summaryrefslogtreecommitdiff
path: root/mm/percpu.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/percpu.c')
-rw-r--r--mm/percpu.c1581
1 files changed, 1083 insertions, 498 deletions
diff --git a/mm/percpu.c b/mm/percpu.c
index db86282fd024..81462ce5866e 100644
--- a/mm/percpu.c
+++ b/mm/percpu.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
/*
* mm/percpu.c - percpu memory allocator
*
@@ -5,9 +6,7 @@
* Copyright (C) 2009 Tejun Heo <tj@kernel.org>
*
* Copyright (C) 2017 Facebook Inc.
- * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
- *
- * This file is released under the GPLv2 license.
+ * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
*
* The percpu allocator handles both static and dynamic areas. Percpu
* areas are allocated in chunks which are divided into units. There is
@@ -38,9 +37,14 @@
* takes care of normal allocations.
*
* The allocator organizes chunks into lists according to free size and
- * tries to allocate from the fullest chunk first. Each chunk is managed
- * by a bitmap with metadata blocks. The allocation map is updated on
- * every allocation and free to reflect the current state while the boundary
+ * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT
+ * flag should be passed. All memcg-aware allocations are sharing one set
+ * of chunks and all unaccounted allocations and allocations performed
+ * by processes belonging to the root memory cgroup are using the second set.
+ *
+ * The allocator tries to allocate from the fullest chunk first. Each chunk
+ * is managed by a bitmap with metadata blocks. The allocation map is updated
+ * on every allocation and free to reflect the current state while the boundary
* map is only updated on allocation. Each metadata block contains
* information to help mitigate the need to iterate over large portions
* of the bitmap. The reverse mapping from page to chunk is stored in
@@ -65,9 +69,9 @@
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bitmap.h>
+#include <linux/cpumask.h>
#include <linux/memblock.h>
#include <linux/err.h>
-#include <linux/lcm.h>
#include <linux/list.h>
#include <linux/log2.h>
#include <linux/mm.h>
@@ -81,6 +85,8 @@
#include <linux/workqueue.h>
#include <linux/kmemleak.h>
#include <linux/sched.h>
+#include <linux/sched/mm.h>
+#include <linux/memcontrol.h>
#include <asm/cacheflush.h>
#include <asm/sections.h>
@@ -92,8 +98,13 @@
#include "percpu-internal.h"
-/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
+/*
+ * The slots are sorted by the size of the biggest continuous free area.
+ * 1-31 bytes share the same slot.
+ */
#define PCPU_SLOT_BASE_SHIFT 5
+/* chunks in slots below this are subject to being sidelined on failed alloc */
+#define PCPU_SLOT_FAIL_THRESHOLD 3
#define PCPU_EMPTY_POP_PAGES_LOW 2
#define PCPU_EMPTY_POP_PAGES_HIGH 4
@@ -123,6 +134,9 @@ static int pcpu_unit_size __ro_after_init;
static int pcpu_nr_units __ro_after_init;
static int pcpu_atom_size __ro_after_init;
int pcpu_nr_slots __ro_after_init;
+static int pcpu_free_slot __ro_after_init;
+int pcpu_sidelined_slot __ro_after_init;
+int pcpu_to_depopulate_slot __ro_after_init;
static size_t pcpu_chunk_struct_size __ro_after_init;
/* cpus with the lowest and highest unit addresses */
@@ -131,7 +145,6 @@ static unsigned int pcpu_high_unit_cpu __ro_after_init;
/* the address of the first chunk which starts with the kernel static area */
void *pcpu_base_addr __ro_after_init;
-EXPORT_SYMBOL_GPL(pcpu_base_addr);
static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
@@ -158,14 +171,11 @@ struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
-struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
-
-/* chunks which need their map areas extended, protected by pcpu_lock */
-static LIST_HEAD(pcpu_map_extend_chunks);
+struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
/*
- * The number of empty populated pages, protected by pcpu_lock. The
- * reserved chunk doesn't contribute to the count.
+ * The number of empty populated pages, protected by pcpu_lock.
+ * The reserved chunk doesn't contribute to the count.
*/
int pcpu_nr_empty_pop_pages;
@@ -225,28 +235,31 @@ static int __pcpu_size_to_slot(int size)
static int pcpu_size_to_slot(int size)
{
if (size == pcpu_unit_size)
- return pcpu_nr_slots - 1;
+ return pcpu_free_slot;
return __pcpu_size_to_slot(size);
}
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
- if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
+ const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
+
+ if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
+ chunk_md->contig_hint == 0)
return 0;
- return pcpu_size_to_slot(chunk->free_bytes);
+ return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
}
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
- page->index = (unsigned long)pcpu;
+ page->private = (unsigned long)pcpu;
}
/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
- return (struct pcpu_chunk *)page->index;
+ return (struct pcpu_chunk *)page->private;
}
static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
@@ -266,33 +279,6 @@ static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
pcpu_unit_page_offset(cpu, page_idx);
}
-static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
-{
- *rs = find_next_zero_bit(bitmap, end, *rs);
- *re = find_next_bit(bitmap, end, *rs + 1);
-}
-
-static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
-{
- *rs = find_next_bit(bitmap, end, *rs);
- *re = find_next_zero_bit(bitmap, end, *rs + 1);
-}
-
-/*
- * Bitmap region iterators. Iterates over the bitmap between
- * [@start, @end) in @chunk. @rs and @re should be integer variables
- * and will be set to start and end index of the current free region.
- */
-#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
- for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
- (rs) < (re); \
- (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
-
-#define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
- for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
- (rs) < (re); \
- (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
-
/*
* The following are helper functions to help access bitmaps and convert
* between bitmap offsets to address offsets.
@@ -319,6 +305,53 @@ static unsigned long pcpu_block_off_to_off(int index, int off)
}
/**
+ * pcpu_check_block_hint - check against the contig hint
+ * @block: block of interest
+ * @bits: size of allocation
+ * @align: alignment of area (max PAGE_SIZE)
+ *
+ * Check to see if the allocation can fit in the block's contig hint.
+ * Note, a chunk uses the same hints as a block so this can also check against
+ * the chunk's contig hint.
+ */
+static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
+ size_t align)
+{
+ int bit_off = ALIGN(block->contig_hint_start, align) -
+ block->contig_hint_start;
+
+ return bit_off + bits <= block->contig_hint;
+}
+
+/*
+ * pcpu_next_hint - determine which hint to use
+ * @block: block of interest
+ * @alloc_bits: size of allocation
+ *
+ * This determines if we should scan based on the scan_hint or first_free.
+ * In general, we want to scan from first_free to fulfill allocations by
+ * first fit. However, if we know a scan_hint at position scan_hint_start
+ * cannot fulfill an allocation, we can begin scanning from there knowing
+ * the contig_hint will be our fallback.
+ */
+static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
+{
+ /*
+ * The three conditions below determine if we can skip past the
+ * scan_hint. First, does the scan hint exist. Second, is the
+ * contig_hint after the scan_hint (possibly not true iff
+ * contig_hint == scan_hint). Third, is the allocation request
+ * larger than the scan_hint.
+ */
+ if (block->scan_hint &&
+ block->contig_hint_start > block->scan_hint_start &&
+ alloc_bits > block->scan_hint)
+ return block->scan_hint_start + block->scan_hint;
+
+ return block->first_free;
+}
+
+/**
* pcpu_next_md_free_region - finds the next hint free area
* @chunk: chunk of interest
* @bit_off: chunk offset
@@ -413,9 +446,11 @@ static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
if (block->contig_hint &&
block->contig_hint_start >= block_off &&
block->contig_hint >= *bits + alloc_bits) {
+ int start = pcpu_next_hint(block, alloc_bits);
+
*bits += alloc_bits + block->contig_hint_start -
- block->first_free;
- *bit_off = pcpu_block_off_to_off(i, block->first_free);
+ start;
+ *bit_off = pcpu_block_off_to_off(i, start);
return;
}
/* reset to satisfy the second predicate above */
@@ -474,7 +509,7 @@ static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
if (size <= PAGE_SIZE)
return kzalloc(size, gfp);
else
- return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
+ return __vmalloc(size, gfp | __GFP_ZERO);
}
/**
@@ -488,6 +523,22 @@ static void pcpu_mem_free(void *ptr)
kvfree(ptr);
}
+static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
+ bool move_front)
+{
+ if (chunk != pcpu_reserved_chunk) {
+ if (move_front)
+ list_move(&chunk->list, &pcpu_chunk_lists[slot]);
+ else
+ list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
+ }
+}
+
+static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
+{
+ __pcpu_chunk_move(chunk, slot, true);
+}
+
/**
* pcpu_chunk_relocate - put chunk in the appropriate chunk slot
* @chunk: chunk of interest
@@ -505,110 +556,65 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
int nslot = pcpu_chunk_slot(chunk);
- if (chunk != pcpu_reserved_chunk && oslot != nslot) {
- if (oslot < nslot)
- list_move(&chunk->list, &pcpu_slot[nslot]);
- else
- list_move_tail(&chunk->list, &pcpu_slot[nslot]);
- }
+ /* leave isolated chunks in-place */
+ if (chunk->isolated)
+ return;
+
+ if (oslot != nslot)
+ __pcpu_chunk_move(chunk, nslot, oslot < nslot);
}
-/**
- * pcpu_cnt_pop_pages- counts populated backing pages in range
- * @chunk: chunk of interest
- * @bit_off: start offset
- * @bits: size of area to check
- *
- * Calculates the number of populated pages in the region
- * [page_start, page_end). This keeps track of how many empty populated
- * pages are available and decide if async work should be scheduled.
- *
- * RETURNS:
- * The nr of populated pages.
- */
-static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
- int bits)
+static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
{
- int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
- int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
-
- if (page_start >= page_end)
- return 0;
+ lockdep_assert_held(&pcpu_lock);
- /*
- * bitmap_weight counts the number of bits set in a bitmap up to
- * the specified number of bits. This is counting the populated
- * pages up to page_end and then subtracting the populated pages
- * up to page_start to count the populated pages in
- * [page_start, page_end).
- */
- return bitmap_weight(chunk->populated, page_end) -
- bitmap_weight(chunk->populated, page_start);
+ if (!chunk->isolated) {
+ chunk->isolated = true;
+ pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
+ }
+ list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
}
-/**
- * pcpu_chunk_update - updates the chunk metadata given a free area
- * @chunk: chunk of interest
- * @bit_off: chunk offset
- * @bits: size of free area
- *
- * This updates the chunk's contig hint and starting offset given a free area.
- * Choose the best starting offset if the contig hint is equal.
- */
-static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
-{
- if (bits > chunk->contig_bits) {
- chunk->contig_bits_start = bit_off;
- chunk->contig_bits = bits;
- } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
- (!bit_off ||
- __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
- /* use the start with the best alignment */
- chunk->contig_bits_start = bit_off;
+static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
+{
+ lockdep_assert_held(&pcpu_lock);
+
+ if (chunk->isolated) {
+ chunk->isolated = false;
+ pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
+ pcpu_chunk_relocate(chunk, -1);
}
}
-/**
- * pcpu_chunk_refresh_hint - updates metadata about a chunk
+/*
+ * pcpu_update_empty_pages - update empty page counters
* @chunk: chunk of interest
+ * @nr: nr of empty pages
*
- * Iterates over the metadata blocks to find the largest contig area.
- * It also counts the populated pages and uses the delta to update the
- * global count.
- *
- * Updates:
- * chunk->contig_bits
- * chunk->contig_bits_start
- * nr_empty_pop_pages (chunk and global)
+ * This is used to keep track of the empty pages now based on the premise
+ * a md_block covers a page. The hint update functions recognize if a block
+ * is made full or broken to calculate deltas for keeping track of free pages.
*/
-static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
+static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
{
- int bit_off, bits, nr_empty_pop_pages;
-
- /* clear metadata */
- chunk->contig_bits = 0;
-
- bit_off = chunk->first_bit;
- bits = nr_empty_pop_pages = 0;
- pcpu_for_each_md_free_region(chunk, bit_off, bits) {
- pcpu_chunk_update(chunk, bit_off, bits);
-
- nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
- }
-
- /*
- * Keep track of nr_empty_pop_pages.
- *
- * The chunk maintains the previous number of free pages it held,
- * so the delta is used to update the global counter. The reserved
- * chunk is not part of the free page count as they are populated
- * at init and are special to serving reserved allocations.
- */
- if (chunk != pcpu_reserved_chunk)
- pcpu_nr_empty_pop_pages +=
- (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
+ chunk->nr_empty_pop_pages += nr;
+ if (chunk != pcpu_reserved_chunk && !chunk->isolated)
+ pcpu_nr_empty_pop_pages += nr;
+}
- chunk->nr_empty_pop_pages = nr_empty_pop_pages;
+/*
+ * pcpu_region_overlap - determines if two regions overlap
+ * @a: start of first region, inclusive
+ * @b: end of first region, exclusive
+ * @x: start of second region, inclusive
+ * @y: end of second region, exclusive
+ *
+ * This is used to determine if the hint region [a, b) overlaps with the
+ * allocated region [x, y).
+ */
+static inline bool pcpu_region_overlap(int a, int b, int x, int y)
+{
+ return (a < y) && (x < b);
}
/**
@@ -629,19 +635,134 @@ static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
if (start == 0)
block->left_free = contig;
- if (end == PCPU_BITMAP_BLOCK_BITS)
+ if (end == block->nr_bits)
block->right_free = contig;
if (contig > block->contig_hint) {
+ /* promote the old contig_hint to be the new scan_hint */
+ if (start > block->contig_hint_start) {
+ if (block->contig_hint > block->scan_hint) {
+ block->scan_hint_start =
+ block->contig_hint_start;
+ block->scan_hint = block->contig_hint;
+ } else if (start < block->scan_hint_start) {
+ /*
+ * The old contig_hint == scan_hint. But, the
+ * new contig is larger so hold the invariant
+ * scan_hint_start < contig_hint_start.
+ */
+ block->scan_hint = 0;
+ }
+ } else {
+ block->scan_hint = 0;
+ }
block->contig_hint_start = start;
block->contig_hint = contig;
- } else if (block->contig_hint_start && contig == block->contig_hint &&
- (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
- /* use the start with the best alignment */
- block->contig_hint_start = start;
+ } else if (contig == block->contig_hint) {
+ if (block->contig_hint_start &&
+ (!start ||
+ __ffs(start) > __ffs(block->contig_hint_start))) {
+ /* start has a better alignment so use it */
+ block->contig_hint_start = start;
+ if (start < block->scan_hint_start &&
+ block->contig_hint > block->scan_hint)
+ block->scan_hint = 0;
+ } else if (start > block->scan_hint_start ||
+ block->contig_hint > block->scan_hint) {
+ /*
+ * Knowing contig == contig_hint, update the scan_hint
+ * if it is farther than or larger than the current
+ * scan_hint.
+ */
+ block->scan_hint_start = start;
+ block->scan_hint = contig;
+ }
+ } else {
+ /*
+ * The region is smaller than the contig_hint. So only update
+ * the scan_hint if it is larger than or equal and farther than
+ * the current scan_hint.
+ */
+ if ((start < block->contig_hint_start &&
+ (contig > block->scan_hint ||
+ (contig == block->scan_hint &&
+ start > block->scan_hint_start)))) {
+ block->scan_hint_start = start;
+ block->scan_hint = contig;
+ }
}
}
+/*
+ * pcpu_block_update_scan - update a block given a free area from a scan
+ * @chunk: chunk of interest
+ * @bit_off: chunk offset
+ * @bits: size of free area
+ *
+ * Finding the final allocation spot first goes through pcpu_find_block_fit()
+ * to find a block that can hold the allocation and then pcpu_alloc_area()
+ * where a scan is used. When allocations require specific alignments,
+ * we can inadvertently create holes which will not be seen in the alloc
+ * or free paths.
+ *
+ * This takes a given free area hole and updates a block as it may change the
+ * scan_hint. We need to scan backwards to ensure we don't miss free bits
+ * from alignment.
+ */
+static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
+ int bits)
+{
+ int s_off = pcpu_off_to_block_off(bit_off);
+ int e_off = s_off + bits;
+ int s_index, l_bit;
+ struct pcpu_block_md *block;
+
+ if (e_off > PCPU_BITMAP_BLOCK_BITS)
+ return;
+
+ s_index = pcpu_off_to_block_index(bit_off);
+ block = chunk->md_blocks + s_index;
+
+ /* scan backwards in case of alignment skipping free bits */
+ l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
+ s_off = (s_off == l_bit) ? 0 : l_bit + 1;
+
+ pcpu_block_update(block, s_off, e_off);
+}
+
+/**
+ * pcpu_chunk_refresh_hint - updates metadata about a chunk
+ * @chunk: chunk of interest
+ * @full_scan: if we should scan from the beginning
+ *
+ * Iterates over the metadata blocks to find the largest contig area.
+ * A full scan can be avoided on the allocation path as this is triggered
+ * if we broke the contig_hint. In doing so, the scan_hint will be before
+ * the contig_hint or after if the scan_hint == contig_hint. This cannot
+ * be prevented on freeing as we want to find the largest area possibly
+ * spanning blocks.
+ */
+static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
+{
+ struct pcpu_block_md *chunk_md = &chunk->chunk_md;
+ int bit_off, bits;
+
+ /* promote scan_hint to contig_hint */
+ if (!full_scan && chunk_md->scan_hint) {
+ bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
+ chunk_md->contig_hint_start = chunk_md->scan_hint_start;
+ chunk_md->contig_hint = chunk_md->scan_hint;
+ chunk_md->scan_hint = 0;
+ } else {
+ bit_off = chunk_md->first_free;
+ chunk_md->contig_hint = 0;
+ }
+
+ bits = 0;
+ pcpu_for_each_md_free_region(chunk, bit_off, bits)
+ pcpu_block_update(chunk_md, bit_off, bit_off + bits);
+}
+
/**
* pcpu_block_refresh_hint
* @chunk: chunk of interest
@@ -654,17 +775,24 @@ static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
{
struct pcpu_block_md *block = chunk->md_blocks + index;
unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
- int rs, re; /* region start, region end */
+ unsigned int start, end; /* region start, region end */
+
+ /* promote scan_hint to contig_hint */
+ if (block->scan_hint) {
+ start = block->scan_hint_start + block->scan_hint;
+ block->contig_hint_start = block->scan_hint_start;
+ block->contig_hint = block->scan_hint;
+ block->scan_hint = 0;
+ } else {
+ start = block->first_free;
+ block->contig_hint = 0;
+ }
- /* clear hints */
- block->contig_hint = 0;
- block->left_free = block->right_free = 0;
+ block->right_free = 0;
/* iterate over free areas and update the contig hints */
- pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
- PCPU_BITMAP_BLOCK_BITS) {
- pcpu_block_update(block, rs, re);
- }
+ for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS)
+ pcpu_block_update(block, start, end);
}
/**
@@ -680,6 +808,8 @@ static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
int bits)
{
+ struct pcpu_block_md *chunk_md = &chunk->chunk_md;
+ int nr_empty_pages = 0;
struct pcpu_block_md *s_block, *e_block, *block;
int s_index, e_index; /* block indexes of the freed allocation */
int s_off, e_off; /* block offsets of the freed allocation */
@@ -700,6 +830,11 @@ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
/*
* Update s_block.
+ */
+ if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
+ nr_empty_pages++;
+
+ /*
* block->first_free must be updated if the allocation takes its place.
* If the allocation breaks the contig_hint, a scan is required to
* restore this hint.
@@ -710,9 +845,20 @@ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
PCPU_BITMAP_BLOCK_BITS,
s_off + bits);
- if (s_off >= s_block->contig_hint_start &&
- s_off < s_block->contig_hint_start + s_block->contig_hint) {
+ if (pcpu_region_overlap(s_block->scan_hint_start,
+ s_block->scan_hint_start + s_block->scan_hint,
+ s_off,
+ s_off + bits))
+ s_block->scan_hint = 0;
+
+ if (pcpu_region_overlap(s_block->contig_hint_start,
+ s_block->contig_hint_start +
+ s_block->contig_hint,
+ s_off,
+ s_off + bits)) {
/* block contig hint is broken - scan to fix it */
+ if (!s_off)
+ s_block->left_free = 0;
pcpu_block_refresh_hint(chunk, s_index);
} else {
/* update left and right contig manually */
@@ -728,6 +874,9 @@ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
* Update e_block.
*/
if (s_index != e_index) {
+ if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
+ nr_empty_pages++;
+
/*
* When the allocation is across blocks, the end is along
* the left part of the e_block.
@@ -740,11 +889,14 @@ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
/* reset the block */
e_block++;
} else {
+ if (e_off > e_block->scan_hint_start)
+ e_block->scan_hint = 0;
+
+ e_block->left_free = 0;
if (e_off > e_block->contig_hint_start) {
/* contig hint is broken - scan to fix it */
pcpu_block_refresh_hint(chunk, e_index);
} else {
- e_block->left_free = 0;
e_block->right_free =
min_t(int, e_block->right_free,
PCPU_BITMAP_BLOCK_BITS - e_off);
@@ -752,7 +904,9 @@ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
}
/* update in-between md_blocks */
+ nr_empty_pages += (e_index - s_index - 1);
for (block = s_block + 1; block < e_block; block++) {
+ block->scan_hint = 0;
block->contig_hint = 0;
block->left_free = 0;
block->right_free = 0;
@@ -760,13 +914,32 @@ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
}
/*
+ * If the allocation is not atomic, some blocks may not be
+ * populated with pages, while we account it here. The number
+ * of pages will be added back with pcpu_chunk_populated()
+ * when populating pages.
+ */
+ if (nr_empty_pages)
+ pcpu_update_empty_pages(chunk, -nr_empty_pages);
+
+ if (pcpu_region_overlap(chunk_md->scan_hint_start,
+ chunk_md->scan_hint_start +
+ chunk_md->scan_hint,
+ bit_off,
+ bit_off + bits))
+ chunk_md->scan_hint = 0;
+
+ /*
* The only time a full chunk scan is required is if the chunk
* contig hint is broken. Otherwise, it means a smaller space
* was used and therefore the chunk contig hint is still correct.
*/
- if (bit_off >= chunk->contig_bits_start &&
- bit_off < chunk->contig_bits_start + chunk->contig_bits)
- pcpu_chunk_refresh_hint(chunk);
+ if (pcpu_region_overlap(chunk_md->contig_hint_start,
+ chunk_md->contig_hint_start +
+ chunk_md->contig_hint,
+ bit_off,
+ bit_off + bits))
+ pcpu_chunk_refresh_hint(chunk, false);
}
/**
@@ -782,13 +955,15 @@ static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
*
* A chunk update is triggered if a page becomes free, a block becomes free,
* or the free spans across blocks. This tradeoff is to minimize iterating
- * over the block metadata to update chunk->contig_bits. chunk->contig_bits
- * may be off by up to a page, but it will never be more than the available
- * space. If the contig hint is contained in one block, it will be accurate.
+ * over the block metadata to update chunk_md->contig_hint.
+ * chunk_md->contig_hint may be off by up to a page, but it will never be more
+ * than the available space. If the contig hint is contained in one block, it
+ * will be accurate.
*/
static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
int bits)
{
+ int nr_empty_pages = 0;
struct pcpu_block_md *s_block, *e_block, *block;
int s_index, e_index; /* block indexes of the freed allocation */
int s_off, e_off; /* block offsets of the freed allocation */
@@ -842,16 +1017,22 @@ static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
/* update s_block */
e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
+ if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
+ nr_empty_pages++;
pcpu_block_update(s_block, start, e_off);
/* freeing in the same block */
if (s_index != e_index) {
/* update e_block */
+ if (end == PCPU_BITMAP_BLOCK_BITS)
+ nr_empty_pages++;
pcpu_block_update(e_block, 0, end);
/* reset md_blocks in the middle */
+ nr_empty_pages += (e_index - s_index - 1);
for (block = s_block + 1; block < e_block; block++) {
block->first_free = 0;
+ block->scan_hint = 0;
block->contig_hint_start = 0;
block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
block->left_free = PCPU_BITMAP_BLOCK_BITS;
@@ -859,19 +1040,21 @@ static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
}
}
+ if (nr_empty_pages)
+ pcpu_update_empty_pages(chunk, nr_empty_pages);
+
/*
- * Refresh chunk metadata when the free makes a page free, a block
- * free, or spans across blocks. The contig hint may be off by up to
- * a page, but if the hint is contained in a block, it will be accurate
- * with the else condition below.
+ * Refresh chunk metadata when the free makes a block free or spans
+ * across blocks. The contig_hint may be off by up to a page, but if
+ * the contig_hint is contained in a block, it will be accurate with
+ * the else condition below.
*/
- if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
- ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
- s_index != e_index)
- pcpu_chunk_refresh_hint(chunk);
+ if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
+ pcpu_chunk_refresh_hint(chunk, true);
else
- pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
- s_block->contig_hint);
+ pcpu_block_update(&chunk->chunk_md,
+ pcpu_block_off_to_off(s_index, start),
+ end);
}
/**
@@ -890,17 +1073,18 @@ static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
int *next_off)
{
- int page_start, page_end, rs, re;
+ unsigned int start, end;
- page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
- page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
+ start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
+ end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
- rs = page_start;
- pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
- if (rs >= page_end)
+ start = find_next_zero_bit(chunk->populated, end, start);
+ if (start >= end)
return true;
- *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
+ end = find_next_bit(chunk->populated, end, start + 1);
+
+ *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
return false;
}
@@ -926,20 +1110,18 @@ static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
size_t align, bool pop_only)
{
+ struct pcpu_block_md *chunk_md = &chunk->chunk_md;
int bit_off, bits, next_off;
/*
- * Check to see if the allocation can fit in the chunk's contig hint.
- * This is an optimization to prevent scanning by assuming if it
- * cannot fit in the global hint, there is memory pressure and creating
- * a new chunk would happen soon.
+ * This is an optimization to prevent scanning by assuming if the
+ * allocation cannot fit in the global hint, there is memory pressure
+ * and creating a new chunk would happen soon.
*/
- bit_off = ALIGN(chunk->contig_bits_start, align) -
- chunk->contig_bits_start;
- if (bit_off + alloc_bits > chunk->contig_bits)
+ if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
return -1;
- bit_off = chunk->first_bit;
+ bit_off = pcpu_next_hint(chunk_md, alloc_bits);
bits = 0;
pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
@@ -956,6 +1138,62 @@ static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
return bit_off;
}
+/*
+ * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
+ * @map: the address to base the search on
+ * @size: the bitmap size in bits
+ * @start: the bitnumber to start searching at
+ * @nr: the number of zeroed bits we're looking for
+ * @align_mask: alignment mask for zero area
+ * @largest_off: offset of the largest area skipped
+ * @largest_bits: size of the largest area skipped
+ *
+ * The @align_mask should be one less than a power of 2.
+ *
+ * This is a modified version of bitmap_find_next_zero_area_off() to remember
+ * the largest area that was skipped. This is imperfect, but in general is
+ * good enough. The largest remembered region is the largest failed region
+ * seen. This does not include anything we possibly skipped due to alignment.
+ * pcpu_block_update_scan() does scan backwards to try and recover what was
+ * lost to alignment. While this can cause scanning to miss earlier possible
+ * free areas, smaller allocations will eventually fill those holes.
+ */
+static unsigned long pcpu_find_zero_area(unsigned long *map,
+ unsigned long size,
+ unsigned long start,
+ unsigned long nr,
+ unsigned long align_mask,
+ unsigned long *largest_off,
+ unsigned long *largest_bits)
+{
+ unsigned long index, end, i, area_off, area_bits;
+again:
+ index = find_next_zero_bit(map, size, start);
+
+ /* Align allocation */
+ index = __ALIGN_MASK(index, align_mask);
+ area_off = index;
+
+ end = index + nr;
+ if (end > size)
+ return end;
+ i = find_next_bit(map, end, index);
+ if (i < end) {
+ area_bits = i - area_off;
+ /* remember largest unused area with best alignment */
+ if (area_bits > *largest_bits ||
+ (area_bits == *largest_bits && *largest_off &&
+ (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
+ *largest_off = area_off;
+ *largest_bits = area_bits;
+ }
+
+ start = i + 1;
+ goto again;
+ }
+ return index;
+}
+
/**
* pcpu_alloc_area - allocates an area from a pcpu_chunk
* @chunk: chunk of interest
@@ -978,7 +1216,9 @@ static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
size_t align, int start)
{
+ struct pcpu_block_md *chunk_md = &chunk->chunk_md;
size_t align_mask = (align) ? (align - 1) : 0;
+ unsigned long area_off = 0, area_bits = 0;
int bit_off, end, oslot;
lockdep_assert_held(&pcpu_lock);
@@ -988,12 +1228,16 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
/*
* Search to find a fit.
*/
- end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
- bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
- alloc_bits, align_mask);
+ end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
+ pcpu_chunk_map_bits(chunk));
+ bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
+ align_mask, &area_off, &area_bits);
if (bit_off >= end)
return -1;
+ if (area_bits)
+ pcpu_block_update_scan(chunk, area_off, area_bits);
+
/* update alloc map */
bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
@@ -1005,8 +1249,8 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
/* update first free bit */
- if (bit_off == chunk->first_bit)
- chunk->first_bit = find_next_zero_bit(
+ if (bit_off == chunk_md->first_free)
+ chunk_md->first_free = find_next_zero_bit(
chunk->alloc_map,
pcpu_chunk_map_bits(chunk),
bit_off + alloc_bits);
@@ -1025,10 +1269,14 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
*
* This function determines the size of an allocation to free using
* the boundary bitmap and clears the allocation map.
+ *
+ * RETURNS:
+ * Number of freed bytes.
*/
-static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
+static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
{
- int bit_off, bits, end, oslot;
+ struct pcpu_block_md *chunk_md = &chunk->chunk_md;
+ int bit_off, bits, end, oslot, freed;
lockdep_assert_held(&pcpu_lock);
pcpu_stats_area_dealloc(chunk);
@@ -1043,28 +1291,42 @@ static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
bits = end - bit_off;
bitmap_clear(chunk->alloc_map, bit_off, bits);
+ freed = bits * PCPU_MIN_ALLOC_SIZE;
+
/* update metadata */
- chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
+ chunk->free_bytes += freed;
/* update first free bit */
- chunk->first_bit = min(chunk->first_bit, bit_off);
+ chunk_md->first_free = min(chunk_md->first_free, bit_off);
pcpu_block_update_hint_free(chunk, bit_off, bits);
pcpu_chunk_relocate(chunk, oslot);
+
+ return freed;
+}
+
+static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
+{
+ block->scan_hint = 0;
+ block->contig_hint = nr_bits;
+ block->left_free = nr_bits;
+ block->right_free = nr_bits;
+ block->first_free = 0;
+ block->nr_bits = nr_bits;
}
static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
{
struct pcpu_block_md *md_block;
+ /* init the chunk's block */
+ pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
+
for (md_block = chunk->md_blocks;
md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
- md_block++) {
- md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
- md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
- md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
- }
+ md_block++)
+ pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
}
/**
@@ -1084,26 +1346,20 @@ static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
int map_size)
{
struct pcpu_chunk *chunk;
- unsigned long aligned_addr, lcm_align;
+ unsigned long aligned_addr;
int start_offset, offset_bits, region_size, region_bits;
+ size_t alloc_size;
/* region calculations */
aligned_addr = tmp_addr & PAGE_MASK;
start_offset = tmp_addr - aligned_addr;
-
- /*
- * Align the end of the region with the LCM of PAGE_SIZE and
- * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
- * the other.
- */
- lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
- region_size = ALIGN(start_offset + map_size, lcm_align);
+ region_size = ALIGN(start_offset + map_size, PAGE_SIZE);
/* allocate chunk */
- chunk = memblock_alloc(sizeof(struct pcpu_chunk) +
- BITS_TO_LONGS(region_size >> PAGE_SHIFT),
- SMP_CACHE_BYTES);
+ alloc_size = struct_size(chunk, populated,
+ BITS_TO_LONGS(region_size >> PAGE_SHIFT));
+ chunk = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
INIT_LIST_HEAD(&chunk->list);
@@ -1114,23 +1370,27 @@ static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
chunk->nr_pages = region_size >> PAGE_SHIFT;
region_bits = pcpu_chunk_map_bits(chunk);
- chunk->alloc_map = memblock_alloc(BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]),
- SMP_CACHE_BYTES);
- chunk->bound_map = memblock_alloc(BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]),
- SMP_CACHE_BYTES);
- chunk->md_blocks = memblock_alloc(pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]),
- SMP_CACHE_BYTES);
+ alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
+ chunk->alloc_map = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
+
+ alloc_size =
+ BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
+ chunk->bound_map = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
+
+ alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
+ chunk->md_blocks = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
+#ifdef NEED_PCPUOBJ_EXT
+ /* first chunk is free to use */
+ chunk->obj_exts = NULL;
+#endif
pcpu_init_md_blocks(chunk);
/* manage populated page bitmap */
chunk->immutable = true;
bitmap_fill(chunk->populated, chunk->nr_pages);
chunk->nr_populated = chunk->nr_pages;
- chunk->nr_empty_pop_pages =
- pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
- map_size / PCPU_MIN_ALLOC_SIZE);
+ chunk->nr_empty_pop_pages = chunk->nr_pages;
- chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
chunk->free_bytes = map_size;
if (chunk->start_offset) {
@@ -1140,7 +1400,7 @@ static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
set_bit(0, chunk->bound_map);
set_bit(offset_bits, chunk->bound_map);
- chunk->first_bit = offset_bits;
+ chunk->chunk_md.first_free = offset_bits;
pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
}
@@ -1190,14 +1450,27 @@ static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
if (!chunk->md_blocks)
goto md_blocks_fail;
+#ifdef NEED_PCPUOBJ_EXT
+ if (need_pcpuobj_ext()) {
+ chunk->obj_exts =
+ pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
+ sizeof(struct pcpuobj_ext), gfp);
+ if (!chunk->obj_exts)
+ goto objcg_fail;
+ }
+#endif
+
pcpu_init_md_blocks(chunk);
/* init metadata */
- chunk->contig_bits = region_bits;
chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
return chunk;
+#ifdef NEED_PCPUOBJ_EXT
+objcg_fail:
+ pcpu_mem_free(chunk->md_blocks);
+#endif
md_blocks_fail:
pcpu_mem_free(chunk->bound_map);
bound_map_fail:
@@ -1212,6 +1485,9 @@ static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
if (!chunk)
return;
+#ifdef NEED_PCPUOBJ_EXT
+ pcpu_mem_free(chunk->obj_exts);
+#endif
pcpu_mem_free(chunk->md_blocks);
pcpu_mem_free(chunk->bound_map);
pcpu_mem_free(chunk->alloc_map);
@@ -1223,17 +1499,13 @@ static void pcpu_free_chunk(struct pcpu_chunk *chunk)
* @chunk: pcpu_chunk which got populated
* @page_start: the start page
* @page_end: the end page
- * @for_alloc: if this is to populate for allocation
*
* Pages in [@page_start,@page_end) have been populated to @chunk. Update
* the bookkeeping information accordingly. Must be called after each
* successful population.
- *
- * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
- * is to serve an allocation in that area.
*/
static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
- int page_end, bool for_alloc)
+ int page_end)
{
int nr = page_end - page_start;
@@ -1243,10 +1515,7 @@ static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
chunk->nr_populated += nr;
pcpu_nr_populated += nr;
- if (!for_alloc) {
- chunk->nr_empty_pop_pages += nr;
- pcpu_nr_empty_pop_pages += nr;
- }
+ pcpu_update_empty_pages(chunk, nr);
}
/**
@@ -1268,9 +1537,9 @@ static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
bitmap_clear(chunk->populated, page_start, nr);
chunk->nr_populated -= nr;
- chunk->nr_empty_pop_pages -= nr;
- pcpu_nr_empty_pop_pages -= nr;
pcpu_nr_populated -= nr;
+
+ pcpu_update_empty_pages(chunk, -nr);
}
/*
@@ -1283,6 +1552,7 @@ static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
*
* pcpu_populate_chunk - populate the specified range of a chunk
* pcpu_depopulate_chunk - depopulate the specified range of a chunk
+ * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk
* pcpu_create_chunk - create a new chunk
* pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
* pcpu_addr_to_page - translate address to physical address
@@ -1292,6 +1562,8 @@ static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
int page_start, int page_end, gfp_t gfp);
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
int page_start, int page_end);
+static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
+ int page_start, int page_end);
static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
@@ -1334,6 +1606,112 @@ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
}
+#ifdef CONFIG_MEMCG
+static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
+ struct obj_cgroup **objcgp)
+{
+ struct obj_cgroup *objcg;
+
+ if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT))
+ return true;
+
+ objcg = current_obj_cgroup();
+ if (!objcg)
+ return true;
+
+ if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size)))
+ return false;
+
+ *objcgp = objcg;
+ return true;
+}
+
+static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
+ struct pcpu_chunk *chunk, int off,
+ size_t size)
+{
+ if (!objcg)
+ return;
+
+ if (likely(chunk && chunk->obj_exts)) {
+ obj_cgroup_get(objcg);
+ chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup = objcg;
+
+ rcu_read_lock();
+ mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
+ pcpu_obj_full_size(size));
+ rcu_read_unlock();
+ } else {
+ obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
+ }
+}
+
+static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
+{
+ struct obj_cgroup *objcg;
+
+ if (unlikely(!chunk->obj_exts))
+ return;
+
+ objcg = chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup;
+ if (!objcg)
+ return;
+ chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup = NULL;
+
+ obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
+
+ rcu_read_lock();
+ mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
+ -pcpu_obj_full_size(size));
+ rcu_read_unlock();
+
+ obj_cgroup_put(objcg);
+}
+
+#else /* CONFIG_MEMCG */
+static bool
+pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
+{
+ return true;
+}
+
+static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
+ struct pcpu_chunk *chunk, int off,
+ size_t size)
+{
+}
+
+static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
+{
+}
+#endif /* CONFIG_MEMCG */
+
+#ifdef CONFIG_MEM_ALLOC_PROFILING
+static void pcpu_alloc_tag_alloc_hook(struct pcpu_chunk *chunk, int off,
+ size_t size)
+{
+ if (mem_alloc_profiling_enabled() && likely(chunk->obj_exts)) {
+ alloc_tag_add(&chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].tag,
+ current->alloc_tag, size);
+ }
+}
+
+static void pcpu_alloc_tag_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
+{
+ if (mem_alloc_profiling_enabled() && likely(chunk->obj_exts))
+ alloc_tag_sub(&chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].tag, size);
+}
+#else
+static void pcpu_alloc_tag_alloc_hook(struct pcpu_chunk *chunk, int off,
+ size_t size)
+{
+}
+
+static void pcpu_alloc_tag_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
+{
+}
+#endif
+
/**
* pcpu_alloc - the percpu allocator
* @size: size of area to allocate in bytes
@@ -1349,21 +1727,27 @@ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
* RETURNS:
* Percpu pointer to the allocated area on success, NULL on failure.
*/
-static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
+void __percpu *pcpu_alloc_noprof(size_t size, size_t align, bool reserved,
gfp_t gfp)
{
- /* whitelisted flags that can be passed to the backing allocators */
- gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
- bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
- bool do_warn = !(gfp & __GFP_NOWARN);
- static int warn_limit = 10;
- struct pcpu_chunk *chunk;
+ gfp_t pcpu_gfp;
+ bool is_atomic;
+ bool do_warn;
+ struct obj_cgroup *objcg = NULL;
+ static atomic_t warn_limit = ATOMIC_INIT(10);
+ struct pcpu_chunk *chunk, *next;
const char *err;
int slot, off, cpu, ret;
unsigned long flags;
void __percpu *ptr;
size_t bits, bit_align;
+ gfp = current_gfp_context(gfp);
+ /* whitelisted flags that can be passed to the backing allocators */
+ pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
+ is_atomic = !gfpflags_allow_blocking(gfp);
+ do_warn = !(gfp & __GFP_NOWARN);
+
/*
* There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
* therefore alignment must be a minimum of that many bytes.
@@ -1384,16 +1768,21 @@ static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
return NULL;
}
+ if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
+ return NULL;
+
if (!is_atomic) {
/*
* pcpu_balance_workfn() allocates memory under this mutex,
* and it may wait for memory reclaim. Allow current task
* to become OOM victim, in case of memory pressure.
*/
- if (gfp & __GFP_NOFAIL)
+ if (gfp & __GFP_NOFAIL) {
mutex_lock(&pcpu_alloc_mutex);
- else if (mutex_lock_killable(&pcpu_alloc_mutex))
+ } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
+ pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
return NULL;
+ }
}
spin_lock_irqsave(&pcpu_lock, flags);
@@ -1418,33 +1807,34 @@ static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
restart:
/* search through normal chunks */
- for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
- list_for_each_entry(chunk, &pcpu_slot[slot], list) {
+ for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
+ list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
+ list) {
off = pcpu_find_block_fit(chunk, bits, bit_align,
is_atomic);
- if (off < 0)
+ if (off < 0) {
+ if (slot < PCPU_SLOT_FAIL_THRESHOLD)
+ pcpu_chunk_move(chunk, 0);
continue;
+ }
off = pcpu_alloc_area(chunk, bits, bit_align, off);
- if (off >= 0)
+ if (off >= 0) {
+ pcpu_reintegrate_chunk(chunk);
goto area_found;
-
+ }
}
}
spin_unlock_irqrestore(&pcpu_lock, flags);
- /*
- * No space left. Create a new chunk. We don't want multiple
- * tasks to create chunks simultaneously. Serialize and create iff
- * there's still no empty chunk after grabbing the mutex.
- */
if (is_atomic) {
err = "atomic alloc failed, no space left";
goto fail;
}
- if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
+ /* No space left. Create a new chunk. */
+ if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
chunk = pcpu_create_chunk(pcpu_gfp);
if (!chunk) {
err = "failed to allocate new chunk";
@@ -1461,17 +1851,20 @@ restart:
area_found:
pcpu_stats_area_alloc(chunk, size);
+
+ if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
+ pcpu_schedule_balance_work();
+
spin_unlock_irqrestore(&pcpu_lock, flags);
/* populate if not all pages are already there */
if (!is_atomic) {
- int page_start, page_end, rs, re;
+ unsigned int page_end, rs, re;
- page_start = PFN_DOWN(off);
+ rs = PFN_DOWN(off);
page_end = PFN_UP(off + size);
- pcpu_for_each_unpop_region(chunk->populated, rs, re,
- page_start, page_end) {
+ for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) {
WARN_ON(chunk->immutable);
ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
@@ -1482,16 +1875,13 @@ area_found:
err = "failed to populate";
goto fail_unlock;
}
- pcpu_chunk_populated(chunk, rs, re, true);
+ pcpu_chunk_populated(chunk, rs, re);
spin_unlock_irqrestore(&pcpu_lock, flags);
}
mutex_unlock(&pcpu_alloc_mutex);
}
- if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
- pcpu_schedule_balance_work();
-
/* clear the areas and return address relative to base address */
for_each_possible_cpu(cpu)
memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
@@ -1499,8 +1889,13 @@ area_found:
ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
kmemleak_alloc_percpu(ptr, size, gfp);
- trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
- chunk->base_addr, off, ptr);
+ trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align,
+ chunk->base_addr, off, ptr,
+ pcpu_obj_full_size(size), gfp);
+
+ pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
+
+ pcpu_alloc_tag_alloc_hook(chunk, off, size);
return ptr;
@@ -1509,105 +1904,56 @@ fail_unlock:
fail:
trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
- if (!is_atomic && do_warn && warn_limit) {
- pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
- size, align, is_atomic, err);
- dump_stack();
- if (!--warn_limit)
- pr_info("limit reached, disable warning\n");
+ if (do_warn) {
+ int remaining = atomic_dec_if_positive(&warn_limit);
+
+ if (remaining >= 0) {
+ pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
+ size, align, is_atomic, err);
+ if (!is_atomic)
+ dump_stack();
+ if (remaining == 0)
+ pr_info("limit reached, disable warning\n");
+ }
}
+
if (is_atomic) {
- /* see the flag handling in pcpu_blance_workfn() */
+ /* see the flag handling in pcpu_balance_workfn() */
pcpu_atomic_alloc_failed = true;
pcpu_schedule_balance_work();
} else {
mutex_unlock(&pcpu_alloc_mutex);
}
- return NULL;
-}
-/**
- * __alloc_percpu_gfp - allocate dynamic percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- * @gfp: allocation flags
- *
- * Allocate zero-filled percpu area of @size bytes aligned at @align. If
- * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
- * be called from any context but is a lot more likely to fail. If @gfp
- * has __GFP_NOWARN then no warning will be triggered on invalid or failed
- * allocation requests.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
-void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
-{
- return pcpu_alloc(size, align, false, gfp);
-}
-EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
+ pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
-/**
- * __alloc_percpu - allocate dynamic percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- *
- * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
- */
-void __percpu *__alloc_percpu(size_t size, size_t align)
-{
- return pcpu_alloc(size, align, false, GFP_KERNEL);
+ return NULL;
}
-EXPORT_SYMBOL_GPL(__alloc_percpu);
+EXPORT_SYMBOL_GPL(pcpu_alloc_noprof);
/**
- * __alloc_reserved_percpu - allocate reserved percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
+ * pcpu_balance_free - manage the amount of free chunks
+ * @empty_only: free chunks only if there are no populated pages
*
- * Allocate zero-filled percpu area of @size bytes aligned at @align
- * from reserved percpu area if arch has set it up; otherwise,
- * allocation is served from the same dynamic area. Might sleep.
- * Might trigger writeouts.
+ * If empty_only is %false, reclaim all fully free chunks regardless of the
+ * number of populated pages. Otherwise, only reclaim chunks that have no
+ * populated pages.
*
* CONTEXT:
- * Does GFP_KERNEL allocation.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
+ * pcpu_lock (can be dropped temporarily)
*/
-void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
+static void pcpu_balance_free(bool empty_only)
{
- return pcpu_alloc(size, align, true, GFP_KERNEL);
-}
-
-/**
- * pcpu_balance_workfn - manage the amount of free chunks and populated pages
- * @work: unused
- *
- * Reclaim all fully free chunks except for the first one. This is also
- * responsible for maintaining the pool of empty populated pages. However,
- * it is possible that this is called when physical memory is scarce causing
- * OOM killer to be triggered. We should avoid doing so until an actual
- * allocation causes the failure as it is possible that requests can be
- * serviced from already backed regions.
- */
-static void pcpu_balance_workfn(struct work_struct *work)
-{
- /* gfp flags passed to underlying allocators */
- const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
LIST_HEAD(to_free);
- struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
+ struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
struct pcpu_chunk *chunk, *next;
- int slot, nr_to_pop, ret;
+
+ lockdep_assert_held(&pcpu_lock);
/*
* There's no reason to keep around multiple unused chunks and VM
* areas can be scarce. Destroy all free chunks except for one.
*/
- mutex_lock(&pcpu_alloc_mutex);
- spin_lock_irq(&pcpu_lock);
-
list_for_each_entry_safe(chunk, next, free_head, list) {
WARN_ON(chunk->immutable);
@@ -1615,16 +1961,18 @@ static void pcpu_balance_workfn(struct work_struct *work)
if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
continue;
- list_move(&chunk->list, &to_free);
+ if (!empty_only || chunk->nr_empty_pop_pages == 0)
+ list_move(&chunk->list, &to_free);
}
- spin_unlock_irq(&pcpu_lock);
+ if (list_empty(&to_free))
+ return;
+ spin_unlock_irq(&pcpu_lock);
list_for_each_entry_safe(chunk, next, &to_free, list) {
- int rs, re;
+ unsigned int rs, re;
- pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
- chunk->nr_pages) {
+ for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
pcpu_depopulate_chunk(chunk, rs, re);
spin_lock_irq(&pcpu_lock);
pcpu_chunk_depopulated(chunk, rs, re);
@@ -1633,6 +1981,29 @@ static void pcpu_balance_workfn(struct work_struct *work)
pcpu_destroy_chunk(chunk);
cond_resched();
}
+ spin_lock_irq(&pcpu_lock);
+}
+
+/**
+ * pcpu_balance_populated - manage the amount of populated pages
+ *
+ * Maintain a certain amount of populated pages to satisfy atomic allocations.
+ * It is possible that this is called when physical memory is scarce causing
+ * OOM killer to be triggered. We should avoid doing so until an actual
+ * allocation causes the failure as it is possible that requests can be
+ * serviced from already backed regions.
+ *
+ * CONTEXT:
+ * pcpu_lock (can be dropped temporarily)
+ */
+static void pcpu_balance_populated(void)
+{
+ /* gfp flags passed to underlying allocators */
+ const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
+ struct pcpu_chunk *chunk;
+ int slot, nr_to_pop, ret;
+
+ lockdep_assert_held(&pcpu_lock);
/*
* Ensure there are certain number of free populated pages for
@@ -1655,34 +2026,32 @@ retry_pop:
0, PCPU_EMPTY_POP_PAGES_HIGH);
}
- for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
- int nr_unpop = 0, rs, re;
+ for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
+ unsigned int nr_unpop = 0, rs, re;
if (!nr_to_pop)
break;
- spin_lock_irq(&pcpu_lock);
- list_for_each_entry(chunk, &pcpu_slot[slot], list) {
+ list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
nr_unpop = chunk->nr_pages - chunk->nr_populated;
if (nr_unpop)
break;
}
- spin_unlock_irq(&pcpu_lock);
if (!nr_unpop)
continue;
/* @chunk can't go away while pcpu_alloc_mutex is held */
- pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
- chunk->nr_pages) {
- int nr = min(re - rs, nr_to_pop);
+ for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
+ int nr = min_t(int, re - rs, nr_to_pop);
+ spin_unlock_irq(&pcpu_lock);
ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
+ cond_resched();
+ spin_lock_irq(&pcpu_lock);
if (!ret) {
nr_to_pop -= nr;
- spin_lock_irq(&pcpu_lock);
- pcpu_chunk_populated(chunk, rs, rs + nr, false);
- spin_unlock_irq(&pcpu_lock);
+ pcpu_chunk_populated(chunk, rs, rs + nr);
} else {
nr_to_pop = 0;
}
@@ -1694,16 +2063,155 @@ retry_pop:
if (nr_to_pop) {
/* ran out of chunks to populate, create a new one and retry */
+ spin_unlock_irq(&pcpu_lock);
chunk = pcpu_create_chunk(gfp);
+ cond_resched();
+ spin_lock_irq(&pcpu_lock);
if (chunk) {
- spin_lock_irq(&pcpu_lock);
pcpu_chunk_relocate(chunk, -1);
- spin_unlock_irq(&pcpu_lock);
goto retry_pop;
}
}
+}
+/**
+ * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
+ *
+ * Scan over chunks in the depopulate list and try to release unused populated
+ * pages back to the system. Depopulated chunks are sidelined to prevent
+ * repopulating these pages unless required. Fully free chunks are reintegrated
+ * and freed accordingly (1 is kept around). If we drop below the empty
+ * populated pages threshold, reintegrate the chunk if it has empty free pages.
+ * Each chunk is scanned in the reverse order to keep populated pages close to
+ * the beginning of the chunk.
+ *
+ * CONTEXT:
+ * pcpu_lock (can be dropped temporarily)
+ *
+ */
+static void pcpu_reclaim_populated(void)
+{
+ struct pcpu_chunk *chunk;
+ struct pcpu_block_md *block;
+ int freed_page_start, freed_page_end;
+ int i, end;
+ bool reintegrate;
+
+ lockdep_assert_held(&pcpu_lock);
+
+ /*
+ * Once a chunk is isolated to the to_depopulate list, the chunk is no
+ * longer discoverable to allocations whom may populate pages. The only
+ * other accessor is the free path which only returns area back to the
+ * allocator not touching the populated bitmap.
+ */
+ while ((chunk = list_first_entry_or_null(
+ &pcpu_chunk_lists[pcpu_to_depopulate_slot],
+ struct pcpu_chunk, list))) {
+ WARN_ON(chunk->immutable);
+
+ /*
+ * Scan chunk's pages in the reverse order to keep populated
+ * pages close to the beginning of the chunk.
+ */
+ freed_page_start = chunk->nr_pages;
+ freed_page_end = 0;
+ reintegrate = false;
+ for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
+ /* no more work to do */
+ if (chunk->nr_empty_pop_pages == 0)
+ break;
+
+ /* reintegrate chunk to prevent atomic alloc failures */
+ if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
+ reintegrate = true;
+ break;
+ }
+
+ /*
+ * If the page is empty and populated, start or
+ * extend the (i, end) range. If i == 0, decrease
+ * i and perform the depopulation to cover the last
+ * (first) page in the chunk.
+ */
+ block = chunk->md_blocks + i;
+ if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
+ test_bit(i, chunk->populated)) {
+ if (end == -1)
+ end = i;
+ if (i > 0)
+ continue;
+ i--;
+ }
+
+ /* depopulate if there is an active range */
+ if (end == -1)
+ continue;
+
+ spin_unlock_irq(&pcpu_lock);
+ pcpu_depopulate_chunk(chunk, i + 1, end + 1);
+ cond_resched();
+ spin_lock_irq(&pcpu_lock);
+
+ pcpu_chunk_depopulated(chunk, i + 1, end + 1);
+ freed_page_start = min(freed_page_start, i + 1);
+ freed_page_end = max(freed_page_end, end + 1);
+
+ /* reset the range and continue */
+ end = -1;
+ }
+
+ /* batch tlb flush per chunk to amortize cost */
+ if (freed_page_start < freed_page_end) {
+ spin_unlock_irq(&pcpu_lock);
+ pcpu_post_unmap_tlb_flush(chunk,
+ freed_page_start,
+ freed_page_end);
+ cond_resched();
+ spin_lock_irq(&pcpu_lock);
+ }
+
+ if (reintegrate || chunk->free_bytes == pcpu_unit_size)
+ pcpu_reintegrate_chunk(chunk);
+ else
+ list_move_tail(&chunk->list,
+ &pcpu_chunk_lists[pcpu_sidelined_slot]);
+ }
+}
+
+/**
+ * pcpu_balance_workfn - manage the amount of free chunks and populated pages
+ * @work: unused
+ *
+ * For each chunk type, manage the number of fully free chunks and the number of
+ * populated pages. An important thing to consider is when pages are freed and
+ * how they contribute to the global counts.
+ */
+static void pcpu_balance_workfn(struct work_struct *work)
+{
+ /*
+ * pcpu_balance_free() is called twice because the first time we may
+ * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
+ * to grow other chunks. This then gives pcpu_reclaim_populated() time
+ * to move fully free chunks to the active list to be freed if
+ * appropriate.
+ *
+ * Enforce GFP_NOIO allocations because we have pcpu_alloc users
+ * constrained to GFP_NOIO/NOFS contexts and they could form lock
+ * dependency through pcpu_alloc_mutex
+ */
+ unsigned int flags = memalloc_noio_save();
+ mutex_lock(&pcpu_alloc_mutex);
+ spin_lock_irq(&pcpu_lock);
+
+ pcpu_balance_free(false);
+ pcpu_reclaim_populated();
+ pcpu_balance_populated();
+ pcpu_balance_free(true);
+
+ spin_unlock_irq(&pcpu_lock);
mutex_unlock(&pcpu_alloc_mutex);
+ memalloc_noio_restore(flags);
}
/**
@@ -1720,7 +2228,8 @@ void free_percpu(void __percpu *ptr)
void *addr;
struct pcpu_chunk *chunk;
unsigned long flags;
- int off;
+ int size, off;
+ bool need_balance = false;
if (!ptr)
return;
@@ -1728,28 +2237,40 @@ void free_percpu(void __percpu *ptr)
kmemleak_free_percpu(ptr);
addr = __pcpu_ptr_to_addr(ptr);
+ chunk = pcpu_chunk_addr_search(addr);
+ off = addr - chunk->base_addr;
spin_lock_irqsave(&pcpu_lock, flags);
+ size = pcpu_free_area(chunk, off);
- chunk = pcpu_chunk_addr_search(addr);
- off = addr - chunk->base_addr;
+ pcpu_alloc_tag_free_hook(chunk, off, size);
- pcpu_free_area(chunk, off);
+ pcpu_memcg_free_hook(chunk, off, size);
- /* if there are more than one fully free chunks, wake up grim reaper */
- if (chunk->free_bytes == pcpu_unit_size) {
+ /*
+ * If there are more than one fully free chunks, wake up grim reaper.
+ * If the chunk is isolated, it may be in the process of being
+ * reclaimed. Let reclaim manage cleaning up of that chunk.
+ */
+ if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
struct pcpu_chunk *pos;
- list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
+ list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
if (pos != chunk) {
- pcpu_schedule_balance_work();
+ need_balance = true;
break;
}
+ } else if (pcpu_should_reclaim_chunk(chunk)) {
+ pcpu_isolate_chunk(chunk);
+ need_balance = true;
}
trace_percpu_free_percpu(chunk->base_addr, off, ptr);
spin_unlock_irqrestore(&pcpu_lock, flags);
+
+ if (need_balance)
+ pcpu_schedule_balance_work();
}
EXPORT_SYMBOL_GPL(free_percpu);
@@ -1884,11 +2405,11 @@ struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
void *ptr;
int unit;
- base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
+ base_size = ALIGN(struct_size(ai, groups, nr_groups),
__alignof__(ai->groups[0].cpu_map[0]));
ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
- ptr = memblock_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
+ ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
if (!ptr)
return NULL;
ai = ptr;
@@ -1913,7 +2434,7 @@ struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
*/
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
- memblock_free_early(__pa(ai), ai->__ai_size);
+ memblock_free(ai, ai->__ai_size);
}
/**
@@ -1979,7 +2500,7 @@ static void pcpu_dump_alloc_info(const char *lvl,
* @base_addr: mapped address
*
* Initialize the first percpu chunk which contains the kernel static
- * perpcu area. This function is to be called from arch percpu area
+ * percpu area. This function is to be called from arch percpu area
* setup path.
*
* @ai contains all information necessary to initialize the first
@@ -2026,24 +2547,20 @@ static void pcpu_dump_alloc_info(const char *lvl,
* share the same vm, but use offset regions in the area allocation map.
* The chunk serving the dynamic region is circulated in the chunk slots
* and available for dynamic allocation like any other chunk.
- *
- * RETURNS:
- * 0 on success, -errno on failure.
*/
-int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
- void *base_addr)
+void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
+ void *base_addr)
{
size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
size_t static_size, dyn_size;
- struct pcpu_chunk *chunk;
unsigned long *group_offsets;
size_t *group_sizes;
unsigned long *unit_off;
unsigned int cpu;
int *unit_map;
int group, unit, i;
- int map_size;
unsigned long tmp_addr;
+ size_t alloc_size;
#define PCPU_SETUP_BUG_ON(cond) do { \
if (unlikely(cond)) { \
@@ -2068,21 +2585,23 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
- PCPU_SETUP_BUG_ON(!ai->dyn_size);
PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
/* process group information and build config tables accordingly */
- group_offsets = memblock_alloc(ai->nr_groups * sizeof(group_offsets[0]),
- SMP_CACHE_BYTES);
- group_sizes = memblock_alloc(ai->nr_groups * sizeof(group_sizes[0]),
- SMP_CACHE_BYTES);
- unit_map = memblock_alloc(nr_cpu_ids * sizeof(unit_map[0]),
- SMP_CACHE_BYTES);
- unit_off = memblock_alloc(nr_cpu_ids * sizeof(unit_off[0]),
- SMP_CACHE_BYTES);
+ alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
+ group_offsets = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
+
+ alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
+ group_sizes = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
+
+ alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
+ unit_map = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
+
+ alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
+ unit_off = memblock_alloc_or_panic(alloc_size, SMP_CACHE_BYTES);
for (cpu = 0; cpu < nr_cpu_ids; cpu++)
unit_map[cpu] = UINT_MAX;
@@ -2136,20 +2655,27 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
pcpu_atom_size = ai->atom_size;
- pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
- BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
+ pcpu_chunk_struct_size = struct_size((struct pcpu_chunk *)0, populated,
+ BITS_TO_LONGS(pcpu_unit_pages));
pcpu_stats_save_ai(ai);
/*
- * Allocate chunk slots. The additional last slot is for
- * empty chunks.
+ * Allocate chunk slots. The slots after the active slots are:
+ * sidelined_slot - isolated, depopulated chunks
+ * free_slot - fully free chunks
+ * to_depopulate_slot - isolated, chunks to depopulate
*/
- pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
- pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
- SMP_CACHE_BYTES);
+ pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
+ pcpu_free_slot = pcpu_sidelined_slot + 1;
+ pcpu_to_depopulate_slot = pcpu_free_slot + 1;
+ pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
+ pcpu_chunk_lists = memblock_alloc_or_panic(pcpu_nr_slots *
+ sizeof(pcpu_chunk_lists[0]),
+ SMP_CACHE_BYTES);
+
for (i = 0; i < pcpu_nr_slots; i++)
- INIT_LIST_HEAD(&pcpu_slot[i]);
+ INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
/*
* The end of the static region needs to be aligned with the
@@ -2163,29 +2689,23 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
dyn_size = ai->dyn_size - (static_size - ai->static_size);
/*
- * Initialize first chunk.
- * If the reserved_size is non-zero, this initializes the reserved
- * chunk. If the reserved_size is zero, the reserved chunk is NULL
- * and the dynamic region is initialized here. The first chunk,
- * pcpu_first_chunk, will always point to the chunk that serves
- * the dynamic region.
+ * Initialize first chunk:
+ * This chunk is broken up into 3 parts:
+ * < static | [reserved] | dynamic >
+ * - static - there is no backing chunk because these allocations can
+ * never be freed.
+ * - reserved (pcpu_reserved_chunk) - exists primarily to serve
+ * allocations from module load.
+ * - dynamic (pcpu_first_chunk) - serves the dynamic part of the first
+ * chunk.
*/
tmp_addr = (unsigned long)base_addr + static_size;
- map_size = ai->reserved_size ?: dyn_size;
- chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
-
- /* init dynamic chunk if necessary */
- if (ai->reserved_size) {
- pcpu_reserved_chunk = chunk;
-
- tmp_addr = (unsigned long)base_addr + static_size +
- ai->reserved_size;
- map_size = dyn_size;
- chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
- }
+ if (ai->reserved_size)
+ pcpu_reserved_chunk = pcpu_alloc_first_chunk(tmp_addr,
+ ai->reserved_size);
+ tmp_addr = (unsigned long)base_addr + static_size + ai->reserved_size;
+ pcpu_first_chunk = pcpu_alloc_first_chunk(tmp_addr, dyn_size);
- /* link the first chunk in */
- pcpu_first_chunk = chunk;
pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
pcpu_chunk_relocate(pcpu_first_chunk, -1);
@@ -2197,7 +2717,6 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
/* we're done */
pcpu_base_addr = base_addr;
- return 0;
}
#ifdef CONFIG_SMP
@@ -2270,17 +2789,18 @@ early_param("percpu_alloc", percpu_alloc_setup);
* On success, pointer to the new allocation_info is returned. On
* failure, ERR_PTR value is returned.
*/
-static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
+static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
size_t reserved_size, size_t dyn_size,
size_t atom_size,
pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
static int group_map[NR_CPUS] __initdata;
static int group_cnt[NR_CPUS] __initdata;
+ static struct cpumask mask __initdata;
const size_t static_size = __per_cpu_end - __per_cpu_start;
int nr_groups = 1, nr_units = 0;
size_t size_sum, min_unit_size, alloc_size;
- int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
+ int upa, max_upa, best_upa; /* units_per_alloc */
int last_allocs, group, unit;
unsigned int cpu, tcpu;
struct pcpu_alloc_info *ai;
@@ -2289,6 +2809,7 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
/* this function may be called multiple times */
memset(group_map, 0, sizeof(group_map));
memset(group_cnt, 0, sizeof(group_cnt));
+ cpumask_clear(&mask);
/* calculate size_sum and ensure dyn_size is enough for early alloc */
size_sum = PFN_ALIGN(static_size + reserved_size +
@@ -2310,24 +2831,27 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
upa--;
max_upa = upa;
+ cpumask_copy(&mask, cpu_possible_mask);
+
/* group cpus according to their proximity */
- for_each_possible_cpu(cpu) {
- group = 0;
- next_group:
- for_each_possible_cpu(tcpu) {
- if (cpu == tcpu)
- break;
- if (group_map[tcpu] == group && cpu_distance_fn &&
- (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
- cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
- group++;
- nr_groups = max(nr_groups, group + 1);
- goto next_group;
- }
- }
+ for (group = 0; !cpumask_empty(&mask); group++) {
+ /* pop the group's first cpu */
+ cpu = cpumask_first(&mask);
group_map[cpu] = group;
group_cnt[group]++;
+ cpumask_clear_cpu(cpu, &mask);
+
+ for_each_cpu(tcpu, &mask) {
+ if (!cpu_distance_fn ||
+ (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
+ cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
+ group_map[tcpu] = group;
+ group_cnt[group]++;
+ cpumask_clear_cpu(tcpu, &mask);
+ }
+ }
}
+ nr_groups = group;
/*
* Wasted space is caused by a ratio imbalance of upa to group_cnt.
@@ -2335,6 +2859,7 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
* Related to atom_size, which could be much larger than the unit_size.
*/
last_allocs = INT_MAX;
+ best_upa = 0;
for (upa = max_upa; upa; upa--) {
int allocs = 0, wasted = 0;
@@ -2361,6 +2886,7 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
last_allocs = allocs;
best_upa = upa;
}
+ BUG_ON(!best_upa);
upa = best_upa;
/* allocate and fill alloc_info */
@@ -2384,7 +2910,7 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
ai->atom_size = atom_size;
ai->alloc_size = alloc_size;
- for (group = 0, unit = 0; group_cnt[group]; group++) {
+ for (group = 0, unit = 0; group < nr_groups; group++) {
struct pcpu_group_info *gi = &ai->groups[group];
/*
@@ -2404,6 +2930,42 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
return ai;
}
+
+static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align,
+ pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
+{
+ const unsigned long goal = __pa(MAX_DMA_ADDRESS);
+#ifdef CONFIG_NUMA
+ int node = NUMA_NO_NODE;
+ void *ptr;
+
+ if (cpu_to_nd_fn)
+ node = cpu_to_nd_fn(cpu);
+
+ if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) {
+ ptr = memblock_alloc_from(size, align, goal);
+ pr_info("cpu %d has no node %d or node-local memory\n",
+ cpu, node);
+ pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n",
+ cpu, size, (u64)__pa(ptr));
+ } else {
+ ptr = memblock_alloc_try_nid(size, align, goal,
+ MEMBLOCK_ALLOC_ACCESSIBLE,
+ node);
+
+ pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n",
+ cpu, size, node, (u64)__pa(ptr));
+ }
+ return ptr;
+#else
+ return memblock_alloc_from(size, align, goal);
+#endif
+}
+
+static void __init pcpu_fc_free(void *ptr, size_t size)
+{
+ memblock_free(ptr, size);
+}
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
#if defined(BUILD_EMBED_FIRST_CHUNK)
@@ -2413,14 +2975,13 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
* @dyn_size: minimum free size for dynamic allocation in bytes
* @atom_size: allocation atom size
* @cpu_distance_fn: callback to determine distance between cpus, optional
- * @alloc_fn: function to allocate percpu page
- * @free_fn: function to free percpu page
+ * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
*
* This is a helper to ease setting up embedded first percpu chunk and
* can be called where pcpu_setup_first_chunk() is expected.
*
* If this function is used to setup the first chunk, it is allocated
- * by calling @alloc_fn and used as-is without being mapped into
+ * by calling pcpu_fc_alloc and used as-is without being mapped into
* vmalloc area. Allocations are always whole multiples of @atom_size
* aligned to @atom_size.
*
@@ -2434,7 +2995,7 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
* @dyn_size specifies the minimum dynamic area size.
*
* If the needed size is smaller than the minimum or specified unit
- * size, the leftover is returned using @free_fn.
+ * size, the leftover is returned using pcpu_fc_free.
*
* RETURNS:
* 0 on success, -errno on failure.
@@ -2442,15 +3003,14 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
size_t atom_size,
pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
- pcpu_fc_alloc_fn_t alloc_fn,
- pcpu_fc_free_fn_t free_fn)
+ pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
{
void *base = (void *)ULONG_MAX;
void **areas = NULL;
struct pcpu_alloc_info *ai;
size_t size_sum, areas_size;
unsigned long max_distance;
- int group, i, highest_group, rc;
+ int group, i, highest_group, rc = 0;
ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
cpu_distance_fn);
@@ -2460,7 +3020,7 @@ int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
- areas = memblock_alloc_nopanic(areas_size, SMP_CACHE_BYTES);
+ areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
if (!areas) {
rc = -ENOMEM;
goto out_free;
@@ -2478,13 +3038,13 @@ int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
BUG_ON(cpu == NR_CPUS);
/* allocate space for the whole group */
- ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
+ ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn);
if (!ptr) {
rc = -ENOMEM;
goto out_free_areas;
}
/* kmemleak tracks the percpu allocations separately */
- kmemleak_free(ptr);
+ kmemleak_ignore_phys(__pa(ptr));
areas[group] = ptr;
base = min(ptr, base);
@@ -2517,12 +3077,12 @@ int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
if (gi->cpu_map[i] == NR_CPUS) {
/* unused unit, free whole */
- free_fn(ptr, ai->unit_size);
+ pcpu_fc_free(ptr, ai->unit_size);
continue;
}
/* copy and return the unused part */
- memcpy(ptr, __per_cpu_load, ai->static_size);
- free_fn(ptr + size_sum, ai->unit_size - size_sum);
+ memcpy(ptr, __per_cpu_start, ai->static_size);
+ pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum);
}
}
@@ -2531,33 +3091,83 @@ int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
ai->groups[group].base_offset = areas[group] - base;
}
- pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
- PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
+ pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
+ PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
ai->dyn_size, ai->unit_size);
- rc = pcpu_setup_first_chunk(ai, base);
+ pcpu_setup_first_chunk(ai, base);
goto out_free;
out_free_areas:
for (group = 0; group < ai->nr_groups; group++)
if (areas[group])
- free_fn(areas[group],
+ pcpu_fc_free(areas[group],
ai->groups[group].nr_units * ai->unit_size);
out_free:
pcpu_free_alloc_info(ai);
if (areas)
- memblock_free_early(__pa(areas), areas_size);
+ memblock_free(areas, areas_size);
return rc;
}
#endif /* BUILD_EMBED_FIRST_CHUNK */
#ifdef BUILD_PAGE_FIRST_CHUNK
+#include <linux/pgalloc.h>
+
+#ifndef P4D_TABLE_SIZE
+#define P4D_TABLE_SIZE PAGE_SIZE
+#endif
+
+#ifndef PUD_TABLE_SIZE
+#define PUD_TABLE_SIZE PAGE_SIZE
+#endif
+
+#ifndef PMD_TABLE_SIZE
+#define PMD_TABLE_SIZE PAGE_SIZE
+#endif
+
+#ifndef PTE_TABLE_SIZE
+#define PTE_TABLE_SIZE PAGE_SIZE
+#endif
+void __init __weak pcpu_populate_pte(unsigned long addr)
+{
+ pgd_t *pgd = pgd_offset_k(addr);
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+
+ if (pgd_none(*pgd)) {
+ p4d = memblock_alloc_or_panic(P4D_TABLE_SIZE, P4D_TABLE_SIZE);
+ pgd_populate_kernel(addr, pgd, p4d);
+ }
+
+ p4d = p4d_offset(pgd, addr);
+ if (p4d_none(*p4d)) {
+ pud = memblock_alloc_or_panic(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
+ p4d_populate_kernel(addr, p4d, pud);
+ }
+
+ pud = pud_offset(p4d, addr);
+ if (pud_none(*pud)) {
+ pmd = memblock_alloc_or_panic(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
+ pud_populate(&init_mm, pud, pmd);
+ }
+
+ pmd = pmd_offset(pud, addr);
+ if (!pmd_present(*pmd)) {
+ pte_t *new;
+
+ new = memblock_alloc_or_panic(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
+ pmd_populate_kernel(&init_mm, pmd, new);
+ }
+
+ return;
+}
+
/**
* pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
* @reserved_size: the size of reserved percpu area in bytes
- * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
- * @free_fn: function to free percpu page, always called with PAGE_SIZE
- * @populate_pte_fn: function to populate pte
+ * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
*
* This is a helper to ease setting up page-remapped first percpu
* chunk and can be called where pcpu_setup_first_chunk() is expected.
@@ -2568,10 +3178,7 @@ out_free:
* RETURNS:
* 0 on success, -errno on failure.
*/
-int __init pcpu_page_first_chunk(size_t reserved_size,
- pcpu_fc_alloc_fn_t alloc_fn,
- pcpu_fc_free_fn_t free_fn,
- pcpu_fc_populate_pte_fn_t populate_pte_fn)
+int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
{
static struct vm_struct vm;
struct pcpu_alloc_info *ai;
@@ -2579,7 +3186,7 @@ int __init pcpu_page_first_chunk(size_t reserved_size,
int unit_pages;
size_t pages_size;
struct page **pages;
- int unit, i, j, rc;
+ int unit, i, j, rc = 0;
int upa;
int nr_g0_units;
@@ -2601,7 +3208,7 @@ int __init pcpu_page_first_chunk(size_t reserved_size,
/* unaligned allocations can't be freed, round up to page size */
pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
sizeof(pages[0]));
- pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
+ pages = memblock_alloc_or_panic(pages_size, SMP_CACHE_BYTES);
/* allocate pages */
j = 0;
@@ -2610,14 +3217,14 @@ int __init pcpu_page_first_chunk(size_t reserved_size,
for (i = 0; i < unit_pages; i++) {
void *ptr;
- ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
+ ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn);
if (!ptr) {
pr_warn("failed to allocate %s page for cpu%u\n",
psize_str, cpu);
goto enomem;
}
/* kmemleak tracks the percpu allocations separately */
- kmemleak_free(ptr);
+ kmemleak_ignore_phys(__pa(ptr));
pages[j++] = virt_to_page(ptr);
}
}
@@ -2632,7 +3239,7 @@ int __init pcpu_page_first_chunk(size_t reserved_size,
(unsigned long)vm.addr + unit * ai->unit_size;
for (i = 0; i < unit_pages; i++)
- populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
+ pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT));
/* pte already populated, the following shouldn't fail */
rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
@@ -2640,32 +3247,26 @@ int __init pcpu_page_first_chunk(size_t reserved_size,
if (rc < 0)
panic("failed to map percpu area, err=%d\n", rc);
- /*
- * FIXME: Archs with virtual cache should flush local
- * cache for the linear mapping here - something
- * equivalent to flush_cache_vmap() on the local cpu.
- * flush_cache_vmap() can't be used as most supporting
- * data structures are not set up yet.
- */
+ flush_cache_vmap_early(unit_addr, unit_addr + ai->unit_size);
/* copy static data */
- memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
+ memcpy((void *)unit_addr, __per_cpu_start, ai->static_size);
}
/* we're ready, commit */
- pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
- unit_pages, psize_str, vm.addr, ai->static_size,
+ pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
+ unit_pages, psize_str, ai->static_size,
ai->reserved_size, ai->dyn_size);
- rc = pcpu_setup_first_chunk(ai, vm.addr);
+ pcpu_setup_first_chunk(ai, vm.addr);
goto out_free_ar;
enomem:
while (--j >= 0)
- free_fn(page_address(pages[j]), PAGE_SIZE);
+ pcpu_fc_free(page_address(pages[j]), PAGE_SIZE);
rc = -ENOMEM;
out_free_ar:
- memblock_free_early(__pa(pages), pages_size);
+ memblock_free(pages, pages_size);
pcpu_free_alloc_info(ai);
return rc;
}
@@ -2687,18 +3288,6 @@ out_free_ar:
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);
-static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
- size_t align)
-{
- return memblock_alloc_from_nopanic(
- size, align, __pa(MAX_DMA_ADDRESS));
-}
-
-static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
-{
- memblock_free_early(__pa(ptr), size);
-}
-
void __init setup_per_cpu_areas(void)
{
unsigned long delta;
@@ -2709,9 +3298,8 @@ void __init setup_per_cpu_areas(void)
* Always reserve area for module percpu variables. That's
* what the legacy allocator did.
*/
- rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
- PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
- pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
+ rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE,
+ PAGE_SIZE, NULL, NULL);
if (rc < 0)
panic("Failed to initialize percpu areas.");
@@ -2739,13 +3327,11 @@ void __init setup_per_cpu_areas(void)
void *fc;
ai = pcpu_alloc_alloc_info(1, 1);
- fc = memblock_alloc_from_nopanic(unit_size,
- PAGE_SIZE,
- __pa(MAX_DMA_ADDRESS));
+ fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
if (!ai || !fc)
panic("Failed to allocate memory for percpu areas.");
/* kmemleak tracks the percpu allocations separately */
- kmemleak_free(fc);
+ kmemleak_ignore_phys(__pa(fc));
ai->dyn_size = unit_size;
ai->unit_size = unit_size;
@@ -2754,8 +3340,7 @@ void __init setup_per_cpu_areas(void)
ai->groups[0].nr_units = 1;
ai->groups[0].cpu_map[0] = 0;
- if (pcpu_setup_first_chunk(ai, fc) < 0)
- panic("Failed to initialize percpu areas.");
+ pcpu_setup_first_chunk(ai, fc);
pcpu_free_alloc_info(ai);
}
@@ -2774,7 +3359,7 @@ void __init setup_per_cpu_areas(void)
*/
unsigned long pcpu_nr_pages(void)
{
- return pcpu_nr_populated * pcpu_nr_units;
+ return data_race(READ_ONCE(pcpu_nr_populated)) * pcpu_nr_units;
}
/*