summaryrefslogtreecommitdiff
path: root/mm/mlock.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/mlock.c')
-rw-r--r--mm/mlock.c935
1 files changed, 446 insertions, 489 deletions
diff --git a/mm/mlock.c b/mm/mlock.c
index 41cc47e28ad6..2f699c3497a5 100644
--- a/mm/mlock.c
+++ b/mm/mlock.c
@@ -14,6 +14,7 @@
#include <linux/swapops.h>
#include <linux/pagemap.h>
#include <linux/pagevec.h>
+#include <linux/pagewalk.h>
#include <linux/mempolicy.h>
#include <linux/syscalls.h>
#include <linux/sched.h>
@@ -23,9 +24,19 @@
#include <linux/hugetlb.h>
#include <linux/memcontrol.h>
#include <linux/mm_inline.h>
+#include <linux/secretmem.h>
#include "internal.h"
+struct mlock_fbatch {
+ local_lock_t lock;
+ struct folio_batch fbatch;
+};
+
+static DEFINE_PER_CPU(struct mlock_fbatch, mlock_fbatch) = {
+ .lock = INIT_LOCAL_LOCK(lock),
+};
+
bool can_do_mlock(void)
{
if (rlimit(RLIMIT_MEMLOCK) != 0)
@@ -37,473 +48,409 @@ bool can_do_mlock(void)
EXPORT_SYMBOL(can_do_mlock);
/*
- * Mlocked pages are marked with PageMlocked() flag for efficient testing
+ * Mlocked folios are marked with the PG_mlocked flag for efficient testing
* in vmscan and, possibly, the fault path; and to support semi-accurate
* statistics.
*
- * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
- * be placed on the LRU "unevictable" list, rather than the [in]active lists.
- * The unevictable list is an LRU sibling list to the [in]active lists.
- * PageUnevictable is set to indicate the unevictable state.
- *
- * When lazy mlocking via vmscan, it is important to ensure that the
- * vma's VM_LOCKED status is not concurrently being modified, otherwise we
- * may have mlocked a page that is being munlocked. So lazy mlock must take
- * the mmap_sem for read, and verify that the vma really is locked
- * (see mm/rmap.c).
+ * An mlocked folio [folio_test_mlocked(folio)] is unevictable. As such, it
+ * will be ostensibly placed on the LRU "unevictable" list (actually no such
+ * list exists), rather than the [in]active lists. PG_unevictable is set to
+ * indicate the unevictable state.
*/
-/*
- * LRU accounting for clear_page_mlock()
- */
-void clear_page_mlock(struct page *page)
+static struct lruvec *__mlock_folio(struct folio *folio, struct lruvec *lruvec)
{
- if (!TestClearPageMlocked(page))
- return;
+ /* There is nothing more we can do while it's off LRU */
+ if (!folio_test_clear_lru(folio))
+ return lruvec;
- mod_zone_page_state(page_zone(page), NR_MLOCK,
- -hpage_nr_pages(page));
- count_vm_event(UNEVICTABLE_PGCLEARED);
- /*
- * The previous TestClearPageMlocked() corresponds to the smp_mb()
- * in __pagevec_lru_add_fn().
- *
- * See __pagevec_lru_add_fn for more explanation.
- */
- if (!isolate_lru_page(page)) {
- putback_lru_page(page);
- } else {
+ lruvec = folio_lruvec_relock_irq(folio, lruvec);
+
+ if (unlikely(folio_evictable(folio))) {
/*
- * We lost the race. the page already moved to evictable list.
+ * This is a little surprising, but quite possible: PG_mlocked
+ * must have got cleared already by another CPU. Could this
+ * folio be unevictable? I'm not sure, but move it now if so.
*/
- if (PageUnevictable(page))
- count_vm_event(UNEVICTABLE_PGSTRANDED);
+ if (folio_test_unevictable(folio)) {
+ lruvec_del_folio(lruvec, folio);
+ folio_clear_unevictable(folio);
+ lruvec_add_folio(lruvec, folio);
+
+ __count_vm_events(UNEVICTABLE_PGRESCUED,
+ folio_nr_pages(folio));
+ }
+ goto out;
}
+
+ if (folio_test_unevictable(folio)) {
+ if (folio_test_mlocked(folio))
+ folio->mlock_count++;
+ goto out;
+ }
+
+ lruvec_del_folio(lruvec, folio);
+ folio_clear_active(folio);
+ folio_set_unevictable(folio);
+ folio->mlock_count = !!folio_test_mlocked(folio);
+ lruvec_add_folio(lruvec, folio);
+ __count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio));
+out:
+ folio_set_lru(folio);
+ return lruvec;
}
-/*
- * Mark page as mlocked if not already.
- * If page on LRU, isolate and putback to move to unevictable list.
- */
-void mlock_vma_page(struct page *page)
+static struct lruvec *__mlock_new_folio(struct folio *folio, struct lruvec *lruvec)
{
- /* Serialize with page migration */
- BUG_ON(!PageLocked(page));
-
- VM_BUG_ON_PAGE(PageTail(page), page);
- VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
-
- if (!TestSetPageMlocked(page)) {
- mod_zone_page_state(page_zone(page), NR_MLOCK,
- hpage_nr_pages(page));
- count_vm_event(UNEVICTABLE_PGMLOCKED);
- if (!isolate_lru_page(page))
- putback_lru_page(page);
+ VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
+
+ lruvec = folio_lruvec_relock_irq(folio, lruvec);
+
+ /* As above, this is a little surprising, but possible */
+ if (unlikely(folio_evictable(folio)))
+ goto out;
+
+ folio_set_unevictable(folio);
+ folio->mlock_count = !!folio_test_mlocked(folio);
+ __count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio));
+out:
+ lruvec_add_folio(lruvec, folio);
+ folio_set_lru(folio);
+ return lruvec;
+}
+
+static struct lruvec *__munlock_folio(struct folio *folio, struct lruvec *lruvec)
+{
+ int nr_pages = folio_nr_pages(folio);
+ bool isolated = false;
+
+ if (!folio_test_clear_lru(folio))
+ goto munlock;
+
+ isolated = true;
+ lruvec = folio_lruvec_relock_irq(folio, lruvec);
+
+ if (folio_test_unevictable(folio)) {
+ /* Then mlock_count is maintained, but might undercount */
+ if (folio->mlock_count)
+ folio->mlock_count--;
+ if (folio->mlock_count)
+ goto out;
+ }
+ /* else assume that was the last mlock: reclaim will fix it if not */
+
+munlock:
+ if (folio_test_clear_mlocked(folio)) {
+ __zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
+ if (isolated || !folio_test_unevictable(folio))
+ __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
+ else
+ __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
+ }
+
+ /* folio_evictable() has to be checked *after* clearing Mlocked */
+ if (isolated && folio_test_unevictable(folio) && folio_evictable(folio)) {
+ lruvec_del_folio(lruvec, folio);
+ folio_clear_unevictable(folio);
+ lruvec_add_folio(lruvec, folio);
+ __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
}
+out:
+ if (isolated)
+ folio_set_lru(folio);
+ return lruvec;
}
/*
- * Isolate a page from LRU with optional get_page() pin.
- * Assumes lru_lock already held and page already pinned.
+ * Flags held in the low bits of a struct folio pointer on the mlock_fbatch.
*/
-static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
+#define LRU_FOLIO 0x1
+#define NEW_FOLIO 0x2
+static inline struct folio *mlock_lru(struct folio *folio)
{
- if (PageLRU(page)) {
- struct lruvec *lruvec;
-
- lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
- if (getpage)
- get_page(page);
- ClearPageLRU(page);
- del_page_from_lru_list(page, lruvec, page_lru(page));
- return true;
- }
+ return (struct folio *)((unsigned long)folio + LRU_FOLIO);
+}
- return false;
+static inline struct folio *mlock_new(struct folio *folio)
+{
+ return (struct folio *)((unsigned long)folio + NEW_FOLIO);
}
/*
- * Finish munlock after successful page isolation
- *
- * Page must be locked. This is a wrapper for try_to_munlock()
- * and putback_lru_page() with munlock accounting.
+ * mlock_folio_batch() is derived from folio_batch_move_lru(): perhaps that can
+ * make use of such folio pointer flags in future, but for now just keep it for
+ * mlock. We could use three separate folio batches instead, but one feels
+ * better (munlocking a full folio batch does not need to drain mlocking folio
+ * batches first).
*/
-static void __munlock_isolated_page(struct page *page)
+static void mlock_folio_batch(struct folio_batch *fbatch)
{
- /*
- * Optimization: if the page was mapped just once, that's our mapping
- * and we don't need to check all the other vmas.
- */
- if (page_mapcount(page) > 1)
- try_to_munlock(page);
+ struct lruvec *lruvec = NULL;
+ unsigned long mlock;
+ struct folio *folio;
+ int i;
- /* Did try_to_unlock() succeed or punt? */
- if (!PageMlocked(page))
- count_vm_event(UNEVICTABLE_PGMUNLOCKED);
+ for (i = 0; i < folio_batch_count(fbatch); i++) {
+ folio = fbatch->folios[i];
+ mlock = (unsigned long)folio & (LRU_FOLIO | NEW_FOLIO);
+ folio = (struct folio *)((unsigned long)folio - mlock);
+ fbatch->folios[i] = folio;
+
+ if (mlock & LRU_FOLIO)
+ lruvec = __mlock_folio(folio, lruvec);
+ else if (mlock & NEW_FOLIO)
+ lruvec = __mlock_new_folio(folio, lruvec);
+ else
+ lruvec = __munlock_folio(folio, lruvec);
+ }
- putback_lru_page(page);
+ if (lruvec)
+ unlock_page_lruvec_irq(lruvec);
+ folios_put(fbatch);
}
-/*
- * Accounting for page isolation fail during munlock
- *
- * Performs accounting when page isolation fails in munlock. There is nothing
- * else to do because it means some other task has already removed the page
- * from the LRU. putback_lru_page() will take care of removing the page from
- * the unevictable list, if necessary. vmscan [page_referenced()] will move
- * the page back to the unevictable list if some other vma has it mlocked.
- */
-static void __munlock_isolation_failed(struct page *page)
+void mlock_drain_local(void)
{
- if (PageUnevictable(page))
- __count_vm_event(UNEVICTABLE_PGSTRANDED);
- else
- __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
+ struct folio_batch *fbatch;
+
+ local_lock(&mlock_fbatch.lock);
+ fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
+ if (folio_batch_count(fbatch))
+ mlock_folio_batch(fbatch);
+ local_unlock(&mlock_fbatch.lock);
}
-/**
- * munlock_vma_page - munlock a vma page
- * @page: page to be unlocked, either a normal page or THP page head
- *
- * returns the size of the page as a page mask (0 for normal page,
- * HPAGE_PMD_NR - 1 for THP head page)
- *
- * called from munlock()/munmap() path with page supposedly on the LRU.
- * When we munlock a page, because the vma where we found the page is being
- * munlock()ed or munmap()ed, we want to check whether other vmas hold the
- * page locked so that we can leave it on the unevictable lru list and not
- * bother vmscan with it. However, to walk the page's rmap list in
- * try_to_munlock() we must isolate the page from the LRU. If some other
- * task has removed the page from the LRU, we won't be able to do that.
- * So we clear the PageMlocked as we might not get another chance. If we
- * can't isolate the page, we leave it for putback_lru_page() and vmscan
- * [page_referenced()/try_to_unmap()] to deal with.
- */
-unsigned int munlock_vma_page(struct page *page)
+void mlock_drain_remote(int cpu)
{
- int nr_pages;
- struct zone *zone = page_zone(page);
+ struct folio_batch *fbatch;
- /* For try_to_munlock() and to serialize with page migration */
- BUG_ON(!PageLocked(page));
+ WARN_ON_ONCE(cpu_online(cpu));
+ fbatch = &per_cpu(mlock_fbatch.fbatch, cpu);
+ if (folio_batch_count(fbatch))
+ mlock_folio_batch(fbatch);
+}
- VM_BUG_ON_PAGE(PageTail(page), page);
+bool need_mlock_drain(int cpu)
+{
+ return folio_batch_count(&per_cpu(mlock_fbatch.fbatch, cpu));
+}
- /*
- * Serialize with any parallel __split_huge_page_refcount() which
- * might otherwise copy PageMlocked to part of the tail pages before
- * we clear it in the head page. It also stabilizes hpage_nr_pages().
- */
- spin_lock_irq(zone_lru_lock(zone));
+/**
+ * mlock_folio - mlock a folio already on (or temporarily off) LRU
+ * @folio: folio to be mlocked.
+ */
+void mlock_folio(struct folio *folio)
+{
+ struct folio_batch *fbatch;
- if (!TestClearPageMlocked(page)) {
- /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
- nr_pages = 1;
- goto unlock_out;
- }
+ local_lock(&mlock_fbatch.lock);
+ fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
- nr_pages = hpage_nr_pages(page);
- __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
+ if (!folio_test_set_mlocked(folio)) {
+ int nr_pages = folio_nr_pages(folio);
- if (__munlock_isolate_lru_page(page, true)) {
- spin_unlock_irq(zone_lru_lock(zone));
- __munlock_isolated_page(page);
- goto out;
+ zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
+ __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
}
- __munlock_isolation_failed(page);
-
-unlock_out:
- spin_unlock_irq(zone_lru_lock(zone));
-out:
- return nr_pages - 1;
+ folio_get(folio);
+ if (!folio_batch_add(fbatch, mlock_lru(folio)) ||
+ !folio_may_be_lru_cached(folio) || lru_cache_disabled())
+ mlock_folio_batch(fbatch);
+ local_unlock(&mlock_fbatch.lock);
}
-/*
- * convert get_user_pages() return value to posix mlock() error
+/**
+ * mlock_new_folio - mlock a newly allocated folio not yet on LRU
+ * @folio: folio to be mlocked, either normal or a THP head.
*/
-static int __mlock_posix_error_return(long retval)
+void mlock_new_folio(struct folio *folio)
{
- if (retval == -EFAULT)
- retval = -ENOMEM;
- else if (retval == -ENOMEM)
- retval = -EAGAIN;
- return retval;
-}
+ struct folio_batch *fbatch;
+ int nr_pages = folio_nr_pages(folio);
-/*
- * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
- *
- * The fast path is available only for evictable pages with single mapping.
- * Then we can bypass the per-cpu pvec and get better performance.
- * when mapcount > 1 we need try_to_munlock() which can fail.
- * when !page_evictable(), we need the full redo logic of putback_lru_page to
- * avoid leaving evictable page in unevictable list.
- *
- * In case of success, @page is added to @pvec and @pgrescued is incremented
- * in case that the page was previously unevictable. @page is also unlocked.
- */
-static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
- int *pgrescued)
-{
- VM_BUG_ON_PAGE(PageLRU(page), page);
- VM_BUG_ON_PAGE(!PageLocked(page), page);
-
- if (page_mapcount(page) <= 1 && page_evictable(page)) {
- pagevec_add(pvec, page);
- if (TestClearPageUnevictable(page))
- (*pgrescued)++;
- unlock_page(page);
- return true;
- }
+ local_lock(&mlock_fbatch.lock);
+ fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
+ folio_set_mlocked(folio);
- return false;
+ zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
+ __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
+
+ folio_get(folio);
+ if (!folio_batch_add(fbatch, mlock_new(folio)) ||
+ !folio_may_be_lru_cached(folio) || lru_cache_disabled())
+ mlock_folio_batch(fbatch);
+ local_unlock(&mlock_fbatch.lock);
}
-/*
- * Putback multiple evictable pages to the LRU
- *
- * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
- * the pages might have meanwhile become unevictable but that is OK.
+/**
+ * munlock_folio - munlock a folio
+ * @folio: folio to be munlocked, either normal or a THP head.
*/
-static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
+void munlock_folio(struct folio *folio)
{
- count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
+ struct folio_batch *fbatch;
+
+ local_lock(&mlock_fbatch.lock);
+ fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
/*
- *__pagevec_lru_add() calls release_pages() so we don't call
- * put_page() explicitly
+ * folio_test_clear_mlocked(folio) must be left to __munlock_folio(),
+ * which will check whether the folio is multiply mlocked.
*/
- __pagevec_lru_add(pvec);
- count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
+ folio_get(folio);
+ if (!folio_batch_add(fbatch, folio) ||
+ !folio_may_be_lru_cached(folio) || lru_cache_disabled())
+ mlock_folio_batch(fbatch);
+ local_unlock(&mlock_fbatch.lock);
}
-/*
- * Munlock a batch of pages from the same zone
- *
- * The work is split to two main phases. First phase clears the Mlocked flag
- * and attempts to isolate the pages, all under a single zone lru lock.
- * The second phase finishes the munlock only for pages where isolation
- * succeeded.
- *
- * Note that the pagevec may be modified during the process.
- */
-static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
+static inline unsigned int folio_mlock_step(struct folio *folio,
+ pte_t *pte, unsigned long addr, unsigned long end)
{
- int i;
- int nr = pagevec_count(pvec);
- int delta_munlocked = -nr;
- struct pagevec pvec_putback;
- int pgrescued = 0;
-
- pagevec_init(&pvec_putback);
-
- /* Phase 1: page isolation */
- spin_lock_irq(zone_lru_lock(zone));
- for (i = 0; i < nr; i++) {
- struct page *page = pvec->pages[i];
-
- if (TestClearPageMlocked(page)) {
- /*
- * We already have pin from follow_page_mask()
- * so we can spare the get_page() here.
- */
- if (__munlock_isolate_lru_page(page, false))
- continue;
- else
- __munlock_isolation_failed(page);
- } else {
- delta_munlocked++;
- }
+ unsigned int count = (end - addr) >> PAGE_SHIFT;
+ pte_t ptent = ptep_get(pte);
- /*
- * We won't be munlocking this page in the next phase
- * but we still need to release the follow_page_mask()
- * pin. We cannot do it under lru_lock however. If it's
- * the last pin, __page_cache_release() would deadlock.
- */
- pagevec_add(&pvec_putback, pvec->pages[i]);
- pvec->pages[i] = NULL;
- }
- __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
- spin_unlock_irq(zone_lru_lock(zone));
-
- /* Now we can release pins of pages that we are not munlocking */
- pagevec_release(&pvec_putback);
-
- /* Phase 2: page munlock */
- for (i = 0; i < nr; i++) {
- struct page *page = pvec->pages[i];
-
- if (page) {
- lock_page(page);
- if (!__putback_lru_fast_prepare(page, &pvec_putback,
- &pgrescued)) {
- /*
- * Slow path. We don't want to lose the last
- * pin before unlock_page()
- */
- get_page(page); /* for putback_lru_page() */
- __munlock_isolated_page(page);
- unlock_page(page);
- put_page(page); /* from follow_page_mask() */
- }
- }
- }
+ if (!folio_test_large(folio))
+ return 1;
+
+ return folio_pte_batch(folio, pte, ptent, count);
+}
+static inline bool allow_mlock_munlock(struct folio *folio,
+ struct vm_area_struct *vma, unsigned long start,
+ unsigned long end, unsigned int step)
+{
/*
- * Phase 3: page putback for pages that qualified for the fast path
- * This will also call put_page() to return pin from follow_page_mask()
+ * For unlock, allow munlock large folio which is partially
+ * mapped to VMA. As it's possible that large folio is
+ * mlocked and VMA is split later.
+ *
+ * During memory pressure, such kind of large folio can
+ * be split. And the pages are not in VM_LOCKed VMA
+ * can be reclaimed.
*/
- if (pagevec_count(&pvec_putback))
- __putback_lru_fast(&pvec_putback, pgrescued);
+ if (!(vma->vm_flags & VM_LOCKED))
+ return true;
+
+ /* folio_within_range() cannot take KSM, but any small folio is OK */
+ if (!folio_test_large(folio))
+ return true;
+
+ /* folio not in range [start, end), skip mlock */
+ if (!folio_within_range(folio, vma, start, end))
+ return false;
+
+ /* folio is not fully mapped, skip mlock */
+ if (step != folio_nr_pages(folio))
+ return false;
+
+ return true;
}
-/*
- * Fill up pagevec for __munlock_pagevec using pte walk
- *
- * The function expects that the struct page corresponding to @start address is
- * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
- *
- * The rest of @pvec is filled by subsequent pages within the same pmd and same
- * zone, as long as the pte's are present and vm_normal_page() succeeds. These
- * pages also get pinned.
- *
- * Returns the address of the next page that should be scanned. This equals
- * @start + PAGE_SIZE when no page could be added by the pte walk.
- */
-static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
- struct vm_area_struct *vma, struct zone *zone,
- unsigned long start, unsigned long end)
+static int mlock_pte_range(pmd_t *pmd, unsigned long addr,
+ unsigned long end, struct mm_walk *walk)
+
{
- pte_t *pte;
+ struct vm_area_struct *vma = walk->vma;
spinlock_t *ptl;
+ pte_t *start_pte, *pte;
+ pte_t ptent;
+ struct folio *folio;
+ unsigned int step = 1;
+ unsigned long start = addr;
+
+ ptl = pmd_trans_huge_lock(pmd, vma);
+ if (ptl) {
+ if (!pmd_present(*pmd))
+ goto out;
+ if (is_huge_zero_pmd(*pmd))
+ goto out;
+ folio = pmd_folio(*pmd);
+ if (folio_is_zone_device(folio))
+ goto out;
+ if (vma->vm_flags & VM_LOCKED)
+ mlock_folio(folio);
+ else
+ munlock_folio(folio);
+ goto out;
+ }
- /*
- * Initialize pte walk starting at the already pinned page where we
- * are sure that there is a pte, as it was pinned under the same
- * mmap_sem write op.
- */
- pte = get_locked_pte(vma->vm_mm, start, &ptl);
- /* Make sure we do not cross the page table boundary */
- end = pgd_addr_end(start, end);
- end = p4d_addr_end(start, end);
- end = pud_addr_end(start, end);
- end = pmd_addr_end(start, end);
-
- /* The page next to the pinned page is the first we will try to get */
- start += PAGE_SIZE;
- while (start < end) {
- struct page *page = NULL;
- pte++;
- if (pte_present(*pte))
- page = vm_normal_page(vma, start, *pte);
- /*
- * Break if page could not be obtained or the page's node+zone does not
- * match
- */
- if (!page || page_zone(page) != zone)
- break;
+ start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
+ if (!start_pte) {
+ walk->action = ACTION_AGAIN;
+ return 0;
+ }
- /*
- * Do not use pagevec for PTE-mapped THP,
- * munlock_vma_pages_range() will handle them.
- */
- if (PageTransCompound(page))
- break;
+ for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) {
+ ptent = ptep_get(pte);
+ if (!pte_present(ptent))
+ continue;
+ folio = vm_normal_folio(vma, addr, ptent);
+ if (!folio || folio_is_zone_device(folio))
+ continue;
- get_page(page);
- /*
- * Increase the address that will be returned *before* the
- * eventual break due to pvec becoming full by adding the page
- */
- start += PAGE_SIZE;
- if (pagevec_add(pvec, page) == 0)
- break;
+ step = folio_mlock_step(folio, pte, addr, end);
+ if (!allow_mlock_munlock(folio, vma, start, end, step))
+ goto next_entry;
+
+ if (vma->vm_flags & VM_LOCKED)
+ mlock_folio(folio);
+ else
+ munlock_folio(folio);
+
+next_entry:
+ pte += step - 1;
+ addr += (step - 1) << PAGE_SHIFT;
}
- pte_unmap_unlock(pte, ptl);
- return start;
+ pte_unmap(start_pte);
+out:
+ spin_unlock(ptl);
+ cond_resched();
+ return 0;
}
/*
- * munlock_vma_pages_range() - munlock all pages in the vma range.'
- * @vma - vma containing range to be munlock()ed.
+ * mlock_vma_pages_range() - mlock any pages already in the range,
+ * or munlock all pages in the range.
+ * @vma - vma containing range to be mlock()ed or munlock()ed
* @start - start address in @vma of the range
- * @end - end of range in @vma.
- *
- * For mremap(), munmap() and exit().
+ * @end - end of range in @vma
+ * @newflags - the new set of flags for @vma.
*
- * Called with @vma VM_LOCKED.
- *
- * Returns with VM_LOCKED cleared. Callers must be prepared to
- * deal with this.
- *
- * We don't save and restore VM_LOCKED here because pages are
- * still on lru. In unmap path, pages might be scanned by reclaim
- * and re-mlocked by try_to_{munlock|unmap} before we unmap and
- * free them. This will result in freeing mlocked pages.
+ * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED;
+ * called for munlock() and munlockall(), to clear VM_LOCKED from @vma.
*/
-void munlock_vma_pages_range(struct vm_area_struct *vma,
- unsigned long start, unsigned long end)
+static void mlock_vma_pages_range(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end, vm_flags_t newflags)
{
- vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
+ static const struct mm_walk_ops mlock_walk_ops = {
+ .pmd_entry = mlock_pte_range,
+ .walk_lock = PGWALK_WRLOCK_VERIFY,
+ };
- while (start < end) {
- struct page *page;
- unsigned int page_mask = 0;
- unsigned long page_increm;
- struct pagevec pvec;
- struct zone *zone;
-
- pagevec_init(&pvec);
- /*
- * Although FOLL_DUMP is intended for get_dump_page(),
- * it just so happens that its special treatment of the
- * ZERO_PAGE (returning an error instead of doing get_page)
- * suits munlock very well (and if somehow an abnormal page
- * has sneaked into the range, we won't oops here: great).
- */
- page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
-
- if (page && !IS_ERR(page)) {
- if (PageTransTail(page)) {
- VM_BUG_ON_PAGE(PageMlocked(page), page);
- put_page(page); /* follow_page_mask() */
- } else if (PageTransHuge(page)) {
- lock_page(page);
- /*
- * Any THP page found by follow_page_mask() may
- * have gotten split before reaching
- * munlock_vma_page(), so we need to compute
- * the page_mask here instead.
- */
- page_mask = munlock_vma_page(page);
- unlock_page(page);
- put_page(page); /* follow_page_mask() */
- } else {
- /*
- * Non-huge pages are handled in batches via
- * pagevec. The pin from follow_page_mask()
- * prevents them from collapsing by THP.
- */
- pagevec_add(&pvec, page);
- zone = page_zone(page);
-
- /*
- * Try to fill the rest of pagevec using fast
- * pte walk. This will also update start to
- * the next page to process. Then munlock the
- * pagevec.
- */
- start = __munlock_pagevec_fill(&pvec, vma,
- zone, start, end);
- __munlock_pagevec(&pvec, zone);
- goto next;
- }
- }
- page_increm = 1 + page_mask;
- start += page_increm * PAGE_SIZE;
-next:
- cond_resched();
+ /*
+ * There is a slight chance that concurrent page migration,
+ * or page reclaim finding a page of this now-VM_LOCKED vma,
+ * will call mlock_vma_folio() and raise page's mlock_count:
+ * double counting, leaving the page unevictable indefinitely.
+ * Communicate this danger to mlock_vma_folio() with VM_IO,
+ * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas.
+ * mmap_lock is held in write mode here, so this weird
+ * combination should not be visible to other mmap_lock users;
+ * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED.
+ */
+ if (newflags & VM_LOCKED)
+ newflags |= VM_IO;
+ vma_start_write(vma);
+ vm_flags_reset_once(vma, newflags);
+
+ lru_add_drain();
+ walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL);
+ lru_add_drain();
+
+ if (newflags & VM_IO) {
+ newflags &= ~VM_IO;
+ vm_flags_reset_once(vma, newflags);
}
}
@@ -516,65 +463,49 @@ next:
*
* For vmas that pass the filters, merge/split as appropriate.
*/
-static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
- unsigned long start, unsigned long end, vm_flags_t newflags)
+static int mlock_fixup(struct vma_iterator *vmi, struct vm_area_struct *vma,
+ struct vm_area_struct **prev, unsigned long start,
+ unsigned long end, vm_flags_t newflags)
{
struct mm_struct *mm = vma->vm_mm;
- pgoff_t pgoff;
int nr_pages;
int ret = 0;
- int lock = !!(newflags & VM_LOCKED);
- vm_flags_t old_flags = vma->vm_flags;
+ vm_flags_t oldflags = vma->vm_flags;
- if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
+ if (newflags == oldflags || (oldflags & VM_SPECIAL) ||
is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
- vma_is_dax(vma))
+ vma_is_dax(vma) || vma_is_secretmem(vma) || (oldflags & VM_DROPPABLE))
/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
goto out;
- pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
- *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
- vma->vm_file, pgoff, vma_policy(vma),
- vma->vm_userfaultfd_ctx);
- if (*prev) {
- vma = *prev;
- goto success;
- }
-
- if (start != vma->vm_start) {
- ret = split_vma(mm, vma, start, 1);
- if (ret)
- goto out;
- }
-
- if (end != vma->vm_end) {
- ret = split_vma(mm, vma, end, 0);
- if (ret)
- goto out;
+ vma = vma_modify_flags(vmi, *prev, vma, start, end, &newflags);
+ if (IS_ERR(vma)) {
+ ret = PTR_ERR(vma);
+ goto out;
}
-success:
/*
* Keep track of amount of locked VM.
*/
nr_pages = (end - start) >> PAGE_SHIFT;
- if (!lock)
+ if (!(newflags & VM_LOCKED))
nr_pages = -nr_pages;
- else if (old_flags & VM_LOCKED)
+ else if (oldflags & VM_LOCKED)
nr_pages = 0;
mm->locked_vm += nr_pages;
/*
- * vm_flags is protected by the mmap_sem held in write mode.
+ * vm_flags is protected by the mmap_lock held in write mode.
* It's okay if try_to_unmap_one unmaps a page just after we
* set VM_LOCKED, populate_vma_page_range will bring it back.
*/
-
- if (lock)
- vma->vm_flags = newflags;
- else
- munlock_vma_pages_range(vma, start, end);
-
+ if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) {
+ /* No work to do, and mlocking twice would be wrong */
+ vma_start_write(vma);
+ vm_flags_reset(vma, newflags);
+ } else {
+ mlock_vma_pages_range(vma, start, end, newflags);
+ }
out:
*prev = vma;
return ret;
@@ -584,8 +515,8 @@ static int apply_vma_lock_flags(unsigned long start, size_t len,
vm_flags_t flags)
{
unsigned long nstart, end, tmp;
- struct vm_area_struct * vma, * prev;
- int error;
+ struct vm_area_struct *vma, *prev;
+ VMA_ITERATOR(vmi, current->mm, start);
VM_BUG_ON(offset_in_page(start));
VM_BUG_ON(len != PAGE_ALIGN(len));
@@ -594,39 +525,40 @@ static int apply_vma_lock_flags(unsigned long start, size_t len,
return -EINVAL;
if (end == start)
return 0;
- vma = find_vma(current->mm, start);
- if (!vma || vma->vm_start > start)
+ vma = vma_iter_load(&vmi);
+ if (!vma)
return -ENOMEM;
- prev = vma->vm_prev;
+ prev = vma_prev(&vmi);
if (start > vma->vm_start)
prev = vma;
- for (nstart = start ; ; ) {
- vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
+ nstart = start;
+ tmp = vma->vm_start;
+ for_each_vma_range(vmi, vma, end) {
+ int error;
+ vm_flags_t newflags;
+
+ if (vma->vm_start != tmp)
+ return -ENOMEM;
+ newflags = vma->vm_flags & ~VM_LOCKED_MASK;
newflags |= flags;
-
/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
tmp = vma->vm_end;
if (tmp > end)
tmp = end;
- error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
+ error = mlock_fixup(&vmi, vma, &prev, nstart, tmp, newflags);
if (error)
- break;
+ return error;
+ tmp = vma_iter_end(&vmi);
nstart = tmp;
- if (nstart < prev->vm_end)
- nstart = prev->vm_end;
- if (nstart >= end)
- break;
-
- vma = prev->vm_next;
- if (!vma || vma->vm_start != nstart) {
- error = -ENOMEM;
- break;
- }
}
- return error;
+
+ if (tmp < end)
+ return -ENOMEM;
+
+ return 0;
}
/*
@@ -636,29 +568,26 @@ static int apply_vma_lock_flags(unsigned long start, size_t len,
* is also counted.
* Return value: previously mlocked page counts
*/
-static int count_mm_mlocked_page_nr(struct mm_struct *mm,
+static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
unsigned long start, size_t len)
{
struct vm_area_struct *vma;
- int count = 0;
-
- if (mm == NULL)
- mm = current->mm;
+ unsigned long count = 0;
+ unsigned long end;
+ VMA_ITERATOR(vmi, mm, start);
- vma = find_vma(mm, start);
- if (vma == NULL)
- vma = mm->mmap;
+ /* Don't overflow past ULONG_MAX */
+ if (unlikely(ULONG_MAX - len < start))
+ end = ULONG_MAX;
+ else
+ end = start + len;
- for (; vma ; vma = vma->vm_next) {
- if (start >= vma->vm_end)
- continue;
- if (start + len <= vma->vm_start)
- break;
+ for_each_vma_range(vmi, vma, end) {
if (vma->vm_flags & VM_LOCKED) {
if (start > vma->vm_start)
count -= (start - vma->vm_start);
- if (start + len < vma->vm_end) {
- count += start + len - vma->vm_start;
+ if (end < vma->vm_end) {
+ count += end - vma->vm_start;
break;
}
count += vma->vm_end - vma->vm_start;
@@ -668,12 +597,26 @@ static int count_mm_mlocked_page_nr(struct mm_struct *mm,
return count >> PAGE_SHIFT;
}
+/*
+ * convert get_user_pages() return value to posix mlock() error
+ */
+static int __mlock_posix_error_return(long retval)
+{
+ if (retval == -EFAULT)
+ retval = -ENOMEM;
+ else if (retval == -ENOMEM)
+ retval = -EAGAIN;
+ return retval;
+}
+
static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
{
unsigned long locked;
unsigned long lock_limit;
int error = -ENOMEM;
+ start = untagged_addr(start);
+
if (!can_do_mlock())
return -EPERM;
@@ -684,7 +627,7 @@ static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t fla
lock_limit >>= PAGE_SHIFT;
locked = len >> PAGE_SHIFT;
- if (down_write_killable(&current->mm->mmap_sem))
+ if (mmap_write_lock_killable(current->mm))
return -EINTR;
locked += current->mm->locked_vm;
@@ -703,7 +646,7 @@ static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t fla
if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
error = apply_vma_lock_flags(start, len, flags);
- up_write(&current->mm->mmap_sem);
+ mmap_write_unlock(current->mm);
if (error)
return error;
@@ -735,13 +678,15 @@ SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
{
int ret;
+ start = untagged_addr(start);
+
len = PAGE_ALIGN(len + (offset_in_page(start)));
start &= PAGE_MASK;
- if (down_write_killable(&current->mm->mmap_sem))
+ if (mmap_write_lock_killable(current->mm))
return -EINTR;
ret = apply_vma_lock_flags(start, len, 0);
- up_write(&current->mm->mmap_sem);
+ mmap_write_unlock(current->mm);
return ret;
}
@@ -758,10 +703,11 @@ SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
*/
static int apply_mlockall_flags(int flags)
{
- struct vm_area_struct * vma, * prev = NULL;
+ VMA_ITERATOR(vmi, current->mm, 0);
+ struct vm_area_struct *vma, *prev = NULL;
vm_flags_t to_add = 0;
- current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
+ current->mm->def_flags &= ~VM_LOCKED_MASK;
if (flags & MCL_FUTURE) {
current->mm->def_flags |= VM_LOCKED;
@@ -778,14 +724,18 @@ static int apply_mlockall_flags(int flags)
to_add |= VM_LOCKONFAULT;
}
- for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
+ for_each_vma(vmi, vma) {
+ int error;
vm_flags_t newflags;
- newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
+ newflags = vma->vm_flags & ~VM_LOCKED_MASK;
newflags |= to_add;
- /* Ignore errors */
- mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
+ error = mlock_fixup(&vmi, vma, &prev, vma->vm_start, vma->vm_end,
+ newflags);
+ /* Ignore errors, but prev needs fixing up. */
+ if (error)
+ prev = vma;
cond_resched();
}
out:
@@ -797,7 +747,8 @@ SYSCALL_DEFINE1(mlockall, int, flags)
unsigned long lock_limit;
int ret;
- if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
+ if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
+ flags == MCL_ONFAULT)
return -EINVAL;
if (!can_do_mlock())
@@ -806,14 +757,14 @@ SYSCALL_DEFINE1(mlockall, int, flags)
lock_limit = rlimit(RLIMIT_MEMLOCK);
lock_limit >>= PAGE_SHIFT;
- if (down_write_killable(&current->mm->mmap_sem))
+ if (mmap_write_lock_killable(current->mm))
return -EINTR;
ret = -ENOMEM;
if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
capable(CAP_IPC_LOCK))
ret = apply_mlockall_flags(flags);
- up_write(&current->mm->mmap_sem);
+ mmap_write_unlock(current->mm);
if (!ret && (flags & MCL_CURRENT))
mm_populate(0, TASK_SIZE);
@@ -824,10 +775,10 @@ SYSCALL_DEFINE0(munlockall)
{
int ret;
- if (down_write_killable(&current->mm->mmap_sem))
+ if (mmap_write_lock_killable(current->mm))
return -EINTR;
ret = apply_mlockall_flags(0);
- up_write(&current->mm->mmap_sem);
+ mmap_write_unlock(current->mm);
return ret;
}
@@ -837,32 +788,38 @@ SYSCALL_DEFINE0(munlockall)
*/
static DEFINE_SPINLOCK(shmlock_user_lock);
-int user_shm_lock(size_t size, struct user_struct *user)
+int user_shm_lock(size_t size, struct ucounts *ucounts)
{
unsigned long lock_limit, locked;
+ long memlock;
int allowed = 0;
locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
lock_limit = rlimit(RLIMIT_MEMLOCK);
- if (lock_limit == RLIM_INFINITY)
- allowed = 1;
- lock_limit >>= PAGE_SHIFT;
+ if (lock_limit != RLIM_INFINITY)
+ lock_limit >>= PAGE_SHIFT;
spin_lock(&shmlock_user_lock);
- if (!allowed &&
- locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
+ memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
+
+ if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
+ dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
goto out;
- get_uid(user);
- user->locked_shm += locked;
+ }
+ if (!get_ucounts(ucounts)) {
+ dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
+ allowed = 0;
+ goto out;
+ }
allowed = 1;
out:
spin_unlock(&shmlock_user_lock);
return allowed;
}
-void user_shm_unlock(size_t size, struct user_struct *user)
+void user_shm_unlock(size_t size, struct ucounts *ucounts)
{
spin_lock(&shmlock_user_lock);
- user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
spin_unlock(&shmlock_user_lock);
- free_uid(user);
+ put_ucounts(ucounts);
}