summaryrefslogtreecommitdiff
path: root/mm/page_alloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/page_alloc.c')
-rw-r--r--mm/page_alloc.c10165
1 files changed, 5730 insertions, 4435 deletions
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index b100255dedda..822e05f1a964 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/mm/page_alloc.c
*
@@ -16,64 +17,163 @@
#include <linux/stddef.h>
#include <linux/mm.h>
-#include <linux/swap.h>
+#include <linux/highmem.h>
#include <linux/interrupt.h>
-#include <linux/pagemap.h>
#include <linux/jiffies.h>
-#include <linux/bootmem.h>
-#include <linux/memblock.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
-#include <linux/kmemcheck.h>
+#include <linux/kasan.h>
+#include <linux/kmsan.h>
#include <linux/module.h>
#include <linux/suspend.h>
-#include <linux/pagevec.h>
-#include <linux/blkdev.h>
-#include <linux/slab.h>
#include <linux/ratelimit.h>
#include <linux/oom.h>
-#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
+#include <linux/pagevec.h>
#include <linux/memory_hotplug.h>
#include <linux/nodemask.h>
-#include <linux/vmalloc.h>
#include <linux/vmstat.h>
-#include <linux/mempolicy.h>
-#include <linux/stop_machine.h>
-#include <linux/sort.h>
-#include <linux/pfn.h>
-#include <linux/backing-dev.h>
#include <linux/fault-inject.h>
-#include <linux/page-isolation.h>
-#include <linux/page_cgroup.h>
-#include <linux/debugobjects.h>
-#include <linux/kmemleak.h>
#include <linux/compaction.h>
#include <trace/events/kmem.h>
-#include <linux/ftrace_event.h>
-#include <linux/memcontrol.h>
+#include <trace/events/oom.h>
#include <linux/prefetch.h>
+#include <linux/mm_inline.h>
+#include <linux/mmu_notifier.h>
#include <linux/migrate.h>
-#include <linux/page-debug-flags.h>
-#include <linux/hugetlb.h>
-#include <linux/sched/rt.h>
-
-#include <asm/sections.h>
-#include <asm/tlbflush.h>
+#include <linux/sched/mm.h>
+#include <linux/page_owner.h>
+#include <linux/page_table_check.h>
+#include <linux/memcontrol.h>
+#include <linux/ftrace.h>
+#include <linux/lockdep.h>
+#include <linux/psi.h>
+#include <linux/khugepaged.h>
+#include <linux/delayacct.h>
+#include <linux/cacheinfo.h>
+#include <linux/pgalloc_tag.h>
#include <asm/div64.h>
#include "internal.h"
+#include "shuffle.h"
+#include "page_reporting.h"
+
+/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
+typedef int __bitwise fpi_t;
+
+/* No special request */
+#define FPI_NONE ((__force fpi_t)0)
+
+/*
+ * Skip free page reporting notification for the (possibly merged) page.
+ * This does not hinder free page reporting from grabbing the page,
+ * reporting it and marking it "reported" - it only skips notifying
+ * the free page reporting infrastructure about a newly freed page. For
+ * example, used when temporarily pulling a page from a freelist and
+ * putting it back unmodified.
+ */
+#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
+
+/*
+ * Place the (possibly merged) page to the tail of the freelist. Will ignore
+ * page shuffling (relevant code - e.g., memory onlining - is expected to
+ * shuffle the whole zone).
+ *
+ * Note: No code should rely on this flag for correctness - it's purely
+ * to allow for optimizations when handing back either fresh pages
+ * (memory onlining) or untouched pages (page isolation, free page
+ * reporting).
+ */
+#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
+
+/* Free the page without taking locks. Rely on trylock only. */
+#define FPI_TRYLOCK ((__force fpi_t)BIT(2))
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
+#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
+
+#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
+/*
+ * On SMP, spin_trylock is sufficient protection.
+ * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
+ * Pass flags to a no-op inline function to typecheck and silence the unused
+ * variable warning.
+ */
+static inline void __pcp_trylock_noop(unsigned long *flags) { }
+#define pcp_trylock_prepare(flags) __pcp_trylock_noop(&(flags))
+#define pcp_trylock_finish(flags) __pcp_trylock_noop(&(flags))
+#else
+
+/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
+#define pcp_trylock_prepare(flags) local_irq_save(flags)
+#define pcp_trylock_finish(flags) local_irq_restore(flags)
+#endif
+
+/*
+ * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
+ * a migration causing the wrong PCP to be locked and remote memory being
+ * potentially allocated, pin the task to the CPU for the lookup+lock.
+ * preempt_disable is used on !RT because it is faster than migrate_disable.
+ * migrate_disable is used on RT because otherwise RT spinlock usage is
+ * interfered with and a high priority task cannot preempt the allocator.
+ */
+#ifndef CONFIG_PREEMPT_RT
+#define pcpu_task_pin() preempt_disable()
+#define pcpu_task_unpin() preempt_enable()
+#else
+#define pcpu_task_pin() migrate_disable()
+#define pcpu_task_unpin() migrate_enable()
+#endif
+
+/*
+ * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
+ * Return value should be used with equivalent unlock helper.
+ */
+#define pcpu_spin_trylock(type, member, ptr) \
+({ \
+ type *_ret; \
+ pcpu_task_pin(); \
+ _ret = this_cpu_ptr(ptr); \
+ if (!spin_trylock(&_ret->member)) { \
+ pcpu_task_unpin(); \
+ _ret = NULL; \
+ } \
+ _ret; \
+})
+
+#define pcpu_spin_unlock(member, ptr) \
+({ \
+ spin_unlock(&ptr->member); \
+ pcpu_task_unpin(); \
+})
+
+/* struct per_cpu_pages specific helpers. */
+#define pcp_spin_trylock(ptr, UP_flags) \
+({ \
+ struct per_cpu_pages *__ret; \
+ pcp_trylock_prepare(UP_flags); \
+ __ret = pcpu_spin_trylock(struct per_cpu_pages, lock, ptr); \
+ if (!__ret) \
+ pcp_trylock_finish(UP_flags); \
+ __ret; \
+})
+
+#define pcp_spin_unlock(ptr, UP_flags) \
+({ \
+ pcpu_spin_unlock(lock, ptr); \
+ pcp_trylock_finish(UP_flags); \
+})
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif
+DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
+
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
* N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
@@ -85,6 +185,13 @@ DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
#endif
+static DEFINE_MUTEX(pcpu_drain_mutex);
+
+#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
+volatile unsigned long latent_entropy __latent_entropy;
+EXPORT_SYMBOL(latent_entropy);
+#endif
+
/*
* Array of node states.
*/
@@ -96,72 +203,20 @@ nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
#ifdef CONFIG_HIGHMEM
[N_HIGH_MEMORY] = { { [0] = 1UL } },
#endif
-#ifdef CONFIG_MOVABLE_NODE
[N_MEMORY] = { { [0] = 1UL } },
-#endif
[N_CPU] = { { [0] = 1UL } },
#endif /* NUMA */
};
EXPORT_SYMBOL(node_states);
-/* Protect totalram_pages and zone->managed_pages */
-static DEFINE_SPINLOCK(managed_page_count_lock);
-
-unsigned long totalram_pages __read_mostly;
-unsigned long totalreserve_pages __read_mostly;
-/*
- * When calculating the number of globally allowed dirty pages, there
- * is a certain number of per-zone reserves that should not be
- * considered dirtyable memory. This is the sum of those reserves
- * over all existing zones that contribute dirtyable memory.
- */
-unsigned long dirty_balance_reserve __read_mostly;
-
-int percpu_pagelist_fraction;
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
-#ifdef CONFIG_PM_SLEEP
-/*
- * The following functions are used by the suspend/hibernate code to temporarily
- * change gfp_allowed_mask in order to avoid using I/O during memory allocations
- * while devices are suspended. To avoid races with the suspend/hibernate code,
- * they should always be called with pm_mutex held (gfp_allowed_mask also should
- * only be modified with pm_mutex held, unless the suspend/hibernate code is
- * guaranteed not to run in parallel with that modification).
- */
-
-static gfp_t saved_gfp_mask;
-
-void pm_restore_gfp_mask(void)
-{
- WARN_ON(!mutex_is_locked(&pm_mutex));
- if (saved_gfp_mask) {
- gfp_allowed_mask = saved_gfp_mask;
- saved_gfp_mask = 0;
- }
-}
-
-void pm_restrict_gfp_mask(void)
-{
- WARN_ON(!mutex_is_locked(&pm_mutex));
- WARN_ON(saved_gfp_mask);
- saved_gfp_mask = gfp_allowed_mask;
- gfp_allowed_mask &= ~GFP_IOFS;
-}
-
-bool pm_suspended_storage(void)
-{
- if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
- return false;
- return true;
-}
-#endif /* CONFIG_PM_SLEEP */
-
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
-int pageblock_order __read_mostly;
+unsigned int pageblock_order __read_mostly;
#endif
-static void __free_pages_ok(struct page *page, unsigned int order);
+static void __free_pages_ok(struct page *page, unsigned int order,
+ fpi_t fpi_flags);
/*
* results with 256, 32 in the lowmem_reserve sysctl:
@@ -169,27 +224,26 @@ static void __free_pages_ok(struct page *page, unsigned int order);
* 1G machine -> (16M dma, 784M normal, 224M high)
* NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
* HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
- * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
+ * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
*
* TBD: should special case ZONE_DMA32 machines here - in those we normally
* don't need any ZONE_NORMAL reservation
*/
-int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
+static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
#ifdef CONFIG_ZONE_DMA
- 256,
+ [ZONE_DMA] = 256,
#endif
#ifdef CONFIG_ZONE_DMA32
- 256,
+ [ZONE_DMA32] = 256,
#endif
+ [ZONE_NORMAL] = 32,
#ifdef CONFIG_HIGHMEM
- 32,
+ [ZONE_HIGHMEM] = 0,
#endif
- 32,
+ [ZONE_MOVABLE] = 0,
};
-EXPORT_SYMBOL(totalram_pages);
-
-static char * const zone_names[MAX_NR_ZONES] = {
+char * const zone_names[MAX_NR_ZONES] = {
#ifdef CONFIG_ZONE_DMA
"DMA",
#endif
@@ -201,52 +255,329 @@ static char * const zone_names[MAX_NR_ZONES] = {
"HighMem",
#endif
"Movable",
+#ifdef CONFIG_ZONE_DEVICE
+ "Device",
+#endif
};
-int min_free_kbytes = 1024;
-int user_min_free_kbytes;
-
-static unsigned long __meminitdata nr_kernel_pages;
-static unsigned long __meminitdata nr_all_pages;
-static unsigned long __meminitdata dma_reserve;
+const char * const migratetype_names[MIGRATE_TYPES] = {
+ "Unmovable",
+ "Movable",
+ "Reclaimable",
+ "HighAtomic",
+#ifdef CONFIG_CMA
+ "CMA",
+#endif
+#ifdef CONFIG_MEMORY_ISOLATION
+ "Isolate",
+#endif
+};
-#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
-static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
-static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
-static unsigned long __initdata required_kernelcore;
-static unsigned long __initdata required_movablecore;
-static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
+int min_free_kbytes = 1024;
+int user_min_free_kbytes = -1;
+static int watermark_boost_factor __read_mostly = 15000;
+static int watermark_scale_factor = 10;
+int defrag_mode;
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
-#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
#if MAX_NUMNODES > 1
-int nr_node_ids __read_mostly = MAX_NUMNODES;
-int nr_online_nodes __read_mostly = 1;
+unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
+unsigned int nr_online_nodes __read_mostly = 1;
EXPORT_SYMBOL(nr_node_ids);
EXPORT_SYMBOL(nr_online_nodes);
#endif
+static bool page_contains_unaccepted(struct page *page, unsigned int order);
+static bool cond_accept_memory(struct zone *zone, unsigned int order,
+ int alloc_flags);
+static bool __free_unaccepted(struct page *page);
+
int page_group_by_mobility_disabled __read_mostly;
-void set_pageblock_migratetype(struct page *page, int migratetype)
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+/*
+ * During boot we initialize deferred pages on-demand, as needed, but once
+ * page_alloc_init_late() has finished, the deferred pages are all initialized,
+ * and we can permanently disable that path.
+ */
+DEFINE_STATIC_KEY_TRUE(deferred_pages);
+
+static inline bool deferred_pages_enabled(void)
+{
+ return static_branch_unlikely(&deferred_pages);
+}
+
+/*
+ * deferred_grow_zone() is __init, but it is called from
+ * get_page_from_freelist() during early boot until deferred_pages permanently
+ * disables this call. This is why we have refdata wrapper to avoid warning,
+ * and to ensure that the function body gets unloaded.
+ */
+static bool __ref
+_deferred_grow_zone(struct zone *zone, unsigned int order)
+{
+ return deferred_grow_zone(zone, order);
+}
+#else
+static inline bool deferred_pages_enabled(void)
+{
+ return false;
+}
+
+static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
+{
+ return false;
+}
+#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
+
+/* Return a pointer to the bitmap storing bits affecting a block of pages */
+static inline unsigned long *get_pageblock_bitmap(const struct page *page,
+ unsigned long pfn)
+{
+#ifdef CONFIG_SPARSEMEM
+ return section_to_usemap(__pfn_to_section(pfn));
+#else
+ return page_zone(page)->pageblock_flags;
+#endif /* CONFIG_SPARSEMEM */
+}
+
+static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
+{
+#ifdef CONFIG_SPARSEMEM
+ pfn &= (PAGES_PER_SECTION-1);
+#else
+ pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
+#endif /* CONFIG_SPARSEMEM */
+ return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
+}
+
+static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit)
+{
+ return pb_bit >= PB_compact_skip && pb_bit < __NR_PAGEBLOCK_BITS;
+}
+
+static __always_inline void
+get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn,
+ unsigned long **bitmap_word, unsigned long *bitidx)
+{
+ unsigned long *bitmap;
+ unsigned long word_bitidx;
+
+#ifdef CONFIG_MEMORY_ISOLATION
+ BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8);
+#else
+ BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
+#endif
+ BUILD_BUG_ON(__MIGRATE_TYPE_END > MIGRATETYPE_MASK);
+ VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
+
+ bitmap = get_pageblock_bitmap(page, pfn);
+ *bitidx = pfn_to_bitidx(page, pfn);
+ word_bitidx = *bitidx / BITS_PER_LONG;
+ *bitidx &= (BITS_PER_LONG - 1);
+ *bitmap_word = &bitmap[word_bitidx];
+}
+
+
+/**
+ * __get_pfnblock_flags_mask - Return the requested group of flags for
+ * a pageblock_nr_pages block of pages
+ * @page: The page within the block of interest
+ * @pfn: The target page frame number
+ * @mask: mask of bits that the caller is interested in
+ *
+ * Return: pageblock_bits flags
+ */
+static unsigned long __get_pfnblock_flags_mask(const struct page *page,
+ unsigned long pfn,
+ unsigned long mask)
+{
+ unsigned long *bitmap_word;
+ unsigned long bitidx;
+ unsigned long word;
+
+ get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
+ /*
+ * This races, without locks, with set_pfnblock_migratetype(). Ensure
+ * a consistent read of the memory array, so that results, even though
+ * racy, are not corrupted.
+ */
+ word = READ_ONCE(*bitmap_word);
+ return (word >> bitidx) & mask;
+}
+
+/**
+ * get_pfnblock_bit - Check if a standalone bit of a pageblock is set
+ * @page: The page within the block of interest
+ * @pfn: The target page frame number
+ * @pb_bit: pageblock bit to check
+ *
+ * Return: true if the bit is set, otherwise false
+ */
+bool get_pfnblock_bit(const struct page *page, unsigned long pfn,
+ enum pageblock_bits pb_bit)
+{
+ unsigned long *bitmap_word;
+ unsigned long bitidx;
+
+ if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
+ return false;
+
+ get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
+
+ return test_bit(bitidx + pb_bit, bitmap_word);
+}
+
+/**
+ * get_pfnblock_migratetype - Return the migratetype of a pageblock
+ * @page: The page within the block of interest
+ * @pfn: The target page frame number
+ *
+ * Return: The migratetype of the pageblock
+ *
+ * Use get_pfnblock_migratetype() if caller already has both @page and @pfn
+ * to save a call to page_to_pfn().
+ */
+__always_inline enum migratetype
+get_pfnblock_migratetype(const struct page *page, unsigned long pfn)
+{
+ unsigned long mask = MIGRATETYPE_AND_ISO_MASK;
+ unsigned long flags;
+
+ flags = __get_pfnblock_flags_mask(page, pfn, mask);
+
+#ifdef CONFIG_MEMORY_ISOLATION
+ if (flags & BIT(PB_migrate_isolate))
+ return MIGRATE_ISOLATE;
+#endif
+ return flags & MIGRATETYPE_MASK;
+}
+
+/**
+ * __set_pfnblock_flags_mask - Set the requested group of flags for
+ * a pageblock_nr_pages block of pages
+ * @page: The page within the block of interest
+ * @pfn: The target page frame number
+ * @flags: The flags to set
+ * @mask: mask of bits that the caller is interested in
+ */
+static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn,
+ unsigned long flags, unsigned long mask)
+{
+ unsigned long *bitmap_word;
+ unsigned long bitidx;
+ unsigned long word;
+
+ get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
+
+ mask <<= bitidx;
+ flags <<= bitidx;
+
+ word = READ_ONCE(*bitmap_word);
+ do {
+ } while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags));
+}
+
+/**
+ * set_pfnblock_bit - Set a standalone bit of a pageblock
+ * @page: The page within the block of interest
+ * @pfn: The target page frame number
+ * @pb_bit: pageblock bit to set
+ */
+void set_pfnblock_bit(const struct page *page, unsigned long pfn,
+ enum pageblock_bits pb_bit)
+{
+ unsigned long *bitmap_word;
+ unsigned long bitidx;
+
+ if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
+ return;
+
+ get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
+
+ set_bit(bitidx + pb_bit, bitmap_word);
+}
+
+/**
+ * clear_pfnblock_bit - Clear a standalone bit of a pageblock
+ * @page: The page within the block of interest
+ * @pfn: The target page frame number
+ * @pb_bit: pageblock bit to clear
+ */
+void clear_pfnblock_bit(const struct page *page, unsigned long pfn,
+ enum pageblock_bits pb_bit)
{
+ unsigned long *bitmap_word;
+ unsigned long bitidx;
+
+ if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
+ return;
- if (unlikely(page_group_by_mobility_disabled))
+ get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
+
+ clear_bit(bitidx + pb_bit, bitmap_word);
+}
+
+/**
+ * set_pageblock_migratetype - Set the migratetype of a pageblock
+ * @page: The page within the block of interest
+ * @migratetype: migratetype to set
+ */
+static void set_pageblock_migratetype(struct page *page,
+ enum migratetype migratetype)
+{
+ if (unlikely(page_group_by_mobility_disabled &&
+ migratetype < MIGRATE_PCPTYPES))
migratetype = MIGRATE_UNMOVABLE;
- set_pageblock_flags_group(page, (unsigned long)migratetype,
- PB_migrate, PB_migrate_end);
+#ifdef CONFIG_MEMORY_ISOLATION
+ if (migratetype == MIGRATE_ISOLATE) {
+ VM_WARN_ONCE(1,
+ "Use set_pageblock_isolate() for pageblock isolation");
+ return;
+ }
+ VM_WARN_ONCE(get_pageblock_isolate(page),
+ "Use clear_pageblock_isolate() to unisolate pageblock");
+ /* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */
+#endif
+ __set_pfnblock_flags_mask(page, page_to_pfn(page),
+ (unsigned long)migratetype,
+ MIGRATETYPE_AND_ISO_MASK);
}
-bool oom_killer_disabled __read_mostly;
+void __meminit init_pageblock_migratetype(struct page *page,
+ enum migratetype migratetype,
+ bool isolate)
+{
+ unsigned long flags;
+
+ if (unlikely(page_group_by_mobility_disabled &&
+ migratetype < MIGRATE_PCPTYPES))
+ migratetype = MIGRATE_UNMOVABLE;
+
+ flags = migratetype;
+
+#ifdef CONFIG_MEMORY_ISOLATION
+ if (migratetype == MIGRATE_ISOLATE) {
+ VM_WARN_ONCE(
+ 1,
+ "Set isolate=true to isolate pageblock with a migratetype");
+ return;
+ }
+ if (isolate)
+ flags |= BIT(PB_migrate_isolate);
+#endif
+ __set_pfnblock_flags_mask(page, page_to_pfn(page), flags,
+ MIGRATETYPE_AND_ISO_MASK);
+}
#ifdef CONFIG_DEBUG_VM
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
{
- int ret = 0;
+ int ret;
unsigned seq;
unsigned long pfn = page_to_pfn(page);
unsigned long sp, start_pfn;
@@ -255,57 +586,42 @@ static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
seq = zone_span_seqbegin(zone);
start_pfn = zone->zone_start_pfn;
sp = zone->spanned_pages;
- if (!zone_spans_pfn(zone, pfn))
- ret = 1;
+ ret = !zone_spans_pfn(zone, pfn);
} while (zone_span_seqretry(zone, seq));
if (ret)
- pr_err("page %lu outside zone [ %lu - %lu ]\n",
- pfn, start_pfn, start_pfn + sp);
+ pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
+ pfn, zone_to_nid(zone), zone->name,
+ start_pfn, start_pfn + sp);
return ret;
}
-static int page_is_consistent(struct zone *zone, struct page *page)
-{
- if (!pfn_valid_within(page_to_pfn(page)))
- return 0;
- if (zone != page_zone(page))
- return 0;
-
- return 1;
-}
/*
* Temporary debugging check for pages not lying within a given zone.
*/
-static int bad_range(struct zone *zone, struct page *page)
+static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
{
if (page_outside_zone_boundaries(zone, page))
- return 1;
- if (!page_is_consistent(zone, page))
- return 1;
+ return true;
+ if (zone != page_zone(page))
+ return true;
- return 0;
+ return false;
}
#else
-static inline int bad_range(struct zone *zone, struct page *page)
+static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
{
- return 0;
+ return false;
}
#endif
-static void bad_page(struct page *page)
+static void bad_page(struct page *page, const char *reason)
{
static unsigned long resume;
static unsigned long nr_shown;
static unsigned long nr_unshown;
- /* Don't complain about poisoned pages */
- if (PageHWPoison(page)) {
- page_mapcount_reset(page); /* remove PageBuddy */
- return;
- }
-
/*
* Allow a burst of 60 reports, then keep quiet for that minute;
* or allow a steady drip of one report per second.
@@ -316,7 +632,7 @@ static void bad_page(struct page *page)
goto out;
}
if (nr_unshown) {
- printk(KERN_ALERT
+ pr_alert(
"BUG: Bad page state: %lu messages suppressed\n",
nr_unshown);
nr_unshown = 0;
@@ -326,192 +642,276 @@ static void bad_page(struct page *page)
if (nr_shown++ == 0)
resume = jiffies + 60 * HZ;
- printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
+ pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
current->comm, page_to_pfn(page));
- dump_page(page);
+ dump_page(page, reason);
print_modules();
dump_stack();
out:
/* Leave bad fields for debug, except PageBuddy could make trouble */
- page_mapcount_reset(page); /* remove PageBuddy */
+ if (PageBuddy(page))
+ __ClearPageBuddy(page);
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
+static inline unsigned int order_to_pindex(int migratetype, int order)
+{
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ bool movable;
+ if (order > PAGE_ALLOC_COSTLY_ORDER) {
+ VM_BUG_ON(order != HPAGE_PMD_ORDER);
+
+ movable = migratetype == MIGRATE_MOVABLE;
+
+ return NR_LOWORDER_PCP_LISTS + movable;
+ }
+#else
+ VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
+#endif
+
+ return (MIGRATE_PCPTYPES * order) + migratetype;
+}
+
+static inline int pindex_to_order(unsigned int pindex)
+{
+ int order = pindex / MIGRATE_PCPTYPES;
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ if (pindex >= NR_LOWORDER_PCP_LISTS)
+ order = HPAGE_PMD_ORDER;
+#else
+ VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
+#endif
+
+ return order;
+}
+
+static inline bool pcp_allowed_order(unsigned int order)
+{
+ if (order <= PAGE_ALLOC_COSTLY_ORDER)
+ return true;
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+ if (order == HPAGE_PMD_ORDER)
+ return true;
+#endif
+ return false;
+}
+
/*
* Higher-order pages are called "compound pages". They are structured thusly:
*
- * The first PAGE_SIZE page is called the "head page".
- *
- * The remaining PAGE_SIZE pages are called "tail pages".
+ * The first PAGE_SIZE page is called the "head page" and have PG_head set.
*
- * All pages have PG_compound set. All tail pages have their ->first_page
- * pointing at the head page.
+ * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
+ * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
*
- * The first tail page's ->lru.next holds the address of the compound page's
- * put_page() function. Its ->lru.prev holds the order of allocation.
+ * The first tail page's ->compound_order holds the order of allocation.
* This usage means that zero-order pages may not be compound.
*/
-static void free_compound_page(struct page *page)
-{
- __free_pages_ok(page, compound_order(page));
-}
-
-void prep_compound_page(struct page *page, unsigned long order)
+void prep_compound_page(struct page *page, unsigned int order)
{
int i;
int nr_pages = 1 << order;
- set_compound_page_dtor(page, free_compound_page);
- set_compound_order(page, order);
__SetPageHead(page);
- for (i = 1; i < nr_pages; i++) {
- struct page *p = page + i;
- __SetPageTail(p);
- set_page_count(p, 0);
- p->first_page = page;
- }
+ for (i = 1; i < nr_pages; i++)
+ prep_compound_tail(page, i);
+
+ prep_compound_head(page, order);
}
-/* update __split_huge_page_refcount if you change this function */
-static int destroy_compound_page(struct page *page, unsigned long order)
+static inline void set_buddy_order(struct page *page, unsigned int order)
{
- int i;
- int nr_pages = 1 << order;
- int bad = 0;
-
- if (unlikely(compound_order(page) != order)) {
- bad_page(page);
- bad++;
- }
-
- __ClearPageHead(page);
-
- for (i = 1; i < nr_pages; i++) {
- struct page *p = page + i;
+ set_page_private(page, order);
+ __SetPageBuddy(page);
+}
- if (unlikely(!PageTail(p) || (p->first_page != page))) {
- bad_page(page);
- bad++;
- }
- __ClearPageTail(p);
- }
+#ifdef CONFIG_COMPACTION
+static inline struct capture_control *task_capc(struct zone *zone)
+{
+ struct capture_control *capc = current->capture_control;
- return bad;
+ return unlikely(capc) &&
+ !(current->flags & PF_KTHREAD) &&
+ !capc->page &&
+ capc->cc->zone == zone ? capc : NULL;
}
-static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
+static inline bool
+compaction_capture(struct capture_control *capc, struct page *page,
+ int order, int migratetype)
{
- int i;
+ if (!capc || order != capc->cc->order)
+ return false;
+
+ /* Do not accidentally pollute CMA or isolated regions*/
+ if (is_migrate_cma(migratetype) ||
+ is_migrate_isolate(migratetype))
+ return false;
/*
- * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
- * and __GFP_HIGHMEM from hard or soft interrupt context.
+ * Do not let lower order allocations pollute a movable pageblock
+ * unless compaction is also requesting movable pages.
+ * This might let an unmovable request use a reclaimable pageblock
+ * and vice-versa but no more than normal fallback logic which can
+ * have trouble finding a high-order free page.
*/
- VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
- for (i = 0; i < (1 << order); i++)
- clear_highpage(page + i);
-}
+ if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
+ capc->cc->migratetype != MIGRATE_MOVABLE)
+ return false;
+
+ if (migratetype != capc->cc->migratetype)
+ trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
+ capc->cc->migratetype, migratetype);
-#ifdef CONFIG_DEBUG_PAGEALLOC
-unsigned int _debug_guardpage_minorder;
+ capc->page = page;
+ return true;
+}
-static int __init debug_guardpage_minorder_setup(char *buf)
+#else
+static inline struct capture_control *task_capc(struct zone *zone)
{
- unsigned long res;
+ return NULL;
+}
- if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
- printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
- return 0;
- }
- _debug_guardpage_minorder = res;
- printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
- return 0;
+static inline bool
+compaction_capture(struct capture_control *capc, struct page *page,
+ int order, int migratetype)
+{
+ return false;
}
-__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
+#endif /* CONFIG_COMPACTION */
-static inline void set_page_guard_flag(struct page *page)
+static inline void account_freepages(struct zone *zone, int nr_pages,
+ int migratetype)
{
- __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
+ lockdep_assert_held(&zone->lock);
+
+ if (is_migrate_isolate(migratetype))
+ return;
+
+ __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
+
+ if (is_migrate_cma(migratetype))
+ __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
+ else if (migratetype == MIGRATE_HIGHATOMIC)
+ WRITE_ONCE(zone->nr_free_highatomic,
+ zone->nr_free_highatomic + nr_pages);
}
-static inline void clear_page_guard_flag(struct page *page)
+/* Used for pages not on another list */
+static inline void __add_to_free_list(struct page *page, struct zone *zone,
+ unsigned int order, int migratetype,
+ bool tail)
{
- __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
+ struct free_area *area = &zone->free_area[order];
+ int nr_pages = 1 << order;
+
+ VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
+ "page type is %d, passed migratetype is %d (nr=%d)\n",
+ get_pageblock_migratetype(page), migratetype, nr_pages);
+
+ if (tail)
+ list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
+ else
+ list_add(&page->buddy_list, &area->free_list[migratetype]);
+ area->nr_free++;
+
+ if (order >= pageblock_order && !is_migrate_isolate(migratetype))
+ __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
}
-#else
-static inline void set_page_guard_flag(struct page *page) { }
-static inline void clear_page_guard_flag(struct page *page) { }
-#endif
-static inline void set_page_order(struct page *page, int order)
+/*
+ * Used for pages which are on another list. Move the pages to the tail
+ * of the list - so the moved pages won't immediately be considered for
+ * allocation again (e.g., optimization for memory onlining).
+ */
+static inline void move_to_free_list(struct page *page, struct zone *zone,
+ unsigned int order, int old_mt, int new_mt)
{
- set_page_private(page, order);
- __SetPageBuddy(page);
+ struct free_area *area = &zone->free_area[order];
+ int nr_pages = 1 << order;
+
+ /* Free page moving can fail, so it happens before the type update */
+ VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
+ "page type is %d, passed migratetype is %d (nr=%d)\n",
+ get_pageblock_migratetype(page), old_mt, nr_pages);
+
+ list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
+
+ account_freepages(zone, -nr_pages, old_mt);
+ account_freepages(zone, nr_pages, new_mt);
+
+ if (order >= pageblock_order &&
+ is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
+ if (!is_migrate_isolate(old_mt))
+ nr_pages = -nr_pages;
+ __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
+ }
}
-static inline void rmv_page_order(struct page *page)
+static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
+ unsigned int order, int migratetype)
{
+ int nr_pages = 1 << order;
+
+ VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
+ "page type is %d, passed migratetype is %d (nr=%d)\n",
+ get_pageblock_migratetype(page), migratetype, nr_pages);
+
+ /* clear reported state and update reported page count */
+ if (page_reported(page))
+ __ClearPageReported(page);
+
+ list_del(&page->buddy_list);
__ClearPageBuddy(page);
set_page_private(page, 0);
+ zone->free_area[order].nr_free--;
+
+ if (order >= pageblock_order && !is_migrate_isolate(migratetype))
+ __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
}
-/*
- * Locate the struct page for both the matching buddy in our
- * pair (buddy1) and the combined O(n+1) page they form (page).
- *
- * 1) Any buddy B1 will have an order O twin B2 which satisfies
- * the following equation:
- * B2 = B1 ^ (1 << O)
- * For example, if the starting buddy (buddy2) is #8 its order
- * 1 buddy is #10:
- * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
- *
- * 2) Any buddy B will have an order O+1 parent P which
- * satisfies the following equation:
- * P = B & ~(1 << O)
- *
- * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
- */
-static inline unsigned long
-__find_buddy_index(unsigned long page_idx, unsigned int order)
+static inline void del_page_from_free_list(struct page *page, struct zone *zone,
+ unsigned int order, int migratetype)
+{
+ __del_page_from_free_list(page, zone, order, migratetype);
+ account_freepages(zone, -(1 << order), migratetype);
+}
+
+static inline struct page *get_page_from_free_area(struct free_area *area,
+ int migratetype)
{
- return page_idx ^ (1 << order);
+ return list_first_entry_or_null(&area->free_list[migratetype],
+ struct page, buddy_list);
}
/*
- * This function checks whether a page is free && is the buddy
- * we can do coalesce a page and its buddy if
- * (a) the buddy is not in a hole &&
- * (b) the buddy is in the buddy system &&
- * (c) a page and its buddy have the same order &&
- * (d) a page and its buddy are in the same zone.
- *
- * For recording whether a page is in the buddy system, we set ->_mapcount -2.
- * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
- *
- * For recording page's order, we use page_private(page).
+ * If this is less than the 2nd largest possible page, check if the buddy
+ * of the next-higher order is free. If it is, it's possible
+ * that pages are being freed that will coalesce soon. In case,
+ * that is happening, add the free page to the tail of the list
+ * so it's less likely to be used soon and more likely to be merged
+ * as a 2-level higher order page
*/
-static inline int page_is_buddy(struct page *page, struct page *buddy,
- int order)
+static inline bool
+buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
+ struct page *page, unsigned int order)
{
- if (!pfn_valid_within(page_to_pfn(buddy)))
- return 0;
+ unsigned long higher_page_pfn;
+ struct page *higher_page;
- if (page_zone_id(page) != page_zone_id(buddy))
- return 0;
+ if (order >= MAX_PAGE_ORDER - 1)
+ return false;
- if (page_is_guard(buddy) && page_order(buddy) == order) {
- VM_BUG_ON(page_count(buddy) != 0);
- return 1;
- }
+ higher_page_pfn = buddy_pfn & pfn;
+ higher_page = page + (higher_page_pfn - pfn);
- if (PageBuddy(buddy) && page_order(buddy) == order) {
- VM_BUG_ON(page_count(buddy) != 0);
- return 1;
- }
- return 0;
+ return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
+ NULL) != NULL;
}
/*
@@ -527,8 +927,8 @@ static inline int page_is_buddy(struct page *page, struct page *buddy,
* as necessary, plus some accounting needed to play nicely with other
* parts of the VM system.
* At each level, we keep a list of pages, which are heads of continuous
- * free pages of length of (1 << order) and marked with _mapcount -2. Page's
- * order is recorded in page_private(page) field.
+ * free pages of length of (1 << order) and marked with PageBuddy.
+ * Page's order is recorded in page_private(page) field.
* So when we are allocating or freeing one, we can derive the state of the
* other. That is, if we allocate a small block, and both were
* free, the remainder of the region must be split into blocks.
@@ -539,252 +939,738 @@ static inline int page_is_buddy(struct page *page, struct page *buddy,
*/
static inline void __free_one_page(struct page *page,
+ unsigned long pfn,
struct zone *zone, unsigned int order,
- int migratetype)
+ int migratetype, fpi_t fpi_flags)
{
- unsigned long page_idx;
- unsigned long combined_idx;
- unsigned long uninitialized_var(buddy_idx);
+ struct capture_control *capc = task_capc(zone);
+ unsigned long buddy_pfn = 0;
+ unsigned long combined_pfn;
struct page *buddy;
+ bool to_tail;
VM_BUG_ON(!zone_is_initialized(zone));
+ VM_BUG_ON_PAGE(page->flags.f & PAGE_FLAGS_CHECK_AT_PREP, page);
+
+ VM_BUG_ON(migratetype == -1);
+ VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
+ VM_BUG_ON_PAGE(bad_range(zone, page), page);
+
+ account_freepages(zone, 1 << order, migratetype);
- if (unlikely(PageCompound(page)))
- if (unlikely(destroy_compound_page(page, order)))
+ while (order < MAX_PAGE_ORDER) {
+ int buddy_mt = migratetype;
+
+ if (compaction_capture(capc, page, order, migratetype)) {
+ account_freepages(zone, -(1 << order), migratetype);
return;
+ }
- VM_BUG_ON(migratetype == -1);
+ buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
+ if (!buddy)
+ goto done_merging;
- page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
+ if (unlikely(order >= pageblock_order)) {
+ /*
+ * We want to prevent merge between freepages on pageblock
+ * without fallbacks and normal pageblock. Without this,
+ * pageblock isolation could cause incorrect freepage or CMA
+ * accounting or HIGHATOMIC accounting.
+ */
+ buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
- VM_BUG_ON(page_idx & ((1 << order) - 1));
- VM_BUG_ON(bad_range(zone, page));
+ if (migratetype != buddy_mt &&
+ (!migratetype_is_mergeable(migratetype) ||
+ !migratetype_is_mergeable(buddy_mt)))
+ goto done_merging;
+ }
- while (order < MAX_ORDER-1) {
- buddy_idx = __find_buddy_index(page_idx, order);
- buddy = page + (buddy_idx - page_idx);
- if (!page_is_buddy(page, buddy, order))
- break;
/*
* Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
* merge with it and move up one order.
*/
- if (page_is_guard(buddy)) {
- clear_page_guard_flag(buddy);
- set_page_private(page, 0);
- __mod_zone_freepage_state(zone, 1 << order,
- migratetype);
- } else {
- list_del(&buddy->lru);
- zone->free_area[order].nr_free--;
- rmv_page_order(buddy);
+ if (page_is_guard(buddy))
+ clear_page_guard(zone, buddy, order);
+ else
+ __del_page_from_free_list(buddy, zone, order, buddy_mt);
+
+ if (unlikely(buddy_mt != migratetype)) {
+ /*
+ * Match buddy type. This ensures that an
+ * expand() down the line puts the sub-blocks
+ * on the right freelists.
+ */
+ set_pageblock_migratetype(buddy, migratetype);
}
- combined_idx = buddy_idx & page_idx;
- page = page + (combined_idx - page_idx);
- page_idx = combined_idx;
+
+ combined_pfn = buddy_pfn & pfn;
+ page = page + (combined_pfn - pfn);
+ pfn = combined_pfn;
order++;
}
- set_page_order(page, order);
- /*
- * If this is not the largest possible page, check if the buddy
- * of the next-highest order is free. If it is, it's possible
- * that pages are being freed that will coalesce soon. In case,
- * that is happening, add the free page to the tail of the list
- * so it's less likely to be used soon and more likely to be merged
- * as a higher order page
- */
- if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
- struct page *higher_page, *higher_buddy;
- combined_idx = buddy_idx & page_idx;
- higher_page = page + (combined_idx - page_idx);
- buddy_idx = __find_buddy_index(combined_idx, order + 1);
- higher_buddy = higher_page + (buddy_idx - combined_idx);
- if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
- list_add_tail(&page->lru,
- &zone->free_area[order].free_list[migratetype]);
- goto out;
- }
+done_merging:
+ set_buddy_order(page, order);
+
+ if (fpi_flags & FPI_TO_TAIL)
+ to_tail = true;
+ else if (is_shuffle_order(order))
+ to_tail = shuffle_pick_tail();
+ else
+ to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
+
+ __add_to_free_list(page, zone, order, migratetype, to_tail);
+
+ /* Notify page reporting subsystem of freed page */
+ if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
+ page_reporting_notify_free(order);
+}
+
+/*
+ * A bad page could be due to a number of fields. Instead of multiple branches,
+ * try and check multiple fields with one check. The caller must do a detailed
+ * check if necessary.
+ */
+static inline bool page_expected_state(struct page *page,
+ unsigned long check_flags)
+{
+ if (unlikely(atomic_read(&page->_mapcount) != -1))
+ return false;
+
+ if (unlikely((unsigned long)page->mapping |
+ page_ref_count(page) |
+#ifdef CONFIG_MEMCG
+ page->memcg_data |
+#endif
+ page_pool_page_is_pp(page) |
+ (page->flags.f & check_flags)))
+ return false;
+
+ return true;
+}
+
+static const char *page_bad_reason(struct page *page, unsigned long flags)
+{
+ const char *bad_reason = NULL;
+
+ if (unlikely(atomic_read(&page->_mapcount) != -1))
+ bad_reason = "nonzero mapcount";
+ if (unlikely(page->mapping != NULL))
+ bad_reason = "non-NULL mapping";
+ if (unlikely(page_ref_count(page) != 0))
+ bad_reason = "nonzero _refcount";
+ if (unlikely(page->flags.f & flags)) {
+ if (flags == PAGE_FLAGS_CHECK_AT_PREP)
+ bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
+ else
+ bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
}
+#ifdef CONFIG_MEMCG
+ if (unlikely(page->memcg_data))
+ bad_reason = "page still charged to cgroup";
+#endif
+ if (unlikely(page_pool_page_is_pp(page)))
+ bad_reason = "page_pool leak";
+ return bad_reason;
+}
- list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
-out:
- zone->free_area[order].nr_free++;
+static inline bool free_page_is_bad(struct page *page)
+{
+ if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
+ return false;
+
+ /* Something has gone sideways, find it */
+ bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
+ return true;
}
-static inline int free_pages_check(struct page *page)
+static inline bool is_check_pages_enabled(void)
{
- if (unlikely(page_mapcount(page) |
- (page->mapping != NULL) |
- (atomic_read(&page->_count) != 0) |
- (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
- (mem_cgroup_bad_page_check(page)))) {
- bad_page(page);
- return 1;
+ return static_branch_unlikely(&check_pages_enabled);
+}
+
+static int free_tail_page_prepare(struct page *head_page, struct page *page)
+{
+ struct folio *folio = (struct folio *)head_page;
+ int ret = 1;
+
+ /*
+ * We rely page->lru.next never has bit 0 set, unless the page
+ * is PageTail(). Let's make sure that's true even for poisoned ->lru.
+ */
+ BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
+
+ if (!is_check_pages_enabled()) {
+ ret = 0;
+ goto out;
}
- page_nid_reset_last(page);
- if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
- page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
- return 0;
+ switch (page - head_page) {
+ case 1:
+ /* the first tail page: these may be in place of ->mapping */
+ if (unlikely(folio_large_mapcount(folio))) {
+ bad_page(page, "nonzero large_mapcount");
+ goto out;
+ }
+ if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
+ unlikely(atomic_read(&folio->_nr_pages_mapped))) {
+ bad_page(page, "nonzero nr_pages_mapped");
+ goto out;
+ }
+ if (IS_ENABLED(CONFIG_MM_ID)) {
+ if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
+ bad_page(page, "nonzero mm mapcount 0");
+ goto out;
+ }
+ if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
+ bad_page(page, "nonzero mm mapcount 1");
+ goto out;
+ }
+ }
+ if (IS_ENABLED(CONFIG_64BIT)) {
+ if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
+ bad_page(page, "nonzero entire_mapcount");
+ goto out;
+ }
+ if (unlikely(atomic_read(&folio->_pincount))) {
+ bad_page(page, "nonzero pincount");
+ goto out;
+ }
+ }
+ break;
+ case 2:
+ /* the second tail page: deferred_list overlaps ->mapping */
+ if (unlikely(!list_empty(&folio->_deferred_list))) {
+ bad_page(page, "on deferred list");
+ goto out;
+ }
+ if (!IS_ENABLED(CONFIG_64BIT)) {
+ if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
+ bad_page(page, "nonzero entire_mapcount");
+ goto out;
+ }
+ if (unlikely(atomic_read(&folio->_pincount))) {
+ bad_page(page, "nonzero pincount");
+ goto out;
+ }
+ }
+ break;
+ case 3:
+ /* the third tail page: hugetlb specifics overlap ->mappings */
+ if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
+ break;
+ fallthrough;
+ default:
+ if (page->mapping != TAIL_MAPPING) {
+ bad_page(page, "corrupted mapping in tail page");
+ goto out;
+ }
+ break;
+ }
+ if (unlikely(!PageTail(page))) {
+ bad_page(page, "PageTail not set");
+ goto out;
+ }
+ if (unlikely(compound_head(page) != head_page)) {
+ bad_page(page, "compound_head not consistent");
+ goto out;
+ }
+ ret = 0;
+out:
+ page->mapping = NULL;
+ clear_compound_head(page);
+ return ret;
}
/*
- * Frees a number of pages from the PCP lists
- * Assumes all pages on list are in same zone, and of same order.
- * count is the number of pages to free.
+ * Skip KASAN memory poisoning when either:
+ *
+ * 1. For generic KASAN: deferred memory initialization has not yet completed.
+ * Tag-based KASAN modes skip pages freed via deferred memory initialization
+ * using page tags instead (see below).
+ * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
+ * that error detection is disabled for accesses via the page address.
*
- * If the zone was previously in an "all pages pinned" state then look to
- * see if this freeing clears that state.
+ * Pages will have match-all tags in the following circumstances:
*
- * And clear the zone's pages_scanned counter, to hold off the "all pages are
- * pinned" detection logic.
+ * 1. Pages are being initialized for the first time, including during deferred
+ * memory init; see the call to page_kasan_tag_reset in __init_single_page.
+ * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
+ * exception of pages unpoisoned by kasan_unpoison_vmalloc.
+ * 3. The allocation was excluded from being checked due to sampling,
+ * see the call to kasan_unpoison_pages.
+ *
+ * Poisoning pages during deferred memory init will greatly lengthen the
+ * process and cause problem in large memory systems as the deferred pages
+ * initialization is done with interrupt disabled.
+ *
+ * Assuming that there will be no reference to those newly initialized
+ * pages before they are ever allocated, this should have no effect on
+ * KASAN memory tracking as the poison will be properly inserted at page
+ * allocation time. The only corner case is when pages are allocated by
+ * on-demand allocation and then freed again before the deferred pages
+ * initialization is done, but this is not likely to happen.
*/
-static void free_pcppages_bulk(struct zone *zone, int count,
- struct per_cpu_pages *pcp)
+static inline bool should_skip_kasan_poison(struct page *page)
{
- int migratetype = 0;
- int batch_free = 0;
- int to_free = count;
+ if (IS_ENABLED(CONFIG_KASAN_GENERIC))
+ return deferred_pages_enabled();
- spin_lock(&zone->lock);
- zone->all_unreclaimable = 0;
- zone->pages_scanned = 0;
+ return page_kasan_tag(page) == KASAN_TAG_KERNEL;
+}
- while (to_free) {
- struct page *page;
- struct list_head *list;
+static void kernel_init_pages(struct page *page, int numpages)
+{
+ int i;
- /*
- * Remove pages from lists in a round-robin fashion. A
- * batch_free count is maintained that is incremented when an
- * empty list is encountered. This is so more pages are freed
- * off fuller lists instead of spinning excessively around empty
- * lists
- */
- do {
- batch_free++;
- if (++migratetype == MIGRATE_PCPTYPES)
- migratetype = 0;
- list = &pcp->lists[migratetype];
- } while (list_empty(list));
+ /* s390's use of memset() could override KASAN redzones. */
+ kasan_disable_current();
+ for (i = 0; i < numpages; i++)
+ clear_highpage_kasan_tagged(page + i);
+ kasan_enable_current();
+}
- /* This is the only non-empty list. Free them all. */
- if (batch_free == MIGRATE_PCPTYPES)
- batch_free = to_free;
+#ifdef CONFIG_MEM_ALLOC_PROFILING
- do {
- int mt; /* migratetype of the to-be-freed page */
+/* Should be called only if mem_alloc_profiling_enabled() */
+void __clear_page_tag_ref(struct page *page)
+{
+ union pgtag_ref_handle handle;
+ union codetag_ref ref;
- page = list_entry(list->prev, struct page, lru);
- /* must delete as __free_one_page list manipulates */
- list_del(&page->lru);
- mt = get_freepage_migratetype(page);
- /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
- __free_one_page(page, zone, 0, mt);
- trace_mm_page_pcpu_drain(page, 0, mt);
- if (likely(!is_migrate_isolate_page(page))) {
- __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
- if (is_migrate_cma(mt))
- __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
- }
- } while (--to_free && --batch_free && !list_empty(list));
+ if (get_page_tag_ref(page, &ref, &handle)) {
+ set_codetag_empty(&ref);
+ update_page_tag_ref(handle, &ref);
+ put_page_tag_ref(handle);
}
- spin_unlock(&zone->lock);
}
-static void free_one_page(struct zone *zone, struct page *page, int order,
- int migratetype)
+/* Should be called only if mem_alloc_profiling_enabled() */
+static noinline
+void __pgalloc_tag_add(struct page *page, struct task_struct *task,
+ unsigned int nr)
{
- spin_lock(&zone->lock);
- zone->all_unreclaimable = 0;
- zone->pages_scanned = 0;
+ union pgtag_ref_handle handle;
+ union codetag_ref ref;
- __free_one_page(page, zone, order, migratetype);
- if (unlikely(!is_migrate_isolate(migratetype)))
- __mod_zone_freepage_state(zone, 1 << order, migratetype);
- spin_unlock(&zone->lock);
+ if (get_page_tag_ref(page, &ref, &handle)) {
+ alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
+ update_page_tag_ref(handle, &ref);
+ put_page_tag_ref(handle);
+ }
}
-static bool free_pages_prepare(struct page *page, unsigned int order)
+static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
+ unsigned int nr)
+{
+ if (mem_alloc_profiling_enabled())
+ __pgalloc_tag_add(page, task, nr);
+}
+
+/* Should be called only if mem_alloc_profiling_enabled() */
+static noinline
+void __pgalloc_tag_sub(struct page *page, unsigned int nr)
+{
+ union pgtag_ref_handle handle;
+ union codetag_ref ref;
+
+ if (get_page_tag_ref(page, &ref, &handle)) {
+ alloc_tag_sub(&ref, PAGE_SIZE * nr);
+ update_page_tag_ref(handle, &ref);
+ put_page_tag_ref(handle);
+ }
+}
+
+static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
+{
+ if (mem_alloc_profiling_enabled())
+ __pgalloc_tag_sub(page, nr);
+}
+
+/* When tag is not NULL, assuming mem_alloc_profiling_enabled */
+static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr)
+{
+ if (tag)
+ this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
+}
+
+#else /* CONFIG_MEM_ALLOC_PROFILING */
+
+static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
+ unsigned int nr) {}
+static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
+static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {}
+
+#endif /* CONFIG_MEM_ALLOC_PROFILING */
+
+__always_inline bool free_pages_prepare(struct page *page,
+ unsigned int order)
{
- int i;
int bad = 0;
+ bool skip_kasan_poison = should_skip_kasan_poison(page);
+ bool init = want_init_on_free();
+ bool compound = PageCompound(page);
+ struct folio *folio = page_folio(page);
+
+ VM_BUG_ON_PAGE(PageTail(page), page);
trace_mm_page_free(page, order);
- kmemcheck_free_shadow(page, order);
+ kmsan_free_page(page, order);
+
+ if (memcg_kmem_online() && PageMemcgKmem(page))
+ __memcg_kmem_uncharge_page(page, order);
- if (PageAnon(page))
- page->mapping = NULL;
- for (i = 0; i < (1 << order); i++)
- bad += free_pages_check(page + i);
- if (bad)
+ /*
+ * In rare cases, when truncation or holepunching raced with
+ * munlock after VM_LOCKED was cleared, Mlocked may still be
+ * found set here. This does not indicate a problem, unless
+ * "unevictable_pgs_cleared" appears worryingly large.
+ */
+ if (unlikely(folio_test_mlocked(folio))) {
+ long nr_pages = folio_nr_pages(folio);
+
+ __folio_clear_mlocked(folio);
+ zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
+ count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
+ }
+
+ if (unlikely(PageHWPoison(page)) && !order) {
+ /* Do not let hwpoison pages hit pcplists/buddy */
+ reset_page_owner(page, order);
+ page_table_check_free(page, order);
+ pgalloc_tag_sub(page, 1 << order);
+
+ /*
+ * The page is isolated and accounted for.
+ * Mark the codetag as empty to avoid accounting error
+ * when the page is freed by unpoison_memory().
+ */
+ clear_page_tag_ref(page);
return false;
+ }
+
+ VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
+
+ /*
+ * Check tail pages before head page information is cleared to
+ * avoid checking PageCompound for order-0 pages.
+ */
+ if (unlikely(order)) {
+ int i;
+
+ if (compound) {
+ page[1].flags.f &= ~PAGE_FLAGS_SECOND;
+#ifdef NR_PAGES_IN_LARGE_FOLIO
+ folio->_nr_pages = 0;
+#endif
+ }
+ for (i = 1; i < (1 << order); i++) {
+ if (compound)
+ bad += free_tail_page_prepare(page, page + i);
+ if (is_check_pages_enabled()) {
+ if (free_page_is_bad(page + i)) {
+ bad++;
+ continue;
+ }
+ }
+ (page + i)->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
+ }
+ }
+ if (folio_test_anon(folio)) {
+ mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
+ folio->mapping = NULL;
+ }
+ if (unlikely(page_has_type(page)))
+ /* Reset the page_type (which overlays _mapcount) */
+ page->page_type = UINT_MAX;
+
+ if (is_check_pages_enabled()) {
+ if (free_page_is_bad(page))
+ bad++;
+ if (bad)
+ return false;
+ }
+
+ page_cpupid_reset_last(page);
+ page->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
+ reset_page_owner(page, order);
+ page_table_check_free(page, order);
+ pgalloc_tag_sub(page, 1 << order);
if (!PageHighMem(page)) {
- debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
+ debug_check_no_locks_freed(page_address(page),
+ PAGE_SIZE << order);
debug_check_no_obj_freed(page_address(page),
PAGE_SIZE << order);
}
+
+ kernel_poison_pages(page, 1 << order);
+
+ /*
+ * As memory initialization might be integrated into KASAN,
+ * KASAN poisoning and memory initialization code must be
+ * kept together to avoid discrepancies in behavior.
+ *
+ * With hardware tag-based KASAN, memory tags must be set before the
+ * page becomes unavailable via debug_pagealloc or arch_free_page.
+ */
+ if (!skip_kasan_poison) {
+ kasan_poison_pages(page, order, init);
+
+ /* Memory is already initialized if KASAN did it internally. */
+ if (kasan_has_integrated_init())
+ init = false;
+ }
+ if (init)
+ kernel_init_pages(page, 1 << order);
+
+ /*
+ * arch_free_page() can make the page's contents inaccessible. s390
+ * does this. So nothing which can access the page's contents should
+ * happen after this.
+ */
arch_free_page(page, order);
- kernel_map_pages(page, 1 << order, 0);
+
+ debug_pagealloc_unmap_pages(page, 1 << order);
return true;
}
-static void __free_pages_ok(struct page *page, unsigned int order)
+/*
+ * Frees a number of pages from the PCP lists
+ * Assumes all pages on list are in same zone.
+ * count is the number of pages to free.
+ */
+static void free_pcppages_bulk(struct zone *zone, int count,
+ struct per_cpu_pages *pcp,
+ int pindex)
{
unsigned long flags;
- int migratetype;
+ unsigned int order;
+ struct page *page;
- if (!free_pages_prepare(page, order))
- return;
+ /*
+ * Ensure proper count is passed which otherwise would stuck in the
+ * below while (list_empty(list)) loop.
+ */
+ count = min(pcp->count, count);
+
+ /* Ensure requested pindex is drained first. */
+ pindex = pindex - 1;
+
+ spin_lock_irqsave(&zone->lock, flags);
+
+ while (count > 0) {
+ struct list_head *list;
+ int nr_pages;
+
+ /* Remove pages from lists in a round-robin fashion. */
+ do {
+ if (++pindex > NR_PCP_LISTS - 1)
+ pindex = 0;
+ list = &pcp->lists[pindex];
+ } while (list_empty(list));
+
+ order = pindex_to_order(pindex);
+ nr_pages = 1 << order;
+ do {
+ unsigned long pfn;
+ int mt;
+
+ page = list_last_entry(list, struct page, pcp_list);
+ pfn = page_to_pfn(page);
+ mt = get_pfnblock_migratetype(page, pfn);
+
+ /* must delete to avoid corrupting pcp list */
+ list_del(&page->pcp_list);
+ count -= nr_pages;
+ pcp->count -= nr_pages;
+
+ __free_one_page(page, pfn, zone, order, mt, FPI_NONE);
+ trace_mm_page_pcpu_drain(page, order, mt);
+ } while (count > 0 && !list_empty(list));
+ }
+
+ spin_unlock_irqrestore(&zone->lock, flags);
+}
+
+/* Split a multi-block free page into its individual pageblocks. */
+static void split_large_buddy(struct zone *zone, struct page *page,
+ unsigned long pfn, int order, fpi_t fpi)
+{
+ unsigned long end = pfn + (1 << order);
+
+ VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
+ /* Caller removed page from freelist, buddy info cleared! */
+ VM_WARN_ON_ONCE(PageBuddy(page));
+
+ if (order > pageblock_order)
+ order = pageblock_order;
+
+ do {
+ int mt = get_pfnblock_migratetype(page, pfn);
+
+ __free_one_page(page, pfn, zone, order, mt, fpi);
+ pfn += 1 << order;
+ if (pfn == end)
+ break;
+ page = pfn_to_page(pfn);
+ } while (1);
+}
+
+static void add_page_to_zone_llist(struct zone *zone, struct page *page,
+ unsigned int order)
+{
+ /* Remember the order */
+ page->private = order;
+ /* Add the page to the free list */
+ llist_add(&page->pcp_llist, &zone->trylock_free_pages);
+}
+
+static void free_one_page(struct zone *zone, struct page *page,
+ unsigned long pfn, unsigned int order,
+ fpi_t fpi_flags)
+{
+ struct llist_head *llhead;
+ unsigned long flags;
+
+ if (unlikely(fpi_flags & FPI_TRYLOCK)) {
+ if (!spin_trylock_irqsave(&zone->lock, flags)) {
+ add_page_to_zone_llist(zone, page, order);
+ return;
+ }
+ } else {
+ spin_lock_irqsave(&zone->lock, flags);
+ }
+
+ /* The lock succeeded. Process deferred pages. */
+ llhead = &zone->trylock_free_pages;
+ if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
+ struct llist_node *llnode;
+ struct page *p, *tmp;
+
+ llnode = llist_del_all(llhead);
+ llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
+ unsigned int p_order = p->private;
+
+ split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
+ __count_vm_events(PGFREE, 1 << p_order);
+ }
+ }
+ split_large_buddy(zone, page, pfn, order, fpi_flags);
+ spin_unlock_irqrestore(&zone->lock, flags);
- local_irq_save(flags);
__count_vm_events(PGFREE, 1 << order);
- migratetype = get_pageblock_migratetype(page);
- set_freepage_migratetype(page, migratetype);
- free_one_page(page_zone(page), page, order, migratetype);
- local_irq_restore(flags);
}
-void __init __free_pages_bootmem(struct page *page, unsigned int order)
+static void __free_pages_ok(struct page *page, unsigned int order,
+ fpi_t fpi_flags)
+{
+ unsigned long pfn = page_to_pfn(page);
+ struct zone *zone = page_zone(page);
+
+ if (free_pages_prepare(page, order))
+ free_one_page(zone, page, pfn, order, fpi_flags);
+}
+
+void __meminit __free_pages_core(struct page *page, unsigned int order,
+ enum meminit_context context)
{
unsigned int nr_pages = 1 << order;
+ struct page *p = page;
unsigned int loop;
- prefetchw(page);
- for (loop = 0; loop < nr_pages; loop++) {
- struct page *p = &page[loop];
+ /*
+ * When initializing the memmap, __init_single_page() sets the refcount
+ * of all pages to 1 ("allocated"/"not free"). We have to set the
+ * refcount of all involved pages to 0.
+ *
+ * Note that hotplugged memory pages are initialized to PageOffline().
+ * Pages freed from memblock might be marked as reserved.
+ */
+ if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
+ unlikely(context == MEMINIT_HOTPLUG)) {
+ for (loop = 0; loop < nr_pages; loop++, p++) {
+ VM_WARN_ON_ONCE(PageReserved(p));
+ __ClearPageOffline(p);
+ set_page_count(p, 0);
+ }
+
+ adjust_managed_page_count(page, nr_pages);
+ } else {
+ for (loop = 0; loop < nr_pages; loop++, p++) {
+ __ClearPageReserved(p);
+ set_page_count(p, 0);
+ }
+
+ /* memblock adjusts totalram_pages() manually. */
+ atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
+ }
+
+ if (page_contains_unaccepted(page, order)) {
+ if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
+ return;
- if (loop + 1 < nr_pages)
- prefetchw(p + 1);
- __ClearPageReserved(p);
- set_page_count(p, 0);
+ accept_memory(page_to_phys(page), PAGE_SIZE << order);
}
- page_zone(page)->managed_pages += 1 << order;
- set_page_refcounted(page);
- __free_pages(page, order);
+ /*
+ * Bypass PCP and place fresh pages right to the tail, primarily
+ * relevant for memory onlining.
+ */
+ __free_pages_ok(page, order, FPI_TO_TAIL);
}
-#ifdef CONFIG_CMA
-/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
-void __init init_cma_reserved_pageblock(struct page *page)
+/*
+ * Check that the whole (or subset of) a pageblock given by the interval of
+ * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
+ * with the migration of free compaction scanner.
+ *
+ * Return struct page pointer of start_pfn, or NULL if checks were not passed.
+ *
+ * It's possible on some configurations to have a setup like node0 node1 node0
+ * i.e. it's possible that all pages within a zones range of pages do not
+ * belong to a single zone. We assume that a border between node0 and node1
+ * can occur within a single pageblock, but not a node0 node1 node0
+ * interleaving within a single pageblock. It is therefore sufficient to check
+ * the first and last page of a pageblock and avoid checking each individual
+ * page in a pageblock.
+ *
+ * Note: the function may return non-NULL struct page even for a page block
+ * which contains a memory hole (i.e. there is no physical memory for a subset
+ * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
+ * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
+ * even though the start pfn is online and valid. This should be safe most of
+ * the time because struct pages are still initialized via init_unavailable_range()
+ * and pfn walkers shouldn't touch any physical memory range for which they do
+ * not recognize any specific metadata in struct pages.
+ */
+struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
+ unsigned long end_pfn, struct zone *zone)
{
- unsigned i = pageblock_nr_pages;
- struct page *p = page;
+ struct page *start_page;
+ struct page *end_page;
- do {
- __ClearPageReserved(p);
- set_page_count(p, 0);
- } while (++p, --i);
+ /* end_pfn is one past the range we are checking */
+ end_pfn--;
+
+ if (!pfn_valid(end_pfn))
+ return NULL;
+
+ start_page = pfn_to_online_page(start_pfn);
+ if (!start_page)
+ return NULL;
+
+ if (page_zone(start_page) != zone)
+ return NULL;
+
+ end_page = pfn_to_page(end_pfn);
- set_page_refcounted(page);
- set_pageblock_migratetype(page, MIGRATE_CMA);
- __free_pages(page, pageblock_order);
- adjust_managed_page_count(page, pageblock_nr_pages);
+ /* This gives a shorter code than deriving page_zone(end_page) */
+ if (page_zone_id(start_page) != page_zone_id(end_page))
+ return NULL;
+
+ return start_page;
}
-#endif
/*
* The order of subdivision here is critical for the IO subsystem.
@@ -800,106 +1686,212 @@ void __init init_cma_reserved_pageblock(struct page *page)
*
* -- nyc
*/
-static inline void expand(struct zone *zone, struct page *page,
- int low, int high, struct free_area *area,
- int migratetype)
+static inline unsigned int expand(struct zone *zone, struct page *page, int low,
+ int high, int migratetype)
{
- unsigned long size = 1 << high;
+ unsigned int size = 1 << high;
+ unsigned int nr_added = 0;
while (high > low) {
- area--;
high--;
size >>= 1;
- VM_BUG_ON(bad_range(zone, &page[size]));
+ VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
-#ifdef CONFIG_DEBUG_PAGEALLOC
- if (high < debug_guardpage_minorder()) {
- /*
- * Mark as guard pages (or page), that will allow to
- * merge back to allocator when buddy will be freed.
- * Corresponding page table entries will not be touched,
- * pages will stay not present in virtual address space
- */
- INIT_LIST_HEAD(&page[size].lru);
- set_page_guard_flag(&page[size]);
- set_page_private(&page[size], high);
- /* Guard pages are not available for any usage */
- __mod_zone_freepage_state(zone, -(1 << high),
- migratetype);
+ /*
+ * Mark as guard pages (or page), that will allow to
+ * merge back to allocator when buddy will be freed.
+ * Corresponding page table entries will not be touched,
+ * pages will stay not present in virtual address space
+ */
+ if (set_page_guard(zone, &page[size], high))
continue;
- }
-#endif
- list_add(&page[size].lru, &area->free_list[migratetype]);
- area->nr_free++;
- set_page_order(&page[size], high);
+
+ __add_to_free_list(&page[size], zone, high, migratetype, false);
+ set_buddy_order(&page[size], high);
+ nr_added += size;
}
+
+ return nr_added;
+}
+
+static __always_inline void page_del_and_expand(struct zone *zone,
+ struct page *page, int low,
+ int high, int migratetype)
+{
+ int nr_pages = 1 << high;
+
+ __del_page_from_free_list(page, zone, high, migratetype);
+ nr_pages -= expand(zone, page, low, high, migratetype);
+ account_freepages(zone, -nr_pages, migratetype);
+}
+
+static void check_new_page_bad(struct page *page)
+{
+ if (unlikely(PageHWPoison(page))) {
+ /* Don't complain about hwpoisoned pages */
+ if (PageBuddy(page))
+ __ClearPageBuddy(page);
+ return;
+ }
+
+ bad_page(page,
+ page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
}
/*
* This page is about to be returned from the page allocator
*/
-static inline int check_new_page(struct page *page)
-{
- if (unlikely(page_mapcount(page) |
- (page->mapping != NULL) |
- (atomic_read(&page->_count) != 0) |
- (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
- (mem_cgroup_bad_page_check(page)))) {
- bad_page(page);
- return 1;
- }
- return 0;
+static bool check_new_page(struct page *page)
+{
+ if (likely(page_expected_state(page,
+ PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
+ return false;
+
+ check_new_page_bad(page);
+ return true;
}
-static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
+static inline bool check_new_pages(struct page *page, unsigned int order)
{
- int i;
+ if (is_check_pages_enabled()) {
+ for (int i = 0; i < (1 << order); i++) {
+ struct page *p = page + i;
- for (i = 0; i < (1 << order); i++) {
- struct page *p = page + i;
- if (unlikely(check_new_page(p)))
- return 1;
+ if (check_new_page(p))
+ return true;
+ }
}
+ return false;
+}
+
+static inline bool should_skip_kasan_unpoison(gfp_t flags)
+{
+ /* Don't skip if a software KASAN mode is enabled. */
+ if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
+ IS_ENABLED(CONFIG_KASAN_SW_TAGS))
+ return false;
+
+ /* Skip, if hardware tag-based KASAN is not enabled. */
+ if (!kasan_hw_tags_enabled())
+ return true;
+
+ /*
+ * With hardware tag-based KASAN enabled, skip if this has been
+ * requested via __GFP_SKIP_KASAN.
+ */
+ return flags & __GFP_SKIP_KASAN;
+}
+
+static inline bool should_skip_init(gfp_t flags)
+{
+ /* Don't skip, if hardware tag-based KASAN is not enabled. */
+ if (!kasan_hw_tags_enabled())
+ return false;
+
+ /* For hardware tag-based KASAN, skip if requested. */
+ return (flags & __GFP_SKIP_ZERO);
+}
+
+inline void post_alloc_hook(struct page *page, unsigned int order,
+ gfp_t gfp_flags)
+{
+ bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
+ !should_skip_init(gfp_flags);
+ bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
+ int i;
+
set_page_private(page, 0);
- set_page_refcounted(page);
arch_alloc_page(page, order);
- kernel_map_pages(page, 1 << order, 1);
+ debug_pagealloc_map_pages(page, 1 << order);
- if (gfp_flags & __GFP_ZERO)
- prep_zero_page(page, order, gfp_flags);
+ /*
+ * Page unpoisoning must happen before memory initialization.
+ * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
+ * allocations and the page unpoisoning code will complain.
+ */
+ kernel_unpoison_pages(page, 1 << order);
+
+ /*
+ * As memory initialization might be integrated into KASAN,
+ * KASAN unpoisoning and memory initializion code must be
+ * kept together to avoid discrepancies in behavior.
+ */
+
+ /*
+ * If memory tags should be zeroed
+ * (which happens only when memory should be initialized as well).
+ */
+ if (zero_tags)
+ init = !tag_clear_highpages(page, 1 << order);
+
+ if (!should_skip_kasan_unpoison(gfp_flags) &&
+ kasan_unpoison_pages(page, order, init)) {
+ /* Take note that memory was initialized by KASAN. */
+ if (kasan_has_integrated_init())
+ init = false;
+ } else {
+ /*
+ * If memory tags have not been set by KASAN, reset the page
+ * tags to ensure page_address() dereferencing does not fault.
+ */
+ for (i = 0; i != 1 << order; ++i)
+ page_kasan_tag_reset(page + i);
+ }
+ /* If memory is still not initialized, initialize it now. */
+ if (init)
+ kernel_init_pages(page, 1 << order);
+
+ set_page_owner(page, order, gfp_flags);
+ page_table_check_alloc(page, order);
+ pgalloc_tag_add(page, current, 1 << order);
+}
+
+static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
+ unsigned int alloc_flags)
+{
+ post_alloc_hook(page, order, gfp_flags);
if (order && (gfp_flags & __GFP_COMP))
prep_compound_page(page, order);
- return 0;
+ /*
+ * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
+ * allocate the page. The expectation is that the caller is taking
+ * steps that will free more memory. The caller should avoid the page
+ * being used for !PFMEMALLOC purposes.
+ */
+ if (alloc_flags & ALLOC_NO_WATERMARKS)
+ set_page_pfmemalloc(page);
+ else
+ clear_page_pfmemalloc(page);
}
/*
* Go through the free lists for the given migratetype and remove
* the smallest available page from the freelists
*/
-static inline
+static __always_inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
int migratetype)
{
unsigned int current_order;
- struct free_area * area;
+ struct free_area *area;
struct page *page;
/* Find a page of the appropriate size in the preferred list */
- for (current_order = order; current_order < MAX_ORDER; ++current_order) {
+ for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
area = &(zone->free_area[current_order]);
- if (list_empty(&area->free_list[migratetype]))
+ page = get_page_from_free_area(area, migratetype);
+ if (!page)
continue;
- page = list_entry(area->free_list[migratetype].next,
- struct page, lru);
- list_del(&page->lru);
- rmv_page_order(page);
- area->nr_free--;
- expand(zone, page, order, current_order, area, migratetype);
+ page_del_and_expand(zone, page, order, current_order,
+ migratetype);
+ trace_mm_page_alloc_zone_locked(page, order, migratetype,
+ pcp_allowed_order(order) &&
+ migratetype < MIGRATE_PCPTYPES);
return page;
}
@@ -910,92 +1902,251 @@ struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
/*
* This array describes the order lists are fallen back to when
* the free lists for the desirable migrate type are depleted
+ *
+ * The other migratetypes do not have fallbacks.
*/
-static int fallbacks[MIGRATE_TYPES][4] = {
- [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
- [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
+static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
+ [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
+ [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
+ [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
+};
+
#ifdef CONFIG_CMA
- [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
- [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
+static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
+ unsigned int order)
+{
+ return __rmqueue_smallest(zone, order, MIGRATE_CMA);
+}
#else
- [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
-#endif
- [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
-#ifdef CONFIG_MEMORY_ISOLATION
- [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
+static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
+ unsigned int order) { return NULL; }
#endif
-};
/*
- * Move the free pages in a range to the free lists of the requested type.
- * Note that start_page and end_pages are not aligned on a pageblock
- * boundary. If alignment is required, use move_freepages_block()
+ * Move all free pages of a block to new type's freelist. Caller needs to
+ * change the block type.
*/
-int move_freepages(struct zone *zone,
- struct page *start_page, struct page *end_page,
- int migratetype)
+static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
+ int old_mt, int new_mt)
{
struct page *page;
- unsigned long order;
+ unsigned long pfn, end_pfn;
+ unsigned int order;
int pages_moved = 0;
-#ifndef CONFIG_HOLES_IN_ZONE
- /*
- * page_zone is not safe to call in this context when
- * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
- * anyway as we check zone boundaries in move_freepages_block().
- * Remove at a later date when no bug reports exist related to
- * grouping pages by mobility
- */
- BUG_ON(page_zone(start_page) != page_zone(end_page));
-#endif
-
- for (page = start_page; page <= end_page;) {
- /* Make sure we are not inadvertently changing nodes */
- VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
-
- if (!pfn_valid_within(page_to_pfn(page))) {
- page++;
- continue;
- }
+ VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
+ end_pfn = pageblock_end_pfn(start_pfn);
+ for (pfn = start_pfn; pfn < end_pfn;) {
+ page = pfn_to_page(pfn);
if (!PageBuddy(page)) {
- page++;
+ pfn++;
continue;
}
- order = page_order(page);
- list_move(&page->lru,
- &zone->free_area[order].free_list[migratetype]);
- set_freepage_migratetype(page, migratetype);
- page += 1 << order;
+ /* Make sure we are not inadvertently changing nodes */
+ VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
+ VM_BUG_ON_PAGE(page_zone(page) != zone, page);
+
+ order = buddy_order(page);
+
+ move_to_free_list(page, zone, order, old_mt, new_mt);
+
+ pfn += 1 << order;
pages_moved += 1 << order;
}
return pages_moved;
}
-int move_freepages_block(struct zone *zone, struct page *page,
- int migratetype)
+static bool prep_move_freepages_block(struct zone *zone, struct page *page,
+ unsigned long *start_pfn,
+ int *num_free, int *num_movable)
{
- unsigned long start_pfn, end_pfn;
- struct page *start_page, *end_page;
+ unsigned long pfn, start, end;
- start_pfn = page_to_pfn(page);
- start_pfn = start_pfn & ~(pageblock_nr_pages-1);
- start_page = pfn_to_page(start_pfn);
- end_page = start_page + pageblock_nr_pages - 1;
- end_pfn = start_pfn + pageblock_nr_pages - 1;
+ pfn = page_to_pfn(page);
+ start = pageblock_start_pfn(pfn);
+ end = pageblock_end_pfn(pfn);
- /* Do not cross zone boundaries */
- if (!zone_spans_pfn(zone, start_pfn))
- start_page = page;
- if (!zone_spans_pfn(zone, end_pfn))
- return 0;
+ /*
+ * The caller only has the lock for @zone, don't touch ranges
+ * that straddle into other zones. While we could move part of
+ * the range that's inside the zone, this call is usually
+ * accompanied by other operations such as migratetype updates
+ * which also should be locked.
+ */
+ if (!zone_spans_pfn(zone, start))
+ return false;
+ if (!zone_spans_pfn(zone, end - 1))
+ return false;
+
+ *start_pfn = start;
+
+ if (num_free) {
+ *num_free = 0;
+ *num_movable = 0;
+ for (pfn = start; pfn < end;) {
+ page = pfn_to_page(pfn);
+ if (PageBuddy(page)) {
+ int nr = 1 << buddy_order(page);
+
+ *num_free += nr;
+ pfn += nr;
+ continue;
+ }
+ /*
+ * We assume that pages that could be isolated for
+ * migration are movable. But we don't actually try
+ * isolating, as that would be expensive.
+ */
+ if (PageLRU(page) || page_has_movable_ops(page))
+ (*num_movable)++;
+ pfn++;
+ }
+ }
- return move_freepages(zone, start_page, end_page, migratetype);
+ return true;
}
+static int move_freepages_block(struct zone *zone, struct page *page,
+ int old_mt, int new_mt)
+{
+ unsigned long start_pfn;
+ int res;
+
+ if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
+ return -1;
+
+ res = __move_freepages_block(zone, start_pfn, old_mt, new_mt);
+ set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
+
+ return res;
+
+}
+
+#ifdef CONFIG_MEMORY_ISOLATION
+/* Look for a buddy that straddles start_pfn */
+static unsigned long find_large_buddy(unsigned long start_pfn)
+{
+ /*
+ * If start_pfn is not an order-0 PageBuddy, next PageBuddy containing
+ * start_pfn has minimal order of __ffs(start_pfn) + 1. Start checking
+ * the order with __ffs(start_pfn). If start_pfn is order-0 PageBuddy,
+ * the starting order does not matter.
+ */
+ int order = start_pfn ? __ffs(start_pfn) : MAX_PAGE_ORDER;
+ struct page *page;
+ unsigned long pfn = start_pfn;
+
+ while (!PageBuddy(page = pfn_to_page(pfn))) {
+ /* Nothing found */
+ if (++order > MAX_PAGE_ORDER)
+ return start_pfn;
+ pfn &= ~0UL << order;
+ }
+
+ /*
+ * Found a preceding buddy, but does it straddle?
+ */
+ if (pfn + (1 << buddy_order(page)) > start_pfn)
+ return pfn;
+
+ /* Nothing found */
+ return start_pfn;
+}
+
+static inline void toggle_pageblock_isolate(struct page *page, bool isolate)
+{
+ if (isolate)
+ set_pageblock_isolate(page);
+ else
+ clear_pageblock_isolate(page);
+}
+
+/**
+ * __move_freepages_block_isolate - move free pages in block for page isolation
+ * @zone: the zone
+ * @page: the pageblock page
+ * @isolate: to isolate the given pageblock or unisolate it
+ *
+ * This is similar to move_freepages_block(), but handles the special
+ * case encountered in page isolation, where the block of interest
+ * might be part of a larger buddy spanning multiple pageblocks.
+ *
+ * Unlike the regular page allocator path, which moves pages while
+ * stealing buddies off the freelist, page isolation is interested in
+ * arbitrary pfn ranges that may have overlapping buddies on both ends.
+ *
+ * This function handles that. Straddling buddies are split into
+ * individual pageblocks. Only the block of interest is moved.
+ *
+ * Returns %true if pages could be moved, %false otherwise.
+ */
+static bool __move_freepages_block_isolate(struct zone *zone,
+ struct page *page, bool isolate)
+{
+ unsigned long start_pfn, buddy_pfn;
+ int from_mt;
+ int to_mt;
+ struct page *buddy;
+
+ if (isolate == get_pageblock_isolate(page)) {
+ VM_WARN_ONCE(1, "%s a pageblock that is already in that state",
+ isolate ? "Isolate" : "Unisolate");
+ return false;
+ }
+
+ if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
+ return false;
+
+ /* No splits needed if buddies can't span multiple blocks */
+ if (pageblock_order == MAX_PAGE_ORDER)
+ goto move;
+
+ buddy_pfn = find_large_buddy(start_pfn);
+ buddy = pfn_to_page(buddy_pfn);
+ /* We're a part of a larger buddy */
+ if (PageBuddy(buddy) && buddy_order(buddy) > pageblock_order) {
+ int order = buddy_order(buddy);
+
+ del_page_from_free_list(buddy, zone, order,
+ get_pfnblock_migratetype(buddy, buddy_pfn));
+ toggle_pageblock_isolate(page, isolate);
+ split_large_buddy(zone, buddy, buddy_pfn, order, FPI_NONE);
+ return true;
+ }
+
+move:
+ /* Use MIGRATETYPE_MASK to get non-isolate migratetype */
+ if (isolate) {
+ from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page),
+ MIGRATETYPE_MASK);
+ to_mt = MIGRATE_ISOLATE;
+ } else {
+ from_mt = MIGRATE_ISOLATE;
+ to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page),
+ MIGRATETYPE_MASK);
+ }
+
+ __move_freepages_block(zone, start_pfn, from_mt, to_mt);
+ toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate);
+
+ return true;
+}
+
+bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page)
+{
+ return __move_freepages_block_isolate(zone, page, true);
+}
+
+bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page)
+{
+ return __move_freepages_block_isolate(zone, page, false);
+}
+
+#endif /* CONFIG_MEMORY_ISOLATION */
+
static void change_pageblock_range(struct page *pageblock_page,
int start_order, int migratetype)
{
@@ -1007,79 +2158,243 @@ static void change_pageblock_range(struct page *pageblock_page,
}
}
-/* Remove an element from the buddy allocator from the fallback list */
-static inline struct page *
-__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
+static inline bool boost_watermark(struct zone *zone)
{
- struct free_area * area;
- int current_order;
- struct page *page;
- int migratetype, i;
+ unsigned long max_boost;
- /* Find the largest possible block of pages in the other list */
- for (current_order = MAX_ORDER-1; current_order >= order;
- --current_order) {
- for (i = 0;; i++) {
- migratetype = fallbacks[start_migratetype][i];
+ if (!watermark_boost_factor)
+ return false;
+ /*
+ * Don't bother in zones that are unlikely to produce results.
+ * On small machines, including kdump capture kernels running
+ * in a small area, boosting the watermark can cause an out of
+ * memory situation immediately.
+ */
+ if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
+ return false;
- /* MIGRATE_RESERVE handled later if necessary */
- if (migratetype == MIGRATE_RESERVE)
- break;
+ max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
+ watermark_boost_factor, 10000);
- area = &(zone->free_area[current_order]);
- if (list_empty(&area->free_list[migratetype]))
- continue;
+ /*
+ * high watermark may be uninitialised if fragmentation occurs
+ * very early in boot so do not boost. We do not fall
+ * through and boost by pageblock_nr_pages as failing
+ * allocations that early means that reclaim is not going
+ * to help and it may even be impossible to reclaim the
+ * boosted watermark resulting in a hang.
+ */
+ if (!max_boost)
+ return false;
- page = list_entry(area->free_list[migratetype].next,
- struct page, lru);
- area->nr_free--;
+ max_boost = max(pageblock_nr_pages, max_boost);
- /*
- * If breaking a large block of pages, move all free
- * pages to the preferred allocation list. If falling
- * back for a reclaimable kernel allocation, be more
- * aggressive about taking ownership of free pages
- *
- * On the other hand, never change migration
- * type of MIGRATE_CMA pageblocks nor move CMA
- * pages on different free lists. We don't
- * want unmovable pages to be allocated from
- * MIGRATE_CMA areas.
- */
- if (!is_migrate_cma(migratetype) &&
- (current_order >= pageblock_order / 2 ||
- start_migratetype == MIGRATE_RECLAIMABLE ||
- page_group_by_mobility_disabled)) {
- int pages;
- pages = move_freepages_block(zone, page,
- start_migratetype);
-
- /* Claim the whole block if over half of it is free */
- if (pages >= (1 << (pageblock_order-1)) ||
- page_group_by_mobility_disabled)
- set_pageblock_migratetype(page,
- start_migratetype);
-
- migratetype = start_migratetype;
- }
+ zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
+ max_boost);
- /* Remove the page from the freelists */
- list_del(&page->lru);
- rmv_page_order(page);
+ return true;
+}
- /* Take ownership for orders >= pageblock_order */
- if (current_order >= pageblock_order &&
- !is_migrate_cma(migratetype))
- change_pageblock_range(page, current_order,
- start_migratetype);
+/*
+ * When we are falling back to another migratetype during allocation, should we
+ * try to claim an entire block to satisfy further allocations, instead of
+ * polluting multiple pageblocks?
+ */
+static bool should_try_claim_block(unsigned int order, int start_mt)
+{
+ /*
+ * Leaving this order check is intended, although there is
+ * relaxed order check in next check. The reason is that
+ * we can actually claim the whole pageblock if this condition met,
+ * but, below check doesn't guarantee it and that is just heuristic
+ * so could be changed anytime.
+ */
+ if (order >= pageblock_order)
+ return true;
- expand(zone, page, order, current_order, area,
- is_migrate_cma(migratetype)
- ? migratetype : start_migratetype);
+ /*
+ * Above a certain threshold, always try to claim, as it's likely there
+ * will be more free pages in the pageblock.
+ */
+ if (order >= pageblock_order / 2)
+ return true;
- trace_mm_page_alloc_extfrag(page, order, current_order,
- start_migratetype, migratetype);
+ /*
+ * Unmovable/reclaimable allocations would cause permanent
+ * fragmentations if they fell back to allocating from a movable block
+ * (polluting it), so we try to claim the whole block regardless of the
+ * allocation size. Later movable allocations can always steal from this
+ * block, which is less problematic.
+ */
+ if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
+ return true;
+
+ if (page_group_by_mobility_disabled)
+ return true;
+
+ /*
+ * Movable pages won't cause permanent fragmentation, so when you alloc
+ * small pages, we just need to temporarily steal unmovable or
+ * reclaimable pages that are closest to the request size. After a
+ * while, memory compaction may occur to form large contiguous pages,
+ * and the next movable allocation may not need to steal.
+ */
+ return false;
+}
+
+/*
+ * Check whether there is a suitable fallback freepage with requested order.
+ * If claimable is true, this function returns fallback_mt only if
+ * we would do this whole-block claiming. This would help to reduce
+ * fragmentation due to mixed migratetype pages in one pageblock.
+ */
+int find_suitable_fallback(struct free_area *area, unsigned int order,
+ int migratetype, bool claimable)
+{
+ int i;
+
+ if (claimable && !should_try_claim_block(order, migratetype))
+ return -2;
+
+ if (area->nr_free == 0)
+ return -1;
+
+ for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
+ int fallback_mt = fallbacks[migratetype][i];
+
+ if (!free_area_empty(area, fallback_mt))
+ return fallback_mt;
+ }
+
+ return -1;
+}
+
+/*
+ * This function implements actual block claiming behaviour. If order is large
+ * enough, we can claim the whole pageblock for the requested migratetype. If
+ * not, we check the pageblock for constituent pages; if at least half of the
+ * pages are free or compatible, we can still claim the whole block, so pages
+ * freed in the future will be put on the correct free list.
+ */
+static struct page *
+try_to_claim_block(struct zone *zone, struct page *page,
+ int current_order, int order, int start_type,
+ int block_type, unsigned int alloc_flags)
+{
+ int free_pages, movable_pages, alike_pages;
+ unsigned long start_pfn;
+
+ /* Take ownership for orders >= pageblock_order */
+ if (current_order >= pageblock_order) {
+ unsigned int nr_added;
+
+ del_page_from_free_list(page, zone, current_order, block_type);
+ change_pageblock_range(page, current_order, start_type);
+ nr_added = expand(zone, page, order, current_order, start_type);
+ account_freepages(zone, nr_added, start_type);
+ return page;
+ }
+
+ /*
+ * Boost watermarks to increase reclaim pressure to reduce the
+ * likelihood of future fallbacks. Wake kswapd now as the node
+ * may be balanced overall and kswapd will not wake naturally.
+ */
+ if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
+ set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
+
+ /* moving whole block can fail due to zone boundary conditions */
+ if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
+ &movable_pages))
+ return NULL;
+
+ /*
+ * Determine how many pages are compatible with our allocation.
+ * For movable allocation, it's the number of movable pages which
+ * we just obtained. For other types it's a bit more tricky.
+ */
+ if (start_type == MIGRATE_MOVABLE) {
+ alike_pages = movable_pages;
+ } else {
+ /*
+ * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
+ * to MOVABLE pageblock, consider all non-movable pages as
+ * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
+ * vice versa, be conservative since we can't distinguish the
+ * exact migratetype of non-movable pages.
+ */
+ if (block_type == MIGRATE_MOVABLE)
+ alike_pages = pageblock_nr_pages
+ - (free_pages + movable_pages);
+ else
+ alike_pages = 0;
+ }
+ /*
+ * If a sufficient number of pages in the block are either free or of
+ * compatible migratability as our allocation, claim the whole block.
+ */
+ if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
+ page_group_by_mobility_disabled) {
+ __move_freepages_block(zone, start_pfn, block_type, start_type);
+ set_pageblock_migratetype(pfn_to_page(start_pfn), start_type);
+ return __rmqueue_smallest(zone, order, start_type);
+ }
+
+ return NULL;
+}
+
+/*
+ * Try to allocate from some fallback migratetype by claiming the entire block,
+ * i.e. converting it to the allocation's start migratetype.
+ *
+ * The use of signed ints for order and current_order is a deliberate
+ * deviation from the rest of this file, to make the for loop
+ * condition simpler.
+ */
+static __always_inline struct page *
+__rmqueue_claim(struct zone *zone, int order, int start_migratetype,
+ unsigned int alloc_flags)
+{
+ struct free_area *area;
+ int current_order;
+ int min_order = order;
+ struct page *page;
+ int fallback_mt;
+
+ /*
+ * Do not steal pages from freelists belonging to other pageblocks
+ * i.e. orders < pageblock_order. If there are no local zones free,
+ * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
+ */
+ if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
+ min_order = pageblock_order;
+
+ /*
+ * Find the largest available free page in the other list. This roughly
+ * approximates finding the pageblock with the most free pages, which
+ * would be too costly to do exactly.
+ */
+ for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
+ --current_order) {
+ area = &(zone->free_area[current_order]);
+ fallback_mt = find_suitable_fallback(area, current_order,
+ start_migratetype, true);
+
+ /* No block in that order */
+ if (fallback_mt == -1)
+ continue;
+
+ /* Advanced into orders too low to claim, abort */
+ if (fallback_mt == -2)
+ break;
+ page = get_page_from_free_area(area, fallback_mt);
+ page = try_to_claim_block(zone, page, current_order, order,
+ start_migratetype, fallback_mt,
+ alloc_flags);
+ if (page) {
+ trace_mm_page_alloc_extfrag(page, order, current_order,
+ start_migratetype, fallback_mt);
return page;
}
}
@@ -1088,33 +2403,108 @@ __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
}
/*
- * Do the hard work of removing an element from the buddy allocator.
- * Call me with the zone->lock already held.
+ * Try to steal a single page from some fallback migratetype. Leave the rest of
+ * the block as its current migratetype, potentially causing fragmentation.
*/
-static struct page *__rmqueue(struct zone *zone, unsigned int order,
- int migratetype)
+static __always_inline struct page *
+__rmqueue_steal(struct zone *zone, int order, int start_migratetype)
{
+ struct free_area *area;
+ int current_order;
struct page *page;
+ int fallback_mt;
-retry_reserve:
- page = __rmqueue_smallest(zone, order, migratetype);
+ for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
+ area = &(zone->free_area[current_order]);
+ fallback_mt = find_suitable_fallback(area, current_order,
+ start_migratetype, false);
+ if (fallback_mt == -1)
+ continue;
+
+ page = get_page_from_free_area(area, fallback_mt);
+ page_del_and_expand(zone, page, order, current_order, fallback_mt);
+ trace_mm_page_alloc_extfrag(page, order, current_order,
+ start_migratetype, fallback_mt);
+ return page;
+ }
- if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
- page = __rmqueue_fallback(zone, order, migratetype);
+ return NULL;
+}
+enum rmqueue_mode {
+ RMQUEUE_NORMAL,
+ RMQUEUE_CMA,
+ RMQUEUE_CLAIM,
+ RMQUEUE_STEAL,
+};
+
+/*
+ * Do the hard work of removing an element from the buddy allocator.
+ * Call me with the zone->lock already held.
+ */
+static __always_inline struct page *
+__rmqueue(struct zone *zone, unsigned int order, int migratetype,
+ unsigned int alloc_flags, enum rmqueue_mode *mode)
+{
+ struct page *page;
+
+ if (IS_ENABLED(CONFIG_CMA)) {
/*
- * Use MIGRATE_RESERVE rather than fail an allocation. goto
- * is used because __rmqueue_smallest is an inline function
- * and we want just one call site
+ * Balance movable allocations between regular and CMA areas by
+ * allocating from CMA when over half of the zone's free memory
+ * is in the CMA area.
*/
- if (!page) {
- migratetype = MIGRATE_RESERVE;
- goto retry_reserve;
+ if (alloc_flags & ALLOC_CMA &&
+ zone_page_state(zone, NR_FREE_CMA_PAGES) >
+ zone_page_state(zone, NR_FREE_PAGES) / 2) {
+ page = __rmqueue_cma_fallback(zone, order);
+ if (page)
+ return page;
}
}
- trace_mm_page_alloc_zone_locked(page, order, migratetype);
- return page;
+ /*
+ * First try the freelists of the requested migratetype, then try
+ * fallbacks modes with increasing levels of fragmentation risk.
+ *
+ * The fallback logic is expensive and rmqueue_bulk() calls in
+ * a loop with the zone->lock held, meaning the freelists are
+ * not subject to any outside changes. Remember in *mode where
+ * we found pay dirt, to save us the search on the next call.
+ */
+ switch (*mode) {
+ case RMQUEUE_NORMAL:
+ page = __rmqueue_smallest(zone, order, migratetype);
+ if (page)
+ return page;
+ fallthrough;
+ case RMQUEUE_CMA:
+ if (alloc_flags & ALLOC_CMA) {
+ page = __rmqueue_cma_fallback(zone, order);
+ if (page) {
+ *mode = RMQUEUE_CMA;
+ return page;
+ }
+ }
+ fallthrough;
+ case RMQUEUE_CLAIM:
+ page = __rmqueue_claim(zone, order, migratetype, alloc_flags);
+ if (page) {
+ /* Replenished preferred freelist, back to normal mode. */
+ *mode = RMQUEUE_NORMAL;
+ return page;
+ }
+ fallthrough;
+ case RMQUEUE_STEAL:
+ if (!(alloc_flags & ALLOC_NOFRAGMENT)) {
+ page = __rmqueue_steal(zone, order, migratetype);
+ if (page) {
+ *mode = RMQUEUE_STEAL;
+ return page;
+ }
+ }
+ }
+ return NULL;
}
/*
@@ -1124,251 +2514,567 @@ retry_reserve:
*/
static int rmqueue_bulk(struct zone *zone, unsigned int order,
unsigned long count, struct list_head *list,
- int migratetype, int cold)
+ int migratetype, unsigned int alloc_flags)
{
- int mt = migratetype, i;
+ enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
+ unsigned long flags;
+ int i;
- spin_lock(&zone->lock);
+ if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
+ if (!spin_trylock_irqsave(&zone->lock, flags))
+ return 0;
+ } else {
+ spin_lock_irqsave(&zone->lock, flags);
+ }
for (i = 0; i < count; ++i) {
- struct page *page = __rmqueue(zone, order, migratetype);
+ struct page *page = __rmqueue(zone, order, migratetype,
+ alloc_flags, &rmqm);
if (unlikely(page == NULL))
break;
/*
- * Split buddy pages returned by expand() are received here
- * in physical page order. The page is added to the callers and
- * list and the list head then moves forward. From the callers
- * perspective, the linked list is ordered by page number in
- * some conditions. This is useful for IO devices that can
- * merge IO requests if the physical pages are ordered
- * properly.
+ * Split buddy pages returned by expand() are received here in
+ * physical page order. The page is added to the tail of
+ * caller's list. From the callers perspective, the linked list
+ * is ordered by page number under some conditions. This is
+ * useful for IO devices that can forward direction from the
+ * head, thus also in the physical page order. This is useful
+ * for IO devices that can merge IO requests if the physical
+ * pages are ordered properly.
*/
- if (likely(cold == 0))
- list_add(&page->lru, list);
- else
- list_add_tail(&page->lru, list);
- if (IS_ENABLED(CONFIG_CMA)) {
- mt = get_pageblock_migratetype(page);
- if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
- mt = migratetype;
- }
- set_freepage_migratetype(page, mt);
- list = &page->lru;
- if (is_migrate_cma(mt))
- __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
- -(1 << order));
- }
- __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
- spin_unlock(&zone->lock);
+ list_add_tail(&page->pcp_list, list);
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
+
return i;
}
+/*
+ * Called from the vmstat counter updater to decay the PCP high.
+ * Return whether there are addition works to do.
+ */
+bool decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
+{
+ int high_min, to_drain, to_drain_batched, batch;
+ bool todo = false;
+
+ high_min = READ_ONCE(pcp->high_min);
+ batch = READ_ONCE(pcp->batch);
+ /*
+ * Decrease pcp->high periodically to try to free possible
+ * idle PCP pages. And, avoid to free too many pages to
+ * control latency. This caps pcp->high decrement too.
+ */
+ if (pcp->high > high_min) {
+ pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
+ pcp->high - (pcp->high >> 3), high_min);
+ if (pcp->high > high_min)
+ todo = true;
+ }
+
+ to_drain = pcp->count - pcp->high;
+ while (to_drain > 0) {
+ to_drain_batched = min(to_drain, batch);
+ spin_lock(&pcp->lock);
+ free_pcppages_bulk(zone, to_drain_batched, pcp, 0);
+ spin_unlock(&pcp->lock);
+ todo = true;
+
+ to_drain -= to_drain_batched;
+ }
+
+ return todo;
+}
+
#ifdef CONFIG_NUMA
/*
* Called from the vmstat counter updater to drain pagesets of this
* currently executing processor on remote nodes after they have
* expired.
- *
- * Note that this function must be called with the thread pinned to
- * a single processor.
*/
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
{
- unsigned long flags;
- int to_drain;
- unsigned long batch;
+ int to_drain, batch;
- local_irq_save(flags);
- batch = ACCESS_ONCE(pcp->batch);
- if (pcp->count >= batch)
- to_drain = batch;
- else
- to_drain = pcp->count;
+ batch = READ_ONCE(pcp->batch);
+ to_drain = min(pcp->count, batch);
if (to_drain > 0) {
- free_pcppages_bulk(zone, to_drain, pcp);
- pcp->count -= to_drain;
+ spin_lock(&pcp->lock);
+ free_pcppages_bulk(zone, to_drain, pcp, 0);
+ spin_unlock(&pcp->lock);
}
- local_irq_restore(flags);
}
#endif
/*
- * Drain pages of the indicated processor.
- *
- * The processor must either be the current processor and the
- * thread pinned to the current processor or a processor that
- * is not online.
+ * Drain pcplists of the indicated processor and zone.
+ */
+static void drain_pages_zone(unsigned int cpu, struct zone *zone)
+{
+ struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
+ int count;
+
+ do {
+ spin_lock(&pcp->lock);
+ count = pcp->count;
+ if (count) {
+ int to_drain = min(count,
+ pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
+
+ free_pcppages_bulk(zone, to_drain, pcp, 0);
+ count -= to_drain;
+ }
+ spin_unlock(&pcp->lock);
+ } while (count);
+}
+
+/*
+ * Drain pcplists of all zones on the indicated processor.
*/
static void drain_pages(unsigned int cpu)
{
- unsigned long flags;
struct zone *zone;
for_each_populated_zone(zone) {
- struct per_cpu_pageset *pset;
- struct per_cpu_pages *pcp;
-
- local_irq_save(flags);
- pset = per_cpu_ptr(zone->pageset, cpu);
-
- pcp = &pset->pcp;
- if (pcp->count) {
- free_pcppages_bulk(zone, pcp->count, pcp);
- pcp->count = 0;
- }
- local_irq_restore(flags);
+ drain_pages_zone(cpu, zone);
}
}
/*
* Spill all of this CPU's per-cpu pages back into the buddy allocator.
*/
-void drain_local_pages(void *arg)
+void drain_local_pages(struct zone *zone)
{
- drain_pages(smp_processor_id());
+ int cpu = smp_processor_id();
+
+ if (zone)
+ drain_pages_zone(cpu, zone);
+ else
+ drain_pages(cpu);
}
/*
- * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
+ * The implementation of drain_all_pages(), exposing an extra parameter to
+ * drain on all cpus.
*
- * Note that this code is protected against sending an IPI to an offline
- * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
- * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
- * nothing keeps CPUs from showing up after we populated the cpumask and
- * before the call to on_each_cpu_mask().
+ * drain_all_pages() is optimized to only execute on cpus where pcplists are
+ * not empty. The check for non-emptiness can however race with a free to
+ * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
+ * that need the guarantee that every CPU has drained can disable the
+ * optimizing racy check.
*/
-void drain_all_pages(void)
+static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
{
int cpu;
- struct per_cpu_pageset *pcp;
- struct zone *zone;
/*
- * Allocate in the BSS so we wont require allocation in
+ * Allocate in the BSS so we won't require allocation in
* direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
*/
static cpumask_t cpus_with_pcps;
/*
+ * Do not drain if one is already in progress unless it's specific to
+ * a zone. Such callers are primarily CMA and memory hotplug and need
+ * the drain to be complete when the call returns.
+ */
+ if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
+ if (!zone)
+ return;
+ mutex_lock(&pcpu_drain_mutex);
+ }
+
+ /*
* We don't care about racing with CPU hotplug event
* as offline notification will cause the notified
* cpu to drain that CPU pcps and on_each_cpu_mask
* disables preemption as part of its processing
*/
for_each_online_cpu(cpu) {
+ struct per_cpu_pages *pcp;
+ struct zone *z;
bool has_pcps = false;
- for_each_populated_zone(zone) {
- pcp = per_cpu_ptr(zone->pageset, cpu);
- if (pcp->pcp.count) {
+
+ if (force_all_cpus) {
+ /*
+ * The pcp.count check is racy, some callers need a
+ * guarantee that no cpu is missed.
+ */
+ has_pcps = true;
+ } else if (zone) {
+ pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
+ if (pcp->count)
has_pcps = true;
- break;
+ } else {
+ for_each_populated_zone(z) {
+ pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
+ if (pcp->count) {
+ has_pcps = true;
+ break;
+ }
}
}
+
if (has_pcps)
cpumask_set_cpu(cpu, &cpus_with_pcps);
else
cpumask_clear_cpu(cpu, &cpus_with_pcps);
}
- on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
+
+ for_each_cpu(cpu, &cpus_with_pcps) {
+ if (zone)
+ drain_pages_zone(cpu, zone);
+ else
+ drain_pages(cpu);
+ }
+
+ mutex_unlock(&pcpu_drain_mutex);
}
-#ifdef CONFIG_HIBERNATION
+/*
+ * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
+ *
+ * When zone parameter is non-NULL, spill just the single zone's pages.
+ */
+void drain_all_pages(struct zone *zone)
+{
+ __drain_all_pages(zone, false);
+}
-void mark_free_pages(struct zone *zone)
+static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
{
- unsigned long pfn, max_zone_pfn;
- unsigned long flags;
- int order, t;
- struct list_head *curr;
+ int min_nr_free, max_nr_free;
- if (!zone->spanned_pages)
- return;
+ /* Free as much as possible if batch freeing high-order pages. */
+ if (unlikely(free_high))
+ return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
- spin_lock_irqsave(&zone->lock, flags);
+ /* Check for PCP disabled or boot pageset */
+ if (unlikely(high < batch))
+ return 1;
- max_zone_pfn = zone_end_pfn(zone);
- for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
- if (pfn_valid(pfn)) {
- struct page *page = pfn_to_page(pfn);
+ /* Leave at least pcp->batch pages on the list */
+ min_nr_free = batch;
+ max_nr_free = high - batch;
- if (!swsusp_page_is_forbidden(page))
- swsusp_unset_page_free(page);
- }
+ /*
+ * Increase the batch number to the number of the consecutive
+ * freed pages to reduce zone lock contention.
+ */
+ batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
+
+ return batch;
+}
+
+static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
+ int batch, bool free_high)
+{
+ int high, high_min, high_max;
+
+ high_min = READ_ONCE(pcp->high_min);
+ high_max = READ_ONCE(pcp->high_max);
+ high = pcp->high = clamp(pcp->high, high_min, high_max);
+
+ if (unlikely(!high))
+ return 0;
+
+ if (unlikely(free_high)) {
+ pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
+ high_min);
+ return 0;
+ }
- for_each_migratetype_order(order, t) {
- list_for_each(curr, &zone->free_area[order].free_list[t]) {
- unsigned long i;
+ /*
+ * If reclaim is active, limit the number of pages that can be
+ * stored on pcp lists
+ */
+ if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
+ int free_count = max_t(int, pcp->free_count, batch);
+
+ pcp->high = max(high - free_count, high_min);
+ return min(batch << 2, pcp->high);
+ }
+
+ if (high_min == high_max)
+ return high;
+
+ if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
+ int free_count = max_t(int, pcp->free_count, batch);
+
+ pcp->high = max(high - free_count, high_min);
+ high = max(pcp->count, high_min);
+ } else if (pcp->count >= high) {
+ int need_high = pcp->free_count + batch;
+
+ /* pcp->high should be large enough to hold batch freed pages */
+ if (pcp->high < need_high)
+ pcp->high = clamp(need_high, high_min, high_max);
+ }
+
+ return high;
+}
+
+/*
+ * Tune pcp alloc factor and adjust count & free_count. Free pages to bring the
+ * pcp's watermarks below high.
+ *
+ * May return a freed pcp, if during page freeing the pcp spinlock cannot be
+ * reacquired. Return true if pcp is locked, false otherwise.
+ */
+static bool free_frozen_page_commit(struct zone *zone,
+ struct per_cpu_pages *pcp, struct page *page, int migratetype,
+ unsigned int order, fpi_t fpi_flags, unsigned long *UP_flags)
+{
+ int high, batch;
+ int to_free, to_free_batched;
+ int pindex;
+ int cpu = smp_processor_id();
+ int ret = true;
+ bool free_high = false;
+
+ /*
+ * On freeing, reduce the number of pages that are batch allocated.
+ * See nr_pcp_alloc() where alloc_factor is increased for subsequent
+ * allocations.
+ */
+ pcp->alloc_factor >>= 1;
+ __count_vm_events(PGFREE, 1 << order);
+ pindex = order_to_pindex(migratetype, order);
+ list_add(&page->pcp_list, &pcp->lists[pindex]);
+ pcp->count += 1 << order;
- pfn = page_to_pfn(list_entry(curr, struct page, lru));
- for (i = 0; i < (1UL << order); i++)
- swsusp_set_page_free(pfn_to_page(pfn + i));
+ batch = READ_ONCE(pcp->batch);
+ /*
+ * As high-order pages other than THP's stored on PCP can contribute
+ * to fragmentation, limit the number stored when PCP is heavily
+ * freeing without allocation. The remainder after bulk freeing
+ * stops will be drained from vmstat refresh context.
+ */
+ if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
+ free_high = (pcp->free_count >= (batch + pcp->high_min / 2) &&
+ (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
+ (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
+ pcp->count >= batch));
+ pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
+ } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
+ pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
+ }
+ if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
+ pcp->free_count += (1 << order);
+
+ if (unlikely(fpi_flags & FPI_TRYLOCK)) {
+ /*
+ * Do not attempt to take a zone lock. Let pcp->count get
+ * over high mark temporarily.
+ */
+ return true;
+ }
+
+ high = nr_pcp_high(pcp, zone, batch, free_high);
+ if (pcp->count < high)
+ return true;
+
+ to_free = nr_pcp_free(pcp, batch, high, free_high);
+ while (to_free > 0 && pcp->count > 0) {
+ to_free_batched = min(to_free, batch);
+ free_pcppages_bulk(zone, to_free_batched, pcp, pindex);
+ to_free -= to_free_batched;
+
+ if (to_free == 0 || pcp->count == 0)
+ break;
+
+ pcp_spin_unlock(pcp, *UP_flags);
+
+ pcp = pcp_spin_trylock(zone->per_cpu_pageset, *UP_flags);
+ if (!pcp) {
+ ret = false;
+ break;
+ }
+
+ /*
+ * Check if this thread has been migrated to a different CPU.
+ * If that is the case, give up and indicate that the pcp is
+ * returned in an unlocked state.
+ */
+ if (smp_processor_id() != cpu) {
+ pcp_spin_unlock(pcp, *UP_flags);
+ ret = false;
+ break;
}
}
- spin_unlock_irqrestore(&zone->lock, flags);
+
+ if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
+ zone_watermark_ok(zone, 0, high_wmark_pages(zone),
+ ZONE_MOVABLE, 0)) {
+ struct pglist_data *pgdat = zone->zone_pgdat;
+ clear_bit(ZONE_BELOW_HIGH, &zone->flags);
+
+ /*
+ * Assume that memory pressure on this node is gone and may be
+ * in a reclaimable state. If a memory fallback node exists,
+ * direct reclaim may not have been triggered, causing a
+ * 'hopeless node' to stay in that state for a while. Let
+ * kswapd work again by resetting kswapd_failures.
+ */
+ if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES &&
+ next_memory_node(pgdat->node_id) < MAX_NUMNODES)
+ atomic_set(&pgdat->kswapd_failures, 0);
+ }
+ return ret;
}
-#endif /* CONFIG_PM */
/*
- * Free a 0-order page
- * cold == 1 ? free a cold page : free a hot page
+ * Free a pcp page
*/
-void free_hot_cold_page(struct page *page, int cold)
+static void __free_frozen_pages(struct page *page, unsigned int order,
+ fpi_t fpi_flags)
{
- struct zone *zone = page_zone(page);
+ unsigned long UP_flags;
struct per_cpu_pages *pcp;
- unsigned long flags;
+ struct zone *zone;
+ unsigned long pfn = page_to_pfn(page);
int migratetype;
- if (!free_pages_prepare(page, 0))
+ if (!pcp_allowed_order(order)) {
+ __free_pages_ok(page, order, fpi_flags);
return;
+ }
- migratetype = get_pageblock_migratetype(page);
- set_freepage_migratetype(page, migratetype);
- local_irq_save(flags);
- __count_vm_event(PGFREE);
+ if (!free_pages_prepare(page, order))
+ return;
/*
* We only track unmovable, reclaimable and movable on pcp lists.
- * Free ISOLATE pages back to the allocator because they are being
- * offlined but treat RESERVE as movable pages so we can get those
- * areas back if necessary. Otherwise, we may have to free
+ * Place ISOLATE pages on the isolated list because they are being
+ * offlined but treat HIGHATOMIC and CMA as movable pages so we can
+ * get those areas back if necessary. Otherwise, we may have to free
* excessively into the page allocator
*/
- if (migratetype >= MIGRATE_PCPTYPES) {
+ zone = page_zone(page);
+ migratetype = get_pfnblock_migratetype(page, pfn);
+ if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
if (unlikely(is_migrate_isolate(migratetype))) {
- free_one_page(zone, page, 0, migratetype);
- goto out;
+ free_one_page(zone, page, pfn, order, fpi_flags);
+ return;
}
migratetype = MIGRATE_MOVABLE;
}
- pcp = &this_cpu_ptr(zone->pageset)->pcp;
- if (cold)
- list_add_tail(&page->lru, &pcp->lists[migratetype]);
- else
- list_add(&page->lru, &pcp->lists[migratetype]);
- pcp->count++;
- if (pcp->count >= pcp->high) {
- unsigned long batch = ACCESS_ONCE(pcp->batch);
- free_pcppages_bulk(zone, batch, pcp);
- pcp->count -= batch;
+ if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
+ && (in_nmi() || in_hardirq()))) {
+ add_page_to_zone_llist(zone, page, order);
+ return;
}
+ pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags);
+ if (pcp) {
+ if (!free_frozen_page_commit(zone, pcp, page, migratetype,
+ order, fpi_flags, &UP_flags))
+ return;
+ pcp_spin_unlock(pcp, UP_flags);
+ } else {
+ free_one_page(zone, page, pfn, order, fpi_flags);
+ }
+}
-out:
- local_irq_restore(flags);
+void free_frozen_pages(struct page *page, unsigned int order)
+{
+ __free_frozen_pages(page, order, FPI_NONE);
}
/*
- * Free a list of 0-order pages
+ * Free a batch of folios
*/
-void free_hot_cold_page_list(struct list_head *list, int cold)
+void free_unref_folios(struct folio_batch *folios)
{
- struct page *page, *next;
+ unsigned long UP_flags;
+ struct per_cpu_pages *pcp = NULL;
+ struct zone *locked_zone = NULL;
+ int i, j;
- list_for_each_entry_safe(page, next, list, lru) {
- trace_mm_page_free_batched(page, cold);
- free_hot_cold_page(page, cold);
+ /* Prepare folios for freeing */
+ for (i = 0, j = 0; i < folios->nr; i++) {
+ struct folio *folio = folios->folios[i];
+ unsigned long pfn = folio_pfn(folio);
+ unsigned int order = folio_order(folio);
+
+ if (!free_pages_prepare(&folio->page, order))
+ continue;
+ /*
+ * Free orders not handled on the PCP directly to the
+ * allocator.
+ */
+ if (!pcp_allowed_order(order)) {
+ free_one_page(folio_zone(folio), &folio->page,
+ pfn, order, FPI_NONE);
+ continue;
+ }
+ folio->private = (void *)(unsigned long)order;
+ if (j != i)
+ folios->folios[j] = folio;
+ j++;
}
+ folios->nr = j;
+
+ for (i = 0; i < folios->nr; i++) {
+ struct folio *folio = folios->folios[i];
+ struct zone *zone = folio_zone(folio);
+ unsigned long pfn = folio_pfn(folio);
+ unsigned int order = (unsigned long)folio->private;
+ int migratetype;
+
+ folio->private = NULL;
+ migratetype = get_pfnblock_migratetype(&folio->page, pfn);
+
+ /* Different zone requires a different pcp lock */
+ if (zone != locked_zone ||
+ is_migrate_isolate(migratetype)) {
+ if (pcp) {
+ pcp_spin_unlock(pcp, UP_flags);
+ locked_zone = NULL;
+ pcp = NULL;
+ }
+
+ /*
+ * Free isolated pages directly to the
+ * allocator, see comment in free_frozen_pages.
+ */
+ if (is_migrate_isolate(migratetype)) {
+ free_one_page(zone, &folio->page, pfn,
+ order, FPI_NONE);
+ continue;
+ }
+
+ /*
+ * trylock is necessary as folios may be getting freed
+ * from IRQ or SoftIRQ context after an IO completion.
+ */
+ pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags);
+ if (unlikely(!pcp)) {
+ free_one_page(zone, &folio->page, pfn,
+ order, FPI_NONE);
+ continue;
+ }
+ locked_zone = zone;
+ }
+
+ /*
+ * Non-isolated types over MIGRATE_PCPTYPES get added
+ * to the MIGRATE_MOVABLE pcp list.
+ */
+ if (unlikely(migratetype >= MIGRATE_PCPTYPES))
+ migratetype = MIGRATE_MOVABLE;
+
+ trace_mm_page_free_batched(&folio->page);
+ if (!free_frozen_page_commit(zone, pcp, &folio->page,
+ migratetype, order, FPI_NONE, &UP_flags)) {
+ pcp = NULL;
+ locked_zone = NULL;
+ }
+ }
+
+ if (pcp)
+ pcp_spin_unlock(pcp, UP_flags);
+ folio_batch_reinit(folios);
}
/*
@@ -1383,736 +3089,957 @@ void split_page(struct page *page, unsigned int order)
{
int i;
- VM_BUG_ON(PageCompound(page));
- VM_BUG_ON(!page_count(page));
-
-#ifdef CONFIG_KMEMCHECK
- /*
- * Split shadow pages too, because free(page[0]) would
- * otherwise free the whole shadow.
- */
- if (kmemcheck_page_is_tracked(page))
- split_page(virt_to_page(page[0].shadow), order);
-#endif
+ VM_BUG_ON_PAGE(PageCompound(page), page);
+ VM_BUG_ON_PAGE(!page_count(page), page);
for (i = 1; i < (1 << order); i++)
set_page_refcounted(page + i);
+ split_page_owner(page, order, 0);
+ pgalloc_tag_split(page_folio(page), order, 0);
+ split_page_memcg(page, order);
}
EXPORT_SYMBOL_GPL(split_page);
-static int __isolate_free_page(struct page *page, unsigned int order)
+int __isolate_free_page(struct page *page, unsigned int order)
{
- unsigned long watermark;
- struct zone *zone;
- int mt;
-
- BUG_ON(!PageBuddy(page));
-
- zone = page_zone(page);
- mt = get_pageblock_migratetype(page);
+ struct zone *zone = page_zone(page);
+ int mt = get_pageblock_migratetype(page);
if (!is_migrate_isolate(mt)) {
- /* Obey watermarks as if the page was being allocated */
- watermark = low_wmark_pages(zone) + (1 << order);
- if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
+ unsigned long watermark;
+ /*
+ * Obey watermarks as if the page was being allocated. We can
+ * emulate a high-order watermark check with a raised order-0
+ * watermark, because we already know our high-order page
+ * exists.
+ */
+ watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
+ if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
return 0;
-
- __mod_zone_freepage_state(zone, -(1UL << order), mt);
}
- /* Remove page from free list */
- list_del(&page->lru);
- zone->free_area[order].nr_free--;
- rmv_page_order(page);
+ del_page_from_free_list(page, zone, order, mt);
- /* Set the pageblock if the isolated page is at least a pageblock */
+ /*
+ * Set the pageblock if the isolated page is at least half of a
+ * pageblock
+ */
if (order >= pageblock_order - 1) {
struct page *endpage = page + (1 << order) - 1;
for (; page < endpage; page += pageblock_nr_pages) {
int mt = get_pageblock_migratetype(page);
- if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
- set_pageblock_migratetype(page,
- MIGRATE_MOVABLE);
+ /*
+ * Only change normal pageblocks (i.e., they can merge
+ * with others)
+ */
+ if (migratetype_is_mergeable(mt))
+ move_freepages_block(zone, page, mt,
+ MIGRATE_MOVABLE);
}
}
return 1UL << order;
}
-/*
- * Similar to split_page except the page is already free. As this is only
- * being used for migration, the migratetype of the block also changes.
- * As this is called with interrupts disabled, the caller is responsible
- * for calling arch_alloc_page() and kernel_map_page() after interrupts
- * are enabled.
+/**
+ * __putback_isolated_page - Return a now-isolated page back where we got it
+ * @page: Page that was isolated
+ * @order: Order of the isolated page
+ * @mt: The page's pageblock's migratetype
*
- * Note: this is probably too low level an operation for use in drivers.
- * Please consult with lkml before using this in your driver.
+ * This function is meant to return a page pulled from the free lists via
+ * __isolate_free_page back to the free lists they were pulled from.
*/
-int split_free_page(struct page *page)
+void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
- unsigned int order;
- int nr_pages;
-
- order = page_order(page);
+ struct zone *zone = page_zone(page);
- nr_pages = __isolate_free_page(page, order);
- if (!nr_pages)
- return 0;
+ /* zone lock should be held when this function is called */
+ lockdep_assert_held(&zone->lock);
- /* Split into individual pages */
- set_page_refcounted(page);
- split_page(page, order);
- return nr_pages;
+ /* Return isolated page to tail of freelist. */
+ __free_one_page(page, page_to_pfn(page), zone, order, mt,
+ FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
}
/*
- * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
- * we cheat by calling it from here, in the order > 0 path. Saves a branch
- * or two.
+ * Update NUMA hit/miss statistics
*/
-static inline
-struct page *buffered_rmqueue(struct zone *preferred_zone,
- struct zone *zone, int order, gfp_t gfp_flags,
- int migratetype)
+static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
+ long nr_account)
{
- unsigned long flags;
- struct page *page;
- int cold = !!(gfp_flags & __GFP_COLD);
+#ifdef CONFIG_NUMA
+ enum numa_stat_item local_stat = NUMA_LOCAL;
-again:
- if (likely(order == 0)) {
- struct per_cpu_pages *pcp;
- struct list_head *list;
+ /* skip numa counters update if numa stats is disabled */
+ if (!static_branch_likely(&vm_numa_stat_key))
+ return;
- local_irq_save(flags);
- pcp = &this_cpu_ptr(zone->pageset)->pcp;
- list = &pcp->lists[migratetype];
- if (list_empty(list)) {
- pcp->count += rmqueue_bulk(zone, 0,
- pcp->batch, list,
- migratetype, cold);
- if (unlikely(list_empty(list)))
- goto failed;
+ if (zone_to_nid(z) != numa_node_id())
+ local_stat = NUMA_OTHER;
+
+ if (zone_to_nid(z) == zone_to_nid(preferred_zone))
+ __count_numa_events(z, NUMA_HIT, nr_account);
+ else {
+ __count_numa_events(z, NUMA_MISS, nr_account);
+ __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
+ }
+ __count_numa_events(z, local_stat, nr_account);
+#endif
+}
+
+static __always_inline
+struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
+ unsigned int order, unsigned int alloc_flags,
+ int migratetype)
+{
+ struct page *page;
+ unsigned long flags;
+
+ do {
+ page = NULL;
+ if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
+ if (!spin_trylock_irqsave(&zone->lock, flags))
+ return NULL;
+ } else {
+ spin_lock_irqsave(&zone->lock, flags);
}
+ if (alloc_flags & ALLOC_HIGHATOMIC)
+ page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
+ if (!page) {
+ enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
- if (cold)
- page = list_entry(list->prev, struct page, lru);
- else
- page = list_entry(list->next, struct page, lru);
+ page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm);
- list_del(&page->lru);
- pcp->count--;
- } else {
- if (unlikely(gfp_flags & __GFP_NOFAIL)) {
/*
- * __GFP_NOFAIL is not to be used in new code.
- *
- * All __GFP_NOFAIL callers should be fixed so that they
- * properly detect and handle allocation failures.
- *
- * We most definitely don't want callers attempting to
- * allocate greater than order-1 page units with
- * __GFP_NOFAIL.
+ * If the allocation fails, allow OOM handling and
+ * order-0 (atomic) allocs access to HIGHATOMIC
+ * reserves as failing now is worse than failing a
+ * high-order atomic allocation in the future.
*/
- WARN_ON_ONCE(order > 1);
+ if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
+ page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
+
+ if (!page) {
+ spin_unlock_irqrestore(&zone->lock, flags);
+ return NULL;
+ }
}
- spin_lock_irqsave(&zone->lock, flags);
- page = __rmqueue(zone, order, migratetype);
- spin_unlock(&zone->lock);
- if (!page)
- goto failed;
- __mod_zone_freepage_state(zone, -(1 << order),
- get_pageblock_migratetype(page));
- }
+ spin_unlock_irqrestore(&zone->lock, flags);
+ } while (check_new_pages(page, order));
- __count_zone_vm_events(PGALLOC, zone, 1 << order);
- zone_statistics(preferred_zone, zone, gfp_flags);
- local_irq_restore(flags);
+ __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
+ zone_statistics(preferred_zone, zone, 1);
- VM_BUG_ON(bad_range(zone, page));
- if (prep_new_page(page, order, gfp_flags))
- goto again;
return page;
-
-failed:
- local_irq_restore(flags);
- return NULL;
}
-#ifdef CONFIG_FAIL_PAGE_ALLOC
+static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
+{
+ int high, base_batch, batch, max_nr_alloc;
+ int high_max, high_min;
-static struct {
- struct fault_attr attr;
+ base_batch = READ_ONCE(pcp->batch);
+ high_min = READ_ONCE(pcp->high_min);
+ high_max = READ_ONCE(pcp->high_max);
+ high = pcp->high = clamp(pcp->high, high_min, high_max);
- u32 ignore_gfp_highmem;
- u32 ignore_gfp_wait;
- u32 min_order;
-} fail_page_alloc = {
- .attr = FAULT_ATTR_INITIALIZER,
- .ignore_gfp_wait = 1,
- .ignore_gfp_highmem = 1,
- .min_order = 1,
-};
+ /* Check for PCP disabled or boot pageset */
+ if (unlikely(high < base_batch))
+ return 1;
-static int __init setup_fail_page_alloc(char *str)
-{
- return setup_fault_attr(&fail_page_alloc.attr, str);
-}
-__setup("fail_page_alloc=", setup_fail_page_alloc);
+ if (order)
+ batch = base_batch;
+ else
+ batch = (base_batch << pcp->alloc_factor);
-static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
-{
- if (order < fail_page_alloc.min_order)
- return false;
- if (gfp_mask & __GFP_NOFAIL)
- return false;
- if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
- return false;
- if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
- return false;
+ /*
+ * If we had larger pcp->high, we could avoid to allocate from
+ * zone.
+ */
+ if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
+ high = pcp->high = min(high + batch, high_max);
- return should_fail(&fail_page_alloc.attr, 1 << order);
-}
+ if (!order) {
+ max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
+ /*
+ * Double the number of pages allocated each time there is
+ * subsequent allocation of order-0 pages without any freeing.
+ */
+ if (batch <= max_nr_alloc &&
+ pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
+ pcp->alloc_factor++;
+ batch = min(batch, max_nr_alloc);
+ }
-#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
+ /*
+ * Scale batch relative to order if batch implies free pages
+ * can be stored on the PCP. Batch can be 1 for small zones or
+ * for boot pagesets which should never store free pages as
+ * the pages may belong to arbitrary zones.
+ */
+ if (batch > 1)
+ batch = max(batch >> order, 2);
-static int __init fail_page_alloc_debugfs(void)
+ return batch;
+}
+
+/* Remove page from the per-cpu list, caller must protect the list */
+static inline
+struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
+ int migratetype,
+ unsigned int alloc_flags,
+ struct per_cpu_pages *pcp,
+ struct list_head *list)
{
- umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
- struct dentry *dir;
+ struct page *page;
- dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
- &fail_page_alloc.attr);
- if (IS_ERR(dir))
- return PTR_ERR(dir);
+ do {
+ if (list_empty(list)) {
+ int batch = nr_pcp_alloc(pcp, zone, order);
+ int alloced;
- if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
- &fail_page_alloc.ignore_gfp_wait))
- goto fail;
- if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
- &fail_page_alloc.ignore_gfp_highmem))
- goto fail;
- if (!debugfs_create_u32("min-order", mode, dir,
- &fail_page_alloc.min_order))
- goto fail;
+ alloced = rmqueue_bulk(zone, order,
+ batch, list,
+ migratetype, alloc_flags);
- return 0;
-fail:
- debugfs_remove_recursive(dir);
+ pcp->count += alloced << order;
+ if (unlikely(list_empty(list)))
+ return NULL;
+ }
- return -ENOMEM;
-}
+ page = list_first_entry(list, struct page, pcp_list);
+ list_del(&page->pcp_list);
+ pcp->count -= 1 << order;
+ } while (check_new_pages(page, order));
-late_initcall(fail_page_alloc_debugfs);
+ return page;
+}
-#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
+/* Lock and remove page from the per-cpu list */
+static struct page *rmqueue_pcplist(struct zone *preferred_zone,
+ struct zone *zone, unsigned int order,
+ int migratetype, unsigned int alloc_flags)
+{
+ struct per_cpu_pages *pcp;
+ struct list_head *list;
+ struct page *page;
+ unsigned long UP_flags;
-#else /* CONFIG_FAIL_PAGE_ALLOC */
+ /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
+ pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags);
+ if (!pcp)
+ return NULL;
-static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
-{
- return false;
+ /*
+ * On allocation, reduce the number of pages that are batch freed.
+ * See nr_pcp_free() where free_factor is increased for subsequent
+ * frees.
+ */
+ pcp->free_count >>= 1;
+ list = &pcp->lists[order_to_pindex(migratetype, order)];
+ page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
+ pcp_spin_unlock(pcp, UP_flags);
+ if (page) {
+ __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
+ zone_statistics(preferred_zone, zone, 1);
+ }
+ return page;
}
-#endif /* CONFIG_FAIL_PAGE_ALLOC */
+/*
+ * Allocate a page from the given zone.
+ * Use pcplists for THP or "cheap" high-order allocations.
+ */
/*
- * Return true if free pages are above 'mark'. This takes into account the order
- * of the allocation.
+ * Do not instrument rmqueue() with KMSAN. This function may call
+ * __msan_poison_alloca() through a call to set_pfnblock_migratetype().
+ * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
+ * may call rmqueue() again, which will result in a deadlock.
*/
-static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
- int classzone_idx, int alloc_flags, long free_pages)
+__no_sanitize_memory
+static inline
+struct page *rmqueue(struct zone *preferred_zone,
+ struct zone *zone, unsigned int order,
+ gfp_t gfp_flags, unsigned int alloc_flags,
+ int migratetype)
{
- /* free_pages my go negative - that's OK */
- long min = mark;
- long lowmem_reserve = z->lowmem_reserve[classzone_idx];
- int o;
- long free_cma = 0;
-
- free_pages -= (1 << order) - 1;
- if (alloc_flags & ALLOC_HIGH)
- min -= min / 2;
- if (alloc_flags & ALLOC_HARDER)
- min -= min / 4;
-#ifdef CONFIG_CMA
- /* If allocation can't use CMA areas don't use free CMA pages */
- if (!(alloc_flags & ALLOC_CMA))
- free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
-#endif
+ struct page *page;
- if (free_pages - free_cma <= min + lowmem_reserve)
- return false;
- for (o = 0; o < order; o++) {
- /* At the next order, this order's pages become unavailable */
- free_pages -= z->free_area[o].nr_free << o;
+ if (likely(pcp_allowed_order(order))) {
+ page = rmqueue_pcplist(preferred_zone, zone, order,
+ migratetype, alloc_flags);
+ if (likely(page))
+ goto out;
+ }
- /* Require fewer higher order pages to be free */
- min >>= 1;
+ page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
+ migratetype);
- if (free_pages <= min)
- return false;
+out:
+ /* Separate test+clear to avoid unnecessary atomics */
+ if ((alloc_flags & ALLOC_KSWAPD) &&
+ unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
+ clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
+ wakeup_kswapd(zone, 0, 0, zone_idx(zone));
}
- return true;
-}
-bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
- int classzone_idx, int alloc_flags)
-{
- return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
- zone_page_state(z, NR_FREE_PAGES));
+ VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
+ return page;
}
-bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
- int classzone_idx, int alloc_flags)
+/*
+ * Reserve the pageblock(s) surrounding an allocation request for
+ * exclusive use of high-order atomic allocations if there are no
+ * empty page blocks that contain a page with a suitable order
+ */
+static void reserve_highatomic_pageblock(struct page *page, int order,
+ struct zone *zone)
{
- long free_pages = zone_page_state(z, NR_FREE_PAGES);
+ int mt;
+ unsigned long max_managed, flags;
+
+ /*
+ * The number reserved as: minimum is 1 pageblock, maximum is
+ * roughly 1% of a zone. But if 1% of a zone falls below a
+ * pageblock size, then don't reserve any pageblocks.
+ * Check is race-prone but harmless.
+ */
+ if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
+ return;
+ max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
+ if (zone->nr_reserved_highatomic >= max_managed)
+ return;
+
+ spin_lock_irqsave(&zone->lock, flags);
+
+ /* Recheck the nr_reserved_highatomic limit under the lock */
+ if (zone->nr_reserved_highatomic >= max_managed)
+ goto out_unlock;
- if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
- free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
+ /* Yoink! */
+ mt = get_pageblock_migratetype(page);
+ /* Only reserve normal pageblocks (i.e., they can merge with others) */
+ if (!migratetype_is_mergeable(mt))
+ goto out_unlock;
+
+ if (order < pageblock_order) {
+ if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
+ goto out_unlock;
+ zone->nr_reserved_highatomic += pageblock_nr_pages;
+ } else {
+ change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
+ zone->nr_reserved_highatomic += 1 << order;
+ }
- return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
- free_pages);
+out_unlock:
+ spin_unlock_irqrestore(&zone->lock, flags);
}
-#ifdef CONFIG_NUMA
/*
- * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
- * skip over zones that are not allowed by the cpuset, or that have
- * been recently (in last second) found to be nearly full. See further
- * comments in mmzone.h. Reduces cache footprint of zonelist scans
- * that have to skip over a lot of full or unallowed zones.
- *
- * If the zonelist cache is present in the passed in zonelist, then
- * returns a pointer to the allowed node mask (either the current
- * tasks mems_allowed, or node_states[N_MEMORY].)
- *
- * If the zonelist cache is not available for this zonelist, does
- * nothing and returns NULL.
+ * Used when an allocation is about to fail under memory pressure. This
+ * potentially hurts the reliability of high-order allocations when under
+ * intense memory pressure but failed atomic allocations should be easier
+ * to recover from than an OOM.
*
- * If the fullzones BITMAP in the zonelist cache is stale (more than
- * a second since last zap'd) then we zap it out (clear its bits.)
- *
- * We hold off even calling zlc_setup, until after we've checked the
- * first zone in the zonelist, on the theory that most allocations will
- * be satisfied from that first zone, so best to examine that zone as
- * quickly as we can.
+ * If @force is true, try to unreserve pageblocks even though highatomic
+ * pageblock is exhausted.
*/
-static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
+static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
+ bool force)
{
- struct zonelist_cache *zlc; /* cached zonelist speedup info */
- nodemask_t *allowednodes; /* zonelist_cache approximation */
+ struct zonelist *zonelist = ac->zonelist;
+ unsigned long flags;
+ struct zoneref *z;
+ struct zone *zone;
+ struct page *page;
+ int order;
+ int ret;
- zlc = zonelist->zlcache_ptr;
- if (!zlc)
- return NULL;
+ for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
+ ac->nodemask) {
+ /*
+ * Preserve at least one pageblock unless memory pressure
+ * is really high.
+ */
+ if (!force && zone->nr_reserved_highatomic <=
+ pageblock_nr_pages)
+ continue;
+
+ spin_lock_irqsave(&zone->lock, flags);
+ for (order = 0; order < NR_PAGE_ORDERS; order++) {
+ struct free_area *area = &(zone->free_area[order]);
+ unsigned long size;
+
+ page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
+ if (!page)
+ continue;
+
+ size = max(pageblock_nr_pages, 1UL << order);
+ /*
+ * It should never happen but changes to
+ * locking could inadvertently allow a per-cpu
+ * drain to add pages to MIGRATE_HIGHATOMIC
+ * while unreserving so be safe and watch for
+ * underflows.
+ */
+ if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
+ size = zone->nr_reserved_highatomic;
+ zone->nr_reserved_highatomic -= size;
- if (time_after(jiffies, zlc->last_full_zap + HZ)) {
- bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
- zlc->last_full_zap = jiffies;
+ /*
+ * Convert to ac->migratetype and avoid the normal
+ * pageblock stealing heuristics. Minimally, the caller
+ * is doing the work and needs the pages. More
+ * importantly, if the block was always converted to
+ * MIGRATE_UNMOVABLE or another type then the number
+ * of pageblocks that cannot be completely freed
+ * may increase.
+ */
+ if (order < pageblock_order)
+ ret = move_freepages_block(zone, page,
+ MIGRATE_HIGHATOMIC,
+ ac->migratetype);
+ else {
+ move_to_free_list(page, zone, order,
+ MIGRATE_HIGHATOMIC,
+ ac->migratetype);
+ change_pageblock_range(page, order,
+ ac->migratetype);
+ ret = 1;
+ }
+ /*
+ * Reserving the block(s) already succeeded,
+ * so this should not fail on zone boundaries.
+ */
+ WARN_ON_ONCE(ret == -1);
+ if (ret > 0) {
+ spin_unlock_irqrestore(&zone->lock, flags);
+ return ret;
+ }
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
}
- allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
- &cpuset_current_mems_allowed :
- &node_states[N_MEMORY];
- return allowednodes;
+ return false;
}
-/*
- * Given 'z' scanning a zonelist, run a couple of quick checks to see
- * if it is worth looking at further for free memory:
- * 1) Check that the zone isn't thought to be full (doesn't have its
- * bit set in the zonelist_cache fullzones BITMAP).
- * 2) Check that the zones node (obtained from the zonelist_cache
- * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
- * Return true (non-zero) if zone is worth looking at further, or
- * else return false (zero) if it is not.
- *
- * This check -ignores- the distinction between various watermarks,
- * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
- * found to be full for any variation of these watermarks, it will
- * be considered full for up to one second by all requests, unless
- * we are so low on memory on all allowed nodes that we are forced
- * into the second scan of the zonelist.
- *
- * In the second scan we ignore this zonelist cache and exactly
- * apply the watermarks to all zones, even it is slower to do so.
- * We are low on memory in the second scan, and should leave no stone
- * unturned looking for a free page.
- */
-static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
- nodemask_t *allowednodes)
+static inline long __zone_watermark_unusable_free(struct zone *z,
+ unsigned int order, unsigned int alloc_flags)
{
- struct zonelist_cache *zlc; /* cached zonelist speedup info */
- int i; /* index of *z in zonelist zones */
- int n; /* node that zone *z is on */
+ long unusable_free = (1 << order) - 1;
- zlc = zonelist->zlcache_ptr;
- if (!zlc)
- return 1;
+ /*
+ * If the caller does not have rights to reserves below the min
+ * watermark then subtract the free pages reserved for highatomic.
+ */
+ if (likely(!(alloc_flags & ALLOC_RESERVES)))
+ unusable_free += READ_ONCE(z->nr_free_highatomic);
- i = z - zonelist->_zonerefs;
- n = zlc->z_to_n[i];
+#ifdef CONFIG_CMA
+ /* If allocation can't use CMA areas don't use free CMA pages */
+ if (!(alloc_flags & ALLOC_CMA))
+ unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
+#endif
- /* This zone is worth trying if it is allowed but not full */
- return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
+ return unusable_free;
}
/*
- * Given 'z' scanning a zonelist, set the corresponding bit in
- * zlc->fullzones, so that subsequent attempts to allocate a page
- * from that zone don't waste time re-examining it.
+ * Return true if free base pages are above 'mark'. For high-order checks it
+ * will return true of the order-0 watermark is reached and there is at least
+ * one free page of a suitable size. Checking now avoids taking the zone lock
+ * to check in the allocation paths if no pages are free.
*/
-static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
+bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
+ int highest_zoneidx, unsigned int alloc_flags,
+ long free_pages)
{
- struct zonelist_cache *zlc; /* cached zonelist speedup info */
- int i; /* index of *z in zonelist zones */
+ long min = mark;
+ int o;
- zlc = zonelist->zlcache_ptr;
- if (!zlc)
- return;
+ /* free_pages may go negative - that's OK */
+ free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
- i = z - zonelist->_zonerefs;
+ if (unlikely(alloc_flags & ALLOC_RESERVES)) {
+ /*
+ * __GFP_HIGH allows access to 50% of the min reserve as well
+ * as OOM.
+ */
+ if (alloc_flags & ALLOC_MIN_RESERVE) {
+ min -= min / 2;
- set_bit(i, zlc->fullzones);
-}
+ /*
+ * Non-blocking allocations (e.g. GFP_ATOMIC) can
+ * access more reserves than just __GFP_HIGH. Other
+ * non-blocking allocations requests such as GFP_NOWAIT
+ * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
+ * access to the min reserve.
+ */
+ if (alloc_flags & ALLOC_NON_BLOCK)
+ min -= min / 4;
+ }
-/*
- * clear all zones full, called after direct reclaim makes progress so that
- * a zone that was recently full is not skipped over for up to a second
- */
-static void zlc_clear_zones_full(struct zonelist *zonelist)
-{
- struct zonelist_cache *zlc; /* cached zonelist speedup info */
+ /*
+ * OOM victims can try even harder than the normal reserve
+ * users on the grounds that it's definitely going to be in
+ * the exit path shortly and free memory. Any allocation it
+ * makes during the free path will be small and short-lived.
+ */
+ if (alloc_flags & ALLOC_OOM)
+ min -= min / 2;
+ }
- zlc = zonelist->zlcache_ptr;
- if (!zlc)
- return;
+ /*
+ * Check watermarks for an order-0 allocation request. If these
+ * are not met, then a high-order request also cannot go ahead
+ * even if a suitable page happened to be free.
+ */
+ if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
+ return false;
- bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
+ /* If this is an order-0 request then the watermark is fine */
+ if (!order)
+ return true;
+
+ /* For a high-order request, check at least one suitable page is free */
+ for (o = order; o < NR_PAGE_ORDERS; o++) {
+ struct free_area *area = &z->free_area[o];
+ int mt;
+
+ if (!area->nr_free)
+ continue;
+
+ for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
+ if (!free_area_empty(area, mt))
+ return true;
+ }
+
+#ifdef CONFIG_CMA
+ if ((alloc_flags & ALLOC_CMA) &&
+ !free_area_empty(area, MIGRATE_CMA)) {
+ return true;
+ }
+#endif
+ if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
+ !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
+ return true;
+ }
+ }
+ return false;
}
-static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
+bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
+ int highest_zoneidx, unsigned int alloc_flags)
{
- return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
+ return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
+ zone_page_state(z, NR_FREE_PAGES));
}
-static void __paginginit init_zone_allows_reclaim(int nid)
+static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
+ unsigned long mark, int highest_zoneidx,
+ unsigned int alloc_flags, gfp_t gfp_mask)
{
- int i;
+ long free_pages;
- for_each_online_node(i)
- if (node_distance(nid, i) <= RECLAIM_DISTANCE)
- node_set(i, NODE_DATA(nid)->reclaim_nodes);
- else
- zone_reclaim_mode = 1;
-}
+ free_pages = zone_page_state(z, NR_FREE_PAGES);
-#else /* CONFIG_NUMA */
+ /*
+ * Fast check for order-0 only. If this fails then the reserves
+ * need to be calculated.
+ */
+ if (!order) {
+ long usable_free;
+ long reserved;
-static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
-{
- return NULL;
-}
+ usable_free = free_pages;
+ reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
-static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
- nodemask_t *allowednodes)
-{
- return 1;
-}
+ /* reserved may over estimate high-atomic reserves. */
+ usable_free -= min(usable_free, reserved);
+ if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
+ return true;
+ }
-static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
-{
+ if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
+ free_pages))
+ return true;
+
+ /*
+ * Ignore watermark boosting for __GFP_HIGH order-0 allocations
+ * when checking the min watermark. The min watermark is the
+ * point where boosting is ignored so that kswapd is woken up
+ * when below the low watermark.
+ */
+ if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
+ && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
+ mark = z->_watermark[WMARK_MIN];
+ return __zone_watermark_ok(z, order, mark, highest_zoneidx,
+ alloc_flags, free_pages);
+ }
+
+ return false;
}
-static void zlc_clear_zones_full(struct zonelist *zonelist)
+#ifdef CONFIG_NUMA
+int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
+
+static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
+ return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
+ node_reclaim_distance;
}
-
+#else /* CONFIG_NUMA */
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
return true;
}
+#endif /* CONFIG_NUMA */
-static inline void init_zone_allows_reclaim(int nid)
+/*
+ * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
+ * fragmentation is subtle. If the preferred zone was HIGHMEM then
+ * premature use of a lower zone may cause lowmem pressure problems that
+ * are worse than fragmentation. If the next zone is ZONE_DMA then it is
+ * probably too small. It only makes sense to spread allocations to avoid
+ * fragmentation between the Normal and DMA32 zones.
+ */
+static inline unsigned int
+alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
{
+ unsigned int alloc_flags;
+
+ /*
+ * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
+ * to save a branch.
+ */
+ alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
+
+ if (defrag_mode) {
+ alloc_flags |= ALLOC_NOFRAGMENT;
+ return alloc_flags;
+ }
+
+#ifdef CONFIG_ZONE_DMA32
+ if (!zone)
+ return alloc_flags;
+
+ if (zone_idx(zone) != ZONE_NORMAL)
+ return alloc_flags;
+
+ /*
+ * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
+ * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
+ * on UMA that if Normal is populated then so is DMA32.
+ */
+ BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
+ if (nr_online_nodes > 1 && !populated_zone(--zone))
+ return alloc_flags;
+
+ alloc_flags |= ALLOC_NOFRAGMENT;
+#endif /* CONFIG_ZONE_DMA32 */
+ return alloc_flags;
+}
+
+/* Must be called after current_gfp_context() which can change gfp_mask */
+static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
+ unsigned int alloc_flags)
+{
+#ifdef CONFIG_CMA
+ if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
+ alloc_flags |= ALLOC_CMA;
+#endif
+ return alloc_flags;
}
-#endif /* CONFIG_NUMA */
/*
* get_page_from_freelist goes through the zonelist trying to allocate
* a page.
*/
static struct page *
-get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
- struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
- struct zone *preferred_zone, int migratetype)
+get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
+ const struct alloc_context *ac)
{
struct zoneref *z;
- struct page *page = NULL;
- int classzone_idx;
struct zone *zone;
- nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
- int zlc_active = 0; /* set if using zonelist_cache */
- int did_zlc_setup = 0; /* just call zlc_setup() one time */
+ struct pglist_data *last_pgdat = NULL;
+ bool last_pgdat_dirty_ok = false;
+ bool no_fallback;
+ bool skip_kswapd_nodes = nr_online_nodes > 1;
+ bool skipped_kswapd_nodes = false;
- classzone_idx = zone_idx(preferred_zone);
-zonelist_scan:
+retry:
/*
* Scan zonelist, looking for a zone with enough free.
- * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
+ * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c.
*/
- for_each_zone_zonelist_nodemask(zone, z, zonelist,
- high_zoneidx, nodemask) {
- if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
- !zlc_zone_worth_trying(zonelist, z, allowednodes))
- continue;
- if ((alloc_flags & ALLOC_CPUSET) &&
- !cpuset_zone_allowed_softwall(zone, gfp_mask))
+ no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
+ z = ac->preferred_zoneref;
+ for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
+ ac->nodemask) {
+ struct page *page;
+ unsigned long mark;
+
+ if (cpusets_enabled() &&
+ (alloc_flags & ALLOC_CPUSET) &&
+ !__cpuset_zone_allowed(zone, gfp_mask))
continue;
/*
* When allocating a page cache page for writing, we
- * want to get it from a zone that is within its dirty
- * limit, such that no single zone holds more than its
+ * want to get it from a node that is within its dirty
+ * limit, such that no single node holds more than its
* proportional share of globally allowed dirty pages.
- * The dirty limits take into account the zone's
+ * The dirty limits take into account the node's
* lowmem reserves and high watermark so that kswapd
* should be able to balance it without having to
* write pages from its LRU list.
*
- * This may look like it could increase pressure on
- * lower zones by failing allocations in higher zones
- * before they are full. But the pages that do spill
- * over are limited as the lower zones are protected
- * by this very same mechanism. It should not become
- * a practical burden to them.
- *
* XXX: For now, allow allocations to potentially
- * exceed the per-zone dirty limit in the slowpath
- * (ALLOC_WMARK_LOW unset) before going into reclaim,
+ * exceed the per-node dirty limit in the slowpath
+ * (spread_dirty_pages unset) before going into reclaim,
* which is important when on a NUMA setup the allowed
- * zones are together not big enough to reach the
+ * nodes are together not big enough to reach the
* global limit. The proper fix for these situations
- * will require awareness of zones in the
+ * will require awareness of nodes in the
* dirty-throttling and the flusher threads.
*/
- if ((alloc_flags & ALLOC_WMARK_LOW) &&
- (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
- goto this_zone_full;
+ if (ac->spread_dirty_pages) {
+ if (last_pgdat != zone->zone_pgdat) {
+ last_pgdat = zone->zone_pgdat;
+ last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
+ }
- BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
- if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
- unsigned long mark;
- int ret;
+ if (!last_pgdat_dirty_ok)
+ continue;
+ }
- mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
- if (zone_watermark_ok(zone, order, mark,
- classzone_idx, alloc_flags))
- goto try_this_zone;
+ if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
+ zone != zonelist_zone(ac->preferred_zoneref)) {
+ int local_nid;
- if (IS_ENABLED(CONFIG_NUMA) &&
- !did_zlc_setup && nr_online_nodes > 1) {
- /*
- * we do zlc_setup if there are multiple nodes
- * and before considering the first zone allowed
- * by the cpuset.
- */
- allowednodes = zlc_setup(zonelist, alloc_flags);
- zlc_active = 1;
- did_zlc_setup = 1;
+ /*
+ * If moving to a remote node, retry but allow
+ * fragmenting fallbacks. Locality is more important
+ * than fragmentation avoidance.
+ */
+ local_nid = zonelist_node_idx(ac->preferred_zoneref);
+ if (zone_to_nid(zone) != local_nid) {
+ alloc_flags &= ~ALLOC_NOFRAGMENT;
+ goto retry;
}
+ }
- if (zone_reclaim_mode == 0 ||
- !zone_allows_reclaim(preferred_zone, zone))
- goto this_zone_full;
+ /*
+ * If kswapd is already active on a node, keep looking
+ * for other nodes that might be idle. This can happen
+ * if another process has NUMA bindings and is causing
+ * kswapd wakeups on only some nodes. Avoid accidental
+ * "node_reclaim_mode"-like behavior in this case.
+ */
+ if (skip_kswapd_nodes &&
+ !waitqueue_active(&zone->zone_pgdat->kswapd_wait)) {
+ skipped_kswapd_nodes = true;
+ continue;
+ }
+
+ cond_accept_memory(zone, order, alloc_flags);
+
+ /*
+ * Detect whether the number of free pages is below high
+ * watermark. If so, we will decrease pcp->high and free
+ * PCP pages in free path to reduce the possibility of
+ * premature page reclaiming. Detection is done here to
+ * avoid to do that in hotter free path.
+ */
+ if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
+ goto check_alloc_wmark;
+
+ mark = high_wmark_pages(zone);
+ if (zone_watermark_fast(zone, order, mark,
+ ac->highest_zoneidx, alloc_flags,
+ gfp_mask))
+ goto try_this_zone;
+ else
+ set_bit(ZONE_BELOW_HIGH, &zone->flags);
+
+check_alloc_wmark:
+ mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
+ if (!zone_watermark_fast(zone, order, mark,
+ ac->highest_zoneidx, alloc_flags,
+ gfp_mask)) {
+ int ret;
+
+ if (cond_accept_memory(zone, order, alloc_flags))
+ goto try_this_zone;
/*
- * As we may have just activated ZLC, check if the first
- * eligible zone has failed zone_reclaim recently.
+ * Watermark failed for this zone, but see if we can
+ * grow this zone if it contains deferred pages.
*/
- if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
- !zlc_zone_worth_trying(zonelist, z, allowednodes))
+ if (deferred_pages_enabled()) {
+ if (_deferred_grow_zone(zone, order))
+ goto try_this_zone;
+ }
+ /* Checked here to keep the fast path fast */
+ BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
+ if (alloc_flags & ALLOC_NO_WATERMARKS)
+ goto try_this_zone;
+
+ if (!node_reclaim_enabled() ||
+ !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
continue;
- ret = zone_reclaim(zone, gfp_mask, order);
+ ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
switch (ret) {
- case ZONE_RECLAIM_NOSCAN:
+ case NODE_RECLAIM_NOSCAN:
/* did not scan */
continue;
- case ZONE_RECLAIM_FULL:
+ case NODE_RECLAIM_FULL:
/* scanned but unreclaimable */
continue;
default:
/* did we reclaim enough */
if (zone_watermark_ok(zone, order, mark,
- classzone_idx, alloc_flags))
+ ac->highest_zoneidx, alloc_flags))
goto try_this_zone;
- /*
- * Failed to reclaim enough to meet watermark.
- * Only mark the zone full if checking the min
- * watermark or if we failed to reclaim just
- * 1<<order pages or else the page allocator
- * fastpath will prematurely mark zones full
- * when the watermark is between the low and
- * min watermarks.
- */
- if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
- ret == ZONE_RECLAIM_SOME)
- goto this_zone_full;
-
continue;
}
}
try_this_zone:
- page = buffered_rmqueue(preferred_zone, zone, order,
- gfp_mask, migratetype);
- if (page)
- break;
-this_zone_full:
- if (IS_ENABLED(CONFIG_NUMA))
- zlc_mark_zone_full(zonelist, z);
- }
+ page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
+ gfp_mask, alloc_flags, ac->migratetype);
+ if (page) {
+ prep_new_page(page, order, gfp_mask, alloc_flags);
- if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
- /* Disable zlc cache for second zonelist scan */
- zlc_active = 0;
- goto zonelist_scan;
- }
+ /*
+ * If this is a high-order atomic allocation then check
+ * if the pageblock should be reserved for the future
+ */
+ if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
+ reserve_highatomic_pageblock(page, order, zone);
- if (page)
- /*
- * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
- * necessary to allocate the page. The expectation is
- * that the caller is taking steps that will free more
- * memory. The caller should avoid the page being used
- * for !PFMEMALLOC purposes.
- */
- page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
+ return page;
+ } else {
+ if (cond_accept_memory(zone, order, alloc_flags))
+ goto try_this_zone;
- return page;
-}
+ /* Try again if zone has deferred pages */
+ if (deferred_pages_enabled()) {
+ if (_deferred_grow_zone(zone, order))
+ goto try_this_zone;
+ }
+ }
+ }
-/*
- * Large machines with many possible nodes should not always dump per-node
- * meminfo in irq context.
- */
-static inline bool should_suppress_show_mem(void)
-{
- bool ret = false;
+ /*
+ * If we skipped over nodes with active kswapds and found no
+ * idle nodes, retry and place anywhere the watermarks permit.
+ */
+ if (skip_kswapd_nodes && skipped_kswapd_nodes) {
+ skip_kswapd_nodes = false;
+ goto retry;
+ }
-#if NODES_SHIFT > 8
- ret = in_interrupt();
-#endif
- return ret;
-}
+ /*
+ * It's possible on a UMA machine to get through all zones that are
+ * fragmented. If avoiding fragmentation, reset and try again.
+ */
+ if (no_fallback && !defrag_mode) {
+ alloc_flags &= ~ALLOC_NOFRAGMENT;
+ goto retry;
+ }
-static DEFINE_RATELIMIT_STATE(nopage_rs,
- DEFAULT_RATELIMIT_INTERVAL,
- DEFAULT_RATELIMIT_BURST);
+ return NULL;
+}
-void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
+static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
{
unsigned int filter = SHOW_MEM_FILTER_NODES;
- if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
- debug_guardpage_minorder() > 0)
- return;
-
- /*
- * Walking all memory to count page types is very expensive and should
- * be inhibited in non-blockable contexts.
- */
- if (!(gfp_mask & __GFP_WAIT))
- filter |= SHOW_MEM_FILTER_PAGE_COUNT;
-
/*
* This documents exceptions given to allocations in certain
* contexts that are allowed to allocate outside current's set
* of allowed nodes.
*/
if (!(gfp_mask & __GFP_NOMEMALLOC))
- if (test_thread_flag(TIF_MEMDIE) ||
+ if (tsk_is_oom_victim(current) ||
(current->flags & (PF_MEMALLOC | PF_EXITING)))
filter &= ~SHOW_MEM_FILTER_NODES;
- if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
+ if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
filter &= ~SHOW_MEM_FILTER_NODES;
- if (fmt) {
- struct va_format vaf;
- va_list args;
-
- va_start(args, fmt);
-
- vaf.fmt = fmt;
- vaf.va = &args;
+ __show_mem(filter, nodemask, gfp_zone(gfp_mask));
+ mem_cgroup_show_protected_memory(NULL);
+}
- pr_warn("%pV", &vaf);
+void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
+{
+ struct va_format vaf;
+ va_list args;
+ static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
- va_end(args);
- }
+ if ((gfp_mask & __GFP_NOWARN) ||
+ !__ratelimit(&nopage_rs) ||
+ ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
+ return;
- pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
- current->comm, order, gfp_mask);
+ va_start(args, fmt);
+ vaf.fmt = fmt;
+ vaf.va = &args;
+ pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
+ current->comm, &vaf, gfp_mask, &gfp_mask,
+ nodemask_pr_args(nodemask));
+ va_end(args);
+ cpuset_print_current_mems_allowed();
+ pr_cont("\n");
dump_stack();
- if (!should_suppress_show_mem())
- show_mem(filter);
+ warn_alloc_show_mem(gfp_mask, nodemask);
}
-static inline int
-should_alloc_retry(gfp_t gfp_mask, unsigned int order,
- unsigned long did_some_progress,
- unsigned long pages_reclaimed)
+static inline struct page *
+__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
+ unsigned int alloc_flags,
+ const struct alloc_context *ac)
{
- /* Do not loop if specifically requested */
- if (gfp_mask & __GFP_NORETRY)
- return 0;
-
- /* Always retry if specifically requested */
- if (gfp_mask & __GFP_NOFAIL)
- return 1;
-
- /*
- * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
- * making forward progress without invoking OOM. Suspend also disables
- * storage devices so kswapd will not help. Bail if we are suspending.
- */
- if (!did_some_progress && pm_suspended_storage())
- return 0;
-
- /*
- * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
- * means __GFP_NOFAIL, but that may not be true in other
- * implementations.
- */
- if (order <= PAGE_ALLOC_COSTLY_ORDER)
- return 1;
+ struct page *page;
+ page = get_page_from_freelist(gfp_mask, order,
+ alloc_flags|ALLOC_CPUSET, ac);
/*
- * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
- * specified, then we retry until we no longer reclaim any pages
- * (above), or we've reclaimed an order of pages at least as
- * large as the allocation's order. In both cases, if the
- * allocation still fails, we stop retrying.
+ * fallback to ignore cpuset restriction if our nodes
+ * are depleted
*/
- if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
- return 1;
-
- return 0;
+ if (!page)
+ page = get_page_from_freelist(gfp_mask, order,
+ alloc_flags, ac);
+ return page;
}
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
- struct zonelist *zonelist, enum zone_type high_zoneidx,
- nodemask_t *nodemask, struct zone *preferred_zone,
- int migratetype)
-{
+ const struct alloc_context *ac, unsigned long *did_some_progress)
+{
+ struct oom_control oc = {
+ .zonelist = ac->zonelist,
+ .nodemask = ac->nodemask,
+ .memcg = NULL,
+ .gfp_mask = gfp_mask,
+ .order = order,
+ };
struct page *page;
- /* Acquire the OOM killer lock for the zones in zonelist */
- if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
+ *did_some_progress = 0;
+
+ /*
+ * Acquire the oom lock. If that fails, somebody else is
+ * making progress for us.
+ */
+ if (!mutex_trylock(&oom_lock)) {
+ *did_some_progress = 1;
schedule_timeout_uninterruptible(1);
return NULL;
}
@@ -2120,139 +4047,338 @@ __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
/*
* Go through the zonelist yet one more time, keep very high watermark
* here, this is only to catch a parallel oom killing, we must fail if
- * we're still under heavy pressure.
+ * we're still under heavy pressure. But make sure that this reclaim
+ * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
+ * allocation which will never fail due to oom_lock already held.
*/
- page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
- order, zonelist, high_zoneidx,
- ALLOC_WMARK_HIGH|ALLOC_CPUSET,
- preferred_zone, migratetype);
+ page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
+ ~__GFP_DIRECT_RECLAIM, order,
+ ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
if (page)
goto out;
- if (!(gfp_mask & __GFP_NOFAIL)) {
- /* The OOM killer will not help higher order allocs */
- if (order > PAGE_ALLOC_COSTLY_ORDER)
- goto out;
- /* The OOM killer does not needlessly kill tasks for lowmem */
- if (high_zoneidx < ZONE_NORMAL)
- goto out;
+ /* Coredumps can quickly deplete all memory reserves */
+ if (current->flags & PF_DUMPCORE)
+ goto out;
+ /* The OOM killer will not help higher order allocs */
+ if (order > PAGE_ALLOC_COSTLY_ORDER)
+ goto out;
+ /*
+ * We have already exhausted all our reclaim opportunities without any
+ * success so it is time to admit defeat. We will skip the OOM killer
+ * because it is very likely that the caller has a more reasonable
+ * fallback than shooting a random task.
+ *
+ * The OOM killer may not free memory on a specific node.
+ */
+ if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
+ goto out;
+ /* The OOM killer does not needlessly kill tasks for lowmem */
+ if (ac->highest_zoneidx < ZONE_NORMAL)
+ goto out;
+ if (pm_suspended_storage())
+ goto out;
+ /*
+ * XXX: GFP_NOFS allocations should rather fail than rely on
+ * other request to make a forward progress.
+ * We are in an unfortunate situation where out_of_memory cannot
+ * do much for this context but let's try it to at least get
+ * access to memory reserved if the current task is killed (see
+ * out_of_memory). Once filesystems are ready to handle allocation
+ * failures more gracefully we should just bail out here.
+ */
+
+ /* Exhausted what can be done so it's blame time */
+ if (out_of_memory(&oc) ||
+ WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
+ *did_some_progress = 1;
+
/*
- * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
- * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
- * The caller should handle page allocation failure by itself if
- * it specifies __GFP_THISNODE.
- * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
+ * Help non-failing allocations by giving them access to memory
+ * reserves
*/
- if (gfp_mask & __GFP_THISNODE)
- goto out;
+ if (gfp_mask & __GFP_NOFAIL)
+ page = __alloc_pages_cpuset_fallback(gfp_mask, order,
+ ALLOC_NO_WATERMARKS, ac);
}
- /* Exhausted what can be done so it's blamo time */
- out_of_memory(zonelist, gfp_mask, order, nodemask, false);
-
out:
- clear_zonelist_oom(zonelist, gfp_mask);
+ mutex_unlock(&oom_lock);
return page;
}
+/*
+ * Maximum number of compaction retries with a progress before OOM
+ * killer is consider as the only way to move forward.
+ */
+#define MAX_COMPACT_RETRIES 16
+
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
- struct zonelist *zonelist, enum zone_type high_zoneidx,
- nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
- int migratetype, bool sync_migration,
- bool *contended_compaction, bool *deferred_compaction,
- unsigned long *did_some_progress)
+ unsigned int alloc_flags, const struct alloc_context *ac,
+ enum compact_priority prio, enum compact_result *compact_result)
{
+ struct page *page = NULL;
+ unsigned long pflags;
+ unsigned int noreclaim_flag;
+
if (!order)
return NULL;
- if (compaction_deferred(preferred_zone, order)) {
- *deferred_compaction = true;
+ psi_memstall_enter(&pflags);
+ delayacct_compact_start();
+ noreclaim_flag = memalloc_noreclaim_save();
+
+ *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
+ prio, &page);
+
+ memalloc_noreclaim_restore(noreclaim_flag);
+ psi_memstall_leave(&pflags);
+ delayacct_compact_end();
+
+ if (*compact_result == COMPACT_SKIPPED)
return NULL;
+ /*
+ * At least in one zone compaction wasn't deferred or skipped, so let's
+ * count a compaction stall
+ */
+ count_vm_event(COMPACTSTALL);
+
+ /* Prep a captured page if available */
+ if (page)
+ prep_new_page(page, order, gfp_mask, alloc_flags);
+
+ /* Try get a page from the freelist if available */
+ if (!page)
+ page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
+
+ if (page) {
+ struct zone *zone = page_zone(page);
+
+ zone->compact_blockskip_flush = false;
+ compaction_defer_reset(zone, order, true);
+ count_vm_event(COMPACTSUCCESS);
+ return page;
}
- current->flags |= PF_MEMALLOC;
- *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
- nodemask, sync_migration,
- contended_compaction);
- current->flags &= ~PF_MEMALLOC;
+ /*
+ * It's bad if compaction run occurs and fails. The most likely reason
+ * is that pages exist, but not enough to satisfy watermarks.
+ */
+ count_vm_event(COMPACTFAIL);
- if (*did_some_progress != COMPACT_SKIPPED) {
- struct page *page;
+ cond_resched();
+
+ return NULL;
+}
- /* Page migration frees to the PCP lists but we want merging */
- drain_pages(get_cpu());
- put_cpu();
+static inline bool
+should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
+ enum compact_result compact_result,
+ enum compact_priority *compact_priority,
+ int *compaction_retries)
+{
+ int max_retries = MAX_COMPACT_RETRIES;
+ int min_priority;
+ bool ret = false;
+ int retries = *compaction_retries;
+ enum compact_priority priority = *compact_priority;
- page = get_page_from_freelist(gfp_mask, nodemask,
- order, zonelist, high_zoneidx,
- alloc_flags & ~ALLOC_NO_WATERMARKS,
- preferred_zone, migratetype);
- if (page) {
- preferred_zone->compact_blockskip_flush = false;
- preferred_zone->compact_considered = 0;
- preferred_zone->compact_defer_shift = 0;
- if (order >= preferred_zone->compact_order_failed)
- preferred_zone->compact_order_failed = order + 1;
- count_vm_event(COMPACTSUCCESS);
- return page;
- }
+ if (!order)
+ return false;
- /*
- * It's bad if compaction run occurs and fails.
- * The most likely reason is that pages exist,
- * but not enough to satisfy watermarks.
- */
- count_vm_event(COMPACTFAIL);
+ if (fatal_signal_pending(current))
+ return false;
+
+ /*
+ * Compaction was skipped due to a lack of free order-0
+ * migration targets. Continue if reclaim can help.
+ */
+ if (compact_result == COMPACT_SKIPPED) {
+ ret = compaction_zonelist_suitable(ac, order, alloc_flags);
+ goto out;
+ }
+ /*
+ * Compaction managed to coalesce some page blocks, but the
+ * allocation failed presumably due to a race. Retry some.
+ */
+ if (compact_result == COMPACT_SUCCESS) {
/*
- * As async compaction considers a subset of pageblocks, only
- * defer if the failure was a sync compaction failure.
+ * !costly requests are much more important than
+ * __GFP_RETRY_MAYFAIL costly ones because they are de
+ * facto nofail and invoke OOM killer to move on while
+ * costly can fail and users are ready to cope with
+ * that. 1/4 retries is rather arbitrary but we would
+ * need much more detailed feedback from compaction to
+ * make a better decision.
*/
- if (sync_migration)
- defer_compaction(preferred_zone, order);
+ if (order > PAGE_ALLOC_COSTLY_ORDER)
+ max_retries /= 4;
- cond_resched();
+ if (++(*compaction_retries) <= max_retries) {
+ ret = true;
+ goto out;
+ }
}
- return NULL;
+ /*
+ * Compaction failed. Retry with increasing priority.
+ */
+ min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
+ MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
+
+ if (*compact_priority > min_priority) {
+ (*compact_priority)--;
+ *compaction_retries = 0;
+ ret = true;
+ }
+out:
+ trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
+ return ret;
}
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
- struct zonelist *zonelist, enum zone_type high_zoneidx,
- nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
- int migratetype, bool sync_migration,
- bool *contended_compaction, bool *deferred_compaction,
- unsigned long *did_some_progress)
+ unsigned int alloc_flags, const struct alloc_context *ac,
+ enum compact_priority prio, enum compact_result *compact_result)
{
+ *compact_result = COMPACT_SKIPPED;
return NULL;
}
+
+static inline bool
+should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
+ enum compact_result compact_result,
+ enum compact_priority *compact_priority,
+ int *compaction_retries)
+{
+ struct zone *zone;
+ struct zoneref *z;
+
+ if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
+ return false;
+
+ /*
+ * There are setups with compaction disabled which would prefer to loop
+ * inside the allocator rather than hit the oom killer prematurely.
+ * Let's give them a good hope and keep retrying while the order-0
+ * watermarks are OK.
+ */
+ for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
+ ac->highest_zoneidx, ac->nodemask) {
+ if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
+ ac->highest_zoneidx, alloc_flags))
+ return true;
+ }
+ return false;
+}
#endif /* CONFIG_COMPACTION */
+#ifdef CONFIG_LOCKDEP
+static struct lockdep_map __fs_reclaim_map =
+ STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
+
+static bool __need_reclaim(gfp_t gfp_mask)
+{
+ /* no reclaim without waiting on it */
+ if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
+ return false;
+
+ /* this guy won't enter reclaim */
+ if (current->flags & PF_MEMALLOC)
+ return false;
+
+ if (gfp_mask & __GFP_NOLOCKDEP)
+ return false;
+
+ return true;
+}
+
+void __fs_reclaim_acquire(unsigned long ip)
+{
+ lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
+}
+
+void __fs_reclaim_release(unsigned long ip)
+{
+ lock_release(&__fs_reclaim_map, ip);
+}
+
+void fs_reclaim_acquire(gfp_t gfp_mask)
+{
+ gfp_mask = current_gfp_context(gfp_mask);
+
+ if (__need_reclaim(gfp_mask)) {
+ if (gfp_mask & __GFP_FS)
+ __fs_reclaim_acquire(_RET_IP_);
+
+#ifdef CONFIG_MMU_NOTIFIER
+ lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
+ lock_map_release(&__mmu_notifier_invalidate_range_start_map);
+#endif
+
+ }
+}
+EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
+
+void fs_reclaim_release(gfp_t gfp_mask)
+{
+ gfp_mask = current_gfp_context(gfp_mask);
+
+ if (__need_reclaim(gfp_mask)) {
+ if (gfp_mask & __GFP_FS)
+ __fs_reclaim_release(_RET_IP_);
+ }
+}
+EXPORT_SYMBOL_GPL(fs_reclaim_release);
+#endif
+
+/*
+ * Zonelists may change due to hotplug during allocation. Detect when zonelists
+ * have been rebuilt so allocation retries. Reader side does not lock and
+ * retries the allocation if zonelist changes. Writer side is protected by the
+ * embedded spin_lock.
+ */
+static DEFINE_SEQLOCK(zonelist_update_seq);
+
+static unsigned int zonelist_iter_begin(void)
+{
+ if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
+ return read_seqbegin(&zonelist_update_seq);
+
+ return 0;
+}
+
+static unsigned int check_retry_zonelist(unsigned int seq)
+{
+ if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
+ return read_seqretry(&zonelist_update_seq, seq);
+
+ return seq;
+}
+
/* Perform direct synchronous page reclaim */
-static int
-__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
- nodemask_t *nodemask)
+static unsigned long
+__perform_reclaim(gfp_t gfp_mask, unsigned int order,
+ const struct alloc_context *ac)
{
- struct reclaim_state reclaim_state;
- int progress;
+ unsigned int noreclaim_flag;
+ unsigned long progress;
cond_resched();
/* We now go into synchronous reclaim */
cpuset_memory_pressure_bump();
- current->flags |= PF_MEMALLOC;
- lockdep_set_current_reclaim_state(gfp_mask);
- reclaim_state.reclaimed_slab = 0;
- current->reclaim_state = &reclaim_state;
+ fs_reclaim_acquire(gfp_mask);
+ noreclaim_flag = memalloc_noreclaim_save();
- progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
+ progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
+ ac->nodemask);
- current->reclaim_state = NULL;
- lockdep_clear_current_reclaim_state();
- current->flags &= ~PF_MEMALLOC;
+ memalloc_noreclaim_restore(noreclaim_flag);
+ fs_reclaim_release(gfp_mask);
cond_resched();
@@ -2262,508 +4388,993 @@ __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
- struct zonelist *zonelist, enum zone_type high_zoneidx,
- nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
- int migratetype, unsigned long *did_some_progress)
+ unsigned int alloc_flags, const struct alloc_context *ac,
+ unsigned long *did_some_progress)
{
struct page *page = NULL;
+ unsigned long pflags;
bool drained = false;
- *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
- nodemask);
+ psi_memstall_enter(&pflags);
+ *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
if (unlikely(!(*did_some_progress)))
- return NULL;
-
- /* After successful reclaim, reconsider all zones for allocation */
- if (IS_ENABLED(CONFIG_NUMA))
- zlc_clear_zones_full(zonelist);
+ goto out;
retry:
- page = get_page_from_freelist(gfp_mask, nodemask, order,
- zonelist, high_zoneidx,
- alloc_flags & ~ALLOC_NO_WATERMARKS,
- preferred_zone, migratetype);
+ page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
/*
* If an allocation failed after direct reclaim, it could be because
- * pages are pinned on the per-cpu lists. Drain them and try again
+ * pages are pinned on the per-cpu lists or in high alloc reserves.
+ * Shrink them and try again
*/
if (!page && !drained) {
- drain_all_pages();
+ unreserve_highatomic_pageblock(ac, false);
+ drain_all_pages(NULL);
drained = true;
goto retry;
}
+out:
+ psi_memstall_leave(&pflags);
return page;
}
-/*
- * This is called in the allocator slow-path if the allocation request is of
- * sufficient urgency to ignore watermarks and take other desperate measures
- */
-static inline struct page *
-__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
- struct zonelist *zonelist, enum zone_type high_zoneidx,
- nodemask_t *nodemask, struct zone *preferred_zone,
- int migratetype)
-{
- struct page *page;
-
- do {
- page = get_page_from_freelist(gfp_mask, nodemask, order,
- zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
- preferred_zone, migratetype);
-
- if (!page && gfp_mask & __GFP_NOFAIL)
- wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
- } while (!page && (gfp_mask & __GFP_NOFAIL));
-
- return page;
-}
-
-static inline
-void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
- enum zone_type high_zoneidx,
- enum zone_type classzone_idx)
+static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
+ const struct alloc_context *ac)
{
struct zoneref *z;
struct zone *zone;
+ pg_data_t *last_pgdat = NULL;
+ enum zone_type highest_zoneidx = ac->highest_zoneidx;
+ unsigned int reclaim_order;
+
+ if (defrag_mode)
+ reclaim_order = max(order, pageblock_order);
+ else
+ reclaim_order = order;
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
- wakeup_kswapd(zone, order, classzone_idx);
+ for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
+ ac->nodemask) {
+ if (!managed_zone(zone))
+ continue;
+ if (last_pgdat == zone->zone_pgdat)
+ continue;
+ wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
+ last_pgdat = zone->zone_pgdat;
+ }
}
-static inline int
-gfp_to_alloc_flags(gfp_t gfp_mask)
+static inline unsigned int
+gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
{
- int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
- const gfp_t wait = gfp_mask & __GFP_WAIT;
+ unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
- /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
- BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
+ /*
+ * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
+ * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
+ * to save two branches.
+ */
+ BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
+ BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
/*
* The caller may dip into page reserves a bit more if the caller
* cannot run direct reclaim, or if the caller has realtime scheduling
* policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
- * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
+ * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
*/
- alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
+ alloc_flags |= (__force int)
+ (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
- if (!wait) {
+ if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
/*
- * Not worth trying to allocate harder for
- * __GFP_NOMEMALLOC even if it can't schedule.
+ * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
+ * if it can't schedule.
*/
- if (!(gfp_mask & __GFP_NOMEMALLOC))
- alloc_flags |= ALLOC_HARDER;
+ if (!(gfp_mask & __GFP_NOMEMALLOC)) {
+ alloc_flags |= ALLOC_NON_BLOCK;
+
+ if (order > 0 && (alloc_flags & ALLOC_MIN_RESERVE))
+ alloc_flags |= ALLOC_HIGHATOMIC;
+ }
+
/*
- * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
- * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
+ * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
+ * GFP_ATOMIC) rather than fail, see the comment for
+ * cpuset_current_node_allowed().
*/
- alloc_flags &= ~ALLOC_CPUSET;
- } else if (unlikely(rt_task(current)) && !in_interrupt())
- alloc_flags |= ALLOC_HARDER;
-
- if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
- if (gfp_mask & __GFP_MEMALLOC)
- alloc_flags |= ALLOC_NO_WATERMARKS;
- else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
- alloc_flags |= ALLOC_NO_WATERMARKS;
- else if (!in_interrupt() &&
- ((current->flags & PF_MEMALLOC) ||
- unlikely(test_thread_flag(TIF_MEMDIE))))
- alloc_flags |= ALLOC_NO_WATERMARKS;
- }
-#ifdef CONFIG_CMA
- if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
- alloc_flags |= ALLOC_CMA;
-#endif
+ if (alloc_flags & ALLOC_MIN_RESERVE)
+ alloc_flags &= ~ALLOC_CPUSET;
+ } else if (unlikely(rt_or_dl_task(current)) && in_task())
+ alloc_flags |= ALLOC_MIN_RESERVE;
+
+ alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
+
+ if (defrag_mode)
+ alloc_flags |= ALLOC_NOFRAGMENT;
+
return alloc_flags;
}
+static bool oom_reserves_allowed(struct task_struct *tsk)
+{
+ if (!tsk_is_oom_victim(tsk))
+ return false;
+
+ /*
+ * !MMU doesn't have oom reaper so give access to memory reserves
+ * only to the thread with TIF_MEMDIE set
+ */
+ if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
+ return false;
+
+ return true;
+}
+
+/*
+ * Distinguish requests which really need access to full memory
+ * reserves from oom victims which can live with a portion of it
+ */
+static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
+{
+ if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
+ return 0;
+ if (gfp_mask & __GFP_MEMALLOC)
+ return ALLOC_NO_WATERMARKS;
+ if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
+ return ALLOC_NO_WATERMARKS;
+ if (!in_interrupt()) {
+ if (current->flags & PF_MEMALLOC)
+ return ALLOC_NO_WATERMARKS;
+ else if (oom_reserves_allowed(current))
+ return ALLOC_OOM;
+ }
+
+ return 0;
+}
+
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
- return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
+ return !!__gfp_pfmemalloc_flags(gfp_mask);
+}
+
+/*
+ * Checks whether it makes sense to retry the reclaim to make a forward progress
+ * for the given allocation request.
+ *
+ * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
+ * without success, or when we couldn't even meet the watermark if we
+ * reclaimed all remaining pages on the LRU lists.
+ *
+ * Returns true if a retry is viable or false to enter the oom path.
+ */
+static inline bool
+should_reclaim_retry(gfp_t gfp_mask, unsigned order,
+ struct alloc_context *ac, int alloc_flags,
+ bool did_some_progress, int *no_progress_loops)
+{
+ struct zone *zone;
+ struct zoneref *z;
+ bool ret = false;
+
+ /*
+ * Costly allocations might have made a progress but this doesn't mean
+ * their order will become available due to high fragmentation so
+ * always increment the no progress counter for them
+ */
+ if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
+ *no_progress_loops = 0;
+ else
+ (*no_progress_loops)++;
+
+ if (*no_progress_loops > MAX_RECLAIM_RETRIES)
+ goto out;
+
+
+ /*
+ * Keep reclaiming pages while there is a chance this will lead
+ * somewhere. If none of the target zones can satisfy our allocation
+ * request even if all reclaimable pages are considered then we are
+ * screwed and have to go OOM.
+ */
+ for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
+ ac->highest_zoneidx, ac->nodemask) {
+ unsigned long available;
+ unsigned long reclaimable;
+ unsigned long min_wmark = min_wmark_pages(zone);
+ bool wmark;
+
+ if (cpusets_enabled() &&
+ (alloc_flags & ALLOC_CPUSET) &&
+ !__cpuset_zone_allowed(zone, gfp_mask))
+ continue;
+
+ available = reclaimable = zone_reclaimable_pages(zone);
+ available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
+
+ /*
+ * Would the allocation succeed if we reclaimed all
+ * reclaimable pages?
+ */
+ wmark = __zone_watermark_ok(zone, order, min_wmark,
+ ac->highest_zoneidx, alloc_flags, available);
+ trace_reclaim_retry_zone(z, order, reclaimable,
+ available, min_wmark, *no_progress_loops, wmark);
+ if (wmark) {
+ ret = true;
+ break;
+ }
+ }
+
+ /*
+ * Memory allocation/reclaim might be called from a WQ context and the
+ * current implementation of the WQ concurrency control doesn't
+ * recognize that a particular WQ is congested if the worker thread is
+ * looping without ever sleeping. Therefore we have to do a short sleep
+ * here rather than calling cond_resched().
+ */
+ if (current->flags & PF_WQ_WORKER)
+ schedule_timeout_uninterruptible(1);
+ else
+ cond_resched();
+out:
+ /* Before OOM, exhaust highatomic_reserve */
+ if (!ret)
+ return unreserve_highatomic_pageblock(ac, true);
+
+ return ret;
+}
+
+static inline bool
+check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
+{
+ /*
+ * It's possible that cpuset's mems_allowed and the nodemask from
+ * mempolicy don't intersect. This should be normally dealt with by
+ * policy_nodemask(), but it's possible to race with cpuset update in
+ * such a way the check therein was true, and then it became false
+ * before we got our cpuset_mems_cookie here.
+ * This assumes that for all allocations, ac->nodemask can come only
+ * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
+ * when it does not intersect with the cpuset restrictions) or the
+ * caller can deal with a violated nodemask.
+ */
+ if (cpusets_enabled() && ac->nodemask &&
+ !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
+ ac->nodemask = NULL;
+ return true;
+ }
+
+ /*
+ * When updating a task's mems_allowed or mempolicy nodemask, it is
+ * possible to race with parallel threads in such a way that our
+ * allocation can fail while the mask is being updated. If we are about
+ * to fail, check if the cpuset changed during allocation and if so,
+ * retry.
+ */
+ if (read_mems_allowed_retry(cpuset_mems_cookie))
+ return true;
+
+ return false;
}
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
- struct zonelist *zonelist, enum zone_type high_zoneidx,
- nodemask_t *nodemask, struct zone *preferred_zone,
- int migratetype)
+ struct alloc_context *ac)
{
- const gfp_t wait = gfp_mask & __GFP_WAIT;
+ bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
+ bool can_compact = gfp_compaction_allowed(gfp_mask);
+ bool nofail = gfp_mask & __GFP_NOFAIL;
+ const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
struct page *page = NULL;
- int alloc_flags;
- unsigned long pages_reclaimed = 0;
+ unsigned int alloc_flags;
unsigned long did_some_progress;
- bool sync_migration = false;
- bool deferred_compaction = false;
- bool contended_compaction = false;
+ enum compact_priority compact_priority;
+ enum compact_result compact_result;
+ int compaction_retries;
+ int no_progress_loops;
+ unsigned int cpuset_mems_cookie;
+ unsigned int zonelist_iter_cookie;
+ int reserve_flags;
+
+ if (unlikely(nofail)) {
+ /*
+ * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
+ * otherwise, we may result in lockup.
+ */
+ WARN_ON_ONCE(!can_direct_reclaim);
+ /*
+ * PF_MEMALLOC request from this context is rather bizarre
+ * because we cannot reclaim anything and only can loop waiting
+ * for somebody to do a work for us.
+ */
+ WARN_ON_ONCE(current->flags & PF_MEMALLOC);
+ }
+
+restart:
+ compaction_retries = 0;
+ no_progress_loops = 0;
+ compact_result = COMPACT_SKIPPED;
+ compact_priority = DEF_COMPACT_PRIORITY;
+ cpuset_mems_cookie = read_mems_allowed_begin();
+ zonelist_iter_cookie = zonelist_iter_begin();
/*
- * In the slowpath, we sanity check order to avoid ever trying to
- * reclaim >= MAX_ORDER areas which will never succeed. Callers may
- * be using allocators in order of preference for an area that is
- * too large.
+ * The fast path uses conservative alloc_flags to succeed only until
+ * kswapd needs to be woken up, and to avoid the cost of setting up
+ * alloc_flags precisely. So we do that now.
*/
- if (order >= MAX_ORDER) {
- WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
- return NULL;
- }
+ alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
/*
- * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
- * __GFP_NOWARN set) should not cause reclaim since the subsystem
- * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
- * using a larger set of nodes after it has established that the
- * allowed per node queues are empty and that nodes are
- * over allocated.
- */
- if (IS_ENABLED(CONFIG_NUMA) &&
- (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
+ * We need to recalculate the starting point for the zonelist iterator
+ * because we might have used different nodemask in the fast path, or
+ * there was a cpuset modification and we are retrying - otherwise we
+ * could end up iterating over non-eligible zones endlessly.
+ */
+ ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
+ ac->highest_zoneidx, ac->nodemask);
+ if (!zonelist_zone(ac->preferred_zoneref))
goto nopage;
-restart:
- if (!(gfp_mask & __GFP_NO_KSWAPD))
- wake_all_kswapd(order, zonelist, high_zoneidx,
- zone_idx(preferred_zone));
-
/*
- * OK, we're below the kswapd watermark and have kicked background
- * reclaim. Now things get more complex, so set up alloc_flags according
- * to how we want to proceed.
+ * Check for insane configurations where the cpuset doesn't contain
+ * any suitable zone to satisfy the request - e.g. non-movable
+ * GFP_HIGHUSER allocations from MOVABLE nodes only.
*/
- alloc_flags = gfp_to_alloc_flags(gfp_mask);
+ if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
+ struct zoneref *z = first_zones_zonelist(ac->zonelist,
+ ac->highest_zoneidx,
+ &cpuset_current_mems_allowed);
+ if (!zonelist_zone(z))
+ goto nopage;
+ }
+
+ if (alloc_flags & ALLOC_KSWAPD)
+ wake_all_kswapds(order, gfp_mask, ac);
/*
- * Find the true preferred zone if the allocation is unconstrained by
- * cpusets.
- */
- if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
- first_zones_zonelist(zonelist, high_zoneidx, NULL,
- &preferred_zone);
-
-rebalance:
- /* This is the last chance, in general, before the goto nopage. */
- page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
- high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
- preferred_zone, migratetype);
+ * The adjusted alloc_flags might result in immediate success, so try
+ * that first
+ */
+ page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
if (page)
goto got_pg;
- /* Allocate without watermarks if the context allows */
- if (alloc_flags & ALLOC_NO_WATERMARKS) {
+ /*
+ * For costly allocations, try direct compaction first, as it's likely
+ * that we have enough base pages and don't need to reclaim. For non-
+ * movable high-order allocations, do that as well, as compaction will
+ * try prevent permanent fragmentation by migrating from blocks of the
+ * same migratetype.
+ * Don't try this for allocations that are allowed to ignore
+ * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
+ */
+ if (can_direct_reclaim && can_compact &&
+ (costly_order ||
+ (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
+ && !gfp_pfmemalloc_allowed(gfp_mask)) {
+ page = __alloc_pages_direct_compact(gfp_mask, order,
+ alloc_flags, ac,
+ INIT_COMPACT_PRIORITY,
+ &compact_result);
+ if (page)
+ goto got_pg;
+
/*
- * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
- * the allocation is high priority and these type of
- * allocations are system rather than user orientated
+ * Checks for costly allocations with __GFP_NORETRY, which
+ * includes some THP page fault allocations
*/
- zonelist = node_zonelist(numa_node_id(), gfp_mask);
+ if (costly_order && (gfp_mask & __GFP_NORETRY)) {
+ /*
+ * If allocating entire pageblock(s) and compaction
+ * failed because all zones are below low watermarks
+ * or is prohibited because it recently failed at this
+ * order, fail immediately unless the allocator has
+ * requested compaction and reclaim retry.
+ *
+ * Reclaim is
+ * - potentially very expensive because zones are far
+ * below their low watermarks or this is part of very
+ * bursty high order allocations,
+ * - not guaranteed to help because isolate_freepages()
+ * may not iterate over freed pages as part of its
+ * linear scan, and
+ * - unlikely to make entire pageblocks free on its
+ * own.
+ */
+ if (compact_result == COMPACT_SKIPPED ||
+ compact_result == COMPACT_DEFERRED)
+ goto nopage;
- page = __alloc_pages_high_priority(gfp_mask, order,
- zonelist, high_zoneidx, nodemask,
- preferred_zone, migratetype);
- if (page) {
- goto got_pg;
+ /*
+ * Looks like reclaim/compaction is worth trying, but
+ * sync compaction could be very expensive, so keep
+ * using async compaction.
+ */
+ compact_priority = INIT_COMPACT_PRIORITY;
}
}
- /* Atomic allocations - we can't balance anything */
- if (!wait)
+retry:
+ /*
+ * Deal with possible cpuset update races or zonelist updates to avoid
+ * infinite retries.
+ */
+ if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
+ check_retry_zonelist(zonelist_iter_cookie))
+ goto restart;
+
+ /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
+ if (alloc_flags & ALLOC_KSWAPD)
+ wake_all_kswapds(order, gfp_mask, ac);
+
+ reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
+ if (reserve_flags)
+ alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
+ (alloc_flags & ALLOC_KSWAPD);
+
+ /*
+ * Reset the nodemask and zonelist iterators if memory policies can be
+ * ignored. These allocations are high priority and system rather than
+ * user oriented.
+ */
+ if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
+ ac->nodemask = NULL;
+ ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
+ ac->highest_zoneidx, ac->nodemask);
+ }
+
+ /* Attempt with potentially adjusted zonelist and alloc_flags */
+ page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
+ if (page)
+ goto got_pg;
+
+ /* Caller is not willing to reclaim, we can't balance anything */
+ if (!can_direct_reclaim)
goto nopage;
/* Avoid recursion of direct reclaim */
if (current->flags & PF_MEMALLOC)
goto nopage;
- /* Avoid allocations with no watermarks from looping endlessly */
- if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
- goto nopage;
+ /* Try direct reclaim and then allocating */
+ page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
+ &did_some_progress);
+ if (page)
+ goto got_pg;
- /*
- * Try direct compaction. The first pass is asynchronous. Subsequent
- * attempts after direct reclaim are synchronous
- */
- page = __alloc_pages_direct_compact(gfp_mask, order,
- zonelist, high_zoneidx,
- nodemask,
- alloc_flags, preferred_zone,
- migratetype, sync_migration,
- &contended_compaction,
- &deferred_compaction,
- &did_some_progress);
+ /* Try direct compaction and then allocating */
+ page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
+ compact_priority, &compact_result);
if (page)
goto got_pg;
- sync_migration = true;
+
+ /* Do not loop if specifically requested */
+ if (gfp_mask & __GFP_NORETRY)
+ goto nopage;
/*
- * If compaction is deferred for high-order allocations, it is because
- * sync compaction recently failed. In this is the case and the caller
- * requested a movable allocation that does not heavily disrupt the
- * system then fail the allocation instead of entering direct reclaim.
+ * Do not retry costly high order allocations unless they are
+ * __GFP_RETRY_MAYFAIL and we can compact
*/
- if ((deferred_compaction || contended_compaction) &&
- (gfp_mask & __GFP_NO_KSWAPD))
+ if (costly_order && (!can_compact ||
+ !(gfp_mask & __GFP_RETRY_MAYFAIL)))
goto nopage;
- /* Try direct reclaim and then allocating */
- page = __alloc_pages_direct_reclaim(gfp_mask, order,
- zonelist, high_zoneidx,
- nodemask,
- alloc_flags, preferred_zone,
- migratetype, &did_some_progress);
- if (page)
- goto got_pg;
+ if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
+ did_some_progress > 0, &no_progress_loops))
+ goto retry;
/*
- * If we failed to make any progress reclaiming, then we are
- * running out of options and have to consider going OOM
+ * It doesn't make any sense to retry for the compaction if the order-0
+ * reclaim is not able to make any progress because the current
+ * implementation of the compaction depends on the sufficient amount
+ * of free memory (see __compaction_suitable)
*/
- if (!did_some_progress) {
- if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
- if (oom_killer_disabled)
- goto nopage;
- /* Coredumps can quickly deplete all memory reserves */
- if ((current->flags & PF_DUMPCORE) &&
- !(gfp_mask & __GFP_NOFAIL))
- goto nopage;
- page = __alloc_pages_may_oom(gfp_mask, order,
- zonelist, high_zoneidx,
- nodemask, preferred_zone,
- migratetype);
- if (page)
- goto got_pg;
+ if (did_some_progress > 0 && can_compact &&
+ should_compact_retry(ac, order, alloc_flags,
+ compact_result, &compact_priority,
+ &compaction_retries))
+ goto retry;
- if (!(gfp_mask & __GFP_NOFAIL)) {
- /*
- * The oom killer is not called for high-order
- * allocations that may fail, so if no progress
- * is being made, there are no other options and
- * retrying is unlikely to help.
- */
- if (order > PAGE_ALLOC_COSTLY_ORDER)
- goto nopage;
- /*
- * The oom killer is not called for lowmem
- * allocations to prevent needlessly killing
- * innocent tasks.
- */
- if (high_zoneidx < ZONE_NORMAL)
- goto nopage;
- }
+ /* Reclaim/compaction failed to prevent the fallback */
+ if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
+ alloc_flags &= ~ALLOC_NOFRAGMENT;
+ goto retry;
+ }
- goto restart;
- }
+ /*
+ * Deal with possible cpuset update races or zonelist updates to avoid
+ * a unnecessary OOM kill.
+ */
+ if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
+ check_retry_zonelist(zonelist_iter_cookie))
+ goto restart;
+
+ /* Reclaim has failed us, start killing things */
+ page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
+ if (page)
+ goto got_pg;
+
+ /* Avoid allocations with no watermarks from looping endlessly */
+ if (tsk_is_oom_victim(current) &&
+ (alloc_flags & ALLOC_OOM ||
+ (gfp_mask & __GFP_NOMEMALLOC)))
+ goto nopage;
+
+ /* Retry as long as the OOM killer is making progress */
+ if (did_some_progress) {
+ no_progress_loops = 0;
+ goto retry;
}
- /* Check if we should retry the allocation */
- pages_reclaimed += did_some_progress;
- if (should_alloc_retry(gfp_mask, order, did_some_progress,
- pages_reclaimed)) {
- /* Wait for some write requests to complete then retry */
- wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
- goto rebalance;
- } else {
+nopage:
+ /*
+ * Deal with possible cpuset update races or zonelist updates to avoid
+ * a unnecessary OOM kill.
+ */
+ if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
+ check_retry_zonelist(zonelist_iter_cookie))
+ goto restart;
+
+ /*
+ * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
+ * we always retry
+ */
+ if (unlikely(nofail)) {
/*
- * High-order allocations do not necessarily loop after
- * direct reclaim and reclaim/compaction depends on compaction
- * being called after reclaim so call directly if necessary
+ * Lacking direct_reclaim we can't do anything to reclaim memory,
+ * we disregard these unreasonable nofail requests and still
+ * return NULL
*/
- page = __alloc_pages_direct_compact(gfp_mask, order,
- zonelist, high_zoneidx,
- nodemask,
- alloc_flags, preferred_zone,
- migratetype, sync_migration,
- &contended_compaction,
- &deferred_compaction,
- &did_some_progress);
+ if (!can_direct_reclaim)
+ goto fail;
+
+ /*
+ * Help non-failing allocations by giving some access to memory
+ * reserves normally used for high priority non-blocking
+ * allocations but do not use ALLOC_NO_WATERMARKS because this
+ * could deplete whole memory reserves which would just make
+ * the situation worse.
+ */
+ page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
if (page)
goto got_pg;
- }
-nopage:
- warn_alloc_failed(gfp_mask, order, NULL);
- return page;
+ cond_resched();
+ goto retry;
+ }
+fail:
+ warn_alloc(gfp_mask, ac->nodemask,
+ "page allocation failure: order:%u", order);
got_pg:
- if (kmemcheck_enabled)
- kmemcheck_pagealloc_alloc(page, order, gfp_mask);
-
return page;
}
-/*
- * This is the 'heart' of the zoned buddy allocator.
- */
-struct page *
-__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
- struct zonelist *zonelist, nodemask_t *nodemask)
+static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
+ int preferred_nid, nodemask_t *nodemask,
+ struct alloc_context *ac, gfp_t *alloc_gfp,
+ unsigned int *alloc_flags)
{
- enum zone_type high_zoneidx = gfp_zone(gfp_mask);
- struct zone *preferred_zone;
- struct page *page = NULL;
- int migratetype = allocflags_to_migratetype(gfp_mask);
- unsigned int cpuset_mems_cookie;
- int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
- struct mem_cgroup *memcg = NULL;
+ ac->highest_zoneidx = gfp_zone(gfp_mask);
+ ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
+ ac->nodemask = nodemask;
+ ac->migratetype = gfp_migratetype(gfp_mask);
+
+ if (cpusets_enabled()) {
+ *alloc_gfp |= __GFP_HARDWALL;
+ /*
+ * When we are in the interrupt context, it is irrelevant
+ * to the current task context. It means that any node ok.
+ */
+ if (in_task() && !ac->nodemask)
+ ac->nodemask = &cpuset_current_mems_allowed;
+ else
+ *alloc_flags |= ALLOC_CPUSET;
+ }
- gfp_mask &= gfp_allowed_mask;
+ might_alloc(gfp_mask);
- lockdep_trace_alloc(gfp_mask);
+ /*
+ * Don't invoke should_fail logic, since it may call
+ * get_random_u32() and printk() which need to spin_lock.
+ */
+ if (!(*alloc_flags & ALLOC_TRYLOCK) &&
+ should_fail_alloc_page(gfp_mask, order))
+ return false;
- might_sleep_if(gfp_mask & __GFP_WAIT);
+ *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
- if (should_fail_alloc_page(gfp_mask, order))
- return NULL;
+ /* Dirty zone balancing only done in the fast path */
+ ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
/*
- * Check the zones suitable for the gfp_mask contain at least one
- * valid zone. It's possible to have an empty zonelist as a result
- * of GFP_THISNODE and a memoryless node
+ * The preferred zone is used for statistics but crucially it is
+ * also used as the starting point for the zonelist iterator. It
+ * may get reset for allocations that ignore memory policies.
*/
- if (unlikely(!zonelist->_zonerefs->zone))
- return NULL;
+ ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
+ ac->highest_zoneidx, ac->nodemask);
+
+ return true;
+}
+
+/*
+ * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
+ * @gfp: GFP flags for the allocation
+ * @preferred_nid: The preferred NUMA node ID to allocate from
+ * @nodemask: Set of nodes to allocate from, may be NULL
+ * @nr_pages: The number of pages desired in the array
+ * @page_array: Array to store the pages
+ *
+ * This is a batched version of the page allocator that attempts to allocate
+ * @nr_pages quickly. Pages are added to @page_array.
+ *
+ * Note that only the elements in @page_array that were cleared to %NULL on
+ * entry are populated with newly allocated pages. @nr_pages is the maximum
+ * number of pages that will be stored in the array.
+ *
+ * Returns the number of pages in @page_array, including ones already
+ * allocated on entry. This can be less than the number requested in @nr_pages,
+ * but all empty slots are filled from the beginning. I.e., if all slots in
+ * @page_array were set to %NULL on entry, the slots from 0 to the return value
+ * - 1 will be filled.
+ */
+unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
+ nodemask_t *nodemask, int nr_pages,
+ struct page **page_array)
+{
+ struct page *page;
+ unsigned long UP_flags;
+ struct zone *zone;
+ struct zoneref *z;
+ struct per_cpu_pages *pcp;
+ struct list_head *pcp_list;
+ struct alloc_context ac;
+ gfp_t alloc_gfp;
+ unsigned int alloc_flags = ALLOC_WMARK_LOW;
+ int nr_populated = 0, nr_account = 0;
/*
- * Will only have any effect when __GFP_KMEMCG is set. This is
- * verified in the (always inline) callee
+ * Skip populated array elements to determine if any pages need
+ * to be allocated before disabling IRQs.
*/
- if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
- return NULL;
+ while (nr_populated < nr_pages && page_array[nr_populated])
+ nr_populated++;
-retry_cpuset:
- cpuset_mems_cookie = get_mems_allowed();
+ /* No pages requested? */
+ if (unlikely(nr_pages <= 0))
+ goto out;
- /* The preferred zone is used for statistics later */
- first_zones_zonelist(zonelist, high_zoneidx,
- nodemask ? : &cpuset_current_mems_allowed,
- &preferred_zone);
- if (!preferred_zone)
+ /* Already populated array? */
+ if (unlikely(nr_pages - nr_populated == 0))
goto out;
-#ifdef CONFIG_CMA
- if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
- alloc_flags |= ALLOC_CMA;
+ /* Bulk allocator does not support memcg accounting. */
+ if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
+ goto failed;
+
+ /* Use the single page allocator for one page. */
+ if (nr_pages - nr_populated == 1)
+ goto failed;
+
+#ifdef CONFIG_PAGE_OWNER
+ /*
+ * PAGE_OWNER may recurse into the allocator to allocate space to
+ * save the stack with pagesets.lock held. Releasing/reacquiring
+ * removes much of the performance benefit of bulk allocation so
+ * force the caller to allocate one page at a time as it'll have
+ * similar performance to added complexity to the bulk allocator.
+ */
+ if (static_branch_unlikely(&page_owner_inited))
+ goto failed;
#endif
- /* First allocation attempt */
- page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
- zonelist, high_zoneidx, alloc_flags,
- preferred_zone, migratetype);
- if (unlikely(!page)) {
- /*
- * Runtime PM, block IO and its error handling path
- * can deadlock because I/O on the device might not
- * complete.
- */
- gfp_mask = memalloc_noio_flags(gfp_mask);
- page = __alloc_pages_slowpath(gfp_mask, order,
- zonelist, high_zoneidx, nodemask,
- preferred_zone, migratetype);
- }
- trace_mm_page_alloc(page, order, gfp_mask, migratetype);
+ /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
+ gfp &= gfp_allowed_mask;
+ alloc_gfp = gfp;
+ if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
+ goto out;
+ gfp = alloc_gfp;
+
+ /* Find an allowed local zone that meets the low watermark. */
+ z = ac.preferred_zoneref;
+ for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
+ unsigned long mark;
+
+ if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
+ !__cpuset_zone_allowed(zone, gfp)) {
+ continue;
+ }
+
+ if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
+ zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
+ goto failed;
+ }
+
+ cond_accept_memory(zone, 0, alloc_flags);
+retry_this_zone:
+ mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
+ if (zone_watermark_fast(zone, 0, mark,
+ zonelist_zone_idx(ac.preferred_zoneref),
+ alloc_flags, gfp)) {
+ break;
+ }
+
+ if (cond_accept_memory(zone, 0, alloc_flags))
+ goto retry_this_zone;
+
+ /* Try again if zone has deferred pages */
+ if (deferred_pages_enabled()) {
+ if (_deferred_grow_zone(zone, 0))
+ goto retry_this_zone;
+ }
+ }
-out:
/*
- * When updating a task's mems_allowed, it is possible to race with
- * parallel threads in such a way that an allocation can fail while
- * the mask is being updated. If a page allocation is about to fail,
- * check if the cpuset changed during allocation and if so, retry.
+ * If there are no allowed local zones that meets the watermarks then
+ * try to allocate a single page and reclaim if necessary.
*/
- if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
- goto retry_cpuset;
+ if (unlikely(!zone))
+ goto failed;
- memcg_kmem_commit_charge(page, memcg, order);
+ /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
+ pcp = pcp_spin_trylock(zone->per_cpu_pageset, UP_flags);
+ if (!pcp)
+ goto failed;
- return page;
+ /* Attempt the batch allocation */
+ pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
+ while (nr_populated < nr_pages) {
+
+ /* Skip existing pages */
+ if (page_array[nr_populated]) {
+ nr_populated++;
+ continue;
+ }
+
+ page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
+ pcp, pcp_list);
+ if (unlikely(!page)) {
+ /* Try and allocate at least one page */
+ if (!nr_account) {
+ pcp_spin_unlock(pcp, UP_flags);
+ goto failed;
+ }
+ break;
+ }
+ nr_account++;
+
+ prep_new_page(page, 0, gfp, 0);
+ set_page_refcounted(page);
+ page_array[nr_populated++] = page;
+ }
+
+ pcp_spin_unlock(pcp, UP_flags);
+
+ __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
+ zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
+
+out:
+ return nr_populated;
+
+failed:
+ page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
+ if (page)
+ page_array[nr_populated++] = page;
+ goto out;
}
-EXPORT_SYMBOL(__alloc_pages_nodemask);
+EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
/*
- * Common helper functions.
+ * This is the 'heart' of the zoned buddy allocator.
*/
-unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
+struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
+ int preferred_nid, nodemask_t *nodemask)
{
struct page *page;
+ unsigned int alloc_flags = ALLOC_WMARK_LOW;
+ gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
+ struct alloc_context ac = { };
+
+ /*
+ * There are several places where we assume that the order value is sane
+ * so bail out early if the request is out of bound.
+ */
+ if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
+ return NULL;
+ gfp &= gfp_allowed_mask;
/*
- * __get_free_pages() returns a 32-bit address, which cannot represent
- * a highmem page
+ * Apply scoped allocation constraints. This is mainly about GFP_NOFS
+ * resp. GFP_NOIO which has to be inherited for all allocation requests
+ * from a particular context which has been marked by
+ * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
+ * movable zones are not used during allocation.
*/
- VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
+ gfp = current_gfp_context(gfp);
+ alloc_gfp = gfp;
+ if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
+ &alloc_gfp, &alloc_flags))
+ return NULL;
+
+ /*
+ * Forbid the first pass from falling back to types that fragment
+ * memory until all local zones are considered.
+ */
+ alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
+
+ /* First allocation attempt */
+ page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
+ if (likely(page))
+ goto out;
- page = alloc_pages(gfp_mask, order);
+ alloc_gfp = gfp;
+ ac.spread_dirty_pages = false;
+
+ /*
+ * Restore the original nodemask if it was potentially replaced with
+ * &cpuset_current_mems_allowed to optimize the fast-path attempt.
+ */
+ ac.nodemask = nodemask;
+
+ page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
+
+out:
+ if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
+ unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
+ free_frozen_pages(page, order);
+ page = NULL;
+ }
+
+ trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
+ kmsan_alloc_page(page, order, alloc_gfp);
+
+ return page;
+}
+EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
+
+struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
+ int preferred_nid, nodemask_t *nodemask)
+{
+ struct page *page;
+
+ page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
+ if (page)
+ set_page_refcounted(page);
+ return page;
+}
+EXPORT_SYMBOL(__alloc_pages_noprof);
+
+struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
+ nodemask_t *nodemask)
+{
+ struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
+ preferred_nid, nodemask);
+ return page_rmappable_folio(page);
+}
+EXPORT_SYMBOL(__folio_alloc_noprof);
+
+/*
+ * Common helper functions. Never use with __GFP_HIGHMEM because the returned
+ * address cannot represent highmem pages. Use alloc_pages and then kmap if
+ * you need to access high mem.
+ */
+unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
+{
+ struct page *page;
+
+ page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
if (!page)
return 0;
return (unsigned long) page_address(page);
}
-EXPORT_SYMBOL(__get_free_pages);
+EXPORT_SYMBOL(get_free_pages_noprof);
-unsigned long get_zeroed_page(gfp_t gfp_mask)
+unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
{
- return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
+ return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
}
-EXPORT_SYMBOL(get_zeroed_page);
+EXPORT_SYMBOL(get_zeroed_page_noprof);
-void __free_pages(struct page *page, unsigned int order)
+static void ___free_pages(struct page *page, unsigned int order,
+ fpi_t fpi_flags)
{
- if (put_page_testzero(page)) {
- if (order == 0)
- free_hot_cold_page(page, 0);
- else
- __free_pages_ok(page, order);
+ /* get PageHead before we drop reference */
+ int head = PageHead(page);
+ /* get alloc tag in case the page is released by others */
+ struct alloc_tag *tag = pgalloc_tag_get(page);
+
+ if (put_page_testzero(page))
+ __free_frozen_pages(page, order, fpi_flags);
+ else if (!head) {
+ pgalloc_tag_sub_pages(tag, (1 << order) - 1);
+ while (order-- > 0) {
+ /*
+ * The "tail" pages of this non-compound high-order
+ * page will have no code tags, so to avoid warnings
+ * mark them as empty.
+ */
+ clear_page_tag_ref(page + (1 << order));
+ __free_frozen_pages(page + (1 << order), order,
+ fpi_flags);
+ }
}
}
-EXPORT_SYMBOL(__free_pages);
-
-void free_pages(unsigned long addr, unsigned int order)
+/**
+ * __free_pages - Free pages allocated with alloc_pages().
+ * @page: The page pointer returned from alloc_pages().
+ * @order: The order of the allocation.
+ *
+ * This function can free multi-page allocations that are not compound
+ * pages. It does not check that the @order passed in matches that of
+ * the allocation, so it is easy to leak memory. Freeing more memory
+ * than was allocated will probably emit a warning.
+ *
+ * If the last reference to this page is speculative, it will be released
+ * by put_page() which only frees the first page of a non-compound
+ * allocation. To prevent the remaining pages from being leaked, we free
+ * the subsequent pages here. If you want to use the page's reference
+ * count to decide when to free the allocation, you should allocate a
+ * compound page, and use put_page() instead of __free_pages().
+ *
+ * Context: May be called in interrupt context or while holding a normal
+ * spinlock, but not in NMI context or while holding a raw spinlock.
+ */
+void __free_pages(struct page *page, unsigned int order)
{
- if (addr != 0) {
- VM_BUG_ON(!virt_addr_valid((void *)addr));
- __free_pages(virt_to_page((void *)addr), order);
- }
+ ___free_pages(page, order, FPI_NONE);
}
-
-EXPORT_SYMBOL(free_pages);
+EXPORT_SYMBOL(__free_pages);
/*
- * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
- * pages allocated with __GFP_KMEMCG.
- *
- * Those pages are accounted to a particular memcg, embedded in the
- * corresponding page_cgroup. To avoid adding a hit in the allocator to search
- * for that information only to find out that it is NULL for users who have no
- * interest in that whatsoever, we provide these functions.
- *
- * The caller knows better which flags it relies on.
+ * Can be called while holding raw_spin_lock or from IRQ and NMI for any
+ * page type (not only those that came from alloc_pages_nolock)
*/
-void __free_memcg_kmem_pages(struct page *page, unsigned int order)
+void free_pages_nolock(struct page *page, unsigned int order)
{
- memcg_kmem_uncharge_pages(page, order);
- __free_pages(page, order);
+ ___free_pages(page, order, FPI_TRYLOCK);
}
-void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
+/**
+ * free_pages - Free pages allocated with __get_free_pages().
+ * @addr: The virtual address tied to a page returned from __get_free_pages().
+ * @order: The order of the allocation.
+ *
+ * This function behaves the same as __free_pages(). Use this function
+ * to free pages when you only have a valid virtual address. If you have
+ * the page, call __free_pages() instead.
+ */
+void free_pages(unsigned long addr, unsigned int order)
{
if (addr != 0) {
VM_BUG_ON(!virt_addr_valid((void *)addr));
- __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
+ __free_pages(virt_to_page((void *)addr), order);
}
}
-static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
+EXPORT_SYMBOL(free_pages);
+
+static void *make_alloc_exact(unsigned long addr, unsigned int order,
+ size_t size)
{
if (addr) {
- unsigned long alloc_end = addr + (PAGE_SIZE << order);
- unsigned long used = addr + PAGE_ALIGN(size);
-
- split_page(virt_to_page((void *)addr), order);
- while (used < alloc_end) {
- free_page(used);
- used += PAGE_SIZE;
- }
+ unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
+ struct page *page = virt_to_page((void *)addr);
+ struct page *last = page + nr;
+
+ split_page_owner(page, order, 0);
+ pgalloc_tag_split(page_folio(page), order, 0);
+ split_page_memcg(page, order);
+ while (page < --last)
+ set_page_refcounted(last);
+
+ last = page + (1UL << order);
+ for (page += nr; page < last; page++)
+ __free_pages_ok(page, 0, FPI_TO_TAIL);
}
return (void *)addr;
}
@@ -2771,47 +5382,56 @@ static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
/**
* alloc_pages_exact - allocate an exact number physically-contiguous pages.
* @size: the number of bytes to allocate
- * @gfp_mask: GFP flags for the allocation
+ * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
*
* This function is similar to alloc_pages(), except that it allocates the
* minimum number of pages to satisfy the request. alloc_pages() can only
* allocate memory in power-of-two pages.
*
- * This function is also limited by MAX_ORDER.
+ * This function is also limited by MAX_PAGE_ORDER.
*
* Memory allocated by this function must be released by free_pages_exact().
+ *
+ * Return: pointer to the allocated area or %NULL in case of error.
*/
-void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
+void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
{
unsigned int order = get_order(size);
unsigned long addr;
- addr = __get_free_pages(gfp_mask, order);
+ if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
+ gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
+
+ addr = get_free_pages_noprof(gfp_mask, order);
return make_alloc_exact(addr, order, size);
}
-EXPORT_SYMBOL(alloc_pages_exact);
+EXPORT_SYMBOL(alloc_pages_exact_noprof);
/**
* alloc_pages_exact_nid - allocate an exact number of physically-contiguous
* pages on a node.
* @nid: the preferred node ID where memory should be allocated
* @size: the number of bytes to allocate
- * @gfp_mask: GFP flags for the allocation
+ * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
*
* Like alloc_pages_exact(), but try to allocate on node nid first before falling
* back.
- * Note this is not alloc_pages_exact_node() which allocates on a specific node,
- * but is not exact.
+ *
+ * Return: pointer to the allocated area or %NULL in case of error.
*/
-void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
+void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
{
- unsigned order = get_order(size);
- struct page *p = alloc_pages_node(nid, gfp_mask, order);
+ unsigned int order = get_order(size);
+ struct page *p;
+
+ if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
+ gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
+
+ p = alloc_pages_node_noprof(nid, gfp_mask, order);
if (!p)
return NULL;
return make_alloc_exact((unsigned long)page_address(p), order, size);
}
-EXPORT_SYMBOL(alloc_pages_exact_nid);
/**
* free_pages_exact - release memory allocated via alloc_pages_exact()
@@ -2836,10 +5456,13 @@ EXPORT_SYMBOL(free_pages_exact);
* nr_free_zone_pages - count number of pages beyond high watermark
* @offset: The zone index of the highest zone
*
- * nr_free_zone_pages() counts the number of counts pages which are beyond the
+ * nr_free_zone_pages() counts the number of pages which are beyond the
* high watermark within all zones at or below a given zone index. For each
* zone, the number of pages is calculated as:
- * managed_pages - high_pages
+ *
+ * nr_free_zone_pages = managed_pages - high_pages
+ *
+ * Return: number of pages beyond high watermark.
*/
static unsigned long nr_free_zone_pages(int offset)
{
@@ -2852,7 +5475,7 @@ static unsigned long nr_free_zone_pages(int offset)
struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
for_each_zone_zonelist(zone, z, zonelist, offset) {
- unsigned long size = zone->managed_pages;
+ unsigned long size = zone_managed_pages(zone);
unsigned long high = high_wmark_pages(zone);
if (size > high)
sum += size - high;
@@ -2866,6 +5489,9 @@ static unsigned long nr_free_zone_pages(int offset)
*
* nr_free_buffer_pages() counts the number of pages which are beyond the high
* watermark within ZONE_DMA and ZONE_NORMAL.
+ *
+ * Return: number of pages beyond high watermark within ZONE_DMA and
+ * ZONE_NORMAL.
*/
unsigned long nr_free_buffer_pages(void)
{
@@ -2873,275 +5499,6 @@ unsigned long nr_free_buffer_pages(void)
}
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
-/**
- * nr_free_pagecache_pages - count number of pages beyond high watermark
- *
- * nr_free_pagecache_pages() counts the number of pages which are beyond the
- * high watermark within all zones.
- */
-unsigned long nr_free_pagecache_pages(void)
-{
- return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
-}
-
-static inline void show_node(struct zone *zone)
-{
- if (IS_ENABLED(CONFIG_NUMA))
- printk("Node %d ", zone_to_nid(zone));
-}
-
-void si_meminfo(struct sysinfo *val)
-{
- val->totalram = totalram_pages;
- val->sharedram = 0;
- val->freeram = global_page_state(NR_FREE_PAGES);
- val->bufferram = nr_blockdev_pages();
- val->totalhigh = totalhigh_pages;
- val->freehigh = nr_free_highpages();
- val->mem_unit = PAGE_SIZE;
-}
-
-EXPORT_SYMBOL(si_meminfo);
-
-#ifdef CONFIG_NUMA
-void si_meminfo_node(struct sysinfo *val, int nid)
-{
- int zone_type; /* needs to be signed */
- unsigned long managed_pages = 0;
- pg_data_t *pgdat = NODE_DATA(nid);
-
- for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
- managed_pages += pgdat->node_zones[zone_type].managed_pages;
- val->totalram = managed_pages;
- val->freeram = node_page_state(nid, NR_FREE_PAGES);
-#ifdef CONFIG_HIGHMEM
- val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
- val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
- NR_FREE_PAGES);
-#else
- val->totalhigh = 0;
- val->freehigh = 0;
-#endif
- val->mem_unit = PAGE_SIZE;
-}
-#endif
-
-/*
- * Determine whether the node should be displayed or not, depending on whether
- * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
- */
-bool skip_free_areas_node(unsigned int flags, int nid)
-{
- bool ret = false;
- unsigned int cpuset_mems_cookie;
-
- if (!(flags & SHOW_MEM_FILTER_NODES))
- goto out;
-
- do {
- cpuset_mems_cookie = get_mems_allowed();
- ret = !node_isset(nid, cpuset_current_mems_allowed);
- } while (!put_mems_allowed(cpuset_mems_cookie));
-out:
- return ret;
-}
-
-#define K(x) ((x) << (PAGE_SHIFT-10))
-
-static void show_migration_types(unsigned char type)
-{
- static const char types[MIGRATE_TYPES] = {
- [MIGRATE_UNMOVABLE] = 'U',
- [MIGRATE_RECLAIMABLE] = 'E',
- [MIGRATE_MOVABLE] = 'M',
- [MIGRATE_RESERVE] = 'R',
-#ifdef CONFIG_CMA
- [MIGRATE_CMA] = 'C',
-#endif
-#ifdef CONFIG_MEMORY_ISOLATION
- [MIGRATE_ISOLATE] = 'I',
-#endif
- };
- char tmp[MIGRATE_TYPES + 1];
- char *p = tmp;
- int i;
-
- for (i = 0; i < MIGRATE_TYPES; i++) {
- if (type & (1 << i))
- *p++ = types[i];
- }
-
- *p = '\0';
- printk("(%s) ", tmp);
-}
-
-/*
- * Show free area list (used inside shift_scroll-lock stuff)
- * We also calculate the percentage fragmentation. We do this by counting the
- * memory on each free list with the exception of the first item on the list.
- * Suppresses nodes that are not allowed by current's cpuset if
- * SHOW_MEM_FILTER_NODES is passed.
- */
-void show_free_areas(unsigned int filter)
-{
- int cpu;
- struct zone *zone;
-
- for_each_populated_zone(zone) {
- if (skip_free_areas_node(filter, zone_to_nid(zone)))
- continue;
- show_node(zone);
- printk("%s per-cpu:\n", zone->name);
-
- for_each_online_cpu(cpu) {
- struct per_cpu_pageset *pageset;
-
- pageset = per_cpu_ptr(zone->pageset, cpu);
-
- printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
- cpu, pageset->pcp.high,
- pageset->pcp.batch, pageset->pcp.count);
- }
- }
-
- printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
- " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
- " unevictable:%lu"
- " dirty:%lu writeback:%lu unstable:%lu\n"
- " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
- " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
- " free_cma:%lu\n",
- global_page_state(NR_ACTIVE_ANON),
- global_page_state(NR_INACTIVE_ANON),
- global_page_state(NR_ISOLATED_ANON),
- global_page_state(NR_ACTIVE_FILE),
- global_page_state(NR_INACTIVE_FILE),
- global_page_state(NR_ISOLATED_FILE),
- global_page_state(NR_UNEVICTABLE),
- global_page_state(NR_FILE_DIRTY),
- global_page_state(NR_WRITEBACK),
- global_page_state(NR_UNSTABLE_NFS),
- global_page_state(NR_FREE_PAGES),
- global_page_state(NR_SLAB_RECLAIMABLE),
- global_page_state(NR_SLAB_UNRECLAIMABLE),
- global_page_state(NR_FILE_MAPPED),
- global_page_state(NR_SHMEM),
- global_page_state(NR_PAGETABLE),
- global_page_state(NR_BOUNCE),
- global_page_state(NR_FREE_CMA_PAGES));
-
- for_each_populated_zone(zone) {
- int i;
-
- if (skip_free_areas_node(filter, zone_to_nid(zone)))
- continue;
- show_node(zone);
- printk("%s"
- " free:%lukB"
- " min:%lukB"
- " low:%lukB"
- " high:%lukB"
- " active_anon:%lukB"
- " inactive_anon:%lukB"
- " active_file:%lukB"
- " inactive_file:%lukB"
- " unevictable:%lukB"
- " isolated(anon):%lukB"
- " isolated(file):%lukB"
- " present:%lukB"
- " managed:%lukB"
- " mlocked:%lukB"
- " dirty:%lukB"
- " writeback:%lukB"
- " mapped:%lukB"
- " shmem:%lukB"
- " slab_reclaimable:%lukB"
- " slab_unreclaimable:%lukB"
- " kernel_stack:%lukB"
- " pagetables:%lukB"
- " unstable:%lukB"
- " bounce:%lukB"
- " free_cma:%lukB"
- " writeback_tmp:%lukB"
- " pages_scanned:%lu"
- " all_unreclaimable? %s"
- "\n",
- zone->name,
- K(zone_page_state(zone, NR_FREE_PAGES)),
- K(min_wmark_pages(zone)),
- K(low_wmark_pages(zone)),
- K(high_wmark_pages(zone)),
- K(zone_page_state(zone, NR_ACTIVE_ANON)),
- K(zone_page_state(zone, NR_INACTIVE_ANON)),
- K(zone_page_state(zone, NR_ACTIVE_FILE)),
- K(zone_page_state(zone, NR_INACTIVE_FILE)),
- K(zone_page_state(zone, NR_UNEVICTABLE)),
- K(zone_page_state(zone, NR_ISOLATED_ANON)),
- K(zone_page_state(zone, NR_ISOLATED_FILE)),
- K(zone->present_pages),
- K(zone->managed_pages),
- K(zone_page_state(zone, NR_MLOCK)),
- K(zone_page_state(zone, NR_FILE_DIRTY)),
- K(zone_page_state(zone, NR_WRITEBACK)),
- K(zone_page_state(zone, NR_FILE_MAPPED)),
- K(zone_page_state(zone, NR_SHMEM)),
- K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
- K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
- zone_page_state(zone, NR_KERNEL_STACK) *
- THREAD_SIZE / 1024,
- K(zone_page_state(zone, NR_PAGETABLE)),
- K(zone_page_state(zone, NR_UNSTABLE_NFS)),
- K(zone_page_state(zone, NR_BOUNCE)),
- K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
- K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
- zone->pages_scanned,
- (zone->all_unreclaimable ? "yes" : "no")
- );
- printk("lowmem_reserve[]:");
- for (i = 0; i < MAX_NR_ZONES; i++)
- printk(" %lu", zone->lowmem_reserve[i]);
- printk("\n");
- }
-
- for_each_populated_zone(zone) {
- unsigned long nr[MAX_ORDER], flags, order, total = 0;
- unsigned char types[MAX_ORDER];
-
- if (skip_free_areas_node(filter, zone_to_nid(zone)))
- continue;
- show_node(zone);
- printk("%s: ", zone->name);
-
- spin_lock_irqsave(&zone->lock, flags);
- for (order = 0; order < MAX_ORDER; order++) {
- struct free_area *area = &zone->free_area[order];
- int type;
-
- nr[order] = area->nr_free;
- total += nr[order] << order;
-
- types[order] = 0;
- for (type = 0; type < MIGRATE_TYPES; type++) {
- if (!list_empty(&area->free_list[type]))
- types[order] |= 1 << type;
- }
- }
- spin_unlock_irqrestore(&zone->lock, flags);
- for (order = 0; order < MAX_ORDER; order++) {
- printk("%lu*%lukB ", nr[order], K(1UL) << order);
- if (nr[order])
- show_migration_types(types[order]);
- }
- printk("= %lukB\n", K(total));
- }
-
- hugetlb_show_meminfo();
-
- printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
-
- show_swap_cache_info();
-}
-
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
zoneref->zone = zone;
@@ -3153,18 +5510,17 @@ static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
*
* Add all populated zones of a node to the zonelist.
*/
-static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
- int nr_zones)
+static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
{
struct zone *zone;
enum zone_type zone_type = MAX_NR_ZONES;
+ int nr_zones = 0;
do {
zone_type--;
zone = pgdat->node_zones + zone_type;
if (populated_zone(zone)) {
- zoneref_set_zone(zone,
- &zonelist->_zonerefs[nr_zones++]);
+ zoneref_set_zone(zone, &zonerefs[nr_zones++]);
check_highest_zone(zone_type);
}
} while (zone_type);
@@ -3172,120 +5528,36 @@ static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
return nr_zones;
}
-
-/*
- * zonelist_order:
- * 0 = automatic detection of better ordering.
- * 1 = order by ([node] distance, -zonetype)
- * 2 = order by (-zonetype, [node] distance)
- *
- * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
- * the same zonelist. So only NUMA can configure this param.
- */
-#define ZONELIST_ORDER_DEFAULT 0
-#define ZONELIST_ORDER_NODE 1
-#define ZONELIST_ORDER_ZONE 2
-
-/* zonelist order in the kernel.
- * set_zonelist_order() will set this to NODE or ZONE.
- */
-static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
-static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
-
-
#ifdef CONFIG_NUMA
-/* The value user specified ....changed by config */
-static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
-/* string for sysctl */
-#define NUMA_ZONELIST_ORDER_LEN 16
-char numa_zonelist_order[16] = "default";
-
-/*
- * interface for configure zonelist ordering.
- * command line option "numa_zonelist_order"
- * = "[dD]efault - default, automatic configuration.
- * = "[nN]ode - order by node locality, then by zone within node
- * = "[zZ]one - order by zone, then by locality within zone
- */
static int __parse_numa_zonelist_order(char *s)
{
- if (*s == 'd' || *s == 'D') {
- user_zonelist_order = ZONELIST_ORDER_DEFAULT;
- } else if (*s == 'n' || *s == 'N') {
- user_zonelist_order = ZONELIST_ORDER_NODE;
- } else if (*s == 'z' || *s == 'Z') {
- user_zonelist_order = ZONELIST_ORDER_ZONE;
- } else {
- printk(KERN_WARNING
- "Ignoring invalid numa_zonelist_order value: "
- "%s\n", s);
+ /*
+ * We used to support different zonelists modes but they turned
+ * out to be just not useful. Let's keep the warning in place
+ * if somebody still use the cmd line parameter so that we do
+ * not fail it silently
+ */
+ if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
+ pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
return -EINVAL;
}
return 0;
}
-static __init int setup_numa_zonelist_order(char *s)
-{
- int ret;
-
- if (!s)
- return 0;
-
- ret = __parse_numa_zonelist_order(s);
- if (ret == 0)
- strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
-
- return ret;
-}
-early_param("numa_zonelist_order", setup_numa_zonelist_order);
-
+static char numa_zonelist_order[] = "Node";
+#define NUMA_ZONELIST_ORDER_LEN 16
/*
* sysctl handler for numa_zonelist_order
*/
-int numa_zonelist_order_handler(ctl_table *table, int write,
- void __user *buffer, size_t *length,
- loff_t *ppos)
+static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
+ void *buffer, size_t *length, loff_t *ppos)
{
- char saved_string[NUMA_ZONELIST_ORDER_LEN];
- int ret;
- static DEFINE_MUTEX(zl_order_mutex);
-
- mutex_lock(&zl_order_mutex);
- if (write) {
- if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
- ret = -EINVAL;
- goto out;
- }
- strcpy(saved_string, (char *)table->data);
- }
- ret = proc_dostring(table, write, buffer, length, ppos);
- if (ret)
- goto out;
- if (write) {
- int oldval = user_zonelist_order;
-
- ret = __parse_numa_zonelist_order((char *)table->data);
- if (ret) {
- /*
- * bogus value. restore saved string
- */
- strncpy((char *)table->data, saved_string,
- NUMA_ZONELIST_ORDER_LEN);
- user_zonelist_order = oldval;
- } else if (oldval != user_zonelist_order) {
- mutex_lock(&zonelists_mutex);
- build_all_zonelists(NULL, NULL);
- mutex_unlock(&zonelists_mutex);
- }
- }
-out:
- mutex_unlock(&zl_order_mutex);
- return ret;
+ if (write)
+ return __parse_numa_zonelist_order(buffer);
+ return proc_dostring(table, write, buffer, length, ppos);
}
-
-#define MAX_NODE_LOAD (nr_online_nodes)
static int node_load[MAX_NUMNODES];
/**
@@ -3300,17 +5572,20 @@ static int node_load[MAX_NUMNODES];
* from each node to each node in the system), and should also prefer nodes
* with no CPUs, since presumably they'll have very little allocation pressure
* on them otherwise.
- * It returns -1 if no node is found.
+ *
+ * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
*/
-static int find_next_best_node(int node, nodemask_t *used_node_mask)
+int find_next_best_node(int node, nodemask_t *used_node_mask)
{
int n, val;
int min_val = INT_MAX;
int best_node = NUMA_NO_NODE;
- const struct cpumask *tmp = cpumask_of_node(0);
- /* Use the local node if we haven't already */
- if (!node_isset(node, *used_node_mask)) {
+ /*
+ * Use the local node if we haven't already, but for memoryless local
+ * node, we should skip it and fall back to other nodes.
+ */
+ if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
node_set(node, *used_node_mask);
return node;
}
@@ -3328,12 +5603,11 @@ static int find_next_best_node(int node, nodemask_t *used_node_mask)
val += (n < node);
/* Give preference to headless and unused nodes */
- tmp = cpumask_of_node(n);
- if (!cpumask_empty(tmp))
+ if (!cpumask_empty(cpumask_of_node(n)))
val += PENALTY_FOR_NODE_WITH_CPUS;
/* Slight preference for less loaded node */
- val *= (MAX_NODE_LOAD*MAX_NUMNODES);
+ val *= MAX_NUMNODES;
val += node_load[n];
if (val < min_val) {
@@ -3354,161 +5628,53 @@ static int find_next_best_node(int node, nodemask_t *used_node_mask)
* This results in maximum locality--normal zone overflows into local
* DMA zone, if any--but risks exhausting DMA zone.
*/
-static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
+static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
+ unsigned nr_nodes)
{
- int j;
- struct zonelist *zonelist;
-
- zonelist = &pgdat->node_zonelists[0];
- for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
- ;
- j = build_zonelists_node(NODE_DATA(node), zonelist, j);
- zonelist->_zonerefs[j].zone = NULL;
- zonelist->_zonerefs[j].zone_idx = 0;
-}
-
-/*
- * Build gfp_thisnode zonelists
- */
-static void build_thisnode_zonelists(pg_data_t *pgdat)
-{
- int j;
- struct zonelist *zonelist;
+ struct zoneref *zonerefs;
+ int i;
- zonelist = &pgdat->node_zonelists[1];
- j = build_zonelists_node(pgdat, zonelist, 0);
- zonelist->_zonerefs[j].zone = NULL;
- zonelist->_zonerefs[j].zone_idx = 0;
-}
+ zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
-/*
- * Build zonelists ordered by zone and nodes within zones.
- * This results in conserving DMA zone[s] until all Normal memory is
- * exhausted, but results in overflowing to remote node while memory
- * may still exist in local DMA zone.
- */
-static int node_order[MAX_NUMNODES];
+ for (i = 0; i < nr_nodes; i++) {
+ int nr_zones;
-static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
-{
- int pos, j, node;
- int zone_type; /* needs to be signed */
- struct zone *z;
- struct zonelist *zonelist;
+ pg_data_t *node = NODE_DATA(node_order[i]);
- zonelist = &pgdat->node_zonelists[0];
- pos = 0;
- for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
- for (j = 0; j < nr_nodes; j++) {
- node = node_order[j];
- z = &NODE_DATA(node)->node_zones[zone_type];
- if (populated_zone(z)) {
- zoneref_set_zone(z,
- &zonelist->_zonerefs[pos++]);
- check_highest_zone(zone_type);
- }
- }
+ nr_zones = build_zonerefs_node(node, zonerefs);
+ zonerefs += nr_zones;
}
- zonelist->_zonerefs[pos].zone = NULL;
- zonelist->_zonerefs[pos].zone_idx = 0;
+ zonerefs->zone = NULL;
+ zonerefs->zone_idx = 0;
}
-static int default_zonelist_order(void)
+/*
+ * Build __GFP_THISNODE zonelists
+ */
+static void build_thisnode_zonelists(pg_data_t *pgdat)
{
- int nid, zone_type;
- unsigned long low_kmem_size,total_size;
- struct zone *z;
- int average_size;
- /*
- * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
- * If they are really small and used heavily, the system can fall
- * into OOM very easily.
- * This function detect ZONE_DMA/DMA32 size and configures zone order.
- */
- /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
- low_kmem_size = 0;
- total_size = 0;
- for_each_online_node(nid) {
- for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
- z = &NODE_DATA(nid)->node_zones[zone_type];
- if (populated_zone(z)) {
- if (zone_type < ZONE_NORMAL)
- low_kmem_size += z->managed_pages;
- total_size += z->managed_pages;
- } else if (zone_type == ZONE_NORMAL) {
- /*
- * If any node has only lowmem, then node order
- * is preferred to allow kernel allocations
- * locally; otherwise, they can easily infringe
- * on other nodes when there is an abundance of
- * lowmem available to allocate from.
- */
- return ZONELIST_ORDER_NODE;
- }
- }
- }
- if (!low_kmem_size || /* there are no DMA area. */
- low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
- return ZONELIST_ORDER_NODE;
- /*
- * look into each node's config.
- * If there is a node whose DMA/DMA32 memory is very big area on
- * local memory, NODE_ORDER may be suitable.
- */
- average_size = total_size /
- (nodes_weight(node_states[N_MEMORY]) + 1);
- for_each_online_node(nid) {
- low_kmem_size = 0;
- total_size = 0;
- for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
- z = &NODE_DATA(nid)->node_zones[zone_type];
- if (populated_zone(z)) {
- if (zone_type < ZONE_NORMAL)
- low_kmem_size += z->present_pages;
- total_size += z->present_pages;
- }
- }
- if (low_kmem_size &&
- total_size > average_size && /* ignore small node */
- low_kmem_size > total_size * 70/100)
- return ZONELIST_ORDER_NODE;
- }
- return ZONELIST_ORDER_ZONE;
-}
+ struct zoneref *zonerefs;
+ int nr_zones;
-static void set_zonelist_order(void)
-{
- if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
- current_zonelist_order = default_zonelist_order();
- else
- current_zonelist_order = user_zonelist_order;
+ zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
+ nr_zones = build_zonerefs_node(pgdat, zonerefs);
+ zonerefs += nr_zones;
+ zonerefs->zone = NULL;
+ zonerefs->zone_idx = 0;
}
static void build_zonelists(pg_data_t *pgdat)
{
- int j, node, load;
- enum zone_type i;
- nodemask_t used_mask;
+ static int node_order[MAX_NUMNODES];
+ int node, nr_nodes = 0;
+ nodemask_t used_mask = NODE_MASK_NONE;
int local_node, prev_node;
- struct zonelist *zonelist;
- int order = current_zonelist_order;
-
- /* initialize zonelists */
- for (i = 0; i < MAX_ZONELISTS; i++) {
- zonelist = pgdat->node_zonelists + i;
- zonelist->_zonerefs[0].zone = NULL;
- zonelist->_zonerefs[0].zone_idx = 0;
- }
/* NUMA-aware ordering of nodes */
local_node = pgdat->node_id;
- load = nr_online_nodes;
prev_node = local_node;
- nodes_clear(used_mask);
memset(node_order, 0, sizeof(node_order));
- j = 0;
-
while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
/*
* We don't want to pressure a particular node.
@@ -3517,36 +5683,18 @@ static void build_zonelists(pg_data_t *pgdat)
*/
if (node_distance(local_node, node) !=
node_distance(local_node, prev_node))
- node_load[node] = load;
+ node_load[node] += 1;
+ node_order[nr_nodes++] = node;
prev_node = node;
- load--;
- if (order == ZONELIST_ORDER_NODE)
- build_zonelists_in_node_order(pgdat, node);
- else
- node_order[j++] = node; /* remember order */
- }
-
- if (order == ZONELIST_ORDER_ZONE) {
- /* calculate node order -- i.e., DMA last! */
- build_zonelists_in_zone_order(pgdat, j);
}
+ build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
build_thisnode_zonelists(pgdat);
-}
-
-/* Construct the zonelist performance cache - see further mmzone.h */
-static void build_zonelist_cache(pg_data_t *pgdat)
-{
- struct zonelist *zonelist;
- struct zonelist_cache *zlc;
- struct zoneref *z;
-
- zonelist = &pgdat->node_zonelists[0];
- zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
- bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
- for (z = zonelist->_zonerefs; z->zone; z++)
- zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
+ pr_info("Fallback order for Node %d: ", local_node);
+ for (node = 0; node < nr_nodes; node++)
+ pr_cont("%d ", node_order[node]);
+ pr_cont("\n");
}
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
@@ -3558,61 +5706,30 @@ static void build_zonelist_cache(pg_data_t *pgdat)
*/
int local_memory_node(int node)
{
- struct zone *zone;
+ struct zoneref *z;
- (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
+ z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
gfp_zone(GFP_KERNEL),
- NULL,
- &zone);
- return zone->node;
+ NULL);
+ return zonelist_node_idx(z);
}
#endif
+static void setup_min_unmapped_ratio(void);
+static void setup_min_slab_ratio(void);
#else /* CONFIG_NUMA */
-static void set_zonelist_order(void)
-{
- current_zonelist_order = ZONELIST_ORDER_ZONE;
-}
-
static void build_zonelists(pg_data_t *pgdat)
{
- int node, local_node;
- enum zone_type j;
- struct zonelist *zonelist;
+ struct zoneref *zonerefs;
+ int nr_zones;
- local_node = pgdat->node_id;
-
- zonelist = &pgdat->node_zonelists[0];
- j = build_zonelists_node(pgdat, zonelist, 0);
+ zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
+ nr_zones = build_zonerefs_node(pgdat, zonerefs);
+ zonerefs += nr_zones;
- /*
- * Now we build the zonelist so that it contains the zones
- * of all the other nodes.
- * We don't want to pressure a particular node, so when
- * building the zones for node N, we make sure that the
- * zones coming right after the local ones are those from
- * node N+1 (modulo N)
- */
- for (node = local_node + 1; node < MAX_NUMNODES; node++) {
- if (!node_online(node))
- continue;
- j = build_zonelists_node(NODE_DATA(node), zonelist, j);
- }
- for (node = 0; node < local_node; node++) {
- if (!node_online(node))
- continue;
- j = build_zonelists_node(NODE_DATA(node), zonelist, j);
- }
-
- zonelist->_zonerefs[j].zone = NULL;
- zonelist->_zonerefs[j].zone_idx = 0;
-}
-
-/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
-static void build_zonelist_cache(pg_data_t *pgdat)
-{
- pgdat->node_zonelists[0].zlcache_ptr = NULL;
+ zonerefs->zone = NULL;
+ zonerefs->zone_idx = 0;
}
#endif /* CONFIG_NUMA */
@@ -3632,39 +5749,79 @@ static void build_zonelist_cache(pg_data_t *pgdat)
* not check if the processor is online before following the pageset pointer.
* Other parts of the kernel may not check if the zone is available.
*/
-static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
-static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
-static void setup_zone_pageset(struct zone *zone);
+static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
+/* These effectively disable the pcplists in the boot pageset completely */
+#define BOOT_PAGESET_HIGH 0
+#define BOOT_PAGESET_BATCH 1
+static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
+static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
-/*
- * Global mutex to protect against size modification of zonelists
- * as well as to serialize pageset setup for the new populated zone.
- */
-DEFINE_MUTEX(zonelists_mutex);
-
-/* return values int ....just for stop_machine() */
-static int __build_all_zonelists(void *data)
+static void __build_all_zonelists(void *data)
{
int nid;
- int cpu;
+ int __maybe_unused cpu;
pg_data_t *self = data;
+ unsigned long flags;
+
+ /*
+ * The zonelist_update_seq must be acquired with irqsave because the
+ * reader can be invoked from IRQ with GFP_ATOMIC.
+ */
+ write_seqlock_irqsave(&zonelist_update_seq, flags);
+ /*
+ * Also disable synchronous printk() to prevent any printk() from
+ * trying to hold port->lock, for
+ * tty_insert_flip_string_and_push_buffer() on other CPU might be
+ * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
+ */
+ printk_deferred_enter();
#ifdef CONFIG_NUMA
memset(node_load, 0, sizeof(node_load));
#endif
+ /*
+ * This node is hotadded and no memory is yet present. So just
+ * building zonelists is fine - no need to touch other nodes.
+ */
if (self && !node_online(self->node_id)) {
build_zonelists(self);
- build_zonelist_cache(self);
- }
+ } else {
+ /*
+ * All possible nodes have pgdat preallocated
+ * in free_area_init
+ */
+ for_each_node(nid) {
+ pg_data_t *pgdat = NODE_DATA(nid);
- for_each_online_node(nid) {
- pg_data_t *pgdat = NODE_DATA(nid);
+ build_zonelists(pgdat);
+ }
- build_zonelists(pgdat);
- build_zonelist_cache(pgdat);
+#ifdef CONFIG_HAVE_MEMORYLESS_NODES
+ /*
+ * We now know the "local memory node" for each node--
+ * i.e., the node of the first zone in the generic zonelist.
+ * Set up numa_mem percpu variable for on-line cpus. During
+ * boot, only the boot cpu should be on-line; we'll init the
+ * secondary cpus' numa_mem as they come on-line. During
+ * node/memory hotplug, we'll fixup all on-line cpus.
+ */
+ for_each_online_cpu(cpu)
+ set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
+#endif
}
+ printk_deferred_exit();
+ write_sequnlock_irqrestore(&zonelist_update_seq, flags);
+}
+
+static noinline void __init
+build_all_zonelists_init(void)
+{
+ int cpu;
+
+ __build_all_zonelists(NULL);
+
/*
* Initialize the boot_pagesets that are going to be used
* for bootstrapping processors. The real pagesets for
@@ -3678,49 +5835,31 @@ static int __build_all_zonelists(void *data)
* needs the percpu allocator in order to allocate its pagesets
* (a chicken-egg dilemma).
*/
- for_each_possible_cpu(cpu) {
- setup_pageset(&per_cpu(boot_pageset, cpu), 0);
-
-#ifdef CONFIG_HAVE_MEMORYLESS_NODES
- /*
- * We now know the "local memory node" for each node--
- * i.e., the node of the first zone in the generic zonelist.
- * Set up numa_mem percpu variable for on-line cpus. During
- * boot, only the boot cpu should be on-line; we'll init the
- * secondary cpus' numa_mem as they come on-line. During
- * node/memory hotplug, we'll fixup all on-line cpus.
- */
- if (cpu_online(cpu))
- set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
-#endif
- }
+ for_each_possible_cpu(cpu)
+ per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
- return 0;
+ mminit_verify_zonelist();
+ cpuset_init_current_mems_allowed();
}
/*
- * Called with zonelists_mutex held always
* unless system_state == SYSTEM_BOOTING.
+ *
+ * __ref due to call of __init annotated helper build_all_zonelists_init
+ * [protected by SYSTEM_BOOTING].
*/
-void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
+void __ref build_all_zonelists(pg_data_t *pgdat)
{
- set_zonelist_order();
+ unsigned long vm_total_pages;
if (system_state == SYSTEM_BOOTING) {
- __build_all_zonelists(NULL);
- mminit_verify_zonelist();
- cpuset_init_current_mems_allowed();
+ build_all_zonelists_init();
} else {
-#ifdef CONFIG_MEMORY_HOTPLUG
- if (zone)
- setup_zone_pageset(zone);
-#endif
- /* we have to stop all cpus to guarantee there is no user
- of zonelist */
- stop_machine(__build_all_zonelists, pgdat, NULL);
+ __build_all_zonelists(pgdat);
/* cpuset refresh routine should be here */
}
- vm_total_pages = nr_free_pagecache_pages();
+ /* Get the number of free pages beyond high watermark in all zones. */
+ vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
/*
* Disable grouping by mobility if the number of pages in the
* system is too low to allow the mechanism to work. It would be
@@ -3733,278 +5872,29 @@ void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
else
page_group_by_mobility_disabled = 0;
- printk("Built %i zonelists in %s order, mobility grouping %s. "
- "Total pages: %ld\n",
- nr_online_nodes,
- zonelist_order_name[current_zonelist_order],
- page_group_by_mobility_disabled ? "off" : "on",
- vm_total_pages);
+ pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
+ nr_online_nodes,
+ str_off_on(page_group_by_mobility_disabled),
+ vm_total_pages);
#ifdef CONFIG_NUMA
- printk("Policy zone: %s\n", zone_names[policy_zone]);
-#endif
-}
-
-/*
- * Helper functions to size the waitqueue hash table.
- * Essentially these want to choose hash table sizes sufficiently
- * large so that collisions trying to wait on pages are rare.
- * But in fact, the number of active page waitqueues on typical
- * systems is ridiculously low, less than 200. So this is even
- * conservative, even though it seems large.
- *
- * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
- * waitqueues, i.e. the size of the waitq table given the number of pages.
- */
-#define PAGES_PER_WAITQUEUE 256
-
-#ifndef CONFIG_MEMORY_HOTPLUG
-static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
-{
- unsigned long size = 1;
-
- pages /= PAGES_PER_WAITQUEUE;
-
- while (size < pages)
- size <<= 1;
-
- /*
- * Once we have dozens or even hundreds of threads sleeping
- * on IO we've got bigger problems than wait queue collision.
- * Limit the size of the wait table to a reasonable size.
- */
- size = min(size, 4096UL);
-
- return max(size, 4UL);
-}
-#else
-/*
- * A zone's size might be changed by hot-add, so it is not possible to determine
- * a suitable size for its wait_table. So we use the maximum size now.
- *
- * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
- *
- * i386 (preemption config) : 4096 x 16 = 64Kbyte.
- * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
- * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
- *
- * The maximum entries are prepared when a zone's memory is (512K + 256) pages
- * or more by the traditional way. (See above). It equals:
- *
- * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
- * ia64(16K page size) : = ( 8G + 4M)byte.
- * powerpc (64K page size) : = (32G +16M)byte.
- */
-static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
-{
- return 4096UL;
-}
+ pr_info("Policy zone: %s\n", zone_names[policy_zone]);
#endif
-
-/*
- * This is an integer logarithm so that shifts can be used later
- * to extract the more random high bits from the multiplicative
- * hash function before the remainder is taken.
- */
-static inline unsigned long wait_table_bits(unsigned long size)
-{
- return ffz(~size);
-}
-
-#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
-
-/*
- * Check if a pageblock contains reserved pages
- */
-static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
-{
- unsigned long pfn;
-
- for (pfn = start_pfn; pfn < end_pfn; pfn++) {
- if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
- return 1;
- }
- return 0;
}
-/*
- * Mark a number of pageblocks as MIGRATE_RESERVE. The number
- * of blocks reserved is based on min_wmark_pages(zone). The memory within
- * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
- * higher will lead to a bigger reserve which will get freed as contiguous
- * blocks as reclaim kicks in
- */
-static void setup_zone_migrate_reserve(struct zone *zone)
-{
- unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
- struct page *page;
- unsigned long block_migratetype;
- int reserve;
-
- /*
- * Get the start pfn, end pfn and the number of blocks to reserve
- * We have to be careful to be aligned to pageblock_nr_pages to
- * make sure that we always check pfn_valid for the first page in
- * the block.
- */
- start_pfn = zone->zone_start_pfn;
- end_pfn = zone_end_pfn(zone);
- start_pfn = roundup(start_pfn, pageblock_nr_pages);
- reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
- pageblock_order;
-
- /*
- * Reserve blocks are generally in place to help high-order atomic
- * allocations that are short-lived. A min_free_kbytes value that
- * would result in more than 2 reserve blocks for atomic allocations
- * is assumed to be in place to help anti-fragmentation for the
- * future allocation of hugepages at runtime.
- */
- reserve = min(2, reserve);
-
- for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
- if (!pfn_valid(pfn))
- continue;
- page = pfn_to_page(pfn);
-
- /* Watch out for overlapping nodes */
- if (page_to_nid(page) != zone_to_nid(zone))
- continue;
-
- block_migratetype = get_pageblock_migratetype(page);
-
- /* Only test what is necessary when the reserves are not met */
- if (reserve > 0) {
- /*
- * Blocks with reserved pages will never free, skip
- * them.
- */
- block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
- if (pageblock_is_reserved(pfn, block_end_pfn))
- continue;
-
- /* If this block is reserved, account for it */
- if (block_migratetype == MIGRATE_RESERVE) {
- reserve--;
- continue;
- }
-
- /* Suitable for reserving if this block is movable */
- if (block_migratetype == MIGRATE_MOVABLE) {
- set_pageblock_migratetype(page,
- MIGRATE_RESERVE);
- move_freepages_block(zone, page,
- MIGRATE_RESERVE);
- reserve--;
- continue;
- }
- }
-
- /*
- * If the reserve is met and this is a previous reserved block,
- * take it back
- */
- if (block_migratetype == MIGRATE_RESERVE) {
- set_pageblock_migratetype(page, MIGRATE_MOVABLE);
- move_freepages_block(zone, page, MIGRATE_MOVABLE);
- }
- }
-}
-
-/*
- * Initially all pages are reserved - free ones are freed
- * up by free_all_bootmem() once the early boot process is
- * done. Non-atomic initialization, single-pass.
- */
-void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
- unsigned long start_pfn, enum memmap_context context)
-{
- struct page *page;
- unsigned long end_pfn = start_pfn + size;
- unsigned long pfn;
- struct zone *z;
-
- if (highest_memmap_pfn < end_pfn - 1)
- highest_memmap_pfn = end_pfn - 1;
-
- z = &NODE_DATA(nid)->node_zones[zone];
- for (pfn = start_pfn; pfn < end_pfn; pfn++) {
- /*
- * There can be holes in boot-time mem_map[]s
- * handed to this function. They do not
- * exist on hotplugged memory.
- */
- if (context == MEMMAP_EARLY) {
- if (!early_pfn_valid(pfn))
- continue;
- if (!early_pfn_in_nid(pfn, nid))
- continue;
- }
- page = pfn_to_page(pfn);
- set_page_links(page, zone, nid, pfn);
- mminit_verify_page_links(page, zone, nid, pfn);
- init_page_count(page);
- page_mapcount_reset(page);
- page_nid_reset_last(page);
- SetPageReserved(page);
- /*
- * Mark the block movable so that blocks are reserved for
- * movable at startup. This will force kernel allocations
- * to reserve their blocks rather than leaking throughout
- * the address space during boot when many long-lived
- * kernel allocations are made. Later some blocks near
- * the start are marked MIGRATE_RESERVE by
- * setup_zone_migrate_reserve()
- *
- * bitmap is created for zone's valid pfn range. but memmap
- * can be created for invalid pages (for alignment)
- * check here not to call set_pageblock_migratetype() against
- * pfn out of zone.
- */
- if ((z->zone_start_pfn <= pfn)
- && (pfn < zone_end_pfn(z))
- && !(pfn & (pageblock_nr_pages - 1)))
- set_pageblock_migratetype(page, MIGRATE_MOVABLE);
-
- INIT_LIST_HEAD(&page->lru);
-#ifdef WANT_PAGE_VIRTUAL
- /* The shift won't overflow because ZONE_NORMAL is below 4G. */
- if (!is_highmem_idx(zone))
- set_page_address(page, __va(pfn << PAGE_SHIFT));
-#endif
- }
-}
-
-static void __meminit zone_init_free_lists(struct zone *zone)
-{
- int order, t;
- for_each_migratetype_order(order, t) {
- INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
- zone->free_area[order].nr_free = 0;
- }
-}
-
-#ifndef __HAVE_ARCH_MEMMAP_INIT
-#define memmap_init(size, nid, zone, start_pfn) \
- memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
-#endif
-
-static int __meminit zone_batchsize(struct zone *zone)
+static int zone_batchsize(struct zone *zone)
{
#ifdef CONFIG_MMU
int batch;
/*
- * The per-cpu-pages pools are set to around 1000th of the
- * size of the zone. But no more than 1/2 of a meg.
- *
- * OK, so we don't know how big the cache is. So guess.
+ * The number of pages to batch allocate is either ~0.025%
+ * of the zone or 256KB, whichever is smaller. The batch
+ * size is striking a balance between allocation latency
+ * and zone lock contention.
*/
- batch = zone->managed_pages / 1024;
- if (batch * PAGE_SIZE > 512 * 1024)
- batch = (512 * 1024) / PAGE_SIZE;
- batch /= 4; /* We effectively *= 4 below */
- if (batch < 1)
- batch = 1;
+ batch = min(zone_managed_pages(zone) >> 12, SZ_256K / PAGE_SIZE);
+ if (batch <= 1)
+ return 1;
/*
* Clamp the batch to a 2^n - 1 value. Having a power
@@ -4038,1202 +5928,274 @@ static int __meminit zone_batchsize(struct zone *zone)
#endif
}
-/*
- * pcp->high and pcp->batch values are related and dependent on one another:
- * ->batch must never be higher then ->high.
- * The following function updates them in a safe manner without read side
- * locking.
- *
- * Any new users of pcp->batch and pcp->high should ensure they can cope with
- * those fields changing asynchronously (acording the the above rule).
- *
- * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
- * outside of boot time (or some other assurance that no concurrent updaters
- * exist).
- */
-static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
- unsigned long batch)
-{
- /* start with a fail safe value for batch */
- pcp->batch = 1;
- smp_wmb();
-
- /* Update high, then batch, in order */
- pcp->high = high;
- smp_wmb();
-
- pcp->batch = batch;
-}
-
-/* a companion to pageset_set_high() */
-static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
-{
- pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
-}
-
-static void pageset_init(struct per_cpu_pageset *p)
-{
- struct per_cpu_pages *pcp;
- int migratetype;
-
- memset(p, 0, sizeof(*p));
-
- pcp = &p->pcp;
- pcp->count = 0;
- for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
- INIT_LIST_HEAD(&pcp->lists[migratetype]);
-}
-
-static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
+static int percpu_pagelist_high_fraction;
+static int zone_highsize(struct zone *zone, int batch, int cpu_online,
+ int high_fraction)
{
- pageset_init(p);
- pageset_set_batch(p, batch);
-}
-
-/*
- * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
- * to the value high for the pageset p.
- */
-static void pageset_set_high(struct per_cpu_pageset *p,
- unsigned long high)
-{
- unsigned long batch = max(1UL, high / 4);
- if ((high / 4) > (PAGE_SHIFT * 8))
- batch = PAGE_SHIFT * 8;
-
- pageset_update(&p->pcp, high, batch);
-}
-
-static void __meminit pageset_set_high_and_batch(struct zone *zone,
- struct per_cpu_pageset *pcp)
-{
- if (percpu_pagelist_fraction)
- pageset_set_high(pcp,
- (zone->managed_pages /
- percpu_pagelist_fraction));
- else
- pageset_set_batch(pcp, zone_batchsize(zone));
-}
-
-static void __meminit zone_pageset_init(struct zone *zone, int cpu)
-{
- struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
-
- pageset_init(pcp);
- pageset_set_high_and_batch(zone, pcp);
-}
-
-static void __meminit setup_zone_pageset(struct zone *zone)
-{
- int cpu;
- zone->pageset = alloc_percpu(struct per_cpu_pageset);
- for_each_possible_cpu(cpu)
- zone_pageset_init(zone, cpu);
-}
-
-/*
- * Allocate per cpu pagesets and initialize them.
- * Before this call only boot pagesets were available.
- */
-void __init setup_per_cpu_pageset(void)
-{
- struct zone *zone;
-
- for_each_populated_zone(zone)
- setup_zone_pageset(zone);
-}
-
-static noinline __init_refok
-int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
-{
- int i;
- struct pglist_data *pgdat = zone->zone_pgdat;
- size_t alloc_size;
+#ifdef CONFIG_MMU
+ int high;
+ int nr_split_cpus;
+ unsigned long total_pages;
- /*
- * The per-page waitqueue mechanism uses hashed waitqueues
- * per zone.
- */
- zone->wait_table_hash_nr_entries =
- wait_table_hash_nr_entries(zone_size_pages);
- zone->wait_table_bits =
- wait_table_bits(zone->wait_table_hash_nr_entries);
- alloc_size = zone->wait_table_hash_nr_entries
- * sizeof(wait_queue_head_t);
-
- if (!slab_is_available()) {
- zone->wait_table = (wait_queue_head_t *)
- alloc_bootmem_node_nopanic(pgdat, alloc_size);
+ if (!high_fraction) {
+ /*
+ * By default, the high value of the pcp is based on the zone
+ * low watermark so that if they are full then background
+ * reclaim will not be started prematurely.
+ */
+ total_pages = low_wmark_pages(zone);
} else {
/*
- * This case means that a zone whose size was 0 gets new memory
- * via memory hot-add.
- * But it may be the case that a new node was hot-added. In
- * this case vmalloc() will not be able to use this new node's
- * memory - this wait_table must be initialized to use this new
- * node itself as well.
- * To use this new node's memory, further consideration will be
- * necessary.
+ * If percpu_pagelist_high_fraction is configured, the high
+ * value is based on a fraction of the managed pages in the
+ * zone.
*/
- zone->wait_table = vmalloc(alloc_size);
+ total_pages = zone_managed_pages(zone) / high_fraction;
}
- if (!zone->wait_table)
- return -ENOMEM;
- for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
- init_waitqueue_head(zone->wait_table + i);
-
- return 0;
-}
-
-static __meminit void zone_pcp_init(struct zone *zone)
-{
/*
- * per cpu subsystem is not up at this point. The following code
- * relies on the ability of the linker to provide the
- * offset of a (static) per cpu variable into the per cpu area.
+ * Split the high value across all online CPUs local to the zone. Note
+ * that early in boot that CPUs may not be online yet and that during
+ * CPU hotplug that the cpumask is not yet updated when a CPU is being
+ * onlined. For memory nodes that have no CPUs, split the high value
+ * across all online CPUs to mitigate the risk that reclaim is triggered
+ * prematurely due to pages stored on pcp lists.
*/
- zone->pageset = &boot_pageset;
-
- if (zone->present_pages)
- printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
- zone->name, zone->present_pages,
- zone_batchsize(zone));
-}
+ nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
+ if (!nr_split_cpus)
+ nr_split_cpus = num_online_cpus();
+ high = total_pages / nr_split_cpus;
-int __meminit init_currently_empty_zone(struct zone *zone,
- unsigned long zone_start_pfn,
- unsigned long size,
- enum memmap_context context)
-{
- struct pglist_data *pgdat = zone->zone_pgdat;
- int ret;
- ret = zone_wait_table_init(zone, size);
- if (ret)
- return ret;
- pgdat->nr_zones = zone_idx(zone) + 1;
-
- zone->zone_start_pfn = zone_start_pfn;
-
- mminit_dprintk(MMINIT_TRACE, "memmap_init",
- "Initialising map node %d zone %lu pfns %lu -> %lu\n",
- pgdat->node_id,
- (unsigned long)zone_idx(zone),
- zone_start_pfn, (zone_start_pfn + size));
-
- zone_init_free_lists(zone);
-
- return 0;
-}
-
-#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
-#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
-/*
- * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
- * Architectures may implement their own version but if add_active_range()
- * was used and there are no special requirements, this is a convenient
- * alternative
- */
-int __meminit __early_pfn_to_nid(unsigned long pfn)
-{
- unsigned long start_pfn, end_pfn;
- int i, nid;
/*
- * NOTE: The following SMP-unsafe globals are only used early in boot
- * when the kernel is running single-threaded.
+ * Ensure high is at least batch*4. The multiple is based on the
+ * historical relationship between high and batch.
*/
- static unsigned long __meminitdata last_start_pfn, last_end_pfn;
- static int __meminitdata last_nid;
-
- if (last_start_pfn <= pfn && pfn < last_end_pfn)
- return last_nid;
-
- for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
- if (start_pfn <= pfn && pfn < end_pfn) {
- last_start_pfn = start_pfn;
- last_end_pfn = end_pfn;
- last_nid = nid;
- return nid;
- }
- /* This is a memory hole */
- return -1;
-}
-#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
+ high = max(high, batch << 2);
-int __meminit early_pfn_to_nid(unsigned long pfn)
-{
- int nid;
-
- nid = __early_pfn_to_nid(pfn);
- if (nid >= 0)
- return nid;
- /* just returns 0 */
+ return high;
+#else
return 0;
-}
-
-#ifdef CONFIG_NODES_SPAN_OTHER_NODES
-bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
-{
- int nid;
-
- nid = __early_pfn_to_nid(pfn);
- if (nid >= 0 && nid != node)
- return false;
- return true;
-}
#endif
-
-/**
- * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
- * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
- * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
- *
- * If an architecture guarantees that all ranges registered with
- * add_active_ranges() contain no holes and may be freed, this
- * this function may be used instead of calling free_bootmem() manually.
- */
-void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
-{
- unsigned long start_pfn, end_pfn;
- int i, this_nid;
-
- for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
- start_pfn = min(start_pfn, max_low_pfn);
- end_pfn = min(end_pfn, max_low_pfn);
-
- if (start_pfn < end_pfn)
- free_bootmem_node(NODE_DATA(this_nid),
- PFN_PHYS(start_pfn),
- (end_pfn - start_pfn) << PAGE_SHIFT);
- }
}
-/**
- * sparse_memory_present_with_active_regions - Call memory_present for each active range
- * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
+/*
+ * pcp->high and pcp->batch values are related and generally batch is lower
+ * than high. They are also related to pcp->count such that count is lower
+ * than high, and as soon as it reaches high, the pcplist is flushed.
*
- * If an architecture guarantees that all ranges registered with
- * add_active_ranges() contain no holes and may be freed, this
- * function may be used instead of calling memory_present() manually.
- */
-void __init sparse_memory_present_with_active_regions(int nid)
-{
- unsigned long start_pfn, end_pfn;
- int i, this_nid;
-
- for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
- memory_present(this_nid, start_pfn, end_pfn);
-}
-
-/**
- * get_pfn_range_for_nid - Return the start and end page frames for a node
- * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
- * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
- * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
+ * However, guaranteeing these relations at all times would require e.g. write
+ * barriers here but also careful usage of read barriers at the read side, and
+ * thus be prone to error and bad for performance. Thus the update only prevents
+ * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
+ * should ensure they can cope with those fields changing asynchronously, and
+ * fully trust only the pcp->count field on the local CPU with interrupts
+ * disabled.
*
- * It returns the start and end page frame of a node based on information
- * provided by an arch calling add_active_range(). If called for a node
- * with no available memory, a warning is printed and the start and end
- * PFNs will be 0.
+ * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
+ * outside of boot time (or some other assurance that no concurrent updaters
+ * exist).
*/
-void __meminit get_pfn_range_for_nid(unsigned int nid,
- unsigned long *start_pfn, unsigned long *end_pfn)
+static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
+ unsigned long high_max, unsigned long batch)
{
- unsigned long this_start_pfn, this_end_pfn;
- int i;
-
- *start_pfn = -1UL;
- *end_pfn = 0;
-
- for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
- *start_pfn = min(*start_pfn, this_start_pfn);
- *end_pfn = max(*end_pfn, this_end_pfn);
- }
-
- if (*start_pfn == -1UL)
- *start_pfn = 0;
+ WRITE_ONCE(pcp->batch, batch);
+ WRITE_ONCE(pcp->high_min, high_min);
+ WRITE_ONCE(pcp->high_max, high_max);
}
-/*
- * This finds a zone that can be used for ZONE_MOVABLE pages. The
- * assumption is made that zones within a node are ordered in monotonic
- * increasing memory addresses so that the "highest" populated zone is used
- */
-static void __init find_usable_zone_for_movable(void)
+static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
{
- int zone_index;
- for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
- if (zone_index == ZONE_MOVABLE)
- continue;
+ int pindex;
- if (arch_zone_highest_possible_pfn[zone_index] >
- arch_zone_lowest_possible_pfn[zone_index])
- break;
- }
+ memset(pcp, 0, sizeof(*pcp));
+ memset(pzstats, 0, sizeof(*pzstats));
+
+ spin_lock_init(&pcp->lock);
+ for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
+ INIT_LIST_HEAD(&pcp->lists[pindex]);
- VM_BUG_ON(zone_index == -1);
- movable_zone = zone_index;
+ /*
+ * Set batch and high values safe for a boot pageset. A true percpu
+ * pageset's initialization will update them subsequently. Here we don't
+ * need to be as careful as pageset_update() as nobody can access the
+ * pageset yet.
+ */
+ pcp->high_min = BOOT_PAGESET_HIGH;
+ pcp->high_max = BOOT_PAGESET_HIGH;
+ pcp->batch = BOOT_PAGESET_BATCH;
}
-/*
- * The zone ranges provided by the architecture do not include ZONE_MOVABLE
- * because it is sized independent of architecture. Unlike the other zones,
- * the starting point for ZONE_MOVABLE is not fixed. It may be different
- * in each node depending on the size of each node and how evenly kernelcore
- * is distributed. This helper function adjusts the zone ranges
- * provided by the architecture for a given node by using the end of the
- * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
- * zones within a node are in order of monotonic increases memory addresses
- */
-static void __meminit adjust_zone_range_for_zone_movable(int nid,
- unsigned long zone_type,
- unsigned long node_start_pfn,
- unsigned long node_end_pfn,
- unsigned long *zone_start_pfn,
- unsigned long *zone_end_pfn)
+static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
+ unsigned long high_max, unsigned long batch)
{
- /* Only adjust if ZONE_MOVABLE is on this node */
- if (zone_movable_pfn[nid]) {
- /* Size ZONE_MOVABLE */
- if (zone_type == ZONE_MOVABLE) {
- *zone_start_pfn = zone_movable_pfn[nid];
- *zone_end_pfn = min(node_end_pfn,
- arch_zone_highest_possible_pfn[movable_zone]);
-
- /* Adjust for ZONE_MOVABLE starting within this range */
- } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
- *zone_end_pfn > zone_movable_pfn[nid]) {
- *zone_end_pfn = zone_movable_pfn[nid];
+ struct per_cpu_pages *pcp;
+ int cpu;
- /* Check if this whole range is within ZONE_MOVABLE */
- } else if (*zone_start_pfn >= zone_movable_pfn[nid])
- *zone_start_pfn = *zone_end_pfn;
+ for_each_possible_cpu(cpu) {
+ pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
+ pageset_update(pcp, high_min, high_max, batch);
}
}
/*
- * Return the number of pages a zone spans in a node, including holes
- * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
- */
-static unsigned long __meminit zone_spanned_pages_in_node(int nid,
- unsigned long zone_type,
- unsigned long node_start_pfn,
- unsigned long node_end_pfn,
- unsigned long *ignored)
-{
- unsigned long zone_start_pfn, zone_end_pfn;
-
- /* Get the start and end of the zone */
- zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
- zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
- adjust_zone_range_for_zone_movable(nid, zone_type,
- node_start_pfn, node_end_pfn,
- &zone_start_pfn, &zone_end_pfn);
-
- /* Check that this node has pages within the zone's required range */
- if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
- return 0;
-
- /* Move the zone boundaries inside the node if necessary */
- zone_end_pfn = min(zone_end_pfn, node_end_pfn);
- zone_start_pfn = max(zone_start_pfn, node_start_pfn);
-
- /* Return the spanned pages */
- return zone_end_pfn - zone_start_pfn;
-}
-
-/*
- * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
- * then all holes in the requested range will be accounted for.
+ * Calculate and set new high and batch values for all per-cpu pagesets of a
+ * zone based on the zone's size.
*/
-unsigned long __meminit __absent_pages_in_range(int nid,
- unsigned long range_start_pfn,
- unsigned long range_end_pfn)
+static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
{
- unsigned long nr_absent = range_end_pfn - range_start_pfn;
- unsigned long start_pfn, end_pfn;
- int i;
+ int new_high_min, new_high_max, new_batch;
- for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
- start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
- end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
- nr_absent -= end_pfn - start_pfn;
+ new_batch = zone_batchsize(zone);
+ if (percpu_pagelist_high_fraction) {
+ new_high_min = zone_highsize(zone, new_batch, cpu_online,
+ percpu_pagelist_high_fraction);
+ /*
+ * PCP high is tuned manually, disable auto-tuning via
+ * setting high_min and high_max to the manual value.
+ */
+ new_high_max = new_high_min;
+ } else {
+ new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
+ new_high_max = zone_highsize(zone, new_batch, cpu_online,
+ MIN_PERCPU_PAGELIST_HIGH_FRACTION);
}
- return nr_absent;
-}
-/**
- * absent_pages_in_range - Return number of page frames in holes within a range
- * @start_pfn: The start PFN to start searching for holes
- * @end_pfn: The end PFN to stop searching for holes
- *
- * It returns the number of pages frames in memory holes within a range.
- */
-unsigned long __init absent_pages_in_range(unsigned long start_pfn,
- unsigned long end_pfn)
-{
- return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
-}
-
-/* Return the number of page frames in holes in a zone on a node */
-static unsigned long __meminit zone_absent_pages_in_node(int nid,
- unsigned long zone_type,
- unsigned long node_start_pfn,
- unsigned long node_end_pfn,
- unsigned long *ignored)
-{
- unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
- unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
- unsigned long zone_start_pfn, zone_end_pfn;
-
- zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
- zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
+ if (zone->pageset_high_min == new_high_min &&
+ zone->pageset_high_max == new_high_max &&
+ zone->pageset_batch == new_batch)
+ return;
- adjust_zone_range_for_zone_movable(nid, zone_type,
- node_start_pfn, node_end_pfn,
- &zone_start_pfn, &zone_end_pfn);
- return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
-}
+ zone->pageset_high_min = new_high_min;
+ zone->pageset_high_max = new_high_max;
+ zone->pageset_batch = new_batch;
-#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
-static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
- unsigned long zone_type,
- unsigned long node_start_pfn,
- unsigned long node_end_pfn,
- unsigned long *zones_size)
-{
- return zones_size[zone_type];
+ __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
+ new_batch);
}
-static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
- unsigned long zone_type,
- unsigned long node_start_pfn,
- unsigned long node_end_pfn,
- unsigned long *zholes_size)
+void __meminit setup_zone_pageset(struct zone *zone)
{
- if (!zholes_size)
- return 0;
-
- return zholes_size[zone_type];
-}
+ int cpu;
-#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
+ /* Size may be 0 on !SMP && !NUMA */
+ if (sizeof(struct per_cpu_zonestat) > 0)
+ zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
-static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
- unsigned long node_start_pfn,
- unsigned long node_end_pfn,
- unsigned long *zones_size,
- unsigned long *zholes_size)
-{
- unsigned long realtotalpages, totalpages = 0;
- enum zone_type i;
+ zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
+ for_each_possible_cpu(cpu) {
+ struct per_cpu_pages *pcp;
+ struct per_cpu_zonestat *pzstats;
- for (i = 0; i < MAX_NR_ZONES; i++)
- totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
- node_start_pfn,
- node_end_pfn,
- zones_size);
- pgdat->node_spanned_pages = totalpages;
+ pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
+ pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
+ per_cpu_pages_init(pcp, pzstats);
+ }
- realtotalpages = totalpages;
- for (i = 0; i < MAX_NR_ZONES; i++)
- realtotalpages -=
- zone_absent_pages_in_node(pgdat->node_id, i,
- node_start_pfn, node_end_pfn,
- zholes_size);
- pgdat->node_present_pages = realtotalpages;
- printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
- realtotalpages);
+ zone_set_pageset_high_and_batch(zone, 0);
}
-#ifndef CONFIG_SPARSEMEM
/*
- * Calculate the size of the zone->blockflags rounded to an unsigned long
- * Start by making sure zonesize is a multiple of pageblock_order by rounding
- * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
- * round what is now in bits to nearest long in bits, then return it in
- * bytes.
+ * The zone indicated has a new number of managed_pages; batch sizes and percpu
+ * page high values need to be recalculated.
*/
-static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
-{
- unsigned long usemapsize;
-
- zonesize += zone_start_pfn & (pageblock_nr_pages-1);
- usemapsize = roundup(zonesize, pageblock_nr_pages);
- usemapsize = usemapsize >> pageblock_order;
- usemapsize *= NR_PAGEBLOCK_BITS;
- usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
-
- return usemapsize / 8;
-}
-
-static void __init setup_usemap(struct pglist_data *pgdat,
- struct zone *zone,
- unsigned long zone_start_pfn,
- unsigned long zonesize)
+static void zone_pcp_update(struct zone *zone, int cpu_online)
{
- unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
- zone->pageblock_flags = NULL;
- if (usemapsize)
- zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
- usemapsize);
+ mutex_lock(&pcp_batch_high_lock);
+ zone_set_pageset_high_and_batch(zone, cpu_online);
+ mutex_unlock(&pcp_batch_high_lock);
}
-#else
-static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
- unsigned long zone_start_pfn, unsigned long zonesize) {}
-#endif /* CONFIG_SPARSEMEM */
-#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
-
-/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
-void __init set_pageblock_order(void)
+static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
{
- unsigned int order;
-
- /* Check that pageblock_nr_pages has not already been setup */
- if (pageblock_order)
- return;
-
- if (HPAGE_SHIFT > PAGE_SHIFT)
- order = HUGETLB_PAGE_ORDER;
- else
- order = MAX_ORDER - 1;
+ struct per_cpu_pages *pcp;
+ struct cpu_cacheinfo *cci;
+ pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
+ cci = get_cpu_cacheinfo(cpu);
/*
- * Assume the largest contiguous order of interest is a huge page.
- * This value may be variable depending on boot parameters on IA64 and
- * powerpc.
+ * If data cache slice of CPU is large enough, "pcp->batch"
+ * pages can be preserved in PCP before draining PCP for
+ * consecutive high-order pages freeing without allocation.
+ * This can reduce zone lock contention without hurting
+ * cache-hot pages sharing.
*/
- pageblock_order = order;
+ spin_lock(&pcp->lock);
+ if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
+ pcp->flags |= PCPF_FREE_HIGH_BATCH;
+ else
+ pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
+ spin_unlock(&pcp->lock);
}
-#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
-/*
- * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
- * is unused as pageblock_order is set at compile-time. See
- * include/linux/pageblock-flags.h for the values of pageblock_order based on
- * the kernel config
- */
-void __init set_pageblock_order(void)
+void setup_pcp_cacheinfo(unsigned int cpu)
{
-}
-
-#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
-
-static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
- unsigned long present_pages)
-{
- unsigned long pages = spanned_pages;
-
- /*
- * Provide a more accurate estimation if there are holes within
- * the zone and SPARSEMEM is in use. If there are holes within the
- * zone, each populated memory region may cost us one or two extra
- * memmap pages due to alignment because memmap pages for each
- * populated regions may not naturally algined on page boundary.
- * So the (present_pages >> 4) heuristic is a tradeoff for that.
- */
- if (spanned_pages > present_pages + (present_pages >> 4) &&
- IS_ENABLED(CONFIG_SPARSEMEM))
- pages = present_pages;
+ struct zone *zone;
- return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
+ for_each_populated_zone(zone)
+ zone_pcp_update_cacheinfo(zone, cpu);
}
/*
- * Set up the zone data structures:
- * - mark all pages reserved
- * - mark all memory queues empty
- * - clear the memory bitmaps
- *
- * NOTE: pgdat should get zeroed by caller.
+ * Allocate per cpu pagesets and initialize them.
+ * Before this call only boot pagesets were available.
*/
-static void __paginginit free_area_init_core(struct pglist_data *pgdat,
- unsigned long node_start_pfn, unsigned long node_end_pfn,
- unsigned long *zones_size, unsigned long *zholes_size)
+void __init setup_per_cpu_pageset(void)
{
- enum zone_type j;
- int nid = pgdat->node_id;
- unsigned long zone_start_pfn = pgdat->node_start_pfn;
- int ret;
-
- pgdat_resize_init(pgdat);
-#ifdef CONFIG_NUMA_BALANCING
- spin_lock_init(&pgdat->numabalancing_migrate_lock);
- pgdat->numabalancing_migrate_nr_pages = 0;
- pgdat->numabalancing_migrate_next_window = jiffies;
-#endif
- init_waitqueue_head(&pgdat->kswapd_wait);
- init_waitqueue_head(&pgdat->pfmemalloc_wait);
- pgdat_page_cgroup_init(pgdat);
-
- for (j = 0; j < MAX_NR_ZONES; j++) {
- struct zone *zone = pgdat->node_zones + j;
- unsigned long size, realsize, freesize, memmap_pages;
-
- size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
- node_end_pfn, zones_size);
- realsize = freesize = size - zone_absent_pages_in_node(nid, j,
- node_start_pfn,
- node_end_pfn,
- zholes_size);
-
- /*
- * Adjust freesize so that it accounts for how much memory
- * is used by this zone for memmap. This affects the watermark
- * and per-cpu initialisations
- */
- memmap_pages = calc_memmap_size(size, realsize);
- if (freesize >= memmap_pages) {
- freesize -= memmap_pages;
- if (memmap_pages)
- printk(KERN_DEBUG
- " %s zone: %lu pages used for memmap\n",
- zone_names[j], memmap_pages);
- } else
- printk(KERN_WARNING
- " %s zone: %lu pages exceeds freesize %lu\n",
- zone_names[j], memmap_pages, freesize);
-
- /* Account for reserved pages */
- if (j == 0 && freesize > dma_reserve) {
- freesize -= dma_reserve;
- printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
- zone_names[0], dma_reserve);
- }
+ struct pglist_data *pgdat;
+ struct zone *zone;
+ int __maybe_unused cpu;
- if (!is_highmem_idx(j))
- nr_kernel_pages += freesize;
- /* Charge for highmem memmap if there are enough kernel pages */
- else if (nr_kernel_pages > memmap_pages * 2)
- nr_kernel_pages -= memmap_pages;
- nr_all_pages += freesize;
+ for_each_populated_zone(zone)
+ setup_zone_pageset(zone);
- zone->spanned_pages = size;
- zone->present_pages = realsize;
- /*
- * Set an approximate value for lowmem here, it will be adjusted
- * when the bootmem allocator frees pages into the buddy system.
- * And all highmem pages will be managed by the buddy system.
- */
- zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
#ifdef CONFIG_NUMA
- zone->node = nid;
- zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
- / 100;
- zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
-#endif
- zone->name = zone_names[j];
- spin_lock_init(&zone->lock);
- spin_lock_init(&zone->lru_lock);
- zone_seqlock_init(zone);
- zone->zone_pgdat = pgdat;
-
- zone_pcp_init(zone);
- lruvec_init(&zone->lruvec);
- if (!size)
- continue;
-
- set_pageblock_order();
- setup_usemap(pgdat, zone, zone_start_pfn, size);
- ret = init_currently_empty_zone(zone, zone_start_pfn,
- size, MEMMAP_EARLY);
- BUG_ON(ret);
- memmap_init(size, nid, j, zone_start_pfn);
- zone_start_pfn += size;
- }
-}
-
-static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
-{
- /* Skip empty nodes */
- if (!pgdat->node_spanned_pages)
- return;
-
-#ifdef CONFIG_FLAT_NODE_MEM_MAP
- /* ia64 gets its own node_mem_map, before this, without bootmem */
- if (!pgdat->node_mem_map) {
- unsigned long size, start, end;
- struct page *map;
-
- /*
- * The zone's endpoints aren't required to be MAX_ORDER
- * aligned but the node_mem_map endpoints must be in order
- * for the buddy allocator to function correctly.
- */
- start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
- end = pgdat_end_pfn(pgdat);
- end = ALIGN(end, MAX_ORDER_NR_PAGES);
- size = (end - start) * sizeof(struct page);
- map = alloc_remap(pgdat->node_id, size);
- if (!map)
- map = alloc_bootmem_node_nopanic(pgdat, size);
- pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
- }
-#ifndef CONFIG_NEED_MULTIPLE_NODES
/*
- * With no DISCONTIG, the global mem_map is just set as node 0's
+ * Unpopulated zones continue using the boot pagesets.
+ * The numa stats for these pagesets need to be reset.
+ * Otherwise, they will end up skewing the stats of
+ * the nodes these zones are associated with.
*/
- if (pgdat == NODE_DATA(0)) {
- mem_map = NODE_DATA(0)->node_mem_map;
-#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
- if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
- mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
-#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
+ for_each_possible_cpu(cpu) {
+ struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
+ memset(pzstats->vm_numa_event, 0,
+ sizeof(pzstats->vm_numa_event));
}
#endif
-#endif /* CONFIG_FLAT_NODE_MEM_MAP */
-}
-
-void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
- unsigned long node_start_pfn, unsigned long *zholes_size)
-{
- pg_data_t *pgdat = NODE_DATA(nid);
- unsigned long start_pfn = 0;
- unsigned long end_pfn = 0;
-
- /* pg_data_t should be reset to zero when it's allocated */
- WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
-
- pgdat->node_id = nid;
- pgdat->node_start_pfn = node_start_pfn;
- init_zone_allows_reclaim(nid);
-#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
- get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
-#endif
- calculate_node_totalpages(pgdat, start_pfn, end_pfn,
- zones_size, zholes_size);
-
- alloc_node_mem_map(pgdat);
-#ifdef CONFIG_FLAT_NODE_MEM_MAP
- printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
- nid, (unsigned long)pgdat,
- (unsigned long)pgdat->node_mem_map);
-#endif
-
- free_area_init_core(pgdat, start_pfn, end_pfn,
- zones_size, zholes_size);
-}
-
-#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
-
-#if MAX_NUMNODES > 1
-/*
- * Figure out the number of possible node ids.
- */
-void __init setup_nr_node_ids(void)
-{
- unsigned int node;
- unsigned int highest = 0;
-
- for_each_node_mask(node, node_possible_map)
- highest = node;
- nr_node_ids = highest + 1;
-}
-#endif
-
-/**
- * node_map_pfn_alignment - determine the maximum internode alignment
- *
- * This function should be called after node map is populated and sorted.
- * It calculates the maximum power of two alignment which can distinguish
- * all the nodes.
- *
- * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
- * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
- * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
- * shifted, 1GiB is enough and this function will indicate so.
- *
- * This is used to test whether pfn -> nid mapping of the chosen memory
- * model has fine enough granularity to avoid incorrect mapping for the
- * populated node map.
- *
- * Returns the determined alignment in pfn's. 0 if there is no alignment
- * requirement (single node).
- */
-unsigned long __init node_map_pfn_alignment(void)
-{
- unsigned long accl_mask = 0, last_end = 0;
- unsigned long start, end, mask;
- int last_nid = -1;
- int i, nid;
-
- for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
- if (!start || last_nid < 0 || last_nid == nid) {
- last_nid = nid;
- last_end = end;
- continue;
- }
-
- /*
- * Start with a mask granular enough to pin-point to the
- * start pfn and tick off bits one-by-one until it becomes
- * too coarse to separate the current node from the last.
- */
- mask = ~((1 << __ffs(start)) - 1);
- while (mask && last_end <= (start & (mask << 1)))
- mask <<= 1;
-
- /* accumulate all internode masks */
- accl_mask |= mask;
- }
-
- /* convert mask to number of pages */
- return ~accl_mask + 1;
-}
-
-/* Find the lowest pfn for a node */
-static unsigned long __init find_min_pfn_for_node(int nid)
-{
- unsigned long min_pfn = ULONG_MAX;
- unsigned long start_pfn;
- int i;
-
- for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
- min_pfn = min(min_pfn, start_pfn);
-
- if (min_pfn == ULONG_MAX) {
- printk(KERN_WARNING
- "Could not find start_pfn for node %d\n", nid);
- return 0;
- }
- return min_pfn;
+ for_each_online_pgdat(pgdat)
+ pgdat->per_cpu_nodestats =
+ alloc_percpu(struct per_cpu_nodestat);
}
-/**
- * find_min_pfn_with_active_regions - Find the minimum PFN registered
- *
- * It returns the minimum PFN based on information provided via
- * add_active_range().
- */
-unsigned long __init find_min_pfn_with_active_regions(void)
-{
- return find_min_pfn_for_node(MAX_NUMNODES);
-}
-
-/*
- * early_calculate_totalpages()
- * Sum pages in active regions for movable zone.
- * Populate N_MEMORY for calculating usable_nodes.
- */
-static unsigned long __init early_calculate_totalpages(void)
-{
- unsigned long totalpages = 0;
- unsigned long start_pfn, end_pfn;
- int i, nid;
-
- for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
- unsigned long pages = end_pfn - start_pfn;
-
- totalpages += pages;
- if (pages)
- node_set_state(nid, N_MEMORY);
- }
- return totalpages;
-}
-
-/*
- * Find the PFN the Movable zone begins in each node. Kernel memory
- * is spread evenly between nodes as long as the nodes have enough
- * memory. When they don't, some nodes will have more kernelcore than
- * others
- */
-static void __init find_zone_movable_pfns_for_nodes(void)
+__meminit void zone_pcp_init(struct zone *zone)
{
- int i, nid;
- unsigned long usable_startpfn;
- unsigned long kernelcore_node, kernelcore_remaining;
- /* save the state before borrow the nodemask */
- nodemask_t saved_node_state = node_states[N_MEMORY];
- unsigned long totalpages = early_calculate_totalpages();
- int usable_nodes = nodes_weight(node_states[N_MEMORY]);
-
- /*
- * If movablecore was specified, calculate what size of
- * kernelcore that corresponds so that memory usable for
- * any allocation type is evenly spread. If both kernelcore
- * and movablecore are specified, then the value of kernelcore
- * will be used for required_kernelcore if it's greater than
- * what movablecore would have allowed.
- */
- if (required_movablecore) {
- unsigned long corepages;
-
- /*
- * Round-up so that ZONE_MOVABLE is at least as large as what
- * was requested by the user
- */
- required_movablecore =
- roundup(required_movablecore, MAX_ORDER_NR_PAGES);
- corepages = totalpages - required_movablecore;
-
- required_kernelcore = max(required_kernelcore, corepages);
- }
-
- /* If kernelcore was not specified, there is no ZONE_MOVABLE */
- if (!required_kernelcore)
- goto out;
-
- /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
- find_usable_zone_for_movable();
- usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
-
-restart:
- /* Spread kernelcore memory as evenly as possible throughout nodes */
- kernelcore_node = required_kernelcore / usable_nodes;
- for_each_node_state(nid, N_MEMORY) {
- unsigned long start_pfn, end_pfn;
-
- /*
- * Recalculate kernelcore_node if the division per node
- * now exceeds what is necessary to satisfy the requested
- * amount of memory for the kernel
- */
- if (required_kernelcore < kernelcore_node)
- kernelcore_node = required_kernelcore / usable_nodes;
-
- /*
- * As the map is walked, we track how much memory is usable
- * by the kernel using kernelcore_remaining. When it is
- * 0, the rest of the node is usable by ZONE_MOVABLE
- */
- kernelcore_remaining = kernelcore_node;
-
- /* Go through each range of PFNs within this node */
- for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
- unsigned long size_pages;
-
- start_pfn = max(start_pfn, zone_movable_pfn[nid]);
- if (start_pfn >= end_pfn)
- continue;
-
- /* Account for what is only usable for kernelcore */
- if (start_pfn < usable_startpfn) {
- unsigned long kernel_pages;
- kernel_pages = min(end_pfn, usable_startpfn)
- - start_pfn;
-
- kernelcore_remaining -= min(kernel_pages,
- kernelcore_remaining);
- required_kernelcore -= min(kernel_pages,
- required_kernelcore);
-
- /* Continue if range is now fully accounted */
- if (end_pfn <= usable_startpfn) {
-
- /*
- * Push zone_movable_pfn to the end so
- * that if we have to rebalance
- * kernelcore across nodes, we will
- * not double account here
- */
- zone_movable_pfn[nid] = end_pfn;
- continue;
- }
- start_pfn = usable_startpfn;
- }
-
- /*
- * The usable PFN range for ZONE_MOVABLE is from
- * start_pfn->end_pfn. Calculate size_pages as the
- * number of pages used as kernelcore
- */
- size_pages = end_pfn - start_pfn;
- if (size_pages > kernelcore_remaining)
- size_pages = kernelcore_remaining;
- zone_movable_pfn[nid] = start_pfn + size_pages;
-
- /*
- * Some kernelcore has been met, update counts and
- * break if the kernelcore for this node has been
- * satisified
- */
- required_kernelcore -= min(required_kernelcore,
- size_pages);
- kernelcore_remaining -= size_pages;
- if (!kernelcore_remaining)
- break;
- }
- }
-
/*
- * If there is still required_kernelcore, we do another pass with one
- * less node in the count. This will push zone_movable_pfn[nid] further
- * along on the nodes that still have memory until kernelcore is
- * satisified
+ * per cpu subsystem is not up at this point. The following code
+ * relies on the ability of the linker to provide the
+ * offset of a (static) per cpu variable into the per cpu area.
*/
- usable_nodes--;
- if (usable_nodes && required_kernelcore > usable_nodes)
- goto restart;
-
- /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
- for (nid = 0; nid < MAX_NUMNODES; nid++)
- zone_movable_pfn[nid] =
- roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
-
-out:
- /* restore the node_state */
- node_states[N_MEMORY] = saved_node_state;
-}
-
-/* Any regular or high memory on that node ? */
-static void check_for_memory(pg_data_t *pgdat, int nid)
-{
- enum zone_type zone_type;
-
- if (N_MEMORY == N_NORMAL_MEMORY)
- return;
+ zone->per_cpu_pageset = &boot_pageset;
+ zone->per_cpu_zonestats = &boot_zonestats;
+ zone->pageset_high_min = BOOT_PAGESET_HIGH;
+ zone->pageset_high_max = BOOT_PAGESET_HIGH;
+ zone->pageset_batch = BOOT_PAGESET_BATCH;
- for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
- struct zone *zone = &pgdat->node_zones[zone_type];
- if (zone->present_pages) {
- node_set_state(nid, N_HIGH_MEMORY);
- if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
- zone_type <= ZONE_NORMAL)
- node_set_state(nid, N_NORMAL_MEMORY);
- break;
- }
- }
+ if (populated_zone(zone))
+ pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
+ zone->present_pages, zone_batchsize(zone));
}
-/**
- * free_area_init_nodes - Initialise all pg_data_t and zone data
- * @max_zone_pfn: an array of max PFNs for each zone
- *
- * This will call free_area_init_node() for each active node in the system.
- * Using the page ranges provided by add_active_range(), the size of each
- * zone in each node and their holes is calculated. If the maximum PFN
- * between two adjacent zones match, it is assumed that the zone is empty.
- * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
- * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
- * starts where the previous one ended. For example, ZONE_DMA32 starts
- * at arch_max_dma_pfn.
- */
-void __init free_area_init_nodes(unsigned long *max_zone_pfn)
-{
- unsigned long start_pfn, end_pfn;
- int i, nid;
-
- /* Record where the zone boundaries are */
- memset(arch_zone_lowest_possible_pfn, 0,
- sizeof(arch_zone_lowest_possible_pfn));
- memset(arch_zone_highest_possible_pfn, 0,
- sizeof(arch_zone_highest_possible_pfn));
- arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
- arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
- for (i = 1; i < MAX_NR_ZONES; i++) {
- if (i == ZONE_MOVABLE)
- continue;
- arch_zone_lowest_possible_pfn[i] =
- arch_zone_highest_possible_pfn[i-1];
- arch_zone_highest_possible_pfn[i] =
- max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
- }
- arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
- arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
-
- /* Find the PFNs that ZONE_MOVABLE begins at in each node */
- memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
- find_zone_movable_pfns_for_nodes();
-
- /* Print out the zone ranges */
- printk("Zone ranges:\n");
- for (i = 0; i < MAX_NR_ZONES; i++) {
- if (i == ZONE_MOVABLE)
- continue;
- printk(KERN_CONT " %-8s ", zone_names[i]);
- if (arch_zone_lowest_possible_pfn[i] ==
- arch_zone_highest_possible_pfn[i])
- printk(KERN_CONT "empty\n");
- else
- printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
- arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
- (arch_zone_highest_possible_pfn[i]
- << PAGE_SHIFT) - 1);
- }
-
- /* Print out the PFNs ZONE_MOVABLE begins at in each node */
- printk("Movable zone start for each node\n");
- for (i = 0; i < MAX_NUMNODES; i++) {
- if (zone_movable_pfn[i])
- printk(" Node %d: %#010lx\n", i,
- zone_movable_pfn[i] << PAGE_SHIFT);
- }
-
- /* Print out the early node map */
- printk("Early memory node ranges\n");
- for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
- printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
- start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
-
- /* Initialise every node */
- mminit_verify_pageflags_layout();
- setup_nr_node_ids();
- for_each_online_node(nid) {
- pg_data_t *pgdat = NODE_DATA(nid);
- free_area_init_node(nid, NULL,
- find_min_pfn_for_node(nid), NULL);
-
- /* Any memory on that node */
- if (pgdat->node_present_pages)
- node_set_state(nid, N_MEMORY);
- check_for_memory(pgdat, nid);
- }
-}
-
-static int __init cmdline_parse_core(char *p, unsigned long *core)
-{
- unsigned long long coremem;
- if (!p)
- return -EINVAL;
-
- coremem = memparse(p, &p);
- *core = coremem >> PAGE_SHIFT;
-
- /* Paranoid check that UL is enough for the coremem value */
- WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
-
- return 0;
-}
-
-/*
- * kernelcore=size sets the amount of memory for use for allocations that
- * cannot be reclaimed or migrated.
- */
-static int __init cmdline_parse_kernelcore(char *p)
-{
- return cmdline_parse_core(p, &required_kernelcore);
-}
-
-/*
- * movablecore=size sets the amount of memory for use for allocations that
- * can be reclaimed or migrated.
- */
-static int __init cmdline_parse_movablecore(char *p)
-{
- return cmdline_parse_core(p, &required_movablecore);
-}
-
-early_param("kernelcore", cmdline_parse_kernelcore);
-early_param("movablecore", cmdline_parse_movablecore);
-
-#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
+static void setup_per_zone_lowmem_reserve(void);
void adjust_managed_page_count(struct page *page, long count)
{
- spin_lock(&managed_page_count_lock);
- page_zone(page)->managed_pages += count;
- totalram_pages += count;
-#ifdef CONFIG_HIGHMEM
- if (PageHighMem(page))
- totalhigh_pages += count;
-#endif
- spin_unlock(&managed_page_count_lock);
+ atomic_long_add(count, &page_zone(page)->managed_pages);
+ totalram_pages_add(count);
+ setup_per_zone_lowmem_reserve();
}
EXPORT_SYMBOL(adjust_managed_page_count);
-unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
+unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
{
void *pos;
unsigned long pages = 0;
@@ -5241,138 +6203,97 @@ unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
start = (void *)PAGE_ALIGN((unsigned long)start);
end = (void *)((unsigned long)end & PAGE_MASK);
for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
+ struct page *page = virt_to_page(pos);
+ void *direct_map_addr;
+
+ /*
+ * 'direct_map_addr' might be different from 'pos'
+ * because some architectures' virt_to_page()
+ * work with aliases. Getting the direct map
+ * address ensures that we get a _writeable_
+ * alias for the memset().
+ */
+ direct_map_addr = page_address(page);
+ /*
+ * Perform a kasan-unchecked memset() since this memory
+ * has not been initialized.
+ */
+ direct_map_addr = kasan_reset_tag(direct_map_addr);
if ((unsigned int)poison <= 0xFF)
- memset(pos, poison, PAGE_SIZE);
- free_reserved_page(virt_to_page(pos));
+ memset(direct_map_addr, poison, PAGE_SIZE);
+
+ free_reserved_page(page);
}
if (pages && s)
- pr_info("Freeing %s memory: %ldK (%p - %p)\n",
- s, pages << (PAGE_SHIFT - 10), start, end);
+ pr_info("Freeing %s memory: %ldK\n", s, K(pages));
return pages;
}
-EXPORT_SYMBOL(free_reserved_area);
-#ifdef CONFIG_HIGHMEM
-void free_highmem_page(struct page *page)
+void free_reserved_page(struct page *page)
{
- __free_reserved_page(page);
- totalram_pages++;
- page_zone(page)->managed_pages++;
- totalhigh_pages++;
+ clear_page_tag_ref(page);
+ ClearPageReserved(page);
+ init_page_count(page);
+ __free_page(page);
+ adjust_managed_page_count(page, 1);
}
-#endif
-
+EXPORT_SYMBOL(free_reserved_page);
-void __init mem_init_print_info(const char *str)
+static int page_alloc_cpu_dead(unsigned int cpu)
{
- unsigned long physpages, codesize, datasize, rosize, bss_size;
- unsigned long init_code_size, init_data_size;
+ struct zone *zone;
- physpages = get_num_physpages();
- codesize = _etext - _stext;
- datasize = _edata - _sdata;
- rosize = __end_rodata - __start_rodata;
- bss_size = __bss_stop - __bss_start;
- init_data_size = __init_end - __init_begin;
- init_code_size = _einittext - _sinittext;
+ lru_add_drain_cpu(cpu);
+ mlock_drain_remote(cpu);
+ drain_pages(cpu);
/*
- * Detect special cases and adjust section sizes accordingly:
- * 1) .init.* may be embedded into .data sections
- * 2) .init.text.* may be out of [__init_begin, __init_end],
- * please refer to arch/tile/kernel/vmlinux.lds.S.
- * 3) .rodata.* may be embedded into .text or .data sections.
- */
-#define adj_init_size(start, end, size, pos, adj) \
- if (start <= pos && pos < end && size > adj) \
- size -= adj;
-
- adj_init_size(__init_begin, __init_end, init_data_size,
- _sinittext, init_code_size);
- adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
- adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
- adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
- adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
-
-#undef adj_init_size
-
- printk("Memory: %luK/%luK available "
- "(%luK kernel code, %luK rwdata, %luK rodata, "
- "%luK init, %luK bss, %luK reserved"
-#ifdef CONFIG_HIGHMEM
- ", %luK highmem"
-#endif
- "%s%s)\n",
- nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
- codesize >> 10, datasize >> 10, rosize >> 10,
- (init_data_size + init_code_size) >> 10, bss_size >> 10,
- (physpages - totalram_pages) << (PAGE_SHIFT-10),
-#ifdef CONFIG_HIGHMEM
- totalhigh_pages << (PAGE_SHIFT-10),
-#endif
- str ? ", " : "", str ? str : "");
-}
+ * Spill the event counters of the dead processor
+ * into the current processors event counters.
+ * This artificially elevates the count of the current
+ * processor.
+ */
+ vm_events_fold_cpu(cpu);
-/**
- * set_dma_reserve - set the specified number of pages reserved in the first zone
- * @new_dma_reserve: The number of pages to mark reserved
- *
- * The per-cpu batchsize and zone watermarks are determined by present_pages.
- * In the DMA zone, a significant percentage may be consumed by kernel image
- * and other unfreeable allocations which can skew the watermarks badly. This
- * function may optionally be used to account for unfreeable pages in the
- * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
- * smaller per-cpu batchsize.
- */
-void __init set_dma_reserve(unsigned long new_dma_reserve)
-{
- dma_reserve = new_dma_reserve;
-}
+ /*
+ * Zero the differential counters of the dead processor
+ * so that the vm statistics are consistent.
+ *
+ * This is only okay since the processor is dead and cannot
+ * race with what we are doing.
+ */
+ cpu_vm_stats_fold(cpu);
-void __init free_area_init(unsigned long *zones_size)
-{
- free_area_init_node(0, zones_size,
- __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
+ for_each_populated_zone(zone)
+ zone_pcp_update(zone, 0);
+
+ return 0;
}
-static int page_alloc_cpu_notify(struct notifier_block *self,
- unsigned long action, void *hcpu)
+static int page_alloc_cpu_online(unsigned int cpu)
{
- int cpu = (unsigned long)hcpu;
-
- if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
- lru_add_drain_cpu(cpu);
- drain_pages(cpu);
-
- /*
- * Spill the event counters of the dead processor
- * into the current processors event counters.
- * This artificially elevates the count of the current
- * processor.
- */
- vm_events_fold_cpu(cpu);
+ struct zone *zone;
- /*
- * Zero the differential counters of the dead processor
- * so that the vm statistics are consistent.
- *
- * This is only okay since the processor is dead and cannot
- * race with what we are doing.
- */
- refresh_cpu_vm_stats(cpu);
- }
- return NOTIFY_OK;
+ for_each_populated_zone(zone)
+ zone_pcp_update(zone, 1);
+ return 0;
}
-void __init page_alloc_init(void)
+void __init page_alloc_init_cpuhp(void)
{
- hotcpu_notifier(page_alloc_cpu_notify, 0);
+ int ret;
+
+ ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
+ "mm/page_alloc:pcp",
+ page_alloc_cpu_online,
+ page_alloc_cpu_dead);
+ WARN_ON(ret < 0);
}
/*
- * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
+ * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
* or min_free_kbytes changes.
*/
static void calculate_totalreserve_pages(void)
@@ -5382,69 +6303,86 @@ static void calculate_totalreserve_pages(void)
enum zone_type i, j;
for_each_online_pgdat(pgdat) {
+
+ pgdat->totalreserve_pages = 0;
+
for (i = 0; i < MAX_NR_ZONES; i++) {
struct zone *zone = pgdat->node_zones + i;
- unsigned long max = 0;
+ long max = 0;
+ unsigned long managed_pages = zone_managed_pages(zone);
- /* Find valid and maximum lowmem_reserve in the zone */
- for (j = i; j < MAX_NR_ZONES; j++) {
- if (zone->lowmem_reserve[j] > max)
- max = zone->lowmem_reserve[j];
- }
+ /*
+ * lowmem_reserve[j] is monotonically non-decreasing
+ * in j for a given zone (see
+ * setup_per_zone_lowmem_reserve()). The maximum
+ * valid reserve lives at the highest index with a
+ * non-zero value, so scan backwards and stop at the
+ * first hit.
+ */
+ for (j = MAX_NR_ZONES - 1; j > i; j--) {
+ if (!zone->lowmem_reserve[j])
+ continue;
+ max = zone->lowmem_reserve[j];
+ break;
+ }
/* we treat the high watermark as reserved pages. */
max += high_wmark_pages(zone);
- if (max > zone->managed_pages)
- max = zone->managed_pages;
+ max = min_t(unsigned long, max, managed_pages);
+
+ pgdat->totalreserve_pages += max;
+
reserve_pages += max;
- /*
- * Lowmem reserves are not available to
- * GFP_HIGHUSER page cache allocations and
- * kswapd tries to balance zones to their high
- * watermark. As a result, neither should be
- * regarded as dirtyable memory, to prevent a
- * situation where reclaim has to clean pages
- * in order to balance the zones.
- */
- zone->dirty_balance_reserve = max;
}
}
- dirty_balance_reserve = reserve_pages;
totalreserve_pages = reserve_pages;
+ trace_mm_calculate_totalreserve_pages(totalreserve_pages);
}
/*
* setup_per_zone_lowmem_reserve - called whenever
- * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
+ * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
* has a correct pages reserved value, so an adequate number of
* pages are left in the zone after a successful __alloc_pages().
*/
static void setup_per_zone_lowmem_reserve(void)
{
struct pglist_data *pgdat;
- enum zone_type j, idx;
-
+ enum zone_type i, j;
+ /*
+ * For a given zone node_zones[i], lowmem_reserve[j] (j > i)
+ * represents how many pages in zone i must effectively be kept
+ * in reserve when deciding whether an allocation class that is
+ * allowed to allocate from zones up to j may fall back into
+ * zone i.
+ *
+ * As j increases, the allocation class can use a strictly larger
+ * set of fallback zones and therefore must not be allowed to
+ * deplete low zones more aggressively than a less flexible one.
+ * As a result, lowmem_reserve[j] is required to be monotonically
+ * non-decreasing in j for each zone i. Callers such as
+ * calculate_totalreserve_pages() rely on this monotonicity when
+ * selecting the maximum reserve entry.
+ */
for_each_online_pgdat(pgdat) {
- for (j = 0; j < MAX_NR_ZONES; j++) {
- struct zone *zone = pgdat->node_zones + j;
- unsigned long managed_pages = zone->managed_pages;
-
- zone->lowmem_reserve[j] = 0;
-
- idx = j;
- while (idx) {
- struct zone *lower_zone;
-
- idx--;
-
- if (sysctl_lowmem_reserve_ratio[idx] < 1)
- sysctl_lowmem_reserve_ratio[idx] = 1;
-
- lower_zone = pgdat->node_zones + idx;
- lower_zone->lowmem_reserve[j] = managed_pages /
- sysctl_lowmem_reserve_ratio[idx];
- managed_pages += lower_zone->managed_pages;
+ for (i = 0; i < MAX_NR_ZONES - 1; i++) {
+ struct zone *zone = &pgdat->node_zones[i];
+ int ratio = sysctl_lowmem_reserve_ratio[i];
+ bool clear = !ratio || !zone_managed_pages(zone);
+ unsigned long managed_pages = 0;
+
+ for (j = i + 1; j < MAX_NR_ZONES; j++) {
+ struct zone *upper_zone = &pgdat->node_zones[j];
+
+ managed_pages += zone_managed_pages(upper_zone);
+
+ if (clear)
+ zone->lowmem_reserve[j] = 0;
+ else
+ zone->lowmem_reserve[j] = managed_pages / ratio;
+ trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
+ zone->lowmem_reserve[j]);
}
}
}
@@ -5460,45 +6398,56 @@ static void __setup_per_zone_wmarks(void)
struct zone *zone;
unsigned long flags;
- /* Calculate total number of !ZONE_HIGHMEM pages */
+ /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
for_each_zone(zone) {
- if (!is_highmem(zone))
- lowmem_pages += zone->managed_pages;
+ if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
+ lowmem_pages += zone_managed_pages(zone);
}
for_each_zone(zone) {
u64 tmp;
spin_lock_irqsave(&zone->lock, flags);
- tmp = (u64)pages_min * zone->managed_pages;
- do_div(tmp, lowmem_pages);
- if (is_highmem(zone)) {
+ tmp = (u64)pages_min * zone_managed_pages(zone);
+ tmp = div64_ul(tmp, lowmem_pages);
+ if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
/*
* __GFP_HIGH and PF_MEMALLOC allocations usually don't
- * need highmem pages, so cap pages_min to a small
- * value here.
+ * need highmem and movable zones pages, so cap pages_min
+ * to a small value here.
*
* The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
- * deltas controls asynch page reclaim, and so should
- * not be capped for highmem.
+ * deltas control async page reclaim, and so should
+ * not be capped for highmem and movable zones.
*/
unsigned long min_pages;
- min_pages = zone->managed_pages / 1024;
+ min_pages = zone_managed_pages(zone) / 1024;
min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
- zone->watermark[WMARK_MIN] = min_pages;
+ zone->_watermark[WMARK_MIN] = min_pages;
} else {
/*
* If it's a lowmem zone, reserve a number of pages
* proportionate to the zone's size.
*/
- zone->watermark[WMARK_MIN] = tmp;
+ zone->_watermark[WMARK_MIN] = tmp;
}
- zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
- zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
+ /*
+ * Set the kswapd watermarks distance according to the
+ * scale factor in proportion to available memory, but
+ * ensure a minimum size on small systems.
+ */
+ tmp = max_t(u64, tmp >> 2,
+ mult_frac(zone_managed_pages(zone),
+ watermark_scale_factor, 10000));
+
+ zone->watermark_boost = 0;
+ zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
+ zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
+ zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
+ trace_mm_setup_per_zone_wmarks(zone);
- setup_zone_migrate_reserve(zone);
spin_unlock_irqrestore(&zone->lock, flags);
}
@@ -5515,62 +6464,29 @@ static void __setup_per_zone_wmarks(void)
*/
void setup_per_zone_wmarks(void)
{
- mutex_lock(&zonelists_mutex);
- __setup_per_zone_wmarks();
- mutex_unlock(&zonelists_mutex);
-}
-
-/*
- * The inactive anon list should be small enough that the VM never has to
- * do too much work, but large enough that each inactive page has a chance
- * to be referenced again before it is swapped out.
- *
- * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
- * INACTIVE_ANON pages on this zone's LRU, maintained by the
- * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
- * the anonymous pages are kept on the inactive list.
- *
- * total target max
- * memory ratio inactive anon
- * -------------------------------------
- * 10MB 1 5MB
- * 100MB 1 50MB
- * 1GB 3 250MB
- * 10GB 10 0.9GB
- * 100GB 31 3GB
- * 1TB 101 10GB
- * 10TB 320 32GB
- */
-static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
-{
- unsigned int gb, ratio;
-
- /* Zone size in gigabytes */
- gb = zone->managed_pages >> (30 - PAGE_SHIFT);
- if (gb)
- ratio = int_sqrt(10 * gb);
- else
- ratio = 1;
-
- zone->inactive_ratio = ratio;
-}
-
-static void __meminit setup_per_zone_inactive_ratio(void)
-{
struct zone *zone;
+ static DEFINE_SPINLOCK(lock);
+
+ spin_lock(&lock);
+ __setup_per_zone_wmarks();
+ spin_unlock(&lock);
+ /*
+ * The watermark size have changed so update the pcpu batch
+ * and high limits or the limits may be inappropriate.
+ */
for_each_zone(zone)
- calculate_zone_inactive_ratio(zone);
+ zone_pcp_update(zone, 0);
}
/*
* Initialise min_free_kbytes.
*
* For small machines we want it small (128k min). For large machines
- * we want it large (64MB max). But it is not linear, because network
+ * we want it large (256MB max). But it is not linear, because network
* bandwidth does not increase linearly with machine size. We use
*
- * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
+ * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
* min_free_kbytes = sqrt(lowmem_kbytes * 16)
*
* which yields
@@ -5587,7 +6503,7 @@ static void __meminit setup_per_zone_inactive_ratio(void)
* 8192MB: 11584k
* 16384MB: 16384k
*/
-int __meminit init_per_zone_wmark_min(void)
+void calculate_min_free_kbytes(void)
{
unsigned long lowmem_kbytes;
int new_min_free_kbytes;
@@ -5595,33 +6511,46 @@ int __meminit init_per_zone_wmark_min(void)
lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
- if (new_min_free_kbytes > user_min_free_kbytes) {
- min_free_kbytes = new_min_free_kbytes;
- if (min_free_kbytes < 128)
- min_free_kbytes = 128;
- if (min_free_kbytes > 65536)
- min_free_kbytes = 65536;
- } else {
+ if (new_min_free_kbytes > user_min_free_kbytes)
+ min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
+ else
pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
new_min_free_kbytes, user_min_free_kbytes);
- }
+
+}
+
+int __meminit init_per_zone_wmark_min(void)
+{
+ calculate_min_free_kbytes();
setup_per_zone_wmarks();
refresh_zone_stat_thresholds();
setup_per_zone_lowmem_reserve();
- setup_per_zone_inactive_ratio();
+
+#ifdef CONFIG_NUMA
+ setup_min_unmapped_ratio();
+ setup_min_slab_ratio();
+#endif
+
+ khugepaged_min_free_kbytes_update();
+
return 0;
}
-module_init(init_per_zone_wmark_min)
+postcore_initcall(init_per_zone_wmark_min)
/*
- * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
+ * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
* that we can call two helper functions whenever min_free_kbytes
* changes.
*/
-int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
- void __user *buffer, size_t *length, loff_t *ppos)
+static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
+ void *buffer, size_t *length, loff_t *ppos)
{
- proc_dointvec(table, write, buffer, length, ppos);
+ int rc;
+
+ rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
+ if (rc)
+ return rc;
+
if (write) {
user_min_free_kbytes = min_free_kbytes;
setup_per_zone_wmarks();
@@ -5629,36 +6558,74 @@ int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
return 0;
}
+static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
+ void *buffer, size_t *length, loff_t *ppos)
+{
+ int rc;
+
+ rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
+ if (rc)
+ return rc;
+
+ if (write)
+ setup_per_zone_wmarks();
+
+ return 0;
+}
+
#ifdef CONFIG_NUMA
-int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
- void __user *buffer, size_t *length, loff_t *ppos)
+static void setup_min_unmapped_ratio(void)
{
+ pg_data_t *pgdat;
struct zone *zone;
+
+ for_each_online_pgdat(pgdat)
+ pgdat->min_unmapped_pages = 0;
+
+ for_each_zone(zone)
+ zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
+ sysctl_min_unmapped_ratio) / 100;
+}
+
+
+static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
+ void *buffer, size_t *length, loff_t *ppos)
+{
int rc;
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
if (rc)
return rc;
- for_each_zone(zone)
- zone->min_unmapped_pages = (zone->managed_pages *
- sysctl_min_unmapped_ratio) / 100;
+ setup_min_unmapped_ratio();
+
return 0;
}
-int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
- void __user *buffer, size_t *length, loff_t *ppos)
+static void setup_min_slab_ratio(void)
{
+ pg_data_t *pgdat;
struct zone *zone;
+
+ for_each_online_pgdat(pgdat)
+ pgdat->min_slab_pages = 0;
+
+ for_each_zone(zone)
+ zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
+ sysctl_min_slab_ratio) / 100;
+}
+
+static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
+ void *buffer, size_t *length, loff_t *ppos)
+{
int rc;
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
if (rc)
return rc;
- for_each_zone(zone)
- zone->min_slab_pages = (zone->managed_pages *
- sysctl_min_slab_ratio) / 100;
+ setup_min_slab_ratio();
+
return 0;
}
#endif
@@ -5672,337 +6639,157 @@ int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
* minimum watermarks. The lowmem reserve ratio can only make sense
* if in function of the boot time zone sizes.
*/
-int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
- void __user *buffer, size_t *length, loff_t *ppos)
+static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
+ int write, void *buffer, size_t *length, loff_t *ppos)
{
+ int i;
+
proc_dointvec_minmax(table, write, buffer, length, ppos);
+
+ for (i = 0; i < MAX_NR_ZONES; i++) {
+ if (sysctl_lowmem_reserve_ratio[i] < 1)
+ sysctl_lowmem_reserve_ratio[i] = 0;
+ }
+
setup_per_zone_lowmem_reserve();
return 0;
}
/*
- * percpu_pagelist_fraction - changes the pcp->high for each zone on each
- * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
- * can have before it gets flushed back to buddy allocator.
+ * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
+ * cpu. It is the fraction of total pages in each zone that a hot per cpu
+ * pagelist can have before it gets flushed back to buddy allocator.
*/
-int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
- void __user *buffer, size_t *length, loff_t *ppos)
+static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
+ int write, void *buffer, size_t *length, loff_t *ppos)
{
struct zone *zone;
- unsigned int cpu;
+ int old_percpu_pagelist_high_fraction;
int ret;
- ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
- if (!write || (ret < 0))
- return ret;
-
mutex_lock(&pcp_batch_high_lock);
- for_each_populated_zone(zone) {
- unsigned long high;
- high = zone->managed_pages / percpu_pagelist_fraction;
- for_each_possible_cpu(cpu)
- pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
- high);
- }
- mutex_unlock(&pcp_batch_high_lock);
- return 0;
-}
-
-int hashdist = HASHDIST_DEFAULT;
+ old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
-#ifdef CONFIG_NUMA
-static int __init set_hashdist(char *str)
-{
- if (!str)
- return 0;
- hashdist = simple_strtoul(str, &str, 0);
- return 1;
-}
-__setup("hashdist=", set_hashdist);
-#endif
-
-/*
- * allocate a large system hash table from bootmem
- * - it is assumed that the hash table must contain an exact power-of-2
- * quantity of entries
- * - limit is the number of hash buckets, not the total allocation size
- */
-void *__init alloc_large_system_hash(const char *tablename,
- unsigned long bucketsize,
- unsigned long numentries,
- int scale,
- int flags,
- unsigned int *_hash_shift,
- unsigned int *_hash_mask,
- unsigned long low_limit,
- unsigned long high_limit)
-{
- unsigned long long max = high_limit;
- unsigned long log2qty, size;
- void *table = NULL;
-
- /* allow the kernel cmdline to have a say */
- if (!numentries) {
- /* round applicable memory size up to nearest megabyte */
- numentries = nr_kernel_pages;
- numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
- numentries >>= 20 - PAGE_SHIFT;
- numentries <<= 20 - PAGE_SHIFT;
-
- /* limit to 1 bucket per 2^scale bytes of low memory */
- if (scale > PAGE_SHIFT)
- numentries >>= (scale - PAGE_SHIFT);
- else
- numentries <<= (PAGE_SHIFT - scale);
-
- /* Make sure we've got at least a 0-order allocation.. */
- if (unlikely(flags & HASH_SMALL)) {
- /* Makes no sense without HASH_EARLY */
- WARN_ON(!(flags & HASH_EARLY));
- if (!(numentries >> *_hash_shift)) {
- numentries = 1UL << *_hash_shift;
- BUG_ON(!numentries);
- }
- } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
- numentries = PAGE_SIZE / bucketsize;
- }
- numentries = roundup_pow_of_two(numentries);
+ ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
+ if (!write || ret < 0)
+ goto out;
- /* limit allocation size to 1/16 total memory by default */
- if (max == 0) {
- max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
- do_div(max, bucketsize);
+ /* Sanity checking to avoid pcp imbalance */
+ if (percpu_pagelist_high_fraction &&
+ percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
+ percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
+ ret = -EINVAL;
+ goto out;
}
- max = min(max, 0x80000000ULL);
-
- if (numentries < low_limit)
- numentries = low_limit;
- if (numentries > max)
- numentries = max;
-
- log2qty = ilog2(numentries);
-
- do {
- size = bucketsize << log2qty;
- if (flags & HASH_EARLY)
- table = alloc_bootmem_nopanic(size);
- else if (hashdist)
- table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
- else {
- /*
- * If bucketsize is not a power-of-two, we may free
- * some pages at the end of hash table which
- * alloc_pages_exact() automatically does
- */
- if (get_order(size) < MAX_ORDER) {
- table = alloc_pages_exact(size, GFP_ATOMIC);
- kmemleak_alloc(table, size, 1, GFP_ATOMIC);
- }
- }
- } while (!table && size > PAGE_SIZE && --log2qty);
-
- if (!table)
- panic("Failed to allocate %s hash table\n", tablename);
-
- printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
- tablename,
- (1UL << log2qty),
- ilog2(size) - PAGE_SHIFT,
- size);
-
- if (_hash_shift)
- *_hash_shift = log2qty;
- if (_hash_mask)
- *_hash_mask = (1 << log2qty) - 1;
-
- return table;
-}
-/* Return a pointer to the bitmap storing bits affecting a block of pages */
-static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
- unsigned long pfn)
-{
-#ifdef CONFIG_SPARSEMEM
- return __pfn_to_section(pfn)->pageblock_flags;
-#else
- return zone->pageblock_flags;
-#endif /* CONFIG_SPARSEMEM */
-}
+ /* No change? */
+ if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
+ goto out;
-static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
-{
-#ifdef CONFIG_SPARSEMEM
- pfn &= (PAGES_PER_SECTION-1);
- return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
-#else
- pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
- return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
-#endif /* CONFIG_SPARSEMEM */
+ for_each_populated_zone(zone)
+ zone_set_pageset_high_and_batch(zone, 0);
+out:
+ mutex_unlock(&pcp_batch_high_lock);
+ return ret;
}
-/**
- * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
- * @page: The page within the block of interest
- * @start_bitidx: The first bit of interest to retrieve
- * @end_bitidx: The last bit of interest
- * returns pageblock_bits flags
- */
-unsigned long get_pageblock_flags_group(struct page *page,
- int start_bitidx, int end_bitidx)
-{
- struct zone *zone;
- unsigned long *bitmap;
- unsigned long pfn, bitidx;
- unsigned long flags = 0;
- unsigned long value = 1;
-
- zone = page_zone(page);
- pfn = page_to_pfn(page);
- bitmap = get_pageblock_bitmap(zone, pfn);
- bitidx = pfn_to_bitidx(zone, pfn);
-
- for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
- if (test_bit(bitidx + start_bitidx, bitmap))
- flags |= value;
-
- return flags;
-}
+static const struct ctl_table page_alloc_sysctl_table[] = {
+ {
+ .procname = "min_free_kbytes",
+ .data = &min_free_kbytes,
+ .maxlen = sizeof(min_free_kbytes),
+ .mode = 0644,
+ .proc_handler = min_free_kbytes_sysctl_handler,
+ .extra1 = SYSCTL_ZERO,
+ },
+ {
+ .procname = "watermark_boost_factor",
+ .data = &watermark_boost_factor,
+ .maxlen = sizeof(watermark_boost_factor),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ },
+ {
+ .procname = "watermark_scale_factor",
+ .data = &watermark_scale_factor,
+ .maxlen = sizeof(watermark_scale_factor),
+ .mode = 0644,
+ .proc_handler = watermark_scale_factor_sysctl_handler,
+ .extra1 = SYSCTL_ONE,
+ .extra2 = SYSCTL_THREE_THOUSAND,
+ },
+ {
+ .procname = "defrag_mode",
+ .data = &defrag_mode,
+ .maxlen = sizeof(defrag_mode),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE,
+ },
+ {
+ .procname = "percpu_pagelist_high_fraction",
+ .data = &percpu_pagelist_high_fraction,
+ .maxlen = sizeof(percpu_pagelist_high_fraction),
+ .mode = 0644,
+ .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
+ .extra1 = SYSCTL_ZERO,
+ },
+ {
+ .procname = "lowmem_reserve_ratio",
+ .data = &sysctl_lowmem_reserve_ratio,
+ .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
+ .mode = 0644,
+ .proc_handler = lowmem_reserve_ratio_sysctl_handler,
+ },
+#ifdef CONFIG_NUMA
+ {
+ .procname = "numa_zonelist_order",
+ .data = &numa_zonelist_order,
+ .maxlen = NUMA_ZONELIST_ORDER_LEN,
+ .mode = 0644,
+ .proc_handler = numa_zonelist_order_handler,
+ },
+ {
+ .procname = "min_unmapped_ratio",
+ .data = &sysctl_min_unmapped_ratio,
+ .maxlen = sizeof(sysctl_min_unmapped_ratio),
+ .mode = 0644,
+ .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE_HUNDRED,
+ },
+ {
+ .procname = "min_slab_ratio",
+ .data = &sysctl_min_slab_ratio,
+ .maxlen = sizeof(sysctl_min_slab_ratio),
+ .mode = 0644,
+ .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_ONE_HUNDRED,
+ },
+#endif
+};
-/**
- * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
- * @page: The page within the block of interest
- * @start_bitidx: The first bit of interest
- * @end_bitidx: The last bit of interest
- * @flags: The flags to set
- */
-void set_pageblock_flags_group(struct page *page, unsigned long flags,
- int start_bitidx, int end_bitidx)
+void __init page_alloc_sysctl_init(void)
{
- struct zone *zone;
- unsigned long *bitmap;
- unsigned long pfn, bitidx;
- unsigned long value = 1;
-
- zone = page_zone(page);
- pfn = page_to_pfn(page);
- bitmap = get_pageblock_bitmap(zone, pfn);
- bitidx = pfn_to_bitidx(zone, pfn);
- VM_BUG_ON(!zone_spans_pfn(zone, pfn));
-
- for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
- if (flags & value)
- __set_bit(bitidx + start_bitidx, bitmap);
- else
- __clear_bit(bitidx + start_bitidx, bitmap);
+ register_sysctl_init("vm", page_alloc_sysctl_table);
}
-/*
- * This function checks whether pageblock includes unmovable pages or not.
- * If @count is not zero, it is okay to include less @count unmovable pages
- *
- * PageLRU check wihtout isolation or lru_lock could race so that
- * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
- * expect this function should be exact.
- */
-bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
- bool skip_hwpoisoned_pages)
+#ifdef CONFIG_CONTIG_ALLOC
+/* Usage: See admin-guide/dynamic-debug-howto.rst */
+static void alloc_contig_dump_pages(struct list_head *page_list)
{
- unsigned long pfn, iter, found;
- int mt;
+ DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
- /*
- * For avoiding noise data, lru_add_drain_all() should be called
- * If ZONE_MOVABLE, the zone never contains unmovable pages
- */
- if (zone_idx(zone) == ZONE_MOVABLE)
- return false;
- mt = get_pageblock_migratetype(page);
- if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
- return false;
-
- pfn = page_to_pfn(page);
- for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
- unsigned long check = pfn + iter;
-
- if (!pfn_valid_within(check))
- continue;
-
- page = pfn_to_page(check);
- /*
- * We can't use page_count without pin a page
- * because another CPU can free compound page.
- * This check already skips compound tails of THP
- * because their page->_count is zero at all time.
- */
- if (!atomic_read(&page->_count)) {
- if (PageBuddy(page))
- iter += (1 << page_order(page)) - 1;
- continue;
- }
-
- /*
- * The HWPoisoned page may be not in buddy system, and
- * page_count() is not 0.
- */
- if (skip_hwpoisoned_pages && PageHWPoison(page))
- continue;
+ if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
+ struct page *page;
- if (!PageLRU(page))
- found++;
- /*
- * If there are RECLAIMABLE pages, we need to check it.
- * But now, memory offline itself doesn't call shrink_slab()
- * and it still to be fixed.
- */
- /*
- * If the page is not RAM, page_count()should be 0.
- * we don't need more check. This is an _used_ not-movable page.
- *
- * The problematic thing here is PG_reserved pages. PG_reserved
- * is set to both of a memory hole page and a _used_ kernel
- * page at boot.
- */
- if (found > count)
- return true;
+ dump_stack();
+ list_for_each_entry(page, page_list, lru)
+ dump_page(page, "migration failure");
}
- return false;
-}
-
-bool is_pageblock_removable_nolock(struct page *page)
-{
- struct zone *zone;
- unsigned long pfn;
-
- /*
- * We have to be careful here because we are iterating over memory
- * sections which are not zone aware so we might end up outside of
- * the zone but still within the section.
- * We have to take care about the node as well. If the node is offline
- * its NODE_DATA will be NULL - see page_zone.
- */
- if (!node_online(page_to_nid(page)))
- return false;
-
- zone = page_zone(page);
- pfn = page_to_pfn(page);
- if (!zone_spans_pfn(zone, pfn))
- return false;
-
- return !has_unmovable_pages(zone, page, 0, true);
-}
-
-#ifdef CONFIG_CMA
-
-static unsigned long pfn_max_align_down(unsigned long pfn)
-{
- return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
- pageblock_nr_pages) - 1);
-}
-
-static unsigned long pfn_max_align_up(unsigned long pfn)
-{
- return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
- pageblock_nr_pages));
}
/* [start, end) must belong to a single zone. */
@@ -6010,12 +6797,17 @@ static int __alloc_contig_migrate_range(struct compact_control *cc,
unsigned long start, unsigned long end)
{
/* This function is based on compact_zone() from compaction.c. */
- unsigned long nr_reclaimed;
+ unsigned int nr_reclaimed;
unsigned long pfn = start;
unsigned int tries = 0;
int ret = 0;
+ struct migration_target_control mtc = {
+ .nid = zone_to_nid(cc->zone),
+ .gfp_mask = cc->gfp_mask,
+ .reason = MR_CONTIG_RANGE,
+ };
- migrate_prep();
+ lru_cache_disable();
while (pfn < end || !list_empty(&cc->migratepages)) {
if (fatal_signal_pending(current)) {
@@ -6025,15 +6817,13 @@ static int __alloc_contig_migrate_range(struct compact_control *cc,
if (list_empty(&cc->migratepages)) {
cc->nr_migratepages = 0;
- pfn = isolate_migratepages_range(cc->zone, cc,
- pfn, end, true);
- if (!pfn) {
- ret = -EINTR;
+ ret = isolate_migratepages_range(cc, pfn, end);
+ if (ret && ret != -EAGAIN)
break;
- }
+ pfn = cc->migrate_pfn;
tries = 0;
} else if (++tries == 5) {
- ret = ret < 0 ? ret : -EBUSY;
+ ret = -EBUSY;
break;
}
@@ -6041,13 +6831,84 @@ static int __alloc_contig_migrate_range(struct compact_control *cc,
&cc->migratepages);
cc->nr_migratepages -= nr_reclaimed;
- ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
- 0, MIGRATE_SYNC, MR_CMA);
+ ret = migrate_pages(&cc->migratepages, alloc_migration_target,
+ NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
+
+ /*
+ * On -ENOMEM, migrate_pages() bails out right away. It is pointless
+ * to retry again over this error, so do the same here.
+ */
+ if (ret == -ENOMEM)
+ break;
}
+
+ lru_cache_enable();
if (ret < 0) {
+ if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
+ alloc_contig_dump_pages(&cc->migratepages);
putback_movable_pages(&cc->migratepages);
- return ret;
}
+
+ return (ret < 0) ? ret : 0;
+}
+
+static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
+{
+ int order;
+
+ for (order = 0; order < NR_PAGE_ORDERS; order++) {
+ struct page *page, *next;
+ int nr_pages = 1 << order;
+
+ list_for_each_entry_safe(page, next, &list[order], lru) {
+ int i;
+
+ post_alloc_hook(page, order, gfp_mask);
+ set_page_refcounted(page);
+ if (!order)
+ continue;
+
+ split_page(page, order);
+
+ /* Add all subpages to the order-0 head, in sequence. */
+ list_del(&page->lru);
+ for (i = 0; i < nr_pages; i++)
+ list_add_tail(&page[i].lru, &list[0]);
+ }
+ }
+}
+
+static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
+{
+ const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
+ const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
+ __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
+ const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
+
+ /*
+ * We are given the range to allocate; node, mobility and placement
+ * hints are irrelevant at this point. We'll simply ignore them.
+ */
+ gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
+ __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
+
+ /*
+ * We only support most reclaim flags (but not NOFAIL/NORETRY), and
+ * selected action flags.
+ */
+ if (gfp_mask & ~(reclaim_mask | action_mask))
+ return -EINVAL;
+
+ /*
+ * Flags to control page compaction/migration/reclaim, to free up our
+ * page range. Migratable pages are movable, __GFP_MOVABLE is implied
+ * for them.
+ *
+ * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
+ * to not degrade callers.
+ */
+ *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
+ __GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
return 0;
}
@@ -6055,49 +6916,64 @@ static int __alloc_contig_migrate_range(struct compact_control *cc,
* alloc_contig_range() -- tries to allocate given range of pages
* @start: start PFN to allocate
* @end: one-past-the-last PFN to allocate
- * @migratetype: migratetype of the underlaying pageblocks (either
- * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
- * in range must have the same migratetype and it must
- * be either of the two.
+ * @alloc_flags: allocation information
+ * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some
+ * action and reclaim modifiers are supported. Reclaim modifiers
+ * control allocation behavior during compaction/migration/reclaim.
*
- * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
- * aligned, however it's the caller's responsibility to guarantee that
- * we are the only thread that changes migrate type of pageblocks the
- * pages fall in.
+ * The PFN range does not have to be pageblock aligned. The PFN range must
+ * belong to a single zone.
*
- * The PFN range must belong to a single zone.
+ * The first thing this routine does is attempt to MIGRATE_ISOLATE all
+ * pageblocks in the range. Once isolated, the pageblocks should not
+ * be modified by others.
*
- * Returns zero on success or negative error code. On success all
+ * Return: zero on success or negative error code. On success all
* pages which PFN is in [start, end) are allocated for the caller and
* need to be freed with free_contig_range().
*/
-int alloc_contig_range(unsigned long start, unsigned long end,
- unsigned migratetype)
+int alloc_contig_range_noprof(unsigned long start, unsigned long end,
+ acr_flags_t alloc_flags, gfp_t gfp_mask)
{
+ const unsigned int order = ilog2(end - start);
unsigned long outer_start, outer_end;
- int ret = 0, order;
+ int ret = 0;
struct compact_control cc = {
.nr_migratepages = 0,
.order = -1,
.zone = page_zone(pfn_to_page(start)),
- .sync = true,
+ .mode = MIGRATE_SYNC,
.ignore_skip_hint = true,
+ .no_set_skip_hint = true,
+ .alloc_contig = true,
};
INIT_LIST_HEAD(&cc.migratepages);
+ enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ?
+ PB_ISOLATE_MODE_CMA_ALLOC :
+ PB_ISOLATE_MODE_OTHER;
+
+ /*
+ * In contrast to the buddy, we allow for orders here that exceed
+ * MAX_PAGE_ORDER, so we must manually make sure that we are not
+ * exceeding the maximum folio order.
+ */
+ if (WARN_ON_ONCE((gfp_mask & __GFP_COMP) && order > MAX_FOLIO_ORDER))
+ return -EINVAL;
+
+ gfp_mask = current_gfp_context(gfp_mask);
+ if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
+ return -EINVAL;
/*
* What we do here is we mark all pageblocks in range as
* MIGRATE_ISOLATE. Because pageblock and max order pages may
* have different sizes, and due to the way page allocator
- * work, we align the range to biggest of the two pages so
- * that page allocator won't try to merge buddies from
- * different pageblocks and change MIGRATE_ISOLATE to some
- * other migration type.
+ * work, start_isolate_page_range() has special handlings for this.
*
* Once the pageblocks are marked as MIGRATE_ISOLATE, we
* migrate the pages from an unaligned range (ie. pages that
- * we are interested in). This will put all the pages in
+ * we are interested in). This will put all the pages in
* range back to page allocator as MIGRATE_ISOLATE.
*
* When this is done, we take the pages in range from page
@@ -6110,18 +6986,39 @@ int alloc_contig_range(unsigned long start, unsigned long end,
* put back to page allocator so that buddy can use them.
*/
- ret = start_isolate_page_range(pfn_max_align_down(start),
- pfn_max_align_up(end), migratetype,
- false);
+ ret = start_isolate_page_range(start, end, mode);
if (ret)
- return ret;
+ goto done;
+
+ drain_all_pages(cc.zone);
+ /*
+ * In case of -EBUSY, we'd like to know which page causes problem.
+ * So, just fall through. test_pages_isolated() has a tracepoint
+ * which will report the busy page.
+ *
+ * It is possible that busy pages could become available before
+ * the call to test_pages_isolated, and the range will actually be
+ * allocated. So, if we fall through be sure to clear ret so that
+ * -EBUSY is not accidentally used or returned to caller.
+ */
ret = __alloc_contig_migrate_range(&cc, start, end);
+ if (ret && ret != -EBUSY)
+ goto done;
+
+ /*
+ * When in-use hugetlb pages are migrated, they may simply be released
+ * back into the free hugepage pool instead of being returned to the
+ * buddy system. After the migration of in-use huge pages is completed,
+ * we will invoke replace_free_hugepage_folios() to ensure that these
+ * hugepages are properly released to the buddy system.
+ */
+ ret = replace_free_hugepage_folios(start, end);
if (ret)
goto done;
/*
- * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
+ * Pages from [start, end) are within a pageblock_nr_pages
* aligned blocks that are marked as MIGRATE_ISOLATE. What's
* more, all pages in [start, end) are free in page allocator.
* What we are going to do is to allocate all pages from
@@ -6136,29 +7033,14 @@ int alloc_contig_range(unsigned long start, unsigned long end,
* We don't have to hold zone->lock here because the pages are
* isolated thus they won't get removed from buddy.
*/
-
- lru_add_drain_all();
- drain_all_pages();
-
- order = 0;
- outer_start = start;
- while (!PageBuddy(pfn_to_page(outer_start))) {
- if (++order >= MAX_ORDER) {
- ret = -EBUSY;
- goto done;
- }
- outer_start &= ~0UL << order;
- }
+ outer_start = find_large_buddy(start);
/* Make sure the range is really isolated. */
- if (test_pages_isolated(outer_start, end, false)) {
- pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
- outer_start, end);
+ if (test_pages_isolated(outer_start, end, mode)) {
ret = -EBUSY;
goto done;
}
-
/* Grab isolated pages from freelists. */
outer_end = isolate_freepages_range(&cc, outer_start, end);
if (!outer_end) {
@@ -6166,21 +7048,147 @@ int alloc_contig_range(unsigned long start, unsigned long end,
goto done;
}
- /* Free head and tail (if any) */
- if (start != outer_start)
- free_contig_range(outer_start, start - outer_start);
- if (end != outer_end)
- free_contig_range(end, outer_end - end);
+ if (!(gfp_mask & __GFP_COMP)) {
+ split_free_pages(cc.freepages, gfp_mask);
+ /* Free head and tail (if any) */
+ if (start != outer_start)
+ free_contig_range(outer_start, start - outer_start);
+ if (end != outer_end)
+ free_contig_range(end, outer_end - end);
+ } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
+ struct page *head = pfn_to_page(start);
+
+ check_new_pages(head, order);
+ prep_new_page(head, order, gfp_mask, 0);
+ set_page_refcounted(head);
+ } else {
+ ret = -EINVAL;
+ WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
+ start, end, outer_start, outer_end);
+ }
done:
- undo_isolate_page_range(pfn_max_align_down(start),
- pfn_max_align_up(end), migratetype);
+ undo_isolate_page_range(start, end);
return ret;
}
+EXPORT_SYMBOL(alloc_contig_range_noprof);
+
+static int __alloc_contig_pages(unsigned long start_pfn,
+ unsigned long nr_pages, gfp_t gfp_mask)
+{
+ unsigned long end_pfn = start_pfn + nr_pages;
+
+ return alloc_contig_range_noprof(start_pfn, end_pfn, ACR_FLAGS_NONE,
+ gfp_mask);
+}
+
+static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
+ unsigned long nr_pages)
+{
+ unsigned long i, end_pfn = start_pfn + nr_pages;
+ struct page *page;
+
+ for (i = start_pfn; i < end_pfn; i++) {
+ page = pfn_to_online_page(i);
+ if (!page)
+ return false;
+
+ if (page_zone(page) != z)
+ return false;
+
+ if (PageReserved(page))
+ return false;
+
+ if (PageHuge(page))
+ return false;
+ }
+ return true;
+}
-void free_contig_range(unsigned long pfn, unsigned nr_pages)
+static bool zone_spans_last_pfn(const struct zone *zone,
+ unsigned long start_pfn, unsigned long nr_pages)
{
- unsigned int count = 0;
+ unsigned long last_pfn = start_pfn + nr_pages - 1;
+
+ return zone_spans_pfn(zone, last_pfn);
+}
+
+/**
+ * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
+ * @nr_pages: Number of contiguous pages to allocate
+ * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some
+ * action and reclaim modifiers are supported. Reclaim modifiers
+ * control allocation behavior during compaction/migration/reclaim.
+ * @nid: Target node
+ * @nodemask: Mask for other possible nodes
+ *
+ * This routine is a wrapper around alloc_contig_range(). It scans over zones
+ * on an applicable zonelist to find a contiguous pfn range which can then be
+ * tried for allocation with alloc_contig_range(). This routine is intended
+ * for allocation requests which can not be fulfilled with the buddy allocator.
+ *
+ * The allocated memory is always aligned to a page boundary. If nr_pages is a
+ * power of two, then allocated range is also guaranteed to be aligned to same
+ * nr_pages (e.g. 1GB request would be aligned to 1GB).
+ *
+ * Allocated pages can be freed with free_contig_range() or by manually calling
+ * __free_page() on each allocated page.
+ *
+ * Return: pointer to contiguous pages on success, or NULL if not successful.
+ */
+struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
+ int nid, nodemask_t *nodemask)
+{
+ unsigned long ret, pfn, flags;
+ struct zonelist *zonelist;
+ struct zone *zone;
+ struct zoneref *z;
+
+ zonelist = node_zonelist(nid, gfp_mask);
+ for_each_zone_zonelist_nodemask(zone, z, zonelist,
+ gfp_zone(gfp_mask), nodemask) {
+ spin_lock_irqsave(&zone->lock, flags);
+
+ pfn = ALIGN(zone->zone_start_pfn, nr_pages);
+ while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
+ if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
+ /*
+ * We release the zone lock here because
+ * alloc_contig_range() will also lock the zone
+ * at some point. If there's an allocation
+ * spinning on this lock, it may win the race
+ * and cause alloc_contig_range() to fail...
+ */
+ spin_unlock_irqrestore(&zone->lock, flags);
+ ret = __alloc_contig_pages(pfn, nr_pages,
+ gfp_mask);
+ if (!ret)
+ return pfn_to_page(pfn);
+ spin_lock_irqsave(&zone->lock, flags);
+ }
+ pfn += nr_pages;
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
+ }
+ return NULL;
+}
+#endif /* CONFIG_CONTIG_ALLOC */
+
+void free_contig_range(unsigned long pfn, unsigned long nr_pages)
+{
+ unsigned long count = 0;
+ struct folio *folio = pfn_folio(pfn);
+
+ if (folio_test_large(folio)) {
+ int expected = folio_nr_pages(folio);
+
+ if (nr_pages == expected)
+ folio_put(folio);
+ else
+ WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
+ pfn, nr_pages, expected);
+ return;
+ }
for (; nr_pages--; pfn++) {
struct page *page = pfn_to_page(pfn);
@@ -6188,71 +7196,73 @@ void free_contig_range(unsigned long pfn, unsigned nr_pages)
count += page_count(page) != 1;
__free_page(page);
}
- WARN(count != 0, "%d pages are still in use!\n", count);
+ WARN(count != 0, "%lu pages are still in use!\n", count);
}
-#endif
+EXPORT_SYMBOL(free_contig_range);
-#ifdef CONFIG_MEMORY_HOTPLUG
/*
- * The zone indicated has a new number of managed_pages; batch sizes and percpu
- * page high values need to be recalulated.
+ * Effectively disable pcplists for the zone by setting the high limit to 0
+ * and draining all cpus. A concurrent page freeing on another CPU that's about
+ * to put the page on pcplist will either finish before the drain and the page
+ * will be drained, or observe the new high limit and skip the pcplist.
+ *
+ * Must be paired with a call to zone_pcp_enable().
*/
-void __meminit zone_pcp_update(struct zone *zone)
+void zone_pcp_disable(struct zone *zone)
{
- unsigned cpu;
mutex_lock(&pcp_batch_high_lock);
- for_each_possible_cpu(cpu)
- pageset_set_high_and_batch(zone,
- per_cpu_ptr(zone->pageset, cpu));
+ __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
+ __drain_all_pages(zone, true);
+}
+
+void zone_pcp_enable(struct zone *zone)
+{
+ __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
+ zone->pageset_high_max, zone->pageset_batch);
mutex_unlock(&pcp_batch_high_lock);
}
-#endif
void zone_pcp_reset(struct zone *zone)
{
- unsigned long flags;
int cpu;
- struct per_cpu_pageset *pset;
+ struct per_cpu_zonestat *pzstats;
- /* avoid races with drain_pages() */
- local_irq_save(flags);
- if (zone->pageset != &boot_pageset) {
+ if (zone->per_cpu_pageset != &boot_pageset) {
for_each_online_cpu(cpu) {
- pset = per_cpu_ptr(zone->pageset, cpu);
- drain_zonestat(zone, pset);
+ pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
+ drain_zonestat(zone, pzstats);
+ }
+ free_percpu(zone->per_cpu_pageset);
+ zone->per_cpu_pageset = &boot_pageset;
+ if (zone->per_cpu_zonestats != &boot_zonestats) {
+ free_percpu(zone->per_cpu_zonestats);
+ zone->per_cpu_zonestats = &boot_zonestats;
}
- free_percpu(zone->pageset);
- zone->pageset = &boot_pageset;
}
- local_irq_restore(flags);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
/*
- * All pages in the range must be isolated before calling this.
+ * All pages in the range must be in a single zone, must not contain holes,
+ * must span full sections, and must be isolated before calling this function.
+ *
+ * Returns the number of managed (non-PageOffline()) pages in the range: the
+ * number of pages for which memory offlining code must adjust managed page
+ * counters using adjust_managed_page_count().
*/
-void
-__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
+unsigned long __offline_isolated_pages(unsigned long start_pfn,
+ unsigned long end_pfn)
{
+ unsigned long already_offline = 0, flags;
+ unsigned long pfn = start_pfn;
struct page *page;
struct zone *zone;
- int order, i;
- unsigned long pfn;
- unsigned long flags;
- /* find the first valid pfn */
- for (pfn = start_pfn; pfn < end_pfn; pfn++)
- if (pfn_valid(pfn))
- break;
- if (pfn == end_pfn)
- return;
+ unsigned int order;
+
+ offline_mem_sections(pfn, end_pfn);
zone = page_zone(pfn_to_page(pfn));
spin_lock_irqsave(&zone->lock, flags);
- pfn = start_pfn;
while (pfn < end_pfn) {
- if (!pfn_valid(pfn)) {
- pfn++;
- continue;
- }
page = pfn_to_page(pfn);
/*
* The HWPoisoned page may be not in buddy system, and
@@ -6260,130 +7270,415 @@ __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
*/
if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
pfn++;
- SetPageReserved(page);
+ continue;
+ }
+ /*
+ * At this point all remaining PageOffline() pages have a
+ * reference count of 0 and can simply be skipped.
+ */
+ if (PageOffline(page)) {
+ BUG_ON(page_count(page));
+ BUG_ON(PageBuddy(page));
+ already_offline++;
+ pfn++;
continue;
}
BUG_ON(page_count(page));
BUG_ON(!PageBuddy(page));
- order = page_order(page);
-#ifdef CONFIG_DEBUG_VM
- printk(KERN_INFO "remove from free list %lx %d %lx\n",
- pfn, 1 << order, end_pfn);
-#endif
- list_del(&page->lru);
- rmv_page_order(page);
- zone->free_area[order].nr_free--;
-#ifdef CONFIG_HIGHMEM
- if (PageHighMem(page))
- totalhigh_pages -= 1 << order;
-#endif
- for (i = 0; i < (1 << order); i++)
- SetPageReserved((page+i));
+ VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
+ order = buddy_order(page);
+ del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
pfn += (1 << order);
}
spin_unlock_irqrestore(&zone->lock, flags);
+
+ return end_pfn - start_pfn - already_offline;
}
#endif
+/*
+ * This function returns a stable result only if called under zone lock.
+ */
+bool is_free_buddy_page(const struct page *page)
+{
+ unsigned long pfn = page_to_pfn(page);
+ unsigned int order;
+
+ for (order = 0; order < NR_PAGE_ORDERS; order++) {
+ const struct page *head = page - (pfn & ((1 << order) - 1));
+
+ if (PageBuddy(head) &&
+ buddy_order_unsafe(head) >= order)
+ break;
+ }
+
+ return order <= MAX_PAGE_ORDER;
+}
+EXPORT_SYMBOL(is_free_buddy_page);
+
#ifdef CONFIG_MEMORY_FAILURE
-bool is_free_buddy_page(struct page *page)
+static inline void add_to_free_list(struct page *page, struct zone *zone,
+ unsigned int order, int migratetype,
+ bool tail)
+{
+ __add_to_free_list(page, zone, order, migratetype, tail);
+ account_freepages(zone, 1 << order, migratetype);
+}
+
+/*
+ * Break down a higher-order page in sub-pages, and keep our target out of
+ * buddy allocator.
+ */
+static void break_down_buddy_pages(struct zone *zone, struct page *page,
+ struct page *target, int low, int high,
+ int migratetype)
+{
+ unsigned long size = 1 << high;
+ struct page *current_buddy;
+
+ while (high > low) {
+ high--;
+ size >>= 1;
+
+ if (target >= &page[size]) {
+ current_buddy = page;
+ page = page + size;
+ } else {
+ current_buddy = page + size;
+ }
+
+ if (set_page_guard(zone, current_buddy, high))
+ continue;
+
+ add_to_free_list(current_buddy, zone, high, migratetype, false);
+ set_buddy_order(current_buddy, high);
+ }
+}
+
+/*
+ * Take a page that will be marked as poisoned off the buddy allocator.
+ */
+bool take_page_off_buddy(struct page *page)
{
struct zone *zone = page_zone(page);
unsigned long pfn = page_to_pfn(page);
unsigned long flags;
- int order;
+ unsigned int order;
+ bool ret = false;
spin_lock_irqsave(&zone->lock, flags);
- for (order = 0; order < MAX_ORDER; order++) {
+ for (order = 0; order < NR_PAGE_ORDERS; order++) {
struct page *page_head = page - (pfn & ((1 << order) - 1));
-
- if (PageBuddy(page_head) && page_order(page_head) >= order)
+ int page_order = buddy_order(page_head);
+
+ if (PageBuddy(page_head) && page_order >= order) {
+ unsigned long pfn_head = page_to_pfn(page_head);
+ int migratetype = get_pfnblock_migratetype(page_head,
+ pfn_head);
+
+ del_page_from_free_list(page_head, zone, page_order,
+ migratetype);
+ break_down_buddy_pages(zone, page_head, page, 0,
+ page_order, migratetype);
+ SetPageHWPoisonTakenOff(page);
+ ret = true;
+ break;
+ }
+ if (page_count(page_head) > 0)
break;
}
spin_unlock_irqrestore(&zone->lock, flags);
+ return ret;
+}
+
+/*
+ * Cancel takeoff done by take_page_off_buddy().
+ */
+bool put_page_back_buddy(struct page *page)
+{
+ struct zone *zone = page_zone(page);
+ unsigned long flags;
+ bool ret = false;
+
+ spin_lock_irqsave(&zone->lock, flags);
+ if (put_page_testzero(page)) {
+ unsigned long pfn = page_to_pfn(page);
+ int migratetype = get_pfnblock_migratetype(page, pfn);
+
+ ClearPageHWPoisonTakenOff(page);
+ __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
+ if (TestClearPageHWPoison(page)) {
+ ret = true;
+ }
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
- return order < MAX_ORDER;
+ return ret;
}
#endif
-static const struct trace_print_flags pageflag_names[] = {
- {1UL << PG_locked, "locked" },
- {1UL << PG_error, "error" },
- {1UL << PG_referenced, "referenced" },
- {1UL << PG_uptodate, "uptodate" },
- {1UL << PG_dirty, "dirty" },
- {1UL << PG_lru, "lru" },
- {1UL << PG_active, "active" },
- {1UL << PG_slab, "slab" },
- {1UL << PG_owner_priv_1, "owner_priv_1" },
- {1UL << PG_arch_1, "arch_1" },
- {1UL << PG_reserved, "reserved" },
- {1UL << PG_private, "private" },
- {1UL << PG_private_2, "private_2" },
- {1UL << PG_writeback, "writeback" },
-#ifdef CONFIG_PAGEFLAGS_EXTENDED
- {1UL << PG_head, "head" },
- {1UL << PG_tail, "tail" },
-#else
- {1UL << PG_compound, "compound" },
-#endif
- {1UL << PG_swapcache, "swapcache" },
- {1UL << PG_mappedtodisk, "mappedtodisk" },
- {1UL << PG_reclaim, "reclaim" },
- {1UL << PG_swapbacked, "swapbacked" },
- {1UL << PG_unevictable, "unevictable" },
-#ifdef CONFIG_MMU
- {1UL << PG_mlocked, "mlocked" },
-#endif
-#ifdef CONFIG_ARCH_USES_PG_UNCACHED
- {1UL << PG_uncached, "uncached" },
-#endif
-#ifdef CONFIG_MEMORY_FAILURE
- {1UL << PG_hwpoison, "hwpoison" },
-#endif
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
- {1UL << PG_compound_lock, "compound_lock" },
-#endif
-};
+#ifdef CONFIG_ZONE_DMA
+bool has_managed_dma(void)
+{
+ struct pglist_data *pgdat;
+
+ for_each_online_pgdat(pgdat) {
+ struct zone *zone = &pgdat->node_zones[ZONE_DMA];
+
+ if (managed_zone(zone))
+ return true;
+ }
+ return false;
+}
+#endif /* CONFIG_ZONE_DMA */
+
+#ifdef CONFIG_UNACCEPTED_MEMORY
+
+static bool lazy_accept = true;
-static void dump_page_flags(unsigned long flags)
+static int __init accept_memory_parse(char *p)
{
- const char *delim = "";
- unsigned long mask;
- int i;
+ if (!strcmp(p, "lazy")) {
+ lazy_accept = true;
+ return 0;
+ } else if (!strcmp(p, "eager")) {
+ lazy_accept = false;
+ return 0;
+ } else {
+ return -EINVAL;
+ }
+}
+early_param("accept_memory", accept_memory_parse);
- BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
+static bool page_contains_unaccepted(struct page *page, unsigned int order)
+{
+ phys_addr_t start = page_to_phys(page);
- printk(KERN_ALERT "page flags: %#lx(", flags);
+ return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
+}
- /* remove zone id */
- flags &= (1UL << NR_PAGEFLAGS) - 1;
+static void __accept_page(struct zone *zone, unsigned long *flags,
+ struct page *page)
+{
+ list_del(&page->lru);
+ account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
+ __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
+ __ClearPageUnaccepted(page);
+ spin_unlock_irqrestore(&zone->lock, *flags);
- for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
+ accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
- mask = pageflag_names[i].mask;
- if ((flags & mask) != mask)
- continue;
+ __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
+}
+
+void accept_page(struct page *page)
+{
+ struct zone *zone = page_zone(page);
+ unsigned long flags;
+
+ spin_lock_irqsave(&zone->lock, flags);
+ if (!PageUnaccepted(page)) {
+ spin_unlock_irqrestore(&zone->lock, flags);
+ return;
+ }
+
+ /* Unlocks zone->lock */
+ __accept_page(zone, &flags, page);
+}
+
+static bool try_to_accept_memory_one(struct zone *zone)
+{
+ unsigned long flags;
+ struct page *page;
- flags &= ~mask;
- printk("%s%s", delim, pageflag_names[i].name);
- delim = "|";
+ spin_lock_irqsave(&zone->lock, flags);
+ page = list_first_entry_or_null(&zone->unaccepted_pages,
+ struct page, lru);
+ if (!page) {
+ spin_unlock_irqrestore(&zone->lock, flags);
+ return false;
}
- /* check for left over flags */
- if (flags)
- printk("%s%#lx", delim, flags);
+ /* Unlocks zone->lock */
+ __accept_page(zone, &flags, page);
- printk(")\n");
+ return true;
}
-void dump_page(struct page *page)
+static bool cond_accept_memory(struct zone *zone, unsigned int order,
+ int alloc_flags)
{
- printk(KERN_ALERT
- "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
- page, atomic_read(&page->_count), page_mapcount(page),
- page->mapping, page->index);
- dump_page_flags(page->flags);
- mem_cgroup_print_bad_page(page);
+ long to_accept, wmark;
+ bool ret = false;
+
+ if (list_empty(&zone->unaccepted_pages))
+ return false;
+
+ /* Bailout, since try_to_accept_memory_one() needs to take a lock */
+ if (alloc_flags & ALLOC_TRYLOCK)
+ return false;
+
+ wmark = promo_wmark_pages(zone);
+
+ /*
+ * Watermarks have not been initialized yet.
+ *
+ * Accepting one MAX_ORDER page to ensure progress.
+ */
+ if (!wmark)
+ return try_to_accept_memory_one(zone);
+
+ /* How much to accept to get to promo watermark? */
+ to_accept = wmark -
+ (zone_page_state(zone, NR_FREE_PAGES) -
+ __zone_watermark_unusable_free(zone, order, 0) -
+ zone_page_state(zone, NR_UNACCEPTED));
+
+ while (to_accept > 0) {
+ if (!try_to_accept_memory_one(zone))
+ break;
+ ret = true;
+ to_accept -= MAX_ORDER_NR_PAGES;
+ }
+
+ return ret;
+}
+
+static bool __free_unaccepted(struct page *page)
+{
+ struct zone *zone = page_zone(page);
+ unsigned long flags;
+
+ if (!lazy_accept)
+ return false;
+
+ spin_lock_irqsave(&zone->lock, flags);
+ list_add_tail(&page->lru, &zone->unaccepted_pages);
+ account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
+ __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
+ __SetPageUnaccepted(page);
+ spin_unlock_irqrestore(&zone->lock, flags);
+
+ return true;
+}
+
+#else
+
+static bool page_contains_unaccepted(struct page *page, unsigned int order)
+{
+ return false;
+}
+
+static bool cond_accept_memory(struct zone *zone, unsigned int order,
+ int alloc_flags)
+{
+ return false;
+}
+
+static bool __free_unaccepted(struct page *page)
+{
+ BUILD_BUG();
+ return false;
+}
+
+#endif /* CONFIG_UNACCEPTED_MEMORY */
+
+struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order)
+{
+ /*
+ * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
+ * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
+ * is not safe in arbitrary context.
+ *
+ * These two are the conditions for gfpflags_allow_spinning() being true.
+ *
+ * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason
+ * to warn. Also warn would trigger printk() which is unsafe from
+ * various contexts. We cannot use printk_deferred_enter() to mitigate,
+ * since the running context is unknown.
+ *
+ * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
+ * is safe in any context. Also zeroing the page is mandatory for
+ * BPF use cases.
+ *
+ * Though __GFP_NOMEMALLOC is not checked in the code path below,
+ * specify it here to highlight that alloc_pages_nolock()
+ * doesn't want to deplete reserves.
+ */
+ gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC | __GFP_COMP
+ | gfp_flags;
+ unsigned int alloc_flags = ALLOC_TRYLOCK;
+ struct alloc_context ac = { };
+ struct page *page;
+
+ VM_WARN_ON_ONCE(gfp_flags & ~__GFP_ACCOUNT);
+ /*
+ * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
+ * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
+ * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
+ * mark the task as the owner of another rt_spin_lock which will
+ * confuse PI logic, so return immediately if called form hard IRQ or
+ * NMI.
+ *
+ * Note, irqs_disabled() case is ok. This function can be called
+ * from raw_spin_lock_irqsave region.
+ */
+ if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
+ return NULL;
+ if (!pcp_allowed_order(order))
+ return NULL;
+
+ /* Bailout, since _deferred_grow_zone() needs to take a lock */
+ if (deferred_pages_enabled())
+ return NULL;
+
+ if (nid == NUMA_NO_NODE)
+ nid = numa_node_id();
+
+ prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
+ &alloc_gfp, &alloc_flags);
+
+ /*
+ * Best effort allocation from percpu free list.
+ * If it's empty attempt to spin_trylock zone->lock.
+ */
+ page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
+
+ /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
+
+ if (memcg_kmem_online() && page && (gfp_flags & __GFP_ACCOUNT) &&
+ unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
+ __free_frozen_pages(page, order, FPI_TRYLOCK);
+ page = NULL;
+ }
+ trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
+ kmsan_alloc_page(page, order, alloc_gfp);
+ return page;
+}
+/**
+ * alloc_pages_nolock - opportunistic reentrant allocation from any context
+ * @gfp_flags: GFP flags. Only __GFP_ACCOUNT allowed.
+ * @nid: node to allocate from
+ * @order: allocation order size
+ *
+ * Allocates pages of a given order from the given node. This is safe to
+ * call from any context (from atomic, NMI, and also reentrant
+ * allocator -> tracepoint -> alloc_pages_nolock_noprof).
+ * Allocation is best effort and to be expected to fail easily so nobody should
+ * rely on the success. Failures are not reported via warn_alloc().
+ * See always fail conditions below.
+ *
+ * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN.
+ * It means ENOMEM. There is no reason to call it again and expect !NULL.
+ */
+struct page *alloc_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order)
+{
+ struct page *page;
+
+ page = alloc_frozen_pages_nolock_noprof(gfp_flags, nid, order);
+ if (page)
+ set_page_refcounted(page);
+ return page;
}
+EXPORT_SYMBOL_GPL(alloc_pages_nolock_noprof);