock_pages = READ_ONCE(stock->nr_pages[i]);
+ if (stock_pages >= nr_pages) {
+ WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
+ ret = true;
+ }
+ break;
}
- local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
+ local_unlock(&memcg_stock.lock);
return ret;
}
+static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
+{
+ page_counter_uncharge(&memcg->memory, nr_pages);
+ if (do_memsw_account())
+ page_counter_uncharge(&memcg->memsw, nr_pages);
+}
+
/*
* Returns stocks cached in percpu and reset cached information.
*/
-static void drain_stock(struct memcg_stock_pcp *stock)
+static void drain_stock(struct memcg_stock_pcp *stock, int i)
{
- struct mem_cgroup *old = stock->cached;
+ struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
+ uint8_t stock_pages;
if (!old)
return;
- if (stock->nr_pages) {
- page_counter_uncharge(&old->memory, stock->nr_pages);
- if (do_memsw_account())
- page_counter_uncharge(&old->memsw, stock->nr_pages);
- stock->nr_pages = 0;
+ stock_pages = READ_ONCE(stock->nr_pages[i]);
+ if (stock_pages) {
+ memcg_uncharge(old, stock_pages);
+ WRITE_ONCE(stock->nr_pages[i], 0);
}
css_put(&old->css);
- stock->cached = NULL;
+ WRITE_ONCE(stock->cached[i], NULL);
+}
+
+static void drain_stock_fully(struct memcg_stock_pcp *stock)
+{
+ int i;
+
+ for (i = 0; i < NR_MEMCG_STOCK; ++i)
+ drain_stock(stock, i);
}
-static void drain_local_stock(struct work_struct *dummy)
+static void drain_local_memcg_stock(struct work_struct *dummy)
{
struct memcg_stock_pcp *stock;
- struct obj_cgroup *old = NULL;
- unsigned long flags;
- /*
- * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
- * drain_stock races is that we always operate on local CPU stock
- * here with IRQ disabled
- */
- local_lock_irqsave(&memcg_stock.stock_lock, flags);
+ if (WARN_ONCE(!in_task(), "drain in non-task context"))
+ return;
+
+ local_lock(&memcg_stock.lock);
stock = this_cpu_ptr(&memcg_stock);
- old = drain_obj_stock(stock);
- drain_stock(stock);
+ drain_stock_fully(stock);
clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
- local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
- if (old)
- obj_cgroup_put(old);
+ local_unlock(&memcg_stock.lock);
}
-/*
- * Cache charges(val) to local per_cpu area.
- * This will be consumed by consume_stock() function, later.
- */
-static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
+static void drain_local_obj_stock(struct work_struct *dummy)
+{
+ struct obj_stock_pcp *stock;
+
+ if (WARN_ONCE(!in_task(), "drain in non-task context"))
+ return;
+
+ local_lock(&obj_stock.lock);
+
+ stock = this_cpu_ptr(&obj_stock);
+ drain_obj_stock(stock);
+ clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
+
+ local_unlock(&obj_stock.lock);
+}
+
+static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
{
struct memcg_stock_pcp *stock;
+ struct mem_cgroup *cached;
+ uint8_t stock_pages;
+ bool success = false;
+ int empty_slot = -1;
+ int i;
+
+ /*
+ * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
+ * decide to increase it more than 127 then we will need more careful
+ * handling of nr_pages[] in struct memcg_stock_pcp.
+ */
+ BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
+
+ VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
+
+ if (nr_pages > MEMCG_CHARGE_BATCH ||
+ !local_trylock(&memcg_stock.lock)) {
+ /*
+ * In case of larger than batch refill or unlikely failure to
+ * lock the percpu memcg_stock.lock, uncharge memcg directly.
+ */
+ memcg_uncharge(memcg, nr_pages);
+ return;
+ }
stock = this_cpu_ptr(&memcg_stock);
- if (stock->cached != memcg) { /* reset if necessary */
- drain_stock(stock);
+ for (i = 0; i < NR_MEMCG_STOCK; ++i) {
+ cached = READ_ONCE(stock->cached[i]);
+ if (!cached && empty_slot == -1)
+ empty_slot = i;
+ if (memcg == READ_ONCE(stock->cached[i])) {
+ stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
+ WRITE_ONCE(stock->nr_pages[i], stock_pages);
+ if (stock_pages > MEMCG_CHARGE_BATCH)
+ drain_stock(stock, i);
+ success = true;
+ break;
+ }
+ }
+
+ if (!success) {
+ i = empty_slot;
+ if (i == -1) {
+ i = get_random_u32_below(NR_MEMCG_STOCK);
+ drain_stock(stock, i);
+ }
css_get(&memcg->css);
- stock->cached = memcg;
+ WRITE_ONCE(stock->cached[i], memcg);
+ WRITE_ONCE(stock->nr_pages[i], nr_pages);
}
- stock->nr_pages += nr_pages;
- if (stock->nr_pages > MEMCG_CHARGE_BATCH)
- drain_stock(stock);
+ local_unlock(&memcg_stock.lock);
}
-static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
+static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
+ struct mem_cgroup *root_memcg)
{
- unsigned long flags;
+ struct mem_cgroup *memcg;
+ bool flush = false;
+ int i;
- local_lock_irqsave(&memcg_stock.stock_lock, flags);
- __refill_stock(memcg, nr_pages);
- local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
+ rcu_read_lock();
+ for (i = 0; i < NR_MEMCG_STOCK; ++i) {
+ memcg = READ_ONCE(stock->cached[i]);
+ if (!memcg)
+ continue;
+
+ if (READ_ONCE(stock->nr_pages[i]) &&
+ mem_cgroup_is_descendant(memcg, root_memcg)) {
+ flush = true;
+ break;
+ }
+ }
+ rcu_read_unlock();
+ return flush;
}
/*
* Drains all per-CPU charge caches for given root_memcg resp. subtree
* of the hierarchy under it.
*/
-static void drain_all_stock(struct mem_cgroup *root_memcg)
+void drain_all_stock(struct mem_cgroup *root_memcg)
{
int cpu, curcpu;
@@ -2340,25 +2023,27 @@ static void drain_all_stock(struct mem_cgroup *root_memcg)
migrate_disable();
curcpu = smp_processor_id();
for_each_online_cpu(cpu) {
- struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
- struct mem_cgroup *memcg;
- bool flush = false;
+ struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
+ struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
- rcu_read_lock();
- memcg = stock->cached;
- if (memcg && stock->nr_pages &&
- mem_cgroup_is_descendant(memcg, root_memcg))
- flush = true;
- else if (obj_stock_flush_required(stock, root_memcg))
- flush = true;
- rcu_read_unlock();
+ if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
+ is_memcg_drain_needed(memcg_st, root_memcg) &&
+ !test_and_set_bit(FLUSHING_CACHED_CHARGE,
+ &memcg_st->flags)) {
+ if (cpu == curcpu)
+ drain_local_memcg_stock(&memcg_st->work);
+ else if (!cpu_is_isolated(cpu))
+ schedule_work_on(cpu, &memcg_st->work);
+ }
- if (flush &&
- !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
+ if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
+ obj_stock_flush_required(obj_st, root_memcg) &&
+ !test_and_set_bit(FLUSHING_CACHED_CHARGE,
+ &obj_st->flags)) {
if (cpu == curcpu)
- drain_local_stock(&stock->work);
- else
- schedule_work_on(cpu, &stock->work);
+ drain_local_obj_stock(&obj_st->work);
+ else if (!cpu_is_isolated(cpu))
+ schedule_work_on(cpu, &obj_st->work);
}
}
migrate_enable();
@@ -2367,10 +2052,9 @@ static void drain_all_stock(struct mem_cgroup *root_memcg)
static int memcg_hotplug_cpu_dead(unsigned int cpu)
{
- struct memcg_stock_pcp *stock;
-
- stock = &per_cpu(memcg_stock, cpu);
- drain_stock(stock);
+ /* no need for the local lock */
+ drain_obj_stock(&per_cpu(obj_stock, cpu));
+ drain_stock_fully(&per_cpu(memcg_stock, cpu));
return 0;
}
@@ -2548,10 +2232,11 @@ static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
}
/*
- * Scheduled by try_charge() to be executed from the userland return path
- * and reclaims memory over the high limit.
+ * Reclaims memory over the high limit. Called directly from
+ * try_charge() (context permitting), as well as from the userland
+ * return path where reclaim is always able to block.
*/
-void mem_cgroup_handle_over_high(void)
+void __mem_cgroup_handle_over_high(gfp_t gfp_mask)
{
unsigned long penalty_jiffies;
unsigned long pflags;
@@ -2561,14 +2246,22 @@ void mem_cgroup_handle_over_high(void)
struct mem_cgroup *memcg;
bool in_retry = false;
- if (likely(!nr_pages))
- return;
-
memcg = get_mem_cgroup_from_mm(current->mm);
current->memcg_nr_pages_over_high = 0;
retry_reclaim:
/*
+ * Bail if the task is already exiting. Unlike memory.max,
+ * memory.high enforcement isn't as strict, and there is no
+ * OOM killer involved, which means the excess could already
+ * be much bigger (and still growing) than it could for
+ * memory.max; the dying task could get stuck in fruitless
+ * reclaim for a long time, which isn't desirable.
+ */
+ if (task_is_dying())
+ goto out;
+
+ /*
* The allocating task should reclaim at least the batch size, but for
* subsequent retries we only want to do what's necessary to prevent oom
* or breaching resource isolation.
@@ -2579,7 +2272,7 @@ retry_reclaim:
*/
nr_reclaimed = reclaim_high(memcg,
in_retry ? SWAP_CLUSTER_MAX : nr_pages,
- GFP_KERNEL);
+ gfp_mask);
/*
* memory.high is breached and reclaim is unable to keep up. Throttle
@@ -2618,6 +2311,9 @@ retry_reclaim:
}
/*
+ * Reclaim didn't manage to push usage below the limit, slow
+ * this allocating task down.
+ *
* If we exit early, we're guaranteed to die (since
* schedule_timeout_killable sets TASK_KILLABLE). This means we don't
* need to account for any ill-begotten jiffies to pay them off later.
@@ -2631,7 +2327,7 @@ out:
}
static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
- unsigned int nr_pages)
+ unsigned int nr_pages)
{
unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
int nr_retries = MAX_RECLAIM_RETRIES;
@@ -2643,11 +2339,16 @@ static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
bool drained = false;
bool raised_max_event = false;
unsigned long pflags;
+ bool allow_spinning = gfpflags_allow_spinning(gfp_mask);
retry:
if (consume_stock(memcg, nr_pages))
return 0;
+ if (!allow_spinning)
+ /* Avoid the refill and flush of the older stock */
+ batch = nr_pages;
+
if (!do_memsw_account() ||
page_counter_try_charge(&memcg->memsw, batch, &counter)) {
if (page_counter_try_charge(&memcg->memory, batch, &counter))
@@ -2680,13 +2381,12 @@ retry:
if (!gfpflags_allow_blocking(gfp_mask))
goto nomem;
- memcg_memory_event(mem_over_limit, MEMCG_MAX);
+ __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
raised_max_event = true;
psi_memstall_enter(&pflags);
nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
- gfp_mask, reclaim_options,
- NULL);
+ gfp_mask, reclaim_options, NULL);
psi_memstall_leave(&pflags);
if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
@@ -2711,12 +2411,6 @@ retry:
*/
if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
goto retry;
- /*
- * At task move, charge accounts can be doubly counted. So, it's
- * better to wait until the end of task_move if something is going on.
- */
- if (mem_cgroup_wait_acct_move(mem_over_limit))
- goto retry;
if (nr_retries--)
goto retry;
@@ -2754,7 +2448,7 @@ force:
* a MEMCG_MAX event.
*/
if (!raised_max_event)
- memcg_memory_event(mem_over_limit, MEMCG_MAX);
+ __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
/*
* The allocation either can't fail or will lead to more memory
@@ -2813,11 +2507,17 @@ done_restock:
}
} while ((memcg = parent_mem_cgroup(memcg)));
+ /*
+ * Reclaim is set up above to be called from the userland
+ * return path. But also attempt synchronous reclaim to avoid
+ * excessive overrun while the task is still inside the
+ * kernel. If this is successful, the return path will see it
+ * when it rechecks the overage and simply bail out.
+ */
if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
!(current->flags & PF_MEMALLOC) &&
- gfpflags_allow_blocking(gfp_mask)) {
- mem_cgroup_handle_over_high();
- }
+ gfpflags_allow_blocking(gfp_mask))
+ __mem_cgroup_handle_over_high(gfp_mask);
return 0;
}
@@ -2830,160 +2530,89 @@ static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
return try_charge_memcg(memcg, gfp_mask, nr_pages);
}
-static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
-{
- if (mem_cgroup_is_root(memcg))
- return;
-
- page_counter_uncharge(&memcg->memory, nr_pages);
- if (do_memsw_account())
- page_counter_uncharge(&memcg->memsw, nr_pages);
-}
-
static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
{
- VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
+ VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
/*
* Any of the following ensures page's memcg stability:
*
* - the page lock
* - LRU isolation
- * - lock_page_memcg()
* - exclusive reference
- * - mem_cgroup_trylock_pages()
*/
folio->memcg_data = (unsigned long)memcg;
}
-#ifdef CONFIG_MEMCG_KMEM
-/*
- * The allocated objcg pointers array is not accounted directly.
- * Moreover, it should not come from DMA buffer and is not readily
- * reclaimable. So those GFP bits should be masked off.
- */
-#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
+#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
+static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
+ struct pglist_data *pgdat,
+ enum node_stat_item idx, int nr)
+{
+ struct lruvec *lruvec;
-/*
- * mod_objcg_mlstate() may be called with irq enabled, so
- * mod_memcg_lruvec_state() should be used.
- */
-static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
- struct pglist_data *pgdat,
- enum node_stat_item idx, int nr)
+ if (likely(!in_nmi())) {
+ lruvec = mem_cgroup_lruvec(memcg, pgdat);
+ mod_memcg_lruvec_state(lruvec, idx, nr);
+ } else {
+ struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
+
+ /* preemption is disabled in_nmi(). */
+ css_rstat_updated(&memcg->css, smp_processor_id());
+ if (idx == NR_SLAB_RECLAIMABLE_B)
+ atomic_add(nr, &pn->slab_reclaimable);
+ else
+ atomic_add(nr, &pn->slab_unreclaimable);
+ }
+}
+#else
+static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
+ struct pglist_data *pgdat,
+ enum node_stat_item idx, int nr)
{
- struct mem_cgroup *memcg;
struct lruvec *lruvec;
- rcu_read_lock();
- memcg = obj_cgroup_memcg(objcg);
lruvec = mem_cgroup_lruvec(memcg, pgdat);
mod_memcg_lruvec_state(lruvec, idx, nr);
- rcu_read_unlock();
}
+#endif
-int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
- gfp_t gfp, bool new_slab)
+static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
+ struct pglist_data *pgdat,
+ enum node_stat_item idx, int nr)
{
- unsigned int objects = objs_per_slab(s, slab);
- unsigned long memcg_data;
- void *vec;
-
- gfp &= ~OBJCGS_CLEAR_MASK;
- vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
- slab_nid(slab));
- if (!vec)
- return -ENOMEM;
-
- memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
- if (new_slab) {
- /*
- * If the slab is brand new and nobody can yet access its
- * memcg_data, no synchronization is required and memcg_data can
- * be simply assigned.
- */
- slab->memcg_data = memcg_data;
- } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
- /*
- * If the slab is already in use, somebody can allocate and
- * assign obj_cgroups in parallel. In this case the existing
- * objcg vector should be reused.
- */
- kfree(vec);
- return 0;
- }
+ struct mem_cgroup *memcg;
- kmemleak_not_leak(vec);
- return 0;
+ rcu_read_lock();
+ memcg = obj_cgroup_memcg(objcg);
+ account_slab_nmi_safe(memcg, pgdat, idx, nr);
+ rcu_read_unlock();
}
static __always_inline
-struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
+struct mem_cgroup *mem_cgroup_from_obj_slab(struct slab *slab, void *p)
{
/*
* Slab objects are accounted individually, not per-page.
* Memcg membership data for each individual object is saved in
- * slab->memcg_data.
+ * slab->obj_exts.
*/
- if (folio_test_slab(folio)) {
- struct obj_cgroup **objcgs;
- struct slab *slab;
- unsigned int off;
-
- slab = folio_slab(folio);
- objcgs = slab_objcgs(slab);
- if (!objcgs)
- return NULL;
-
- off = obj_to_index(slab->slab_cache, slab, p);
- if (objcgs[off])
- return obj_cgroup_memcg(objcgs[off]);
+ struct slabobj_ext *obj_exts;
+ unsigned int off;
+ obj_exts = slab_obj_exts(slab);
+ if (!obj_exts)
return NULL;
- }
- /*
- * page_memcg_check() is used here, because in theory we can encounter
- * a folio where the slab flag has been cleared already, but
- * slab->memcg_data has not been freed yet
- * page_memcg_check(page) will guarantee that a proper memory
- * cgroup pointer or NULL will be returned.
- */
- return page_memcg_check(folio_page(folio, 0));
-}
+ off = obj_to_index(slab->slab_cache, slab, p);
+ if (obj_exts[off].objcg)
+ return obj_cgroup_memcg(obj_exts[off].objcg);
-/*
- * Returns a pointer to the memory cgroup to which the kernel object is charged.
- *
- * A passed kernel object can be a slab object, vmalloc object or a generic
- * kernel page, so different mechanisms for getting the memory cgroup pointer
- * should be used.
- *
- * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
- * can not know for sure how the kernel object is implemented.
- * mem_cgroup_from_obj() can be safely used in such cases.
- *
- * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
- * cgroup_mutex, etc.
- */
-struct mem_cgroup *mem_cgroup_from_obj(void *p)
-{
- struct folio *folio;
-
- if (mem_cgroup_disabled())
- return NULL;
-
- if (unlikely(is_vmalloc_addr(p)))
- folio = page_folio(vmalloc_to_page(p));
- else
- folio = virt_to_folio(p);
-
- return mem_cgroup_from_obj_folio(folio, p);
+ return NULL;
}
/*
* Returns a pointer to the memory cgroup to which the kernel object is charged.
- * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
- * allocated using vmalloc().
+ * It is not suitable for objects allocated using vmalloc().
*
* A passed kernel object must be a slab object or a generic kernel page.
*
@@ -2992,10 +2621,15 @@ struct mem_cgroup *mem_cgroup_from_obj(void *p)
*/
struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
{
+ struct slab *slab;
+
if (mem_cgroup_disabled())
return NULL;
- return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
+ slab = virt_to_slab(p);
+ if (slab)
+ return mem_cgroup_from_obj_slab(slab, p);
+ return folio_memcg_check(virt_to_folio(p));
}
static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
@@ -3004,46 +2638,125 @@ static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
objcg = rcu_dereference(memcg->objcg);
- if (objcg && obj_cgroup_tryget(objcg))
+ if (likely(objcg && obj_cgroup_tryget(objcg)))
break;
objcg = NULL;
}
return objcg;
}
-__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
+static struct obj_cgroup *current_objcg_update(void)
{
- struct obj_cgroup *objcg = NULL;
struct mem_cgroup *memcg;
+ struct obj_cgroup *old, *objcg = NULL;
- if (memcg_kmem_bypass())
- return NULL;
+ do {
+ /* Atomically drop the update bit. */
+ old = xchg(&current->objcg, NULL);
+ if (old) {
+ old = (struct obj_cgroup *)
+ ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
+ obj_cgroup_put(old);
+
+ old = NULL;
+ }
- rcu_read_lock();
- if (unlikely(active_memcg()))
- memcg = active_memcg();
- else
+ /* If new objcg is NULL, no reason for the second atomic update. */
+ if (!current->mm || (current->flags & PF_KTHREAD))
+ return NULL;
+
+ /*
+ * Release the objcg pointer from the previous iteration,
+ * if try_cmpxcg() below fails.
+ */
+ if (unlikely(objcg)) {
+ obj_cgroup_put(objcg);
+ objcg = NULL;
+ }
+
+ /*
+ * Obtain the new objcg pointer. The current task can be
+ * asynchronously moved to another memcg and the previous
+ * memcg can be offlined. So let's get the memcg pointer
+ * and try get a reference to objcg under a rcu read lock.
+ */
+
+ rcu_read_lock();
memcg = mem_cgroup_from_task(current);
- objcg = __get_obj_cgroup_from_memcg(memcg);
- rcu_read_unlock();
+ objcg = __get_obj_cgroup_from_memcg(memcg);
+ rcu_read_unlock();
+
+ /*
+ * Try set up a new objcg pointer atomically. If it
+ * fails, it means the update flag was set concurrently, so
+ * the whole procedure should be repeated.
+ */
+ } while (!try_cmpxchg(&current->objcg, &old, objcg));
+
return objcg;
}
-struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
+__always_inline struct obj_cgroup *current_obj_cgroup(void)
{
+ struct mem_cgroup *memcg;
struct obj_cgroup *objcg;
- if (!memcg_kmem_enabled())
+ if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
return NULL;
- if (PageMemcgKmem(page)) {
- objcg = __folio_objcg(page_folio(page));
+ if (in_task()) {
+ memcg = current->active_memcg;
+ if (unlikely(memcg))
+ goto from_memcg;
+
+ objcg = READ_ONCE(current->objcg);
+ if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
+ objcg = current_objcg_update();
+ /*
+ * Objcg reference is kept by the task, so it's safe
+ * to use the objcg by the current task.
+ */
+ return objcg;
+ }
+
+ memcg = this_cpu_read(int_active_memcg);
+ if (unlikely(memcg))
+ goto from_memcg;
+
+ return NULL;
+
+from_memcg:
+ objcg = NULL;
+ for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
+ /*
+ * Memcg pointer is protected by scope (see set_active_memcg())
+ * and is pinning the corresponding objcg, so objcg can't go
+ * away and can be used within the scope without any additional
+ * protection.
+ */
+ objcg = rcu_dereference_check(memcg->objcg, 1);
+ if (likely(objcg))
+ break;
+ }
+
+ return objcg;
+}
+
+struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
+{
+ struct obj_cgroup *objcg;
+
+ if (!memcg_kmem_online())
+ return NULL;
+
+ if (folio_memcg_kmem(folio)) {
+ objcg = __folio_objcg(folio);
obj_cgroup_get(objcg);
} else {
struct mem_cgroup *memcg;
rcu_read_lock();
- memcg = __folio_memcg(page_folio(page));
+ memcg = __folio_memcg(folio);
if (memcg)
objcg = __get_obj_cgroup_from_memcg(memcg);
else
@@ -3053,17 +2766,23 @@ struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
return objcg;
}
-static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
+#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
+static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
{
- mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
- if (nr_pages > 0)
- page_counter_charge(&memcg->kmem, nr_pages);
- else
- page_counter_uncharge(&memcg->kmem, -nr_pages);
+ if (likely(!in_nmi())) {
+ mod_memcg_state(memcg, MEMCG_KMEM, val);
+ } else {
+ /* preemption is disabled in_nmi(). */
+ css_rstat_updated(&memcg->css, smp_processor_id());
+ atomic_add(val, &memcg->kmem_stat);
}
}
-
+#else
+static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
+{
+ mod_memcg_state(memcg, MEMCG_KMEM, val);
+}
+#endif
/*
* obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
@@ -3077,8 +2796,10 @@ static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
memcg = get_mem_cgroup_from_objcg(objcg);
- memcg_account_kmem(memcg, -nr_pages);
- refill_stock(memcg, nr_pages);
+ account_kmem_nmi_safe(memcg, -nr_pages);
+ memcg1_account_kmem(memcg, -nr_pages);
+ if (!mem_cgroup_is_root(memcg))
+ refill_stock(memcg, nr_pages);
css_put(&memcg->css);
}
@@ -3103,13 +2824,31 @@ static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
if (ret)
goto out;
- memcg_account_kmem(memcg, nr_pages);
+ account_kmem_nmi_safe(memcg, nr_pages);
+ memcg1_account_kmem(memcg, nr_pages);
out:
css_put(&memcg->css);
return ret;
}
+static struct obj_cgroup *page_objcg(const struct page *page)
+{
+ unsigned long memcg_data = page->memcg_data;
+
+ if (mem_cgroup_disabled() || !memcg_data)
+ return NULL;
+
+ VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
+ page);
+ return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
+}
+
+static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
+{
+ page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
+}
+
/**
* __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
* @page: page to charge
@@ -3123,15 +2862,14 @@ int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
struct obj_cgroup *objcg;
int ret = 0;
- objcg = get_obj_cgroup_from_current();
+ objcg = current_obj_cgroup();
if (objcg) {
ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
if (!ret) {
- page->memcg_data = (unsigned long)objcg |
- MEMCG_DATA_KMEM;
+ obj_cgroup_get(objcg);
+ page_set_objcg(page, objcg);
return 0;
}
- obj_cgroup_put(objcg);
}
return ret;
}
@@ -3143,43 +2881,28 @@ int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
*/
void __memcg_kmem_uncharge_page(struct page *page, int order)
{
- struct folio *folio = page_folio(page);
- struct obj_cgroup *objcg;
+ struct obj_cgroup *objcg = page_objcg(page);
unsigned int nr_pages = 1 << order;
- if (!folio_memcg_kmem(folio))
+ if (!objcg)
return;
- objcg = __folio_objcg(folio);
obj_cgroup_uncharge_pages(objcg, nr_pages);
- folio->memcg_data = 0;
+ page->memcg_data = 0;
obj_cgroup_put(objcg);
}
-void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
- enum node_stat_item idx, int nr)
+static void __account_obj_stock(struct obj_cgroup *objcg,
+ struct obj_stock_pcp *stock, int nr,
+ struct pglist_data *pgdat, enum node_stat_item idx)
{
- struct memcg_stock_pcp *stock;
- struct obj_cgroup *old = NULL;
- unsigned long flags;
int *bytes;
- local_lock_irqsave(&memcg_stock.stock_lock, flags);
- stock = this_cpu_ptr(&memcg_stock);
-
/*
* Save vmstat data in stock and skip vmstat array update unless
- * accumulating over a page of vmstat data or when pgdat or idx
- * changes.
+ * accumulating over a page of vmstat data or when pgdat changes.
*/
- if (stock->cached_objcg != objcg) {
- old = drain_obj_stock(stock);
- obj_cgroup_get(objcg);
- stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
- ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
- stock->cached_objcg = objcg;
- stock->cached_pgdat = pgdat;
- } else if (stock->cached_pgdat != pgdat) {
+ if (stock->cached_pgdat != pgdat) {
/* Flush the existing cached vmstat data */
struct pglist_data *oldpg = stock->cached_pgdat;
@@ -3216,37 +2939,37 @@ void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
}
if (nr)
mod_objcg_mlstate(objcg, pgdat, idx, nr);
-
- local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
- if (old)
- obj_cgroup_put(old);
}
-static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
+static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
+ struct pglist_data *pgdat, enum node_stat_item idx)
{
- struct memcg_stock_pcp *stock;
- unsigned long flags;
+ struct obj_stock_pcp *stock;
bool ret = false;
- local_lock_irqsave(&memcg_stock.stock_lock, flags);
+ if (!local_trylock(&obj_stock.lock))
+ return ret;
- stock = this_cpu_ptr(&memcg_stock);
- if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
+ stock = this_cpu_ptr(&obj_stock);
+ if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
stock->nr_bytes -= nr_bytes;
ret = true;
+
+ if (pgdat)
+ __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
}
- local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
+ local_unlock(&obj_stock.lock);
return ret;
}
-static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
+static void drain_obj_stock(struct obj_stock_pcp *stock)
{
- struct obj_cgroup *old = stock->cached_objcg;
+ struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
if (!old)
- return NULL;
+ return;
if (stock->nr_bytes) {
unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
@@ -3257,8 +2980,10 @@ static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
memcg = get_mem_cgroup_from_objcg(old);
- memcg_account_kmem(memcg, -nr_pages);
- __refill_stock(memcg, nr_pages);
+ mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
+ memcg1_account_kmem(memcg, -nr_pages);
+ if (!mem_cgroup_is_root(memcg))
+ memcg_uncharge(memcg, nr_pages);
css_put(&memcg->css);
}
@@ -3296,68 +3021,77 @@ static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
stock->cached_pgdat = NULL;
}
- stock->cached_objcg = NULL;
- /*
- * The `old' objects needs to be released by the caller via
- * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
- */
- return old;
+ WRITE_ONCE(stock->cached_objcg, NULL);
+ obj_cgroup_put(old);
}
-static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
+static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
struct mem_cgroup *root_memcg)
{
+ struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
struct mem_cgroup *memcg;
+ bool flush = false;
- if (stock->cached_objcg) {
- memcg = obj_cgroup_memcg(stock->cached_objcg);
+ rcu_read_lock();
+ if (objcg) {
+ memcg = obj_cgroup_memcg(objcg);
if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
- return true;
+ flush = true;
}
+ rcu_read_unlock();
- return false;
+ return flush;
}
static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
- bool allow_uncharge)
+ bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
+ enum node_stat_item idx)
{
- struct memcg_stock_pcp *stock;
- struct obj_cgroup *old = NULL;
- unsigned long flags;
+ struct obj_stock_pcp *stock;
unsigned int nr_pages = 0;
- local_lock_irqsave(&memcg_stock.stock_lock, flags);
+ if (!local_trylock(&obj_stock.lock)) {
+ if (pgdat)
+ mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
+ nr_pages = nr_bytes >> PAGE_SHIFT;
+ nr_bytes = nr_bytes & (PAGE_SIZE - 1);
+ atomic_add(nr_bytes, &objcg->nr_charged_bytes);
+ goto out;
+ }
- stock = this_cpu_ptr(&memcg_stock);
- if (stock->cached_objcg != objcg) { /* reset if necessary */
- old = drain_obj_stock(stock);
+ stock = this_cpu_ptr(&obj_stock);
+ if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
+ drain_obj_stock(stock);
obj_cgroup_get(objcg);
- stock->cached_objcg = objcg;
stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
+ WRITE_ONCE(stock->cached_objcg, objcg);
+
allow_uncharge = true; /* Allow uncharge when objcg changes */
}
stock->nr_bytes += nr_bytes;
+ if (pgdat)
+ __account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
+
if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
nr_pages = stock->nr_bytes >> PAGE_SHIFT;
stock->nr_bytes &= (PAGE_SIZE - 1);
}
- local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
- if (old)
- obj_cgroup_put(old);
-
+ local_unlock(&obj_stock.lock);
+out:
if (nr_pages)
obj_cgroup_uncharge_pages(objcg, nr_pages);
}
-int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
+static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
+ struct pglist_data *pgdat, enum node_stat_item idx)
{
unsigned int nr_pages, nr_bytes;
int ret;
- if (consume_obj_stock(objcg, size))
+ if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
return 0;
/*
@@ -3390,282 +3124,167 @@ int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
nr_pages += 1;
ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
- if (!ret && nr_bytes)
- refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
+ if (!ret && (nr_bytes || pgdat))
+ refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
+ false, size, pgdat, idx);
return ret;
}
-void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
+int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
- refill_obj_stock(objcg, size, true);
+ return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
}
-#endif /* CONFIG_MEMCG_KMEM */
-
-/*
- * Because page_memcg(head) is not set on tails, set it now.
- */
-void split_page_memcg(struct page *head, unsigned int nr)
+void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
- struct folio *folio = page_folio(head);
- struct mem_cgroup *memcg = folio_memcg(folio);
- int i;
-
- if (mem_cgroup_disabled() || !memcg)
- return;
-
- for (i = 1; i < nr; i++)
- folio_page(folio, i)->memcg_data = folio->memcg_data;
+ refill_obj_stock(objcg, size, true, 0, NULL, 0);
+}
- if (folio_memcg_kmem(folio))
- obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
- else
- css_get_many(&memcg->css, nr - 1);
+static inline size_t obj_full_size(struct kmem_cache *s)
+{
+ /*
+ * For each accounted object there is an extra space which is used
+ * to store obj_cgroup membership. Charge it too.
+ */
+ return s->size + sizeof(struct obj_cgroup *);
}
-#ifdef CONFIG_SWAP
-/**
- * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
- * @entry: swap entry to be moved
- * @from: mem_cgroup which the entry is moved from
- * @to: mem_cgroup which the entry is moved to
- *
- * It succeeds only when the swap_cgroup's record for this entry is the same
- * as the mem_cgroup's id of @from.
- *
- * Returns 0 on success, -EINVAL on failure.
- *
- * The caller must have charged to @to, IOW, called page_counter_charge() about
- * both res and memsw, and called css_get().
- */
-static int mem_cgroup_move_swap_account(swp_entry_t entry,
- struct mem_cgroup *from, struct mem_cgroup *to)
+bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
+ gfp_t flags, size_t size, void **p)
{
- unsigned short old_id, new_id;
+ struct obj_cgroup *objcg;
+ struct slab *slab;
+ unsigned long off;
+ size_t i;
- old_id = mem_cgroup_id(from);
- new_id = mem_cgroup_id(to);
+ /*
+ * The obtained objcg pointer is safe to use within the current scope,
+ * defined by current task or set_active_memcg() pair.
+ * obj_cgroup_get() is used to get a permanent reference.
+ */
+ objcg = current_obj_cgroup();
+ if (!objcg)
+ return true;
- if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
- mod_memcg_state(from, MEMCG_SWAP, -1);
- mod_memcg_state(to, MEMCG_SWAP, 1);
- return 0;
- }
- return -EINVAL;
-}
-#else
-static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
- struct mem_cgroup *from, struct mem_cgroup *to)
-{
- return -EINVAL;
-}
-#endif
+ /*
+ * slab_alloc_node() avoids the NULL check, so we might be called with a
+ * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
+ * the whole requested size.
+ * return success as there's nothing to free back
+ */
+ if (unlikely(*p == NULL))
+ return true;
-static DEFINE_MUTEX(memcg_max_mutex);
+ flags &= gfp_allowed_mask;
-static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
- unsigned long max, bool memsw)
-{
- bool enlarge = false;
- bool drained = false;
- int ret;
- bool limits_invariant;
- struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
+ if (lru) {
+ int ret;
+ struct mem_cgroup *memcg;
- do {
- if (signal_pending(current)) {
- ret = -EINTR;
- break;
- }
+ memcg = get_mem_cgroup_from_objcg(objcg);
+ ret = memcg_list_lru_alloc(memcg, lru, flags);
+ css_put(&memcg->css);
- mutex_lock(&memcg_max_mutex);
- /*
- * Make sure that the new limit (memsw or memory limit) doesn't
- * break our basic invariant rule memory.max <= memsw.max.
- */
- limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
- max <= memcg->memsw.max;
- if (!limits_invariant) {
- mutex_unlock(&memcg_max_mutex);
- ret = -EINVAL;
- break;
- }
- if (max > counter->max)
- enlarge = true;
- ret = page_counter_set_max(counter, max);
- mutex_unlock(&memcg_max_mutex);
+ if (ret)
+ return false;
+ }
- if (!ret)
- break;
+ for (i = 0; i < size; i++) {
+ slab = virt_to_slab(p[i]);
- if (!drained) {
- drain_all_stock(memcg);
- drained = true;
+ if (!slab_obj_exts(slab) &&
+ alloc_slab_obj_exts(slab, s, flags, false)) {
continue;
}
- if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
- memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP,
- NULL)) {
- ret = -EBUSY;
- break;
- }
- } while (true);
+ /*
+ * if we fail and size is 1, memcg_alloc_abort_single() will
+ * just free the object, which is ok as we have not assigned
+ * objcg to its obj_ext yet
+ *
+ * for larger sizes, kmem_cache_free_bulk() will uncharge
+ * any objects that were already charged and obj_ext assigned
+ *
+ * TODO: we could batch this until slab_pgdat(slab) changes
+ * between iterations, with a more complicated undo
+ */
+ if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
+ slab_pgdat(slab), cache_vmstat_idx(s)))
+ return false;
- if (!ret && enlarge)
- memcg_oom_recover(memcg);
+ off = obj_to_index(s, slab, p[i]);
+ obj_cgroup_get(objcg);
+ slab_obj_exts(slab)[off].objcg = objcg;
+ }
- return ret;
+ return true;
}
-unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
- gfp_t gfp_mask,
- unsigned long *total_scanned)
+void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
+ void **p, int objects, struct slabobj_ext *obj_exts)
{
- unsigned long nr_reclaimed = 0;
- struct mem_cgroup_per_node *mz, *next_mz = NULL;
- unsigned long reclaimed;
- int loop = 0;
- struct mem_cgroup_tree_per_node *mctz;
- unsigned long excess;
-
- if (order > 0)
- return 0;
-
- mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
-
- /*
- * Do not even bother to check the largest node if the root
- * is empty. Do it lockless to prevent lock bouncing. Races
- * are acceptable as soft limit is best effort anyway.
- */
- if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
- return 0;
-
- /*
- * This loop can run a while, specially if mem_cgroup's continuously
- * keep exceeding their soft limit and putting the system under
- * pressure
- */
- do {
- if (next_mz)
- mz = next_mz;
- else
- mz = mem_cgroup_largest_soft_limit_node(mctz);
- if (!mz)
- break;
+ size_t obj_size = obj_full_size(s);
- reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
- gfp_mask, total_scanned);
- nr_reclaimed += reclaimed;
- spin_lock_irq(&mctz->lock);
+ for (int i = 0; i < objects; i++) {
+ struct obj_cgroup *objcg;
+ unsigned int off;
- /*
- * If we failed to reclaim anything from this memory cgroup
- * it is time to move on to the next cgroup
- */
- next_mz = NULL;
- if (!reclaimed)
- next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
+ off = obj_to_index(s, slab, p[i]);
+ objcg = obj_exts[off].objcg;
+ if (!objcg)
+ continue;
- excess = soft_limit_excess(mz->memcg);
- /*
- * One school of thought says that we should not add
- * back the node to the tree if reclaim returns 0.
- * But our reclaim could return 0, simply because due
- * to priority we are exposing a smaller subset of
- * memory to reclaim from. Consider this as a longer
- * term TODO.
- */
- /* If excess == 0, no tree ops */
- __mem_cgroup_insert_exceeded(mz, mctz, excess);
- spin_unlock_irq(&mctz->lock);
- css_put(&mz->memcg->css);
- loop++;
- /*
- * Could not reclaim anything and there are no more
- * mem cgroups to try or we seem to be looping without
- * reclaiming anything.
- */
- if (!nr_reclaimed &&
- (next_mz == NULL ||
- loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
- break;
- } while (!nr_reclaimed);
- if (next_mz)
- css_put(&next_mz->memcg->css);
- return nr_reclaimed;
+ obj_exts[off].objcg = NULL;
+ refill_obj_stock(objcg, obj_size, true, -obj_size,
+ slab_pgdat(slab), cache_vmstat_idx(s));
+ obj_cgroup_put(objcg);
+ }
}
/*
- * Reclaims as many pages from the given memcg as possible.
- *
- * Caller is responsible for holding css reference for memcg.
+ * The objcg is only set on the first page, so transfer it to all the
+ * other pages.
*/
-static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
+void split_page_memcg(struct page *page, unsigned order)
{
- int nr_retries = MAX_RECLAIM_RETRIES;
-
- /* we call try-to-free pages for make this cgroup empty */
- lru_add_drain_all();
-
- drain_all_stock(memcg);
+ struct obj_cgroup *objcg = page_objcg(page);
+ unsigned int i, nr = 1 << order;
- /* try to free all pages in this cgroup */
- while (nr_retries && page_counter_read(&memcg->memory)) {
- if (signal_pending(current))
- return -EINTR;
-
- if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
- MEMCG_RECLAIM_MAY_SWAP,
- NULL))
- nr_retries--;
- }
-
- return 0;
-}
-
-static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
- char *buf, size_t nbytes,
- loff_t off)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ if (!objcg)
+ return;
- if (mem_cgroup_is_root(memcg))
- return -EINVAL;
- return mem_cgroup_force_empty(memcg) ?: nbytes;
-}
+ for (i = 1; i < nr; i++)
+ page_set_objcg(&page[i], objcg);
-static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
- struct cftype *cft)
-{
- return 1;
+ obj_cgroup_get_many(objcg, nr - 1);
}
-static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
- struct cftype *cft, u64 val)
+void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
+ unsigned new_order)
{
- if (val == 1)
- return 0;
+ unsigned new_refs;
- pr_warn_once("Non-hierarchical mode is deprecated. "
- "Please report your usecase to linux-mm@kvack.org if you "
- "depend on this functionality.\n");
+ if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
+ return;
- return -EINVAL;
+ new_refs = (1 << (old_order - new_order)) - 1;
+ css_get_many(&__folio_memcg(folio)->css, new_refs);
}
-static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
+unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
unsigned long val;
if (mem_cgroup_is_root(memcg)) {
- mem_cgroup_flush_stats();
- val = memcg_page_state(memcg, NR_FILE_PAGES) +
- memcg_page_state(memcg, NR_ANON_MAPPED);
+ /*
+ * Approximate root's usage from global state. This isn't
+ * perfect, but the root usage was always an approximation.
+ */
+ val = global_node_page_state(NR_FILE_PAGES) +
+ global_node_page_state(NR_ANON_MAPPED);
if (swap)
- val += memcg_page_state(memcg, MEMCG_SWAP);
+ val += total_swap_pages - get_nr_swap_pages();
} else {
if (!swap)
val = page_counter_read(&memcg->memory);
@@ -3675,58 +3294,6 @@ static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
return val;
}
-enum {
- RES_USAGE,
- RES_LIMIT,
- RES_MAX_USAGE,
- RES_FAILCNT,
- RES_SOFT_LIMIT,
-};
-
-static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
- struct cftype *cft)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- struct page_counter *counter;
-
- switch (MEMFILE_TYPE(cft->private)) {
- case _MEM:
- counter = &memcg->memory;
- break;
- case _MEMSWAP:
- counter = &memcg->memsw;
- break;
- case _KMEM:
- counter = &memcg->kmem;
- break;
- case _TCP:
- counter = &memcg->tcpmem;
- break;
- default:
- BUG();
- }
-
- switch (MEMFILE_ATTR(cft->private)) {
- case RES_USAGE:
- if (counter == &memcg->memory)
- return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
- if (counter == &memcg->memsw)
- return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
- return (u64)page_counter_read(counter) * PAGE_SIZE;
- case RES_LIMIT:
- return (u64)counter->max * PAGE_SIZE;
- case RES_MAX_USAGE:
- return (u64)counter->watermark * PAGE_SIZE;
- case RES_FAILCNT:
- return counter->failcnt;
- case RES_SOFT_LIMIT:
- return (u64)memcg->soft_limit * PAGE_SIZE;
- default:
- BUG();
- }
-}
-
-#ifdef CONFIG_MEMCG_KMEM
static int memcg_online_kmem(struct mem_cgroup *memcg)
{
struct obj_cgroup *objcg;
@@ -3743,8 +3310,10 @@ static int memcg_online_kmem(struct mem_cgroup *memcg)
objcg->memcg = memcg;
rcu_assign_pointer(memcg->objcg, objcg);
+ obj_cgroup_get(objcg);
+ memcg->orig_objcg = objcg;
- static_branch_enable(&memcg_kmem_enabled_key);
+ static_branch_enable(&memcg_kmem_online_key);
memcg->kmemcg_id = memcg->id.id;
@@ -3765,765 +3334,13 @@ static void memcg_offline_kmem(struct mem_cgroup *memcg)
if (!parent)
parent = root_mem_cgroup;
- memcg_reparent_objcgs(memcg, parent);
-
- /*
- * After we have finished memcg_reparent_objcgs(), all list_lrus
- * corresponding to this cgroup are guaranteed to remain empty.
- * The ordering is imposed by list_lru_node->lock taken by
- * memcg_reparent_list_lrus().
- */
memcg_reparent_list_lrus(memcg, parent);
-}
-#else
-static int memcg_online_kmem(struct mem_cgroup *memcg)
-{
- return 0;
-}
-static void memcg_offline_kmem(struct mem_cgroup *memcg)
-{
-}
-#endif /* CONFIG_MEMCG_KMEM */
-
-static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
-{
- int ret;
-
- mutex_lock(&memcg_max_mutex);
-
- ret = page_counter_set_max(&memcg->tcpmem, max);
- if (ret)
- goto out;
-
- if (!memcg->tcpmem_active) {
- /*
- * The active flag needs to be written after the static_key
- * update. This is what guarantees that the socket activation
- * function is the last one to run. See mem_cgroup_sk_alloc()
- * for details, and note that we don't mark any socket as
- * belonging to this memcg until that flag is up.
- *
- * We need to do this, because static_keys will span multiple
- * sites, but we can't control their order. If we mark a socket
- * as accounted, but the accounting functions are not patched in
- * yet, we'll lose accounting.
- *
- * We never race with the readers in mem_cgroup_sk_alloc(),
- * because when this value change, the code to process it is not
- * patched in yet.
- */
- static_branch_inc(&memcg_sockets_enabled_key);
- memcg->tcpmem_active = true;
- }
-out:
- mutex_unlock(&memcg_max_mutex);
- return ret;
-}
-
-/*
- * The user of this function is...
- * RES_LIMIT.
- */
-static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
- char *buf, size_t nbytes, loff_t off)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- unsigned long nr_pages;
- int ret;
-
- buf = strstrip(buf);
- ret = page_counter_memparse(buf, "-1", &nr_pages);
- if (ret)
- return ret;
-
- switch (MEMFILE_ATTR(of_cft(of)->private)) {
- case RES_LIMIT:
- if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
- ret = -EINVAL;
- break;
- }
- switch (MEMFILE_TYPE(of_cft(of)->private)) {
- case _MEM:
- ret = mem_cgroup_resize_max(memcg, nr_pages, false);
- break;
- case _MEMSWAP:
- ret = mem_cgroup_resize_max(memcg, nr_pages, true);
- break;
- case _KMEM:
- /* kmem.limit_in_bytes is deprecated. */
- ret = -EOPNOTSUPP;
- break;
- case _TCP:
- ret = memcg_update_tcp_max(memcg, nr_pages);
- break;
- }
- break;
- case RES_SOFT_LIMIT:
- if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
- ret = -EOPNOTSUPP;
- } else {
- memcg->soft_limit = nr_pages;
- ret = 0;
- }
- break;
- }
- return ret ?: nbytes;
-}
-
-static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
- size_t nbytes, loff_t off)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- struct page_counter *counter;
-
- switch (MEMFILE_TYPE(of_cft(of)->private)) {
- case _MEM:
- counter = &memcg->memory;
- break;
- case _MEMSWAP:
- counter = &memcg->memsw;
- break;
- case _KMEM:
- counter = &memcg->kmem;
- break;
- case _TCP:
- counter = &memcg->tcpmem;
- break;
- default:
- BUG();
- }
-
- switch (MEMFILE_ATTR(of_cft(of)->private)) {
- case RES_MAX_USAGE:
- page_counter_reset_watermark(counter);
- break;
- case RES_FAILCNT:
- counter->failcnt = 0;
- break;
- default:
- BUG();
- }
-
- return nbytes;
-}
-
-static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
- struct cftype *cft)
-{
- return mem_cgroup_from_css(css)->move_charge_at_immigrate;
-}
-
-#ifdef CONFIG_MMU
-static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
- struct cftype *cft, u64 val)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
-
- if (val & ~MOVE_MASK)
- return -EINVAL;
-
- /*
- * No kind of locking is needed in here, because ->can_attach() will
- * check this value once in the beginning of the process, and then carry
- * on with stale data. This means that changes to this value will only
- * affect task migrations starting after the change.
- */
- memcg->move_charge_at_immigrate = val;
- return 0;
-}
-#else
-static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
- struct cftype *cft, u64 val)
-{
- return -ENOSYS;
-}
-#endif
-
-#ifdef CONFIG_NUMA
-
-#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
-#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
-#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
-
-static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
- int nid, unsigned int lru_mask, bool tree)
-{
- struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
- unsigned long nr = 0;
- enum lru_list lru;
-
- VM_BUG_ON((unsigned)nid >= nr_node_ids);
-
- for_each_lru(lru) {
- if (!(BIT(lru) & lru_mask))
- continue;
- if (tree)
- nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
- else
- nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
- }
- return nr;
-}
-
-static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
- unsigned int lru_mask,
- bool tree)
-{
- unsigned long nr = 0;
- enum lru_list lru;
-
- for_each_lru(lru) {
- if (!(BIT(lru) & lru_mask))
- continue;
- if (tree)
- nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
- else
- nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
- }
- return nr;
-}
-
-static int memcg_numa_stat_show(struct seq_file *m, void *v)
-{
- struct numa_stat {
- const char *name;
- unsigned int lru_mask;
- };
-
- static const struct numa_stat stats[] = {
- { "total", LRU_ALL },
- { "file", LRU_ALL_FILE },
- { "anon", LRU_ALL_ANON },
- { "unevictable", BIT(LRU_UNEVICTABLE) },
- };
- const struct numa_stat *stat;
- int nid;
- struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
-
- mem_cgroup_flush_stats();
-
- for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
- seq_printf(m, "%s=%lu", stat->name,
- mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
- false));
- for_each_node_state(nid, N_MEMORY)
- seq_printf(m, " N%d=%lu", nid,
- mem_cgroup_node_nr_lru_pages(memcg, nid,
- stat->lru_mask, false));
- seq_putc(m, '\n');
- }
-
- for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
-
- seq_printf(m, "hierarchical_%s=%lu", stat->name,
- mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
- true));
- for_each_node_state(nid, N_MEMORY)
- seq_printf(m, " N%d=%lu", nid,
- mem_cgroup_node_nr_lru_pages(memcg, nid,
- stat->lru_mask, true));
- seq_putc(m, '\n');
- }
-
- return 0;
-}
-#endif /* CONFIG_NUMA */
-
-static const unsigned int memcg1_stats[] = {
- NR_FILE_PAGES,
- NR_ANON_MAPPED,
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
- NR_ANON_THPS,
-#endif
- NR_SHMEM,
- NR_FILE_MAPPED,
- NR_FILE_DIRTY,
- NR_WRITEBACK,
- WORKINGSET_REFAULT_ANON,
- WORKINGSET_REFAULT_FILE,
- MEMCG_SWAP,
-};
-
-static const char *const memcg1_stat_names[] = {
- "cache",
- "rss",
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
- "rss_huge",
-#endif
- "shmem",
- "mapped_file",
- "dirty",
- "writeback",
- "workingset_refault_anon",
- "workingset_refault_file",
- "swap",
-};
-
-/* Universal VM events cgroup1 shows, original sort order */
-static const unsigned int memcg1_events[] = {
- PGPGIN,
- PGPGOUT,
- PGFAULT,
- PGMAJFAULT,
-};
-
-static int memcg_stat_show(struct seq_file *m, void *v)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
- unsigned long memory, memsw;
- struct mem_cgroup *mi;
- unsigned int i;
-
- BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
-
- mem_cgroup_flush_stats();
-
- for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
- unsigned long nr;
-
- if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
- continue;
- nr = memcg_page_state_local(memcg, memcg1_stats[i]);
- seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
- nr * memcg_page_state_unit(memcg1_stats[i]));
- }
-
- for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
- seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
- memcg_events_local(memcg, memcg1_events[i]));
-
- for (i = 0; i < NR_LRU_LISTS; i++)
- seq_printf(m, "%s %lu\n", lru_list_name(i),
- memcg_page_state_local(memcg, NR_LRU_BASE + i) *
- PAGE_SIZE);
-
- /* Hierarchical information */
- memory = memsw = PAGE_COUNTER_MAX;
- for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
- memory = min(memory, READ_ONCE(mi->memory.max));
- memsw = min(memsw, READ_ONCE(mi->memsw.max));
- }
- seq_printf(m, "hierarchical_memory_limit %llu\n",
- (u64)memory * PAGE_SIZE);
- if (do_memsw_account())
- seq_printf(m, "hierarchical_memsw_limit %llu\n",
- (u64)memsw * PAGE_SIZE);
-
- for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
- unsigned long nr;
-
- if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
- continue;
- nr = memcg_page_state(memcg, memcg1_stats[i]);
- seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
- (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
- }
-
- for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
- seq_printf(m, "total_%s %llu\n",
- vm_event_name(memcg1_events[i]),
- (u64)memcg_events(memcg, memcg1_events[i]));
-
- for (i = 0; i < NR_LRU_LISTS; i++)
- seq_printf(m, "total_%s %llu\n", lru_list_name(i),
- (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
- PAGE_SIZE);
-
-#ifdef CONFIG_DEBUG_VM
- {
- pg_data_t *pgdat;
- struct mem_cgroup_per_node *mz;
- unsigned long anon_cost = 0;
- unsigned long file_cost = 0;
-
- for_each_online_pgdat(pgdat) {
- mz = memcg->nodeinfo[pgdat->node_id];
-
- anon_cost += mz->lruvec.anon_cost;
- file_cost += mz->lruvec.file_cost;
- }
- seq_printf(m, "anon_cost %lu\n", anon_cost);
- seq_printf(m, "file_cost %lu\n", file_cost);
- }
-#endif
-
- return 0;
-}
-
-static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
- struct cftype *cft)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
-
- return mem_cgroup_swappiness(memcg);
-}
-
-static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
- struct cftype *cft, u64 val)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
-
- if (val > 200)
- return -EINVAL;
-
- if (!mem_cgroup_is_root(memcg))
- memcg->swappiness = val;
- else
- vm_swappiness = val;
-
- return 0;
-}
-
-static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
-{
- struct mem_cgroup_threshold_ary *t;
- unsigned long usage;
- int i;
-
- rcu_read_lock();
- if (!swap)
- t = rcu_dereference(memcg->thresholds.primary);
- else
- t = rcu_dereference(memcg->memsw_thresholds.primary);
-
- if (!t)
- goto unlock;
-
- usage = mem_cgroup_usage(memcg, swap);
/*
- * current_threshold points to threshold just below or equal to usage.
- * If it's not true, a threshold was crossed after last
- * call of __mem_cgroup_threshold().
+ * Objcg's reparenting must be after list_lru's, make sure list_lru
+ * helpers won't use parent's list_lru until child is drained.
*/
- i = t->current_threshold;
-
- /*
- * Iterate backward over array of thresholds starting from
- * current_threshold and check if a threshold is crossed.
- * If none of thresholds below usage is crossed, we read
- * only one element of the array here.
- */
- for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
- eventfd_signal(t->entries[i].eventfd, 1);
-
- /* i = current_threshold + 1 */
- i++;
-
- /*
- * Iterate forward over array of thresholds starting from
- * current_threshold+1 and check if a threshold is crossed.
- * If none of thresholds above usage is crossed, we read
- * only one element of the array here.
- */
- for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
- eventfd_signal(t->entries[i].eventfd, 1);
-
- /* Update current_threshold */
- t->current_threshold = i - 1;
-unlock:
- rcu_read_unlock();
-}
-
-static void mem_cgroup_threshold(struct mem_cgroup *memcg)
-{
- while (memcg) {
- __mem_cgroup_threshold(memcg, false);
- if (do_memsw_account())
- __mem_cgroup_threshold(memcg, true);
-
- memcg = parent_mem_cgroup(memcg);
- }
-}
-
-static int compare_thresholds(const void *a, const void *b)
-{
- const struct mem_cgroup_threshold *_a = a;
- const struct mem_cgroup_threshold *_b = b;
-
- if (_a->threshold > _b->threshold)
- return 1;
-
- if (_a->threshold < _b->threshold)
- return -1;
-
- return 0;
-}
-
-static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
-{
- struct mem_cgroup_eventfd_list *ev;
-
- spin_lock(&memcg_oom_lock);
-
- list_for_each_entry(ev, &memcg->oom_notify, list)
- eventfd_signal(ev->eventfd, 1);
-
- spin_unlock(&memcg_oom_lock);
- return 0;
-}
-
-static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
-{
- struct mem_cgroup *iter;
-
- for_each_mem_cgroup_tree(iter, memcg)
- mem_cgroup_oom_notify_cb(iter);
-}
-
-static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd, const char *args, enum res_type type)
-{
- struct mem_cgroup_thresholds *thresholds;
- struct mem_cgroup_threshold_ary *new;
- unsigned long threshold;
- unsigned long usage;
- int i, size, ret;
-
- ret = page_counter_memparse(args, "-1", &threshold);
- if (ret)
- return ret;
-
- mutex_lock(&memcg->thresholds_lock);
-
- if (type == _MEM) {
- thresholds = &memcg->thresholds;
- usage = mem_cgroup_usage(memcg, false);
- } else if (type == _MEMSWAP) {
- thresholds = &memcg->memsw_thresholds;
- usage = mem_cgroup_usage(memcg, true);
- } else
- BUG();
-
- /* Check if a threshold crossed before adding a new one */
- if (thresholds->primary)
- __mem_cgroup_threshold(memcg, type == _MEMSWAP);
-
- size = thresholds->primary ? thresholds->primary->size + 1 : 1;
-
- /* Allocate memory for new array of thresholds */
- new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
- if (!new) {
- ret = -ENOMEM;
- goto unlock;
- }
- new->size = size;
-
- /* Copy thresholds (if any) to new array */
- if (thresholds->primary)
- memcpy(new->entries, thresholds->primary->entries,
- flex_array_size(new, entries, size - 1));
-
- /* Add new threshold */
- new->entries[size - 1].eventfd = eventfd;
- new->entries[size - 1].threshold = threshold;
-
- /* Sort thresholds. Registering of new threshold isn't time-critical */
- sort(new->entries, size, sizeof(*new->entries),
- compare_thresholds, NULL);
-
- /* Find current threshold */
- new->current_threshold = -1;
- for (i = 0; i < size; i++) {
- if (new->entries[i].threshold <= usage) {
- /*
- * new->current_threshold will not be used until
- * rcu_assign_pointer(), so it's safe to increment
- * it here.
- */
- ++new->current_threshold;
- } else
- break;
- }
-
- /* Free old spare buffer and save old primary buffer as spare */
- kfree(thresholds->spare);
- thresholds->spare = thresholds->primary;
-
- rcu_assign_pointer(thresholds->primary, new);
-
- /* To be sure that nobody uses thresholds */
- synchronize_rcu();
-
-unlock:
- mutex_unlock(&memcg->thresholds_lock);
-
- return ret;
-}
-
-static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd, const char *args)
-{
- return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
-}
-
-static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd, const char *args)
-{
- return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
-}
-
-static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd, enum res_type type)
-{
- struct mem_cgroup_thresholds *thresholds;
- struct mem_cgroup_threshold_ary *new;
- unsigned long usage;
- int i, j, size, entries;
-
- mutex_lock(&memcg->thresholds_lock);
-
- if (type == _MEM) {
- thresholds = &memcg->thresholds;
- usage = mem_cgroup_usage(memcg, false);
- } else if (type == _MEMSWAP) {
- thresholds = &memcg->memsw_thresholds;
- usage = mem_cgroup_usage(memcg, true);
- } else
- BUG();
-
- if (!thresholds->primary)
- goto unlock;
-
- /* Check if a threshold crossed before removing */
- __mem_cgroup_threshold(memcg, type == _MEMSWAP);
-
- /* Calculate new number of threshold */
- size = entries = 0;
- for (i = 0; i < thresholds->primary->size; i++) {
- if (thresholds->primary->entries[i].eventfd != eventfd)
- size++;
- else
- entries++;
- }
-
- new = thresholds->spare;
-
- /* If no items related to eventfd have been cleared, nothing to do */
- if (!entries)
- goto unlock;
-
- /* Set thresholds array to NULL if we don't have thresholds */
- if (!size) {
- kfree(new);
- new = NULL;
- goto swap_buffers;
- }
-
- new->size = size;
-
- /* Copy thresholds and find current threshold */
- new->current_threshold = -1;
- for (i = 0, j = 0; i < thresholds->primary->size; i++) {
- if (thresholds->primary->entries[i].eventfd == eventfd)
- continue;
-
- new->entries[j] = thresholds->primary->entries[i];
- if (new->entries[j].threshold <= usage) {
- /*
- * new->current_threshold will not be used
- * until rcu_assign_pointer(), so it's safe to increment
- * it here.
- */
- ++new->current_threshold;
- }
- j++;
- }
-
-swap_buffers:
- /* Swap primary and spare array */
- thresholds->spare = thresholds->primary;
-
- rcu_assign_pointer(thresholds->primary, new);
-
- /* To be sure that nobody uses thresholds */
- synchronize_rcu();
-
- /* If all events are unregistered, free the spare array */
- if (!new) {
- kfree(thresholds->spare);
- thresholds->spare = NULL;
- }
-unlock:
- mutex_unlock(&memcg->thresholds_lock);
-}
-
-static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd)
-{
- return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
-}
-
-static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd)
-{
- return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
-}
-
-static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd, const char *args)
-{
- struct mem_cgroup_eventfd_list *event;
-
- event = kmalloc(sizeof(*event), GFP_KERNEL);
- if (!event)
- return -ENOMEM;
-
- spin_lock(&memcg_oom_lock);
-
- event->eventfd = eventfd;
- list_add(&event->list, &memcg->oom_notify);
-
- /* already in OOM ? */
- if (memcg->under_oom)
- eventfd_signal(eventfd, 1);
- spin_unlock(&memcg_oom_lock);
-
- return 0;
-}
-
-static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
- struct eventfd_ctx *eventfd)
-{
- struct mem_cgroup_eventfd_list *ev, *tmp;
-
- spin_lock(&memcg_oom_lock);
-
- list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
- if (ev->eventfd == eventfd) {
- list_del(&ev->list);
- kfree(ev);
- }
- }
-
- spin_unlock(&memcg_oom_lock);
-}
-
-static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
-
- seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
- seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
- seq_printf(sf, "oom_kill %lu\n",
- atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
- return 0;
-}
-
-static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
- struct cftype *cft, u64 val)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
-
- /* cannot set to root cgroup and only 0 and 1 are allowed */
- if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
- return -EINVAL;
-
- memcg->oom_kill_disable = val;
- if (!val)
- memcg_oom_recover(memcg);
-
- return 0;
+ memcg_reparent_objcgs(memcg, parent);
}
#ifdef CONFIG_CGROUP_WRITEBACK
@@ -4580,7 +3397,7 @@ void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
struct mem_cgroup *parent;
- mem_cgroup_flush_stats();
+ mem_cgroup_flush_stats_ratelimited(memcg);
*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
@@ -4740,382 +3557,6 @@ static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
#endif /* CONFIG_CGROUP_WRITEBACK */
/*
- * DO NOT USE IN NEW FILES.
- *
- * "cgroup.event_control" implementation.
- *
- * This is way over-engineered. It tries to support fully configurable
- * events for each user. Such level of flexibility is completely
- * unnecessary especially in the light of the planned unified hierarchy.
- *
- * Please deprecate this and replace with something simpler if at all
- * possible.
- */
-
-/*
- * Unregister event and free resources.
- *
- * Gets called from workqueue.
- */
-static void memcg_event_remove(struct work_struct *work)
-{
- struct mem_cgroup_event *event =
- container_of(work, struct mem_cgroup_event, remove);
- struct mem_cgroup *memcg = event->memcg;
-
- remove_wait_queue(event->wqh, &event->wait);
-
- event->unregister_event(memcg, event->eventfd);
-
- /* Notify userspace the event is going away. */
- eventfd_signal(event->eventfd, 1);
-
- eventfd_ctx_put(event->eventfd);
- kfree(event);
- css_put(&memcg->css);
-}
-
-/*
- * Gets called on EPOLLHUP on eventfd when user closes it.
- *
- * Called with wqh->lock held and interrupts disabled.
- */
-static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
- int sync, void *key)
-{
- struct mem_cgroup_event *event =
- container_of(wait, struct mem_cgroup_event, wait);
- struct mem_cgroup *memcg = event->memcg;
- __poll_t flags = key_to_poll(key);
-
- if (flags & EPOLLHUP) {
- /*
- * If the event has been detached at cgroup removal, we
- * can simply return knowing the other side will cleanup
- * for us.
- *
- * We can't race against event freeing since the other
- * side will require wqh->lock via remove_wait_queue(),
- * which we hold.
- */
- spin_lock(&memcg->event_list_lock);
- if (!list_empty(&event->list)) {
- list_del_init(&event->list);
- /*
- * We are in atomic context, but cgroup_event_remove()
- * may sleep, so we have to call it in workqueue.
- */
- schedule_work(&event->remove);
- }
- spin_unlock(&memcg->event_list_lock);
- }
-
- return 0;
-}
-
-static void memcg_event_ptable_queue_proc(struct file *file,
- wait_queue_head_t *wqh, poll_table *pt)
-{
- struct mem_cgroup_event *event =
- container_of(pt, struct mem_cgroup_event, pt);
-
- event->wqh = wqh;
- add_wait_queue(wqh, &event->wait);
-}
-
-/*
- * DO NOT USE IN NEW FILES.
- *
- * Parse input and register new cgroup event handler.
- *
- * Input must be in format '<event_fd> <control_fd> <args>'.
- * Interpretation of args is defined by control file implementation.
- */
-static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
- char *buf, size_t nbytes, loff_t off)
-{
- struct cgroup_subsys_state *css = of_css(of);
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- struct mem_cgroup_event *event;
- struct cgroup_subsys_state *cfile_css;
- unsigned int efd, cfd;
- struct fd efile;
- struct fd cfile;
- struct dentry *cdentry;
- const char *name;
- char *endp;
- int ret;
-
- if (IS_ENABLED(CONFIG_PREEMPT_RT))
- return -EOPNOTSUPP;
-
- buf = strstrip(buf);
-
- efd = simple_strtoul(buf, &endp, 10);
- if (*endp != ' ')
- return -EINVAL;
- buf = endp + 1;
-
- cfd = simple_strtoul(buf, &endp, 10);
- if ((*endp != ' ') && (*endp != '\0'))
- return -EINVAL;
- buf = endp + 1;
-
- event = kzalloc(sizeof(*event), GFP_KERNEL);
- if (!event)
- return -ENOMEM;
-
- event->memcg = memcg;
- INIT_LIST_HEAD(&event->list);
- init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
- init_waitqueue_func_entry(&event->wait, memcg_event_wake);
- INIT_WORK(&event->remove, memcg_event_remove);
-
- efile = fdget(efd);
- if (!efile.file) {
- ret = -EBADF;
- goto out_kfree;
- }
-
- event->eventfd = eventfd_ctx_fileget(efile.file);
- if (IS_ERR(event->eventfd)) {
- ret = PTR_ERR(event->eventfd);
- goto out_put_efile;
- }
-
- cfile = fdget(cfd);
- if (!cfile.file) {
- ret = -EBADF;
- goto out_put_eventfd;
- }
-
- /* the process need read permission on control file */
- /* AV: shouldn't we check that it's been opened for read instead? */
- ret = file_permission(cfile.file, MAY_READ);
- if (ret < 0)
- goto out_put_cfile;
-
- /*
- * The control file must be a regular cgroup1 file. As a regular cgroup
- * file can't be renamed, it's safe to access its name afterwards.
- */
- cdentry = cfile.file->f_path.dentry;
- if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
- ret = -EINVAL;
- goto out_put_cfile;
- }
-
- /*
- * Determine the event callbacks and set them in @event. This used
- * to be done via struct cftype but cgroup core no longer knows
- * about these events. The following is crude but the whole thing
- * is for compatibility anyway.
- *
- * DO NOT ADD NEW FILES.
- */
- name = cdentry->d_name.name;
-
- if (!strcmp(name, "memory.usage_in_bytes")) {
- event->register_event = mem_cgroup_usage_register_event;
- event->unregister_event = mem_cgroup_usage_unregister_event;
- } else if (!strcmp(name, "memory.oom_control")) {
- event->register_event = mem_cgroup_oom_register_event;
- event->unregister_event = mem_cgroup_oom_unregister_event;
- } else if (!strcmp(name, "memory.pressure_level")) {
- event->register_event = vmpressure_register_event;
- event->unregister_event = vmpressure_unregister_event;
- } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
- event->register_event = memsw_cgroup_usage_register_event;
- event->unregister_event = memsw_cgroup_usage_unregister_event;
- } else {
- ret = -EINVAL;
- goto out_put_cfile;
- }
-
- /*
- * Verify @cfile should belong to @css. Also, remaining events are
- * automatically removed on cgroup destruction but the removal is
- * asynchronous, so take an extra ref on @css.
- */
- cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
- &memory_cgrp_subsys);
- ret = -EINVAL;
- if (IS_ERR(cfile_css))
- goto out_put_cfile;
- if (cfile_css != css) {
- css_put(cfile_css);
- goto out_put_cfile;
- }
-
- ret = event->register_event(memcg, event->eventfd, buf);
- if (ret)
- goto out_put_css;
-
- vfs_poll(efile.file, &event->pt);
-
- spin_lock_irq(&memcg->event_list_lock);
- list_add(&event->list, &memcg->event_list);
- spin_unlock_irq(&memcg->event_list_lock);
-
- fdput(cfile);
- fdput(efile);
-
- return nbytes;
-
-out_put_css:
- css_put(css);
-out_put_cfile:
- fdput(cfile);
-out_put_eventfd:
- eventfd_ctx_put(event->eventfd);
-out_put_efile:
- fdput(efile);
-out_kfree:
- kfree(event);
-
- return ret;
-}
-
-#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
-static int mem_cgroup_slab_show(struct seq_file *m, void *p)
-{
- /*
- * Deprecated.
- * Please, take a look at tools/cgroup/memcg_slabinfo.py .
- */
- return 0;
-}
-#endif
-
-static struct cftype mem_cgroup_legacy_files[] = {
- {
- .name = "usage_in_bytes",
- .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "max_usage_in_bytes",
- .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "limit_in_bytes",
- .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
- .write = mem_cgroup_write,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "soft_limit_in_bytes",
- .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
- .write = mem_cgroup_write,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "failcnt",
- .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "stat",
- .seq_show = memcg_stat_show,
- },
- {
- .name = "force_empty",
- .write = mem_cgroup_force_empty_write,
- },
- {
- .name = "use_hierarchy",
- .write_u64 = mem_cgroup_hierarchy_write,
- .read_u64 = mem_cgroup_hierarchy_read,
- },
- {
- .name = "cgroup.event_control", /* XXX: for compat */
- .write = memcg_write_event_control,
- .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
- },
- {
- .name = "swappiness",
- .read_u64 = mem_cgroup_swappiness_read,
- .write_u64 = mem_cgroup_swappiness_write,
- },
- {
- .name = "move_charge_at_immigrate",
- .read_u64 = mem_cgroup_move_charge_read,
- .write_u64 = mem_cgroup_move_charge_write,
- },
- {
- .name = "oom_control",
- .seq_show = mem_cgroup_oom_control_read,
- .write_u64 = mem_cgroup_oom_control_write,
- },
- {
- .name = "pressure_level",
- },
-#ifdef CONFIG_NUMA
- {
- .name = "numa_stat",
- .seq_show = memcg_numa_stat_show,
- },
-#endif
- {
- .name = "kmem.limit_in_bytes",
- .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
- .write = mem_cgroup_write,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "kmem.usage_in_bytes",
- .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "kmem.failcnt",
- .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "kmem.max_usage_in_bytes",
- .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
-#if defined(CONFIG_MEMCG_KMEM) && \
- (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
- {
- .name = "kmem.slabinfo",
- .seq_show = mem_cgroup_slab_show,
- },
-#endif
- {
- .name = "kmem.tcp.limit_in_bytes",
- .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
- .write = mem_cgroup_write,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "kmem.tcp.usage_in_bytes",
- .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "kmem.tcp.failcnt",
- .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "kmem.tcp.max_usage_in_bytes",
- .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
- { }, /* terminate */
-};
-
-/*
* Private memory cgroup IDR
*
* Swap-out records and page cache shadow entries need to store memcg
@@ -5139,18 +3580,19 @@ static struct cftype mem_cgroup_legacy_files[] = {
* those references are manageable from userspace.
*/
-static DEFINE_IDR(mem_cgroup_idr);
+#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
+static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
if (memcg->id.id > 0) {
- idr_remove(&mem_cgroup_idr, memcg->id.id);
+ xa_erase(&mem_cgroup_ids, memcg->id.id);
memcg->id.id = 0;
}
}
-static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
- unsigned int n)
+void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
+ unsigned int n)
{
refcount_add(n, &memcg->id.ref);
}
@@ -5170,6 +3612,24 @@ static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
mem_cgroup_id_put_many(memcg, 1);
}
+struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
+{
+ while (!refcount_inc_not_zero(&memcg->id.ref)) {
+ /*
+ * The root cgroup cannot be destroyed, so it's refcount must
+ * always be >= 1.
+ */
+ if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
+ VM_BUG_ON(1);
+ break;
+ }
+ memcg = parent_mem_cgroup(memcg);
+ if (!memcg)
+ memcg = root_mem_cgroup;
+ }
+ return memcg;
+}
+
/**
* mem_cgroup_from_id - look up a memcg from a memcg id
* @id: the memcg id to look up
@@ -5179,7 +3639,7 @@ static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
WARN_ON_ONCE(!rcu_read_lock_held());
- return idr_find(&mem_cgroup_idr, id);
+ return xa_load(&mem_cgroup_ids, id);
}
#ifdef CONFIG_SHRINKER_DEBUG
@@ -5205,45 +3665,54 @@ struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
}
#endif
-static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
+static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
+{
+ if (!pn)
+ return;
+
+ free_percpu(pn->lruvec_stats_percpu);
+ kfree(pn->lruvec_stats);
+ kfree(pn);
+}
+
+static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
{
struct mem_cgroup_per_node *pn;
- pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
+ pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
+ node);
if (!pn)
- return 1;
+ return false;
+
+ pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
+ GFP_KERNEL_ACCOUNT, node);
+ if (!pn->lruvec_stats)
+ goto fail;
pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
GFP_KERNEL_ACCOUNT);
- if (!pn->lruvec_stats_percpu) {
- kfree(pn);
- return 1;
- }
+ if (!pn->lruvec_stats_percpu)
+ goto fail;
lruvec_init(&pn->lruvec);
pn->memcg = memcg;
memcg->nodeinfo[node] = pn;
- return 0;
-}
-
-static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
-{
- struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
-
- if (!pn)
- return;
-
- free_percpu(pn->lruvec_stats_percpu);
- kfree(pn);
+ return true;
+fail:
+ free_mem_cgroup_per_node_info(pn);
+ return false;
}
static void __mem_cgroup_free(struct mem_cgroup *memcg)
{
int node;
+ obj_cgroup_put(memcg->orig_objcg);
+
for_each_node(node)
- free_mem_cgroup_per_node_info(memcg, node);
+ free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
+ memcg1_free_events(memcg);
kfree(memcg->vmstats);
free_percpu(memcg->vmstats_percpu);
kfree(memcg);
@@ -5256,25 +3725,27 @@ static void mem_cgroup_free(struct mem_cgroup *memcg)
__mem_cgroup_free(memcg);
}
-static struct mem_cgroup *mem_cgroup_alloc(void)
+static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
{
+ struct memcg_vmstats_percpu *statc;
+ struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
struct mem_cgroup *memcg;
- int node;
+ int node, cpu;
int __maybe_unused i;
- long error = -ENOMEM;
+ long error;
- memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
+ memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
if (!memcg)
- return ERR_PTR(error);
+ return ERR_PTR(-ENOMEM);
- memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
- 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
- if (memcg->id.id < 0) {
- error = memcg->id.id;
+ error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
+ XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
+ if (error)
goto fail;
- }
+ error = -ENOMEM;
- memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
+ memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
+ GFP_KERNEL_ACCOUNT);
if (!memcg->vmstats)
goto fail;
@@ -5283,25 +3754,36 @@ static struct mem_cgroup *mem_cgroup_alloc(void)
if (!memcg->vmstats_percpu)
goto fail;
+ if (!memcg1_alloc_events(memcg))
+ goto fail;
+
+ for_each_possible_cpu(cpu) {
+ if (parent)
+ pstatc_pcpu = parent->vmstats_percpu;
+ statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
+ statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
+ statc->vmstats = memcg->vmstats;
+ }
+
for_each_node(node)
- if (alloc_mem_cgroup_per_node_info(memcg, node))
+ if (!alloc_mem_cgroup_per_node_info(memcg, node))
goto fail;
if (memcg_wb_domain_init(memcg, GFP_KERNEL))
goto fail;
INIT_WORK(&memcg->high_work, high_work_func);
- INIT_LIST_HEAD(&memcg->oom_notify);
- mutex_init(&memcg->thresholds_lock);
- spin_lock_init(&memcg->move_lock);
vmpressure_init(&memcg->vmpressure);
- INIT_LIST_HEAD(&memcg->event_list);
- spin_lock_init(&memcg->event_list_lock);
- memcg->socket_pressure = jiffies;
-#ifdef CONFIG_MEMCG_KMEM
+ INIT_LIST_HEAD(&memcg->memory_peaks);
+ INIT_LIST_HEAD(&memcg->swap_peaks);
+ spin_lock_init(&memcg->peaks_lock);
+ memcg->socket_pressure = get_jiffies_64();
+#if BITS_PER_LONG < 64
+ seqlock_init(&memcg->socket_pressure_seqlock);
+#endif
+ memcg1_memcg_init(memcg);
memcg->kmemcg_id = -1;
INIT_LIST_HEAD(&memcg->objcg_list);
-#endif
#ifdef CONFIG_CGROUP_WRITEBACK
INIT_LIST_HEAD(&memcg->cgwb_list);
for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
@@ -5313,7 +3795,6 @@ static struct mem_cgroup *mem_cgroup_alloc(void)
INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
memcg->deferred_split_queue.split_queue_len = 0;
#endif
- idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
lru_gen_init_memcg(memcg);
return memcg;
fail:
@@ -5327,41 +3808,51 @@ mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
{
struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
struct mem_cgroup *memcg, *old_memcg;
+ bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
old_memcg = set_active_memcg(parent);
- memcg = mem_cgroup_alloc();
+ memcg = mem_cgroup_alloc(parent);
set_active_memcg(old_memcg);
if (IS_ERR(memcg))
return ERR_CAST(memcg);
page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
- memcg->soft_limit = PAGE_COUNTER_MAX;
-#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
+ memcg1_soft_limit_reset(memcg);
+#ifdef CONFIG_ZSWAP
memcg->zswap_max = PAGE_COUNTER_MAX;
+ WRITE_ONCE(memcg->zswap_writeback, true);
#endif
page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
if (parent) {
- memcg->swappiness = mem_cgroup_swappiness(parent);
- memcg->oom_kill_disable = parent->oom_kill_disable;
-
- page_counter_init(&memcg->memory, &parent->memory);
- page_counter_init(&memcg->swap, &parent->swap);
- page_counter_init(&memcg->kmem, &parent->kmem);
- page_counter_init(&memcg->tcpmem, &parent->tcpmem);
+ WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
+
+ page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
+ page_counter_init(&memcg->swap, &parent->swap, false);
+#ifdef CONFIG_MEMCG_V1
+ memcg->memory.track_failcnt = !memcg_on_dfl;
+ WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
+ page_counter_init(&memcg->kmem, &parent->kmem, false);
+ page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
+#endif
} else {
+ init_memcg_stats();
init_memcg_events();
- page_counter_init(&memcg->memory, NULL);
- page_counter_init(&memcg->swap, NULL);
- page_counter_init(&memcg->kmem, NULL);
- page_counter_init(&memcg->tcpmem, NULL);
-
+ page_counter_init(&memcg->memory, NULL, true);
+ page_counter_init(&memcg->swap, NULL, false);
+#ifdef CONFIG_MEMCG_V1
+ page_counter_init(&memcg->kmem, NULL, false);
+ page_counter_init(&memcg->tcpmem, NULL, false);
+#endif
root_mem_cgroup = memcg;
return &memcg->css;
}
- if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
+ if (memcg_on_dfl && !cgroup_memory_nosocket)
static_branch_inc(&memcg_sockets_enabled_key);
+ if (!cgroup_memory_nobpf)
+ static_branch_inc(&memcg_bpf_enabled_key);
+
return &memcg->css;
}
@@ -5380,13 +3871,27 @@ static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
if (alloc_shrinker_info(memcg))
goto offline_kmem;
+ if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
+ queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
+ FLUSH_TIME);
+ lru_gen_online_memcg(memcg);
+
/* Online state pins memcg ID, memcg ID pins CSS */
refcount_set(&memcg->id.ref, 1);
css_get(css);
- if (unlikely(mem_cgroup_is_root(memcg)))
- queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
- 2UL*HZ);
+ /*
+ * Ensure mem_cgroup_from_id() works once we're fully online.
+ *
+ * We could do this earlier and require callers to filter with
+ * css_tryget_online(). But right now there are no users that
+ * need earlier access, and the workingset code relies on the
+ * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
+ * publish it here at the end of onlining. This matches the
+ * regular ID destruction during offlining.
+ */
+ xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
+
return 0;
offline_kmem:
memcg_offline_kmem(memcg);
@@ -5398,26 +3903,19 @@ remove_id:
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- struct mem_cgroup_event *event, *tmp;
- /*
- * Unregister events and notify userspace.
- * Notify userspace about cgroup removing only after rmdir of cgroup
- * directory to avoid race between userspace and kernelspace.
- */
- spin_lock_irq(&memcg->event_list_lock);
- list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
- list_del_init(&event->list);
- schedule_work(&event->remove);
- }
- spin_unlock_irq(&memcg->event_list_lock);
+ memcg1_css_offline(memcg);
page_counter_set_min(&memcg->memory, 0);
page_counter_set_low(&memcg->memory, 0);
+ zswap_memcg_offline_cleanup(memcg);
+
memcg_offline_kmem(memcg);
+ reparent_deferred_split_queue(memcg);
reparent_shrinker_deferred(memcg);
wb_memcg_offline(memcg);
+ lru_gen_offline_memcg(memcg);
drain_all_stock(memcg);
@@ -5429,6 +3927,7 @@ static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
invalidate_reclaim_iterators(memcg);
+ lru_gen_release_memcg(memcg);
}
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
@@ -5443,12 +3942,15 @@ static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
static_branch_dec(&memcg_sockets_enabled_key);
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
static_branch_dec(&memcg_sockets_enabled_key);
+ if (!cgroup_memory_nobpf)
+ static_branch_dec(&memcg_bpf_enabled_key);
+
vmpressure_cleanup(&memcg->vmpressure);
cancel_work_sync(&memcg->high_work);
- mem_cgroup_remove_from_trees(memcg);
+ memcg1_remove_from_trees(memcg);
free_shrinker_info(memcg);
mem_cgroup_free(memcg);
}
@@ -5472,878 +3974,351 @@ static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
+#ifdef CONFIG_MEMCG_V1
page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
+#endif
page_counter_set_min(&memcg->memory, 0);
page_counter_set_low(&memcg->memory, 0);
page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
- memcg->soft_limit = PAGE_COUNTER_MAX;
+ memcg1_soft_limit_reset(memcg);
page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
memcg_wb_domain_size_changed(memcg);
}
-static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- struct mem_cgroup *parent = parent_mem_cgroup(memcg);
- struct memcg_vmstats_percpu *statc;
- long delta, v;
- int i, nid;
+struct aggregate_control {
+ /* pointer to the aggregated (CPU and subtree aggregated) counters */
+ long *aggregate;
+ /* pointer to the non-hierarchichal (CPU aggregated) counters */
+ long *local;
+ /* pointer to the pending child counters during tree propagation */
+ long *pending;
+ /* pointer to the parent's pending counters, could be NULL */
+ long *ppending;
+ /* pointer to the percpu counters to be aggregated */
+ long *cstat;
+ /* pointer to the percpu counters of the last aggregation*/
+ long *cstat_prev;
+ /* size of the above counters */
+ int size;
+};
- statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
+static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
+{
+ int i;
+ long delta, delta_cpu, v;
- for (i = 0; i < MEMCG_NR_STAT; i++) {
+ for (i = 0; i < ac->size; i++) {
/*
* Collect the aggregated propagation counts of groups
* below us. We're in a per-cpu loop here and this is
* a global counter, so the first cycle will get them.
*/
- delta = memcg->vmstats->state_pending[i];
+ delta = ac->pending[i];
if (delta)
- memcg->vmstats->state_pending[i] = 0;
+ ac->pending[i] = 0;
/* Add CPU changes on this level since the last flush */
- v = READ_ONCE(statc->state[i]);
- if (v != statc->state_prev[i]) {
- delta += v - statc->state_prev[i];
- statc->state_prev[i] = v;
+ delta_cpu = 0;
+ v = READ_ONCE(ac->cstat[i]);
+ if (v != ac->cstat_prev[i]) {
+ delta_cpu = v - ac->cstat_prev[i];
+ delta += delta_cpu;
+ ac->cstat_prev[i] = v;
}
- if (!delta)
- continue;
-
/* Aggregate counts on this level and propagate upwards */
- memcg->vmstats->state[i] += delta;
- if (parent)
- parent->vmstats->state_pending[i] += delta;
- }
-
- for (i = 0; i < NR_MEMCG_EVENTS; i++) {
- delta = memcg->vmstats->events_pending[i];
- if (delta)
- memcg->vmstats->events_pending[i] = 0;
+ if (delta_cpu)
+ ac->local[i] += delta_cpu;
- v = READ_ONCE(statc->events[i]);
- if (v != statc->events_prev[i]) {
- delta += v - statc->events_prev[i];
- statc->events_prev[i] = v;
+ if (delta) {
+ ac->aggregate[i] += delta;
+ if (ac->ppending)
+ ac->ppending[i] += delta;
}
+ }
+}
- if (!delta)
- continue;
+#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
+static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
+ int cpu)
+{
+ int nid;
+
+ if (atomic_read(&memcg->kmem_stat)) {
+ int kmem = atomic_xchg(&memcg->kmem_stat, 0);
+ int index = memcg_stats_index(MEMCG_KMEM);
- memcg->vmstats->events[i] += delta;
+ memcg->vmstats->state[index] += kmem;
if (parent)
- parent->vmstats->events_pending[i] += delta;
+ parent->vmstats->state_pending[index] += kmem;
}
for_each_node_state(nid, N_MEMORY) {
struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
- struct mem_cgroup_per_node *ppn = NULL;
- struct lruvec_stats_percpu *lstatc;
+ struct lruvec_stats *lstats = pn->lruvec_stats;
+ struct lruvec_stats *plstats = NULL;
if (parent)
- ppn = parent->nodeinfo[nid];
-
- lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
+ plstats = parent->nodeinfo[nid]->lruvec_stats;
- for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
- delta = pn->lruvec_stats.state_pending[i];
- if (delta)
- pn->lruvec_stats.state_pending[i] = 0;
+ if (atomic_read(&pn->slab_reclaimable)) {
+ int slab = atomic_xchg(&pn->slab_reclaimable, 0);
+ int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
- v = READ_ONCE(lstatc->state[i]);
- if (v != lstatc->state_prev[i]) {
- delta += v - lstatc->state_prev[i];
- lstatc->state_prev[i] = v;
- }
-
- if (!delta)
- continue;
-
- pn->lruvec_stats.state[i] += delta;
- if (ppn)
- ppn->lruvec_stats.state_pending[i] += delta;
+ lstats->state[index] += slab;
+ if (plstats)
+ plstats->state_pending[index] += slab;
}
- }
-}
-
-#ifdef CONFIG_MMU
-/* Handlers for move charge at task migration. */
-static int mem_cgroup_do_precharge(unsigned long count)
-{
- int ret;
-
- /* Try a single bulk charge without reclaim first, kswapd may wake */
- ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
- if (!ret) {
- mc.precharge += count;
- return ret;
- }
-
- /* Try charges one by one with reclaim, but do not retry */
- while (count--) {
- ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
- if (ret)
- return ret;
- mc.precharge++;
- cond_resched();
- }
- return 0;
-}
-
-union mc_target {
- struct page *page;
- swp_entry_t ent;
-};
-
-enum mc_target_type {
- MC_TARGET_NONE = 0,
- MC_TARGET_PAGE,
- MC_TARGET_SWAP,
- MC_TARGET_DEVICE,
-};
-
-static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
- unsigned long addr, pte_t ptent)
-{
- struct page *page = vm_normal_page(vma, addr, ptent);
-
- if (!page || !page_mapped(page))
- return NULL;
- if (PageAnon(page)) {
- if (!(mc.flags & MOVE_ANON))
- return NULL;
- } else {
- if (!(mc.flags & MOVE_FILE))
- return NULL;
- }
- if (!get_page_unless_zero(page))
- return NULL;
+ if (atomic_read(&pn->slab_unreclaimable)) {
+ int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
+ int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
- return page;
-}
-
-#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
-static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
- pte_t ptent, swp_entry_t *entry)
-{
- struct page *page = NULL;
- swp_entry_t ent = pte_to_swp_entry(ptent);
-
- if (!(mc.flags & MOVE_ANON))
- return NULL;
-
- /*
- * Handle device private pages that are not accessible by the CPU, but
- * stored as special swap entries in the page table.
- */
- if (is_device_private_entry(ent)) {
- page = pfn_swap_entry_to_page(ent);
- if (!get_page_unless_zero(page))
- return NULL;
- return page;
+ lstats->state[index] += slab;
+ if (plstats)
+ plstats->state_pending[index] += slab;
+ }
}
-
- if (non_swap_entry(ent))
- return NULL;
-
- /*
- * Because swap_cache_get_folio() updates some statistics counter,
- * we call find_get_page() with swapper_space directly.
- */
- page = find_get_page(swap_address_space(ent), swp_offset(ent));
- entry->val = ent.val;
-
- return page;
}
#else
-static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
- pte_t ptent, swp_entry_t *entry)
-{
- return NULL;
-}
+static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
+ int cpu)
+{}
#endif
-static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
- unsigned long addr, pte_t ptent)
+static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
{
- unsigned long index;
- struct folio *folio;
-
- if (!vma->vm_file) /* anonymous vma */
- return NULL;
- if (!(mc.flags & MOVE_FILE))
- return NULL;
-
- /* folio is moved even if it's not RSS of this task(page-faulted). */
- /* shmem/tmpfs may report page out on swap: account for that too. */
- index = linear_page_index(vma, addr);
- folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
- if (!folio)
- return NULL;
- return folio_file_page(folio, index);
-}
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ struct mem_cgroup *parent = parent_mem_cgroup(memcg);
+ struct memcg_vmstats_percpu *statc;
+ struct aggregate_control ac;
+ int nid;
-/**
- * mem_cgroup_move_account - move account of the page
- * @page: the page
- * @compound: charge the page as compound or small page
- * @from: mem_cgroup which the page is moved from.
- * @to: mem_cgroup which the page is moved to. @from != @to.
- *
- * The caller must make sure the page is not on LRU (isolate_page() is useful.)
- *
- * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
- * from old cgroup.
- */
-static int mem_cgroup_move_account(struct page *page,
- bool compound,
- struct mem_cgroup *from,
- struct mem_cgroup *to)
-{
- struct folio *folio = page_folio(page);
- struct lruvec *from_vec, *to_vec;
- struct pglist_data *pgdat;
- unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
- int nid, ret;
-
- VM_BUG_ON(from == to);
- VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
- VM_BUG_ON(compound && !folio_test_large(folio));
+ flush_nmi_stats(memcg, parent, cpu);
- /*
- * Prevent mem_cgroup_migrate() from looking at
- * page's memory cgroup of its source page while we change it.
- */
- ret = -EBUSY;
- if (!folio_trylock(folio))
- goto out;
+ statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
- ret = -EINVAL;
- if (folio_memcg(folio) != from)
- goto out_unlock;
-
- pgdat = folio_pgdat(folio);
- from_vec = mem_cgroup_lruvec(from, pgdat);
- to_vec = mem_cgroup_lruvec(to, pgdat);
-
- folio_memcg_lock(folio);
-
- if (folio_test_anon(folio)) {
- if (folio_mapped(folio)) {
- __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
- __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
- if (folio_test_transhuge(folio)) {
- __mod_lruvec_state(from_vec, NR_ANON_THPS,
- -nr_pages);
- __mod_lruvec_state(to_vec, NR_ANON_THPS,
- nr_pages);
- }
- }
- } else {
- __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
- __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
+ ac = (struct aggregate_control) {
+ .aggregate = memcg->vmstats->state,
+ .local = memcg->vmstats->state_local,
+ .pending = memcg->vmstats->state_pending,
+ .ppending = parent ? parent->vmstats->state_pending : NULL,
+ .cstat = statc->state,
+ .cstat_prev = statc->state_prev,
+ .size = MEMCG_VMSTAT_SIZE,
+ };
+ mem_cgroup_stat_aggregate(&ac);
+
+ ac = (struct aggregate_control) {
+ .aggregate = memcg->vmstats->events,
+ .local = memcg->vmstats->events_local,
+ .pending = memcg->vmstats->events_pending,
+ .ppending = parent ? parent->vmstats->events_pending : NULL,
+ .cstat = statc->events,
+ .cstat_prev = statc->events_prev,
+ .size = NR_MEMCG_EVENTS,
+ };
+ mem_cgroup_stat_aggregate(&ac);
- if (folio_test_swapbacked(folio)) {
- __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
- __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
- }
+ for_each_node_state(nid, N_MEMORY) {
+ struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
+ struct lruvec_stats *lstats = pn->lruvec_stats;
+ struct lruvec_stats *plstats = NULL;
+ struct lruvec_stats_percpu *lstatc;
- if (folio_mapped(folio)) {
- __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
- __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
- }
+ if (parent)
+ plstats = parent->nodeinfo[nid]->lruvec_stats;
- if (folio_test_dirty(folio)) {
- struct address_space *mapping = folio_mapping(folio);
+ lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
- if (mapping_can_writeback(mapping)) {
- __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
- -nr_pages);
- __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
- nr_pages);
- }
- }
- }
+ ac = (struct aggregate_control) {
+ .aggregate = lstats->state,
+ .local = lstats->state_local,
+ .pending = lstats->state_pending,
+ .ppending = plstats ? plstats->state_pending : NULL,
+ .cstat = lstatc->state,
+ .cstat_prev = lstatc->state_prev,
+ .size = NR_MEMCG_NODE_STAT_ITEMS,
+ };
+ mem_cgroup_stat_aggregate(&ac);
-#ifdef CONFIG_SWAP
- if (folio_test_swapcache(folio)) {
- __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
- __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
- }
-#endif
- if (folio_test_writeback(folio)) {
- __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
- __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
}
+ WRITE_ONCE(statc->stats_updates, 0);
+ /* We are in a per-cpu loop here, only do the atomic write once */
+ if (atomic_read(&memcg->vmstats->stats_updates))
+ atomic_set(&memcg->vmstats->stats_updates, 0);
+}
+static void mem_cgroup_fork(struct task_struct *task)
+{
/*
- * All state has been migrated, let's switch to the new memcg.
- *
- * It is safe to change page's memcg here because the page
- * is referenced, charged, isolated, and locked: we can't race
- * with (un)charging, migration, LRU putback, or anything else
- * that would rely on a stable page's memory cgroup.
- *
- * Note that lock_page_memcg is a memcg lock, not a page lock,
- * to save space. As soon as we switch page's memory cgroup to a
- * new memcg that isn't locked, the above state can change
- * concurrently again. Make sure we're truly done with it.
+ * Set the update flag to cause task->objcg to be initialized lazily
+ * on the first allocation. It can be done without any synchronization
+ * because it's always performed on the current task, so does
+ * current_objcg_update().
*/
- smp_mb();
-
- css_get(&to->css);
- css_put(&from->css);
-
- folio->memcg_data = (unsigned long)to;
-
- __folio_memcg_unlock(from);
-
- ret = 0;
- nid = folio_nid(folio);
-
- local_irq_disable();
- mem_cgroup_charge_statistics(to, nr_pages);
- memcg_check_events(to, nid);
- mem_cgroup_charge_statistics(from, -nr_pages);
- memcg_check_events(from, nid);
- local_irq_enable();
-out_unlock:
- folio_unlock(folio);
-out:
- return ret;
+ task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
}
-/**
- * get_mctgt_type - get target type of moving charge
- * @vma: the vma the pte to be checked belongs
- * @addr: the address corresponding to the pte to be checked
- * @ptent: the pte to be checked
- * @target: the pointer the target page or swap ent will be stored(can be NULL)
- *
- * Returns
- * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
- * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
- * move charge. if @target is not NULL, the page is stored in target->page
- * with extra refcnt got(Callers should handle it).
- * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
- * target for charge migration. if @target is not NULL, the entry is stored
- * in target->ent.
- * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
- * thus not on the lru.
- * For now we such page is charge like a regular page would be as for all
- * intent and purposes it is just special memory taking the place of a
- * regular page.
- *
- * See Documentations/vm/hmm.txt and include/linux/hmm.h
- *
- * Called with pte lock held.
- */
-
-static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
- unsigned long addr, pte_t ptent, union mc_target *target)
+static void mem_cgroup_exit(struct task_struct *task)
{
- struct page *page = NULL;
- enum mc_target_type ret = MC_TARGET_NONE;
- swp_entry_t ent = { .val = 0 };
+ struct obj_cgroup *objcg = task->objcg;
- if (pte_present(ptent))
- page = mc_handle_present_pte(vma, addr, ptent);
- else if (pte_none_mostly(ptent))
- /*
- * PTE markers should be treated as a none pte here, separated
- * from other swap handling below.
- */
- page = mc_handle_file_pte(vma, addr, ptent);
- else if (is_swap_pte(ptent))
- page = mc_handle_swap_pte(vma, ptent, &ent);
+ objcg = (struct obj_cgroup *)
+ ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
+ obj_cgroup_put(objcg);
- if (!page && !ent.val)
- return ret;
- if (page) {
- /*
- * Do only loose check w/o serialization.
- * mem_cgroup_move_account() checks the page is valid or
- * not under LRU exclusion.
- */
- if (page_memcg(page) == mc.from) {
- ret = MC_TARGET_PAGE;
- if (is_device_private_page(page) ||
- is_device_coherent_page(page))
- ret = MC_TARGET_DEVICE;
- if (target)
- target->page = page;
- }
- if (!ret || !target)
- put_page(page);
- }
/*
- * There is a swap entry and a page doesn't exist or isn't charged.
- * But we cannot move a tail-page in a THP.
+ * Some kernel allocations can happen after this point,
+ * but let's ignore them. It can be done without any synchronization
+ * because it's always performed on the current task, so does
+ * current_objcg_update().
*/
- if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
- mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
- ret = MC_TARGET_SWAP;
- if (target)
- target->ent = ent;
- }
- return ret;
+ task->objcg = NULL;
}
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
-/*
- * We don't consider PMD mapped swapping or file mapped pages because THP does
- * not support them for now.
- * Caller should make sure that pmd_trans_huge(pmd) is true.
- */
-static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
- unsigned long addr, pmd_t pmd, union mc_target *target)
+#ifdef CONFIG_LRU_GEN
+static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
{
- struct page *page = NULL;
- enum mc_target_type ret = MC_TARGET_NONE;
+ struct task_struct *task;
+ struct cgroup_subsys_state *css;
- if (unlikely(is_swap_pmd(pmd))) {
- VM_BUG_ON(thp_migration_supported() &&
- !is_pmd_migration_entry(pmd));
- return ret;
- }
- page = pmd_page(pmd);
- VM_BUG_ON_PAGE(!page || !PageHead(page), page);
- if (!(mc.flags & MOVE_ANON))
- return ret;
- if (page_memcg(page) == mc.from) {
- ret = MC_TARGET_PAGE;
- if (target) {
- get_page(page);
- target->page = page;
- }
- }
- return ret;
+ /* find the first leader if there is any */
+ cgroup_taskset_for_each_leader(task, css, tset)
+ break;
+
+ if (!task)
+ return;
+
+ task_lock(task);
+ if (task->mm && READ_ONCE(task->mm->owner) == task)
+ lru_gen_migrate_mm(task->mm);
+ task_unlock(task);
}
#else
-static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
- unsigned long addr, pmd_t pmd, union mc_target *target)
-{
- return MC_TARGET_NONE;
-}
-#endif
+static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
+#endif /* CONFIG_LRU_GEN */
-static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
- unsigned long addr, unsigned long end,
- struct mm_walk *walk)
+static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
{
- struct vm_area_struct *vma = walk->vma;
- pte_t *pte;
- spinlock_t *ptl;
+ struct task_struct *task;
+ struct cgroup_subsys_state *css;
- ptl = pmd_trans_huge_lock(pmd, vma);
- if (ptl) {
- /*
- * Note their can not be MC_TARGET_DEVICE for now as we do not
- * support transparent huge page with MEMORY_DEVICE_PRIVATE but
- * this might change.
- */
- if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
- mc.precharge += HPAGE_PMD_NR;
- spin_unlock(ptl);
- return 0;
+ cgroup_taskset_for_each(task, css, tset) {
+ /* atomically set the update bit */
+ set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
}
-
- if (pmd_trans_unstable(pmd))
- return 0;
- pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
- for (; addr != end; pte++, addr += PAGE_SIZE)
- if (get_mctgt_type(vma, addr, *pte, NULL))
- mc.precharge++; /* increment precharge temporarily */
- pte_unmap_unlock(pte - 1, ptl);
- cond_resched();
-
- return 0;
}
-static const struct mm_walk_ops precharge_walk_ops = {
- .pmd_entry = mem_cgroup_count_precharge_pte_range,
-};
-
-static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
+static void mem_cgroup_attach(struct cgroup_taskset *tset)
{
- unsigned long precharge;
-
- mmap_read_lock(mm);
- walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
- mmap_read_unlock(mm);
-
- precharge = mc.precharge;
- mc.precharge = 0;
-
- return precharge;
+ mem_cgroup_lru_gen_attach(tset);
+ mem_cgroup_kmem_attach(tset);
}
-static int mem_cgroup_precharge_mc(struct mm_struct *mm)
+static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
- unsigned long precharge = mem_cgroup_count_precharge(mm);
+ if (value == PAGE_COUNTER_MAX)
+ seq_puts(m, "max\n");
+ else
+ seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
- VM_BUG_ON(mc.moving_task);
- mc.moving_task = current;
- return mem_cgroup_do_precharge(precharge);
+ return 0;
}
-/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
-static void __mem_cgroup_clear_mc(void)
+static u64 memory_current_read(struct cgroup_subsys_state *css,
+ struct cftype *cft)
{
- struct mem_cgroup *from = mc.from;
- struct mem_cgroup *to = mc.to;
-
- /* we must uncharge all the leftover precharges from mc.to */
- if (mc.precharge) {
- cancel_charge(mc.to, mc.precharge);
- mc.precharge = 0;
- }
- /*
- * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
- * we must uncharge here.
- */
- if (mc.moved_charge) {
- cancel_charge(mc.from, mc.moved_charge);
- mc.moved_charge = 0;
- }
- /* we must fixup refcnts and charges */
- if (mc.moved_swap) {
- /* uncharge swap account from the old cgroup */
- if (!mem_cgroup_is_root(mc.from))
- page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
-
- mem_cgroup_id_put_many(mc.from, mc.moved_swap);
-
- /*
- * we charged both to->memory and to->memsw, so we
- * should uncharge to->memory.
- */
- if (!mem_cgroup_is_root(mc.to))
- page_counter_uncharge(&mc.to->memory, mc.moved_swap);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- mc.moved_swap = 0;
- }
- memcg_oom_recover(from);
- memcg_oom_recover(to);
- wake_up_all(&mc.waitq);
+ return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
}
-static void mem_cgroup_clear_mc(void)
+#define OFP_PEAK_UNSET (((-1UL)))
+
+static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
{
- struct mm_struct *mm = mc.mm;
+ struct cgroup_of_peak *ofp = of_peak(sf->private);
+ u64 fd_peak = READ_ONCE(ofp->value), peak;
- /*
- * we must clear moving_task before waking up waiters at the end of
- * task migration.
- */
- mc.moving_task = NULL;
- __mem_cgroup_clear_mc();
- spin_lock(&mc.lock);
- mc.from = NULL;
- mc.to = NULL;
- mc.mm = NULL;
- spin_unlock(&mc.lock);
+ /* User wants global or local peak? */
+ if (fd_peak == OFP_PEAK_UNSET)
+ peak = pc->watermark;
+ else
+ peak = max(fd_peak, READ_ONCE(pc->local_watermark));
- mmput(mm);
+ seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
+ return 0;
}
-static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
+static int memory_peak_show(struct seq_file *sf, void *v)
{
- struct cgroup_subsys_state *css;
- struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
- struct mem_cgroup *from;
- struct task_struct *leader, *p;
- struct mm_struct *mm;
- unsigned long move_flags;
- int ret = 0;
-
- /* charge immigration isn't supported on the default hierarchy */
- if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
- return 0;
-
- /*
- * Multi-process migrations only happen on the default hierarchy
- * where charge immigration is not used. Perform charge
- * immigration if @tset contains a leader and whine if there are
- * multiple.
- */
- p = NULL;
- cgroup_taskset_for_each_leader(leader, css, tset) {
- WARN_ON_ONCE(p);
- p = leader;
- memcg = mem_cgroup_from_css(css);
- }
- if (!p)
- return 0;
-
- /*
- * We are now committed to this value whatever it is. Changes in this
- * tunable will only affect upcoming migrations, not the current one.
- * So we need to save it, and keep it going.
- */
- move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
- if (!move_flags)
- return 0;
-
- from = mem_cgroup_from_task(p);
-
- VM_BUG_ON(from == memcg);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
- mm = get_task_mm(p);
- if (!mm)
- return 0;
- /* We move charges only when we move a owner of the mm */
- if (mm->owner == p) {
- VM_BUG_ON(mc.from);
- VM_BUG_ON(mc.to);
- VM_BUG_ON(mc.precharge);
- VM_BUG_ON(mc.moved_charge);
- VM_BUG_ON(mc.moved_swap);
-
- spin_lock(&mc.lock);
- mc.mm = mm;
- mc.from = from;
- mc.to = memcg;
- mc.flags = move_flags;
- spin_unlock(&mc.lock);
- /* We set mc.moving_task later */
-
- ret = mem_cgroup_precharge_mc(mm);
- if (ret)
- mem_cgroup_clear_mc();
- } else {
- mmput(mm);
- }
- return ret;
+ return peak_show(sf, v, &memcg->memory);
}
-static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
+static int peak_open(struct kernfs_open_file *of)
{
- if (mc.to)
- mem_cgroup_clear_mc();
-}
+ struct cgroup_of_peak *ofp = of_peak(of);
-static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
- unsigned long addr, unsigned long end,
- struct mm_walk *walk)
-{
- int ret = 0;
- struct vm_area_struct *vma = walk->vma;
- pte_t *pte;
- spinlock_t *ptl;
- enum mc_target_type target_type;
- union mc_target target;
- struct page *page;
-
- ptl = pmd_trans_huge_lock(pmd, vma);
- if (ptl) {
- if (mc.precharge < HPAGE_PMD_NR) {
- spin_unlock(ptl);
- return 0;
- }
- target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
- if (target_type == MC_TARGET_PAGE) {
- page = target.page;
- if (!isolate_lru_page(page)) {
- if (!mem_cgroup_move_account(page, true,
- mc.from, mc.to)) {
- mc.precharge -= HPAGE_PMD_NR;
- mc.moved_charge += HPAGE_PMD_NR;
- }
- putback_lru_page(page);
- }
- put_page(page);
- } else if (target_type == MC_TARGET_DEVICE) {
- page = target.page;
- if (!mem_cgroup_move_account(page, true,
- mc.from, mc.to)) {
- mc.precharge -= HPAGE_PMD_NR;
- mc.moved_charge += HPAGE_PMD_NR;
- }
- put_page(page);
- }
- spin_unlock(ptl);
- return 0;
- }
-
- if (pmd_trans_unstable(pmd))
- return 0;
-retry:
- pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
- for (; addr != end; addr += PAGE_SIZE) {
- pte_t ptent = *(pte++);
- bool device = false;
- swp_entry_t ent;
-
- if (!mc.precharge)
- break;
-
- switch (get_mctgt_type(vma, addr, ptent, &target)) {
- case MC_TARGET_DEVICE:
- device = true;
- fallthrough;
- case MC_TARGET_PAGE:
- page = target.page;
- /*
- * We can have a part of the split pmd here. Moving it
- * can be done but it would be too convoluted so simply
- * ignore such a partial THP and keep it in original
- * memcg. There should be somebody mapping the head.
- */
- if (PageTransCompound(page))
- goto put;
- if (!device && isolate_lru_page(page))
- goto put;
- if (!mem_cgroup_move_account(page, false,
- mc.from, mc.to)) {
- mc.precharge--;
- /* we uncharge from mc.from later. */
- mc.moved_charge++;
- }
- if (!device)
- putback_lru_page(page);
-put: /* get_mctgt_type() gets the page */
- put_page(page);
- break;
- case MC_TARGET_SWAP:
- ent = target.ent;
- if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
- mc.precharge--;
- mem_cgroup_id_get_many(mc.to, 1);
- /* we fixup other refcnts and charges later. */
- mc.moved_swap++;
- }
- break;
- default:
- break;
- }
- }
- pte_unmap_unlock(pte - 1, ptl);
- cond_resched();
-
- if (addr != end) {
- /*
- * We have consumed all precharges we got in can_attach().
- * We try charge one by one, but don't do any additional
- * charges to mc.to if we have failed in charge once in attach()
- * phase.
- */
- ret = mem_cgroup_do_precharge(1);
- if (!ret)
- goto retry;
- }
-
- return ret;
+ ofp->value = OFP_PEAK_UNSET;
+ return 0;
}
-static const struct mm_walk_ops charge_walk_ops = {
- .pmd_entry = mem_cgroup_move_charge_pte_range,
-};
-
-static void mem_cgroup_move_charge(void)
+static void peak_release(struct kernfs_open_file *of)
{
- lru_add_drain_all();
- /*
- * Signal lock_page_memcg() to take the memcg's move_lock
- * while we're moving its pages to another memcg. Then wait
- * for already started RCU-only updates to finish.
- */
- atomic_inc(&mc.from->moving_account);
- synchronize_rcu();
-retry:
- if (unlikely(!mmap_read_trylock(mc.mm))) {
- /*
- * Someone who are holding the mmap_lock might be waiting in
- * waitq. So we cancel all extra charges, wake up all waiters,
- * and retry. Because we cancel precharges, we might not be able
- * to move enough charges, but moving charge is a best-effort
- * feature anyway, so it wouldn't be a big problem.
- */
- __mem_cgroup_clear_mc();
- cond_resched();
- goto retry;
- }
- /*
- * When we have consumed all precharges and failed in doing
- * additional charge, the page walk just aborts.
- */
- walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
- mmap_read_unlock(mc.mm);
- atomic_dec(&mc.from->moving_account);
-}
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ struct cgroup_of_peak *ofp = of_peak(of);
-static void mem_cgroup_move_task(void)
-{
- if (mc.to) {
- mem_cgroup_move_charge();
- mem_cgroup_clear_mc();
+ if (ofp->value == OFP_PEAK_UNSET) {
+ /* fast path (no writes on this fd) */
+ return;
}
+ spin_lock(&memcg->peaks_lock);
+ list_del(&ofp->list);
+ spin_unlock(&memcg->peaks_lock);
}
-#else /* !CONFIG_MMU */
-static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
-{
- return 0;
-}
-static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
-{
-}
-static void mem_cgroup_move_task(void)
-{
-}
-#endif
-#ifdef CONFIG_LRU_GEN
-static void mem_cgroup_attach(struct cgroup_taskset *tset)
+static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
+ loff_t off, struct page_counter *pc,
+ struct list_head *watchers)
{
- struct task_struct *task;
- struct cgroup_subsys_state *css;
+ unsigned long usage;
+ struct cgroup_of_peak *peer_ctx;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ struct cgroup_of_peak *ofp = of_peak(of);
- /* find the first leader if there is any */
- cgroup_taskset_for_each_leader(task, css, tset)
- break;
+ spin_lock(&memcg->peaks_lock);
- if (!task)
- return;
+ usage = page_counter_read(pc);
+ WRITE_ONCE(pc->local_watermark, usage);
- task_lock(task);
- if (task->mm && READ_ONCE(task->mm->owner) == task)
- lru_gen_migrate_mm(task->mm);
- task_unlock(task);
-}
-#else
-static void mem_cgroup_attach(struct cgroup_taskset *tset)
-{
-}
-#endif /* CONFIG_LRU_GEN */
-
-static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
-{
- if (value == PAGE_COUNTER_MAX)
- seq_puts(m, "max\n");
- else
- seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
+ list_for_each_entry(peer_ctx, watchers, list)
+ if (usage > peer_ctx->value)
+ WRITE_ONCE(peer_ctx->value, usage);
- return 0;
-}
+ /* initial write, register watcher */
+ if (ofp->value == OFP_PEAK_UNSET)
+ list_add(&ofp->list, watchers);
-static u64 memory_current_read(struct cgroup_subsys_state *css,
- struct cftype *cft)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ WRITE_ONCE(ofp->value, usage);
+ spin_unlock(&memcg->peaks_lock);
- return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
+ return nbytes;
}
-static u64 memory_peak_read(struct cgroup_subsys_state *css,
- struct cftype *cft)
+static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
{
- struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- return (u64)memcg->memory.watermark * PAGE_SIZE;
+ return peak_write(of, buf, nbytes, off, &memcg->memory,
+ &memcg->memory_peaks);
}
+#undef OFP_PEAK_UNSET
+
static int memory_min_show(struct seq_file *m, void *v)
{
return seq_puts_memcg_tunable(m,
@@ -6412,6 +4387,9 @@ static ssize_t memory_high_write(struct kernfs_open_file *of,
page_counter_set_high(&memcg->memory, high);
+ if (of->file->f_flags & O_NONBLOCK)
+ goto out;
+
for (;;) {
unsigned long nr_pages = page_counter_read(&memcg->memory);
unsigned long reclaimed;
@@ -6429,13 +4407,12 @@ static ssize_t memory_high_write(struct kernfs_open_file *of,
}
reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
- GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP,
- NULL);
+ GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
if (!reclaimed && !nr_retries--)
break;
}
-
+out:
memcg_wb_domain_size_changed(memcg);
return nbytes;
}
@@ -6462,6 +4439,9 @@ static ssize_t memory_max_write(struct kernfs_open_file *of,
xchg(&memcg->memory.max, max);
+ if (of->file->f_flags & O_NONBLOCK)
+ goto out;
+
for (;;) {
unsigned long nr_pages = page_counter_read(&memcg->memory);
@@ -6479,8 +4459,7 @@ static ssize_t memory_max_write(struct kernfs_open_file *of,
if (nr_reclaims) {
if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
- GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP,
- NULL))
+ GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
nr_reclaims--;
continue;
}
@@ -6488,12 +4467,17 @@ static ssize_t memory_max_write(struct kernfs_open_file *of,
memcg_memory_event(memcg, MEMCG_OOM);
if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
break;
+ cond_resched();
}
-
+out:
memcg_wb_domain_size_changed(memcg);
return nbytes;
}
+/*
+ * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
+ * if any new events become available.
+ */
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
@@ -6504,6 +4488,8 @@ static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
atomic_long_read(&events[MEMCG_OOM_KILL]));
seq_printf(m, "oom_group_kill %lu\n",
atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
+ seq_printf(m, "sock_throttled %lu\n",
+ atomic_long_read(&events[MEMCG_SOCK_THROTTLED]));
}
static int memory_events_show(struct seq_file *m, void *v)
@@ -6522,14 +4508,16 @@ static int memory_events_local_show(struct seq_file *m, void *v)
return 0;
}
-static int memory_stat_show(struct seq_file *m, void *v)
+int memory_stat_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
- char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
+ char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
+ struct seq_buf s;
if (!buf)
return -ENOMEM;
- memory_stat_format(memcg, buf, PAGE_SIZE);
+ seq_buf_init(&s, buf, SEQ_BUF_SIZE);
+ memory_stat_format(memcg, &s);
seq_puts(m, buf);
kfree(buf);
return 0;
@@ -6539,7 +4527,8 @@ static int memory_stat_show(struct seq_file *m, void *v)
static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
int item)
{
- return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
+ return lruvec_page_state(lruvec, item) *
+ memcg_page_state_output_unit(item);
}
static int memory_numa_stat_show(struct seq_file *m, void *v)
@@ -6547,7 +4536,7 @@ static int memory_numa_stat_show(struct seq_file *m, void *v)
int i;
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
- mem_cgroup_flush_stats();
+ mem_cgroup_flush_stats(memcg);
for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
int nid;
@@ -6576,7 +4565,7 @@ static int memory_oom_group_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
- seq_printf(m, "%d\n", memcg->oom_group);
+ seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
return 0;
}
@@ -6598,83 +4587,20 @@ static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
if (oom_group != 0 && oom_group != 1)
return -EINVAL;
- memcg->oom_group = oom_group;
+ WRITE_ONCE(memcg->oom_group, oom_group);
return nbytes;
}
-enum {
- MEMORY_RECLAIM_NODES = 0,
- MEMORY_RECLAIM_NULL,
-};
-
-static const match_table_t if_tokens = {
- { MEMORY_RECLAIM_NODES, "nodes=%s" },
- { MEMORY_RECLAIM_NULL, NULL },
-};
-
static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- unsigned int nr_retries = MAX_RECLAIM_RETRIES;
- unsigned long nr_to_reclaim, nr_reclaimed = 0;
- unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP |
- MEMCG_RECLAIM_PROACTIVE;
- char *old_buf, *start;
- substring_t args[MAX_OPT_ARGS];
- int token;
- char value[256];
- nodemask_t nodemask = NODE_MASK_ALL;
-
- buf = strstrip(buf);
-
- old_buf = buf;
- nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
- if (buf == old_buf)
- return -EINVAL;
-
- buf = strstrip(buf);
-
- while ((start = strsep(&buf, " ")) != NULL) {
- if (!strlen(start))
- continue;
- token = match_token(start, if_tokens, args);
- match_strlcpy(value, args, sizeof(value));
- switch (token) {
- case MEMORY_RECLAIM_NODES:
- if (nodelist_parse(value, nodemask) < 0)
- return -EINVAL;
- break;
- default:
- return -EINVAL;
- }
- }
-
- while (nr_reclaimed < nr_to_reclaim) {
- unsigned long reclaimed;
-
- if (signal_pending(current))
- return -EINTR;
-
- /*
- * This is the final attempt, drain percpu lru caches in the
- * hope of introducing more evictable pages for
- * try_to_free_mem_cgroup_pages().
- */
- if (!nr_retries)
- lru_add_drain_all();
-
- reclaimed = try_to_free_mem_cgroup_pages(memcg,
- nr_to_reclaim - nr_reclaimed,
- GFP_KERNEL, reclaim_options,
- &nodemask);
-
- if (!reclaimed && !nr_retries--)
- return -EAGAIN;
+ int ret;
- nr_reclaimed += reclaimed;
- }
+ ret = user_proactive_reclaim(buf, memcg, NULL);
+ if (ret)
+ return ret;
return nbytes;
}
@@ -6688,7 +4614,10 @@ static struct cftype memory_files[] = {
{
.name = "peak",
.flags = CFTYPE_NOT_ON_ROOT,
- .read_u64 = memory_peak_read,
+ .open = peak_open,
+ .release = peak_release,
+ .seq_show = memory_peak_show,
+ .write = memory_peak_write,
},
{
.name = "min",
@@ -6758,131 +4687,16 @@ struct cgroup_subsys memory_cgrp_subsys = {
.css_free = mem_cgroup_css_free,
.css_reset = mem_cgroup_css_reset,
.css_rstat_flush = mem_cgroup_css_rstat_flush,
- .can_attach = mem_cgroup_can_attach,
.attach = mem_cgroup_attach,
- .cancel_attach = mem_cgroup_cancel_attach,
- .post_attach = mem_cgroup_move_task,
+ .fork = mem_cgroup_fork,
+ .exit = mem_cgroup_exit,
.dfl_cftypes = memory_files,
+#ifdef CONFIG_MEMCG_V1
.legacy_cftypes = mem_cgroup_legacy_files,
+#endif
.early_init = 0,
};
-/*
- * This function calculates an individual cgroup's effective
- * protection which is derived from its own memory.min/low, its
- * parent's and siblings' settings, as well as the actual memory
- * distribution in the tree.
- *
- * The following rules apply to the effective protection values:
- *
- * 1. At the first level of reclaim, effective protection is equal to
- * the declared protection in memory.min and memory.low.
- *
- * 2. To enable safe delegation of the protection configuration, at
- * subsequent levels the effective protection is capped to the
- * parent's effective protection.
- *
- * 3. To make complex and dynamic subtrees easier to configure, the
- * user is allowed to overcommit the declared protection at a given
- * level. If that is the case, the parent's effective protection is
- * distributed to the children in proportion to how much protection
- * they have declared and how much of it they are utilizing.
- *
- * This makes distribution proportional, but also work-conserving:
- * if one cgroup claims much more protection than it uses memory,
- * the unused remainder is available to its siblings.
- *
- * 4. Conversely, when the declared protection is undercommitted at a
- * given level, the distribution of the larger parental protection
- * budget is NOT proportional. A cgroup's protection from a sibling
- * is capped to its own memory.min/low setting.
- *
- * 5. However, to allow protecting recursive subtrees from each other
- * without having to declare each individual cgroup's fixed share
- * of the ancestor's claim to protection, any unutilized -
- * "floating" - protection from up the tree is distributed in
- * proportion to each cgroup's *usage*. This makes the protection
- * neutral wrt sibling cgroups and lets them compete freely over
- * the shared parental protection budget, but it protects the
- * subtree as a whole from neighboring subtrees.
- *
- * Note that 4. and 5. are not in conflict: 4. is about protecting
- * against immediate siblings whereas 5. is about protecting against
- * neighboring subtrees.
- */
-static unsigned long effective_protection(unsigned long usage,
- unsigned long parent_usage,
- unsigned long setting,
- unsigned long parent_effective,
- unsigned long siblings_protected)
-{
- unsigned long protected;
- unsigned long ep;
-
- protected = min(usage, setting);
- /*
- * If all cgroups at this level combined claim and use more
- * protection then what the parent affords them, distribute
- * shares in proportion to utilization.
- *
- * We are using actual utilization rather than the statically
- * claimed protection in order to be work-conserving: claimed
- * but unused protection is available to siblings that would
- * otherwise get a smaller chunk than what they claimed.
- */
- if (siblings_protected > parent_effective)
- return protected * parent_effective / siblings_protected;
-
- /*
- * Ok, utilized protection of all children is within what the
- * parent affords them, so we know whatever this child claims
- * and utilizes is effectively protected.
- *
- * If there is unprotected usage beyond this value, reclaim
- * will apply pressure in proportion to that amount.
- *
- * If there is unutilized protection, the cgroup will be fully
- * shielded from reclaim, but we do return a smaller value for
- * protection than what the group could enjoy in theory. This
- * is okay. With the overcommit distribution above, effective
- * protection is always dependent on how memory is actually
- * consumed among the siblings anyway.
- */
- ep = protected;
-
- /*
- * If the children aren't claiming (all of) the protection
- * afforded to them by the parent, distribute the remainder in
- * proportion to the (unprotected) memory of each cgroup. That
- * way, cgroups that aren't explicitly prioritized wrt each
- * other compete freely over the allowance, but they are
- * collectively protected from neighboring trees.
- *
- * We're using unprotected memory for the weight so that if
- * some cgroups DO claim explicit protection, we don't protect
- * the same bytes twice.
- *
- * Check both usage and parent_usage against the respective
- * protected values. One should imply the other, but they
- * aren't read atomically - make sure the division is sane.
- */
- if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
- return ep;
- if (parent_effective > siblings_protected &&
- parent_usage > siblings_protected &&
- usage > protected) {
- unsigned long unclaimed;
-
- unclaimed = parent_effective - siblings_protected;
- unclaimed *= usage - protected;
- unclaimed /= parent_usage - siblings_protected;
-
- ep += unclaimed;
- }
-
- return ep;
-}
-
/**
* mem_cgroup_calculate_protection - check if memory consumption is in the normal range
* @root: the top ancestor of the sub-tree being checked
@@ -6894,8 +4708,8 @@ static unsigned long effective_protection(unsigned long usage,
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
struct mem_cgroup *memcg)
{
- unsigned long usage, parent_usage;
- struct mem_cgroup *parent;
+ bool recursive_protection =
+ cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
if (mem_cgroup_disabled())
return;
@@ -6903,58 +4717,21 @@ void mem_cgroup_calculate_protection(struct mem_cgroup *root,
if (!root)
root = root_mem_cgroup;
- /*
- * Effective values of the reclaim targets are ignored so they
- * can be stale. Have a look at mem_cgroup_protection for more
- * details.
- * TODO: calculation should be more robust so that we do not need
- * that special casing.
- */
- if (memcg == root)
- return;
-
- usage = page_counter_read(&memcg->memory);
- if (!usage)
- return;
-
- parent = parent_mem_cgroup(memcg);
-
- if (parent == root) {
- memcg->memory.emin = READ_ONCE(memcg->memory.min);
- memcg->memory.elow = READ_ONCE(memcg->memory.low);
- return;
- }
-
- parent_usage = page_counter_read(&parent->memory);
-
- WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
- READ_ONCE(memcg->memory.min),
- READ_ONCE(parent->memory.emin),
- atomic_long_read(&parent->memory.children_min_usage)));
-
- WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
- READ_ONCE(memcg->memory.low),
- READ_ONCE(parent->memory.elow),
- atomic_long_read(&parent->memory.children_low_usage)));
+ page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
}
static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
gfp_t gfp)
{
- long nr_pages = folio_nr_pages(folio);
int ret;
- ret = try_charge(memcg, gfp, nr_pages);
+ ret = try_charge(memcg, gfp, folio_nr_pages(folio));
if (ret)
goto out;
css_get(&memcg->css);
commit_charge(folio, memcg);
-
- local_irq_disable();
- mem_cgroup_charge_statistics(memcg, nr_pages);
- memcg_check_events(memcg, folio_nid(folio));
- local_irq_enable();
+ memcg1_commit_charge(folio, memcg);
out:
return ret;
}
@@ -6972,6 +4749,40 @@ int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
}
/**
+ * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
+ * @folio: folio being charged
+ * @gfp: reclaim mode
+ *
+ * This function is called when allocating a huge page folio, after the page has
+ * already been obtained and charged to the appropriate hugetlb cgroup
+ * controller (if it is enabled).
+ *
+ * Returns ENOMEM if the memcg is already full.
+ * Returns 0 if either the charge was successful, or if we skip the charging.
+ */
+int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
+{
+ struct mem_cgroup *memcg = get_mem_cgroup_from_current();
+ int ret = 0;
+
+ /*
+ * Even memcg does not account for hugetlb, we still want to update
+ * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
+ * charging the memcg.
+ */
+ if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
+ !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ goto out;
+
+ if (charge_memcg(folio, memcg, gfp))
+ ret = -ENOMEM;
+
+out:
+ mem_cgroup_put(memcg);
+ return ret;
+}
+
+/**
* mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
* @folio: folio to charge.
* @mm: mm context of the victim
@@ -7006,39 +4817,6 @@ int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
return ret;
}
-/*
- * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
- * @entry: swap entry for which the page is charged
- *
- * Call this function after successfully adding the charged page to swapcache.
- *
- * Note: This function assumes the page for which swap slot is being uncharged
- * is order 0 page.
- */
-void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
-{
- /*
- * Cgroup1's unified memory+swap counter has been charged with the
- * new swapcache page, finish the transfer by uncharging the swap
- * slot. The swap slot would also get uncharged when it dies, but
- * it can stick around indefinitely and we'd count the page twice
- * the entire time.
- *
- * Cgroup2 has separate resource counters for memory and swap,
- * so this is a non-issue here. Memory and swap charge lifetimes
- * correspond 1:1 to page and swap slot lifetimes: we charge the
- * page to memory here, and uncharge swap when the slot is freed.
- */
- if (!mem_cgroup_disabled() && do_memsw_account()) {
- /*
- * The swap entry might not get freed for a long time,
- * let's not wait for it. The page already received a
- * memory+swap charge, drop the swap entry duplicate.
- */
- mem_cgroup_uncharge_swap(entry, 1);
- }
-}
-
struct uncharge_gather {
struct mem_cgroup *memcg;
unsigned long nr_memory;
@@ -7054,22 +4832,16 @@ static inline void uncharge_gather_clear(struct uncharge_gather *ug)
static void uncharge_batch(const struct uncharge_gather *ug)
{
- unsigned long flags;
-
if (ug->nr_memory) {
- page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
- if (do_memsw_account())
- page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
- if (ug->nr_kmem)
- memcg_account_kmem(ug->memcg, -ug->nr_kmem);
- memcg_oom_recover(ug->memcg);
+ memcg_uncharge(ug->memcg, ug->nr_memory);
+ if (ug->nr_kmem) {
+ mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
+ memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
+ }
+ memcg1_oom_recover(ug->memcg);
}
- local_irq_save(flags);
- __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
- __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
- memcg_check_events(ug->memcg, ug->nid);
- local_irq_restore(flags);
+ memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
/* drop reference from uncharge_folio */
css_put(&ug->memcg->css);
@@ -7128,6 +4900,7 @@ static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
ug->nr_memory += nr_pages;
ug->pgpgout++;
+ WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
folio->memcg_data = 0;
}
@@ -7139,7 +4912,7 @@ void __mem_cgroup_uncharge(struct folio *folio)
struct uncharge_gather ug;
/* Don't touch folio->lru of any random page, pre-check: */
- if (!folio_memcg(folio))
+ if (!folio_memcg_charged(folio))
return;
uncharge_gather_clear(&ug);
@@ -7147,27 +4920,20 @@ void __mem_cgroup_uncharge(struct folio *folio)
uncharge_batch(&ug);
}
-/**
- * __mem_cgroup_uncharge_list - uncharge a list of page
- * @page_list: list of pages to uncharge
- *
- * Uncharge a list of pages previously charged with
- * __mem_cgroup_charge().
- */
-void __mem_cgroup_uncharge_list(struct list_head *page_list)
+void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
{
struct uncharge_gather ug;
- struct folio *folio;
+ unsigned int i;
uncharge_gather_clear(&ug);
- list_for_each_entry(folio, page_list, lru)
- uncharge_folio(folio, &ug);
+ for (i = 0; i < folios->nr; i++)
+ uncharge_folio(folios->folios[i], &ug);
if (ug.memcg)
uncharge_batch(&ug);
}
/**
- * mem_cgroup_migrate - Charge a folio's replacement.
+ * mem_cgroup_replace_folio - Charge a folio's replacement.
* @old: Currently circulating folio.
* @new: Replacement folio.
*
@@ -7176,11 +4942,10 @@ void __mem_cgroup_uncharge_list(struct list_head *page_list)
*
* Both folios must be locked, @new->mapping must be set up.
*/
-void mem_cgroup_migrate(struct folio *old, struct folio *new)
+void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
{
struct mem_cgroup *memcg;
long nr_pages = folio_nr_pages(new);
- unsigned long flags;
VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
@@ -7191,7 +4956,7 @@ void mem_cgroup_migrate(struct folio *old, struct folio *new)
return;
/* Page cache replacement: new folio already charged? */
- if (folio_memcg(new))
+ if (folio_memcg_charged(new))
return;
memcg = folio_memcg(old);
@@ -7208,11 +4973,49 @@ void mem_cgroup_migrate(struct folio *old, struct folio *new)
css_get(&memcg->css);
commit_charge(new, memcg);
+ memcg1_commit_charge(new, memcg);
+}
+
+/**
+ * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
+ * @old: Currently circulating folio.
+ * @new: Replacement folio.
+ *
+ * Transfer the memcg data from the old folio to the new folio for migration.
+ * The old folio's data info will be cleared. Note that the memory counters
+ * will remain unchanged throughout the process.
+ *
+ * Both folios must be locked, @new->mapping must be set up.
+ */
+void mem_cgroup_migrate(struct folio *old, struct folio *new)
+{
+ struct mem_cgroup *memcg;
- local_irq_save(flags);
- mem_cgroup_charge_statistics(memcg, nr_pages);
- memcg_check_events(memcg, folio_nid(new));
- local_irq_restore(flags);
+ VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
+ VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
+ VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
+ VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
+ VM_BUG_ON_FOLIO(folio_test_lru(old), old);
+
+ if (mem_cgroup_disabled())
+ return;
+
+ memcg = folio_memcg(old);
+ /*
+ * Note that it is normal to see !memcg for a hugetlb folio.
+ * For e.g, itt could have been allocated when memory_hugetlb_accounting
+ * was not selected.
+ */
+ VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
+ if (!memcg)
+ return;
+
+ /* Transfer the charge and the css ref */
+ commit_charge(new, memcg);
+
+ /* Warning should never happen, so don't worry about refcount non-0 */
+ WARN_ON_ONCE(folio_unqueue_deferred_split(old));
+ old->memcg_data = 0;
}
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
@@ -7233,7 +5036,7 @@ void mem_cgroup_sk_alloc(struct sock *sk)
memcg = mem_cgroup_from_task(current);
if (mem_cgroup_is_root(memcg))
goto out;
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
goto out;
if (css_tryget(&memcg->css))
sk->sk_memcg = memcg;
@@ -7243,38 +5046,46 @@ out:
void mem_cgroup_sk_free(struct sock *sk)
{
- if (sk->sk_memcg)
- css_put(&sk->sk_memcg->css);
+ struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
+
+ if (memcg)
+ css_put(&memcg->css);
+}
+
+void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
+{
+ struct mem_cgroup *memcg;
+
+ if (sk->sk_memcg == newsk->sk_memcg)
+ return;
+
+ mem_cgroup_sk_free(newsk);
+
+ memcg = mem_cgroup_from_sk(sk);
+ if (memcg)
+ css_get(&memcg->css);
+
+ newsk->sk_memcg = sk->sk_memcg;
}
/**
- * mem_cgroup_charge_skmem - charge socket memory
- * @memcg: memcg to charge
+ * mem_cgroup_sk_charge - charge socket memory
+ * @sk: socket in memcg to charge
* @nr_pages: number of pages to charge
* @gfp_mask: reclaim mode
*
* Charges @nr_pages to @memcg. Returns %true if the charge fit within
* @memcg's configured limit, %false if it doesn't.
*/
-bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
- gfp_t gfp_mask)
+bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
+ gfp_t gfp_mask)
{
- if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
- struct page_counter *fail;
+ struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
- if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
- memcg->tcpmem_pressure = 0;
- return true;
- }
- memcg->tcpmem_pressure = 1;
- if (gfp_mask & __GFP_NOFAIL) {
- page_counter_charge(&memcg->tcpmem, nr_pages);
- return true;
- }
- return false;
- }
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
- if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
+ if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
return true;
}
@@ -7283,14 +5094,16 @@ bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
}
/**
- * mem_cgroup_uncharge_skmem - uncharge socket memory
- * @memcg: memcg to uncharge
+ * mem_cgroup_sk_uncharge - uncharge socket memory
+ * @sk: socket in memcg to uncharge
* @nr_pages: number of pages to uncharge
*/
-void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
+void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages)
{
+ struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
+
if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
- page_counter_uncharge(&memcg->tcpmem, nr_pages);
+ memcg1_uncharge_skmem(memcg, nr_pages);
return;
}
@@ -7310,22 +5123,25 @@ static int __init cgroup_memory(char *s)
cgroup_memory_nosocket = true;
if (!strcmp(token, "nokmem"))
cgroup_memory_nokmem = true;
+ if (!strcmp(token, "nobpf"))
+ cgroup_memory_nobpf = true;
}
return 1;
}
__setup("cgroup.memory=", cgroup_memory);
/*
- * subsys_initcall() for memory controller.
+ * Memory controller init before cgroup_init() initialize root_mem_cgroup.
*
* Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
* context because of lock dependencies (cgroup_lock -> cpu hotplug) but
* basically everything that doesn't depend on a specific mem_cgroup structure
* should be initialized from here.
*/
-static int __init mem_cgroup_init(void)
+int __init mem_cgroup_init(void)
{
- int cpu, node;
+ unsigned int memcg_size;
+ int cpu;
/*
* Currently s32 type (can refer to struct batched_lruvec_stat) is
@@ -7338,113 +5154,24 @@ static int __init mem_cgroup_init(void)
cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
memcg_hotplug_cpu_dead);
- for_each_possible_cpu(cpu)
+ for_each_possible_cpu(cpu) {
INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
- drain_local_stock);
-
- for_each_node(node) {
- struct mem_cgroup_tree_per_node *rtpn;
+ drain_local_memcg_stock);
+ INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
+ drain_local_obj_stock);
+ }
- rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
- node_online(node) ? node : NUMA_NO_NODE);
+ memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
+ memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
+ SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
- rtpn->rb_root = RB_ROOT;
- rtpn->rb_rightmost = NULL;
- spin_lock_init(&rtpn->lock);
- soft_limit_tree.rb_tree_per_node[node] = rtpn;
- }
+ memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
+ SLAB_PANIC | SLAB_HWCACHE_ALIGN);
return 0;
}
-subsys_initcall(mem_cgroup_init);
#ifdef CONFIG_SWAP
-static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
-{
- while (!refcount_inc_not_zero(&memcg->id.ref)) {
- /*
- * The root cgroup cannot be destroyed, so it's refcount must
- * always be >= 1.
- */
- if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
- VM_BUG_ON(1);
- break;
- }
- memcg = parent_mem_cgroup(memcg);
- if (!memcg)
- memcg = root_mem_cgroup;
- }
- return memcg;
-}
-
-/**
- * mem_cgroup_swapout - transfer a memsw charge to swap
- * @folio: folio whose memsw charge to transfer
- * @entry: swap entry to move the charge to
- *
- * Transfer the memsw charge of @folio to @entry.
- */
-void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
-{
- struct mem_cgroup *memcg, *swap_memcg;
- unsigned int nr_entries;
- unsigned short oldid;
-
- VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
- VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
-
- if (mem_cgroup_disabled())
- return;
-
- if (!do_memsw_account())
- return;
-
- memcg = folio_memcg(folio);
-
- VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
- if (!memcg)
- return;
-
- /*
- * In case the memcg owning these pages has been offlined and doesn't
- * have an ID allocated to it anymore, charge the closest online
- * ancestor for the swap instead and transfer the memory+swap charge.
- */
- swap_memcg = mem_cgroup_id_get_online(memcg);
- nr_entries = folio_nr_pages(folio);
- /* Get references for the tail pages, too */
- if (nr_entries > 1)
- mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
- oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
- nr_entries);
- VM_BUG_ON_FOLIO(oldid, folio);
- mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
-
- folio->memcg_data = 0;
-
- if (!mem_cgroup_is_root(memcg))
- page_counter_uncharge(&memcg->memory, nr_entries);
-
- if (memcg != swap_memcg) {
- if (!mem_cgroup_is_root(swap_memcg))
- page_counter_charge(&swap_memcg->memsw, nr_entries);
- page_counter_uncharge(&memcg->memsw, nr_entries);
- }
-
- /*
- * Interrupts should be disabled here because the caller holds the
- * i_pages lock which is taken with interrupts-off. It is
- * important here to have the interrupts disabled because it is the
- * only synchronisation we have for updating the per-CPU variables.
- */
- memcg_stats_lock();
- mem_cgroup_charge_statistics(memcg, -nr_entries);
- memcg_stats_unlock();
- memcg_check_events(memcg, folio_nid(folio));
-
- css_put(&memcg->css);
-}
-
/**
* __mem_cgroup_try_charge_swap - try charging swap space for a folio
* @folio: folio being added to swap
@@ -7459,7 +5186,6 @@ int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
unsigned int nr_pages = folio_nr_pages(folio);
struct page_counter *counter;
struct mem_cgroup *memcg;
- unsigned short oldid;
if (do_memsw_account())
return 0;
@@ -7488,10 +5214,10 @@ int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
/* Get references for the tail pages, too */
if (nr_pages > 1)
mem_cgroup_id_get_many(memcg, nr_pages - 1);
- oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
- VM_BUG_ON_FOLIO(oldid, folio);
mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
+ swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
+
return 0;
}
@@ -7505,10 +5231,7 @@ void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
struct mem_cgroup *memcg;
unsigned short id;
- if (mem_cgroup_disabled())
- return;
-
- id = swap_cgroup_record(entry, 0, nr_pages);
+ id = swap_cgroup_clear(entry, nr_pages);
rcu_read_lock();
memcg = mem_cgroup_from_id(id);
if (memcg) {
@@ -7565,9 +5288,13 @@ bool mem_cgroup_swap_full(struct folio *folio)
static int __init setup_swap_account(char *s)
{
- pr_warn_once("The swapaccount= commandline option is deprecated. "
- "Please report your usecase to linux-mm@kvack.org if you "
- "depend on this functionality.\n");
+ bool res;
+
+ if (!kstrtobool(s, &res) && !res)
+ pr_warn_once("The swapaccount=0 commandline option is deprecated "
+ "in favor of configuring swap control via cgroupfs. "
+ "Please report your usecase to linux-mm@kvack.org if you "
+ "depend on this functionality.\n");
return 1;
}
__setup("swapaccount=", setup_swap_account);
@@ -7580,6 +5307,22 @@ static u64 swap_current_read(struct cgroup_subsys_state *css,
return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}
+static int swap_peak_show(struct seq_file *sf, void *v)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
+
+ return peak_show(sf, v, &memcg->swap);
+}
+
+static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+
+ return peak_write(of, buf, nbytes, off, &memcg->swap,
+ &memcg->swap_peaks);
+}
+
static int swap_high_show(struct seq_file *m, void *v)
{
return seq_puts_memcg_tunable(m,
@@ -7659,6 +5402,14 @@ static struct cftype swap_files[] = {
.write = swap_max_write,
},
{
+ .name = "swap.peak",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .open = peak_open,
+ .release = peak_release,
+ .seq_show = swap_peak_show,
+ .write = swap_peak_write,
+ },
+ {
.name = "swap.events",
.flags = CFTYPE_NOT_ON_ROOT,
.file_offset = offsetof(struct mem_cgroup, swap_events_file),
@@ -7667,34 +5418,7 @@ static struct cftype swap_files[] = {
{ } /* terminate */
};
-static struct cftype memsw_files[] = {
- {
- .name = "memsw.usage_in_bytes",
- .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "memsw.max_usage_in_bytes",
- .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "memsw.limit_in_bytes",
- .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
- .write = mem_cgroup_write,
- .read_u64 = mem_cgroup_read_u64,
- },
- {
- .name = "memsw.failcnt",
- .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
- .write = mem_cgroup_reset,
- .read_u64 = mem_cgroup_read_u64,
- },
- { }, /* terminate */
-};
-
-#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
+#ifdef CONFIG_ZSWAP
/**
* obj_cgroup_may_zswap - check if this cgroup can zswap
* @objcg: the object cgroup
@@ -7703,7 +5427,7 @@ static struct cftype memsw_files[] = {
*
* This doesn't check for specific headroom, and it is not atomic
* either. But with zswap, the size of the allocation is only known
- * once compression has occured, and this optimistic pre-check avoids
+ * once compression has occurred, and this optimistic pre-check avoids
* spending cycles on compression when there is already no room left
* or zswap is disabled altogether somewhere in the hierarchy.
*/
@@ -7728,7 +5452,8 @@ bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
break;
}
- cgroup_rstat_flush(memcg->css.cgroup);
+ /* Force flush to get accurate stats for charging */
+ __mem_cgroup_flush_stats(memcg, true);
pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
if (pages < max)
continue;
@@ -7744,8 +5469,8 @@ bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
* @objcg: the object cgroup
* @size: size of compressed object
*
- * This forces the charge after obj_cgroup_may_swap() allowed
- * compression and storage in zwap for this cgroup to go ahead.
+ * This forces the charge after obj_cgroup_may_zswap() allowed
+ * compression and storage in zswap for this cgroup to go ahead.
*/
void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
{
@@ -7790,11 +5515,26 @@ void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
rcu_read_unlock();
}
+bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
+{
+ /* if zswap is disabled, do not block pages going to the swapping device */
+ if (!zswap_is_enabled())
+ return true;
+
+ for (; memcg; memcg = parent_mem_cgroup(memcg))
+ if (!READ_ONCE(memcg->zswap_writeback))
+ return false;
+
+ return true;
+}
+
static u64 zswap_current_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
- cgroup_rstat_flush(css->cgroup);
- return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+ mem_cgroup_flush_stats(memcg);
+ return memcg_page_state(memcg, MEMCG_ZSWAP_B);
}
static int zswap_max_show(struct seq_file *m, void *v)
@@ -7820,6 +5560,31 @@ static ssize_t zswap_max_write(struct kernfs_open_file *of,
return nbytes;
}
+static int zswap_writeback_show(struct seq_file *m, void *v)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
+
+ seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
+ return 0;
+}
+
+static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ int zswap_writeback;
+ ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
+
+ if (parse_ret)
+ return parse_ret;
+
+ if (zswap_writeback != 0 && zswap_writeback != 1)
+ return -EINVAL;
+
+ WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
+ return nbytes;
+}
+
static struct cftype zswap_files[] = {
{
.name = "zswap.current",
@@ -7832,9 +5597,14 @@ static struct cftype zswap_files[] = {
.seq_show = zswap_max_show,
.write = zswap_max_write,
},
+ {
+ .name = "zswap.writeback",
+ .seq_show = zswap_writeback_show,
+ .write = zswap_writeback_write,
+ },
{ } /* terminate */
};
-#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
+#endif /* CONFIG_ZSWAP */
static int __init mem_cgroup_swap_init(void)
{
@@ -7842,8 +5612,10 @@ static int __init mem_cgroup_swap_init(void)
return 0;
WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
+#ifdef CONFIG_MEMCG_V1
WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
-#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
+#endif
+#ifdef CONFIG_ZSWAP
WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
#endif
return 0;
@@ -7851,3 +5623,21 @@ static int __init mem_cgroup_swap_init(void)
subsys_initcall(mem_cgroup_swap_init);
#endif /* CONFIG_SWAP */
+
+bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
+{
+ return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
+}
+
+void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg)
+{
+ if (mem_cgroup_disabled() || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return;
+
+ if (!memcg)
+ memcg = root_mem_cgroup;
+
+ pr_warn("Memory cgroup min protection %lukB -- low protection %lukB",
+ K(atomic_long_read(&memcg->memory.children_min_usage)*PAGE_SIZE),
+ K(atomic_long_read(&memcg->memory.children_low_usage)*PAGE_SIZE));
+}