summaryrefslogtreecommitdiff
path: root/mm/memory-failure.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memory-failure.c')
-rw-r--r--mm/memory-failure.c2229
1 files changed, 1436 insertions, 793 deletions
diff --git a/mm/memory-failure.c b/mm/memory-failure.c
index 14ae5c18e776..fbc5a01260c8 100644
--- a/mm/memory-failure.c
+++ b/mm/memory-failure.c
@@ -6,16 +6,16 @@
* High level machine check handler. Handles pages reported by the
* hardware as being corrupted usually due to a multi-bit ECC memory or cache
* failure.
- *
+ *
* In addition there is a "soft offline" entry point that allows stop using
* not-yet-corrupted-by-suspicious pages without killing anything.
*
* Handles page cache pages in various states. The tricky part
- * here is that we can access any page asynchronously in respect to
- * other VM users, because memory failures could happen anytime and
- * anywhere. This could violate some of their assumptions. This is why
- * this code has to be extremely careful. Generally it tries to use
- * normal locking rules, as in get the standard locks, even if that means
+ * here is that we can access any page asynchronously in respect to
+ * other VM users, because memory failures could happen anytime and
+ * anywhere. This could violate some of their assumptions. This is why
+ * this code has to be extremely careful. Generally it tries to use
+ * normal locking rules, as in get the standard locks, even if that means
* the error handling takes potentially a long time.
*
* It can be very tempting to add handling for obscure cases here.
@@ -24,19 +24,22 @@
* - You have a test that can be added to mce-test
* https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
* - The case actually shows up as a frequent (top 10) page state in
- * tools/vm/page-types when running a real workload.
- *
+ * tools/mm/page-types when running a real workload.
+ *
* There are several operations here with exponential complexity because
- * of unsuitable VM data structures. For example the operation to map back
- * from RMAP chains to processes has to walk the complete process list and
+ * of unsuitable VM data structures. For example the operation to map back
+ * from RMAP chains to processes has to walk the complete process list and
* has non linear complexity with the number. But since memory corruptions
- * are rare we hope to get away with this. This avoids impacting the core
+ * are rare we hope to get away with this. This avoids impacting the core
* VM.
*/
+
+#define pr_fmt(fmt) "Memory failure: " fmt
+
#include <linux/kernel.h>
#include <linux/mm.h>
+#include <linux/memory-failure.h>
#include <linux/page-flags.h>
-#include <linux/kernel-page-flags.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/dax.h>
@@ -47,48 +50,157 @@
#include <linux/swap.h>
#include <linux/backing-dev.h>
#include <linux/migrate.h>
-#include <linux/suspend.h>
#include <linux/slab.h>
-#include <linux/swapops.h>
+#include <linux/leafops.h>
#include <linux/hugetlb.h>
#include <linux/memory_hotplug.h>
#include <linux/mm_inline.h>
#include <linux/memremap.h>
#include <linux/kfifo.h>
#include <linux/ratelimit.h>
-#include <linux/page-isolation.h>
#include <linux/pagewalk.h>
#include <linux/shmem_fs.h>
+#include <linux/sysctl.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/memory-failure.h>
+
+#include "swap.h"
#include "internal.h"
-#include "ras/ras_event.h"
-int sysctl_memory_failure_early_kill __read_mostly = 0;
+static int sysctl_memory_failure_early_kill __read_mostly;
-int sysctl_memory_failure_recovery __read_mostly = 1;
+static int sysctl_memory_failure_recovery __read_mostly = 1;
+
+static int sysctl_enable_soft_offline __read_mostly = 1;
atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
-static bool __page_handle_poison(struct page *page)
+static bool hw_memory_failure __read_mostly = false;
+
+static DEFINE_MUTEX(mf_mutex);
+
+void num_poisoned_pages_inc(unsigned long pfn)
+{
+ atomic_long_inc(&num_poisoned_pages);
+ memblk_nr_poison_inc(pfn);
+}
+
+void num_poisoned_pages_sub(unsigned long pfn, long i)
+{
+ atomic_long_sub(i, &num_poisoned_pages);
+ if (pfn != -1UL)
+ memblk_nr_poison_sub(pfn, i);
+}
+
+/**
+ * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
+ * @_name: name of the file in the per NUMA sysfs directory.
+ */
+#define MF_ATTR_RO(_name) \
+static ssize_t _name##_show(struct device *dev, \
+ struct device_attribute *attr, \
+ char *buf) \
+{ \
+ struct memory_failure_stats *mf_stats = \
+ &NODE_DATA(dev->id)->mf_stats; \
+ return sysfs_emit(buf, "%lu\n", mf_stats->_name); \
+} \
+static DEVICE_ATTR_RO(_name)
+
+MF_ATTR_RO(total);
+MF_ATTR_RO(ignored);
+MF_ATTR_RO(failed);
+MF_ATTR_RO(delayed);
+MF_ATTR_RO(recovered);
+
+static struct attribute *memory_failure_attr[] = {
+ &dev_attr_total.attr,
+ &dev_attr_ignored.attr,
+ &dev_attr_failed.attr,
+ &dev_attr_delayed.attr,
+ &dev_attr_recovered.attr,
+ NULL,
+};
+
+const struct attribute_group memory_failure_attr_group = {
+ .name = "memory_failure",
+ .attrs = memory_failure_attr,
+};
+
+static const struct ctl_table memory_failure_table[] = {
+ {
+ .procname = "memory_failure_early_kill",
+ .data = &sysctl_memory_failure_early_kill,
+ .maxlen = sizeof(sysctl_memory_failure_early_kill),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE,
+ },
+ {
+ .procname = "memory_failure_recovery",
+ .data = &sysctl_memory_failure_recovery,
+ .maxlen = sizeof(sysctl_memory_failure_recovery),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE,
+ },
+ {
+ .procname = "enable_soft_offline",
+ .data = &sysctl_enable_soft_offline,
+ .maxlen = sizeof(sysctl_enable_soft_offline),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE,
+ }
+};
+
+static struct rb_root_cached pfn_space_itree = RB_ROOT_CACHED;
+
+static DEFINE_MUTEX(pfn_space_lock);
+
+/*
+ * Return values:
+ * 1: the page is dissolved (if needed) and taken off from buddy,
+ * 0: the page is dissolved (if needed) and not taken off from buddy,
+ * < 0: failed to dissolve.
+ */
+static int __page_handle_poison(struct page *page)
{
int ret;
- zone_pcp_disable(page_zone(page));
- ret = dissolve_free_huge_page(page);
- if (!ret)
+ /*
+ * zone_pcp_disable() can't be used here. It will
+ * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
+ * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
+ * optimization is enabled. This will break current lock dependency
+ * chain and leads to deadlock.
+ * Disabling pcp before dissolving the page was a deterministic
+ * approach because we made sure that those pages cannot end up in any
+ * PCP list. Draining PCP lists expels those pages to the buddy system,
+ * but nothing guarantees that those pages do not get back to a PCP
+ * queue if we need to refill those.
+ */
+ ret = dissolve_free_hugetlb_folio(page_folio(page));
+ if (!ret) {
+ drain_all_pages(page_zone(page));
ret = take_page_off_buddy(page);
- zone_pcp_enable(page_zone(page));
+ }
- return ret > 0;
+ return ret;
}
static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
{
if (hugepage_or_freepage) {
/*
- * Doing this check for free pages is also fine since dissolve_free_huge_page
- * returns 0 for non-hugetlb pages as well.
+ * Doing this check for free pages is also fine since
+ * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
*/
- if (!__page_handle_poison(page))
+ if (__page_handle_poison(page) <= 0)
/*
* We could fail to take off the target page from buddy
* for example due to racy page allocation, but that's
@@ -103,117 +215,39 @@ static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, boo
if (release)
put_page(page);
page_ref_inc(page);
- num_poisoned_pages_inc();
+ num_poisoned_pages_inc(page_to_pfn(page));
return true;
}
-#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
-
-u32 hwpoison_filter_enable = 0;
-u32 hwpoison_filter_dev_major = ~0U;
-u32 hwpoison_filter_dev_minor = ~0U;
-u64 hwpoison_filter_flags_mask;
-u64 hwpoison_filter_flags_value;
-EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
-EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
-EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
-EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
-EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
+static hwpoison_filter_func_t __rcu *hwpoison_filter_func __read_mostly;
-static int hwpoison_filter_dev(struct page *p)
+void hwpoison_filter_register(hwpoison_filter_func_t *filter)
{
- struct address_space *mapping;
- dev_t dev;
-
- if (hwpoison_filter_dev_major == ~0U &&
- hwpoison_filter_dev_minor == ~0U)
- return 0;
-
- /*
- * page_mapping() does not accept slab pages.
- */
- if (PageSlab(p))
- return -EINVAL;
-
- mapping = page_mapping(p);
- if (mapping == NULL || mapping->host == NULL)
- return -EINVAL;
-
- dev = mapping->host->i_sb->s_dev;
- if (hwpoison_filter_dev_major != ~0U &&
- hwpoison_filter_dev_major != MAJOR(dev))
- return -EINVAL;
- if (hwpoison_filter_dev_minor != ~0U &&
- hwpoison_filter_dev_minor != MINOR(dev))
- return -EINVAL;
-
- return 0;
+ rcu_assign_pointer(hwpoison_filter_func, filter);
}
+EXPORT_SYMBOL_GPL(hwpoison_filter_register);
-static int hwpoison_filter_flags(struct page *p)
+void hwpoison_filter_unregister(void)
{
- if (!hwpoison_filter_flags_mask)
- return 0;
-
- if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
- hwpoison_filter_flags_value)
- return 0;
- else
- return -EINVAL;
+ RCU_INIT_POINTER(hwpoison_filter_func, NULL);
+ synchronize_rcu();
}
+EXPORT_SYMBOL_GPL(hwpoison_filter_unregister);
-/*
- * This allows stress tests to limit test scope to a collection of tasks
- * by putting them under some memcg. This prevents killing unrelated/important
- * processes such as /sbin/init. Note that the target task may share clean
- * pages with init (eg. libc text), which is harmless. If the target task
- * share _dirty_ pages with another task B, the test scheme must make sure B
- * is also included in the memcg. At last, due to race conditions this filter
- * can only guarantee that the page either belongs to the memcg tasks, or is
- * a freed page.
- */
-#ifdef CONFIG_MEMCG
-u64 hwpoison_filter_memcg;
-EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
-static int hwpoison_filter_task(struct page *p)
+static int hwpoison_filter(struct page *p)
{
- if (!hwpoison_filter_memcg)
- return 0;
-
- if (page_cgroup_ino(p) != hwpoison_filter_memcg)
- return -EINVAL;
-
- return 0;
-}
-#else
-static int hwpoison_filter_task(struct page *p) { return 0; }
-#endif
-
-int hwpoison_filter(struct page *p)
-{
- if (!hwpoison_filter_enable)
- return 0;
-
- if (hwpoison_filter_dev(p))
- return -EINVAL;
-
- if (hwpoison_filter_flags(p))
- return -EINVAL;
+ int ret = 0;
+ hwpoison_filter_func_t *filter;
- if (hwpoison_filter_task(p))
- return -EINVAL;
+ rcu_read_lock();
+ filter = rcu_dereference(hwpoison_filter_func);
+ if (filter)
+ ret = filter(p);
+ rcu_read_unlock();
- return 0;
-}
-#else
-int hwpoison_filter(struct page *p)
-{
- return 0;
+ return ret;
}
-#endif
-
-EXPORT_SYMBOL_GPL(hwpoison_filter);
/*
* Kill all processes that have a poisoned page mapped and then isolate
@@ -255,30 +289,24 @@ static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
short addr_lsb = tk->size_shift;
int ret = 0;
- pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
- pfn, t->comm, t->pid);
+ pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
+ pfn, t->comm, task_pid_nr(t));
- if (flags & MF_ACTION_REQUIRED) {
- if (t == current)
- ret = force_sig_mceerr(BUS_MCEERR_AR,
- (void __user *)tk->addr, addr_lsb);
- else
- /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
- ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
- addr_lsb, t);
- } else {
+ if ((flags & MF_ACTION_REQUIRED) && (t == current))
+ ret = force_sig_mceerr(BUS_MCEERR_AR,
+ (void __user *)tk->addr, addr_lsb);
+ else
/*
+ * Signal other processes sharing the page if they have
+ * PF_MCE_EARLY set.
* Don't use force here, it's convenient if the signal
* can be temporarily blocked.
- * This could cause a loop when the user sets SIGBUS
- * to SIG_IGN, but hopefully no one will do that?
*/
ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
- addr_lsb, t); /* synchronous? */
- }
+ addr_lsb, t);
if (ret < 0)
- pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
- t->comm, t->pid, ret);
+ pr_info("Error sending signal to %s:%d: %d\n",
+ t->comm, task_pid_nr(t), ret);
return ret;
}
@@ -286,35 +314,38 @@ static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
* Unknown page type encountered. Try to check whether it can turn PageLRU by
* lru_add_drain_all.
*/
-void shake_page(struct page *p)
+void shake_folio(struct folio *folio)
{
- if (PageHuge(p))
+ if (folio_test_hugetlb(folio))
return;
-
- if (!PageSlab(p)) {
- lru_add_drain_all();
- if (PageLRU(p) || is_free_buddy_page(p))
- return;
- }
-
/*
* TODO: Could shrink slab caches here if a lightweight range-based
* shrinker will be available.
*/
+ if (folio_test_slab(folio))
+ return;
+
+ lru_add_drain_all();
+}
+EXPORT_SYMBOL_GPL(shake_folio);
+
+static void shake_page(struct page *page)
+{
+ shake_folio(page_folio(page));
}
-EXPORT_SYMBOL_GPL(shake_page);
-static unsigned long dev_pagemap_mapping_shift(struct page *page,
- struct vm_area_struct *vma)
+static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
+ unsigned long address)
{
- unsigned long address = vma_address(page, vma);
unsigned long ret = 0;
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
+ pte_t ptent;
+ VM_BUG_ON_VMA(address == -EFAULT, vma);
pgd = pgd_offset(vma->vm_mm, address);
if (!pgd_present(*pgd))
return 0;
@@ -324,15 +355,18 @@ static unsigned long dev_pagemap_mapping_shift(struct page *page,
pud = pud_offset(p4d, address);
if (!pud_present(*pud))
return 0;
- if (pud_devmap(*pud))
+ if (pud_trans_huge(*pud))
return PUD_SHIFT;
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return 0;
- if (pmd_devmap(*pmd))
+ if (pmd_trans_huge(*pmd))
return PMD_SHIFT;
pte = pte_offset_map(pmd, address);
- if (pte_present(*pte) && pte_devmap(*pte))
+ if (!pte)
+ return 0;
+ ptent = ptep_get(pte);
+ if (pte_present(ptent))
ret = PAGE_SHIFT;
pte_unmap(pte);
return ret;
@@ -347,23 +381,23 @@ static unsigned long dev_pagemap_mapping_shift(struct page *page,
* Schedule a process for later kill.
* Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
*/
-static void add_to_kill(struct task_struct *tsk, struct page *p,
- struct vm_area_struct *vma,
- struct list_head *to_kill)
+static void __add_to_kill(struct task_struct *tsk, const struct page *p,
+ struct vm_area_struct *vma, struct list_head *to_kill,
+ unsigned long addr)
{
struct to_kill *tk;
tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
if (!tk) {
- pr_err("Memory failure: Out of memory while machine check handling\n");
+ pr_err("Out of memory while machine check handling\n");
return;
}
- tk->addr = page_address_in_vma(p, vma);
+ tk->addr = addr;
if (is_zone_device_page(p))
- tk->size_shift = dev_pagemap_mapping_shift(p, vma);
+ tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
else
- tk->size_shift = page_shift(compound_head(p));
+ tk->size_shift = folio_shift(page_folio(p));
/*
* Send SIGKILL if "tk->addr == -EFAULT". Also, as
@@ -376,7 +410,7 @@ static void add_to_kill(struct task_struct *tsk, struct page *p,
* has a mapping for the page.
*/
if (tk->addr == -EFAULT) {
- pr_info("Memory failure: Unable to find user space address %lx in %s\n",
+ pr_info("Unable to find user space address %lx in %s\n",
page_to_pfn(p), tsk->comm);
} else if (tk->size_shift == 0) {
kfree(tk);
@@ -388,29 +422,53 @@ static void add_to_kill(struct task_struct *tsk, struct page *p,
list_add_tail(&tk->nd, to_kill);
}
+static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
+ struct vm_area_struct *vma, struct list_head *to_kill,
+ unsigned long addr)
+{
+ if (addr == -EFAULT)
+ return;
+ __add_to_kill(tsk, p, vma, to_kill, addr);
+}
+
+#ifdef CONFIG_KSM
+static bool task_in_to_kill_list(struct list_head *to_kill,
+ struct task_struct *tsk)
+{
+ struct to_kill *tk, *next;
+
+ list_for_each_entry_safe(tk, next, to_kill, nd) {
+ if (tk->tsk == tsk)
+ return true;
+ }
+
+ return false;
+}
+
+void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
+ struct vm_area_struct *vma, struct list_head *to_kill,
+ unsigned long addr)
+{
+ if (!task_in_to_kill_list(to_kill, tsk))
+ __add_to_kill(tsk, p, vma, to_kill, addr);
+}
+#endif
/*
* Kill the processes that have been collected earlier.
*
* Only do anything when FORCEKILL is set, otherwise just free the
* list (this is used for clean pages which do not need killing)
- * Also when FAIL is set do a force kill because something went
- * wrong earlier.
*/
-static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
+static void kill_procs(struct list_head *to_kill, int forcekill,
unsigned long pfn, int flags)
{
struct to_kill *tk, *next;
- list_for_each_entry_safe (tk, next, to_kill, nd) {
+ list_for_each_entry_safe(tk, next, to_kill, nd) {
if (forcekill) {
- /*
- * In case something went wrong with munmapping
- * make sure the process doesn't catch the
- * signal and then access the memory. Just kill it.
- */
- if (fail || tk->addr == -EFAULT) {
- pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
- pfn, tk->tsk->comm, tk->tsk->pid);
+ if (tk->addr == -EFAULT) {
+ pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
+ pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
tk->tsk, PIDTYPE_PID);
}
@@ -422,9 +480,10 @@ static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
* process anyways.
*/
else if (kill_proc(tk, pfn, flags) < 0)
- pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
- pfn, tk->tsk->comm, tk->tsk->pid);
+ pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
+ pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
}
+ list_del(&tk->nd);
put_task_struct(tk->tsk);
kfree(tk);
}
@@ -435,8 +494,8 @@ static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
* on behalf of the thread group. Return task_struct of the (first found)
* dedicated thread if found, and return NULL otherwise.
*
- * We already hold read_lock(&tasklist_lock) in the caller, so we don't
- * have to call rcu_read_lock/unlock() in this function.
+ * We already hold rcu lock in the caller, so we don't have to call
+ * rcu_read_lock/unlock() in this function.
*/
static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
{
@@ -466,8 +525,7 @@ static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
* processes sharing the same error page,if the process is "early kill", the
* task_struct of the dedicated thread will also be returned.
*/
-static struct task_struct *task_early_kill(struct task_struct *tsk,
- int force_early)
+struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
{
if (!tsk->mm)
return NULL;
@@ -484,55 +542,59 @@ static struct task_struct *task_early_kill(struct task_struct *tsk,
/*
* Collect processes when the error hit an anonymous page.
*/
-static void collect_procs_anon(struct page *page, struct list_head *to_kill,
- int force_early)
+static void collect_procs_anon(const struct folio *folio,
+ const struct page *page, struct list_head *to_kill,
+ int force_early)
{
- struct vm_area_struct *vma;
struct task_struct *tsk;
struct anon_vma *av;
pgoff_t pgoff;
- av = page_lock_anon_vma_read(page);
+ av = folio_lock_anon_vma_read(folio, NULL);
if (av == NULL) /* Not actually mapped anymore */
return;
- pgoff = page_to_pgoff(page);
- read_lock(&tasklist_lock);
- for_each_process (tsk) {
+ pgoff = page_pgoff(folio, page);
+ rcu_read_lock();
+ for_each_process(tsk) {
+ struct vm_area_struct *vma;
struct anon_vma_chain *vmac;
struct task_struct *t = task_early_kill(tsk, force_early);
+ unsigned long addr;
if (!t)
continue;
anon_vma_interval_tree_foreach(vmac, &av->rb_root,
pgoff, pgoff) {
vma = vmac->vma;
- if (!page_mapped_in_vma(page, vma))
+ if (vma->vm_mm != t->mm)
continue;
- if (vma->vm_mm == t->mm)
- add_to_kill(t, page, vma, to_kill);
+ addr = page_mapped_in_vma(page, vma);
+ add_to_kill_anon_file(t, page, vma, to_kill, addr);
}
}
- read_unlock(&tasklist_lock);
- page_unlock_anon_vma_read(av);
+ rcu_read_unlock();
+ anon_vma_unlock_read(av);
}
/*
* Collect processes when the error hit a file mapped page.
*/
-static void collect_procs_file(struct page *page, struct list_head *to_kill,
- int force_early)
+static void collect_procs_file(const struct folio *folio,
+ const struct page *page, struct list_head *to_kill,
+ int force_early)
{
struct vm_area_struct *vma;
struct task_struct *tsk;
- struct address_space *mapping = page->mapping;
+ struct address_space *mapping = folio->mapping;
pgoff_t pgoff;
i_mmap_lock_read(mapping);
- read_lock(&tasklist_lock);
- pgoff = page_to_pgoff(page);
+ rcu_read_lock();
+ pgoff = page_pgoff(folio, page);
for_each_process(tsk) {
struct task_struct *t = task_early_kill(tsk, force_early);
+ unsigned long addr;
if (!t)
continue;
@@ -541,34 +603,80 @@ static void collect_procs_file(struct page *page, struct list_head *to_kill,
/*
* Send early kill signal to tasks where a vma covers
* the page but the corrupted page is not necessarily
- * mapped it in its pte.
+ * mapped in its pte.
* Assume applications who requested early kill want
* to be informed of all such data corruptions.
*/
+ if (vma->vm_mm != t->mm)
+ continue;
+ addr = page_address_in_vma(folio, page, vma);
+ add_to_kill_anon_file(t, page, vma, to_kill, addr);
+ }
+ }
+ rcu_read_unlock();
+ i_mmap_unlock_read(mapping);
+}
+
+#ifdef CONFIG_FS_DAX
+static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
+ struct vm_area_struct *vma,
+ struct list_head *to_kill, pgoff_t pgoff)
+{
+ unsigned long addr = vma_address(vma, pgoff, 1);
+ __add_to_kill(tsk, p, vma, to_kill, addr);
+}
+
+/*
+ * Collect processes when the error hit a fsdax page.
+ */
+static void collect_procs_fsdax(const struct page *page,
+ struct address_space *mapping, pgoff_t pgoff,
+ struct list_head *to_kill, bool pre_remove)
+{
+ struct vm_area_struct *vma;
+ struct task_struct *tsk;
+
+ i_mmap_lock_read(mapping);
+ rcu_read_lock();
+ for_each_process(tsk) {
+ struct task_struct *t = tsk;
+
+ /*
+ * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
+ * the current may not be the one accessing the fsdax page.
+ * Otherwise, search for the current task.
+ */
+ if (!pre_remove)
+ t = task_early_kill(tsk, true);
+ if (!t)
+ continue;
+ vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
if (vma->vm_mm == t->mm)
- add_to_kill(t, page, vma, to_kill);
+ add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
}
}
- read_unlock(&tasklist_lock);
+ rcu_read_unlock();
i_mmap_unlock_read(mapping);
}
+#endif /* CONFIG_FS_DAX */
/*
* Collect the processes who have the corrupted page mapped to kill.
*/
-static void collect_procs(struct page *page, struct list_head *tokill,
- int force_early)
+static void collect_procs(const struct folio *folio, const struct page *page,
+ struct list_head *tokill, int force_early)
{
- if (!page->mapping)
+ if (!folio->mapping)
return;
-
- if (PageAnon(page))
- collect_procs_anon(page, tokill, force_early);
+ if (unlikely(folio_test_ksm(folio)))
+ collect_procs_ksm(folio, page, tokill, force_early);
+ else if (folio_test_anon(folio))
+ collect_procs_anon(folio, page, tokill, force_early);
else
- collect_procs_file(page, tokill, force_early);
+ collect_procs_file(folio, page, tokill, force_early);
}
-struct hwp_walk {
+struct hwpoison_walk {
struct to_kill tk;
unsigned long pfn;
int flags;
@@ -588,10 +696,10 @@ static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
if (pte_present(pte)) {
pfn = pte_pfn(pte);
} else {
- swp_entry_t swp = pte_to_swp_entry(pte);
+ const softleaf_t entry = softleaf_from_pte(pte);
- if (is_hwpoison_entry(swp))
- pfn = hwpoison_entry_to_pfn(swp);
+ if (softleaf_is_hwpoison(entry))
+ pfn = softleaf_to_pfn(entry);
}
if (!pfn || pfn != poisoned_pfn)
@@ -603,7 +711,7 @@ static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
- struct hwp_walk *hwp)
+ struct hwpoison_walk *hwp)
{
pmd_t pmd = *pmdp;
unsigned long pfn;
@@ -621,7 +729,7 @@ static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
}
#else
static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
- struct hwp_walk *hwp)
+ struct hwpoison_walk *hwp)
{
return 0;
}
@@ -630,7 +738,7 @@ static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
- struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
+ struct hwpoison_walk *hwp = walk->private;
int ret = 0;
pte_t *ptep, *mapped_pte;
spinlock_t *ptl;
@@ -642,13 +750,13 @@ static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
goto out;
}
- if (pmd_trans_unstable(pmdp))
- goto out;
-
mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
addr, &ptl);
+ if (!ptep)
+ goto out;
+
for (; addr != end; ptep++, addr += PAGE_SIZE) {
- ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
+ ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
hwp->pfn, &hwp->tk);
if (ret == 1)
break;
@@ -664,20 +772,35 @@ static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
- struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
- pte_t pte = huge_ptep_get(ptep);
+ struct hwpoison_walk *hwp = walk->private;
struct hstate *h = hstate_vma(walk->vma);
+ spinlock_t *ptl;
+ pte_t pte;
+ int ret;
- return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
- hwp->pfn, &hwp->tk);
+ ptl = huge_pte_lock(h, walk->mm, ptep);
+ pte = huge_ptep_get(walk->mm, addr, ptep);
+ ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
+ hwp->pfn, &hwp->tk);
+ spin_unlock(ptl);
+ return ret;
}
#else
#define hwpoison_hugetlb_range NULL
#endif
-static const struct mm_walk_ops hwp_walk_ops = {
+static int hwpoison_test_walk(unsigned long start, unsigned long end,
+ struct mm_walk *walk)
+{
+ /* We also want to consider pages mapped into VM_PFNMAP. */
+ return 0;
+}
+
+static const struct mm_walk_ops hwpoison_walk_ops = {
.pmd_entry = hwpoison_pte_range,
.hugetlb_entry = hwpoison_hugetlb_range,
+ .test_walk = hwpoison_test_walk,
+ .walk_lock = PGWALK_RDLOCK,
};
/*
@@ -697,20 +820,52 @@ static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
int flags)
{
int ret;
- struct hwp_walk priv = {
+ struct hwpoison_walk priv = {
.pfn = pfn,
};
priv.tk.tsk = p;
+ if (!p->mm)
+ return -EFAULT;
+
mmap_read_lock(p->mm);
- ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
+ ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
(void *)&priv);
+ /*
+ * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
+ * succeeds or fails, then kill the process with SIGBUS.
+ * ret = 0 when poison page is a clean page and it's dropped, no
+ * SIGBUS is needed.
+ */
if (ret == 1 && priv.tk.addr)
kill_proc(&priv.tk, pfn, flags);
mmap_read_unlock(p->mm);
- return ret ? -EFAULT : -EHWPOISON;
+
+ return ret > 0 ? -EHWPOISON : 0;
}
+/*
+ * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
+ * But it could not do more to isolate the page from being accessed again,
+ * nor does it kill the process. This is extremely rare and one of the
+ * potential causes is that the page state has been changed due to
+ * underlying race condition. This is the most severe outcomes.
+ *
+ * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
+ * It should have killed the process, but it can't isolate the page,
+ * due to conditions such as extra pin, unmap failure, etc. Accessing
+ * the page again may trigger another MCE and the process will be killed
+ * by the m-f() handler immediately.
+ *
+ * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
+ * The page is unmapped, and is removed from the LRU or file mapping.
+ * An attempt to access the page again will trigger page fault and the
+ * PF handler will kill the process.
+ *
+ * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
+ * The page has been completely isolated, that is, unmapped, taken out of
+ * the buddy system, or hole-punnched out of the file mapping.
+ */
static const char *action_name[] = {
[MF_IGNORED] = "Ignored",
[MF_FAILED] = "Failed",
@@ -721,11 +876,9 @@ static const char *action_name[] = {
static const char * const action_page_types[] = {
[MF_MSG_KERNEL] = "reserved kernel page",
[MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
- [MF_MSG_SLAB] = "kernel slab page",
- [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
[MF_MSG_HUGE] = "huge page",
[MF_MSG_FREE_HUGE] = "free huge page",
- [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
+ [MF_MSG_GET_HWPOISON] = "get hwpoison page",
[MF_MSG_UNMAP_FAILED] = "unmapping failed page",
[MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
[MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
@@ -739,6 +892,8 @@ static const char * const action_page_types[] = {
[MF_MSG_BUDDY] = "free buddy page",
[MF_MSG_DAX] = "dax page",
[MF_MSG_UNSPLIT_THP] = "unsplit thp",
+ [MF_MSG_ALREADY_POISONED] = "already poisoned page",
+ [MF_MSG_PFN_MAP] = "non struct page pfn",
[MF_MSG_UNKNOWN] = "unknown page",
};
@@ -748,59 +903,54 @@ static const char * const action_page_types[] = {
* The page count will stop it from being freed by unpoison.
* Stress tests should be aware of this memory leak problem.
*/
-static int delete_from_lru_cache(struct page *p)
+static int delete_from_lru_cache(struct folio *folio)
{
- if (!isolate_lru_page(p)) {
+ if (folio_isolate_lru(folio)) {
/*
* Clear sensible page flags, so that the buddy system won't
- * complain when the page is unpoison-and-freed.
+ * complain when the folio is unpoison-and-freed.
*/
- ClearPageActive(p);
- ClearPageUnevictable(p);
+ folio_clear_active(folio);
+ folio_clear_unevictable(folio);
/*
* Poisoned page might never drop its ref count to 0 so we have
* to uncharge it manually from its memcg.
*/
- mem_cgroup_uncharge(page_folio(p));
+ mem_cgroup_uncharge(folio);
/*
- * drop the page count elevated by isolate_lru_page()
+ * drop the refcount elevated by folio_isolate_lru()
*/
- put_page(p);
+ folio_put(folio);
return 0;
}
return -EIO;
}
-static int truncate_error_page(struct page *p, unsigned long pfn,
+static int truncate_error_folio(struct folio *folio, unsigned long pfn,
struct address_space *mapping)
{
int ret = MF_FAILED;
- if (mapping->a_ops->error_remove_page) {
- int err = mapping->a_ops->error_remove_page(mapping, p);
+ if (mapping->a_ops->error_remove_folio) {
+ int err = mapping->a_ops->error_remove_folio(mapping, folio);
- if (err != 0) {
- pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
- pfn, err);
- } else if (page_has_private(p) &&
- !try_to_release_page(p, GFP_NOIO)) {
- pr_info("Memory failure: %#lx: failed to release buffers\n",
- pfn);
- } else {
+ if (err != 0)
+ pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
+ else if (!filemap_release_folio(folio, GFP_NOIO))
+ pr_info("%#lx: failed to release buffers\n", pfn);
+ else
ret = MF_RECOVERED;
- }
} else {
/*
* If the file system doesn't support it just invalidate
* This fails on dirty or anything with private pages
*/
- if (invalidate_inode_page(p))
+ if (mapping_evict_folio(mapping, folio))
ret = MF_RECOVERED;
else
- pr_info("Memory failure: %#lx: Failed to invalidate\n",
- pfn);
+ pr_info("%#lx: Failed to invalidate\n", pfn);
}
return ret;
@@ -827,10 +977,10 @@ static bool has_extra_refcount(struct page_state *ps, struct page *p,
int count = page_count(p) - 1;
if (extra_pins)
- count -= 1;
+ count -= folio_nr_pages(page_folio(p));
if (count > 0) {
- pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
+ pr_err("%#lx: %s still referenced by %d users\n",
page_to_pfn(p), action_page_types[ps->type], count);
return true;
}
@@ -851,12 +1001,13 @@ static int me_kernel(struct page_state *ps, struct page *p)
/*
* Page in unknown state. Do nothing.
+ * This is a catch-all in case we fail to make sense of the page state.
*/
static int me_unknown(struct page_state *ps, struct page *p)
{
- pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
+ pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
unlock_page(p);
- return MF_FAILED;
+ return MF_IGNORED;
}
/*
@@ -864,17 +1015,18 @@ static int me_unknown(struct page_state *ps, struct page *p)
*/
static int me_pagecache_clean(struct page_state *ps, struct page *p)
{
+ struct folio *folio = page_folio(p);
int ret;
struct address_space *mapping;
bool extra_pins;
- delete_from_lru_cache(p);
+ delete_from_lru_cache(folio);
/*
- * For anonymous pages we're done the only reference left
+ * For anonymous folios the only reference left
* should be the one m_f() holds.
*/
- if (PageAnon(p)) {
+ if (folio_test_anon(folio)) {
ret = MF_RECOVERED;
goto out;
}
@@ -886,11 +1038,9 @@ static int me_pagecache_clean(struct page_state *ps, struct page *p)
* has a reference, because it could be file system metadata
* and that's not safe to truncate.
*/
- mapping = page_mapping(p);
+ mapping = folio_mapping(folio);
if (!mapping) {
- /*
- * Page has been teared down in the meanwhile
- */
+ /* Folio has been torn down in the meantime */
ret = MF_FAILED;
goto out;
}
@@ -906,12 +1056,12 @@ static int me_pagecache_clean(struct page_state *ps, struct page *p)
*
* Open: to take i_rwsem or not for this? Right now we don't.
*/
- ret = truncate_error_page(p, page_to_pfn(p), mapping);
+ ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
if (has_extra_refcount(ps, p, extra_pins))
ret = MF_FAILED;
out:
- unlock_page(p);
+ folio_unlock(folio);
return ret;
}
@@ -923,9 +1073,9 @@ out:
*/
static int me_pagecache_dirty(struct page_state *ps, struct page *p)
{
- struct address_space *mapping = page_mapping(p);
+ struct folio *folio = page_folio(p);
+ struct address_space *mapping = folio_mapping(folio);
- SetPageError(p);
/* TBD: print more information about the file. */
if (mapping) {
/*
@@ -933,34 +1083,6 @@ static int me_pagecache_dirty(struct page_state *ps, struct page *p)
* who check the mapping.
* This way the application knows that something went
* wrong with its dirty file data.
- *
- * There's one open issue:
- *
- * The EIO will be only reported on the next IO
- * operation and then cleared through the IO map.
- * Normally Linux has two mechanisms to pass IO error
- * first through the AS_EIO flag in the address space
- * and then through the PageError flag in the page.
- * Since we drop pages on memory failure handling the
- * only mechanism open to use is through AS_AIO.
- *
- * This has the disadvantage that it gets cleared on
- * the first operation that returns an error, while
- * the PageError bit is more sticky and only cleared
- * when the page is reread or dropped. If an
- * application assumes it will always get error on
- * fsync, but does other operations on the fd before
- * and the page is dropped between then the error
- * will not be properly reported.
- *
- * This can already happen even without hwpoisoned
- * pages: first on metadata IO errors (which only
- * report through AS_EIO) or when the page is dropped
- * at the wrong time.
- *
- * So right now we assume that the application DTRT on
- * the first EIO, but we're not worse than other parts
- * of the kernel.
*/
mapping_set_error(mapping, -EIO);
}
@@ -972,10 +1094,10 @@ static int me_pagecache_dirty(struct page_state *ps, struct page *p)
* Clean and dirty swap cache.
*
* Dirty swap cache page is tricky to handle. The page could live both in page
- * cache and swap cache(ie. page is freshly swapped in). So it could be
+ * table and swap cache(ie. page is freshly swapped in). So it could be
* referenced concurrently by 2 types of PTEs:
* normal PTEs and swap PTEs. We try to handle them consistently by calling
- * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
+ * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
* and then
* - clear dirty bit to prevent IO
* - remove from LRU
@@ -989,15 +1111,16 @@ static int me_pagecache_dirty(struct page_state *ps, struct page *p)
*/
static int me_swapcache_dirty(struct page_state *ps, struct page *p)
{
+ struct folio *folio = page_folio(p);
int ret;
bool extra_pins = false;
- ClearPageDirty(p);
+ folio_clear_dirty(folio);
/* Trigger EIO in shmem: */
- ClearPageUptodate(p);
+ folio_clear_uptodate(folio);
- ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
- unlock_page(p);
+ ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
+ folio_unlock(folio);
if (ret == MF_DELAYED)
extra_pins = true;
@@ -1010,12 +1133,13 @@ static int me_swapcache_dirty(struct page_state *ps, struct page *p)
static int me_swapcache_clean(struct page_state *ps, struct page *p)
{
+ struct folio *folio = page_folio(p);
int ret;
- delete_from_swap_cache(p);
+ swap_cache_del_folio(folio);
- ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
- unlock_page(p);
+ ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
+ folio_unlock(folio);
if (has_extra_refcount(ps, p, false))
ret = MF_FAILED;
@@ -1031,34 +1155,34 @@ static int me_swapcache_clean(struct page_state *ps, struct page *p)
*/
static int me_huge_page(struct page_state *ps, struct page *p)
{
+ struct folio *folio = page_folio(p);
int res;
- struct page *hpage = compound_head(p);
struct address_space *mapping;
+ bool extra_pins = false;
- if (!PageHuge(hpage))
- return MF_DELAYED;
-
- mapping = page_mapping(hpage);
+ mapping = folio_mapping(folio);
if (mapping) {
- res = truncate_error_page(hpage, page_to_pfn(p), mapping);
- unlock_page(hpage);
+ res = truncate_error_folio(folio, page_to_pfn(p), mapping);
+ /* The page is kept in page cache. */
+ extra_pins = true;
+ folio_unlock(folio);
} else {
- res = MF_FAILED;
- unlock_page(hpage);
+ folio_unlock(folio);
/*
- * migration entry prevents later access on error anonymous
- * hugepage, so we can free and dissolve it into buddy to
- * save healthy subpages.
+ * migration entry prevents later access on error hugepage,
+ * so we can free and dissolve it into buddy to save healthy
+ * subpages.
*/
- if (PageAnon(hpage))
- put_page(hpage);
- if (__page_handle_poison(p)) {
+ folio_put(folio);
+ if (__page_handle_poison(p) > 0) {
page_ref_inc(p);
res = MF_RECOVERED;
+ } else {
+ res = MF_FAILED;
}
}
- if (has_extra_refcount(ps, p, false))
+ if (has_extra_refcount(ps, p, extra_pins))
res = MF_FAILED;
return res;
@@ -1083,7 +1207,6 @@ static int me_huge_page(struct page_state *ps, struct page *p)
#define mlock (1UL << PG_mlocked)
#define lru (1UL << PG_lru)
#define head (1UL << PG_head)
-#define slab (1UL << PG_slab)
#define reserved (1UL << PG_reserved)
static struct page_state error_states[] = {
@@ -1093,13 +1216,6 @@ static struct page_state error_states[] = {
* PG_buddy pages only make a small fraction of all free pages.
*/
- /*
- * Could in theory check if slab page is free or if we can drop
- * currently unused objects without touching them. But just
- * treat it as standard kernel for now.
- */
- { slab, slab, MF_MSG_SLAB, me_kernel },
-
{ head, head, MF_MSG_HUGE, me_huge_page },
{ sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
@@ -1126,20 +1242,59 @@ static struct page_state error_states[] = {
#undef mlock
#undef lru
#undef head
-#undef slab
#undef reserved
+static void update_per_node_mf_stats(unsigned long pfn,
+ enum mf_result result)
+{
+ int nid = MAX_NUMNODES;
+ struct memory_failure_stats *mf_stats = NULL;
+
+ nid = pfn_to_nid(pfn);
+ if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
+ WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
+ return;
+ }
+
+ mf_stats = &NODE_DATA(nid)->mf_stats;
+ switch (result) {
+ case MF_IGNORED:
+ ++mf_stats->ignored;
+ break;
+ case MF_FAILED:
+ ++mf_stats->failed;
+ break;
+ case MF_DELAYED:
+ ++mf_stats->delayed;
+ break;
+ case MF_RECOVERED:
+ ++mf_stats->recovered;
+ break;
+ default:
+ WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
+ break;
+ }
+ ++mf_stats->total;
+}
+
/*
* "Dirty/Clean" indication is not 100% accurate due to the possibility of
* setting PG_dirty outside page lock. See also comment above set_page_dirty().
*/
-static void action_result(unsigned long pfn, enum mf_action_page_type type,
- enum mf_result result)
+static int action_result(unsigned long pfn, enum mf_action_page_type type,
+ enum mf_result result)
{
trace_memory_failure_event(pfn, type, result);
- pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
+ if (type != MF_MSG_ALREADY_POISONED && type != MF_MSG_PFN_MAP) {
+ num_poisoned_pages_inc(pfn);
+ update_per_node_mf_stats(pfn, result);
+ }
+
+ pr_err("%#lx: recovery action for %s: %s\n",
pfn, action_page_types[type], action_name[result]);
+
+ return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
}
static int page_action(struct page_state *ps, struct page *p,
@@ -1150,14 +1305,12 @@ static int page_action(struct page_state *ps, struct page *p,
/* page p should be unlocked after returning from ps->action(). */
result = ps->action(ps, p);
- action_result(pfn, ps->type, result);
-
/* Could do more checks here if page looks ok */
/*
* Could adjust zone counters here to correct for the missing page.
*/
- return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
+ return action_result(pfn, ps->type, result);
}
static inline bool PageHWPoisonTakenOff(struct page *page)
@@ -1182,41 +1335,56 @@ void ClearPageHWPoisonTakenOff(struct page *page)
* does not return true for hugetlb or device memory pages, so it's assumed
* to be called only in the context where we never have such pages.
*/
-static inline bool HWPoisonHandlable(struct page *page)
+static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
{
- return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
+ if (PageSlab(page))
+ return false;
+
+ /* Soft offline could migrate movable_ops pages */
+ if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page))
+ return true;
+
+ return PageLRU(page) || is_free_buddy_page(page);
}
-static int __get_hwpoison_page(struct page *page)
+static int __get_hwpoison_page(struct page *page, unsigned long flags)
{
- struct page *head = compound_head(page);
+ struct folio *folio = page_folio(page);
int ret = 0;
bool hugetlb = false;
- ret = get_hwpoison_huge_page(head, &hugetlb);
- if (hugetlb)
- return ret;
+ ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
+ if (hugetlb) {
+ /* Make sure hugetlb demotion did not happen from under us. */
+ if (folio == page_folio(page))
+ return ret;
+ if (ret > 0) {
+ folio_put(folio);
+ folio = page_folio(page);
+ }
+ }
/*
- * This check prevents from calling get_hwpoison_unless_zero()
- * for any unsupported type of page in order to reduce the risk of
- * unexpected races caused by taking a page refcount.
+ * This check prevents from calling folio_try_get() for any
+ * unsupported type of folio in order to reduce the risk of unexpected
+ * races caused by taking a folio refcount.
*/
- if (!HWPoisonHandlable(head))
+ if (!HWPoisonHandlable(&folio->page, flags))
return -EBUSY;
- if (get_page_unless_zero(head)) {
- if (head == compound_head(page))
+ if (folio_try_get(folio)) {
+ if (folio == page_folio(page))
return 1;
- pr_info("Memory failure: %#lx cannot catch tail\n",
- page_to_pfn(page));
- put_page(head);
+ pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
+ folio_put(folio);
}
return 0;
}
+#define GET_PAGE_MAX_RETRY_NUM 3
+
static int get_any_page(struct page *p, unsigned long flags)
{
int ret = 0, pass = 0;
@@ -1227,16 +1395,16 @@ static int get_any_page(struct page *p, unsigned long flags)
try_again:
if (!count_increased) {
- ret = __get_hwpoison_page(p);
+ ret = __get_hwpoison_page(p, flags);
if (!ret) {
if (page_count(p)) {
/* We raced with an allocation, retry. */
- if (pass++ < 3)
+ if (pass++ < GET_PAGE_MAX_RETRY_NUM)
goto try_again;
ret = -EBUSY;
} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
/* We raced with put_page, retry. */
- if (pass++ < 3)
+ if (pass++ < GET_PAGE_MAX_RETRY_NUM)
goto try_again;
ret = -EIO;
}
@@ -1255,14 +1423,14 @@ try_again:
}
}
- if (PageHuge(p) || HWPoisonHandlable(p)) {
+ if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
ret = 1;
} else {
/*
* A page we cannot handle. Check whether we can turn
* it into something we can handle.
*/
- if (pass++ < 3) {
+ if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
put_page(p);
shake_page(p);
count_increased = false;
@@ -1273,20 +1441,25 @@ try_again:
}
out:
if (ret == -EIO)
- dump_page(p, "hwpoison: unhandlable page");
+ pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
return ret;
}
static int __get_unpoison_page(struct page *page)
{
- struct page *head = compound_head(page);
+ struct folio *folio = page_folio(page);
int ret = 0;
bool hugetlb = false;
- ret = get_hwpoison_huge_page(head, &hugetlb);
- if (hugetlb)
- return ret;
+ ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
+ if (hugetlb) {
+ /* Make sure hugetlb demotion did not happen from under us. */
+ if (folio == page_folio(page))
+ return ret;
+ if (ret > 0)
+ folio_put(folio);
+ }
/*
* PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
@@ -1319,7 +1492,7 @@ static int __get_unpoison_page(struct page *page)
* the given page has PG_hwpoison. So it's never reused for other page
* allocations, and __get_unpoison_page() never races with them.
*
- * Return: 0 on failure,
+ * Return: 0 on failure or free buddy (hugetlb) page,
* 1 on success for in-use pages in a well-defined state,
* -EIO for pages on which we can not handle memory errors,
* -EBUSY when get_hwpoison_page() has raced with page lifecycle
@@ -1341,109 +1514,108 @@ static int get_hwpoison_page(struct page *p, unsigned long flags)
}
/*
+ * The caller must guarantee the folio isn't large folio, except hugetlb.
+ * try_to_unmap() can't handle it.
+ */
+int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
+{
+ enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
+ struct address_space *mapping;
+
+ if (folio_test_swapcache(folio)) {
+ pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
+ ttu &= ~TTU_HWPOISON;
+ }
+
+ /*
+ * Propagate the dirty bit from PTEs to struct page first, because we
+ * need this to decide if we should kill or just drop the page.
+ * XXX: the dirty test could be racy: set_page_dirty() may not always
+ * be called inside page lock (it's recommended but not enforced).
+ */
+ mapping = folio_mapping(folio);
+ if (!must_kill && !folio_test_dirty(folio) && mapping &&
+ mapping_can_writeback(mapping)) {
+ if (folio_mkclean(folio)) {
+ folio_set_dirty(folio);
+ } else {
+ ttu &= ~TTU_HWPOISON;
+ pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
+ pfn);
+ }
+ }
+
+ if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
+ /*
+ * For hugetlb folios in shared mappings, try_to_unmap
+ * could potentially call huge_pmd_unshare. Because of
+ * this, take semaphore in write mode here and set
+ * TTU_RMAP_LOCKED to indicate we have taken the lock
+ * at this higher level.
+ */
+ mapping = hugetlb_folio_mapping_lock_write(folio);
+ if (!mapping) {
+ pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
+ folio_pfn(folio));
+ return -EBUSY;
+ }
+
+ try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
+ i_mmap_unlock_write(mapping);
+ } else {
+ try_to_unmap(folio, ttu);
+ }
+
+ return folio_mapped(folio) ? -EBUSY : 0;
+}
+
+/*
* Do all that is necessary to remove user space mappings. Unmap
* the pages and send SIGBUS to the processes if the data was dirty.
*/
-static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
- int flags, struct page *hpage)
+static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
+ unsigned long pfn, int flags)
{
- enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
- struct address_space *mapping;
LIST_HEAD(tokill);
bool unmap_success;
- int kill = 1, forcekill;
- bool mlocked = PageMlocked(hpage);
+ int forcekill;
+ bool mlocked = folio_test_mlocked(folio);
/*
* Here we are interested only in user-mapped pages, so skip any
* other types of pages.
*/
- if (PageReserved(p) || PageSlab(p))
+ if (folio_test_reserved(folio) || folio_test_slab(folio) ||
+ folio_test_pgtable(folio) || folio_test_offline(folio))
return true;
- if (!(PageLRU(hpage) || PageHuge(p)))
+ if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
return true;
/*
* This check implies we don't kill processes if their pages
* are in the swap cache early. Those are always late kills.
*/
- if (!page_mapped(hpage))
+ if (!folio_mapped(folio))
return true;
- if (PageKsm(p)) {
- pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
- return false;
- }
-
- if (PageSwapCache(p)) {
- pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
- pfn);
- ttu |= TTU_IGNORE_HWPOISON;
- }
-
- /*
- * Propagate the dirty bit from PTEs to struct page first, because we
- * need this to decide if we should kill or just drop the page.
- * XXX: the dirty test could be racy: set_page_dirty() may not always
- * be called inside page lock (it's recommended but not enforced).
- */
- mapping = page_mapping(hpage);
- if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
- mapping_can_writeback(mapping)) {
- if (page_mkclean(hpage)) {
- SetPageDirty(hpage);
- } else {
- kill = 0;
- ttu |= TTU_IGNORE_HWPOISON;
- pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
- pfn);
- }
- }
-
/*
* First collect all the processes that have the page
* mapped in dirty form. This has to be done before try_to_unmap,
* because ttu takes the rmap data structures down.
- *
- * Error handling: We ignore errors here because
- * there's nothing that can be done.
*/
- if (kill)
- collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
+ collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
- if (!PageHuge(hpage)) {
- try_to_unmap(hpage, ttu);
- } else {
- if (!PageAnon(hpage)) {
- /*
- * For hugetlb pages in shared mappings, try_to_unmap
- * could potentially call huge_pmd_unshare. Because of
- * this, take semaphore in write mode here and set
- * TTU_RMAP_LOCKED to indicate we have taken the lock
- * at this higher level.
- */
- mapping = hugetlb_page_mapping_lock_write(hpage);
- if (mapping) {
- try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
- i_mmap_unlock_write(mapping);
- } else
- pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
- } else {
- try_to_unmap(hpage, ttu);
- }
- }
-
- unmap_success = !page_mapped(hpage);
+ unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
if (!unmap_success)
- pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
- pfn, page_mapcount(hpage));
+ pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
+ pfn, folio_mapcount(folio));
/*
* try_to_unmap() might put mlocked page in lru cache, so call
* shake_page() again to ensure that it's flushed.
*/
if (mlocked)
- shake_page(hpage);
+ shake_folio(folio);
/*
* Now that the dirty bit has been propagated to the
@@ -1455,8 +1627,9 @@ static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
* use a more force-full uncatchable kill to prevent
* any accesses to the poisoned memory.
*/
- forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
- kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
+ forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
+ !unmap_success;
+ kill_procs(&tokill, forcekill, pfn, flags);
return unmap_success;
}
@@ -1472,10 +1645,10 @@ static int identify_page_state(unsigned long pfn, struct page *p,
* carried out only if the first check can't determine the page status.
*/
for (ps = error_states;; ps++)
- if ((p->flags & ps->mask) == ps->res)
+ if ((p->flags.f & ps->mask) == ps->res)
break;
- page_flags |= (p->flags & (1UL << PG_dirty));
+ page_flags |= (p->flags.f & (1UL << PG_dirty));
if (!ps->mask)
for (ps = error_states;; ps++)
@@ -1484,116 +1657,67 @@ static int identify_page_state(unsigned long pfn, struct page *p,
return page_action(ps, p, pfn);
}
-static int try_to_split_thp_page(struct page *page, const char *msg)
+/*
+ * When 'release' is 'false', it means that if thp split has failed,
+ * there is still more to do, hence the page refcount we took earlier
+ * is still needed.
+ */
+static int try_to_split_thp_page(struct page *page, unsigned int new_order,
+ bool release)
{
+ int ret;
+
lock_page(page);
- if (unlikely(split_huge_page(page))) {
- unsigned long pfn = page_to_pfn(page);
+ ret = split_huge_page_to_order(page, new_order);
+ unlock_page(page);
- unlock_page(page);
- pr_info("%s: %#lx: thp split failed\n", msg, pfn);
+ if (ret && release)
put_page(page);
- return -EBUSY;
- }
- unlock_page(page);
- return 0;
+ return ret;
}
-static int memory_failure_hugetlb(unsigned long pfn, int flags)
+static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
+ struct address_space *mapping, pgoff_t index, int flags)
{
- struct page *p = pfn_to_page(pfn);
- struct page *head = compound_head(p);
- int res;
- unsigned long page_flags;
-
- if (TestSetPageHWPoison(head)) {
- pr_err("Memory failure: %#lx: already hardware poisoned\n",
- pfn);
- res = -EHWPOISON;
- if (flags & MF_ACTION_REQUIRED)
- res = kill_accessing_process(current, page_to_pfn(head), flags);
- return res;
- }
-
- num_poisoned_pages_inc();
-
- if (!(flags & MF_COUNT_INCREASED)) {
- res = get_hwpoison_page(p, flags);
- if (!res) {
- lock_page(head);
- if (hwpoison_filter(p)) {
- if (TestClearPageHWPoison(head))
- num_poisoned_pages_dec();
- unlock_page(head);
- return 0;
- }
- unlock_page(head);
- res = MF_FAILED;
- if (__page_handle_poison(p)) {
- page_ref_inc(p);
- res = MF_RECOVERED;
- }
- action_result(pfn, MF_MSG_FREE_HUGE, res);
- return res == MF_RECOVERED ? 0 : -EBUSY;
- } else if (res < 0) {
- action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
- return -EBUSY;
- }
- }
+ struct to_kill *tk;
+ unsigned long size = 0;
- lock_page(head);
- page_flags = head->flags;
+ list_for_each_entry(tk, to_kill, nd)
+ if (tk->size_shift)
+ size = max(size, 1UL << tk->size_shift);
- /*
- * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
- * simply disable it. In order to make it work properly, we need
- * make sure that:
- * - conversion of a pud that maps an error hugetlb into hwpoison
- * entry properly works, and
- * - other mm code walking over page table is aware of pud-aligned
- * hwpoison entries.
- */
- if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
- action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
- res = -EBUSY;
- goto out;
- }
+ if (size) {
+ /*
+ * Unmap the largest mapping to avoid breaking up device-dax
+ * mappings which are constant size. The actual size of the
+ * mapping being torn down is communicated in siginfo, see
+ * kill_proc()
+ */
+ loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
- if (!hwpoison_user_mappings(p, pfn, flags, head)) {
- action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
- res = -EBUSY;
- goto out;
+ unmap_mapping_range(mapping, start, size, 0);
}
- return identify_page_state(pfn, p, page_flags);
-out:
- unlock_page(head);
- return res;
+ kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
}
-static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
+/*
+ * Only dev_pagemap pages get here, such as fsdax when the filesystem
+ * either do not claim or fails to claim a hwpoison event, or devdax.
+ * The fsdax pages are initialized per base page, and the devdax pages
+ * could be initialized either as base pages, or as compound pages with
+ * vmemmap optimization enabled. Devdax is simplistic in its dealing with
+ * hwpoison, such that, if a subpage of a compound page is poisoned,
+ * simply mark the compound head page is by far sufficient.
+ */
+static int mf_generic_kill_procs(unsigned long long pfn, int flags,
struct dev_pagemap *pgmap)
{
- struct page *page = pfn_to_page(pfn);
- unsigned long size = 0;
- struct to_kill *tk;
- LIST_HEAD(tokill);
- int rc = -EBUSY;
- loff_t start;
+ struct folio *folio = pfn_folio(pfn);
+ LIST_HEAD(to_kill);
dax_entry_t cookie;
-
- if (flags & MF_COUNT_INCREASED)
- /*
- * Drop the extra refcount in case we come from madvise().
- */
- put_page(page);
-
- /* device metadata space is not recoverable */
- if (!pgmap_pfn_valid(pgmap, pfn)) {
- rc = -ENXIO;
- goto out;
- }
+ int rc = 0;
/*
* Prevent the inode from being freed while we are interrogating
@@ -1602,28 +1726,33 @@ static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
* also prevents changes to the mapping of this pfn until
* poison signaling is complete.
*/
- cookie = dax_lock_page(page);
+ cookie = dax_lock_folio(folio);
if (!cookie)
- goto out;
+ return -EBUSY;
- if (hwpoison_filter(page)) {
- rc = 0;
+ if (hwpoison_filter(&folio->page)) {
+ rc = -EOPNOTSUPP;
goto unlock;
}
- if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
+ switch (pgmap->type) {
+ case MEMORY_DEVICE_PRIVATE:
+ case MEMORY_DEVICE_COHERENT:
/*
- * TODO: Handle HMM pages which may need coordination
+ * TODO: Handle device pages which may need coordination
* with device-side memory.
*/
+ rc = -ENXIO;
goto unlock;
+ default:
+ break;
}
/*
* Use this flag as an indication that the dax page has been
* remapped UC to prevent speculative consumption of poison.
*/
- SetPageHWPoison(page);
+ SetPageHWPoison(&folio->page);
/*
* Unlike System-RAM there is no possibility to swap in a
@@ -1632,33 +1761,530 @@ static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
* SIGBUS (i.e. MF_MUST_KILL)
*/
flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
- collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
+ collect_procs(folio, &folio->page, &to_kill, true);
+
+ unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
+unlock:
+ dax_unlock_folio(folio, cookie);
+ return rc;
+}
+
+#ifdef CONFIG_FS_DAX
+/**
+ * mf_dax_kill_procs - Collect and kill processes who are using this file range
+ * @mapping: address_space of the file in use
+ * @index: start pgoff of the range within the file
+ * @count: length of the range, in unit of PAGE_SIZE
+ * @mf_flags: memory failure flags
+ */
+int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
+ unsigned long count, int mf_flags)
+{
+ LIST_HEAD(to_kill);
+ dax_entry_t cookie;
+ struct page *page;
+ size_t end = index + count;
+ bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
+
+ mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
+
+ for (; index < end; index++) {
+ page = NULL;
+ cookie = dax_lock_mapping_entry(mapping, index, &page);
+ if (!cookie)
+ return -EBUSY;
+ if (!page)
+ goto unlock;
+
+ if (!pre_remove)
+ SetPageHWPoison(page);
- list_for_each_entry(tk, &tokill, nd)
- if (tk->size_shift)
- size = max(size, 1UL << tk->size_shift);
- if (size) {
/*
- * Unmap the largest mapping to avoid breaking up
- * device-dax mappings which are constant size. The
- * actual size of the mapping being torn down is
- * communicated in siginfo, see kill_proc()
+ * The pre_remove case is revoking access, the memory is still
+ * good and could theoretically be put back into service.
*/
- start = (page->index << PAGE_SHIFT) & ~(size - 1);
- unmap_mapping_range(page->mapping, start, size, 0);
- }
- kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
- rc = 0;
+ collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
+ unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
+ index, mf_flags);
unlock:
- dax_unlock_page(page, cookie);
+ dax_unlock_mapping_entry(mapping, index, cookie);
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
+#endif /* CONFIG_FS_DAX */
+
+#ifdef CONFIG_HUGETLB_PAGE
+
+/*
+ * Struct raw_hwp_page represents information about "raw error page",
+ * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
+ */
+struct raw_hwp_page {
+ struct llist_node node;
+ struct page *page;
+};
+
+static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
+{
+ return (struct llist_head *)&folio->_hugetlb_hwpoison;
+}
+
+bool is_raw_hwpoison_page_in_hugepage(struct page *page)
+{
+ struct llist_head *raw_hwp_head;
+ struct raw_hwp_page *p;
+ struct folio *folio = page_folio(page);
+ bool ret = false;
+
+ if (!folio_test_hwpoison(folio))
+ return false;
+
+ if (!folio_test_hugetlb(folio))
+ return PageHWPoison(page);
+
+ /*
+ * When RawHwpUnreliable is set, kernel lost track of which subpages
+ * are HWPOISON. So return as if ALL subpages are HWPOISONed.
+ */
+ if (folio_test_hugetlb_raw_hwp_unreliable(folio))
+ return true;
+
+ mutex_lock(&mf_mutex);
+
+ raw_hwp_head = raw_hwp_list_head(folio);
+ llist_for_each_entry(p, raw_hwp_head->first, node) {
+ if (page == p->page) {
+ ret = true;
+ break;
+ }
+ }
+
+ mutex_unlock(&mf_mutex);
+
+ return ret;
+}
+
+static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
+{
+ struct llist_node *head;
+ struct raw_hwp_page *p, *next;
+ unsigned long count = 0;
+
+ head = llist_del_all(raw_hwp_list_head(folio));
+ llist_for_each_entry_safe(p, next, head, node) {
+ if (move_flag)
+ SetPageHWPoison(p->page);
+ else
+ num_poisoned_pages_sub(page_to_pfn(p->page), 1);
+ kfree(p);
+ count++;
+ }
+ return count;
+}
+
+static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
+{
+ struct llist_head *head;
+ struct raw_hwp_page *raw_hwp;
+ struct raw_hwp_page *p;
+ int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
+
+ /*
+ * Once the hwpoison hugepage has lost reliable raw error info,
+ * there is little meaning to keep additional error info precisely,
+ * so skip to add additional raw error info.
+ */
+ if (folio_test_hugetlb_raw_hwp_unreliable(folio))
+ return -EHWPOISON;
+ head = raw_hwp_list_head(folio);
+ llist_for_each_entry(p, head->first, node) {
+ if (p->page == page)
+ return -EHWPOISON;
+ }
+
+ raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
+ if (raw_hwp) {
+ raw_hwp->page = page;
+ llist_add(&raw_hwp->node, head);
+ /* the first error event will be counted in action_result(). */
+ if (ret)
+ num_poisoned_pages_inc(page_to_pfn(page));
+ } else {
+ /*
+ * Failed to save raw error info. We no longer trace all
+ * hwpoisoned subpages, and we need refuse to free/dissolve
+ * this hwpoisoned hugepage.
+ */
+ folio_set_hugetlb_raw_hwp_unreliable(folio);
+ /*
+ * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
+ * used any more, so free it.
+ */
+ __folio_free_raw_hwp(folio, false);
+ }
+ return ret;
+}
+
+static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
+{
+ /*
+ * hugetlb_vmemmap_optimized hugepages can't be freed because struct
+ * pages for tail pages are required but they don't exist.
+ */
+ if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
+ return 0;
+
+ /*
+ * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
+ * definition.
+ */
+ if (folio_test_hugetlb_raw_hwp_unreliable(folio))
+ return 0;
+
+ return __folio_free_raw_hwp(folio, move_flag);
+}
+
+void folio_clear_hugetlb_hwpoison(struct folio *folio)
+{
+ if (folio_test_hugetlb_raw_hwp_unreliable(folio))
+ return;
+ if (folio_test_hugetlb_vmemmap_optimized(folio))
+ return;
+ folio_clear_hwpoison(folio);
+ folio_free_raw_hwp(folio, true);
+}
+
+/*
+ * Called from hugetlb code with hugetlb_lock held.
+ *
+ * Return values:
+ * 0 - free hugepage
+ * 1 - in-use hugepage
+ * 2 - not a hugepage
+ * -EBUSY - the hugepage is busy (try to retry)
+ * -EHWPOISON - the hugepage is already hwpoisoned
+ */
+int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
+ bool *migratable_cleared)
+{
+ struct page *page = pfn_to_page(pfn);
+ struct folio *folio = page_folio(page);
+ int ret = 2; /* fallback to normal page handling */
+ bool count_increased = false;
+
+ if (!folio_test_hugetlb(folio))
+ goto out;
+
+ if (flags & MF_COUNT_INCREASED) {
+ ret = 1;
+ count_increased = true;
+ } else if (folio_test_hugetlb_freed(folio)) {
+ ret = 0;
+ } else if (folio_test_hugetlb_migratable(folio)) {
+ ret = folio_try_get(folio);
+ if (ret)
+ count_increased = true;
+ } else {
+ ret = -EBUSY;
+ if (!(flags & MF_NO_RETRY))
+ goto out;
+ }
+
+ if (folio_set_hugetlb_hwpoison(folio, page)) {
+ ret = -EHWPOISON;
+ goto out;
+ }
+
+ /*
+ * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
+ * from being migrated by memory hotremove.
+ */
+ if (count_increased && folio_test_hugetlb_migratable(folio)) {
+ folio_clear_hugetlb_migratable(folio);
+ *migratable_cleared = true;
+ }
+
+ return ret;
+out:
+ if (count_increased)
+ folio_put(folio);
+ return ret;
+}
+
+/*
+ * Taking refcount of hugetlb pages needs extra care about race conditions
+ * with basic operations like hugepage allocation/free/demotion.
+ * So some of prechecks for hwpoison (pinning, and testing/setting
+ * PageHWPoison) should be done in single hugetlb_lock range.
+ */
+static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
+{
+ int res;
+ struct page *p = pfn_to_page(pfn);
+ struct folio *folio;
+ unsigned long page_flags;
+ bool migratable_cleared = false;
+
+ *hugetlb = 1;
+retry:
+ res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
+ if (res == 2) { /* fallback to normal page handling */
+ *hugetlb = 0;
+ return 0;
+ } else if (res == -EHWPOISON) {
+ if (flags & MF_ACTION_REQUIRED) {
+ folio = page_folio(p);
+ res = kill_accessing_process(current, folio_pfn(folio), flags);
+ }
+ action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
+ return res;
+ } else if (res == -EBUSY) {
+ if (!(flags & MF_NO_RETRY)) {
+ flags |= MF_NO_RETRY;
+ goto retry;
+ }
+ return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
+ }
+
+ folio = page_folio(p);
+ folio_lock(folio);
+
+ if (hwpoison_filter(p)) {
+ folio_clear_hugetlb_hwpoison(folio);
+ if (migratable_cleared)
+ folio_set_hugetlb_migratable(folio);
+ folio_unlock(folio);
+ if (res == 1)
+ folio_put(folio);
+ return -EOPNOTSUPP;
+ }
+
+ /*
+ * Handling free hugepage. The possible race with hugepage allocation
+ * or demotion can be prevented by PageHWPoison flag.
+ */
+ if (res == 0) {
+ folio_unlock(folio);
+ if (__page_handle_poison(p) > 0) {
+ page_ref_inc(p);
+ res = MF_RECOVERED;
+ } else {
+ res = MF_FAILED;
+ }
+ return action_result(pfn, MF_MSG_FREE_HUGE, res);
+ }
+
+ page_flags = folio->flags.f;
+
+ if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
+ folio_unlock(folio);
+ return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
+ }
+
+ return identify_page_state(pfn, p, page_flags);
+}
+
+#else
+static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
+{
+ return 0;
+}
+
+static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
+{
+ return 0;
+}
+#endif /* CONFIG_HUGETLB_PAGE */
+
+/* Drop the extra refcount in case we come from madvise() */
+static void put_ref_page(unsigned long pfn, int flags)
+{
+ if (!(flags & MF_COUNT_INCREASED))
+ return;
+
+ put_page(pfn_to_page(pfn));
+}
+
+static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
+ struct dev_pagemap *pgmap)
+{
+ int rc = -ENXIO;
+
+ /* device metadata space is not recoverable */
+ if (!pgmap_pfn_valid(pgmap, pfn))
+ goto out;
+
+ /*
+ * Call driver's implementation to handle the memory failure, otherwise
+ * fall back to generic handler.
+ */
+ if (pgmap_has_memory_failure(pgmap)) {
+ rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
+ /*
+ * Fall back to generic handler too if operation is not
+ * supported inside the driver/device/filesystem.
+ */
+ if (rc != -EOPNOTSUPP)
+ goto out;
+ }
+
+ rc = mf_generic_kill_procs(pfn, flags, pgmap);
out:
/* drop pgmap ref acquired in caller */
put_dev_pagemap(pgmap);
- action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
+ if (rc != -EOPNOTSUPP)
+ action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
return rc;
}
-static DEFINE_MUTEX(mf_mutex);
+/*
+ * The calling condition is as such: thp split failed, page might have
+ * been RDMA pinned, not much can be done for recovery.
+ * But a SIGBUS should be delivered with vaddr provided so that the user
+ * application has a chance to recover. Also, application processes'
+ * election for MCE early killed will be honored.
+ */
+static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
+ struct folio *folio)
+{
+ LIST_HEAD(tokill);
+
+ folio_lock(folio);
+ collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
+ folio_unlock(folio);
+
+ kill_procs(&tokill, true, pfn, flags);
+}
+
+int register_pfn_address_space(struct pfn_address_space *pfn_space)
+{
+ guard(mutex)(&pfn_space_lock);
+
+ if (interval_tree_iter_first(&pfn_space_itree,
+ pfn_space->node.start,
+ pfn_space->node.last))
+ return -EBUSY;
+
+ interval_tree_insert(&pfn_space->node, &pfn_space_itree);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(register_pfn_address_space);
+
+void unregister_pfn_address_space(struct pfn_address_space *pfn_space)
+{
+ guard(mutex)(&pfn_space_lock);
+
+ if (interval_tree_iter_first(&pfn_space_itree,
+ pfn_space->node.start,
+ pfn_space->node.last))
+ interval_tree_remove(&pfn_space->node, &pfn_space_itree);
+}
+EXPORT_SYMBOL_GPL(unregister_pfn_address_space);
+
+static void add_to_kill_pfn(struct task_struct *tsk,
+ struct vm_area_struct *vma,
+ struct list_head *to_kill,
+ unsigned long pfn)
+{
+ struct to_kill *tk;
+
+ tk = kmalloc(sizeof(*tk), GFP_ATOMIC);
+ if (!tk) {
+ pr_info("Unable to kill proc %d\n", tsk->pid);
+ return;
+ }
+
+ /* Check for pgoff not backed by struct page */
+ tk->addr = vma_address(vma, pfn, 1);
+ tk->size_shift = PAGE_SHIFT;
+
+ if (tk->addr == -EFAULT)
+ pr_info("Unable to find address %lx in %s\n",
+ pfn, tsk->comm);
+
+ get_task_struct(tsk);
+ tk->tsk = tsk;
+ list_add_tail(&tk->nd, to_kill);
+}
+
+/*
+ * Collect processes when the error hit a PFN not backed by struct page.
+ */
+static void collect_procs_pfn(struct address_space *mapping,
+ unsigned long pfn, struct list_head *to_kill)
+{
+ struct vm_area_struct *vma;
+ struct task_struct *tsk;
+
+ i_mmap_lock_read(mapping);
+ rcu_read_lock();
+ for_each_process(tsk) {
+ struct task_struct *t = tsk;
+
+ t = task_early_kill(tsk, true);
+ if (!t)
+ continue;
+ vma_interval_tree_foreach(vma, &mapping->i_mmap, pfn, pfn) {
+ if (vma->vm_mm == t->mm)
+ add_to_kill_pfn(t, vma, to_kill, pfn);
+ }
+ }
+ rcu_read_unlock();
+ i_mmap_unlock_read(mapping);
+}
+
+/**
+ * memory_failure_pfn - Handle memory failure on a page not backed by
+ * struct page.
+ * @pfn: Page Number of the corrupted page
+ * @flags: fine tune action taken
+ *
+ * Return:
+ * 0 - success,
+ * -EBUSY - Page PFN does not belong to any address space mapping.
+ */
+static int memory_failure_pfn(unsigned long pfn, int flags)
+{
+ struct interval_tree_node *node;
+ LIST_HEAD(tokill);
+
+ scoped_guard(mutex, &pfn_space_lock) {
+ bool mf_handled = false;
+
+ /*
+ * Modules registers with MM the address space mapping to
+ * the device memory they manage. Iterate to identify
+ * exactly which address space has mapped to this failing
+ * PFN.
+ */
+ for (node = interval_tree_iter_first(&pfn_space_itree, pfn, pfn); node;
+ node = interval_tree_iter_next(node, pfn, pfn)) {
+ struct pfn_address_space *pfn_space =
+ container_of(node, struct pfn_address_space, node);
+
+ collect_procs_pfn(pfn_space->mapping, pfn, &tokill);
+
+ mf_handled = true;
+ }
+
+ if (!mf_handled)
+ return action_result(pfn, MF_MSG_PFN_MAP, MF_IGNORED);
+ }
+
+ /*
+ * Unlike System-RAM there is no possibility to swap in a different
+ * physical page at a given virtual address, so all userspace
+ * consumption of direct PFN memory necessitates SIGBUS (i.e.
+ * MF_MUST_KILL)
+ */
+ flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
+
+ kill_procs(&tokill, true, pfn, flags);
+
+ return action_result(pfn, MF_MSG_PFN_MAP, MF_RECOVERED);
+}
/**
* memory_failure - Handle memory failure of a page.
@@ -1675,65 +2301,81 @@ static DEFINE_MUTEX(mf_mutex);
* detected by a background scrubber)
*
* Must run in process context (e.g. a work queue) with interrupts
- * enabled and no spinlocks hold.
+ * enabled and no spinlocks held.
+ *
+ * Return:
+ * 0 - success,
+ * -ENXIO - memory not managed by the kernel
+ * -EOPNOTSUPP - hwpoison_filter() filtered the error event,
+ * -EHWPOISON - the page was already poisoned, potentially
+ * kill process,
+ * other negative values - failure.
*/
int memory_failure(unsigned long pfn, int flags)
{
struct page *p;
- struct page *hpage;
- struct page *orig_head;
+ struct folio *folio;
struct dev_pagemap *pgmap;
int res = 0;
unsigned long page_flags;
bool retry = true;
+ int hugetlb = 0;
if (!sysctl_memory_failure_recovery)
panic("Memory failure on page %lx", pfn);
mutex_lock(&mf_mutex);
+ if (!(flags & MF_SW_SIMULATED))
+ hw_memory_failure = true;
+
p = pfn_to_online_page(pfn);
if (!p) {
res = arch_memory_failure(pfn, flags);
if (res == 0)
goto unlock_mutex;
+ if (!pfn_valid(pfn) && !arch_is_platform_page(PFN_PHYS(pfn))) {
+ /*
+ * The PFN is not backed by struct page.
+ */
+ res = memory_failure_pfn(pfn, flags);
+ goto unlock_mutex;
+ }
+
if (pfn_valid(pfn)) {
- pgmap = get_dev_pagemap(pfn, NULL);
+ pgmap = get_dev_pagemap(pfn);
+ put_ref_page(pfn, flags);
if (pgmap) {
res = memory_failure_dev_pagemap(pfn, flags,
pgmap);
goto unlock_mutex;
}
}
- pr_err("Memory failure: %#lx: memory outside kernel control\n",
- pfn);
+ pr_err("%#lx: memory outside kernel control\n", pfn);
res = -ENXIO;
goto unlock_mutex;
}
try_again:
- if (PageHuge(p)) {
- res = memory_failure_hugetlb(pfn, flags);
+ res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
+ if (hugetlb)
goto unlock_mutex;
- }
if (TestSetPageHWPoison(p)) {
- pr_err("Memory failure: %#lx: already hardware poisoned\n",
- pfn);
res = -EHWPOISON;
if (flags & MF_ACTION_REQUIRED)
res = kill_accessing_process(current, pfn, flags);
+ if (flags & MF_COUNT_INCREASED)
+ put_page(p);
+ action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
goto unlock_mutex;
}
- orig_head = hpage = compound_head(p);
- num_poisoned_pages_inc();
-
/*
* We need/can do nothing about count=0 pages.
* 1) it's a free page, and therefore in safe hand:
- * prep_new_page() will be the gate keeper.
+ * check_new_page() will be the gate keeper.
* 2) it's part of a non-compound high order page.
* Implies some kernel user: cannot stop them from
* R/W the page; let's pray that the page has been
@@ -1752,33 +2394,45 @@ try_again:
/* We lost the race, try again */
if (retry) {
ClearPageHWPoison(p);
- num_poisoned_pages_dec();
retry = false;
goto try_again;
}
res = MF_FAILED;
}
- action_result(pfn, MF_MSG_BUDDY, res);
- res = res == MF_RECOVERED ? 0 : -EBUSY;
+ res = action_result(pfn, MF_MSG_BUDDY, res);
} else {
- action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
- res = -EBUSY;
+ res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
}
goto unlock_mutex;
} else if (res < 0) {
- action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
- res = -EBUSY;
+ res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
goto unlock_mutex;
}
}
- if (PageTransHuge(hpage)) {
+ folio = page_folio(p);
+
+ /* filter pages that are protected from hwpoison test by users */
+ folio_lock(folio);
+ if (hwpoison_filter(p)) {
+ ClearPageHWPoison(p);
+ folio_unlock(folio);
+ folio_put(folio);
+ res = -EOPNOTSUPP;
+ goto unlock_mutex;
+ }
+ folio_unlock(folio);
+
+ if (folio_test_large(folio)) {
+ const int new_order = min_order_for_split(folio);
+ int err;
+
/*
* The flag must be set after the refcount is bumped
* otherwise it may race with THP split.
* And the flag can't be set in get_hwpoison_page() since
* it is called by soft offline too and it is just called
- * for !MF_COUNT_INCREASE. So here seems to be the best
+ * for !MF_COUNT_INCREASED. So here seems to be the best
* place.
*
* Don't need care about the above error handling paths for
@@ -1786,13 +2440,25 @@ try_again:
* or unhandlable page. The refcount is bumped iff the
* page is a valid handlable page.
*/
- SetPageHasHWPoisoned(hpage);
- if (try_to_split_thp_page(p, "Memory Failure") < 0) {
- action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
- res = -EBUSY;
+ folio_set_has_hwpoisoned(folio);
+ err = try_to_split_thp_page(p, new_order, /* release= */ false);
+ /*
+ * If splitting a folio to order-0 fails, kill the process.
+ * Split the folio regardless to minimize unusable pages.
+ * Because the memory failure code cannot handle large
+ * folios, this split is always treated as if it failed.
+ */
+ if (err || new_order) {
+ /* get folio again in case the original one is split */
+ folio = page_folio(p);
+ res = -EHWPOISON;
+ kill_procs_now(p, pfn, flags, folio);
+ put_page(p);
+ action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
goto unlock_mutex;
}
VM_BUG_ON_PAGE(!page_count(p), p);
+ folio = page_folio(p);
}
/*
@@ -1803,67 +2469,55 @@ try_again:
* The check (unnecessarily) ignores LRU pages being isolated and
* walked by the page reclaim code, however that's not a big loss.
*/
- shake_page(p);
+ shake_folio(folio);
- lock_page(p);
+ folio_lock(folio);
/*
- * The page could have changed compound pages during the locking.
- * If this happens just bail out.
+ * We're only intended to deal with the non-Compound page here.
+ * The page cannot become compound pages again as folio has been
+ * splited and extra refcnt is held.
*/
- if (PageCompound(p) && compound_head(p) != orig_head) {
- action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
- res = -EBUSY;
- goto unlock_page;
- }
+ WARN_ON(folio_test_large(folio));
/*
* We use page flags to determine what action should be taken, but
* the flags can be modified by the error containment action. One
* example is an mlocked page, where PG_mlocked is cleared by
- * page_remove_rmap() in try_to_unmap_one(). So to determine page status
- * correctly, we save a copy of the page flags at this time.
+ * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
+ * status correctly, we save a copy of the page flags at this time.
*/
- page_flags = p->flags;
-
- if (hwpoison_filter(p)) {
- if (TestClearPageHWPoison(p))
- num_poisoned_pages_dec();
- unlock_page(p);
- put_page(p);
- goto unlock_mutex;
- }
+ page_flags = folio->flags.f;
/*
- * __munlock_pagevec may clear a writeback page's LRU flag without
- * page_lock. We need wait writeback completion for this page or it
- * may trigger vfs BUG while evict inode.
+ * __munlock_folio() may clear a writeback folio's LRU flag without
+ * the folio lock. We need to wait for writeback completion for this
+ * folio or it may trigger a vfs BUG while evicting inode.
*/
- if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
+ if (!folio_test_lru(folio) && !folio_test_writeback(folio))
goto identify_page_state;
/*
* It's very difficult to mess with pages currently under IO
* and in many cases impossible, so we just avoid it here.
*/
- wait_on_page_writeback(p);
+ folio_wait_writeback(folio);
/*
* Now take care of user space mappings.
- * Abort on fail: __delete_from_page_cache() assumes unmapped page.
+ * Abort on fail: __filemap_remove_folio() assumes unmapped page.
*/
- if (!hwpoison_user_mappings(p, pfn, flags, p)) {
- action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
- res = -EBUSY;
+ if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
+ res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
goto unlock_page;
}
/*
* Torn down by someone else?
*/
- if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
- action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
- res = -EBUSY;
+ if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
+ folio->mapping == NULL) {
+ res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
goto unlock_page;
}
@@ -1872,7 +2526,7 @@ identify_page_state:
mutex_unlock(&mf_mutex);
return res;
unlock_page:
- unlock_page(p);
+ folio_unlock(folio);
unlock_mutex:
mutex_unlock(&mf_mutex);
return res;
@@ -1890,7 +2544,7 @@ struct memory_failure_entry {
struct memory_failure_cpu {
DECLARE_KFIFO(fifo, struct memory_failure_entry,
MEMORY_FAILURE_FIFO_SIZE);
- spinlock_t lock;
+ raw_spinlock_t lock;
struct work_struct work;
};
@@ -1916,20 +2570,22 @@ void memory_failure_queue(unsigned long pfn, int flags)
{
struct memory_failure_cpu *mf_cpu;
unsigned long proc_flags;
+ bool buffer_overflow;
struct memory_failure_entry entry = {
.pfn = pfn,
.flags = flags,
};
mf_cpu = &get_cpu_var(memory_failure_cpu);
- spin_lock_irqsave(&mf_cpu->lock, proc_flags);
- if (kfifo_put(&mf_cpu->fifo, entry))
+ raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
+ buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
+ if (!buffer_overflow)
schedule_work_on(smp_processor_id(), &mf_cpu->work);
- else
- pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
- pfn);
- spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
+ raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
put_cpu_var(memory_failure_cpu);
+ if (buffer_overflow)
+ pr_err("buffer overflow when queuing memory failure at %#lx\n",
+ pfn);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);
@@ -1942,9 +2598,9 @@ static void memory_failure_work_func(struct work_struct *work)
mf_cpu = container_of(work, struct memory_failure_cpu, work);
for (;;) {
- spin_lock_irqsave(&mf_cpu->lock, proc_flags);
+ raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
gotten = kfifo_get(&mf_cpu->fifo, &entry);
- spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
+ raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
if (!gotten)
break;
if (entry.flags & MF_SOFT_OFFLINE)
@@ -1954,19 +2610,6 @@ static void memory_failure_work_func(struct work_struct *work)
}
}
-/*
- * Process memory_failure work queued on the specified CPU.
- * Used to avoid return-to-userspace racing with the memory_failure workqueue.
- */
-void memory_failure_queue_kick(int cpu)
-{
- struct memory_failure_cpu *mf_cpu;
-
- mf_cpu = &per_cpu(memory_failure_cpu, cpu);
- cancel_work_sync(&mf_cpu->work);
- memory_failure_work_func(&mf_cpu->work);
-}
-
static int __init memory_failure_init(void)
{
struct memory_failure_cpu *mf_cpu;
@@ -1974,43 +2617,25 @@ static int __init memory_failure_init(void)
for_each_possible_cpu(cpu) {
mf_cpu = &per_cpu(memory_failure_cpu, cpu);
- spin_lock_init(&mf_cpu->lock);
+ raw_spin_lock_init(&mf_cpu->lock);
INIT_KFIFO(mf_cpu->fifo);
INIT_WORK(&mf_cpu->work, memory_failure_work_func);
}
+ register_sysctl_init("vm", memory_failure_table);
+
return 0;
}
core_initcall(memory_failure_init);
+#undef pr_fmt
+#define pr_fmt(fmt) "Unpoison: " fmt
#define unpoison_pr_info(fmt, pfn, rs) \
({ \
if (__ratelimit(rs)) \
pr_info(fmt, pfn); \
})
-static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p)
-{
- if (TestClearPageHWPoison(p)) {
- unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
- page_to_pfn(p), rs);
- num_poisoned_pages_dec();
- return 1;
- }
- return 0;
-}
-
-static inline int unpoison_taken_off_page(struct ratelimit_state *rs,
- struct page *p)
-{
- if (put_page_back_buddy(p)) {
- unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
- page_to_pfn(p), rs);
- return 0;
- }
- return -EBUSY;
-}
-
/**
* unpoison_memory - Unpoison a previously poisoned page
* @pfn: Page number of the to be unpoisoned page
@@ -2025,160 +2650,186 @@ static inline int unpoison_taken_off_page(struct ratelimit_state *rs,
*/
int unpoison_memory(unsigned long pfn)
{
- struct page *page;
+ struct folio *folio;
struct page *p;
- int ret = -EBUSY;
+ int ret = -EBUSY, ghp;
+ unsigned long count;
+ bool huge = false;
static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
- if (!pfn_valid(pfn))
- return -ENXIO;
-
- p = pfn_to_page(pfn);
- page = compound_head(p);
+ p = pfn_to_online_page(pfn);
+ if (!p)
+ return -EIO;
+ folio = page_folio(p);
mutex_lock(&mf_mutex);
- if (!PageHWPoison(p)) {
- unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
+ if (hw_memory_failure) {
+ unpoison_pr_info("%#lx: disabled after HW memory failure\n",
pfn, &unpoison_rs);
+ ret = -EOPNOTSUPP;
goto unlock_mutex;
}
- if (page_count(page) > 1) {
- unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
+ if (is_huge_zero_folio(folio)) {
+ unpoison_pr_info("%#lx: huge zero page is not supported\n",
pfn, &unpoison_rs);
+ ret = -EOPNOTSUPP;
goto unlock_mutex;
}
- if (page_mapped(page)) {
- unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
+ if (!PageHWPoison(p)) {
+ unpoison_pr_info("%#lx: page was already unpoisoned\n",
pfn, &unpoison_rs);
goto unlock_mutex;
}
- if (page_mapping(page)) {
- unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
+ if (folio_ref_count(folio) > 1) {
+ unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
pfn, &unpoison_rs);
goto unlock_mutex;
}
- if (PageSlab(page) || PageTable(page))
+ if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
+ folio_test_reserved(folio) || folio_test_offline(folio))
goto unlock_mutex;
- ret = get_hwpoison_page(p, MF_UNPOISON);
- if (!ret) {
- if (clear_page_hwpoison(&unpoison_rs, page))
- ret = 0;
- else
- ret = -EBUSY;
- } else if (ret < 0) {
- if (ret == -EHWPOISON) {
- ret = unpoison_taken_off_page(&unpoison_rs, p);
- } else
- unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
+ if (folio_mapped(folio)) {
+ unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
+ pfn, &unpoison_rs);
+ goto unlock_mutex;
+ }
+
+ if (folio_mapping(folio)) {
+ unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
+ pfn, &unpoison_rs);
+ goto unlock_mutex;
+ }
+
+ ghp = get_hwpoison_page(p, MF_UNPOISON);
+ if (!ghp) {
+ if (folio_test_hugetlb(folio)) {
+ huge = true;
+ count = folio_free_raw_hwp(folio, false);
+ if (count == 0)
+ goto unlock_mutex;
+ }
+ ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
+ } else if (ghp < 0) {
+ if (ghp == -EHWPOISON) {
+ ret = put_page_back_buddy(p) ? 0 : -EBUSY;
+ } else {
+ ret = ghp;
+ unpoison_pr_info("%#lx: failed to grab page\n",
pfn, &unpoison_rs);
+ }
} else {
- int freeit = clear_page_hwpoison(&unpoison_rs, p);
+ if (folio_test_hugetlb(folio)) {
+ huge = true;
+ count = folio_free_raw_hwp(folio, false);
+ if (count == 0) {
+ folio_put(folio);
+ goto unlock_mutex;
+ }
+ }
- put_page(page);
- if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
- put_page(page);
+ folio_put(folio);
+ if (TestClearPageHWPoison(p)) {
+ folio_put(folio);
ret = 0;
}
}
unlock_mutex:
mutex_unlock(&mf_mutex);
+ if (!ret) {
+ if (!huge)
+ num_poisoned_pages_sub(pfn, 1);
+ unpoison_pr_info("%#lx: software-unpoisoned page\n",
+ page_to_pfn(p), &unpoison_rs);
+ }
return ret;
}
EXPORT_SYMBOL(unpoison_memory);
-static bool isolate_page(struct page *page, struct list_head *pagelist)
-{
- bool isolated = false;
- bool lru = PageLRU(page);
-
- if (PageHuge(page)) {
- isolated = isolate_huge_page(page, pagelist);
- } else {
- if (lru)
- isolated = !isolate_lru_page(page);
- else
- isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
-
- if (isolated)
- list_add(&page->lru, pagelist);
- }
-
- if (isolated && lru)
- inc_node_page_state(page, NR_ISOLATED_ANON +
- page_is_file_lru(page));
-
- /*
- * If we succeed to isolate the page, we grabbed another refcount on
- * the page, so we can safely drop the one we got from get_any_pages().
- * If we failed to isolate the page, it means that we cannot go further
- * and we will return an error, so drop the reference we got from
- * get_any_pages() as well.
- */
- put_page(page);
- return isolated;
-}
+#undef pr_fmt
+#define pr_fmt(fmt) "Soft offline: " fmt
/*
- * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
+ * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
* If the page is a non-dirty unmapped page-cache page, it simply invalidates.
* If the page is mapped, it migrates the contents over.
*/
-static int __soft_offline_page(struct page *page)
+static int soft_offline_in_use_page(struct page *page)
{
- int ret = 0;
+ long ret = 0;
unsigned long pfn = page_to_pfn(page);
- struct page *hpage = compound_head(page);
+ struct folio *folio = page_folio(page);
char const *msg_page[] = {"page", "hugepage"};
- bool huge = PageHuge(page);
+ bool huge = folio_test_hugetlb(folio);
+ bool isolated;
LIST_HEAD(pagelist);
struct migration_target_control mtc = {
.nid = NUMA_NO_NODE,
.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
+ .reason = MR_MEMORY_FAILURE,
};
- /*
- * Check PageHWPoison again inside page lock because PageHWPoison
- * is set by memory_failure() outside page lock. Note that
- * memory_failure() also double-checks PageHWPoison inside page lock,
- * so there's no race between soft_offline_page() and memory_failure().
- */
- lock_page(page);
- if (!PageHuge(page))
- wait_on_page_writeback(page);
+ if (!huge && folio_test_large(folio)) {
+ const int new_order = min_order_for_split(folio);
+
+ /*
+ * If new_order (target split order) is not 0, do not split the
+ * folio at all to retain the still accessible large folio.
+ * NOTE: if minimizing the number of soft offline pages is
+ * preferred, split it to non-zero new_order like it is done in
+ * memory_failure().
+ */
+ if (new_order || try_to_split_thp_page(page, /* new_order= */ 0,
+ /* release= */ true)) {
+ pr_info("%#lx: thp split failed\n", pfn);
+ return -EBUSY;
+ }
+ folio = page_folio(page);
+ }
+
+ folio_lock(folio);
+ if (!huge)
+ folio_wait_writeback(folio);
if (PageHWPoison(page)) {
- unlock_page(page);
- put_page(page);
- pr_info("soft offline: %#lx page already poisoned\n", pfn);
+ folio_unlock(folio);
+ folio_put(folio);
+ pr_info("%#lx: page already poisoned\n", pfn);
return 0;
}
- if (!PageHuge(page))
+ if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
/*
* Try to invalidate first. This should work for
* non dirty unmapped page cache pages.
*/
- ret = invalidate_inode_page(page);
- unlock_page(page);
+ ret = mapping_evict_folio(folio_mapping(folio), folio);
+ folio_unlock(folio);
- /*
- * RED-PEN would be better to keep it isolated here, but we
- * would need to fix isolation locking first.
- */
if (ret) {
- pr_info("soft_offline: %#lx: invalidated\n", pfn);
+ pr_info("%#lx: invalidated\n", pfn);
page_handle_poison(page, false, true);
return 0;
}
- if (isolate_page(hpage, &pagelist)) {
+ isolated = isolate_folio_to_list(folio, &pagelist);
+
+ /*
+ * If we succeed to isolate the folio, we grabbed another refcount on
+ * the folio, so we can safely drop the one we got from get_any_page().
+ * If we failed to isolate the folio, it means that we cannot go further
+ * and we will return an error, so drop the reference we got from
+ * get_any_page() as well.
+ */
+ folio_put(folio);
+
+ if (isolated) {
ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
if (!ret) {
@@ -2190,51 +2841,28 @@ static int __soft_offline_page(struct page *page)
if (!list_empty(&pagelist))
putback_movable_pages(&pagelist);
- pr_info("soft offline: %#lx: %s migration failed %d, type %pGp\n",
- pfn, msg_page[huge], ret, &page->flags);
+ pr_info("%#lx: %s migration failed %ld, type %pGp\n",
+ pfn, msg_page[huge], ret, &page->flags.f);
if (ret > 0)
ret = -EBUSY;
}
} else {
- pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
- pfn, msg_page[huge], page_count(page), &page->flags);
+ pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
+ pfn, msg_page[huge], page_count(page), &page->flags.f);
ret = -EBUSY;
}
return ret;
}
-static int soft_offline_in_use_page(struct page *page)
-{
- struct page *hpage = compound_head(page);
-
- if (!PageHuge(page) && PageTransHuge(hpage))
- if (try_to_split_thp_page(page, "soft offline") < 0)
- return -EBUSY;
- return __soft_offline_page(page);
-}
-
-static int soft_offline_free_page(struct page *page)
-{
- int rc = 0;
-
- if (!page_handle_poison(page, true, false))
- rc = -EBUSY;
-
- return rc;
-}
-
-static void put_ref_page(struct page *page)
-{
- if (page)
- put_page(page);
-}
-
/**
* soft_offline_page - Soft offline a page.
* @pfn: pfn to soft-offline
* @flags: flags. Same as memory_failure().
*
- * Returns 0 on success, otherwise negated errno.
+ * Returns 0 on success,
+ * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
+ * disabled by /proc/sys/vm/enable_soft_offline,
+ * < 0 otherwise negated errno.
*
* Soft offline a page, by migration or invalidation,
* without killing anything. This is for the case when
@@ -2255,43 +2883,58 @@ int soft_offline_page(unsigned long pfn, int flags)
{
int ret;
bool try_again = true;
- struct page *page, *ref_page = NULL;
-
- WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
+ struct page *page;
- if (!pfn_valid(pfn))
+ if (!pfn_valid(pfn)) {
+ WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
return -ENXIO;
- if (flags & MF_COUNT_INCREASED)
- ref_page = pfn_to_page(pfn);
+ }
/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
page = pfn_to_online_page(pfn);
if (!page) {
- put_ref_page(ref_page);
+ put_ref_page(pfn, flags);
return -EIO;
}
+ if (!sysctl_enable_soft_offline) {
+ pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
+ put_ref_page(pfn, flags);
+ return -EOPNOTSUPP;
+ }
+
mutex_lock(&mf_mutex);
if (PageHWPoison(page)) {
- pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
- put_ref_page(ref_page);
+ pr_info("%#lx: page already poisoned\n", pfn);
+ put_ref_page(pfn, flags);
mutex_unlock(&mf_mutex);
return 0;
}
retry:
get_online_mems();
- ret = get_hwpoison_page(page, flags);
+ ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
put_online_mems();
+ if (hwpoison_filter(page)) {
+ if (ret > 0)
+ put_page(page);
+
+ mutex_unlock(&mf_mutex);
+ return -EOPNOTSUPP;
+ }
+
if (ret > 0) {
ret = soft_offline_in_use_page(page);
} else if (ret == 0) {
- if (soft_offline_free_page(page) && try_again) {
- try_again = false;
- flags &= ~MF_COUNT_INCREASED;
- goto retry;
+ if (!page_handle_poison(page, true, false)) {
+ if (try_again) {
+ try_again = false;
+ flags &= ~MF_COUNT_INCREASED;
+ goto retry;
+ }
+ ret = -EBUSY;
}
}