summaryrefslogtreecommitdiff
path: root/mm/page-writeback.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/page-writeback.c')
-rw-r--r--mm/page-writeback.c3060
1 files changed, 1940 insertions, 1120 deletions
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 4514ad7415c3..ccdeb0e84d39 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -1,8 +1,9 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
* mm/page-writeback.c
*
* Copyright (C) 2002, Linus Torvalds.
- * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
+ * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
*
* Contains functions related to writing back dirty pages at the
* address_space level.
@@ -12,6 +13,7 @@
*/
#include <linux/kernel.h>
+#include <linux/math64.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
@@ -27,17 +29,20 @@
#include <linux/mpage.h>
#include <linux/rmap.h>
#include <linux/percpu.h>
-#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
-#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
#include <linux/pagevec.h>
#include <linux/timer.h>
#include <linux/sched/rt.h>
+#include <linux/sched/signal.h>
+#include <linux/mm_inline.h>
+#include <linux/shmem_fs.h>
#include <trace/events/writeback.h>
+#include "internal.h"
+
/*
* Sleep at most 200ms at a time in balance_dirty_pages().
*/
@@ -50,7 +55,7 @@
#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
/*
- * Estimate write bandwidth at 200ms intervals.
+ * Estimate write bandwidth or update dirty limit at 200ms intervals.
*/
#define BANDWIDTH_INTERVAL max(HZ/5, 1)
@@ -67,30 +72,30 @@ static long ratelimit_pages = 32;
/*
* Start background writeback (via writeback threads) at this percentage
*/
-int dirty_background_ratio = 10;
+static int dirty_background_ratio = 10;
/*
* dirty_background_bytes starts at 0 (disabled) so that it is a function of
* dirty_background_ratio * the amount of dirtyable memory
*/
-unsigned long dirty_background_bytes;
+static unsigned long dirty_background_bytes;
/*
* free highmem will not be subtracted from the total free memory
* for calculating free ratios if vm_highmem_is_dirtyable is true
*/
-int vm_highmem_is_dirtyable;
+static int vm_highmem_is_dirtyable;
/*
* The generator of dirty data starts writeback at this percentage
*/
-int vm_dirty_ratio = 20;
+static int vm_dirty_ratio = 20;
/*
* vm_dirty_bytes starts at 0 (disabled) so that it is a function of
* vm_dirty_ratio * the amount of dirtyable memory
*/
-unsigned long vm_dirty_bytes;
+static unsigned long vm_dirty_bytes;
/*
* The interval between `kupdate'-style writebacks
@@ -105,11 +110,6 @@ EXPORT_SYMBOL_GPL(dirty_writeback_interval);
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
/*
- * Flag that makes the machine dump writes/reads and block dirtyings.
- */
-int block_dump;
-
-/*
* Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
* a full sync is triggered after this time elapses without any disk activity.
*/
@@ -119,31 +119,7 @@ EXPORT_SYMBOL(laptop_mode);
/* End of sysctl-exported parameters */
-unsigned long global_dirty_limit;
-
-/*
- * Scale the writeback cache size proportional to the relative writeout speeds.
- *
- * We do this by keeping a floating proportion between BDIs, based on page
- * writeback completions [end_page_writeback()]. Those devices that write out
- * pages fastest will get the larger share, while the slower will get a smaller
- * share.
- *
- * We use page writeout completions because we are interested in getting rid of
- * dirty pages. Having them written out is the primary goal.
- *
- * We introduce a concept of time, a period over which we measure these events,
- * because demand can/will vary over time. The length of this period itself is
- * measured in page writeback completions.
- *
- */
-static struct fprop_global writeout_completions;
-
-static void writeout_period(unsigned long t);
-/* Timer for aging of writeout_completions */
-static struct timer_list writeout_period_timer =
- TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
-static unsigned long writeout_period_time = 0;
+struct wb_domain global_wb_domain;
/*
* Length of period for aging writeout fractions of bdis. This is an
@@ -152,23 +128,101 @@ static unsigned long writeout_period_time = 0;
*/
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
-/*
- * Work out the current dirty-memory clamping and background writeout
- * thresholds.
- *
- * The main aim here is to lower them aggressively if there is a lot of mapped
- * memory around. To avoid stressing page reclaim with lots of unreclaimable
- * pages. It is better to clamp down on writers than to start swapping, and
- * performing lots of scanning.
- *
- * We only allow 1/2 of the currently-unmapped memory to be dirtied.
- *
- * We don't permit the clamping level to fall below 5% - that is getting rather
- * excessive.
- *
- * We make sure that the background writeout level is below the adjusted
- * clamping level.
- */
+#ifdef CONFIG_CGROUP_WRITEBACK
+
+#define GDTC_INIT(__wb) .wb = (__wb), \
+ .dom = &global_wb_domain, \
+ .wb_completions = &(__wb)->completions
+
+#define GDTC_INIT_NO_WB .dom = &global_wb_domain
+
+#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
+ .dom = mem_cgroup_wb_domain(__wb), \
+ .wb_completions = &(__wb)->memcg_completions, \
+ .gdtc = __gdtc
+
+static bool mdtc_valid(struct dirty_throttle_control *dtc)
+{
+ return dtc->dom;
+}
+
+static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
+{
+ return dtc->dom;
+}
+
+static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
+{
+ return mdtc->gdtc;
+}
+
+static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
+{
+ return &wb->memcg_completions;
+}
+
+static void wb_min_max_ratio(struct bdi_writeback *wb,
+ unsigned long *minp, unsigned long *maxp)
+{
+ unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
+ unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
+ unsigned long long min = wb->bdi->min_ratio;
+ unsigned long long max = wb->bdi->max_ratio;
+
+ /*
+ * @wb may already be clean by the time control reaches here and
+ * the total may not include its bw.
+ */
+ if (this_bw < tot_bw) {
+ if (min) {
+ min *= this_bw;
+ min = div64_ul(min, tot_bw);
+ }
+ if (max < 100 * BDI_RATIO_SCALE) {
+ max *= this_bw;
+ max = div64_ul(max, tot_bw);
+ }
+ }
+
+ *minp = min;
+ *maxp = max;
+}
+
+#else /* CONFIG_CGROUP_WRITEBACK */
+
+#define GDTC_INIT(__wb) .wb = (__wb), \
+ .wb_completions = &(__wb)->completions
+#define GDTC_INIT_NO_WB
+#define MDTC_INIT(__wb, __gdtc)
+
+static bool mdtc_valid(struct dirty_throttle_control *dtc)
+{
+ return false;
+}
+
+static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
+{
+ return &global_wb_domain;
+}
+
+static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
+{
+ return NULL;
+}
+
+static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
+{
+ return NULL;
+}
+
+static void wb_min_max_ratio(struct bdi_writeback *wb,
+ unsigned long *minp, unsigned long *maxp)
+{
+ *minp = wb->bdi->min_ratio;
+ *maxp = wb->bdi->max_ratio;
+}
+
+#endif /* CONFIG_CGROUP_WRITEBACK */
/*
* In a memory zone, there is a certain amount of pages we consider
@@ -178,7 +232,7 @@ static unsigned long writeout_period_time = 0;
* requiring writeback.
*
* This number of dirtyable pages is the base value of which the
- * user-configurable dirty ratio is the effictive number of pages that
+ * user-configurable dirty ratio is the effective number of pages that
* are allowed to be actually dirtied. Per individual zone, or
* globally by using the sum of dirtyable pages over all zones.
*
@@ -188,30 +242,67 @@ static unsigned long writeout_period_time = 0;
* global dirtyable memory first.
*/
+/**
+ * node_dirtyable_memory - number of dirtyable pages in a node
+ * @pgdat: the node
+ *
+ * Return: the node's number of pages potentially available for dirty
+ * page cache. This is the base value for the per-node dirty limits.
+ */
+static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
+{
+ unsigned long nr_pages = 0;
+ int z;
+
+ for (z = 0; z < MAX_NR_ZONES; z++) {
+ struct zone *zone = pgdat->node_zones + z;
+
+ if (!populated_zone(zone))
+ continue;
+
+ nr_pages += zone_page_state(zone, NR_FREE_PAGES);
+ }
+
+ /*
+ * Pages reserved for the kernel should not be considered
+ * dirtyable, to prevent a situation where reclaim has to
+ * clean pages in order to balance the zones.
+ */
+ nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
+
+ nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
+ nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
+
+ return nr_pages;
+}
+
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
int node;
unsigned long x = 0;
+ int i;
for_each_node_state(node, N_HIGH_MEMORY) {
- struct zone *z =
- &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
+ for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
+ struct zone *z;
+ unsigned long nr_pages;
+
+ if (!is_highmem_idx(i))
+ continue;
+
+ z = &NODE_DATA(node)->node_zones[i];
+ if (!populated_zone(z))
+ continue;
- x += zone_page_state(z, NR_FREE_PAGES) +
- zone_reclaimable_pages(z) - z->dirty_balance_reserve;
+ nr_pages = zone_page_state(z, NR_FREE_PAGES);
+ /* watch for underflows */
+ nr_pages -= min(nr_pages, high_wmark_pages(z));
+ nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
+ nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
+ x += nr_pages;
+ }
}
- /*
- * Unreclaimable memory (kernel memory or anonymous memory
- * without swap) can bring down the dirtyable pages below
- * the zone's dirty balance reserve and the above calculation
- * will underflow. However we still want to add in nodes
- * which are below threshold (negative values) to get a more
- * accurate calculation but make sure that the total never
- * underflows.
- */
- if ((long)x < 0)
- x = 0;
/*
* Make sure that the number of highmem pages is never larger
@@ -228,136 +319,173 @@ static unsigned long highmem_dirtyable_memory(unsigned long total)
/**
* global_dirtyable_memory - number of globally dirtyable pages
*
- * Returns the global number of pages potentially available for dirty
+ * Return: the global number of pages potentially available for dirty
* page cache. This is the base value for the global dirty limits.
*/
static unsigned long global_dirtyable_memory(void)
{
unsigned long x;
- x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
- x -= min(x, dirty_balance_reserve);
+ x = global_zone_page_state(NR_FREE_PAGES);
+ /*
+ * Pages reserved for the kernel should not be considered
+ * dirtyable, to prevent a situation where reclaim has to
+ * clean pages in order to balance the zones.
+ */
+ x -= min(x, totalreserve_pages);
+
+ x += global_node_page_state(NR_INACTIVE_FILE);
+ x += global_node_page_state(NR_ACTIVE_FILE);
if (!vm_highmem_is_dirtyable)
x -= highmem_dirtyable_memory(x);
- /* Subtract min_free_kbytes */
- x -= min_t(unsigned long, x, min_free_kbytes >> (PAGE_SHIFT - 10));
-
return x + 1; /* Ensure that we never return 0 */
}
-/*
- * global_dirty_limits - background-writeback and dirty-throttling thresholds
+/**
+ * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
+ * @dtc: dirty_throttle_control of interest
*
- * Calculate the dirty thresholds based on sysctl parameters
- * - vm.dirty_background_ratio or vm.dirty_background_bytes
- * - vm.dirty_ratio or vm.dirty_bytes
- * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
- * real-time tasks.
+ * Calculate @dtc->thresh and ->bg_thresh considering
+ * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
+ * must ensure that @dtc->avail is set before calling this function. The
+ * dirty limits will be lifted by 1/4 for real-time tasks.
*/
-void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
+static void domain_dirty_limits(struct dirty_throttle_control *dtc)
{
- unsigned long background;
- unsigned long dirty;
- unsigned long uninitialized_var(available_memory);
+ const unsigned long available_memory = dtc->avail;
+ struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
+ unsigned long bytes = vm_dirty_bytes;
+ unsigned long bg_bytes = dirty_background_bytes;
+ /* convert ratios to per-PAGE_SIZE for higher precision */
+ unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
+ unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
+ unsigned long thresh;
+ unsigned long bg_thresh;
struct task_struct *tsk;
- if (!vm_dirty_bytes || !dirty_background_bytes)
- available_memory = global_dirtyable_memory();
+ /* gdtc is !NULL iff @dtc is for memcg domain */
+ if (gdtc) {
+ unsigned long global_avail = gdtc->avail;
- if (vm_dirty_bytes)
- dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
+ /*
+ * The byte settings can't be applied directly to memcg
+ * domains. Convert them to ratios by scaling against
+ * globally available memory. As the ratios are in
+ * per-PAGE_SIZE, they can be obtained by dividing bytes by
+ * number of pages.
+ */
+ if (bytes)
+ ratio = min(DIV_ROUND_UP(bytes, global_avail),
+ PAGE_SIZE);
+ if (bg_bytes)
+ bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
+ PAGE_SIZE);
+ bytes = bg_bytes = 0;
+ }
+
+ if (bytes)
+ thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
else
- dirty = (vm_dirty_ratio * available_memory) / 100;
+ thresh = (ratio * available_memory) / PAGE_SIZE;
- if (dirty_background_bytes)
- background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
+ if (bg_bytes)
+ bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
else
- background = (dirty_background_ratio * available_memory) / 100;
+ bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
- if (background >= dirty)
- background = dirty / 2;
tsk = current;
- if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
- background += background / 4;
- dirty += dirty / 4;
+ if (rt_or_dl_task(tsk)) {
+ bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
+ thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
}
- *pbackground = background;
- *pdirty = dirty;
- trace_global_dirty_state(background, dirty);
+ /*
+ * Dirty throttling logic assumes the limits in page units fit into
+ * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
+ */
+ if (thresh > UINT_MAX)
+ thresh = UINT_MAX;
+ /* This makes sure bg_thresh is within 32-bits as well */
+ if (bg_thresh >= thresh)
+ bg_thresh = thresh / 2;
+ dtc->thresh = thresh;
+ dtc->bg_thresh = bg_thresh;
+
+ /* we should eventually report the domain in the TP */
+ if (!gdtc)
+ trace_global_dirty_state(bg_thresh, thresh);
}
/**
- * zone_dirtyable_memory - number of dirtyable pages in a zone
- * @zone: the zone
+ * global_dirty_limits - background-writeback and dirty-throttling thresholds
+ * @pbackground: out parameter for bg_thresh
+ * @pdirty: out parameter for thresh
*
- * Returns the zone's number of pages potentially available for dirty
- * page cache. This is the base value for the per-zone dirty limits.
+ * Calculate bg_thresh and thresh for global_wb_domain. See
+ * domain_dirty_limits() for details.
*/
-static unsigned long zone_dirtyable_memory(struct zone *zone)
+void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
- /*
- * The effective global number of dirtyable pages may exclude
- * highmem as a big-picture measure to keep the ratio between
- * dirty memory and lowmem reasonable.
- *
- * But this function is purely about the individual zone and a
- * highmem zone can hold its share of dirty pages, so we don't
- * care about vm_highmem_is_dirtyable here.
- */
- unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
- zone_reclaimable_pages(zone);
+ struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
- /* don't allow this to underflow */
- nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
- return nr_pages;
+ gdtc.avail = global_dirtyable_memory();
+ domain_dirty_limits(&gdtc);
+
+ *pbackground = gdtc.bg_thresh;
+ *pdirty = gdtc.thresh;
}
/**
- * zone_dirty_limit - maximum number of dirty pages allowed in a zone
- * @zone: the zone
+ * node_dirty_limit - maximum number of dirty pages allowed in a node
+ * @pgdat: the node
*
- * Returns the maximum number of dirty pages allowed in a zone, based
- * on the zone's dirtyable memory.
+ * Return: the maximum number of dirty pages allowed in a node, based
+ * on the node's dirtyable memory.
*/
-static unsigned long zone_dirty_limit(struct zone *zone)
+static unsigned long node_dirty_limit(struct pglist_data *pgdat)
{
- unsigned long zone_memory = zone_dirtyable_memory(zone);
+ unsigned long node_memory = node_dirtyable_memory(pgdat);
struct task_struct *tsk = current;
unsigned long dirty;
if (vm_dirty_bytes)
dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
- zone_memory / global_dirtyable_memory();
+ node_memory / global_dirtyable_memory();
else
- dirty = vm_dirty_ratio * zone_memory / 100;
+ dirty = vm_dirty_ratio * node_memory / 100;
- if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
+ if (rt_or_dl_task(tsk))
dirty += dirty / 4;
- return dirty;
+ /*
+ * Dirty throttling logic assumes the limits in page units fit into
+ * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
+ */
+ return min_t(unsigned long, dirty, UINT_MAX);
}
/**
- * zone_dirty_ok - tells whether a zone is within its dirty limits
- * @zone: the zone to check
+ * node_dirty_ok - tells whether a node is within its dirty limits
+ * @pgdat: the node to check
*
- * Returns %true when the dirty pages in @zone are within the zone's
+ * Return: %true when the dirty pages in @pgdat are within the node's
* dirty limit, %false if the limit is exceeded.
*/
-bool zone_dirty_ok(struct zone *zone)
+bool node_dirty_ok(struct pglist_data *pgdat)
{
- unsigned long limit = zone_dirty_limit(zone);
+ unsigned long limit = node_dirty_limit(pgdat);
+ unsigned long nr_pages = 0;
- return zone_page_state(zone, NR_FILE_DIRTY) +
- zone_page_state(zone, NR_UNSTABLE_NFS) +
- zone_page_state(zone, NR_WRITEBACK) <= limit;
+ nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
+ nr_pages += node_page_state(pgdat, NR_WRITEBACK);
+
+ return nr_pages <= limit;
}
-int dirty_background_ratio_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
+#ifdef CONFIG_SYSCTL
+static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
+ void *buffer, size_t *lenp, loff_t *ppos)
{
int ret;
@@ -367,47 +495,56 @@ int dirty_background_ratio_handler(struct ctl_table *table, int write,
return ret;
}
-int dirty_background_bytes_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
+static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
+ void *buffer, size_t *lenp, loff_t *ppos)
{
int ret;
+ unsigned long old_bytes = dirty_background_bytes;
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
- if (ret == 0 && write)
+ if (ret == 0 && write) {
+ if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
+ UINT_MAX) {
+ dirty_background_bytes = old_bytes;
+ return -ERANGE;
+ }
dirty_background_ratio = 0;
+ }
return ret;
}
-int dirty_ratio_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
+static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
+ size_t *lenp, loff_t *ppos)
{
int old_ratio = vm_dirty_ratio;
int ret;
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
- writeback_set_ratelimit();
vm_dirty_bytes = 0;
+ writeback_set_ratelimit();
}
return ret;
}
-int dirty_bytes_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
+static int dirty_bytes_handler(const struct ctl_table *table, int write,
+ void *buffer, size_t *lenp, loff_t *ppos)
{
unsigned long old_bytes = vm_dirty_bytes;
int ret;
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
+ if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
+ vm_dirty_bytes = old_bytes;
+ return -ERANGE;
+ }
writeback_set_ratelimit();
vm_dirty_ratio = 0;
}
return ret;
}
+#endif
static unsigned long wp_next_time(unsigned long cur_time)
{
@@ -418,70 +555,97 @@ static unsigned long wp_next_time(unsigned long cur_time)
return cur_time;
}
-/*
- * Increment the BDI's writeout completion count and the global writeout
- * completion count. Called from test_clear_page_writeback().
- */
-static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
+static void wb_domain_writeout_add(struct wb_domain *dom,
+ struct fprop_local_percpu *completions,
+ unsigned int max_prop_frac, long nr)
{
- __inc_bdi_stat(bdi, BDI_WRITTEN);
- __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
- bdi->max_prop_frac);
+ __fprop_add_percpu_max(&dom->completions, completions,
+ max_prop_frac, nr);
/* First event after period switching was turned off? */
- if (!unlikely(writeout_period_time)) {
+ if (unlikely(!dom->period_time)) {
/*
- * We can race with other __bdi_writeout_inc calls here but
+ * We can race with other wb_domain_writeout_add calls here but
* it does not cause any harm since the resulting time when
* timer will fire and what is in writeout_period_time will be
* roughly the same.
*/
- writeout_period_time = wp_next_time(jiffies);
- mod_timer(&writeout_period_timer, writeout_period_time);
+ dom->period_time = wp_next_time(jiffies);
+ mod_timer(&dom->period_timer, dom->period_time);
}
}
-void bdi_writeout_inc(struct backing_dev_info *bdi)
+/*
+ * Increment @wb's writeout completion count and the global writeout
+ * completion count. Called from __folio_end_writeback().
+ */
+static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
{
- unsigned long flags;
+ struct wb_domain *cgdom;
- local_irq_save(flags);
- __bdi_writeout_inc(bdi);
- local_irq_restore(flags);
+ wb_stat_mod(wb, WB_WRITTEN, nr);
+ wb_domain_writeout_add(&global_wb_domain, &wb->completions,
+ wb->bdi->max_prop_frac, nr);
+
+ cgdom = mem_cgroup_wb_domain(wb);
+ if (cgdom)
+ wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
+ wb->bdi->max_prop_frac, nr);
}
-EXPORT_SYMBOL_GPL(bdi_writeout_inc);
-/*
- * Obtain an accurate fraction of the BDI's portion.
- */
-static void bdi_writeout_fraction(struct backing_dev_info *bdi,
- long *numerator, long *denominator)
+void wb_writeout_inc(struct bdi_writeback *wb)
{
- fprop_fraction_percpu(&writeout_completions, &bdi->completions,
- numerator, denominator);
+ unsigned long flags;
+
+ local_irq_save(flags);
+ __wb_writeout_add(wb, 1);
+ local_irq_restore(flags);
}
+EXPORT_SYMBOL_GPL(wb_writeout_inc);
/*
* On idle system, we can be called long after we scheduled because we use
* deferred timers so count with missed periods.
*/
-static void writeout_period(unsigned long t)
+static void writeout_period(struct timer_list *t)
{
- int miss_periods = (jiffies - writeout_period_time) /
+ struct wb_domain *dom = timer_container_of(dom, t, period_timer);
+ int miss_periods = (jiffies - dom->period_time) /
VM_COMPLETIONS_PERIOD_LEN;
- if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
- writeout_period_time = wp_next_time(writeout_period_time +
+ if (fprop_new_period(&dom->completions, miss_periods + 1)) {
+ dom->period_time = wp_next_time(dom->period_time +
miss_periods * VM_COMPLETIONS_PERIOD_LEN);
- mod_timer(&writeout_period_timer, writeout_period_time);
+ mod_timer(&dom->period_timer, dom->period_time);
} else {
/*
* Aging has zeroed all fractions. Stop wasting CPU on period
* updates.
*/
- writeout_period_time = 0;
+ dom->period_time = 0;
}
}
+int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
+{
+ memset(dom, 0, sizeof(*dom));
+
+ spin_lock_init(&dom->lock);
+
+ timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
+
+ dom->dirty_limit_tstamp = jiffies;
+
+ return fprop_global_init(&dom->completions, gfp);
+}
+
+#ifdef CONFIG_CGROUP_WRITEBACK
+void wb_domain_exit(struct wb_domain *dom)
+{
+ timer_delete_sync(&dom->period_timer);
+ fprop_global_destroy(&dom->completions);
+}
+#endif
+
/*
* bdi_min_ratio keeps the sum of the minimum dirty shares of all
* registered backing devices, which, for obvious reasons, can not
@@ -489,20 +653,66 @@ static void writeout_period(unsigned long t)
*/
static unsigned int bdi_min_ratio;
-int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
+static int bdi_check_pages_limit(unsigned long pages)
+{
+ unsigned long max_dirty_pages = global_dirtyable_memory();
+
+ if (pages > max_dirty_pages)
+ return -EINVAL;
+
+ return 0;
+}
+
+static unsigned long bdi_ratio_from_pages(unsigned long pages)
+{
+ unsigned long background_thresh;
+ unsigned long dirty_thresh;
+ unsigned long ratio;
+
+ global_dirty_limits(&background_thresh, &dirty_thresh);
+ if (!dirty_thresh)
+ return -EINVAL;
+ ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
+
+ return ratio;
+}
+
+static u64 bdi_get_bytes(unsigned int ratio)
+{
+ unsigned long background_thresh;
+ unsigned long dirty_thresh;
+ u64 bytes;
+
+ global_dirty_limits(&background_thresh, &dirty_thresh);
+ bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
+
+ return bytes;
+}
+
+static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
+ unsigned int delta;
int ret = 0;
+ if (min_ratio > 100 * BDI_RATIO_SCALE)
+ return -EINVAL;
+
spin_lock_bh(&bdi_lock);
if (min_ratio > bdi->max_ratio) {
ret = -EINVAL;
} else {
- min_ratio -= bdi->min_ratio;
- if (bdi_min_ratio + min_ratio < 100) {
- bdi_min_ratio += min_ratio;
- bdi->min_ratio += min_ratio;
+ if (min_ratio < bdi->min_ratio) {
+ delta = bdi->min_ratio - min_ratio;
+ bdi_min_ratio -= delta;
+ bdi->min_ratio = min_ratio;
} else {
- ret = -EINVAL;
+ delta = min_ratio - bdi->min_ratio;
+ if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
+ bdi_min_ratio += delta;
+ bdi->min_ratio = min_ratio;
+ } else {
+ ret = -EINVAL;
+ }
}
}
spin_unlock_bh(&bdi_lock);
@@ -510,11 +720,11 @@ int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
return ret;
}
-int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
+static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
{
int ret = 0;
- if (max_ratio > 100)
+ if (max_ratio > 100 * BDI_RATIO_SCALE)
return -EINVAL;
spin_lock_bh(&bdi_lock);
@@ -522,66 +732,265 @@ int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
ret = -EINVAL;
} else {
bdi->max_ratio = max_ratio;
- bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
+ bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
+ (100 * BDI_RATIO_SCALE);
}
spin_unlock_bh(&bdi_lock);
return ret;
}
+
+int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
+{
+ return __bdi_set_min_ratio(bdi, min_ratio);
+}
+
+int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
+{
+ return __bdi_set_max_ratio(bdi, max_ratio);
+}
+
+int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
+{
+ return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
+}
+
+int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
+{
+ return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
+}
EXPORT_SYMBOL(bdi_set_max_ratio);
+u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
+{
+ return bdi_get_bytes(bdi->min_ratio);
+}
+
+int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
+{
+ int ret;
+ unsigned long pages = min_bytes >> PAGE_SHIFT;
+ long min_ratio;
+
+ ret = bdi_check_pages_limit(pages);
+ if (ret)
+ return ret;
+
+ min_ratio = bdi_ratio_from_pages(pages);
+ if (min_ratio < 0)
+ return min_ratio;
+ return __bdi_set_min_ratio(bdi, min_ratio);
+}
+
+u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
+{
+ return bdi_get_bytes(bdi->max_ratio);
+}
+
+int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
+{
+ int ret;
+ unsigned long pages = max_bytes >> PAGE_SHIFT;
+ long max_ratio;
+
+ ret = bdi_check_pages_limit(pages);
+ if (ret)
+ return ret;
+
+ max_ratio = bdi_ratio_from_pages(pages);
+ if (max_ratio < 0)
+ return max_ratio;
+ return __bdi_set_max_ratio(bdi, max_ratio);
+}
+
+int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
+{
+ if (strict_limit > 1)
+ return -EINVAL;
+
+ spin_lock_bh(&bdi_lock);
+ if (strict_limit)
+ bdi->capabilities |= BDI_CAP_STRICTLIMIT;
+ else
+ bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
+ spin_unlock_bh(&bdi_lock);
+
+ return 0;
+}
+
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
unsigned long bg_thresh)
{
return (thresh + bg_thresh) / 2;
}
-static unsigned long hard_dirty_limit(unsigned long thresh)
+static unsigned long hard_dirty_limit(struct wb_domain *dom,
+ unsigned long thresh)
{
- return max(thresh, global_dirty_limit);
+ return max(thresh, dom->dirty_limit);
+}
+
+/*
+ * Memory which can be further allocated to a memcg domain is capped by
+ * system-wide clean memory excluding the amount being used in the domain.
+ */
+static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
+ unsigned long filepages, unsigned long headroom)
+{
+ struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
+ unsigned long clean = filepages - min(filepages, mdtc->dirty);
+ unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
+ unsigned long other_clean = global_clean - min(global_clean, clean);
+
+ mdtc->avail = filepages + min(headroom, other_clean);
+}
+
+static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
+{
+ return mdtc_gdtc(dtc) == NULL;
+}
+
+/*
+ * Dirty background will ignore pages being written as we're trying to
+ * decide whether to put more under writeback.
+ */
+static void domain_dirty_avail(struct dirty_throttle_control *dtc,
+ bool include_writeback)
+{
+ if (dtc_is_global(dtc)) {
+ dtc->avail = global_dirtyable_memory();
+ dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
+ if (include_writeback)
+ dtc->dirty += global_node_page_state(NR_WRITEBACK);
+ } else {
+ unsigned long filepages = 0, headroom = 0, writeback = 0;
+
+ mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
+ &writeback);
+ if (include_writeback)
+ dtc->dirty += writeback;
+ mdtc_calc_avail(dtc, filepages, headroom);
+ }
}
/**
- * bdi_dirty_limit - @bdi's share of dirty throttling threshold
- * @bdi: the backing_dev_info to query
- * @dirty: global dirty limit in pages
- *
- * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
- * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
+ * __wb_calc_thresh - @wb's share of dirty threshold
+ * @dtc: dirty_throttle_context of interest
+ * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
*
- * Note that balance_dirty_pages() will only seriously take it as a hard limit
- * when sleeping max_pause per page is not enough to keep the dirty pages under
- * control. For example, when the device is completely stalled due to some error
- * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
+ * Note that balance_dirty_pages() will only seriously take dirty throttling
+ * threshold as a hard limit when sleeping max_pause per page is not enough
+ * to keep the dirty pages under control. For example, when the device is
+ * completely stalled due to some error conditions, or when there are 1000
+ * dd tasks writing to a slow 10MB/s USB key.
* In the other normal situations, it acts more gently by throttling the tasks
- * more (rather than completely block them) when the bdi dirty pages go high.
+ * more (rather than completely block them) when the wb dirty pages go high.
*
* It allocates high/low dirty limits to fast/slow devices, in order to prevent
* - starving fast devices
* - piling up dirty pages (that will take long time to sync) on slow devices
*
- * The bdi's share of dirty limit will be adapting to its throughput and
+ * The wb's share of dirty limit will be adapting to its throughput and
* bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
+ *
+ * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
+ * "dirty" in the context of dirty balancing includes all PG_dirty and
+ * PG_writeback pages.
*/
-unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
+static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
+ unsigned long thresh)
{
- u64 bdi_dirty;
- long numerator, denominator;
+ struct wb_domain *dom = dtc_dom(dtc);
+ struct bdi_writeback *wb = dtc->wb;
+ u64 wb_thresh;
+ u64 wb_max_thresh;
+ unsigned long numerator, denominator;
+ unsigned long wb_min_ratio, wb_max_ratio;
/*
- * Calculate this BDI's share of the dirty ratio.
+ * Calculate this wb's share of the thresh ratio.
+ */
+ fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
+ &numerator, &denominator);
+
+ wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
+ wb_thresh *= numerator;
+ wb_thresh = div64_ul(wb_thresh, denominator);
+
+ wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
+
+ wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
+
+ /*
+ * It's very possible that wb_thresh is close to 0 not because the
+ * device is slow, but that it has remained inactive for long time.
+ * Honour such devices a reasonable good (hopefully IO efficient)
+ * threshold, so that the occasional writes won't be blocked and active
+ * writes can rampup the threshold quickly.
*/
- bdi_writeout_fraction(bdi, &numerator, &denominator);
+ if (thresh > dtc->dirty) {
+ if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT))
+ wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 100);
+ else
+ wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 8);
+ }
+
+ wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
+ if (wb_thresh > wb_max_thresh)
+ wb_thresh = wb_max_thresh;
+
+ return wb_thresh;
+}
+
+unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
+{
+ struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
+
+ domain_dirty_avail(&gdtc, true);
+ return __wb_calc_thresh(&gdtc, thresh);
+}
+
+unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
+{
+ struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
+ struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
- bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
- bdi_dirty *= numerator;
- do_div(bdi_dirty, denominator);
+ domain_dirty_avail(&gdtc, true);
+ domain_dirty_avail(&mdtc, true);
+ domain_dirty_limits(&mdtc);
- bdi_dirty += (dirty * bdi->min_ratio) / 100;
- if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
- bdi_dirty = dirty * bdi->max_ratio / 100;
+ return __wb_calc_thresh(&mdtc, mdtc.thresh);
+}
- return bdi_dirty;
+/*
+ * setpoint - dirty 3
+ * f(dirty) := 1.0 + (----------------)
+ * limit - setpoint
+ *
+ * it's a 3rd order polynomial that subjects to
+ *
+ * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
+ * (2) f(setpoint) = 1.0 => the balance point
+ * (3) f(limit) = 0 => the hard limit
+ * (4) df/dx <= 0 => negative feedback control
+ * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
+ * => fast response on large errors; small oscillation near setpoint
+ */
+static long long pos_ratio_polynom(unsigned long setpoint,
+ unsigned long dirty,
+ unsigned long limit)
+{
+ long long pos_ratio;
+ long x;
+
+ x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
+ (limit - setpoint) | 1);
+ pos_ratio = x;
+ pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
+ pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
+ pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
+
+ return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}
/*
@@ -589,7 +998,7 @@ unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
*
* (o) global/bdi setpoints
*
- * We want the dirty pages be balanced around the global/bdi setpoints.
+ * We want the dirty pages be balanced around the global/wb setpoints.
* When the number of dirty pages is higher/lower than the setpoint, the
* dirty position control ratio (and hence task dirty ratelimit) will be
* decreased/increased to bring the dirty pages back to the setpoint.
@@ -599,8 +1008,8 @@ unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
* if (dirty < setpoint) scale up pos_ratio
* if (dirty > setpoint) scale down pos_ratio
*
- * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
- * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
+ * if (wb_dirty < wb_setpoint) scale up pos_ratio
+ * if (wb_dirty > wb_setpoint) scale down pos_ratio
*
* task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
*
@@ -609,7 +1018,7 @@ unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
* ^ pos_ratio
* |
* | |<===== global dirty control scope ======>|
- * 2.0 .............*
+ * 2.0 * * * * * * *
* | .*
* | . *
* | . *
@@ -625,7 +1034,7 @@ unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
* 0 +------------.------------------.----------------------*------------->
* freerun^ setpoint^ limit^ dirty pages
*
- * (o) bdi control line
+ * (o) wb control line
*
* ^ pos_ratio
* |
@@ -651,145 +1060,184 @@ unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
* | . .
* | . .
* 0 +----------------------.-------------------------------.------------->
- * bdi_setpoint^ x_intercept^
+ * wb_setpoint^ x_intercept^
*
- * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
+ * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
* be smoothly throttled down to normal if it starts high in situations like
* - start writing to a slow SD card and a fast disk at the same time. The SD
- * card's bdi_dirty may rush to many times higher than bdi_setpoint.
- * - the bdi dirty thresh drops quickly due to change of JBOD workload
+ * card's wb_dirty may rush to many times higher than wb_setpoint.
+ * - the wb dirty thresh drops quickly due to change of JBOD workload
*/
-static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
- unsigned long thresh,
- unsigned long bg_thresh,
- unsigned long dirty,
- unsigned long bdi_thresh,
- unsigned long bdi_dirty)
-{
- unsigned long write_bw = bdi->avg_write_bandwidth;
- unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
- unsigned long limit = hard_dirty_limit(thresh);
+static void wb_position_ratio(struct dirty_throttle_control *dtc)
+{
+ struct bdi_writeback *wb = dtc->wb;
+ unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
+ unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
+ unsigned long limit = dtc->limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
+ unsigned long wb_thresh = dtc->wb_thresh;
unsigned long x_intercept;
unsigned long setpoint; /* dirty pages' target balance point */
- unsigned long bdi_setpoint;
+ unsigned long wb_setpoint;
unsigned long span;
long long pos_ratio; /* for scaling up/down the rate limit */
long x;
- if (unlikely(dirty >= limit))
- return 0;
+ dtc->pos_ratio = 0;
+
+ if (unlikely(dtc->dirty >= limit))
+ return;
/*
* global setpoint
*
- * setpoint - dirty 3
- * f(dirty) := 1.0 + (----------------)
- * limit - setpoint
+ * See comment for pos_ratio_polynom().
+ */
+ setpoint = (freerun + limit) / 2;
+ pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
+
+ /*
+ * The strictlimit feature is a tool preventing mistrusted filesystems
+ * from growing a large number of dirty pages before throttling. For
+ * such filesystems balance_dirty_pages always checks wb counters
+ * against wb limits. Even if global "nr_dirty" is under "freerun".
+ * This is especially important for fuse which sets bdi->max_ratio to
+ * 1% by default.
*
- * it's a 3rd order polynomial that subjects to
+ * Here, in wb_position_ratio(), we calculate pos_ratio based on
+ * two values: wb_dirty and wb_thresh. Let's consider an example:
+ * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
+ * limits are set by default to 10% and 20% (background and throttle).
+ * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
+ * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
+ * about ~6K pages (as the average of background and throttle wb
+ * limits). The 3rd order polynomial will provide positive feedback if
+ * wb_dirty is under wb_setpoint and vice versa.
*
- * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
- * (2) f(setpoint) = 1.0 => the balance point
- * (3) f(limit) = 0 => the hard limit
- * (4) df/dx <= 0 => negative feedback control
- * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
- * => fast response on large errors; small oscillation near setpoint
+ * Note, that we cannot use global counters in these calculations
+ * because we want to throttle process writing to a strictlimit wb
+ * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
+ * in the example above).
*/
- setpoint = (freerun + limit) / 2;
- x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
- limit - setpoint + 1);
- pos_ratio = x;
- pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
- pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
- pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
+ if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
+ long long wb_pos_ratio;
+
+ if (dtc->wb_dirty >= wb_thresh)
+ return;
+
+ wb_setpoint = dirty_freerun_ceiling(wb_thresh,
+ dtc->wb_bg_thresh);
+
+ if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
+ return;
+
+ wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
+ wb_thresh);
+
+ /*
+ * Typically, for strictlimit case, wb_setpoint << setpoint
+ * and pos_ratio >> wb_pos_ratio. In the other words global
+ * state ("dirty") is not limiting factor and we have to
+ * make decision based on wb counters. But there is an
+ * important case when global pos_ratio should get precedence:
+ * global limits are exceeded (e.g. due to activities on other
+ * wb's) while given strictlimit wb is below limit.
+ *
+ * "pos_ratio * wb_pos_ratio" would work for the case above,
+ * but it would look too non-natural for the case of all
+ * activity in the system coming from a single strictlimit wb
+ * with bdi->max_ratio == 100%.
+ *
+ * Note that min() below somewhat changes the dynamics of the
+ * control system. Normally, pos_ratio value can be well over 3
+ * (when globally we are at freerun and wb is well below wb
+ * setpoint). Now the maximum pos_ratio in the same situation
+ * is 2. We might want to tweak this if we observe the control
+ * system is too slow to adapt.
+ */
+ dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
+ return;
+ }
/*
* We have computed basic pos_ratio above based on global situation. If
- * the bdi is over/under its share of dirty pages, we want to scale
+ * the wb is over/under its share of dirty pages, we want to scale
* pos_ratio further down/up. That is done by the following mechanism.
*/
/*
- * bdi setpoint
+ * wb setpoint
*
- * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
+ * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
*
- * x_intercept - bdi_dirty
+ * x_intercept - wb_dirty
* := --------------------------
- * x_intercept - bdi_setpoint
+ * x_intercept - wb_setpoint
*
- * The main bdi control line is a linear function that subjects to
+ * The main wb control line is a linear function that subjects to
*
- * (1) f(bdi_setpoint) = 1.0
- * (2) k = - 1 / (8 * write_bw) (in single bdi case)
- * or equally: x_intercept = bdi_setpoint + 8 * write_bw
+ * (1) f(wb_setpoint) = 1.0
+ * (2) k = - 1 / (8 * write_bw) (in single wb case)
+ * or equally: x_intercept = wb_setpoint + 8 * write_bw
*
- * For single bdi case, the dirty pages are observed to fluctuate
+ * For single wb case, the dirty pages are observed to fluctuate
* regularly within range
- * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
+ * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
* for various filesystems, where (2) can yield in a reasonable 12.5%
* fluctuation range for pos_ratio.
*
- * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
+ * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
* own size, so move the slope over accordingly and choose a slope that
- * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
- */
- if (unlikely(bdi_thresh > thresh))
- bdi_thresh = thresh;
- /*
- * It's very possible that bdi_thresh is close to 0 not because the
- * device is slow, but that it has remained inactive for long time.
- * Honour such devices a reasonable good (hopefully IO efficient)
- * threshold, so that the occasional writes won't be blocked and active
- * writes can rampup the threshold quickly.
+ * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
*/
- bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
+ if (unlikely(wb_thresh > dtc->thresh))
+ wb_thresh = dtc->thresh;
/*
- * scale global setpoint to bdi's:
- * bdi_setpoint = setpoint * bdi_thresh / thresh
+ * scale global setpoint to wb's:
+ * wb_setpoint = setpoint * wb_thresh / thresh
*/
- x = div_u64((u64)bdi_thresh << 16, thresh + 1);
- bdi_setpoint = setpoint * (u64)x >> 16;
+ x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
+ wb_setpoint = setpoint * (u64)x >> 16;
/*
- * Use span=(8*write_bw) in single bdi case as indicated by
- * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
+ * Use span=(8*write_bw) in single wb case as indicated by
+ * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
*
- * bdi_thresh thresh - bdi_thresh
- * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
- * thresh thresh
+ * wb_thresh thresh - wb_thresh
+ * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
+ * thresh thresh
*/
- span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
- x_intercept = bdi_setpoint + span;
+ span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
+ x_intercept = wb_setpoint + span;
- if (bdi_dirty < x_intercept - span / 4) {
- pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
- x_intercept - bdi_setpoint + 1);
+ if (dtc->wb_dirty < x_intercept - span / 4) {
+ pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
+ (x_intercept - wb_setpoint) | 1);
} else
pos_ratio /= 4;
/*
- * bdi reserve area, safeguard against dirty pool underrun and disk idle
+ * wb reserve area, safeguard against dirty pool underrun and disk idle
* It may push the desired control point of global dirty pages higher
* than setpoint.
*/
- x_intercept = bdi_thresh / 2;
- if (bdi_dirty < x_intercept) {
- if (bdi_dirty > x_intercept / 8)
- pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
+ x_intercept = wb_thresh / 2;
+ if (dtc->wb_dirty < x_intercept) {
+ if (dtc->wb_dirty > x_intercept / 8)
+ pos_ratio = div_u64(pos_ratio * x_intercept,
+ dtc->wb_dirty);
else
pos_ratio *= 8;
}
- return pos_ratio;
+ dtc->pos_ratio = pos_ratio;
}
-static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
- unsigned long elapsed,
- unsigned long written)
+static void wb_update_write_bandwidth(struct bdi_writeback *wb,
+ unsigned long elapsed,
+ unsigned long written)
{
const unsigned long period = roundup_pow_of_two(3 * HZ);
- unsigned long avg = bdi->avg_write_bandwidth;
- unsigned long old = bdi->write_bandwidth;
+ unsigned long avg = wb->avg_write_bandwidth;
+ unsigned long old = wb->write_bandwidth;
u64 bw;
/*
@@ -798,15 +1246,18 @@ static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
* bw * elapsed + write_bandwidth * (period - elapsed)
* write_bandwidth = ---------------------------------------------------
* period
+ *
+ * @written may have decreased due to folio_redirty_for_writepage().
+ * Avoid underflowing @bw calculation.
*/
- bw = written - bdi->written_stamp;
+ bw = written - min(written, wb->written_stamp);
bw *= HZ;
if (unlikely(elapsed > period)) {
- do_div(bw, elapsed);
+ bw = div64_ul(bw, elapsed);
avg = bw;
goto out;
}
- bw += (u64)bdi->write_bandwidth * (period - elapsed);
+ bw += (u64)wb->write_bandwidth * (period - elapsed);
bw >>= ilog2(period);
/*
@@ -819,21 +1270,22 @@ static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
avg += (old - avg) >> 3;
out:
- bdi->write_bandwidth = bw;
- bdi->avg_write_bandwidth = avg;
+ /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
+ avg = max(avg, 1LU);
+ if (wb_has_dirty_io(wb)) {
+ long delta = avg - wb->avg_write_bandwidth;
+ WARN_ON_ONCE(atomic_long_add_return(delta,
+ &wb->bdi->tot_write_bandwidth) <= 0);
+ }
+ wb->write_bandwidth = bw;
+ WRITE_ONCE(wb->avg_write_bandwidth, avg);
}
-/*
- * The global dirtyable memory and dirty threshold could be suddenly knocked
- * down by a large amount (eg. on the startup of KVM in a swapless system).
- * This may throw the system into deep dirty exceeded state and throttle
- * heavy/light dirtiers alike. To retain good responsiveness, maintain
- * global_dirty_limit for tracking slowly down to the knocked down dirty
- * threshold.
- */
-static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
+static void update_dirty_limit(struct dirty_throttle_control *dtc)
{
- unsigned long limit = global_dirty_limit;
+ struct wb_domain *dom = dtc_dom(dtc);
+ unsigned long thresh = dtc->thresh;
+ unsigned long limit = dom->dirty_limit;
/*
* Follow up in one step.
@@ -846,84 +1298,77 @@ static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
/*
* Follow down slowly. Use the higher one as the target, because thresh
* may drop below dirty. This is exactly the reason to introduce
- * global_dirty_limit which is guaranteed to lie above the dirty pages.
+ * dom->dirty_limit which is guaranteed to lie above the dirty pages.
*/
- thresh = max(thresh, dirty);
+ thresh = max(thresh, dtc->dirty);
if (limit > thresh) {
limit -= (limit - thresh) >> 5;
goto update;
}
return;
update:
- global_dirty_limit = limit;
+ dom->dirty_limit = limit;
}
-static void global_update_bandwidth(unsigned long thresh,
- unsigned long dirty,
- unsigned long now)
+static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
+ unsigned long now)
{
- static DEFINE_SPINLOCK(dirty_lock);
- static unsigned long update_time;
+ struct wb_domain *dom = dtc_dom(dtc);
/*
* check locklessly first to optimize away locking for the most time
*/
- if (time_before(now, update_time + BANDWIDTH_INTERVAL))
+ if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
return;
- spin_lock(&dirty_lock);
- if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
- update_dirty_limit(thresh, dirty);
- update_time = now;
+ spin_lock(&dom->lock);
+ if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
+ update_dirty_limit(dtc);
+ dom->dirty_limit_tstamp = now;
}
- spin_unlock(&dirty_lock);
+ spin_unlock(&dom->lock);
}
/*
- * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
+ * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
*
- * Normal bdi tasks will be curbed at or below it in long term.
+ * Normal wb tasks will be curbed at or below it in long term.
* Obviously it should be around (write_bw / N) when there are N dd tasks.
*/
-static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
- unsigned long thresh,
- unsigned long bg_thresh,
- unsigned long dirty,
- unsigned long bdi_thresh,
- unsigned long bdi_dirty,
- unsigned long dirtied,
- unsigned long elapsed)
-{
- unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
- unsigned long limit = hard_dirty_limit(thresh);
+static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
+ unsigned long dirtied,
+ unsigned long elapsed)
+{
+ struct bdi_writeback *wb = dtc->wb;
+ unsigned long dirty = dtc->dirty;
+ unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
+ unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
unsigned long setpoint = (freerun + limit) / 2;
- unsigned long write_bw = bdi->avg_write_bandwidth;
- unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
+ unsigned long write_bw = wb->avg_write_bandwidth;
+ unsigned long dirty_ratelimit = wb->dirty_ratelimit;
unsigned long dirty_rate;
unsigned long task_ratelimit;
unsigned long balanced_dirty_ratelimit;
- unsigned long pos_ratio;
unsigned long step;
unsigned long x;
+ unsigned long shift;
/*
* The dirty rate will match the writeout rate in long term, except
* when dirty pages are truncated by userspace or re-dirtied by FS.
*/
- dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
+ dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
- pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
- bdi_thresh, bdi_dirty);
/*
* task_ratelimit reflects each dd's dirty rate for the past 200ms.
*/
task_ratelimit = (u64)dirty_ratelimit *
- pos_ratio >> RATELIMIT_CALC_SHIFT;
+ dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
/*
* A linear estimation of the "balanced" throttle rate. The theory is,
- * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
+ * if there are N dd tasks, each throttled at task_ratelimit, the wb's
* dirty_rate will be measured to be (N * task_ratelimit). So the below
* formula will yield the balanced rate limit (write_bw / N).
*
@@ -962,7 +1407,7 @@ static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
/*
* We could safely do this and return immediately:
*
- * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
+ * wb->dirty_ratelimit = balanced_dirty_ratelimit;
*
* However to get a more stable dirty_ratelimit, the below elaborated
* code makes use of task_ratelimit to filter out singular points and
@@ -994,14 +1439,27 @@ static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
* keep that period small to reduce time lags).
*/
step = 0;
+
+ /*
+ * For strictlimit case, calculations above were based on wb counters
+ * and limits (starting from pos_ratio = wb_position_ratio() and up to
+ * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
+ * Hence, to calculate "step" properly, we have to use wb_dirty as
+ * "dirty" and wb_setpoint as "setpoint".
+ */
+ if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
+ dirty = dtc->wb_dirty;
+ setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
+ }
+
if (dirty < setpoint) {
- x = min(bdi->balanced_dirty_ratelimit,
- min(balanced_dirty_ratelimit, task_ratelimit));
+ x = min3(wb->balanced_dirty_ratelimit,
+ balanced_dirty_ratelimit, task_ratelimit);
if (dirty_ratelimit < x)
step = x - dirty_ratelimit;
} else {
- x = max(bdi->balanced_dirty_ratelimit,
- max(balanced_dirty_ratelimit, task_ratelimit));
+ x = max3(wb->balanced_dirty_ratelimit,
+ balanced_dirty_ratelimit, task_ratelimit);
if (dirty_ratelimit > x)
step = dirty_ratelimit - x;
}
@@ -1011,80 +1469,89 @@ static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
* rate itself is constantly fluctuating. So decrease the track speed
* when it gets close to the target. Helps eliminate pointless tremors.
*/
- step >>= dirty_ratelimit / (2 * step + 1);
- /*
- * Limit the tracking speed to avoid overshooting.
- */
- step = (step + 7) / 8;
+ shift = dirty_ratelimit / (2 * step + 1);
+ if (shift < BITS_PER_LONG)
+ step = DIV_ROUND_UP(step >> shift, 8);
+ else
+ step = 0;
if (dirty_ratelimit < balanced_dirty_ratelimit)
dirty_ratelimit += step;
else
dirty_ratelimit -= step;
- bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
- bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
+ WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
+ wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
- trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
+ trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
}
-void __bdi_update_bandwidth(struct backing_dev_info *bdi,
- unsigned long thresh,
- unsigned long bg_thresh,
- unsigned long dirty,
- unsigned long bdi_thresh,
- unsigned long bdi_dirty,
- unsigned long start_time)
+static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
+ struct dirty_throttle_control *mdtc,
+ bool update_ratelimit)
{
+ struct bdi_writeback *wb = gdtc->wb;
unsigned long now = jiffies;
- unsigned long elapsed = now - bdi->bw_time_stamp;
+ unsigned long elapsed;
unsigned long dirtied;
unsigned long written;
+ spin_lock(&wb->list_lock);
+
/*
- * rate-limit, only update once every 200ms.
+ * Lockless checks for elapsed time are racy and delayed update after
+ * IO completion doesn't do it at all (to make sure written pages are
+ * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
+ * division errors.
*/
- if (elapsed < BANDWIDTH_INTERVAL)
- return;
+ elapsed = max(now - wb->bw_time_stamp, 1UL);
+ dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
+ written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
- dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
- written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
+ if (update_ratelimit) {
+ domain_update_dirty_limit(gdtc, now);
+ wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
- /*
- * Skip quiet periods when disk bandwidth is under-utilized.
- * (at least 1s idle time between two flusher runs)
- */
- if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
- goto snapshot;
-
- if (thresh) {
- global_update_bandwidth(thresh, dirty, now);
- bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
- bdi_thresh, bdi_dirty,
- dirtied, elapsed);
+ /*
+ * @mdtc is always NULL if !CGROUP_WRITEBACK but the
+ * compiler has no way to figure that out. Help it.
+ */
+ if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
+ domain_update_dirty_limit(mdtc, now);
+ wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
+ }
}
- bdi_update_write_bandwidth(bdi, elapsed, written);
+ wb_update_write_bandwidth(wb, elapsed, written);
-snapshot:
- bdi->dirtied_stamp = dirtied;
- bdi->written_stamp = written;
- bdi->bw_time_stamp = now;
+ wb->dirtied_stamp = dirtied;
+ wb->written_stamp = written;
+ WRITE_ONCE(wb->bw_time_stamp, now);
+ spin_unlock(&wb->list_lock);
}
-static void bdi_update_bandwidth(struct backing_dev_info *bdi,
- unsigned long thresh,
- unsigned long bg_thresh,
- unsigned long dirty,
- unsigned long bdi_thresh,
- unsigned long bdi_dirty,
- unsigned long start_time)
+void wb_update_bandwidth(struct bdi_writeback *wb)
{
- if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
- return;
- spin_lock(&bdi->wb.list_lock);
- __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
- bdi_thresh, bdi_dirty, start_time);
- spin_unlock(&bdi->wb.list_lock);
+ struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
+
+ __wb_update_bandwidth(&gdtc, NULL, false);
+}
+
+/* Interval after which we consider wb idle and don't estimate bandwidth */
+#define WB_BANDWIDTH_IDLE_JIF (HZ)
+
+static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
+{
+ unsigned long now = jiffies;
+ unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
+
+ if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
+ !atomic_read(&wb->writeback_inodes)) {
+ spin_lock(&wb->list_lock);
+ wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
+ wb->written_stamp = wb_stat(wb, WB_WRITTEN);
+ WRITE_ONCE(wb->bw_time_stamp, now);
+ spin_unlock(&wb->list_lock);
+ }
}
/*
@@ -1092,7 +1559,7 @@ static void bdi_update_bandwidth(struct backing_dev_info *bdi,
* will look to see if it needs to start dirty throttling.
*
* If dirty_poll_interval is too low, big NUMA machines will call the expensive
- * global_page_state() too often. So scale it near-sqrt to the safety margin
+ * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
* (the number of pages we may dirty without exceeding the dirty limits).
*/
static unsigned long dirty_poll_interval(unsigned long dirty,
@@ -1104,11 +1571,11 @@ static unsigned long dirty_poll_interval(unsigned long dirty,
return 1;
}
-static long bdi_max_pause(struct backing_dev_info *bdi,
- unsigned long bdi_dirty)
+static unsigned long wb_max_pause(struct bdi_writeback *wb,
+ unsigned long wb_dirty)
{
- long bw = bdi->avg_write_bandwidth;
- long t;
+ unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
+ unsigned long t;
/*
* Limit pause time for small memory systems. If sleeping for too long
@@ -1117,20 +1584,20 @@ static long bdi_max_pause(struct backing_dev_info *bdi,
*
* 8 serves as the safety ratio.
*/
- t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
+ t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
t++;
- return min_t(long, t, MAX_PAUSE);
+ return min_t(unsigned long, t, MAX_PAUSE);
}
-static long bdi_min_pause(struct backing_dev_info *bdi,
- long max_pause,
- unsigned long task_ratelimit,
- unsigned long dirty_ratelimit,
- int *nr_dirtied_pause)
+static long wb_min_pause(struct bdi_writeback *wb,
+ long max_pause,
+ unsigned long task_ratelimit,
+ unsigned long dirty_ratelimit,
+ int *nr_dirtied_pause)
{
- long hi = ilog2(bdi->avg_write_bandwidth);
- long lo = ilog2(bdi->dirty_ratelimit);
+ long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
+ long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
long t; /* target pause */
long pause; /* estimated next pause */
int pages; /* target nr_dirtied_pause */
@@ -1198,6 +1665,141 @@ static long bdi_min_pause(struct backing_dev_info *bdi,
return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
}
+static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
+{
+ struct bdi_writeback *wb = dtc->wb;
+ unsigned long wb_reclaimable;
+
+ /*
+ * wb_thresh is not treated as some limiting factor as
+ * dirty_thresh, due to reasons
+ * - in JBOD setup, wb_thresh can fluctuate a lot
+ * - in a system with HDD and USB key, the USB key may somehow
+ * go into state (wb_dirty >> wb_thresh) either because
+ * wb_dirty starts high, or because wb_thresh drops low.
+ * In this case we don't want to hard throttle the USB key
+ * dirtiers for 100 seconds until wb_dirty drops under
+ * wb_thresh. Instead the auxiliary wb control line in
+ * wb_position_ratio() will let the dirtier task progress
+ * at some rate <= (write_bw / 2) for bringing down wb_dirty.
+ */
+ dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
+ dtc->wb_bg_thresh = dtc->thresh ?
+ div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
+
+ /*
+ * In order to avoid the stacked BDI deadlock we need
+ * to ensure we accurately count the 'dirty' pages when
+ * the threshold is low.
+ *
+ * Otherwise it would be possible to get thresh+n pages
+ * reported dirty, even though there are thresh-m pages
+ * actually dirty; with m+n sitting in the percpu
+ * deltas.
+ */
+ if (dtc->wb_thresh < 2 * wb_stat_error()) {
+ wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
+ dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
+ } else {
+ wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
+ dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
+ }
+}
+
+static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
+ bool strictlimit)
+{
+ unsigned long dirty, thresh;
+
+ if (strictlimit) {
+ dirty = dtc->wb_dirty;
+ thresh = dtc->wb_thresh;
+ } else {
+ dirty = dtc->dirty;
+ thresh = dtc->thresh;
+ }
+
+ return dirty_poll_interval(dirty, thresh);
+}
+
+/*
+ * Throttle it only when the background writeback cannot catch-up. This avoids
+ * (excessively) small writeouts when the wb limits are ramping up in case of
+ * !strictlimit.
+ *
+ * In strictlimit case make decision based on the wb counters and limits. Small
+ * writeouts when the wb limits are ramping up are the price we consciously pay
+ * for strictlimit-ing.
+ */
+static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
+ bool strictlimit)
+{
+ unsigned long dirty, thresh, bg_thresh;
+
+ if (unlikely(strictlimit)) {
+ wb_dirty_limits(dtc);
+ dirty = dtc->wb_dirty;
+ thresh = dtc->wb_thresh;
+ bg_thresh = dtc->wb_bg_thresh;
+ } else {
+ dirty = dtc->dirty;
+ thresh = dtc->thresh;
+ bg_thresh = dtc->bg_thresh;
+ }
+ dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
+}
+
+static void balance_domain_limits(struct dirty_throttle_control *dtc,
+ bool strictlimit)
+{
+ domain_dirty_avail(dtc, true);
+ domain_dirty_limits(dtc);
+ domain_dirty_freerun(dtc, strictlimit);
+}
+
+static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
+ bool strictlimit)
+{
+ dtc->freerun = false;
+
+ /* was already handled in domain_dirty_freerun */
+ if (strictlimit)
+ return;
+
+ wb_dirty_limits(dtc);
+ /*
+ * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
+ * freerun ceiling.
+ */
+ if (!(current->flags & PF_LOCAL_THROTTLE))
+ return;
+
+ dtc->freerun = dtc->wb_dirty <
+ dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
+}
+
+static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
+ bool strictlimit)
+{
+ dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
+ ((dtc->dirty > dtc->thresh) || strictlimit);
+}
+
+/*
+ * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
+ * in freerun state. Please don't use these invalid fields in freerun case.
+ */
+static void balance_wb_limits(struct dirty_throttle_control *dtc,
+ bool strictlimit)
+{
+ wb_dirty_freerun(dtc, strictlimit);
+ if (dtc->freerun)
+ return;
+
+ wb_dirty_exceeded(dtc, strictlimit);
+ wb_position_ratio(dtc);
+}
+
/*
* balance_dirty_pages() must be called by processes which are generating dirty
* data. It looks at the number of dirty pages in the machine and will force
@@ -1205,116 +1807,118 @@ static long bdi_min_pause(struct backing_dev_info *bdi,
* If we're over `background_thresh' then the writeback threads are woken to
* perform some writeout.
*/
-static void balance_dirty_pages(struct address_space *mapping,
- unsigned long pages_dirtied)
-{
- unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
- unsigned long bdi_reclaimable;
- unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
- unsigned long bdi_dirty;
- unsigned long freerun;
- unsigned long background_thresh;
- unsigned long dirty_thresh;
- unsigned long bdi_thresh;
+static int balance_dirty_pages(struct bdi_writeback *wb,
+ unsigned long pages_dirtied, unsigned int flags)
+{
+ struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
+ struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
+ struct dirty_throttle_control * const gdtc = &gdtc_stor;
+ struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
+ &mdtc_stor : NULL;
+ struct dirty_throttle_control *sdtc;
+ unsigned long nr_dirty;
long period;
long pause;
long max_pause;
long min_pause;
int nr_dirtied_pause;
- bool dirty_exceeded = false;
unsigned long task_ratelimit;
unsigned long dirty_ratelimit;
- unsigned long pos_ratio;
- struct backing_dev_info *bdi = mapping->backing_dev_info;
+ struct backing_dev_info *bdi = wb->bdi;
+ bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
unsigned long start_time = jiffies;
+ int ret = 0;
for (;;) {
unsigned long now = jiffies;
+ nr_dirty = global_node_page_state(NR_FILE_DIRTY);
+
+ balance_domain_limits(gdtc, strictlimit);
+ if (mdtc) {
+ /*
+ * If @wb belongs to !root memcg, repeat the same
+ * basic calculations for the memcg domain.
+ */
+ balance_domain_limits(mdtc, strictlimit);
+ }
+
/*
- * Unstable writes are a feature of certain networked
- * filesystems (i.e. NFS) in which data may have been
- * written to the server's write cache, but has not yet
- * been flushed to permanent storage.
+ * In laptop mode, we wait until hitting the higher threshold
+ * before starting background writeout, and then write out all
+ * the way down to the lower threshold. So slow writers cause
+ * minimal disk activity.
+ *
+ * In normal mode, we start background writeout at the lower
+ * background_thresh, to keep the amount of dirty memory low.
*/
- nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
- global_page_state(NR_UNSTABLE_NFS);
- nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
-
- global_dirty_limits(&background_thresh, &dirty_thresh);
+ if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
+ !writeback_in_progress(wb))
+ wb_start_background_writeback(wb);
/*
- * Throttle it only when the background writeback cannot
- * catch-up. This avoids (excessively) small writeouts
- * when the bdi limits are ramping up.
+ * If memcg domain is in effect, @dirty should be under
+ * both global and memcg freerun ceilings.
*/
- freerun = dirty_freerun_ceiling(dirty_thresh,
- background_thresh);
- if (nr_dirty <= freerun) {
+ if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
+ unsigned long intv;
+ unsigned long m_intv;
+
+free_running:
+ intv = domain_poll_intv(gdtc, strictlimit);
+ m_intv = ULONG_MAX;
+
current->dirty_paused_when = now;
current->nr_dirtied = 0;
- current->nr_dirtied_pause =
- dirty_poll_interval(nr_dirty, dirty_thresh);
+ if (mdtc)
+ m_intv = domain_poll_intv(mdtc, strictlimit);
+ current->nr_dirtied_pause = min(intv, m_intv);
break;
}
- if (unlikely(!writeback_in_progress(bdi)))
- bdi_start_background_writeback(bdi);
+ /* Start writeback even when in laptop mode */
+ if (unlikely(!writeback_in_progress(wb)))
+ wb_start_background_writeback(wb);
- /*
- * bdi_thresh is not treated as some limiting factor as
- * dirty_thresh, due to reasons
- * - in JBOD setup, bdi_thresh can fluctuate a lot
- * - in a system with HDD and USB key, the USB key may somehow
- * go into state (bdi_dirty >> bdi_thresh) either because
- * bdi_dirty starts high, or because bdi_thresh drops low.
- * In this case we don't want to hard throttle the USB key
- * dirtiers for 100 seconds until bdi_dirty drops under
- * bdi_thresh. Instead the auxiliary bdi control line in
- * bdi_position_ratio() will let the dirtier task progress
- * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
- */
- bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
+ mem_cgroup_flush_foreign(wb);
/*
- * In order to avoid the stacked BDI deadlock we need
- * to ensure we accurately count the 'dirty' pages when
- * the threshold is low.
- *
- * Otherwise it would be possible to get thresh+n pages
- * reported dirty, even though there are thresh-m pages
- * actually dirty; with m+n sitting in the percpu
- * deltas.
+ * Calculate global domain's pos_ratio and select the
+ * global dtc by default.
*/
- if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
- bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
- bdi_dirty = bdi_reclaimable +
- bdi_stat_sum(bdi, BDI_WRITEBACK);
- } else {
- bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
- bdi_dirty = bdi_reclaimable +
- bdi_stat(bdi, BDI_WRITEBACK);
- }
+ balance_wb_limits(gdtc, strictlimit);
+ if (gdtc->freerun)
+ goto free_running;
+ sdtc = gdtc;
- dirty_exceeded = (bdi_dirty > bdi_thresh) &&
- (nr_dirty > dirty_thresh);
- if (dirty_exceeded && !bdi->dirty_exceeded)
- bdi->dirty_exceeded = 1;
+ if (mdtc) {
+ /*
+ * If memcg domain is in effect, calculate its
+ * pos_ratio. @wb should satisfy constraints from
+ * both global and memcg domains. Choose the one
+ * w/ lower pos_ratio.
+ */
+ balance_wb_limits(mdtc, strictlimit);
+ if (mdtc->freerun)
+ goto free_running;
+ if (mdtc->pos_ratio < gdtc->pos_ratio)
+ sdtc = mdtc;
+ }
- bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
- nr_dirty, bdi_thresh, bdi_dirty,
- start_time);
+ wb->dirty_exceeded = gdtc->dirty_exceeded ||
+ (mdtc && mdtc->dirty_exceeded);
+ if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
+ BANDWIDTH_INTERVAL))
+ __wb_update_bandwidth(gdtc, mdtc, true);
- dirty_ratelimit = bdi->dirty_ratelimit;
- pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
- background_thresh, nr_dirty,
- bdi_thresh, bdi_dirty);
- task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
+ /* throttle according to the chosen dtc */
+ dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
+ task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
RATELIMIT_CALC_SHIFT;
- max_pause = bdi_max_pause(bdi, bdi_dirty);
- min_pause = bdi_min_pause(bdi, max_pause,
- task_ratelimit, dirty_ratelimit,
- &nr_dirtied_pause);
+ max_pause = wb_max_pause(wb, sdtc->wb_dirty);
+ min_pause = wb_min_pause(wb, max_pause,
+ task_ratelimit, dirty_ratelimit,
+ &nr_dirtied_pause);
if (unlikely(task_ratelimit == 0)) {
period = max_pause;
@@ -1333,12 +1937,8 @@ static void balance_dirty_pages(struct address_space *mapping,
* do a reset, as it may be a light dirtier.
*/
if (pause < min_pause) {
- trace_balance_dirty_pages(bdi,
- dirty_thresh,
- background_thresh,
- nr_dirty,
- bdi_thresh,
- bdi_dirty,
+ trace_balance_dirty_pages(wb,
+ sdtc,
dirty_ratelimit,
task_ratelimit,
pages_dirtied,
@@ -1362,19 +1962,20 @@ static void balance_dirty_pages(struct address_space *mapping,
}
pause:
- trace_balance_dirty_pages(bdi,
- dirty_thresh,
- background_thresh,
- nr_dirty,
- bdi_thresh,
- bdi_dirty,
+ trace_balance_dirty_pages(wb,
+ sdtc,
dirty_ratelimit,
task_ratelimit,
pages_dirtied,
period,
pause,
start_time);
+ if (flags & BDP_ASYNC) {
+ ret = -EAGAIN;
+ break;
+ }
__set_current_state(TASK_KILLABLE);
+ bdi->last_bdp_sleep = jiffies;
io_schedule_timeout(pause);
current->dirty_paused_when = now + pause;
@@ -1382,58 +1983,29 @@ pause:
current->nr_dirtied_pause = nr_dirtied_pause;
/*
- * This is typically equal to (nr_dirty < dirty_thresh) and can
- * also keep "1000+ dd on a slow USB stick" under control.
+ * This is typically equal to (dirty < thresh) and can also
+ * keep "1000+ dd on a slow USB stick" under control.
*/
if (task_ratelimit)
break;
/*
- * In the case of an unresponding NFS server and the NFS dirty
- * pages exceeds dirty_thresh, give the other good bdi's a pipe
+ * In the case of an unresponsive NFS server and the NFS dirty
+ * pages exceeds dirty_thresh, give the other good wb's a pipe
* to go through, so that tasks on them still remain responsive.
*
- * In theory 1 page is enough to keep the comsumer-producer
+ * In theory 1 page is enough to keep the consumer-producer
* pipe going: the flusher cleans 1 page => the task dirties 1
- * more page. However bdi_dirty has accounting errors. So use
- * the larger and more IO friendly bdi_stat_error.
+ * more page. However wb_dirty has accounting errors. So use
+ * the larger and more IO friendly wb_stat_error.
*/
- if (bdi_dirty <= bdi_stat_error(bdi))
+ if (sdtc->wb_dirty <= wb_stat_error())
break;
if (fatal_signal_pending(current))
break;
}
-
- if (!dirty_exceeded && bdi->dirty_exceeded)
- bdi->dirty_exceeded = 0;
-
- if (writeback_in_progress(bdi))
- return;
-
- /*
- * In laptop mode, we wait until hitting the higher threshold before
- * starting background writeout, and then write out all the way down
- * to the lower threshold. So slow writers cause minimal disk activity.
- *
- * In normal mode, we start background writeout at the lower
- * background_thresh, to keep the amount of dirty memory low.
- */
- if (laptop_mode)
- return;
-
- if (nr_reclaimable > background_thresh)
- bdi_start_background_writeback(bdi);
-}
-
-void set_page_dirty_balance(struct page *page, int page_mkwrite)
-{
- if (set_page_dirty(page) || page_mkwrite) {
- struct address_space *mapping = page_mapping(page);
-
- if (mapping)
- balance_dirty_pages_ratelimited(mapping);
- }
+ return ret;
}
static DEFINE_PER_CPU(int, bdp_ratelimits);
@@ -1455,29 +2027,42 @@ static DEFINE_PER_CPU(int, bdp_ratelimits);
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
/**
- * balance_dirty_pages_ratelimited - balance dirty memory state
- * @mapping: address_space which was dirtied
+ * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
+ * @mapping: address_space which was dirtied.
+ * @flags: BDP flags.
*
* Processes which are dirtying memory should call in here once for each page
* which was newly dirtied. The function will periodically check the system's
* dirty state and will initiate writeback if needed.
*
- * On really big machines, get_writeback_state is expensive, so try to avoid
- * calling it too often (ratelimiting). But once we're over the dirty memory
- * limit we decrease the ratelimiting by a lot, to prevent individual processes
- * from overshooting the limit by (ratelimit_pages) each.
+ * See balance_dirty_pages_ratelimited() for details.
+ *
+ * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
+ * indicate that memory is out of balance and the caller must wait
+ * for I/O to complete. Otherwise, it will return 0 to indicate
+ * that either memory was already in balance, or it was able to sleep
+ * until the amount of dirty memory returned to balance.
*/
-void balance_dirty_pages_ratelimited(struct address_space *mapping)
+int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
+ unsigned int flags)
{
- struct backing_dev_info *bdi = mapping->backing_dev_info;
+ struct inode *inode = mapping->host;
+ struct backing_dev_info *bdi = inode_to_bdi(inode);
+ struct bdi_writeback *wb = NULL;
int ratelimit;
+ int ret = 0;
int *p;
- if (!bdi_cap_account_dirty(bdi))
- return;
+ if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
+ return ret;
+
+ if (inode_cgwb_enabled(inode))
+ wb = wb_get_create_current(bdi, GFP_KERNEL);
+ if (!wb)
+ wb = &bdi->wb;
ratelimit = current->nr_dirtied_pause;
- if (bdi->dirty_exceeded)
+ if (wb->dirty_exceeded)
ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
preempt_disable();
@@ -1487,7 +2072,7 @@ void balance_dirty_pages_ratelimited(struct address_space *mapping)
* 1000+ tasks, all of them start dirtying pages at exactly the same
* time, hence all honoured too large initial task->nr_dirtied_pause.
*/
- p = &__get_cpu_var(bdp_ratelimits);
+ p = this_cpu_ptr(&bdp_ratelimits);
if (unlikely(current->nr_dirtied >= ratelimit))
*p = 0;
else if (unlikely(*p >= ratelimit_pages)) {
@@ -1499,7 +2084,7 @@ void balance_dirty_pages_ratelimited(struct address_space *mapping)
* short-lived tasks (eg. gcc invocations in a kernel build) escaping
* the dirty throttling and livelock other long-run dirtiers.
*/
- p = &__get_cpu_var(dirty_throttle_leaks);
+ p = this_cpu_ptr(&dirty_throttle_leaks);
if (*p > 0 && current->nr_dirtied < ratelimit) {
unsigned long nr_pages_dirtied;
nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
@@ -1509,64 +2094,116 @@ void balance_dirty_pages_ratelimited(struct address_space *mapping)
preempt_enable();
if (unlikely(current->nr_dirtied >= ratelimit))
- balance_dirty_pages(mapping, current->nr_dirtied);
+ ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
+
+ wb_put(wb);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
+
+/**
+ * balance_dirty_pages_ratelimited - balance dirty memory state.
+ * @mapping: address_space which was dirtied.
+ *
+ * Processes which are dirtying memory should call in here once for each page
+ * which was newly dirtied. The function will periodically check the system's
+ * dirty state and will initiate writeback if needed.
+ *
+ * Once we're over the dirty memory limit we decrease the ratelimiting
+ * by a lot, to prevent individual processes from overshooting the limit
+ * by (ratelimit_pages) each.
+ */
+void balance_dirty_pages_ratelimited(struct address_space *mapping)
+{
+ balance_dirty_pages_ratelimited_flags(mapping, 0);
}
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
-void throttle_vm_writeout(gfp_t gfp_mask)
+/*
+ * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
+ * and thresh, but it's for background writeback.
+ */
+static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
{
- unsigned long background_thresh;
- unsigned long dirty_thresh;
+ struct bdi_writeback *wb = dtc->wb;
- for ( ; ; ) {
- global_dirty_limits(&background_thresh, &dirty_thresh);
- dirty_thresh = hard_dirty_limit(dirty_thresh);
+ dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
+ if (dtc->wb_bg_thresh < 2 * wb_stat_error())
+ dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
+ else
+ dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
+}
- /*
- * Boost the allowable dirty threshold a bit for page
- * allocators so they don't get DoS'ed by heavy writers
- */
- dirty_thresh += dirty_thresh / 10; /* wheeee... */
+static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
+{
+ domain_dirty_avail(dtc, false);
+ domain_dirty_limits(dtc);
+ if (dtc->dirty > dtc->bg_thresh)
+ return true;
- if (global_page_state(NR_UNSTABLE_NFS) +
- global_page_state(NR_WRITEBACK) <= dirty_thresh)
- break;
- congestion_wait(BLK_RW_ASYNC, HZ/10);
+ wb_bg_dirty_limits(dtc);
+ if (dtc->wb_dirty > dtc->wb_bg_thresh)
+ return true;
- /*
- * The caller might hold locks which can prevent IO completion
- * or progress in the filesystem. So we cannot just sit here
- * waiting for IO to complete.
- */
- if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
- break;
- }
+ return false;
}
-/*
- * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
+/**
+ * wb_over_bg_thresh - does @wb need to be written back?
+ * @wb: bdi_writeback of interest
+ *
+ * Determines whether background writeback should keep writing @wb or it's
+ * clean enough.
+ *
+ * Return: %true if writeback should continue.
*/
-int dirty_writeback_centisecs_handler(ctl_table *table, int write,
- void __user *buffer, size_t *length, loff_t *ppos)
+bool wb_over_bg_thresh(struct bdi_writeback *wb)
{
- proc_dointvec(table, write, buffer, length, ppos);
- return 0;
+ struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
+ struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
+
+ if (domain_over_bg_thresh(&gdtc))
+ return true;
+
+ if (mdtc_valid(&mdtc))
+ return domain_over_bg_thresh(&mdtc);
+
+ return false;
}
-#ifdef CONFIG_BLOCK
-void laptop_mode_timer_fn(unsigned long data)
+#ifdef CONFIG_SYSCTL
+/*
+ * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
+ */
+static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
+ void *buffer, size_t *length, loff_t *ppos)
{
- struct request_queue *q = (struct request_queue *)data;
- int nr_pages = global_page_state(NR_FILE_DIRTY) +
- global_page_state(NR_UNSTABLE_NFS);
+ unsigned int old_interval = dirty_writeback_interval;
+ int ret;
+
+ ret = proc_dointvec(table, write, buffer, length, ppos);
/*
- * We want to write everything out, not just down to the dirty
- * threshold
+ * Writing 0 to dirty_writeback_interval will disable periodic writeback
+ * and a different non-zero value will wakeup the writeback threads.
+ * wb_wakeup_delayed() would be more appropriate, but it's a pain to
+ * iterate over all bdis and wbs.
+ * The reason we do this is to make the change take effect immediately.
*/
- if (bdi_has_dirty_io(&q->backing_dev_info))
- bdi_start_writeback(&q->backing_dev_info, nr_pages,
- WB_REASON_LAPTOP_TIMER);
+ if (!ret && write && dirty_writeback_interval &&
+ dirty_writeback_interval != old_interval)
+ wakeup_flusher_threads(WB_REASON_PERIODIC);
+
+ return ret;
+}
+#endif
+
+void laptop_mode_timer_fn(struct timer_list *t)
+{
+ struct backing_dev_info *backing_dev_info =
+ timer_container_of(backing_dev_info, t, laptop_mode_wb_timer);
+
+ wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
}
/*
@@ -1591,17 +2228,14 @@ void laptop_sync_completion(void)
rcu_read_lock();
list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
- del_timer(&bdi->laptop_mode_wb_timer);
+ timer_delete(&bdi->laptop_mode_wb_timer);
rcu_read_unlock();
}
-#endif
/*
* If ratelimit_pages is too high then we can get into dirty-data overload
* if a large number of processes all perform writes at the same time.
- * If it is too low then SMP machines will call the (expensive)
- * get_writeback_state too often.
*
* Here we set ratelimit_pages to a level which ensures that when all CPUs are
* dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
@@ -1610,46 +2244,108 @@ void laptop_sync_completion(void)
void writeback_set_ratelimit(void)
{
+ struct wb_domain *dom = &global_wb_domain;
unsigned long background_thresh;
unsigned long dirty_thresh;
+
global_dirty_limits(&background_thresh, &dirty_thresh);
- global_dirty_limit = dirty_thresh;
+ dom->dirty_limit = dirty_thresh;
ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
if (ratelimit_pages < 16)
ratelimit_pages = 16;
}
-static int __cpuinit
-ratelimit_handler(struct notifier_block *self, unsigned long action,
- void *hcpu)
+static int page_writeback_cpu_online(unsigned int cpu)
{
-
- switch (action & ~CPU_TASKS_FROZEN) {
- case CPU_ONLINE:
- case CPU_DEAD:
- writeback_set_ratelimit();
- return NOTIFY_OK;
- default:
- return NOTIFY_DONE;
- }
+ writeback_set_ratelimit();
+ return 0;
}
-static struct notifier_block __cpuinitdata ratelimit_nb = {
- .notifier_call = ratelimit_handler,
- .next = NULL,
+#ifdef CONFIG_SYSCTL
+
+/* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
+static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
+
+static const struct ctl_table vm_page_writeback_sysctls[] = {
+ {
+ .procname = "dirty_background_ratio",
+ .data = &dirty_background_ratio,
+ .maxlen = sizeof(dirty_background_ratio),
+ .mode = 0644,
+ .proc_handler = dirty_background_ratio_handler,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE_HUNDRED,
+ },
+ {
+ .procname = "dirty_background_bytes",
+ .data = &dirty_background_bytes,
+ .maxlen = sizeof(dirty_background_bytes),
+ .mode = 0644,
+ .proc_handler = dirty_background_bytes_handler,
+ .extra1 = SYSCTL_LONG_ONE,
+ },
+ {
+ .procname = "dirty_ratio",
+ .data = &vm_dirty_ratio,
+ .maxlen = sizeof(vm_dirty_ratio),
+ .mode = 0644,
+ .proc_handler = dirty_ratio_handler,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE_HUNDRED,
+ },
+ {
+ .procname = "dirty_bytes",
+ .data = &vm_dirty_bytes,
+ .maxlen = sizeof(vm_dirty_bytes),
+ .mode = 0644,
+ .proc_handler = dirty_bytes_handler,
+ .extra1 = (void *)&dirty_bytes_min,
+ },
+ {
+ .procname = "dirty_writeback_centisecs",
+ .data = &dirty_writeback_interval,
+ .maxlen = sizeof(dirty_writeback_interval),
+ .mode = 0644,
+ .proc_handler = dirty_writeback_centisecs_handler,
+ },
+ {
+ .procname = "dirty_expire_centisecs",
+ .data = &dirty_expire_interval,
+ .maxlen = sizeof(dirty_expire_interval),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ },
+#ifdef CONFIG_HIGHMEM
+ {
+ .procname = "highmem_is_dirtyable",
+ .data = &vm_highmem_is_dirtyable,
+ .maxlen = sizeof(vm_highmem_is_dirtyable),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE,
+ },
+#endif
+ {
+ .procname = "laptop_mode",
+ .data = &laptop_mode,
+ .maxlen = sizeof(laptop_mode),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_jiffies,
+ },
};
+#endif
/*
* Called early on to tune the page writeback dirty limits.
*
* We used to scale dirty pages according to how total memory
- * related to pages that could be allocated for buffers (by
- * comparing nr_free_buffer_pages() to vm_total_pages.
+ * related to pages that could be allocated for buffers.
*
* However, that was when we used "dirty_ratio" to scale with
* all memory, and we don't do that any more. "dirty_ratio"
- * is now applied to total non-HIGHPAGE memory (by subtracting
- * totalhigh_pages from vm_total_pages), and as such we can't
+ * is now applied to total non-HIGHPAGE memory, and as such we can't
* get into the old insane situation any more where we had
* large amounts of dirty pages compared to a small amount of
* non-HIGHMEM memory.
@@ -1659,659 +2355,783 @@ static struct notifier_block __cpuinitdata ratelimit_nb = {
*/
void __init page_writeback_init(void)
{
- writeback_set_ratelimit();
- register_cpu_notifier(&ratelimit_nb);
-
- fprop_global_init(&writeout_completions);
+ BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
+
+ cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
+ page_writeback_cpu_online, NULL);
+ cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
+ page_writeback_cpu_online);
+#ifdef CONFIG_SYSCTL
+ register_sysctl_init("vm", vm_page_writeback_sysctls);
+#endif
}
/**
- * tag_pages_for_writeback - tag pages to be written by write_cache_pages
+ * tag_pages_for_writeback - tag pages to be written by writeback
* @mapping: address space structure to write
* @start: starting page index
* @end: ending page index (inclusive)
*
* This function scans the page range from @start to @end (inclusive) and tags
- * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
- * that write_cache_pages (or whoever calls this function) will then use
- * TOWRITE tag to identify pages eligible for writeback. This mechanism is
- * used to avoid livelocking of writeback by a process steadily creating new
- * dirty pages in the file (thus it is important for this function to be quick
- * so that it can tag pages faster than a dirtying process can create them).
- */
-/*
- * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
+ * all pages that have DIRTY tag set with a special TOWRITE tag. The caller
+ * can then use the TOWRITE tag to identify pages eligible for writeback.
+ * This mechanism is used to avoid livelocking of writeback by a process
+ * steadily creating new dirty pages in the file (thus it is important for this
+ * function to be quick so that it can tag pages faster than a dirtying process
+ * can create them).
*/
void tag_pages_for_writeback(struct address_space *mapping,
pgoff_t start, pgoff_t end)
{
-#define WRITEBACK_TAG_BATCH 4096
- unsigned long tagged;
-
- do {
- spin_lock_irq(&mapping->tree_lock);
- tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
- &start, end, WRITEBACK_TAG_BATCH,
- PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
- spin_unlock_irq(&mapping->tree_lock);
- WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
+ XA_STATE(xas, &mapping->i_pages, start);
+ unsigned int tagged = 0;
+ void *page;
+
+ xas_lock_irq(&xas);
+ xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
+ xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
+ if (++tagged % XA_CHECK_SCHED)
+ continue;
+
+ xas_pause(&xas);
+ xas_unlock_irq(&xas);
cond_resched();
- /* We check 'start' to handle wrapping when end == ~0UL */
- } while (tagged >= WRITEBACK_TAG_BATCH && start);
+ xas_lock_irq(&xas);
+ }
+ xas_unlock_irq(&xas);
}
EXPORT_SYMBOL(tag_pages_for_writeback);
-/**
- * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
- * @mapping: address space structure to write
- * @wbc: subtract the number of written pages from *@wbc->nr_to_write
- * @writepage: function called for each page
- * @data: data passed to writepage function
- *
- * If a page is already under I/O, write_cache_pages() skips it, even
- * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
- * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
- * and msync() need to guarantee that all the data which was dirty at the time
- * the call was made get new I/O started against them. If wbc->sync_mode is
- * WB_SYNC_ALL then we were called for data integrity and we must wait for
- * existing IO to complete.
- *
- * To avoid livelocks (when other process dirties new pages), we first tag
- * pages which should be written back with TOWRITE tag and only then start
- * writing them. For data-integrity sync we have to be careful so that we do
- * not miss some pages (e.g., because some other process has cleared TOWRITE
- * tag we set). The rule we follow is that TOWRITE tag can be cleared only
- * by the process clearing the DIRTY tag (and submitting the page for IO).
- */
-int write_cache_pages(struct address_space *mapping,
- struct writeback_control *wbc, writepage_t writepage,
- void *data)
+static bool folio_prepare_writeback(struct address_space *mapping,
+ struct writeback_control *wbc, struct folio *folio)
{
- int ret = 0;
- int done = 0;
- struct pagevec pvec;
- int nr_pages;
- pgoff_t uninitialized_var(writeback_index);
- pgoff_t index;
- pgoff_t end; /* Inclusive */
- pgoff_t done_index;
- int cycled;
- int range_whole = 0;
- int tag;
-
- pagevec_init(&pvec, 0);
- if (wbc->range_cyclic) {
- writeback_index = mapping->writeback_index; /* prev offset */
- index = writeback_index;
- if (index == 0)
- cycled = 1;
- else
- cycled = 0;
- end = -1;
- } else {
- index = wbc->range_start >> PAGE_CACHE_SHIFT;
- end = wbc->range_end >> PAGE_CACHE_SHIFT;
- if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
- range_whole = 1;
- cycled = 1; /* ignore range_cyclic tests */
- }
- if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
- tag = PAGECACHE_TAG_TOWRITE;
- else
- tag = PAGECACHE_TAG_DIRTY;
-retry:
- if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
- tag_pages_for_writeback(mapping, index, end);
- done_index = index;
- while (!done && (index <= end)) {
- int i;
-
- nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
- min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
- if (nr_pages == 0)
- break;
-
- for (i = 0; i < nr_pages; i++) {
- struct page *page = pvec.pages[i];
+ /*
+ * Folio truncated or invalidated. We can freely skip it then,
+ * even for data integrity operations: the folio has disappeared
+ * concurrently, so there could be no real expectation of this
+ * data integrity operation even if there is now a new, dirty
+ * folio at the same pagecache index.
+ */
+ if (unlikely(folio->mapping != mapping))
+ return false;
- /*
- * At this point, the page may be truncated or
- * invalidated (changing page->mapping to NULL), or
- * even swizzled back from swapper_space to tmpfs file
- * mapping. However, page->index will not change
- * because we have a reference on the page.
- */
- if (page->index > end) {
- /*
- * can't be range_cyclic (1st pass) because
- * end == -1 in that case.
- */
- done = 1;
- break;
- }
+ /*
+ * Did somebody else write it for us?
+ */
+ if (!folio_test_dirty(folio))
+ return false;
- done_index = page->index;
+ if (folio_test_writeback(folio)) {
+ if (wbc->sync_mode == WB_SYNC_NONE)
+ return false;
+ folio_wait_writeback(folio);
+ }
+ BUG_ON(folio_test_writeback(folio));
- lock_page(page);
+ if (!folio_clear_dirty_for_io(folio))
+ return false;
- /*
- * Page truncated or invalidated. We can freely skip it
- * then, even for data integrity operations: the page
- * has disappeared concurrently, so there could be no
- * real expectation of this data interity operation
- * even if there is now a new, dirty page at the same
- * pagecache address.
- */
- if (unlikely(page->mapping != mapping)) {
-continue_unlock:
- unlock_page(page);
- continue;
- }
+ return true;
+}
- if (!PageDirty(page)) {
- /* someone wrote it for us */
- goto continue_unlock;
- }
- if (PageWriteback(page)) {
- if (wbc->sync_mode != WB_SYNC_NONE)
- wait_on_page_writeback(page);
- else
- goto continue_unlock;
- }
+static pgoff_t wbc_end(struct writeback_control *wbc)
+{
+ if (wbc->range_cyclic)
+ return -1;
+ return wbc->range_end >> PAGE_SHIFT;
+}
- BUG_ON(PageWriteback(page));
- if (!clear_page_dirty_for_io(page))
- goto continue_unlock;
-
- trace_wbc_writepage(wbc, mapping->backing_dev_info);
- ret = (*writepage)(page, wbc, data);
- if (unlikely(ret)) {
- if (ret == AOP_WRITEPAGE_ACTIVATE) {
- unlock_page(page);
- ret = 0;
- } else {
- /*
- * done_index is set past this page,
- * so media errors will not choke
- * background writeout for the entire
- * file. This has consequences for
- * range_cyclic semantics (ie. it may
- * not be suitable for data integrity
- * writeout).
- */
- done_index = page->index + 1;
- done = 1;
- break;
- }
- }
+static struct folio *writeback_get_folio(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ struct folio *folio;
- /*
- * We stop writing back only if we are not doing
- * integrity sync. In case of integrity sync we have to
- * keep going until we have written all the pages
- * we tagged for writeback prior to entering this loop.
- */
- if (--wbc->nr_to_write <= 0 &&
- wbc->sync_mode == WB_SYNC_NONE) {
- done = 1;
- break;
- }
- }
- pagevec_release(&pvec);
+retry:
+ folio = folio_batch_next(&wbc->fbatch);
+ if (!folio) {
+ folio_batch_release(&wbc->fbatch);
cond_resched();
+ filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
+ wbc_to_tag(wbc), &wbc->fbatch);
+ folio = folio_batch_next(&wbc->fbatch);
+ if (!folio)
+ return NULL;
}
- if (!cycled && !done) {
- /*
- * range_cyclic:
- * We hit the last page and there is more work to be done: wrap
- * back to the start of the file
- */
- cycled = 1;
- index = 0;
- end = writeback_index - 1;
+
+ folio_lock(folio);
+ if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
+ folio_unlock(folio);
goto retry;
}
- if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
- mapping->writeback_index = done_index;
-
- return ret;
-}
-EXPORT_SYMBOL(write_cache_pages);
-/*
- * Function used by generic_writepages to call the real writepage
- * function and set the mapping flags on error
- */
-static int __writepage(struct page *page, struct writeback_control *wbc,
- void *data)
-{
- struct address_space *mapping = data;
- int ret = mapping->a_ops->writepage(page, wbc);
- mapping_set_error(mapping, ret);
- return ret;
+ trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
+ return folio;
}
/**
- * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
+ * writeback_iter - iterate folio of a mapping for writeback
* @mapping: address space structure to write
- * @wbc: subtract the number of written pages from *@wbc->nr_to_write
+ * @wbc: writeback context
+ * @folio: previously iterated folio (%NULL to start)
+ * @error: in-out pointer for writeback errors (see below)
+ *
+ * This function returns the next folio for the writeback operation described by
+ * @wbc on @mapping and should be called in a while loop in the ->writepages
+ * implementation.
*
- * This is a library function, which implements the writepages()
- * address_space_operation.
+ * To start the writeback operation, %NULL is passed in the @folio argument, and
+ * for every subsequent iteration the folio returned previously should be passed
+ * back in.
+ *
+ * If there was an error in the per-folio writeback inside the writeback_iter()
+ * loop, @error should be set to the error value.
+ *
+ * Once the writeback described in @wbc has finished, this function will return
+ * %NULL and if there was an error in any iteration restore it to @error.
+ *
+ * Note: callers should not manually break out of the loop using break or goto
+ * but must keep calling writeback_iter() until it returns %NULL.
+ *
+ * Return: the folio to write or %NULL if the loop is done.
*/
-int generic_writepages(struct address_space *mapping,
- struct writeback_control *wbc)
+struct folio *writeback_iter(struct address_space *mapping,
+ struct writeback_control *wbc, struct folio *folio, int *error)
{
- struct blk_plug plug;
- int ret;
+ if (!folio) {
+ folio_batch_init(&wbc->fbatch);
+ wbc->saved_err = *error = 0;
- /* deal with chardevs and other special file */
- if (!mapping->a_ops->writepage)
- return 0;
+ /*
+ * For range cyclic writeback we remember where we stopped so
+ * that we can continue where we stopped.
+ *
+ * For non-cyclic writeback we always start at the beginning of
+ * the passed in range.
+ */
+ if (wbc->range_cyclic)
+ wbc->index = mapping->writeback_index;
+ else
+ wbc->index = wbc->range_start >> PAGE_SHIFT;
- blk_start_plug(&plug);
- ret = write_cache_pages(mapping, wbc, __writepage, mapping);
- blk_finish_plug(&plug);
- return ret;
-}
+ /*
+ * To avoid livelocks when other processes dirty new pages, we
+ * first tag pages which should be written back and only then
+ * start writing them.
+ *
+ * For data-integrity writeback we have to be careful so that we
+ * do not miss some pages (e.g., because some other process has
+ * cleared the TOWRITE tag we set). The rule we follow is that
+ * TOWRITE tag can be cleared only by the process clearing the
+ * DIRTY tag (and submitting the page for I/O).
+ */
+ if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
+ tag_pages_for_writeback(mapping, wbc->index,
+ wbc_end(wbc));
+ } else {
+ wbc->nr_to_write -= folio_nr_pages(folio);
+
+ WARN_ON_ONCE(*error > 0);
+
+ /*
+ * For integrity writeback we have to keep going until we have
+ * written all the folios we tagged for writeback above, even if
+ * we run past wbc->nr_to_write or encounter errors.
+ * We stash away the first error we encounter in wbc->saved_err
+ * so that it can be retrieved when we're done. This is because
+ * the file system may still have state to clear for each folio.
+ *
+ * For background writeback we exit as soon as we run past
+ * wbc->nr_to_write or encounter the first error.
+ */
+ if (wbc->sync_mode == WB_SYNC_ALL) {
+ if (*error && !wbc->saved_err)
+ wbc->saved_err = *error;
+ } else {
+ if (*error || wbc->nr_to_write <= 0)
+ goto done;
+ }
+ }
+
+ folio = writeback_get_folio(mapping, wbc);
+ if (!folio) {
+ /*
+ * To avoid deadlocks between range_cyclic writeback and callers
+ * that hold folios in writeback to aggregate I/O until
+ * the writeback iteration finishes, we do not loop back to the
+ * start of the file. Doing so causes a folio lock/folio
+ * writeback access order inversion - we should only ever lock
+ * multiple folios in ascending folio->index order, and looping
+ * back to the start of the file violates that rule and causes
+ * deadlocks.
+ */
+ if (wbc->range_cyclic)
+ mapping->writeback_index = 0;
-EXPORT_SYMBOL(generic_writepages);
+ /*
+ * Return the first error we encountered (if there was any) to
+ * the caller.
+ */
+ *error = wbc->saved_err;
+ }
+ return folio;
+
+done:
+ if (wbc->range_cyclic)
+ mapping->writeback_index = folio_next_index(folio);
+ folio_batch_release(&wbc->fbatch);
+ return NULL;
+}
+EXPORT_SYMBOL_GPL(writeback_iter);
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
int ret;
+ struct bdi_writeback *wb;
if (wbc->nr_to_write <= 0)
return 0;
- if (mapping->a_ops->writepages)
- ret = mapping->a_ops->writepages(mapping, wbc);
- else
- ret = generic_writepages(mapping, wbc);
- return ret;
-}
+ wb = inode_to_wb_wbc(mapping->host, wbc);
+ wb_bandwidth_estimate_start(wb);
+ while (1) {
+ if (mapping->a_ops->writepages)
+ ret = mapping->a_ops->writepages(mapping, wbc);
+ else
+ /* deal with chardevs and other special files */
+ ret = 0;
+ if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
+ break;
-/**
- * write_one_page - write out a single page and optionally wait on I/O
- * @page: the page to write
- * @wait: if true, wait on writeout
- *
- * The page must be locked by the caller and will be unlocked upon return.
- *
- * write_one_page() returns a negative error code if I/O failed.
- */
-int write_one_page(struct page *page, int wait)
-{
- struct address_space *mapping = page->mapping;
- int ret = 0;
- struct writeback_control wbc = {
- .sync_mode = WB_SYNC_ALL,
- .nr_to_write = 1,
- };
-
- BUG_ON(!PageLocked(page));
-
- if (wait)
- wait_on_page_writeback(page);
-
- if (clear_page_dirty_for_io(page)) {
- page_cache_get(page);
- ret = mapping->a_ops->writepage(page, &wbc);
- if (ret == 0 && wait) {
- wait_on_page_writeback(page);
- if (PageError(page))
- ret = -EIO;
- }
- page_cache_release(page);
- } else {
- unlock_page(page);
+ /*
+ * Lacking an allocation context or the locality or writeback
+ * state of any of the inode's pages, throttle based on
+ * writeback activity on the local node. It's as good a
+ * guess as any.
+ */
+ reclaim_throttle(NODE_DATA(numa_node_id()),
+ VMSCAN_THROTTLE_WRITEBACK);
}
+ /*
+ * Usually few pages are written by now from those we've just submitted
+ * but if there's constant writeback being submitted, this makes sure
+ * writeback bandwidth is updated once in a while.
+ */
+ if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
+ BANDWIDTH_INTERVAL))
+ wb_update_bandwidth(wb);
return ret;
}
-EXPORT_SYMBOL(write_one_page);
/*
* For address_spaces which do not use buffers nor write back.
*/
-int __set_page_dirty_no_writeback(struct page *page)
+bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
{
- if (!PageDirty(page))
- return !TestSetPageDirty(page);
- return 0;
+ if (!folio_test_dirty(folio))
+ return !folio_test_set_dirty(folio);
+ return false;
}
+EXPORT_SYMBOL(noop_dirty_folio);
/*
* Helper function for set_page_dirty family.
+ *
* NOTE: This relies on being atomic wrt interrupts.
*/
-void account_page_dirtied(struct page *page, struct address_space *mapping)
-{
- trace_writeback_dirty_page(page, mapping);
-
- if (mapping_cap_account_dirty(mapping)) {
- __inc_zone_page_state(page, NR_FILE_DIRTY);
- __inc_zone_page_state(page, NR_DIRTIED);
- __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
- __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
- task_io_account_write(PAGE_CACHE_SIZE);
- current->nr_dirtied++;
- this_cpu_inc(bdp_ratelimits);
+static void folio_account_dirtied(struct folio *folio,
+ struct address_space *mapping)
+{
+ struct inode *inode = mapping->host;
+
+ trace_writeback_dirty_folio(folio, mapping);
+
+ if (mapping_can_writeback(mapping)) {
+ struct bdi_writeback *wb;
+ long nr = folio_nr_pages(folio);
+
+ inode_attach_wb(inode, folio);
+ wb = inode_to_wb(inode);
+
+ lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
+ __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
+ __node_stat_mod_folio(folio, NR_DIRTIED, nr);
+ wb_stat_mod(wb, WB_RECLAIMABLE, nr);
+ wb_stat_mod(wb, WB_DIRTIED, nr);
+ task_io_account_write(nr * PAGE_SIZE);
+ current->nr_dirtied += nr;
+ __this_cpu_add(bdp_ratelimits, nr);
+
+ mem_cgroup_track_foreign_dirty(folio, wb);
}
}
-EXPORT_SYMBOL(account_page_dirtied);
/*
- * Helper function for set_page_writeback family.
- * NOTE: Unlike account_page_dirtied this does not rely on being atomic
- * wrt interrupts.
+ * Helper function for deaccounting dirty page without writeback.
+ *
*/
-void account_page_writeback(struct page *page)
+void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
{
- inc_zone_page_state(page, NR_WRITEBACK);
+ long nr = folio_nr_pages(folio);
+
+ lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
+ zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
+ wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
+ task_io_account_cancelled_write(nr * PAGE_SIZE);
}
-EXPORT_SYMBOL(account_page_writeback);
/*
- * For address_spaces which do not use buffers. Just tag the page as dirty in
- * its radix tree.
- *
- * This is also used when a single buffer is being dirtied: we want to set the
- * page dirty in that case, but not all the buffers. This is a "bottom-up"
- * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
+ * Mark the folio dirty, and set it dirty in the page cache.
*
- * Most callers have locked the page, which pins the address_space in memory.
- * But zap_pte_range() does not lock the page, however in that case the
- * mapping is pinned by the vma's ->vm_file reference.
+ * If warn is true, then emit a warning if the folio is not uptodate and has
+ * not been truncated.
*
- * We take care to handle the case where the page was truncated from the
- * mapping by re-checking page_mapping() inside tree_lock.
+ * It is the caller's responsibility to prevent the folio from being truncated
+ * while this function is in progress, although it may have been truncated
+ * before this function is called. Most callers have the folio locked.
+ * A few have the folio blocked from truncation through other means (e.g.
+ * zap_vma_pages() has it mapped and is holding the page table lock).
+ * When called from mark_buffer_dirty(), the filesystem should hold a
+ * reference to the buffer_head that is being marked dirty, which causes
+ * try_to_free_buffers() to fail.
*/
-int __set_page_dirty_nobuffers(struct page *page)
-{
- if (!TestSetPageDirty(page)) {
- struct address_space *mapping = page_mapping(page);
- struct address_space *mapping2;
-
- if (!mapping)
- return 1;
-
- spin_lock_irq(&mapping->tree_lock);
- mapping2 = page_mapping(page);
- if (mapping2) { /* Race with truncate? */
- BUG_ON(mapping2 != mapping);
- WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
- account_page_dirtied(page, mapping);
- radix_tree_tag_set(&mapping->page_tree,
- page_index(page), PAGECACHE_TAG_DIRTY);
- }
- spin_unlock_irq(&mapping->tree_lock);
- if (mapping->host) {
- /* !PageAnon && !swapper_space */
- __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
- }
- return 1;
+void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
+ int warn)
+{
+ unsigned long flags;
+
+ /*
+ * Shmem writeback relies on swap, and swap writeback is LRU based,
+ * not using the dirty mark.
+ */
+ VM_WARN_ON_ONCE(folio_test_swapcache(folio) || shmem_mapping(mapping));
+
+ xa_lock_irqsave(&mapping->i_pages, flags);
+ if (folio->mapping) { /* Race with truncate? */
+ WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
+ folio_account_dirtied(folio, mapping);
+ __xa_set_mark(&mapping->i_pages, folio->index,
+ PAGECACHE_TAG_DIRTY);
}
- return 0;
+ xa_unlock_irqrestore(&mapping->i_pages, flags);
}
-EXPORT_SYMBOL(__set_page_dirty_nobuffers);
-/*
- * Call this whenever redirtying a page, to de-account the dirty counters
- * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
- * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
- * systematic errors in balanced_dirty_ratelimit and the dirty pages position
- * control.
+/**
+ * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
+ * @mapping: Address space this folio belongs to.
+ * @folio: Folio to be marked as dirty.
+ *
+ * Filesystems which do not use buffer heads should call this function
+ * from their dirty_folio address space operation. It ignores the
+ * contents of folio_get_private(), so if the filesystem marks individual
+ * blocks as dirty, the filesystem should handle that itself.
+ *
+ * This is also sometimes used by filesystems which use buffer_heads when
+ * a single buffer is being dirtied: we want to set the folio dirty in
+ * that case, but not all the buffers. This is a "bottom-up" dirtying,
+ * whereas block_dirty_folio() is a "top-down" dirtying.
+ *
+ * The caller must ensure this doesn't race with truncation. Most will
+ * simply hold the folio lock, but e.g. zap_pte_range() calls with the
+ * folio mapped and the pte lock held, which also locks out truncation.
*/
-void account_page_redirty(struct page *page)
+bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
{
- struct address_space *mapping = page->mapping;
- if (mapping && mapping_cap_account_dirty(mapping)) {
- current->nr_dirtied--;
- dec_zone_page_state(page, NR_DIRTIED);
- dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
+ if (folio_test_set_dirty(folio))
+ return false;
+
+ __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
+
+ if (mapping->host) {
+ /* !PageAnon && !swapper_space */
+ __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
}
+ return true;
}
-EXPORT_SYMBOL(account_page_redirty);
+EXPORT_SYMBOL(filemap_dirty_folio);
-/*
- * When a writepage implementation decides that it doesn't want to write this
- * page for some reason, it should redirty the locked page via
- * redirty_page_for_writepage() and it should then unlock the page and return 0
+/**
+ * folio_redirty_for_writepage - Decline to write a dirty folio.
+ * @wbc: The writeback control.
+ * @folio: The folio.
+ *
+ * When a writepage implementation decides that it doesn't want to write
+ * @folio for some reason, it should call this function, unlock @folio and
+ * return 0.
+ *
+ * Return: True if we redirtied the folio. False if someone else dirtied
+ * it first.
*/
-int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
+bool folio_redirty_for_writepage(struct writeback_control *wbc,
+ struct folio *folio)
{
- wbc->pages_skipped++;
- account_page_redirty(page);
- return __set_page_dirty_nobuffers(page);
+ struct address_space *mapping = folio->mapping;
+ long nr = folio_nr_pages(folio);
+ bool ret;
+
+ wbc->pages_skipped += nr;
+ ret = filemap_dirty_folio(mapping, folio);
+ if (mapping && mapping_can_writeback(mapping)) {
+ struct inode *inode = mapping->host;
+ struct bdi_writeback *wb;
+ struct wb_lock_cookie cookie = {};
+
+ wb = unlocked_inode_to_wb_begin(inode, &cookie);
+ current->nr_dirtied -= nr;
+ node_stat_mod_folio(folio, NR_DIRTIED, -nr);
+ wb_stat_mod(wb, WB_DIRTIED, -nr);
+ unlocked_inode_to_wb_end(inode, &cookie);
+ }
+ return ret;
}
-EXPORT_SYMBOL(redirty_page_for_writepage);
+EXPORT_SYMBOL(folio_redirty_for_writepage);
-/*
- * Dirty a page.
+/**
+ * folio_mark_dirty - Mark a folio as being modified.
+ * @folio: The folio.
*
- * For pages with a mapping this should be done under the page lock
- * for the benefit of asynchronous memory errors who prefer a consistent
- * dirty state. This rule can be broken in some special cases,
- * but should be better not to.
+ * The folio may not be truncated while this function is running.
+ * Holding the folio lock is sufficient to prevent truncation, but some
+ * callers cannot acquire a sleeping lock. These callers instead hold
+ * the page table lock for a page table which contains at least one page
+ * in this folio. Truncation will block on the page table lock as it
+ * unmaps pages before removing the folio from its mapping.
*
- * If the mapping doesn't provide a set_page_dirty a_op, then
- * just fall through and assume that it wants buffer_heads.
+ * Return: True if the folio was newly dirtied, false if it was already dirty.
*/
-int set_page_dirty(struct page *page)
+bool folio_mark_dirty(struct folio *folio)
{
- struct address_space *mapping = page_mapping(page);
+ struct address_space *mapping = folio_mapping(folio);
if (likely(mapping)) {
- int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
/*
- * readahead/lru_deactivate_page could remain
- * PG_readahead/PG_reclaim due to race with end_page_writeback
- * About readahead, if the page is written, the flags would be
+ * readahead/folio_deactivate could remain
+ * PG_readahead/PG_reclaim due to race with folio_end_writeback
+ * About readahead, if the folio is written, the flags would be
* reset. So no problem.
- * About lru_deactivate_page, if the page is redirty, the flag
- * will be reset. So no problem. but if the page is used by readahead
- * it will confuse readahead and make it restart the size rampup
- * process. But it's a trivial problem.
+ * About folio_deactivate, if the folio is redirtied,
+ * the flag will be reset. So no problem. but if the
+ * folio is used by readahead it will confuse readahead
+ * and make it restart the size rampup process. But it's
+ * a trivial problem.
*/
- ClearPageReclaim(page);
-#ifdef CONFIG_BLOCK
- if (!spd)
- spd = __set_page_dirty_buffers;
-#endif
- return (*spd)(page);
- }
- if (!PageDirty(page)) {
- if (!TestSetPageDirty(page))
- return 1;
+ if (folio_test_reclaim(folio))
+ folio_clear_reclaim(folio);
+ return mapping->a_ops->dirty_folio(mapping, folio);
}
- return 0;
+
+ return noop_dirty_folio(mapping, folio);
}
-EXPORT_SYMBOL(set_page_dirty);
+EXPORT_SYMBOL(folio_mark_dirty);
/*
- * set_page_dirty() is racy if the caller has no reference against
- * page->mapping->host, and if the page is unlocked. This is because another
- * CPU could truncate the page off the mapping and then free the mapping.
+ * folio_mark_dirty() is racy if the caller has no reference against
+ * folio->mapping->host, and if the folio is unlocked. This is because another
+ * CPU could truncate the folio off the mapping and then free the mapping.
*
- * Usually, the page _is_ locked, or the caller is a user-space process which
+ * Usually, the folio _is_ locked, or the caller is a user-space process which
* holds a reference on the inode by having an open file.
*
- * In other cases, the page should be locked before running set_page_dirty().
+ * In other cases, the folio should be locked before running folio_mark_dirty().
*/
-int set_page_dirty_lock(struct page *page)
+bool folio_mark_dirty_lock(struct folio *folio)
{
- int ret;
+ bool ret;
- lock_page(page);
- ret = set_page_dirty(page);
- unlock_page(page);
+ folio_lock(folio);
+ ret = folio_mark_dirty(folio);
+ folio_unlock(folio);
return ret;
}
-EXPORT_SYMBOL(set_page_dirty_lock);
+EXPORT_SYMBOL(folio_mark_dirty_lock);
/*
- * Clear a page's dirty flag, while caring for dirty memory accounting.
- * Returns true if the page was previously dirty.
- *
- * This is for preparing to put the page under writeout. We leave the page
- * tagged as dirty in the radix tree so that a concurrent write-for-sync
- * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
- * implementation will run either set_page_writeback() or set_page_dirty(),
- * at which stage we bring the page's dirty flag and radix-tree dirty tag
- * back into sync.
- *
- * This incoherency between the page's dirty flag and radix-tree tag is
- * unfortunate, but it only exists while the page is locked.
+ * This cancels just the dirty bit on the kernel page itself, it does NOT
+ * actually remove dirty bits on any mmap's that may be around. It also
+ * leaves the page tagged dirty, so any sync activity will still find it on
+ * the dirty lists, and in particular, clear_page_dirty_for_io() will still
+ * look at the dirty bits in the VM.
+ *
+ * Doing this should *normally* only ever be done when a page is truncated,
+ * and is not actually mapped anywhere at all. However, fs/buffer.c does
+ * this when it notices that somebody has cleaned out all the buffers on a
+ * page without actually doing it through the VM. Can you say "ext3 is
+ * horribly ugly"? Thought you could.
*/
-int clear_page_dirty_for_io(struct page *page)
+void __folio_cancel_dirty(struct folio *folio)
{
- struct address_space *mapping = page_mapping(page);
+ struct address_space *mapping = folio_mapping(folio);
- BUG_ON(!PageLocked(page));
+ if (mapping_can_writeback(mapping)) {
+ struct inode *inode = mapping->host;
+ struct bdi_writeback *wb;
+ struct wb_lock_cookie cookie = {};
+
+ wb = unlocked_inode_to_wb_begin(inode, &cookie);
+
+ if (folio_test_clear_dirty(folio))
+ folio_account_cleaned(folio, wb);
+
+ unlocked_inode_to_wb_end(inode, &cookie);
+ } else {
+ folio_clear_dirty(folio);
+ }
+}
+EXPORT_SYMBOL(__folio_cancel_dirty);
+
+/*
+ * Clear a folio's dirty flag, while caring for dirty memory accounting.
+ * Returns true if the folio was previously dirty.
+ *
+ * This is for preparing to put the folio under writeout. We leave
+ * the folio tagged as dirty in the xarray so that a concurrent
+ * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
+ * The ->writepage implementation will run either folio_start_writeback()
+ * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
+ * and xarray dirty tag back into sync.
+ *
+ * This incoherency between the folio's dirty flag and xarray tag is
+ * unfortunate, but it only exists while the folio is locked.
+ */
+bool folio_clear_dirty_for_io(struct folio *folio)
+{
+ struct address_space *mapping = folio_mapping(folio);
+ bool ret = false;
+
+ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
+
+ if (mapping && mapping_can_writeback(mapping)) {
+ struct inode *inode = mapping->host;
+ struct bdi_writeback *wb;
+ struct wb_lock_cookie cookie = {};
- if (mapping && mapping_cap_account_dirty(mapping)) {
/*
* Yes, Virginia, this is indeed insane.
*
* We use this sequence to make sure that
* (a) we account for dirty stats properly
* (b) we tell the low-level filesystem to
- * mark the whole page dirty if it was
+ * mark the whole folio dirty if it was
* dirty in a pagetable. Only to then
- * (c) clean the page again and return 1 to
+ * (c) clean the folio again and return 1 to
* cause the writeback.
*
* This way we avoid all nasty races with the
* dirty bit in multiple places and clearing
* them concurrently from different threads.
*
- * Note! Normally the "set_page_dirty(page)"
+ * Note! Normally the "folio_mark_dirty(folio)"
* has no effect on the actual dirty bit - since
* that will already usually be set. But we
* need the side effects, and it can help us
* avoid races.
*
- * We basically use the page "master dirty bit"
+ * We basically use the folio "master dirty bit"
* as a serialization point for all the different
* threads doing their things.
*/
- if (page_mkclean(page))
- set_page_dirty(page);
+ if (folio_mkclean(folio))
+ folio_mark_dirty(folio);
/*
* We carefully synchronise fault handlers against
- * installing a dirty pte and marking the page dirty
- * at this point. We do this by having them hold the
- * page lock at some point after installing their
- * pte, but before marking the page dirty.
- * Pages are always locked coming in here, so we get
- * the desired exclusion. See mm/memory.c:do_wp_page()
- * for more comments.
+ * installing a dirty pte and marking the folio dirty
+ * at this point. We do this by having them hold the
+ * page lock while dirtying the folio, and folios are
+ * always locked coming in here, so we get the desired
+ * exclusion.
*/
- if (TestClearPageDirty(page)) {
- dec_zone_page_state(page, NR_FILE_DIRTY);
- dec_bdi_stat(mapping->backing_dev_info,
- BDI_RECLAIMABLE);
- return 1;
+ wb = unlocked_inode_to_wb_begin(inode, &cookie);
+ if (folio_test_clear_dirty(folio)) {
+ long nr = folio_nr_pages(folio);
+ lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
+ zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
+ wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
+ ret = true;
}
- return 0;
+ unlocked_inode_to_wb_end(inode, &cookie);
+ return ret;
}
- return TestClearPageDirty(page);
+ return folio_test_clear_dirty(folio);
}
-EXPORT_SYMBOL(clear_page_dirty_for_io);
+EXPORT_SYMBOL(folio_clear_dirty_for_io);
-int test_clear_page_writeback(struct page *page)
+static void wb_inode_writeback_start(struct bdi_writeback *wb)
{
- struct address_space *mapping = page_mapping(page);
- int ret;
+ atomic_inc(&wb->writeback_inodes);
+}
- if (mapping) {
- struct backing_dev_info *bdi = mapping->backing_dev_info;
+static void wb_inode_writeback_end(struct bdi_writeback *wb)
+{
+ unsigned long flags;
+ atomic_dec(&wb->writeback_inodes);
+ /*
+ * Make sure estimate of writeback throughput gets updated after
+ * writeback completed. We delay the update by BANDWIDTH_INTERVAL
+ * (which is the interval other bandwidth updates use for batching) so
+ * that if multiple inodes end writeback at a similar time, they get
+ * batched into one bandwidth update.
+ */
+ spin_lock_irqsave(&wb->work_lock, flags);
+ if (test_bit(WB_registered, &wb->state))
+ queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
+ spin_unlock_irqrestore(&wb->work_lock, flags);
+}
+
+bool __folio_end_writeback(struct folio *folio)
+{
+ long nr = folio_nr_pages(folio);
+ struct address_space *mapping = folio_mapping(folio);
+ bool ret;
+
+ if (mapping && mapping_use_writeback_tags(mapping)) {
+ struct inode *inode = mapping->host;
+ struct bdi_writeback *wb;
unsigned long flags;
- spin_lock_irqsave(&mapping->tree_lock, flags);
- ret = TestClearPageWriteback(page);
- if (ret) {
- radix_tree_tag_clear(&mapping->page_tree,
- page_index(page),
- PAGECACHE_TAG_WRITEBACK);
- if (bdi_cap_account_writeback(bdi)) {
- __dec_bdi_stat(bdi, BDI_WRITEBACK);
- __bdi_writeout_inc(bdi);
- }
+ xa_lock_irqsave(&mapping->i_pages, flags);
+ ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
+ __xa_clear_mark(&mapping->i_pages, folio->index,
+ PAGECACHE_TAG_WRITEBACK);
+
+ wb = inode_to_wb(inode);
+ wb_stat_mod(wb, WB_WRITEBACK, -nr);
+ __wb_writeout_add(wb, nr);
+ if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
+ wb_inode_writeback_end(wb);
+ if (mapping->host)
+ sb_clear_inode_writeback(mapping->host);
}
- spin_unlock_irqrestore(&mapping->tree_lock, flags);
+
+ xa_unlock_irqrestore(&mapping->i_pages, flags);
} else {
- ret = TestClearPageWriteback(page);
- }
- if (ret) {
- dec_zone_page_state(page, NR_WRITEBACK);
- inc_zone_page_state(page, NR_WRITTEN);
+ ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
}
+
+ lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
+ zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
+ node_stat_mod_folio(folio, NR_WRITTEN, nr);
+
return ret;
}
-int test_set_page_writeback(struct page *page)
+void __folio_start_writeback(struct folio *folio, bool keep_write)
{
- struct address_space *mapping = page_mapping(page);
- int ret;
+ long nr = folio_nr_pages(folio);
+ struct address_space *mapping = folio_mapping(folio);
+ int access_ret;
- if (mapping) {
- struct backing_dev_info *bdi = mapping->backing_dev_info;
+ VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
+ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
+
+ if (mapping && mapping_use_writeback_tags(mapping)) {
+ XA_STATE(xas, &mapping->i_pages, folio->index);
+ struct inode *inode = mapping->host;
+ struct bdi_writeback *wb;
unsigned long flags;
+ bool on_wblist;
+
+ xas_lock_irqsave(&xas, flags);
+ xas_load(&xas);
+ folio_test_set_writeback(folio);
+
+ on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
- spin_lock_irqsave(&mapping->tree_lock, flags);
- ret = TestSetPageWriteback(page);
- if (!ret) {
- radix_tree_tag_set(&mapping->page_tree,
- page_index(page),
- PAGECACHE_TAG_WRITEBACK);
- if (bdi_cap_account_writeback(bdi))
- __inc_bdi_stat(bdi, BDI_WRITEBACK);
+ xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
+ wb = inode_to_wb(inode);
+ wb_stat_mod(wb, WB_WRITEBACK, nr);
+ if (!on_wblist) {
+ wb_inode_writeback_start(wb);
+ /*
+ * We can come through here when swapping anonymous
+ * folios, so we don't necessarily have an inode to
+ * track for sync.
+ */
+ if (mapping->host)
+ sb_mark_inode_writeback(mapping->host);
}
- if (!PageDirty(page))
- radix_tree_tag_clear(&mapping->page_tree,
- page_index(page),
- PAGECACHE_TAG_DIRTY);
- radix_tree_tag_clear(&mapping->page_tree,
- page_index(page),
- PAGECACHE_TAG_TOWRITE);
- spin_unlock_irqrestore(&mapping->tree_lock, flags);
+
+ if (!folio_test_dirty(folio))
+ xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
+ if (!keep_write)
+ xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
+ xas_unlock_irqrestore(&xas, flags);
} else {
- ret = TestSetPageWriteback(page);
+ folio_test_set_writeback(folio);
}
- if (!ret)
- account_page_writeback(page);
- return ret;
+ lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
+ zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
+
+ access_ret = arch_make_folio_accessible(folio);
+ /*
+ * If writeback has been triggered on a page that cannot be made
+ * accessible, it is too late to recover here.
+ */
+ VM_BUG_ON_FOLIO(access_ret != 0, folio);
}
-EXPORT_SYMBOL(test_set_page_writeback);
+EXPORT_SYMBOL(__folio_start_writeback);
-/*
- * Return true if any of the pages in the mapping are marked with the
- * passed tag.
+/**
+ * folio_wait_writeback - Wait for a folio to finish writeback.
+ * @folio: The folio to wait for.
+ *
+ * If the folio is currently being written back to storage, wait for the
+ * I/O to complete.
+ *
+ * Context: Sleeps. Must be called in process context and with
+ * no spinlocks held. Caller should hold a reference on the folio.
+ * If the folio is not locked, writeback may start again after writeback
+ * has finished.
*/
-int mapping_tagged(struct address_space *mapping, int tag)
+void folio_wait_writeback(struct folio *folio)
{
- return radix_tree_tagged(&mapping->page_tree, tag);
+ while (folio_test_writeback(folio)) {
+ trace_folio_wait_writeback(folio, folio_mapping(folio));
+ folio_wait_bit(folio, PG_writeback);
+ }
}
-EXPORT_SYMBOL(mapping_tagged);
+EXPORT_SYMBOL_GPL(folio_wait_writeback);
/**
- * wait_for_stable_page() - wait for writeback to finish, if necessary.
- * @page: The page to wait on.
+ * folio_wait_writeback_killable - Wait for a folio to finish writeback.
+ * @folio: The folio to wait for.
*
- * This function determines if the given page is related to a backing device
- * that requires page contents to be held stable during writeback. If so, then
- * it will wait for any pending writeback to complete.
+ * If the folio is currently being written back to storage, wait for the
+ * I/O to complete or a fatal signal to arrive.
+ *
+ * Context: Sleeps. Must be called in process context and with
+ * no spinlocks held. Caller should hold a reference on the folio.
+ * If the folio is not locked, writeback may start again after writeback
+ * has finished.
+ * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
*/
-void wait_for_stable_page(struct page *page)
+int folio_wait_writeback_killable(struct folio *folio)
{
- struct address_space *mapping = page_mapping(page);
- struct backing_dev_info *bdi = mapping->backing_dev_info;
+ while (folio_test_writeback(folio)) {
+ trace_folio_wait_writeback(folio, folio_mapping(folio));
+ if (folio_wait_bit_killable(folio, PG_writeback))
+ return -EINTR;
+ }
- if (!bdi_cap_stable_pages_required(bdi))
- return;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
- wait_on_page_writeback(page);
+/**
+ * folio_wait_stable() - wait for writeback to finish, if necessary.
+ * @folio: The folio to wait on.
+ *
+ * This function determines if the given folio is related to a backing
+ * device that requires folio contents to be held stable during writeback.
+ * If so, then it will wait for any pending writeback to complete.
+ *
+ * Context: Sleeps. Must be called in process context and with
+ * no spinlocks held. Caller should hold a reference on the folio.
+ * If the folio is not locked, writeback may start again after writeback
+ * has finished.
+ */
+void folio_wait_stable(struct folio *folio)
+{
+ if (mapping_stable_writes(folio_mapping(folio)))
+ folio_wait_writeback(folio);
}
-EXPORT_SYMBOL_GPL(wait_for_stable_page);
+EXPORT_SYMBOL_GPL(folio_wait_stable);