summaryrefslogtreecommitdiff
path: root/mm/memory-failure.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memory-failure.c')
-rw-r--r--mm/memory-failure.c3234
1 files changed, 2264 insertions, 970 deletions
diff --git a/mm/memory-failure.c b/mm/memory-failure.c
index 2c13aa7a0164..fbc5a01260c8 100644
--- a/mm/memory-failure.c
+++ b/mm/memory-failure.c
@@ -1,45 +1,48 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2008, 2009 Intel Corporation
* Authors: Andi Kleen, Fengguang Wu
*
- * This software may be redistributed and/or modified under the terms of
- * the GNU General Public License ("GPL") version 2 only as published by the
- * Free Software Foundation.
- *
* High level machine check handler. Handles pages reported by the
* hardware as being corrupted usually due to a multi-bit ECC memory or cache
* failure.
- *
+ *
* In addition there is a "soft offline" entry point that allows stop using
* not-yet-corrupted-by-suspicious pages without killing anything.
*
* Handles page cache pages in various states. The tricky part
- * here is that we can access any page asynchronously in respect to
- * other VM users, because memory failures could happen anytime and
- * anywhere. This could violate some of their assumptions. This is why
- * this code has to be extremely careful. Generally it tries to use
- * normal locking rules, as in get the standard locks, even if that means
+ * here is that we can access any page asynchronously in respect to
+ * other VM users, because memory failures could happen anytime and
+ * anywhere. This could violate some of their assumptions. This is why
+ * this code has to be extremely careful. Generally it tries to use
+ * normal locking rules, as in get the standard locks, even if that means
* the error handling takes potentially a long time.
- *
+ *
+ * It can be very tempting to add handling for obscure cases here.
+ * In general any code for handling new cases should only be added iff:
+ * - You know how to test it.
+ * - You have a test that can be added to mce-test
+ * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
+ * - The case actually shows up as a frequent (top 10) page state in
+ * tools/mm/page-types when running a real workload.
+ *
* There are several operations here with exponential complexity because
- * of unsuitable VM data structures. For example the operation to map back
- * from RMAP chains to processes has to walk the complete process list and
+ * of unsuitable VM data structures. For example the operation to map back
+ * from RMAP chains to processes has to walk the complete process list and
* has non linear complexity with the number. But since memory corruptions
- * are rare we hope to get away with this. This avoids impacting the core
+ * are rare we hope to get away with this. This avoids impacting the core
* VM.
*/
-/*
- * Notebook:
- * - hugetlb needs more code
- * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
- * - pass bad pages to kdump next kernel
- */
+#define pr_fmt(fmt) "Memory failure: " fmt
+
#include <linux/kernel.h>
#include <linux/mm.h>
+#include <linux/memory-failure.h>
#include <linux/page-flags.h>
-#include <linux/kernel-page-flags.h>
-#include <linux/sched.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/task.h>
+#include <linux/dax.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/export.h>
@@ -47,219 +50,204 @@
#include <linux/swap.h>
#include <linux/backing-dev.h>
#include <linux/migrate.h>
-#include <linux/page-isolation.h>
-#include <linux/suspend.h>
#include <linux/slab.h>
-#include <linux/swapops.h>
+#include <linux/leafops.h>
#include <linux/hugetlb.h>
#include <linux/memory_hotplug.h>
#include <linux/mm_inline.h>
+#include <linux/memremap.h>
#include <linux/kfifo.h>
-#include "internal.h"
+#include <linux/ratelimit.h>
+#include <linux/pagewalk.h>
+#include <linux/shmem_fs.h>
+#include <linux/sysctl.h>
-int sysctl_memory_failure_early_kill __read_mostly = 0;
+#define CREATE_TRACE_POINTS
+#include <trace/events/memory-failure.h>
-int sysctl_memory_failure_recovery __read_mostly = 1;
-
-atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
-
-#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
+#include "swap.h"
+#include "internal.h"
-u32 hwpoison_filter_enable = 0;
-u32 hwpoison_filter_dev_major = ~0U;
-u32 hwpoison_filter_dev_minor = ~0U;
-u64 hwpoison_filter_flags_mask;
-u64 hwpoison_filter_flags_value;
-EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
-EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
-EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
-EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
-EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
+static int sysctl_memory_failure_early_kill __read_mostly;
-static int hwpoison_filter_dev(struct page *p)
-{
- struct address_space *mapping;
- dev_t dev;
+static int sysctl_memory_failure_recovery __read_mostly = 1;
- if (hwpoison_filter_dev_major == ~0U &&
- hwpoison_filter_dev_minor == ~0U)
- return 0;
+static int sysctl_enable_soft_offline __read_mostly = 1;
- /*
- * page_mapping() does not accept slab pages.
- */
- if (PageSlab(p))
- return -EINVAL;
+atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
- mapping = page_mapping(p);
- if (mapping == NULL || mapping->host == NULL)
- return -EINVAL;
+static bool hw_memory_failure __read_mostly = false;
- dev = mapping->host->i_sb->s_dev;
- if (hwpoison_filter_dev_major != ~0U &&
- hwpoison_filter_dev_major != MAJOR(dev))
- return -EINVAL;
- if (hwpoison_filter_dev_minor != ~0U &&
- hwpoison_filter_dev_minor != MINOR(dev))
- return -EINVAL;
+static DEFINE_MUTEX(mf_mutex);
- return 0;
+void num_poisoned_pages_inc(unsigned long pfn)
+{
+ atomic_long_inc(&num_poisoned_pages);
+ memblk_nr_poison_inc(pfn);
}
-static int hwpoison_filter_flags(struct page *p)
+void num_poisoned_pages_sub(unsigned long pfn, long i)
{
- if (!hwpoison_filter_flags_mask)
- return 0;
-
- if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
- hwpoison_filter_flags_value)
- return 0;
- else
- return -EINVAL;
+ atomic_long_sub(i, &num_poisoned_pages);
+ if (pfn != -1UL)
+ memblk_nr_poison_sub(pfn, i);
}
-/*
- * This allows stress tests to limit test scope to a collection of tasks
- * by putting them under some memcg. This prevents killing unrelated/important
- * processes such as /sbin/init. Note that the target task may share clean
- * pages with init (eg. libc text), which is harmless. If the target task
- * share _dirty_ pages with another task B, the test scheme must make sure B
- * is also included in the memcg. At last, due to race conditions this filter
- * can only guarantee that the page either belongs to the memcg tasks, or is
- * a freed page.
+/**
+ * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
+ * @_name: name of the file in the per NUMA sysfs directory.
*/
-#ifdef CONFIG_MEMCG_SWAP
-u64 hwpoison_filter_memcg;
-EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
-static int hwpoison_filter_task(struct page *p)
-{
- struct mem_cgroup *mem;
- struct cgroup_subsys_state *css;
- unsigned long ino;
+#define MF_ATTR_RO(_name) \
+static ssize_t _name##_show(struct device *dev, \
+ struct device_attribute *attr, \
+ char *buf) \
+{ \
+ struct memory_failure_stats *mf_stats = \
+ &NODE_DATA(dev->id)->mf_stats; \
+ return sysfs_emit(buf, "%lu\n", mf_stats->_name); \
+} \
+static DEVICE_ATTR_RO(_name)
+
+MF_ATTR_RO(total);
+MF_ATTR_RO(ignored);
+MF_ATTR_RO(failed);
+MF_ATTR_RO(delayed);
+MF_ATTR_RO(recovered);
+
+static struct attribute *memory_failure_attr[] = {
+ &dev_attr_total.attr,
+ &dev_attr_ignored.attr,
+ &dev_attr_failed.attr,
+ &dev_attr_delayed.attr,
+ &dev_attr_recovered.attr,
+ NULL,
+};
- if (!hwpoison_filter_memcg)
- return 0;
+const struct attribute_group memory_failure_attr_group = {
+ .name = "memory_failure",
+ .attrs = memory_failure_attr,
+};
+
+static const struct ctl_table memory_failure_table[] = {
+ {
+ .procname = "memory_failure_early_kill",
+ .data = &sysctl_memory_failure_early_kill,
+ .maxlen = sizeof(sysctl_memory_failure_early_kill),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE,
+ },
+ {
+ .procname = "memory_failure_recovery",
+ .data = &sysctl_memory_failure_recovery,
+ .maxlen = sizeof(sysctl_memory_failure_recovery),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE,
+ },
+ {
+ .procname = "enable_soft_offline",
+ .data = &sysctl_enable_soft_offline,
+ .maxlen = sizeof(sysctl_enable_soft_offline),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE,
+ }
+};
- mem = try_get_mem_cgroup_from_page(p);
- if (!mem)
- return -EINVAL;
+static struct rb_root_cached pfn_space_itree = RB_ROOT_CACHED;
- css = mem_cgroup_css(mem);
- /* root_mem_cgroup has NULL dentries */
- if (!css->cgroup->dentry)
- return -EINVAL;
+static DEFINE_MUTEX(pfn_space_lock);
- ino = css->cgroup->dentry->d_inode->i_ino;
- css_put(css);
+/*
+ * Return values:
+ * 1: the page is dissolved (if needed) and taken off from buddy,
+ * 0: the page is dissolved (if needed) and not taken off from buddy,
+ * < 0: failed to dissolve.
+ */
+static int __page_handle_poison(struct page *page)
+{
+ int ret;
- if (ino != hwpoison_filter_memcg)
- return -EINVAL;
+ /*
+ * zone_pcp_disable() can't be used here. It will
+ * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
+ * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
+ * optimization is enabled. This will break current lock dependency
+ * chain and leads to deadlock.
+ * Disabling pcp before dissolving the page was a deterministic
+ * approach because we made sure that those pages cannot end up in any
+ * PCP list. Draining PCP lists expels those pages to the buddy system,
+ * but nothing guarantees that those pages do not get back to a PCP
+ * queue if we need to refill those.
+ */
+ ret = dissolve_free_hugetlb_folio(page_folio(page));
+ if (!ret) {
+ drain_all_pages(page_zone(page));
+ ret = take_page_off_buddy(page);
+ }
- return 0;
+ return ret;
}
-#else
-static int hwpoison_filter_task(struct page *p) { return 0; }
-#endif
-int hwpoison_filter(struct page *p)
+static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
{
- if (!hwpoison_filter_enable)
- return 0;
+ if (hugepage_or_freepage) {
+ /*
+ * Doing this check for free pages is also fine since
+ * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
+ */
+ if (__page_handle_poison(page) <= 0)
+ /*
+ * We could fail to take off the target page from buddy
+ * for example due to racy page allocation, but that's
+ * acceptable because soft-offlined page is not broken
+ * and if someone really want to use it, they should
+ * take it.
+ */
+ return false;
+ }
- if (hwpoison_filter_dev(p))
- return -EINVAL;
+ SetPageHWPoison(page);
+ if (release)
+ put_page(page);
+ page_ref_inc(page);
+ num_poisoned_pages_inc(page_to_pfn(page));
- if (hwpoison_filter_flags(p))
- return -EINVAL;
+ return true;
+}
- if (hwpoison_filter_task(p))
- return -EINVAL;
+static hwpoison_filter_func_t __rcu *hwpoison_filter_func __read_mostly;
- return 0;
-}
-#else
-int hwpoison_filter(struct page *p)
+void hwpoison_filter_register(hwpoison_filter_func_t *filter)
{
- return 0;
+ rcu_assign_pointer(hwpoison_filter_func, filter);
}
-#endif
-
-EXPORT_SYMBOL_GPL(hwpoison_filter);
+EXPORT_SYMBOL_GPL(hwpoison_filter_register);
-/*
- * Send all the processes who have the page mapped a signal.
- * ``action optional'' if they are not immediately affected by the error
- * ``action required'' if error happened in current execution context
- */
-static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
- unsigned long pfn, struct page *page, int flags)
+void hwpoison_filter_unregister(void)
{
- struct siginfo si;
- int ret;
-
- printk(KERN_ERR
- "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
- pfn, t->comm, t->pid);
- si.si_signo = SIGBUS;
- si.si_errno = 0;
- si.si_addr = (void *)addr;
-#ifdef __ARCH_SI_TRAPNO
- si.si_trapno = trapno;
-#endif
- si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
-
- if ((flags & MF_ACTION_REQUIRED) && t == current) {
- si.si_code = BUS_MCEERR_AR;
- ret = force_sig_info(SIGBUS, &si, t);
- } else {
- /*
- * Don't use force here, it's convenient if the signal
- * can be temporarily blocked.
- * This could cause a loop when the user sets SIGBUS
- * to SIG_IGN, but hopefully no one will do that?
- */
- si.si_code = BUS_MCEERR_AO;
- ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
- }
- if (ret < 0)
- printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
- t->comm, t->pid, ret);
- return ret;
+ RCU_INIT_POINTER(hwpoison_filter_func, NULL);
+ synchronize_rcu();
}
+EXPORT_SYMBOL_GPL(hwpoison_filter_unregister);
-/*
- * When a unknown page type is encountered drain as many buffers as possible
- * in the hope to turn the page into a LRU or free page, which we can handle.
- */
-void shake_page(struct page *p, int access)
+static int hwpoison_filter(struct page *p)
{
- if (!PageSlab(p)) {
- lru_add_drain_all();
- if (PageLRU(p))
- return;
- drain_all_pages();
- if (PageLRU(p) || is_free_buddy_page(p))
- return;
- }
+ int ret = 0;
+ hwpoison_filter_func_t *filter;
- /*
- * Only call shrink_slab here (which would also shrink other caches) if
- * access is not potentially fatal.
- */
- if (access) {
- int nr;
- do {
- struct shrink_control shrink = {
- .gfp_mask = GFP_KERNEL,
- };
-
- nr = shrink_slab(&shrink, 1000, 1000);
- if (page_count(p) == 1)
- break;
- } while (nr > 10);
- }
+ rcu_read_lock();
+ filter = rcu_dereference(hwpoison_filter_func);
+ if (filter)
+ ret = filter(p);
+ rcu_read_unlock();
+
+ return ret;
}
-EXPORT_SYMBOL_GPL(shake_page);
/*
* Kill all processes that have a poisoned page mapped and then isolate
@@ -287,10 +275,104 @@ struct to_kill {
struct list_head nd;
struct task_struct *tsk;
unsigned long addr;
- char addr_valid;
+ short size_shift;
};
/*
+ * Send all the processes who have the page mapped a signal.
+ * ``action optional'' if they are not immediately affected by the error
+ * ``action required'' if error happened in current execution context
+ */
+static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
+{
+ struct task_struct *t = tk->tsk;
+ short addr_lsb = tk->size_shift;
+ int ret = 0;
+
+ pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
+ pfn, t->comm, task_pid_nr(t));
+
+ if ((flags & MF_ACTION_REQUIRED) && (t == current))
+ ret = force_sig_mceerr(BUS_MCEERR_AR,
+ (void __user *)tk->addr, addr_lsb);
+ else
+ /*
+ * Signal other processes sharing the page if they have
+ * PF_MCE_EARLY set.
+ * Don't use force here, it's convenient if the signal
+ * can be temporarily blocked.
+ */
+ ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
+ addr_lsb, t);
+ if (ret < 0)
+ pr_info("Error sending signal to %s:%d: %d\n",
+ t->comm, task_pid_nr(t), ret);
+ return ret;
+}
+
+/*
+ * Unknown page type encountered. Try to check whether it can turn PageLRU by
+ * lru_add_drain_all.
+ */
+void shake_folio(struct folio *folio)
+{
+ if (folio_test_hugetlb(folio))
+ return;
+ /*
+ * TODO: Could shrink slab caches here if a lightweight range-based
+ * shrinker will be available.
+ */
+ if (folio_test_slab(folio))
+ return;
+
+ lru_add_drain_all();
+}
+EXPORT_SYMBOL_GPL(shake_folio);
+
+static void shake_page(struct page *page)
+{
+ shake_folio(page_folio(page));
+}
+
+static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
+ unsigned long address)
+{
+ unsigned long ret = 0;
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+ pte_t ptent;
+
+ VM_BUG_ON_VMA(address == -EFAULT, vma);
+ pgd = pgd_offset(vma->vm_mm, address);
+ if (!pgd_present(*pgd))
+ return 0;
+ p4d = p4d_offset(pgd, address);
+ if (!p4d_present(*p4d))
+ return 0;
+ pud = pud_offset(p4d, address);
+ if (!pud_present(*pud))
+ return 0;
+ if (pud_trans_huge(*pud))
+ return PUD_SHIFT;
+ pmd = pmd_offset(pud, address);
+ if (!pmd_present(*pmd))
+ return 0;
+ if (pmd_trans_huge(*pmd))
+ return PMD_SHIFT;
+ pte = pte_offset_map(pmd, address);
+ if (!pte)
+ return 0;
+ ptent = ptep_get(pte);
+ if (pte_present(ptent))
+ ret = PAGE_SHIFT;
+ pte_unmap(pte);
+ return ret;
+}
+
+/*
* Failure handling: if we can't find or can't kill a process there's
* not much we can do. We just print a message and ignore otherwise.
*/
@@ -298,71 +380,97 @@ struct to_kill {
/*
* Schedule a process for later kill.
* Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
- * TBD would GFP_NOIO be enough?
*/
-static void add_to_kill(struct task_struct *tsk, struct page *p,
- struct vm_area_struct *vma,
- struct list_head *to_kill,
- struct to_kill **tkc)
+static void __add_to_kill(struct task_struct *tsk, const struct page *p,
+ struct vm_area_struct *vma, struct list_head *to_kill,
+ unsigned long addr)
{
struct to_kill *tk;
- if (*tkc) {
- tk = *tkc;
- *tkc = NULL;
- } else {
- tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
- if (!tk) {
- printk(KERN_ERR
- "MCE: Out of memory while machine check handling\n");
- return;
- }
+ tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
+ if (!tk) {
+ pr_err("Out of memory while machine check handling\n");
+ return;
}
- tk->addr = page_address_in_vma(p, vma);
- tk->addr_valid = 1;
+
+ tk->addr = addr;
+ if (is_zone_device_page(p))
+ tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
+ else
+ tk->size_shift = folio_shift(page_folio(p));
/*
- * In theory we don't have to kill when the page was
- * munmaped. But it could be also a mremap. Since that's
- * likely very rare kill anyways just out of paranoia, but use
- * a SIGKILL because the error is not contained anymore.
+ * Send SIGKILL if "tk->addr == -EFAULT". Also, as
+ * "tk->size_shift" is always non-zero for !is_zone_device_page(),
+ * so "tk->size_shift == 0" effectively checks no mapping on
+ * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
+ * to a process' address space, it's possible not all N VMAs
+ * contain mappings for the page, but at least one VMA does.
+ * Only deliver SIGBUS with payload derived from the VMA that
+ * has a mapping for the page.
*/
if (tk->addr == -EFAULT) {
- pr_info("MCE: Unable to find user space address %lx in %s\n",
+ pr_info("Unable to find user space address %lx in %s\n",
page_to_pfn(p), tsk->comm);
- tk->addr_valid = 0;
+ } else if (tk->size_shift == 0) {
+ kfree(tk);
+ return;
}
+
get_task_struct(tsk);
tk->tsk = tsk;
list_add_tail(&tk->nd, to_kill);
}
+static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
+ struct vm_area_struct *vma, struct list_head *to_kill,
+ unsigned long addr)
+{
+ if (addr == -EFAULT)
+ return;
+ __add_to_kill(tsk, p, vma, to_kill, addr);
+}
+
+#ifdef CONFIG_KSM
+static bool task_in_to_kill_list(struct list_head *to_kill,
+ struct task_struct *tsk)
+{
+ struct to_kill *tk, *next;
+
+ list_for_each_entry_safe(tk, next, to_kill, nd) {
+ if (tk->tsk == tsk)
+ return true;
+ }
+
+ return false;
+}
+
+void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
+ struct vm_area_struct *vma, struct list_head *to_kill,
+ unsigned long addr)
+{
+ if (!task_in_to_kill_list(to_kill, tsk))
+ __add_to_kill(tsk, p, vma, to_kill, addr);
+}
+#endif
/*
* Kill the processes that have been collected earlier.
*
- * Only do anything when DOIT is set, otherwise just free the list
- * (this is used for clean pages which do not need killing)
- * Also when FAIL is set do a force kill because something went
- * wrong earlier.
+ * Only do anything when FORCEKILL is set, otherwise just free the
+ * list (this is used for clean pages which do not need killing)
*/
-static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
- int fail, struct page *page, unsigned long pfn,
- int flags)
+static void kill_procs(struct list_head *to_kill, int forcekill,
+ unsigned long pfn, int flags)
{
struct to_kill *tk, *next;
- list_for_each_entry_safe (tk, next, to_kill, nd) {
+ list_for_each_entry_safe(tk, next, to_kill, nd) {
if (forcekill) {
- /*
- * In case something went wrong with munmapping
- * make sure the process doesn't catch the
- * signal and then access the memory. Just kill it.
- */
- if (fail || tk->addr_valid == 0) {
- printk(KERN_ERR
- "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
- pfn, tk->tsk->comm, tk->tsk->pid);
- force_sig(SIGKILL, tk->tsk);
+ if (tk->addr == -EFAULT) {
+ pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
+ pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
+ do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
+ tk->tsk, PIDTYPE_PID);
}
/*
@@ -371,135 +479,422 @@ static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
* check for that, but we need to tell the
* process anyways.
*/
- else if (kill_proc(tk->tsk, tk->addr, trapno,
- pfn, page, flags) < 0)
- printk(KERN_ERR
- "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
- pfn, tk->tsk->comm, tk->tsk->pid);
+ else if (kill_proc(tk, pfn, flags) < 0)
+ pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
+ pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
}
+ list_del(&tk->nd);
put_task_struct(tk->tsk);
kfree(tk);
}
}
-static int task_early_kill(struct task_struct *tsk)
+/*
+ * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
+ * on behalf of the thread group. Return task_struct of the (first found)
+ * dedicated thread if found, and return NULL otherwise.
+ *
+ * We already hold rcu lock in the caller, so we don't have to call
+ * rcu_read_lock/unlock() in this function.
+ */
+static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
+{
+ struct task_struct *t;
+
+ for_each_thread(tsk, t) {
+ if (t->flags & PF_MCE_PROCESS) {
+ if (t->flags & PF_MCE_EARLY)
+ return t;
+ } else {
+ if (sysctl_memory_failure_early_kill)
+ return t;
+ }
+ }
+ return NULL;
+}
+
+/*
+ * Determine whether a given process is "early kill" process which expects
+ * to be signaled when some page under the process is hwpoisoned.
+ * Return task_struct of the dedicated thread (main thread unless explicitly
+ * specified) if the process is "early kill" and otherwise returns NULL.
+ *
+ * Note that the above is true for Action Optional case. For Action Required
+ * case, it's only meaningful to the current thread which need to be signaled
+ * with SIGBUS, this error is Action Optional for other non current
+ * processes sharing the same error page,if the process is "early kill", the
+ * task_struct of the dedicated thread will also be returned.
+ */
+struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
{
if (!tsk->mm)
- return 0;
- if (tsk->flags & PF_MCE_PROCESS)
- return !!(tsk->flags & PF_MCE_EARLY);
- return sysctl_memory_failure_early_kill;
+ return NULL;
+ /*
+ * Comparing ->mm here because current task might represent
+ * a subthread, while tsk always points to the main thread.
+ */
+ if (force_early && tsk->mm == current->mm)
+ return current;
+
+ return find_early_kill_thread(tsk);
}
/*
* Collect processes when the error hit an anonymous page.
*/
-static void collect_procs_anon(struct page *page, struct list_head *to_kill,
- struct to_kill **tkc)
+static void collect_procs_anon(const struct folio *folio,
+ const struct page *page, struct list_head *to_kill,
+ int force_early)
{
- struct vm_area_struct *vma;
struct task_struct *tsk;
struct anon_vma *av;
pgoff_t pgoff;
- av = page_lock_anon_vma_read(page);
+ av = folio_lock_anon_vma_read(folio, NULL);
if (av == NULL) /* Not actually mapped anymore */
return;
- pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
- read_lock(&tasklist_lock);
- for_each_process (tsk) {
+ pgoff = page_pgoff(folio, page);
+ rcu_read_lock();
+ for_each_process(tsk) {
+ struct vm_area_struct *vma;
struct anon_vma_chain *vmac;
+ struct task_struct *t = task_early_kill(tsk, force_early);
+ unsigned long addr;
- if (!task_early_kill(tsk))
+ if (!t)
continue;
anon_vma_interval_tree_foreach(vmac, &av->rb_root,
pgoff, pgoff) {
vma = vmac->vma;
- if (!page_mapped_in_vma(page, vma))
+ if (vma->vm_mm != t->mm)
continue;
- if (vma->vm_mm == tsk->mm)
- add_to_kill(tsk, page, vma, to_kill, tkc);
+ addr = page_mapped_in_vma(page, vma);
+ add_to_kill_anon_file(t, page, vma, to_kill, addr);
}
}
- read_unlock(&tasklist_lock);
- page_unlock_anon_vma_read(av);
+ rcu_read_unlock();
+ anon_vma_unlock_read(av);
}
/*
* Collect processes when the error hit a file mapped page.
*/
-static void collect_procs_file(struct page *page, struct list_head *to_kill,
- struct to_kill **tkc)
+static void collect_procs_file(const struct folio *folio,
+ const struct page *page, struct list_head *to_kill,
+ int force_early)
{
struct vm_area_struct *vma;
struct task_struct *tsk;
- struct address_space *mapping = page->mapping;
+ struct address_space *mapping = folio->mapping;
+ pgoff_t pgoff;
- mutex_lock(&mapping->i_mmap_mutex);
- read_lock(&tasklist_lock);
+ i_mmap_lock_read(mapping);
+ rcu_read_lock();
+ pgoff = page_pgoff(folio, page);
for_each_process(tsk) {
- pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
+ struct task_struct *t = task_early_kill(tsk, force_early);
+ unsigned long addr;
- if (!task_early_kill(tsk))
+ if (!t)
continue;
-
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
pgoff) {
/*
* Send early kill signal to tasks where a vma covers
* the page but the corrupted page is not necessarily
- * mapped it in its pte.
+ * mapped in its pte.
* Assume applications who requested early kill want
* to be informed of all such data corruptions.
*/
- if (vma->vm_mm == tsk->mm)
- add_to_kill(tsk, page, vma, to_kill, tkc);
+ if (vma->vm_mm != t->mm)
+ continue;
+ addr = page_address_in_vma(folio, page, vma);
+ add_to_kill_anon_file(t, page, vma, to_kill, addr);
}
}
- read_unlock(&tasklist_lock);
- mutex_unlock(&mapping->i_mmap_mutex);
+ rcu_read_unlock();
+ i_mmap_unlock_read(mapping);
+}
+
+#ifdef CONFIG_FS_DAX
+static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
+ struct vm_area_struct *vma,
+ struct list_head *to_kill, pgoff_t pgoff)
+{
+ unsigned long addr = vma_address(vma, pgoff, 1);
+ __add_to_kill(tsk, p, vma, to_kill, addr);
}
/*
- * Collect the processes who have the corrupted page mapped to kill.
- * This is done in two steps for locking reasons.
- * First preallocate one tokill structure outside the spin locks,
- * so that we can kill at least one process reasonably reliable.
+ * Collect processes when the error hit a fsdax page.
*/
-static void collect_procs(struct page *page, struct list_head *tokill)
+static void collect_procs_fsdax(const struct page *page,
+ struct address_space *mapping, pgoff_t pgoff,
+ struct list_head *to_kill, bool pre_remove)
{
- struct to_kill *tk;
+ struct vm_area_struct *vma;
+ struct task_struct *tsk;
- if (!page->mapping)
- return;
+ i_mmap_lock_read(mapping);
+ rcu_read_lock();
+ for_each_process(tsk) {
+ struct task_struct *t = tsk;
+
+ /*
+ * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
+ * the current may not be the one accessing the fsdax page.
+ * Otherwise, search for the current task.
+ */
+ if (!pre_remove)
+ t = task_early_kill(tsk, true);
+ if (!t)
+ continue;
+ vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
+ if (vma->vm_mm == t->mm)
+ add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
+ }
+ }
+ rcu_read_unlock();
+ i_mmap_unlock_read(mapping);
+}
+#endif /* CONFIG_FS_DAX */
- tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
- if (!tk)
+/*
+ * Collect the processes who have the corrupted page mapped to kill.
+ */
+static void collect_procs(const struct folio *folio, const struct page *page,
+ struct list_head *tokill, int force_early)
+{
+ if (!folio->mapping)
return;
- if (PageAnon(page))
- collect_procs_anon(page, tokill, &tk);
+ if (unlikely(folio_test_ksm(folio)))
+ collect_procs_ksm(folio, page, tokill, force_early);
+ else if (folio_test_anon(folio))
+ collect_procs_anon(folio, page, tokill, force_early);
else
- collect_procs_file(page, tokill, &tk);
- kfree(tk);
+ collect_procs_file(folio, page, tokill, force_early);
+}
+
+struct hwpoison_walk {
+ struct to_kill tk;
+ unsigned long pfn;
+ int flags;
+};
+
+static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
+{
+ tk->addr = addr;
+ tk->size_shift = shift;
+}
+
+static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
+ unsigned long poisoned_pfn, struct to_kill *tk)
+{
+ unsigned long pfn = 0;
+
+ if (pte_present(pte)) {
+ pfn = pte_pfn(pte);
+ } else {
+ const softleaf_t entry = softleaf_from_pte(pte);
+
+ if (softleaf_is_hwpoison(entry))
+ pfn = softleaf_to_pfn(entry);
+ }
+
+ if (!pfn || pfn != poisoned_pfn)
+ return 0;
+
+ set_to_kill(tk, addr, shift);
+ return 1;
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
+ struct hwpoison_walk *hwp)
+{
+ pmd_t pmd = *pmdp;
+ unsigned long pfn;
+ unsigned long hwpoison_vaddr;
+
+ if (!pmd_present(pmd))
+ return 0;
+ pfn = pmd_pfn(pmd);
+ if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
+ hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
+ set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
+ return 1;
+ }
+ return 0;
+}
+#else
+static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
+ struct hwpoison_walk *hwp)
+{
+ return 0;
+}
+#endif
+
+static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
+ unsigned long end, struct mm_walk *walk)
+{
+ struct hwpoison_walk *hwp = walk->private;
+ int ret = 0;
+ pte_t *ptep, *mapped_pte;
+ spinlock_t *ptl;
+
+ ptl = pmd_trans_huge_lock(pmdp, walk->vma);
+ if (ptl) {
+ ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
+ spin_unlock(ptl);
+ goto out;
+ }
+
+ mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
+ addr, &ptl);
+ if (!ptep)
+ goto out;
+
+ for (; addr != end; ptep++, addr += PAGE_SIZE) {
+ ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
+ hwp->pfn, &hwp->tk);
+ if (ret == 1)
+ break;
+ }
+ pte_unmap_unlock(mapped_pte, ptl);
+out:
+ cond_resched();
+ return ret;
+}
+
+#ifdef CONFIG_HUGETLB_PAGE
+static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
+ unsigned long addr, unsigned long end,
+ struct mm_walk *walk)
+{
+ struct hwpoison_walk *hwp = walk->private;
+ struct hstate *h = hstate_vma(walk->vma);
+ spinlock_t *ptl;
+ pte_t pte;
+ int ret;
+
+ ptl = huge_pte_lock(h, walk->mm, ptep);
+ pte = huge_ptep_get(walk->mm, addr, ptep);
+ ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
+ hwp->pfn, &hwp->tk);
+ spin_unlock(ptl);
+ return ret;
+}
+#else
+#define hwpoison_hugetlb_range NULL
+#endif
+
+static int hwpoison_test_walk(unsigned long start, unsigned long end,
+ struct mm_walk *walk)
+{
+ /* We also want to consider pages mapped into VM_PFNMAP. */
+ return 0;
}
+static const struct mm_walk_ops hwpoison_walk_ops = {
+ .pmd_entry = hwpoison_pte_range,
+ .hugetlb_entry = hwpoison_hugetlb_range,
+ .test_walk = hwpoison_test_walk,
+ .walk_lock = PGWALK_RDLOCK,
+};
+
/*
- * Error handlers for various types of pages.
+ * Sends SIGBUS to the current process with error info.
+ *
+ * This function is intended to handle "Action Required" MCEs on already
+ * hardware poisoned pages. They could happen, for example, when
+ * memory_failure() failed to unmap the error page at the first call, or
+ * when multiple local machine checks happened on different CPUs.
+ *
+ * MCE handler currently has no easy access to the error virtual address,
+ * so this function walks page table to find it. The returned virtual address
+ * is proper in most cases, but it could be wrong when the application
+ * process has multiple entries mapping the error page.
*/
+static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
+ int flags)
+{
+ int ret;
+ struct hwpoison_walk priv = {
+ .pfn = pfn,
+ };
+ priv.tk.tsk = p;
-enum outcome {
- IGNORED, /* Error: cannot be handled */
- FAILED, /* Error: handling failed */
- DELAYED, /* Will be handled later */
- RECOVERED, /* Successfully recovered */
-};
+ if (!p->mm)
+ return -EFAULT;
+ mmap_read_lock(p->mm);
+ ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
+ (void *)&priv);
+ /*
+ * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
+ * succeeds or fails, then kill the process with SIGBUS.
+ * ret = 0 when poison page is a clean page and it's dropped, no
+ * SIGBUS is needed.
+ */
+ if (ret == 1 && priv.tk.addr)
+ kill_proc(&priv.tk, pfn, flags);
+ mmap_read_unlock(p->mm);
+
+ return ret > 0 ? -EHWPOISON : 0;
+}
+
+/*
+ * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
+ * But it could not do more to isolate the page from being accessed again,
+ * nor does it kill the process. This is extremely rare and one of the
+ * potential causes is that the page state has been changed due to
+ * underlying race condition. This is the most severe outcomes.
+ *
+ * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
+ * It should have killed the process, but it can't isolate the page,
+ * due to conditions such as extra pin, unmap failure, etc. Accessing
+ * the page again may trigger another MCE and the process will be killed
+ * by the m-f() handler immediately.
+ *
+ * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
+ * The page is unmapped, and is removed from the LRU or file mapping.
+ * An attempt to access the page again will trigger page fault and the
+ * PF handler will kill the process.
+ *
+ * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
+ * The page has been completely isolated, that is, unmapped, taken out of
+ * the buddy system, or hole-punnched out of the file mapping.
+ */
static const char *action_name[] = {
- [IGNORED] = "Ignored",
- [FAILED] = "Failed",
- [DELAYED] = "Delayed",
- [RECOVERED] = "Recovered",
+ [MF_IGNORED] = "Ignored",
+ [MF_FAILED] = "Failed",
+ [MF_DELAYED] = "Delayed",
+ [MF_RECOVERED] = "Recovered",
+};
+
+static const char * const action_page_types[] = {
+ [MF_MSG_KERNEL] = "reserved kernel page",
+ [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
+ [MF_MSG_HUGE] = "huge page",
+ [MF_MSG_FREE_HUGE] = "free huge page",
+ [MF_MSG_GET_HWPOISON] = "get hwpoison page",
+ [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
+ [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
+ [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
+ [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
+ [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
+ [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
+ [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
+ [MF_MSG_DIRTY_LRU] = "dirty LRU page",
+ [MF_MSG_CLEAN_LRU] = "clean LRU page",
+ [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
+ [MF_MSG_BUDDY] = "free buddy page",
+ [MF_MSG_DAX] = "dax page",
+ [MF_MSG_UNSPLIT_THP] = "unsplit thp",
+ [MF_MSG_ALREADY_POISONED] = "already poisoned page",
+ [MF_MSG_PFN_MAP] = "non struct page pfn",
+ [MF_MSG_UNKNOWN] = "unknown page",
};
/*
@@ -508,60 +903,133 @@ static const char *action_name[] = {
* The page count will stop it from being freed by unpoison.
* Stress tests should be aware of this memory leak problem.
*/
-static int delete_from_lru_cache(struct page *p)
+static int delete_from_lru_cache(struct folio *folio)
{
- if (!isolate_lru_page(p)) {
+ if (folio_isolate_lru(folio)) {
/*
* Clear sensible page flags, so that the buddy system won't
- * complain when the page is unpoison-and-freed.
+ * complain when the folio is unpoison-and-freed.
*/
- ClearPageActive(p);
- ClearPageUnevictable(p);
+ folio_clear_active(folio);
+ folio_clear_unevictable(folio);
+
+ /*
+ * Poisoned page might never drop its ref count to 0 so we have
+ * to uncharge it manually from its memcg.
+ */
+ mem_cgroup_uncharge(folio);
+
/*
- * drop the page count elevated by isolate_lru_page()
+ * drop the refcount elevated by folio_isolate_lru()
*/
- page_cache_release(p);
+ folio_put(folio);
return 0;
}
return -EIO;
}
+static int truncate_error_folio(struct folio *folio, unsigned long pfn,
+ struct address_space *mapping)
+{
+ int ret = MF_FAILED;
+
+ if (mapping->a_ops->error_remove_folio) {
+ int err = mapping->a_ops->error_remove_folio(mapping, folio);
+
+ if (err != 0)
+ pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
+ else if (!filemap_release_folio(folio, GFP_NOIO))
+ pr_info("%#lx: failed to release buffers\n", pfn);
+ else
+ ret = MF_RECOVERED;
+ } else {
+ /*
+ * If the file system doesn't support it just invalidate
+ * This fails on dirty or anything with private pages
+ */
+ if (mapping_evict_folio(mapping, folio))
+ ret = MF_RECOVERED;
+ else
+ pr_info("%#lx: Failed to invalidate\n", pfn);
+ }
+
+ return ret;
+}
+
+struct page_state {
+ unsigned long mask;
+ unsigned long res;
+ enum mf_action_page_type type;
+
+ /* Callback ->action() has to unlock the relevant page inside it. */
+ int (*action)(struct page_state *ps, struct page *p);
+};
+
+/*
+ * Return true if page is still referenced by others, otherwise return
+ * false.
+ *
+ * The extra_pins is true when one extra refcount is expected.
+ */
+static bool has_extra_refcount(struct page_state *ps, struct page *p,
+ bool extra_pins)
+{
+ int count = page_count(p) - 1;
+
+ if (extra_pins)
+ count -= folio_nr_pages(page_folio(p));
+
+ if (count > 0) {
+ pr_err("%#lx: %s still referenced by %d users\n",
+ page_to_pfn(p), action_page_types[ps->type], count);
+ return true;
+ }
+
+ return false;
+}
+
/*
* Error hit kernel page.
* Do nothing, try to be lucky and not touch this instead. For a few cases we
* could be more sophisticated.
*/
-static int me_kernel(struct page *p, unsigned long pfn)
+static int me_kernel(struct page_state *ps, struct page *p)
{
- return IGNORED;
+ unlock_page(p);
+ return MF_IGNORED;
}
/*
* Page in unknown state. Do nothing.
+ * This is a catch-all in case we fail to make sense of the page state.
*/
-static int me_unknown(struct page *p, unsigned long pfn)
+static int me_unknown(struct page_state *ps, struct page *p)
{
- printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
- return FAILED;
+ pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
+ unlock_page(p);
+ return MF_IGNORED;
}
/*
* Clean (or cleaned) page cache page.
*/
-static int me_pagecache_clean(struct page *p, unsigned long pfn)
+static int me_pagecache_clean(struct page_state *ps, struct page *p)
{
- int err;
- int ret = FAILED;
+ struct folio *folio = page_folio(p);
+ int ret;
struct address_space *mapping;
+ bool extra_pins;
- delete_from_lru_cache(p);
+ delete_from_lru_cache(folio);
/*
- * For anonymous pages we're done the only reference left
+ * For anonymous folios the only reference left
* should be the one m_f() holds.
*/
- if (PageAnon(p))
- return RECOVERED;
+ if (folio_test_anon(folio)) {
+ ret = MF_RECOVERED;
+ goto out;
+ }
/*
* Now truncate the page in the page cache. This is really
@@ -570,54 +1038,44 @@ static int me_pagecache_clean(struct page *p, unsigned long pfn)
* has a reference, because it could be file system metadata
* and that's not safe to truncate.
*/
- mapping = page_mapping(p);
+ mapping = folio_mapping(folio);
if (!mapping) {
- /*
- * Page has been teared down in the meanwhile
- */
- return FAILED;
+ /* Folio has been torn down in the meantime */
+ ret = MF_FAILED;
+ goto out;
}
/*
+ * The shmem page is kept in page cache instead of truncating
+ * so is expected to have an extra refcount after error-handling.
+ */
+ extra_pins = shmem_mapping(mapping);
+
+ /*
* Truncation is a bit tricky. Enable it per file system for now.
*
- * Open: to take i_mutex or not for this? Right now we don't.
+ * Open: to take i_rwsem or not for this? Right now we don't.
*/
- if (mapping->a_ops->error_remove_page) {
- err = mapping->a_ops->error_remove_page(mapping, p);
- if (err != 0) {
- printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
- pfn, err);
- } else if (page_has_private(p) &&
- !try_to_release_page(p, GFP_NOIO)) {
- pr_info("MCE %#lx: failed to release buffers\n", pfn);
- } else {
- ret = RECOVERED;
- }
- } else {
- /*
- * If the file system doesn't support it just invalidate
- * This fails on dirty or anything with private pages
- */
- if (invalidate_inode_page(p))
- ret = RECOVERED;
- else
- printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
- pfn);
- }
+ ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
+ if (has_extra_refcount(ps, p, extra_pins))
+ ret = MF_FAILED;
+
+out:
+ folio_unlock(folio);
+
return ret;
}
/*
- * Dirty cache page page
+ * Dirty pagecache page
* Issues: when the error hit a hole page the error is not properly
* propagated.
*/
-static int me_pagecache_dirty(struct page *p, unsigned long pfn)
+static int me_pagecache_dirty(struct page_state *ps, struct page *p)
{
- struct address_space *mapping = page_mapping(p);
+ struct folio *folio = page_folio(p);
+ struct address_space *mapping = folio_mapping(folio);
- SetPageError(p);
/* TBD: print more information about the file. */
if (mapping) {
/*
@@ -625,49 +1083,21 @@ static int me_pagecache_dirty(struct page *p, unsigned long pfn)
* who check the mapping.
* This way the application knows that something went
* wrong with its dirty file data.
- *
- * There's one open issue:
- *
- * The EIO will be only reported on the next IO
- * operation and then cleared through the IO map.
- * Normally Linux has two mechanisms to pass IO error
- * first through the AS_EIO flag in the address space
- * and then through the PageError flag in the page.
- * Since we drop pages on memory failure handling the
- * only mechanism open to use is through AS_AIO.
- *
- * This has the disadvantage that it gets cleared on
- * the first operation that returns an error, while
- * the PageError bit is more sticky and only cleared
- * when the page is reread or dropped. If an
- * application assumes it will always get error on
- * fsync, but does other operations on the fd before
- * and the page is dropped between then the error
- * will not be properly reported.
- *
- * This can already happen even without hwpoisoned
- * pages: first on metadata IO errors (which only
- * report through AS_EIO) or when the page is dropped
- * at the wrong time.
- *
- * So right now we assume that the application DTRT on
- * the first EIO, but we're not worse than other parts
- * of the kernel.
*/
- mapping_set_error(mapping, EIO);
+ mapping_set_error(mapping, -EIO);
}
- return me_pagecache_clean(p, pfn);
+ return me_pagecache_clean(ps, p);
}
/*
* Clean and dirty swap cache.
*
* Dirty swap cache page is tricky to handle. The page could live both in page
- * cache and swap cache(ie. page is freshly swapped in). So it could be
+ * table and swap cache(ie. page is freshly swapped in). So it could be
* referenced concurrently by 2 types of PTEs:
* normal PTEs and swap PTEs. We try to handle them consistently by calling
- * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
+ * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
* and then
* - clear dirty bit to prevent IO
* - remove from LRU
@@ -679,26 +1109,42 @@ static int me_pagecache_dirty(struct page *p, unsigned long pfn)
* Clean swap cache pages can be directly isolated. A later page fault will
* bring in the known good data from disk.
*/
-static int me_swapcache_dirty(struct page *p, unsigned long pfn)
+static int me_swapcache_dirty(struct page_state *ps, struct page *p)
{
- ClearPageDirty(p);
+ struct folio *folio = page_folio(p);
+ int ret;
+ bool extra_pins = false;
+
+ folio_clear_dirty(folio);
/* Trigger EIO in shmem: */
- ClearPageUptodate(p);
+ folio_clear_uptodate(folio);
- if (!delete_from_lru_cache(p))
- return DELAYED;
- else
- return FAILED;
+ ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
+ folio_unlock(folio);
+
+ if (ret == MF_DELAYED)
+ extra_pins = true;
+
+ if (has_extra_refcount(ps, p, extra_pins))
+ ret = MF_FAILED;
+
+ return ret;
}
-static int me_swapcache_clean(struct page *p, unsigned long pfn)
+static int me_swapcache_clean(struct page_state *ps, struct page *p)
{
- delete_from_swap_cache(p);
+ struct folio *folio = page_folio(p);
+ int ret;
- if (!delete_from_lru_cache(p))
- return RECOVERED;
- else
- return FAILED;
+ swap_cache_del_folio(folio);
+
+ ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
+ folio_unlock(folio);
+
+ if (has_extra_refcount(ps, p, false))
+ ret = MF_FAILED;
+
+ return ret;
}
/*
@@ -707,26 +1153,39 @@ static int me_swapcache_clean(struct page *p, unsigned long pfn)
* - Error on hugepage is contained in hugepage unit (not in raw page unit.)
* To narrow down kill region to one page, we need to break up pmd.
*/
-static int me_huge_page(struct page *p, unsigned long pfn)
+static int me_huge_page(struct page_state *ps, struct page *p)
{
- int res = 0;
- struct page *hpage = compound_head(p);
- /*
- * We can safely recover from error on free or reserved (i.e.
- * not in-use) hugepage by dequeuing it from freelist.
- * To check whether a hugepage is in-use or not, we can't use
- * page->lru because it can be used in other hugepage operations,
- * such as __unmap_hugepage_range() and gather_surplus_pages().
- * So instead we use page_mapping() and PageAnon().
- * We assume that this function is called with page lock held,
- * so there is no race between isolation and mapping/unmapping.
- */
- if (!(page_mapping(hpage) || PageAnon(hpage))) {
- res = dequeue_hwpoisoned_huge_page(hpage);
- if (!res)
- return RECOVERED;
+ struct folio *folio = page_folio(p);
+ int res;
+ struct address_space *mapping;
+ bool extra_pins = false;
+
+ mapping = folio_mapping(folio);
+ if (mapping) {
+ res = truncate_error_folio(folio, page_to_pfn(p), mapping);
+ /* The page is kept in page cache. */
+ extra_pins = true;
+ folio_unlock(folio);
+ } else {
+ folio_unlock(folio);
+ /*
+ * migration entry prevents later access on error hugepage,
+ * so we can free and dissolve it into buddy to save healthy
+ * subpages.
+ */
+ folio_put(folio);
+ if (__page_handle_poison(p) > 0) {
+ page_ref_inc(p);
+ res = MF_RECOVERED;
+ } else {
+ res = MF_FAILED;
+ }
}
- return DELAYED;
+
+ if (has_extra_refcount(ps, p, extra_pins))
+ res = MF_FAILED;
+
+ return res;
}
/*
@@ -743,144 +1202,329 @@ static int me_huge_page(struct page *p, unsigned long pfn)
*/
#define dirty (1UL << PG_dirty)
-#define sc (1UL << PG_swapcache)
+#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
#define unevict (1UL << PG_unevictable)
#define mlock (1UL << PG_mlocked)
-#define writeback (1UL << PG_writeback)
#define lru (1UL << PG_lru)
-#define swapbacked (1UL << PG_swapbacked)
#define head (1UL << PG_head)
-#define tail (1UL << PG_tail)
-#define compound (1UL << PG_compound)
-#define slab (1UL << PG_slab)
#define reserved (1UL << PG_reserved)
-static struct page_state {
- unsigned long mask;
- unsigned long res;
- char *msg;
- int (*action)(struct page *p, unsigned long pfn);
-} error_states[] = {
- { reserved, reserved, "reserved kernel", me_kernel },
+static struct page_state error_states[] = {
+ { reserved, reserved, MF_MSG_KERNEL, me_kernel },
/*
* free pages are specially detected outside this table:
* PG_buddy pages only make a small fraction of all free pages.
*/
- /*
- * Could in theory check if slab page is free or if we can drop
- * currently unused objects without touching them. But just
- * treat it as standard kernel for now.
- */
- { slab, slab, "kernel slab", me_kernel },
+ { head, head, MF_MSG_HUGE, me_huge_page },
-#ifdef CONFIG_PAGEFLAGS_EXTENDED
- { head, head, "huge", me_huge_page },
- { tail, tail, "huge", me_huge_page },
-#else
- { compound, compound, "huge", me_huge_page },
-#endif
+ { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
+ { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
- { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
- { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
+ { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
+ { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
- { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
- { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
+ { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
+ { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
- { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
- { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
-
- { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
- { lru|dirty, lru, "clean LRU", me_pagecache_clean },
+ { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
+ { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
/*
* Catchall entry: must be at end.
*/
- { 0, 0, "unknown page state", me_unknown },
+ { 0, 0, MF_MSG_UNKNOWN, me_unknown },
};
#undef dirty
#undef sc
#undef unevict
#undef mlock
-#undef writeback
#undef lru
-#undef swapbacked
#undef head
-#undef tail
-#undef compound
-#undef slab
#undef reserved
+static void update_per_node_mf_stats(unsigned long pfn,
+ enum mf_result result)
+{
+ int nid = MAX_NUMNODES;
+ struct memory_failure_stats *mf_stats = NULL;
+
+ nid = pfn_to_nid(pfn);
+ if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
+ WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
+ return;
+ }
+
+ mf_stats = &NODE_DATA(nid)->mf_stats;
+ switch (result) {
+ case MF_IGNORED:
+ ++mf_stats->ignored;
+ break;
+ case MF_FAILED:
+ ++mf_stats->failed;
+ break;
+ case MF_DELAYED:
+ ++mf_stats->delayed;
+ break;
+ case MF_RECOVERED:
+ ++mf_stats->recovered;
+ break;
+ default:
+ WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
+ break;
+ }
+ ++mf_stats->total;
+}
+
/*
* "Dirty/Clean" indication is not 100% accurate due to the possibility of
* setting PG_dirty outside page lock. See also comment above set_page_dirty().
*/
-static void action_result(unsigned long pfn, char *msg, int result)
+static int action_result(unsigned long pfn, enum mf_action_page_type type,
+ enum mf_result result)
{
- pr_err("MCE %#lx: %s page recovery: %s\n",
- pfn, msg, action_name[result]);
+ trace_memory_failure_event(pfn, type, result);
+
+ if (type != MF_MSG_ALREADY_POISONED && type != MF_MSG_PFN_MAP) {
+ num_poisoned_pages_inc(pfn);
+ update_per_node_mf_stats(pfn, result);
+ }
+
+ pr_err("%#lx: recovery action for %s: %s\n",
+ pfn, action_page_types[type], action_name[result]);
+
+ return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
}
static int page_action(struct page_state *ps, struct page *p,
unsigned long pfn)
{
int result;
- int count;
- result = ps->action(p, pfn);
- action_result(pfn, ps->msg, result);
-
- count = page_count(p) - 1;
- if (ps->action == me_swapcache_dirty && result == DELAYED)
- count--;
- if (count != 0) {
- printk(KERN_ERR
- "MCE %#lx: %s page still referenced by %d users\n",
- pfn, ps->msg, count);
- result = FAILED;
- }
+ /* page p should be unlocked after returning from ps->action(). */
+ result = ps->action(ps, p);
/* Could do more checks here if page looks ok */
/*
* Could adjust zone counters here to correct for the missing page.
*/
- return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
+ return action_result(pfn, ps->type, result);
+}
+
+static inline bool PageHWPoisonTakenOff(struct page *page)
+{
+ return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
+}
+
+void SetPageHWPoisonTakenOff(struct page *page)
+{
+ set_page_private(page, MAGIC_HWPOISON);
+}
+
+void ClearPageHWPoisonTakenOff(struct page *page)
+{
+ if (PageHWPoison(page))
+ set_page_private(page, 0);
}
/*
- * Do all that is necessary to remove user space mappings. Unmap
- * the pages and send SIGBUS to the processes if the data was dirty.
+ * Return true if a page type of a given page is supported by hwpoison
+ * mechanism (while handling could fail), otherwise false. This function
+ * does not return true for hugetlb or device memory pages, so it's assumed
+ * to be called only in the context where we never have such pages.
*/
-static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
- int trapno, int flags)
+static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
{
- enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
- struct address_space *mapping;
- LIST_HEAD(tokill);
- int ret;
- int kill = 1, forcekill;
- struct page *hpage = compound_head(p);
- struct page *ppage;
+ if (PageSlab(page))
+ return false;
- if (PageReserved(p) || PageSlab(p))
- return SWAP_SUCCESS;
+ /* Soft offline could migrate movable_ops pages */
+ if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page))
+ return true;
+
+ return PageLRU(page) || is_free_buddy_page(page);
+}
+
+static int __get_hwpoison_page(struct page *page, unsigned long flags)
+{
+ struct folio *folio = page_folio(page);
+ int ret = 0;
+ bool hugetlb = false;
+
+ ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
+ if (hugetlb) {
+ /* Make sure hugetlb demotion did not happen from under us. */
+ if (folio == page_folio(page))
+ return ret;
+ if (ret > 0) {
+ folio_put(folio);
+ folio = page_folio(page);
+ }
+ }
/*
- * This check implies we don't kill processes if their pages
- * are in the swap cache early. Those are always late kills.
+ * This check prevents from calling folio_try_get() for any
+ * unsupported type of folio in order to reduce the risk of unexpected
+ * races caused by taking a folio refcount.
+ */
+ if (!HWPoisonHandlable(&folio->page, flags))
+ return -EBUSY;
+
+ if (folio_try_get(folio)) {
+ if (folio == page_folio(page))
+ return 1;
+
+ pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
+ folio_put(folio);
+ }
+
+ return 0;
+}
+
+#define GET_PAGE_MAX_RETRY_NUM 3
+
+static int get_any_page(struct page *p, unsigned long flags)
+{
+ int ret = 0, pass = 0;
+ bool count_increased = false;
+
+ if (flags & MF_COUNT_INCREASED)
+ count_increased = true;
+
+try_again:
+ if (!count_increased) {
+ ret = __get_hwpoison_page(p, flags);
+ if (!ret) {
+ if (page_count(p)) {
+ /* We raced with an allocation, retry. */
+ if (pass++ < GET_PAGE_MAX_RETRY_NUM)
+ goto try_again;
+ ret = -EBUSY;
+ } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
+ /* We raced with put_page, retry. */
+ if (pass++ < GET_PAGE_MAX_RETRY_NUM)
+ goto try_again;
+ ret = -EIO;
+ }
+ goto out;
+ } else if (ret == -EBUSY) {
+ /*
+ * We raced with (possibly temporary) unhandlable
+ * page, retry.
+ */
+ if (pass++ < 3) {
+ shake_page(p);
+ goto try_again;
+ }
+ ret = -EIO;
+ goto out;
+ }
+ }
+
+ if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
+ ret = 1;
+ } else {
+ /*
+ * A page we cannot handle. Check whether we can turn
+ * it into something we can handle.
+ */
+ if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
+ put_page(p);
+ shake_page(p);
+ count_increased = false;
+ goto try_again;
+ }
+ put_page(p);
+ ret = -EIO;
+ }
+out:
+ if (ret == -EIO)
+ pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
+
+ return ret;
+}
+
+static int __get_unpoison_page(struct page *page)
+{
+ struct folio *folio = page_folio(page);
+ int ret = 0;
+ bool hugetlb = false;
+
+ ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
+ if (hugetlb) {
+ /* Make sure hugetlb demotion did not happen from under us. */
+ if (folio == page_folio(page))
+ return ret;
+ if (ret > 0)
+ folio_put(folio);
+ }
+
+ /*
+ * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
+ * but also isolated from buddy freelist, so need to identify the
+ * state and have to cancel both operations to unpoison.
*/
- if (!page_mapped(hpage))
- return SWAP_SUCCESS;
+ if (PageHWPoisonTakenOff(page))
+ return -EHWPOISON;
- if (PageKsm(p))
- return SWAP_FAIL;
+ return get_page_unless_zero(page) ? 1 : 0;
+}
- if (PageSwapCache(p)) {
- printk(KERN_ERR
- "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
- ttu |= TTU_IGNORE_HWPOISON;
+/**
+ * get_hwpoison_page() - Get refcount for memory error handling
+ * @p: Raw error page (hit by memory error)
+ * @flags: Flags controlling behavior of error handling
+ *
+ * get_hwpoison_page() takes a page refcount of an error page to handle memory
+ * error on it, after checking that the error page is in a well-defined state
+ * (defined as a page-type we can successfully handle the memory error on it,
+ * such as LRU page and hugetlb page).
+ *
+ * Memory error handling could be triggered at any time on any type of page,
+ * so it's prone to race with typical memory management lifecycle (like
+ * allocation and free). So to avoid such races, get_hwpoison_page() takes
+ * extra care for the error page's state (as done in __get_hwpoison_page()),
+ * and has some retry logic in get_any_page().
+ *
+ * When called from unpoison_memory(), the caller should already ensure that
+ * the given page has PG_hwpoison. So it's never reused for other page
+ * allocations, and __get_unpoison_page() never races with them.
+ *
+ * Return: 0 on failure or free buddy (hugetlb) page,
+ * 1 on success for in-use pages in a well-defined state,
+ * -EIO for pages on which we can not handle memory errors,
+ * -EBUSY when get_hwpoison_page() has raced with page lifecycle
+ * operations like allocation and free,
+ * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
+ */
+static int get_hwpoison_page(struct page *p, unsigned long flags)
+{
+ int ret;
+
+ zone_pcp_disable(page_zone(p));
+ if (flags & MF_UNPOISON)
+ ret = __get_unpoison_page(p);
+ else
+ ret = get_any_page(p, flags);
+ zone_pcp_enable(page_zone(p));
+
+ return ret;
+}
+
+/*
+ * The caller must guarantee the folio isn't large folio, except hugetlb.
+ * try_to_unmap() can't handle it.
+ */
+int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
+{
+ enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
+ struct address_space *mapping;
+
+ if (folio_test_swapcache(folio)) {
+ pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
+ ttu &= ~TTU_HWPOISON;
}
/*
@@ -889,79 +1533,89 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
* XXX: the dirty test could be racy: set_page_dirty() may not always
* be called inside page lock (it's recommended but not enforced).
*/
- mapping = page_mapping(hpage);
- if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
- mapping_cap_writeback_dirty(mapping)) {
- if (page_mkclean(hpage)) {
- SetPageDirty(hpage);
+ mapping = folio_mapping(folio);
+ if (!must_kill && !folio_test_dirty(folio) && mapping &&
+ mapping_can_writeback(mapping)) {
+ if (folio_mkclean(folio)) {
+ folio_set_dirty(folio);
} else {
- kill = 0;
- ttu |= TTU_IGNORE_HWPOISON;
- printk(KERN_INFO
- "MCE %#lx: corrupted page was clean: dropped without side effects\n",
+ ttu &= ~TTU_HWPOISON;
+ pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
pfn);
}
}
- /*
- * ppage: poisoned page
- * if p is regular page(4k page)
- * ppage == real poisoned page;
- * else p is hugetlb or THP, ppage == head page.
- */
- ppage = hpage;
-
- if (PageTransHuge(hpage)) {
+ if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
/*
- * Verify that this isn't a hugetlbfs head page, the check for
- * PageAnon is just for avoid tripping a split_huge_page
- * internal debug check, as split_huge_page refuses to deal with
- * anything that isn't an anon page. PageAnon can't go away fro
- * under us because we hold a refcount on the hpage, without a
- * refcount on the hpage. split_huge_page can't be safely called
- * in the first place, having a refcount on the tail isn't
- * enough * to be safe.
+ * For hugetlb folios in shared mappings, try_to_unmap
+ * could potentially call huge_pmd_unshare. Because of
+ * this, take semaphore in write mode here and set
+ * TTU_RMAP_LOCKED to indicate we have taken the lock
+ * at this higher level.
*/
- if (!PageHuge(hpage) && PageAnon(hpage)) {
- if (unlikely(split_huge_page(hpage))) {
- /*
- * FIXME: if splitting THP is failed, it is
- * better to stop the following operation rather
- * than causing panic by unmapping. System might
- * survive if the page is freed later.
- */
- printk(KERN_INFO
- "MCE %#lx: failed to split THP\n", pfn);
-
- BUG_ON(!PageHWPoison(p));
- return SWAP_FAIL;
- }
- /* THP is split, so ppage should be the real poisoned page. */
- ppage = p;
+ mapping = hugetlb_folio_mapping_lock_write(folio);
+ if (!mapping) {
+ pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
+ folio_pfn(folio));
+ return -EBUSY;
}
+
+ try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
+ i_mmap_unlock_write(mapping);
+ } else {
+ try_to_unmap(folio, ttu);
}
+ return folio_mapped(folio) ? -EBUSY : 0;
+}
+
+/*
+ * Do all that is necessary to remove user space mappings. Unmap
+ * the pages and send SIGBUS to the processes if the data was dirty.
+ */
+static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
+ unsigned long pfn, int flags)
+{
+ LIST_HEAD(tokill);
+ bool unmap_success;
+ int forcekill;
+ bool mlocked = folio_test_mlocked(folio);
+
+ /*
+ * Here we are interested only in user-mapped pages, so skip any
+ * other types of pages.
+ */
+ if (folio_test_reserved(folio) || folio_test_slab(folio) ||
+ folio_test_pgtable(folio) || folio_test_offline(folio))
+ return true;
+ if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
+ return true;
+
+ /*
+ * This check implies we don't kill processes if their pages
+ * are in the swap cache early. Those are always late kills.
+ */
+ if (!folio_mapped(folio))
+ return true;
+
/*
* First collect all the processes that have the page
* mapped in dirty form. This has to be done before try_to_unmap,
* because ttu takes the rmap data structures down.
- *
- * Error handling: We ignore errors here because
- * there's nothing that can be done.
*/
- if (kill)
- collect_procs(ppage, &tokill);
+ collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
- if (hpage != ppage)
- lock_page(ppage);
+ unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
+ if (!unmap_success)
+ pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
+ pfn, folio_mapcount(folio));
- ret = try_to_unmap(ppage, ttu);
- if (ret != SWAP_SUCCESS)
- printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
- pfn, page_mapcount(ppage));
-
- if (hpage != ppage)
- unlock_page(ppage);
+ /*
+ * try_to_unmap() might put mlocked page in lru cache, so call
+ * shake_page() again to ensure that it's flushed.
+ */
+ if (mlocked)
+ shake_folio(folio);
/*
* Now that the dirty bit has been propagated to the
@@ -973,33 +1627,668 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
* use a more force-full uncatchable kill to prevent
* any accesses to the poisoned memory.
*/
- forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
- kill_procs(&tokill, forcekill, trapno,
- ret != SWAP_SUCCESS, p, pfn, flags);
+ forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
+ !unmap_success;
+ kill_procs(&tokill, forcekill, pfn, flags);
+
+ return unmap_success;
+}
+
+static int identify_page_state(unsigned long pfn, struct page *p,
+ unsigned long page_flags)
+{
+ struct page_state *ps;
+
+ /*
+ * The first check uses the current page flags which may not have any
+ * relevant information. The second check with the saved page flags is
+ * carried out only if the first check can't determine the page status.
+ */
+ for (ps = error_states;; ps++)
+ if ((p->flags.f & ps->mask) == ps->res)
+ break;
+
+ page_flags |= (p->flags.f & (1UL << PG_dirty));
+
+ if (!ps->mask)
+ for (ps = error_states;; ps++)
+ if ((page_flags & ps->mask) == ps->res)
+ break;
+ return page_action(ps, p, pfn);
+}
+
+/*
+ * When 'release' is 'false', it means that if thp split has failed,
+ * there is still more to do, hence the page refcount we took earlier
+ * is still needed.
+ */
+static int try_to_split_thp_page(struct page *page, unsigned int new_order,
+ bool release)
+{
+ int ret;
+
+ lock_page(page);
+ ret = split_huge_page_to_order(page, new_order);
+ unlock_page(page);
+
+ if (ret && release)
+ put_page(page);
return ret;
}
-static void set_page_hwpoison_huge_page(struct page *hpage)
+static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
+ struct address_space *mapping, pgoff_t index, int flags)
{
- int i;
- int nr_pages = 1 << compound_trans_order(hpage);
- for (i = 0; i < nr_pages; i++)
- SetPageHWPoison(hpage + i);
+ struct to_kill *tk;
+ unsigned long size = 0;
+
+ list_for_each_entry(tk, to_kill, nd)
+ if (tk->size_shift)
+ size = max(size, 1UL << tk->size_shift);
+
+ if (size) {
+ /*
+ * Unmap the largest mapping to avoid breaking up device-dax
+ * mappings which are constant size. The actual size of the
+ * mapping being torn down is communicated in siginfo, see
+ * kill_proc()
+ */
+ loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
+
+ unmap_mapping_range(mapping, start, size, 0);
+ }
+
+ kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
}
-static void clear_page_hwpoison_huge_page(struct page *hpage)
+/*
+ * Only dev_pagemap pages get here, such as fsdax when the filesystem
+ * either do not claim or fails to claim a hwpoison event, or devdax.
+ * The fsdax pages are initialized per base page, and the devdax pages
+ * could be initialized either as base pages, or as compound pages with
+ * vmemmap optimization enabled. Devdax is simplistic in its dealing with
+ * hwpoison, such that, if a subpage of a compound page is poisoned,
+ * simply mark the compound head page is by far sufficient.
+ */
+static int mf_generic_kill_procs(unsigned long long pfn, int flags,
+ struct dev_pagemap *pgmap)
{
- int i;
- int nr_pages = 1 << compound_trans_order(hpage);
- for (i = 0; i < nr_pages; i++)
- ClearPageHWPoison(hpage + i);
+ struct folio *folio = pfn_folio(pfn);
+ LIST_HEAD(to_kill);
+ dax_entry_t cookie;
+ int rc = 0;
+
+ /*
+ * Prevent the inode from being freed while we are interrogating
+ * the address_space, typically this would be handled by
+ * lock_page(), but dax pages do not use the page lock. This
+ * also prevents changes to the mapping of this pfn until
+ * poison signaling is complete.
+ */
+ cookie = dax_lock_folio(folio);
+ if (!cookie)
+ return -EBUSY;
+
+ if (hwpoison_filter(&folio->page)) {
+ rc = -EOPNOTSUPP;
+ goto unlock;
+ }
+
+ switch (pgmap->type) {
+ case MEMORY_DEVICE_PRIVATE:
+ case MEMORY_DEVICE_COHERENT:
+ /*
+ * TODO: Handle device pages which may need coordination
+ * with device-side memory.
+ */
+ rc = -ENXIO;
+ goto unlock;
+ default:
+ break;
+ }
+
+ /*
+ * Use this flag as an indication that the dax page has been
+ * remapped UC to prevent speculative consumption of poison.
+ */
+ SetPageHWPoison(&folio->page);
+
+ /*
+ * Unlike System-RAM there is no possibility to swap in a
+ * different physical page at a given virtual address, so all
+ * userspace consumption of ZONE_DEVICE memory necessitates
+ * SIGBUS (i.e. MF_MUST_KILL)
+ */
+ flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
+ collect_procs(folio, &folio->page, &to_kill, true);
+
+ unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
+unlock:
+ dax_unlock_folio(folio, cookie);
+ return rc;
+}
+
+#ifdef CONFIG_FS_DAX
+/**
+ * mf_dax_kill_procs - Collect and kill processes who are using this file range
+ * @mapping: address_space of the file in use
+ * @index: start pgoff of the range within the file
+ * @count: length of the range, in unit of PAGE_SIZE
+ * @mf_flags: memory failure flags
+ */
+int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
+ unsigned long count, int mf_flags)
+{
+ LIST_HEAD(to_kill);
+ dax_entry_t cookie;
+ struct page *page;
+ size_t end = index + count;
+ bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
+
+ mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
+
+ for (; index < end; index++) {
+ page = NULL;
+ cookie = dax_lock_mapping_entry(mapping, index, &page);
+ if (!cookie)
+ return -EBUSY;
+ if (!page)
+ goto unlock;
+
+ if (!pre_remove)
+ SetPageHWPoison(page);
+
+ /*
+ * The pre_remove case is revoking access, the memory is still
+ * good and could theoretically be put back into service.
+ */
+ collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
+ unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
+ index, mf_flags);
+unlock:
+ dax_unlock_mapping_entry(mapping, index, cookie);
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
+#endif /* CONFIG_FS_DAX */
+
+#ifdef CONFIG_HUGETLB_PAGE
+
+/*
+ * Struct raw_hwp_page represents information about "raw error page",
+ * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
+ */
+struct raw_hwp_page {
+ struct llist_node node;
+ struct page *page;
+};
+
+static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
+{
+ return (struct llist_head *)&folio->_hugetlb_hwpoison;
+}
+
+bool is_raw_hwpoison_page_in_hugepage(struct page *page)
+{
+ struct llist_head *raw_hwp_head;
+ struct raw_hwp_page *p;
+ struct folio *folio = page_folio(page);
+ bool ret = false;
+
+ if (!folio_test_hwpoison(folio))
+ return false;
+
+ if (!folio_test_hugetlb(folio))
+ return PageHWPoison(page);
+
+ /*
+ * When RawHwpUnreliable is set, kernel lost track of which subpages
+ * are HWPOISON. So return as if ALL subpages are HWPOISONed.
+ */
+ if (folio_test_hugetlb_raw_hwp_unreliable(folio))
+ return true;
+
+ mutex_lock(&mf_mutex);
+
+ raw_hwp_head = raw_hwp_list_head(folio);
+ llist_for_each_entry(p, raw_hwp_head->first, node) {
+ if (page == p->page) {
+ ret = true;
+ break;
+ }
+ }
+
+ mutex_unlock(&mf_mutex);
+
+ return ret;
+}
+
+static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
+{
+ struct llist_node *head;
+ struct raw_hwp_page *p, *next;
+ unsigned long count = 0;
+
+ head = llist_del_all(raw_hwp_list_head(folio));
+ llist_for_each_entry_safe(p, next, head, node) {
+ if (move_flag)
+ SetPageHWPoison(p->page);
+ else
+ num_poisoned_pages_sub(page_to_pfn(p->page), 1);
+ kfree(p);
+ count++;
+ }
+ return count;
+}
+
+static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
+{
+ struct llist_head *head;
+ struct raw_hwp_page *raw_hwp;
+ struct raw_hwp_page *p;
+ int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
+
+ /*
+ * Once the hwpoison hugepage has lost reliable raw error info,
+ * there is little meaning to keep additional error info precisely,
+ * so skip to add additional raw error info.
+ */
+ if (folio_test_hugetlb_raw_hwp_unreliable(folio))
+ return -EHWPOISON;
+ head = raw_hwp_list_head(folio);
+ llist_for_each_entry(p, head->first, node) {
+ if (p->page == page)
+ return -EHWPOISON;
+ }
+
+ raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
+ if (raw_hwp) {
+ raw_hwp->page = page;
+ llist_add(&raw_hwp->node, head);
+ /* the first error event will be counted in action_result(). */
+ if (ret)
+ num_poisoned_pages_inc(page_to_pfn(page));
+ } else {
+ /*
+ * Failed to save raw error info. We no longer trace all
+ * hwpoisoned subpages, and we need refuse to free/dissolve
+ * this hwpoisoned hugepage.
+ */
+ folio_set_hugetlb_raw_hwp_unreliable(folio);
+ /*
+ * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
+ * used any more, so free it.
+ */
+ __folio_free_raw_hwp(folio, false);
+ }
+ return ret;
+}
+
+static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
+{
+ /*
+ * hugetlb_vmemmap_optimized hugepages can't be freed because struct
+ * pages for tail pages are required but they don't exist.
+ */
+ if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
+ return 0;
+
+ /*
+ * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
+ * definition.
+ */
+ if (folio_test_hugetlb_raw_hwp_unreliable(folio))
+ return 0;
+
+ return __folio_free_raw_hwp(folio, move_flag);
+}
+
+void folio_clear_hugetlb_hwpoison(struct folio *folio)
+{
+ if (folio_test_hugetlb_raw_hwp_unreliable(folio))
+ return;
+ if (folio_test_hugetlb_vmemmap_optimized(folio))
+ return;
+ folio_clear_hwpoison(folio);
+ folio_free_raw_hwp(folio, true);
+}
+
+/*
+ * Called from hugetlb code with hugetlb_lock held.
+ *
+ * Return values:
+ * 0 - free hugepage
+ * 1 - in-use hugepage
+ * 2 - not a hugepage
+ * -EBUSY - the hugepage is busy (try to retry)
+ * -EHWPOISON - the hugepage is already hwpoisoned
+ */
+int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
+ bool *migratable_cleared)
+{
+ struct page *page = pfn_to_page(pfn);
+ struct folio *folio = page_folio(page);
+ int ret = 2; /* fallback to normal page handling */
+ bool count_increased = false;
+
+ if (!folio_test_hugetlb(folio))
+ goto out;
+
+ if (flags & MF_COUNT_INCREASED) {
+ ret = 1;
+ count_increased = true;
+ } else if (folio_test_hugetlb_freed(folio)) {
+ ret = 0;
+ } else if (folio_test_hugetlb_migratable(folio)) {
+ ret = folio_try_get(folio);
+ if (ret)
+ count_increased = true;
+ } else {
+ ret = -EBUSY;
+ if (!(flags & MF_NO_RETRY))
+ goto out;
+ }
+
+ if (folio_set_hugetlb_hwpoison(folio, page)) {
+ ret = -EHWPOISON;
+ goto out;
+ }
+
+ /*
+ * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
+ * from being migrated by memory hotremove.
+ */
+ if (count_increased && folio_test_hugetlb_migratable(folio)) {
+ folio_clear_hugetlb_migratable(folio);
+ *migratable_cleared = true;
+ }
+
+ return ret;
+out:
+ if (count_increased)
+ folio_put(folio);
+ return ret;
+}
+
+/*
+ * Taking refcount of hugetlb pages needs extra care about race conditions
+ * with basic operations like hugepage allocation/free/demotion.
+ * So some of prechecks for hwpoison (pinning, and testing/setting
+ * PageHWPoison) should be done in single hugetlb_lock range.
+ */
+static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
+{
+ int res;
+ struct page *p = pfn_to_page(pfn);
+ struct folio *folio;
+ unsigned long page_flags;
+ bool migratable_cleared = false;
+
+ *hugetlb = 1;
+retry:
+ res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
+ if (res == 2) { /* fallback to normal page handling */
+ *hugetlb = 0;
+ return 0;
+ } else if (res == -EHWPOISON) {
+ if (flags & MF_ACTION_REQUIRED) {
+ folio = page_folio(p);
+ res = kill_accessing_process(current, folio_pfn(folio), flags);
+ }
+ action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
+ return res;
+ } else if (res == -EBUSY) {
+ if (!(flags & MF_NO_RETRY)) {
+ flags |= MF_NO_RETRY;
+ goto retry;
+ }
+ return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
+ }
+
+ folio = page_folio(p);
+ folio_lock(folio);
+
+ if (hwpoison_filter(p)) {
+ folio_clear_hugetlb_hwpoison(folio);
+ if (migratable_cleared)
+ folio_set_hugetlb_migratable(folio);
+ folio_unlock(folio);
+ if (res == 1)
+ folio_put(folio);
+ return -EOPNOTSUPP;
+ }
+
+ /*
+ * Handling free hugepage. The possible race with hugepage allocation
+ * or demotion can be prevented by PageHWPoison flag.
+ */
+ if (res == 0) {
+ folio_unlock(folio);
+ if (__page_handle_poison(p) > 0) {
+ page_ref_inc(p);
+ res = MF_RECOVERED;
+ } else {
+ res = MF_FAILED;
+ }
+ return action_result(pfn, MF_MSG_FREE_HUGE, res);
+ }
+
+ page_flags = folio->flags.f;
+
+ if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
+ folio_unlock(folio);
+ return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
+ }
+
+ return identify_page_state(pfn, p, page_flags);
+}
+
+#else
+static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
+{
+ return 0;
+}
+
+static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
+{
+ return 0;
+}
+#endif /* CONFIG_HUGETLB_PAGE */
+
+/* Drop the extra refcount in case we come from madvise() */
+static void put_ref_page(unsigned long pfn, int flags)
+{
+ if (!(flags & MF_COUNT_INCREASED))
+ return;
+
+ put_page(pfn_to_page(pfn));
+}
+
+static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
+ struct dev_pagemap *pgmap)
+{
+ int rc = -ENXIO;
+
+ /* device metadata space is not recoverable */
+ if (!pgmap_pfn_valid(pgmap, pfn))
+ goto out;
+
+ /*
+ * Call driver's implementation to handle the memory failure, otherwise
+ * fall back to generic handler.
+ */
+ if (pgmap_has_memory_failure(pgmap)) {
+ rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
+ /*
+ * Fall back to generic handler too if operation is not
+ * supported inside the driver/device/filesystem.
+ */
+ if (rc != -EOPNOTSUPP)
+ goto out;
+ }
+
+ rc = mf_generic_kill_procs(pfn, flags, pgmap);
+out:
+ /* drop pgmap ref acquired in caller */
+ put_dev_pagemap(pgmap);
+ if (rc != -EOPNOTSUPP)
+ action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
+ return rc;
+}
+
+/*
+ * The calling condition is as such: thp split failed, page might have
+ * been RDMA pinned, not much can be done for recovery.
+ * But a SIGBUS should be delivered with vaddr provided so that the user
+ * application has a chance to recover. Also, application processes'
+ * election for MCE early killed will be honored.
+ */
+static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
+ struct folio *folio)
+{
+ LIST_HEAD(tokill);
+
+ folio_lock(folio);
+ collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
+ folio_unlock(folio);
+
+ kill_procs(&tokill, true, pfn, flags);
+}
+
+int register_pfn_address_space(struct pfn_address_space *pfn_space)
+{
+ guard(mutex)(&pfn_space_lock);
+
+ if (interval_tree_iter_first(&pfn_space_itree,
+ pfn_space->node.start,
+ pfn_space->node.last))
+ return -EBUSY;
+
+ interval_tree_insert(&pfn_space->node, &pfn_space_itree);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(register_pfn_address_space);
+
+void unregister_pfn_address_space(struct pfn_address_space *pfn_space)
+{
+ guard(mutex)(&pfn_space_lock);
+
+ if (interval_tree_iter_first(&pfn_space_itree,
+ pfn_space->node.start,
+ pfn_space->node.last))
+ interval_tree_remove(&pfn_space->node, &pfn_space_itree);
+}
+EXPORT_SYMBOL_GPL(unregister_pfn_address_space);
+
+static void add_to_kill_pfn(struct task_struct *tsk,
+ struct vm_area_struct *vma,
+ struct list_head *to_kill,
+ unsigned long pfn)
+{
+ struct to_kill *tk;
+
+ tk = kmalloc(sizeof(*tk), GFP_ATOMIC);
+ if (!tk) {
+ pr_info("Unable to kill proc %d\n", tsk->pid);
+ return;
+ }
+
+ /* Check for pgoff not backed by struct page */
+ tk->addr = vma_address(vma, pfn, 1);
+ tk->size_shift = PAGE_SHIFT;
+
+ if (tk->addr == -EFAULT)
+ pr_info("Unable to find address %lx in %s\n",
+ pfn, tsk->comm);
+
+ get_task_struct(tsk);
+ tk->tsk = tsk;
+ list_add_tail(&tk->nd, to_kill);
+}
+
+/*
+ * Collect processes when the error hit a PFN not backed by struct page.
+ */
+static void collect_procs_pfn(struct address_space *mapping,
+ unsigned long pfn, struct list_head *to_kill)
+{
+ struct vm_area_struct *vma;
+ struct task_struct *tsk;
+
+ i_mmap_lock_read(mapping);
+ rcu_read_lock();
+ for_each_process(tsk) {
+ struct task_struct *t = tsk;
+
+ t = task_early_kill(tsk, true);
+ if (!t)
+ continue;
+ vma_interval_tree_foreach(vma, &mapping->i_mmap, pfn, pfn) {
+ if (vma->vm_mm == t->mm)
+ add_to_kill_pfn(t, vma, to_kill, pfn);
+ }
+ }
+ rcu_read_unlock();
+ i_mmap_unlock_read(mapping);
+}
+
+/**
+ * memory_failure_pfn - Handle memory failure on a page not backed by
+ * struct page.
+ * @pfn: Page Number of the corrupted page
+ * @flags: fine tune action taken
+ *
+ * Return:
+ * 0 - success,
+ * -EBUSY - Page PFN does not belong to any address space mapping.
+ */
+static int memory_failure_pfn(unsigned long pfn, int flags)
+{
+ struct interval_tree_node *node;
+ LIST_HEAD(tokill);
+
+ scoped_guard(mutex, &pfn_space_lock) {
+ bool mf_handled = false;
+
+ /*
+ * Modules registers with MM the address space mapping to
+ * the device memory they manage. Iterate to identify
+ * exactly which address space has mapped to this failing
+ * PFN.
+ */
+ for (node = interval_tree_iter_first(&pfn_space_itree, pfn, pfn); node;
+ node = interval_tree_iter_next(node, pfn, pfn)) {
+ struct pfn_address_space *pfn_space =
+ container_of(node, struct pfn_address_space, node);
+
+ collect_procs_pfn(pfn_space->mapping, pfn, &tokill);
+
+ mf_handled = true;
+ }
+
+ if (!mf_handled)
+ return action_result(pfn, MF_MSG_PFN_MAP, MF_IGNORED);
+ }
+
+ /*
+ * Unlike System-RAM there is no possibility to swap in a different
+ * physical page at a given virtual address, so all userspace
+ * consumption of direct PFN memory necessitates SIGBUS (i.e.
+ * MF_MUST_KILL)
+ */
+ flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
+
+ kill_procs(&tokill, true, pfn, flags);
+
+ return action_result(pfn, MF_MSG_PFN_MAP, MF_RECOVERED);
}
/**
* memory_failure - Handle memory failure of a page.
* @pfn: Page Number of the corrupted page
- * @trapno: Trap number reported in the signal to user space.
* @flags: fine tune action taken
*
* This function is called by the low level machine check code
@@ -1012,205 +2301,234 @@ static void clear_page_hwpoison_huge_page(struct page *hpage)
* detected by a background scrubber)
*
* Must run in process context (e.g. a work queue) with interrupts
- * enabled and no spinlocks hold.
+ * enabled and no spinlocks held.
+ *
+ * Return:
+ * 0 - success,
+ * -ENXIO - memory not managed by the kernel
+ * -EOPNOTSUPP - hwpoison_filter() filtered the error event,
+ * -EHWPOISON - the page was already poisoned, potentially
+ * kill process,
+ * other negative values - failure.
*/
-int memory_failure(unsigned long pfn, int trapno, int flags)
+int memory_failure(unsigned long pfn, int flags)
{
- struct page_state *ps;
struct page *p;
- struct page *hpage;
- int res;
- unsigned int nr_pages;
+ struct folio *folio;
+ struct dev_pagemap *pgmap;
+ int res = 0;
unsigned long page_flags;
+ bool retry = true;
+ int hugetlb = 0;
if (!sysctl_memory_failure_recovery)
- panic("Memory failure from trap %d on page %lx", trapno, pfn);
+ panic("Memory failure on page %lx", pfn);
- if (!pfn_valid(pfn)) {
- printk(KERN_ERR
- "MCE %#lx: memory outside kernel control\n",
- pfn);
- return -ENXIO;
+ mutex_lock(&mf_mutex);
+
+ if (!(flags & MF_SW_SIMULATED))
+ hw_memory_failure = true;
+
+ p = pfn_to_online_page(pfn);
+ if (!p) {
+ res = arch_memory_failure(pfn, flags);
+ if (res == 0)
+ goto unlock_mutex;
+
+ if (!pfn_valid(pfn) && !arch_is_platform_page(PFN_PHYS(pfn))) {
+ /*
+ * The PFN is not backed by struct page.
+ */
+ res = memory_failure_pfn(pfn, flags);
+ goto unlock_mutex;
+ }
+
+ if (pfn_valid(pfn)) {
+ pgmap = get_dev_pagemap(pfn);
+ put_ref_page(pfn, flags);
+ if (pgmap) {
+ res = memory_failure_dev_pagemap(pfn, flags,
+ pgmap);
+ goto unlock_mutex;
+ }
+ }
+ pr_err("%#lx: memory outside kernel control\n", pfn);
+ res = -ENXIO;
+ goto unlock_mutex;
}
- p = pfn_to_page(pfn);
- hpage = compound_head(p);
+try_again:
+ res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
+ if (hugetlb)
+ goto unlock_mutex;
+
if (TestSetPageHWPoison(p)) {
- printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
- return 0;
+ res = -EHWPOISON;
+ if (flags & MF_ACTION_REQUIRED)
+ res = kill_accessing_process(current, pfn, flags);
+ if (flags & MF_COUNT_INCREASED)
+ put_page(p);
+ action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
+ goto unlock_mutex;
}
/*
- * Currently errors on hugetlbfs pages are measured in hugepage units,
- * so nr_pages should be 1 << compound_order. OTOH when errors are on
- * transparent hugepages, they are supposed to be split and error
- * measurement is done in normal page units. So nr_pages should be one
- * in this case.
- */
- if (PageHuge(p))
- nr_pages = 1 << compound_order(hpage);
- else /* normal page or thp */
- nr_pages = 1;
- atomic_long_add(nr_pages, &num_poisoned_pages);
-
- /*
* We need/can do nothing about count=0 pages.
* 1) it's a free page, and therefore in safe hand:
- * prep_new_page() will be the gate keeper.
- * 2) it's a free hugepage, which is also safe:
- * an affected hugepage will be dequeued from hugepage freelist,
- * so there's no concern about reusing it ever after.
- * 3) it's part of a non-compound high order page.
+ * check_new_page() will be the gate keeper.
+ * 2) it's part of a non-compound high order page.
* Implies some kernel user: cannot stop them from
* R/W the page; let's pray that the page has been
* used and will be freed some time later.
* In fact it's dangerous to directly bump up page count from 0,
- * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
+ * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
*/
- if (!(flags & MF_COUNT_INCREASED) &&
- !get_page_unless_zero(hpage)) {
- if (is_free_buddy_page(p)) {
- action_result(pfn, "free buddy", DELAYED);
- return 0;
- } else if (PageHuge(hpage)) {
- /*
- * Check "just unpoisoned", "filter hit", and
- * "race with other subpage."
- */
- lock_page(hpage);
- if (!PageHWPoison(hpage)
- || (hwpoison_filter(p) && TestClearPageHWPoison(p))
- || (p != hpage && TestSetPageHWPoison(hpage))) {
- atomic_long_sub(nr_pages, &num_poisoned_pages);
- return 0;
+ if (!(flags & MF_COUNT_INCREASED)) {
+ res = get_hwpoison_page(p, flags);
+ if (!res) {
+ if (is_free_buddy_page(p)) {
+ if (take_page_off_buddy(p)) {
+ page_ref_inc(p);
+ res = MF_RECOVERED;
+ } else {
+ /* We lost the race, try again */
+ if (retry) {
+ ClearPageHWPoison(p);
+ retry = false;
+ goto try_again;
+ }
+ res = MF_FAILED;
+ }
+ res = action_result(pfn, MF_MSG_BUDDY, res);
+ } else {
+ res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
}
- set_page_hwpoison_huge_page(hpage);
- res = dequeue_hwpoisoned_huge_page(hpage);
- action_result(pfn, "free huge",
- res ? IGNORED : DELAYED);
- unlock_page(hpage);
- return res;
- } else {
- action_result(pfn, "high order kernel", IGNORED);
- return -EBUSY;
+ goto unlock_mutex;
+ } else if (res < 0) {
+ res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
+ goto unlock_mutex;
+ }
+ }
+
+ folio = page_folio(p);
+
+ /* filter pages that are protected from hwpoison test by users */
+ folio_lock(folio);
+ if (hwpoison_filter(p)) {
+ ClearPageHWPoison(p);
+ folio_unlock(folio);
+ folio_put(folio);
+ res = -EOPNOTSUPP;
+ goto unlock_mutex;
+ }
+ folio_unlock(folio);
+
+ if (folio_test_large(folio)) {
+ const int new_order = min_order_for_split(folio);
+ int err;
+
+ /*
+ * The flag must be set after the refcount is bumped
+ * otherwise it may race with THP split.
+ * And the flag can't be set in get_hwpoison_page() since
+ * it is called by soft offline too and it is just called
+ * for !MF_COUNT_INCREASED. So here seems to be the best
+ * place.
+ *
+ * Don't need care about the above error handling paths for
+ * get_hwpoison_page() since they handle either free page
+ * or unhandlable page. The refcount is bumped iff the
+ * page is a valid handlable page.
+ */
+ folio_set_has_hwpoisoned(folio);
+ err = try_to_split_thp_page(p, new_order, /* release= */ false);
+ /*
+ * If splitting a folio to order-0 fails, kill the process.
+ * Split the folio regardless to minimize unusable pages.
+ * Because the memory failure code cannot handle large
+ * folios, this split is always treated as if it failed.
+ */
+ if (err || new_order) {
+ /* get folio again in case the original one is split */
+ folio = page_folio(p);
+ res = -EHWPOISON;
+ kill_procs_now(p, pfn, flags, folio);
+ put_page(p);
+ action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
+ goto unlock_mutex;
}
+ VM_BUG_ON_PAGE(!page_count(p), p);
+ folio = page_folio(p);
}
/*
* We ignore non-LRU pages for good reasons.
* - PG_locked is only well defined for LRU pages and a few others
- * - to avoid races with __set_page_locked()
+ * - to avoid races with __SetPageLocked()
* - to avoid races with __SetPageSlab*() (and more non-atomic ops)
* The check (unnecessarily) ignores LRU pages being isolated and
* walked by the page reclaim code, however that's not a big loss.
*/
- if (!PageHuge(p) && !PageTransTail(p)) {
- if (!PageLRU(p))
- shake_page(p, 0);
- if (!PageLRU(p)) {
- /*
- * shake_page could have turned it free.
- */
- if (is_free_buddy_page(p)) {
- action_result(pfn, "free buddy, 2nd try",
- DELAYED);
- return 0;
- }
- action_result(pfn, "non LRU", IGNORED);
- put_page(p);
- return -EBUSY;
- }
- }
+ shake_folio(folio);
+
+ folio_lock(folio);
/*
- * Lock the page and wait for writeback to finish.
- * It's very difficult to mess with pages currently under IO
- * and in many cases impossible, so we just avoid it here.
+ * We're only intended to deal with the non-Compound page here.
+ * The page cannot become compound pages again as folio has been
+ * splited and extra refcnt is held.
*/
- lock_page(hpage);
+ WARN_ON(folio_test_large(folio));
/*
* We use page flags to determine what action should be taken, but
* the flags can be modified by the error containment action. One
* example is an mlocked page, where PG_mlocked is cleared by
- * page_remove_rmap() in try_to_unmap_one(). So to determine page status
- * correctly, we save a copy of the page flags at this time.
+ * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
+ * status correctly, we save a copy of the page flags at this time.
*/
- page_flags = p->flags;
+ page_flags = folio->flags.f;
/*
- * unpoison always clear PG_hwpoison inside page lock
+ * __munlock_folio() may clear a writeback folio's LRU flag without
+ * the folio lock. We need to wait for writeback completion for this
+ * folio or it may trigger a vfs BUG while evicting inode.
*/
- if (!PageHWPoison(p)) {
- printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
- res = 0;
- goto out;
- }
- if (hwpoison_filter(p)) {
- if (TestClearPageHWPoison(p))
- atomic_long_sub(nr_pages, &num_poisoned_pages);
- unlock_page(hpage);
- put_page(hpage);
- return 0;
- }
+ if (!folio_test_lru(folio) && !folio_test_writeback(folio))
+ goto identify_page_state;
/*
- * For error on the tail page, we should set PG_hwpoison
- * on the head page to show that the hugepage is hwpoisoned
- */
- if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
- action_result(pfn, "hugepage already hardware poisoned",
- IGNORED);
- unlock_page(hpage);
- put_page(hpage);
- return 0;
- }
- /*
- * Set PG_hwpoison on all pages in an error hugepage,
- * because containment is done in hugepage unit for now.
- * Since we have done TestSetPageHWPoison() for the head page with
- * page lock held, we can safely set PG_hwpoison bits on tail pages.
+ * It's very difficult to mess with pages currently under IO
+ * and in many cases impossible, so we just avoid it here.
*/
- if (PageHuge(p))
- set_page_hwpoison_huge_page(hpage);
-
- wait_on_page_writeback(p);
+ folio_wait_writeback(folio);
/*
* Now take care of user space mappings.
- * Abort on fail: __delete_from_page_cache() assumes unmapped page.
+ * Abort on fail: __filemap_remove_folio() assumes unmapped page.
*/
- if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
- printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
- res = -EBUSY;
- goto out;
+ if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
+ res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
+ goto unlock_page;
}
/*
* Torn down by someone else?
*/
- if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
- action_result(pfn, "already truncated LRU", IGNORED);
- res = -EBUSY;
- goto out;
+ if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
+ folio->mapping == NULL) {
+ res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
+ goto unlock_page;
}
- res = -EBUSY;
- /*
- * The first check uses the current page flags which may not have any
- * relevant information. The second check with the saved page flagss is
- * carried out only if the first check can't determine the page status.
- */
- for (ps = error_states;; ps++)
- if ((p->flags & ps->mask) == ps->res)
- break;
- if (!ps->mask)
- for (ps = error_states;; ps++)
- if ((page_flags & ps->mask) == ps->res)
- break;
- res = page_action(ps, p, pfn);
-out:
- unlock_page(hpage);
+identify_page_state:
+ res = identify_page_state(pfn, p, page_flags);
+ mutex_unlock(&mf_mutex);
+ return res;
+unlock_page:
+ folio_unlock(folio);
+unlock_mutex:
+ mutex_unlock(&mf_mutex);
return res;
}
EXPORT_SYMBOL_GPL(memory_failure);
@@ -1220,14 +2538,13 @@ EXPORT_SYMBOL_GPL(memory_failure);
struct memory_failure_entry {
unsigned long pfn;
- int trapno;
int flags;
};
struct memory_failure_cpu {
DECLARE_KFIFO(fifo, struct memory_failure_entry,
MEMORY_FAILURE_FIFO_SIZE);
- spinlock_t lock;
+ raw_spinlock_t lock;
struct work_struct work;
};
@@ -1236,7 +2553,6 @@ static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
/**
* memory_failure_queue - Schedule handling memory failure of a page.
* @pfn: Page Number of the corrupted page
- * @trapno: Trap number reported in the signal to user space.
* @flags: Flags for memory failure handling
*
* This function is called by the low level hardware error handler
@@ -1250,25 +2566,26 @@ static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
*
* Can run in IRQ context.
*/
-void memory_failure_queue(unsigned long pfn, int trapno, int flags)
+void memory_failure_queue(unsigned long pfn, int flags)
{
struct memory_failure_cpu *mf_cpu;
unsigned long proc_flags;
+ bool buffer_overflow;
struct memory_failure_entry entry = {
.pfn = pfn,
- .trapno = trapno,
.flags = flags,
};
mf_cpu = &get_cpu_var(memory_failure_cpu);
- spin_lock_irqsave(&mf_cpu->lock, proc_flags);
- if (kfifo_put(&mf_cpu->fifo, &entry))
+ raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
+ buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
+ if (!buffer_overflow)
schedule_work_on(smp_processor_id(), &mf_cpu->work);
- else
- pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
- pfn);
- spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
+ raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
put_cpu_var(memory_failure_cpu);
+ if (buffer_overflow)
+ pr_err("buffer overflow when queuing memory failure at %#lx\n",
+ pfn);
}
EXPORT_SYMBOL_GPL(memory_failure_queue);
@@ -1279,14 +2596,17 @@ static void memory_failure_work_func(struct work_struct *work)
unsigned long proc_flags;
int gotten;
- mf_cpu = &__get_cpu_var(memory_failure_cpu);
+ mf_cpu = container_of(work, struct memory_failure_cpu, work);
for (;;) {
- spin_lock_irqsave(&mf_cpu->lock, proc_flags);
+ raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
gotten = kfifo_get(&mf_cpu->fifo, &entry);
- spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
+ raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
if (!gotten)
break;
- memory_failure(entry.pfn, entry.trapno, entry.flags);
+ if (entry.flags & MF_SOFT_OFFLINE)
+ soft_offline_page(entry.pfn, entry.flags);
+ else
+ memory_failure(entry.pfn, entry.flags);
}
}
@@ -1297,15 +2617,25 @@ static int __init memory_failure_init(void)
for_each_possible_cpu(cpu) {
mf_cpu = &per_cpu(memory_failure_cpu, cpu);
- spin_lock_init(&mf_cpu->lock);
+ raw_spin_lock_init(&mf_cpu->lock);
INIT_KFIFO(mf_cpu->fifo);
INIT_WORK(&mf_cpu->work, memory_failure_work_func);
}
+ register_sysctl_init("vm", memory_failure_table);
+
return 0;
}
core_initcall(memory_failure_init);
+#undef pr_fmt
+#define pr_fmt(fmt) "Unpoison: " fmt
+#define unpoison_pr_info(fmt, pfn, rs) \
+({ \
+ if (__ratelimit(rs)) \
+ pr_info(fmt, pfn); \
+})
+
/**
* unpoison_memory - Unpoison a previously poisoned page
* @pfn: Page number of the to be unpoisoned page
@@ -1320,191 +2650,219 @@ core_initcall(memory_failure_init);
*/
int unpoison_memory(unsigned long pfn)
{
- struct page *page;
+ struct folio *folio;
struct page *p;
- int freeit = 0;
- unsigned int nr_pages;
-
- if (!pfn_valid(pfn))
- return -ENXIO;
+ int ret = -EBUSY, ghp;
+ unsigned long count;
+ bool huge = false;
+ static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
+ DEFAULT_RATELIMIT_BURST);
+
+ p = pfn_to_online_page(pfn);
+ if (!p)
+ return -EIO;
+ folio = page_folio(p);
+
+ mutex_lock(&mf_mutex);
+
+ if (hw_memory_failure) {
+ unpoison_pr_info("%#lx: disabled after HW memory failure\n",
+ pfn, &unpoison_rs);
+ ret = -EOPNOTSUPP;
+ goto unlock_mutex;
+ }
- p = pfn_to_page(pfn);
- page = compound_head(p);
+ if (is_huge_zero_folio(folio)) {
+ unpoison_pr_info("%#lx: huge zero page is not supported\n",
+ pfn, &unpoison_rs);
+ ret = -EOPNOTSUPP;
+ goto unlock_mutex;
+ }
if (!PageHWPoison(p)) {
- pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
- return 0;
+ unpoison_pr_info("%#lx: page was already unpoisoned\n",
+ pfn, &unpoison_rs);
+ goto unlock_mutex;
}
- nr_pages = 1 << compound_trans_order(page);
+ if (folio_ref_count(folio) > 1) {
+ unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
+ pfn, &unpoison_rs);
+ goto unlock_mutex;
+ }
- if (!get_page_unless_zero(page)) {
- /*
- * Since HWPoisoned hugepage should have non-zero refcount,
- * race between memory failure and unpoison seems to happen.
- * In such case unpoison fails and memory failure runs
- * to the end.
- */
- if (PageHuge(page)) {
- pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
- return 0;
- }
- if (TestClearPageHWPoison(p))
- atomic_long_sub(nr_pages, &num_poisoned_pages);
- pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
- return 0;
+ if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
+ folio_test_reserved(folio) || folio_test_offline(folio))
+ goto unlock_mutex;
+
+ if (folio_mapped(folio)) {
+ unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
+ pfn, &unpoison_rs);
+ goto unlock_mutex;
}
- lock_page(page);
- /*
- * This test is racy because PG_hwpoison is set outside of page lock.
- * That's acceptable because that won't trigger kernel panic. Instead,
- * the PG_hwpoison page will be caught and isolated on the entrance to
- * the free buddy page pool.
- */
- if (TestClearPageHWPoison(page)) {
- pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
- atomic_long_sub(nr_pages, &num_poisoned_pages);
- freeit = 1;
- if (PageHuge(page))
- clear_page_hwpoison_huge_page(page);
+ if (folio_mapping(folio)) {
+ unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
+ pfn, &unpoison_rs);
+ goto unlock_mutex;
}
- unlock_page(page);
- put_page(page);
- if (freeit)
- put_page(page);
+ ghp = get_hwpoison_page(p, MF_UNPOISON);
+ if (!ghp) {
+ if (folio_test_hugetlb(folio)) {
+ huge = true;
+ count = folio_free_raw_hwp(folio, false);
+ if (count == 0)
+ goto unlock_mutex;
+ }
+ ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
+ } else if (ghp < 0) {
+ if (ghp == -EHWPOISON) {
+ ret = put_page_back_buddy(p) ? 0 : -EBUSY;
+ } else {
+ ret = ghp;
+ unpoison_pr_info("%#lx: failed to grab page\n",
+ pfn, &unpoison_rs);
+ }
+ } else {
+ if (folio_test_hugetlb(folio)) {
+ huge = true;
+ count = folio_free_raw_hwp(folio, false);
+ if (count == 0) {
+ folio_put(folio);
+ goto unlock_mutex;
+ }
+ }
- return 0;
+ folio_put(folio);
+ if (TestClearPageHWPoison(p)) {
+ folio_put(folio);
+ ret = 0;
+ }
+ }
+
+unlock_mutex:
+ mutex_unlock(&mf_mutex);
+ if (!ret) {
+ if (!huge)
+ num_poisoned_pages_sub(pfn, 1);
+ unpoison_pr_info("%#lx: software-unpoisoned page\n",
+ page_to_pfn(p), &unpoison_rs);
+ }
+ return ret;
}
EXPORT_SYMBOL(unpoison_memory);
-static struct page *new_page(struct page *p, unsigned long private, int **x)
-{
- int nid = page_to_nid(p);
- if (PageHuge(p))
- return alloc_huge_page_node(page_hstate(compound_head(p)),
- nid);
- else
- return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
-}
+#undef pr_fmt
+#define pr_fmt(fmt) "Soft offline: " fmt
/*
- * Safely get reference count of an arbitrary page.
- * Returns 0 for a free page, -EIO for a zero refcount page
- * that is not free, and 1 for any other page type.
- * For 1 the page is returned with increased page count, otherwise not.
+ * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
+ * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
+ * If the page is mapped, it migrates the contents over.
*/
-static int __get_any_page(struct page *p, unsigned long pfn, int flags)
+static int soft_offline_in_use_page(struct page *page)
{
- int ret;
+ long ret = 0;
+ unsigned long pfn = page_to_pfn(page);
+ struct folio *folio = page_folio(page);
+ char const *msg_page[] = {"page", "hugepage"};
+ bool huge = folio_test_hugetlb(folio);
+ bool isolated;
+ LIST_HEAD(pagelist);
+ struct migration_target_control mtc = {
+ .nid = NUMA_NO_NODE,
+ .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
+ .reason = MR_MEMORY_FAILURE,
+ };
- if (flags & MF_COUNT_INCREASED)
- return 1;
+ if (!huge && folio_test_large(folio)) {
+ const int new_order = min_order_for_split(folio);
- /*
- * The lock_memory_hotplug prevents a race with memory hotplug.
- * This is a big hammer, a better would be nicer.
- */
- lock_memory_hotplug();
-
- /*
- * Isolate the page, so that it doesn't get reallocated if it
- * was free. This flag should be kept set until the source page
- * is freed and PG_hwpoison on it is set.
- */
- set_migratetype_isolate(p, true);
- /*
- * When the target page is a free hugepage, just remove it
- * from free hugepage list.
- */
- if (!get_page_unless_zero(compound_head(p))) {
- if (PageHuge(p)) {
- pr_info("%s: %#lx free huge page\n", __func__, pfn);
- ret = 0;
- } else if (is_free_buddy_page(p)) {
- pr_info("%s: %#lx free buddy page\n", __func__, pfn);
- ret = 0;
- } else {
- pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
- __func__, pfn, p->flags);
- ret = -EIO;
+ /*
+ * If new_order (target split order) is not 0, do not split the
+ * folio at all to retain the still accessible large folio.
+ * NOTE: if minimizing the number of soft offline pages is
+ * preferred, split it to non-zero new_order like it is done in
+ * memory_failure().
+ */
+ if (new_order || try_to_split_thp_page(page, /* new_order= */ 0,
+ /* release= */ true)) {
+ pr_info("%#lx: thp split failed\n", pfn);
+ return -EBUSY;
}
- } else {
- /* Not a free page */
- ret = 1;
+ folio = page_folio(page);
}
- unlock_memory_hotplug();
- return ret;
-}
-static int get_any_page(struct page *page, unsigned long pfn, int flags)
-{
- int ret = __get_any_page(page, pfn, flags);
+ folio_lock(folio);
+ if (!huge)
+ folio_wait_writeback(folio);
+ if (PageHWPoison(page)) {
+ folio_unlock(folio);
+ folio_put(folio);
+ pr_info("%#lx: page already poisoned\n", pfn);
+ return 0;
+ }
- if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
+ if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
/*
- * Try to free it.
+ * Try to invalidate first. This should work for
+ * non dirty unmapped page cache pages.
*/
- put_page(page);
- shake_page(page, 1);
+ ret = mapping_evict_folio(folio_mapping(folio), folio);
+ folio_unlock(folio);
- /*
- * Did it turn free?
- */
- ret = __get_any_page(page, pfn, 0);
- if (!PageLRU(page)) {
- pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
- pfn, page->flags);
- return -EIO;
- }
+ if (ret) {
+ pr_info("%#lx: invalidated\n", pfn);
+ page_handle_poison(page, false, true);
+ return 0;
}
- return ret;
-}
-static int soft_offline_huge_page(struct page *page, int flags)
-{
- int ret;
- unsigned long pfn = page_to_pfn(page);
- struct page *hpage = compound_head(page);
+ isolated = isolate_folio_to_list(folio, &pagelist);
/*
- * This double-check of PageHWPoison is to avoid the race with
- * memory_failure(). See also comment in __soft_offline_page().
+ * If we succeed to isolate the folio, we grabbed another refcount on
+ * the folio, so we can safely drop the one we got from get_any_page().
+ * If we failed to isolate the folio, it means that we cannot go further
+ * and we will return an error, so drop the reference we got from
+ * get_any_page() as well.
*/
- lock_page(hpage);
- if (PageHWPoison(hpage)) {
- unlock_page(hpage);
- put_page(hpage);
- pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
- return -EBUSY;
- }
- unlock_page(hpage);
+ folio_put(folio);
- /* Keep page count to indicate a given hugepage is isolated. */
- ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL,
- MIGRATE_SYNC);
- put_page(hpage);
- if (ret) {
- pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
- pfn, ret, page->flags);
+ if (isolated) {
+ ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
+ (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
+ if (!ret) {
+ bool release = !huge;
+
+ if (!page_handle_poison(page, huge, release))
+ ret = -EBUSY;
+ } else {
+ if (!list_empty(&pagelist))
+ putback_movable_pages(&pagelist);
+
+ pr_info("%#lx: %s migration failed %ld, type %pGp\n",
+ pfn, msg_page[huge], ret, &page->flags.f);
+ if (ret > 0)
+ ret = -EBUSY;
+ }
} else {
- set_page_hwpoison_huge_page(hpage);
- dequeue_hwpoisoned_huge_page(hpage);
- atomic_long_add(1 << compound_trans_order(hpage),
- &num_poisoned_pages);
+ pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
+ pfn, msg_page[huge], page_count(page), &page->flags.f);
+ ret = -EBUSY;
}
return ret;
}
-static int __soft_offline_page(struct page *page, int flags);
-
/**
* soft_offline_page - Soft offline a page.
- * @page: page to offline
+ * @pfn: pfn to soft-offline
* @flags: flags. Same as memory_failure().
*
- * Returns 0 on success, otherwise negated errno.
+ * Returns 0 on success,
+ * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
+ * disabled by /proc/sys/vm/enable_soft_offline,
+ * < 0 otherwise negated errno.
*
* Soft offline a page, by migration or invalidation,
* without killing anything. This is for the case when
@@ -1521,130 +2879,66 @@ static int __soft_offline_page(struct page *page, int flags);
* This is not a 100% solution for all memory, but tries to be
* ``good enough'' for the majority of memory.
*/
-int soft_offline_page(struct page *page, int flags)
+int soft_offline_page(unsigned long pfn, int flags)
{
int ret;
- unsigned long pfn = page_to_pfn(page);
- struct page *hpage = compound_trans_head(page);
+ bool try_again = true;
+ struct page *page;
- if (PageHWPoison(page)) {
- pr_info("soft offline: %#lx page already poisoned\n", pfn);
- return -EBUSY;
+ if (!pfn_valid(pfn)) {
+ WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
+ return -ENXIO;
}
- if (!PageHuge(page) && PageTransHuge(hpage)) {
- if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
- pr_info("soft offline: %#lx: failed to split THP\n",
- pfn);
- return -EBUSY;
- }
+
+ /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
+ page = pfn_to_online_page(pfn);
+ if (!page) {
+ put_ref_page(pfn, flags);
+ return -EIO;
}
- ret = get_any_page(page, pfn, flags);
- if (ret < 0)
- return ret;
- if (ret) { /* for in-use pages */
- if (PageHuge(page))
- ret = soft_offline_huge_page(page, flags);
- else
- ret = __soft_offline_page(page, flags);
- } else { /* for free pages */
- if (PageHuge(page)) {
- set_page_hwpoison_huge_page(hpage);
- dequeue_hwpoisoned_huge_page(hpage);
- atomic_long_add(1 << compound_trans_order(hpage),
- &num_poisoned_pages);
- } else {
- SetPageHWPoison(page);
- atomic_long_inc(&num_poisoned_pages);
- }
+ if (!sysctl_enable_soft_offline) {
+ pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
+ put_ref_page(pfn, flags);
+ return -EOPNOTSUPP;
}
- unset_migratetype_isolate(page, MIGRATE_MOVABLE);
- return ret;
-}
-static int __soft_offline_page(struct page *page, int flags)
-{
- int ret;
- unsigned long pfn = page_to_pfn(page);
+ mutex_lock(&mf_mutex);
- /*
- * Check PageHWPoison again inside page lock because PageHWPoison
- * is set by memory_failure() outside page lock. Note that
- * memory_failure() also double-checks PageHWPoison inside page lock,
- * so there's no race between soft_offline_page() and memory_failure().
- */
- lock_page(page);
- wait_on_page_writeback(page);
if (PageHWPoison(page)) {
- unlock_page(page);
- put_page(page);
- pr_info("soft offline: %#lx page already poisoned\n", pfn);
- return -EBUSY;
- }
- /*
- * Try to invalidate first. This should work for
- * non dirty unmapped page cache pages.
- */
- ret = invalidate_inode_page(page);
- unlock_page(page);
- /*
- * RED-PEN would be better to keep it isolated here, but we
- * would need to fix isolation locking first.
- */
- if (ret == 1) {
- put_page(page);
- pr_info("soft_offline: %#lx: invalidated\n", pfn);
- SetPageHWPoison(page);
- atomic_long_inc(&num_poisoned_pages);
+ pr_info("%#lx: page already poisoned\n", pfn);
+ put_ref_page(pfn, flags);
+ mutex_unlock(&mf_mutex);
return 0;
}
- /*
- * Simple invalidation didn't work.
- * Try to migrate to a new page instead. migrate.c
- * handles a large number of cases for us.
- */
- ret = isolate_lru_page(page);
- /*
- * Drop page reference which is came from get_any_page()
- * successful isolate_lru_page() already took another one.
- */
- put_page(page);
- if (!ret) {
- LIST_HEAD(pagelist);
- inc_zone_page_state(page, NR_ISOLATED_ANON +
- page_is_file_cache(page));
- list_add(&page->lru, &pagelist);
- ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
- MIGRATE_SYNC, MR_MEMORY_FAILURE);
- if (ret) {
- putback_lru_pages(&pagelist);
- pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
- pfn, ret, page->flags);
- if (ret > 0)
- ret = -EIO;
- } else {
- /*
- * After page migration succeeds, the source page can
- * be trapped in pagevec and actual freeing is delayed.
- * Freeing code works differently based on PG_hwpoison,
- * so there's a race. We need to make sure that the
- * source page should be freed back to buddy before
- * setting PG_hwpoison.
- */
- if (!is_free_buddy_page(page))
- lru_add_drain_all();
- if (!is_free_buddy_page(page))
- drain_all_pages();
- SetPageHWPoison(page);
- if (!is_free_buddy_page(page))
- pr_info("soft offline: %#lx: page leaked\n",
- pfn);
- atomic_long_inc(&num_poisoned_pages);
+retry:
+ get_online_mems();
+ ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
+ put_online_mems();
+
+ if (hwpoison_filter(page)) {
+ if (ret > 0)
+ put_page(page);
+
+ mutex_unlock(&mf_mutex);
+ return -EOPNOTSUPP;
+ }
+
+ if (ret > 0) {
+ ret = soft_offline_in_use_page(page);
+ } else if (ret == 0) {
+ if (!page_handle_poison(page, true, false)) {
+ if (try_again) {
+ try_again = false;
+ flags &= ~MF_COUNT_INCREASED;
+ goto retry;
+ }
+ ret = -EBUSY;
}
- } else {
- pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
- pfn, ret, page_count(page), page->flags);
}
+
+ mutex_unlock(&mf_mutex);
+
return ret;
}