summaryrefslogtreecommitdiff
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c9846
1 files changed, 4237 insertions, 5609 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index d12ca6f3c293..be810c1fbfc3 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
/* memcontrol.c - Memory Controller
*
* Copyright IBM Corporation, 2007
@@ -14,23 +15,27 @@
* Copyright (C) 2012 Parallels Inc. and Google Inc.
* Authors: Glauber Costa and Suleiman Souhlal
*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
+ * Native page reclaim
+ * Charge lifetime sanitation
+ * Lockless page tracking & accounting
+ * Unified hierarchy configuration model
+ * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
*
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
+ * Per memcg lru locking
+ * Copyright (C) 2020 Alibaba, Inc, Alex Shi
*/
-#include <linux/res_counter.h>
+#include <linux/cgroup-defs.h>
+#include <linux/page_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
-#include <linux/mm.h>
+#include <linux/cpuset.h>
+#include <linux/sched/mm.h>
+#include <linux/shmem_fs.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
+#include <linux/pagevec.h>
+#include <linux/vm_event_item.h>
#include <linux/smp.h>
#include <linux/page-flags.h>
#include <linux/backing-dev.h>
@@ -38,1008 +43,834 @@
#include <linux/rcupdate.h>
#include <linux/limits.h>
#include <linux/export.h>
+#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
-#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/spinlock.h>
-#include <linux/eventfd.h>
-#include <linux/sort.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
-#include <linux/vmalloc.h>
#include <linux/vmpressure.h>
+#include <linux/memremap.h>
#include <linux/mm_inline.h>
-#include <linux/page_cgroup.h>
+#include <linux/swap_cgroup.h>
#include <linux/cpu.h>
#include <linux/oom.h>
+#include <linux/lockdep.h>
+#include <linux/resume_user_mode.h>
+#include <linux/psi.h>
+#include <linux/seq_buf.h>
+#include <linux/sched/isolation.h>
+#include <linux/kmemleak.h>
#include "internal.h"
#include <net/sock.h>
#include <net/ip.h>
-#include <net/tcp_memcontrol.h>
+#include "slab.h"
+#include "memcontrol-v1.h"
-#include <asm/uaccess.h>
+#include <linux/uaccess.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/memcg.h>
+#undef CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>
-struct cgroup_subsys mem_cgroup_subsys __read_mostly;
-EXPORT_SYMBOL(mem_cgroup_subsys);
+struct cgroup_subsys memory_cgrp_subsys __read_mostly;
+EXPORT_SYMBOL(memory_cgrp_subsys);
-#define MEM_CGROUP_RECLAIM_RETRIES 5
-static struct mem_cgroup *root_mem_cgroup __read_mostly;
+struct mem_cgroup *root_mem_cgroup __read_mostly;
+EXPORT_SYMBOL(root_mem_cgroup);
-#ifdef CONFIG_MEMCG_SWAP
-/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
-int do_swap_account __read_mostly;
+/* Active memory cgroup to use from an interrupt context */
+DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
+EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
-/* for remember boot option*/
-#ifdef CONFIG_MEMCG_SWAP_ENABLED
-static int really_do_swap_account __initdata = 1;
-#else
-static int really_do_swap_account __initdata = 0;
-#endif
+/* Socket memory accounting disabled? */
+static bool cgroup_memory_nosocket __ro_after_init;
-#else
-#define do_swap_account 0
+/* Kernel memory accounting disabled? */
+static bool cgroup_memory_nokmem __ro_after_init;
+
+/* BPF memory accounting disabled? */
+static bool cgroup_memory_nobpf __ro_after_init;
+
+static struct kmem_cache *memcg_cachep;
+static struct kmem_cache *memcg_pn_cachep;
+
+#ifdef CONFIG_CGROUP_WRITEBACK
+static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif
+static inline bool task_is_dying(void)
+{
+ return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
+ (current->flags & PF_EXITING);
+}
-/*
- * Statistics for memory cgroup.
- */
-enum mem_cgroup_stat_index {
- /*
- * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
- */
- MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
- MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
- MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
- MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
- MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
- MEM_CGROUP_STAT_NSTATS,
-};
+/* Some nice accessors for the vmpressure. */
+struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
+{
+ if (!memcg)
+ memcg = root_mem_cgroup;
+ return &memcg->vmpressure;
+}
-static const char * const mem_cgroup_stat_names[] = {
- "cache",
- "rss",
- "rss_huge",
- "mapped_file",
- "swap",
-};
+struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
+{
+ return container_of(vmpr, struct mem_cgroup, vmpressure);
+}
-enum mem_cgroup_events_index {
- MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
- MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
- MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
- MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
- MEM_CGROUP_EVENTS_NSTATS,
-};
+#define SEQ_BUF_SIZE SZ_4K
+#define CURRENT_OBJCG_UPDATE_BIT 0
+#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
-static const char * const mem_cgroup_events_names[] = {
- "pgpgin",
- "pgpgout",
- "pgfault",
- "pgmajfault",
-};
+static DEFINE_SPINLOCK(objcg_lock);
-static const char * const mem_cgroup_lru_names[] = {
- "inactive_anon",
- "active_anon",
- "inactive_file",
- "active_file",
- "unevictable",
-};
+bool mem_cgroup_kmem_disabled(void)
+{
+ return cgroup_memory_nokmem;
+}
-/*
- * Per memcg event counter is incremented at every pagein/pageout. With THP,
- * it will be incremated by the number of pages. This counter is used for
- * for trigger some periodic events. This is straightforward and better
- * than using jiffies etc. to handle periodic memcg event.
- */
-enum mem_cgroup_events_target {
- MEM_CGROUP_TARGET_THRESH,
- MEM_CGROUP_TARGET_SOFTLIMIT,
- MEM_CGROUP_TARGET_NUMAINFO,
- MEM_CGROUP_NTARGETS,
-};
-#define THRESHOLDS_EVENTS_TARGET 128
-#define SOFTLIMIT_EVENTS_TARGET 1024
-#define NUMAINFO_EVENTS_TARGET 1024
-
-struct mem_cgroup_stat_cpu {
- long count[MEM_CGROUP_STAT_NSTATS];
- unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
- unsigned long nr_page_events;
- unsigned long targets[MEM_CGROUP_NTARGETS];
-};
+static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
+
+static void obj_cgroup_release(struct percpu_ref *ref)
+{
+ struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
+ unsigned int nr_bytes;
+ unsigned int nr_pages;
+ unsigned long flags;
-struct mem_cgroup_reclaim_iter {
/*
- * last scanned hierarchy member. Valid only if last_dead_count
- * matches memcg->dead_count of the hierarchy root group.
+ * At this point all allocated objects are freed, and
+ * objcg->nr_charged_bytes can't have an arbitrary byte value.
+ * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
+ *
+ * The following sequence can lead to it:
+ * 1) CPU0: objcg == stock->cached_objcg
+ * 2) CPU1: we do a small allocation (e.g. 92 bytes),
+ * PAGE_SIZE bytes are charged
+ * 3) CPU1: a process from another memcg is allocating something,
+ * the stock if flushed,
+ * objcg->nr_charged_bytes = PAGE_SIZE - 92
+ * 5) CPU0: we do release this object,
+ * 92 bytes are added to stock->nr_bytes
+ * 6) CPU0: stock is flushed,
+ * 92 bytes are added to objcg->nr_charged_bytes
+ *
+ * In the result, nr_charged_bytes == PAGE_SIZE.
+ * This page will be uncharged in obj_cgroup_release().
*/
- struct mem_cgroup *last_visited;
- unsigned long last_dead_count;
+ nr_bytes = atomic_read(&objcg->nr_charged_bytes);
+ WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
+ nr_pages = nr_bytes >> PAGE_SHIFT;
- /* scan generation, increased every round-trip */
- unsigned int generation;
-};
+ if (nr_pages) {
+ struct mem_cgroup *memcg;
-/*
- * per-zone information in memory controller.
- */
-struct mem_cgroup_per_zone {
- struct lruvec lruvec;
- unsigned long lru_size[NR_LRU_LISTS];
-
- struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
-
- struct rb_node tree_node; /* RB tree node */
- unsigned long long usage_in_excess;/* Set to the value by which */
- /* the soft limit is exceeded*/
- bool on_tree;
- struct mem_cgroup *memcg; /* Back pointer, we cannot */
- /* use container_of */
-};
+ memcg = get_mem_cgroup_from_objcg(objcg);
+ mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
+ memcg1_account_kmem(memcg, -nr_pages);
+ if (!mem_cgroup_is_root(memcg))
+ memcg_uncharge(memcg, nr_pages);
+ mem_cgroup_put(memcg);
+ }
-struct mem_cgroup_per_node {
- struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
-};
+ spin_lock_irqsave(&objcg_lock, flags);
+ list_del(&objcg->list);
+ spin_unlock_irqrestore(&objcg_lock, flags);
-/*
- * Cgroups above their limits are maintained in a RB-Tree, independent of
- * their hierarchy representation
- */
+ percpu_ref_exit(ref);
+ kfree_rcu(objcg, rcu);
+}
-struct mem_cgroup_tree_per_zone {
- struct rb_root rb_root;
- spinlock_t lock;
-};
+static struct obj_cgroup *obj_cgroup_alloc(void)
+{
+ struct obj_cgroup *objcg;
+ int ret;
-struct mem_cgroup_tree_per_node {
- struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
-};
+ objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
+ if (!objcg)
+ return NULL;
-struct mem_cgroup_tree {
- struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
-};
+ ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
+ GFP_KERNEL);
+ if (ret) {
+ kfree(objcg);
+ return NULL;
+ }
+ INIT_LIST_HEAD(&objcg->list);
+ return objcg;
+}
-static struct mem_cgroup_tree soft_limit_tree __read_mostly;
+static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
+ struct mem_cgroup *parent)
+{
+ struct obj_cgroup *objcg, *iter;
-struct mem_cgroup_threshold {
- struct eventfd_ctx *eventfd;
- u64 threshold;
-};
+ objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
-/* For threshold */
-struct mem_cgroup_threshold_ary {
- /* An array index points to threshold just below or equal to usage. */
- int current_threshold;
- /* Size of entries[] */
- unsigned int size;
- /* Array of thresholds */
- struct mem_cgroup_threshold entries[0];
-};
+ spin_lock_irq(&objcg_lock);
-struct mem_cgroup_thresholds {
- /* Primary thresholds array */
- struct mem_cgroup_threshold_ary *primary;
- /*
- * Spare threshold array.
- * This is needed to make mem_cgroup_unregister_event() "never fail".
- * It must be able to store at least primary->size - 1 entries.
- */
- struct mem_cgroup_threshold_ary *spare;
-};
+ /* 1) Ready to reparent active objcg. */
+ list_add(&objcg->list, &memcg->objcg_list);
+ /* 2) Reparent active objcg and already reparented objcgs to parent. */
+ list_for_each_entry(iter, &memcg->objcg_list, list)
+ WRITE_ONCE(iter->memcg, parent);
+ /* 3) Move already reparented objcgs to the parent's list */
+ list_splice(&memcg->objcg_list, &parent->objcg_list);
-/* for OOM */
-struct mem_cgroup_eventfd_list {
- struct list_head list;
- struct eventfd_ctx *eventfd;
-};
+ spin_unlock_irq(&objcg_lock);
-static void mem_cgroup_threshold(struct mem_cgroup *memcg);
-static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
+ percpu_ref_kill(&objcg->refcnt);
+}
/*
- * The memory controller data structure. The memory controller controls both
- * page cache and RSS per cgroup. We would eventually like to provide
- * statistics based on the statistics developed by Rik Van Riel for clock-pro,
- * to help the administrator determine what knobs to tune.
- *
- * TODO: Add a water mark for the memory controller. Reclaim will begin when
- * we hit the water mark. May be even add a low water mark, such that
- * no reclaim occurs from a cgroup at it's low water mark, this is
- * a feature that will be implemented much later in the future.
+ * A lot of the calls to the cache allocation functions are expected to be
+ * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
+ * conditional to this static branch, we'll have to allow modules that does
+ * kmem_cache_alloc and the such to see this symbol as well
*/
-struct mem_cgroup {
- struct cgroup_subsys_state css;
- /*
- * the counter to account for memory usage
- */
- struct res_counter res;
-
- /* vmpressure notifications */
- struct vmpressure vmpressure;
-
- /*
- * the counter to account for mem+swap usage.
- */
- struct res_counter memsw;
-
- /*
- * the counter to account for kernel memory usage.
- */
- struct res_counter kmem;
- /*
- * Should the accounting and control be hierarchical, per subtree?
- */
- bool use_hierarchy;
- unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
-
- bool oom_lock;
- atomic_t under_oom;
+DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
+EXPORT_SYMBOL(memcg_kmem_online_key);
- int swappiness;
- /* OOM-Killer disable */
- int oom_kill_disable;
+DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
+EXPORT_SYMBOL(memcg_bpf_enabled_key);
- /* set when res.limit == memsw.limit */
- bool memsw_is_minimum;
-
- /* protect arrays of thresholds */
- struct mutex thresholds_lock;
+/**
+ * mem_cgroup_css_from_folio - css of the memcg associated with a folio
+ * @folio: folio of interest
+ *
+ * If memcg is bound to the default hierarchy, css of the memcg associated
+ * with @folio is returned. The returned css remains associated with @folio
+ * until it is released.
+ *
+ * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
+ * is returned.
+ */
+struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
+{
+ struct mem_cgroup *memcg = folio_memcg(folio);
- /* thresholds for memory usage. RCU-protected */
- struct mem_cgroup_thresholds thresholds;
+ if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ memcg = root_mem_cgroup;
- /* thresholds for mem+swap usage. RCU-protected */
- struct mem_cgroup_thresholds memsw_thresholds;
+ return &memcg->css;
+}
- /* For oom notifier event fd */
- struct list_head oom_notify;
+/**
+ * page_cgroup_ino - return inode number of the memcg a page is charged to
+ * @page: the page
+ *
+ * Look up the closest online ancestor of the memory cgroup @page is charged to
+ * and return its inode number or 0 if @page is not charged to any cgroup. It
+ * is safe to call this function without holding a reference to @page.
+ *
+ * Note, this function is inherently racy, because there is nothing to prevent
+ * the cgroup inode from getting torn down and potentially reallocated a moment
+ * after page_cgroup_ino() returns, so it only should be used by callers that
+ * do not care (such as procfs interfaces).
+ */
+ino_t page_cgroup_ino(struct page *page)
+{
+ struct mem_cgroup *memcg;
+ unsigned long ino = 0;
- /*
- * Should we move charges of a task when a task is moved into this
- * mem_cgroup ? And what type of charges should we move ?
- */
- unsigned long move_charge_at_immigrate;
- /*
- * set > 0 if pages under this cgroup are moving to other cgroup.
- */
- atomic_t moving_account;
- /* taken only while moving_account > 0 */
- spinlock_t move_lock;
- /*
- * percpu counter.
- */
- struct mem_cgroup_stat_cpu __percpu *stat;
- /*
- * used when a cpu is offlined or other synchronizations
- * See mem_cgroup_read_stat().
- */
- struct mem_cgroup_stat_cpu nocpu_base;
- spinlock_t pcp_counter_lock;
+ rcu_read_lock();
+ /* page_folio() is racy here, but the entire function is racy anyway */
+ memcg = folio_memcg_check(page_folio(page));
- atomic_t dead_count;
-#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
- struct tcp_memcontrol tcp_mem;
+ while (memcg && !(memcg->css.flags & CSS_ONLINE))
+ memcg = parent_mem_cgroup(memcg);
+ if (memcg)
+ ino = cgroup_ino(memcg->css.cgroup);
+ rcu_read_unlock();
+ return ino;
+}
+EXPORT_SYMBOL_GPL(page_cgroup_ino);
+
+/* Subset of node_stat_item for memcg stats */
+static const unsigned int memcg_node_stat_items[] = {
+ NR_INACTIVE_ANON,
+ NR_ACTIVE_ANON,
+ NR_INACTIVE_FILE,
+ NR_ACTIVE_FILE,
+ NR_UNEVICTABLE,
+ NR_SLAB_RECLAIMABLE_B,
+ NR_SLAB_UNRECLAIMABLE_B,
+ WORKINGSET_REFAULT_ANON,
+ WORKINGSET_REFAULT_FILE,
+ WORKINGSET_ACTIVATE_ANON,
+ WORKINGSET_ACTIVATE_FILE,
+ WORKINGSET_RESTORE_ANON,
+ WORKINGSET_RESTORE_FILE,
+ WORKINGSET_NODERECLAIM,
+ NR_ANON_MAPPED,
+ NR_FILE_MAPPED,
+ NR_FILE_PAGES,
+ NR_FILE_DIRTY,
+ NR_WRITEBACK,
+ NR_SHMEM,
+ NR_SHMEM_THPS,
+ NR_FILE_THPS,
+ NR_ANON_THPS,
+ NR_KERNEL_STACK_KB,
+ NR_PAGETABLE,
+ NR_SECONDARY_PAGETABLE,
+#ifdef CONFIG_SWAP
+ NR_SWAPCACHE,
#endif
-#if defined(CONFIG_MEMCG_KMEM)
- /* analogous to slab_common's slab_caches list. per-memcg */
- struct list_head memcg_slab_caches;
- /* Not a spinlock, we can take a lot of time walking the list */
- struct mutex slab_caches_mutex;
- /* Index in the kmem_cache->memcg_params->memcg_caches array */
- int kmemcg_id;
+#ifdef CONFIG_NUMA_BALANCING
+ PGPROMOTE_SUCCESS,
#endif
-
- int last_scanned_node;
-#if MAX_NUMNODES > 1
- nodemask_t scan_nodes;
- atomic_t numainfo_events;
- atomic_t numainfo_updating;
+ PGDEMOTE_KSWAPD,
+ PGDEMOTE_DIRECT,
+ PGDEMOTE_KHUGEPAGED,
+ PGDEMOTE_PROACTIVE,
+#ifdef CONFIG_HUGETLB_PAGE
+ NR_HUGETLB,
#endif
-
- struct mem_cgroup_per_node *nodeinfo[0];
- /* WARNING: nodeinfo must be the last member here */
};
-static size_t memcg_size(void)
-{
- return sizeof(struct mem_cgroup) +
- nr_node_ids * sizeof(struct mem_cgroup_per_node);
-}
-
-/* internal only representation about the status of kmem accounting. */
-enum {
- KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
- KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
- KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
+static const unsigned int memcg_stat_items[] = {
+ MEMCG_SWAP,
+ MEMCG_SOCK,
+ MEMCG_PERCPU_B,
+ MEMCG_VMALLOC,
+ MEMCG_KMEM,
+ MEMCG_ZSWAP_B,
+ MEMCG_ZSWAPPED,
};
-/* We account when limit is on, but only after call sites are patched */
-#define KMEM_ACCOUNTED_MASK \
- ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
+#define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
+#define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
+ ARRAY_SIZE(memcg_stat_items))
+#define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
+static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
-#ifdef CONFIG_MEMCG_KMEM
-static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
+static void init_memcg_stats(void)
{
- set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
-}
+ u8 i, j = 0;
-static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
-{
- return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
-}
+ BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
-static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
-{
- set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
-}
+ memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
-static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
-{
- clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
-}
+ for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
+ mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
-static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
-{
- /*
- * Our caller must use css_get() first, because memcg_uncharge_kmem()
- * will call css_put() if it sees the memcg is dead.
- */
- smp_wmb();
- if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
- set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
+ for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
+ mem_cgroup_stats_index[memcg_stat_items[i]] = j;
}
-static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
+static inline int memcg_stats_index(int idx)
{
- return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
- &memcg->kmem_account_flags);
+ return mem_cgroup_stats_index[idx];
}
-#endif
-/* Stuffs for move charges at task migration. */
-/*
- * Types of charges to be moved. "move_charge_at_immitgrate" and
- * "immigrate_flags" are treated as a left-shifted bitmap of these types.
- */
-enum move_type {
- MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
- MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
- NR_MOVE_TYPE,
+struct lruvec_stats_percpu {
+ /* Local (CPU and cgroup) state */
+ long state[NR_MEMCG_NODE_STAT_ITEMS];
+
+ /* Delta calculation for lockless upward propagation */
+ long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
};
-/* "mc" and its members are protected by cgroup_mutex */
-static struct move_charge_struct {
- spinlock_t lock; /* for from, to */
- struct mem_cgroup *from;
- struct mem_cgroup *to;
- unsigned long immigrate_flags;
- unsigned long precharge;
- unsigned long moved_charge;
- unsigned long moved_swap;
- struct task_struct *moving_task; /* a task moving charges */
- wait_queue_head_t waitq; /* a waitq for other context */
-} mc = {
- .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
- .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
+struct lruvec_stats {
+ /* Aggregated (CPU and subtree) state */
+ long state[NR_MEMCG_NODE_STAT_ITEMS];
+
+ /* Non-hierarchical (CPU aggregated) state */
+ long state_local[NR_MEMCG_NODE_STAT_ITEMS];
+
+ /* Pending child counts during tree propagation */
+ long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
};
-static bool move_anon(void)
+unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
{
- return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
+ struct mem_cgroup_per_node *pn;
+ long x;
+ int i;
+
+ if (mem_cgroup_disabled())
+ return node_page_state(lruvec_pgdat(lruvec), idx);
+
+ i = memcg_stats_index(idx);
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return 0;
+
+ pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
+ x = READ_ONCE(pn->lruvec_stats->state[i]);
+#ifdef CONFIG_SMP
+ if (x < 0)
+ x = 0;
+#endif
+ return x;
}
-static bool move_file(void)
+unsigned long lruvec_page_state_local(struct lruvec *lruvec,
+ enum node_stat_item idx)
{
- return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
-}
+ struct mem_cgroup_per_node *pn;
+ long x;
+ int i;
-/*
- * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
- * limit reclaim to prevent infinite loops, if they ever occur.
- */
-#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
-#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
-
-enum charge_type {
- MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
- MEM_CGROUP_CHARGE_TYPE_ANON,
- MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
- MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
- NR_CHARGE_TYPE,
-};
+ if (mem_cgroup_disabled())
+ return node_page_state(lruvec_pgdat(lruvec), idx);
-/* for encoding cft->private value on file */
-enum res_type {
- _MEM,
- _MEMSWAP,
- _OOM_TYPE,
- _KMEM,
-};
+ i = memcg_stats_index(idx);
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return 0;
-#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
-#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
-#define MEMFILE_ATTR(val) ((val) & 0xffff)
-/* Used for OOM nofiier */
-#define OOM_CONTROL (0)
+ pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
+ x = READ_ONCE(pn->lruvec_stats->state_local[i]);
+#ifdef CONFIG_SMP
+ if (x < 0)
+ x = 0;
+#endif
+ return x;
+}
-/*
- * Reclaim flags for mem_cgroup_hierarchical_reclaim
- */
-#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
-#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
-#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
-#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
+/* Subset of vm_event_item to report for memcg event stats */
+static const unsigned int memcg_vm_event_stat[] = {
+#ifdef CONFIG_MEMCG_V1
+ PGPGIN,
+ PGPGOUT,
+#endif
+ PSWPIN,
+ PSWPOUT,
+ PGSCAN_KSWAPD,
+ PGSCAN_DIRECT,
+ PGSCAN_KHUGEPAGED,
+ PGSCAN_PROACTIVE,
+ PGSTEAL_KSWAPD,
+ PGSTEAL_DIRECT,
+ PGSTEAL_KHUGEPAGED,
+ PGSTEAL_PROACTIVE,
+ PGFAULT,
+ PGMAJFAULT,
+ PGREFILL,
+ PGACTIVATE,
+ PGDEACTIVATE,
+ PGLAZYFREE,
+ PGLAZYFREED,
+#ifdef CONFIG_SWAP
+ SWPIN_ZERO,
+ SWPOUT_ZERO,
+#endif
+#ifdef CONFIG_ZSWAP
+ ZSWPIN,
+ ZSWPOUT,
+ ZSWPWB,
+#endif
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ THP_FAULT_ALLOC,
+ THP_COLLAPSE_ALLOC,
+ THP_SWPOUT,
+ THP_SWPOUT_FALLBACK,
+#endif
+#ifdef CONFIG_NUMA_BALANCING
+ NUMA_PAGE_MIGRATE,
+ NUMA_PTE_UPDATES,
+ NUMA_HINT_FAULTS,
+#endif
+};
-/*
- * The memcg_create_mutex will be held whenever a new cgroup is created.
- * As a consequence, any change that needs to protect against new child cgroups
- * appearing has to hold it as well.
- */
-static DEFINE_MUTEX(memcg_create_mutex);
+#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
+static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
-static inline
-struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
+static void init_memcg_events(void)
{
- return container_of(s, struct mem_cgroup, css);
-}
+ u8 i;
-/* Some nice accessors for the vmpressure. */
-struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
-{
- if (!memcg)
- memcg = root_mem_cgroup;
- return &memcg->vmpressure;
-}
+ BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
-struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
-{
- return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
-}
+ memset(mem_cgroup_events_index, U8_MAX,
+ sizeof(mem_cgroup_events_index));
-struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
-{
- return &mem_cgroup_from_css(css)->vmpressure;
+ for (i = 0; i < NR_MEMCG_EVENTS; ++i)
+ mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
}
-static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
+static inline int memcg_events_index(enum vm_event_item idx)
{
- return (memcg == root_mem_cgroup);
+ return mem_cgroup_events_index[idx];
}
-/* Writing them here to avoid exposing memcg's inner layout */
-#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
+struct memcg_vmstats_percpu {
+ /* Stats updates since the last flush */
+ unsigned int stats_updates;
-void sock_update_memcg(struct sock *sk)
-{
- if (mem_cgroup_sockets_enabled) {
- struct mem_cgroup *memcg;
- struct cg_proto *cg_proto;
+ /* Cached pointers for fast iteration in memcg_rstat_updated() */
+ struct memcg_vmstats_percpu __percpu *parent_pcpu;
+ struct memcg_vmstats *vmstats;
- BUG_ON(!sk->sk_prot->proto_cgroup);
+ /* The above should fit a single cacheline for memcg_rstat_updated() */
- /* Socket cloning can throw us here with sk_cgrp already
- * filled. It won't however, necessarily happen from
- * process context. So the test for root memcg given
- * the current task's memcg won't help us in this case.
- *
- * Respecting the original socket's memcg is a better
- * decision in this case.
- */
- if (sk->sk_cgrp) {
- BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
- css_get(&sk->sk_cgrp->memcg->css);
- return;
- }
+ /* Local (CPU and cgroup) page state & events */
+ long state[MEMCG_VMSTAT_SIZE];
+ unsigned long events[NR_MEMCG_EVENTS];
- rcu_read_lock();
- memcg = mem_cgroup_from_task(current);
- cg_proto = sk->sk_prot->proto_cgroup(memcg);
- if (!mem_cgroup_is_root(memcg) &&
- memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
- sk->sk_cgrp = cg_proto;
- }
- rcu_read_unlock();
- }
-}
-EXPORT_SYMBOL(sock_update_memcg);
+ /* Delta calculation for lockless upward propagation */
+ long state_prev[MEMCG_VMSTAT_SIZE];
+ unsigned long events_prev[NR_MEMCG_EVENTS];
+} ____cacheline_aligned;
-void sock_release_memcg(struct sock *sk)
-{
- if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
- struct mem_cgroup *memcg;
- WARN_ON(!sk->sk_cgrp->memcg);
- memcg = sk->sk_cgrp->memcg;
- css_put(&sk->sk_cgrp->memcg->css);
- }
-}
+struct memcg_vmstats {
+ /* Aggregated (CPU and subtree) page state & events */
+ long state[MEMCG_VMSTAT_SIZE];
+ unsigned long events[NR_MEMCG_EVENTS];
-struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
-{
- if (!memcg || mem_cgroup_is_root(memcg))
- return NULL;
+ /* Non-hierarchical (CPU aggregated) page state & events */
+ long state_local[MEMCG_VMSTAT_SIZE];
+ unsigned long events_local[NR_MEMCG_EVENTS];
- return &memcg->tcp_mem.cg_proto;
-}
-EXPORT_SYMBOL(tcp_proto_cgroup);
+ /* Pending child counts during tree propagation */
+ long state_pending[MEMCG_VMSTAT_SIZE];
+ unsigned long events_pending[NR_MEMCG_EVENTS];
-static void disarm_sock_keys(struct mem_cgroup *memcg)
-{
- if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
- return;
- static_key_slow_dec(&memcg_socket_limit_enabled);
-}
-#else
-static void disarm_sock_keys(struct mem_cgroup *memcg)
-{
-}
-#endif
+ /* Stats updates since the last flush */
+ atomic_t stats_updates;
+};
-#ifdef CONFIG_MEMCG_KMEM
/*
- * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
- * There are two main reasons for not using the css_id for this:
- * 1) this works better in sparse environments, where we have a lot of memcgs,
- * but only a few kmem-limited. Or also, if we have, for instance, 200
- * memcgs, and none but the 200th is kmem-limited, we'd have to have a
- * 200 entry array for that.
+ * memcg and lruvec stats flushing
*
- * 2) In order not to violate the cgroup API, we would like to do all memory
- * allocation in ->create(). At that point, we haven't yet allocated the
- * css_id. Having a separate index prevents us from messing with the cgroup
- * core for this
+ * Many codepaths leading to stats update or read are performance sensitive and
+ * adding stats flushing in such codepaths is not desirable. So, to optimize the
+ * flushing the kernel does:
*
- * The current size of the caches array is stored in
- * memcg_limited_groups_array_size. It will double each time we have to
- * increase it.
- */
-static DEFINE_IDA(kmem_limited_groups);
-int memcg_limited_groups_array_size;
-
-/*
- * MIN_SIZE is different than 1, because we would like to avoid going through
- * the alloc/free process all the time. In a small machine, 4 kmem-limited
- * cgroups is a reasonable guess. In the future, it could be a parameter or
- * tunable, but that is strictly not necessary.
+ * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
+ * rstat update tree grow unbounded.
*
- * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
- * this constant directly from cgroup, but it is understandable that this is
- * better kept as an internal representation in cgroup.c. In any case, the
- * css_id space is not getting any smaller, and we don't have to necessarily
- * increase ours as well if it increases.
+ * 2) Flush the stats synchronously on reader side only when there are more than
+ * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
+ * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
+ * only for 2 seconds due to (1).
*/
-#define MEMCG_CACHES_MIN_SIZE 4
-#define MEMCG_CACHES_MAX_SIZE 65535
+static void flush_memcg_stats_dwork(struct work_struct *w);
+static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
+static u64 flush_last_time;
-/*
- * A lot of the calls to the cache allocation functions are expected to be
- * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
- * conditional to this static branch, we'll have to allow modules that does
- * kmem_cache_alloc and the such to see this symbol as well
- */
-struct static_key memcg_kmem_enabled_key;
-EXPORT_SYMBOL(memcg_kmem_enabled_key);
+#define FLUSH_TIME (2UL*HZ)
-static void disarm_kmem_keys(struct mem_cgroup *memcg)
-{
- if (memcg_kmem_is_active(memcg)) {
- static_key_slow_dec(&memcg_kmem_enabled_key);
- ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
- }
- /*
- * This check can't live in kmem destruction function,
- * since the charges will outlive the cgroup
- */
- WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
-}
-#else
-static void disarm_kmem_keys(struct mem_cgroup *memcg)
+static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
{
+ return atomic_read(&vmstats->stats_updates) >
+ MEMCG_CHARGE_BATCH * num_online_cpus();
}
-#endif /* CONFIG_MEMCG_KMEM */
-static void disarm_static_keys(struct mem_cgroup *memcg)
+static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
+ int cpu)
{
- disarm_sock_keys(memcg);
- disarm_kmem_keys(memcg);
-}
+ struct memcg_vmstats_percpu __percpu *statc_pcpu;
+ struct memcg_vmstats_percpu *statc;
+ unsigned int stats_updates;
-static void drain_all_stock_async(struct mem_cgroup *memcg);
+ if (!val)
+ return;
-static struct mem_cgroup_per_zone *
-mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
-{
- VM_BUG_ON((unsigned)nid >= nr_node_ids);
- return &memcg->nodeinfo[nid]->zoneinfo[zid];
-}
+ css_rstat_updated(&memcg->css, cpu);
+ statc_pcpu = memcg->vmstats_percpu;
+ for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
+ statc = this_cpu_ptr(statc_pcpu);
+ /*
+ * If @memcg is already flushable then all its ancestors are
+ * flushable as well and also there is no need to increase
+ * stats_updates.
+ */
+ if (memcg_vmstats_needs_flush(statc->vmstats))
+ break;
-struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
-{
- return &memcg->css;
+ stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
+ abs(val));
+ if (stats_updates < MEMCG_CHARGE_BATCH)
+ continue;
+
+ stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
+ atomic_add(stats_updates, &statc->vmstats->stats_updates);
+ }
}
-static struct mem_cgroup_per_zone *
-page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
+static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
{
- int nid = page_to_nid(page);
- int zid = page_zonenum(page);
+ bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
- return mem_cgroup_zoneinfo(memcg, nid, zid);
-}
+ trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
+ force, needs_flush);
-static struct mem_cgroup_tree_per_zone *
-soft_limit_tree_node_zone(int nid, int zid)
-{
- return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
-}
+ if (!force && !needs_flush)
+ return;
-static struct mem_cgroup_tree_per_zone *
-soft_limit_tree_from_page(struct page *page)
-{
- int nid = page_to_nid(page);
- int zid = page_zonenum(page);
+ if (mem_cgroup_is_root(memcg))
+ WRITE_ONCE(flush_last_time, jiffies_64);
- return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
+ css_rstat_flush(&memcg->css);
}
-static void
-__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
- struct mem_cgroup_per_zone *mz,
- struct mem_cgroup_tree_per_zone *mctz,
- unsigned long long new_usage_in_excess)
+/*
+ * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
+ * @memcg: root of the subtree to flush
+ *
+ * Flushing is serialized by the underlying global rstat lock. There is also a
+ * minimum amount of work to be done even if there are no stat updates to flush.
+ * Hence, we only flush the stats if the updates delta exceeds a threshold. This
+ * avoids unnecessary work and contention on the underlying lock.
+ */
+void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
{
- struct rb_node **p = &mctz->rb_root.rb_node;
- struct rb_node *parent = NULL;
- struct mem_cgroup_per_zone *mz_node;
-
- if (mz->on_tree)
+ if (mem_cgroup_disabled())
return;
- mz->usage_in_excess = new_usage_in_excess;
- if (!mz->usage_in_excess)
- return;
- while (*p) {
- parent = *p;
- mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
- tree_node);
- if (mz->usage_in_excess < mz_node->usage_in_excess)
- p = &(*p)->rb_left;
- /*
- * We can't avoid mem cgroups that are over their soft
- * limit by the same amount
- */
- else if (mz->usage_in_excess >= mz_node->usage_in_excess)
- p = &(*p)->rb_right;
- }
- rb_link_node(&mz->tree_node, parent, p);
- rb_insert_color(&mz->tree_node, &mctz->rb_root);
- mz->on_tree = true;
-}
+ if (!memcg)
+ memcg = root_mem_cgroup;
-static void
-__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
- struct mem_cgroup_per_zone *mz,
- struct mem_cgroup_tree_per_zone *mctz)
-{
- if (!mz->on_tree)
- return;
- rb_erase(&mz->tree_node, &mctz->rb_root);
- mz->on_tree = false;
+ __mem_cgroup_flush_stats(memcg, false);
}
-static void
-mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
- struct mem_cgroup_per_zone *mz,
- struct mem_cgroup_tree_per_zone *mctz)
+void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
{
- spin_lock(&mctz->lock);
- __mem_cgroup_remove_exceeded(memcg, mz, mctz);
- spin_unlock(&mctz->lock);
+ /* Only flush if the periodic flusher is one full cycle late */
+ if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
+ mem_cgroup_flush_stats(memcg);
}
-
-static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
+static void flush_memcg_stats_dwork(struct work_struct *w)
{
- unsigned long long excess;
- struct mem_cgroup_per_zone *mz;
- struct mem_cgroup_tree_per_zone *mctz;
- int nid = page_to_nid(page);
- int zid = page_zonenum(page);
- mctz = soft_limit_tree_from_page(page);
-
/*
- * Necessary to update all ancestors when hierarchy is used.
- * because their event counter is not touched.
+ * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
+ * in latency-sensitive paths is as cheap as possible.
*/
- for (; memcg; memcg = parent_mem_cgroup(memcg)) {
- mz = mem_cgroup_zoneinfo(memcg, nid, zid);
- excess = res_counter_soft_limit_excess(&memcg->res);
- /*
- * We have to update the tree if mz is on RB-tree or
- * mem is over its softlimit.
- */
- if (excess || mz->on_tree) {
- spin_lock(&mctz->lock);
- /* if on-tree, remove it */
- if (mz->on_tree)
- __mem_cgroup_remove_exceeded(memcg, mz, mctz);
- /*
- * Insert again. mz->usage_in_excess will be updated.
- * If excess is 0, no tree ops.
- */
- __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
- spin_unlock(&mctz->lock);
- }
- }
-}
-
-static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
-{
- int node, zone;
- struct mem_cgroup_per_zone *mz;
- struct mem_cgroup_tree_per_zone *mctz;
-
- for_each_node(node) {
- for (zone = 0; zone < MAX_NR_ZONES; zone++) {
- mz = mem_cgroup_zoneinfo(memcg, node, zone);
- mctz = soft_limit_tree_node_zone(node, zone);
- mem_cgroup_remove_exceeded(memcg, mz, mctz);
- }
- }
+ __mem_cgroup_flush_stats(root_mem_cgroup, true);
+ queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
}
-static struct mem_cgroup_per_zone *
-__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
+unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
{
- struct rb_node *rightmost = NULL;
- struct mem_cgroup_per_zone *mz;
+ long x;
+ int i = memcg_stats_index(idx);
-retry:
- mz = NULL;
- rightmost = rb_last(&mctz->rb_root);
- if (!rightmost)
- goto done; /* Nothing to reclaim from */
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return 0;
- mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
- /*
- * Remove the node now but someone else can add it back,
- * we will to add it back at the end of reclaim to its correct
- * position in the tree.
- */
- __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
- if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
- !css_tryget(&mz->memcg->css))
- goto retry;
-done:
- return mz;
+ x = READ_ONCE(memcg->vmstats->state[i]);
+#ifdef CONFIG_SMP
+ if (x < 0)
+ x = 0;
+#endif
+ return x;
}
-static struct mem_cgroup_per_zone *
-mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
+static int memcg_page_state_unit(int item);
+
+/*
+ * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
+ * up non-zero sub-page updates to 1 page as zero page updates are ignored.
+ */
+static int memcg_state_val_in_pages(int idx, int val)
{
- struct mem_cgroup_per_zone *mz;
+ int unit = memcg_page_state_unit(idx);
- spin_lock(&mctz->lock);
- mz = __mem_cgroup_largest_soft_limit_node(mctz);
- spin_unlock(&mctz->lock);
- return mz;
+ if (!val || unit == PAGE_SIZE)
+ return val;
+ else
+ return max(val * unit / PAGE_SIZE, 1UL);
}
-/*
- * Implementation Note: reading percpu statistics for memcg.
- *
- * Both of vmstat[] and percpu_counter has threshold and do periodic
- * synchronization to implement "quick" read. There are trade-off between
- * reading cost and precision of value. Then, we may have a chance to implement
- * a periodic synchronizion of counter in memcg's counter.
- *
- * But this _read() function is used for user interface now. The user accounts
- * memory usage by memory cgroup and he _always_ requires exact value because
- * he accounts memory. Even if we provide quick-and-fuzzy read, we always
- * have to visit all online cpus and make sum. So, for now, unnecessary
- * synchronization is not implemented. (just implemented for cpu hotplug)
- *
- * If there are kernel internal actions which can make use of some not-exact
- * value, and reading all cpu value can be performance bottleneck in some
- * common workload, threashold and synchonization as vmstat[] should be
- * implemented.
+/**
+ * mod_memcg_state - update cgroup memory statistics
+ * @memcg: the memory cgroup
+ * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
+ * @val: delta to add to the counter, can be negative
*/
-static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
- enum mem_cgroup_stat_index idx)
+void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
+ int val)
{
- long val = 0;
+ int i = memcg_stats_index(idx);
int cpu;
- get_online_cpus();
- for_each_online_cpu(cpu)
- val += per_cpu(memcg->stat->count[idx], cpu);
-#ifdef CONFIG_HOTPLUG_CPU
- spin_lock(&memcg->pcp_counter_lock);
- val += memcg->nocpu_base.count[idx];
- spin_unlock(&memcg->pcp_counter_lock);
-#endif
- put_online_cpus();
- return val;
-}
+ if (mem_cgroup_disabled())
+ return;
-static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
- bool charge)
-{
- int val = (charge) ? 1 : -1;
- this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return;
+
+ cpu = get_cpu();
+
+ this_cpu_add(memcg->vmstats_percpu->state[i], val);
+ val = memcg_state_val_in_pages(idx, val);
+ memcg_rstat_updated(memcg, val, cpu);
+ trace_mod_memcg_state(memcg, idx, val);
+
+ put_cpu();
}
-static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
- enum mem_cgroup_events_index idx)
+#ifdef CONFIG_MEMCG_V1
+/* idx can be of type enum memcg_stat_item or node_stat_item. */
+unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
{
- unsigned long val = 0;
- int cpu;
+ long x;
+ int i = memcg_stats_index(idx);
- for_each_online_cpu(cpu)
- val += per_cpu(memcg->stat->events[idx], cpu);
-#ifdef CONFIG_HOTPLUG_CPU
- spin_lock(&memcg->pcp_counter_lock);
- val += memcg->nocpu_base.events[idx];
- spin_unlock(&memcg->pcp_counter_lock);
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return 0;
+
+ x = READ_ONCE(memcg->vmstats->state_local[i]);
+#ifdef CONFIG_SMP
+ if (x < 0)
+ x = 0;
#endif
- return val;
+ return x;
}
+#endif
-static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
- struct page *page,
- bool anon, int nr_pages)
+static void mod_memcg_lruvec_state(struct lruvec *lruvec,
+ enum node_stat_item idx,
+ int val)
{
- preempt_disable();
+ struct mem_cgroup_per_node *pn;
+ struct mem_cgroup *memcg;
+ int i = memcg_stats_index(idx);
+ int cpu;
- /*
- * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
- * counted as CACHE even if it's on ANON LRU.
- */
- if (anon)
- __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
- nr_pages);
- else
- __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
- nr_pages);
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return;
- if (PageTransHuge(page))
- __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
- nr_pages);
+ pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
+ memcg = pn->memcg;
- /* pagein of a big page is an event. So, ignore page size */
- if (nr_pages > 0)
- __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
- else {
- __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
- nr_pages = -nr_pages; /* for event */
- }
+ cpu = get_cpu();
- __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
+ /* Update memcg */
+ this_cpu_add(memcg->vmstats_percpu->state[i], val);
- preempt_enable();
+ /* Update lruvec */
+ this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
+
+ val = memcg_state_val_in_pages(idx, val);
+ memcg_rstat_updated(memcg, val, cpu);
+ trace_mod_memcg_lruvec_state(memcg, idx, val);
+
+ put_cpu();
}
-unsigned long
-mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
+/**
+ * mod_lruvec_state - update lruvec memory statistics
+ * @lruvec: the lruvec
+ * @idx: the stat item
+ * @val: delta to add to the counter, can be negative
+ *
+ * The lruvec is the intersection of the NUMA node and a cgroup. This
+ * function updates the all three counters that are affected by a
+ * change of state at this level: per-node, per-cgroup, per-lruvec.
+ */
+void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
+ int val)
{
- struct mem_cgroup_per_zone *mz;
+ /* Update node */
+ mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
- mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
- return mz->lru_size[lru];
+ /* Update memcg and lruvec */
+ if (!mem_cgroup_disabled())
+ mod_memcg_lruvec_state(lruvec, idx, val);
}
-static unsigned long
-mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
- unsigned int lru_mask)
+void lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
+ int val)
{
- struct mem_cgroup_per_zone *mz;
- enum lru_list lru;
- unsigned long ret = 0;
-
- mz = mem_cgroup_zoneinfo(memcg, nid, zid);
+ struct mem_cgroup *memcg;
+ pg_data_t *pgdat = folio_pgdat(folio);
+ struct lruvec *lruvec;
- for_each_lru(lru) {
- if (BIT(lru) & lru_mask)
- ret += mz->lru_size[lru];
+ rcu_read_lock();
+ memcg = folio_memcg(folio);
+ /* Untracked pages have no memcg, no lruvec. Update only the node */
+ if (!memcg) {
+ rcu_read_unlock();
+ mod_node_page_state(pgdat, idx, val);
+ return;
}
- return ret;
+
+ lruvec = mem_cgroup_lruvec(memcg, pgdat);
+ mod_lruvec_state(lruvec, idx, val);
+ rcu_read_unlock();
}
+EXPORT_SYMBOL(lruvec_stat_mod_folio);
-static unsigned long
-mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
- int nid, unsigned int lru_mask)
+void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
{
- u64 total = 0;
- int zid;
+ pg_data_t *pgdat = page_pgdat(virt_to_page(p));
+ struct mem_cgroup *memcg;
+ struct lruvec *lruvec;
- for (zid = 0; zid < MAX_NR_ZONES; zid++)
- total += mem_cgroup_zone_nr_lru_pages(memcg,
- nid, zid, lru_mask);
+ rcu_read_lock();
+ memcg = mem_cgroup_from_slab_obj(p);
- return total;
+ /*
+ * Untracked pages have no memcg, no lruvec. Update only the
+ * node. If we reparent the slab objects to the root memcg,
+ * when we free the slab object, we need to update the per-memcg
+ * vmstats to keep it correct for the root memcg.
+ */
+ if (!memcg) {
+ mod_node_page_state(pgdat, idx, val);
+ } else {
+ lruvec = mem_cgroup_lruvec(memcg, pgdat);
+ mod_lruvec_state(lruvec, idx, val);
+ }
+ rcu_read_unlock();
}
-static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
- unsigned int lru_mask)
+/**
+ * count_memcg_events - account VM events in a cgroup
+ * @memcg: the memory cgroup
+ * @idx: the event item
+ * @count: the number of events that occurred
+ */
+void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
+ unsigned long count)
{
- int nid;
- u64 total = 0;
+ int i = memcg_events_index(idx);
+ int cpu;
+
+ if (mem_cgroup_disabled())
+ return;
+
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
+ return;
- for_each_node_state(nid, N_MEMORY)
- total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
- return total;
+ cpu = get_cpu();
+
+ this_cpu_add(memcg->vmstats_percpu->events[i], count);
+ memcg_rstat_updated(memcg, count, cpu);
+ trace_count_memcg_events(memcg, idx, count);
+
+ put_cpu();
}
-static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
- enum mem_cgroup_events_target target)
+unsigned long memcg_events(struct mem_cgroup *memcg, int event)
{
- unsigned long val, next;
+ int i = memcg_events_index(event);
- val = __this_cpu_read(memcg->stat->nr_page_events);
- next = __this_cpu_read(memcg->stat->targets[target]);
- /* from time_after() in jiffies.h */
- if ((long)next - (long)val < 0) {
- switch (target) {
- case MEM_CGROUP_TARGET_THRESH:
- next = val + THRESHOLDS_EVENTS_TARGET;
- break;
- case MEM_CGROUP_TARGET_SOFTLIMIT:
- next = val + SOFTLIMIT_EVENTS_TARGET;
- break;
- case MEM_CGROUP_TARGET_NUMAINFO:
- next = val + NUMAINFO_EVENTS_TARGET;
- break;
- default:
- break;
- }
- __this_cpu_write(memcg->stat->targets[target], next);
- return true;
- }
- return false;
-}
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
+ return 0;
-/*
- * Check events in order.
- *
- */
-static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
-{
- preempt_disable();
- /* threshold event is triggered in finer grain than soft limit */
- if (unlikely(mem_cgroup_event_ratelimit(memcg,
- MEM_CGROUP_TARGET_THRESH))) {
- bool do_softlimit;
- bool do_numainfo __maybe_unused;
-
- do_softlimit = mem_cgroup_event_ratelimit(memcg,
- MEM_CGROUP_TARGET_SOFTLIMIT);
-#if MAX_NUMNODES > 1
- do_numainfo = mem_cgroup_event_ratelimit(memcg,
- MEM_CGROUP_TARGET_NUMAINFO);
-#endif
- preempt_enable();
-
- mem_cgroup_threshold(memcg);
- if (unlikely(do_softlimit))
- mem_cgroup_update_tree(memcg, page);
-#if MAX_NUMNODES > 1
- if (unlikely(do_numainfo))
- atomic_inc(&memcg->numainfo_events);
-#endif
- } else
- preempt_enable();
+ return READ_ONCE(memcg->vmstats->events[i]);
}
-struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
+#ifdef CONFIG_MEMCG_V1
+unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
- return mem_cgroup_from_css(
- cgroup_subsys_state(cont, mem_cgroup_subsys_id));
+ int i = memcg_events_index(event);
+
+ if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
+ return 0;
+
+ return READ_ONCE(memcg->vmstats->events_local[i]);
}
+#endif
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
@@ -1051,125 +882,105 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
if (unlikely(!p))
return NULL;
- return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
+ return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
}
+EXPORT_SYMBOL(mem_cgroup_from_task);
-struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
+static __always_inline struct mem_cgroup *active_memcg(void)
{
- struct mem_cgroup *memcg = NULL;
+ if (!in_task())
+ return this_cpu_read(int_active_memcg);
+ else
+ return current->active_memcg;
+}
- if (!mm)
+/**
+ * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
+ * @mm: mm from which memcg should be extracted. It can be NULL.
+ *
+ * Obtain a reference on mm->memcg and returns it if successful. If mm
+ * is NULL, then the memcg is chosen as follows:
+ * 1) The active memcg, if set.
+ * 2) current->mm->memcg, if available
+ * 3) root memcg
+ * If mem_cgroup is disabled, NULL is returned.
+ */
+struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
+{
+ struct mem_cgroup *memcg;
+
+ if (mem_cgroup_disabled())
return NULL;
+
/*
- * Because we have no locks, mm->owner's may be being moved to other
- * cgroup. We use css_tryget() here even if this looks
- * pessimistic (rather than adding locks here).
+ * Page cache insertions can happen without an
+ * actual mm context, e.g. during disk probing
+ * on boot, loopback IO, acct() writes etc.
+ *
+ * No need to css_get on root memcg as the reference
+ * counting is disabled on the root level in the
+ * cgroup core. See CSS_NO_REF.
*/
+ if (unlikely(!mm)) {
+ memcg = active_memcg();
+ if (unlikely(memcg)) {
+ /* remote memcg must hold a ref */
+ css_get(&memcg->css);
+ return memcg;
+ }
+ mm = current->mm;
+ if (unlikely(!mm))
+ return root_mem_cgroup;
+ }
+
rcu_read_lock();
do {
memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!memcg))
- break;
+ memcg = root_mem_cgroup;
} while (!css_tryget(&memcg->css));
rcu_read_unlock();
return memcg;
}
+EXPORT_SYMBOL(get_mem_cgroup_from_mm);
-/*
- * Returns a next (in a pre-order walk) alive memcg (with elevated css
- * ref. count) or NULL if the whole root's subtree has been visited.
- *
- * helper function to be used by mem_cgroup_iter
+/**
+ * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
*/
-static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
- struct mem_cgroup *last_visited)
+struct mem_cgroup *get_mem_cgroup_from_current(void)
{
- struct cgroup *prev_cgroup, *next_cgroup;
-
- /*
- * Root is not visited by cgroup iterators so it needs an
- * explicit visit.
- */
- if (!last_visited)
- return root;
+ struct mem_cgroup *memcg;
- prev_cgroup = (last_visited == root) ? NULL
- : last_visited->css.cgroup;
-skip_node:
- next_cgroup = cgroup_next_descendant_pre(
- prev_cgroup, root->css.cgroup);
+ if (mem_cgroup_disabled())
+ return NULL;
- /*
- * Even if we found a group we have to make sure it is
- * alive. css && !memcg means that the groups should be
- * skipped and we should continue the tree walk.
- * last_visited css is safe to use because it is
- * protected by css_get and the tree walk is rcu safe.
- */
- if (next_cgroup) {
- struct mem_cgroup *mem = mem_cgroup_from_cont(
- next_cgroup);
- if (css_tryget(&mem->css))
- return mem;
- else {
- prev_cgroup = next_cgroup;
- goto skip_node;
- }
+again:
+ rcu_read_lock();
+ memcg = mem_cgroup_from_task(current);
+ if (!css_tryget(&memcg->css)) {
+ rcu_read_unlock();
+ goto again;
}
-
- return NULL;
+ rcu_read_unlock();
+ return memcg;
}
-static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
+/**
+ * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
+ * @folio: folio from which memcg should be extracted.
+ */
+struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
{
- /*
- * When a group in the hierarchy below root is destroyed, the
- * hierarchy iterator can no longer be trusted since it might
- * have pointed to the destroyed group. Invalidate it.
- */
- atomic_inc(&root->dead_count);
-}
+ struct mem_cgroup *memcg = folio_memcg(folio);
-static struct mem_cgroup *
-mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
- struct mem_cgroup *root,
- int *sequence)
-{
- struct mem_cgroup *position = NULL;
- /*
- * A cgroup destruction happens in two stages: offlining and
- * release. They are separated by a RCU grace period.
- *
- * If the iterator is valid, we may still race with an
- * offlining. The RCU lock ensures the object won't be
- * released, tryget will fail if we lost the race.
- */
- *sequence = atomic_read(&root->dead_count);
- if (iter->last_dead_count == *sequence) {
- smp_rmb();
- position = iter->last_visited;
- if (position && !css_tryget(&position->css))
- position = NULL;
- }
- return position;
-}
+ if (mem_cgroup_disabled())
+ return NULL;
-static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
- struct mem_cgroup *last_visited,
- struct mem_cgroup *new_position,
- int sequence)
-{
- if (last_visited)
- css_put(&last_visited->css);
- /*
- * We store the sequence count from the time @last_visited was
- * loaded successfully instead of rereading it here so that we
- * don't lose destruction events in between. We could have
- * raced with the destruction of @new_position after all.
- */
- iter->last_visited = new_position;
- smp_wmb();
- iter->last_dead_count = sequence;
+ rcu_read_lock();
+ if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
+ memcg = root_mem_cgroup;
+ rcu_read_unlock();
+ return memcg;
}
/**
@@ -1185,16 +996,18 @@ static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
* invocations for reference counting, or use mem_cgroup_iter_break()
* to cancel a hierarchy walk before the round-trip is complete.
*
- * Reclaimers can specify a zone and a priority level in @reclaim to
- * divide up the memcgs in the hierarchy among all concurrent
- * reclaimers operating on the same zone and priority.
+ * Reclaimers can specify a node in @reclaim to divide up the memcgs
+ * in the hierarchy among all concurrent reclaimers operating on the
+ * same node.
*/
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup *prev,
struct mem_cgroup_reclaim_cookie *reclaim)
{
- struct mem_cgroup *memcg = NULL;
- struct mem_cgroup *last_visited = NULL;
+ struct mem_cgroup_reclaim_iter *iter;
+ struct cgroup_subsys_state *css;
+ struct mem_cgroup *pos;
+ struct mem_cgroup *next;
if (mem_cgroup_disabled())
return NULL;
@@ -1202,56 +1015,76 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
if (!root)
root = root_mem_cgroup;
- if (prev && !reclaim)
- last_visited = prev;
+ rcu_read_lock();
+restart:
+ next = NULL;
+
+ if (reclaim) {
+ int gen;
+ int nid = reclaim->pgdat->node_id;
- if (!root->use_hierarchy && root != root_mem_cgroup) {
- if (prev)
- goto out_css_put;
- return root;
- }
+ iter = &root->nodeinfo[nid]->iter;
+ gen = atomic_read(&iter->generation);
- rcu_read_lock();
- while (!memcg) {
- struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
- int uninitialized_var(seq);
-
- if (reclaim) {
- int nid = zone_to_nid(reclaim->zone);
- int zid = zone_idx(reclaim->zone);
- struct mem_cgroup_per_zone *mz;
-
- mz = mem_cgroup_zoneinfo(root, nid, zid);
- iter = &mz->reclaim_iter[reclaim->priority];
- if (prev && reclaim->generation != iter->generation) {
- iter->last_visited = NULL;
- goto out_unlock;
- }
+ /*
+ * On start, join the current reclaim iteration cycle.
+ * Exit when a concurrent walker completes it.
+ */
+ if (!prev)
+ reclaim->generation = gen;
+ else if (reclaim->generation != gen)
+ goto out_unlock;
- last_visited = mem_cgroup_iter_load(iter, root, &seq);
- }
+ pos = READ_ONCE(iter->position);
+ } else
+ pos = prev;
- memcg = __mem_cgroup_iter_next(root, last_visited);
+ css = pos ? &pos->css : NULL;
- if (reclaim) {
- mem_cgroup_iter_update(iter, last_visited, memcg, seq);
+ while ((css = css_next_descendant_pre(css, &root->css))) {
+ /*
+ * Verify the css and acquire a reference. The root
+ * is provided by the caller, so we know it's alive
+ * and kicking, and don't take an extra reference.
+ */
+ if (css == &root->css || css_tryget(css))
+ break;
+ }
+
+ next = mem_cgroup_from_css(css);
- if (!memcg)
- iter->generation++;
- else if (!prev && memcg)
- reclaim->generation = iter->generation;
+ if (reclaim) {
+ /*
+ * The position could have already been updated by a competing
+ * thread, so check that the value hasn't changed since we read
+ * it to avoid reclaiming from the same cgroup twice.
+ */
+ if (cmpxchg(&iter->position, pos, next) != pos) {
+ if (css && css != &root->css)
+ css_put(css);
+ goto restart;
}
- if (prev && !memcg)
- goto out_unlock;
+ if (!next) {
+ atomic_inc(&iter->generation);
+
+ /*
+ * Reclaimers share the hierarchy walk, and a
+ * new one might jump in right at the end of
+ * the hierarchy - make sure they see at least
+ * one group and restart from the beginning.
+ */
+ if (!prev)
+ goto restart;
+ }
}
+
out_unlock:
rcu_read_unlock();
-out_css_put:
if (prev && prev != root)
css_put(&prev->css);
- return memcg;
+ return next;
}
/**
@@ -1268,134 +1101,161 @@ void mem_cgroup_iter_break(struct mem_cgroup *root,
css_put(&prev->css);
}
-/*
- * Iteration constructs for visiting all cgroups (under a tree). If
- * loops are exited prematurely (break), mem_cgroup_iter_break() must
- * be used for reference counting.
- */
-#define for_each_mem_cgroup_tree(iter, root) \
- for (iter = mem_cgroup_iter(root, NULL, NULL); \
- iter != NULL; \
- iter = mem_cgroup_iter(root, iter, NULL))
+static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
+ struct mem_cgroup *dead_memcg)
+{
+ struct mem_cgroup_reclaim_iter *iter;
+ struct mem_cgroup_per_node *mz;
+ int nid;
-#define for_each_mem_cgroup(iter) \
- for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
- iter != NULL; \
- iter = mem_cgroup_iter(NULL, iter, NULL))
+ for_each_node(nid) {
+ mz = from->nodeinfo[nid];
+ iter = &mz->iter;
+ cmpxchg(&iter->position, dead_memcg, NULL);
+ }
+}
-void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
+static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
- struct mem_cgroup *memcg;
+ struct mem_cgroup *memcg = dead_memcg;
+ struct mem_cgroup *last;
- rcu_read_lock();
- memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
- if (unlikely(!memcg))
- goto out;
+ do {
+ __invalidate_reclaim_iterators(memcg, dead_memcg);
+ last = memcg;
+ } while ((memcg = parent_mem_cgroup(memcg)));
- switch (idx) {
- case PGFAULT:
- this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
- break;
- case PGMAJFAULT:
- this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
- break;
- default:
- BUG();
- }
-out:
- rcu_read_unlock();
+ /*
+ * When cgroup1 non-hierarchy mode is used,
+ * parent_mem_cgroup() does not walk all the way up to the
+ * cgroup root (root_mem_cgroup). So we have to handle
+ * dead_memcg from cgroup root separately.
+ */
+ if (!mem_cgroup_is_root(last))
+ __invalidate_reclaim_iterators(root_mem_cgroup,
+ dead_memcg);
}
-EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
/**
- * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
- * @zone: zone of the wanted lruvec
- * @memcg: memcg of the wanted lruvec
+ * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
+ * @memcg: hierarchy root
+ * @fn: function to call for each task
+ * @arg: argument passed to @fn
+ *
+ * This function iterates over tasks attached to @memcg or to any of its
+ * descendants and calls @fn for each task. If @fn returns a non-zero
+ * value, the function breaks the iteration loop. Otherwise, it will iterate
+ * over all tasks and return 0.
*
- * Returns the lru list vector holding pages for the given @zone and
- * @mem. This can be the global zone lruvec, if the memory controller
- * is disabled.
+ * This function must not be called for the root memory cgroup.
*/
-struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
- struct mem_cgroup *memcg)
+void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
+ int (*fn)(struct task_struct *, void *), void *arg)
{
- struct mem_cgroup_per_zone *mz;
- struct lruvec *lruvec;
+ struct mem_cgroup *iter;
+ int ret = 0;
- if (mem_cgroup_disabled()) {
- lruvec = &zone->lruvec;
- goto out;
+ BUG_ON(mem_cgroup_is_root(memcg));
+
+ for_each_mem_cgroup_tree(iter, memcg) {
+ struct css_task_iter it;
+ struct task_struct *task;
+
+ css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
+ while (!ret && (task = css_task_iter_next(&it))) {
+ ret = fn(task, arg);
+ /* Avoid potential softlockup warning */
+ cond_resched();
+ }
+ css_task_iter_end(&it);
+ if (ret) {
+ mem_cgroup_iter_break(memcg, iter);
+ break;
+ }
}
+}
- mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
- lruvec = &mz->lruvec;
-out:
- /*
- * Since a node can be onlined after the mem_cgroup was created,
- * we have to be prepared to initialize lruvec->zone here;
- * and if offlined then reonlined, we need to reinitialize it.
- */
- if (unlikely(lruvec->zone != zone))
- lruvec->zone = zone;
- return lruvec;
+#ifdef CONFIG_DEBUG_VM
+void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
+{
+ struct mem_cgroup *memcg;
+
+ if (mem_cgroup_disabled())
+ return;
+
+ memcg = folio_memcg(folio);
+
+ if (!memcg)
+ VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
+ else
+ VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
}
+#endif
-/*
- * Following LRU functions are allowed to be used without PCG_LOCK.
- * Operations are called by routine of global LRU independently from memcg.
- * What we have to take care of here is validness of pc->mem_cgroup.
+/**
+ * folio_lruvec_lock - Lock the lruvec for a folio.
+ * @folio: Pointer to the folio.
*
- * Changes to pc->mem_cgroup happens when
- * 1. charge
- * 2. moving account
- * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
- * It is added to LRU before charge.
- * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
- * When moving account, the page is not on LRU. It's isolated.
+ * These functions are safe to use under any of the following conditions:
+ * - folio locked
+ * - folio_test_lru false
+ * - folio frozen (refcount of 0)
+ *
+ * Return: The lruvec this folio is on with its lock held.
*/
+struct lruvec *folio_lruvec_lock(struct folio *folio)
+{
+ struct lruvec *lruvec = folio_lruvec(folio);
+
+ spin_lock(&lruvec->lru_lock);
+ lruvec_memcg_debug(lruvec, folio);
+
+ return lruvec;
+}
/**
- * mem_cgroup_page_lruvec - return lruvec for adding an lru page
- * @page: the page
- * @zone: zone of the page
+ * folio_lruvec_lock_irq - Lock the lruvec for a folio.
+ * @folio: Pointer to the folio.
+ *
+ * These functions are safe to use under any of the following conditions:
+ * - folio locked
+ * - folio_test_lru false
+ * - folio frozen (refcount of 0)
+ *
+ * Return: The lruvec this folio is on with its lock held and interrupts
+ * disabled.
*/
-struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
+struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
{
- struct mem_cgroup_per_zone *mz;
- struct mem_cgroup *memcg;
- struct page_cgroup *pc;
- struct lruvec *lruvec;
+ struct lruvec *lruvec = folio_lruvec(folio);
- if (mem_cgroup_disabled()) {
- lruvec = &zone->lruvec;
- goto out;
- }
+ spin_lock_irq(&lruvec->lru_lock);
+ lruvec_memcg_debug(lruvec, folio);
- pc = lookup_page_cgroup(page);
- memcg = pc->mem_cgroup;
+ return lruvec;
+}
- /*
- * Surreptitiously switch any uncharged offlist page to root:
- * an uncharged page off lru does nothing to secure
- * its former mem_cgroup from sudden removal.
- *
- * Our caller holds lru_lock, and PageCgroupUsed is updated
- * under page_cgroup lock: between them, they make all uses
- * of pc->mem_cgroup safe.
- */
- if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
- pc->mem_cgroup = memcg = root_mem_cgroup;
+/**
+ * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
+ * @folio: Pointer to the folio.
+ * @flags: Pointer to irqsave flags.
+ *
+ * These functions are safe to use under any of the following conditions:
+ * - folio locked
+ * - folio_test_lru false
+ * - folio frozen (refcount of 0)
+ *
+ * Return: The lruvec this folio is on with its lock held and interrupts
+ * disabled.
+ */
+struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
+ unsigned long *flags)
+{
+ struct lruvec *lruvec = folio_lruvec(folio);
+
+ spin_lock_irqsave(&lruvec->lru_lock, *flags);
+ lruvec_memcg_debug(lruvec, folio);
- mz = page_cgroup_zoneinfo(memcg, page);
- lruvec = &mz->lruvec;
-out:
- /*
- * Since a node can be onlined after the mem_cgroup was created,
- * we have to be prepared to initialize lruvec->zone here;
- * and if offlined then reonlined, we need to reinitialize it.
- */
- if (unlikely(lruvec->zone != zone))
- lruvec->zone = zone;
return lruvec;
}
@@ -1403,109 +1263,40 @@ out:
* mem_cgroup_update_lru_size - account for adding or removing an lru page
* @lruvec: mem_cgroup per zone lru vector
* @lru: index of lru list the page is sitting on
+ * @zid: zone id of the accounted pages
* @nr_pages: positive when adding or negative when removing
*
- * This function must be called when a page is added to or removed from an
- * lru list.
+ * This function must be called under lru_lock, just before a page is added
+ * to or just after a page is removed from an lru list.
*/
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
- int nr_pages)
+ int zid, int nr_pages)
{
- struct mem_cgroup_per_zone *mz;
+ struct mem_cgroup_per_node *mz;
unsigned long *lru_size;
+ long size;
if (mem_cgroup_disabled())
return;
- mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
- lru_size = mz->lru_size + lru;
- *lru_size += nr_pages;
- VM_BUG_ON((long)(*lru_size) < 0);
-}
-
-/*
- * Checks whether given mem is same or in the root_mem_cgroup's
- * hierarchy subtree
- */
-bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
- struct mem_cgroup *memcg)
-{
- if (root_memcg == memcg)
- return true;
- if (!root_memcg->use_hierarchy || !memcg)
- return false;
- return css_is_ancestor(&memcg->css, &root_memcg->css);
-}
-
-static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
- struct mem_cgroup *memcg)
-{
- bool ret;
+ mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
+ lru_size = &mz->lru_zone_size[zid][lru];
- rcu_read_lock();
- ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
- rcu_read_unlock();
- return ret;
-}
+ if (nr_pages < 0)
+ *lru_size += nr_pages;
-bool task_in_mem_cgroup(struct task_struct *task,
- const struct mem_cgroup *memcg)
-{
- struct mem_cgroup *curr = NULL;
- struct task_struct *p;
- bool ret;
-
- p = find_lock_task_mm(task);
- if (p) {
- curr = try_get_mem_cgroup_from_mm(p->mm);
- task_unlock(p);
- } else {
- /*
- * All threads may have already detached their mm's, but the oom
- * killer still needs to detect if they have already been oom
- * killed to prevent needlessly killing additional tasks.
- */
- rcu_read_lock();
- curr = mem_cgroup_from_task(task);
- if (curr)
- css_get(&curr->css);
- rcu_read_unlock();
+ size = *lru_size;
+ if (WARN_ONCE(size < 0,
+ "%s(%p, %d, %d): lru_size %ld\n",
+ __func__, lruvec, lru, nr_pages, size)) {
+ VM_BUG_ON(1);
+ *lru_size = 0;
}
- if (!curr)
- return false;
- /*
- * We should check use_hierarchy of "memcg" not "curr". Because checking
- * use_hierarchy of "curr" here make this function true if hierarchy is
- * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
- * hierarchy(even if use_hierarchy is disabled in "memcg").
- */
- ret = mem_cgroup_same_or_subtree(memcg, curr);
- css_put(&curr->css);
- return ret;
-}
-
-int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
-{
- unsigned long inactive_ratio;
- unsigned long inactive;
- unsigned long active;
- unsigned long gb;
-
- inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
- active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
- gb = (inactive + active) >> (30 - PAGE_SHIFT);
- if (gb)
- inactive_ratio = int_sqrt(10 * gb);
- else
- inactive_ratio = 1;
-
- return inactive * inactive_ratio < active;
+ if (nr_pages > 0)
+ *lru_size += nr_pages;
}
-#define mem_cgroup_from_res_counter(counter, member) \
- container_of(counter, struct mem_cgroup, member)
-
/**
* mem_cgroup_margin - calculate chargeable space of a memory cgroup
* @memcg: the memory cgroup
@@ -1515,1085 +1306,1100 @@ int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
*/
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
{
- unsigned long long margin;
+ unsigned long margin = 0;
+ unsigned long count;
+ unsigned long limit;
- margin = res_counter_margin(&memcg->res);
- if (do_swap_account)
- margin = min(margin, res_counter_margin(&memcg->memsw));
- return margin >> PAGE_SHIFT;
-}
+ count = page_counter_read(&memcg->memory);
+ limit = READ_ONCE(memcg->memory.max);
+ if (count < limit)
+ margin = limit - count;
-int mem_cgroup_swappiness(struct mem_cgroup *memcg)
-{
- struct cgroup *cgrp = memcg->css.cgroup;
-
- /* root ? */
- if (cgrp->parent == NULL)
- return vm_swappiness;
+ if (do_memsw_account()) {
+ count = page_counter_read(&memcg->memsw);
+ limit = READ_ONCE(memcg->memsw.max);
+ if (count < limit)
+ margin = min(margin, limit - count);
+ else
+ margin = 0;
+ }
- return memcg->swappiness;
+ return margin;
}
-/*
- * memcg->moving_account is used for checking possibility that some thread is
- * calling move_account(). When a thread on CPU-A starts moving pages under
- * a memcg, other threads should check memcg->moving_account under
- * rcu_read_lock(), like this:
- *
- * CPU-A CPU-B
- * rcu_read_lock()
- * memcg->moving_account+1 if (memcg->mocing_account)
- * take heavy locks.
- * synchronize_rcu() update something.
- * rcu_read_unlock()
- * start move here.
- */
+struct memory_stat {
+ const char *name;
+ unsigned int idx;
+};
+
+static const struct memory_stat memory_stats[] = {
+ { "anon", NR_ANON_MAPPED },
+ { "file", NR_FILE_PAGES },
+ { "kernel", MEMCG_KMEM },
+ { "kernel_stack", NR_KERNEL_STACK_KB },
+ { "pagetables", NR_PAGETABLE },
+ { "sec_pagetables", NR_SECONDARY_PAGETABLE },
+ { "percpu", MEMCG_PERCPU_B },
+ { "sock", MEMCG_SOCK },
+ { "vmalloc", MEMCG_VMALLOC },
+ { "shmem", NR_SHMEM },
+#ifdef CONFIG_ZSWAP
+ { "zswap", MEMCG_ZSWAP_B },
+ { "zswapped", MEMCG_ZSWAPPED },
+#endif
+ { "file_mapped", NR_FILE_MAPPED },
+ { "file_dirty", NR_FILE_DIRTY },
+ { "file_writeback", NR_WRITEBACK },
+#ifdef CONFIG_SWAP
+ { "swapcached", NR_SWAPCACHE },
+#endif
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ { "anon_thp", NR_ANON_THPS },
+ { "file_thp", NR_FILE_THPS },
+ { "shmem_thp", NR_SHMEM_THPS },
+#endif
+ { "inactive_anon", NR_INACTIVE_ANON },
+ { "active_anon", NR_ACTIVE_ANON },
+ { "inactive_file", NR_INACTIVE_FILE },
+ { "active_file", NR_ACTIVE_FILE },
+ { "unevictable", NR_UNEVICTABLE },
+ { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
+ { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
+#ifdef CONFIG_HUGETLB_PAGE
+ { "hugetlb", NR_HUGETLB },
+#endif
-/* for quick checking without looking up memcg */
-atomic_t memcg_moving __read_mostly;
+ /* The memory events */
+ { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
+ { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
+ { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
+ { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
+ { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
+ { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
+ { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
+
+ { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
+ { "pgdemote_direct", PGDEMOTE_DIRECT },
+ { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
+ { "pgdemote_proactive", PGDEMOTE_PROACTIVE },
+#ifdef CONFIG_NUMA_BALANCING
+ { "pgpromote_success", PGPROMOTE_SUCCESS },
+#endif
+};
-static void mem_cgroup_start_move(struct mem_cgroup *memcg)
+/* The actual unit of the state item, not the same as the output unit */
+static int memcg_page_state_unit(int item)
{
- atomic_inc(&memcg_moving);
- atomic_inc(&memcg->moving_account);
- synchronize_rcu();
+ switch (item) {
+ case MEMCG_PERCPU_B:
+ case MEMCG_ZSWAP_B:
+ case NR_SLAB_RECLAIMABLE_B:
+ case NR_SLAB_UNRECLAIMABLE_B:
+ return 1;
+ case NR_KERNEL_STACK_KB:
+ return SZ_1K;
+ default:
+ return PAGE_SIZE;
+ }
}
-static void mem_cgroup_end_move(struct mem_cgroup *memcg)
+/* Translate stat items to the correct unit for memory.stat output */
+static int memcg_page_state_output_unit(int item)
{
/*
- * Now, mem_cgroup_clear_mc() may call this function with NULL.
- * We check NULL in callee rather than caller.
+ * Workingset state is actually in pages, but we export it to userspace
+ * as a scalar count of events, so special case it here.
+ *
+ * Demotion and promotion activities are exported in pages, consistent
+ * with their global counterparts.
*/
- if (memcg) {
- atomic_dec(&memcg_moving);
- atomic_dec(&memcg->moving_account);
+ switch (item) {
+ case WORKINGSET_REFAULT_ANON:
+ case WORKINGSET_REFAULT_FILE:
+ case WORKINGSET_ACTIVATE_ANON:
+ case WORKINGSET_ACTIVATE_FILE:
+ case WORKINGSET_RESTORE_ANON:
+ case WORKINGSET_RESTORE_FILE:
+ case WORKINGSET_NODERECLAIM:
+ case PGDEMOTE_KSWAPD:
+ case PGDEMOTE_DIRECT:
+ case PGDEMOTE_KHUGEPAGED:
+ case PGDEMOTE_PROACTIVE:
+#ifdef CONFIG_NUMA_BALANCING
+ case PGPROMOTE_SUCCESS:
+#endif
+ return 1;
+ default:
+ return memcg_page_state_unit(item);
}
}
-/*
- * 2 routines for checking "mem" is under move_account() or not.
- *
- * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
- * is used for avoiding races in accounting. If true,
- * pc->mem_cgroup may be overwritten.
- *
- * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
- * under hierarchy of moving cgroups. This is for
- * waiting at hith-memory prressure caused by "move".
- */
+unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
+{
+ return memcg_page_state(memcg, item) *
+ memcg_page_state_output_unit(item);
+}
-static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
+#ifdef CONFIG_MEMCG_V1
+unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
{
- VM_BUG_ON(!rcu_read_lock_held());
- return atomic_read(&memcg->moving_account) > 0;
+ return memcg_page_state_local(memcg, item) *
+ memcg_page_state_output_unit(item);
}
+#endif
-static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
+#ifdef CONFIG_HUGETLB_PAGE
+static bool memcg_accounts_hugetlb(void)
{
- struct mem_cgroup *from;
- struct mem_cgroup *to;
- bool ret = false;
+ return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
+}
+#else /* CONFIG_HUGETLB_PAGE */
+static bool memcg_accounts_hugetlb(void)
+{
+ return false;
+}
+#endif /* CONFIG_HUGETLB_PAGE */
+
+static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
+{
+ int i;
+
/*
- * Unlike task_move routines, we access mc.to, mc.from not under
- * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
+ * Provide statistics on the state of the memory subsystem as
+ * well as cumulative event counters that show past behavior.
+ *
+ * This list is ordered following a combination of these gradients:
+ * 1) generic big picture -> specifics and details
+ * 2) reflecting userspace activity -> reflecting kernel heuristics
+ *
+ * Current memory state:
*/
- spin_lock(&mc.lock);
- from = mc.from;
- to = mc.to;
- if (!from)
- goto unlock;
+ mem_cgroup_flush_stats(memcg);
- ret = mem_cgroup_same_or_subtree(memcg, from)
- || mem_cgroup_same_or_subtree(memcg, to);
-unlock:
- spin_unlock(&mc.lock);
- return ret;
-}
+ for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
+ u64 size;
-static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
-{
- if (mc.moving_task && current != mc.moving_task) {
- if (mem_cgroup_under_move(memcg)) {
- DEFINE_WAIT(wait);
- prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
- /* moving charge context might have finished. */
- if (mc.moving_task)
- schedule();
- finish_wait(&mc.waitq, &wait);
- return true;
+#ifdef CONFIG_HUGETLB_PAGE
+ if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
+ !memcg_accounts_hugetlb())
+ continue;
+#endif
+ size = memcg_page_state_output(memcg, memory_stats[i].idx);
+ seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
+
+ if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
+ size += memcg_page_state_output(memcg,
+ NR_SLAB_RECLAIMABLE_B);
+ seq_buf_printf(s, "slab %llu\n", size);
}
}
- return false;
-}
-/*
- * Take this lock when
- * - a code tries to modify page's memcg while it's USED.
- * - a code tries to modify page state accounting in a memcg.
- * see mem_cgroup_stolen(), too.
- */
-static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
- unsigned long *flags)
-{
- spin_lock_irqsave(&memcg->move_lock, *flags);
+ /* Accumulated memory events */
+ seq_buf_printf(s, "pgscan %lu\n",
+ memcg_events(memcg, PGSCAN_KSWAPD) +
+ memcg_events(memcg, PGSCAN_DIRECT) +
+ memcg_events(memcg, PGSCAN_PROACTIVE) +
+ memcg_events(memcg, PGSCAN_KHUGEPAGED));
+ seq_buf_printf(s, "pgsteal %lu\n",
+ memcg_events(memcg, PGSTEAL_KSWAPD) +
+ memcg_events(memcg, PGSTEAL_DIRECT) +
+ memcg_events(memcg, PGSTEAL_PROACTIVE) +
+ memcg_events(memcg, PGSTEAL_KHUGEPAGED));
+
+ for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
+#ifdef CONFIG_MEMCG_V1
+ if (memcg_vm_event_stat[i] == PGPGIN ||
+ memcg_vm_event_stat[i] == PGPGOUT)
+ continue;
+#endif
+ seq_buf_printf(s, "%s %lu\n",
+ vm_event_name(memcg_vm_event_stat[i]),
+ memcg_events(memcg, memcg_vm_event_stat[i]));
+ }
}
-static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
- unsigned long *flags)
+static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
{
- spin_unlock_irqrestore(&memcg->move_lock, *flags);
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ memcg_stat_format(memcg, s);
+ else
+ memcg1_stat_format(memcg, s);
+ if (seq_buf_has_overflowed(s))
+ pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
}
-#define K(x) ((x) << (PAGE_SHIFT-10))
/**
- * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
+ * mem_cgroup_print_oom_context: Print OOM information relevant to
+ * memory controller.
* @memcg: The memory cgroup that went over limit
* @p: Task that is going to be killed
*
* NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
* enabled
*/
-void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
+void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
{
- struct cgroup *task_cgrp;
- struct cgroup *mem_cgrp;
- /*
- * Need a buffer in BSS, can't rely on allocations. The code relies
- * on the assumption that OOM is serialized for memory controller.
- * If this assumption is broken, revisit this code.
- */
- static char memcg_name[PATH_MAX];
- int ret;
- struct mem_cgroup *iter;
- unsigned int i;
-
- if (!p)
- return;
-
rcu_read_lock();
- mem_cgrp = memcg->css.cgroup;
- task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
-
- ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
- if (ret < 0) {
- /*
- * Unfortunately, we are unable to convert to a useful name
- * But we'll still print out the usage information
- */
- rcu_read_unlock();
- goto done;
- }
- rcu_read_unlock();
-
- pr_info("Task in %s killed", memcg_name);
-
- rcu_read_lock();
- ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
- if (ret < 0) {
- rcu_read_unlock();
- goto done;
+ if (memcg) {
+ pr_cont(",oom_memcg=");
+ pr_cont_cgroup_path(memcg->css.cgroup);
+ } else
+ pr_cont(",global_oom");
+ if (p) {
+ pr_cont(",task_memcg=");
+ pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
}
rcu_read_unlock();
-
- /*
- * Continues from above, so we don't need an KERN_ level
- */
- pr_cont(" as a result of limit of %s\n", memcg_name);
-done:
-
- pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
- res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
- res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
- res_counter_read_u64(&memcg->res, RES_FAILCNT));
- pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
- res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
- res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
- res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
- pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
- res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
- res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
- res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
-
- for_each_mem_cgroup_tree(iter, memcg) {
- pr_info("Memory cgroup stats");
-
- rcu_read_lock();
- ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
- if (!ret)
- pr_cont(" for %s", memcg_name);
- rcu_read_unlock();
- pr_cont(":");
-
- for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
- if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
- continue;
- pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
- K(mem_cgroup_read_stat(iter, i)));
- }
-
- for (i = 0; i < NR_LRU_LISTS; i++)
- pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
- K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
-
- pr_cont("\n");
- }
}
-/*
- * This function returns the number of memcg under hierarchy tree. Returns
- * 1(self count) if no children.
+/**
+ * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
+ * memory controller.
+ * @memcg: The memory cgroup that went over limit
*/
-static int mem_cgroup_count_children(struct mem_cgroup *memcg)
+void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
- int num = 0;
- struct mem_cgroup *iter;
+ /* Use static buffer, for the caller is holding oom_lock. */
+ static char buf[SEQ_BUF_SIZE];
+ struct seq_buf s;
+ unsigned long memory_failcnt;
+
+ lockdep_assert_held(&oom_lock);
+
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
+ else
+ memory_failcnt = memcg->memory.failcnt;
+
+ pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
+ K((u64)page_counter_read(&memcg->memory)),
+ K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
+ K((u64)page_counter_read(&memcg->swap)),
+ K((u64)READ_ONCE(memcg->swap.max)),
+ atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
+#ifdef CONFIG_MEMCG_V1
+ else {
+ pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
+ K((u64)page_counter_read(&memcg->memsw)),
+ K((u64)memcg->memsw.max), memcg->memsw.failcnt);
+ pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
+ K((u64)page_counter_read(&memcg->kmem)),
+ K((u64)memcg->kmem.max), memcg->kmem.failcnt);
+ }
+#endif
- for_each_mem_cgroup_tree(iter, memcg)
- num++;
- return num;
+ pr_info("Memory cgroup stats for ");
+ pr_cont_cgroup_path(memcg->css.cgroup);
+ pr_cont(":");
+ seq_buf_init(&s, buf, SEQ_BUF_SIZE);
+ memory_stat_format(memcg, &s);
+ seq_buf_do_printk(&s, KERN_INFO);
}
/*
* Return the memory (and swap, if configured) limit for a memcg.
*/
-static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
+unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
{
- u64 limit;
+ unsigned long max = READ_ONCE(memcg->memory.max);
- limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
+ if (do_memsw_account()) {
+ if (mem_cgroup_swappiness(memcg)) {
+ /* Calculate swap excess capacity from memsw limit */
+ unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
- /*
- * Do not consider swap space if we cannot swap due to swappiness
- */
- if (mem_cgroup_swappiness(memcg)) {
- u64 memsw;
-
- limit += total_swap_pages << PAGE_SHIFT;
- memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
-
- /*
- * If memsw is finite and limits the amount of swap space
- * available to this memcg, return that limit.
- */
- limit = min(limit, memsw);
+ max += min(swap, (unsigned long)total_swap_pages);
+ }
+ } else {
+ if (mem_cgroup_swappiness(memcg))
+ max += min(READ_ONCE(memcg->swap.max),
+ (unsigned long)total_swap_pages);
}
+ return max;
+}
- return limit;
+unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
+{
+ return page_counter_read(&memcg->memory);
}
-static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
- int order)
+void __memcg_memory_event(struct mem_cgroup *memcg,
+ enum memcg_memory_event event, bool allow_spinning)
{
- struct mem_cgroup *iter;
- unsigned long chosen_points = 0;
- unsigned long totalpages;
- unsigned int points = 0;
- struct task_struct *chosen = NULL;
+ bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
+ event == MEMCG_SWAP_FAIL;
- /*
- * If current has a pending SIGKILL or is exiting, then automatically
- * select it. The goal is to allow it to allocate so that it may
- * quickly exit and free its memory.
- */
- if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
- set_thread_flag(TIF_MEMDIE);
- return;
- }
+ /* For now only MEMCG_MAX can happen with !allow_spinning context. */
+ VM_WARN_ON_ONCE(!allow_spinning && event != MEMCG_MAX);
- check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
- totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
- for_each_mem_cgroup_tree(iter, memcg) {
- struct cgroup *cgroup = iter->css.cgroup;
- struct cgroup_iter it;
- struct task_struct *task;
+ atomic_long_inc(&memcg->memory_events_local[event]);
+ if (!swap_event && allow_spinning)
+ cgroup_file_notify(&memcg->events_local_file);
- cgroup_iter_start(cgroup, &it);
- while ((task = cgroup_iter_next(cgroup, &it))) {
- switch (oom_scan_process_thread(task, totalpages, NULL,
- false)) {
- case OOM_SCAN_SELECT:
- if (chosen)
- put_task_struct(chosen);
- chosen = task;
- chosen_points = ULONG_MAX;
- get_task_struct(chosen);
- /* fall through */
- case OOM_SCAN_CONTINUE:
- continue;
- case OOM_SCAN_ABORT:
- cgroup_iter_end(cgroup, &it);
- mem_cgroup_iter_break(memcg, iter);
- if (chosen)
- put_task_struct(chosen);
- return;
- case OOM_SCAN_OK:
- break;
- };
- points = oom_badness(task, memcg, NULL, totalpages);
- if (points > chosen_points) {
- if (chosen)
- put_task_struct(chosen);
- chosen = task;
- chosen_points = points;
- get_task_struct(chosen);
- }
+ do {
+ atomic_long_inc(&memcg->memory_events[event]);
+ if (allow_spinning) {
+ if (swap_event)
+ cgroup_file_notify(&memcg->swap_events_file);
+ else
+ cgroup_file_notify(&memcg->events_file);
}
- cgroup_iter_end(cgroup, &it);
- }
-
- if (!chosen)
- return;
- points = chosen_points * 1000 / totalpages;
- oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
- NULL, "Memory cgroup out of memory");
-}
-static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
- gfp_t gfp_mask,
- unsigned long flags)
-{
- unsigned long total = 0;
- bool noswap = false;
- int loop;
-
- if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
- noswap = true;
- if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
- noswap = true;
-
- for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
- if (loop)
- drain_all_stock_async(memcg);
- total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
- /*
- * Allow limit shrinkers, which are triggered directly
- * by userspace, to catch signals and stop reclaim
- * after minimal progress, regardless of the margin.
- */
- if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
break;
- if (mem_cgroup_margin(memcg))
+ if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
break;
- /*
- * If nothing was reclaimed after two attempts, there
- * may be no reclaimable pages in this hierarchy.
- */
- if (loop && !total)
- break;
- }
- return total;
+ } while ((memcg = parent_mem_cgroup(memcg)) &&
+ !mem_cgroup_is_root(memcg));
}
+EXPORT_SYMBOL_GPL(__memcg_memory_event);
-/**
- * test_mem_cgroup_node_reclaimable
- * @memcg: the target memcg
- * @nid: the node ID to be checked.
- * @noswap : specify true here if the user wants flle only information.
- *
- * This function returns whether the specified memcg contains any
- * reclaimable pages on a node. Returns true if there are any reclaimable
- * pages in the node.
- */
-static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
- int nid, bool noswap)
+static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
+ int order)
{
- if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
- return true;
- if (noswap || !total_swap_pages)
- return false;
- if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
+ struct oom_control oc = {
+ .zonelist = NULL,
+ .nodemask = NULL,
+ .memcg = memcg,
+ .gfp_mask = gfp_mask,
+ .order = order,
+ };
+ bool ret = true;
+
+ if (mutex_lock_killable(&oom_lock))
return true;
- return false;
+ if (mem_cgroup_margin(memcg) >= (1 << order))
+ goto unlock;
+
+ /*
+ * A few threads which were not waiting at mutex_lock_killable() can
+ * fail to bail out. Therefore, check again after holding oom_lock.
+ */
+ ret = out_of_memory(&oc);
+
+unlock:
+ mutex_unlock(&oom_lock);
+ return ret;
}
-#if MAX_NUMNODES > 1
/*
- * Always updating the nodemask is not very good - even if we have an empty
- * list or the wrong list here, we can start from some node and traverse all
- * nodes based on the zonelist. So update the list loosely once per 10 secs.
- *
+ * Returns true if successfully killed one or more processes. Though in some
+ * corner cases it can return true even without killing any process.
*/
-static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
+static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
{
- int nid;
- /*
- * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
- * pagein/pageout changes since the last update.
- */
- if (!atomic_read(&memcg->numainfo_events))
- return;
- if (atomic_inc_return(&memcg->numainfo_updating) > 1)
- return;
+ bool locked, ret;
- /* make a nodemask where this memcg uses memory from */
- memcg->scan_nodes = node_states[N_MEMORY];
+ if (order > PAGE_ALLOC_COSTLY_ORDER)
+ return false;
- for_each_node_mask(nid, node_states[N_MEMORY]) {
+ memcg_memory_event(memcg, MEMCG_OOM);
- if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
- node_clear(nid, memcg->scan_nodes);
- }
+ if (!memcg1_oom_prepare(memcg, &locked))
+ return false;
+
+ ret = mem_cgroup_out_of_memory(memcg, mask, order);
+
+ memcg1_oom_finish(memcg, locked);
- atomic_set(&memcg->numainfo_events, 0);
- atomic_set(&memcg->numainfo_updating, 0);
+ return ret;
}
-/*
- * Selecting a node where we start reclaim from. Because what we need is just
- * reducing usage counter, start from anywhere is O,K. Considering
- * memory reclaim from current node, there are pros. and cons.
+/**
+ * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
+ * @victim: task to be killed by the OOM killer
+ * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
*
- * Freeing memory from current node means freeing memory from a node which
- * we'll use or we've used. So, it may make LRU bad. And if several threads
- * hit limits, it will see a contention on a node. But freeing from remote
- * node means more costs for memory reclaim because of memory latency.
+ * Returns a pointer to a memory cgroup, which has to be cleaned up
+ * by killing all belonging OOM-killable tasks.
*
- * Now, we use round-robin. Better algorithm is welcomed.
+ * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
*/
-int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
+struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
+ struct mem_cgroup *oom_domain)
{
- int node;
+ struct mem_cgroup *oom_group = NULL;
+ struct mem_cgroup *memcg;
- mem_cgroup_may_update_nodemask(memcg);
- node = memcg->last_scanned_node;
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return NULL;
- node = next_node(node, memcg->scan_nodes);
- if (node == MAX_NUMNODES)
- node = first_node(memcg->scan_nodes);
- /*
- * We call this when we hit limit, not when pages are added to LRU.
- * No LRU may hold pages because all pages are UNEVICTABLE or
- * memcg is too small and all pages are not on LRU. In that case,
- * we use curret node.
- */
- if (unlikely(node == MAX_NUMNODES))
- node = numa_node_id();
+ if (!oom_domain)
+ oom_domain = root_mem_cgroup;
- memcg->last_scanned_node = node;
- return node;
-}
+ rcu_read_lock();
-/*
- * Check all nodes whether it contains reclaimable pages or not.
- * For quick scan, we make use of scan_nodes. This will allow us to skip
- * unused nodes. But scan_nodes is lazily updated and may not cotain
- * enough new information. We need to do double check.
- */
-static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
-{
- int nid;
+ memcg = mem_cgroup_from_task(victim);
+ if (mem_cgroup_is_root(memcg))
+ goto out;
/*
- * quick check...making use of scan_node.
- * We can skip unused nodes.
+ * If the victim task has been asynchronously moved to a different
+ * memory cgroup, we might end up killing tasks outside oom_domain.
+ * In this case it's better to ignore memory.group.oom.
*/
- if (!nodes_empty(memcg->scan_nodes)) {
- for (nid = first_node(memcg->scan_nodes);
- nid < MAX_NUMNODES;
- nid = next_node(nid, memcg->scan_nodes)) {
+ if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
+ goto out;
- if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
- return true;
- }
- }
/*
- * Check rest of nodes.
+ * Traverse the memory cgroup hierarchy from the victim task's
+ * cgroup up to the OOMing cgroup (or root) to find the
+ * highest-level memory cgroup with oom.group set.
*/
- for_each_node_state(nid, N_MEMORY) {
- if (node_isset(nid, memcg->scan_nodes))
- continue;
- if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
- return true;
+ for (; memcg; memcg = parent_mem_cgroup(memcg)) {
+ if (READ_ONCE(memcg->oom_group))
+ oom_group = memcg;
+
+ if (memcg == oom_domain)
+ break;
}
- return false;
-}
-#else
-int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
-{
- return 0;
+ if (oom_group)
+ css_get(&oom_group->css);
+out:
+ rcu_read_unlock();
+
+ return oom_group;
}
-static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
+void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
- return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
+ pr_info("Tasks in ");
+ pr_cont_cgroup_path(memcg->css.cgroup);
+ pr_cont(" are going to be killed due to memory.oom.group set\n");
}
-#endif
-static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
- struct zone *zone,
- gfp_t gfp_mask,
- unsigned long *total_scanned)
-{
- struct mem_cgroup *victim = NULL;
- int total = 0;
- int loop = 0;
- unsigned long excess;
- unsigned long nr_scanned;
- struct mem_cgroup_reclaim_cookie reclaim = {
- .zone = zone,
- .priority = 0,
- };
+/*
+ * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
+ * nr_pages in a single cacheline. This may change in future.
+ */
+#define NR_MEMCG_STOCK 7
+#define FLUSHING_CACHED_CHARGE 0
+struct memcg_stock_pcp {
+ local_trylock_t lock;
+ uint8_t nr_pages[NR_MEMCG_STOCK];
+ struct mem_cgroup *cached[NR_MEMCG_STOCK];
- excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
-
- while (1) {
- victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
- if (!victim) {
- loop++;
- if (loop >= 2) {
- /*
- * If we have not been able to reclaim
- * anything, it might because there are
- * no reclaimable pages under this hierarchy
- */
- if (!total)
- break;
- /*
- * We want to do more targeted reclaim.
- * excess >> 2 is not to excessive so as to
- * reclaim too much, nor too less that we keep
- * coming back to reclaim from this cgroup
- */
- if (total >= (excess >> 2) ||
- (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
- break;
- }
- continue;
- }
- if (!mem_cgroup_reclaimable(victim, false))
- continue;
- total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
- zone, &nr_scanned);
- *total_scanned += nr_scanned;
- if (!res_counter_soft_limit_excess(&root_memcg->res))
- break;
- }
- mem_cgroup_iter_break(root_memcg, victim);
- return total;
-}
+ struct work_struct work;
+ unsigned long flags;
+};
-/*
- * Check OOM-Killer is already running under our hierarchy.
- * If someone is running, return false.
- * Has to be called with memcg_oom_lock
+static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
+ .lock = INIT_LOCAL_TRYLOCK(lock),
+};
+
+struct obj_stock_pcp {
+ local_trylock_t lock;
+ unsigned int nr_bytes;
+ struct obj_cgroup *cached_objcg;
+ struct pglist_data *cached_pgdat;
+ int nr_slab_reclaimable_b;
+ int nr_slab_unreclaimable_b;
+
+ struct work_struct work;
+ unsigned long flags;
+};
+
+static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
+ .lock = INIT_LOCAL_TRYLOCK(lock),
+};
+
+static DEFINE_MUTEX(percpu_charge_mutex);
+
+static void drain_obj_stock(struct obj_stock_pcp *stock);
+static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
+ struct mem_cgroup *root_memcg);
+
+/**
+ * consume_stock: Try to consume stocked charge on this cpu.
+ * @memcg: memcg to consume from.
+ * @nr_pages: how many pages to charge.
+ *
+ * Consume the cached charge if enough nr_pages are present otherwise return
+ * failure. Also return failure for charge request larger than
+ * MEMCG_CHARGE_BATCH or if the local lock is already taken.
+ *
+ * returns true if successful, false otherwise.
*/
-static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
+static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
{
- struct mem_cgroup *iter, *failed = NULL;
+ struct memcg_stock_pcp *stock;
+ uint8_t stock_pages;
+ bool ret = false;
+ int i;
- for_each_mem_cgroup_tree(iter, memcg) {
- if (iter->oom_lock) {
- /*
- * this subtree of our hierarchy is already locked
- * so we cannot give a lock.
- */
- failed = iter;
- mem_cgroup_iter_break(memcg, iter);
- break;
- } else
- iter->oom_lock = true;
- }
+ if (nr_pages > MEMCG_CHARGE_BATCH ||
+ !local_trylock(&memcg_stock.lock))
+ return ret;
- if (!failed)
- return true;
+ stock = this_cpu_ptr(&memcg_stock);
- /*
- * OK, we failed to lock the whole subtree so we have to clean up
- * what we set up to the failing subtree
- */
- for_each_mem_cgroup_tree(iter, memcg) {
- if (iter == failed) {
- mem_cgroup_iter_break(memcg, iter);
- break;
+ for (i = 0; i < NR_MEMCG_STOCK; ++i) {
+ if (memcg != READ_ONCE(stock->cached[i]))
+ continue;
+
+ stock_pages = READ_ONCE(stock->nr_pages[i]);
+ if (stock_pages >= nr_pages) {
+ WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
+ ret = true;
}
- iter->oom_lock = false;
+ break;
}
- return false;
+
+ local_unlock(&memcg_stock.lock);
+
+ return ret;
+}
+
+static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
+{
+ page_counter_uncharge(&memcg->memory, nr_pages);
+ if (do_memsw_account())
+ page_counter_uncharge(&memcg->memsw, nr_pages);
}
/*
- * Has to be called with memcg_oom_lock
+ * Returns stocks cached in percpu and reset cached information.
*/
-static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
+static void drain_stock(struct memcg_stock_pcp *stock, int i)
{
- struct mem_cgroup *iter;
+ struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
+ uint8_t stock_pages;
- for_each_mem_cgroup_tree(iter, memcg)
- iter->oom_lock = false;
- return 0;
-}
+ if (!old)
+ return;
-static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
-{
- struct mem_cgroup *iter;
+ stock_pages = READ_ONCE(stock->nr_pages[i]);
+ if (stock_pages) {
+ memcg_uncharge(old, stock_pages);
+ WRITE_ONCE(stock->nr_pages[i], 0);
+ }
- for_each_mem_cgroup_tree(iter, memcg)
- atomic_inc(&iter->under_oom);
+ css_put(&old->css);
+ WRITE_ONCE(stock->cached[i], NULL);
}
-static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
+static void drain_stock_fully(struct memcg_stock_pcp *stock)
{
- struct mem_cgroup *iter;
+ int i;
- /*
- * When a new child is created while the hierarchy is under oom,
- * mem_cgroup_oom_lock() may not be called. We have to use
- * atomic_add_unless() here.
- */
- for_each_mem_cgroup_tree(iter, memcg)
- atomic_add_unless(&iter->under_oom, -1, 0);
+ for (i = 0; i < NR_MEMCG_STOCK; ++i)
+ drain_stock(stock, i);
}
-static DEFINE_SPINLOCK(memcg_oom_lock);
-static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
+static void drain_local_memcg_stock(struct work_struct *dummy)
+{
+ struct memcg_stock_pcp *stock;
-struct oom_wait_info {
- struct mem_cgroup *memcg;
- wait_queue_t wait;
-};
+ if (WARN_ONCE(!in_task(), "drain in non-task context"))
+ return;
-static int memcg_oom_wake_function(wait_queue_t *wait,
- unsigned mode, int sync, void *arg)
-{
- struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
- struct mem_cgroup *oom_wait_memcg;
- struct oom_wait_info *oom_wait_info;
+ local_lock(&memcg_stock.lock);
- oom_wait_info = container_of(wait, struct oom_wait_info, wait);
- oom_wait_memcg = oom_wait_info->memcg;
+ stock = this_cpu_ptr(&memcg_stock);
+ drain_stock_fully(stock);
+ clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
- /*
- * Both of oom_wait_info->memcg and wake_memcg are stable under us.
- * Then we can use css_is_ancestor without taking care of RCU.
- */
- if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
- && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
- return 0;
- return autoremove_wake_function(wait, mode, sync, arg);
+ local_unlock(&memcg_stock.lock);
}
-static void memcg_wakeup_oom(struct mem_cgroup *memcg)
+static void drain_local_obj_stock(struct work_struct *dummy)
{
- /* for filtering, pass "memcg" as argument. */
- __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
+ struct obj_stock_pcp *stock;
+
+ if (WARN_ONCE(!in_task(), "drain in non-task context"))
+ return;
+
+ local_lock(&obj_stock.lock);
+
+ stock = this_cpu_ptr(&obj_stock);
+ drain_obj_stock(stock);
+ clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
+
+ local_unlock(&obj_stock.lock);
}
-static void memcg_oom_recover(struct mem_cgroup *memcg)
+static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
{
- if (memcg && atomic_read(&memcg->under_oom))
- memcg_wakeup_oom(memcg);
-}
+ struct memcg_stock_pcp *stock;
+ struct mem_cgroup *cached;
+ uint8_t stock_pages;
+ bool success = false;
+ int empty_slot = -1;
+ int i;
-/*
- * try to call OOM killer. returns false if we should exit memory-reclaim loop.
- */
-static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
- int order)
-{
- struct oom_wait_info owait;
- bool locked, need_to_kill;
-
- owait.memcg = memcg;
- owait.wait.flags = 0;
- owait.wait.func = memcg_oom_wake_function;
- owait.wait.private = current;
- INIT_LIST_HEAD(&owait.wait.task_list);
- need_to_kill = true;
- mem_cgroup_mark_under_oom(memcg);
-
- /* At first, try to OOM lock hierarchy under memcg.*/
- spin_lock(&memcg_oom_lock);
- locked = mem_cgroup_oom_lock(memcg);
/*
- * Even if signal_pending(), we can't quit charge() loop without
- * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
- * under OOM is always welcomed, use TASK_KILLABLE here.
+ * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
+ * decide to increase it more than 127 then we will need more careful
+ * handling of nr_pages[] in struct memcg_stock_pcp.
*/
- prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
- if (!locked || memcg->oom_kill_disable)
- need_to_kill = false;
- if (locked)
- mem_cgroup_oom_notify(memcg);
- spin_unlock(&memcg_oom_lock);
-
- if (need_to_kill) {
- finish_wait(&memcg_oom_waitq, &owait.wait);
- mem_cgroup_out_of_memory(memcg, mask, order);
- } else {
- schedule();
- finish_wait(&memcg_oom_waitq, &owait.wait);
+ BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
+
+ VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
+
+ if (nr_pages > MEMCG_CHARGE_BATCH ||
+ !local_trylock(&memcg_stock.lock)) {
+ /*
+ * In case of larger than batch refill or unlikely failure to
+ * lock the percpu memcg_stock.lock, uncharge memcg directly.
+ */
+ memcg_uncharge(memcg, nr_pages);
+ return;
+ }
+
+ stock = this_cpu_ptr(&memcg_stock);
+ for (i = 0; i < NR_MEMCG_STOCK; ++i) {
+ cached = READ_ONCE(stock->cached[i]);
+ if (!cached && empty_slot == -1)
+ empty_slot = i;
+ if (memcg == READ_ONCE(stock->cached[i])) {
+ stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
+ WRITE_ONCE(stock->nr_pages[i], stock_pages);
+ if (stock_pages > MEMCG_CHARGE_BATCH)
+ drain_stock(stock, i);
+ success = true;
+ break;
+ }
}
- spin_lock(&memcg_oom_lock);
- if (locked)
- mem_cgroup_oom_unlock(memcg);
- memcg_wakeup_oom(memcg);
- spin_unlock(&memcg_oom_lock);
- mem_cgroup_unmark_under_oom(memcg);
+ if (!success) {
+ i = empty_slot;
+ if (i == -1) {
+ i = get_random_u32_below(NR_MEMCG_STOCK);
+ drain_stock(stock, i);
+ }
+ css_get(&memcg->css);
+ WRITE_ONCE(stock->cached[i], memcg);
+ WRITE_ONCE(stock->nr_pages[i], nr_pages);
+ }
- if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
- return false;
- /* Give chance to dying process */
- schedule_timeout_uninterruptible(1);
- return true;
+ local_unlock(&memcg_stock.lock);
+}
+
+static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
+ struct mem_cgroup *root_memcg)
+{
+ struct mem_cgroup *memcg;
+ bool flush = false;
+ int i;
+
+ rcu_read_lock();
+ for (i = 0; i < NR_MEMCG_STOCK; ++i) {
+ memcg = READ_ONCE(stock->cached[i]);
+ if (!memcg)
+ continue;
+
+ if (READ_ONCE(stock->nr_pages[i]) &&
+ mem_cgroup_is_descendant(memcg, root_memcg)) {
+ flush = true;
+ break;
+ }
+ }
+ rcu_read_unlock();
+ return flush;
}
/*
- * Currently used to update mapped file statistics, but the routine can be
- * generalized to update other statistics as well.
- *
- * Notes: Race condition
- *
- * We usually use page_cgroup_lock() for accessing page_cgroup member but
- * it tends to be costly. But considering some conditions, we doesn't need
- * to do so _always_.
- *
- * Considering "charge", lock_page_cgroup() is not required because all
- * file-stat operations happen after a page is attached to radix-tree. There
- * are no race with "charge".
- *
- * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
- * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
- * if there are race with "uncharge". Statistics itself is properly handled
- * by flags.
- *
- * Considering "move", this is an only case we see a race. To make the race
- * small, we check mm->moving_account and detect there are possibility of race
- * If there is, we take a lock.
+ * Drains all per-CPU charge caches for given root_memcg resp. subtree
+ * of the hierarchy under it.
*/
-
-void __mem_cgroup_begin_update_page_stat(struct page *page,
- bool *locked, unsigned long *flags)
+void drain_all_stock(struct mem_cgroup *root_memcg)
{
- struct mem_cgroup *memcg;
- struct page_cgroup *pc;
+ int cpu, curcpu;
- pc = lookup_page_cgroup(page);
-again:
- memcg = pc->mem_cgroup;
- if (unlikely(!memcg || !PageCgroupUsed(pc)))
+ /* If someone's already draining, avoid adding running more workers. */
+ if (!mutex_trylock(&percpu_charge_mutex))
return;
/*
- * If this memory cgroup is not under account moving, we don't
- * need to take move_lock_mem_cgroup(). Because we already hold
- * rcu_read_lock(), any calls to move_account will be delayed until
- * rcu_read_unlock() if mem_cgroup_stolen() == true.
+ * Notify other cpus that system-wide "drain" is running
+ * We do not care about races with the cpu hotplug because cpu down
+ * as well as workers from this path always operate on the local
+ * per-cpu data. CPU up doesn't touch memcg_stock at all.
*/
- if (!mem_cgroup_stolen(memcg))
- return;
+ migrate_disable();
+ curcpu = smp_processor_id();
+ for_each_online_cpu(cpu) {
+ struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
+ struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
- move_lock_mem_cgroup(memcg, flags);
- if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
- move_unlock_mem_cgroup(memcg, flags);
- goto again;
+ if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
+ is_memcg_drain_needed(memcg_st, root_memcg) &&
+ !test_and_set_bit(FLUSHING_CACHED_CHARGE,
+ &memcg_st->flags)) {
+ if (cpu == curcpu)
+ drain_local_memcg_stock(&memcg_st->work);
+ else if (!cpu_is_isolated(cpu))
+ schedule_work_on(cpu, &memcg_st->work);
+ }
+
+ if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
+ obj_stock_flush_required(obj_st, root_memcg) &&
+ !test_and_set_bit(FLUSHING_CACHED_CHARGE,
+ &obj_st->flags)) {
+ if (cpu == curcpu)
+ drain_local_obj_stock(&obj_st->work);
+ else if (!cpu_is_isolated(cpu))
+ schedule_work_on(cpu, &obj_st->work);
+ }
}
- *locked = true;
+ migrate_enable();
+ mutex_unlock(&percpu_charge_mutex);
}
-void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
+static int memcg_hotplug_cpu_dead(unsigned int cpu)
{
- struct page_cgroup *pc = lookup_page_cgroup(page);
+ /* no need for the local lock */
+ drain_obj_stock(&per_cpu(obj_stock, cpu));
+ drain_stock_fully(&per_cpu(memcg_stock, cpu));
- /*
- * It's guaranteed that pc->mem_cgroup never changes while
- * lock is held because a routine modifies pc->mem_cgroup
- * should take move_lock_mem_cgroup().
- */
- move_unlock_mem_cgroup(pc->mem_cgroup, flags);
+ return 0;
}
-void mem_cgroup_update_page_stat(struct page *page,
- enum mem_cgroup_page_stat_item idx, int val)
+static unsigned long reclaim_high(struct mem_cgroup *memcg,
+ unsigned int nr_pages,
+ gfp_t gfp_mask)
{
- struct mem_cgroup *memcg;
- struct page_cgroup *pc = lookup_page_cgroup(page);
- unsigned long uninitialized_var(flags);
+ unsigned long nr_reclaimed = 0;
- if (mem_cgroup_disabled())
- return;
+ do {
+ unsigned long pflags;
- memcg = pc->mem_cgroup;
- if (unlikely(!memcg || !PageCgroupUsed(pc)))
- return;
+ if (page_counter_read(&memcg->memory) <=
+ READ_ONCE(memcg->memory.high))
+ continue;
- switch (idx) {
- case MEMCG_NR_FILE_MAPPED:
- idx = MEM_CGROUP_STAT_FILE_MAPPED;
- break;
- default:
- BUG();
- }
+ memcg_memory_event(memcg, MEMCG_HIGH);
+
+ psi_memstall_enter(&pflags);
+ nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
+ gfp_mask,
+ MEMCG_RECLAIM_MAY_SWAP,
+ NULL);
+ psi_memstall_leave(&pflags);
+ } while ((memcg = parent_mem_cgroup(memcg)) &&
+ !mem_cgroup_is_root(memcg));
+
+ return nr_reclaimed;
+}
- this_cpu_add(memcg->stat->count[idx], val);
+static void high_work_func(struct work_struct *work)
+{
+ struct mem_cgroup *memcg;
+
+ memcg = container_of(work, struct mem_cgroup, high_work);
+ reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
}
/*
- * size of first charge trial. "32" comes from vmscan.c's magic value.
- * TODO: maybe necessary to use big numbers in big irons.
+ * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
+ * enough to still cause a significant slowdown in most cases, while still
+ * allowing diagnostics and tracing to proceed without becoming stuck.
*/
-#define CHARGE_BATCH 32U
-struct memcg_stock_pcp {
- struct mem_cgroup *cached; /* this never be root cgroup */
- unsigned int nr_pages;
- struct work_struct work;
- unsigned long flags;
-#define FLUSHING_CACHED_CHARGE 0
-};
-static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
-static DEFINE_MUTEX(percpu_charge_mutex);
+#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
-/**
- * consume_stock: Try to consume stocked charge on this cpu.
- * @memcg: memcg to consume from.
- * @nr_pages: how many pages to charge.
+/*
+ * When calculating the delay, we use these either side of the exponentiation to
+ * maintain precision and scale to a reasonable number of jiffies (see the table
+ * below.
*
- * The charges will only happen if @memcg matches the current cpu's memcg
- * stock, and at least @nr_pages are available in that stock. Failure to
- * service an allocation will refill the stock.
+ * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
+ * overage ratio to a delay.
+ * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
+ * proposed penalty in order to reduce to a reasonable number of jiffies, and
+ * to produce a reasonable delay curve.
*
- * returns true if successful, false otherwise.
+ * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
+ * reasonable delay curve compared to precision-adjusted overage, not
+ * penalising heavily at first, but still making sure that growth beyond the
+ * limit penalises misbehaviour cgroups by slowing them down exponentially. For
+ * example, with a high of 100 megabytes:
+ *
+ * +-------+------------------------+
+ * | usage | time to allocate in ms |
+ * +-------+------------------------+
+ * | 100M | 0 |
+ * | 101M | 6 |
+ * | 102M | 25 |
+ * | 103M | 57 |
+ * | 104M | 102 |
+ * | 105M | 159 |
+ * | 106M | 230 |
+ * | 107M | 313 |
+ * | 108M | 409 |
+ * | 109M | 518 |
+ * | 110M | 639 |
+ * | 111M | 774 |
+ * | 112M | 921 |
+ * | 113M | 1081 |
+ * | 114M | 1254 |
+ * | 115M | 1439 |
+ * | 116M | 1638 |
+ * | 117M | 1849 |
+ * | 118M | 2000 |
+ * | 119M | 2000 |
+ * | 120M | 2000 |
+ * +-------+------------------------+
*/
-static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
+ #define MEMCG_DELAY_PRECISION_SHIFT 20
+ #define MEMCG_DELAY_SCALING_SHIFT 14
+
+static u64 calculate_overage(unsigned long usage, unsigned long high)
{
- struct memcg_stock_pcp *stock;
- bool ret = true;
+ u64 overage;
- if (nr_pages > CHARGE_BATCH)
- return false;
+ if (usage <= high)
+ return 0;
- stock = &get_cpu_var(memcg_stock);
- if (memcg == stock->cached && stock->nr_pages >= nr_pages)
- stock->nr_pages -= nr_pages;
- else /* need to call res_counter_charge */
- ret = false;
- put_cpu_var(memcg_stock);
- return ret;
+ /*
+ * Prevent division by 0 in overage calculation by acting as if
+ * it was a threshold of 1 page
+ */
+ high = max(high, 1UL);
+
+ overage = usage - high;
+ overage <<= MEMCG_DELAY_PRECISION_SHIFT;
+ return div64_u64(overage, high);
}
-/*
- * Returns stocks cached in percpu to res_counter and reset cached information.
- */
-static void drain_stock(struct memcg_stock_pcp *stock)
+static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
- struct mem_cgroup *old = stock->cached;
+ u64 overage, max_overage = 0;
- if (stock->nr_pages) {
- unsigned long bytes = stock->nr_pages * PAGE_SIZE;
+ do {
+ overage = calculate_overage(page_counter_read(&memcg->memory),
+ READ_ONCE(memcg->memory.high));
+ max_overage = max(overage, max_overage);
+ } while ((memcg = parent_mem_cgroup(memcg)) &&
+ !mem_cgroup_is_root(memcg));
- res_counter_uncharge(&old->res, bytes);
- if (do_swap_account)
- res_counter_uncharge(&old->memsw, bytes);
- stock->nr_pages = 0;
- }
- stock->cached = NULL;
+ return max_overage;
}
-/*
- * This must be called under preempt disabled or must be called by
- * a thread which is pinned to local cpu.
- */
-static void drain_local_stock(struct work_struct *dummy)
+static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
- struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
- drain_stock(stock);
- clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
-}
+ u64 overage, max_overage = 0;
-static void __init memcg_stock_init(void)
-{
- int cpu;
+ do {
+ overage = calculate_overage(page_counter_read(&memcg->swap),
+ READ_ONCE(memcg->swap.high));
+ if (overage)
+ memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
+ max_overage = max(overage, max_overage);
+ } while ((memcg = parent_mem_cgroup(memcg)) &&
+ !mem_cgroup_is_root(memcg));
- for_each_possible_cpu(cpu) {
- struct memcg_stock_pcp *stock =
- &per_cpu(memcg_stock, cpu);
- INIT_WORK(&stock->work, drain_local_stock);
- }
+ return max_overage;
}
/*
- * Cache charges(val) which is from res_counter, to local per_cpu area.
- * This will be consumed by consume_stock() function, later.
+ * Get the number of jiffies that we should penalise a mischievous cgroup which
+ * is exceeding its memory.high by checking both it and its ancestors.
*/
-static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
+static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
+ unsigned int nr_pages,
+ u64 max_overage)
{
- struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
+ unsigned long penalty_jiffies;
- if (stock->cached != memcg) { /* reset if necessary */
- drain_stock(stock);
- stock->cached = memcg;
- }
- stock->nr_pages += nr_pages;
- put_cpu_var(memcg_stock);
+ if (!max_overage)
+ return 0;
+
+ /*
+ * We use overage compared to memory.high to calculate the number of
+ * jiffies to sleep (penalty_jiffies). Ideally this value should be
+ * fairly lenient on small overages, and increasingly harsh when the
+ * memcg in question makes it clear that it has no intention of stopping
+ * its crazy behaviour, so we exponentially increase the delay based on
+ * overage amount.
+ */
+ penalty_jiffies = max_overage * max_overage * HZ;
+ penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
+ penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
+
+ /*
+ * Factor in the task's own contribution to the overage, such that four
+ * N-sized allocations are throttled approximately the same as one
+ * 4N-sized allocation.
+ *
+ * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
+ * larger the current charge patch is than that.
+ */
+ return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
}
/*
- * Drains all per-CPU charge caches for given root_memcg resp. subtree
- * of the hierarchy under it. sync flag says whether we should block
- * until the work is done.
+ * Reclaims memory over the high limit. Called directly from
+ * try_charge() (context permitting), as well as from the userland
+ * return path where reclaim is always able to block.
*/
-static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
+void __mem_cgroup_handle_over_high(gfp_t gfp_mask)
{
- int cpu, curcpu;
+ unsigned long penalty_jiffies;
+ unsigned long pflags;
+ unsigned long nr_reclaimed;
+ unsigned int nr_pages = current->memcg_nr_pages_over_high;
+ int nr_retries = MAX_RECLAIM_RETRIES;
+ struct mem_cgroup *memcg;
+ bool in_retry = false;
- /* Notify other cpus that system-wide "drain" is running */
- get_online_cpus();
- curcpu = get_cpu();
- for_each_online_cpu(cpu) {
- struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
- struct mem_cgroup *memcg;
+ memcg = get_mem_cgroup_from_mm(current->mm);
+ current->memcg_nr_pages_over_high = 0;
- memcg = stock->cached;
- if (!memcg || !stock->nr_pages)
- continue;
- if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
- continue;
- if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
- if (cpu == curcpu)
- drain_local_stock(&stock->work);
- else
- schedule_work_on(cpu, &stock->work);
- }
- }
- put_cpu();
-
- if (!sync)
+retry_reclaim:
+ /*
+ * Bail if the task is already exiting. Unlike memory.max,
+ * memory.high enforcement isn't as strict, and there is no
+ * OOM killer involved, which means the excess could already
+ * be much bigger (and still growing) than it could for
+ * memory.max; the dying task could get stuck in fruitless
+ * reclaim for a long time, which isn't desirable.
+ */
+ if (task_is_dying())
goto out;
- for_each_online_cpu(cpu) {
- struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
- if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
- flush_work(&stock->work);
- }
-out:
- put_online_cpus();
-}
+ /*
+ * The allocating task should reclaim at least the batch size, but for
+ * subsequent retries we only want to do what's necessary to prevent oom
+ * or breaching resource isolation.
+ *
+ * This is distinct from memory.max or page allocator behaviour because
+ * memory.high is currently batched, whereas memory.max and the page
+ * allocator run every time an allocation is made.
+ */
+ nr_reclaimed = reclaim_high(memcg,
+ in_retry ? SWAP_CLUSTER_MAX : nr_pages,
+ gfp_mask);
-/*
- * Tries to drain stocked charges in other cpus. This function is asynchronous
- * and just put a work per cpu for draining localy on each cpu. Caller can
- * expects some charges will be back to res_counter later but cannot wait for
- * it.
- */
-static void drain_all_stock_async(struct mem_cgroup *root_memcg)
-{
/*
- * If someone calls draining, avoid adding more kworker runs.
+ * memory.high is breached and reclaim is unable to keep up. Throttle
+ * allocators proactively to slow down excessive growth.
*/
- if (!mutex_trylock(&percpu_charge_mutex))
- return;
- drain_all_stock(root_memcg, false);
- mutex_unlock(&percpu_charge_mutex);
-}
+ penalty_jiffies = calculate_high_delay(memcg, nr_pages,
+ mem_find_max_overage(memcg));
-/* This is a synchronous drain interface. */
-static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
-{
- /* called when force_empty is called */
- mutex_lock(&percpu_charge_mutex);
- drain_all_stock(root_memcg, true);
- mutex_unlock(&percpu_charge_mutex);
-}
+ penalty_jiffies += calculate_high_delay(memcg, nr_pages,
+ swap_find_max_overage(memcg));
-/*
- * This function drains percpu counter value from DEAD cpu and
- * move it to local cpu. Note that this function can be preempted.
- */
-static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
-{
- int i;
+ /*
+ * Clamp the max delay per usermode return so as to still keep the
+ * application moving forwards and also permit diagnostics, albeit
+ * extremely slowly.
+ */
+ penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
- spin_lock(&memcg->pcp_counter_lock);
- for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
- long x = per_cpu(memcg->stat->count[i], cpu);
+ /*
+ * Don't sleep if the amount of jiffies this memcg owes us is so low
+ * that it's not even worth doing, in an attempt to be nice to those who
+ * go only a small amount over their memory.high value and maybe haven't
+ * been aggressively reclaimed enough yet.
+ */
+ if (penalty_jiffies <= HZ / 100)
+ goto out;
- per_cpu(memcg->stat->count[i], cpu) = 0;
- memcg->nocpu_base.count[i] += x;
+ /*
+ * If reclaim is making forward progress but we're still over
+ * memory.high, we want to encourage that rather than doing allocator
+ * throttling.
+ */
+ if (nr_reclaimed || nr_retries--) {
+ in_retry = true;
+ goto retry_reclaim;
}
- for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
- unsigned long x = per_cpu(memcg->stat->events[i], cpu);
- per_cpu(memcg->stat->events[i], cpu) = 0;
- memcg->nocpu_base.events[i] += x;
- }
- spin_unlock(&memcg->pcp_counter_lock);
+ /*
+ * Reclaim didn't manage to push usage below the limit, slow
+ * this allocating task down.
+ *
+ * If we exit early, we're guaranteed to die (since
+ * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
+ * need to account for any ill-begotten jiffies to pay them off later.
+ */
+ psi_memstall_enter(&pflags);
+ schedule_timeout_killable(penalty_jiffies);
+ psi_memstall_leave(&pflags);
+
+out:
+ css_put(&memcg->css);
}
-static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
- unsigned long action,
- void *hcpu)
+static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
+ unsigned int nr_pages)
{
- int cpu = (unsigned long)hcpu;
- struct memcg_stock_pcp *stock;
- struct mem_cgroup *iter;
-
- if (action == CPU_ONLINE)
- return NOTIFY_OK;
+ unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
+ int nr_retries = MAX_RECLAIM_RETRIES;
+ struct mem_cgroup *mem_over_limit;
+ struct page_counter *counter;
+ unsigned long nr_reclaimed;
+ bool passed_oom = false;
+ unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
+ bool drained = false;
+ bool raised_max_event = false;
+ unsigned long pflags;
+ bool allow_spinning = gfpflags_allow_spinning(gfp_mask);
- if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
- return NOTIFY_OK;
+retry:
+ if (consume_stock(memcg, nr_pages))
+ return 0;
- for_each_mem_cgroup(iter)
- mem_cgroup_drain_pcp_counter(iter, cpu);
+ if (!allow_spinning)
+ /* Avoid the refill and flush of the older stock */
+ batch = nr_pages;
+
+ if (!do_memsw_account() ||
+ page_counter_try_charge(&memcg->memsw, batch, &counter)) {
+ if (page_counter_try_charge(&memcg->memory, batch, &counter))
+ goto done_restock;
+ if (do_memsw_account())
+ page_counter_uncharge(&memcg->memsw, batch);
+ mem_over_limit = mem_cgroup_from_counter(counter, memory);
+ } else {
+ mem_over_limit = mem_cgroup_from_counter(counter, memsw);
+ reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
+ }
- stock = &per_cpu(memcg_stock, cpu);
- drain_stock(stock);
- return NOTIFY_OK;
-}
+ if (batch > nr_pages) {
+ batch = nr_pages;
+ goto retry;
+ }
+ /*
+ * Prevent unbounded recursion when reclaim operations need to
+ * allocate memory. This might exceed the limits temporarily,
+ * but we prefer facilitating memory reclaim and getting back
+ * under the limit over triggering OOM kills in these cases.
+ */
+ if (unlikely(current->flags & PF_MEMALLOC))
+ goto force;
-/* See __mem_cgroup_try_charge() for details */
-enum {
- CHARGE_OK, /* success */
- CHARGE_RETRY, /* need to retry but retry is not bad */
- CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
- CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
- CHARGE_OOM_DIE, /* the current is killed because of OOM */
-};
+ if (unlikely(task_in_memcg_oom(current)))
+ goto nomem;
-static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
- unsigned int nr_pages, unsigned int min_pages,
- bool oom_check)
-{
- unsigned long csize = nr_pages * PAGE_SIZE;
- struct mem_cgroup *mem_over_limit;
- struct res_counter *fail_res;
- unsigned long flags = 0;
- int ret;
+ if (!gfpflags_allow_blocking(gfp_mask))
+ goto nomem;
- ret = res_counter_charge(&memcg->res, csize, &fail_res);
+ __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
+ raised_max_event = true;
- if (likely(!ret)) {
- if (!do_swap_account)
- return CHARGE_OK;
- ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
- if (likely(!ret))
- return CHARGE_OK;
+ psi_memstall_enter(&pflags);
+ nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
+ gfp_mask, reclaim_options, NULL);
+ psi_memstall_leave(&pflags);
- res_counter_uncharge(&memcg->res, csize);
- mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
- flags |= MEM_CGROUP_RECLAIM_NOSWAP;
- } else
- mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
- /*
- * Never reclaim on behalf of optional batching, retry with a
- * single page instead.
- */
- if (nr_pages > min_pages)
- return CHARGE_RETRY;
+ if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
+ goto retry;
- if (!(gfp_mask & __GFP_WAIT))
- return CHARGE_WOULDBLOCK;
+ if (!drained) {
+ drain_all_stock(mem_over_limit);
+ drained = true;
+ goto retry;
+ }
if (gfp_mask & __GFP_NORETRY)
- return CHARGE_NOMEM;
-
- ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
- if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
- return CHARGE_RETRY;
+ goto nomem;
/*
* Even though the limit is exceeded at this point, reclaim
* may have been able to free some pages. Retry the charge
@@ -2603,4413 +2409,3235 @@ static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
* unlikely to succeed so close to the limit, and we fall back
* to regular pages anyway in case of failure.
*/
- if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
- return CHARGE_RETRY;
-
- /*
- * At task move, charge accounts can be doubly counted. So, it's
- * better to wait until the end of task_move if something is going on.
- */
- if (mem_cgroup_wait_acct_move(mem_over_limit))
- return CHARGE_RETRY;
+ if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
+ goto retry;
- /* If we don't need to call oom-killer at el, return immediately */
- if (!oom_check)
- return CHARGE_NOMEM;
- /* check OOM */
- if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
- return CHARGE_OOM_DIE;
+ if (nr_retries--)
+ goto retry;
- return CHARGE_RETRY;
-}
+ if (gfp_mask & __GFP_RETRY_MAYFAIL)
+ goto nomem;
-/*
- * __mem_cgroup_try_charge() does
- * 1. detect memcg to be charged against from passed *mm and *ptr,
- * 2. update res_counter
- * 3. call memory reclaim if necessary.
- *
- * In some special case, if the task is fatal, fatal_signal_pending() or
- * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
- * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
- * as possible without any hazards. 2: all pages should have a valid
- * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
- * pointer, that is treated as a charge to root_mem_cgroup.
- *
- * So __mem_cgroup_try_charge() will return
- * 0 ... on success, filling *ptr with a valid memcg pointer.
- * -ENOMEM ... charge failure because of resource limits.
- * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
- *
- * Unlike the exported interface, an "oom" parameter is added. if oom==true,
- * the oom-killer can be invoked.
- */
-static int __mem_cgroup_try_charge(struct mm_struct *mm,
- gfp_t gfp_mask,
- unsigned int nr_pages,
- struct mem_cgroup **ptr,
- bool oom)
-{
- unsigned int batch = max(CHARGE_BATCH, nr_pages);
- int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
- struct mem_cgroup *memcg = NULL;
- int ret;
+ /* Avoid endless loop for tasks bypassed by the oom killer */
+ if (passed_oom && task_is_dying())
+ goto nomem;
/*
- * Unlike gloval-vm's OOM-kill, we're not in memory shortage
- * in system level. So, allow to go ahead dying process in addition to
- * MEMDIE process.
+ * keep retrying as long as the memcg oom killer is able to make
+ * a forward progress or bypass the charge if the oom killer
+ * couldn't make any progress.
*/
- if (unlikely(test_thread_flag(TIF_MEMDIE)
- || fatal_signal_pending(current)))
- goto bypass;
+ if (mem_cgroup_oom(mem_over_limit, gfp_mask,
+ get_order(nr_pages * PAGE_SIZE))) {
+ passed_oom = true;
+ nr_retries = MAX_RECLAIM_RETRIES;
+ goto retry;
+ }
+nomem:
+ /*
+ * Memcg doesn't have a dedicated reserve for atomic
+ * allocations. But like the global atomic pool, we need to
+ * put the burden of reclaim on regular allocation requests
+ * and let these go through as privileged allocations.
+ */
+ if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
+ return -ENOMEM;
+force:
+ /*
+ * If the allocation has to be enforced, don't forget to raise
+ * a MEMCG_MAX event.
+ */
+ if (!raised_max_event)
+ __memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
/*
- * We always charge the cgroup the mm_struct belongs to.
- * The mm_struct's mem_cgroup changes on task migration if the
- * thread group leader migrates. It's possible that mm is not
- * set, if so charge the root memcg (happens for pagecache usage).
+ * The allocation either can't fail or will lead to more memory
+ * being freed very soon. Allow memory usage go over the limit
+ * temporarily by force charging it.
*/
- if (!*ptr && !mm)
- *ptr = root_mem_cgroup;
-again:
- if (*ptr) { /* css should be a valid one */
- memcg = *ptr;
- if (mem_cgroup_is_root(memcg))
- goto done;
- if (consume_stock(memcg, nr_pages))
- goto done;
- css_get(&memcg->css);
- } else {
- struct task_struct *p;
+ page_counter_charge(&memcg->memory, nr_pages);
+ if (do_memsw_account())
+ page_counter_charge(&memcg->memsw, nr_pages);
- rcu_read_lock();
- p = rcu_dereference(mm->owner);
- /*
- * Because we don't have task_lock(), "p" can exit.
- * In that case, "memcg" can point to root or p can be NULL with
- * race with swapoff. Then, we have small risk of mis-accouning.
- * But such kind of mis-account by race always happens because
- * we don't have cgroup_mutex(). It's overkill and we allo that
- * small race, here.
- * (*) swapoff at el will charge against mm-struct not against
- * task-struct. So, mm->owner can be NULL.
- */
- memcg = mem_cgroup_from_task(p);
- if (!memcg)
- memcg = root_mem_cgroup;
- if (mem_cgroup_is_root(memcg)) {
- rcu_read_unlock();
- goto done;
- }
- if (consume_stock(memcg, nr_pages)) {
- /*
- * It seems dagerous to access memcg without css_get().
- * But considering how consume_stok works, it's not
- * necessary. If consume_stock success, some charges
- * from this memcg are cached on this cpu. So, we
- * don't need to call css_get()/css_tryget() before
- * calling consume_stock().
- */
- rcu_read_unlock();
- goto done;
- }
- /* after here, we may be blocked. we need to get refcnt */
- if (!css_tryget(&memcg->css)) {
- rcu_read_unlock();
- goto again;
- }
- rcu_read_unlock();
- }
+ return 0;
+
+done_restock:
+ if (batch > nr_pages)
+ refill_stock(memcg, batch - nr_pages);
+ /*
+ * If the hierarchy is above the normal consumption range, schedule
+ * reclaim on returning to userland. We can perform reclaim here
+ * if __GFP_RECLAIM but let's always punt for simplicity and so that
+ * GFP_KERNEL can consistently be used during reclaim. @memcg is
+ * not recorded as it most likely matches current's and won't
+ * change in the meantime. As high limit is checked again before
+ * reclaim, the cost of mismatch is negligible.
+ */
do {
- bool oom_check;
+ bool mem_high, swap_high;
- /* If killed, bypass charge */
- if (fatal_signal_pending(current)) {
- css_put(&memcg->css);
- goto bypass;
- }
+ mem_high = page_counter_read(&memcg->memory) >
+ READ_ONCE(memcg->memory.high);
+ swap_high = page_counter_read(&memcg->swap) >
+ READ_ONCE(memcg->swap.high);
- oom_check = false;
- if (oom && !nr_oom_retries) {
- oom_check = true;
- nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ /* Don't bother a random interrupted task */
+ if (!in_task()) {
+ if (mem_high) {
+ schedule_work(&memcg->high_work);
+ break;
+ }
+ continue;
}
- ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
- oom_check);
- switch (ret) {
- case CHARGE_OK:
- break;
- case CHARGE_RETRY: /* not in OOM situation but retry */
- batch = nr_pages;
- css_put(&memcg->css);
- memcg = NULL;
- goto again;
- case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
- css_put(&memcg->css);
- goto nomem;
- case CHARGE_NOMEM: /* OOM routine works */
- if (!oom) {
- css_put(&memcg->css);
- goto nomem;
- }
- /* If oom, we never return -ENOMEM */
- nr_oom_retries--;
+ if (mem_high || swap_high) {
+ /*
+ * The allocating tasks in this cgroup will need to do
+ * reclaim or be throttled to prevent further growth
+ * of the memory or swap footprints.
+ *
+ * Target some best-effort fairness between the tasks,
+ * and distribute reclaim work and delay penalties
+ * based on how much each task is actually allocating.
+ */
+ current->memcg_nr_pages_over_high += batch;
+ set_notify_resume(current);
break;
- case CHARGE_OOM_DIE: /* Killed by OOM Killer */
- css_put(&memcg->css);
- goto bypass;
}
- } while (ret != CHARGE_OK);
+ } while ((memcg = parent_mem_cgroup(memcg)));
- if (batch > nr_pages)
- refill_stock(memcg, batch - nr_pages);
- css_put(&memcg->css);
-done:
- *ptr = memcg;
+ /*
+ * Reclaim is set up above to be called from the userland
+ * return path. But also attempt synchronous reclaim to avoid
+ * excessive overrun while the task is still inside the
+ * kernel. If this is successful, the return path will see it
+ * when it rechecks the overage and simply bail out.
+ */
+ if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
+ !(current->flags & PF_MEMALLOC) &&
+ gfpflags_allow_blocking(gfp_mask))
+ __mem_cgroup_handle_over_high(gfp_mask);
return 0;
-nomem:
- *ptr = NULL;
- return -ENOMEM;
-bypass:
- *ptr = root_mem_cgroup;
- return -EINTR;
-}
-
-/*
- * Somemtimes we have to undo a charge we got by try_charge().
- * This function is for that and do uncharge, put css's refcnt.
- * gotten by try_charge().
- */
-static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
- unsigned int nr_pages)
-{
- if (!mem_cgroup_is_root(memcg)) {
- unsigned long bytes = nr_pages * PAGE_SIZE;
-
- res_counter_uncharge(&memcg->res, bytes);
- if (do_swap_account)
- res_counter_uncharge(&memcg->memsw, bytes);
- }
}
-/*
- * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
- * This is useful when moving usage to parent cgroup.
- */
-static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
- unsigned int nr_pages)
+static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
+ unsigned int nr_pages)
{
- unsigned long bytes = nr_pages * PAGE_SIZE;
-
if (mem_cgroup_is_root(memcg))
- return;
-
- res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
- if (do_swap_account)
- res_counter_uncharge_until(&memcg->memsw,
- memcg->memsw.parent, bytes);
-}
-
-/*
- * A helper function to get mem_cgroup from ID. must be called under
- * rcu_read_lock(). The caller is responsible for calling css_tryget if
- * the mem_cgroup is used for charging. (dropping refcnt from swap can be
- * called against removed memcg.)
- */
-static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
-{
- struct cgroup_subsys_state *css;
-
- /* ID 0 is unused ID */
- if (!id)
- return NULL;
- css = css_lookup(&mem_cgroup_subsys, id);
- if (!css)
- return NULL;
- return mem_cgroup_from_css(css);
-}
+ return 0;
-struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
-{
- struct mem_cgroup *memcg = NULL;
- struct page_cgroup *pc;
- unsigned short id;
- swp_entry_t ent;
-
- VM_BUG_ON(!PageLocked(page));
-
- pc = lookup_page_cgroup(page);
- lock_page_cgroup(pc);
- if (PageCgroupUsed(pc)) {
- memcg = pc->mem_cgroup;
- if (memcg && !css_tryget(&memcg->css))
- memcg = NULL;
- } else if (PageSwapCache(page)) {
- ent.val = page_private(page);
- id = lookup_swap_cgroup_id(ent);
- rcu_read_lock();
- memcg = mem_cgroup_lookup(id);
- if (memcg && !css_tryget(&memcg->css))
- memcg = NULL;
- rcu_read_unlock();
- }
- unlock_page_cgroup(pc);
- return memcg;
+ return try_charge_memcg(memcg, gfp_mask, nr_pages);
}
-static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
- struct page *page,
- unsigned int nr_pages,
- enum charge_type ctype,
- bool lrucare)
+static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
{
- struct page_cgroup *pc = lookup_page_cgroup(page);
- struct zone *uninitialized_var(zone);
- struct lruvec *lruvec;
- bool was_on_lru = false;
- bool anon;
-
- lock_page_cgroup(pc);
- VM_BUG_ON(PageCgroupUsed(pc));
- /*
- * we don't need page_cgroup_lock about tail pages, becase they are not
- * accessed by any other context at this point.
- */
-
- /*
- * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
- * may already be on some other mem_cgroup's LRU. Take care of it.
- */
- if (lrucare) {
- zone = page_zone(page);
- spin_lock_irq(&zone->lru_lock);
- if (PageLRU(page)) {
- lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
- ClearPageLRU(page);
- del_page_from_lru_list(page, lruvec, page_lru(page));
- was_on_lru = true;
- }
- }
-
- pc->mem_cgroup = memcg;
- /*
- * We access a page_cgroup asynchronously without lock_page_cgroup().
- * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
- * is accessed after testing USED bit. To make pc->mem_cgroup visible
- * before USED bit, we need memory barrier here.
- * See mem_cgroup_add_lru_list(), etc.
- */
- smp_wmb();
- SetPageCgroupUsed(pc);
-
- if (lrucare) {
- if (was_on_lru) {
- lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
- VM_BUG_ON(PageLRU(page));
- SetPageLRU(page);
- add_page_to_lru_list(page, lruvec, page_lru(page));
- }
- spin_unlock_irq(&zone->lru_lock);
- }
-
- if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
- anon = true;
- else
- anon = false;
-
- mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
- unlock_page_cgroup(pc);
-
+ VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
/*
- * "charge_statistics" updated event counter. Then, check it.
- * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
- * if they exceeds softlimit.
+ * Any of the following ensures page's memcg stability:
+ *
+ * - the page lock
+ * - LRU isolation
+ * - exclusive reference
*/
- memcg_check_events(memcg, page);
+ folio->memcg_data = (unsigned long)memcg;
}
-static DEFINE_MUTEX(set_limit_mutex);
-
-#ifdef CONFIG_MEMCG_KMEM
-static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
+#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
+static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
+ struct pglist_data *pgdat,
+ enum node_stat_item idx, int nr)
{
- return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
- (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
-}
+ struct lruvec *lruvec;
-/*
- * This is a bit cumbersome, but it is rarely used and avoids a backpointer
- * in the memcg_cache_params struct.
- */
-static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
-{
- struct kmem_cache *cachep;
+ if (likely(!in_nmi())) {
+ lruvec = mem_cgroup_lruvec(memcg, pgdat);
+ mod_memcg_lruvec_state(lruvec, idx, nr);
+ } else {
+ struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
- VM_BUG_ON(p->is_root_cache);
- cachep = p->root_cache;
- return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
+ /* preemption is disabled in_nmi(). */
+ css_rstat_updated(&memcg->css, smp_processor_id());
+ if (idx == NR_SLAB_RECLAIMABLE_B)
+ atomic_add(nr, &pn->slab_reclaimable);
+ else
+ atomic_add(nr, &pn->slab_unreclaimable);
+ }
}
-
-#ifdef CONFIG_SLABINFO
-static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
- struct seq_file *m)
+#else
+static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
+ struct pglist_data *pgdat,
+ enum node_stat_item idx, int nr)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
- struct memcg_cache_params *params;
-
- if (!memcg_can_account_kmem(memcg))
- return -EIO;
-
- print_slabinfo_header(m);
-
- mutex_lock(&memcg->slab_caches_mutex);
- list_for_each_entry(params, &memcg->memcg_slab_caches, list)
- cache_show(memcg_params_to_cache(params), m);
- mutex_unlock(&memcg->slab_caches_mutex);
+ struct lruvec *lruvec;
- return 0;
+ lruvec = mem_cgroup_lruvec(memcg, pgdat);
+ mod_memcg_lruvec_state(lruvec, idx, nr);
}
#endif
-static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
+static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
+ struct pglist_data *pgdat,
+ enum node_stat_item idx, int nr)
{
- struct res_counter *fail_res;
- struct mem_cgroup *_memcg;
- int ret = 0;
- bool may_oom;
-
- ret = res_counter_charge(&memcg->kmem, size, &fail_res);
- if (ret)
- return ret;
-
- /*
- * Conditions under which we can wait for the oom_killer. Those are
- * the same conditions tested by the core page allocator
- */
- may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
-
- _memcg = memcg;
- ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
- &_memcg, may_oom);
-
- if (ret == -EINTR) {
- /*
- * __mem_cgroup_try_charge() chosed to bypass to root due to
- * OOM kill or fatal signal. Since our only options are to
- * either fail the allocation or charge it to this cgroup, do
- * it as a temporary condition. But we can't fail. From a
- * kmem/slab perspective, the cache has already been selected,
- * by mem_cgroup_kmem_get_cache(), so it is too late to change
- * our minds.
- *
- * This condition will only trigger if the task entered
- * memcg_charge_kmem in a sane state, but was OOM-killed during
- * __mem_cgroup_try_charge() above. Tasks that were already
- * dying when the allocation triggers should have been already
- * directed to the root cgroup in memcontrol.h
- */
- res_counter_charge_nofail(&memcg->res, size, &fail_res);
- if (do_swap_account)
- res_counter_charge_nofail(&memcg->memsw, size,
- &fail_res);
- ret = 0;
- } else if (ret)
- res_counter_uncharge(&memcg->kmem, size);
+ struct mem_cgroup *memcg;
- return ret;
+ rcu_read_lock();
+ memcg = obj_cgroup_memcg(objcg);
+ account_slab_nmi_safe(memcg, pgdat, idx, nr);
+ rcu_read_unlock();
}
-static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
+static __always_inline
+struct mem_cgroup *mem_cgroup_from_obj_slab(struct slab *slab, void *p)
{
- res_counter_uncharge(&memcg->res, size);
- if (do_swap_account)
- res_counter_uncharge(&memcg->memsw, size);
-
- /* Not down to 0 */
- if (res_counter_uncharge(&memcg->kmem, size))
- return;
-
/*
- * Releases a reference taken in kmem_cgroup_css_offline in case
- * this last uncharge is racing with the offlining code or it is
- * outliving the memcg existence.
- *
- * The memory barrier imposed by test&clear is paired with the
- * explicit one in memcg_kmem_mark_dead().
+ * Slab objects are accounted individually, not per-page.
+ * Memcg membership data for each individual object is saved in
+ * slab->obj_exts.
*/
- if (memcg_kmem_test_and_clear_dead(memcg))
- css_put(&memcg->css);
-}
+ struct slabobj_ext *obj_exts;
+ unsigned int off;
-void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
-{
- if (!memcg)
- return;
+ obj_exts = slab_obj_exts(slab);
+ if (!obj_exts)
+ return NULL;
- mutex_lock(&memcg->slab_caches_mutex);
- list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
- mutex_unlock(&memcg->slab_caches_mutex);
-}
+ off = obj_to_index(slab->slab_cache, slab, p);
+ if (obj_exts[off].objcg)
+ return obj_cgroup_memcg(obj_exts[off].objcg);
-/*
- * helper for acessing a memcg's index. It will be used as an index in the
- * child cache array in kmem_cache, and also to derive its name. This function
- * will return -1 when this is not a kmem-limited memcg.
- */
-int memcg_cache_id(struct mem_cgroup *memcg)
-{
- return memcg ? memcg->kmemcg_id : -1;
+ return NULL;
}
/*
- * This ends up being protected by the set_limit mutex, during normal
- * operation, because that is its main call site.
+ * Returns a pointer to the memory cgroup to which the kernel object is charged.
+ * It is not suitable for objects allocated using vmalloc().
*
- * But when we create a new cache, we can call this as well if its parent
- * is kmem-limited. That will have to hold set_limit_mutex as well.
+ * A passed kernel object must be a slab object or a generic kernel page.
+ *
+ * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
+ * cgroup_mutex, etc.
*/
-int memcg_update_cache_sizes(struct mem_cgroup *memcg)
+struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
{
- int num, ret;
+ struct slab *slab;
- num = ida_simple_get(&kmem_limited_groups,
- 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
- if (num < 0)
- return num;
- /*
- * After this point, kmem_accounted (that we test atomically in
- * the beginning of this conditional), is no longer 0. This
- * guarantees only one process will set the following boolean
- * to true. We don't need test_and_set because we're protected
- * by the set_limit_mutex anyway.
- */
- memcg_kmem_set_activated(memcg);
-
- ret = memcg_update_all_caches(num+1);
- if (ret) {
- ida_simple_remove(&kmem_limited_groups, num);
- memcg_kmem_clear_activated(memcg);
- return ret;
- }
+ if (mem_cgroup_disabled())
+ return NULL;
- memcg->kmemcg_id = num;
- INIT_LIST_HEAD(&memcg->memcg_slab_caches);
- mutex_init(&memcg->slab_caches_mutex);
- return 0;
+ slab = virt_to_slab(p);
+ if (slab)
+ return mem_cgroup_from_obj_slab(slab, p);
+ return folio_memcg_check(virt_to_folio(p));
}
-static size_t memcg_caches_array_size(int num_groups)
+static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
{
- ssize_t size;
- if (num_groups <= 0)
- return 0;
-
- size = 2 * num_groups;
- if (size < MEMCG_CACHES_MIN_SIZE)
- size = MEMCG_CACHES_MIN_SIZE;
- else if (size > MEMCG_CACHES_MAX_SIZE)
- size = MEMCG_CACHES_MAX_SIZE;
+ struct obj_cgroup *objcg = NULL;
- return size;
-}
-
-/*
- * We should update the current array size iff all caches updates succeed. This
- * can only be done from the slab side. The slab mutex needs to be held when
- * calling this.
- */
-void memcg_update_array_size(int num)
-{
- if (num > memcg_limited_groups_array_size)
- memcg_limited_groups_array_size = memcg_caches_array_size(num);
+ for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
+ objcg = rcu_dereference(memcg->objcg);
+ if (likely(objcg && obj_cgroup_tryget(objcg)))
+ break;
+ objcg = NULL;
+ }
+ return objcg;
}
-static void kmem_cache_destroy_work_func(struct work_struct *w);
-
-int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
+static struct obj_cgroup *current_objcg_update(void)
{
- struct memcg_cache_params *cur_params = s->memcg_params;
-
- VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
-
- if (num_groups > memcg_limited_groups_array_size) {
- int i;
- ssize_t size = memcg_caches_array_size(num_groups);
-
- size *= sizeof(void *);
- size += sizeof(struct memcg_cache_params);
+ struct mem_cgroup *memcg;
+ struct obj_cgroup *old, *objcg = NULL;
- s->memcg_params = kzalloc(size, GFP_KERNEL);
- if (!s->memcg_params) {
- s->memcg_params = cur_params;
- return -ENOMEM;
+ do {
+ /* Atomically drop the update bit. */
+ old = xchg(&current->objcg, NULL);
+ if (old) {
+ old = (struct obj_cgroup *)
+ ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
+ obj_cgroup_put(old);
+
+ old = NULL;
}
- s->memcg_params->is_root_cache = true;
+ /* If new objcg is NULL, no reason for the second atomic update. */
+ if (!current->mm || (current->flags & PF_KTHREAD))
+ return NULL;
/*
- * There is the chance it will be bigger than
- * memcg_limited_groups_array_size, if we failed an allocation
- * in a cache, in which case all caches updated before it, will
- * have a bigger array.
- *
- * But if that is the case, the data after
- * memcg_limited_groups_array_size is certainly unused
+ * Release the objcg pointer from the previous iteration,
+ * if try_cmpxcg() below fails.
*/
- for (i = 0; i < memcg_limited_groups_array_size; i++) {
- if (!cur_params->memcg_caches[i])
- continue;
- s->memcg_params->memcg_caches[i] =
- cur_params->memcg_caches[i];
+ if (unlikely(objcg)) {
+ obj_cgroup_put(objcg);
+ objcg = NULL;
}
/*
- * Ideally, we would wait until all caches succeed, and only
- * then free the old one. But this is not worth the extra
- * pointer per-cache we'd have to have for this.
- *
- * It is not a big deal if some caches are left with a size
- * bigger than the others. And all updates will reset this
- * anyway.
+ * Obtain the new objcg pointer. The current task can be
+ * asynchronously moved to another memcg and the previous
+ * memcg can be offlined. So let's get the memcg pointer
+ * and try get a reference to objcg under a rcu read lock.
*/
- kfree(cur_params);
- }
- return 0;
-}
-
-int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
- struct kmem_cache *root_cache)
-{
- size_t size = sizeof(struct memcg_cache_params);
-
- if (!memcg_kmem_enabled())
- return 0;
-
- if (!memcg)
- size += memcg_limited_groups_array_size * sizeof(void *);
- s->memcg_params = kzalloc(size, GFP_KERNEL);
- if (!s->memcg_params)
- return -ENOMEM;
+ rcu_read_lock();
+ memcg = mem_cgroup_from_task(current);
+ objcg = __get_obj_cgroup_from_memcg(memcg);
+ rcu_read_unlock();
- INIT_WORK(&s->memcg_params->destroy,
- kmem_cache_destroy_work_func);
- if (memcg) {
- s->memcg_params->memcg = memcg;
- s->memcg_params->root_cache = root_cache;
- } else
- s->memcg_params->is_root_cache = true;
+ /*
+ * Try set up a new objcg pointer atomically. If it
+ * fails, it means the update flag was set concurrently, so
+ * the whole procedure should be repeated.
+ */
+ } while (!try_cmpxchg(&current->objcg, &old, objcg));
- return 0;
+ return objcg;
}
-void memcg_release_cache(struct kmem_cache *s)
+__always_inline struct obj_cgroup *current_obj_cgroup(void)
{
- struct kmem_cache *root;
struct mem_cgroup *memcg;
- int id;
+ struct obj_cgroup *objcg;
- /*
- * This happens, for instance, when a root cache goes away before we
- * add any memcg.
- */
- if (!s->memcg_params)
- return;
-
- if (s->memcg_params->is_root_cache)
- goto out;
+ if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
+ return NULL;
- memcg = s->memcg_params->memcg;
- id = memcg_cache_id(memcg);
+ if (in_task()) {
+ memcg = current->active_memcg;
+ if (unlikely(memcg))
+ goto from_memcg;
- root = s->memcg_params->root_cache;
- root->memcg_params->memcg_caches[id] = NULL;
+ objcg = READ_ONCE(current->objcg);
+ if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
+ objcg = current_objcg_update();
+ /*
+ * Objcg reference is kept by the task, so it's safe
+ * to use the objcg by the current task.
+ */
+ return objcg;
+ }
- mutex_lock(&memcg->slab_caches_mutex);
- list_del(&s->memcg_params->list);
- mutex_unlock(&memcg->slab_caches_mutex);
+ memcg = this_cpu_read(int_active_memcg);
+ if (unlikely(memcg))
+ goto from_memcg;
- css_put(&memcg->css);
-out:
- kfree(s->memcg_params);
-}
+ return NULL;
-/*
- * During the creation a new cache, we need to disable our accounting mechanism
- * altogether. This is true even if we are not creating, but rather just
- * enqueing new caches to be created.
- *
- * This is because that process will trigger allocations; some visible, like
- * explicit kmallocs to auxiliary data structures, name strings and internal
- * cache structures; some well concealed, like INIT_WORK() that can allocate
- * objects during debug.
- *
- * If any allocation happens during memcg_kmem_get_cache, we will recurse back
- * to it. This may not be a bounded recursion: since the first cache creation
- * failed to complete (waiting on the allocation), we'll just try to create the
- * cache again, failing at the same point.
- *
- * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
- * memcg_kmem_skip_account. So we enclose anything that might allocate memory
- * inside the following two functions.
- */
-static inline void memcg_stop_kmem_account(void)
-{
- VM_BUG_ON(!current->mm);
- current->memcg_kmem_skip_account++;
-}
+from_memcg:
+ objcg = NULL;
+ for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
+ /*
+ * Memcg pointer is protected by scope (see set_active_memcg())
+ * and is pinning the corresponding objcg, so objcg can't go
+ * away and can be used within the scope without any additional
+ * protection.
+ */
+ objcg = rcu_dereference_check(memcg->objcg, 1);
+ if (likely(objcg))
+ break;
+ }
-static inline void memcg_resume_kmem_account(void)
-{
- VM_BUG_ON(!current->mm);
- current->memcg_kmem_skip_account--;
+ return objcg;
}
-static void kmem_cache_destroy_work_func(struct work_struct *w)
+struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
{
- struct kmem_cache *cachep;
- struct memcg_cache_params *p;
+ struct obj_cgroup *objcg;
- p = container_of(w, struct memcg_cache_params, destroy);
+ if (!memcg_kmem_online())
+ return NULL;
- cachep = memcg_params_to_cache(p);
+ if (folio_memcg_kmem(folio)) {
+ objcg = __folio_objcg(folio);
+ obj_cgroup_get(objcg);
+ } else {
+ struct mem_cgroup *memcg;
- /*
- * If we get down to 0 after shrink, we could delete right away.
- * However, memcg_release_pages() already puts us back in the workqueue
- * in that case. If we proceed deleting, we'll get a dangling
- * reference, and removing the object from the workqueue in that case
- * is unnecessary complication. We are not a fast path.
- *
- * Note that this case is fundamentally different from racing with
- * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
- * kmem_cache_shrink, not only we would be reinserting a dead cache
- * into the queue, but doing so from inside the worker racing to
- * destroy it.
- *
- * So if we aren't down to zero, we'll just schedule a worker and try
- * again
- */
- if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
- kmem_cache_shrink(cachep);
- if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
- return;
- } else
- kmem_cache_destroy(cachep);
+ rcu_read_lock();
+ memcg = __folio_memcg(folio);
+ if (memcg)
+ objcg = __get_obj_cgroup_from_memcg(memcg);
+ else
+ objcg = NULL;
+ rcu_read_unlock();
+ }
+ return objcg;
}
-void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
+#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
+static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
{
- if (!cachep->memcg_params->dead)
- return;
-
- /*
- * There are many ways in which we can get here.
- *
- * We can get to a memory-pressure situation while the delayed work is
- * still pending to run. The vmscan shrinkers can then release all
- * cache memory and get us to destruction. If this is the case, we'll
- * be executed twice, which is a bug (the second time will execute over
- * bogus data). In this case, cancelling the work should be fine.
- *
- * But we can also get here from the worker itself, if
- * kmem_cache_shrink is enough to shake all the remaining objects and
- * get the page count to 0. In this case, we'll deadlock if we try to
- * cancel the work (the worker runs with an internal lock held, which
- * is the same lock we would hold for cancel_work_sync().)
- *
- * Since we can't possibly know who got us here, just refrain from
- * running if there is already work pending
- */
- if (work_pending(&cachep->memcg_params->destroy))
- return;
- /*
- * We have to defer the actual destroying to a workqueue, because
- * we might currently be in a context that cannot sleep.
- */
- schedule_work(&cachep->memcg_params->destroy);
+ if (likely(!in_nmi())) {
+ mod_memcg_state(memcg, MEMCG_KMEM, val);
+ } else {
+ /* preemption is disabled in_nmi(). */
+ css_rstat_updated(&memcg->css, smp_processor_id());
+ atomic_add(val, &memcg->kmem_stat);
+ }
}
+#else
+static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
+{
+ mod_memcg_state(memcg, MEMCG_KMEM, val);
+}
+#endif
/*
- * This lock protects updaters, not readers. We want readers to be as fast as
- * they can, and they will either see NULL or a valid cache value. Our model
- * allow them to see NULL, in which case the root memcg will be selected.
- *
- * We need this lock because multiple allocations to the same cache from a non
- * will span more than one worker. Only one of them can create the cache.
- */
-static DEFINE_MUTEX(memcg_cache_mutex);
-
-/*
- * Called with memcg_cache_mutex held
+ * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
+ * @objcg: object cgroup to uncharge
+ * @nr_pages: number of pages to uncharge
*/
-static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
- struct kmem_cache *s)
+static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
+ unsigned int nr_pages)
{
- struct kmem_cache *new;
- static char *tmp_name = NULL;
-
- lockdep_assert_held(&memcg_cache_mutex);
-
- /*
- * kmem_cache_create_memcg duplicates the given name and
- * cgroup_name for this name requires RCU context.
- * This static temporary buffer is used to prevent from
- * pointless shortliving allocation.
- */
- if (!tmp_name) {
- tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
- if (!tmp_name)
- return NULL;
- }
-
- rcu_read_lock();
- snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
- memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
- rcu_read_unlock();
+ struct mem_cgroup *memcg;
- new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
- (s->flags & ~SLAB_PANIC), s->ctor, s);
+ memcg = get_mem_cgroup_from_objcg(objcg);
- if (new)
- new->allocflags |= __GFP_KMEMCG;
+ account_kmem_nmi_safe(memcg, -nr_pages);
+ memcg1_account_kmem(memcg, -nr_pages);
+ if (!mem_cgroup_is_root(memcg))
+ refill_stock(memcg, nr_pages);
- return new;
+ css_put(&memcg->css);
}
-static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
- struct kmem_cache *cachep)
+/*
+ * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
+ * @objcg: object cgroup to charge
+ * @gfp: reclaim mode
+ * @nr_pages: number of pages to charge
+ *
+ * Returns 0 on success, an error code on failure.
+ */
+static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
+ unsigned int nr_pages)
{
- struct kmem_cache *new_cachep;
- int idx;
-
- BUG_ON(!memcg_can_account_kmem(memcg));
-
- idx = memcg_cache_id(memcg);
+ struct mem_cgroup *memcg;
+ int ret;
- mutex_lock(&memcg_cache_mutex);
- new_cachep = cachep->memcg_params->memcg_caches[idx];
- if (new_cachep) {
- css_put(&memcg->css);
- goto out;
- }
+ memcg = get_mem_cgroup_from_objcg(objcg);
- new_cachep = kmem_cache_dup(memcg, cachep);
- if (new_cachep == NULL) {
- new_cachep = cachep;
- css_put(&memcg->css);
+ ret = try_charge_memcg(memcg, gfp, nr_pages);
+ if (ret)
goto out;
- }
-
- atomic_set(&new_cachep->memcg_params->nr_pages , 0);
- cachep->memcg_params->memcg_caches[idx] = new_cachep;
- /*
- * the readers won't lock, make sure everybody sees the updated value,
- * so they won't put stuff in the queue again for no reason
- */
- wmb();
+ account_kmem_nmi_safe(memcg, nr_pages);
+ memcg1_account_kmem(memcg, nr_pages);
out:
- mutex_unlock(&memcg_cache_mutex);
- return new_cachep;
-}
-
-void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
-{
- struct kmem_cache *c;
- int i;
-
- if (!s->memcg_params)
- return;
- if (!s->memcg_params->is_root_cache)
- return;
-
- /*
- * If the cache is being destroyed, we trust that there is no one else
- * requesting objects from it. Even if there are, the sanity checks in
- * kmem_cache_destroy should caught this ill-case.
- *
- * Still, we don't want anyone else freeing memcg_caches under our
- * noses, which can happen if a new memcg comes to life. As usual,
- * we'll take the set_limit_mutex to protect ourselves against this.
- */
- mutex_lock(&set_limit_mutex);
- for (i = 0; i < memcg_limited_groups_array_size; i++) {
- c = s->memcg_params->memcg_caches[i];
- if (!c)
- continue;
+ css_put(&memcg->css);
- /*
- * We will now manually delete the caches, so to avoid races
- * we need to cancel all pending destruction workers and
- * proceed with destruction ourselves.
- *
- * kmem_cache_destroy() will call kmem_cache_shrink internally,
- * and that could spawn the workers again: it is likely that
- * the cache still have active pages until this very moment.
- * This would lead us back to mem_cgroup_destroy_cache.
- *
- * But that will not execute at all if the "dead" flag is not
- * set, so flip it down to guarantee we are in control.
- */
- c->memcg_params->dead = false;
- cancel_work_sync(&c->memcg_params->destroy);
- kmem_cache_destroy(c);
- }
- mutex_unlock(&set_limit_mutex);
+ return ret;
}
-struct create_work {
- struct mem_cgroup *memcg;
- struct kmem_cache *cachep;
- struct work_struct work;
-};
-
-static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
+static struct obj_cgroup *page_objcg(const struct page *page)
{
- struct kmem_cache *cachep;
- struct memcg_cache_params *params;
+ unsigned long memcg_data = page->memcg_data;
- if (!memcg_kmem_is_active(memcg))
- return;
+ if (mem_cgroup_disabled() || !memcg_data)
+ return NULL;
- mutex_lock(&memcg->slab_caches_mutex);
- list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
- cachep = memcg_params_to_cache(params);
- cachep->memcg_params->dead = true;
- schedule_work(&cachep->memcg_params->destroy);
- }
- mutex_unlock(&memcg->slab_caches_mutex);
+ VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
+ page);
+ return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
}
-static void memcg_create_cache_work_func(struct work_struct *w)
+static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
{
- struct create_work *cw;
-
- cw = container_of(w, struct create_work, work);
- memcg_create_kmem_cache(cw->memcg, cw->cachep);
- kfree(cw);
+ page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
}
-/*
- * Enqueue the creation of a per-memcg kmem_cache.
+/**
+ * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
+ * @page: page to charge
+ * @gfp: reclaim mode
+ * @order: allocation order
+ *
+ * Returns 0 on success, an error code on failure.
*/
-static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
- struct kmem_cache *cachep)
+int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
{
- struct create_work *cw;
+ struct obj_cgroup *objcg;
+ int ret = 0;
- cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
- if (cw == NULL) {
- css_put(&memcg->css);
- return;
+ objcg = current_obj_cgroup();
+ if (objcg) {
+ ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
+ if (!ret) {
+ obj_cgroup_get(objcg);
+ page_set_objcg(page, objcg);
+ return 0;
+ }
}
-
- cw->memcg = memcg;
- cw->cachep = cachep;
-
- INIT_WORK(&cw->work, memcg_create_cache_work_func);
- schedule_work(&cw->work);
+ return ret;
}
-static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
- struct kmem_cache *cachep)
-{
- /*
- * We need to stop accounting when we kmalloc, because if the
- * corresponding kmalloc cache is not yet created, the first allocation
- * in __memcg_create_cache_enqueue will recurse.
- *
- * However, it is better to enclose the whole function. Depending on
- * the debugging options enabled, INIT_WORK(), for instance, can
- * trigger an allocation. This too, will make us recurse. Because at
- * this point we can't allow ourselves back into memcg_kmem_get_cache,
- * the safest choice is to do it like this, wrapping the whole function.
- */
- memcg_stop_kmem_account();
- __memcg_create_cache_enqueue(memcg, cachep);
- memcg_resume_kmem_account();
-}
-/*
- * Return the kmem_cache we're supposed to use for a slab allocation.
- * We try to use the current memcg's version of the cache.
- *
- * If the cache does not exist yet, if we are the first user of it,
- * we either create it immediately, if possible, or create it asynchronously
- * in a workqueue.
- * In the latter case, we will let the current allocation go through with
- * the original cache.
- *
- * Can't be called in interrupt context or from kernel threads.
- * This function needs to be called with rcu_read_lock() held.
+/**
+ * __memcg_kmem_uncharge_page: uncharge a kmem page
+ * @page: page to uncharge
+ * @order: allocation order
*/
-struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
- gfp_t gfp)
+void __memcg_kmem_uncharge_page(struct page *page, int order)
{
- struct mem_cgroup *memcg;
- int idx;
-
- VM_BUG_ON(!cachep->memcg_params);
- VM_BUG_ON(!cachep->memcg_params->is_root_cache);
+ struct obj_cgroup *objcg = page_objcg(page);
+ unsigned int nr_pages = 1 << order;
- if (!current->mm || current->memcg_kmem_skip_account)
- return cachep;
-
- rcu_read_lock();
- memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
+ if (!objcg)
+ return;
- if (!memcg_can_account_kmem(memcg))
- goto out;
+ obj_cgroup_uncharge_pages(objcg, nr_pages);
+ page->memcg_data = 0;
+ obj_cgroup_put(objcg);
+}
- idx = memcg_cache_id(memcg);
+static void __account_obj_stock(struct obj_cgroup *objcg,
+ struct obj_stock_pcp *stock, int nr,
+ struct pglist_data *pgdat, enum node_stat_item idx)
+{
+ int *bytes;
/*
- * barrier to mare sure we're always seeing the up to date value. The
- * code updating memcg_caches will issue a write barrier to match this.
+ * Save vmstat data in stock and skip vmstat array update unless
+ * accumulating over a page of vmstat data or when pgdat changes.
*/
- read_barrier_depends();
- if (likely(cachep->memcg_params->memcg_caches[idx])) {
- cachep = cachep->memcg_params->memcg_caches[idx];
- goto out;
+ if (stock->cached_pgdat != pgdat) {
+ /* Flush the existing cached vmstat data */
+ struct pglist_data *oldpg = stock->cached_pgdat;
+
+ if (stock->nr_slab_reclaimable_b) {
+ mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
+ stock->nr_slab_reclaimable_b);
+ stock->nr_slab_reclaimable_b = 0;
+ }
+ if (stock->nr_slab_unreclaimable_b) {
+ mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
+ stock->nr_slab_unreclaimable_b);
+ stock->nr_slab_unreclaimable_b = 0;
+ }
+ stock->cached_pgdat = pgdat;
}
- /* The corresponding put will be done in the workqueue. */
- if (!css_tryget(&memcg->css))
- goto out;
- rcu_read_unlock();
-
+ bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
+ : &stock->nr_slab_unreclaimable_b;
/*
- * If we are in a safe context (can wait, and not in interrupt
- * context), we could be be predictable and return right away.
- * This would guarantee that the allocation being performed
- * already belongs in the new cache.
- *
- * However, there are some clashes that can arrive from locking.
- * For instance, because we acquire the slab_mutex while doing
- * kmem_cache_dup, this means no further allocation could happen
- * with the slab_mutex held.
- *
- * Also, because cache creation issue get_online_cpus(), this
- * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
- * that ends up reversed during cpu hotplug. (cpuset allocates
- * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
- * better to defer everything.
+ * Even for large object >= PAGE_SIZE, the vmstat data will still be
+ * cached locally at least once before pushing it out.
*/
- memcg_create_cache_enqueue(memcg, cachep);
- return cachep;
-out:
- rcu_read_unlock();
- return cachep;
+ if (!*bytes) {
+ *bytes = nr;
+ nr = 0;
+ } else {
+ *bytes += nr;
+ if (abs(*bytes) > PAGE_SIZE) {
+ nr = *bytes;
+ *bytes = 0;
+ } else {
+ nr = 0;
+ }
+ }
+ if (nr)
+ mod_objcg_mlstate(objcg, pgdat, idx, nr);
}
-EXPORT_SYMBOL(__memcg_kmem_get_cache);
-/*
- * We need to verify if the allocation against current->mm->owner's memcg is
- * possible for the given order. But the page is not allocated yet, so we'll
- * need a further commit step to do the final arrangements.
- *
- * It is possible for the task to switch cgroups in this mean time, so at
- * commit time, we can't rely on task conversion any longer. We'll then use
- * the handle argument to return to the caller which cgroup we should commit
- * against. We could also return the memcg directly and avoid the pointer
- * passing, but a boolean return value gives better semantics considering
- * the compiled-out case as well.
- *
- * Returning true means the allocation is possible.
- */
-bool
-__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
+static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
+ struct pglist_data *pgdat, enum node_stat_item idx)
{
- struct mem_cgroup *memcg;
- int ret;
-
- *_memcg = NULL;
-
- /*
- * Disabling accounting is only relevant for some specific memcg
- * internal allocations. Therefore we would initially not have such
- * check here, since direct calls to the page allocator that are marked
- * with GFP_KMEMCG only happen outside memcg core. We are mostly
- * concerned with cache allocations, and by having this test at
- * memcg_kmem_get_cache, we are already able to relay the allocation to
- * the root cache and bypass the memcg cache altogether.
- *
- * There is one exception, though: the SLUB allocator does not create
- * large order caches, but rather service large kmallocs directly from
- * the page allocator. Therefore, the following sequence when backed by
- * the SLUB allocator:
- *
- * memcg_stop_kmem_account();
- * kmalloc(<large_number>)
- * memcg_resume_kmem_account();
- *
- * would effectively ignore the fact that we should skip accounting,
- * since it will drive us directly to this function without passing
- * through the cache selector memcg_kmem_get_cache. Such large
- * allocations are extremely rare but can happen, for instance, for the
- * cache arrays. We bring this test here.
- */
- if (!current->mm || current->memcg_kmem_skip_account)
- return true;
+ struct obj_stock_pcp *stock;
+ bool ret = false;
- memcg = try_get_mem_cgroup_from_mm(current->mm);
+ if (!local_trylock(&obj_stock.lock))
+ return ret;
- /*
- * very rare case described in mem_cgroup_from_task. Unfortunately there
- * isn't much we can do without complicating this too much, and it would
- * be gfp-dependent anyway. Just let it go
- */
- if (unlikely(!memcg))
- return true;
+ stock = this_cpu_ptr(&obj_stock);
+ if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
+ stock->nr_bytes -= nr_bytes;
+ ret = true;
- if (!memcg_can_account_kmem(memcg)) {
- css_put(&memcg->css);
- return true;
+ if (pgdat)
+ __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
}
- ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
- if (!ret)
- *_memcg = memcg;
+ local_unlock(&obj_stock.lock);
- css_put(&memcg->css);
- return (ret == 0);
+ return ret;
}
-void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
- int order)
+static void drain_obj_stock(struct obj_stock_pcp *stock)
{
- struct page_cgroup *pc;
+ struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
- VM_BUG_ON(mem_cgroup_is_root(memcg));
-
- /* The page allocation failed. Revert */
- if (!page) {
- memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
+ if (!old)
return;
- }
- pc = lookup_page_cgroup(page);
- lock_page_cgroup(pc);
- pc->mem_cgroup = memcg;
- SetPageCgroupUsed(pc);
- unlock_page_cgroup(pc);
-}
+ if (stock->nr_bytes) {
+ unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
+ unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
-void __memcg_kmem_uncharge_pages(struct page *page, int order)
-{
- struct mem_cgroup *memcg = NULL;
- struct page_cgroup *pc;
+ if (nr_pages) {
+ struct mem_cgroup *memcg;
+ memcg = get_mem_cgroup_from_objcg(old);
- pc = lookup_page_cgroup(page);
- /*
- * Fast unlocked return. Theoretically might have changed, have to
- * check again after locking.
- */
- if (!PageCgroupUsed(pc))
- return;
+ mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
+ memcg1_account_kmem(memcg, -nr_pages);
+ if (!mem_cgroup_is_root(memcg))
+ memcg_uncharge(memcg, nr_pages);
- lock_page_cgroup(pc);
- if (PageCgroupUsed(pc)) {
- memcg = pc->mem_cgroup;
- ClearPageCgroupUsed(pc);
+ css_put(&memcg->css);
+ }
+
+ /*
+ * The leftover is flushed to the centralized per-memcg value.
+ * On the next attempt to refill obj stock it will be moved
+ * to a per-cpu stock (probably, on an other CPU), see
+ * refill_obj_stock().
+ *
+ * How often it's flushed is a trade-off between the memory
+ * limit enforcement accuracy and potential CPU contention,
+ * so it might be changed in the future.
+ */
+ atomic_add(nr_bytes, &old->nr_charged_bytes);
+ stock->nr_bytes = 0;
}
- unlock_page_cgroup(pc);
/*
- * We trust that only if there is a memcg associated with the page, it
- * is a valid allocation
+ * Flush the vmstat data in current stock
*/
- if (!memcg)
- return;
+ if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
+ if (stock->nr_slab_reclaimable_b) {
+ mod_objcg_mlstate(old, stock->cached_pgdat,
+ NR_SLAB_RECLAIMABLE_B,
+ stock->nr_slab_reclaimable_b);
+ stock->nr_slab_reclaimable_b = 0;
+ }
+ if (stock->nr_slab_unreclaimable_b) {
+ mod_objcg_mlstate(old, stock->cached_pgdat,
+ NR_SLAB_UNRECLAIMABLE_B,
+ stock->nr_slab_unreclaimable_b);
+ stock->nr_slab_unreclaimable_b = 0;
+ }
+ stock->cached_pgdat = NULL;
+ }
- VM_BUG_ON(mem_cgroup_is_root(memcg));
- memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
+ WRITE_ONCE(stock->cached_objcg, NULL);
+ obj_cgroup_put(old);
}
-#else
-static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
-{
-}
-#endif /* CONFIG_MEMCG_KMEM */
-
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
-#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
-/*
- * Because tail pages are not marked as "used", set it. We're under
- * zone->lru_lock, 'splitting on pmd' and compound_lock.
- * charge/uncharge will be never happen and move_account() is done under
- * compound_lock(), so we don't have to take care of races.
- */
-void mem_cgroup_split_huge_fixup(struct page *head)
+static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
+ struct mem_cgroup *root_memcg)
{
- struct page_cgroup *head_pc = lookup_page_cgroup(head);
- struct page_cgroup *pc;
+ struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
struct mem_cgroup *memcg;
- int i;
-
- if (mem_cgroup_disabled())
- return;
+ bool flush = false;
- memcg = head_pc->mem_cgroup;
- for (i = 1; i < HPAGE_PMD_NR; i++) {
- pc = head_pc + i;
- pc->mem_cgroup = memcg;
- smp_wmb();/* see __commit_charge() */
- pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
+ rcu_read_lock();
+ if (objcg) {
+ memcg = obj_cgroup_memcg(objcg);
+ if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
+ flush = true;
}
- __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
- HPAGE_PMD_NR);
+ rcu_read_unlock();
+
+ return flush;
}
-#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
-/**
- * mem_cgroup_move_account - move account of the page
- * @page: the page
- * @nr_pages: number of regular pages (>1 for huge pages)
- * @pc: page_cgroup of the page.
- * @from: mem_cgroup which the page is moved from.
- * @to: mem_cgroup which the page is moved to. @from != @to.
- *
- * The caller must confirm following.
- * - page is not on LRU (isolate_page() is useful.)
- * - compound_lock is held when nr_pages > 1
- *
- * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
- * from old cgroup.
- */
-static int mem_cgroup_move_account(struct page *page,
- unsigned int nr_pages,
- struct page_cgroup *pc,
- struct mem_cgroup *from,
- struct mem_cgroup *to)
+static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
+ bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
+ enum node_stat_item idx)
{
- unsigned long flags;
- int ret;
- bool anon = PageAnon(page);
+ struct obj_stock_pcp *stock;
+ unsigned int nr_pages = 0;
- VM_BUG_ON(from == to);
- VM_BUG_ON(PageLRU(page));
- /*
- * The page is isolated from LRU. So, collapse function
- * will not handle this page. But page splitting can happen.
- * Do this check under compound_page_lock(). The caller should
- * hold it.
- */
- ret = -EBUSY;
- if (nr_pages > 1 && !PageTransHuge(page))
+ if (!local_trylock(&obj_stock.lock)) {
+ if (pgdat)
+ mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
+ nr_pages = nr_bytes >> PAGE_SHIFT;
+ nr_bytes = nr_bytes & (PAGE_SIZE - 1);
+ atomic_add(nr_bytes, &objcg->nr_charged_bytes);
goto out;
+ }
- lock_page_cgroup(pc);
+ stock = this_cpu_ptr(&obj_stock);
+ if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
+ drain_obj_stock(stock);
+ obj_cgroup_get(objcg);
+ stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
+ ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
+ WRITE_ONCE(stock->cached_objcg, objcg);
- ret = -EINVAL;
- if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
- goto unlock;
+ allow_uncharge = true; /* Allow uncharge when objcg changes */
+ }
+ stock->nr_bytes += nr_bytes;
- move_lock_mem_cgroup(from, &flags);
+ if (pgdat)
+ __account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
- if (!anon && page_mapped(page)) {
- /* Update mapped_file data for mem_cgroup */
- preempt_disable();
- __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
- __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
- preempt_enable();
+ if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
+ nr_pages = stock->nr_bytes >> PAGE_SHIFT;
+ stock->nr_bytes &= (PAGE_SIZE - 1);
}
- mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
- /* caller should have done css_get */
- pc->mem_cgroup = to;
- mem_cgroup_charge_statistics(to, page, anon, nr_pages);
- move_unlock_mem_cgroup(from, &flags);
- ret = 0;
-unlock:
- unlock_page_cgroup(pc);
- /*
- * check events
- */
- memcg_check_events(to, page);
- memcg_check_events(from, page);
+ local_unlock(&obj_stock.lock);
out:
- return ret;
+ if (nr_pages)
+ obj_cgroup_uncharge_pages(objcg, nr_pages);
}
-/**
- * mem_cgroup_move_parent - moves page to the parent group
- * @page: the page to move
- * @pc: page_cgroup of the page
- * @child: page's cgroup
- *
- * move charges to its parent or the root cgroup if the group has no
- * parent (aka use_hierarchy==0).
- * Although this might fail (get_page_unless_zero, isolate_lru_page or
- * mem_cgroup_move_account fails) the failure is always temporary and
- * it signals a race with a page removal/uncharge or migration. In the
- * first case the page is on the way out and it will vanish from the LRU
- * on the next attempt and the call should be retried later.
- * Isolation from the LRU fails only if page has been isolated from
- * the LRU since we looked at it and that usually means either global
- * reclaim or migration going on. The page will either get back to the
- * LRU or vanish.
- * Finaly mem_cgroup_move_account fails only if the page got uncharged
- * (!PageCgroupUsed) or moved to a different group. The page will
- * disappear in the next attempt.
- */
-static int mem_cgroup_move_parent(struct page *page,
- struct page_cgroup *pc,
- struct mem_cgroup *child)
+static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
+ struct pglist_data *pgdat, enum node_stat_item idx)
{
- struct mem_cgroup *parent;
- unsigned int nr_pages;
- unsigned long uninitialized_var(flags);
+ unsigned int nr_pages, nr_bytes;
int ret;
- VM_BUG_ON(mem_cgroup_is_root(child));
-
- ret = -EBUSY;
- if (!get_page_unless_zero(page))
- goto out;
- if (isolate_lru_page(page))
- goto put;
-
- nr_pages = hpage_nr_pages(page);
+ if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
+ return 0;
- parent = parent_mem_cgroup(child);
/*
- * If no parent, move charges to root cgroup.
+ * In theory, objcg->nr_charged_bytes can have enough
+ * pre-charged bytes to satisfy the allocation. However,
+ * flushing objcg->nr_charged_bytes requires two atomic
+ * operations, and objcg->nr_charged_bytes can't be big.
+ * The shared objcg->nr_charged_bytes can also become a
+ * performance bottleneck if all tasks of the same memcg are
+ * trying to update it. So it's better to ignore it and try
+ * grab some new pages. The stock's nr_bytes will be flushed to
+ * objcg->nr_charged_bytes later on when objcg changes.
+ *
+ * The stock's nr_bytes may contain enough pre-charged bytes
+ * to allow one less page from being charged, but we can't rely
+ * on the pre-charged bytes not being changed outside of
+ * consume_obj_stock() or refill_obj_stock(). So ignore those
+ * pre-charged bytes as well when charging pages. To avoid a
+ * page uncharge right after a page charge, we set the
+ * allow_uncharge flag to false when calling refill_obj_stock()
+ * to temporarily allow the pre-charged bytes to exceed the page
+ * size limit. The maximum reachable value of the pre-charged
+ * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
+ * race.
*/
- if (!parent)
- parent = root_mem_cgroup;
+ nr_pages = size >> PAGE_SHIFT;
+ nr_bytes = size & (PAGE_SIZE - 1);
- if (nr_pages > 1) {
- VM_BUG_ON(!PageTransHuge(page));
- flags = compound_lock_irqsave(page);
- }
+ if (nr_bytes)
+ nr_pages += 1;
- ret = mem_cgroup_move_account(page, nr_pages,
- pc, child, parent);
- if (!ret)
- __mem_cgroup_cancel_local_charge(child, nr_pages);
+ ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
+ if (!ret && (nr_bytes || pgdat))
+ refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
+ false, size, pgdat, idx);
- if (nr_pages > 1)
- compound_unlock_irqrestore(page, flags);
- putback_lru_page(page);
-put:
- put_page(page);
-out:
return ret;
}
-/*
- * Charge the memory controller for page usage.
- * Return
- * 0 if the charge was successful
- * < 0 if the cgroup is over its limit
- */
-static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
- gfp_t gfp_mask, enum charge_type ctype)
+int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
- struct mem_cgroup *memcg = NULL;
- unsigned int nr_pages = 1;
- bool oom = true;
- int ret;
-
- if (PageTransHuge(page)) {
- nr_pages <<= compound_order(page);
- VM_BUG_ON(!PageTransHuge(page));
- /*
- * Never OOM-kill a process for a huge page. The
- * fault handler will fall back to regular pages.
- */
- oom = false;
- }
-
- ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
- if (ret == -ENOMEM)
- return ret;
- __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
- return 0;
+ return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
}
-int mem_cgroup_newpage_charge(struct page *page,
- struct mm_struct *mm, gfp_t gfp_mask)
+void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
- if (mem_cgroup_disabled())
- return 0;
- VM_BUG_ON(page_mapped(page));
- VM_BUG_ON(page->mapping && !PageAnon(page));
- VM_BUG_ON(!mm);
- return mem_cgroup_charge_common(page, mm, gfp_mask,
- MEM_CGROUP_CHARGE_TYPE_ANON);
+ refill_obj_stock(objcg, size, true, 0, NULL, 0);
}
-/*
- * While swap-in, try_charge -> commit or cancel, the page is locked.
- * And when try_charge() successfully returns, one refcnt to memcg without
- * struct page_cgroup is acquired. This refcnt will be consumed by
- * "commit()" or removed by "cancel()"
- */
-static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
- struct page *page,
- gfp_t mask,
- struct mem_cgroup **memcgp)
+static inline size_t obj_full_size(struct kmem_cache *s)
{
- struct mem_cgroup *memcg;
- struct page_cgroup *pc;
- int ret;
-
- pc = lookup_page_cgroup(page);
/*
- * Every swap fault against a single page tries to charge the
- * page, bail as early as possible. shmem_unuse() encounters
- * already charged pages, too. The USED bit is protected by
- * the page lock, which serializes swap cache removal, which
- * in turn serializes uncharging.
+ * For each accounted object there is an extra space which is used
+ * to store obj_cgroup membership. Charge it too.
*/
- if (PageCgroupUsed(pc))
- return 0;
- if (!do_swap_account)
- goto charge_cur_mm;
- memcg = try_get_mem_cgroup_from_page(page);
- if (!memcg)
- goto charge_cur_mm;
- *memcgp = memcg;
- ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
- css_put(&memcg->css);
- if (ret == -EINTR)
- ret = 0;
- return ret;
-charge_cur_mm:
- ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
- if (ret == -EINTR)
- ret = 0;
- return ret;
+ return s->size + sizeof(struct obj_cgroup *);
}
-int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
- gfp_t gfp_mask, struct mem_cgroup **memcgp)
+bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
+ gfp_t flags, size_t size, void **p)
{
- *memcgp = NULL;
- if (mem_cgroup_disabled())
- return 0;
+ struct obj_cgroup *objcg;
+ struct slab *slab;
+ unsigned long off;
+ size_t i;
+
/*
- * A racing thread's fault, or swapoff, may have already
- * updated the pte, and even removed page from swap cache: in
- * those cases unuse_pte()'s pte_same() test will fail; but
- * there's also a KSM case which does need to charge the page.
+ * The obtained objcg pointer is safe to use within the current scope,
+ * defined by current task or set_active_memcg() pair.
+ * obj_cgroup_get() is used to get a permanent reference.
*/
- if (!PageSwapCache(page)) {
- int ret;
+ objcg = current_obj_cgroup();
+ if (!objcg)
+ return true;
- ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
- if (ret == -EINTR)
- ret = 0;
- return ret;
- }
- return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
-}
+ /*
+ * slab_alloc_node() avoids the NULL check, so we might be called with a
+ * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
+ * the whole requested size.
+ * return success as there's nothing to free back
+ */
+ if (unlikely(*p == NULL))
+ return true;
-void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
-{
- if (mem_cgroup_disabled())
- return;
- if (!memcg)
- return;
- __mem_cgroup_cancel_charge(memcg, 1);
-}
+ flags &= gfp_allowed_mask;
-static void
-__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
- enum charge_type ctype)
-{
- if (mem_cgroup_disabled())
- return;
- if (!memcg)
- return;
+ if (lru) {
+ int ret;
+ struct mem_cgroup *memcg;
- __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
- /*
- * Now swap is on-memory. This means this page may be
- * counted both as mem and swap....double count.
- * Fix it by uncharging from memsw. Basically, this SwapCache is stable
- * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
- * may call delete_from_swap_cache() before reach here.
- */
- if (do_swap_account && PageSwapCache(page)) {
- swp_entry_t ent = {.val = page_private(page)};
- mem_cgroup_uncharge_swap(ent);
+ memcg = get_mem_cgroup_from_objcg(objcg);
+ ret = memcg_list_lru_alloc(memcg, lru, flags);
+ css_put(&memcg->css);
+
+ if (ret)
+ return false;
}
-}
-void mem_cgroup_commit_charge_swapin(struct page *page,
- struct mem_cgroup *memcg)
-{
- __mem_cgroup_commit_charge_swapin(page, memcg,
- MEM_CGROUP_CHARGE_TYPE_ANON);
-}
+ for (i = 0; i < size; i++) {
+ slab = virt_to_slab(p[i]);
-int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
- gfp_t gfp_mask)
-{
- struct mem_cgroup *memcg = NULL;
- enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
- int ret;
+ if (!slab_obj_exts(slab) &&
+ alloc_slab_obj_exts(slab, s, flags, false)) {
+ continue;
+ }
- if (mem_cgroup_disabled())
- return 0;
- if (PageCompound(page))
- return 0;
+ /*
+ * if we fail and size is 1, memcg_alloc_abort_single() will
+ * just free the object, which is ok as we have not assigned
+ * objcg to its obj_ext yet
+ *
+ * for larger sizes, kmem_cache_free_bulk() will uncharge
+ * any objects that were already charged and obj_ext assigned
+ *
+ * TODO: we could batch this until slab_pgdat(slab) changes
+ * between iterations, with a more complicated undo
+ */
+ if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
+ slab_pgdat(slab), cache_vmstat_idx(s)))
+ return false;
- if (!PageSwapCache(page))
- ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
- else { /* page is swapcache/shmem */
- ret = __mem_cgroup_try_charge_swapin(mm, page,
- gfp_mask, &memcg);
- if (!ret)
- __mem_cgroup_commit_charge_swapin(page, memcg, type);
+ off = obj_to_index(s, slab, p[i]);
+ obj_cgroup_get(objcg);
+ slab_obj_exts(slab)[off].objcg = objcg;
}
- return ret;
+
+ return true;
}
-static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
- unsigned int nr_pages,
- const enum charge_type ctype)
+void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
+ void **p, int objects, struct slabobj_ext *obj_exts)
{
- struct memcg_batch_info *batch = NULL;
- bool uncharge_memsw = true;
-
- /* If swapout, usage of swap doesn't decrease */
- if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
- uncharge_memsw = false;
-
- batch = &current->memcg_batch;
- /*
- * In usual, we do css_get() when we remember memcg pointer.
- * But in this case, we keep res->usage until end of a series of
- * uncharges. Then, it's ok to ignore memcg's refcnt.
- */
- if (!batch->memcg)
- batch->memcg = memcg;
- /*
- * do_batch > 0 when unmapping pages or inode invalidate/truncate.
- * In those cases, all pages freed continuously can be expected to be in
- * the same cgroup and we have chance to coalesce uncharges.
- * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
- * because we want to do uncharge as soon as possible.
- */
+ size_t obj_size = obj_full_size(s);
- if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
- goto direct_uncharge;
+ for (int i = 0; i < objects; i++) {
+ struct obj_cgroup *objcg;
+ unsigned int off;
- if (nr_pages > 1)
- goto direct_uncharge;
+ off = obj_to_index(s, slab, p[i]);
+ objcg = obj_exts[off].objcg;
+ if (!objcg)
+ continue;
- /*
- * In typical case, batch->memcg == mem. This means we can
- * merge a series of uncharges to an uncharge of res_counter.
- * If not, we uncharge res_counter ony by one.
- */
- if (batch->memcg != memcg)
- goto direct_uncharge;
- /* remember freed charge and uncharge it later */
- batch->nr_pages++;
- if (uncharge_memsw)
- batch->memsw_nr_pages++;
- return;
-direct_uncharge:
- res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
- if (uncharge_memsw)
- res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
- if (unlikely(batch->memcg != memcg))
- memcg_oom_recover(memcg);
+ obj_exts[off].objcg = NULL;
+ refill_obj_stock(objcg, obj_size, true, -obj_size,
+ slab_pgdat(slab), cache_vmstat_idx(s));
+ obj_cgroup_put(objcg);
+ }
}
/*
- * uncharge if !page_mapped(page)
+ * The objcg is only set on the first page, so transfer it to all the
+ * other pages.
*/
-static struct mem_cgroup *
-__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
- bool end_migration)
+void split_page_memcg(struct page *page, unsigned order)
{
- struct mem_cgroup *memcg = NULL;
- unsigned int nr_pages = 1;
- struct page_cgroup *pc;
- bool anon;
+ struct obj_cgroup *objcg = page_objcg(page);
+ unsigned int i, nr = 1 << order;
- if (mem_cgroup_disabled())
- return NULL;
+ if (!objcg)
+ return;
- if (PageTransHuge(page)) {
- nr_pages <<= compound_order(page);
- VM_BUG_ON(!PageTransHuge(page));
- }
- /*
- * Check if our page_cgroup is valid
- */
- pc = lookup_page_cgroup(page);
- if (unlikely(!PageCgroupUsed(pc)))
- return NULL;
+ for (i = 1; i < nr; i++)
+ page_set_objcg(&page[i], objcg);
- lock_page_cgroup(pc);
+ obj_cgroup_get_many(objcg, nr - 1);
+}
- memcg = pc->mem_cgroup;
+void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
+ unsigned new_order)
+{
+ unsigned new_refs;
- if (!PageCgroupUsed(pc))
- goto unlock_out;
+ if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
+ return;
- anon = PageAnon(page);
+ new_refs = (1 << (old_order - new_order)) - 1;
+ css_get_many(&__folio_memcg(folio)->css, new_refs);
+}
- switch (ctype) {
- case MEM_CGROUP_CHARGE_TYPE_ANON:
- /*
- * Generally PageAnon tells if it's the anon statistics to be
- * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
- * used before page reached the stage of being marked PageAnon.
- */
- anon = true;
- /* fallthrough */
- case MEM_CGROUP_CHARGE_TYPE_DROP:
- /* See mem_cgroup_prepare_migration() */
- if (page_mapped(page))
- goto unlock_out;
+unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
+{
+ unsigned long val;
+
+ if (mem_cgroup_is_root(memcg)) {
/*
- * Pages under migration may not be uncharged. But
- * end_migration() /must/ be the one uncharging the
- * unused post-migration page and so it has to call
- * here with the migration bit still set. See the
- * res_counter handling below.
+ * Approximate root's usage from global state. This isn't
+ * perfect, but the root usage was always an approximation.
*/
- if (!end_migration && PageCgroupMigration(pc))
- goto unlock_out;
- break;
- case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
- if (!PageAnon(page)) { /* Shared memory */
- if (page->mapping && !page_is_file_cache(page))
- goto unlock_out;
- } else if (page_mapped(page)) /* Anon */
- goto unlock_out;
- break;
- default:
- break;
+ val = global_node_page_state(NR_FILE_PAGES) +
+ global_node_page_state(NR_ANON_MAPPED);
+ if (swap)
+ val += total_swap_pages - get_nr_swap_pages();
+ } else {
+ if (!swap)
+ val = page_counter_read(&memcg->memory);
+ else
+ val = page_counter_read(&memcg->memsw);
}
+ return val;
+}
- mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
+static int memcg_online_kmem(struct mem_cgroup *memcg)
+{
+ struct obj_cgroup *objcg;
- ClearPageCgroupUsed(pc);
- /*
- * pc->mem_cgroup is not cleared here. It will be accessed when it's
- * freed from LRU. This is safe because uncharged page is expected not
- * to be reused (freed soon). Exception is SwapCache, it's handled by
- * special functions.
- */
+ if (mem_cgroup_kmem_disabled())
+ return 0;
- unlock_page_cgroup(pc);
- /*
- * even after unlock, we have memcg->res.usage here and this memcg
- * will never be freed, so it's safe to call css_get().
- */
- memcg_check_events(memcg, page);
- if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
- mem_cgroup_swap_statistics(memcg, true);
- css_get(&memcg->css);
- }
- /*
- * Migration does not charge the res_counter for the
- * replacement page, so leave it alone when phasing out the
- * page that is unused after the migration.
- */
- if (!end_migration && !mem_cgroup_is_root(memcg))
- mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
+ if (unlikely(mem_cgroup_is_root(memcg)))
+ return 0;
- return memcg;
+ objcg = obj_cgroup_alloc();
+ if (!objcg)
+ return -ENOMEM;
-unlock_out:
- unlock_page_cgroup(pc);
- return NULL;
+ objcg->memcg = memcg;
+ rcu_assign_pointer(memcg->objcg, objcg);
+ obj_cgroup_get(objcg);
+ memcg->orig_objcg = objcg;
+
+ static_branch_enable(&memcg_kmem_online_key);
+
+ memcg->kmemcg_id = memcg->id.id;
+
+ return 0;
}
-void mem_cgroup_uncharge_page(struct page *page)
+static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
- /* early check. */
- if (page_mapped(page))
+ struct mem_cgroup *parent;
+
+ if (mem_cgroup_kmem_disabled())
+ return;
+
+ if (unlikely(mem_cgroup_is_root(memcg)))
return;
- VM_BUG_ON(page->mapping && !PageAnon(page));
+
+ parent = parent_mem_cgroup(memcg);
+ if (!parent)
+ parent = root_mem_cgroup;
+
+ memcg_reparent_list_lrus(memcg, parent);
+
/*
- * If the page is in swap cache, uncharge should be deferred
- * to the swap path, which also properly accounts swap usage
- * and handles memcg lifetime.
- *
- * Note that this check is not stable and reclaim may add the
- * page to swap cache at any time after this. However, if the
- * page is not in swap cache by the time page->mapcount hits
- * 0, there won't be any page table references to the swap
- * slot, and reclaim will free it and not actually write the
- * page to disk.
+ * Objcg's reparenting must be after list_lru's, make sure list_lru
+ * helpers won't use parent's list_lru until child is drained.
*/
- if (PageSwapCache(page))
- return;
- __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
+ memcg_reparent_objcgs(memcg, parent);
}
-void mem_cgroup_uncharge_cache_page(struct page *page)
-{
- VM_BUG_ON(page_mapped(page));
- VM_BUG_ON(page->mapping);
- __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
-}
+#ifdef CONFIG_CGROUP_WRITEBACK
-/*
- * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
- * In that cases, pages are freed continuously and we can expect pages
- * are in the same memcg. All these calls itself limits the number of
- * pages freed at once, then uncharge_start/end() is called properly.
- * This may be called prural(2) times in a context,
- */
+#include <trace/events/writeback.h>
-void mem_cgroup_uncharge_start(void)
+static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
- current->memcg_batch.do_batch++;
- /* We can do nest. */
- if (current->memcg_batch.do_batch == 1) {
- current->memcg_batch.memcg = NULL;
- current->memcg_batch.nr_pages = 0;
- current->memcg_batch.memsw_nr_pages = 0;
- }
+ return wb_domain_init(&memcg->cgwb_domain, gfp);
}
-void mem_cgroup_uncharge_end(void)
+static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
- struct memcg_batch_info *batch = &current->memcg_batch;
-
- if (!batch->do_batch)
- return;
-
- batch->do_batch--;
- if (batch->do_batch) /* If stacked, do nothing. */
- return;
-
- if (!batch->memcg)
- return;
- /*
- * This "batch->memcg" is valid without any css_get/put etc...
- * bacause we hide charges behind us.
- */
- if (batch->nr_pages)
- res_counter_uncharge(&batch->memcg->res,
- batch->nr_pages * PAGE_SIZE);
- if (batch->memsw_nr_pages)
- res_counter_uncharge(&batch->memcg->memsw,
- batch->memsw_nr_pages * PAGE_SIZE);
- memcg_oom_recover(batch->memcg);
- /* forget this pointer (for sanity check) */
- batch->memcg = NULL;
+ wb_domain_exit(&memcg->cgwb_domain);
}
-#ifdef CONFIG_SWAP
-/*
- * called after __delete_from_swap_cache() and drop "page" account.
- * memcg information is recorded to swap_cgroup of "ent"
- */
-void
-mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
+static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
- struct mem_cgroup *memcg;
- int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
+ wb_domain_size_changed(&memcg->cgwb_domain);
+}
- if (!swapout) /* this was a swap cache but the swap is unused ! */
- ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
+struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
- memcg = __mem_cgroup_uncharge_common(page, ctype, false);
+ if (!memcg->css.parent)
+ return NULL;
- /*
- * record memcg information, if swapout && memcg != NULL,
- * css_get() was called in uncharge().
- */
- if (do_swap_account && swapout && memcg)
- swap_cgroup_record(ent, css_id(&memcg->css));
+ return &memcg->cgwb_domain;
}
-#endif
-#ifdef CONFIG_MEMCG_SWAP
-/*
- * called from swap_entry_free(). remove record in swap_cgroup and
- * uncharge "memsw" account.
+/**
+ * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
+ * @wb: bdi_writeback in question
+ * @pfilepages: out parameter for number of file pages
+ * @pheadroom: out parameter for number of allocatable pages according to memcg
+ * @pdirty: out parameter for number of dirty pages
+ * @pwriteback: out parameter for number of pages under writeback
+ *
+ * Determine the numbers of file, headroom, dirty, and writeback pages in
+ * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
+ * is a bit more involved.
+ *
+ * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
+ * headroom is calculated as the lowest headroom of itself and the
+ * ancestors. Note that this doesn't consider the actual amount of
+ * available memory in the system. The caller should further cap
+ * *@pheadroom accordingly.
*/
-void mem_cgroup_uncharge_swap(swp_entry_t ent)
+void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
+ unsigned long *pheadroom, unsigned long *pdirty,
+ unsigned long *pwriteback)
{
- struct mem_cgroup *memcg;
- unsigned short id;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
+ struct mem_cgroup *parent;
- if (!do_swap_account)
- return;
+ mem_cgroup_flush_stats_ratelimited(memcg);
- id = swap_cgroup_record(ent, 0);
- rcu_read_lock();
- memcg = mem_cgroup_lookup(id);
- if (memcg) {
- /*
- * We uncharge this because swap is freed.
- * This memcg can be obsolete one. We avoid calling css_tryget
- */
- if (!mem_cgroup_is_root(memcg))
- res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
- mem_cgroup_swap_statistics(memcg, false);
- css_put(&memcg->css);
+ *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
+ *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
+ *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
+ memcg_page_state(memcg, NR_ACTIVE_FILE);
+
+ *pheadroom = PAGE_COUNTER_MAX;
+ while ((parent = parent_mem_cgroup(memcg))) {
+ unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
+ READ_ONCE(memcg->memory.high));
+ unsigned long used = page_counter_read(&memcg->memory);
+
+ *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
+ memcg = parent;
}
- rcu_read_unlock();
}
-/**
- * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
- * @entry: swap entry to be moved
- * @from: mem_cgroup which the entry is moved from
- * @to: mem_cgroup which the entry is moved to
+/*
+ * Foreign dirty flushing
+ *
+ * There's an inherent mismatch between memcg and writeback. The former
+ * tracks ownership per-page while the latter per-inode. This was a
+ * deliberate design decision because honoring per-page ownership in the
+ * writeback path is complicated, may lead to higher CPU and IO overheads
+ * and deemed unnecessary given that write-sharing an inode across
+ * different cgroups isn't a common use-case.
+ *
+ * Combined with inode majority-writer ownership switching, this works well
+ * enough in most cases but there are some pathological cases. For
+ * example, let's say there are two cgroups A and B which keep writing to
+ * different but confined parts of the same inode. B owns the inode and
+ * A's memory is limited far below B's. A's dirty ratio can rise enough to
+ * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
+ * triggering background writeback. A will be slowed down without a way to
+ * make writeback of the dirty pages happen.
+ *
+ * Conditions like the above can lead to a cgroup getting repeatedly and
+ * severely throttled after making some progress after each
+ * dirty_expire_interval while the underlying IO device is almost
+ * completely idle.
*
- * It succeeds only when the swap_cgroup's record for this entry is the same
- * as the mem_cgroup's id of @from.
+ * Solving this problem completely requires matching the ownership tracking
+ * granularities between memcg and writeback in either direction. However,
+ * the more egregious behaviors can be avoided by simply remembering the
+ * most recent foreign dirtying events and initiating remote flushes on
+ * them when local writeback isn't enough to keep the memory clean enough.
*
- * Returns 0 on success, -EINVAL on failure.
+ * The following two functions implement such mechanism. When a foreign
+ * page - a page whose memcg and writeback ownerships don't match - is
+ * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
+ * bdi_writeback on the page owning memcg. When balance_dirty_pages()
+ * decides that the memcg needs to sleep due to high dirty ratio, it calls
+ * mem_cgroup_flush_foreign() which queues writeback on the recorded
+ * foreign bdi_writebacks which haven't expired. Both the numbers of
+ * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
+ * limited to MEMCG_CGWB_FRN_CNT.
*
- * The caller must have charged to @to, IOW, called res_counter_charge() about
- * both res and memsw, and called css_get().
+ * The mechanism only remembers IDs and doesn't hold any object references.
+ * As being wrong occasionally doesn't matter, updates and accesses to the
+ * records are lockless and racy.
*/
-static int mem_cgroup_move_swap_account(swp_entry_t entry,
- struct mem_cgroup *from, struct mem_cgroup *to)
-{
- unsigned short old_id, new_id;
+void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
+ struct bdi_writeback *wb)
+{
+ struct mem_cgroup *memcg = folio_memcg(folio);
+ struct memcg_cgwb_frn *frn;
+ u64 now = get_jiffies_64();
+ u64 oldest_at = now;
+ int oldest = -1;
+ int i;
+
+ trace_track_foreign_dirty(folio, wb);
- old_id = css_id(&from->css);
- new_id = css_id(&to->css);
+ /*
+ * Pick the slot to use. If there is already a slot for @wb, keep
+ * using it. If not replace the oldest one which isn't being
+ * written out.
+ */
+ for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
+ frn = &memcg->cgwb_frn[i];
+ if (frn->bdi_id == wb->bdi->id &&
+ frn->memcg_id == wb->memcg_css->id)
+ break;
+ if (time_before64(frn->at, oldest_at) &&
+ atomic_read(&frn->done.cnt) == 1) {
+ oldest = i;
+ oldest_at = frn->at;
+ }
+ }
- if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
- mem_cgroup_swap_statistics(from, false);
- mem_cgroup_swap_statistics(to, true);
+ if (i < MEMCG_CGWB_FRN_CNT) {
/*
- * This function is only called from task migration context now.
- * It postpones res_counter and refcount handling till the end
- * of task migration(mem_cgroup_clear_mc()) for performance
- * improvement. But we cannot postpone css_get(to) because if
- * the process that has been moved to @to does swap-in, the
- * refcount of @to might be decreased to 0.
- *
- * We are in attach() phase, so the cgroup is guaranteed to be
- * alive, so we can just call css_get().
+ * Re-using an existing one. Update timestamp lazily to
+ * avoid making the cacheline hot. We want them to be
+ * reasonably up-to-date and significantly shorter than
+ * dirty_expire_interval as that's what expires the record.
+ * Use the shorter of 1s and dirty_expire_interval / 8.
*/
- css_get(&to->css);
- return 0;
+ unsigned long update_intv =
+ min_t(unsigned long, HZ,
+ msecs_to_jiffies(dirty_expire_interval * 10) / 8);
+
+ if (time_before64(frn->at, now - update_intv))
+ frn->at = now;
+ } else if (oldest >= 0) {
+ /* replace the oldest free one */
+ frn = &memcg->cgwb_frn[oldest];
+ frn->bdi_id = wb->bdi->id;
+ frn->memcg_id = wb->memcg_css->id;
+ frn->at = now;
}
- return -EINVAL;
-}
-#else
-static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
- struct mem_cgroup *from, struct mem_cgroup *to)
-{
- return -EINVAL;
}
-#endif
-/*
- * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
- * page belongs to.
- */
-void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
- struct mem_cgroup **memcgp)
+/* issue foreign writeback flushes for recorded foreign dirtying events */
+void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
- struct mem_cgroup *memcg = NULL;
- unsigned int nr_pages = 1;
- struct page_cgroup *pc;
- enum charge_type ctype;
-
- *memcgp = NULL;
-
- if (mem_cgroup_disabled())
- return;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
+ unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
+ u64 now = jiffies_64;
+ int i;
- if (PageTransHuge(page))
- nr_pages <<= compound_order(page);
+ for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
+ struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
- pc = lookup_page_cgroup(page);
- lock_page_cgroup(pc);
- if (PageCgroupUsed(pc)) {
- memcg = pc->mem_cgroup;
- css_get(&memcg->css);
/*
- * At migrating an anonymous page, its mapcount goes down
- * to 0 and uncharge() will be called. But, even if it's fully
- * unmapped, migration may fail and this page has to be
- * charged again. We set MIGRATION flag here and delay uncharge
- * until end_migration() is called
- *
- * Corner Case Thinking
- * A)
- * When the old page was mapped as Anon and it's unmap-and-freed
- * while migration was ongoing.
- * If unmap finds the old page, uncharge() of it will be delayed
- * until end_migration(). If unmap finds a new page, it's
- * uncharged when it make mapcount to be 1->0. If unmap code
- * finds swap_migration_entry, the new page will not be mapped
- * and end_migration() will find it(mapcount==0).
- *
- * B)
- * When the old page was mapped but migraion fails, the kernel
- * remaps it. A charge for it is kept by MIGRATION flag even
- * if mapcount goes down to 0. We can do remap successfully
- * without charging it again.
- *
- * C)
- * The "old" page is under lock_page() until the end of
- * migration, so, the old page itself will not be swapped-out.
- * If the new page is swapped out before end_migraton, our
- * hook to usual swap-out path will catch the event.
+ * If the record is older than dirty_expire_interval,
+ * writeback on it has already started. No need to kick it
+ * off again. Also, don't start a new one if there's
+ * already one in flight.
*/
- if (PageAnon(page))
- SetPageCgroupMigration(pc);
+ if (time_after64(frn->at, now - intv) &&
+ atomic_read(&frn->done.cnt) == 1) {
+ frn->at = 0;
+ trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
+ cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
+ WB_REASON_FOREIGN_FLUSH,
+ &frn->done);
+ }
}
- unlock_page_cgroup(pc);
- /*
- * If the page is not charged at this point,
- * we return here.
- */
- if (!memcg)
- return;
-
- *memcgp = memcg;
- /*
- * We charge new page before it's used/mapped. So, even if unlock_page()
- * is called before end_migration, we can catch all events on this new
- * page. In the case new page is migrated but not remapped, new page's
- * mapcount will be finally 0 and we call uncharge in end_migration().
- */
- if (PageAnon(page))
- ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
- else
- ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
- /*
- * The page is committed to the memcg, but it's not actually
- * charged to the res_counter since we plan on replacing the
- * old one and only one page is going to be left afterwards.
- */
- __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
}
-/* remove redundant charge if migration failed*/
-void mem_cgroup_end_migration(struct mem_cgroup *memcg,
- struct page *oldpage, struct page *newpage, bool migration_ok)
-{
- struct page *used, *unused;
- struct page_cgroup *pc;
- bool anon;
+#else /* CONFIG_CGROUP_WRITEBACK */
- if (!memcg)
- return;
+static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
+{
+ return 0;
+}
- if (!migration_ok) {
- used = oldpage;
- unused = newpage;
- } else {
- used = newpage;
- unused = oldpage;
- }
- anon = PageAnon(used);
- __mem_cgroup_uncharge_common(unused,
- anon ? MEM_CGROUP_CHARGE_TYPE_ANON
- : MEM_CGROUP_CHARGE_TYPE_CACHE,
- true);
- css_put(&memcg->css);
- /*
- * We disallowed uncharge of pages under migration because mapcount
- * of the page goes down to zero, temporarly.
- * Clear the flag and check the page should be charged.
- */
- pc = lookup_page_cgroup(oldpage);
- lock_page_cgroup(pc);
- ClearPageCgroupMigration(pc);
- unlock_page_cgroup(pc);
+static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
+{
+}
- /*
- * If a page is a file cache, radix-tree replacement is very atomic
- * and we can skip this check. When it was an Anon page, its mapcount
- * goes down to 0. But because we added MIGRATION flage, it's not
- * uncharged yet. There are several case but page->mapcount check
- * and USED bit check in mem_cgroup_uncharge_page() will do enough
- * check. (see prepare_charge() also)
- */
- if (anon)
- mem_cgroup_uncharge_page(used);
+static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
+{
}
+#endif /* CONFIG_CGROUP_WRITEBACK */
+
/*
- * At replace page cache, newpage is not under any memcg but it's on
- * LRU. So, this function doesn't touch res_counter but handles LRU
- * in correct way. Both pages are locked so we cannot race with uncharge.
+ * Private memory cgroup IDR
+ *
+ * Swap-out records and page cache shadow entries need to store memcg
+ * references in constrained space, so we maintain an ID space that is
+ * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
+ * memory-controlled cgroups to 64k.
+ *
+ * However, there usually are many references to the offline CSS after
+ * the cgroup has been destroyed, such as page cache or reclaimable
+ * slab objects, that don't need to hang on to the ID. We want to keep
+ * those dead CSS from occupying IDs, or we might quickly exhaust the
+ * relatively small ID space and prevent the creation of new cgroups
+ * even when there are much fewer than 64k cgroups - possibly none.
+ *
+ * Maintain a private 16-bit ID space for memcg, and allow the ID to
+ * be freed and recycled when it's no longer needed, which is usually
+ * when the CSS is offlined.
+ *
+ * The only exception to that are records of swapped out tmpfs/shmem
+ * pages that need to be attributed to live ancestors on swapin. But
+ * those references are manageable from userspace.
*/
-void mem_cgroup_replace_page_cache(struct page *oldpage,
- struct page *newpage)
-{
- struct mem_cgroup *memcg = NULL;
- struct page_cgroup *pc;
- enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
- if (mem_cgroup_disabled())
- return;
+#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
+static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
- pc = lookup_page_cgroup(oldpage);
- /* fix accounting on old pages */
- lock_page_cgroup(pc);
- if (PageCgroupUsed(pc)) {
- memcg = pc->mem_cgroup;
- mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
- ClearPageCgroupUsed(pc);
+static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
+{
+ if (memcg->id.id > 0) {
+ xa_erase(&mem_cgroup_ids, memcg->id.id);
+ memcg->id.id = 0;
}
- unlock_page_cgroup(pc);
-
- /*
- * When called from shmem_replace_page(), in some cases the
- * oldpage has already been charged, and in some cases not.
- */
- if (!memcg)
- return;
- /*
- * Even if newpage->mapping was NULL before starting replacement,
- * the newpage may be on LRU(or pagevec for LRU) already. We lock
- * LRU while we overwrite pc->mem_cgroup.
- */
- __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
}
-#ifdef CONFIG_DEBUG_VM
-static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
+void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
+ unsigned int n)
{
- struct page_cgroup *pc;
-
- pc = lookup_page_cgroup(page);
- /*
- * Can be NULL while feeding pages into the page allocator for
- * the first time, i.e. during boot or memory hotplug;
- * or when mem_cgroup_disabled().
- */
- if (likely(pc) && PageCgroupUsed(pc))
- return pc;
- return NULL;
+ refcount_add(n, &memcg->id.ref);
}
-bool mem_cgroup_bad_page_check(struct page *page)
+static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
{
- if (mem_cgroup_disabled())
- return false;
+ if (refcount_sub_and_test(n, &memcg->id.ref)) {
+ mem_cgroup_id_remove(memcg);
- return lookup_page_cgroup_used(page) != NULL;
+ /* Memcg ID pins CSS */
+ css_put(&memcg->css);
+ }
}
-void mem_cgroup_print_bad_page(struct page *page)
+static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
- struct page_cgroup *pc;
-
- pc = lookup_page_cgroup_used(page);
- if (pc) {
- pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
- pc, pc->flags, pc->mem_cgroup);
- }
+ mem_cgroup_id_put_many(memcg, 1);
}
-#endif
-static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
- unsigned long long val)
+struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
- int retry_count;
- u64 memswlimit, memlimit;
- int ret = 0;
- int children = mem_cgroup_count_children(memcg);
- u64 curusage, oldusage;
- int enlarge;
-
- /*
- * For keeping hierarchical_reclaim simple, how long we should retry
- * is depends on callers. We set our retry-count to be function
- * of # of children which we should visit in this loop.
- */
- retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
-
- oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
-
- enlarge = 0;
- while (retry_count) {
- if (signal_pending(current)) {
- ret = -EINTR;
- break;
- }
+ while (!refcount_inc_not_zero(&memcg->id.ref)) {
/*
- * Rather than hide all in some function, I do this in
- * open coded manner. You see what this really does.
- * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
+ * The root cgroup cannot be destroyed, so it's refcount must
+ * always be >= 1.
*/
- mutex_lock(&set_limit_mutex);
- memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
- if (memswlimit < val) {
- ret = -EINVAL;
- mutex_unlock(&set_limit_mutex);
+ if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
+ VM_BUG_ON(1);
break;
}
-
- memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
- if (memlimit < val)
- enlarge = 1;
-
- ret = res_counter_set_limit(&memcg->res, val);
- if (!ret) {
- if (memswlimit == val)
- memcg->memsw_is_minimum = true;
- else
- memcg->memsw_is_minimum = false;
- }
- mutex_unlock(&set_limit_mutex);
-
- if (!ret)
- break;
-
- mem_cgroup_reclaim(memcg, GFP_KERNEL,
- MEM_CGROUP_RECLAIM_SHRINK);
- curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
- /* Usage is reduced ? */
- if (curusage >= oldusage)
- retry_count--;
- else
- oldusage = curusage;
+ memcg = parent_mem_cgroup(memcg);
+ if (!memcg)
+ memcg = root_mem_cgroup;
}
- if (!ret && enlarge)
- memcg_oom_recover(memcg);
+ return memcg;
+}
- return ret;
+/**
+ * mem_cgroup_from_id - look up a memcg from a memcg id
+ * @id: the memcg id to look up
+ *
+ * Caller must hold rcu_read_lock().
+ */
+struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
+{
+ WARN_ON_ONCE(!rcu_read_lock_held());
+ return xa_load(&mem_cgroup_ids, id);
}
-static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
- unsigned long long val)
+#ifdef CONFIG_SHRINKER_DEBUG
+struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
{
- int retry_count;
- u64 memlimit, memswlimit, oldusage, curusage;
- int children = mem_cgroup_count_children(memcg);
- int ret = -EBUSY;
- int enlarge = 0;
+ struct cgroup *cgrp;
+ struct cgroup_subsys_state *css;
+ struct mem_cgroup *memcg;
- /* see mem_cgroup_resize_res_limit */
- retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
- oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
- while (retry_count) {
- if (signal_pending(current)) {
- ret = -EINTR;
- break;
- }
- /*
- * Rather than hide all in some function, I do this in
- * open coded manner. You see what this really does.
- * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
- */
- mutex_lock(&set_limit_mutex);
- memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
- if (memlimit > val) {
- ret = -EINVAL;
- mutex_unlock(&set_limit_mutex);
- break;
- }
- memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
- if (memswlimit < val)
- enlarge = 1;
- ret = res_counter_set_limit(&memcg->memsw, val);
- if (!ret) {
- if (memlimit == val)
- memcg->memsw_is_minimum = true;
- else
- memcg->memsw_is_minimum = false;
- }
- mutex_unlock(&set_limit_mutex);
+ cgrp = cgroup_get_from_id(ino);
+ if (IS_ERR(cgrp))
+ return ERR_CAST(cgrp);
- if (!ret)
- break;
+ css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
+ if (css)
+ memcg = container_of(css, struct mem_cgroup, css);
+ else
+ memcg = ERR_PTR(-ENOENT);
- mem_cgroup_reclaim(memcg, GFP_KERNEL,
- MEM_CGROUP_RECLAIM_NOSWAP |
- MEM_CGROUP_RECLAIM_SHRINK);
- curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
- /* Usage is reduced ? */
- if (curusage >= oldusage)
- retry_count--;
- else
- oldusage = curusage;
- }
- if (!ret && enlarge)
- memcg_oom_recover(memcg);
- return ret;
+ cgroup_put(cgrp);
+
+ return memcg;
}
+#endif
-unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
- gfp_t gfp_mask,
- unsigned long *total_scanned)
+static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
{
- unsigned long nr_reclaimed = 0;
- struct mem_cgroup_per_zone *mz, *next_mz = NULL;
- unsigned long reclaimed;
- int loop = 0;
- struct mem_cgroup_tree_per_zone *mctz;
- unsigned long long excess;
- unsigned long nr_scanned;
-
- if (order > 0)
- return 0;
-
- mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
- /*
- * This loop can run a while, specially if mem_cgroup's continuously
- * keep exceeding their soft limit and putting the system under
- * pressure
- */
- do {
- if (next_mz)
- mz = next_mz;
- else
- mz = mem_cgroup_largest_soft_limit_node(mctz);
- if (!mz)
- break;
-
- nr_scanned = 0;
- reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
- gfp_mask, &nr_scanned);
- nr_reclaimed += reclaimed;
- *total_scanned += nr_scanned;
- spin_lock(&mctz->lock);
+ if (!pn)
+ return;
- /*
- * If we failed to reclaim anything from this memory cgroup
- * it is time to move on to the next cgroup
- */
- next_mz = NULL;
- if (!reclaimed) {
- do {
- /*
- * Loop until we find yet another one.
- *
- * By the time we get the soft_limit lock
- * again, someone might have aded the
- * group back on the RB tree. Iterate to
- * make sure we get a different mem.
- * mem_cgroup_largest_soft_limit_node returns
- * NULL if no other cgroup is present on
- * the tree
- */
- next_mz =
- __mem_cgroup_largest_soft_limit_node(mctz);
- if (next_mz == mz)
- css_put(&next_mz->memcg->css);
- else /* next_mz == NULL or other memcg */
- break;
- } while (1);
- }
- __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
- excess = res_counter_soft_limit_excess(&mz->memcg->res);
- /*
- * One school of thought says that we should not add
- * back the node to the tree if reclaim returns 0.
- * But our reclaim could return 0, simply because due
- * to priority we are exposing a smaller subset of
- * memory to reclaim from. Consider this as a longer
- * term TODO.
- */
- /* If excess == 0, no tree ops */
- __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
- spin_unlock(&mctz->lock);
- css_put(&mz->memcg->css);
- loop++;
- /*
- * Could not reclaim anything and there are no more
- * mem cgroups to try or we seem to be looping without
- * reclaiming anything.
- */
- if (!nr_reclaimed &&
- (next_mz == NULL ||
- loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
- break;
- } while (!nr_reclaimed);
- if (next_mz)
- css_put(&next_mz->memcg->css);
- return nr_reclaimed;
+ free_percpu(pn->lruvec_stats_percpu);
+ kfree(pn->lruvec_stats);
+ kfree(pn);
}
-/**
- * mem_cgroup_force_empty_list - clears LRU of a group
- * @memcg: group to clear
- * @node: NUMA node
- * @zid: zone id
- * @lru: lru to to clear
- *
- * Traverse a specified page_cgroup list and try to drop them all. This doesn't
- * reclaim the pages page themselves - pages are moved to the parent (or root)
- * group.
- */
-static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
- int node, int zid, enum lru_list lru)
+static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
{
- struct lruvec *lruvec;
- unsigned long flags;
- struct list_head *list;
- struct page *busy;
- struct zone *zone;
+ struct mem_cgroup_per_node *pn;
- zone = &NODE_DATA(node)->node_zones[zid];
- lruvec = mem_cgroup_zone_lruvec(zone, memcg);
- list = &lruvec->lists[lru];
+ pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
+ node);
+ if (!pn)
+ return false;
- busy = NULL;
- do {
- struct page_cgroup *pc;
- struct page *page;
+ pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
+ GFP_KERNEL_ACCOUNT, node);
+ if (!pn->lruvec_stats)
+ goto fail;
- spin_lock_irqsave(&zone->lru_lock, flags);
- if (list_empty(list)) {
- spin_unlock_irqrestore(&zone->lru_lock, flags);
- break;
- }
- page = list_entry(list->prev, struct page, lru);
- if (busy == page) {
- list_move(&page->lru, list);
- busy = NULL;
- spin_unlock_irqrestore(&zone->lru_lock, flags);
- continue;
- }
- spin_unlock_irqrestore(&zone->lru_lock, flags);
+ pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
+ GFP_KERNEL_ACCOUNT);
+ if (!pn->lruvec_stats_percpu)
+ goto fail;
- pc = lookup_page_cgroup(page);
+ lruvec_init(&pn->lruvec);
+ pn->memcg = memcg;
- if (mem_cgroup_move_parent(page, pc, memcg)) {
- /* found lock contention or "pc" is obsolete. */
- busy = page;
- cond_resched();
- } else
- busy = NULL;
- } while (!list_empty(list));
+ memcg->nodeinfo[node] = pn;
+ return true;
+fail:
+ free_mem_cgroup_per_node_info(pn);
+ return false;
}
-/*
- * make mem_cgroup's charge to be 0 if there is no task by moving
- * all the charges and pages to the parent.
- * This enables deleting this mem_cgroup.
- *
- * Caller is responsible for holding css reference on the memcg.
- */
-static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
+static void __mem_cgroup_free(struct mem_cgroup *memcg)
{
- int node, zid;
- u64 usage;
+ int node;
- do {
- /* This is for making all *used* pages to be on LRU. */
- lru_add_drain_all();
- drain_all_stock_sync(memcg);
- mem_cgroup_start_move(memcg);
- for_each_node_state(node, N_MEMORY) {
- for (zid = 0; zid < MAX_NR_ZONES; zid++) {
- enum lru_list lru;
- for_each_lru(lru) {
- mem_cgroup_force_empty_list(memcg,
- node, zid, lru);
- }
- }
- }
- mem_cgroup_end_move(memcg);
- memcg_oom_recover(memcg);
- cond_resched();
+ obj_cgroup_put(memcg->orig_objcg);
- /*
- * Kernel memory may not necessarily be trackable to a specific
- * process. So they are not migrated, and therefore we can't
- * expect their value to drop to 0 here.
- * Having res filled up with kmem only is enough.
- *
- * This is a safety check because mem_cgroup_force_empty_list
- * could have raced with mem_cgroup_replace_page_cache callers
- * so the lru seemed empty but the page could have been added
- * right after the check. RES_USAGE should be safe as we always
- * charge before adding to the LRU.
- */
- usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
- res_counter_read_u64(&memcg->kmem, RES_USAGE);
- } while (usage > 0);
+ for_each_node(node)
+ free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
+ memcg1_free_events(memcg);
+ kfree(memcg->vmstats);
+ free_percpu(memcg->vmstats_percpu);
+ kfree(memcg);
}
-/*
- * This mainly exists for tests during the setting of set of use_hierarchy.
- * Since this is the very setting we are changing, the current hierarchy value
- * is meaningless
- */
-static inline bool __memcg_has_children(struct mem_cgroup *memcg)
+static void mem_cgroup_free(struct mem_cgroup *memcg)
{
- struct cgroup *pos;
-
- /* bounce at first found */
- cgroup_for_each_child(pos, memcg->css.cgroup)
- return true;
- return false;
+ lru_gen_exit_memcg(memcg);
+ memcg_wb_domain_exit(memcg);
+ __mem_cgroup_free(memcg);
}
-/*
- * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
- * to be already dead (as in mem_cgroup_force_empty, for instance). This is
- * from mem_cgroup_count_children(), in the sense that we don't really care how
- * many children we have; we only need to know if we have any. It also counts
- * any memcg without hierarchy as infertile.
- */
-static inline bool memcg_has_children(struct mem_cgroup *memcg)
+static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
{
- return memcg->use_hierarchy && __memcg_has_children(memcg);
-}
+ struct memcg_vmstats_percpu *statc;
+ struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
+ struct mem_cgroup *memcg;
+ int node, cpu;
+ int __maybe_unused i;
+ long error;
-/*
- * Reclaims as many pages from the given memcg as possible and moves
- * the rest to the parent.
- *
- * Caller is responsible for holding css reference for memcg.
- */
-static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
-{
- int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
- struct cgroup *cgrp = memcg->css.cgroup;
+ memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
+ if (!memcg)
+ return ERR_PTR(-ENOMEM);
- /* returns EBUSY if there is a task or if we come here twice. */
- if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
- return -EBUSY;
+ error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
+ XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
+ if (error)
+ goto fail;
+ error = -ENOMEM;
- /* we call try-to-free pages for make this cgroup empty */
- lru_add_drain_all();
- /* try to free all pages in this cgroup */
- while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
- int progress;
+ memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
+ GFP_KERNEL_ACCOUNT);
+ if (!memcg->vmstats)
+ goto fail;
- if (signal_pending(current))
- return -EINTR;
-
- progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
- false);
- if (!progress) {
- nr_retries--;
- /* maybe some writeback is necessary */
- congestion_wait(BLK_RW_ASYNC, HZ/10);
- }
+ memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
+ GFP_KERNEL_ACCOUNT);
+ if (!memcg->vmstats_percpu)
+ goto fail;
- }
- lru_add_drain();
- mem_cgroup_reparent_charges(memcg);
+ if (!memcg1_alloc_events(memcg))
+ goto fail;
- return 0;
-}
+ for_each_possible_cpu(cpu) {
+ if (parent)
+ pstatc_pcpu = parent->vmstats_percpu;
+ statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
+ statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
+ statc->vmstats = memcg->vmstats;
+ }
-static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
- int ret;
+ for_each_node(node)
+ if (!alloc_mem_cgroup_per_node_info(memcg, node))
+ goto fail;
- if (mem_cgroup_is_root(memcg))
- return -EINVAL;
- css_get(&memcg->css);
- ret = mem_cgroup_force_empty(memcg);
- css_put(&memcg->css);
+ if (memcg_wb_domain_init(memcg, GFP_KERNEL))
+ goto fail;
- return ret;
+ INIT_WORK(&memcg->high_work, high_work_func);
+ vmpressure_init(&memcg->vmpressure);
+ INIT_LIST_HEAD(&memcg->memory_peaks);
+ INIT_LIST_HEAD(&memcg->swap_peaks);
+ spin_lock_init(&memcg->peaks_lock);
+ memcg->socket_pressure = get_jiffies_64();
+#if BITS_PER_LONG < 64
+ seqlock_init(&memcg->socket_pressure_seqlock);
+#endif
+ memcg1_memcg_init(memcg);
+ memcg->kmemcg_id = -1;
+ INIT_LIST_HEAD(&memcg->objcg_list);
+#ifdef CONFIG_CGROUP_WRITEBACK
+ INIT_LIST_HEAD(&memcg->cgwb_list);
+ for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
+ memcg->cgwb_frn[i].done =
+ __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
+#endif
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
+ INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
+ memcg->deferred_split_queue.split_queue_len = 0;
+#endif
+ lru_gen_init_memcg(memcg);
+ return memcg;
+fail:
+ mem_cgroup_id_remove(memcg);
+ __mem_cgroup_free(memcg);
+ return ERR_PTR(error);
}
+static struct cgroup_subsys_state * __ref
+mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
+{
+ struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
+ struct mem_cgroup *memcg, *old_memcg;
+ bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
+
+ old_memcg = set_active_memcg(parent);
+ memcg = mem_cgroup_alloc(parent);
+ set_active_memcg(old_memcg);
+ if (IS_ERR(memcg))
+ return ERR_CAST(memcg);
+
+ page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
+ memcg1_soft_limit_reset(memcg);
+#ifdef CONFIG_ZSWAP
+ memcg->zswap_max = PAGE_COUNTER_MAX;
+ WRITE_ONCE(memcg->zswap_writeback, true);
+#endif
+ page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
+ if (parent) {
+ WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
+
+ page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
+ page_counter_init(&memcg->swap, &parent->swap, false);
+#ifdef CONFIG_MEMCG_V1
+ memcg->memory.track_failcnt = !memcg_on_dfl;
+ WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
+ page_counter_init(&memcg->kmem, &parent->kmem, false);
+ page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
+#endif
+ } else {
+ init_memcg_stats();
+ init_memcg_events();
+ page_counter_init(&memcg->memory, NULL, true);
+ page_counter_init(&memcg->swap, NULL, false);
+#ifdef CONFIG_MEMCG_V1
+ page_counter_init(&memcg->kmem, NULL, false);
+ page_counter_init(&memcg->tcpmem, NULL, false);
+#endif
+ root_mem_cgroup = memcg;
+ return &memcg->css;
+ }
+
+ if (memcg_on_dfl && !cgroup_memory_nosocket)
+ static_branch_inc(&memcg_sockets_enabled_key);
-static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
-{
- return mem_cgroup_from_cont(cont)->use_hierarchy;
+ if (!cgroup_memory_nobpf)
+ static_branch_inc(&memcg_bpf_enabled_key);
+
+ return &memcg->css;
}
-static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
- u64 val)
+static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
{
- int retval = 0;
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
- struct cgroup *parent = cont->parent;
- struct mem_cgroup *parent_memcg = NULL;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- if (parent)
- parent_memcg = mem_cgroup_from_cont(parent);
+ if (memcg_online_kmem(memcg))
+ goto remove_id;
- mutex_lock(&memcg_create_mutex);
+ /*
+ * A memcg must be visible for expand_shrinker_info()
+ * by the time the maps are allocated. So, we allocate maps
+ * here, when for_each_mem_cgroup() can't skip it.
+ */
+ if (alloc_shrinker_info(memcg))
+ goto offline_kmem;
- if (memcg->use_hierarchy == val)
- goto out;
+ if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
+ queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
+ FLUSH_TIME);
+ lru_gen_online_memcg(memcg);
+
+ /* Online state pins memcg ID, memcg ID pins CSS */
+ refcount_set(&memcg->id.ref, 1);
+ css_get(css);
/*
- * If parent's use_hierarchy is set, we can't make any modifications
- * in the child subtrees. If it is unset, then the change can
- * occur, provided the current cgroup has no children.
+ * Ensure mem_cgroup_from_id() works once we're fully online.
*
- * For the root cgroup, parent_mem is NULL, we allow value to be
- * set if there are no children.
+ * We could do this earlier and require callers to filter with
+ * css_tryget_online(). But right now there are no users that
+ * need earlier access, and the workingset code relies on the
+ * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
+ * publish it here at the end of onlining. This matches the
+ * regular ID destruction during offlining.
*/
- if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
- (val == 1 || val == 0)) {
- if (!__memcg_has_children(memcg))
- memcg->use_hierarchy = val;
- else
- retval = -EBUSY;
- } else
- retval = -EINVAL;
+ xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
-out:
- mutex_unlock(&memcg_create_mutex);
-
- return retval;
+ return 0;
+offline_kmem:
+ memcg_offline_kmem(memcg);
+remove_id:
+ mem_cgroup_id_remove(memcg);
+ return -ENOMEM;
}
-
-static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
- enum mem_cgroup_stat_index idx)
+static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
{
- struct mem_cgroup *iter;
- long val = 0;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- /* Per-cpu values can be negative, use a signed accumulator */
- for_each_mem_cgroup_tree(iter, memcg)
- val += mem_cgroup_read_stat(iter, idx);
-
- if (val < 0) /* race ? */
- val = 0;
- return val;
-}
+ memcg1_css_offline(memcg);
-static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
-{
- u64 val;
+ page_counter_set_min(&memcg->memory, 0);
+ page_counter_set_low(&memcg->memory, 0);
- if (!mem_cgroup_is_root(memcg)) {
- if (!swap)
- return res_counter_read_u64(&memcg->res, RES_USAGE);
- else
- return res_counter_read_u64(&memcg->memsw, RES_USAGE);
- }
+ zswap_memcg_offline_cleanup(memcg);
- /*
- * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
- * as well as in MEM_CGROUP_STAT_RSS_HUGE.
- */
- val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
- val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
+ memcg_offline_kmem(memcg);
+ reparent_deferred_split_queue(memcg);
+ reparent_shrinker_deferred(memcg);
+ wb_memcg_offline(memcg);
+ lru_gen_offline_memcg(memcg);
- if (swap)
- val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
+ drain_all_stock(memcg);
- return val << PAGE_SHIFT;
+ mem_cgroup_id_put(memcg);
}
-static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
- struct file *file, char __user *buf,
- size_t nbytes, loff_t *ppos)
+static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
- char str[64];
- u64 val;
- int name, len;
- enum res_type type;
-
- type = MEMFILE_TYPE(cft->private);
- name = MEMFILE_ATTR(cft->private);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- switch (type) {
- case _MEM:
- if (name == RES_USAGE)
- val = mem_cgroup_usage(memcg, false);
- else
- val = res_counter_read_u64(&memcg->res, name);
- break;
- case _MEMSWAP:
- if (name == RES_USAGE)
- val = mem_cgroup_usage(memcg, true);
- else
- val = res_counter_read_u64(&memcg->memsw, name);
- break;
- case _KMEM:
- val = res_counter_read_u64(&memcg->kmem, name);
- break;
- default:
- BUG();
- }
-
- len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
- return simple_read_from_buffer(buf, nbytes, ppos, str, len);
+ invalidate_reclaim_iterators(memcg);
+ lru_gen_release_memcg(memcg);
}
-static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
+static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
{
- int ret = -EINVAL;
-#ifdef CONFIG_MEMCG_KMEM
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
- /*
- * For simplicity, we won't allow this to be disabled. It also can't
- * be changed if the cgroup has children already, or if tasks had
- * already joined.
- *
- * If tasks join before we set the limit, a person looking at
- * kmem.usage_in_bytes will have no way to determine when it took
- * place, which makes the value quite meaningless.
- *
- * After it first became limited, changes in the value of the limit are
- * of course permitted.
- */
- mutex_lock(&memcg_create_mutex);
- mutex_lock(&set_limit_mutex);
- if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
- if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
- ret = -EBUSY;
- goto out;
- }
- ret = res_counter_set_limit(&memcg->kmem, val);
- VM_BUG_ON(ret);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ int __maybe_unused i;
- ret = memcg_update_cache_sizes(memcg);
- if (ret) {
- res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
- goto out;
- }
- static_key_slow_inc(&memcg_kmem_enabled_key);
- /*
- * setting the active bit after the inc will guarantee no one
- * starts accounting before all call sites are patched
- */
- memcg_kmem_set_active(memcg);
- } else
- ret = res_counter_set_limit(&memcg->kmem, val);
-out:
- mutex_unlock(&set_limit_mutex);
- mutex_unlock(&memcg_create_mutex);
+#ifdef CONFIG_CGROUP_WRITEBACK
+ for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
+ wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
- return ret;
-}
+ if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
+ static_branch_dec(&memcg_sockets_enabled_key);
-#ifdef CONFIG_MEMCG_KMEM
-static int memcg_propagate_kmem(struct mem_cgroup *memcg)
-{
- int ret = 0;
- struct mem_cgroup *parent = parent_mem_cgroup(memcg);
- if (!parent)
- goto out;
-
- memcg->kmem_account_flags = parent->kmem_account_flags;
- /*
- * When that happen, we need to disable the static branch only on those
- * memcgs that enabled it. To achieve this, we would be forced to
- * complicate the code by keeping track of which memcgs were the ones
- * that actually enabled limits, and which ones got it from its
- * parents.
- *
- * It is a lot simpler just to do static_key_slow_inc() on every child
- * that is accounted.
- */
- if (!memcg_kmem_is_active(memcg))
- goto out;
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
+ static_branch_dec(&memcg_sockets_enabled_key);
- /*
- * __mem_cgroup_free() will issue static_key_slow_dec() because this
- * memcg is active already. If the later initialization fails then the
- * cgroup core triggers the cleanup so we do not have to do it here.
- */
- static_key_slow_inc(&memcg_kmem_enabled_key);
+ if (!cgroup_memory_nobpf)
+ static_branch_dec(&memcg_bpf_enabled_key);
- mutex_lock(&set_limit_mutex);
- memcg_stop_kmem_account();
- ret = memcg_update_cache_sizes(memcg);
- memcg_resume_kmem_account();
- mutex_unlock(&set_limit_mutex);
-out:
- return ret;
+ vmpressure_cleanup(&memcg->vmpressure);
+ cancel_work_sync(&memcg->high_work);
+ memcg1_remove_from_trees(memcg);
+ free_shrinker_info(memcg);
+ mem_cgroup_free(memcg);
}
-#endif /* CONFIG_MEMCG_KMEM */
-/*
- * The user of this function is...
- * RES_LIMIT.
+/**
+ * mem_cgroup_css_reset - reset the states of a mem_cgroup
+ * @css: the target css
+ *
+ * Reset the states of the mem_cgroup associated with @css. This is
+ * invoked when the userland requests disabling on the default hierarchy
+ * but the memcg is pinned through dependency. The memcg should stop
+ * applying policies and should revert to the vanilla state as it may be
+ * made visible again.
+ *
+ * The current implementation only resets the essential configurations.
+ * This needs to be expanded to cover all the visible parts.
*/
-static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
- const char *buffer)
+static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
- enum res_type type;
- int name;
- unsigned long long val;
- int ret;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- type = MEMFILE_TYPE(cft->private);
- name = MEMFILE_ATTR(cft->private);
+ page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
+ page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
+#ifdef CONFIG_MEMCG_V1
+ page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
+ page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
+#endif
+ page_counter_set_min(&memcg->memory, 0);
+ page_counter_set_low(&memcg->memory, 0);
+ page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
+ memcg1_soft_limit_reset(memcg);
+ page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
+ memcg_wb_domain_size_changed(memcg);
+}
+
+struct aggregate_control {
+ /* pointer to the aggregated (CPU and subtree aggregated) counters */
+ long *aggregate;
+ /* pointer to the non-hierarchichal (CPU aggregated) counters */
+ long *local;
+ /* pointer to the pending child counters during tree propagation */
+ long *pending;
+ /* pointer to the parent's pending counters, could be NULL */
+ long *ppending;
+ /* pointer to the percpu counters to be aggregated */
+ long *cstat;
+ /* pointer to the percpu counters of the last aggregation*/
+ long *cstat_prev;
+ /* size of the above counters */
+ int size;
+};
- switch (name) {
- case RES_LIMIT:
- if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
- ret = -EINVAL;
- break;
- }
- /* This function does all necessary parse...reuse it */
- ret = res_counter_memparse_write_strategy(buffer, &val);
- if (ret)
- break;
- if (type == _MEM)
- ret = mem_cgroup_resize_limit(memcg, val);
- else if (type == _MEMSWAP)
- ret = mem_cgroup_resize_memsw_limit(memcg, val);
- else if (type == _KMEM)
- ret = memcg_update_kmem_limit(cont, val);
- else
- return -EINVAL;
- break;
- case RES_SOFT_LIMIT:
- ret = res_counter_memparse_write_strategy(buffer, &val);
- if (ret)
- break;
+static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
+{
+ int i;
+ long delta, delta_cpu, v;
+
+ for (i = 0; i < ac->size; i++) {
/*
- * For memsw, soft limits are hard to implement in terms
- * of semantics, for now, we support soft limits for
- * control without swap
+ * Collect the aggregated propagation counts of groups
+ * below us. We're in a per-cpu loop here and this is
+ * a global counter, so the first cycle will get them.
*/
- if (type == _MEM)
- ret = res_counter_set_soft_limit(&memcg->res, val);
- else
- ret = -EINVAL;
- break;
- default:
- ret = -EINVAL; /* should be BUG() ? */
- break;
- }
- return ret;
-}
+ delta = ac->pending[i];
+ if (delta)
+ ac->pending[i] = 0;
+
+ /* Add CPU changes on this level since the last flush */
+ delta_cpu = 0;
+ v = READ_ONCE(ac->cstat[i]);
+ if (v != ac->cstat_prev[i]) {
+ delta_cpu = v - ac->cstat_prev[i];
+ delta += delta_cpu;
+ ac->cstat_prev[i] = v;
+ }
-static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
- unsigned long long *mem_limit, unsigned long long *memsw_limit)
-{
- struct cgroup *cgroup;
- unsigned long long min_limit, min_memsw_limit, tmp;
+ /* Aggregate counts on this level and propagate upwards */
+ if (delta_cpu)
+ ac->local[i] += delta_cpu;
- min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
- min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
- cgroup = memcg->css.cgroup;
- if (!memcg->use_hierarchy)
- goto out;
-
- while (cgroup->parent) {
- cgroup = cgroup->parent;
- memcg = mem_cgroup_from_cont(cgroup);
- if (!memcg->use_hierarchy)
- break;
- tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
- min_limit = min(min_limit, tmp);
- tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
- min_memsw_limit = min(min_memsw_limit, tmp);
+ if (delta) {
+ ac->aggregate[i] += delta;
+ if (ac->ppending)
+ ac->ppending[i] += delta;
+ }
}
-out:
- *mem_limit = min_limit;
- *memsw_limit = min_memsw_limit;
}
-static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
+#ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
+static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
+ int cpu)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
- int name;
- enum res_type type;
+ int nid;
- type = MEMFILE_TYPE(event);
- name = MEMFILE_ATTR(event);
+ if (atomic_read(&memcg->kmem_stat)) {
+ int kmem = atomic_xchg(&memcg->kmem_stat, 0);
+ int index = memcg_stats_index(MEMCG_KMEM);
- switch (name) {
- case RES_MAX_USAGE:
- if (type == _MEM)
- res_counter_reset_max(&memcg->res);
- else if (type == _MEMSWAP)
- res_counter_reset_max(&memcg->memsw);
- else if (type == _KMEM)
- res_counter_reset_max(&memcg->kmem);
- else
- return -EINVAL;
- break;
- case RES_FAILCNT:
- if (type == _MEM)
- res_counter_reset_failcnt(&memcg->res);
- else if (type == _MEMSWAP)
- res_counter_reset_failcnt(&memcg->memsw);
- else if (type == _KMEM)
- res_counter_reset_failcnt(&memcg->kmem);
- else
- return -EINVAL;
- break;
+ memcg->vmstats->state[index] += kmem;
+ if (parent)
+ parent->vmstats->state_pending[index] += kmem;
}
- return 0;
-}
+ for_each_node_state(nid, N_MEMORY) {
+ struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
+ struct lruvec_stats *lstats = pn->lruvec_stats;
+ struct lruvec_stats *plstats = NULL;
-static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
- struct cftype *cft)
-{
- return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
-}
+ if (parent)
+ plstats = parent->nodeinfo[nid]->lruvec_stats;
-#ifdef CONFIG_MMU
-static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
- struct cftype *cft, u64 val)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
+ if (atomic_read(&pn->slab_reclaimable)) {
+ int slab = atomic_xchg(&pn->slab_reclaimable, 0);
+ int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
- if (val >= (1 << NR_MOVE_TYPE))
- return -EINVAL;
+ lstats->state[index] += slab;
+ if (plstats)
+ plstats->state_pending[index] += slab;
+ }
+ if (atomic_read(&pn->slab_unreclaimable)) {
+ int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
+ int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
- /*
- * No kind of locking is needed in here, because ->can_attach() will
- * check this value once in the beginning of the process, and then carry
- * on with stale data. This means that changes to this value will only
- * affect task migrations starting after the change.
- */
- memcg->move_charge_at_immigrate = val;
- return 0;
+ lstats->state[index] += slab;
+ if (plstats)
+ plstats->state_pending[index] += slab;
+ }
+ }
}
#else
-static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
- struct cftype *cft, u64 val)
-{
- return -ENOSYS;
-}
+static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
+ int cpu)
+{}
#endif
-#ifdef CONFIG_NUMA
-static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
- struct seq_file *m)
+static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ struct mem_cgroup *parent = parent_mem_cgroup(memcg);
+ struct memcg_vmstats_percpu *statc;
+ struct aggregate_control ac;
int nid;
- unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
- unsigned long node_nr;
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
- total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
- seq_printf(m, "total=%lu", total_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
- seq_printf(m, " N%d=%lu", nid, node_nr);
- }
- seq_putc(m, '\n');
+ flush_nmi_stats(memcg, parent, cpu);
- file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
- seq_printf(m, "file=%lu", file_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- LRU_ALL_FILE);
- seq_printf(m, " N%d=%lu", nid, node_nr);
- }
- seq_putc(m, '\n');
+ statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
- anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
- seq_printf(m, "anon=%lu", anon_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- LRU_ALL_ANON);
- seq_printf(m, " N%d=%lu", nid, node_nr);
- }
- seq_putc(m, '\n');
+ ac = (struct aggregate_control) {
+ .aggregate = memcg->vmstats->state,
+ .local = memcg->vmstats->state_local,
+ .pending = memcg->vmstats->state_pending,
+ .ppending = parent ? parent->vmstats->state_pending : NULL,
+ .cstat = statc->state,
+ .cstat_prev = statc->state_prev,
+ .size = MEMCG_VMSTAT_SIZE,
+ };
+ mem_cgroup_stat_aggregate(&ac);
+
+ ac = (struct aggregate_control) {
+ .aggregate = memcg->vmstats->events,
+ .local = memcg->vmstats->events_local,
+ .pending = memcg->vmstats->events_pending,
+ .ppending = parent ? parent->vmstats->events_pending : NULL,
+ .cstat = statc->events,
+ .cstat_prev = statc->events_prev,
+ .size = NR_MEMCG_EVENTS,
+ };
+ mem_cgroup_stat_aggregate(&ac);
- unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
- seq_printf(m, "unevictable=%lu", unevictable_nr);
for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- BIT(LRU_UNEVICTABLE));
- seq_printf(m, " N%d=%lu", nid, node_nr);
+ struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
+ struct lruvec_stats *lstats = pn->lruvec_stats;
+ struct lruvec_stats *plstats = NULL;
+ struct lruvec_stats_percpu *lstatc;
+
+ if (parent)
+ plstats = parent->nodeinfo[nid]->lruvec_stats;
+
+ lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
+
+ ac = (struct aggregate_control) {
+ .aggregate = lstats->state,
+ .local = lstats->state_local,
+ .pending = lstats->state_pending,
+ .ppending = plstats ? plstats->state_pending : NULL,
+ .cstat = lstatc->state,
+ .cstat_prev = lstatc->state_prev,
+ .size = NR_MEMCG_NODE_STAT_ITEMS,
+ };
+ mem_cgroup_stat_aggregate(&ac);
+
}
- seq_putc(m, '\n');
- return 0;
+ WRITE_ONCE(statc->stats_updates, 0);
+ /* We are in a per-cpu loop here, only do the atomic write once */
+ if (atomic_read(&memcg->vmstats->stats_updates))
+ atomic_set(&memcg->vmstats->stats_updates, 0);
}
-#endif /* CONFIG_NUMA */
-static inline void mem_cgroup_lru_names_not_uptodate(void)
+static void mem_cgroup_fork(struct task_struct *task)
{
- BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
+ /*
+ * Set the update flag to cause task->objcg to be initialized lazily
+ * on the first allocation. It can be done without any synchronization
+ * because it's always performed on the current task, so does
+ * current_objcg_update().
+ */
+ task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
}
-static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
- struct seq_file *m)
+static void mem_cgroup_exit(struct task_struct *task)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
- struct mem_cgroup *mi;
- unsigned int i;
+ struct obj_cgroup *objcg = task->objcg;
- for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
- if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
- continue;
- seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
- mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
- }
+ objcg = (struct obj_cgroup *)
+ ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
+ obj_cgroup_put(objcg);
- for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
- seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
- mem_cgroup_read_events(memcg, i));
+ /*
+ * Some kernel allocations can happen after this point,
+ * but let's ignore them. It can be done without any synchronization
+ * because it's always performed on the current task, so does
+ * current_objcg_update().
+ */
+ task->objcg = NULL;
+}
- for (i = 0; i < NR_LRU_LISTS; i++)
- seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
- mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
+#ifdef CONFIG_LRU_GEN
+static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
+{
+ struct task_struct *task;
+ struct cgroup_subsys_state *css;
- /* Hierarchical information */
- {
- unsigned long long limit, memsw_limit;
- memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
- seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
- if (do_swap_account)
- seq_printf(m, "hierarchical_memsw_limit %llu\n",
- memsw_limit);
- }
+ /* find the first leader if there is any */
+ cgroup_taskset_for_each_leader(task, css, tset)
+ break;
- for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
- long long val = 0;
+ if (!task)
+ return;
- if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
- continue;
- for_each_mem_cgroup_tree(mi, memcg)
- val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
- seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
- }
+ task_lock(task);
+ if (task->mm && READ_ONCE(task->mm->owner) == task)
+ lru_gen_migrate_mm(task->mm);
+ task_unlock(task);
+}
+#else
+static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
+#endif /* CONFIG_LRU_GEN */
- for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
- unsigned long long val = 0;
+static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
+{
+ struct task_struct *task;
+ struct cgroup_subsys_state *css;
- for_each_mem_cgroup_tree(mi, memcg)
- val += mem_cgroup_read_events(mi, i);
- seq_printf(m, "total_%s %llu\n",
- mem_cgroup_events_names[i], val);
+ cgroup_taskset_for_each(task, css, tset) {
+ /* atomically set the update bit */
+ set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
}
+}
- for (i = 0; i < NR_LRU_LISTS; i++) {
- unsigned long long val = 0;
-
- for_each_mem_cgroup_tree(mi, memcg)
- val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
- seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
- }
+static void mem_cgroup_attach(struct cgroup_taskset *tset)
+{
+ mem_cgroup_lru_gen_attach(tset);
+ mem_cgroup_kmem_attach(tset);
+}
-#ifdef CONFIG_DEBUG_VM
- {
- int nid, zid;
- struct mem_cgroup_per_zone *mz;
- struct zone_reclaim_stat *rstat;
- unsigned long recent_rotated[2] = {0, 0};
- unsigned long recent_scanned[2] = {0, 0};
-
- for_each_online_node(nid)
- for (zid = 0; zid < MAX_NR_ZONES; zid++) {
- mz = mem_cgroup_zoneinfo(memcg, nid, zid);
- rstat = &mz->lruvec.reclaim_stat;
-
- recent_rotated[0] += rstat->recent_rotated[0];
- recent_rotated[1] += rstat->recent_rotated[1];
- recent_scanned[0] += rstat->recent_scanned[0];
- recent_scanned[1] += rstat->recent_scanned[1];
- }
- seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
- seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
- seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
- seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
- }
-#endif
+static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
+{
+ if (value == PAGE_COUNTER_MAX)
+ seq_puts(m, "max\n");
+ else
+ seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
return 0;
}
-static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
+static u64 memory_current_read(struct cgroup_subsys_state *css,
+ struct cftype *cft)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- return mem_cgroup_swappiness(memcg);
+ return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
}
-static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
- u64 val)
-{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
- struct mem_cgroup *parent;
+#define OFP_PEAK_UNSET (((-1UL)))
- if (val > 100)
- return -EINVAL;
-
- if (cgrp->parent == NULL)
- return -EINVAL;
+static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
+{
+ struct cgroup_of_peak *ofp = of_peak(sf->private);
+ u64 fd_peak = READ_ONCE(ofp->value), peak;
- parent = mem_cgroup_from_cont(cgrp->parent);
+ /* User wants global or local peak? */
+ if (fd_peak == OFP_PEAK_UNSET)
+ peak = pc->watermark;
+ else
+ peak = max(fd_peak, READ_ONCE(pc->local_watermark));
- mutex_lock(&memcg_create_mutex);
+ seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
+ return 0;
+}
- /* If under hierarchy, only empty-root can set this value */
- if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
- mutex_unlock(&memcg_create_mutex);
- return -EINVAL;
- }
+static int memory_peak_show(struct seq_file *sf, void *v)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
- memcg->swappiness = val;
+ return peak_show(sf, v, &memcg->memory);
+}
- mutex_unlock(&memcg_create_mutex);
+static int peak_open(struct kernfs_open_file *of)
+{
+ struct cgroup_of_peak *ofp = of_peak(of);
+ ofp->value = OFP_PEAK_UNSET;
return 0;
}
-static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
+static void peak_release(struct kernfs_open_file *of)
{
- struct mem_cgroup_threshold_ary *t;
- u64 usage;
- int i;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ struct cgroup_of_peak *ofp = of_peak(of);
- rcu_read_lock();
- if (!swap)
- t = rcu_dereference(memcg->thresholds.primary);
- else
- t = rcu_dereference(memcg->memsw_thresholds.primary);
+ if (ofp->value == OFP_PEAK_UNSET) {
+ /* fast path (no writes on this fd) */
+ return;
+ }
+ spin_lock(&memcg->peaks_lock);
+ list_del(&ofp->list);
+ spin_unlock(&memcg->peaks_lock);
+}
- if (!t)
- goto unlock;
+static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
+ loff_t off, struct page_counter *pc,
+ struct list_head *watchers)
+{
+ unsigned long usage;
+ struct cgroup_of_peak *peer_ctx;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ struct cgroup_of_peak *ofp = of_peak(of);
- usage = mem_cgroup_usage(memcg, swap);
+ spin_lock(&memcg->peaks_lock);
- /*
- * current_threshold points to threshold just below or equal to usage.
- * If it's not true, a threshold was crossed after last
- * call of __mem_cgroup_threshold().
- */
- i = t->current_threshold;
+ usage = page_counter_read(pc);
+ WRITE_ONCE(pc->local_watermark, usage);
- /*
- * Iterate backward over array of thresholds starting from
- * current_threshold and check if a threshold is crossed.
- * If none of thresholds below usage is crossed, we read
- * only one element of the array here.
- */
- for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
- eventfd_signal(t->entries[i].eventfd, 1);
+ list_for_each_entry(peer_ctx, watchers, list)
+ if (usage > peer_ctx->value)
+ WRITE_ONCE(peer_ctx->value, usage);
- /* i = current_threshold + 1 */
- i++;
+ /* initial write, register watcher */
+ if (ofp->value == OFP_PEAK_UNSET)
+ list_add(&ofp->list, watchers);
- /*
- * Iterate forward over array of thresholds starting from
- * current_threshold+1 and check if a threshold is crossed.
- * If none of thresholds above usage is crossed, we read
- * only one element of the array here.
- */
- for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
- eventfd_signal(t->entries[i].eventfd, 1);
+ WRITE_ONCE(ofp->value, usage);
+ spin_unlock(&memcg->peaks_lock);
- /* Update current_threshold */
- t->current_threshold = i - 1;
-unlock:
- rcu_read_unlock();
+ return nbytes;
}
-static void mem_cgroup_threshold(struct mem_cgroup *memcg)
+static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
{
- while (memcg) {
- __mem_cgroup_threshold(memcg, false);
- if (do_swap_account)
- __mem_cgroup_threshold(memcg, true);
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- memcg = parent_mem_cgroup(memcg);
- }
+ return peak_write(of, buf, nbytes, off, &memcg->memory,
+ &memcg->memory_peaks);
}
-static int compare_thresholds(const void *a, const void *b)
-{
- const struct mem_cgroup_threshold *_a = a;
- const struct mem_cgroup_threshold *_b = b;
+#undef OFP_PEAK_UNSET
- return _a->threshold - _b->threshold;
+static int memory_min_show(struct seq_file *m, void *v)
+{
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
}
-static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
+static ssize_t memory_min_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
{
- struct mem_cgroup_eventfd_list *ev;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ unsigned long min;
+ int err;
- list_for_each_entry(ev, &memcg->oom_notify, list)
- eventfd_signal(ev->eventfd, 1);
- return 0;
-}
+ buf = strstrip(buf);
+ err = page_counter_memparse(buf, "max", &min);
+ if (err)
+ return err;
-static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
-{
- struct mem_cgroup *iter;
+ page_counter_set_min(&memcg->memory, min);
- for_each_mem_cgroup_tree(iter, memcg)
- mem_cgroup_oom_notify_cb(iter);
+ return nbytes;
}
-static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
- struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
+static int memory_low_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
- struct mem_cgroup_thresholds *thresholds;
- struct mem_cgroup_threshold_ary *new;
- enum res_type type = MEMFILE_TYPE(cft->private);
- u64 threshold, usage;
- int i, size, ret;
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
+}
- ret = res_counter_memparse_write_strategy(args, &threshold);
- if (ret)
- return ret;
+static ssize_t memory_low_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ unsigned long low;
+ int err;
- mutex_lock(&memcg->thresholds_lock);
+ buf = strstrip(buf);
+ err = page_counter_memparse(buf, "max", &low);
+ if (err)
+ return err;
- if (type == _MEM)
- thresholds = &memcg->thresholds;
- else if (type == _MEMSWAP)
- thresholds = &memcg->memsw_thresholds;
- else
- BUG();
+ page_counter_set_low(&memcg->memory, low);
- usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
+ return nbytes;
+}
- /* Check if a threshold crossed before adding a new one */
- if (thresholds->primary)
- __mem_cgroup_threshold(memcg, type == _MEMSWAP);
+static int memory_high_show(struct seq_file *m, void *v)
+{
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
+}
- size = thresholds->primary ? thresholds->primary->size + 1 : 1;
+static ssize_t memory_high_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ unsigned int nr_retries = MAX_RECLAIM_RETRIES;
+ bool drained = false;
+ unsigned long high;
+ int err;
- /* Allocate memory for new array of thresholds */
- new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
- GFP_KERNEL);
- if (!new) {
- ret = -ENOMEM;
- goto unlock;
- }
- new->size = size;
+ buf = strstrip(buf);
+ err = page_counter_memparse(buf, "max", &high);
+ if (err)
+ return err;
- /* Copy thresholds (if any) to new array */
- if (thresholds->primary) {
- memcpy(new->entries, thresholds->primary->entries, (size - 1) *
- sizeof(struct mem_cgroup_threshold));
- }
+ page_counter_set_high(&memcg->memory, high);
- /* Add new threshold */
- new->entries[size - 1].eventfd = eventfd;
- new->entries[size - 1].threshold = threshold;
+ if (of->file->f_flags & O_NONBLOCK)
+ goto out;
- /* Sort thresholds. Registering of new threshold isn't time-critical */
- sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
- compare_thresholds, NULL);
+ for (;;) {
+ unsigned long nr_pages = page_counter_read(&memcg->memory);
+ unsigned long reclaimed;
- /* Find current threshold */
- new->current_threshold = -1;
- for (i = 0; i < size; i++) {
- if (new->entries[i].threshold <= usage) {
- /*
- * new->current_threshold will not be used until
- * rcu_assign_pointer(), so it's safe to increment
- * it here.
- */
- ++new->current_threshold;
- } else
+ if (nr_pages <= high)
break;
- }
- /* Free old spare buffer and save old primary buffer as spare */
- kfree(thresholds->spare);
- thresholds->spare = thresholds->primary;
-
- rcu_assign_pointer(thresholds->primary, new);
+ if (signal_pending(current))
+ break;
- /* To be sure that nobody uses thresholds */
- synchronize_rcu();
+ if (!drained) {
+ drain_all_stock(memcg);
+ drained = true;
+ continue;
+ }
-unlock:
- mutex_unlock(&memcg->thresholds_lock);
+ reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
+ GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
- return ret;
+ if (!reclaimed && !nr_retries--)
+ break;
+ }
+out:
+ memcg_wb_domain_size_changed(memcg);
+ return nbytes;
}
-static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
- struct cftype *cft, struct eventfd_ctx *eventfd)
+static int memory_max_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
- struct mem_cgroup_thresholds *thresholds;
- struct mem_cgroup_threshold_ary *new;
- enum res_type type = MEMFILE_TYPE(cft->private);
- u64 usage;
- int i, j, size;
-
- mutex_lock(&memcg->thresholds_lock);
- if (type == _MEM)
- thresholds = &memcg->thresholds;
- else if (type == _MEMSWAP)
- thresholds = &memcg->memsw_thresholds;
- else
- BUG();
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
+}
- if (!thresholds->primary)
- goto unlock;
+static ssize_t memory_max_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
+ bool drained = false;
+ unsigned long max;
+ int err;
- usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
+ buf = strstrip(buf);
+ err = page_counter_memparse(buf, "max", &max);
+ if (err)
+ return err;
- /* Check if a threshold crossed before removing */
- __mem_cgroup_threshold(memcg, type == _MEMSWAP);
+ xchg(&memcg->memory.max, max);
- /* Calculate new number of threshold */
- size = 0;
- for (i = 0; i < thresholds->primary->size; i++) {
- if (thresholds->primary->entries[i].eventfd != eventfd)
- size++;
- }
+ if (of->file->f_flags & O_NONBLOCK)
+ goto out;
- new = thresholds->spare;
+ for (;;) {
+ unsigned long nr_pages = page_counter_read(&memcg->memory);
- /* Set thresholds array to NULL if we don't have thresholds */
- if (!size) {
- kfree(new);
- new = NULL;
- goto swap_buffers;
- }
+ if (nr_pages <= max)
+ break;
- new->size = size;
+ if (signal_pending(current))
+ break;
- /* Copy thresholds and find current threshold */
- new->current_threshold = -1;
- for (i = 0, j = 0; i < thresholds->primary->size; i++) {
- if (thresholds->primary->entries[i].eventfd == eventfd)
+ if (!drained) {
+ drain_all_stock(memcg);
+ drained = true;
continue;
+ }
- new->entries[j] = thresholds->primary->entries[i];
- if (new->entries[j].threshold <= usage) {
- /*
- * new->current_threshold will not be used
- * until rcu_assign_pointer(), so it's safe to increment
- * it here.
- */
- ++new->current_threshold;
+ if (nr_reclaims) {
+ if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
+ GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
+ nr_reclaims--;
+ continue;
}
- j++;
- }
-swap_buffers:
- /* Swap primary and spare array */
- thresholds->spare = thresholds->primary;
- /* If all events are unregistered, free the spare array */
- if (!new) {
- kfree(thresholds->spare);
- thresholds->spare = NULL;
+ memcg_memory_event(memcg, MEMCG_OOM);
+ if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
+ break;
+ cond_resched();
}
+out:
+ memcg_wb_domain_size_changed(memcg);
+ return nbytes;
+}
- rcu_assign_pointer(thresholds->primary, new);
-
- /* To be sure that nobody uses thresholds */
- synchronize_rcu();
-unlock:
- mutex_unlock(&memcg->thresholds_lock);
+/*
+ * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
+ * if any new events become available.
+ */
+static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
+{
+ seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
+ seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
+ seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
+ seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
+ seq_printf(m, "oom_kill %lu\n",
+ atomic_long_read(&events[MEMCG_OOM_KILL]));
+ seq_printf(m, "oom_group_kill %lu\n",
+ atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
+ seq_printf(m, "sock_throttled %lu\n",
+ atomic_long_read(&events[MEMCG_SOCK_THROTTLED]));
}
-static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
- struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
+static int memory_events_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
- struct mem_cgroup_eventfd_list *event;
- enum res_type type = MEMFILE_TYPE(cft->private);
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
- BUG_ON(type != _OOM_TYPE);
- event = kmalloc(sizeof(*event), GFP_KERNEL);
- if (!event)
- return -ENOMEM;
+ __memory_events_show(m, memcg->memory_events);
+ return 0;
+}
- spin_lock(&memcg_oom_lock);
+static int memory_events_local_show(struct seq_file *m, void *v)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
- event->eventfd = eventfd;
- list_add(&event->list, &memcg->oom_notify);
+ __memory_events_show(m, memcg->memory_events_local);
+ return 0;
+}
- /* already in OOM ? */
- if (atomic_read(&memcg->under_oom))
- eventfd_signal(eventfd, 1);
- spin_unlock(&memcg_oom_lock);
+int memory_stat_show(struct seq_file *m, void *v)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
+ char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
+ struct seq_buf s;
+ if (!buf)
+ return -ENOMEM;
+ seq_buf_init(&s, buf, SEQ_BUF_SIZE);
+ memory_stat_format(memcg, &s);
+ seq_puts(m, buf);
+ kfree(buf);
return 0;
}
-static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
- struct cftype *cft, struct eventfd_ctx *eventfd)
+#ifdef CONFIG_NUMA
+static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
+ int item)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
- struct mem_cgroup_eventfd_list *ev, *tmp;
- enum res_type type = MEMFILE_TYPE(cft->private);
+ return lruvec_page_state(lruvec, item) *
+ memcg_page_state_output_unit(item);
+}
+
+static int memory_numa_stat_show(struct seq_file *m, void *v)
+{
+ int i;
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
+
+ mem_cgroup_flush_stats(memcg);
- BUG_ON(type != _OOM_TYPE);
+ for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
+ int nid;
- spin_lock(&memcg_oom_lock);
+ if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
+ continue;
+
+ seq_printf(m, "%s", memory_stats[i].name);
+ for_each_node_state(nid, N_MEMORY) {
+ u64 size;
+ struct lruvec *lruvec;
- list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
- if (ev->eventfd == eventfd) {
- list_del(&ev->list);
- kfree(ev);
+ lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
+ size = lruvec_page_state_output(lruvec,
+ memory_stats[i].idx);
+ seq_printf(m, " N%d=%llu", nid, size);
}
+ seq_putc(m, '\n');
}
- spin_unlock(&memcg_oom_lock);
+ return 0;
}
+#endif
-static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
- struct cftype *cft, struct cgroup_map_cb *cb)
+static int memory_oom_group_show(struct seq_file *m, void *v)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
- cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
+ seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
- if (atomic_read(&memcg->under_oom))
- cb->fill(cb, "under_oom", 1);
- else
- cb->fill(cb, "under_oom", 0);
return 0;
}
-static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
- struct cftype *cft, u64 val)
+static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
- struct mem_cgroup *parent;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ int ret, oom_group;
- /* cannot set to root cgroup and only 0 and 1 are allowed */
- if (!cgrp->parent || !((val == 0) || (val == 1)))
+ buf = strstrip(buf);
+ if (!buf)
return -EINVAL;
- parent = mem_cgroup_from_cont(cgrp->parent);
+ ret = kstrtoint(buf, 0, &oom_group);
+ if (ret)
+ return ret;
- mutex_lock(&memcg_create_mutex);
- /* oom-kill-disable is a flag for subhierarchy. */
- if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
- mutex_unlock(&memcg_create_mutex);
+ if (oom_group != 0 && oom_group != 1)
return -EINVAL;
- }
- memcg->oom_kill_disable = val;
- if (!val)
- memcg_oom_recover(memcg);
- mutex_unlock(&memcg_create_mutex);
- return 0;
+
+ WRITE_ONCE(memcg->oom_group, oom_group);
+
+ return nbytes;
}
-#ifdef CONFIG_MEMCG_KMEM
-static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
+static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
int ret;
- memcg->kmemcg_id = -1;
- ret = memcg_propagate_kmem(memcg);
+ ret = user_proactive_reclaim(buf, memcg, NULL);
if (ret)
return ret;
- return mem_cgroup_sockets_init(memcg, ss);
+ return nbytes;
}
-static void memcg_destroy_kmem(struct mem_cgroup *memcg)
-{
- mem_cgroup_sockets_destroy(memcg);
-}
-
-static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
-{
- if (!memcg_kmem_is_active(memcg))
- return;
-
- /*
- * kmem charges can outlive the cgroup. In the case of slab
- * pages, for instance, a page contain objects from various
- * processes. As we prevent from taking a reference for every
- * such allocation we have to be careful when doing uncharge
- * (see memcg_uncharge_kmem) and here during offlining.
- *
- * The idea is that that only the _last_ uncharge which sees
- * the dead memcg will drop the last reference. An additional
- * reference is taken here before the group is marked dead
- * which is then paired with css_put during uncharge resp. here.
- *
- * Although this might sound strange as this path is called from
- * css_offline() when the referencemight have dropped down to 0
- * and shouldn't be incremented anymore (css_tryget would fail)
- * we do not have other options because of the kmem allocations
- * lifetime.
- */
- css_get(&memcg->css);
-
- memcg_kmem_mark_dead(memcg);
-
- if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
- return;
-
- if (memcg_kmem_test_and_clear_dead(memcg))
- css_put(&memcg->css);
-}
-#else
-static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
-{
- return 0;
-}
-
-static void memcg_destroy_kmem(struct mem_cgroup *memcg)
-{
-}
-
-static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
-{
-}
-#endif
-
-static struct cftype mem_cgroup_files[] = {
- {
- .name = "usage_in_bytes",
- .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
- .read = mem_cgroup_read,
- .register_event = mem_cgroup_usage_register_event,
- .unregister_event = mem_cgroup_usage_unregister_event,
- },
- {
- .name = "max_usage_in_bytes",
- .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
- .trigger = mem_cgroup_reset,
- .read = mem_cgroup_read,
- },
+static struct cftype memory_files[] = {
{
- .name = "limit_in_bytes",
- .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
- .write_string = mem_cgroup_write,
- .read = mem_cgroup_read,
+ .name = "current",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .read_u64 = memory_current_read,
},
{
- .name = "soft_limit_in_bytes",
- .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
- .write_string = mem_cgroup_write,
- .read = mem_cgroup_read,
+ .name = "peak",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .open = peak_open,
+ .release = peak_release,
+ .seq_show = memory_peak_show,
+ .write = memory_peak_write,
},
{
- .name = "failcnt",
- .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
- .trigger = mem_cgroup_reset,
- .read = mem_cgroup_read,
+ .name = "min",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .seq_show = memory_min_show,
+ .write = memory_min_write,
},
{
- .name = "stat",
- .read_seq_string = memcg_stat_show,
- },
- {
- .name = "force_empty",
- .trigger = mem_cgroup_force_empty_write,
+ .name = "low",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .seq_show = memory_low_show,
+ .write = memory_low_write,
},
{
- .name = "use_hierarchy",
- .flags = CFTYPE_INSANE,
- .write_u64 = mem_cgroup_hierarchy_write,
- .read_u64 = mem_cgroup_hierarchy_read,
+ .name = "high",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .seq_show = memory_high_show,
+ .write = memory_high_write,
},
{
- .name = "swappiness",
- .read_u64 = mem_cgroup_swappiness_read,
- .write_u64 = mem_cgroup_swappiness_write,
+ .name = "max",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .seq_show = memory_max_show,
+ .write = memory_max_write,
},
{
- .name = "move_charge_at_immigrate",
- .read_u64 = mem_cgroup_move_charge_read,
- .write_u64 = mem_cgroup_move_charge_write,
+ .name = "events",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .file_offset = offsetof(struct mem_cgroup, events_file),
+ .seq_show = memory_events_show,
},
{
- .name = "oom_control",
- .read_map = mem_cgroup_oom_control_read,
- .write_u64 = mem_cgroup_oom_control_write,
- .register_event = mem_cgroup_oom_register_event,
- .unregister_event = mem_cgroup_oom_unregister_event,
- .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
+ .name = "events.local",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .file_offset = offsetof(struct mem_cgroup, events_local_file),
+ .seq_show = memory_events_local_show,
},
{
- .name = "pressure_level",
- .register_event = vmpressure_register_event,
- .unregister_event = vmpressure_unregister_event,
+ .name = "stat",
+ .seq_show = memory_stat_show,
},
#ifdef CONFIG_NUMA
{
.name = "numa_stat",
- .read_seq_string = memcg_numa_stat_show,
+ .seq_show = memory_numa_stat_show,
},
#endif
-#ifdef CONFIG_MEMCG_KMEM
- {
- .name = "kmem.limit_in_bytes",
- .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
- .write_string = mem_cgroup_write,
- .read = mem_cgroup_read,
- },
{
- .name = "kmem.usage_in_bytes",
- .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
- .read = mem_cgroup_read,
+ .name = "oom.group",
+ .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
+ .seq_show = memory_oom_group_show,
+ .write = memory_oom_group_write,
},
{
- .name = "kmem.failcnt",
- .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
- .trigger = mem_cgroup_reset,
- .read = mem_cgroup_read,
+ .name = "reclaim",
+ .flags = CFTYPE_NS_DELEGATABLE,
+ .write = memory_reclaim,
},
- {
- .name = "kmem.max_usage_in_bytes",
- .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
- .trigger = mem_cgroup_reset,
- .read = mem_cgroup_read,
- },
-#ifdef CONFIG_SLABINFO
- {
- .name = "kmem.slabinfo",
- .read_seq_string = mem_cgroup_slabinfo_read,
- },
-#endif
-#endif
- { }, /* terminate */
+ { } /* terminate */
};
-#ifdef CONFIG_MEMCG_SWAP
-static struct cftype memsw_cgroup_files[] = {
- {
- .name = "memsw.usage_in_bytes",
- .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
- .read = mem_cgroup_read,
- .register_event = mem_cgroup_usage_register_event,
- .unregister_event = mem_cgroup_usage_unregister_event,
- },
- {
- .name = "memsw.max_usage_in_bytes",
- .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
- .trigger = mem_cgroup_reset,
- .read = mem_cgroup_read,
- },
- {
- .name = "memsw.limit_in_bytes",
- .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
- .write_string = mem_cgroup_write,
- .read = mem_cgroup_read,
- },
- {
- .name = "memsw.failcnt",
- .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
- .trigger = mem_cgroup_reset,
- .read = mem_cgroup_read,
- },
- { }, /* terminate */
-};
+struct cgroup_subsys memory_cgrp_subsys = {
+ .css_alloc = mem_cgroup_css_alloc,
+ .css_online = mem_cgroup_css_online,
+ .css_offline = mem_cgroup_css_offline,
+ .css_released = mem_cgroup_css_released,
+ .css_free = mem_cgroup_css_free,
+ .css_reset = mem_cgroup_css_reset,
+ .css_rstat_flush = mem_cgroup_css_rstat_flush,
+ .attach = mem_cgroup_attach,
+ .fork = mem_cgroup_fork,
+ .exit = mem_cgroup_exit,
+ .dfl_cftypes = memory_files,
+#ifdef CONFIG_MEMCG_V1
+ .legacy_cftypes = mem_cgroup_legacy_files,
#endif
-static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
+ .early_init = 0,
+};
+
+/**
+ * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
+ * @root: the top ancestor of the sub-tree being checked
+ * @memcg: the memory cgroup to check
+ *
+ * WARNING: This function is not stateless! It can only be used as part
+ * of a top-down tree iteration, not for isolated queries.
+ */
+void mem_cgroup_calculate_protection(struct mem_cgroup *root,
+ struct mem_cgroup *memcg)
{
- struct mem_cgroup_per_node *pn;
- struct mem_cgroup_per_zone *mz;
- int zone, tmp = node;
- /*
- * This routine is called against possible nodes.
- * But it's BUG to call kmalloc() against offline node.
- *
- * TODO: this routine can waste much memory for nodes which will
- * never be onlined. It's better to use memory hotplug callback
- * function.
- */
- if (!node_state(node, N_NORMAL_MEMORY))
- tmp = -1;
- pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
- if (!pn)
- return 1;
+ bool recursive_protection =
+ cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
- for (zone = 0; zone < MAX_NR_ZONES; zone++) {
- mz = &pn->zoneinfo[zone];
- lruvec_init(&mz->lruvec);
- mz->usage_in_excess = 0;
- mz->on_tree = false;
- mz->memcg = memcg;
- }
- memcg->nodeinfo[node] = pn;
- return 0;
+ if (mem_cgroup_disabled())
+ return;
+
+ if (!root)
+ root = root_mem_cgroup;
+
+ page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
}
-static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
+static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
+ gfp_t gfp)
{
- kfree(memcg->nodeinfo[node]);
+ int ret;
+
+ ret = try_charge(memcg, gfp, folio_nr_pages(folio));
+ if (ret)
+ goto out;
+
+ css_get(&memcg->css);
+ commit_charge(folio, memcg);
+ memcg1_commit_charge(folio, memcg);
+out:
+ return ret;
}
-static struct mem_cgroup *mem_cgroup_alloc(void)
+int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
{
struct mem_cgroup *memcg;
- size_t size = memcg_size();
+ int ret;
- /* Can be very big if nr_node_ids is very big */
- if (size < PAGE_SIZE)
- memcg = kzalloc(size, GFP_KERNEL);
- else
- memcg = vzalloc(size);
+ memcg = get_mem_cgroup_from_mm(mm);
+ ret = charge_memcg(folio, memcg, gfp);
+ css_put(&memcg->css);
- if (!memcg)
- return NULL;
+ return ret;
+}
- memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
- if (!memcg->stat)
- goto out_free;
- spin_lock_init(&memcg->pcp_counter_lock);
- return memcg;
+/**
+ * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
+ * @folio: folio being charged
+ * @gfp: reclaim mode
+ *
+ * This function is called when allocating a huge page folio, after the page has
+ * already been obtained and charged to the appropriate hugetlb cgroup
+ * controller (if it is enabled).
+ *
+ * Returns ENOMEM if the memcg is already full.
+ * Returns 0 if either the charge was successful, or if we skip the charging.
+ */
+int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
+{
+ struct mem_cgroup *memcg = get_mem_cgroup_from_current();
+ int ret = 0;
-out_free:
- if (size < PAGE_SIZE)
- kfree(memcg);
- else
- vfree(memcg);
- return NULL;
+ /*
+ * Even memcg does not account for hugetlb, we still want to update
+ * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
+ * charging the memcg.
+ */
+ if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
+ !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ goto out;
+
+ if (charge_memcg(folio, memcg, gfp))
+ ret = -ENOMEM;
+
+out:
+ mem_cgroup_put(memcg);
+ return ret;
}
-/*
- * At destroying mem_cgroup, references from swap_cgroup can remain.
- * (scanning all at force_empty is too costly...)
+/**
+ * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
+ * @folio: folio to charge.
+ * @mm: mm context of the victim
+ * @gfp: reclaim mode
+ * @entry: swap entry for which the folio is allocated
*
- * Instead of clearing all references at force_empty, we remember
- * the number of reference from swap_cgroup and free mem_cgroup when
- * it goes down to 0.
+ * This function charges a folio allocated for swapin. Please call this before
+ * adding the folio to the swapcache.
*
- * Removal of cgroup itself succeeds regardless of refs from swap.
+ * Returns 0 on success. Otherwise, an error code is returned.
*/
-
-static void __mem_cgroup_free(struct mem_cgroup *memcg)
+int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
+ gfp_t gfp, swp_entry_t entry)
{
- int node;
- size_t size = memcg_size();
+ struct mem_cgroup *memcg;
+ unsigned short id;
+ int ret;
- mem_cgroup_remove_from_trees(memcg);
- free_css_id(&mem_cgroup_subsys, &memcg->css);
+ if (mem_cgroup_disabled())
+ return 0;
- for_each_node(node)
- free_mem_cgroup_per_zone_info(memcg, node);
+ id = lookup_swap_cgroup_id(entry);
+ rcu_read_lock();
+ memcg = mem_cgroup_from_id(id);
+ if (!memcg || !css_tryget_online(&memcg->css))
+ memcg = get_mem_cgroup_from_mm(mm);
+ rcu_read_unlock();
- free_percpu(memcg->stat);
+ ret = charge_memcg(folio, memcg, gfp);
- /*
- * We need to make sure that (at least for now), the jump label
- * destruction code runs outside of the cgroup lock. This is because
- * get_online_cpus(), which is called from the static_branch update,
- * can't be called inside the cgroup_lock. cpusets are the ones
- * enforcing this dependency, so if they ever change, we might as well.
- *
- * schedule_work() will guarantee this happens. Be careful if you need
- * to move this code around, and make sure it is outside
- * the cgroup_lock.
- */
- disarm_static_keys(memcg);
- if (size < PAGE_SIZE)
- kfree(memcg);
- else
- vfree(memcg);
+ css_put(&memcg->css);
+ return ret;
}
-/*
- * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
- */
-struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
+struct uncharge_gather {
+ struct mem_cgroup *memcg;
+ unsigned long nr_memory;
+ unsigned long pgpgout;
+ unsigned long nr_kmem;
+ int nid;
+};
+
+static inline void uncharge_gather_clear(struct uncharge_gather *ug)
{
- if (!memcg->res.parent)
- return NULL;
- return mem_cgroup_from_res_counter(memcg->res.parent, res);
+ memset(ug, 0, sizeof(*ug));
}
-EXPORT_SYMBOL(parent_mem_cgroup);
-static void __init mem_cgroup_soft_limit_tree_init(void)
+static void uncharge_batch(const struct uncharge_gather *ug)
{
- struct mem_cgroup_tree_per_node *rtpn;
- struct mem_cgroup_tree_per_zone *rtpz;
- int tmp, node, zone;
-
- for_each_node(node) {
- tmp = node;
- if (!node_state(node, N_NORMAL_MEMORY))
- tmp = -1;
- rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
- BUG_ON(!rtpn);
-
- soft_limit_tree.rb_tree_per_node[node] = rtpn;
-
- for (zone = 0; zone < MAX_NR_ZONES; zone++) {
- rtpz = &rtpn->rb_tree_per_zone[zone];
- rtpz->rb_root = RB_ROOT;
- spin_lock_init(&rtpz->lock);
+ if (ug->nr_memory) {
+ memcg_uncharge(ug->memcg, ug->nr_memory);
+ if (ug->nr_kmem) {
+ mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
+ memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
}
+ memcg1_oom_recover(ug->memcg);
}
+
+ memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
+
+ /* drop reference from uncharge_folio */
+ css_put(&ug->memcg->css);
}
-static struct cgroup_subsys_state * __ref
-mem_cgroup_css_alloc(struct cgroup *cont)
+static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
{
+ long nr_pages;
struct mem_cgroup *memcg;
- long error = -ENOMEM;
- int node;
+ struct obj_cgroup *objcg;
+
+ VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
+
+ /*
+ * Nobody should be changing or seriously looking at
+ * folio memcg or objcg at this point, we have fully
+ * exclusive access to the folio.
+ */
+ if (folio_memcg_kmem(folio)) {
+ objcg = __folio_objcg(folio);
+ /*
+ * This get matches the put at the end of the function and
+ * kmem pages do not hold memcg references anymore.
+ */
+ memcg = get_mem_cgroup_from_objcg(objcg);
+ } else {
+ memcg = __folio_memcg(folio);
+ }
- memcg = mem_cgroup_alloc();
if (!memcg)
- return ERR_PTR(error);
+ return;
- for_each_node(node)
- if (alloc_mem_cgroup_per_zone_info(memcg, node))
- goto free_out;
+ if (ug->memcg != memcg) {
+ if (ug->memcg) {
+ uncharge_batch(ug);
+ uncharge_gather_clear(ug);
+ }
+ ug->memcg = memcg;
+ ug->nid = folio_nid(folio);
- /* root ? */
- if (cont->parent == NULL) {
- root_mem_cgroup = memcg;
- res_counter_init(&memcg->res, NULL);
- res_counter_init(&memcg->memsw, NULL);
- res_counter_init(&memcg->kmem, NULL);
+ /* pairs with css_put in uncharge_batch */
+ css_get(&memcg->css);
}
- memcg->last_scanned_node = MAX_NUMNODES;
- INIT_LIST_HEAD(&memcg->oom_notify);
- memcg->move_charge_at_immigrate = 0;
- mutex_init(&memcg->thresholds_lock);
- spin_lock_init(&memcg->move_lock);
- vmpressure_init(&memcg->vmpressure);
+ nr_pages = folio_nr_pages(folio);
- return &memcg->css;
+ if (folio_memcg_kmem(folio)) {
+ ug->nr_memory += nr_pages;
+ ug->nr_kmem += nr_pages;
-free_out:
- __mem_cgroup_free(memcg);
- return ERR_PTR(error);
+ folio->memcg_data = 0;
+ obj_cgroup_put(objcg);
+ } else {
+ /* LRU pages aren't accounted at the root level */
+ if (!mem_cgroup_is_root(memcg))
+ ug->nr_memory += nr_pages;
+ ug->pgpgout++;
+
+ WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
+ folio->memcg_data = 0;
+ }
+
+ css_put(&memcg->css);
}
-static int
-mem_cgroup_css_online(struct cgroup *cont)
+void __mem_cgroup_uncharge(struct folio *folio)
{
- struct mem_cgroup *memcg, *parent;
- int error = 0;
+ struct uncharge_gather ug;
- if (!cont->parent)
- return 0;
+ /* Don't touch folio->lru of any random page, pre-check: */
+ if (!folio_memcg_charged(folio))
+ return;
- mutex_lock(&memcg_create_mutex);
- memcg = mem_cgroup_from_cont(cont);
- parent = mem_cgroup_from_cont(cont->parent);
+ uncharge_gather_clear(&ug);
+ uncharge_folio(folio, &ug);
+ uncharge_batch(&ug);
+}
- memcg->use_hierarchy = parent->use_hierarchy;
- memcg->oom_kill_disable = parent->oom_kill_disable;
- memcg->swappiness = mem_cgroup_swappiness(parent);
+void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
+{
+ struct uncharge_gather ug;
+ unsigned int i;
- if (parent->use_hierarchy) {
- res_counter_init(&memcg->res, &parent->res);
- res_counter_init(&memcg->memsw, &parent->memsw);
- res_counter_init(&memcg->kmem, &parent->kmem);
+ uncharge_gather_clear(&ug);
+ for (i = 0; i < folios->nr; i++)
+ uncharge_folio(folios->folios[i], &ug);
+ if (ug.memcg)
+ uncharge_batch(&ug);
+}
- /*
- * No need to take a reference to the parent because cgroup
- * core guarantees its existence.
- */
- } else {
- res_counter_init(&memcg->res, NULL);
- res_counter_init(&memcg->memsw, NULL);
- res_counter_init(&memcg->kmem, NULL);
- /*
- * Deeper hierachy with use_hierarchy == false doesn't make
- * much sense so let cgroup subsystem know about this
- * unfortunate state in our controller.
- */
- if (parent != root_mem_cgroup)
- mem_cgroup_subsys.broken_hierarchy = true;
+/**
+ * mem_cgroup_replace_folio - Charge a folio's replacement.
+ * @old: Currently circulating folio.
+ * @new: Replacement folio.
+ *
+ * Charge @new as a replacement folio for @old. @old will
+ * be uncharged upon free.
+ *
+ * Both folios must be locked, @new->mapping must be set up.
+ */
+void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
+{
+ struct mem_cgroup *memcg;
+ long nr_pages = folio_nr_pages(new);
+
+ VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
+ VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
+ VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
+ VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
+
+ if (mem_cgroup_disabled())
+ return;
+
+ /* Page cache replacement: new folio already charged? */
+ if (folio_memcg_charged(new))
+ return;
+
+ memcg = folio_memcg(old);
+ VM_WARN_ON_ONCE_FOLIO(!memcg, old);
+ if (!memcg)
+ return;
+
+ /* Force-charge the new page. The old one will be freed soon */
+ if (!mem_cgroup_is_root(memcg)) {
+ page_counter_charge(&memcg->memory, nr_pages);
+ if (do_memsw_account())
+ page_counter_charge(&memcg->memsw, nr_pages);
}
- error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
- mutex_unlock(&memcg_create_mutex);
- return error;
+ css_get(&memcg->css);
+ commit_charge(new, memcg);
+ memcg1_commit_charge(new, memcg);
}
-/*
- * Announce all parents that a group from their hierarchy is gone.
+/**
+ * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
+ * @old: Currently circulating folio.
+ * @new: Replacement folio.
+ *
+ * Transfer the memcg data from the old folio to the new folio for migration.
+ * The old folio's data info will be cleared. Note that the memory counters
+ * will remain unchanged throughout the process.
+ *
+ * Both folios must be locked, @new->mapping must be set up.
*/
-static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
+void mem_cgroup_migrate(struct folio *old, struct folio *new)
{
- struct mem_cgroup *parent = memcg;
+ struct mem_cgroup *memcg;
+
+ VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
+ VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
+ VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
+ VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
+ VM_BUG_ON_FOLIO(folio_test_lru(old), old);
- while ((parent = parent_mem_cgroup(parent)))
- mem_cgroup_iter_invalidate(parent);
+ if (mem_cgroup_disabled())
+ return;
+ memcg = folio_memcg(old);
/*
- * if the root memcg is not hierarchical we have to check it
- * explicitely.
+ * Note that it is normal to see !memcg for a hugetlb folio.
+ * For e.g, itt could have been allocated when memory_hugetlb_accounting
+ * was not selected.
*/
- if (!root_mem_cgroup->use_hierarchy)
- mem_cgroup_iter_invalidate(root_mem_cgroup);
+ VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
+ if (!memcg)
+ return;
+
+ /* Transfer the charge and the css ref */
+ commit_charge(new, memcg);
+
+ /* Warning should never happen, so don't worry about refcount non-0 */
+ WARN_ON_ONCE(folio_unqueue_deferred_split(old));
+ old->memcg_data = 0;
}
-static void mem_cgroup_css_offline(struct cgroup *cont)
+DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
+EXPORT_SYMBOL(memcg_sockets_enabled_key);
+
+void mem_cgroup_sk_alloc(struct sock *sk)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
+ struct mem_cgroup *memcg;
- kmem_cgroup_css_offline(memcg);
+ if (!mem_cgroup_sockets_enabled)
+ return;
+
+ /* Do not associate the sock with unrelated interrupted task's memcg. */
+ if (!in_task())
+ return;
- mem_cgroup_invalidate_reclaim_iterators(memcg);
- mem_cgroup_reparent_charges(memcg);
- mem_cgroup_destroy_all_caches(memcg);
+ rcu_read_lock();
+ memcg = mem_cgroup_from_task(current);
+ if (mem_cgroup_is_root(memcg))
+ goto out;
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
+ goto out;
+ if (css_tryget(&memcg->css))
+ sk->sk_memcg = memcg;
+out:
+ rcu_read_unlock();
}
-static void mem_cgroup_css_free(struct cgroup *cont)
+void mem_cgroup_sk_free(struct sock *sk)
{
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
+ struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
- memcg_destroy_kmem(memcg);
- __mem_cgroup_free(memcg);
+ if (memcg)
+ css_put(&memcg->css);
}
-#ifdef CONFIG_MMU
-/* Handlers for move charge at task migration. */
-#define PRECHARGE_COUNT_AT_ONCE 256
-static int mem_cgroup_do_precharge(unsigned long count)
+void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
{
- int ret = 0;
- int batch_count = PRECHARGE_COUNT_AT_ONCE;
- struct mem_cgroup *memcg = mc.to;
+ struct mem_cgroup *memcg;
- if (mem_cgroup_is_root(memcg)) {
- mc.precharge += count;
- /* we don't need css_get for root */
- return ret;
- }
- /* try to charge at once */
- if (count > 1) {
- struct res_counter *dummy;
- /*
- * "memcg" cannot be under rmdir() because we've already checked
- * by cgroup_lock_live_cgroup() that it is not removed and we
- * are still under the same cgroup_mutex. So we can postpone
- * css_get().
- */
- if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
- goto one_by_one;
- if (do_swap_account && res_counter_charge(&memcg->memsw,
- PAGE_SIZE * count, &dummy)) {
- res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
- goto one_by_one;
- }
- mc.precharge += count;
- return ret;
- }
-one_by_one:
- /* fall back to one by one charge */
- while (count--) {
- if (signal_pending(current)) {
- ret = -EINTR;
- break;
- }
- if (!batch_count--) {
- batch_count = PRECHARGE_COUNT_AT_ONCE;
- cond_resched();
- }
- ret = __mem_cgroup_try_charge(NULL,
- GFP_KERNEL, 1, &memcg, false);
- if (ret)
- /* mem_cgroup_clear_mc() will do uncharge later */
- return ret;
- mc.precharge++;
- }
- return ret;
+ if (sk->sk_memcg == newsk->sk_memcg)
+ return;
+
+ mem_cgroup_sk_free(newsk);
+
+ memcg = mem_cgroup_from_sk(sk);
+ if (memcg)
+ css_get(&memcg->css);
+
+ newsk->sk_memcg = sk->sk_memcg;
}
/**
- * get_mctgt_type - get target type of moving charge
- * @vma: the vma the pte to be checked belongs
- * @addr: the address corresponding to the pte to be checked
- * @ptent: the pte to be checked
- * @target: the pointer the target page or swap ent will be stored(can be NULL)
- *
- * Returns
- * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
- * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
- * move charge. if @target is not NULL, the page is stored in target->page
- * with extra refcnt got(Callers should handle it).
- * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
- * target for charge migration. if @target is not NULL, the entry is stored
- * in target->ent.
+ * mem_cgroup_sk_charge - charge socket memory
+ * @sk: socket in memcg to charge
+ * @nr_pages: number of pages to charge
+ * @gfp_mask: reclaim mode
*
- * Called with pte lock held.
+ * Charges @nr_pages to @memcg. Returns %true if the charge fit within
+ * @memcg's configured limit, %false if it doesn't.
*/
-union mc_target {
- struct page *page;
- swp_entry_t ent;
-};
-
-enum mc_target_type {
- MC_TARGET_NONE = 0,
- MC_TARGET_PAGE,
- MC_TARGET_SWAP,
-};
-
-static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
- unsigned long addr, pte_t ptent)
+bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
+ gfp_t gfp_mask)
{
- struct page *page = vm_normal_page(vma, addr, ptent);
+ struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
- if (!page || !page_mapped(page))
- return NULL;
- if (PageAnon(page)) {
- /* we don't move shared anon */
- if (!move_anon())
- return NULL;
- } else if (!move_file())
- /* we ignore mapcount for file pages */
- return NULL;
- if (!get_page_unless_zero(page))
- return NULL;
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
- return page;
+ if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
+ mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
+ return true;
+ }
+
+ return false;
}
-#ifdef CONFIG_SWAP
-static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
- unsigned long addr, pte_t ptent, swp_entry_t *entry)
+/**
+ * mem_cgroup_sk_uncharge - uncharge socket memory
+ * @sk: socket in memcg to uncharge
+ * @nr_pages: number of pages to uncharge
+ */
+void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages)
{
- struct page *page = NULL;
- swp_entry_t ent = pte_to_swp_entry(ptent);
+ struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
- if (!move_anon() || non_swap_entry(ent))
- return NULL;
- /*
- * Because lookup_swap_cache() updates some statistics counter,
- * we call find_get_page() with swapper_space directly.
- */
- page = find_get_page(swap_address_space(ent), ent.val);
- if (do_swap_account)
- entry->val = ent.val;
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
+ memcg1_uncharge_skmem(memcg, nr_pages);
+ return;
+ }
+
+ mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
- return page;
+ refill_stock(memcg, nr_pages);
}
-#else
-static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
- unsigned long addr, pte_t ptent, swp_entry_t *entry)
+
+static int __init cgroup_memory(char *s)
{
- return NULL;
+ char *token;
+
+ while ((token = strsep(&s, ",")) != NULL) {
+ if (!*token)
+ continue;
+ if (!strcmp(token, "nosocket"))
+ cgroup_memory_nosocket = true;
+ if (!strcmp(token, "nokmem"))
+ cgroup_memory_nokmem = true;
+ if (!strcmp(token, "nobpf"))
+ cgroup_memory_nobpf = true;
+ }
+ return 1;
}
-#endif
+__setup("cgroup.memory=", cgroup_memory);
-static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
- unsigned long addr, pte_t ptent, swp_entry_t *entry)
+/*
+ * Memory controller init before cgroup_init() initialize root_mem_cgroup.
+ *
+ * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
+ * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
+ * basically everything that doesn't depend on a specific mem_cgroup structure
+ * should be initialized from here.
+ */
+int __init mem_cgroup_init(void)
{
- struct page *page = NULL;
- struct address_space *mapping;
- pgoff_t pgoff;
-
- if (!vma->vm_file) /* anonymous vma */
- return NULL;
- if (!move_file())
- return NULL;
+ unsigned int memcg_size;
+ int cpu;
- mapping = vma->vm_file->f_mapping;
- if (pte_none(ptent))
- pgoff = linear_page_index(vma, addr);
- else /* pte_file(ptent) is true */
- pgoff = pte_to_pgoff(ptent);
+ /*
+ * Currently s32 type (can refer to struct batched_lruvec_stat) is
+ * used for per-memcg-per-cpu caching of per-node statistics. In order
+ * to work fine, we should make sure that the overfill threshold can't
+ * exceed S32_MAX / PAGE_SIZE.
+ */
+ BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
- /* page is moved even if it's not RSS of this task(page-faulted). */
- page = find_get_page(mapping, pgoff);
+ cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
+ memcg_hotplug_cpu_dead);
-#ifdef CONFIG_SWAP
- /* shmem/tmpfs may report page out on swap: account for that too. */
- if (radix_tree_exceptional_entry(page)) {
- swp_entry_t swap = radix_to_swp_entry(page);
- if (do_swap_account)
- *entry = swap;
- page = find_get_page(swap_address_space(swap), swap.val);
+ for_each_possible_cpu(cpu) {
+ INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
+ drain_local_memcg_stock);
+ INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
+ drain_local_obj_stock);
}
-#endif
- return page;
+
+ memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
+ memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
+ SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
+
+ memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
+ SLAB_PANIC | SLAB_HWCACHE_ALIGN);
+
+ return 0;
}
-static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
- unsigned long addr, pte_t ptent, union mc_target *target)
+#ifdef CONFIG_SWAP
+/**
+ * __mem_cgroup_try_charge_swap - try charging swap space for a folio
+ * @folio: folio being added to swap
+ * @entry: swap entry to charge
+ *
+ * Try to charge @folio's memcg for the swap space at @entry.
+ *
+ * Returns 0 on success, -ENOMEM on failure.
+ */
+int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
{
- struct page *page = NULL;
- struct page_cgroup *pc;
- enum mc_target_type ret = MC_TARGET_NONE;
- swp_entry_t ent = { .val = 0 };
+ unsigned int nr_pages = folio_nr_pages(folio);
+ struct page_counter *counter;
+ struct mem_cgroup *memcg;
- if (pte_present(ptent))
- page = mc_handle_present_pte(vma, addr, ptent);
- else if (is_swap_pte(ptent))
- page = mc_handle_swap_pte(vma, addr, ptent, &ent);
- else if (pte_none(ptent) || pte_file(ptent))
- page = mc_handle_file_pte(vma, addr, ptent, &ent);
+ if (do_memsw_account())
+ return 0;
- if (!page && !ent.val)
- return ret;
- if (page) {
- pc = lookup_page_cgroup(page);
- /*
- * Do only loose check w/o page_cgroup lock.
- * mem_cgroup_move_account() checks the pc is valid or not under
- * the lock.
- */
- if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
- ret = MC_TARGET_PAGE;
- if (target)
- target->page = page;
- }
- if (!ret || !target)
- put_page(page);
+ memcg = folio_memcg(folio);
+
+ VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
+ if (!memcg)
+ return 0;
+
+ if (!entry.val) {
+ memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
+ return 0;
}
- /* There is a swap entry and a page doesn't exist or isn't charged */
- if (ent.val && !ret &&
- css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
- ret = MC_TARGET_SWAP;
- if (target)
- target->ent = ent;
+
+ memcg = mem_cgroup_id_get_online(memcg);
+
+ if (!mem_cgroup_is_root(memcg) &&
+ !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
+ memcg_memory_event(memcg, MEMCG_SWAP_MAX);
+ memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
+ mem_cgroup_id_put(memcg);
+ return -ENOMEM;
}
- return ret;
+
+ /* Get references for the tail pages, too */
+ if (nr_pages > 1)
+ mem_cgroup_id_get_many(memcg, nr_pages - 1);
+ mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
+
+ swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
+
+ return 0;
}
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
-/*
- * We don't consider swapping or file mapped pages because THP does not
- * support them for now.
- * Caller should make sure that pmd_trans_huge(pmd) is true.
+/**
+ * __mem_cgroup_uncharge_swap - uncharge swap space
+ * @entry: swap entry to uncharge
+ * @nr_pages: the amount of swap space to uncharge
*/
-static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
- unsigned long addr, pmd_t pmd, union mc_target *target)
+void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
{
- struct page *page = NULL;
- struct page_cgroup *pc;
- enum mc_target_type ret = MC_TARGET_NONE;
+ struct mem_cgroup *memcg;
+ unsigned short id;
- page = pmd_page(pmd);
- VM_BUG_ON(!page || !PageHead(page));
- if (!move_anon())
- return ret;
- pc = lookup_page_cgroup(page);
- if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
- ret = MC_TARGET_PAGE;
- if (target) {
- get_page(page);
- target->page = page;
+ id = swap_cgroup_clear(entry, nr_pages);
+ rcu_read_lock();
+ memcg = mem_cgroup_from_id(id);
+ if (memcg) {
+ if (!mem_cgroup_is_root(memcg)) {
+ if (do_memsw_account())
+ page_counter_uncharge(&memcg->memsw, nr_pages);
+ else
+ page_counter_uncharge(&memcg->swap, nr_pages);
}
+ mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
+ mem_cgroup_id_put_many(memcg, nr_pages);
}
- return ret;
+ rcu_read_unlock();
}
-#else
-static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
- unsigned long addr, pmd_t pmd, union mc_target *target)
+
+long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
- return MC_TARGET_NONE;
+ long nr_swap_pages = get_nr_swap_pages();
+
+ if (mem_cgroup_disabled() || do_memsw_account())
+ return nr_swap_pages;
+ for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
+ nr_swap_pages = min_t(long, nr_swap_pages,
+ READ_ONCE(memcg->swap.max) -
+ page_counter_read(&memcg->swap));
+ return nr_swap_pages;
}
-#endif
-static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
- unsigned long addr, unsigned long end,
- struct mm_walk *walk)
+bool mem_cgroup_swap_full(struct folio *folio)
{
- struct vm_area_struct *vma = walk->private;
- pte_t *pte;
- spinlock_t *ptl;
+ struct mem_cgroup *memcg;
- if (pmd_trans_huge_lock(pmd, vma) == 1) {
- if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
- mc.precharge += HPAGE_PMD_NR;
- spin_unlock(&vma->vm_mm->page_table_lock);
- return 0;
- }
+ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
- if (pmd_trans_unstable(pmd))
- return 0;
- pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
- for (; addr != end; pte++, addr += PAGE_SIZE)
- if (get_mctgt_type(vma, addr, *pte, NULL))
- mc.precharge++; /* increment precharge temporarily */
- pte_unmap_unlock(pte - 1, ptl);
- cond_resched();
+ if (vm_swap_full())
+ return true;
+ if (do_memsw_account())
+ return false;
- return 0;
-}
+ memcg = folio_memcg(folio);
+ if (!memcg)
+ return false;
-static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
-{
- unsigned long precharge;
- struct vm_area_struct *vma;
+ for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
+ unsigned long usage = page_counter_read(&memcg->swap);
- down_read(&mm->mmap_sem);
- for (vma = mm->mmap; vma; vma = vma->vm_next) {
- struct mm_walk mem_cgroup_count_precharge_walk = {
- .pmd_entry = mem_cgroup_count_precharge_pte_range,
- .mm = mm,
- .private = vma,
- };
- if (is_vm_hugetlb_page(vma))
- continue;
- walk_page_range(vma->vm_start, vma->vm_end,
- &mem_cgroup_count_precharge_walk);
+ if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
+ usage * 2 >= READ_ONCE(memcg->swap.max))
+ return true;
}
- up_read(&mm->mmap_sem);
- precharge = mc.precharge;
- mc.precharge = 0;
-
- return precharge;
+ return false;
}
-static int mem_cgroup_precharge_mc(struct mm_struct *mm)
+static int __init setup_swap_account(char *s)
{
- unsigned long precharge = mem_cgroup_count_precharge(mm);
+ bool res;
- VM_BUG_ON(mc.moving_task);
- mc.moving_task = current;
- return mem_cgroup_do_precharge(precharge);
+ if (!kstrtobool(s, &res) && !res)
+ pr_warn_once("The swapaccount=0 commandline option is deprecated "
+ "in favor of configuring swap control via cgroupfs. "
+ "Please report your usecase to linux-mm@kvack.org if you "
+ "depend on this functionality.\n");
+ return 1;
}
+__setup("swapaccount=", setup_swap_account);
-/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
-static void __mem_cgroup_clear_mc(void)
+static u64 swap_current_read(struct cgroup_subsys_state *css,
+ struct cftype *cft)
{
- struct mem_cgroup *from = mc.from;
- struct mem_cgroup *to = mc.to;
- int i;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- /* we must uncharge all the leftover precharges from mc.to */
- if (mc.precharge) {
- __mem_cgroup_cancel_charge(mc.to, mc.precharge);
- mc.precharge = 0;
- }
- /*
- * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
- * we must uncharge here.
- */
- if (mc.moved_charge) {
- __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
- mc.moved_charge = 0;
- }
- /* we must fixup refcnts and charges */
- if (mc.moved_swap) {
- /* uncharge swap account from the old cgroup */
- if (!mem_cgroup_is_root(mc.from))
- res_counter_uncharge(&mc.from->memsw,
- PAGE_SIZE * mc.moved_swap);
+ return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
+}
- for (i = 0; i < mc.moved_swap; i++)
- css_put(&mc.from->css);
+static int swap_peak_show(struct seq_file *sf, void *v)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
- if (!mem_cgroup_is_root(mc.to)) {
- /*
- * we charged both to->res and to->memsw, so we should
- * uncharge to->res.
- */
- res_counter_uncharge(&mc.to->res,
- PAGE_SIZE * mc.moved_swap);
- }
- /* we've already done css_get(mc.to) */
- mc.moved_swap = 0;
- }
- memcg_oom_recover(from);
- memcg_oom_recover(to);
- wake_up_all(&mc.waitq);
+ return peak_show(sf, v, &memcg->swap);
}
-static void mem_cgroup_clear_mc(void)
+static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
+ size_t nbytes, loff_t off)
{
- struct mem_cgroup *from = mc.from;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
- /*
- * we must clear moving_task before waking up waiters at the end of
- * task migration.
- */
- mc.moving_task = NULL;
- __mem_cgroup_clear_mc();
- spin_lock(&mc.lock);
- mc.from = NULL;
- mc.to = NULL;
- spin_unlock(&mc.lock);
- mem_cgroup_end_move(from);
+ return peak_write(of, buf, nbytes, off, &memcg->swap,
+ &memcg->swap_peaks);
}
-static int mem_cgroup_can_attach(struct cgroup *cgroup,
- struct cgroup_taskset *tset)
+static int swap_high_show(struct seq_file *m, void *v)
{
- struct task_struct *p = cgroup_taskset_first(tset);
- int ret = 0;
- struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
- unsigned long move_charge_at_immigrate;
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
+}
- /*
- * We are now commited to this value whatever it is. Changes in this
- * tunable will only affect upcoming migrations, not the current one.
- * So we need to save it, and keep it going.
- */
- move_charge_at_immigrate = memcg->move_charge_at_immigrate;
- if (move_charge_at_immigrate) {
- struct mm_struct *mm;
- struct mem_cgroup *from = mem_cgroup_from_task(p);
+static ssize_t swap_high_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ unsigned long high;
+ int err;
- VM_BUG_ON(from == memcg);
+ buf = strstrip(buf);
+ err = page_counter_memparse(buf, "max", &high);
+ if (err)
+ return err;
- mm = get_task_mm(p);
- if (!mm)
- return 0;
- /* We move charges only when we move a owner of the mm */
- if (mm->owner == p) {
- VM_BUG_ON(mc.from);
- VM_BUG_ON(mc.to);
- VM_BUG_ON(mc.precharge);
- VM_BUG_ON(mc.moved_charge);
- VM_BUG_ON(mc.moved_swap);
- mem_cgroup_start_move(from);
- spin_lock(&mc.lock);
- mc.from = from;
- mc.to = memcg;
- mc.immigrate_flags = move_charge_at_immigrate;
- spin_unlock(&mc.lock);
- /* We set mc.moving_task later */
-
- ret = mem_cgroup_precharge_mc(mm);
- if (ret)
- mem_cgroup_clear_mc();
- }
- mmput(mm);
- }
- return ret;
+ page_counter_set_high(&memcg->swap, high);
+
+ return nbytes;
}
-static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
- struct cgroup_taskset *tset)
+static int swap_max_show(struct seq_file *m, void *v)
{
- mem_cgroup_clear_mc();
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
}
-static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
- unsigned long addr, unsigned long end,
- struct mm_walk *walk)
+static ssize_t swap_max_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
{
- int ret = 0;
- struct vm_area_struct *vma = walk->private;
- pte_t *pte;
- spinlock_t *ptl;
- enum mc_target_type target_type;
- union mc_target target;
- struct page *page;
- struct page_cgroup *pc;
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ unsigned long max;
+ int err;
- /*
- * We don't take compound_lock() here but no race with splitting thp
- * happens because:
- * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
- * under splitting, which means there's no concurrent thp split,
- * - if another thread runs into split_huge_page() just after we
- * entered this if-block, the thread must wait for page table lock
- * to be unlocked in __split_huge_page_splitting(), where the main
- * part of thp split is not executed yet.
- */
- if (pmd_trans_huge_lock(pmd, vma) == 1) {
- if (mc.precharge < HPAGE_PMD_NR) {
- spin_unlock(&vma->vm_mm->page_table_lock);
- return 0;
- }
- target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
- if (target_type == MC_TARGET_PAGE) {
- page = target.page;
- if (!isolate_lru_page(page)) {
- pc = lookup_page_cgroup(page);
- if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
- pc, mc.from, mc.to)) {
- mc.precharge -= HPAGE_PMD_NR;
- mc.moved_charge += HPAGE_PMD_NR;
- }
- putback_lru_page(page);
- }
- put_page(page);
- }
- spin_unlock(&vma->vm_mm->page_table_lock);
- return 0;
- }
+ buf = strstrip(buf);
+ err = page_counter_memparse(buf, "max", &max);
+ if (err)
+ return err;
- if (pmd_trans_unstable(pmd))
- return 0;
-retry:
- pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
- for (; addr != end; addr += PAGE_SIZE) {
- pte_t ptent = *(pte++);
- swp_entry_t ent;
+ xchg(&memcg->swap.max, max);
- if (!mc.precharge)
- break;
+ return nbytes;
+}
- switch (get_mctgt_type(vma, addr, ptent, &target)) {
- case MC_TARGET_PAGE:
- page = target.page;
- if (isolate_lru_page(page))
- goto put;
- pc = lookup_page_cgroup(page);
- if (!mem_cgroup_move_account(page, 1, pc,
- mc.from, mc.to)) {
- mc.precharge--;
- /* we uncharge from mc.from later. */
- mc.moved_charge++;
- }
- putback_lru_page(page);
-put: /* get_mctgt_type() gets the page */
- put_page(page);
- break;
- case MC_TARGET_SWAP:
- ent = target.ent;
- if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
- mc.precharge--;
- /* we fixup refcnts and charges later. */
- mc.moved_swap++;
- }
- break;
- default:
- break;
- }
- }
- pte_unmap_unlock(pte - 1, ptl);
- cond_resched();
+static int swap_events_show(struct seq_file *m, void *v)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
- if (addr != end) {
- /*
- * We have consumed all precharges we got in can_attach().
- * We try charge one by one, but don't do any additional
- * charges to mc.to if we have failed in charge once in attach()
- * phase.
- */
- ret = mem_cgroup_do_precharge(1);
- if (!ret)
- goto retry;
- }
+ seq_printf(m, "high %lu\n",
+ atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
+ seq_printf(m, "max %lu\n",
+ atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
+ seq_printf(m, "fail %lu\n",
+ atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
- return ret;
+ return 0;
}
-static void mem_cgroup_move_charge(struct mm_struct *mm)
+static struct cftype swap_files[] = {
+ {
+ .name = "swap.current",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .read_u64 = swap_current_read,
+ },
+ {
+ .name = "swap.high",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .seq_show = swap_high_show,
+ .write = swap_high_write,
+ },
+ {
+ .name = "swap.max",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .seq_show = swap_max_show,
+ .write = swap_max_write,
+ },
+ {
+ .name = "swap.peak",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .open = peak_open,
+ .release = peak_release,
+ .seq_show = swap_peak_show,
+ .write = swap_peak_write,
+ },
+ {
+ .name = "swap.events",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .file_offset = offsetof(struct mem_cgroup, swap_events_file),
+ .seq_show = swap_events_show,
+ },
+ { } /* terminate */
+};
+
+#ifdef CONFIG_ZSWAP
+/**
+ * obj_cgroup_may_zswap - check if this cgroup can zswap
+ * @objcg: the object cgroup
+ *
+ * Check if the hierarchical zswap limit has been reached.
+ *
+ * This doesn't check for specific headroom, and it is not atomic
+ * either. But with zswap, the size of the allocation is only known
+ * once compression has occurred, and this optimistic pre-check avoids
+ * spending cycles on compression when there is already no room left
+ * or zswap is disabled altogether somewhere in the hierarchy.
+ */
+bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
{
- struct vm_area_struct *vma;
+ struct mem_cgroup *memcg, *original_memcg;
+ bool ret = true;
- lru_add_drain_all();
-retry:
- if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
- /*
- * Someone who are holding the mmap_sem might be waiting in
- * waitq. So we cancel all extra charges, wake up all waiters,
- * and retry. Because we cancel precharges, we might not be able
- * to move enough charges, but moving charge is a best-effort
- * feature anyway, so it wouldn't be a big problem.
- */
- __mem_cgroup_clear_mc();
- cond_resched();
- goto retry;
- }
- for (vma = mm->mmap; vma; vma = vma->vm_next) {
- int ret;
- struct mm_walk mem_cgroup_move_charge_walk = {
- .pmd_entry = mem_cgroup_move_charge_pte_range,
- .mm = mm,
- .private = vma,
- };
- if (is_vm_hugetlb_page(vma))
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return true;
+
+ original_memcg = get_mem_cgroup_from_objcg(objcg);
+ for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
+ memcg = parent_mem_cgroup(memcg)) {
+ unsigned long max = READ_ONCE(memcg->zswap_max);
+ unsigned long pages;
+
+ if (max == PAGE_COUNTER_MAX)
continue;
- ret = walk_page_range(vma->vm_start, vma->vm_end,
- &mem_cgroup_move_charge_walk);
- if (ret)
- /*
- * means we have consumed all precharges and failed in
- * doing additional charge. Just abandon here.
- */
+ if (max == 0) {
+ ret = false;
break;
+ }
+
+ /* Force flush to get accurate stats for charging */
+ __mem_cgroup_flush_stats(memcg, true);
+ pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
+ if (pages < max)
+ continue;
+ ret = false;
+ break;
}
- up_read(&mm->mmap_sem);
+ mem_cgroup_put(original_memcg);
+ return ret;
}
-static void mem_cgroup_move_task(struct cgroup *cont,
- struct cgroup_taskset *tset)
+/**
+ * obj_cgroup_charge_zswap - charge compression backend memory
+ * @objcg: the object cgroup
+ * @size: size of compressed object
+ *
+ * This forces the charge after obj_cgroup_may_zswap() allowed
+ * compression and storage in zswap for this cgroup to go ahead.
+ */
+void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
{
- struct task_struct *p = cgroup_taskset_first(tset);
- struct mm_struct *mm = get_task_mm(p);
+ struct mem_cgroup *memcg;
- if (mm) {
- if (mc.to)
- mem_cgroup_move_charge(mm);
- mmput(mm);
- }
- if (mc.to)
- mem_cgroup_clear_mc();
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return;
+
+ VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
+
+ /* PF_MEMALLOC context, charging must succeed */
+ if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
+ VM_WARN_ON_ONCE(1);
+
+ rcu_read_lock();
+ memcg = obj_cgroup_memcg(objcg);
+ mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
+ mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
+ rcu_read_unlock();
}
-#else /* !CONFIG_MMU */
-static int mem_cgroup_can_attach(struct cgroup *cgroup,
- struct cgroup_taskset *tset)
+
+/**
+ * obj_cgroup_uncharge_zswap - uncharge compression backend memory
+ * @objcg: the object cgroup
+ * @size: size of compressed object
+ *
+ * Uncharges zswap memory on page in.
+ */
+void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
{
- return 0;
+ struct mem_cgroup *memcg;
+
+ if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return;
+
+ obj_cgroup_uncharge(objcg, size);
+
+ rcu_read_lock();
+ memcg = obj_cgroup_memcg(objcg);
+ mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
+ mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
+ rcu_read_unlock();
}
-static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
- struct cgroup_taskset *tset)
+
+bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
{
+ /* if zswap is disabled, do not block pages going to the swapping device */
+ if (!zswap_is_enabled())
+ return true;
+
+ for (; memcg; memcg = parent_mem_cgroup(memcg))
+ if (!READ_ONCE(memcg->zswap_writeback))
+ return false;
+
+ return true;
}
-static void mem_cgroup_move_task(struct cgroup *cont,
- struct cgroup_taskset *tset)
+
+static u64 zswap_current_read(struct cgroup_subsys_state *css,
+ struct cftype *cft)
{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+
+ mem_cgroup_flush_stats(memcg);
+ return memcg_page_state(memcg, MEMCG_ZSWAP_B);
}
-#endif
-/*
- * Cgroup retains root cgroups across [un]mount cycles making it necessary
- * to verify sane_behavior flag on each mount attempt.
- */
-static void mem_cgroup_bind(struct cgroup *root)
+static int zswap_max_show(struct seq_file *m, void *v)
{
- /*
- * use_hierarchy is forced with sane_behavior. cgroup core
- * guarantees that @root doesn't have any children, so turning it
- * on for the root memcg is enough.
- */
- if (cgroup_sane_behavior(root))
- mem_cgroup_from_cont(root)->use_hierarchy = true;
+ return seq_puts_memcg_tunable(m,
+ READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
}
-struct cgroup_subsys mem_cgroup_subsys = {
- .name = "memory",
- .subsys_id = mem_cgroup_subsys_id,
- .css_alloc = mem_cgroup_css_alloc,
- .css_online = mem_cgroup_css_online,
- .css_offline = mem_cgroup_css_offline,
- .css_free = mem_cgroup_css_free,
- .can_attach = mem_cgroup_can_attach,
- .cancel_attach = mem_cgroup_cancel_attach,
- .attach = mem_cgroup_move_task,
- .bind = mem_cgroup_bind,
- .base_cftypes = mem_cgroup_files,
- .early_init = 0,
- .use_id = 1,
-};
+static ssize_t zswap_max_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ unsigned long max;
+ int err;
-#ifdef CONFIG_MEMCG_SWAP
-static int __init enable_swap_account(char *s)
+ buf = strstrip(buf);
+ err = page_counter_memparse(buf, "max", &max);
+ if (err)
+ return err;
+
+ xchg(&memcg->zswap_max, max);
+
+ return nbytes;
+}
+
+static int zswap_writeback_show(struct seq_file *m, void *v)
{
- /* consider enabled if no parameter or 1 is given */
- if (!strcmp(s, "1"))
- really_do_swap_account = 1;
- else if (!strcmp(s, "0"))
- really_do_swap_account = 0;
- return 1;
+ struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
+
+ seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
+ return 0;
}
-__setup("swapaccount=", enable_swap_account);
-static void __init memsw_file_init(void)
+static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off)
{
- WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
+ struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
+ int zswap_writeback;
+ ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
+
+ if (parse_ret)
+ return parse_ret;
+
+ if (zswap_writeback != 0 && zswap_writeback != 1)
+ return -EINVAL;
+
+ WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
+ return nbytes;
}
-static void __init enable_swap_cgroup(void)
+static struct cftype zswap_files[] = {
+ {
+ .name = "zswap.current",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .read_u64 = zswap_current_read,
+ },
+ {
+ .name = "zswap.max",
+ .flags = CFTYPE_NOT_ON_ROOT,
+ .seq_show = zswap_max_show,
+ .write = zswap_max_write,
+ },
+ {
+ .name = "zswap.writeback",
+ .seq_show = zswap_writeback_show,
+ .write = zswap_writeback_write,
+ },
+ { } /* terminate */
+};
+#endif /* CONFIG_ZSWAP */
+
+static int __init mem_cgroup_swap_init(void)
{
- if (!mem_cgroup_disabled() && really_do_swap_account) {
- do_swap_account = 1;
- memsw_file_init();
- }
+ if (mem_cgroup_disabled())
+ return 0;
+
+ WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
+#ifdef CONFIG_MEMCG_V1
+ WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
+#endif
+#ifdef CONFIG_ZSWAP
+ WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
+#endif
+ return 0;
}
+subsys_initcall(mem_cgroup_swap_init);
-#else
-static void __init enable_swap_cgroup(void)
+#endif /* CONFIG_SWAP */
+
+bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
{
+ return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
}
-#endif
-/*
- * subsys_initcall() for memory controller.
- *
- * Some parts like hotcpu_notifier() have to be initialized from this context
- * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
- * everything that doesn't depend on a specific mem_cgroup structure should
- * be initialized from here.
- */
-static int __init mem_cgroup_init(void)
+void mem_cgroup_show_protected_memory(struct mem_cgroup *memcg)
{
- hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
- enable_swap_cgroup();
- mem_cgroup_soft_limit_tree_init();
- memcg_stock_init();
- return 0;
+ if (mem_cgroup_disabled() || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
+ return;
+
+ if (!memcg)
+ memcg = root_mem_cgroup;
+
+ pr_warn("Memory cgroup min protection %lukB -- low protection %lukB",
+ K(atomic_long_read(&memcg->memory.children_min_usage)*PAGE_SIZE),
+ K(atomic_long_read(&memcg->memory.children_low_usage)*PAGE_SIZE));
}
-subsys_initcall(mem_cgroup_init);