summaryrefslogtreecommitdiff
path: root/mm/memory.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memory.c')
-rw-r--r--mm/memory.c8445
1 files changed, 5772 insertions, 2673 deletions
diff --git a/mm/memory.c b/mm/memory.c
index 1ce2e2a734fc..2a55edc48a65 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/mm/memory.c
*
@@ -30,7 +31,7 @@
/*
* 05.04.94 - Multi-page memory management added for v1.1.
- * Idea by Alex Bligh (alex@cconcepts.co.uk)
+ * Idea by Alex Bligh (alex@cconcepts.co.uk)
*
* 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
* (Gerhard.Wichert@pdb.siemens.de)
@@ -40,11 +41,17 @@
#include <linux/kernel_stat.h>
#include <linux/mm.h>
+#include <linux/mm_inline.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/numa_balancing.h>
+#include <linux/sched/task.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
+#include <linux/memremap.h>
+#include <linux/kmsan.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/export.h>
@@ -53,45 +60,57 @@
#include <linux/writeback.h>
#include <linux/memcontrol.h>
#include <linux/mmu_notifier.h>
-#include <linux/kallsyms.h>
-#include <linux/swapops.h>
+#include <linux/leafops.h>
#include <linux/elf.h>
#include <linux/gfp.h>
#include <linux/migrate.h>
#include <linux/string.h>
+#include <linux/shmem_fs.h>
+#include <linux/memory-tiers.h>
+#include <linux/debugfs.h>
+#include <linux/userfaultfd_k.h>
+#include <linux/dax.h>
+#include <linux/oom.h>
+#include <linux/numa.h>
+#include <linux/perf_event.h>
+#include <linux/ptrace.h>
+#include <linux/vmalloc.h>
+#include <linux/sched/sysctl.h>
+#include <linux/pgalloc.h>
+#include <linux/uaccess.h>
+
+#include <trace/events/kmem.h>
#include <asm/io.h>
-#include <asm/pgalloc.h>
-#include <asm/uaccess.h>
+#include <asm/mmu_context.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
-#include <asm/pgtable.h>
+#include "pgalloc-track.h"
#include "internal.h"
+#include "swap.h"
-#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
-#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
+#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
+#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
#endif
-#ifndef CONFIG_NEED_MULTIPLE_NODES
-/* use the per-pgdat data instead for discontigmem - mbligh */
-unsigned long max_mapnr;
-struct page *mem_map;
-
-EXPORT_SYMBOL(max_mapnr);
-EXPORT_SYMBOL(mem_map);
-#endif
+static vm_fault_t do_fault(struct vm_fault *vmf);
+static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
+static bool vmf_pte_changed(struct vm_fault *vmf);
/*
- * A number of key systems in x86 including ioremap() rely on the assumption
- * that high_memory defines the upper bound on direct map memory, then end
- * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
- * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
- * and ZONE_HIGHMEM.
+ * Return true if the original pte was a uffd-wp pte marker (so the pte was
+ * wr-protected).
*/
-void * high_memory;
+static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
+{
+ if (!userfaultfd_wp(vmf->vma))
+ return false;
+ if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
+ return false;
-EXPORT_SYMBOL(high_memory);
+ return pte_is_uffd_wp_marker(vmf->orig_pte);
+}
/*
* Randomize the address space (stacks, mmaps, brk, etc.).
@@ -106,295 +125,61 @@ int randomize_va_space __read_mostly =
2;
#endif
-static int __init disable_randmaps(char *s)
-{
- randomize_va_space = 0;
- return 1;
-}
-__setup("norandmaps", disable_randmaps);
-
-unsigned long zero_pfn __read_mostly;
-unsigned long highest_memmap_pfn __read_mostly;
-
-/*
- * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
- */
-static int __init init_zero_pfn(void)
+static const struct ctl_table mmu_sysctl_table[] = {
+ {
+ .procname = "randomize_va_space",
+ .data = &randomize_va_space,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec,
+ },
+};
+
+static int __init init_mm_sysctl(void)
{
- zero_pfn = page_to_pfn(ZERO_PAGE(0));
+ register_sysctl_init("kernel", mmu_sysctl_table);
return 0;
}
-core_initcall(init_zero_pfn);
-
-
-#if defined(SPLIT_RSS_COUNTING)
-
-void sync_mm_rss(struct mm_struct *mm)
-{
- int i;
-
- for (i = 0; i < NR_MM_COUNTERS; i++) {
- if (current->rss_stat.count[i]) {
- add_mm_counter(mm, i, current->rss_stat.count[i]);
- current->rss_stat.count[i] = 0;
- }
- }
- current->rss_stat.events = 0;
-}
-
-static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
-{
- struct task_struct *task = current;
-
- if (likely(task->mm == mm))
- task->rss_stat.count[member] += val;
- else
- add_mm_counter(mm, member, val);
-}
-#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
-#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
-
-/* sync counter once per 64 page faults */
-#define TASK_RSS_EVENTS_THRESH (64)
-static void check_sync_rss_stat(struct task_struct *task)
-{
- if (unlikely(task != current))
- return;
- if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
- sync_mm_rss(task->mm);
-}
-#else /* SPLIT_RSS_COUNTING */
-
-#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
-#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
-
-static void check_sync_rss_stat(struct task_struct *task)
-{
-}
-
-#endif /* SPLIT_RSS_COUNTING */
-
-#ifdef HAVE_GENERIC_MMU_GATHER
-
-static int tlb_next_batch(struct mmu_gather *tlb)
-{
- struct mmu_gather_batch *batch;
-
- batch = tlb->active;
- if (batch->next) {
- tlb->active = batch->next;
- return 1;
- }
-
- if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
- return 0;
-
- batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
- if (!batch)
- return 0;
-
- tlb->batch_count++;
- batch->next = NULL;
- batch->nr = 0;
- batch->max = MAX_GATHER_BATCH;
-
- tlb->active->next = batch;
- tlb->active = batch;
-
- return 1;
-}
-
-/* tlb_gather_mmu
- * Called to initialize an (on-stack) mmu_gather structure for page-table
- * tear-down from @mm. The @fullmm argument is used when @mm is without
- * users and we're going to destroy the full address space (exit/execve).
- */
-void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
-{
- tlb->mm = mm;
-
- tlb->fullmm = fullmm;
- tlb->need_flush_all = 0;
- tlb->start = -1UL;
- tlb->end = 0;
- tlb->need_flush = 0;
- tlb->local.next = NULL;
- tlb->local.nr = 0;
- tlb->local.max = ARRAY_SIZE(tlb->__pages);
- tlb->active = &tlb->local;
- tlb->batch_count = 0;
-
-#ifdef CONFIG_HAVE_RCU_TABLE_FREE
- tlb->batch = NULL;
-#endif
-}
-
-void tlb_flush_mmu(struct mmu_gather *tlb)
-{
- struct mmu_gather_batch *batch;
-
- if (!tlb->need_flush)
- return;
- tlb->need_flush = 0;
- tlb_flush(tlb);
-#ifdef CONFIG_HAVE_RCU_TABLE_FREE
- tlb_table_flush(tlb);
-#endif
-
- for (batch = &tlb->local; batch; batch = batch->next) {
- free_pages_and_swap_cache(batch->pages, batch->nr);
- batch->nr = 0;
- }
- tlb->active = &tlb->local;
-}
-
-/* tlb_finish_mmu
- * Called at the end of the shootdown operation to free up any resources
- * that were required.
- */
-void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
-{
- struct mmu_gather_batch *batch, *next;
-
- tlb->start = start;
- tlb->end = end;
- tlb_flush_mmu(tlb);
-
- /* keep the page table cache within bounds */
- check_pgt_cache();
-
- for (batch = tlb->local.next; batch; batch = next) {
- next = batch->next;
- free_pages((unsigned long)batch, 0);
- }
- tlb->local.next = NULL;
-}
-
-/* __tlb_remove_page
- * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
- * handling the additional races in SMP caused by other CPUs caching valid
- * mappings in their TLBs. Returns the number of free page slots left.
- * When out of page slots we must call tlb_flush_mmu().
- */
-int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
-{
- struct mmu_gather_batch *batch;
-
- VM_BUG_ON(!tlb->need_flush);
-
- batch = tlb->active;
- batch->pages[batch->nr++] = page;
- if (batch->nr == batch->max) {
- if (!tlb_next_batch(tlb))
- return 0;
- batch = tlb->active;
- }
- VM_BUG_ON(batch->nr > batch->max);
-
- return batch->max - batch->nr;
-}
-
-#endif /* HAVE_GENERIC_MMU_GATHER */
-
-#ifdef CONFIG_HAVE_RCU_TABLE_FREE
-
-/*
- * See the comment near struct mmu_table_batch.
- */
-static void tlb_remove_table_smp_sync(void *arg)
-{
- /* Simply deliver the interrupt */
-}
+subsys_initcall(init_mm_sysctl);
-static void tlb_remove_table_one(void *table)
+#ifndef arch_wants_old_prefaulted_pte
+static inline bool arch_wants_old_prefaulted_pte(void)
{
/*
- * This isn't an RCU grace period and hence the page-tables cannot be
- * assumed to be actually RCU-freed.
- *
- * It is however sufficient for software page-table walkers that rely on
- * IRQ disabling. See the comment near struct mmu_table_batch.
+ * Transitioning a PTE from 'old' to 'young' can be expensive on
+ * some architectures, even if it's performed in hardware. By
+ * default, "false" means prefaulted entries will be 'young'.
*/
- smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
- __tlb_remove_table(table);
-}
-
-static void tlb_remove_table_rcu(struct rcu_head *head)
-{
- struct mmu_table_batch *batch;
- int i;
-
- batch = container_of(head, struct mmu_table_batch, rcu);
-
- for (i = 0; i < batch->nr; i++)
- __tlb_remove_table(batch->tables[i]);
-
- free_page((unsigned long)batch);
+ return false;
}
+#endif
-void tlb_table_flush(struct mmu_gather *tlb)
+static int __init disable_randmaps(char *s)
{
- struct mmu_table_batch **batch = &tlb->batch;
-
- if (*batch) {
- call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
- *batch = NULL;
- }
+ randomize_va_space = 0;
+ return 1;
}
+__setup("norandmaps", disable_randmaps);
-void tlb_remove_table(struct mmu_gather *tlb, void *table)
-{
- struct mmu_table_batch **batch = &tlb->batch;
-
- tlb->need_flush = 1;
-
- /*
- * When there's less then two users of this mm there cannot be a
- * concurrent page-table walk.
- */
- if (atomic_read(&tlb->mm->mm_users) < 2) {
- __tlb_remove_table(table);
- return;
- }
-
- if (*batch == NULL) {
- *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
- if (*batch == NULL) {
- tlb_remove_table_one(table);
- return;
- }
- (*batch)->nr = 0;
- }
- (*batch)->tables[(*batch)->nr++] = table;
- if ((*batch)->nr == MAX_TABLE_BATCH)
- tlb_table_flush(tlb);
-}
+unsigned long zero_pfn __read_mostly;
+EXPORT_SYMBOL(zero_pfn);
-#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
+unsigned long highest_memmap_pfn __read_mostly;
/*
- * If a p?d_bad entry is found while walking page tables, report
- * the error, before resetting entry to p?d_none. Usually (but
- * very seldom) called out from the p?d_none_or_clear_bad macros.
+ * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
*/
-
-void pgd_clear_bad(pgd_t *pgd)
-{
- pgd_ERROR(*pgd);
- pgd_clear(pgd);
-}
-
-void pud_clear_bad(pud_t *pud)
+static int __init init_zero_pfn(void)
{
- pud_ERROR(*pud);
- pud_clear(pud);
+ zero_pfn = page_to_pfn(ZERO_PAGE(0));
+ return 0;
}
+early_initcall(init_zero_pfn);
-void pmd_clear_bad(pmd_t *pmd)
+void mm_trace_rss_stat(struct mm_struct *mm, int member)
{
- pmd_ERROR(*pmd);
- pmd_clear(pmd);
+ trace_rss_stat(mm, member);
}
/*
@@ -407,7 +192,7 @@ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
pgtable_t token = pmd_pgtable(*pmd);
pmd_clear(pmd);
pte_free_tlb(tlb, token, addr);
- tlb->mm->nr_ptes--;
+ mm_dec_nr_ptes(tlb->mm);
}
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
@@ -441,9 +226,10 @@ static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
pmd = pmd_offset(pud, start);
pud_clear(pud);
pmd_free_tlb(tlb, pmd, start);
+ mm_dec_nr_pmds(tlb->mm);
}
-static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
+static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
@@ -452,7 +238,7 @@ static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
unsigned long start;
start = addr;
- pud = pud_offset(pgd, addr);
+ pud = pud_offset(p4d, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
@@ -460,6 +246,40 @@ static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
free_pmd_range(tlb, pud, addr, next, floor, ceiling);
} while (pud++, addr = next, addr != end);
+ start &= P4D_MASK;
+ if (start < floor)
+ return;
+ if (ceiling) {
+ ceiling &= P4D_MASK;
+ if (!ceiling)
+ return;
+ }
+ if (end - 1 > ceiling - 1)
+ return;
+
+ pud = pud_offset(p4d, start);
+ p4d_clear(p4d);
+ pud_free_tlb(tlb, pud, start);
+ mm_dec_nr_puds(tlb->mm);
+}
+
+static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
+ unsigned long addr, unsigned long end,
+ unsigned long floor, unsigned long ceiling)
+{
+ p4d_t *p4d;
+ unsigned long next;
+ unsigned long start;
+
+ start = addr;
+ p4d = p4d_offset(pgd, addr);
+ do {
+ next = p4d_addr_end(addr, end);
+ if (p4d_none_or_clear_bad(p4d))
+ continue;
+ free_pud_range(tlb, p4d, addr, next, floor, ceiling);
+ } while (p4d++, addr = next, addr != end);
+
start &= PGDIR_MASK;
if (start < floor)
return;
@@ -471,15 +291,22 @@ static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
if (end - 1 > ceiling - 1)
return;
- pud = pud_offset(pgd, start);
+ p4d = p4d_offset(pgd, start);
pgd_clear(pgd);
- pud_free_tlb(tlb, pud, start);
+ p4d_free_tlb(tlb, p4d, start);
}
-/*
- * This function frees user-level page tables of a process.
+/**
+ * free_pgd_range - Unmap and free page tables in the range
+ * @tlb: the mmu_gather containing pending TLB flush info
+ * @addr: virtual address start
+ * @end: virtual address end
+ * @floor: lowest address boundary
+ * @ceiling: highest address boundary
*
- * Must be called with pagetable lock held.
+ * This function tears down all user-level page tables in the
+ * specified virtual address range [@addr..@end). It is part of
+ * the memory unmap flow.
*/
void free_pgd_range(struct mmu_gather *tlb,
unsigned long addr, unsigned long end,
@@ -529,104 +356,122 @@ void free_pgd_range(struct mmu_gather *tlb,
end -= PMD_SIZE;
if (addr > end - 1)
return;
-
+ /*
+ * We add page table cache pages with PAGE_SIZE,
+ * (see pte_free_tlb()), flush the tlb if we need
+ */
+ tlb_change_page_size(tlb, PAGE_SIZE);
pgd = pgd_offset(tlb->mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
- free_pud_range(tlb, pgd, addr, next, floor, ceiling);
+ free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
} while (pgd++, addr = next, addr != end);
}
-void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
- unsigned long floor, unsigned long ceiling)
+void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
+ struct vm_area_struct *vma, unsigned long floor,
+ unsigned long ceiling, bool mm_wr_locked)
{
- while (vma) {
- struct vm_area_struct *next = vma->vm_next;
+ struct unlink_vma_file_batch vb;
+
+ tlb_free_vmas(tlb);
+
+ do {
unsigned long addr = vma->vm_start;
+ struct vm_area_struct *next;
+
+ /*
+ * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
+ * be 0. This will underflow and is okay.
+ */
+ next = mas_find(mas, ceiling - 1);
+ if (unlikely(xa_is_zero(next)))
+ next = NULL;
/*
* Hide vma from rmap and truncate_pagecache before freeing
* pgtables
*/
+ if (mm_wr_locked)
+ vma_start_write(vma);
unlink_anon_vmas(vma);
- unlink_file_vma(vma);
- if (is_vm_hugetlb_page(vma)) {
- hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
- floor, next? next->vm_start: ceiling);
- } else {
- /*
- * Optimization: gather nearby vmas into one call down
- */
- while (next && next->vm_start <= vma->vm_end + PMD_SIZE
- && !is_vm_hugetlb_page(next)) {
- vma = next;
- next = vma->vm_next;
- unlink_anon_vmas(vma);
- unlink_file_vma(vma);
- }
- free_pgd_range(tlb, addr, vma->vm_end,
- floor, next? next->vm_start: ceiling);
+ unlink_file_vma_batch_init(&vb);
+ unlink_file_vma_batch_add(&vb, vma);
+
+ /*
+ * Optimization: gather nearby vmas into one call down
+ */
+ while (next && next->vm_start <= vma->vm_end + PMD_SIZE) {
+ vma = next;
+ next = mas_find(mas, ceiling - 1);
+ if (unlikely(xa_is_zero(next)))
+ next = NULL;
+ if (mm_wr_locked)
+ vma_start_write(vma);
+ unlink_anon_vmas(vma);
+ unlink_file_vma_batch_add(&vb, vma);
}
+ unlink_file_vma_batch_final(&vb);
+
+ free_pgd_range(tlb, addr, vma->vm_end,
+ floor, next ? next->vm_start : ceiling);
vma = next;
+ } while (vma);
+}
+
+void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
+{
+ spinlock_t *ptl = pmd_lock(mm, pmd);
+
+ if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
+ mm_inc_nr_ptes(mm);
+ /*
+ * Ensure all pte setup (eg. pte page lock and page clearing) are
+ * visible before the pte is made visible to other CPUs by being
+ * put into page tables.
+ *
+ * The other side of the story is the pointer chasing in the page
+ * table walking code (when walking the page table without locking;
+ * ie. most of the time). Fortunately, these data accesses consist
+ * of a chain of data-dependent loads, meaning most CPUs (alpha
+ * being the notable exception) will already guarantee loads are
+ * seen in-order. See the alpha page table accessors for the
+ * smp_rmb() barriers in page table walking code.
+ */
+ smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
+ pmd_populate(mm, pmd, *pte);
+ *pte = NULL;
}
+ spin_unlock(ptl);
}
-int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
- pmd_t *pmd, unsigned long address)
+int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
{
- pgtable_t new = pte_alloc_one(mm, address);
- int wait_split_huge_page;
+ pgtable_t new = pte_alloc_one(mm);
if (!new)
return -ENOMEM;
- /*
- * Ensure all pte setup (eg. pte page lock and page clearing) are
- * visible before the pte is made visible to other CPUs by being
- * put into page tables.
- *
- * The other side of the story is the pointer chasing in the page
- * table walking code (when walking the page table without locking;
- * ie. most of the time). Fortunately, these data accesses consist
- * of a chain of data-dependent loads, meaning most CPUs (alpha
- * being the notable exception) will already guarantee loads are
- * seen in-order. See the alpha page table accessors for the
- * smp_read_barrier_depends() barriers in page table walking code.
- */
- smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
-
- spin_lock(&mm->page_table_lock);
- wait_split_huge_page = 0;
- if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
- mm->nr_ptes++;
- pmd_populate(mm, pmd, new);
- new = NULL;
- } else if (unlikely(pmd_trans_splitting(*pmd)))
- wait_split_huge_page = 1;
- spin_unlock(&mm->page_table_lock);
+ pmd_install(mm, pmd, &new);
if (new)
pte_free(mm, new);
- if (wait_split_huge_page)
- wait_split_huge_page(vma->anon_vma, pmd);
return 0;
}
-int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
+int __pte_alloc_kernel(pmd_t *pmd)
{
- pte_t *new = pte_alloc_one_kernel(&init_mm, address);
+ pte_t *new = pte_alloc_one_kernel(&init_mm);
if (!new)
return -ENOMEM;
- smp_wmb(); /* See comment in __pte_alloc */
-
spin_lock(&init_mm.page_table_lock);
if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
+ smp_wmb(); /* See comment in pmd_install() */
pmd_populate_kernel(&init_mm, pmd, new);
new = NULL;
- } else
- VM_BUG_ON(pmd_trans_splitting(*pmd));
+ }
spin_unlock(&init_mm.page_table_lock);
if (new)
pte_free_kernel(&init_mm, new);
@@ -642,28 +487,13 @@ static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
{
int i;
- if (current->mm == mm)
- sync_mm_rss(mm);
for (i = 0; i < NR_MM_COUNTERS; i++)
if (rss[i])
add_mm_counter(mm, i, rss[i]);
}
-/*
- * This function is called to print an error when a bad pte
- * is found. For example, we might have a PFN-mapped pte in
- * a region that doesn't allow it.
- *
- * The calling function must still handle the error.
- */
-static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
- pte_t pte, struct page *page)
+static bool is_bad_page_map_ratelimited(void)
{
- pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
- pud_t *pud = pud_offset(pgd, addr);
- pmd_t *pmd = pmd_offset(pud, addr);
- struct address_space *mapping;
- pgoff_t index;
static unsigned long resume;
static unsigned long nr_shown;
static unsigned long nr_unshown;
@@ -675,60 +505,146 @@ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
if (nr_shown == 60) {
if (time_before(jiffies, resume)) {
nr_unshown++;
- return;
+ return true;
}
if (nr_unshown) {
- printk(KERN_ALERT
- "BUG: Bad page map: %lu messages suppressed\n",
- nr_unshown);
+ pr_alert("BUG: Bad page map: %lu messages suppressed\n",
+ nr_unshown);
nr_unshown = 0;
}
nr_shown = 0;
}
if (nr_shown++ == 0)
resume = jiffies + 60 * HZ;
+ return false;
+}
- mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
- index = linear_page_index(vma, addr);
+static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr)
+{
+ unsigned long long pgdv, p4dv, pudv, pmdv;
+ p4d_t p4d, *p4dp;
+ pud_t pud, *pudp;
+ pmd_t pmd, *pmdp;
+ pgd_t *pgdp;
- printk(KERN_ALERT
- "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
- current->comm,
- (long long)pte_val(pte), (long long)pmd_val(*pmd));
- if (page)
- dump_page(page);
- printk(KERN_ALERT
- "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
- (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
/*
- * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
+ * Although this looks like a fully lockless pgtable walk, it is not:
+ * see locking requirements for print_bad_page_map().
*/
- if (vma->vm_ops)
- printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
- vma->vm_ops->fault);
- if (vma->vm_file && vma->vm_file->f_op)
- printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
- vma->vm_file->f_op->mmap);
- dump_stack();
- add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
+ pgdp = pgd_offset(mm, addr);
+ pgdv = pgd_val(*pgdp);
+
+ if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) {
+ pr_alert("pgd:%08llx\n", pgdv);
+ return;
+ }
+
+ p4dp = p4d_offset(pgdp, addr);
+ p4d = p4dp_get(p4dp);
+ p4dv = p4d_val(p4d);
+
+ if (!p4d_present(p4d) || p4d_leaf(p4d)) {
+ pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv);
+ return;
+ }
+
+ pudp = pud_offset(p4dp, addr);
+ pud = pudp_get(pudp);
+ pudv = pud_val(pud);
+
+ if (!pud_present(pud) || pud_leaf(pud)) {
+ pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv);
+ return;
+ }
+
+ pmdp = pmd_offset(pudp, addr);
+ pmd = pmdp_get(pmdp);
+ pmdv = pmd_val(pmd);
+
+ /*
+ * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE,
+ * because the table should already be mapped by the caller and
+ * doing another map would be bad. print_bad_page_map() should
+ * already take care of printing the PTE.
+ */
+ pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv,
+ p4dv, pudv, pmdv);
}
-static inline bool is_cow_mapping(vm_flags_t flags)
+/*
+ * This function is called to print an error when a bad page table entry (e.g.,
+ * corrupted page table entry) is found. For example, we might have a
+ * PFN-mapped pte in a region that doesn't allow it.
+ *
+ * The calling function must still handle the error.
+ *
+ * This function must be called during a proper page table walk, as it will
+ * re-walk the page table to dump information: the caller MUST prevent page
+ * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf
+ * page table lock.
+ */
+static void print_bad_page_map(struct vm_area_struct *vma,
+ unsigned long addr, unsigned long long entry, struct page *page,
+ enum pgtable_level level)
{
- return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
+ struct address_space *mapping;
+ pgoff_t index;
+
+ if (is_bad_page_map_ratelimited())
+ return;
+
+ mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
+ index = linear_page_index(vma, addr);
+
+ pr_alert("BUG: Bad page map in process %s %s:%08llx", current->comm,
+ pgtable_level_to_str(level), entry);
+ __print_bad_page_map_pgtable(vma->vm_mm, addr);
+ if (page)
+ dump_page(page, "bad page map");
+ pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
+ (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
+ pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n",
+ vma->vm_file,
+ vma->vm_ops ? vma->vm_ops->fault : NULL,
+ vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
+ vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL,
+ mapping ? mapping->a_ops->read_folio : NULL);
+ dump_stack();
+ add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
+#define print_bad_pte(vma, addr, pte, page) \
+ print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE)
-/*
- * vm_normal_page -- This function gets the "struct page" associated with a pte.
+/**
+ * __vm_normal_page() - Get the "struct page" associated with a page table entry.
+ * @vma: The VMA mapping the page table entry.
+ * @addr: The address where the page table entry is mapped.
+ * @pfn: The PFN stored in the page table entry.
+ * @special: Whether the page table entry is marked "special".
+ * @level: The page table level for error reporting purposes only.
+ * @entry: The page table entry value for error reporting purposes only.
*
* "Special" mappings do not wish to be associated with a "struct page" (either
* it doesn't exist, or it exists but they don't want to touch it). In this
- * case, NULL is returned here. "Normal" mappings do have a struct page.
+ * case, NULL is returned here. "Normal" mappings do have a struct page and
+ * are ordinarily refcounted.
+ *
+ * Page mappings of the shared zero folios are always considered "special", as
+ * they are not ordinarily refcounted: neither the refcount nor the mapcount
+ * of these folios is adjusted when mapping them into user page tables.
+ * Selected page table walkers (such as GUP) can still identify mappings of the
+ * shared zero folios and work with the underlying "struct page".
*
- * There are 2 broad cases. Firstly, an architecture may define a pte_special()
- * pte bit, in which case this function is trivial. Secondly, an architecture
- * may not have a spare pte bit, which requires a more complicated scheme,
- * described below.
+ * There are 2 broad cases. Firstly, an architecture may define a "special"
+ * page table entry bit, such as pte_special(), in which case this function is
+ * trivial. Secondly, an architecture may not have a spare page table
+ * entry bit, which requires a more complicated scheme, described below.
+ *
+ * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on
+ * page table entries that actually map "normal" pages: however, that page
+ * cannot be looked up through the PFN stored in the page table entry, but
+ * instead will be looked up through vm_ops->find_normal_page(). So far, this
+ * only applies to PTEs.
*
* A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
* special mapping (even if there are underlying and valid "struct pages").
@@ -753,179 +669,598 @@ static inline bool is_cow_mapping(vm_flags_t flags)
*
* VM_MIXEDMAP mappings can likewise contain memory with or without "struct
* page" backing, however the difference is that _all_ pages with a struct
- * page (that is, those where pfn_valid is true) are refcounted and considered
- * normal pages by the VM. The disadvantage is that pages are refcounted
- * (which can be slower and simply not an option for some PFNMAP users). The
- * advantage is that we don't have to follow the strict linearity rule of
- * PFNMAP mappings in order to support COWable mappings.
+ * page (that is, those where pfn_valid is true, except the shared zero
+ * folios) are refcounted and considered normal pages by the VM.
+ *
+ * The disadvantage is that pages are refcounted (which can be slower and
+ * simply not an option for some PFNMAP users). The advantage is that we
+ * don't have to follow the strict linearity rule of PFNMAP mappings in
+ * order to support COWable mappings.
*
+ * Return: Returns the "struct page" if this is a "normal" mapping. Returns
+ * NULL if this is a "special" mapping.
*/
-#ifdef __HAVE_ARCH_PTE_SPECIAL
-# define HAVE_PTE_SPECIAL 1
-#else
-# define HAVE_PTE_SPECIAL 0
-#endif
-struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
- pte_t pte)
+static inline struct page *__vm_normal_page(struct vm_area_struct *vma,
+ unsigned long addr, unsigned long pfn, bool special,
+ unsigned long long entry, enum pgtable_level level)
{
- unsigned long pfn = pte_pfn(pte);
+ if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
+ if (unlikely(special)) {
+#ifdef CONFIG_FIND_NORMAL_PAGE
+ if (vma->vm_ops && vma->vm_ops->find_normal_page)
+ return vma->vm_ops->find_normal_page(vma, addr);
+#endif /* CONFIG_FIND_NORMAL_PAGE */
+ if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
+ return NULL;
+ if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn))
+ return NULL;
- if (HAVE_PTE_SPECIAL) {
- if (likely(!pte_special(pte)))
- goto check_pfn;
- if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
+ print_bad_page_map(vma, addr, entry, NULL, level);
return NULL;
- if (!is_zero_pfn(pfn))
- print_bad_pte(vma, addr, pte, NULL);
- return NULL;
- }
-
- /* !HAVE_PTE_SPECIAL case follows: */
+ }
+ /*
+ * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table
+ * mappings (incl. shared zero folios) are marked accordingly.
+ */
+ } else {
+ if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) {
+ if (vma->vm_flags & VM_MIXEDMAP) {
+ /* If it has a "struct page", it's "normal". */
+ if (!pfn_valid(pfn))
+ return NULL;
+ } else {
+ unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
- if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
- if (vma->vm_flags & VM_MIXEDMAP) {
- if (!pfn_valid(pfn))
- return NULL;
- goto out;
- } else {
- unsigned long off;
- off = (addr - vma->vm_start) >> PAGE_SHIFT;
- if (pfn == vma->vm_pgoff + off)
- return NULL;
- if (!is_cow_mapping(vma->vm_flags))
- return NULL;
+ /* Only CoW'ed anon folios are "normal". */
+ if (pfn == vma->vm_pgoff + off)
+ return NULL;
+ if (!is_cow_mapping(vma->vm_flags))
+ return NULL;
+ }
}
+
+ if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn))
+ return NULL;
}
- if (is_zero_pfn(pfn))
- return NULL;
-check_pfn:
if (unlikely(pfn > highest_memmap_pfn)) {
- print_bad_pte(vma, addr, pte, NULL);
+ /* Corrupted page table entry. */
+ print_bad_page_map(vma, addr, entry, NULL, level);
return NULL;
}
-
/*
* NOTE! We still have PageReserved() pages in the page tables.
- * eg. VDSO mappings can cause them to exist.
+ * For example, VDSO mappings can cause them to exist.
*/
-out:
+ VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn));
return pfn_to_page(pfn);
}
+/**
+ * vm_normal_page() - Get the "struct page" associated with a PTE
+ * @vma: The VMA mapping the @pte.
+ * @addr: The address where the @pte is mapped.
+ * @pte: The PTE.
+ *
+ * Get the "struct page" associated with a PTE. See __vm_normal_page()
+ * for details on "normal" and "special" mappings.
+ *
+ * Return: Returns the "struct page" if this is a "normal" mapping. Returns
+ * NULL if this is a "special" mapping.
+ */
+struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
+ pte_t pte)
+{
+ return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte),
+ pte_val(pte), PGTABLE_LEVEL_PTE);
+}
+
+/**
+ * vm_normal_folio() - Get the "struct folio" associated with a PTE
+ * @vma: The VMA mapping the @pte.
+ * @addr: The address where the @pte is mapped.
+ * @pte: The PTE.
+ *
+ * Get the "struct folio" associated with a PTE. See __vm_normal_page()
+ * for details on "normal" and "special" mappings.
+ *
+ * Return: Returns the "struct folio" if this is a "normal" mapping. Returns
+ * NULL if this is a "special" mapping.
+ */
+struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
+ pte_t pte)
+{
+ struct page *page = vm_normal_page(vma, addr, pte);
+
+ if (page)
+ return page_folio(page);
+ return NULL;
+}
+
+#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
+/**
+ * vm_normal_page_pmd() - Get the "struct page" associated with a PMD
+ * @vma: The VMA mapping the @pmd.
+ * @addr: The address where the @pmd is mapped.
+ * @pmd: The PMD.
+ *
+ * Get the "struct page" associated with a PTE. See __vm_normal_page()
+ * for details on "normal" and "special" mappings.
+ *
+ * Return: Returns the "struct page" if this is a "normal" mapping. Returns
+ * NULL if this is a "special" mapping.
+ */
+struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
+ pmd_t pmd)
+{
+ return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd),
+ pmd_val(pmd), PGTABLE_LEVEL_PMD);
+}
+
+/**
+ * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD
+ * @vma: The VMA mapping the @pmd.
+ * @addr: The address where the @pmd is mapped.
+ * @pmd: The PMD.
+ *
+ * Get the "struct folio" associated with a PTE. See __vm_normal_page()
+ * for details on "normal" and "special" mappings.
+ *
+ * Return: Returns the "struct folio" if this is a "normal" mapping. Returns
+ * NULL if this is a "special" mapping.
+ */
+struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
+ unsigned long addr, pmd_t pmd)
+{
+ struct page *page = vm_normal_page_pmd(vma, addr, pmd);
+
+ if (page)
+ return page_folio(page);
+ return NULL;
+}
+
+/**
+ * vm_normal_page_pud() - Get the "struct page" associated with a PUD
+ * @vma: The VMA mapping the @pud.
+ * @addr: The address where the @pud is mapped.
+ * @pud: The PUD.
+ *
+ * Get the "struct page" associated with a PUD. See __vm_normal_page()
+ * for details on "normal" and "special" mappings.
+ *
+ * Return: Returns the "struct page" if this is a "normal" mapping. Returns
+ * NULL if this is a "special" mapping.
+ */
+struct page *vm_normal_page_pud(struct vm_area_struct *vma,
+ unsigned long addr, pud_t pud)
+{
+ return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud),
+ pud_val(pud), PGTABLE_LEVEL_PUD);
+}
+#endif
+
+/**
+ * restore_exclusive_pte - Restore a device-exclusive entry
+ * @vma: VMA covering @address
+ * @folio: the mapped folio
+ * @page: the mapped folio page
+ * @address: the virtual address
+ * @ptep: pte pointer into the locked page table mapping the folio page
+ * @orig_pte: pte value at @ptep
+ *
+ * Restore a device-exclusive non-swap entry to an ordinary present pte.
+ *
+ * The folio and the page table must be locked, and MMU notifiers must have
+ * been called to invalidate any (exclusive) device mappings.
+ *
+ * Locking the folio makes sure that anybody who just converted the pte to
+ * a device-exclusive entry can map it into the device to make forward
+ * progress without others converting it back until the folio was unlocked.
+ *
+ * If the folio lock ever becomes an issue, we can stop relying on the folio
+ * lock; it might make some scenarios with heavy thrashing less likely to
+ * make forward progress, but these scenarios might not be valid use cases.
+ *
+ * Note that the folio lock does not protect against all cases of concurrent
+ * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers
+ * must use MMU notifiers to sync against any concurrent changes.
+ */
+static void restore_exclusive_pte(struct vm_area_struct *vma,
+ struct folio *folio, struct page *page, unsigned long address,
+ pte_t *ptep, pte_t orig_pte)
+{
+ pte_t pte;
+
+ VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
+
+ pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
+ if (pte_swp_soft_dirty(orig_pte))
+ pte = pte_mksoft_dirty(pte);
+
+ if (pte_swp_uffd_wp(orig_pte))
+ pte = pte_mkuffd_wp(pte);
+
+ if ((vma->vm_flags & VM_WRITE) &&
+ can_change_pte_writable(vma, address, pte)) {
+ if (folio_test_dirty(folio))
+ pte = pte_mkdirty(pte);
+ pte = pte_mkwrite(pte, vma);
+ }
+ set_pte_at(vma->vm_mm, address, ptep, pte);
+
+ /*
+ * No need to invalidate - it was non-present before. However
+ * secondary CPUs may have mappings that need invalidating.
+ */
+ update_mmu_cache(vma, address, ptep);
+}
+
+/*
+ * Tries to restore an exclusive pte if the page lock can be acquired without
+ * sleeping.
+ */
+static int try_restore_exclusive_pte(struct vm_area_struct *vma,
+ unsigned long addr, pte_t *ptep, pte_t orig_pte)
+{
+ const softleaf_t entry = softleaf_from_pte(orig_pte);
+ struct page *page = softleaf_to_page(entry);
+ struct folio *folio = page_folio(page);
+
+ if (folio_trylock(folio)) {
+ restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte);
+ folio_unlock(folio);
+ return 0;
+ }
+
+ return -EBUSY;
+}
+
/*
* copy one vm_area from one task to the other. Assumes the page tables
* already present in the new task to be cleared in the whole range
* covered by this vma.
*/
-static inline unsigned long
-copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
- pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
- unsigned long addr, int *rss)
+static unsigned long
+copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+ pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
+ struct vm_area_struct *src_vma, unsigned long addr, int *rss)
{
- unsigned long vm_flags = vma->vm_flags;
- pte_t pte = *src_pte;
+ vm_flags_t vm_flags = dst_vma->vm_flags;
+ pte_t orig_pte = ptep_get(src_pte);
+ softleaf_t entry = softleaf_from_pte(orig_pte);
+ pte_t pte = orig_pte;
+ struct folio *folio;
struct page *page;
- /* pte contains position in swap or file, so copy. */
- if (unlikely(!pte_present(pte))) {
- if (!pte_file(pte)) {
- swp_entry_t entry = pte_to_swp_entry(pte);
-
- if (swap_duplicate(entry) < 0)
- return entry.val;
-
- /* make sure dst_mm is on swapoff's mmlist. */
- if (unlikely(list_empty(&dst_mm->mmlist))) {
- spin_lock(&mmlist_lock);
- if (list_empty(&dst_mm->mmlist))
- list_add(&dst_mm->mmlist,
- &src_mm->mmlist);
- spin_unlock(&mmlist_lock);
- }
- if (likely(!non_swap_entry(entry)))
- rss[MM_SWAPENTS]++;
- else if (is_migration_entry(entry)) {
- page = migration_entry_to_page(entry);
-
- if (PageAnon(page))
- rss[MM_ANONPAGES]++;
- else
- rss[MM_FILEPAGES]++;
-
- if (is_write_migration_entry(entry) &&
- is_cow_mapping(vm_flags)) {
- /*
- * COW mappings require pages in both
- * parent and child to be set to read.
- */
- make_migration_entry_read(&entry);
- pte = swp_entry_to_pte(entry);
- set_pte_at(src_mm, addr, src_pte, pte);
- }
- }
+ if (likely(softleaf_is_swap(entry))) {
+ if (swap_duplicate(entry) < 0)
+ return -EIO;
+
+ /* make sure dst_mm is on swapoff's mmlist. */
+ if (unlikely(list_empty(&dst_mm->mmlist))) {
+ spin_lock(&mmlist_lock);
+ if (list_empty(&dst_mm->mmlist))
+ list_add(&dst_mm->mmlist,
+ &src_mm->mmlist);
+ spin_unlock(&mmlist_lock);
+ }
+ /* Mark the swap entry as shared. */
+ if (pte_swp_exclusive(orig_pte)) {
+ pte = pte_swp_clear_exclusive(orig_pte);
+ set_pte_at(src_mm, addr, src_pte, pte);
}
- goto out_set_pte;
+ rss[MM_SWAPENTS]++;
+ } else if (softleaf_is_migration(entry)) {
+ folio = softleaf_to_folio(entry);
+
+ rss[mm_counter(folio)]++;
+
+ if (!softleaf_is_migration_read(entry) &&
+ is_cow_mapping(vm_flags)) {
+ /*
+ * COW mappings require pages in both parent and child
+ * to be set to read. A previously exclusive entry is
+ * now shared.
+ */
+ entry = make_readable_migration_entry(
+ swp_offset(entry));
+ pte = softleaf_to_pte(entry);
+ if (pte_swp_soft_dirty(orig_pte))
+ pte = pte_swp_mksoft_dirty(pte);
+ if (pte_swp_uffd_wp(orig_pte))
+ pte = pte_swp_mkuffd_wp(pte);
+ set_pte_at(src_mm, addr, src_pte, pte);
+ }
+ } else if (softleaf_is_device_private(entry)) {
+ page = softleaf_to_page(entry);
+ folio = page_folio(page);
+
+ /*
+ * Update rss count even for unaddressable pages, as
+ * they should treated just like normal pages in this
+ * respect.
+ *
+ * We will likely want to have some new rss counters
+ * for unaddressable pages, at some point. But for now
+ * keep things as they are.
+ */
+ folio_get(folio);
+ rss[mm_counter(folio)]++;
+ /* Cannot fail as these pages cannot get pinned. */
+ folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma);
+
+ /*
+ * We do not preserve soft-dirty information, because so
+ * far, checkpoint/restore is the only feature that
+ * requires that. And checkpoint/restore does not work
+ * when a device driver is involved (you cannot easily
+ * save and restore device driver state).
+ */
+ if (softleaf_is_device_private_write(entry) &&
+ is_cow_mapping(vm_flags)) {
+ entry = make_readable_device_private_entry(
+ swp_offset(entry));
+ pte = swp_entry_to_pte(entry);
+ if (pte_swp_uffd_wp(orig_pte))
+ pte = pte_swp_mkuffd_wp(pte);
+ set_pte_at(src_mm, addr, src_pte, pte);
+ }
+ } else if (softleaf_is_device_exclusive(entry)) {
+ /*
+ * Make device exclusive entries present by restoring the
+ * original entry then copying as for a present pte. Device
+ * exclusive entries currently only support private writable
+ * (ie. COW) mappings.
+ */
+ VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
+ if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte))
+ return -EBUSY;
+ return -ENOENT;
+ } else if (softleaf_is_marker(entry)) {
+ pte_marker marker = copy_pte_marker(entry, dst_vma);
+
+ if (marker)
+ set_pte_at(dst_mm, addr, dst_pte,
+ make_pte_marker(marker));
+ return 0;
}
+ if (!userfaultfd_wp(dst_vma))
+ pte = pte_swp_clear_uffd_wp(pte);
+ set_pte_at(dst_mm, addr, dst_pte, pte);
+ return 0;
+}
+
+/*
+ * Copy a present and normal page.
+ *
+ * NOTE! The usual case is that this isn't required;
+ * instead, the caller can just increase the page refcount
+ * and re-use the pte the traditional way.
+ *
+ * And if we need a pre-allocated page but don't yet have
+ * one, return a negative error to let the preallocation
+ * code know so that it can do so outside the page table
+ * lock.
+ */
+static inline int
+copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+ pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
+ struct folio **prealloc, struct page *page)
+{
+ struct folio *new_folio;
+ pte_t pte;
+
+ new_folio = *prealloc;
+ if (!new_folio)
+ return -EAGAIN;
/*
- * If it's a COW mapping, write protect it both
- * in the parent and the child
+ * We have a prealloc page, all good! Take it
+ * over and copy the page & arm it.
*/
- if (is_cow_mapping(vm_flags)) {
- ptep_set_wrprotect(src_mm, addr, src_pte);
+
+ if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
+ return -EHWPOISON;
+
+ *prealloc = NULL;
+ __folio_mark_uptodate(new_folio);
+ folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
+ folio_add_lru_vma(new_folio, dst_vma);
+ rss[MM_ANONPAGES]++;
+
+ /* All done, just insert the new page copy in the child */
+ pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot);
+ pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
+ if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
+ /* Uffd-wp needs to be delivered to dest pte as well */
+ pte = pte_mkuffd_wp(pte);
+ set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
+ return 0;
+}
+
+static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
+ struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
+ pte_t pte, unsigned long addr, int nr)
+{
+ struct mm_struct *src_mm = src_vma->vm_mm;
+
+ /* If it's a COW mapping, write protect it both processes. */
+ if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
+ wrprotect_ptes(src_mm, addr, src_pte, nr);
pte = pte_wrprotect(pte);
}
- /*
- * If it's a shared mapping, mark it clean in
- * the child
- */
- if (vm_flags & VM_SHARED)
+ /* If it's a shared mapping, mark it clean in the child. */
+ if (src_vma->vm_flags & VM_SHARED)
pte = pte_mkclean(pte);
pte = pte_mkold(pte);
- page = vm_normal_page(vma, addr, pte);
- if (page) {
- get_page(page);
- page_dup_rmap(page);
- if (PageAnon(page))
- rss[MM_ANONPAGES]++;
- else
- rss[MM_FILEPAGES]++;
+ if (!userfaultfd_wp(dst_vma))
+ pte = pte_clear_uffd_wp(pte);
+
+ set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
+}
+
+/*
+ * Copy one present PTE, trying to batch-process subsequent PTEs that map
+ * consecutive pages of the same folio by copying them as well.
+ *
+ * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
+ * Otherwise, returns the number of copied PTEs (at least 1).
+ */
+static inline int
+copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+ pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
+ int max_nr, int *rss, struct folio **prealloc)
+{
+ fpb_t flags = FPB_MERGE_WRITE;
+ struct page *page;
+ struct folio *folio;
+ int err, nr;
+
+ page = vm_normal_page(src_vma, addr, pte);
+ if (unlikely(!page))
+ goto copy_pte;
+
+ folio = page_folio(page);
+
+ /*
+ * If we likely have to copy, just don't bother with batching. Make
+ * sure that the common "small folio" case is as fast as possible
+ * by keeping the batching logic separate.
+ */
+ if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
+ if (!(src_vma->vm_flags & VM_SHARED))
+ flags |= FPB_RESPECT_DIRTY;
+ if (vma_soft_dirty_enabled(src_vma))
+ flags |= FPB_RESPECT_SOFT_DIRTY;
+
+ nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags);
+ folio_ref_add(folio, nr);
+ if (folio_test_anon(folio)) {
+ if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
+ nr, dst_vma, src_vma))) {
+ folio_ref_sub(folio, nr);
+ return -EAGAIN;
+ }
+ rss[MM_ANONPAGES] += nr;
+ VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
+ } else {
+ folio_dup_file_rmap_ptes(folio, page, nr, dst_vma);
+ rss[mm_counter_file(folio)] += nr;
+ }
+ __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
+ addr, nr);
+ return nr;
}
-out_set_pte:
- set_pte_at(dst_mm, addr, dst_pte, pte);
- return 0;
+ folio_get(folio);
+ if (folio_test_anon(folio)) {
+ /*
+ * If this page may have been pinned by the parent process,
+ * copy the page immediately for the child so that we'll always
+ * guarantee the pinned page won't be randomly replaced in the
+ * future.
+ */
+ if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) {
+ /* Page may be pinned, we have to copy. */
+ folio_put(folio);
+ err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
+ addr, rss, prealloc, page);
+ return err ? err : 1;
+ }
+ rss[MM_ANONPAGES]++;
+ VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
+ } else {
+ folio_dup_file_rmap_pte(folio, page, dst_vma);
+ rss[mm_counter_file(folio)]++;
+ }
+
+copy_pte:
+ __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
+ return 1;
+}
+
+static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
+ struct vm_area_struct *vma, unsigned long addr, bool need_zero)
+{
+ struct folio *new_folio;
+
+ if (need_zero)
+ new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
+ else
+ new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
+
+ if (!new_folio)
+ return NULL;
+
+ if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
+ folio_put(new_folio);
+ return NULL;
+ }
+ folio_throttle_swaprate(new_folio, GFP_KERNEL);
+
+ return new_folio;
}
-int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
- pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
- unsigned long addr, unsigned long end)
+static int
+copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+ pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
+ unsigned long end)
{
+ struct mm_struct *dst_mm = dst_vma->vm_mm;
+ struct mm_struct *src_mm = src_vma->vm_mm;
pte_t *orig_src_pte, *orig_dst_pte;
pte_t *src_pte, *dst_pte;
+ pmd_t dummy_pmdval;
+ pte_t ptent;
spinlock_t *src_ptl, *dst_ptl;
- int progress = 0;
+ int progress, max_nr, ret = 0;
int rss[NR_MM_COUNTERS];
- swp_entry_t entry = (swp_entry_t){0};
+ softleaf_t entry = softleaf_mk_none();
+ struct folio *prealloc = NULL;
+ int nr;
again:
+ progress = 0;
init_rss_vec(rss);
+ /*
+ * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
+ * error handling here, assume that exclusive mmap_lock on dst and src
+ * protects anon from unexpected THP transitions; with shmem and file
+ * protected by mmap_lock-less collapse skipping areas with anon_vma
+ * (whereas vma_needs_copy() skips areas without anon_vma). A rework
+ * can remove such assumptions later, but this is good enough for now.
+ */
dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
- if (!dst_pte)
- return -ENOMEM;
- src_pte = pte_offset_map(src_pmd, addr);
- src_ptl = pte_lockptr(src_mm, src_pmd);
+ if (!dst_pte) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ /*
+ * We already hold the exclusive mmap_lock, the copy_pte_range() and
+ * retract_page_tables() are using vma->anon_vma to be exclusive, so
+ * the PTE page is stable, and there is no need to get pmdval and do
+ * pmd_same() check.
+ */
+ src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
+ &src_ptl);
+ if (!src_pte) {
+ pte_unmap_unlock(dst_pte, dst_ptl);
+ /* ret == 0 */
+ goto out;
+ }
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
orig_src_pte = src_pte;
orig_dst_pte = dst_pte;
arch_enter_lazy_mmu_mode();
do {
+ nr = 1;
+
/*
* We are holding two locks at this point - either of them
* could generate latencies in another task on another CPU.
@@ -936,38 +1271,101 @@ again:
spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
break;
}
- if (pte_none(*src_pte)) {
+ ptent = ptep_get(src_pte);
+ if (pte_none(ptent)) {
progress++;
continue;
}
- entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
- vma, addr, rss);
- if (entry.val)
+ if (unlikely(!pte_present(ptent))) {
+ ret = copy_nonpresent_pte(dst_mm, src_mm,
+ dst_pte, src_pte,
+ dst_vma, src_vma,
+ addr, rss);
+ if (ret == -EIO) {
+ entry = softleaf_from_pte(ptep_get(src_pte));
+ break;
+ } else if (ret == -EBUSY) {
+ break;
+ } else if (!ret) {
+ progress += 8;
+ continue;
+ }
+ ptent = ptep_get(src_pte);
+ VM_WARN_ON_ONCE(!pte_present(ptent));
+
+ /*
+ * Device exclusive entry restored, continue by copying
+ * the now present pte.
+ */
+ WARN_ON_ONCE(ret != -ENOENT);
+ }
+ /* copy_present_ptes() will clear `*prealloc' if consumed */
+ max_nr = (end - addr) / PAGE_SIZE;
+ ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
+ ptent, addr, max_nr, rss, &prealloc);
+ /*
+ * If we need a pre-allocated page for this pte, drop the
+ * locks, allocate, and try again.
+ * If copy failed due to hwpoison in source page, break out.
+ */
+ if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
break;
- progress += 8;
- } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
+ if (unlikely(prealloc)) {
+ /*
+ * pre-alloc page cannot be reused by next time so as
+ * to strictly follow mempolicy (e.g., alloc_page_vma()
+ * will allocate page according to address). This
+ * could only happen if one pinned pte changed.
+ */
+ folio_put(prealloc);
+ prealloc = NULL;
+ }
+ nr = ret;
+ progress += 8 * nr;
+ } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
+ addr != end);
arch_leave_lazy_mmu_mode();
- spin_unlock(src_ptl);
- pte_unmap(orig_src_pte);
+ pte_unmap_unlock(orig_src_pte, src_ptl);
add_mm_rss_vec(dst_mm, rss);
pte_unmap_unlock(orig_dst_pte, dst_ptl);
cond_resched();
- if (entry.val) {
- if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
+ if (ret == -EIO) {
+ VM_WARN_ON_ONCE(!entry.val);
+ if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ entry.val = 0;
+ } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
+ goto out;
+ } else if (ret == -EAGAIN) {
+ prealloc = folio_prealloc(src_mm, src_vma, addr, false);
+ if (!prealloc)
return -ENOMEM;
- progress = 0;
+ } else if (ret < 0) {
+ VM_WARN_ON_ONCE(1);
}
+
+ /* We've captured and resolved the error. Reset, try again. */
+ ret = 0;
+
if (addr != end)
goto again;
- return 0;
+out:
+ if (unlikely(prealloc))
+ folio_put(prealloc);
+ return ret;
}
-static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
- pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
- unsigned long addr, unsigned long end)
+static inline int
+copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+ pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
+ unsigned long end)
{
+ struct mm_struct *dst_mm = dst_vma->vm_mm;
+ struct mm_struct *src_mm = src_vma->vm_mm;
pmd_t *src_pmd, *dst_pmd;
unsigned long next;
@@ -977,11 +1375,12 @@ static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src
src_pmd = pmd_offset(src_pud, addr);
do {
next = pmd_addr_end(addr, end);
- if (pmd_trans_huge(*src_pmd)) {
+ if (pmd_is_huge(*src_pmd)) {
int err;
- VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
- err = copy_huge_pmd(dst_mm, src_mm,
- dst_pmd, src_pmd, addr, vma);
+
+ VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
+ err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
+ addr, dst_vma, src_vma);
if (err == -ENOMEM)
return -ENOMEM;
if (!err)
@@ -990,71 +1389,118 @@ static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src
}
if (pmd_none_or_clear_bad(src_pmd))
continue;
- if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
- vma, addr, next))
+ if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
+ addr, next))
return -ENOMEM;
} while (dst_pmd++, src_pmd++, addr = next, addr != end);
return 0;
}
-static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
- pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
- unsigned long addr, unsigned long end)
+static inline int
+copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+ p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
+ unsigned long end)
{
+ struct mm_struct *dst_mm = dst_vma->vm_mm;
+ struct mm_struct *src_mm = src_vma->vm_mm;
pud_t *src_pud, *dst_pud;
unsigned long next;
- dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
+ dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
if (!dst_pud)
return -ENOMEM;
- src_pud = pud_offset(src_pgd, addr);
+ src_pud = pud_offset(src_p4d, addr);
do {
next = pud_addr_end(addr, end);
+ if (pud_trans_huge(*src_pud)) {
+ int err;
+
+ VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
+ err = copy_huge_pud(dst_mm, src_mm,
+ dst_pud, src_pud, addr, src_vma);
+ if (err == -ENOMEM)
+ return -ENOMEM;
+ if (!err)
+ continue;
+ /* fall through */
+ }
if (pud_none_or_clear_bad(src_pud))
continue;
- if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
- vma, addr, next))
+ if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
+ addr, next))
return -ENOMEM;
} while (dst_pud++, src_pud++, addr = next, addr != end);
return 0;
}
-int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
- struct vm_area_struct *vma)
+static inline int
+copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+ pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
+ unsigned long end)
{
- pgd_t *src_pgd, *dst_pgd;
+ struct mm_struct *dst_mm = dst_vma->vm_mm;
+ p4d_t *src_p4d, *dst_p4d;
unsigned long next;
- unsigned long addr = vma->vm_start;
- unsigned long end = vma->vm_end;
- unsigned long mmun_start; /* For mmu_notifiers */
- unsigned long mmun_end; /* For mmu_notifiers */
- bool is_cow;
- int ret;
+ dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
+ if (!dst_p4d)
+ return -ENOMEM;
+ src_p4d = p4d_offset(src_pgd, addr);
+ do {
+ next = p4d_addr_end(addr, end);
+ if (p4d_none_or_clear_bad(src_p4d))
+ continue;
+ if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
+ addr, next))
+ return -ENOMEM;
+ } while (dst_p4d++, src_p4d++, addr = next, addr != end);
+ return 0;
+}
+
+/*
+ * Return true if the vma needs to copy the pgtable during this fork(). Return
+ * false when we can speed up fork() by allowing lazy page faults later until
+ * when the child accesses the memory range.
+ */
+static bool
+vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
+{
+ if (src_vma->vm_flags & VM_COPY_ON_FORK)
+ return true;
/*
- * Don't copy ptes where a page fault will fill them correctly.
- * Fork becomes much lighter when there are big shared or private
- * readonly mappings. The tradeoff is that copy_page_range is more
- * efficient than faulting.
+ * The presence of an anon_vma indicates an anonymous VMA has page
+ * tables which naturally cannot be reconstituted on page fault.
*/
- if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
- VM_PFNMAP | VM_MIXEDMAP))) {
- if (!vma->anon_vma)
- return 0;
- }
+ if (src_vma->anon_vma)
+ return true;
- if (is_vm_hugetlb_page(vma))
- return copy_hugetlb_page_range(dst_mm, src_mm, vma);
+ /*
+ * Don't copy ptes where a page fault will fill them correctly. Fork
+ * becomes much lighter when there are big shared or private readonly
+ * mappings. The tradeoff is that copy_page_range is more efficient
+ * than faulting.
+ */
+ return false;
+}
- if (unlikely(vma->vm_flags & VM_PFNMAP)) {
- /*
- * We do not free on error cases below as remove_vma
- * gets called on error from higher level routine
- */
- ret = track_pfn_copy(vma);
- if (ret)
- return ret;
- }
+int
+copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
+{
+ pgd_t *src_pgd, *dst_pgd;
+ unsigned long addr = src_vma->vm_start;
+ unsigned long end = src_vma->vm_end;
+ struct mm_struct *dst_mm = dst_vma->vm_mm;
+ struct mm_struct *src_mm = src_vma->vm_mm;
+ struct mmu_notifier_range range;
+ unsigned long next;
+ bool is_cow;
+ int ret;
+
+ if (!vma_needs_copy(dst_vma, src_vma))
+ return 0;
+
+ if (is_vm_hugetlb_page(src_vma))
+ return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
/*
* We need to invalidate the secondary MMU mappings only when
@@ -1062,12 +1508,22 @@ int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
* parent mm. And a permission downgrade will only happen if
* is_cow_mapping() returns true.
*/
- is_cow = is_cow_mapping(vma->vm_flags);
- mmun_start = addr;
- mmun_end = end;
- if (is_cow)
- mmu_notifier_invalidate_range_start(src_mm, mmun_start,
- mmun_end);
+ is_cow = is_cow_mapping(src_vma->vm_flags);
+
+ if (is_cow) {
+ mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
+ 0, src_mm, addr, end);
+ mmu_notifier_invalidate_range_start(&range);
+ /*
+ * Disabling preemption is not needed for the write side, as
+ * the read side doesn't spin, but goes to the mmap_lock.
+ *
+ * Use the raw variant of the seqcount_t write API to avoid
+ * lockdep complaining about preemptibility.
+ */
+ vma_assert_write_locked(src_vma);
+ raw_write_seqcount_begin(&src_mm->write_protect_seq);
+ }
ret = 0;
dst_pgd = pgd_offset(dst_mm, addr);
@@ -1076,143 +1532,378 @@ int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(src_pgd))
continue;
- if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
- vma, addr, next))) {
+ if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
+ addr, next))) {
ret = -ENOMEM;
break;
}
} while (dst_pgd++, src_pgd++, addr = next, addr != end);
- if (is_cow)
- mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
+ if (is_cow) {
+ raw_write_seqcount_end(&src_mm->write_protect_seq);
+ mmu_notifier_invalidate_range_end(&range);
+ }
return ret;
}
+/* Whether we should zap all COWed (private) pages too */
+static inline bool should_zap_cows(struct zap_details *details)
+{
+ /* By default, zap all pages */
+ if (!details || details->reclaim_pt)
+ return true;
+
+ /* Or, we zap COWed pages only if the caller wants to */
+ return details->even_cows;
+}
+
+/* Decides whether we should zap this folio with the folio pointer specified */
+static inline bool should_zap_folio(struct zap_details *details,
+ struct folio *folio)
+{
+ /* If we can make a decision without *folio.. */
+ if (should_zap_cows(details))
+ return true;
+
+ /* Otherwise we should only zap non-anon folios */
+ return !folio_test_anon(folio);
+}
+
+static inline bool zap_drop_markers(struct zap_details *details)
+{
+ if (!details)
+ return false;
+
+ return details->zap_flags & ZAP_FLAG_DROP_MARKER;
+}
+
+/*
+ * This function makes sure that we'll replace the none pte with an uffd-wp
+ * swap special pte marker when necessary. Must be with the pgtable lock held.
+ *
+ * Returns true if uffd-wp ptes was installed, false otherwise.
+ */
+static inline bool
+zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
+ unsigned long addr, pte_t *pte, int nr,
+ struct zap_details *details, pte_t pteval)
+{
+ bool was_installed = false;
+
+ if (!uffd_supports_wp_marker())
+ return false;
+
+ /* Zap on anonymous always means dropping everything */
+ if (vma_is_anonymous(vma))
+ return false;
+
+ if (zap_drop_markers(details))
+ return false;
+
+ for (;;) {
+ /* the PFN in the PTE is irrelevant. */
+ if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
+ was_installed = true;
+ if (--nr == 0)
+ break;
+ pte++;
+ addr += PAGE_SIZE;
+ }
+
+ return was_installed;
+}
+
+static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, struct folio *folio,
+ struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
+ unsigned long addr, struct zap_details *details, int *rss,
+ bool *force_flush, bool *force_break, bool *any_skipped)
+{
+ struct mm_struct *mm = tlb->mm;
+ bool delay_rmap = false;
+
+ if (!folio_test_anon(folio)) {
+ ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
+ if (pte_dirty(ptent)) {
+ folio_mark_dirty(folio);
+ if (tlb_delay_rmap(tlb)) {
+ delay_rmap = true;
+ *force_flush = true;
+ }
+ }
+ if (pte_young(ptent) && likely(vma_has_recency(vma)))
+ folio_mark_accessed(folio);
+ rss[mm_counter(folio)] -= nr;
+ } else {
+ /* We don't need up-to-date accessed/dirty bits. */
+ clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
+ rss[MM_ANONPAGES] -= nr;
+ }
+ /* Checking a single PTE in a batch is sufficient. */
+ arch_check_zapped_pte(vma, ptent);
+ tlb_remove_tlb_entries(tlb, pte, nr, addr);
+ if (unlikely(userfaultfd_pte_wp(vma, ptent)))
+ *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
+ nr, details, ptent);
+
+ if (!delay_rmap) {
+ folio_remove_rmap_ptes(folio, page, nr, vma);
+
+ if (unlikely(folio_mapcount(folio) < 0))
+ print_bad_pte(vma, addr, ptent, page);
+ }
+ if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
+ *force_flush = true;
+ *force_break = true;
+ }
+}
+
+/*
+ * Zap or skip at least one present PTE, trying to batch-process subsequent
+ * PTEs that map consecutive pages of the same folio.
+ *
+ * Returns the number of processed (skipped or zapped) PTEs (at least 1).
+ */
+static inline int zap_present_ptes(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
+ unsigned int max_nr, unsigned long addr,
+ struct zap_details *details, int *rss, bool *force_flush,
+ bool *force_break, bool *any_skipped)
+{
+ struct mm_struct *mm = tlb->mm;
+ struct folio *folio;
+ struct page *page;
+ int nr;
+
+ page = vm_normal_page(vma, addr, ptent);
+ if (!page) {
+ /* We don't need up-to-date accessed/dirty bits. */
+ ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
+ arch_check_zapped_pte(vma, ptent);
+ tlb_remove_tlb_entry(tlb, pte, addr);
+ if (userfaultfd_pte_wp(vma, ptent))
+ *any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
+ pte, 1, details, ptent);
+ ksm_might_unmap_zero_page(mm, ptent);
+ return 1;
+ }
+
+ folio = page_folio(page);
+ if (unlikely(!should_zap_folio(details, folio))) {
+ *any_skipped = true;
+ return 1;
+ }
+
+ /*
+ * Make sure that the common "small folio" case is as fast as possible
+ * by keeping the batching logic separate.
+ */
+ if (unlikely(folio_test_large(folio) && max_nr != 1)) {
+ nr = folio_pte_batch(folio, pte, ptent, max_nr);
+ zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
+ addr, details, rss, force_flush,
+ force_break, any_skipped);
+ return nr;
+ }
+ zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
+ details, rss, force_flush, force_break, any_skipped);
+ return 1;
+}
+
+static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
+ unsigned int max_nr, unsigned long addr,
+ struct zap_details *details, int *rss, bool *any_skipped)
+{
+ softleaf_t entry;
+ int nr = 1;
+
+ *any_skipped = true;
+ entry = softleaf_from_pte(ptent);
+ if (softleaf_is_device_private(entry) ||
+ softleaf_is_device_exclusive(entry)) {
+ struct page *page = softleaf_to_page(entry);
+ struct folio *folio = page_folio(page);
+
+ if (unlikely(!should_zap_folio(details, folio)))
+ return 1;
+ /*
+ * Both device private/exclusive mappings should only
+ * work with anonymous page so far, so we don't need to
+ * consider uffd-wp bit when zap. For more information,
+ * see zap_install_uffd_wp_if_needed().
+ */
+ WARN_ON_ONCE(!vma_is_anonymous(vma));
+ rss[mm_counter(folio)]--;
+ folio_remove_rmap_pte(folio, page, vma);
+ folio_put(folio);
+ } else if (softleaf_is_swap(entry)) {
+ /* Genuine swap entries, hence a private anon pages */
+ if (!should_zap_cows(details))
+ return 1;
+
+ nr = swap_pte_batch(pte, max_nr, ptent);
+ rss[MM_SWAPENTS] -= nr;
+ free_swap_and_cache_nr(entry, nr);
+ } else if (softleaf_is_migration(entry)) {
+ struct folio *folio = softleaf_to_folio(entry);
+
+ if (!should_zap_folio(details, folio))
+ return 1;
+ rss[mm_counter(folio)]--;
+ } else if (softleaf_is_uffd_wp_marker(entry)) {
+ /*
+ * For anon: always drop the marker; for file: only
+ * drop the marker if explicitly requested.
+ */
+ if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
+ return 1;
+ } else if (softleaf_is_guard_marker(entry)) {
+ /*
+ * Ordinary zapping should not remove guard PTE
+ * markers. Only do so if we should remove PTE markers
+ * in general.
+ */
+ if (!zap_drop_markers(details))
+ return 1;
+ } else if (softleaf_is_hwpoison(entry) ||
+ softleaf_is_poison_marker(entry)) {
+ if (!should_zap_cows(details))
+ return 1;
+ } else {
+ /* We should have covered all the swap entry types */
+ pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
+ WARN_ON_ONCE(1);
+ }
+ clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
+ *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
+
+ return nr;
+}
+
+static inline int do_zap_pte_range(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, pte_t *pte,
+ unsigned long addr, unsigned long end,
+ struct zap_details *details, int *rss,
+ bool *force_flush, bool *force_break,
+ bool *any_skipped)
+{
+ pte_t ptent = ptep_get(pte);
+ int max_nr = (end - addr) / PAGE_SIZE;
+ int nr = 0;
+
+ /* Skip all consecutive none ptes */
+ if (pte_none(ptent)) {
+ for (nr = 1; nr < max_nr; nr++) {
+ ptent = ptep_get(pte + nr);
+ if (!pte_none(ptent))
+ break;
+ }
+ max_nr -= nr;
+ if (!max_nr)
+ return nr;
+ pte += nr;
+ addr += nr * PAGE_SIZE;
+ }
+
+ if (pte_present(ptent))
+ nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
+ details, rss, force_flush, force_break,
+ any_skipped);
+ else
+ nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
+ details, rss, any_skipped);
+
+ return nr;
+}
+
static unsigned long zap_pte_range(struct mmu_gather *tlb,
struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,
struct zap_details *details)
{
+ bool force_flush = false, force_break = false;
struct mm_struct *mm = tlb->mm;
- int force_flush = 0;
int rss[NR_MM_COUNTERS];
spinlock_t *ptl;
pte_t *start_pte;
pte_t *pte;
- unsigned long range_start = addr;
+ pmd_t pmdval;
+ unsigned long start = addr;
+ bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
+ bool direct_reclaim = true;
+ int nr;
-again:
+retry:
+ tlb_change_page_size(tlb, PAGE_SIZE);
init_rss_vec(rss);
- start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
- pte = start_pte;
+ start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
+ if (!pte)
+ return addr;
+
+ flush_tlb_batched_pending(mm);
arch_enter_lazy_mmu_mode();
do {
- pte_t ptent = *pte;
- if (pte_none(ptent)) {
- continue;
- }
-
- if (pte_present(ptent)) {
- struct page *page;
+ bool any_skipped = false;
- page = vm_normal_page(vma, addr, ptent);
- if (unlikely(details) && page) {
- /*
- * unmap_shared_mapping_pages() wants to
- * invalidate cache without truncating:
- * unmap shared but keep private pages.
- */
- if (details->check_mapping &&
- details->check_mapping != page->mapping)
- continue;
- /*
- * Each page->index must be checked when
- * invalidating or truncating nonlinear.
- */
- if (details->nonlinear_vma &&
- (page->index < details->first_index ||
- page->index > details->last_index))
- continue;
- }
- ptent = ptep_get_and_clear_full(mm, addr, pte,
- tlb->fullmm);
- tlb_remove_tlb_entry(tlb, pte, addr);
- if (unlikely(!page))
- continue;
- if (unlikely(details) && details->nonlinear_vma
- && linear_page_index(details->nonlinear_vma,
- addr) != page->index)
- set_pte_at(mm, addr, pte,
- pgoff_to_pte(page->index));
- if (PageAnon(page))
- rss[MM_ANONPAGES]--;
- else {
- if (pte_dirty(ptent))
- set_page_dirty(page);
- if (pte_young(ptent) &&
- likely(!(vma->vm_flags & VM_SEQ_READ)))
- mark_page_accessed(page);
- rss[MM_FILEPAGES]--;
- }
- page_remove_rmap(page);
- if (unlikely(page_mapcount(page) < 0))
- print_bad_pte(vma, addr, ptent, page);
- force_flush = !__tlb_remove_page(tlb, page);
- if (force_flush)
- break;
- continue;
+ if (need_resched()) {
+ direct_reclaim = false;
+ break;
}
- /*
- * If details->check_mapping, we leave swap entries;
- * if details->nonlinear_vma, we leave file entries.
- */
- if (unlikely(details))
- continue;
- if (pte_file(ptent)) {
- if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
- print_bad_pte(vma, addr, ptent, NULL);
- } else {
- swp_entry_t entry = pte_to_swp_entry(ptent);
- if (!non_swap_entry(entry))
- rss[MM_SWAPENTS]--;
- else if (is_migration_entry(entry)) {
- struct page *page;
-
- page = migration_entry_to_page(entry);
-
- if (PageAnon(page))
- rss[MM_ANONPAGES]--;
- else
- rss[MM_FILEPAGES]--;
- }
- if (unlikely(!free_swap_and_cache(entry)))
- print_bad_pte(vma, addr, ptent, NULL);
+ nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
+ &force_flush, &force_break, &any_skipped);
+ if (any_skipped)
+ can_reclaim_pt = false;
+ if (unlikely(force_break)) {
+ addr += nr * PAGE_SIZE;
+ direct_reclaim = false;
+ break;
}
- pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
- } while (pte++, addr += PAGE_SIZE, addr != end);
+ } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
+
+ /*
+ * Fast path: try to hold the pmd lock and unmap the PTE page.
+ *
+ * If the pte lock was released midway (retry case), or if the attempt
+ * to hold the pmd lock failed, then we need to recheck all pte entries
+ * to ensure they are still none, thereby preventing the pte entries
+ * from being repopulated by another thread.
+ */
+ if (can_reclaim_pt && direct_reclaim && addr == end)
+ direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
add_mm_rss_vec(mm, rss);
arch_leave_lazy_mmu_mode();
+
+ /* Do the actual TLB flush before dropping ptl */
+ if (force_flush) {
+ tlb_flush_mmu_tlbonly(tlb);
+ tlb_flush_rmaps(tlb, vma);
+ }
pte_unmap_unlock(start_pte, ptl);
/*
- * mmu_gather ran out of room to batch pages, we break out of
- * the PTE lock to avoid doing the potential expensive TLB invalidate
- * and page-free while holding it.
+ * If we forced a TLB flush (either due to running out of
+ * batch buffers or because we needed to flush dirty TLB
+ * entries before releasing the ptl), free the batched
+ * memory too. Come back again if we didn't do everything.
*/
- if (force_flush) {
- force_flush = 0;
-
-#ifdef HAVE_GENERIC_MMU_GATHER
- tlb->start = range_start;
- tlb->end = addr;
-#endif
+ if (force_flush)
tlb_flush_mmu(tlb);
- if (addr != end) {
- range_start = addr;
- goto again;
- }
+
+ if (addr != end) {
+ cond_resched();
+ force_flush = false;
+ force_break = false;
+ goto retry;
+ }
+
+ if (can_reclaim_pt) {
+ if (direct_reclaim)
+ free_pte(mm, start, tlb, pmdval);
+ else
+ try_to_free_pte(mm, pmd, start, tlb);
}
return addr;
@@ -1229,59 +1920,86 @@ static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
- if (pmd_trans_huge(*pmd)) {
- if (next - addr != HPAGE_PMD_SIZE) {
-#ifdef CONFIG_DEBUG_VM
- if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
- pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
- __func__, addr, end,
- vma->vm_start,
- vma->vm_end);
- BUG();
- }
-#endif
- split_huge_page_pmd(vma, addr, pmd);
- } else if (zap_huge_pmd(tlb, vma, pmd, addr))
- goto next;
+ if (pmd_is_huge(*pmd)) {
+ if (next - addr != HPAGE_PMD_SIZE)
+ __split_huge_pmd(vma, pmd, addr, false);
+ else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
+ addr = next;
+ continue;
+ }
/* fall through */
+ } else if (details && details->single_folio &&
+ folio_test_pmd_mappable(details->single_folio) &&
+ next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
+ spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
+ /*
+ * Take and drop THP pmd lock so that we cannot return
+ * prematurely, while zap_huge_pmd() has cleared *pmd,
+ * but not yet decremented compound_mapcount().
+ */
+ spin_unlock(ptl);
}
- /*
- * Here there can be other concurrent MADV_DONTNEED or
- * trans huge page faults running, and if the pmd is
- * none or trans huge it can change under us. This is
- * because MADV_DONTNEED holds the mmap_sem in read
- * mode.
- */
- if (pmd_none_or_trans_huge_or_clear_bad(pmd))
- goto next;
- next = zap_pte_range(tlb, vma, pmd, addr, next, details);
-next:
- cond_resched();
- } while (pmd++, addr = next, addr != end);
+ if (pmd_none(*pmd)) {
+ addr = next;
+ continue;
+ }
+ addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
+ if (addr != next)
+ pmd--;
+ } while (pmd++, cond_resched(), addr != end);
return addr;
}
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
- struct vm_area_struct *vma, pgd_t *pgd,
+ struct vm_area_struct *vma, p4d_t *p4d,
unsigned long addr, unsigned long end,
struct zap_details *details)
{
pud_t *pud;
unsigned long next;
- pud = pud_offset(pgd, addr);
+ pud = pud_offset(p4d, addr);
do {
next = pud_addr_end(addr, end);
+ if (pud_trans_huge(*pud)) {
+ if (next - addr != HPAGE_PUD_SIZE) {
+ mmap_assert_locked(tlb->mm);
+ split_huge_pud(vma, pud, addr);
+ } else if (zap_huge_pud(tlb, vma, pud, addr))
+ goto next;
+ /* fall through */
+ }
if (pud_none_or_clear_bad(pud))
continue;
next = zap_pmd_range(tlb, vma, pud, addr, next, details);
+next:
+ cond_resched();
} while (pud++, addr = next, addr != end);
return addr;
}
-static void unmap_page_range(struct mmu_gather *tlb,
+static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, pgd_t *pgd,
+ unsigned long addr, unsigned long end,
+ struct zap_details *details)
+{
+ p4d_t *p4d;
+ unsigned long next;
+
+ p4d = p4d_offset(pgd, addr);
+ do {
+ next = p4d_addr_end(addr, end);
+ if (p4d_none_or_clear_bad(p4d))
+ continue;
+ next = zap_pud_range(tlb, vma, p4d, addr, next, details);
+ } while (p4d++, addr = next, addr != end);
+
+ return addr;
+}
+
+void unmap_page_range(struct mmu_gather *tlb,
struct vm_area_struct *vma,
unsigned long addr, unsigned long end,
struct zap_details *details)
@@ -1289,28 +2007,22 @@ static void unmap_page_range(struct mmu_gather *tlb,
pgd_t *pgd;
unsigned long next;
- if (details && !details->check_mapping && !details->nonlinear_vma)
- details = NULL;
-
BUG_ON(addr >= end);
- mem_cgroup_uncharge_start();
tlb_start_vma(tlb, vma);
pgd = pgd_offset(vma->vm_mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
- next = zap_pud_range(tlb, vma, pgd, addr, next, details);
+ next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
} while (pgd++, addr = next, addr != end);
tlb_end_vma(tlb, vma);
- mem_cgroup_uncharge_end();
}
static void unmap_single_vma(struct mmu_gather *tlb,
struct vm_area_struct *vma, unsigned long start_addr,
- unsigned long end_addr,
- struct zap_details *details)
+ unsigned long end_addr, struct zap_details *details)
{
unsigned long start = max(vma->vm_start, start_addr);
unsigned long end;
@@ -1324,26 +2036,24 @@ static void unmap_single_vma(struct mmu_gather *tlb,
if (vma->vm_file)
uprobe_munmap(vma, start, end);
- if (unlikely(vma->vm_flags & VM_PFNMAP))
- untrack_pfn(vma, 0, 0);
-
if (start != end) {
if (unlikely(is_vm_hugetlb_page(vma))) {
/*
* It is undesirable to test vma->vm_file as it
* should be non-null for valid hugetlb area.
* However, vm_file will be NULL in the error
- * cleanup path of do_mmap_pgoff. When
+ * cleanup path of mmap_region. When
* hugetlbfs ->mmap method fails,
- * do_mmap_pgoff() nullifies vma->vm_file
+ * mmap_region() nullifies vma->vm_file
* before calling this function to clean up.
* Since no pte has actually been setup, it is
* safe to do nothing in this case.
*/
if (vma->vm_file) {
- mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
- __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
- mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
+ zap_flags_t zap_flags = details ?
+ details->zap_flags : 0;
+ __unmap_hugepage_range(tlb, vma, start, end,
+ NULL, zap_flags);
}
} else
unmap_page_range(tlb, vma, start, end, details);
@@ -1353,9 +2063,11 @@ static void unmap_single_vma(struct mmu_gather *tlb,
/**
* unmap_vmas - unmap a range of memory covered by a list of vma's
* @tlb: address of the caller's struct mmu_gather
+ * @mas: the maple state
* @vma: the starting vma
* @start_addr: virtual address at which to start unmapping
* @end_addr: virtual address at which to end unmapping
+ * @tree_end: The maximum index to check
*
* Unmap all pages in the vma list.
*
@@ -1368,42 +2080,71 @@ static void unmap_single_vma(struct mmu_gather *tlb,
* ensure that any thus-far unmapped pages are flushed before unmap_vmas()
* drops the lock and schedules.
*/
-void unmap_vmas(struct mmu_gather *tlb,
+void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
struct vm_area_struct *vma, unsigned long start_addr,
- unsigned long end_addr)
+ unsigned long end_addr, unsigned long tree_end)
{
- struct mm_struct *mm = vma->vm_mm;
-
- mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
- for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
- unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
- mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
+ struct mmu_notifier_range range;
+ struct zap_details details = {
+ .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
+ /* Careful - we need to zap private pages too! */
+ .even_cows = true,
+ };
+
+ mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
+ start_addr, end_addr);
+ mmu_notifier_invalidate_range_start(&range);
+ do {
+ unsigned long start = start_addr;
+ unsigned long end = end_addr;
+ hugetlb_zap_begin(vma, &start, &end);
+ unmap_single_vma(tlb, vma, start, end, &details);
+ hugetlb_zap_end(vma, &details);
+ vma = mas_find(mas, tree_end - 1);
+ } while (vma && likely(!xa_is_zero(vma)));
+ mmu_notifier_invalidate_range_end(&range);
}
/**
- * zap_page_range - remove user pages in a given range
+ * zap_page_range_single_batched - remove user pages in a given range
+ * @tlb: pointer to the caller's struct mmu_gather
* @vma: vm_area_struct holding the applicable pages
- * @start: starting address of pages to zap
- * @size: number of bytes to zap
- * @details: details of nonlinear truncation or shared cache invalidation
+ * @address: starting address of pages to remove
+ * @size: number of bytes to remove
+ * @details: details of shared cache invalidation
*
- * Caller must protect the VMA list
+ * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for
+ * hugetlb, @tlb is flushed and re-initialized by this function.
*/
-void zap_page_range(struct vm_area_struct *vma, unsigned long start,
+void zap_page_range_single_batched(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, unsigned long address,
unsigned long size, struct zap_details *details)
{
- struct mm_struct *mm = vma->vm_mm;
- struct mmu_gather tlb;
- unsigned long end = start + size;
+ const unsigned long end = address + size;
+ struct mmu_notifier_range range;
- lru_add_drain();
- tlb_gather_mmu(&tlb, mm, 0);
- update_hiwater_rss(mm);
- mmu_notifier_invalidate_range_start(mm, start, end);
- for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
- unmap_single_vma(&tlb, vma, start, end, details);
- mmu_notifier_invalidate_range_end(mm, start, end);
- tlb_finish_mmu(&tlb, start, end);
+ VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm);
+
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
+ address, end);
+ hugetlb_zap_begin(vma, &range.start, &range.end);
+ update_hiwater_rss(vma->vm_mm);
+ mmu_notifier_invalidate_range_start(&range);
+ /*
+ * unmap 'address-end' not 'range.start-range.end' as range
+ * could have been expanded for hugetlb pmd sharing.
+ */
+ unmap_single_vma(tlb, vma, address, end, details);
+ mmu_notifier_invalidate_range_end(&range);
+ if (is_vm_hugetlb_page(vma)) {
+ /*
+ * flush tlb and free resources before hugetlb_zap_end(), to
+ * avoid concurrent page faults' allocation failure.
+ */
+ tlb_finish_mmu(tlb);
+ hugetlb_zap_end(vma, details);
+ tlb_gather_mmu(tlb, vma->vm_mm);
+ }
}
/**
@@ -1411,24 +2152,18 @@ void zap_page_range(struct vm_area_struct *vma, unsigned long start,
* @vma: vm_area_struct holding the applicable pages
* @address: starting address of pages to zap
* @size: number of bytes to zap
- * @details: details of nonlinear truncation or shared cache invalidation
+ * @details: details of shared cache invalidation
*
* The range must fit into one VMA.
*/
-static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
+void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
unsigned long size, struct zap_details *details)
{
- struct mm_struct *mm = vma->vm_mm;
struct mmu_gather tlb;
- unsigned long end = address + size;
- lru_add_drain();
- tlb_gather_mmu(&tlb, mm, 0);
- update_hiwater_rss(mm);
- mmu_notifier_invalidate_range_start(mm, address, end);
- unmap_single_vma(&tlb, vma, address, end, details);
- mmu_notifier_invalidate_range_end(mm, address, end);
- tlb_finish_mmu(&tlb, address, end);
+ tlb_gather_mmu(&tlb, vma->vm_mm);
+ zap_page_range_single_batched(&tlb, vma, address, size, details);
+ tlb_finish_mmu(&tlb);
}
/**
@@ -1441,673 +2176,263 @@ static void zap_page_range_single(struct vm_area_struct *vma, unsigned long addr
*
* The entire address range must be fully contained within the vma.
*
- * Returns 0 if successful.
*/
-int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
+void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
unsigned long size)
{
- if (address < vma->vm_start || address + size > vma->vm_end ||
+ if (!range_in_vma(vma, address, address + size) ||
!(vma->vm_flags & VM_PFNMAP))
- return -1;
+ return;
+
zap_page_range_single(vma, address, size, NULL);
- return 0;
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);
-/**
- * follow_page_mask - look up a page descriptor from a user-virtual address
- * @vma: vm_area_struct mapping @address
- * @address: virtual address to look up
- * @flags: flags modifying lookup behaviour
- * @page_mask: on output, *page_mask is set according to the size of the page
- *
- * @flags can have FOLL_ flags set, defined in <linux/mm.h>
- *
- * Returns the mapped (struct page *), %NULL if no mapping exists, or
- * an error pointer if there is a mapping to something not represented
- * by a page descriptor (see also vm_normal_page()).
- */
-struct page *follow_page_mask(struct vm_area_struct *vma,
- unsigned long address, unsigned int flags,
- unsigned int *page_mask)
+static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
+ p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
- pte_t *ptep, pte;
- spinlock_t *ptl;
- struct page *page;
- struct mm_struct *mm = vma->vm_mm;
-
- *page_mask = 0;
-
- page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
- if (!IS_ERR(page)) {
- BUG_ON(flags & FOLL_GET);
- goto out;
- }
-
- page = NULL;
- pgd = pgd_offset(mm, address);
- if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
- goto no_page_table;
-
- pud = pud_offset(pgd, address);
- if (pud_none(*pud))
- goto no_page_table;
- if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
- BUG_ON(flags & FOLL_GET);
- page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
- goto out;
- }
- if (unlikely(pud_bad(*pud)))
- goto no_page_table;
-
- pmd = pmd_offset(pud, address);
- if (pmd_none(*pmd))
- goto no_page_table;
- if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
- BUG_ON(flags & FOLL_GET);
- page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
- goto out;
- }
- if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
- goto no_page_table;
- if (pmd_trans_huge(*pmd)) {
- if (flags & FOLL_SPLIT) {
- split_huge_page_pmd(vma, address, pmd);
- goto split_fallthrough;
- }
- spin_lock(&mm->page_table_lock);
- if (likely(pmd_trans_huge(*pmd))) {
- if (unlikely(pmd_trans_splitting(*pmd))) {
- spin_unlock(&mm->page_table_lock);
- wait_split_huge_page(vma->anon_vma, pmd);
- } else {
- page = follow_trans_huge_pmd(vma, address,
- pmd, flags);
- spin_unlock(&mm->page_table_lock);
- *page_mask = HPAGE_PMD_NR - 1;
- goto out;
- }
- } else
- spin_unlock(&mm->page_table_lock);
- /* fall through */
- }
-split_fallthrough:
- if (unlikely(pmd_bad(*pmd)))
- goto no_page_table;
-
- ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
-
- pte = *ptep;
- if (!pte_present(pte)) {
- swp_entry_t entry;
- /*
- * KSM's break_ksm() relies upon recognizing a ksm page
- * even while it is being migrated, so for that case we
- * need migration_entry_wait().
- */
- if (likely(!(flags & FOLL_MIGRATION)))
- goto no_page;
- if (pte_none(pte) || pte_file(pte))
- goto no_page;
- entry = pte_to_swp_entry(pte);
- if (!is_migration_entry(entry))
- goto no_page;
- pte_unmap_unlock(ptep, ptl);
- migration_entry_wait(mm, pmd, address);
- goto split_fallthrough;
- }
- if ((flags & FOLL_NUMA) && pte_numa(pte))
- goto no_page;
- if ((flags & FOLL_WRITE) && !pte_write(pte))
- goto unlock;
-
- page = vm_normal_page(vma, address, pte);
- if (unlikely(!page)) {
- if ((flags & FOLL_DUMP) ||
- !is_zero_pfn(pte_pfn(pte)))
- goto bad_page;
- page = pte_page(pte);
- }
-
- if (flags & FOLL_GET)
- get_page_foll(page);
- if (flags & FOLL_TOUCH) {
- if ((flags & FOLL_WRITE) &&
- !pte_dirty(pte) && !PageDirty(page))
- set_page_dirty(page);
- /*
- * pte_mkyoung() would be more correct here, but atomic care
- * is needed to avoid losing the dirty bit: it is easier to use
- * mark_page_accessed().
- */
- mark_page_accessed(page);
- }
- if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
- /*
- * The preliminary mapping check is mainly to avoid the
- * pointless overhead of lock_page on the ZERO_PAGE
- * which might bounce very badly if there is contention.
- *
- * If the page is already locked, we don't need to
- * handle it now - vmscan will handle it later if and
- * when it attempts to reclaim the page.
- */
- if (page->mapping && trylock_page(page)) {
- lru_add_drain(); /* push cached pages to LRU */
- /*
- * Because we lock page here, and migration is
- * blocked by the pte's page reference, and we
- * know the page is still mapped, we don't even
- * need to check for file-cache page truncation.
- */
- mlock_vma_page(page);
- unlock_page(page);
- }
- }
-unlock:
- pte_unmap_unlock(ptep, ptl);
-out:
- return page;
-
-bad_page:
- pte_unmap_unlock(ptep, ptl);
- return ERR_PTR(-EFAULT);
-no_page:
- pte_unmap_unlock(ptep, ptl);
- if (!pte_none(pte))
- return page;
+ pgd = pgd_offset(mm, addr);
+ p4d = p4d_alloc(mm, pgd, addr);
+ if (!p4d)
+ return NULL;
+ pud = pud_alloc(mm, p4d, addr);
+ if (!pud)
+ return NULL;
+ pmd = pmd_alloc(mm, pud, addr);
+ if (!pmd)
+ return NULL;
-no_page_table:
- /*
- * When core dumping an enormous anonymous area that nobody
- * has touched so far, we don't want to allocate unnecessary pages or
- * page tables. Return error instead of NULL to skip handle_mm_fault,
- * then get_dump_page() will return NULL to leave a hole in the dump.
- * But we can only make this optimization where a hole would surely
- * be zero-filled if handle_mm_fault() actually did handle it.
- */
- if ((flags & FOLL_DUMP) &&
- (!vma->vm_ops || !vma->vm_ops->fault))
- return ERR_PTR(-EFAULT);
- return page;
+ VM_BUG_ON(pmd_trans_huge(*pmd));
+ return pmd;
}
-static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
+pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
+ spinlock_t **ptl)
{
- return stack_guard_page_start(vma, addr) ||
- stack_guard_page_end(vma, addr+PAGE_SIZE);
+ pmd_t *pmd = walk_to_pmd(mm, addr);
+
+ if (!pmd)
+ return NULL;
+ return pte_alloc_map_lock(mm, pmd, addr, ptl);
}
-/**
- * __get_user_pages() - pin user pages in memory
- * @tsk: task_struct of target task
- * @mm: mm_struct of target mm
- * @start: starting user address
- * @nr_pages: number of pages from start to pin
- * @gup_flags: flags modifying pin behaviour
- * @pages: array that receives pointers to the pages pinned.
- * Should be at least nr_pages long. Or NULL, if caller
- * only intends to ensure the pages are faulted in.
- * @vmas: array of pointers to vmas corresponding to each page.
- * Or NULL if the caller does not require them.
- * @nonblocking: whether waiting for disk IO or mmap_sem contention
- *
- * Returns number of pages pinned. This may be fewer than the number
- * requested. If nr_pages is 0 or negative, returns 0. If no pages
- * were pinned, returns -errno. Each page returned must be released
- * with a put_page() call when it is finished with. vmas will only
- * remain valid while mmap_sem is held.
- *
- * Must be called with mmap_sem held for read or write.
- *
- * __get_user_pages walks a process's page tables and takes a reference to
- * each struct page that each user address corresponds to at a given
- * instant. That is, it takes the page that would be accessed if a user
- * thread accesses the given user virtual address at that instant.
- *
- * This does not guarantee that the page exists in the user mappings when
- * __get_user_pages returns, and there may even be a completely different
- * page there in some cases (eg. if mmapped pagecache has been invalidated
- * and subsequently re faulted). However it does guarantee that the page
- * won't be freed completely. And mostly callers simply care that the page
- * contains data that was valid *at some point in time*. Typically, an IO
- * or similar operation cannot guarantee anything stronger anyway because
- * locks can't be held over the syscall boundary.
- *
- * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
- * the page is written to, set_page_dirty (or set_page_dirty_lock, as
- * appropriate) must be called after the page is finished with, and
- * before put_page is called.
- *
- * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
- * or mmap_sem contention, and if waiting is needed to pin all pages,
- * *@nonblocking will be set to 0.
- *
- * In most cases, get_user_pages or get_user_pages_fast should be used
- * instead of __get_user_pages. __get_user_pages should be used only if
- * you need some special @gup_flags.
- */
-long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long start, unsigned long nr_pages,
- unsigned int gup_flags, struct page **pages,
- struct vm_area_struct **vmas, int *nonblocking)
+static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
{
- long i;
- unsigned long vm_flags;
- unsigned int page_mask;
-
- if (!nr_pages)
- return 0;
-
- VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
-
- /*
- * Require read or write permissions.
- * If FOLL_FORCE is set, we only require the "MAY" flags.
+ VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
+ /*
+ * Whoever wants to forbid the zeropage after some zeropages
+ * might already have been mapped has to scan the page tables and
+ * bail out on any zeropages. Zeropages in COW mappings can
+ * be unshared using FAULT_FLAG_UNSHARE faults.
*/
- vm_flags = (gup_flags & FOLL_WRITE) ?
- (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
- vm_flags &= (gup_flags & FOLL_FORCE) ?
- (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
-
+ if (mm_forbids_zeropage(vma->vm_mm))
+ return false;
+ /* zeropages in COW mappings are common and unproblematic. */
+ if (is_cow_mapping(vma->vm_flags))
+ return true;
+ /* Mappings that do not allow for writable PTEs are unproblematic. */
+ if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
+ return true;
/*
- * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
- * would be called on PROT_NONE ranges. We must never invoke
- * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
- * page faults would unprotect the PROT_NONE ranges if
- * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
- * bitflag. So to avoid that, don't set FOLL_NUMA if
- * FOLL_FORCE is set.
+ * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
+ * find the shared zeropage and longterm-pin it, which would
+ * be problematic as soon as the zeropage gets replaced by a different
+ * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
+ * now differ to what GUP looked up. FSDAX is incompatible to
+ * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
+ * check_vma_flags).
*/
- if (!(gup_flags & FOLL_FORCE))
- gup_flags |= FOLL_NUMA;
-
- i = 0;
-
- do {
- struct vm_area_struct *vma;
-
- vma = find_extend_vma(mm, start);
- if (!vma && in_gate_area(mm, start)) {
- unsigned long pg = start & PAGE_MASK;
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
-
- /* user gate pages are read-only */
- if (gup_flags & FOLL_WRITE)
- return i ? : -EFAULT;
- if (pg > TASK_SIZE)
- pgd = pgd_offset_k(pg);
- else
- pgd = pgd_offset_gate(mm, pg);
- BUG_ON(pgd_none(*pgd));
- pud = pud_offset(pgd, pg);
- BUG_ON(pud_none(*pud));
- pmd = pmd_offset(pud, pg);
- if (pmd_none(*pmd))
- return i ? : -EFAULT;
- VM_BUG_ON(pmd_trans_huge(*pmd));
- pte = pte_offset_map(pmd, pg);
- if (pte_none(*pte)) {
- pte_unmap(pte);
- return i ? : -EFAULT;
- }
- vma = get_gate_vma(mm);
- if (pages) {
- struct page *page;
-
- page = vm_normal_page(vma, start, *pte);
- if (!page) {
- if (!(gup_flags & FOLL_DUMP) &&
- is_zero_pfn(pte_pfn(*pte)))
- page = pte_page(*pte);
- else {
- pte_unmap(pte);
- return i ? : -EFAULT;
- }
- }
- pages[i] = page;
- get_page(page);
- }
- pte_unmap(pte);
- page_mask = 0;
- goto next_page;
- }
-
- if (!vma ||
- (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
- !(vm_flags & vma->vm_flags))
- return i ? : -EFAULT;
-
- if (is_vm_hugetlb_page(vma)) {
- i = follow_hugetlb_page(mm, vma, pages, vmas,
- &start, &nr_pages, i, gup_flags);
- continue;
- }
-
- do {
- struct page *page;
- unsigned int foll_flags = gup_flags;
- unsigned int page_increm;
-
- /*
- * If we have a pending SIGKILL, don't keep faulting
- * pages and potentially allocating memory.
- */
- if (unlikely(fatal_signal_pending(current)))
- return i ? i : -ERESTARTSYS;
-
- cond_resched();
- while (!(page = follow_page_mask(vma, start,
- foll_flags, &page_mask))) {
- int ret;
- unsigned int fault_flags = 0;
-
- /* For mlock, just skip the stack guard page. */
- if (foll_flags & FOLL_MLOCK) {
- if (stack_guard_page(vma, start))
- goto next_page;
- }
- if (foll_flags & FOLL_WRITE)
- fault_flags |= FAULT_FLAG_WRITE;
- if (nonblocking)
- fault_flags |= FAULT_FLAG_ALLOW_RETRY;
- if (foll_flags & FOLL_NOWAIT)
- fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
-
- ret = handle_mm_fault(mm, vma, start,
- fault_flags);
-
- if (ret & VM_FAULT_ERROR) {
- if (ret & VM_FAULT_OOM)
- return i ? i : -ENOMEM;
- if (ret & (VM_FAULT_HWPOISON |
- VM_FAULT_HWPOISON_LARGE)) {
- if (i)
- return i;
- else if (gup_flags & FOLL_HWPOISON)
- return -EHWPOISON;
- else
- return -EFAULT;
- }
- if (ret & VM_FAULT_SIGBUS)
- return i ? i : -EFAULT;
- BUG();
- }
-
- if (tsk) {
- if (ret & VM_FAULT_MAJOR)
- tsk->maj_flt++;
- else
- tsk->min_flt++;
- }
-
- if (ret & VM_FAULT_RETRY) {
- if (nonblocking)
- *nonblocking = 0;
- return i;
- }
+ return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
+ (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
+}
- /*
- * The VM_FAULT_WRITE bit tells us that
- * do_wp_page has broken COW when necessary,
- * even if maybe_mkwrite decided not to set
- * pte_write. We can thus safely do subsequent
- * page lookups as if they were reads. But only
- * do so when looping for pte_write is futile:
- * in some cases userspace may also be wanting
- * to write to the gotten user page, which a
- * read fault here might prevent (a readonly
- * page might get reCOWed by userspace write).
- */
- if ((ret & VM_FAULT_WRITE) &&
- !(vma->vm_flags & VM_WRITE))
- foll_flags &= ~FOLL_WRITE;
+static int validate_page_before_insert(struct vm_area_struct *vma,
+ struct page *page)
+{
+ struct folio *folio = page_folio(page);
- cond_resched();
- }
- if (IS_ERR(page))
- return i ? i : PTR_ERR(page);
- if (pages) {
- pages[i] = page;
-
- flush_anon_page(vma, page, start);
- flush_dcache_page(page);
- page_mask = 0;
- }
-next_page:
- if (vmas) {
- vmas[i] = vma;
- page_mask = 0;
- }
- page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
- if (page_increm > nr_pages)
- page_increm = nr_pages;
- i += page_increm;
- start += page_increm * PAGE_SIZE;
- nr_pages -= page_increm;
- } while (nr_pages && start < vma->vm_end);
- } while (nr_pages);
- return i;
-}
-EXPORT_SYMBOL(__get_user_pages);
+ if (!folio_ref_count(folio))
+ return -EINVAL;
+ if (unlikely(is_zero_folio(folio))) {
+ if (!vm_mixed_zeropage_allowed(vma))
+ return -EINVAL;
+ return 0;
+ }
+ if (folio_test_anon(folio) || page_has_type(page))
+ return -EINVAL;
+ flush_dcache_folio(folio);
+ return 0;
+}
-/*
- * fixup_user_fault() - manually resolve a user page fault
- * @tsk: the task_struct to use for page fault accounting, or
- * NULL if faults are not to be recorded.
- * @mm: mm_struct of target mm
- * @address: user address
- * @fault_flags:flags to pass down to handle_mm_fault()
- *
- * This is meant to be called in the specific scenario where for locking reasons
- * we try to access user memory in atomic context (within a pagefault_disable()
- * section), this returns -EFAULT, and we want to resolve the user fault before
- * trying again.
- *
- * Typically this is meant to be used by the futex code.
- *
- * The main difference with get_user_pages() is that this function will
- * unconditionally call handle_mm_fault() which will in turn perform all the
- * necessary SW fixup of the dirty and young bits in the PTE, while
- * handle_mm_fault() only guarantees to update these in the struct page.
- *
- * This is important for some architectures where those bits also gate the
- * access permission to the page because they are maintained in software. On
- * such architectures, gup() will not be enough to make a subsequent access
- * succeed.
- *
- * This should be called with the mm_sem held for read.
- */
-int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long address, unsigned int fault_flags)
+static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
+ unsigned long addr, struct page *page,
+ pgprot_t prot, bool mkwrite)
{
- struct vm_area_struct *vma;
- int ret;
+ struct folio *folio = page_folio(page);
+ pte_t pteval = ptep_get(pte);
- vma = find_extend_vma(mm, address);
- if (!vma || address < vma->vm_start)
- return -EFAULT;
+ if (!pte_none(pteval)) {
+ if (!mkwrite)
+ return -EBUSY;
- ret = handle_mm_fault(mm, vma, address, fault_flags);
- if (ret & VM_FAULT_ERROR) {
- if (ret & VM_FAULT_OOM)
- return -ENOMEM;
- if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
- return -EHWPOISON;
- if (ret & VM_FAULT_SIGBUS)
+ /* see insert_pfn(). */
+ if (pte_pfn(pteval) != page_to_pfn(page)) {
+ WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval)));
return -EFAULT;
- BUG();
+ }
+ pteval = maybe_mkwrite(pteval, vma);
+ pteval = pte_mkyoung(pteval);
+ if (ptep_set_access_flags(vma, addr, pte, pteval, 1))
+ update_mmu_cache(vma, addr, pte);
+ return 0;
}
- if (tsk) {
- if (ret & VM_FAULT_MAJOR)
- tsk->maj_flt++;
- else
- tsk->min_flt++;
+
+ /* Ok, finally just insert the thing.. */
+ pteval = mk_pte(page, prot);
+ if (unlikely(is_zero_folio(folio))) {
+ pteval = pte_mkspecial(pteval);
+ } else {
+ folio_get(folio);
+ pteval = mk_pte(page, prot);
+ if (mkwrite) {
+ pteval = pte_mkyoung(pteval);
+ pteval = maybe_mkwrite(pte_mkdirty(pteval), vma);
+ }
+ inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
+ folio_add_file_rmap_pte(folio, page, vma);
}
+ set_pte_at(vma->vm_mm, addr, pte, pteval);
return 0;
}
-/*
- * get_user_pages() - pin user pages in memory
- * @tsk: the task_struct to use for page fault accounting, or
- * NULL if faults are not to be recorded.
- * @mm: mm_struct of target mm
- * @start: starting user address
- * @nr_pages: number of pages from start to pin
- * @write: whether pages will be written to by the caller
- * @force: whether to force write access even if user mapping is
- * readonly. This will result in the page being COWed even
- * in MAP_SHARED mappings. You do not want this.
- * @pages: array that receives pointers to the pages pinned.
- * Should be at least nr_pages long. Or NULL, if caller
- * only intends to ensure the pages are faulted in.
- * @vmas: array of pointers to vmas corresponding to each page.
- * Or NULL if the caller does not require them.
- *
- * Returns number of pages pinned. This may be fewer than the number
- * requested. If nr_pages is 0 or negative, returns 0. If no pages
- * were pinned, returns -errno. Each page returned must be released
- * with a put_page() call when it is finished with. vmas will only
- * remain valid while mmap_sem is held.
- *
- * Must be called with mmap_sem held for read or write.
- *
- * get_user_pages walks a process's page tables and takes a reference to
- * each struct page that each user address corresponds to at a given
- * instant. That is, it takes the page that would be accessed if a user
- * thread accesses the given user virtual address at that instant.
- *
- * This does not guarantee that the page exists in the user mappings when
- * get_user_pages returns, and there may even be a completely different
- * page there in some cases (eg. if mmapped pagecache has been invalidated
- * and subsequently re faulted). However it does guarantee that the page
- * won't be freed completely. And mostly callers simply care that the page
- * contains data that was valid *at some point in time*. Typically, an IO
- * or similar operation cannot guarantee anything stronger anyway because
- * locks can't be held over the syscall boundary.
- *
- * If write=0, the page must not be written to. If the page is written to,
- * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
- * after the page is finished with, and before put_page is called.
- *
- * get_user_pages is typically used for fewer-copy IO operations, to get a
- * handle on the memory by some means other than accesses via the user virtual
- * addresses. The pages may be submitted for DMA to devices or accessed via
- * their kernel linear mapping (via the kmap APIs). Care should be taken to
- * use the correct cache flushing APIs.
- *
- * See also get_user_pages_fast, for performance critical applications.
- */
-long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long start, unsigned long nr_pages, int write,
- int force, struct page **pages, struct vm_area_struct **vmas)
+static int insert_page(struct vm_area_struct *vma, unsigned long addr,
+ struct page *page, pgprot_t prot, bool mkwrite)
{
- int flags = FOLL_TOUCH;
-
- if (pages)
- flags |= FOLL_GET;
- if (write)
- flags |= FOLL_WRITE;
- if (force)
- flags |= FOLL_FORCE;
+ int retval;
+ pte_t *pte;
+ spinlock_t *ptl;
- return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
- NULL);
+ retval = validate_page_before_insert(vma, page);
+ if (retval)
+ goto out;
+ retval = -ENOMEM;
+ pte = get_locked_pte(vma->vm_mm, addr, &ptl);
+ if (!pte)
+ goto out;
+ retval = insert_page_into_pte_locked(vma, pte, addr, page, prot,
+ mkwrite);
+ pte_unmap_unlock(pte, ptl);
+out:
+ return retval;
}
-EXPORT_SYMBOL(get_user_pages);
-/**
- * get_dump_page() - pin user page in memory while writing it to core dump
- * @addr: user address
- *
- * Returns struct page pointer of user page pinned for dump,
- * to be freed afterwards by page_cache_release() or put_page().
- *
- * Returns NULL on any kind of failure - a hole must then be inserted into
- * the corefile, to preserve alignment with its headers; and also returns
- * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
- * allowing a hole to be left in the corefile to save diskspace.
- *
- * Called without mmap_sem, but after all other threads have been killed.
- */
-#ifdef CONFIG_ELF_CORE
-struct page *get_dump_page(unsigned long addr)
+static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
+ unsigned long addr, struct page *page, pgprot_t prot)
{
- struct vm_area_struct *vma;
- struct page *page;
+ int err;
- if (__get_user_pages(current, current->mm, addr, 1,
- FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
- NULL) < 1)
- return NULL;
- flush_cache_page(vma, addr, page_to_pfn(page));
- return page;
+ err = validate_page_before_insert(vma, page);
+ if (err)
+ return err;
+ return insert_page_into_pte_locked(vma, pte, addr, page, prot, false);
}
-#endif /* CONFIG_ELF_CORE */
-pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
- spinlock_t **ptl)
+/* insert_pages() amortizes the cost of spinlock operations
+ * when inserting pages in a loop.
+ */
+static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
+ struct page **pages, unsigned long *num, pgprot_t prot)
{
- pgd_t * pgd = pgd_offset(mm, addr);
- pud_t * pud = pud_alloc(mm, pgd, addr);
- if (pud) {
- pmd_t * pmd = pmd_alloc(mm, pud, addr);
- if (pmd) {
- VM_BUG_ON(pmd_trans_huge(*pmd));
- return pte_alloc_map_lock(mm, pmd, addr, ptl);
+ pmd_t *pmd = NULL;
+ pte_t *start_pte, *pte;
+ spinlock_t *pte_lock;
+ struct mm_struct *const mm = vma->vm_mm;
+ unsigned long curr_page_idx = 0;
+ unsigned long remaining_pages_total = *num;
+ unsigned long pages_to_write_in_pmd;
+ int ret;
+more:
+ ret = -EFAULT;
+ pmd = walk_to_pmd(mm, addr);
+ if (!pmd)
+ goto out;
+
+ pages_to_write_in_pmd = min_t(unsigned long,
+ remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
+
+ /* Allocate the PTE if necessary; takes PMD lock once only. */
+ ret = -ENOMEM;
+ if (pte_alloc(mm, pmd))
+ goto out;
+
+ while (pages_to_write_in_pmd) {
+ int pte_idx = 0;
+ const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
+
+ start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
+ if (!start_pte) {
+ ret = -EFAULT;
+ goto out;
+ }
+ for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
+ int err = insert_page_in_batch_locked(vma, pte,
+ addr, pages[curr_page_idx], prot);
+ if (unlikely(err)) {
+ pte_unmap_unlock(start_pte, pte_lock);
+ ret = err;
+ remaining_pages_total -= pte_idx;
+ goto out;
+ }
+ addr += PAGE_SIZE;
+ ++curr_page_idx;
}
+ pte_unmap_unlock(start_pte, pte_lock);
+ pages_to_write_in_pmd -= batch_size;
+ remaining_pages_total -= batch_size;
}
- return NULL;
+ if (remaining_pages_total)
+ goto more;
+ ret = 0;
+out:
+ *num = remaining_pages_total;
+ return ret;
}
-/*
- * This is the old fallback for page remapping.
+/**
+ * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
+ * @vma: user vma to map to
+ * @addr: target start user address of these pages
+ * @pages: source kernel pages
+ * @num: in: number of pages to map. out: number of pages that were *not*
+ * mapped. (0 means all pages were successfully mapped).
+ *
+ * Preferred over vm_insert_page() when inserting multiple pages.
*
- * For historical reasons, it only allows reserved pages. Only
- * old drivers should use this, and they needed to mark their
- * pages reserved for the old functions anyway.
+ * In case of error, we may have mapped a subset of the provided
+ * pages. It is the caller's responsibility to account for this case.
+ *
+ * The same restrictions apply as in vm_insert_page().
*/
-static int insert_page(struct vm_area_struct *vma, unsigned long addr,
- struct page *page, pgprot_t prot)
+int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
+ struct page **pages, unsigned long *num)
{
- struct mm_struct *mm = vma->vm_mm;
- int retval;
- pte_t *pte;
- spinlock_t *ptl;
-
- retval = -EINVAL;
- if (PageAnon(page))
- goto out;
- retval = -ENOMEM;
- flush_dcache_page(page);
- pte = get_locked_pte(mm, addr, &ptl);
- if (!pte)
- goto out;
- retval = -EBUSY;
- if (!pte_none(*pte))
- goto out_unlock;
-
- /* Ok, finally just insert the thing.. */
- get_page(page);
- inc_mm_counter_fast(mm, MM_FILEPAGES);
- page_add_file_rmap(page);
- set_pte_at(mm, addr, pte, mk_pte(page, prot));
+ const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
- retval = 0;
- pte_unmap_unlock(pte, ptl);
- return retval;
-out_unlock:
- pte_unmap_unlock(pte, ptl);
-out:
- return retval;
+ if (addr < vma->vm_start || end_addr >= vma->vm_end)
+ return -EFAULT;
+ if (!(vma->vm_flags & VM_MIXEDMAP)) {
+ BUG_ON(mmap_read_trylock(vma->vm_mm));
+ BUG_ON(vma->vm_flags & VM_PFNMAP);
+ vm_flags_set(vma, VM_MIXEDMAP);
+ }
+ /* Defer page refcount checking till we're about to map that page. */
+ return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
}
+EXPORT_SYMBOL(vm_insert_pages);
/**
* vm_insert_page - insert single page into user vma
@@ -2116,7 +2441,8 @@ out:
* @page: source kernel page
*
* This allows drivers to insert individual pages they've allocated
- * into a user vma.
+ * into a user vma. The zeropage is supported in some VMAs,
+ * see vm_mixed_zeropage_allowed().
*
* The page has to be a nice clean _individual_ kernel allocation.
* If you allocate a compound page, you need to have marked it as
@@ -2132,76 +2458,196 @@ out:
* The page does not need to be reserved.
*
* Usually this function is called from f_op->mmap() handler
- * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
+ * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
* Caller must set VM_MIXEDMAP on vma if it wants to call this
* function from other places, for example from page-fault handler.
+ *
+ * Return: %0 on success, negative error code otherwise.
*/
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
struct page *page)
{
if (addr < vma->vm_start || addr >= vma->vm_end)
return -EFAULT;
- if (!page_count(page))
- return -EINVAL;
if (!(vma->vm_flags & VM_MIXEDMAP)) {
- BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
+ BUG_ON(mmap_read_trylock(vma->vm_mm));
BUG_ON(vma->vm_flags & VM_PFNMAP);
- vma->vm_flags |= VM_MIXEDMAP;
+ vm_flags_set(vma, VM_MIXEDMAP);
}
- return insert_page(vma, addr, page, vma->vm_page_prot);
+ return insert_page(vma, addr, page, vma->vm_page_prot, false);
}
EXPORT_SYMBOL(vm_insert_page);
-static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
- unsigned long pfn, pgprot_t prot)
+/*
+ * __vm_map_pages - maps range of kernel pages into user vma
+ * @vma: user vma to map to
+ * @pages: pointer to array of source kernel pages
+ * @num: number of pages in page array
+ * @offset: user's requested vm_pgoff
+ *
+ * This allows drivers to map range of kernel pages into a user vma.
+ * The zeropage is supported in some VMAs, see
+ * vm_mixed_zeropage_allowed().
+ *
+ * Return: 0 on success and error code otherwise.
+ */
+static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
+ unsigned long num, unsigned long offset)
+{
+ unsigned long count = vma_pages(vma);
+ unsigned long uaddr = vma->vm_start;
+ int ret, i;
+
+ /* Fail if the user requested offset is beyond the end of the object */
+ if (offset >= num)
+ return -ENXIO;
+
+ /* Fail if the user requested size exceeds available object size */
+ if (count > num - offset)
+ return -ENXIO;
+
+ for (i = 0; i < count; i++) {
+ ret = vm_insert_page(vma, uaddr, pages[offset + i]);
+ if (ret < 0)
+ return ret;
+ uaddr += PAGE_SIZE;
+ }
+
+ return 0;
+}
+
+/**
+ * vm_map_pages - maps range of kernel pages starts with non zero offset
+ * @vma: user vma to map to
+ * @pages: pointer to array of source kernel pages
+ * @num: number of pages in page array
+ *
+ * Maps an object consisting of @num pages, catering for the user's
+ * requested vm_pgoff
+ *
+ * If we fail to insert any page into the vma, the function will return
+ * immediately leaving any previously inserted pages present. Callers
+ * from the mmap handler may immediately return the error as their caller
+ * will destroy the vma, removing any successfully inserted pages. Other
+ * callers should make their own arrangements for calling unmap_region().
+ *
+ * Context: Process context. Called by mmap handlers.
+ * Return: 0 on success and error code otherwise.
+ */
+int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
+ unsigned long num)
+{
+ return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
+}
+EXPORT_SYMBOL(vm_map_pages);
+
+/**
+ * vm_map_pages_zero - map range of kernel pages starts with zero offset
+ * @vma: user vma to map to
+ * @pages: pointer to array of source kernel pages
+ * @num: number of pages in page array
+ *
+ * Similar to vm_map_pages(), except that it explicitly sets the offset
+ * to 0. This function is intended for the drivers that did not consider
+ * vm_pgoff.
+ *
+ * Context: Process context. Called by mmap handlers.
+ * Return: 0 on success and error code otherwise.
+ */
+int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
+ unsigned long num)
+{
+ return __vm_map_pages(vma, pages, num, 0);
+}
+EXPORT_SYMBOL(vm_map_pages_zero);
+
+static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, pgprot_t prot, bool mkwrite)
{
struct mm_struct *mm = vma->vm_mm;
- int retval;
pte_t *pte, entry;
spinlock_t *ptl;
- retval = -ENOMEM;
pte = get_locked_pte(mm, addr, &ptl);
if (!pte)
- goto out;
- retval = -EBUSY;
- if (!pte_none(*pte))
+ return VM_FAULT_OOM;
+ entry = ptep_get(pte);
+ if (!pte_none(entry)) {
+ if (mkwrite) {
+ /*
+ * For read faults on private mappings the PFN passed
+ * in may not match the PFN we have mapped if the
+ * mapped PFN is a writeable COW page. In the mkwrite
+ * case we are creating a writable PTE for a shared
+ * mapping and we expect the PFNs to match. If they
+ * don't match, we are likely racing with block
+ * allocation and mapping invalidation so just skip the
+ * update.
+ */
+ if (pte_pfn(entry) != pfn) {
+ WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
+ goto out_unlock;
+ }
+ entry = pte_mkyoung(entry);
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ if (ptep_set_access_flags(vma, addr, pte, entry, 1))
+ update_mmu_cache(vma, addr, pte);
+ }
goto out_unlock;
+ }
/* Ok, finally just insert the thing.. */
entry = pte_mkspecial(pfn_pte(pfn, prot));
+
+ if (mkwrite) {
+ entry = pte_mkyoung(entry);
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ }
+
set_pte_at(mm, addr, pte, entry);
update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
- retval = 0;
out_unlock:
pte_unmap_unlock(pte, ptl);
-out:
- return retval;
+ return VM_FAULT_NOPAGE;
}
/**
- * vm_insert_pfn - insert single pfn into user vma
+ * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
* @vma: user vma to map to
* @addr: target user address of this page
* @pfn: source kernel pfn
+ * @pgprot: pgprot flags for the inserted page
*
- * Similar to vm_insert_page, this allows drivers to insert individual pages
- * they've allocated into a user vma. Same comments apply.
+ * This is exactly like vmf_insert_pfn(), except that it allows drivers
+ * to override pgprot on a per-page basis.
*
- * This function should only be called from a vm_ops->fault handler, and
- * in that case the handler should return NULL.
+ * This only makes sense for IO mappings, and it makes no sense for
+ * COW mappings. In general, using multiple vmas is preferable;
+ * vmf_insert_pfn_prot should only be used if using multiple VMAs is
+ * impractical.
*
- * vma cannot be a COW mapping.
+ * pgprot typically only differs from @vma->vm_page_prot when drivers set
+ * caching- and encryption bits different than those of @vma->vm_page_prot,
+ * because the caching- or encryption mode may not be known at mmap() time.
*
- * As this is called only for pages that do not currently exist, we
- * do not need to flush old virtual caches or the TLB.
+ * This is ok as long as @vma->vm_page_prot is not used by the core vm
+ * to set caching and encryption bits for those vmas (except for COW pages).
+ * This is ensured by core vm only modifying these page table entries using
+ * functions that don't touch caching- or encryption bits, using pte_modify()
+ * if needed. (See for example mprotect()).
+ *
+ * Also when new page-table entries are created, this is only done using the
+ * fault() callback, and never using the value of vma->vm_page_prot,
+ * except for page-table entries that point to anonymous pages as the result
+ * of COW.
+ *
+ * Context: Process context. May allocate using %GFP_KERNEL.
+ * Return: vm_fault_t value.
*/
-int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
- unsigned long pfn)
+vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, pgprot_t pgprot)
{
- int ret;
- pgprot_t pgprot = vma->vm_page_prot;
/*
* Technically, architectures with pte_special can avoid all these
* restrictions (same for remap_pfn_range). However we would like
@@ -2215,23 +2661,74 @@ int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
if (addr < vma->vm_start || addr >= vma->vm_end)
- return -EFAULT;
- if (track_pfn_insert(vma, &pgprot, pfn))
- return -EINVAL;
+ return VM_FAULT_SIGBUS;
- ret = insert_pfn(vma, addr, pfn, pgprot);
+ if (!pfn_modify_allowed(pfn, pgprot))
+ return VM_FAULT_SIGBUS;
- return ret;
+ pfnmap_setup_cachemode_pfn(pfn, &pgprot);
+
+ return insert_pfn(vma, addr, pfn, pgprot, false);
}
-EXPORT_SYMBOL(vm_insert_pfn);
+EXPORT_SYMBOL(vmf_insert_pfn_prot);
-int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
+/**
+ * vmf_insert_pfn - insert single pfn into user vma
+ * @vma: user vma to map to
+ * @addr: target user address of this page
+ * @pfn: source kernel pfn
+ *
+ * Similar to vm_insert_page, this allows drivers to insert individual pages
+ * they've allocated into a user vma. Same comments apply.
+ *
+ * This function should only be called from a vm_ops->fault handler, and
+ * in that case the handler should return the result of this function.
+ *
+ * vma cannot be a COW mapping.
+ *
+ * As this is called only for pages that do not currently exist, we
+ * do not need to flush old virtual caches or the TLB.
+ *
+ * Context: Process context. May allocate using %GFP_KERNEL.
+ * Return: vm_fault_t value.
+ */
+vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn)
{
- BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
+ return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
+}
+EXPORT_SYMBOL(vmf_insert_pfn);
+
+static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn,
+ bool mkwrite)
+{
+ if (unlikely(is_zero_pfn(pfn)) &&
+ (mkwrite || !vm_mixed_zeropage_allowed(vma)))
+ return false;
+ /* these checks mirror the abort conditions in vm_normal_page */
+ if (vma->vm_flags & VM_MIXEDMAP)
+ return true;
+ if (is_zero_pfn(pfn))
+ return true;
+ return false;
+}
+
+static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
+ unsigned long addr, unsigned long pfn, bool mkwrite)
+{
+ pgprot_t pgprot = vma->vm_page_prot;
+ int err;
+
+ if (!vm_mixed_ok(vma, pfn, mkwrite))
+ return VM_FAULT_SIGBUS;
if (addr < vma->vm_start || addr >= vma->vm_end)
- return -EFAULT;
+ return VM_FAULT_SIGBUS;
+
+ pfnmap_setup_cachemode_pfn(pfn, &pgprot);
+
+ if (!pfn_modify_allowed(pfn, pgprot))
+ return VM_FAULT_SIGBUS;
/*
* If we don't have pte special, then we have to use the pfn_valid()
@@ -2240,15 +2737,65 @@ int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
* than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
* without pte special, it would there be refcounted as a normal page.
*/
- if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
+ if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) {
struct page *page;
+ /*
+ * At this point we are committed to insert_page()
+ * regardless of whether the caller specified flags that
+ * result in pfn_t_has_page() == false.
+ */
page = pfn_to_page(pfn);
- return insert_page(vma, addr, page, vma->vm_page_prot);
+ err = insert_page(vma, addr, page, pgprot, mkwrite);
+ } else {
+ return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
}
- return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
+
+ if (err == -ENOMEM)
+ return VM_FAULT_OOM;
+ if (err < 0 && err != -EBUSY)
+ return VM_FAULT_SIGBUS;
+
+ return VM_FAULT_NOPAGE;
+}
+
+vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
+ bool write)
+{
+ pgprot_t pgprot = vmf->vma->vm_page_prot;
+ unsigned long addr = vmf->address;
+ int err;
+
+ if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end)
+ return VM_FAULT_SIGBUS;
+
+ err = insert_page(vmf->vma, addr, page, pgprot, write);
+ if (err == -ENOMEM)
+ return VM_FAULT_OOM;
+ if (err < 0 && err != -EBUSY)
+ return VM_FAULT_SIGBUS;
+
+ return VM_FAULT_NOPAGE;
+}
+EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite);
+
+vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn)
+{
+ return __vm_insert_mixed(vma, addr, pfn, false);
+}
+EXPORT_SYMBOL(vmf_insert_mixed);
+
+/*
+ * If the insertion of PTE failed because someone else already added a
+ * different entry in the mean time, we treat that as success as we assume
+ * the same entry was actually inserted.
+ */
+vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
+ unsigned long addr, unsigned long pfn)
+{
+ return __vm_insert_mixed(vma, addr, pfn, true);
}
-EXPORT_SYMBOL(vm_insert_mixed);
/*
* maps a range of physical memory into the requested pages. the old
@@ -2259,21 +2806,26 @@ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
unsigned long addr, unsigned long end,
unsigned long pfn, pgprot_t prot)
{
- pte_t *pte;
+ pte_t *pte, *mapped_pte;
spinlock_t *ptl;
+ int err = 0;
- pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
+ mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
if (!pte)
return -ENOMEM;
arch_enter_lazy_mmu_mode();
do {
- BUG_ON(!pte_none(*pte));
+ BUG_ON(!pte_none(ptep_get(pte)));
+ if (!pfn_modify_allowed(pfn, prot)) {
+ err = -EACCES;
+ break;
+ }
set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
pfn++;
} while (pte++, addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode();
- pte_unmap_unlock(pte - 1, ptl);
- return 0;
+ pte_unmap_unlock(mapped_pte, ptl);
+ return err;
}
static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
@@ -2282,6 +2834,7 @@ static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
{
pmd_t *pmd;
unsigned long next;
+ int err;
pfn -= addr >> PAGE_SHIFT;
pmd = pmd_alloc(mm, pud, addr);
@@ -2290,81 +2843,90 @@ static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
VM_BUG_ON(pmd_trans_huge(*pmd));
do {
next = pmd_addr_end(addr, end);
- if (remap_pte_range(mm, pmd, addr, next,
- pfn + (addr >> PAGE_SHIFT), prot))
- return -ENOMEM;
+ err = remap_pte_range(mm, pmd, addr, next,
+ pfn + (addr >> PAGE_SHIFT), prot);
+ if (err)
+ return err;
} while (pmd++, addr = next, addr != end);
return 0;
}
-static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
+static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
unsigned long addr, unsigned long end,
unsigned long pfn, pgprot_t prot)
{
pud_t *pud;
unsigned long next;
+ int err;
pfn -= addr >> PAGE_SHIFT;
- pud = pud_alloc(mm, pgd, addr);
+ pud = pud_alloc(mm, p4d, addr);
if (!pud)
return -ENOMEM;
do {
next = pud_addr_end(addr, end);
- if (remap_pmd_range(mm, pud, addr, next,
- pfn + (addr >> PAGE_SHIFT), prot))
- return -ENOMEM;
+ err = remap_pmd_range(mm, pud, addr, next,
+ pfn + (addr >> PAGE_SHIFT), prot);
+ if (err)
+ return err;
} while (pud++, addr = next, addr != end);
return 0;
}
-/**
- * remap_pfn_range - remap kernel memory to userspace
- * @vma: user vma to map to
- * @addr: target user address to start at
- * @pfn: physical address of kernel memory
- * @size: size of map area
- * @prot: page protection flags for this mapping
- *
- * Note: this is only safe if the mm semaphore is held when called.
- */
-int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
- unsigned long pfn, unsigned long size, pgprot_t prot)
+static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
+ unsigned long addr, unsigned long end,
+ unsigned long pfn, pgprot_t prot)
{
- pgd_t *pgd;
+ p4d_t *p4d;
unsigned long next;
- unsigned long end = addr + PAGE_ALIGN(size);
- struct mm_struct *mm = vma->vm_mm;
int err;
+ pfn -= addr >> PAGE_SHIFT;
+ p4d = p4d_alloc(mm, pgd, addr);
+ if (!p4d)
+ return -ENOMEM;
+ do {
+ next = p4d_addr_end(addr, end);
+ err = remap_pud_range(mm, p4d, addr, next,
+ pfn + (addr >> PAGE_SHIFT), prot);
+ if (err)
+ return err;
+ } while (p4d++, addr = next, addr != end);
+ return 0;
+}
+
+static int get_remap_pgoff(vm_flags_t vm_flags, unsigned long addr,
+ unsigned long end, unsigned long vm_start, unsigned long vm_end,
+ unsigned long pfn, pgoff_t *vm_pgoff_p)
+{
/*
- * Physically remapped pages are special. Tell the
- * rest of the world about it:
- * VM_IO tells people not to look at these pages
- * (accesses can have side effects).
- * VM_PFNMAP tells the core MM that the base pages are just
- * raw PFN mappings, and do not have a "struct page" associated
- * with them.
- * VM_DONTEXPAND
- * Disable vma merging and expanding with mremap().
- * VM_DONTDUMP
- * Omit vma from core dump, even when VM_IO turned off.
- *
* There's a horrible special case to handle copy-on-write
* behaviour that some programs depend on. We mark the "original"
* un-COW'ed pages by matching them up with "vma->vm_pgoff".
* See vm_normal_page() for details.
*/
- if (is_cow_mapping(vma->vm_flags)) {
- if (addr != vma->vm_start || end != vma->vm_end)
+ if (is_cow_mapping(vm_flags)) {
+ if (addr != vm_start || end != vm_end)
return -EINVAL;
- vma->vm_pgoff = pfn;
+ *vm_pgoff_p = pfn;
}
- err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
- if (err)
+ return 0;
+}
+
+static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, unsigned long size, pgprot_t prot)
+{
+ pgd_t *pgd;
+ unsigned long next;
+ unsigned long end = addr + PAGE_ALIGN(size);
+ struct mm_struct *mm = vma->vm_mm;
+ int err;
+
+ if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
return -EINVAL;
- vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
+ VM_WARN_ON_ONCE((vma->vm_flags & VM_REMAP_FLAGS) != VM_REMAP_FLAGS);
BUG_ON(addr >= end);
pfn -= addr >> PAGE_SHIFT;
@@ -2372,23 +2934,178 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
flush_cache_range(vma, addr, end);
do {
next = pgd_addr_end(addr, end);
- err = remap_pud_range(mm, pgd, addr, next,
+ err = remap_p4d_range(mm, pgd, addr, next,
pfn + (addr >> PAGE_SHIFT), prot);
if (err)
- break;
+ return err;
} while (pgd++, addr = next, addr != end);
- if (err)
- untrack_pfn(vma, pfn, PAGE_ALIGN(size));
+ return 0;
+}
+/*
+ * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
+ * must have pre-validated the caching bits of the pgprot_t.
+ */
+static int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, unsigned long size, pgprot_t prot)
+{
+ int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
+
+ if (!error)
+ return 0;
+
+ /*
+ * A partial pfn range mapping is dangerous: it does not
+ * maintain page reference counts, and callers may free
+ * pages due to the error. So zap it early.
+ */
+ zap_page_range_single(vma, addr, size, NULL);
+ return error;
+}
+
+#ifdef __HAVE_PFNMAP_TRACKING
+static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn,
+ unsigned long size, pgprot_t *prot)
+{
+ struct pfnmap_track_ctx *ctx;
+
+ if (pfnmap_track(pfn, size, prot))
+ return ERR_PTR(-EINVAL);
+
+ ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
+ if (unlikely(!ctx)) {
+ pfnmap_untrack(pfn, size);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ ctx->pfn = pfn;
+ ctx->size = size;
+ kref_init(&ctx->kref);
+ return ctx;
+}
+
+void pfnmap_track_ctx_release(struct kref *ref)
+{
+ struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref);
+
+ pfnmap_untrack(ctx->pfn, ctx->size);
+ kfree(ctx);
+}
+
+static int remap_pfn_range_track(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, unsigned long size, pgprot_t prot)
+{
+ struct pfnmap_track_ctx *ctx = NULL;
+ int err;
+
+ size = PAGE_ALIGN(size);
+
+ /*
+ * If we cover the full VMA, we'll perform actual tracking, and
+ * remember to untrack when the last reference to our tracking
+ * context from a VMA goes away. We'll keep tracking the whole pfn
+ * range even during VMA splits and partial unmapping.
+ *
+ * If we only cover parts of the VMA, we'll only setup the cachemode
+ * in the pgprot for the pfn range.
+ */
+ if (addr == vma->vm_start && addr + size == vma->vm_end) {
+ if (vma->pfnmap_track_ctx)
+ return -EINVAL;
+ ctx = pfnmap_track_ctx_alloc(pfn, size, &prot);
+ if (IS_ERR(ctx))
+ return PTR_ERR(ctx);
+ } else if (pfnmap_setup_cachemode(pfn, size, &prot)) {
+ return -EINVAL;
+ }
+
+ err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
+ if (ctx) {
+ if (err)
+ kref_put(&ctx->kref, pfnmap_track_ctx_release);
+ else
+ vma->pfnmap_track_ctx = ctx;
+ }
return err;
}
+
+static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, unsigned long size, pgprot_t prot)
+{
+ return remap_pfn_range_track(vma, addr, pfn, size, prot);
+}
+#else
+static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, unsigned long size, pgprot_t prot)
+{
+ return remap_pfn_range_notrack(vma, addr, pfn, size, prot);
+}
+#endif
+
+void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn)
+{
+ /*
+ * We set addr=VMA start, end=VMA end here, so this won't fail, but we
+ * check it again on complete and will fail there if specified addr is
+ * invalid.
+ */
+ get_remap_pgoff(desc->vm_flags, desc->start, desc->end,
+ desc->start, desc->end, pfn, &desc->pgoff);
+ desc->vm_flags |= VM_REMAP_FLAGS;
+}
+
+static int remap_pfn_range_prepare_vma(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, unsigned long size)
+{
+ unsigned long end = addr + PAGE_ALIGN(size);
+ int err;
+
+ err = get_remap_pgoff(vma->vm_flags, addr, end,
+ vma->vm_start, vma->vm_end,
+ pfn, &vma->vm_pgoff);
+ if (err)
+ return err;
+
+ vm_flags_set(vma, VM_REMAP_FLAGS);
+ return 0;
+}
+
+/**
+ * remap_pfn_range - remap kernel memory to userspace
+ * @vma: user vma to map to
+ * @addr: target page aligned user address to start at
+ * @pfn: page frame number of kernel physical memory address
+ * @size: size of mapping area
+ * @prot: page protection flags for this mapping
+ *
+ * Note: this is only safe if the mm semaphore is held when called.
+ *
+ * Return: %0 on success, negative error code otherwise.
+ */
+int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, unsigned long size, pgprot_t prot)
+{
+ int err;
+
+ err = remap_pfn_range_prepare_vma(vma, addr, pfn, size);
+ if (err)
+ return err;
+
+ return do_remap_pfn_range(vma, addr, pfn, size, prot);
+}
EXPORT_SYMBOL(remap_pfn_range);
+int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, unsigned long size, pgprot_t prot)
+{
+ return do_remap_pfn_range(vma, addr, pfn, size, prot);
+}
+
/**
* vm_iomap_memory - remap memory to userspace
* @vma: user vma to map to
- * @start: start of area
+ * @start: start of the physical memory to be mapped
* @len: size of area
*
* This is a simplified io_remap_pfn_range() for common driver use. The
@@ -2397,6 +3114,8 @@ EXPORT_SYMBOL(remap_pfn_range);
*
* NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
* whatever write-combining details or similar.
+ *
+ * Return: %0 on success, negative error code otherwise.
*/
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
{
@@ -2434,398 +3153,642 @@ EXPORT_SYMBOL(vm_iomap_memory);
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
unsigned long addr, unsigned long end,
- pte_fn_t fn, void *data)
+ pte_fn_t fn, void *data, bool create,
+ pgtbl_mod_mask *mask)
{
- pte_t *pte;
- int err;
- pgtable_t token;
- spinlock_t *uninitialized_var(ptl);
-
- pte = (mm == &init_mm) ?
- pte_alloc_kernel(pmd, addr) :
- pte_alloc_map_lock(mm, pmd, addr, &ptl);
- if (!pte)
- return -ENOMEM;
+ pte_t *pte, *mapped_pte;
+ int err = 0;
+ spinlock_t *ptl;
- BUG_ON(pmd_huge(*pmd));
+ if (create) {
+ mapped_pte = pte = (mm == &init_mm) ?
+ pte_alloc_kernel_track(pmd, addr, mask) :
+ pte_alloc_map_lock(mm, pmd, addr, &ptl);
+ if (!pte)
+ return -ENOMEM;
+ } else {
+ mapped_pte = pte = (mm == &init_mm) ?
+ pte_offset_kernel(pmd, addr) :
+ pte_offset_map_lock(mm, pmd, addr, &ptl);
+ if (!pte)
+ return -EINVAL;
+ }
arch_enter_lazy_mmu_mode();
- token = pmd_pgtable(*pmd);
-
- do {
- err = fn(pte++, token, addr, data);
- if (err)
- break;
- } while (addr += PAGE_SIZE, addr != end);
+ if (fn) {
+ do {
+ if (create || !pte_none(ptep_get(pte))) {
+ err = fn(pte, addr, data);
+ if (err)
+ break;
+ }
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+ }
+ *mask |= PGTBL_PTE_MODIFIED;
arch_leave_lazy_mmu_mode();
if (mm != &init_mm)
- pte_unmap_unlock(pte-1, ptl);
+ pte_unmap_unlock(mapped_pte, ptl);
return err;
}
static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
unsigned long addr, unsigned long end,
- pte_fn_t fn, void *data)
+ pte_fn_t fn, void *data, bool create,
+ pgtbl_mod_mask *mask)
{
pmd_t *pmd;
unsigned long next;
- int err;
+ int err = 0;
- BUG_ON(pud_huge(*pud));
+ BUG_ON(pud_leaf(*pud));
- pmd = pmd_alloc(mm, pud, addr);
- if (!pmd)
- return -ENOMEM;
+ if (create) {
+ pmd = pmd_alloc_track(mm, pud, addr, mask);
+ if (!pmd)
+ return -ENOMEM;
+ } else {
+ pmd = pmd_offset(pud, addr);
+ }
do {
next = pmd_addr_end(addr, end);
- err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
+ if (pmd_none(*pmd) && !create)
+ continue;
+ if (WARN_ON_ONCE(pmd_leaf(*pmd)))
+ return -EINVAL;
+ if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
+ if (!create)
+ continue;
+ pmd_clear_bad(pmd);
+ }
+ err = apply_to_pte_range(mm, pmd, addr, next,
+ fn, data, create, mask);
if (err)
break;
} while (pmd++, addr = next, addr != end);
+
return err;
}
-static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
+static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
unsigned long addr, unsigned long end,
- pte_fn_t fn, void *data)
+ pte_fn_t fn, void *data, bool create,
+ pgtbl_mod_mask *mask)
{
pud_t *pud;
unsigned long next;
- int err;
+ int err = 0;
- pud = pud_alloc(mm, pgd, addr);
- if (!pud)
- return -ENOMEM;
+ if (create) {
+ pud = pud_alloc_track(mm, p4d, addr, mask);
+ if (!pud)
+ return -ENOMEM;
+ } else {
+ pud = pud_offset(p4d, addr);
+ }
do {
next = pud_addr_end(addr, end);
- err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
+ if (pud_none(*pud) && !create)
+ continue;
+ if (WARN_ON_ONCE(pud_leaf(*pud)))
+ return -EINVAL;
+ if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
+ if (!create)
+ continue;
+ pud_clear_bad(pud);
+ }
+ err = apply_to_pmd_range(mm, pud, addr, next,
+ fn, data, create, mask);
if (err)
break;
} while (pud++, addr = next, addr != end);
+
return err;
}
-/*
- * Scan a region of virtual memory, filling in page tables as necessary
- * and calling a provided function on each leaf page table.
- */
-int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
- unsigned long size, pte_fn_t fn, void *data)
+static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
+ unsigned long addr, unsigned long end,
+ pte_fn_t fn, void *data, bool create,
+ pgtbl_mod_mask *mask)
{
- pgd_t *pgd;
+ p4d_t *p4d;
unsigned long next;
+ int err = 0;
+
+ if (create) {
+ p4d = p4d_alloc_track(mm, pgd, addr, mask);
+ if (!p4d)
+ return -ENOMEM;
+ } else {
+ p4d = p4d_offset(pgd, addr);
+ }
+ do {
+ next = p4d_addr_end(addr, end);
+ if (p4d_none(*p4d) && !create)
+ continue;
+ if (WARN_ON_ONCE(p4d_leaf(*p4d)))
+ return -EINVAL;
+ if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
+ if (!create)
+ continue;
+ p4d_clear_bad(p4d);
+ }
+ err = apply_to_pud_range(mm, p4d, addr, next,
+ fn, data, create, mask);
+ if (err)
+ break;
+ } while (p4d++, addr = next, addr != end);
+
+ return err;
+}
+
+static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
+ unsigned long size, pte_fn_t fn,
+ void *data, bool create)
+{
+ pgd_t *pgd;
+ unsigned long start = addr, next;
unsigned long end = addr + size;
- int err;
+ pgtbl_mod_mask mask = 0;
+ int err = 0;
+
+ if (WARN_ON(addr >= end))
+ return -EINVAL;
- BUG_ON(addr >= end);
pgd = pgd_offset(mm, addr);
do {
next = pgd_addr_end(addr, end);
- err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
+ if (pgd_none(*pgd) && !create)
+ continue;
+ if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
+ err = -EINVAL;
+ break;
+ }
+ if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
+ if (!create)
+ continue;
+ pgd_clear_bad(pgd);
+ }
+ err = apply_to_p4d_range(mm, pgd, addr, next,
+ fn, data, create, &mask);
if (err)
break;
} while (pgd++, addr = next, addr != end);
+ if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
+ arch_sync_kernel_mappings(start, start + size);
+
return err;
}
+
+/*
+ * Scan a region of virtual memory, filling in page tables as necessary
+ * and calling a provided function on each leaf page table.
+ */
+int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
+ unsigned long size, pte_fn_t fn, void *data)
+{
+ return __apply_to_page_range(mm, addr, size, fn, data, true);
+}
EXPORT_SYMBOL_GPL(apply_to_page_range);
/*
- * handle_pte_fault chooses page fault handler according to an entry
- * which was read non-atomically. Before making any commitment, on
- * those architectures or configurations (e.g. i386 with PAE) which
- * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
- * must check under lock before unmapping the pte and proceeding
- * (but do_wp_page is only called after already making such a check;
+ * Scan a region of virtual memory, calling a provided function on
+ * each leaf page table where it exists.
+ *
+ * Unlike apply_to_page_range, this does _not_ fill in page tables
+ * where they are absent.
+ */
+int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
+ unsigned long size, pte_fn_t fn, void *data)
+{
+ return __apply_to_page_range(mm, addr, size, fn, data, false);
+}
+
+/*
+ * handle_pte_fault chooses page fault handler according to an entry which was
+ * read non-atomically. Before making any commitment, on those architectures
+ * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
+ * parts, do_swap_page must check under lock before unmapping the pte and
+ * proceeding (but do_wp_page is only called after already making such a check;
* and do_anonymous_page can safely check later on).
*/
-static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
- pte_t *page_table, pte_t orig_pte)
+static inline int pte_unmap_same(struct vm_fault *vmf)
{
int same = 1;
-#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
+#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
if (sizeof(pte_t) > sizeof(unsigned long)) {
- spinlock_t *ptl = pte_lockptr(mm, pmd);
- spin_lock(ptl);
- same = pte_same(*page_table, orig_pte);
- spin_unlock(ptl);
+ spin_lock(vmf->ptl);
+ same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
+ spin_unlock(vmf->ptl);
}
#endif
- pte_unmap(page_table);
+ pte_unmap(vmf->pte);
+ vmf->pte = NULL;
return same;
}
-static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
+/*
+ * Return:
+ * 0: copied succeeded
+ * -EHWPOISON: copy failed due to hwpoison in source page
+ * -EAGAIN: copied failed (some other reason)
+ */
+static inline int __wp_page_copy_user(struct page *dst, struct page *src,
+ struct vm_fault *vmf)
{
+ int ret;
+ void *kaddr;
+ void __user *uaddr;
+ struct vm_area_struct *vma = vmf->vma;
+ struct mm_struct *mm = vma->vm_mm;
+ unsigned long addr = vmf->address;
+
+ if (likely(src)) {
+ if (copy_mc_user_highpage(dst, src, addr, vma))
+ return -EHWPOISON;
+ return 0;
+ }
+
/*
* If the source page was a PFN mapping, we don't have
* a "struct page" for it. We do a best-effort copy by
* just copying from the original user address. If that
* fails, we just zero-fill it. Live with it.
*/
- if (unlikely(!src)) {
- void *kaddr = kmap_atomic(dst);
- void __user *uaddr = (void __user *)(va & PAGE_MASK);
+ kaddr = kmap_local_page(dst);
+ pagefault_disable();
+ uaddr = (void __user *)(addr & PAGE_MASK);
+
+ /*
+ * On architectures with software "accessed" bits, we would
+ * take a double page fault, so mark it accessed here.
+ */
+ vmf->pte = NULL;
+ if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
+ pte_t entry;
+
+ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
+ if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
+ /*
+ * Other thread has already handled the fault
+ * and update local tlb only
+ */
+ if (vmf->pte)
+ update_mmu_tlb(vma, addr, vmf->pte);
+ ret = -EAGAIN;
+ goto pte_unlock;
+ }
+
+ entry = pte_mkyoung(vmf->orig_pte);
+ if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
+ update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
+ }
+
+ /*
+ * This really shouldn't fail, because the page is there
+ * in the page tables. But it might just be unreadable,
+ * in which case we just give up and fill the result with
+ * zeroes.
+ */
+ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
+ if (vmf->pte)
+ goto warn;
+
+ /* Re-validate under PTL if the page is still mapped */
+ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
+ if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
+ /* The PTE changed under us, update local tlb */
+ if (vmf->pte)
+ update_mmu_tlb(vma, addr, vmf->pte);
+ ret = -EAGAIN;
+ goto pte_unlock;
+ }
/*
- * This really shouldn't fail, because the page is there
- * in the page tables. But it might just be unreadable,
- * in which case we just give up and fill the result with
- * zeroes.
+ * The same page can be mapped back since last copy attempt.
+ * Try to copy again under PTL.
*/
- if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
+ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
+ /*
+ * Give a warn in case there can be some obscure
+ * use-case
+ */
+warn:
+ WARN_ON_ONCE(1);
clear_page(kaddr);
- kunmap_atomic(kaddr);
- flush_dcache_page(dst);
- } else
- copy_user_highpage(dst, src, va, vma);
+ }
+ }
+
+ ret = 0;
+
+pte_unlock:
+ if (vmf->pte)
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ pagefault_enable();
+ kunmap_local(kaddr);
+ flush_dcache_page(dst);
+
+ return ret;
+}
+
+static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
+{
+ struct file *vm_file = vma->vm_file;
+
+ if (vm_file)
+ return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
+
+ /*
+ * Special mappings (e.g. VDSO) do not have any file so fake
+ * a default GFP_KERNEL for them.
+ */
+ return GFP_KERNEL;
}
/*
- * This routine handles present pages, when users try to write
- * to a shared page. It is done by copying the page to a new address
- * and decrementing the shared-page counter for the old page.
+ * Notify the address space that the page is about to become writable so that
+ * it can prohibit this or wait for the page to get into an appropriate state.
*
- * Note that this routine assumes that the protection checks have been
- * done by the caller (the low-level page fault routine in most cases).
- * Thus we can safely just mark it writable once we've done any necessary
- * COW.
- *
- * We also mark the page dirty at this point even though the page will
- * change only once the write actually happens. This avoids a few races,
- * and potentially makes it more efficient.
- *
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), with pte both mapped and locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
+ * We do this without the lock held, so that it can sleep if it needs to.
*/
-static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- spinlock_t *ptl, pte_t orig_pte)
- __releases(ptl)
+static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
{
- struct page *old_page, *new_page = NULL;
- pte_t entry;
- int ret = 0;
- int page_mkwrite = 0;
- struct page *dirty_page = NULL;
- unsigned long mmun_start = 0; /* For mmu_notifiers */
- unsigned long mmun_end = 0; /* For mmu_notifiers */
-
- old_page = vm_normal_page(vma, address, orig_pte);
- if (!old_page) {
- /*
- * VM_MIXEDMAP !pfn_valid() case
- *
- * We should not cow pages in a shared writeable mapping.
- * Just mark the pages writable as we can't do any dirty
- * accounting on raw pfn maps.
- */
- if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
- (VM_WRITE|VM_SHARED))
- goto reuse;
- goto gotten;
- }
+ vm_fault_t ret;
+ unsigned int old_flags = vmf->flags;
- /*
- * Take out anonymous pages first, anonymous shared vmas are
- * not dirty accountable.
- */
- if (PageAnon(old_page) && !PageKsm(old_page)) {
- if (!trylock_page(old_page)) {
- page_cache_get(old_page);
- pte_unmap_unlock(page_table, ptl);
- lock_page(old_page);
- page_table = pte_offset_map_lock(mm, pmd, address,
- &ptl);
- if (!pte_same(*page_table, orig_pte)) {
- unlock_page(old_page);
- goto unlock;
- }
- page_cache_release(old_page);
- }
- if (reuse_swap_page(old_page)) {
- /*
- * The page is all ours. Move it to our anon_vma so
- * the rmap code will not search our parent or siblings.
- * Protected against the rmap code by the page lock.
- */
- page_move_anon_rmap(old_page, vma, address);
- unlock_page(old_page);
- goto reuse;
+ vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
+
+ if (vmf->vma->vm_file &&
+ IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
+ return VM_FAULT_SIGBUS;
+
+ ret = vmf->vma->vm_ops->page_mkwrite(vmf);
+ /* Restore original flags so that caller is not surprised */
+ vmf->flags = old_flags;
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
+ return ret;
+ if (unlikely(!(ret & VM_FAULT_LOCKED))) {
+ folio_lock(folio);
+ if (!folio->mapping) {
+ folio_unlock(folio);
+ return 0; /* retry */
}
- unlock_page(old_page);
- } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
- (VM_WRITE|VM_SHARED))) {
- /*
- * Only catch write-faults on shared writable pages,
- * read-only shared pages can get COWed by
- * get_user_pages(.write=1, .force=1).
- */
- if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
- struct vm_fault vmf;
- int tmp;
+ ret |= VM_FAULT_LOCKED;
+ } else
+ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
+ return ret;
+}
- vmf.virtual_address = (void __user *)(address &
- PAGE_MASK);
- vmf.pgoff = old_page->index;
- vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
- vmf.page = old_page;
+/*
+ * Handle dirtying of a page in shared file mapping on a write fault.
+ *
+ * The function expects the page to be locked and unlocks it.
+ */
+static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ struct address_space *mapping;
+ struct folio *folio = page_folio(vmf->page);
+ bool dirtied;
+ bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
- /*
- * Notify the address space that the page is about to
- * become writable so that it can prohibit this or wait
- * for the page to get into an appropriate state.
- *
- * We do this without the lock held, so that it can
- * sleep if it needs to.
- */
- page_cache_get(old_page);
- pte_unmap_unlock(page_table, ptl);
-
- tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
- if (unlikely(tmp &
- (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
- ret = tmp;
- goto unwritable_page;
- }
- if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
- lock_page(old_page);
- if (!old_page->mapping) {
- ret = 0; /* retry the fault */
- unlock_page(old_page);
- goto unwritable_page;
- }
- } else
- VM_BUG_ON(!PageLocked(old_page));
+ dirtied = folio_mark_dirty(folio);
+ VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
+ /*
+ * Take a local copy of the address_space - folio.mapping may be zeroed
+ * by truncate after folio_unlock(). The address_space itself remains
+ * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
+ * release semantics to prevent the compiler from undoing this copying.
+ */
+ mapping = folio_raw_mapping(folio);
+ folio_unlock(folio);
- /*
- * Since we dropped the lock we need to revalidate
- * the PTE as someone else may have changed it. If
- * they did, we just return, as we can count on the
- * MMU to tell us if they didn't also make it writable.
- */
- page_table = pte_offset_map_lock(mm, pmd, address,
- &ptl);
- if (!pte_same(*page_table, orig_pte)) {
- unlock_page(old_page);
- goto unlock;
- }
+ if (!page_mkwrite)
+ file_update_time(vma->vm_file);
- page_mkwrite = 1;
+ /*
+ * Throttle page dirtying rate down to writeback speed.
+ *
+ * mapping may be NULL here because some device drivers do not
+ * set page.mapping but still dirty their pages
+ *
+ * Drop the mmap_lock before waiting on IO, if we can. The file
+ * is pinning the mapping, as per above.
+ */
+ if ((dirtied || page_mkwrite) && mapping) {
+ struct file *fpin;
+
+ fpin = maybe_unlock_mmap_for_io(vmf, NULL);
+ balance_dirty_pages_ratelimited(mapping);
+ if (fpin) {
+ fput(fpin);
+ return VM_FAULT_COMPLETED;
}
- dirty_page = old_page;
- get_page(dirty_page);
+ }
-reuse:
- flush_cache_page(vma, address, pte_pfn(orig_pte));
- entry = pte_mkyoung(orig_pte);
- entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- if (ptep_set_access_flags(vma, address, page_table, entry,1))
- update_mmu_cache(vma, address, page_table);
- pte_unmap_unlock(page_table, ptl);
- ret |= VM_FAULT_WRITE;
+ return 0;
+}
- if (!dirty_page)
- return ret;
+/*
+ * Handle write page faults for pages that can be reused in the current vma
+ *
+ * This can happen either due to the mapping being with the VM_SHARED flag,
+ * or due to us being the last reference standing to the page. In either
+ * case, all we need to do here is to mark the page as writable and update
+ * any related book-keeping.
+ */
+static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
+ __releases(vmf->ptl)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ pte_t entry;
+
+ VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
+ VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
+ if (folio) {
+ VM_BUG_ON(folio_test_anon(folio) &&
+ !PageAnonExclusive(vmf->page));
/*
- * Yes, Virginia, this is actually required to prevent a race
- * with clear_page_dirty_for_io() from clearing the page dirty
- * bit after it clear all dirty ptes, but before a racing
- * do_wp_page installs a dirty pte.
- *
- * __do_fault is protected similarly.
+ * Clear the folio's cpupid information as the existing
+ * information potentially belongs to a now completely
+ * unrelated process.
*/
- if (!page_mkwrite) {
- wait_on_page_locked(dirty_page);
- set_page_dirty_balance(dirty_page, page_mkwrite);
- /* file_update_time outside page_lock */
- if (vma->vm_file)
- file_update_time(vma->vm_file);
- }
- put_page(dirty_page);
- if (page_mkwrite) {
- struct address_space *mapping = dirty_page->mapping;
-
- set_page_dirty(dirty_page);
- unlock_page(dirty_page);
- page_cache_release(dirty_page);
- if (mapping) {
- /*
- * Some device drivers do not set page.mapping
- * but still dirty their pages
- */
- balance_dirty_pages_ratelimited(mapping);
- }
- }
+ folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
+ }
- return ret;
+ flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
+ entry = pte_mkyoung(vmf->orig_pte);
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
+ update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ count_vm_event(PGREUSE);
+}
+
+/*
+ * We could add a bitflag somewhere, but for now, we know that all
+ * vm_ops that have a ->map_pages have been audited and don't need
+ * the mmap_lock to be held.
+ */
+static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+
+ if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
+ return 0;
+ vma_end_read(vma);
+ return VM_FAULT_RETRY;
+}
+
+/**
+ * __vmf_anon_prepare - Prepare to handle an anonymous fault.
+ * @vmf: The vm_fault descriptor passed from the fault handler.
+ *
+ * When preparing to insert an anonymous page into a VMA from a
+ * fault handler, call this function rather than anon_vma_prepare().
+ * If this vma does not already have an associated anon_vma and we are
+ * only protected by the per-VMA lock, the caller must retry with the
+ * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
+ * determine if this VMA can share its anon_vma, and that's not safe to
+ * do with only the per-VMA lock held for this VMA.
+ *
+ * Return: 0 if fault handling can proceed. Any other value should be
+ * returned to the caller.
+ */
+vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ vm_fault_t ret = 0;
+
+ if (likely(vma->anon_vma))
+ return 0;
+ if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
+ if (!mmap_read_trylock(vma->vm_mm))
+ return VM_FAULT_RETRY;
}
+ if (__anon_vma_prepare(vma))
+ ret = VM_FAULT_OOM;
+ if (vmf->flags & FAULT_FLAG_VMA_LOCK)
+ mmap_read_unlock(vma->vm_mm);
+ return ret;
+}
- /*
- * Ok, we need to copy. Oh, well..
- */
- page_cache_get(old_page);
-gotten:
- pte_unmap_unlock(page_table, ptl);
+/*
+ * Handle the case of a page which we actually need to copy to a new page,
+ * either due to COW or unsharing.
+ *
+ * Called with mmap_lock locked and the old page referenced, but
+ * without the ptl held.
+ *
+ * High level logic flow:
+ *
+ * - Allocate a page, copy the content of the old page to the new one.
+ * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
+ * - Take the PTL. If the pte changed, bail out and release the allocated page
+ * - If the pte is still the way we remember it, update the page table and all
+ * relevant references. This includes dropping the reference the page-table
+ * held to the old page, as well as updating the rmap.
+ * - In any case, unlock the PTL and drop the reference we took to the old page.
+ */
+static vm_fault_t wp_page_copy(struct vm_fault *vmf)
+{
+ const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
+ struct vm_area_struct *vma = vmf->vma;
+ struct mm_struct *mm = vma->vm_mm;
+ struct folio *old_folio = NULL;
+ struct folio *new_folio = NULL;
+ pte_t entry;
+ int page_copied = 0;
+ struct mmu_notifier_range range;
+ vm_fault_t ret;
+ bool pfn_is_zero;
+
+ delayacct_wpcopy_start();
- if (unlikely(anon_vma_prepare(vma)))
+ if (vmf->page)
+ old_folio = page_folio(vmf->page);
+ ret = vmf_anon_prepare(vmf);
+ if (unlikely(ret))
+ goto out;
+
+ pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
+ new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
+ if (!new_folio)
goto oom;
- if (is_zero_pfn(pte_pfn(orig_pte))) {
- new_page = alloc_zeroed_user_highpage_movable(vma, address);
- if (!new_page)
- goto oom;
- } else {
- new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
- if (!new_page)
- goto oom;
- cow_user_page(new_page, old_page, address, vma);
+ if (!pfn_is_zero) {
+ int err;
+
+ err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
+ if (err) {
+ /*
+ * COW failed, if the fault was solved by other,
+ * it's fine. If not, userspace would re-fault on
+ * the same address and we will handle the fault
+ * from the second attempt.
+ * The -EHWPOISON case will not be retried.
+ */
+ folio_put(new_folio);
+ if (old_folio)
+ folio_put(old_folio);
+
+ delayacct_wpcopy_end();
+ return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
+ }
+ kmsan_copy_page_meta(&new_folio->page, vmf->page);
}
- __SetPageUptodate(new_page);
- if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
- goto oom_free_new;
+ __folio_mark_uptodate(new_folio);
- mmun_start = address & PAGE_MASK;
- mmun_end = mmun_start + PAGE_SIZE;
- mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
+ vmf->address & PAGE_MASK,
+ (vmf->address & PAGE_MASK) + PAGE_SIZE);
+ mmu_notifier_invalidate_range_start(&range);
/*
* Re-check the pte - we dropped the lock
*/
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (likely(pte_same(*page_table, orig_pte))) {
- if (old_page) {
- if (!PageAnon(old_page)) {
- dec_mm_counter_fast(mm, MM_FILEPAGES);
- inc_mm_counter_fast(mm, MM_ANONPAGES);
+ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
+ if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
+ if (old_folio) {
+ if (!folio_test_anon(old_folio)) {
+ dec_mm_counter(mm, mm_counter_file(old_folio));
+ inc_mm_counter(mm, MM_ANONPAGES);
}
- } else
- inc_mm_counter_fast(mm, MM_ANONPAGES);
- flush_cache_page(vma, address, pte_pfn(orig_pte));
- entry = mk_pte(new_page, vma->vm_page_prot);
- entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ } else {
+ ksm_might_unmap_zero_page(mm, vmf->orig_pte);
+ inc_mm_counter(mm, MM_ANONPAGES);
+ }
+ flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
+ entry = folio_mk_pte(new_folio, vma->vm_page_prot);
+ entry = pte_sw_mkyoung(entry);
+ if (unlikely(unshare)) {
+ if (pte_soft_dirty(vmf->orig_pte))
+ entry = pte_mksoft_dirty(entry);
+ if (pte_uffd_wp(vmf->orig_pte))
+ entry = pte_mkuffd_wp(entry);
+ } else {
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ }
+
/*
* Clear the pte entry and flush it first, before updating the
- * pte with the new entry. This will avoid a race condition
- * seen in the presence of one thread doing SMC and another
- * thread doing COW.
- */
- ptep_clear_flush(vma, address, page_table);
- page_add_new_anon_rmap(new_page, vma, address);
- /*
- * We call the notify macro here because, when using secondary
- * mmu page tables (such as kvm shadow page tables), we want the
- * new page to be mapped directly into the secondary page table.
+ * pte with the new entry, to keep TLBs on different CPUs in
+ * sync. This code used to set the new PTE then flush TLBs, but
+ * that left a window where the new PTE could be loaded into
+ * some TLBs while the old PTE remains in others.
*/
- set_pte_at_notify(mm, address, page_table, entry);
- update_mmu_cache(vma, address, page_table);
- if (old_page) {
+ ptep_clear_flush(vma, vmf->address, vmf->pte);
+ folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
+ folio_add_lru_vma(new_folio, vma);
+ BUG_ON(unshare && pte_write(entry));
+ set_pte_at(mm, vmf->address, vmf->pte, entry);
+ update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
+ if (old_folio) {
/*
* Only after switching the pte to the new page may
* we remove the mapcount here. Otherwise another
@@ -2836,10 +3799,10 @@ gotten:
* threads.
*
* The critical issue is to order this
- * page_remove_rmap with the ptp_clear_flush above.
- * Those stores are ordered by (if nothing else,)
+ * folio_remove_rmap_pte() with the ptp_clear_flush
+ * above. Those stores are ordered by (if nothing else,)
* the barrier present in the atomic_add_negative
- * in page_remove_rmap.
+ * in folio_remove_rmap_pte();
*
* Then the TLB flush in ptep_clear_flush ensures that
* no process can access the old page before the
@@ -2848,44 +3811,373 @@ gotten:
* mapcount is visible. So transitively, TLBs to
* old page will be flushed before it can be reused.
*/
- page_remove_rmap(old_page);
+ folio_remove_rmap_pte(old_folio, vmf->page, vma);
}
/* Free the old page.. */
- new_page = old_page;
- ret |= VM_FAULT_WRITE;
- } else
- mem_cgroup_uncharge_page(new_page);
+ new_folio = old_folio;
+ page_copied = 1;
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ } else if (vmf->pte) {
+ update_mmu_tlb(vma, vmf->address, vmf->pte);
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ }
+
+ mmu_notifier_invalidate_range_end(&range);
+
+ if (new_folio)
+ folio_put(new_folio);
+ if (old_folio) {
+ if (page_copied)
+ free_swap_cache(old_folio);
+ folio_put(old_folio);
+ }
+
+ delayacct_wpcopy_end();
+ return 0;
+oom:
+ ret = VM_FAULT_OOM;
+out:
+ if (old_folio)
+ folio_put(old_folio);
+
+ delayacct_wpcopy_end();
+ return ret;
+}
+
+/**
+ * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
+ * writeable once the page is prepared
+ *
+ * @vmf: structure describing the fault
+ * @folio: the folio of vmf->page
+ *
+ * This function handles all that is needed to finish a write page fault in a
+ * shared mapping due to PTE being read-only once the mapped page is prepared.
+ * It handles locking of PTE and modifying it.
+ *
+ * The function expects the page to be locked or other protection against
+ * concurrent faults / writeback (such as DAX radix tree locks).
+ *
+ * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
+ * we acquired PTE lock.
+ */
+static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
+{
+ WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
+ vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
+ &vmf->ptl);
+ if (!vmf->pte)
+ return VM_FAULT_NOPAGE;
+ /*
+ * We might have raced with another page fault while we released the
+ * pte_offset_map_lock.
+ */
+ if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
+ update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ return VM_FAULT_NOPAGE;
+ }
+ wp_page_reuse(vmf, folio);
+ return 0;
+}
+
+/*
+ * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
+ * mapping
+ */
+static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+
+ if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
+ vm_fault_t ret;
+
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ ret = vmf_can_call_fault(vmf);
+ if (ret)
+ return ret;
+
+ vmf->flags |= FAULT_FLAG_MKWRITE;
+ ret = vma->vm_ops->pfn_mkwrite(vmf);
+ if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
+ return ret;
+ return finish_mkwrite_fault(vmf, NULL);
+ }
+ wp_page_reuse(vmf, NULL);
+ return 0;
+}
+
+static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
+ __releases(vmf->ptl)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ vm_fault_t ret = 0;
+
+ folio_get(folio);
+
+ if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
+ vm_fault_t tmp;
+
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ tmp = vmf_can_call_fault(vmf);
+ if (tmp) {
+ folio_put(folio);
+ return tmp;
+ }
+
+ tmp = do_page_mkwrite(vmf, folio);
+ if (unlikely(!tmp || (tmp &
+ (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
+ folio_put(folio);
+ return tmp;
+ }
+ tmp = finish_mkwrite_fault(vmf, folio);
+ if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
+ folio_unlock(folio);
+ folio_put(folio);
+ return tmp;
+ }
+ } else {
+ wp_page_reuse(vmf, folio);
+ folio_lock(folio);
+ }
+ ret |= fault_dirty_shared_page(vmf);
+ folio_put(folio);
+
+ return ret;
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
+ struct vm_area_struct *vma)
+{
+ bool exclusive = false;
+
+ /* Let's just free up a large folio if only a single page is mapped. */
+ if (folio_large_mapcount(folio) <= 1)
+ return false;
+
+ /*
+ * The assumption for anonymous folios is that each page can only get
+ * mapped once into each MM. The only exception are KSM folios, which
+ * are always small.
+ *
+ * Each taken mapcount must be paired with exactly one taken reference,
+ * whereby the refcount must be incremented before the mapcount when
+ * mapping a page, and the refcount must be decremented after the
+ * mapcount when unmapping a page.
+ *
+ * If all folio references are from mappings, and all mappings are in
+ * the page tables of this MM, then this folio is exclusive to this MM.
+ */
+ if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
+ return false;
+
+ VM_WARN_ON_ONCE(folio_test_ksm(folio));
+
+ if (unlikely(folio_test_swapcache(folio))) {
+ /*
+ * Note: freeing up the swapcache will fail if some PTEs are
+ * still swap entries.
+ */
+ if (!folio_trylock(folio))
+ return false;
+ folio_free_swap(folio);
+ folio_unlock(folio);
+ }
+
+ if (folio_large_mapcount(folio) != folio_ref_count(folio))
+ return false;
+
+ /* Stabilize the mapcount vs. refcount and recheck. */
+ folio_lock_large_mapcount(folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio);
+
+ if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
+ goto unlock;
+ if (folio_large_mapcount(folio) != folio_ref_count(folio))
+ goto unlock;
+
+ VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio);
+ VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id &&
+ folio_mm_id(folio, 1) != vma->vm_mm->mm_id);
- if (new_page)
- page_cache_release(new_page);
+ /*
+ * Do we need the folio lock? Likely not. If there would have been
+ * references from page migration/swapout, we would have detected
+ * an additional folio reference and never ended up here.
+ */
+ exclusive = true;
unlock:
- pte_unmap_unlock(page_table, ptl);
- if (mmun_end > mmun_start)
- mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
- if (old_page) {
+ folio_unlock_large_mapcount(folio);
+ return exclusive;
+}
+#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
+static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
+ struct vm_area_struct *vma)
+{
+ BUILD_BUG();
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+static bool wp_can_reuse_anon_folio(struct folio *folio,
+ struct vm_area_struct *vma)
+{
+ if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio))
+ return __wp_can_reuse_large_anon_folio(folio, vma);
+
+ /*
+ * We have to verify under folio lock: these early checks are
+ * just an optimization to avoid locking the folio and freeing
+ * the swapcache if there is little hope that we can reuse.
+ *
+ * KSM doesn't necessarily raise the folio refcount.
+ */
+ if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
+ return false;
+ if (!folio_test_lru(folio))
/*
- * Don't let another task, with possibly unlocked vma,
- * keep the mlocked page.
+ * We cannot easily detect+handle references from
+ * remote LRU caches or references to LRU folios.
*/
- if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
- lock_page(old_page); /* LRU manipulation */
- munlock_vma_page(old_page);
- unlock_page(old_page);
+ lru_add_drain();
+ if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
+ return false;
+ if (!folio_trylock(folio))
+ return false;
+ if (folio_test_swapcache(folio))
+ folio_free_swap(folio);
+ if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
+ folio_unlock(folio);
+ return false;
+ }
+ /*
+ * Ok, we've got the only folio reference from our mapping
+ * and the folio is locked, it's dark out, and we're wearing
+ * sunglasses. Hit it.
+ */
+ folio_move_anon_rmap(folio, vma);
+ folio_unlock(folio);
+ return true;
+}
+
+/*
+ * This routine handles present pages, when
+ * * users try to write to a shared page (FAULT_FLAG_WRITE)
+ * * GUP wants to take a R/O pin on a possibly shared anonymous page
+ * (FAULT_FLAG_UNSHARE)
+ *
+ * It is done by copying the page to a new address and decrementing the
+ * shared-page counter for the old page.
+ *
+ * Note that this routine assumes that the protection checks have been
+ * done by the caller (the low-level page fault routine in most cases).
+ * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
+ * done any necessary COW.
+ *
+ * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
+ * though the page will change only once the write actually happens. This
+ * avoids a few races, and potentially makes it more efficient.
+ *
+ * We enter with non-exclusive mmap_lock (to exclude vma changes,
+ * but allow concurrent faults), with pte both mapped and locked.
+ * We return with mmap_lock still held, but pte unmapped and unlocked.
+ */
+static vm_fault_t do_wp_page(struct vm_fault *vmf)
+ __releases(vmf->ptl)
+{
+ const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
+ struct vm_area_struct *vma = vmf->vma;
+ struct folio *folio = NULL;
+ pte_t pte;
+
+ if (likely(!unshare)) {
+ if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
+ if (!userfaultfd_wp_async(vma)) {
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ return handle_userfault(vmf, VM_UFFD_WP);
+ }
+
+ /*
+ * Nothing needed (cache flush, TLB invalidations,
+ * etc.) because we're only removing the uffd-wp bit,
+ * which is completely invisible to the user.
+ */
+ pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
+
+ set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
+ /*
+ * Update this to be prepared for following up CoW
+ * handling
+ */
+ vmf->orig_pte = pte;
}
- page_cache_release(old_page);
+
+ /*
+ * Userfaultfd write-protect can defer flushes. Ensure the TLB
+ * is flushed in this case before copying.
+ */
+ if (unlikely(userfaultfd_wp(vmf->vma) &&
+ mm_tlb_flush_pending(vmf->vma->vm_mm)))
+ flush_tlb_page(vmf->vma, vmf->address);
}
- return ret;
-oom_free_new:
- page_cache_release(new_page);
-oom:
- if (old_page)
- page_cache_release(old_page);
- return VM_FAULT_OOM;
-unwritable_page:
- page_cache_release(old_page);
- return ret;
+ vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
+
+ if (vmf->page)
+ folio = page_folio(vmf->page);
+
+ /*
+ * Shared mapping: we are guaranteed to have VM_WRITE and
+ * FAULT_FLAG_WRITE set at this point.
+ */
+ if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
+ /*
+ * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
+ * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called.
+ *
+ * We should not cow pages in a shared writeable mapping.
+ * Just mark the pages writable and/or call ops->pfn_mkwrite.
+ */
+ if (!vmf->page || is_fsdax_page(vmf->page)) {
+ vmf->page = NULL;
+ return wp_pfn_shared(vmf);
+ }
+ return wp_page_shared(vmf, folio);
+ }
+
+ /*
+ * Private mapping: create an exclusive anonymous page copy if reuse
+ * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
+ *
+ * If we encounter a page that is marked exclusive, we must reuse
+ * the page without further checks.
+ */
+ if (folio && folio_test_anon(folio) &&
+ (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
+ if (!PageAnonExclusive(vmf->page))
+ SetPageAnonExclusive(vmf->page);
+ if (unlikely(unshare)) {
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ return 0;
+ }
+ wp_page_reuse(vmf, folio);
+ return 0;
+ }
+ /*
+ * Ok, we need to copy. Oh, well..
+ */
+ if (folio)
+ folio_get(folio);
+
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+#ifdef CONFIG_KSM
+ if (folio && folio_test_ksm(folio))
+ count_vm_event(COW_KSM);
+#endif
+ return wp_page_copy(vmf);
}
static void unmap_mapping_range_vma(struct vm_area_struct *vma,
@@ -2895,24 +4187,19 @@ static void unmap_mapping_range_vma(struct vm_area_struct *vma,
zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
}
-static inline void unmap_mapping_range_tree(struct rb_root *root,
+static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
+ pgoff_t first_index,
+ pgoff_t last_index,
struct zap_details *details)
{
struct vm_area_struct *vma;
pgoff_t vba, vea, zba, zea;
- vma_interval_tree_foreach(vma, root,
- details->first_index, details->last_index) {
-
+ vma_interval_tree_foreach(vma, root, first_index, last_index) {
vba = vma->vm_pgoff;
vea = vba + vma_pages(vma) - 1;
- /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
- zba = details->first_index;
- if (zba < vba)
- zba = vba;
- zea = details->last_index;
- if (zea > vea)
- zea = vea;
+ zba = max(first_index, vba);
+ zea = min(last_index, vea);
unmap_mapping_range_vma(vma,
((zba - vba) << PAGE_SHIFT) + vma->vm_start,
@@ -2921,25 +4208,76 @@ static inline void unmap_mapping_range_tree(struct rb_root *root,
}
}
-static inline void unmap_mapping_range_list(struct list_head *head,
- struct zap_details *details)
+/**
+ * unmap_mapping_folio() - Unmap single folio from processes.
+ * @folio: The locked folio to be unmapped.
+ *
+ * Unmap this folio from any userspace process which still has it mmaped.
+ * Typically, for efficiency, the range of nearby pages has already been
+ * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
+ * truncation or invalidation holds the lock on a folio, it may find that
+ * the page has been remapped again: and then uses unmap_mapping_folio()
+ * to unmap it finally.
+ */
+void unmap_mapping_folio(struct folio *folio)
{
- struct vm_area_struct *vma;
+ struct address_space *mapping = folio->mapping;
+ struct zap_details details = { };
+ pgoff_t first_index;
+ pgoff_t last_index;
- /*
- * In nonlinear VMAs there is no correspondence between virtual address
- * offset and file offset. So we must perform an exhaustive search
- * across *all* the pages in each nonlinear VMA, not just the pages
- * whose virtual address lies outside the file truncation point.
- */
- list_for_each_entry(vma, head, shared.nonlinear) {
- details->nonlinear_vma = vma;
- unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
- }
+ VM_BUG_ON(!folio_test_locked(folio));
+
+ first_index = folio->index;
+ last_index = folio_next_index(folio) - 1;
+
+ details.even_cows = false;
+ details.single_folio = folio;
+ details.zap_flags = ZAP_FLAG_DROP_MARKER;
+
+ i_mmap_lock_read(mapping);
+ if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
+ unmap_mapping_range_tree(&mapping->i_mmap, first_index,
+ last_index, &details);
+ i_mmap_unlock_read(mapping);
+}
+
+/**
+ * unmap_mapping_pages() - Unmap pages from processes.
+ * @mapping: The address space containing pages to be unmapped.
+ * @start: Index of first page to be unmapped.
+ * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
+ * @even_cows: Whether to unmap even private COWed pages.
+ *
+ * Unmap the pages in this address space from any userspace process which
+ * has them mmaped. Generally, you want to remove COWed pages as well when
+ * a file is being truncated, but not when invalidating pages from the page
+ * cache.
+ */
+void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
+ pgoff_t nr, bool even_cows)
+{
+ struct zap_details details = { };
+ pgoff_t first_index = start;
+ pgoff_t last_index = start + nr - 1;
+
+ details.even_cows = even_cows;
+ if (last_index < first_index)
+ last_index = ULONG_MAX;
+
+ i_mmap_lock_read(mapping);
+ if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
+ unmap_mapping_range_tree(&mapping->i_mmap, first_index,
+ last_index, &details);
+ i_mmap_unlock_read(mapping);
}
+EXPORT_SYMBOL_GPL(unmap_mapping_pages);
/**
- * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
+ * unmap_mapping_range - unmap the portion of all mmaps in the specified
+ * address_space corresponding to the specified byte range in the underlying
+ * file.
+ *
* @mapping: the address space containing mmaps to be unmapped.
* @holebegin: byte in first page to unmap, relative to the start of
* the underlying file. This will be rounded down to a PAGE_SIZE
@@ -2955,9 +4293,8 @@ static inline void unmap_mapping_range_list(struct list_head *head,
void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen, int even_cows)
{
- struct zap_details details;
- pgoff_t hba = holebegin >> PAGE_SHIFT;
- pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
+ pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
/* Check for overflow. */
if (sizeof(holelen) > sizeof(hlen)) {
@@ -2967,167 +4304,715 @@ void unmap_mapping_range(struct address_space *mapping,
hlen = ULONG_MAX - hba + 1;
}
- details.check_mapping = even_cows? NULL: mapping;
- details.nonlinear_vma = NULL;
- details.first_index = hba;
- details.last_index = hba + hlen - 1;
- if (details.last_index < details.first_index)
- details.last_index = ULONG_MAX;
+ unmap_mapping_pages(mapping, hba, hlen, even_cows);
+}
+EXPORT_SYMBOL(unmap_mapping_range);
+
+/*
+ * Restore a potential device exclusive pte to a working pte entry
+ */
+static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
+{
+ struct folio *folio = page_folio(vmf->page);
+ struct vm_area_struct *vma = vmf->vma;
+ struct mmu_notifier_range range;
+ vm_fault_t ret;
+ /*
+ * We need a reference to lock the folio because we don't hold
+ * the PTL so a racing thread can remove the device-exclusive
+ * entry and unmap it. If the folio is free the entry must
+ * have been removed already. If it happens to have already
+ * been re-allocated after being freed all we do is lock and
+ * unlock it.
+ */
+ if (!folio_try_get(folio))
+ return 0;
- mutex_lock(&mapping->i_mmap_mutex);
- if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
- unmap_mapping_range_tree(&mapping->i_mmap, &details);
- if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
- unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
- mutex_unlock(&mapping->i_mmap_mutex);
+ ret = folio_lock_or_retry(folio, vmf);
+ if (ret) {
+ folio_put(folio);
+ return ret;
+ }
+ mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0,
+ vma->vm_mm, vmf->address & PAGE_MASK,
+ (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
+ mmu_notifier_invalidate_range_start(&range);
+
+ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
+ &vmf->ptl);
+ if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
+ restore_exclusive_pte(vma, folio, vmf->page, vmf->address,
+ vmf->pte, vmf->orig_pte);
+
+ if (vmf->pte)
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ folio_unlock(folio);
+ folio_put(folio);
+
+ mmu_notifier_invalidate_range_end(&range);
+ return 0;
+}
+
+static inline bool should_try_to_free_swap(struct folio *folio,
+ struct vm_area_struct *vma,
+ unsigned int fault_flags)
+{
+ if (!folio_test_swapcache(folio))
+ return false;
+ if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
+ folio_test_mlocked(folio))
+ return true;
+ /*
+ * If we want to map a page that's in the swapcache writable, we
+ * have to detect via the refcount if we're really the exclusive
+ * user. Try freeing the swapcache to get rid of the swapcache
+ * reference only in case it's likely that we'll be the exclusive user.
+ */
+ return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
+ folio_ref_count(folio) == (1 + folio_nr_pages(folio));
+}
+
+static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
+{
+ vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
+ vmf->address, &vmf->ptl);
+ if (!vmf->pte)
+ return 0;
+ /*
+ * Be careful so that we will only recover a special uffd-wp pte into a
+ * none pte. Otherwise it means the pte could have changed, so retry.
+ *
+ * This should also cover the case where e.g. the pte changed
+ * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
+ * So pte_is_marker() check is not enough to safely drop the pte.
+ */
+ if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
+ pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ return 0;
+}
+
+static vm_fault_t do_pte_missing(struct vm_fault *vmf)
+{
+ if (vma_is_anonymous(vmf->vma))
+ return do_anonymous_page(vmf);
+ else
+ return do_fault(vmf);
}
-EXPORT_SYMBOL(unmap_mapping_range);
/*
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), and pte mapped but not yet locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
+ * This is actually a page-missing access, but with uffd-wp special pte
+ * installed. It means this pte was wr-protected before being unmapped.
*/
-static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- unsigned int flags, pte_t orig_pte)
+static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
{
+ /*
+ * Just in case there're leftover special ptes even after the region
+ * got unregistered - we can simply clear them.
+ */
+ if (unlikely(!userfaultfd_wp(vmf->vma)))
+ return pte_marker_clear(vmf);
+
+ return do_pte_missing(vmf);
+}
+
+static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
+{
+ const softleaf_t entry = softleaf_from_pte(vmf->orig_pte);
+ const pte_marker marker = softleaf_to_marker(entry);
+
+ /*
+ * PTE markers should never be empty. If anything weird happened,
+ * the best thing to do is to kill the process along with its mm.
+ */
+ if (WARN_ON_ONCE(!marker))
+ return VM_FAULT_SIGBUS;
+
+ /* Higher priority than uffd-wp when data corrupted */
+ if (marker & PTE_MARKER_POISONED)
+ return VM_FAULT_HWPOISON;
+
+ /* Hitting a guard page is always a fatal condition. */
+ if (marker & PTE_MARKER_GUARD)
+ return VM_FAULT_SIGSEGV;
+
+ if (softleaf_is_uffd_wp_marker(entry))
+ return pte_marker_handle_uffd_wp(vmf);
+
+ /* This is an unknown pte marker */
+ return VM_FAULT_SIGBUS;
+}
+
+static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ struct folio *folio;
+ softleaf_t entry;
+
+ folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
+ if (!folio)
+ return NULL;
+
+ entry = softleaf_from_pte(vmf->orig_pte);
+ if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
+ GFP_KERNEL, entry)) {
+ folio_put(folio);
+ return NULL;
+ }
+
+ return folio;
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+/*
+ * Check if the PTEs within a range are contiguous swap entries
+ * and have consistent swapcache, zeromap.
+ */
+static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
+{
+ unsigned long addr;
+ softleaf_t entry;
+ int idx;
+ pte_t pte;
+
+ addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
+ idx = (vmf->address - addr) / PAGE_SIZE;
+ pte = ptep_get(ptep);
+
+ if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
+ return false;
+ entry = softleaf_from_pte(pte);
+ if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
+ return false;
+
+ /*
+ * swap_read_folio() can't handle the case a large folio is hybridly
+ * from different backends. And they are likely corner cases. Similar
+ * things might be added once zswap support large folios.
+ */
+ if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
+ return false;
+ if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
+ return false;
+
+ return true;
+}
+
+static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
+ unsigned long addr,
+ unsigned long orders)
+{
+ int order, nr;
+
+ order = highest_order(orders);
+
+ /*
+ * To swap in a THP with nr pages, we require that its first swap_offset
+ * is aligned with that number, as it was when the THP was swapped out.
+ * This helps filter out most invalid entries.
+ */
+ while (orders) {
+ nr = 1 << order;
+ if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
+ break;
+ order = next_order(&orders, order);
+ }
+
+ return orders;
+}
+
+static struct folio *alloc_swap_folio(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ unsigned long orders;
+ struct folio *folio;
+ unsigned long addr;
+ softleaf_t entry;
spinlock_t *ptl;
- struct page *page, *swapcache;
- swp_entry_t entry;
+ pte_t *pte;
+ gfp_t gfp;
+ int order;
+
+ /*
+ * If uffd is active for the vma we need per-page fault fidelity to
+ * maintain the uffd semantics.
+ */
+ if (unlikely(userfaultfd_armed(vma)))
+ goto fallback;
+
+ /*
+ * A large swapped out folio could be partially or fully in zswap. We
+ * lack handling for such cases, so fallback to swapping in order-0
+ * folio.
+ */
+ if (!zswap_never_enabled())
+ goto fallback;
+
+ entry = softleaf_from_pte(vmf->orig_pte);
+ /*
+ * Get a list of all the (large) orders below PMD_ORDER that are enabled
+ * and suitable for swapping THP.
+ */
+ orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT,
+ BIT(PMD_ORDER) - 1);
+ orders = thp_vma_suitable_orders(vma, vmf->address, orders);
+ orders = thp_swap_suitable_orders(swp_offset(entry),
+ vmf->address, orders);
+
+ if (!orders)
+ goto fallback;
+
+ pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
+ vmf->address & PMD_MASK, &ptl);
+ if (unlikely(!pte))
+ goto fallback;
+
+ /*
+ * For do_swap_page, find the highest order where the aligned range is
+ * completely swap entries with contiguous swap offsets.
+ */
+ order = highest_order(orders);
+ while (orders) {
+ addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
+ if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
+ break;
+ order = next_order(&orders, order);
+ }
+
+ pte_unmap_unlock(pte, ptl);
+
+ /* Try allocating the highest of the remaining orders. */
+ gfp = vma_thp_gfp_mask(vma);
+ while (orders) {
+ addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
+ folio = vma_alloc_folio(gfp, order, vma, addr);
+ if (folio) {
+ if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
+ gfp, entry))
+ return folio;
+ count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
+ folio_put(folio);
+ }
+ count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
+ order = next_order(&orders, order);
+ }
+
+fallback:
+ return __alloc_swap_folio(vmf);
+}
+#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
+static struct folio *alloc_swap_folio(struct vm_fault *vmf)
+{
+ return __alloc_swap_folio(vmf);
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
+
+/*
+ * We enter with non-exclusive mmap_lock (to exclude vma changes,
+ * but allow concurrent faults), and pte mapped but not yet locked.
+ * We return with pte unmapped and unlocked.
+ *
+ * We return with the mmap_lock locked or unlocked in the same cases
+ * as does filemap_fault().
+ */
+vm_fault_t do_swap_page(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ struct folio *swapcache, *folio = NULL;
+ DECLARE_WAITQUEUE(wait, current);
+ struct page *page;
+ struct swap_info_struct *si = NULL;
+ rmap_t rmap_flags = RMAP_NONE;
+ bool need_clear_cache = false;
+ bool exclusive = false;
+ softleaf_t entry;
pte_t pte;
- int locked;
- struct mem_cgroup *ptr;
- int exclusive = 0;
- int ret = 0;
+ vm_fault_t ret = 0;
+ void *shadow = NULL;
+ int nr_pages;
+ unsigned long page_idx;
+ unsigned long address;
+ pte_t *ptep;
- if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
+ if (!pte_unmap_same(vmf))
goto out;
- entry = pte_to_swp_entry(orig_pte);
- if (unlikely(non_swap_entry(entry))) {
- if (is_migration_entry(entry)) {
- migration_entry_wait(mm, pmd, address);
- } else if (is_hwpoison_entry(entry)) {
+ entry = softleaf_from_pte(vmf->orig_pte);
+ if (unlikely(!softleaf_is_swap(entry))) {
+ if (softleaf_is_migration(entry)) {
+ migration_entry_wait(vma->vm_mm, vmf->pmd,
+ vmf->address);
+ } else if (softleaf_is_device_exclusive(entry)) {
+ vmf->page = softleaf_to_page(entry);
+ ret = remove_device_exclusive_entry(vmf);
+ } else if (softleaf_is_device_private(entry)) {
+ if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
+ /*
+ * migrate_to_ram is not yet ready to operate
+ * under VMA lock.
+ */
+ vma_end_read(vma);
+ ret = VM_FAULT_RETRY;
+ goto out;
+ }
+
+ vmf->page = softleaf_to_page(entry);
+ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
+ vmf->address, &vmf->ptl);
+ if (unlikely(!vmf->pte ||
+ !pte_same(ptep_get(vmf->pte),
+ vmf->orig_pte)))
+ goto unlock;
+
+ /*
+ * Get a page reference while we know the page can't be
+ * freed.
+ */
+ if (trylock_page(vmf->page)) {
+ struct dev_pagemap *pgmap;
+
+ get_page(vmf->page);
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ pgmap = page_pgmap(vmf->page);
+ ret = pgmap->ops->migrate_to_ram(vmf);
+ unlock_page(vmf->page);
+ put_page(vmf->page);
+ } else {
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ }
+ } else if (softleaf_is_hwpoison(entry)) {
ret = VM_FAULT_HWPOISON;
+ } else if (softleaf_is_marker(entry)) {
+ ret = handle_pte_marker(vmf);
} else {
- print_bad_pte(vma, address, orig_pte, NULL);
+ print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
ret = VM_FAULT_SIGBUS;
}
goto out;
}
- delayacct_set_flag(DELAYACCT_PF_SWAPIN);
- page = lookup_swap_cache(entry);
- if (!page) {
- page = swapin_readahead(entry,
- GFP_HIGHUSER_MOVABLE, vma, address);
- if (!page) {
+
+ /* Prevent swapoff from happening to us. */
+ si = get_swap_device(entry);
+ if (unlikely(!si))
+ goto out;
+
+ folio = swap_cache_get_folio(entry);
+ if (folio)
+ swap_update_readahead(folio, vma, vmf->address);
+ swapcache = folio;
+
+ if (!folio) {
+ if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
+ __swap_count(entry) == 1) {
+ /* skip swapcache */
+ folio = alloc_swap_folio(vmf);
+ if (folio) {
+ __folio_set_locked(folio);
+ __folio_set_swapbacked(folio);
+
+ nr_pages = folio_nr_pages(folio);
+ if (folio_test_large(folio))
+ entry.val = ALIGN_DOWN(entry.val, nr_pages);
+ /*
+ * Prevent parallel swapin from proceeding with
+ * the cache flag. Otherwise, another thread
+ * may finish swapin first, free the entry, and
+ * swapout reusing the same entry. It's
+ * undetectable as pte_same() returns true due
+ * to entry reuse.
+ */
+ if (swapcache_prepare(entry, nr_pages)) {
+ /*
+ * Relax a bit to prevent rapid
+ * repeated page faults.
+ */
+ add_wait_queue(&swapcache_wq, &wait);
+ schedule_timeout_uninterruptible(1);
+ remove_wait_queue(&swapcache_wq, &wait);
+ goto out_page;
+ }
+ need_clear_cache = true;
+
+ memcg1_swapin(entry, nr_pages);
+
+ shadow = swap_cache_get_shadow(entry);
+ if (shadow)
+ workingset_refault(folio, shadow);
+
+ folio_add_lru(folio);
+
+ /* To provide entry to swap_read_folio() */
+ folio->swap = entry;
+ swap_read_folio(folio, NULL);
+ folio->private = NULL;
+ }
+ } else {
+ folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
+ vmf);
+ swapcache = folio;
+ }
+
+ if (!folio) {
/*
* Back out if somebody else faulted in this pte
* while we released the pte lock.
*/
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (likely(pte_same(*page_table, orig_pte)))
+ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
+ vmf->address, &vmf->ptl);
+ if (likely(vmf->pte &&
+ pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
ret = VM_FAULT_OOM;
- delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
goto unlock;
}
/* Had to read the page from swap area: Major fault */
ret = VM_FAULT_MAJOR;
count_vm_event(PGMAJFAULT);
- mem_cgroup_count_vm_event(mm, PGMAJFAULT);
- } else if (PageHWPoison(page)) {
+ count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
+ }
+
+ ret |= folio_lock_or_retry(folio, vmf);
+ if (ret & VM_FAULT_RETRY)
+ goto out_release;
+
+ page = folio_file_page(folio, swp_offset(entry));
+ if (swapcache) {
/*
- * hwpoisoned dirty swapcache pages are kept for killing
- * owner processes (which may be unknown at hwpoison time)
+ * Make sure folio_free_swap() or swapoff did not release the
+ * swapcache from under us. The page pin, and pte_same test
+ * below, are not enough to exclude that. Even if it is still
+ * swapcache, we need to check that the page's swap has not
+ * changed.
*/
- ret = VM_FAULT_HWPOISON;
- delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
- swapcache = page;
- goto out_release;
- }
+ if (unlikely(!folio_matches_swap_entry(folio, entry)))
+ goto out_page;
- swapcache = page;
- locked = lock_page_or_retry(page, mm, flags);
+ if (unlikely(PageHWPoison(page))) {
+ /*
+ * hwpoisoned dirty swapcache pages are kept for killing
+ * owner processes (which may be unknown at hwpoison time)
+ */
+ ret = VM_FAULT_HWPOISON;
+ goto out_page;
+ }
- delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
- if (!locked) {
- ret |= VM_FAULT_RETRY;
- goto out_release;
+ /*
+ * KSM sometimes has to copy on read faults, for example, if
+ * folio->index of non-ksm folios would be nonlinear inside the
+ * anon VMA -- the ksm flag is lost on actual swapout.
+ */
+ folio = ksm_might_need_to_copy(folio, vma, vmf->address);
+ if (unlikely(!folio)) {
+ ret = VM_FAULT_OOM;
+ folio = swapcache;
+ goto out_page;
+ } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
+ ret = VM_FAULT_HWPOISON;
+ folio = swapcache;
+ goto out_page;
+ }
+ if (folio != swapcache)
+ page = folio_page(folio, 0);
+
+ /*
+ * If we want to map a page that's in the swapcache writable, we
+ * have to detect via the refcount if we're really the exclusive
+ * owner. Try removing the extra reference from the local LRU
+ * caches if required.
+ */
+ if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
+ !folio_test_ksm(folio) && !folio_test_lru(folio))
+ lru_add_drain();
}
+ folio_throttle_swaprate(folio, GFP_KERNEL);
+
/*
- * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
- * release the swapcache from under us. The page pin, and pte_same
- * test below, are not enough to exclude that. Even if it is still
- * swapcache, we need to check that the page's swap has not changed.
+ * Back out if somebody else already faulted in this pte.
*/
- if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
- goto out_page;
+ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
+ &vmf->ptl);
+ if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
+ goto out_nomap;
- page = ksm_might_need_to_copy(page, vma, address);
- if (unlikely(!page)) {
- ret = VM_FAULT_OOM;
- page = swapcache;
- goto out_page;
+ if (unlikely(!folio_test_uptodate(folio))) {
+ ret = VM_FAULT_SIGBUS;
+ goto out_nomap;
}
- if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
- ret = VM_FAULT_OOM;
- goto out_page;
+ /* allocated large folios for SWP_SYNCHRONOUS_IO */
+ if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
+ unsigned long nr = folio_nr_pages(folio);
+ unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
+ unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
+ pte_t *folio_ptep = vmf->pte - idx;
+ pte_t folio_pte = ptep_get(folio_ptep);
+
+ if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
+ swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
+ goto out_nomap;
+
+ page_idx = idx;
+ address = folio_start;
+ ptep = folio_ptep;
+ goto check_folio;
+ }
+
+ nr_pages = 1;
+ page_idx = 0;
+ address = vmf->address;
+ ptep = vmf->pte;
+ if (folio_test_large(folio) && folio_test_swapcache(folio)) {
+ int nr = folio_nr_pages(folio);
+ unsigned long idx = folio_page_idx(folio, page);
+ unsigned long folio_start = address - idx * PAGE_SIZE;
+ unsigned long folio_end = folio_start + nr * PAGE_SIZE;
+ pte_t *folio_ptep;
+ pte_t folio_pte;
+
+ if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
+ goto check_folio;
+ if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
+ goto check_folio;
+
+ folio_ptep = vmf->pte - idx;
+ folio_pte = ptep_get(folio_ptep);
+ if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
+ swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
+ goto check_folio;
+
+ page_idx = idx;
+ address = folio_start;
+ ptep = folio_ptep;
+ nr_pages = nr;
+ entry = folio->swap;
+ page = &folio->page;
}
+check_folio:
/*
- * Back out if somebody else already faulted in this pte.
+ * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
+ * must never point at an anonymous page in the swapcache that is
+ * PG_anon_exclusive. Sanity check that this holds and especially, that
+ * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
+ * check after taking the PT lock and making sure that nobody
+ * concurrently faulted in this page and set PG_anon_exclusive.
*/
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (unlikely(!pte_same(*page_table, orig_pte)))
- goto out_nomap;
+ BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
+ BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
- if (unlikely(!PageUptodate(page))) {
- ret = VM_FAULT_SIGBUS;
- goto out_nomap;
+ /*
+ * Check under PT lock (to protect against concurrent fork() sharing
+ * the swap entry concurrently) for certainly exclusive pages.
+ */
+ if (!folio_test_ksm(folio)) {
+ exclusive = pte_swp_exclusive(vmf->orig_pte);
+ if (folio != swapcache) {
+ /*
+ * We have a fresh page that is not exposed to the
+ * swapcache -> certainly exclusive.
+ */
+ exclusive = true;
+ } else if (exclusive && folio_test_writeback(folio) &&
+ data_race(si->flags & SWP_STABLE_WRITES)) {
+ /*
+ * This is tricky: not all swap backends support
+ * concurrent page modifications while under writeback.
+ *
+ * So if we stumble over such a page in the swapcache
+ * we must not set the page exclusive, otherwise we can
+ * map it writable without further checks and modify it
+ * while still under writeback.
+ *
+ * For these problematic swap backends, simply drop the
+ * exclusive marker: this is perfectly fine as we start
+ * writeback only if we fully unmapped the page and
+ * there are no unexpected references on the page after
+ * unmapping succeeded. After fully unmapped, no
+ * further GUP references (FOLL_GET and FOLL_PIN) can
+ * appear, so dropping the exclusive marker and mapping
+ * it only R/O is fine.
+ */
+ exclusive = false;
+ }
}
/*
- * The page isn't present yet, go ahead with the fault.
- *
- * Be careful about the sequence of operations here.
- * To get its accounting right, reuse_swap_page() must be called
- * while the page is counted on swap but not yet in mapcount i.e.
- * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
- * must be called after the swap_free(), or it will never succeed.
- * Because delete_from_swap_page() may be called by reuse_swap_page(),
- * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
- * in page->private. In this case, a record in swap_cgroup is silently
- * discarded at swap_free().
+ * Some architectures may have to restore extra metadata to the page
+ * when reading from swap. This metadata may be indexed by swap entry
+ * so this must be called before swap_free().
*/
+ arch_swap_restore(folio_swap(entry, folio), folio);
- inc_mm_counter_fast(mm, MM_ANONPAGES);
- dec_mm_counter_fast(mm, MM_SWAPENTS);
+ /*
+ * Remove the swap entry and conditionally try to free up the swapcache.
+ * We're already holding a reference on the page but haven't mapped it
+ * yet.
+ */
+ swap_free_nr(entry, nr_pages);
+ if (should_try_to_free_swap(folio, vma, vmf->flags))
+ folio_free_swap(folio);
+
+ add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
+ add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
pte = mk_pte(page, vma->vm_page_prot);
- if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
- pte = maybe_mkwrite(pte_mkdirty(pte), vma);
- flags &= ~FAULT_FLAG_WRITE;
- ret |= VM_FAULT_WRITE;
- exclusive = 1;
- }
- flush_icache_page(vma, page);
- set_pte_at(mm, address, page_table, pte);
- if (page == swapcache)
- do_page_add_anon_rmap(page, vma, address, exclusive);
- else /* ksm created a completely new copy */
- page_add_new_anon_rmap(page, vma, address);
- /* It's better to call commit-charge after rmap is established */
- mem_cgroup_commit_charge_swapin(page, ptr);
-
- swap_free(entry);
- if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
- try_to_free_swap(page);
- unlock_page(page);
- if (page != swapcache) {
+ if (pte_swp_soft_dirty(vmf->orig_pte))
+ pte = pte_mksoft_dirty(pte);
+ if (pte_swp_uffd_wp(vmf->orig_pte))
+ pte = pte_mkuffd_wp(pte);
+
+ /*
+ * Same logic as in do_wp_page(); however, optimize for pages that are
+ * certainly not shared either because we just allocated them without
+ * exposing them to the swapcache or because the swap entry indicates
+ * exclusivity.
+ */
+ if (!folio_test_ksm(folio) &&
+ (exclusive || folio_ref_count(folio) == 1)) {
+ if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
+ !pte_needs_soft_dirty_wp(vma, pte)) {
+ pte = pte_mkwrite(pte, vma);
+ if (vmf->flags & FAULT_FLAG_WRITE) {
+ pte = pte_mkdirty(pte);
+ vmf->flags &= ~FAULT_FLAG_WRITE;
+ }
+ }
+ rmap_flags |= RMAP_EXCLUSIVE;
+ }
+ folio_ref_add(folio, nr_pages - 1);
+ flush_icache_pages(vma, page, nr_pages);
+ vmf->orig_pte = pte_advance_pfn(pte, page_idx);
+
+ /* ksm created a completely new copy */
+ if (unlikely(folio != swapcache && swapcache)) {
+ folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
+ folio_add_lru_vma(folio, vma);
+ } else if (!folio_test_anon(folio)) {
+ /*
+ * We currently only expect small !anon folios which are either
+ * fully exclusive or fully shared, or new allocated large
+ * folios which are fully exclusive. If we ever get large
+ * folios within swapcache here, we have to be careful.
+ */
+ VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
+ VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
+ folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
+ } else {
+ folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
+ rmap_flags);
+ }
+
+ VM_BUG_ON(!folio_test_anon(folio) ||
+ (pte_write(pte) && !PageAnonExclusive(page)));
+ set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
+ arch_do_swap_page_nr(vma->vm_mm, vma, address,
+ pte, pte, nr_pages);
+
+ folio_unlock(folio);
+ if (folio != swapcache && swapcache) {
/*
* Hold the lock to avoid the swap entry to be reused
* until we take the PT lock for the pte_same() check
@@ -3136,551 +5021,1197 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
* so that the swap count won't change under a
* parallel locked swapcache.
*/
- unlock_page(swapcache);
- page_cache_release(swapcache);
+ folio_unlock(swapcache);
+ folio_put(swapcache);
}
- if (flags & FAULT_FLAG_WRITE) {
- ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
+ if (vmf->flags & FAULT_FLAG_WRITE) {
+ ret |= do_wp_page(vmf);
if (ret & VM_FAULT_ERROR)
ret &= VM_FAULT_ERROR;
goto out;
}
/* No need to invalidate - it was non-present before */
- update_mmu_cache(vma, address, page_table);
+ update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
unlock:
- pte_unmap_unlock(page_table, ptl);
+ if (vmf->pte)
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
out:
+ /* Clear the swap cache pin for direct swapin after PTL unlock */
+ if (need_clear_cache) {
+ swapcache_clear(si, entry, nr_pages);
+ if (waitqueue_active(&swapcache_wq))
+ wake_up(&swapcache_wq);
+ }
+ if (si)
+ put_swap_device(si);
return ret;
out_nomap:
- mem_cgroup_cancel_charge_swapin(ptr);
- pte_unmap_unlock(page_table, ptl);
+ if (vmf->pte)
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
out_page:
- unlock_page(page);
+ folio_unlock(folio);
out_release:
- page_cache_release(page);
- if (page != swapcache) {
- unlock_page(swapcache);
- page_cache_release(swapcache);
+ folio_put(folio);
+ if (folio != swapcache && swapcache) {
+ folio_unlock(swapcache);
+ folio_put(swapcache);
+ }
+ if (need_clear_cache) {
+ swapcache_clear(si, entry, nr_pages);
+ if (waitqueue_active(&swapcache_wq))
+ wake_up(&swapcache_wq);
}
+ if (si)
+ put_swap_device(si);
return ret;
}
-/*
- * This is like a special single-page "expand_{down|up}wards()",
- * except we must first make sure that 'address{-|+}PAGE_SIZE'
- * doesn't hit another vma.
- */
-static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
+static bool pte_range_none(pte_t *pte, int nr_pages)
{
- address &= PAGE_MASK;
- if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
- struct vm_area_struct *prev = vma->vm_prev;
+ int i;
- /*
- * Is there a mapping abutting this one below?
- *
- * That's only ok if it's the same stack mapping
- * that has gotten split..
- */
- if (prev && prev->vm_end == address)
- return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
+ for (i = 0; i < nr_pages; i++) {
+ if (!pte_none(ptep_get_lockless(pte + i)))
+ return false;
+ }
+
+ return true;
+}
+
+static struct folio *alloc_anon_folio(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ unsigned long orders;
+ struct folio *folio;
+ unsigned long addr;
+ pte_t *pte;
+ gfp_t gfp;
+ int order;
- expand_downwards(vma, address - PAGE_SIZE);
+ /*
+ * If uffd is active for the vma we need per-page fault fidelity to
+ * maintain the uffd semantics.
+ */
+ if (unlikely(userfaultfd_armed(vma)))
+ goto fallback;
+
+ /*
+ * Get a list of all the (large) orders below PMD_ORDER that are enabled
+ * for this vma. Then filter out the orders that can't be allocated over
+ * the faulting address and still be fully contained in the vma.
+ */
+ orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT,
+ BIT(PMD_ORDER) - 1);
+ orders = thp_vma_suitable_orders(vma, vmf->address, orders);
+
+ if (!orders)
+ goto fallback;
+
+ pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
+ if (!pte)
+ return ERR_PTR(-EAGAIN);
+
+ /*
+ * Find the highest order where the aligned range is completely
+ * pte_none(). Note that all remaining orders will be completely
+ * pte_none().
+ */
+ order = highest_order(orders);
+ while (orders) {
+ addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
+ if (pte_range_none(pte + pte_index(addr), 1 << order))
+ break;
+ order = next_order(&orders, order);
}
- if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
- struct vm_area_struct *next = vma->vm_next;
- /* As VM_GROWSDOWN but s/below/above/ */
- if (next && next->vm_start == address + PAGE_SIZE)
- return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
+ pte_unmap(pte);
+
+ if (!orders)
+ goto fallback;
- expand_upwards(vma, address + PAGE_SIZE);
+ /* Try allocating the highest of the remaining orders. */
+ gfp = vma_thp_gfp_mask(vma);
+ while (orders) {
+ addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
+ folio = vma_alloc_folio(gfp, order, vma, addr);
+ if (folio) {
+ if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
+ count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
+ folio_put(folio);
+ goto next;
+ }
+ folio_throttle_swaprate(folio, gfp);
+ /*
+ * When a folio is not zeroed during allocation
+ * (__GFP_ZERO not used) or user folios require special
+ * handling, folio_zero_user() is used to make sure
+ * that the page corresponding to the faulting address
+ * will be hot in the cache after zeroing.
+ */
+ if (user_alloc_needs_zeroing())
+ folio_zero_user(folio, vmf->address);
+ return folio;
+ }
+next:
+ count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
+ order = next_order(&orders, order);
}
- return 0;
+
+fallback:
+#endif
+ return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
}
/*
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * We enter with non-exclusive mmap_lock (to exclude vma changes,
* but allow concurrent faults), and pte mapped but not yet locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
+ * We return with mmap_lock still held, but pte unmapped and unlocked.
*/
-static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- unsigned int flags)
+static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
{
- struct page *page;
- spinlock_t *ptl;
+ struct vm_area_struct *vma = vmf->vma;
+ unsigned long addr = vmf->address;
+ struct folio *folio;
+ vm_fault_t ret = 0;
+ int nr_pages = 1;
pte_t entry;
- pte_unmap(page_table);
-
- /* Check if we need to add a guard page to the stack */
- if (check_stack_guard_page(vma, address) < 0)
+ /* File mapping without ->vm_ops ? */
+ if (vma->vm_flags & VM_SHARED)
return VM_FAULT_SIGBUS;
+ /*
+ * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
+ * be distinguished from a transient failure of pte_offset_map().
+ */
+ if (pte_alloc(vma->vm_mm, vmf->pmd))
+ return VM_FAULT_OOM;
+
/* Use the zero-page for reads */
- if (!(flags & FAULT_FLAG_WRITE)) {
- entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
+ if (!(vmf->flags & FAULT_FLAG_WRITE) &&
+ !mm_forbids_zeropage(vma->vm_mm)) {
+ entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
vma->vm_page_prot));
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (!pte_none(*page_table))
+ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
+ vmf->address, &vmf->ptl);
+ if (!vmf->pte)
+ goto unlock;
+ if (vmf_pte_changed(vmf)) {
+ update_mmu_tlb(vma, vmf->address, vmf->pte);
goto unlock;
+ }
+ ret = check_stable_address_space(vma->vm_mm);
+ if (ret)
+ goto unlock;
+ /* Deliver the page fault to userland, check inside PT lock */
+ if (userfaultfd_missing(vma)) {
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ return handle_userfault(vmf, VM_UFFD_MISSING);
+ }
goto setpte;
}
/* Allocate our own private page. */
- if (unlikely(anon_vma_prepare(vma)))
- goto oom;
- page = alloc_zeroed_user_highpage_movable(vma, address);
- if (!page)
+ ret = vmf_anon_prepare(vmf);
+ if (ret)
+ return ret;
+ /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
+ folio = alloc_anon_folio(vmf);
+ if (IS_ERR(folio))
+ return 0;
+ if (!folio)
goto oom;
+
+ nr_pages = folio_nr_pages(folio);
+ addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
+
/*
- * The memory barrier inside __SetPageUptodate makes sure that
- * preceeding stores to the page contents become visible before
+ * The memory barrier inside __folio_mark_uptodate makes sure that
+ * preceding stores to the page contents become visible before
* the set_pte_at() write.
*/
- __SetPageUptodate(page);
+ __folio_mark_uptodate(folio);
- if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
- goto oom_free_page;
-
- entry = mk_pte(page, vma->vm_page_prot);
+ entry = folio_mk_pte(folio, vma->vm_page_prot);
+ entry = pte_sw_mkyoung(entry);
if (vma->vm_flags & VM_WRITE)
- entry = pte_mkwrite(pte_mkdirty(entry));
+ entry = pte_mkwrite(pte_mkdirty(entry), vma);
+
+ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
+ if (!vmf->pte)
+ goto release;
+ if (nr_pages == 1 && vmf_pte_changed(vmf)) {
+ update_mmu_tlb(vma, addr, vmf->pte);
+ goto release;
+ } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
+ update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
+ goto release;
+ }
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (!pte_none(*page_table))
+ ret = check_stable_address_space(vma->vm_mm);
+ if (ret)
goto release;
- inc_mm_counter_fast(mm, MM_ANONPAGES);
- page_add_new_anon_rmap(page, vma, address);
+ /* Deliver the page fault to userland, check inside PT lock */
+ if (userfaultfd_missing(vma)) {
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ folio_put(folio);
+ return handle_userfault(vmf, VM_UFFD_MISSING);
+ }
+
+ folio_ref_add(folio, nr_pages - 1);
+ add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
+ count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
+ folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
+ folio_add_lru_vma(folio, vma);
setpte:
- set_pte_at(mm, address, page_table, entry);
+ if (vmf_orig_pte_uffd_wp(vmf))
+ entry = pte_mkuffd_wp(entry);
+ set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
/* No need to invalidate - it was non-present before */
- update_mmu_cache(vma, address, page_table);
+ update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
unlock:
- pte_unmap_unlock(page_table, ptl);
- return 0;
+ if (vmf->pte)
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ return ret;
release:
- mem_cgroup_uncharge_page(page);
- page_cache_release(page);
+ folio_put(folio);
goto unlock;
-oom_free_page:
- page_cache_release(page);
oom:
return VM_FAULT_OOM;
}
/*
- * __do_fault() tries to create a new page mapping. It aggressively
- * tries to share with existing pages, but makes a separate copy if
- * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
- * the next page fault.
- *
- * As this is called only for pages that do not currently exist, we
- * do not need to flush old virtual caches or the TLB.
- *
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), and pte neither mapped nor locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
+ * The mmap_lock must have been held on entry, and may have been
+ * released depending on flags and vma->vm_ops->fault() return value.
+ * See filemap_fault() and __lock_page_retry().
*/
-static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pmd_t *pmd,
- pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
+static vm_fault_t __do_fault(struct vm_fault *vmf)
{
- pte_t *page_table;
- spinlock_t *ptl;
- struct page *page;
- struct page *cow_page;
- pte_t entry;
- int anon = 0;
- struct page *dirty_page = NULL;
- struct vm_fault vmf;
- int ret;
- int page_mkwrite = 0;
+ struct vm_area_struct *vma = vmf->vma;
+ struct folio *folio;
+ vm_fault_t ret;
/*
- * If we do COW later, allocate page befor taking lock_page()
- * on the file cache page. This will reduce lock holding time.
+ * Preallocate pte before we take page_lock because this might lead to
+ * deadlocks for memcg reclaim which waits for pages under writeback:
+ * lock_page(A)
+ * SetPageWriteback(A)
+ * unlock_page(A)
+ * lock_page(B)
+ * lock_page(B)
+ * pte_alloc_one
+ * shrink_folio_list
+ * wait_on_page_writeback(A)
+ * SetPageWriteback(B)
+ * unlock_page(B)
+ * # flush A, B to clear the writeback
*/
- if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
-
- if (unlikely(anon_vma_prepare(vma)))
+ if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
+ vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
+ if (!vmf->prealloc_pte)
return VM_FAULT_OOM;
+ }
- cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
- if (!cow_page)
- return VM_FAULT_OOM;
+ ret = vma->vm_ops->fault(vmf);
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
+ VM_FAULT_DONE_COW)))
+ return ret;
- if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
- page_cache_release(cow_page);
- return VM_FAULT_OOM;
+ folio = page_folio(vmf->page);
+ if (unlikely(PageHWPoison(vmf->page))) {
+ vm_fault_t poisonret = VM_FAULT_HWPOISON;
+ if (ret & VM_FAULT_LOCKED) {
+ if (page_mapped(vmf->page))
+ unmap_mapping_folio(folio);
+ /* Retry if a clean folio was removed from the cache. */
+ if (mapping_evict_folio(folio->mapping, folio))
+ poisonret = VM_FAULT_NOPAGE;
+ folio_unlock(folio);
}
- } else
- cow_page = NULL;
+ folio_put(folio);
+ vmf->page = NULL;
+ return poisonret;
+ }
- vmf.virtual_address = (void __user *)(address & PAGE_MASK);
- vmf.pgoff = pgoff;
- vmf.flags = flags;
- vmf.page = NULL;
+ if (unlikely(!(ret & VM_FAULT_LOCKED)))
+ folio_lock(folio);
+ else
+ VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
- ret = vma->vm_ops->fault(vma, &vmf);
- if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
- VM_FAULT_RETRY)))
- goto uncharge_out;
+ return ret;
+}
- if (unlikely(PageHWPoison(vmf.page))) {
- if (ret & VM_FAULT_LOCKED)
- unlock_page(vmf.page);
- ret = VM_FAULT_HWPOISON;
- goto uncharge_out;
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+static void deposit_prealloc_pte(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+
+ pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
+ /*
+ * We are going to consume the prealloc table,
+ * count that as nr_ptes.
+ */
+ mm_inc_nr_ptes(vma->vm_mm);
+ vmf->prealloc_pte = NULL;
+}
+
+vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ bool write = vmf->flags & FAULT_FLAG_WRITE;
+ unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
+ pmd_t entry;
+ vm_fault_t ret = VM_FAULT_FALLBACK;
+
+ /*
+ * It is too late to allocate a small folio, we already have a large
+ * folio in the pagecache: especially s390 KVM cannot tolerate any
+ * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
+ * PMD mappings if THPs are disabled. As we already have a THP,
+ * behave as if we are forcing a collapse.
+ */
+ if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags,
+ /* forced_collapse=*/ true))
+ return ret;
+
+ if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
+ return ret;
+
+ if (folio_order(folio) != HPAGE_PMD_ORDER)
+ return ret;
+ page = &folio->page;
+
+ /*
+ * Just backoff if any subpage of a THP is corrupted otherwise
+ * the corrupted page may mapped by PMD silently to escape the
+ * check. This kind of THP just can be PTE mapped. Access to
+ * the corrupted subpage should trigger SIGBUS as expected.
+ */
+ if (unlikely(folio_test_has_hwpoisoned(folio)))
+ return ret;
+
+ /*
+ * Archs like ppc64 need additional space to store information
+ * related to pte entry. Use the preallocated table for that.
+ */
+ if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
+ vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
+ if (!vmf->prealloc_pte)
+ return VM_FAULT_OOM;
}
+ vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
+ if (unlikely(!pmd_none(*vmf->pmd)))
+ goto out;
+
+ flush_icache_pages(vma, page, HPAGE_PMD_NR);
+
+ entry = folio_mk_pmd(folio, vma->vm_page_prot);
+ if (write)
+ entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+
+ add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
+ folio_add_file_rmap_pmd(folio, page, vma);
+
/*
- * For consistency in subsequent calls, make the faulted page always
- * locked.
+ * deposit and withdraw with pmd lock held
*/
- if (unlikely(!(ret & VM_FAULT_LOCKED)))
- lock_page(vmf.page);
+ if (arch_needs_pgtable_deposit())
+ deposit_prealloc_pte(vmf);
+
+ set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
+
+ update_mmu_cache_pmd(vma, haddr, vmf->pmd);
+
+ /* fault is handled */
+ ret = 0;
+ count_vm_event(THP_FILE_MAPPED);
+out:
+ spin_unlock(vmf->ptl);
+ return ret;
+}
+#else
+vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
+{
+ return VM_FAULT_FALLBACK;
+}
+#endif
+
+/**
+ * set_pte_range - Set a range of PTEs to point to pages in a folio.
+ * @vmf: Fault description.
+ * @folio: The folio that contains @page.
+ * @page: The first page to create a PTE for.
+ * @nr: The number of PTEs to create.
+ * @addr: The first address to create a PTE for.
+ */
+void set_pte_range(struct vm_fault *vmf, struct folio *folio,
+ struct page *page, unsigned int nr, unsigned long addr)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ bool write = vmf->flags & FAULT_FLAG_WRITE;
+ bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
+ pte_t entry;
+
+ flush_icache_pages(vma, page, nr);
+ entry = mk_pte(page, vma->vm_page_prot);
+
+ if (prefault && arch_wants_old_prefaulted_pte())
+ entry = pte_mkold(entry);
else
- VM_BUG_ON(!PageLocked(vmf.page));
+ entry = pte_sw_mkyoung(entry);
+
+ if (write)
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ else if (pte_write(entry) && folio_test_dirty(folio))
+ entry = pte_mkdirty(entry);
+ if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
+ entry = pte_mkuffd_wp(entry);
+ /* copy-on-write page */
+ if (write && !(vma->vm_flags & VM_SHARED)) {
+ VM_BUG_ON_FOLIO(nr != 1, folio);
+ folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
+ folio_add_lru_vma(folio, vma);
+ } else {
+ folio_add_file_rmap_ptes(folio, page, nr, vma);
+ }
+ set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
+
+ /* no need to invalidate: a not-present page won't be cached */
+ update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
+}
+
+static bool vmf_pte_changed(struct vm_fault *vmf)
+{
+ if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
+ return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
+
+ return !pte_none(ptep_get(vmf->pte));
+}
+/**
+ * finish_fault - finish page fault once we have prepared the page to fault
+ *
+ * @vmf: structure describing the fault
+ *
+ * This function handles all that is needed to finish a page fault once the
+ * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
+ * given page, adds reverse page mapping, handles memcg charges and LRU
+ * addition.
+ *
+ * The function expects the page to be locked and on success it consumes a
+ * reference of a page being mapped (for the PTE which maps it).
+ *
+ * Return: %0 on success, %VM_FAULT_ code in case of error.
+ */
+vm_fault_t finish_fault(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ struct page *page;
+ struct folio *folio;
+ vm_fault_t ret;
+ bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
+ !(vma->vm_flags & VM_SHARED);
+ int type, nr_pages;
+ unsigned long addr;
+ bool needs_fallback = false;
+
+fallback:
+ addr = vmf->address;
+
+ /* Did we COW the page? */
+ if (is_cow)
+ page = vmf->cow_page;
+ else
+ page = vmf->page;
+
+ folio = page_folio(page);
/*
- * Should we do an early C-O-W break?
+ * check even for read faults because we might have lost our CoWed
+ * page
*/
- page = vmf.page;
- if (flags & FAULT_FLAG_WRITE) {
- if (!(vma->vm_flags & VM_SHARED)) {
- page = cow_page;
- anon = 1;
- copy_user_highpage(page, vmf.page, address, vma);
- __SetPageUptodate(page);
+ if (!(vma->vm_flags & VM_SHARED)) {
+ ret = check_stable_address_space(vma->vm_mm);
+ if (ret)
+ return ret;
+ }
+
+ if (!needs_fallback && vma->vm_file) {
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ pgoff_t file_end;
+
+ file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
+
+ /*
+ * Do not allow to map with PTEs beyond i_size and with PMD
+ * across i_size to preserve SIGBUS semantics.
+ *
+ * Make an exception for shmem/tmpfs that for long time
+ * intentionally mapped with PMDs across i_size.
+ */
+ needs_fallback = !shmem_mapping(mapping) &&
+ file_end < folio_next_index(folio);
+ }
+
+ if (pmd_none(*vmf->pmd)) {
+ if (!needs_fallback && folio_test_pmd_mappable(folio)) {
+ ret = do_set_pmd(vmf, folio, page);
+ if (ret != VM_FAULT_FALLBACK)
+ return ret;
+ }
+
+ if (vmf->prealloc_pte)
+ pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
+ else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
+ return VM_FAULT_OOM;
+ }
+
+ nr_pages = folio_nr_pages(folio);
+
+ /* Using per-page fault to maintain the uffd semantics */
+ if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) {
+ nr_pages = 1;
+ } else if (nr_pages > 1) {
+ pgoff_t idx = folio_page_idx(folio, page);
+ /* The page offset of vmf->address within the VMA. */
+ pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
+ /* The index of the entry in the pagetable for fault page. */
+ pgoff_t pte_off = pte_index(vmf->address);
+
+ /*
+ * Fallback to per-page fault in case the folio size in page
+ * cache beyond the VMA limits and PMD pagetable limits.
+ */
+ if (unlikely(vma_off < idx ||
+ vma_off + (nr_pages - idx) > vma_pages(vma) ||
+ pte_off < idx ||
+ pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
+ nr_pages = 1;
} else {
- /*
- * If the page will be shareable, see if the backing
- * address space wants to know that the page is about
- * to become writable
- */
- if (vma->vm_ops->page_mkwrite) {
- int tmp;
-
- unlock_page(page);
- vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
- tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
- if (unlikely(tmp &
- (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
- ret = tmp;
- goto unwritable_page;
- }
- if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
- lock_page(page);
- if (!page->mapping) {
- ret = 0; /* retry the fault */
- unlock_page(page);
- goto unwritable_page;
- }
- } else
- VM_BUG_ON(!PageLocked(page));
- page_mkwrite = 1;
- }
+ /* Now we can set mappings for the whole large folio. */
+ addr = vmf->address - idx * PAGE_SIZE;
+ page = &folio->page;
}
+ }
+
+ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
+ addr, &vmf->ptl);
+ if (!vmf->pte)
+ return VM_FAULT_NOPAGE;
+ /* Re-check under ptl */
+ if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
+ update_mmu_tlb(vma, addr, vmf->pte);
+ ret = VM_FAULT_NOPAGE;
+ goto unlock;
+ } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
+ needs_fallback = true;
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ goto fallback;
}
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+ folio_ref_add(folio, nr_pages - 1);
+ set_pte_range(vmf, folio, page, nr_pages, addr);
+ type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
+ add_mm_counter(vma->vm_mm, type, nr_pages);
+ ret = 0;
+
+unlock:
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ return ret;
+}
+
+static unsigned long fault_around_pages __read_mostly =
+ 65536 >> PAGE_SHIFT;
+
+#ifdef CONFIG_DEBUG_FS
+static int fault_around_bytes_get(void *data, u64 *val)
+{
+ *val = fault_around_pages << PAGE_SHIFT;
+ return 0;
+}
+
+/*
+ * fault_around_bytes must be rounded down to the nearest page order as it's
+ * what do_fault_around() expects to see.
+ */
+static int fault_around_bytes_set(void *data, u64 val)
+{
+ if (val / PAGE_SIZE > PTRS_PER_PTE)
+ return -EINVAL;
/*
- * This silly early PAGE_DIRTY setting removes a race
- * due to the bad i386 page protection. But it's valid
- * for other architectures too.
- *
- * Note that if FAULT_FLAG_WRITE is set, we either now have
- * an exclusive copy of the page, or this is a shared mapping,
- * so we can make it writable and dirty to avoid having to
- * handle that later.
+ * The minimum value is 1 page, however this results in no fault-around
+ * at all. See should_fault_around().
*/
- /* Only go through if we didn't race with anybody else... */
- if (likely(pte_same(*page_table, orig_pte))) {
- flush_icache_page(vma, page);
- entry = mk_pte(page, vma->vm_page_prot);
- if (flags & FAULT_FLAG_WRITE)
- entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- if (anon) {
- inc_mm_counter_fast(mm, MM_ANONPAGES);
- page_add_new_anon_rmap(page, vma, address);
- } else {
- inc_mm_counter_fast(mm, MM_FILEPAGES);
- page_add_file_rmap(page);
- if (flags & FAULT_FLAG_WRITE) {
- dirty_page = page;
- get_page(dirty_page);
- }
- }
- set_pte_at(mm, address, page_table, entry);
+ val = max(val, PAGE_SIZE);
+ fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
- /* no need to invalidate: a not-present page won't be cached */
- update_mmu_cache(vma, address, page_table);
- } else {
- if (cow_page)
- mem_cgroup_uncharge_page(cow_page);
- if (anon)
- page_cache_release(page);
- else
- anon = 1; /* no anon but release faulted_page */
+ return 0;
+}
+DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
+ fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
+
+static int __init fault_around_debugfs(void)
+{
+ debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
+ &fault_around_bytes_fops);
+ return 0;
+}
+late_initcall(fault_around_debugfs);
+#endif
+
+/*
+ * do_fault_around() tries to map few pages around the fault address. The hope
+ * is that the pages will be needed soon and this will lower the number of
+ * faults to handle.
+ *
+ * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
+ * not ready to be mapped: not up-to-date, locked, etc.
+ *
+ * This function doesn't cross VMA or page table boundaries, in order to call
+ * map_pages() and acquire a PTE lock only once.
+ *
+ * fault_around_pages defines how many pages we'll try to map.
+ * do_fault_around() expects it to be set to a power of two less than or equal
+ * to PTRS_PER_PTE.
+ *
+ * The virtual address of the area that we map is naturally aligned to
+ * fault_around_pages * PAGE_SIZE rounded down to the machine page size
+ * (and therefore to page order). This way it's easier to guarantee
+ * that we don't cross page table boundaries.
+ */
+static vm_fault_t do_fault_around(struct vm_fault *vmf)
+{
+ pgoff_t nr_pages = READ_ONCE(fault_around_pages);
+ pgoff_t pte_off = pte_index(vmf->address);
+ /* The page offset of vmf->address within the VMA. */
+ pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
+ pgoff_t from_pte, to_pte;
+ vm_fault_t ret;
+
+ /* The PTE offset of the start address, clamped to the VMA. */
+ from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
+ pte_off - min(pte_off, vma_off));
+
+ /* The PTE offset of the end address, clamped to the VMA and PTE. */
+ to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
+ pte_off + vma_pages(vmf->vma) - vma_off) - 1;
+
+ if (pmd_none(*vmf->pmd)) {
+ vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
+ if (!vmf->prealloc_pte)
+ return VM_FAULT_OOM;
}
- pte_unmap_unlock(page_table, ptl);
+ rcu_read_lock();
+ ret = vmf->vma->vm_ops->map_pages(vmf,
+ vmf->pgoff + from_pte - pte_off,
+ vmf->pgoff + to_pte - pte_off);
+ rcu_read_unlock();
- if (dirty_page) {
- struct address_space *mapping = page->mapping;
- int dirtied = 0;
+ return ret;
+}
- if (set_page_dirty(dirty_page))
- dirtied = 1;
- unlock_page(dirty_page);
- put_page(dirty_page);
- if ((dirtied || page_mkwrite) && mapping) {
- /*
- * Some device drivers do not set page.mapping but still
- * dirty their pages
- */
- balance_dirty_pages_ratelimited(mapping);
- }
+/* Return true if we should do read fault-around, false otherwise */
+static inline bool should_fault_around(struct vm_fault *vmf)
+{
+ /* No ->map_pages? No way to fault around... */
+ if (!vmf->vma->vm_ops->map_pages)
+ return false;
- /* file_update_time outside page_lock */
- if (vma->vm_file && !page_mkwrite)
- file_update_time(vma->vm_file);
- } else {
- unlock_page(vmf.page);
- if (anon)
- page_cache_release(vmf.page);
+ if (uffd_disable_fault_around(vmf->vma))
+ return false;
+
+ /* A single page implies no faulting 'around' at all. */
+ return fault_around_pages > 1;
+}
+
+static vm_fault_t do_read_fault(struct vm_fault *vmf)
+{
+ vm_fault_t ret = 0;
+ struct folio *folio;
+
+ /*
+ * Let's call ->map_pages() first and use ->fault() as fallback
+ * if page by the offset is not ready to be mapped (cold cache or
+ * something).
+ */
+ if (should_fault_around(vmf)) {
+ ret = do_fault_around(vmf);
+ if (ret)
+ return ret;
}
+ ret = vmf_can_call_fault(vmf);
+ if (ret)
+ return ret;
+
+ ret = __do_fault(vmf);
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+ return ret;
+
+ ret |= finish_fault(vmf);
+ folio = page_folio(vmf->page);
+ folio_unlock(folio);
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+ folio_put(folio);
return ret;
+}
+
+static vm_fault_t do_cow_fault(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ struct folio *folio;
+ vm_fault_t ret;
+
+ ret = vmf_can_call_fault(vmf);
+ if (!ret)
+ ret = vmf_anon_prepare(vmf);
+ if (ret)
+ return ret;
+
+ folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
+ if (!folio)
+ return VM_FAULT_OOM;
+
+ vmf->cow_page = &folio->page;
+
+ ret = __do_fault(vmf);
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+ goto uncharge_out;
+ if (ret & VM_FAULT_DONE_COW)
+ return ret;
-unwritable_page:
- page_cache_release(page);
+ if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
+ ret = VM_FAULT_HWPOISON;
+ goto unlock;
+ }
+ __folio_mark_uptodate(folio);
+
+ ret |= finish_fault(vmf);
+unlock:
+ unlock_page(vmf->page);
+ put_page(vmf->page);
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+ goto uncharge_out;
return ret;
uncharge_out:
- /* fs's fault handler get error */
- if (cow_page) {
- mem_cgroup_uncharge_page(cow_page);
- page_cache_release(cow_page);
- }
+ folio_put(folio);
return ret;
}
-static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- unsigned int flags, pte_t orig_pte)
+static vm_fault_t do_shared_fault(struct vm_fault *vmf)
{
- pgoff_t pgoff = (((address & PAGE_MASK)
- - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
+ struct vm_area_struct *vma = vmf->vma;
+ vm_fault_t ret, tmp;
+ struct folio *folio;
+
+ ret = vmf_can_call_fault(vmf);
+ if (ret)
+ return ret;
- pte_unmap(page_table);
- return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
+ ret = __do_fault(vmf);
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+ return ret;
+
+ folio = page_folio(vmf->page);
+
+ /*
+ * Check if the backing address space wants to know that the page is
+ * about to become writable
+ */
+ if (vma->vm_ops->page_mkwrite) {
+ folio_unlock(folio);
+ tmp = do_page_mkwrite(vmf, folio);
+ if (unlikely(!tmp ||
+ (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
+ folio_put(folio);
+ return tmp;
+ }
+ }
+
+ ret |= finish_fault(vmf);
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
+ VM_FAULT_RETRY))) {
+ folio_unlock(folio);
+ folio_put(folio);
+ return ret;
+ }
+
+ ret |= fault_dirty_shared_page(vmf);
+ return ret;
}
/*
- * Fault of a previously existing named mapping. Repopulate the pte
- * from the encoded file_pte if possible. This enables swappable
- * nonlinear vmas.
- *
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), and pte mapped but not yet locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
+ * We enter with non-exclusive mmap_lock (to exclude vma changes,
+ * but allow concurrent faults).
+ * The mmap_lock may have been released depending on flags and our
+ * return value. See filemap_fault() and __folio_lock_or_retry().
+ * If mmap_lock is released, vma may become invalid (for example
+ * by other thread calling munmap()).
*/
-static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- unsigned int flags, pte_t orig_pte)
+static vm_fault_t do_fault(struct vm_fault *vmf)
{
- pgoff_t pgoff;
+ struct vm_area_struct *vma = vmf->vma;
+ struct mm_struct *vm_mm = vma->vm_mm;
+ vm_fault_t ret;
- flags |= FAULT_FLAG_NONLINEAR;
+ /*
+ * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
+ */
+ if (!vma->vm_ops->fault) {
+ vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
+ vmf->address, &vmf->ptl);
+ if (unlikely(!vmf->pte))
+ ret = VM_FAULT_SIGBUS;
+ else {
+ /*
+ * Make sure this is not a temporary clearing of pte
+ * by holding ptl and checking again. A R/M/W update
+ * of pte involves: take ptl, clearing the pte so that
+ * we don't have concurrent modification by hardware
+ * followed by an update.
+ */
+ if (unlikely(pte_none(ptep_get(vmf->pte))))
+ ret = VM_FAULT_SIGBUS;
+ else
+ ret = VM_FAULT_NOPAGE;
- if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
- return 0;
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ }
+ } else if (!(vmf->flags & FAULT_FLAG_WRITE))
+ ret = do_read_fault(vmf);
+ else if (!(vma->vm_flags & VM_SHARED))
+ ret = do_cow_fault(vmf);
+ else
+ ret = do_shared_fault(vmf);
- if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
- /*
- * Page table corrupted: show pte and kill process.
- */
- print_bad_pte(vma, address, orig_pte, NULL);
- return VM_FAULT_SIGBUS;
+ /* preallocated pagetable is unused: free it */
+ if (vmf->prealloc_pte) {
+ pte_free(vm_mm, vmf->prealloc_pte);
+ vmf->prealloc_pte = NULL;
}
-
- pgoff = pte_to_pgoff(orig_pte);
- return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
+ return ret;
}
-int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
- unsigned long addr, int current_nid)
+int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
+ unsigned long addr, int *flags,
+ bool writable, int *last_cpupid)
{
- get_page(page);
+ struct vm_area_struct *vma = vmf->vma;
+
+ /*
+ * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
+ * much anyway since they can be in shared cache state. This misses
+ * the case where a mapping is writable but the process never writes
+ * to it but pte_write gets cleared during protection updates and
+ * pte_dirty has unpredictable behaviour between PTE scan updates,
+ * background writeback, dirty balancing and application behaviour.
+ */
+ if (!writable)
+ *flags |= TNF_NO_GROUP;
+
+ /*
+ * Flag if the folio is shared between multiple address spaces. This
+ * is later used when determining whether to group tasks together
+ */
+ if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
+ *flags |= TNF_SHARED;
+ /*
+ * For memory tiering mode, cpupid of slow memory page is used
+ * to record page access time. So use default value.
+ */
+ if (folio_use_access_time(folio))
+ *last_cpupid = (-1 & LAST_CPUPID_MASK);
+ else
+ *last_cpupid = folio_last_cpupid(folio);
+
+ /* Record the current PID acceesing VMA */
+ vma_set_access_pid_bit(vma);
count_vm_numa_event(NUMA_HINT_FAULTS);
- if (current_nid == numa_node_id())
+#ifdef CONFIG_NUMA_BALANCING
+ count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
+#endif
+ if (folio_nid(folio) == numa_node_id()) {
count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
+ *flags |= TNF_FAULT_LOCAL;
+ }
- return mpol_misplaced(page, vma, addr);
+ return mpol_misplaced(folio, vmf, addr);
}
-int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
+static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
+ unsigned long fault_addr, pte_t *fault_pte,
+ bool writable)
{
- struct page *page = NULL;
- spinlock_t *ptl;
- int current_nid = -1;
- int target_nid;
- bool migrated = false;
+ pte_t pte, old_pte;
+
+ old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
+ pte = pte_modify(old_pte, vma->vm_page_prot);
+ pte = pte_mkyoung(pte);
+ if (writable)
+ pte = pte_mkwrite(pte, vma);
+ ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
+ update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
+}
- /*
- * The "pte" at this point cannot be used safely without
- * validation through pte_unmap_same(). It's of NUMA type but
- * the pfn may be screwed if the read is non atomic.
- *
- * ptep_modify_prot_start is not called as this is clearing
- * the _PAGE_NUMA bit and it is not really expected that there
- * would be concurrent hardware modifications to the PTE.
- */
- ptl = pte_lockptr(mm, pmd);
- spin_lock(ptl);
- if (unlikely(!pte_same(*ptep, pte))) {
- pte_unmap_unlock(ptep, ptl);
- goto out;
+static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
+ struct folio *folio, pte_t fault_pte,
+ bool ignore_writable, bool pte_write_upgrade)
+{
+ int nr = pte_pfn(fault_pte) - folio_pfn(folio);
+ unsigned long start, end, addr = vmf->address;
+ unsigned long addr_start = addr - (nr << PAGE_SHIFT);
+ unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
+ pte_t *start_ptep;
+
+ /* Stay within the VMA and within the page table. */
+ start = max3(addr_start, pt_start, vma->vm_start);
+ end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
+ vma->vm_end);
+ start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
+
+ /* Restore all PTEs' mapping of the large folio */
+ for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
+ pte_t ptent = ptep_get(start_ptep);
+ bool writable = false;
+
+ if (!pte_present(ptent) || !pte_protnone(ptent))
+ continue;
+
+ if (pfn_folio(pte_pfn(ptent)) != folio)
+ continue;
+
+ if (!ignore_writable) {
+ ptent = pte_modify(ptent, vma->vm_page_prot);
+ writable = pte_write(ptent);
+ if (!writable && pte_write_upgrade &&
+ can_change_pte_writable(vma, addr, ptent))
+ writable = true;
+ }
+
+ numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
}
+}
- pte = pte_mknonnuma(pte);
- set_pte_at(mm, addr, ptep, pte);
- update_mmu_cache(vma, addr, ptep);
+static vm_fault_t do_numa_page(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ struct folio *folio = NULL;
+ int nid = NUMA_NO_NODE;
+ bool writable = false, ignore_writable = false;
+ bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
+ int last_cpupid;
+ int target_nid;
+ pte_t pte, old_pte;
+ int flags = 0, nr_pages;
- page = vm_normal_page(vma, addr, pte);
- if (!page) {
- pte_unmap_unlock(ptep, ptl);
+ /*
+ * The pte cannot be used safely until we verify, while holding the page
+ * table lock, that its contents have not changed during fault handling.
+ */
+ spin_lock(vmf->ptl);
+ /* Read the live PTE from the page tables: */
+ old_pte = ptep_get(vmf->pte);
+
+ if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
return 0;
}
- current_nid = page_to_nid(page);
- target_nid = numa_migrate_prep(page, vma, addr, current_nid);
- pte_unmap_unlock(ptep, ptl);
- if (target_nid == -1) {
- /*
- * Account for the fault against the current node if it not
- * being replaced regardless of where the page is located.
- */
- current_nid = numa_node_id();
- put_page(page);
- goto out;
+ pte = pte_modify(old_pte, vma->vm_page_prot);
+
+ /*
+ * Detect now whether the PTE could be writable; this information
+ * is only valid while holding the PT lock.
+ */
+ writable = pte_write(pte);
+ if (!writable && pte_write_upgrade &&
+ can_change_pte_writable(vma, vmf->address, pte))
+ writable = true;
+
+ folio = vm_normal_folio(vma, vmf->address, pte);
+ if (!folio || folio_is_zone_device(folio))
+ goto out_map;
+
+ nid = folio_nid(folio);
+ nr_pages = folio_nr_pages(folio);
+
+ target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
+ writable, &last_cpupid);
+ if (target_nid == NUMA_NO_NODE)
+ goto out_map;
+ if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
+ flags |= TNF_MIGRATE_FAIL;
+ goto out_map;
}
+ /* The folio is isolated and isolation code holds a folio reference. */
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ writable = false;
+ ignore_writable = true;
/* Migrate to the requested node */
- migrated = migrate_misplaced_page(page, target_nid);
- if (migrated)
- current_nid = target_nid;
+ if (!migrate_misplaced_folio(folio, target_nid)) {
+ nid = target_nid;
+ flags |= TNF_MIGRATED;
+ task_numa_fault(last_cpupid, nid, nr_pages, flags);
+ return 0;
+ }
-out:
- if (current_nid != -1)
- task_numa_fault(current_nid, 1, migrated);
+ flags |= TNF_MIGRATE_FAIL;
+ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
+ vmf->address, &vmf->ptl);
+ if (unlikely(!vmf->pte))
+ return 0;
+ if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ return 0;
+ }
+out_map:
+ /*
+ * Make it present again, depending on how arch implements
+ * non-accessible ptes, some can allow access by kernel mode.
+ */
+ if (folio && folio_test_large(folio))
+ numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
+ pte_write_upgrade);
+ else
+ numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
+ writable);
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+
+ if (nid != NUMA_NO_NODE)
+ task_numa_fault(last_cpupid, nid, nr_pages, flags);
return 0;
}
-/* NUMA hinting page fault entry point for regular pmds */
-#ifdef CONFIG_NUMA_BALANCING
-static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long addr, pmd_t *pmdp)
+static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
{
- pmd_t pmd;
- pte_t *pte, *orig_pte;
- unsigned long _addr = addr & PMD_MASK;
- unsigned long offset;
- spinlock_t *ptl;
- bool numa = false;
- int local_nid = numa_node_id();
-
- spin_lock(&mm->page_table_lock);
- pmd = *pmdp;
- if (pmd_numa(pmd)) {
- set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
- numa = true;
- }
- spin_unlock(&mm->page_table_lock);
-
- if (!numa)
- return 0;
+ struct vm_area_struct *vma = vmf->vma;
+ if (vma_is_anonymous(vma))
+ return do_huge_pmd_anonymous_page(vmf);
+ if (vma->vm_ops->huge_fault)
+ return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
+ return VM_FAULT_FALLBACK;
+}
- /* we're in a page fault so some vma must be in the range */
- BUG_ON(!vma);
- BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
- offset = max(_addr, vma->vm_start) & ~PMD_MASK;
- VM_BUG_ON(offset >= PMD_SIZE);
- orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
- pte += offset >> PAGE_SHIFT;
- for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
- pte_t pteval = *pte;
- struct page *page;
- int curr_nid = local_nid;
- int target_nid;
- bool migrated;
- if (!pte_present(pteval))
- continue;
- if (!pte_numa(pteval))
- continue;
- if (addr >= vma->vm_end) {
- vma = find_vma(mm, addr);
- /* there's a pte present so there must be a vma */
- BUG_ON(!vma);
- BUG_ON(addr < vma->vm_start);
- }
- if (pte_numa(pteval)) {
- pteval = pte_mknonnuma(pteval);
- set_pte_at(mm, addr, pte, pteval);
+/* `inline' is required to avoid gcc 4.1.2 build error */
+static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
+ vm_fault_t ret;
+
+ if (vma_is_anonymous(vma)) {
+ if (likely(!unshare) &&
+ userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
+ if (userfaultfd_wp_async(vmf->vma))
+ goto split;
+ return handle_userfault(vmf, VM_UFFD_WP);
}
- page = vm_normal_page(vma, addr, pteval);
- if (unlikely(!page))
- continue;
- /* only check non-shared pages */
- if (unlikely(page_mapcount(page) != 1))
- continue;
+ return do_huge_pmd_wp_page(vmf);
+ }
- /*
- * Note that the NUMA fault is later accounted to either
- * the node that is currently running or where the page is
- * migrated to.
- */
- curr_nid = local_nid;
- target_nid = numa_migrate_prep(page, vma, addr,
- page_to_nid(page));
- if (target_nid == -1) {
- put_page(page);
- continue;
+ if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
+ if (vma->vm_ops->huge_fault) {
+ ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
+ if (!(ret & VM_FAULT_FALLBACK))
+ return ret;
}
+ }
- /* Migrate to the requested node */
- pte_unmap_unlock(pte, ptl);
- migrated = migrate_misplaced_page(page, target_nid);
- if (migrated)
- curr_nid = target_nid;
- task_numa_fault(curr_nid, 1, migrated);
+split:
+ /* COW or write-notify handled on pte level: split pmd. */
+ __split_huge_pmd(vma, vmf->pmd, vmf->address, false);
- pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
- }
- pte_unmap_unlock(orig_pte, ptl);
+ return VM_FAULT_FALLBACK;
+}
- return 0;
+static vm_fault_t create_huge_pud(struct vm_fault *vmf)
+{
+#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
+ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
+ struct vm_area_struct *vma = vmf->vma;
+ /* No support for anonymous transparent PUD pages yet */
+ if (vma_is_anonymous(vma))
+ return VM_FAULT_FALLBACK;
+ if (vma->vm_ops->huge_fault)
+ return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+ return VM_FAULT_FALLBACK;
}
-#else
-static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long addr, pmd_t *pmdp)
+
+static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
{
- BUG();
- return 0;
+#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
+ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
+ struct vm_area_struct *vma = vmf->vma;
+ vm_fault_t ret;
+
+ /* No support for anonymous transparent PUD pages yet */
+ if (vma_is_anonymous(vma))
+ goto split;
+ if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
+ if (vma->vm_ops->huge_fault) {
+ ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
+ if (!(ret & VM_FAULT_FALLBACK))
+ return ret;
+ }
+ }
+split:
+ /* COW or write-notify not handled on PUD level: split pud.*/
+ __split_huge_pud(vma, vmf->pud, vmf->address);
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
+ return VM_FAULT_FALLBACK;
}
-#endif /* CONFIG_NUMA_BALANCING */
/*
+ * The page faults may be spurious because of the racy access to the
+ * page table. For example, a non-populated virtual page is accessed
+ * on 2 CPUs simultaneously, thus the page faults are triggered on
+ * both CPUs. However, it's possible that one CPU (say CPU A) cannot
+ * find the reason for the page fault if the other CPU (say CPU B) has
+ * changed the page table before the PTE is checked on CPU A. Most of
+ * the time, the spurious page faults can be ignored safely. However,
+ * if the page fault is for the write access, it's possible that a
+ * stale read-only TLB entry exists in the local CPU and needs to be
+ * flushed on some architectures. This is called the spurious page
+ * fault fixing.
+ *
+ * Note: flush_tlb_fix_spurious_fault() is defined as flush_tlb_page()
+ * by default and used as such on most architectures, while
+ * flush_tlb_fix_spurious_fault_pmd() is defined as NOP by default and
+ * used as such on most architectures.
+ */
+static void fix_spurious_fault(struct vm_fault *vmf,
+ enum pgtable_level ptlevel)
+{
+ /* Skip spurious TLB flush for retried page fault */
+ if (vmf->flags & FAULT_FLAG_TRIED)
+ return;
+ /*
+ * This is needed only for protection faults but the arch code
+ * is not yet telling us if this is a protection fault or not.
+ * This still avoids useless tlb flushes for .text page faults
+ * with threads.
+ */
+ if (vmf->flags & FAULT_FLAG_WRITE) {
+ if (ptlevel == PGTABLE_LEVEL_PTE)
+ flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
+ vmf->pte);
+ else
+ flush_tlb_fix_spurious_fault_pmd(vmf->vma, vmf->address,
+ vmf->pmd);
+ }
+}
+/*
* These routines also need to handle stuff like marking pages dirty
* and/or accessed for architectures that don't do it in hardware (most
* RISC architectures). The early dirtying is also good on the i386.
@@ -3689,183 +6220,436 @@ static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
* with external mmu caches can use to update those (ie the Sparc or
* PowerPC hashed page tables that act as extended TLBs).
*
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), and pte mapped but not yet locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
+ * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
+ * concurrent faults).
+ *
+ * The mmap_lock may have been released depending on flags and our return value.
+ * See filemap_fault() and __folio_lock_or_retry().
*/
-int handle_pte_fault(struct mm_struct *mm,
- struct vm_area_struct *vma, unsigned long address,
- pte_t *pte, pmd_t *pmd, unsigned int flags)
+static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
{
pte_t entry;
- spinlock_t *ptl;
- entry = *pte;
- if (!pte_present(entry)) {
- if (pte_none(entry)) {
- if (vma->vm_ops) {
- if (likely(vma->vm_ops->fault))
- return do_linear_fault(mm, vma, address,
- pte, pmd, flags, entry);
- }
- return do_anonymous_page(mm, vma, address,
- pte, pmd, flags);
+ if (unlikely(pmd_none(*vmf->pmd))) {
+ /*
+ * Leave __pte_alloc() until later: because vm_ops->fault may
+ * want to allocate huge page, and if we expose page table
+ * for an instant, it will be difficult to retract from
+ * concurrent faults and from rmap lookups.
+ */
+ vmf->pte = NULL;
+ vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
+ } else {
+ pmd_t dummy_pmdval;
+
+ /*
+ * A regular pmd is established and it can't morph into a huge
+ * pmd by anon khugepaged, since that takes mmap_lock in write
+ * mode; but shmem or file collapse to THP could still morph
+ * it into a huge pmd: just retry later if so.
+ *
+ * Use the maywrite version to indicate that vmf->pte may be
+ * modified, but since we will use pte_same() to detect the
+ * change of the !pte_none() entry, there is no need to recheck
+ * the pmdval. Here we chooes to pass a dummy variable instead
+ * of NULL, which helps new user think about why this place is
+ * special.
+ */
+ vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
+ vmf->address, &dummy_pmdval,
+ &vmf->ptl);
+ if (unlikely(!vmf->pte))
+ return 0;
+ vmf->orig_pte = ptep_get_lockless(vmf->pte);
+ vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
+
+ if (pte_none(vmf->orig_pte)) {
+ pte_unmap(vmf->pte);
+ vmf->pte = NULL;
}
- if (pte_file(entry))
- return do_nonlinear_fault(mm, vma, address,
- pte, pmd, flags, entry);
- return do_swap_page(mm, vma, address,
- pte, pmd, flags, entry);
}
- if (pte_numa(entry))
- return do_numa_page(mm, vma, address, entry, pte, pmd);
+ if (!vmf->pte)
+ return do_pte_missing(vmf);
+
+ if (!pte_present(vmf->orig_pte))
+ return do_swap_page(vmf);
+
+ if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
+ return do_numa_page(vmf);
- ptl = pte_lockptr(mm, pmd);
- spin_lock(ptl);
- if (unlikely(!pte_same(*pte, entry)))
+ spin_lock(vmf->ptl);
+ entry = vmf->orig_pte;
+ if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
+ update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
goto unlock;
- if (flags & FAULT_FLAG_WRITE) {
+ }
+ if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
if (!pte_write(entry))
- return do_wp_page(mm, vma, address,
- pte, pmd, ptl, entry);
- entry = pte_mkdirty(entry);
+ return do_wp_page(vmf);
+ else if (likely(vmf->flags & FAULT_FLAG_WRITE))
+ entry = pte_mkdirty(entry);
}
entry = pte_mkyoung(entry);
- if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
- update_mmu_cache(vma, address, pte);
- } else {
- /*
- * This is needed only for protection faults but the arch code
- * is not yet telling us if this is a protection fault or not.
- * This still avoids useless tlb flushes for .text page faults
- * with threads.
- */
- if (flags & FAULT_FLAG_WRITE)
- flush_tlb_fix_spurious_fault(vma, address);
- }
+ if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
+ vmf->flags & FAULT_FLAG_WRITE))
+ update_mmu_cache_range(vmf, vmf->vma, vmf->address,
+ vmf->pte, 1);
+ else
+ fix_spurious_fault(vmf, PGTABLE_LEVEL_PTE);
unlock:
- pte_unmap_unlock(pte, ptl);
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
return 0;
}
/*
- * By the time we get here, we already hold the mm semaphore
+ * On entry, we hold either the VMA lock or the mmap_lock
+ * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
+ * the result, the mmap_lock is not held on exit. See filemap_fault()
+ * and __folio_lock_or_retry().
*/
-int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
unsigned long address, unsigned int flags)
{
+ struct vm_fault vmf = {
+ .vma = vma,
+ .address = address & PAGE_MASK,
+ .real_address = address,
+ .flags = flags,
+ .pgoff = linear_page_index(vma, address),
+ .gfp_mask = __get_fault_gfp_mask(vma),
+ };
+ struct mm_struct *mm = vma->vm_mm;
+ vm_flags_t vm_flags = vma->vm_flags;
pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
-
- __set_current_state(TASK_RUNNING);
+ p4d_t *p4d;
+ vm_fault_t ret;
- count_vm_event(PGFAULT);
- mem_cgroup_count_vm_event(mm, PGFAULT);
-
- /* do counter updates before entering really critical section. */
- check_sync_rss_stat(current);
-
- if (unlikely(is_vm_hugetlb_page(vma)))
- return hugetlb_fault(mm, vma, address, flags);
-
-retry:
pgd = pgd_offset(mm, address);
- pud = pud_alloc(mm, pgd, address);
- if (!pud)
+ p4d = p4d_alloc(mm, pgd, address);
+ if (!p4d)
return VM_FAULT_OOM;
- pmd = pmd_alloc(mm, pud, address);
- if (!pmd)
+
+ vmf.pud = pud_alloc(mm, p4d, address);
+ if (!vmf.pud)
return VM_FAULT_OOM;
- if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
- if (!vma->vm_ops)
- return do_huge_pmd_anonymous_page(mm, vma, address,
- pmd, flags);
+retry_pud:
+ if (pud_none(*vmf.pud) &&
+ thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) {
+ ret = create_huge_pud(&vmf);
+ if (!(ret & VM_FAULT_FALLBACK))
+ return ret;
} else {
- pmd_t orig_pmd = *pmd;
- int ret;
+ pud_t orig_pud = *vmf.pud;
barrier();
- if (pmd_trans_huge(orig_pmd)) {
- unsigned int dirty = flags & FAULT_FLAG_WRITE;
+ if (pud_trans_huge(orig_pud)) {
/*
- * If the pmd is splitting, return and retry the
- * the fault. Alternative: wait until the split
- * is done, and goto retry.
+ * TODO once we support anonymous PUDs: NUMA case and
+ * FAULT_FLAG_UNSHARE handling.
*/
- if (pmd_trans_splitting(orig_pmd))
+ if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
+ ret = wp_huge_pud(&vmf, orig_pud);
+ if (!(ret & VM_FAULT_FALLBACK))
+ return ret;
+ } else {
+ huge_pud_set_accessed(&vmf, orig_pud);
return 0;
+ }
+ }
+ }
- if (pmd_numa(orig_pmd))
- return do_huge_pmd_numa_page(mm, vma, address,
- orig_pmd, pmd);
+ vmf.pmd = pmd_alloc(mm, vmf.pud, address);
+ if (!vmf.pmd)
+ return VM_FAULT_OOM;
- if (dirty && !pmd_write(orig_pmd)) {
- ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
- orig_pmd);
- /*
- * If COW results in an oom, the huge pmd will
- * have been split, so retry the fault on the
- * pte for a smaller charge.
- */
- if (unlikely(ret & VM_FAULT_OOM))
- goto retry;
- return ret;
- } else {
- huge_pmd_set_accessed(mm, vma, address, pmd,
- orig_pmd, dirty);
- }
+ /* Huge pud page fault raced with pmd_alloc? */
+ if (pud_trans_unstable(vmf.pud))
+ goto retry_pud;
+ if (pmd_none(*vmf.pmd) &&
+ thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) {
+ ret = create_huge_pmd(&vmf);
+ if (ret & VM_FAULT_FALLBACK)
+ goto fallback;
+ else
+ return ret;
+ }
+
+ vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
+ if (pmd_none(vmf.orig_pmd))
+ goto fallback;
+
+ if (unlikely(!pmd_present(vmf.orig_pmd))) {
+ if (pmd_is_device_private_entry(vmf.orig_pmd))
+ return do_huge_pmd_device_private(&vmf);
+
+ if (pmd_is_migration_entry(vmf.orig_pmd))
+ pmd_migration_entry_wait(mm, vmf.pmd);
+ return 0;
+ }
+ if (pmd_trans_huge(vmf.orig_pmd)) {
+ if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
+ return do_huge_pmd_numa_page(&vmf);
+
+ if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
+ !pmd_write(vmf.orig_pmd)) {
+ ret = wp_huge_pmd(&vmf);
+ if (!(ret & VM_FAULT_FALLBACK))
+ return ret;
+ } else {
+ vmf.ptl = pmd_lock(mm, vmf.pmd);
+ if (!huge_pmd_set_accessed(&vmf))
+ fix_spurious_fault(&vmf, PGTABLE_LEVEL_PMD);
+ spin_unlock(vmf.ptl);
return 0;
}
}
- if (pmd_numa(*pmd))
- return do_pmd_numa_page(mm, vma, address, pmd);
+fallback:
+ return handle_pte_fault(&vmf);
+}
+
+/**
+ * mm_account_fault - Do page fault accounting
+ * @mm: mm from which memcg should be extracted. It can be NULL.
+ * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
+ * of perf event counters, but we'll still do the per-task accounting to
+ * the task who triggered this page fault.
+ * @address: the faulted address.
+ * @flags: the fault flags.
+ * @ret: the fault retcode.
+ *
+ * This will take care of most of the page fault accounting. Meanwhile, it
+ * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
+ * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
+ * still be in per-arch page fault handlers at the entry of page fault.
+ */
+static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
+ unsigned long address, unsigned int flags,
+ vm_fault_t ret)
+{
+ bool major;
+
+ /* Incomplete faults will be accounted upon completion. */
+ if (ret & VM_FAULT_RETRY)
+ return;
/*
- * Use __pte_alloc instead of pte_alloc_map, because we can't
- * run pte_offset_map on the pmd, if an huge pmd could
- * materialize from under us from a different thread.
+ * To preserve the behavior of older kernels, PGFAULT counters record
+ * both successful and failed faults, as opposed to perf counters,
+ * which ignore failed cases.
*/
- if (unlikely(pmd_none(*pmd)) &&
- unlikely(__pte_alloc(mm, vma, pmd, address)))
- return VM_FAULT_OOM;
- /* if an huge pmd materialized from under us just retry later */
- if (unlikely(pmd_trans_huge(*pmd)))
- return 0;
+ count_vm_event(PGFAULT);
+ count_memcg_event_mm(mm, PGFAULT);
+
+ /*
+ * Do not account for unsuccessful faults (e.g. when the address wasn't
+ * valid). That includes arch_vma_access_permitted() failing before
+ * reaching here. So this is not a "this many hardware page faults"
+ * counter. We should use the hw profiling for that.
+ */
+ if (ret & VM_FAULT_ERROR)
+ return;
+
+ /*
+ * We define the fault as a major fault when the final successful fault
+ * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
+ * handle it immediately previously).
+ */
+ major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
+
+ if (major)
+ current->maj_flt++;
+ else
+ current->min_flt++;
+
+ /*
+ * If the fault is done for GUP, regs will be NULL. We only do the
+ * accounting for the per thread fault counters who triggered the
+ * fault, and we skip the perf event updates.
+ */
+ if (!regs)
+ return;
+
+ if (major)
+ perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
+ else
+ perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
+}
+
+#ifdef CONFIG_LRU_GEN
+static void lru_gen_enter_fault(struct vm_area_struct *vma)
+{
+ /* the LRU algorithm only applies to accesses with recency */
+ current->in_lru_fault = vma_has_recency(vma);
+}
+
+static void lru_gen_exit_fault(void)
+{
+ current->in_lru_fault = false;
+}
+#else
+static void lru_gen_enter_fault(struct vm_area_struct *vma)
+{
+}
+
+static void lru_gen_exit_fault(void)
+{
+}
+#endif /* CONFIG_LRU_GEN */
+
+static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
+ unsigned int *flags)
+{
+ if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
+ if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
+ return VM_FAULT_SIGSEGV;
+ /*
+ * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
+ * just treat it like an ordinary read-fault otherwise.
+ */
+ if (!is_cow_mapping(vma->vm_flags))
+ *flags &= ~FAULT_FLAG_UNSHARE;
+ } else if (*flags & FAULT_FLAG_WRITE) {
+ /* Write faults on read-only mappings are impossible ... */
+ if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
+ return VM_FAULT_SIGSEGV;
+ /* ... and FOLL_FORCE only applies to COW mappings. */
+ if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
+ !is_cow_mapping(vma->vm_flags)))
+ return VM_FAULT_SIGSEGV;
+ }
+#ifdef CONFIG_PER_VMA_LOCK
/*
- * A regular pmd is established and it can't morph into a huge pmd
- * from under us anymore at this point because we hold the mmap_sem
- * read mode and khugepaged takes it in write mode. So now it's
- * safe to run pte_offset_map().
+ * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
+ * the assumption that lock is dropped on VM_FAULT_RETRY.
*/
- pte = pte_offset_map(pmd, address);
+ if (WARN_ON_ONCE((*flags &
+ (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
+ (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
+ return VM_FAULT_SIGSEGV;
+#endif
- return handle_pte_fault(mm, vma, address, pte, pmd, flags);
+ return 0;
}
+/*
+ * By the time we get here, we already hold either the VMA lock or the
+ * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
+ *
+ * The mmap_lock may have been released depending on flags and our
+ * return value. See filemap_fault() and __folio_lock_or_retry().
+ */
+vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
+ unsigned int flags, struct pt_regs *regs)
+{
+ /* If the fault handler drops the mmap_lock, vma may be freed */
+ struct mm_struct *mm = vma->vm_mm;
+ vm_fault_t ret;
+ bool is_droppable;
+
+ __set_current_state(TASK_RUNNING);
+
+ ret = sanitize_fault_flags(vma, &flags);
+ if (ret)
+ goto out;
+
+ if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
+ flags & FAULT_FLAG_INSTRUCTION,
+ flags & FAULT_FLAG_REMOTE)) {
+ ret = VM_FAULT_SIGSEGV;
+ goto out;
+ }
+
+ is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
+
+ /*
+ * Enable the memcg OOM handling for faults triggered in user
+ * space. Kernel faults are handled more gracefully.
+ */
+ if (flags & FAULT_FLAG_USER)
+ mem_cgroup_enter_user_fault();
+
+ lru_gen_enter_fault(vma);
+
+ if (unlikely(is_vm_hugetlb_page(vma)))
+ ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
+ else
+ ret = __handle_mm_fault(vma, address, flags);
+
+ /*
+ * Warning: It is no longer safe to dereference vma-> after this point,
+ * because mmap_lock might have been dropped by __handle_mm_fault(), so
+ * vma might be destroyed from underneath us.
+ */
+
+ lru_gen_exit_fault();
+
+ /* If the mapping is droppable, then errors due to OOM aren't fatal. */
+ if (is_droppable)
+ ret &= ~VM_FAULT_OOM;
+
+ if (flags & FAULT_FLAG_USER) {
+ mem_cgroup_exit_user_fault();
+ /*
+ * The task may have entered a memcg OOM situation but
+ * if the allocation error was handled gracefully (no
+ * VM_FAULT_OOM), there is no need to kill anything.
+ * Just clean up the OOM state peacefully.
+ */
+ if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
+ mem_cgroup_oom_synchronize(false);
+ }
+out:
+ mm_account_fault(mm, regs, address, flags, ret);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(handle_mm_fault);
+
+#ifndef __PAGETABLE_P4D_FOLDED
+/*
+ * Allocate p4d page table.
+ * We've already handled the fast-path in-line.
+ */
+int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
+{
+ p4d_t *new = p4d_alloc_one(mm, address);
+ if (!new)
+ return -ENOMEM;
+
+ spin_lock(&mm->page_table_lock);
+ if (pgd_present(*pgd)) { /* Another has populated it */
+ p4d_free(mm, new);
+ } else {
+ smp_wmb(); /* See comment in pmd_install() */
+ pgd_populate(mm, pgd, new);
+ }
+ spin_unlock(&mm->page_table_lock);
+ return 0;
+}
+#endif /* __PAGETABLE_P4D_FOLDED */
+
#ifndef __PAGETABLE_PUD_FOLDED
/*
* Allocate page upper directory.
* We've already handled the fast-path in-line.
*/
-int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
+int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
{
pud_t *new = pud_alloc_one(mm, address);
if (!new)
return -ENOMEM;
- smp_wmb(); /* See comment in __pte_alloc */
-
spin_lock(&mm->page_table_lock);
- if (pgd_present(*pgd)) /* Another has populated it */
+ if (!p4d_present(*p4d)) {
+ mm_inc_nr_puds(mm);
+ smp_wmb(); /* See comment in pmd_install() */
+ p4d_populate(mm, p4d, new);
+ } else /* Another has populated it */
pud_free(mm, new);
- else
- pgd_populate(mm, pgd, new);
spin_unlock(&mm->page_table_lock);
return 0;
}
@@ -3878,254 +6662,317 @@ int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
*/
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
+ spinlock_t *ptl;
pmd_t *new = pmd_alloc_one(mm, address);
if (!new)
return -ENOMEM;
- smp_wmb(); /* See comment in __pte_alloc */
-
- spin_lock(&mm->page_table_lock);
-#ifndef __ARCH_HAS_4LEVEL_HACK
- if (pud_present(*pud)) /* Another has populated it */
- pmd_free(mm, new);
- else
+ ptl = pud_lock(mm, pud);
+ if (!pud_present(*pud)) {
+ mm_inc_nr_pmds(mm);
+ smp_wmb(); /* See comment in pmd_install() */
pud_populate(mm, pud, new);
-#else
- if (pgd_present(*pud)) /* Another has populated it */
+ } else { /* Another has populated it */
pmd_free(mm, new);
- else
- pgd_populate(mm, pud, new);
-#endif /* __ARCH_HAS_4LEVEL_HACK */
- spin_unlock(&mm->page_table_lock);
+ }
+ spin_unlock(ptl);
return 0;
}
#endif /* __PAGETABLE_PMD_FOLDED */
-#if !defined(__HAVE_ARCH_GATE_AREA)
-
-#if defined(AT_SYSINFO_EHDR)
-static struct vm_area_struct gate_vma;
-
-static int __init gate_vma_init(void)
+static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
+ spinlock_t *lock, pte_t *ptep,
+ pgprot_t pgprot, unsigned long pfn_base,
+ unsigned long addr_mask, bool writable,
+ bool special)
{
- gate_vma.vm_mm = NULL;
- gate_vma.vm_start = FIXADDR_USER_START;
- gate_vma.vm_end = FIXADDR_USER_END;
- gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
- gate_vma.vm_page_prot = __P101;
-
- return 0;
+ args->lock = lock;
+ args->ptep = ptep;
+ args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
+ args->addr_mask = addr_mask;
+ args->pgprot = pgprot;
+ args->writable = writable;
+ args->special = special;
}
-__initcall(gate_vma_init);
-#endif
-struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
+static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
{
-#ifdef AT_SYSINFO_EHDR
- return &gate_vma;
-#else
- return NULL;
-#endif
-}
+#ifdef CONFIG_LOCKDEP
+ struct file *file = vma->vm_file;
+ struct address_space *mapping = file ? file->f_mapping : NULL;
-int in_gate_area_no_mm(unsigned long addr)
-{
-#ifdef AT_SYSINFO_EHDR
- if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
- return 1;
+ if (mapping)
+ lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
+ lockdep_is_held(&vma->vm_mm->mmap_lock));
+ else
+ lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
#endif
- return 0;
}
-#endif /* __HAVE_ARCH_GATE_AREA */
-
-static int __follow_pte(struct mm_struct *mm, unsigned long address,
- pte_t **ptepp, spinlock_t **ptlp)
+/**
+ * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
+ * @args: Pointer to struct @follow_pfnmap_args
+ *
+ * The caller needs to setup args->vma and args->address to point to the
+ * virtual address as the target of such lookup. On a successful return,
+ * the results will be put into other output fields.
+ *
+ * After the caller finished using the fields, the caller must invoke
+ * another follow_pfnmap_end() to proper releases the locks and resources
+ * of such look up request.
+ *
+ * During the start() and end() calls, the results in @args will be valid
+ * as proper locks will be held. After the end() is called, all the fields
+ * in @follow_pfnmap_args will be invalid to be further accessed. Further
+ * use of such information after end() may require proper synchronizations
+ * by the caller with page table updates, otherwise it can create a
+ * security bug.
+ *
+ * If the PTE maps a refcounted page, callers are responsible to protect
+ * against invalidation with MMU notifiers; otherwise access to the PFN at
+ * a later point in time can trigger use-after-free.
+ *
+ * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
+ * should be taken for read, and the mmap semaphore cannot be released
+ * before the end() is invoked.
+ *
+ * This function must not be used to modify PTE content.
+ *
+ * Return: zero on success, negative otherwise.
+ */
+int follow_pfnmap_start(struct follow_pfnmap_args *args)
{
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *ptep;
+ struct vm_area_struct *vma = args->vma;
+ unsigned long address = args->address;
+ struct mm_struct *mm = vma->vm_mm;
+ spinlock_t *lock;
+ pgd_t *pgdp;
+ p4d_t *p4dp, p4d;
+ pud_t *pudp, pud;
+ pmd_t *pmdp, pmd;
+ pte_t *ptep, pte;
- pgd = pgd_offset(mm, address);
- if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
+ pfnmap_lockdep_assert(vma);
+
+ if (unlikely(address < vma->vm_start || address >= vma->vm_end))
goto out;
- pud = pud_offset(pgd, address);
- if (pud_none(*pud) || unlikely(pud_bad(*pud)))
+ if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
+ goto out;
+retry:
+ pgdp = pgd_offset(mm, address);
+ if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
goto out;
- pmd = pmd_offset(pud, address);
- VM_BUG_ON(pmd_trans_huge(*pmd));
- if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
+ p4dp = p4d_offset(pgdp, address);
+ p4d = p4dp_get(p4dp);
+ if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
goto out;
- /* We cannot handle huge page PFN maps. Luckily they don't exist. */
- if (pmd_huge(*pmd))
+ pudp = pud_offset(p4dp, address);
+ pud = pudp_get(pudp);
+ if (pud_none(pud))
goto out;
+ if (pud_leaf(pud)) {
+ lock = pud_lock(mm, pudp);
+ if (!unlikely(pud_leaf(pud))) {
+ spin_unlock(lock);
+ goto retry;
+ }
+ pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
+ pud_pfn(pud), PUD_MASK, pud_write(pud),
+ pud_special(pud));
+ return 0;
+ }
+
+ pmdp = pmd_offset(pudp, address);
+ pmd = pmdp_get_lockless(pmdp);
+ if (pmd_leaf(pmd)) {
+ lock = pmd_lock(mm, pmdp);
+ if (!unlikely(pmd_leaf(pmd))) {
+ spin_unlock(lock);
+ goto retry;
+ }
+ pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
+ pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
+ pmd_special(pmd));
+ return 0;
+ }
- ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
+ ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
if (!ptep)
goto out;
- if (!pte_present(*ptep))
+ pte = ptep_get(ptep);
+ if (!pte_present(pte))
goto unlock;
- *ptepp = ptep;
+ pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
+ pte_pfn(pte), PAGE_MASK, pte_write(pte),
+ pte_special(pte));
return 0;
unlock:
- pte_unmap_unlock(ptep, *ptlp);
+ pte_unmap_unlock(ptep, lock);
out:
return -EINVAL;
}
-
-static inline int follow_pte(struct mm_struct *mm, unsigned long address,
- pte_t **ptepp, spinlock_t **ptlp)
-{
- int res;
-
- /* (void) is needed to make gcc happy */
- (void) __cond_lock(*ptlp,
- !(res = __follow_pte(mm, address, ptepp, ptlp)));
- return res;
-}
+EXPORT_SYMBOL_GPL(follow_pfnmap_start);
/**
- * follow_pfn - look up PFN at a user virtual address
- * @vma: memory mapping
- * @address: user virtual address
- * @pfn: location to store found PFN
- *
- * Only IO mappings and raw PFN mappings are allowed.
+ * follow_pfnmap_end(): End a follow_pfnmap_start() process
+ * @args: Pointer to struct @follow_pfnmap_args
*
- * Returns zero and the pfn at @pfn on success, -ve otherwise.
+ * Must be used in pair of follow_pfnmap_start(). See the start() function
+ * above for more information.
*/
-int follow_pfn(struct vm_area_struct *vma, unsigned long address,
- unsigned long *pfn)
+void follow_pfnmap_end(struct follow_pfnmap_args *args)
{
- int ret = -EINVAL;
- spinlock_t *ptl;
- pte_t *ptep;
-
- if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
- return ret;
-
- ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
- if (ret)
- return ret;
- *pfn = pte_pfn(*ptep);
- pte_unmap_unlock(ptep, ptl);
- return 0;
+ if (args->lock)
+ spin_unlock(args->lock);
+ if (args->ptep)
+ pte_unmap(args->ptep);
}
-EXPORT_SYMBOL(follow_pfn);
+EXPORT_SYMBOL_GPL(follow_pfnmap_end);
#ifdef CONFIG_HAVE_IOREMAP_PROT
-int follow_phys(struct vm_area_struct *vma,
- unsigned long address, unsigned int flags,
- unsigned long *prot, resource_size_t *phys)
-{
- int ret = -EINVAL;
- pte_t *ptep, pte;
- spinlock_t *ptl;
-
- if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
- goto out;
-
- if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
- goto out;
- pte = *ptep;
-
- if ((flags & FOLL_WRITE) && !pte_write(pte))
- goto unlock;
-
- *prot = pgprot_val(pte_pgprot(pte));
- *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
-
- ret = 0;
-unlock:
- pte_unmap_unlock(ptep, ptl);
-out:
- return ret;
-}
-
+/**
+ * generic_access_phys - generic implementation for iomem mmap access
+ * @vma: the vma to access
+ * @addr: userspace address, not relative offset within @vma
+ * @buf: buffer to read/write
+ * @len: length of transfer
+ * @write: set to FOLL_WRITE when writing, otherwise reading
+ *
+ * This is a generic implementation for &vm_operations_struct.access for an
+ * iomem mapping. This callback is used by access_process_vm() when the @vma is
+ * not page based.
+ */
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write)
{
resource_size_t phys_addr;
- unsigned long prot = 0;
+ pgprot_t prot = __pgprot(0);
void __iomem *maddr;
- int offset = addr & (PAGE_SIZE-1);
+ int offset = offset_in_page(addr);
+ int ret = -EINVAL;
+ bool writable;
+ struct follow_pfnmap_args args = { .vma = vma, .address = addr };
- if (follow_phys(vma, addr, write, &prot, &phys_addr))
+retry:
+ if (follow_pfnmap_start(&args))
return -EINVAL;
+ prot = args.pgprot;
+ phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
+ writable = args.writable;
+ follow_pfnmap_end(&args);
+
+ if ((write & FOLL_WRITE) && !writable)
+ return -EINVAL;
+
+ maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
+ if (!maddr)
+ return -ENOMEM;
+
+ if (follow_pfnmap_start(&args))
+ goto out_unmap;
+
+ if ((pgprot_val(prot) != pgprot_val(args.pgprot)) ||
+ (phys_addr != (args.pfn << PAGE_SHIFT)) ||
+ (writable != args.writable)) {
+ follow_pfnmap_end(&args);
+ iounmap(maddr);
+ goto retry;
+ }
- maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
if (write)
memcpy_toio(maddr + offset, buf, len);
else
memcpy_fromio(buf, maddr + offset, len);
+ ret = len;
+ follow_pfnmap_end(&args);
+out_unmap:
iounmap(maddr);
- return len;
+ return ret;
}
+EXPORT_SYMBOL_GPL(generic_access_phys);
#endif
/*
- * Access another process' address space as given in mm. If non-NULL, use the
- * given task for page fault accounting.
+ * Access another process' address space as given in mm.
*/
-static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long addr, void *buf, int len, int write)
+static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
+ void *buf, int len, unsigned int gup_flags)
{
- struct vm_area_struct *vma;
void *old_buf = buf;
+ int write = gup_flags & FOLL_WRITE;
+
+ if (mmap_read_lock_killable(mm))
+ return 0;
+
+ /* Untag the address before looking up the VMA */
+ addr = untagged_addr_remote(mm, addr);
+
+ /* Avoid triggering the temporary warning in __get_user_pages */
+ if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
+ return 0;
- down_read(&mm->mmap_sem);
/* ignore errors, just check how much was successfully transferred */
while (len) {
- int bytes, ret, offset;
+ int bytes, offset;
void *maddr;
- struct page *page = NULL;
+ struct folio *folio;
+ struct vm_area_struct *vma = NULL;
+ struct page *page = get_user_page_vma_remote(mm, addr,
+ gup_flags, &vma);
+
+ if (IS_ERR(page)) {
+ /* We might need to expand the stack to access it */
+ vma = vma_lookup(mm, addr);
+ if (!vma) {
+ vma = expand_stack(mm, addr);
+
+ /* mmap_lock was dropped on failure */
+ if (!vma)
+ return buf - old_buf;
+
+ /* Try again if stack expansion worked */
+ continue;
+ }
- ret = get_user_pages(tsk, mm, addr, 1,
- write, 1, &page, &vma);
- if (ret <= 0) {
/*
* Check if this is a VM_IO | VM_PFNMAP VMA, which
* we can access using slightly different code.
*/
+ bytes = 0;
#ifdef CONFIG_HAVE_IOREMAP_PROT
- vma = find_vma(mm, addr);
- if (!vma || vma->vm_start > addr)
- break;
if (vma->vm_ops && vma->vm_ops->access)
- ret = vma->vm_ops->access(vma, addr, buf,
- len, write);
- if (ret <= 0)
+ bytes = vma->vm_ops->access(vma, addr, buf,
+ len, write);
#endif
+ if (bytes <= 0)
break;
- bytes = ret;
} else {
+ folio = page_folio(page);
bytes = len;
offset = addr & (PAGE_SIZE-1);
if (bytes > PAGE_SIZE-offset)
bytes = PAGE_SIZE-offset;
- maddr = kmap(page);
+ maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
if (write) {
copy_to_user_page(vma, page, addr,
maddr + offset, buf, bytes);
- set_page_dirty_lock(page);
+ folio_mark_dirty_lock(folio);
} else {
copy_from_user_page(vma, page, addr,
buf, maddr + offset, bytes);
}
- kunmap(page);
- page_cache_release(page);
+ folio_release_kmap(folio, maddr);
}
len -= bytes;
buf += bytes;
addr += bytes;
}
- up_read(&mm->mmap_sem);
+ mmap_read_unlock(mm);
return buf - old_buf;
}
@@ -4136,14 +6983,16 @@ static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
* @addr: start address to access
* @buf: source or destination buffer
* @len: number of bytes to transfer
- * @write: whether the access is a write
+ * @gup_flags: flags modifying lookup behaviour
*
* The caller must hold a reference on @mm.
+ *
+ * Return: number of bytes copied from source to destination.
*/
int access_remote_vm(struct mm_struct *mm, unsigned long addr,
- void *buf, int len, int write)
+ void *buf, int len, unsigned int gup_flags)
{
- return __access_remote_vm(NULL, mm, addr, buf, len, write);
+ return __access_remote_vm(mm, addr, buf, len, gup_flags);
}
/*
@@ -4152,7 +7001,7 @@ int access_remote_vm(struct mm_struct *mm, unsigned long addr,
* Do not walk the page table directly, use get_user_pages
*/
int access_process_vm(struct task_struct *tsk, unsigned long addr,
- void *buf, int len, int write)
+ void *buf, int len, unsigned int gup_flags)
{
struct mm_struct *mm;
int ret;
@@ -4161,11 +7010,133 @@ int access_process_vm(struct task_struct *tsk, unsigned long addr,
if (!mm)
return 0;
- ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
+ ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
+
mmput(mm);
return ret;
}
+EXPORT_SYMBOL_GPL(access_process_vm);
+
+#ifdef CONFIG_BPF_SYSCALL
+/*
+ * Copy a string from another process's address space as given in mm.
+ * If there is any error return -EFAULT.
+ */
+static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
+ void *buf, int len, unsigned int gup_flags)
+{
+ void *old_buf = buf;
+ int err = 0;
+
+ *(char *)buf = '\0';
+
+ if (mmap_read_lock_killable(mm))
+ return -EFAULT;
+
+ addr = untagged_addr_remote(mm, addr);
+
+ /* Avoid triggering the temporary warning in __get_user_pages */
+ if (!vma_lookup(mm, addr)) {
+ err = -EFAULT;
+ goto out;
+ }
+
+ while (len) {
+ int bytes, offset, retval;
+ void *maddr;
+ struct folio *folio;
+ struct page *page;
+ struct vm_area_struct *vma = NULL;
+
+ page = get_user_page_vma_remote(mm, addr, gup_flags, &vma);
+ if (IS_ERR(page)) {
+ /*
+ * Treat as a total failure for now until we decide how
+ * to handle the CONFIG_HAVE_IOREMAP_PROT case and
+ * stack expansion.
+ */
+ *(char *)buf = '\0';
+ err = -EFAULT;
+ goto out;
+ }
+
+ folio = page_folio(page);
+ bytes = len;
+ offset = addr & (PAGE_SIZE - 1);
+ if (bytes > PAGE_SIZE - offset)
+ bytes = PAGE_SIZE - offset;
+
+ maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
+ retval = strscpy(buf, maddr + offset, bytes);
+ if (retval >= 0) {
+ /* Found the end of the string */
+ buf += retval;
+ folio_release_kmap(folio, maddr);
+ break;
+ }
+
+ buf += bytes - 1;
+ /*
+ * Because strscpy always NUL terminates we need to
+ * copy the last byte in the page if we are going to
+ * load more pages
+ */
+ if (bytes != len) {
+ addr += bytes - 1;
+ copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1);
+ buf += 1;
+ addr += 1;
+ }
+ len -= bytes;
+
+ folio_release_kmap(folio, maddr);
+ }
+
+out:
+ mmap_read_unlock(mm);
+ if (err)
+ return err;
+ return buf - old_buf;
+}
+
+/**
+ * copy_remote_vm_str - copy a string from another process's address space.
+ * @tsk: the task of the target address space
+ * @addr: start address to read from
+ * @buf: destination buffer
+ * @len: number of bytes to copy
+ * @gup_flags: flags modifying lookup behaviour
+ *
+ * The caller must hold a reference on @mm.
+ *
+ * Return: number of bytes copied from @addr (source) to @buf (destination);
+ * not including the trailing NUL. Always guaranteed to leave NUL-terminated
+ * buffer. On any error, return -EFAULT.
+ */
+int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
+ void *buf, int len, unsigned int gup_flags)
+{
+ struct mm_struct *mm;
+ int ret;
+
+ if (unlikely(len == 0))
+ return 0;
+
+ mm = get_task_mm(tsk);
+ if (!mm) {
+ *(char *)buf = '\0';
+ return -EFAULT;
+ }
+
+ ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags);
+
+ mmput(mm);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(copy_remote_vm_str);
+#endif /* CONFIG_BPF_SYSCALL */
/*
* Print the name of a VMA.
@@ -4176,127 +7147,255 @@ void print_vma_addr(char *prefix, unsigned long ip)
struct vm_area_struct *vma;
/*
- * Do not print if we are in atomic
- * contexts (in exception stacks, etc.):
+ * we might be running from an atomic context so we cannot sleep
*/
- if (preempt_count())
+ if (!mmap_read_trylock(mm))
return;
- down_read(&mm->mmap_sem);
- vma = find_vma(mm, ip);
+ vma = vma_lookup(mm, ip);
if (vma && vma->vm_file) {
struct file *f = vma->vm_file;
- char *buf = (char *)__get_free_page(GFP_KERNEL);
- if (buf) {
- char *p;
-
- p = d_path(&f->f_path, buf, PAGE_SIZE);
- if (IS_ERR(p))
- p = "?";
- printk("%s%s[%lx+%lx]", prefix, kbasename(p),
- vma->vm_start,
- vma->vm_end - vma->vm_start);
- free_page((unsigned long)buf);
- }
+ ip -= vma->vm_start;
+ ip += vma->vm_pgoff << PAGE_SHIFT;
+ printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
+ vma->vm_start,
+ vma->vm_end - vma->vm_start);
}
- up_read(&mm->mmap_sem);
+ mmap_read_unlock(mm);
}
#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
-void might_fault(void)
+void __might_fault(const char *file, int line)
{
- /*
- * Some code (nfs/sunrpc) uses socket ops on kernel memory while
- * holding the mmap_sem, this is safe because kernel memory doesn't
- * get paged out, therefore we'll never actually fault, and the
- * below annotations will generate false positives.
- */
- if (segment_eq(get_fs(), KERNEL_DS))
+ if (pagefault_disabled())
return;
-
- /*
- * it would be nicer only to annotate paths which are not under
- * pagefault_disable, however that requires a larger audit and
- * providing helpers like get_user_atomic.
- */
- if (in_atomic())
- return;
-
- __might_sleep(__FILE__, __LINE__, 0);
-
+ __might_sleep(file, line);
if (current->mm)
- might_lock_read(&current->mm->mmap_sem);
+ might_lock_read(&current->mm->mmap_lock);
}
-EXPORT_SYMBOL(might_fault);
+EXPORT_SYMBOL(__might_fault);
#endif
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
-static void clear_gigantic_page(struct page *page,
- unsigned long addr,
- unsigned int pages_per_huge_page)
+/*
+ * Process all subpages of the specified huge page with the specified
+ * operation. The target subpage will be processed last to keep its
+ * cache lines hot.
+ */
+static inline int process_huge_page(
+ unsigned long addr_hint, unsigned int nr_pages,
+ int (*process_subpage)(unsigned long addr, int idx, void *arg),
+ void *arg)
{
- int i;
- struct page *p = page;
+ int i, n, base, l, ret;
+ unsigned long addr = addr_hint &
+ ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
+ /* Process target subpage last to keep its cache lines hot */
might_sleep();
- for (i = 0; i < pages_per_huge_page;
- i++, p = mem_map_next(p, page, i)) {
+ n = (addr_hint - addr) / PAGE_SIZE;
+ if (2 * n <= nr_pages) {
+ /* If target subpage in first half of huge page */
+ base = 0;
+ l = n;
+ /* Process subpages at the end of huge page */
+ for (i = nr_pages - 1; i >= 2 * n; i--) {
+ cond_resched();
+ ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
+ if (ret)
+ return ret;
+ }
+ } else {
+ /* If target subpage in second half of huge page */
+ base = nr_pages - 2 * (nr_pages - n);
+ l = nr_pages - n;
+ /* Process subpages at the begin of huge page */
+ for (i = 0; i < base; i++) {
+ cond_resched();
+ ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
+ if (ret)
+ return ret;
+ }
+ }
+ /*
+ * Process remaining subpages in left-right-left-right pattern
+ * towards the target subpage
+ */
+ for (i = 0; i < l; i++) {
+ int left_idx = base + i;
+ int right_idx = base + 2 * l - 1 - i;
+
+ cond_resched();
+ ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
+ if (ret)
+ return ret;
cond_resched();
- clear_user_highpage(p, addr + i * PAGE_SIZE);
+ ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
+ if (ret)
+ return ret;
}
+ return 0;
}
-void clear_huge_page(struct page *page,
- unsigned long addr, unsigned int pages_per_huge_page)
+
+static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
+ unsigned int nr_pages)
{
+ unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
int i;
- if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
- clear_gigantic_page(page, addr, pages_per_huge_page);
- return;
- }
-
might_sleep();
- for (i = 0; i < pages_per_huge_page; i++) {
+ for (i = 0; i < nr_pages; i++) {
cond_resched();
- clear_user_highpage(page + i, addr + i * PAGE_SIZE);
+ clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
}
}
-static void copy_user_gigantic_page(struct page *dst, struct page *src,
- unsigned long addr,
- struct vm_area_struct *vma,
- unsigned int pages_per_huge_page)
+static int clear_subpage(unsigned long addr, int idx, void *arg)
{
- int i;
- struct page *dst_base = dst;
- struct page *src_base = src;
+ struct folio *folio = arg;
- for (i = 0; i < pages_per_huge_page; ) {
- cond_resched();
- copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
+ clear_user_highpage(folio_page(folio, idx), addr);
+ return 0;
+}
- i++;
- dst = mem_map_next(dst, dst_base, i);
- src = mem_map_next(src, src_base, i);
- }
+/**
+ * folio_zero_user - Zero a folio which will be mapped to userspace.
+ * @folio: The folio to zero.
+ * @addr_hint: The address will be accessed or the base address if uncelar.
+ */
+void folio_zero_user(struct folio *folio, unsigned long addr_hint)
+{
+ unsigned int nr_pages = folio_nr_pages(folio);
+
+ if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
+ clear_gigantic_page(folio, addr_hint, nr_pages);
+ else
+ process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
}
-void copy_user_huge_page(struct page *dst, struct page *src,
- unsigned long addr, struct vm_area_struct *vma,
- unsigned int pages_per_huge_page)
+static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
+ unsigned long addr_hint,
+ struct vm_area_struct *vma,
+ unsigned int nr_pages)
{
+ unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
+ struct page *dst_page;
+ struct page *src_page;
int i;
- if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
- copy_user_gigantic_page(dst, src, addr, vma,
- pages_per_huge_page);
- return;
+ for (i = 0; i < nr_pages; i++) {
+ dst_page = folio_page(dst, i);
+ src_page = folio_page(src, i);
+
+ cond_resched();
+ if (copy_mc_user_highpage(dst_page, src_page,
+ addr + i*PAGE_SIZE, vma))
+ return -EHWPOISON;
}
+ return 0;
+}
+
+struct copy_subpage_arg {
+ struct folio *dst;
+ struct folio *src;
+ struct vm_area_struct *vma;
+};
+
+static int copy_subpage(unsigned long addr, int idx, void *arg)
+{
+ struct copy_subpage_arg *copy_arg = arg;
+ struct page *dst = folio_page(copy_arg->dst, idx);
+ struct page *src = folio_page(copy_arg->src, idx);
+
+ if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
+ return -EHWPOISON;
+ return 0;
+}
+
+int copy_user_large_folio(struct folio *dst, struct folio *src,
+ unsigned long addr_hint, struct vm_area_struct *vma)
+{
+ unsigned int nr_pages = folio_nr_pages(dst);
+ struct copy_subpage_arg arg = {
+ .dst = dst,
+ .src = src,
+ .vma = vma,
+ };
+
+ if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
+ return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
+
+ return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
+}
+
+long copy_folio_from_user(struct folio *dst_folio,
+ const void __user *usr_src,
+ bool allow_pagefault)
+{
+ void *kaddr;
+ unsigned long i, rc = 0;
+ unsigned int nr_pages = folio_nr_pages(dst_folio);
+ unsigned long ret_val = nr_pages * PAGE_SIZE;
+ struct page *subpage;
+
+ for (i = 0; i < nr_pages; i++) {
+ subpage = folio_page(dst_folio, i);
+ kaddr = kmap_local_page(subpage);
+ if (!allow_pagefault)
+ pagefault_disable();
+ rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
+ if (!allow_pagefault)
+ pagefault_enable();
+ kunmap_local(kaddr);
+
+ ret_val -= (PAGE_SIZE - rc);
+ if (rc)
+ break;
+
+ flush_dcache_page(subpage);
- might_sleep();
- for (i = 0; i < pages_per_huge_page; i++) {
cond_resched();
- copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
}
+ return ret_val;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
+
+#if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
+
+static struct kmem_cache *page_ptl_cachep;
+
+void __init ptlock_cache_init(void)
+{
+ page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
+ SLAB_PANIC, NULL);
+}
+
+bool ptlock_alloc(struct ptdesc *ptdesc)
+{
+ spinlock_t *ptl;
+
+ ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
+ if (!ptl)
+ return false;
+ ptdesc->ptl = ptl;
+ return true;
+}
+
+void ptlock_free(struct ptdesc *ptdesc)
+{
+ if (ptdesc->ptl)
+ kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
+}
+#endif
+
+void vma_pgtable_walk_begin(struct vm_area_struct *vma)
+{
+ if (is_vm_hugetlb_page(vma))
+ hugetlb_vma_lock_read(vma);
+}
+
+void vma_pgtable_walk_end(struct vm_area_struct *vma)
+{
+ if (is_vm_hugetlb_page(vma))
+ hugetlb_vma_unlock_read(vma);
+}