diff options
Diffstat (limited to 'mm/slab.h')
| -rw-r--r-- | mm/slab.h | 853 |
1 files changed, 313 insertions, 540 deletions
diff --git a/mm/slab.h b/mm/slab.h index 7cc432969945..f730e012553c 100644 --- a/mm/slab.h +++ b/mm/slab.h @@ -1,34 +1,82 @@ /* SPDX-License-Identifier: GPL-2.0 */ #ifndef MM_SLAB_H #define MM_SLAB_H + +#include <linux/reciprocal_div.h> +#include <linux/list_lru.h> +#include <linux/local_lock.h> +#include <linux/random.h> +#include <linux/kobject.h> +#include <linux/sched/mm.h> +#include <linux/memcontrol.h> +#include <linux/kfence.h> +#include <linux/kasan.h> + /* * Internal slab definitions */ -/* Reuses the bits in struct page */ -struct slab { - unsigned long __page_flags; +#ifdef CONFIG_64BIT +# ifdef system_has_cmpxchg128 +# define system_has_freelist_aba() system_has_cmpxchg128() +# define try_cmpxchg_freelist try_cmpxchg128 +# endif +#define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg128 +typedef u128 freelist_full_t; +#else /* CONFIG_64BIT */ +# ifdef system_has_cmpxchg64 +# define system_has_freelist_aba() system_has_cmpxchg64() +# define try_cmpxchg_freelist try_cmpxchg64 +# endif +#define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg64 +typedef u64 freelist_full_t; +#endif /* CONFIG_64BIT */ -#if defined(CONFIG_SLAB) +#if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) +#undef system_has_freelist_aba +#endif - struct kmem_cache *slab_cache; +/* + * Freelist pointer and counter to cmpxchg together, avoids the typical ABA + * problems with cmpxchg of just a pointer. + */ +struct freelist_counters { union { struct { - struct list_head slab_list; - void *freelist; /* array of free object indexes */ - void *s_mem; /* first object */ + void *freelist; + union { + unsigned long counters; + struct { + unsigned inuse:16; + unsigned objects:15; + /* + * If slab debugging is enabled then the + * frozen bit can be reused to indicate + * that the slab was corrupted + */ + unsigned frozen:1; + }; + }; }; - struct rcu_head rcu_head; +#ifdef system_has_freelist_aba + freelist_full_t freelist_counters; +#endif }; - unsigned int active; +}; -#elif defined(CONFIG_SLUB) +/* Reuses the bits in struct page */ +struct slab { + memdesc_flags_t flags; struct kmem_cache *slab_cache; union { struct { union { struct list_head slab_list; + struct { /* For deferred deactivate_slab() */ + struct llist_node llnode; + void *flush_freelist; + }; #ifdef CONFIG_SLUB_CPU_PARTIAL struct { struct slab *next; @@ -37,72 +85,37 @@ struct slab { #endif }; /* Double-word boundary */ - void *freelist; /* first free object */ - union { - unsigned long counters; - struct { - unsigned inuse:16; - unsigned objects:15; - unsigned frozen:1; - }; - }; + struct freelist_counters; }; struct rcu_head rcu_head; }; - unsigned int __unused; - -#elif defined(CONFIG_SLOB) - - struct list_head slab_list; - void *__unused_1; - void *freelist; /* first free block */ - long units; - unsigned int __unused_2; - -#else -#error "Unexpected slab allocator configured" -#endif + unsigned int __page_type; atomic_t __page_refcount; -#ifdef CONFIG_MEMCG - unsigned long memcg_data; +#ifdef CONFIG_SLAB_OBJ_EXT + unsigned long obj_exts; #endif }; #define SLAB_MATCH(pg, sl) \ static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl)) -SLAB_MATCH(flags, __page_flags); -#ifndef CONFIG_SLOB +SLAB_MATCH(flags, flags); SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */ -#else -SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */ -#endif SLAB_MATCH(_refcount, __page_refcount); #ifdef CONFIG_MEMCG -SLAB_MATCH(memcg_data, memcg_data); +SLAB_MATCH(memcg_data, obj_exts); +#elif defined(CONFIG_SLAB_OBJ_EXT) +SLAB_MATCH(_unused_slab_obj_exts, obj_exts); #endif #undef SLAB_MATCH static_assert(sizeof(struct slab) <= sizeof(struct page)); -#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && defined(CONFIG_SLUB) -static_assert(IS_ALIGNED(offsetof(struct slab, freelist), 2*sizeof(void *))); +#if defined(system_has_freelist_aba) +static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(struct freelist_counters))); #endif /** - * folio_slab - Converts from folio to slab. - * @folio: The folio. - * - * Currently struct slab is a different representation of a folio where - * folio_test_slab() is true. - * - * Return: The slab which contains this folio. - */ -#define folio_slab(folio) (_Generic((folio), \ - const struct folio *: (const struct slab *)(folio), \ - struct folio *: (struct slab *)(folio))) - -/** * slab_folio - The folio allocated for a slab - * @slab: The slab. + * @s: The slab. * * Slabs are allocated as folios that contain the individual objects and are * using some fields in the first struct page of the folio - those fields are @@ -116,24 +129,28 @@ static_assert(IS_ALIGNED(offsetof(struct slab, freelist), 2*sizeof(void *))); struct slab *: (struct folio *)s)) /** - * page_slab - Converts from first struct page to slab. - * @p: The first (either head of compound or single) page of slab. + * page_slab - Converts from struct page to its slab. + * @page: A page which may or may not belong to a slab. * - * A temporary wrapper to convert struct page to struct slab in situations where - * we know the page is the compound head, or single order-0 page. - * - * Long-term ideally everything would work with struct slab directly or go - * through folio to struct slab. - * - * Return: The slab which contains this page + * Return: The slab which contains this page or NULL if the page does + * not belong to a slab. This includes pages returned from large kmalloc. */ -#define page_slab(p) (_Generic((p), \ - const struct page *: (const struct slab *)(p), \ - struct page *: (struct slab *)(p))) +static inline struct slab *page_slab(const struct page *page) +{ + unsigned long head; + + head = READ_ONCE(page->compound_head); + if (head & 1) + page = (struct page *)(head - 1); + if (data_race(page->page_type >> 24) != PGTY_slab) + page = NULL; + + return (struct slab *)page; +} /** * slab_page - The first struct page allocated for a slab - * @slab: The slab. + * @s: The slab. * * A convenience wrapper for converting slab to the first struct page of the * underlying folio, to communicate with code not yet converted to folio or @@ -141,30 +158,6 @@ static_assert(IS_ALIGNED(offsetof(struct slab, freelist), 2*sizeof(void *))); */ #define slab_page(s) folio_page(slab_folio(s), 0) -/* - * If network-based swap is enabled, sl*b must keep track of whether pages - * were allocated from pfmemalloc reserves. - */ -static inline bool slab_test_pfmemalloc(const struct slab *slab) -{ - return folio_test_active((struct folio *)slab_folio(slab)); -} - -static inline void slab_set_pfmemalloc(struct slab *slab) -{ - folio_set_active(slab_folio(slab)); -} - -static inline void slab_clear_pfmemalloc(struct slab *slab) -{ - folio_clear_active(slab_folio(slab)); -} - -static inline void __slab_clear_pfmemalloc(struct slab *slab) -{ - __folio_clear_active(slab_folio(slab)); -} - static inline void *slab_address(const struct slab *slab) { return folio_address(slab_folio(slab)); @@ -172,27 +165,22 @@ static inline void *slab_address(const struct slab *slab) static inline int slab_nid(const struct slab *slab) { - return folio_nid(slab_folio(slab)); + return memdesc_nid(slab->flags); } static inline pg_data_t *slab_pgdat(const struct slab *slab) { - return folio_pgdat(slab_folio(slab)); + return NODE_DATA(slab_nid(slab)); } static inline struct slab *virt_to_slab(const void *addr) { - struct folio *folio = virt_to_folio(addr); - - if (!folio_test_slab(folio)) - return NULL; - - return folio_slab(folio); + return page_slab(virt_to_page(addr)); } static inline int slab_order(const struct slab *slab) { - return folio_order((struct folio *)slab_folio(slab)); + return folio_order(slab_folio(slab)); } static inline size_t slab_size(const struct slab *slab) @@ -200,46 +188,139 @@ static inline size_t slab_size(const struct slab *slab) return PAGE_SIZE << slab_order(slab); } -#ifdef CONFIG_SLOB +#ifdef CONFIG_SLUB_CPU_PARTIAL +#define slub_percpu_partial(c) ((c)->partial) + +#define slub_set_percpu_partial(c, p) \ +({ \ + slub_percpu_partial(c) = (p)->next; \ +}) + +#define slub_percpu_partial_read_once(c) READ_ONCE(slub_percpu_partial(c)) +#else +#define slub_percpu_partial(c) NULL + +#define slub_set_percpu_partial(c, p) + +#define slub_percpu_partial_read_once(c) NULL +#endif // CONFIG_SLUB_CPU_PARTIAL + /* - * Common fields provided in kmem_cache by all slab allocators - * This struct is either used directly by the allocator (SLOB) - * or the allocator must include definitions for all fields - * provided in kmem_cache_common in their definition of kmem_cache. - * - * Once we can do anonymous structs (C11 standard) we could put a - * anonymous struct definition in these allocators so that the - * separate allocations in the kmem_cache structure of SLAB and - * SLUB is no longer needed. + * Word size structure that can be atomically updated or read and that + * contains both the order and the number of objects that a slab of the + * given order would contain. */ -struct kmem_cache { - unsigned int object_size;/* The original size of the object */ - unsigned int size; /* The aligned/padded/added on size */ - unsigned int align; /* Alignment as calculated */ - slab_flags_t flags; /* Active flags on the slab */ - const char *name; /* Slab name for sysfs */ - int refcount; /* Use counter */ - void (*ctor)(void *); /* Called on object slot creation */ - struct list_head list; /* List of all slab caches on the system */ +struct kmem_cache_order_objects { + unsigned int x; }; -#endif /* CONFIG_SLOB */ +/* + * Slab cache management. + */ +struct kmem_cache { + struct kmem_cache_cpu __percpu *cpu_slab; + struct lock_class_key lock_key; + struct slub_percpu_sheaves __percpu *cpu_sheaves; + /* Used for retrieving partial slabs, etc. */ + slab_flags_t flags; + unsigned long min_partial; + unsigned int size; /* Object size including metadata */ + unsigned int object_size; /* Object size without metadata */ + struct reciprocal_value reciprocal_size; + unsigned int offset; /* Free pointer offset */ +#ifdef CONFIG_SLUB_CPU_PARTIAL + /* Number of per cpu partial objects to keep around */ + unsigned int cpu_partial; + /* Number of per cpu partial slabs to keep around */ + unsigned int cpu_partial_slabs; +#endif + unsigned int sheaf_capacity; + struct kmem_cache_order_objects oo; + + /* Allocation and freeing of slabs */ + struct kmem_cache_order_objects min; + gfp_t allocflags; /* gfp flags to use on each alloc */ + int refcount; /* Refcount for slab cache destroy */ + void (*ctor)(void *object); /* Object constructor */ + unsigned int inuse; /* Offset to metadata */ + unsigned int align; /* Alignment */ + unsigned int red_left_pad; /* Left redzone padding size */ + const char *name; /* Name (only for display!) */ + struct list_head list; /* List of slab caches */ +#ifdef CONFIG_SYSFS + struct kobject kobj; /* For sysfs */ +#endif +#ifdef CONFIG_SLAB_FREELIST_HARDENED + unsigned long random; +#endif + +#ifdef CONFIG_NUMA + /* + * Defragmentation by allocating from a remote node. + */ + unsigned int remote_node_defrag_ratio; +#endif -#ifdef CONFIG_SLAB -#include <linux/slab_def.h> +#ifdef CONFIG_SLAB_FREELIST_RANDOM + unsigned int *random_seq; #endif -#ifdef CONFIG_SLUB -#include <linux/slub_def.h> +#ifdef CONFIG_KASAN_GENERIC + struct kasan_cache kasan_info; #endif -#include <linux/memcontrol.h> -#include <linux/fault-inject.h> -#include <linux/kasan.h> -#include <linux/kmemleak.h> -#include <linux/random.h> -#include <linux/sched/mm.h> -#include <linux/list_lru.h> +#ifdef CONFIG_HARDENED_USERCOPY + unsigned int useroffset; /* Usercopy region offset */ + unsigned int usersize; /* Usercopy region size */ +#endif + + struct kmem_cache_node *node[MAX_NUMNODES]; +}; + +#if defined(CONFIG_SYSFS) && !defined(CONFIG_SLUB_TINY) +#define SLAB_SUPPORTS_SYSFS 1 +void sysfs_slab_unlink(struct kmem_cache *s); +void sysfs_slab_release(struct kmem_cache *s); +#else +static inline void sysfs_slab_unlink(struct kmem_cache *s) { } +static inline void sysfs_slab_release(struct kmem_cache *s) { } +#endif + +void *fixup_red_left(struct kmem_cache *s, void *p); + +static inline void *nearest_obj(struct kmem_cache *cache, + const struct slab *slab, void *x) +{ + void *object = x - (x - slab_address(slab)) % cache->size; + void *last_object = slab_address(slab) + + (slab->objects - 1) * cache->size; + void *result = (unlikely(object > last_object)) ? last_object : object; + + result = fixup_red_left(cache, result); + return result; +} + +/* Determine object index from a given position */ +static inline unsigned int __obj_to_index(const struct kmem_cache *cache, + void *addr, void *obj) +{ + return reciprocal_divide(kasan_reset_tag(obj) - addr, + cache->reciprocal_size); +} + +static inline unsigned int obj_to_index(const struct kmem_cache *cache, + const struct slab *slab, void *obj) +{ + if (is_kfence_address(obj)) + return 0; + return __obj_to_index(cache, slab_address(slab), obj); +} + +static inline int objs_per_slab(const struct kmem_cache *cache, + const struct slab *slab) +{ + return slab->objects; +} /* * State of the slab allocator. @@ -252,7 +333,6 @@ struct kmem_cache { enum slab_state { DOWN, /* No slab functionality yet */ PARTIAL, /* SLUB: kmem_cache_node available */ - PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */ UP, /* Slab caches usable but not all extras yet */ FULL /* Everything is working */ }; @@ -274,28 +354,47 @@ extern const struct kmalloc_info_struct { unsigned int size; } kmalloc_info[]; -#ifndef CONFIG_SLOB /* Kmalloc array related functions */ void setup_kmalloc_cache_index_table(void); -void create_kmalloc_caches(slab_flags_t); +void create_kmalloc_caches(void); -/* Find the kmalloc slab corresponding for a certain size */ -struct kmem_cache *kmalloc_slab(size_t, gfp_t); +extern u8 kmalloc_size_index[24]; -void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, - int node, size_t orig_size, - unsigned long caller); -void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller); -#endif +static inline unsigned int size_index_elem(unsigned int bytes) +{ + return (bytes - 1) / 8; +} + +/* + * Find the kmem_cache structure that serves a given size of + * allocation + * + * This assumes size is larger than zero and not larger than + * KMALLOC_MAX_CACHE_SIZE and the caller must check that. + */ +static inline struct kmem_cache * +kmalloc_slab(size_t size, kmem_buckets *b, gfp_t flags, unsigned long caller) +{ + unsigned int index; + + if (!b) + b = &kmalloc_caches[kmalloc_type(flags, caller)]; + if (size <= 192) + index = kmalloc_size_index[size_index_elem(size)]; + else + index = fls(size - 1); + + return (*b)[index]; +} gfp_t kmalloc_fix_flags(gfp_t flags); /* Functions provided by the slab allocators */ -int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags); +int do_kmem_cache_create(struct kmem_cache *s, const char *name, + unsigned int size, struct kmem_cache_args *args, + slab_flags_t flags); -struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size, - slab_flags_t flags, unsigned int useroffset, - unsigned int usersize); +void __init kmem_cache_init(void); extern void create_boot_cache(struct kmem_cache *, const char *name, unsigned int size, slab_flags_t flags, unsigned int useroffset, unsigned int usersize); @@ -303,70 +402,38 @@ extern void create_boot_cache(struct kmem_cache *, const char *name, int slab_unmergeable(struct kmem_cache *s); struct kmem_cache *find_mergeable(unsigned size, unsigned align, slab_flags_t flags, const char *name, void (*ctor)(void *)); -#ifndef CONFIG_SLOB struct kmem_cache * __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)); -slab_flags_t kmem_cache_flags(unsigned int object_size, - slab_flags_t flags, const char *name); -#else -static inline struct kmem_cache * -__kmem_cache_alias(const char *name, unsigned int size, unsigned int align, - slab_flags_t flags, void (*ctor)(void *)) -{ return NULL; } +slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name); -static inline slab_flags_t kmem_cache_flags(unsigned int object_size, - slab_flags_t flags, const char *name) +static inline bool is_kmalloc_cache(struct kmem_cache *s) { - return flags; + return (s->flags & SLAB_KMALLOC); } -#endif +static inline bool is_kmalloc_normal(struct kmem_cache *s) +{ + if (!is_kmalloc_cache(s)) + return false; + return !(s->flags & (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT)); +} + +bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj); +void flush_all_rcu_sheaves(void); -/* Legal flag mask for kmem_cache_create(), for various configurations */ #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ SLAB_CACHE_DMA32 | SLAB_PANIC | \ - SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS ) + SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS | \ + SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ + SLAB_TEMPORARY | SLAB_ACCOUNT | \ + SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE) -#if defined(CONFIG_DEBUG_SLAB) -#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) -#elif defined(CONFIG_SLUB_DEBUG) #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ SLAB_TRACE | SLAB_CONSISTENCY_CHECKS) -#else -#define SLAB_DEBUG_FLAGS (0) -#endif -#if defined(CONFIG_SLAB) -#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ - SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \ - SLAB_ACCOUNT) -#elif defined(CONFIG_SLUB) -#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ - SLAB_TEMPORARY | SLAB_ACCOUNT | \ - SLAB_NO_USER_FLAGS | SLAB_KMALLOC) -#else -#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE) -#endif - -/* Common flags available with current configuration */ -#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) - -/* Common flags permitted for kmem_cache_create */ -#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \ - SLAB_RED_ZONE | \ - SLAB_POISON | \ - SLAB_STORE_USER | \ - SLAB_TRACE | \ - SLAB_CONSISTENCY_CHECKS | \ - SLAB_MEM_SPREAD | \ - SLAB_NOLEAKTRACE | \ - SLAB_RECLAIM_ACCOUNT | \ - SLAB_TEMPORARY | \ - SLAB_ACCOUNT | \ - SLAB_KMALLOC | \ - SLAB_NO_USER_FLAGS) +#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS) bool __kmem_cache_empty(struct kmem_cache *); int __kmem_cache_shutdown(struct kmem_cache *); @@ -391,15 +458,6 @@ struct slabinfo { }; void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); -void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); -ssize_t slabinfo_write(struct file *file, const char __user *buffer, - size_t count, loff_t *ppos); - -static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) -{ - return (s->flags & SLAB_RECLAIM_ACCOUNT) ? - NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; -} #ifdef CONFIG_SLUB_DEBUG #ifdef CONFIG_SLUB_DEBUG_ON @@ -424,7 +482,7 @@ static inline bool __slub_debug_enabled(void) #endif /* - * Returns true if any of the specified slub_debug flags is enabled for the + * Returns true if any of the specified slab_debug flags is enabled for the * cache. Use only for flags parsed by setup_slub_debug() as it also enables * the static key. */ @@ -437,263 +495,77 @@ static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t fla return false; } -#ifdef CONFIG_MEMCG_KMEM +#if IS_ENABLED(CONFIG_SLUB_DEBUG) && IS_ENABLED(CONFIG_KUNIT) +bool slab_in_kunit_test(void); +#else +static inline bool slab_in_kunit_test(void) { return false; } +#endif + +#ifdef CONFIG_SLAB_OBJ_EXT + /* - * slab_objcgs - get the object cgroups vector associated with a slab + * slab_obj_exts - get the pointer to the slab object extension vector + * associated with a slab. * @slab: a pointer to the slab struct * - * Returns a pointer to the object cgroups vector associated with the slab, + * Returns a pointer to the object extension vector associated with the slab, * or NULL if no such vector has been associated yet. */ -static inline struct obj_cgroup **slab_objcgs(struct slab *slab) -{ - unsigned long memcg_data = READ_ONCE(slab->memcg_data); - - VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), - slab_page(slab)); - VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab)); - - return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); -} - -int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, - gfp_t gfp, bool new_slab); -void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, - enum node_stat_item idx, int nr); - -static inline void memcg_free_slab_cgroups(struct slab *slab) +static inline struct slabobj_ext *slab_obj_exts(struct slab *slab) { - kfree(slab_objcgs(slab)); - slab->memcg_data = 0; -} + unsigned long obj_exts = READ_ONCE(slab->obj_exts); -static inline size_t obj_full_size(struct kmem_cache *s) -{ +#ifdef CONFIG_MEMCG /* - * For each accounted object there is an extra space which is used - * to store obj_cgroup membership. Charge it too. + * obj_exts should be either NULL, a valid pointer with + * MEMCG_DATA_OBJEXTS bit set or be equal to OBJEXTS_ALLOC_FAIL. */ - return s->size + sizeof(struct obj_cgroup *); -} - -/* - * Returns false if the allocation should fail. - */ -static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, - struct list_lru *lru, - struct obj_cgroup **objcgp, - size_t objects, gfp_t flags) -{ - struct obj_cgroup *objcg; - - if (!memcg_kmem_enabled()) - return true; - - if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)) - return true; - - objcg = get_obj_cgroup_from_current(); - if (!objcg) - return true; - - if (lru) { - int ret; - struct mem_cgroup *memcg; - - memcg = get_mem_cgroup_from_objcg(objcg); - ret = memcg_list_lru_alloc(memcg, lru, flags); - css_put(&memcg->css); - - if (ret) - goto out; - } - - if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) - goto out; - - *objcgp = objcg; - return true; -out: - obj_cgroup_put(objcg); - return false; -} - -static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, - struct obj_cgroup *objcg, - gfp_t flags, size_t size, - void **p) -{ - struct slab *slab; - unsigned long off; - size_t i; - - if (!memcg_kmem_enabled() || !objcg) - return; - - for (i = 0; i < size; i++) { - if (likely(p[i])) { - slab = virt_to_slab(p[i]); - - if (!slab_objcgs(slab) && - memcg_alloc_slab_cgroups(slab, s, flags, - false)) { - obj_cgroup_uncharge(objcg, obj_full_size(s)); - continue; - } - - off = obj_to_index(s, slab, p[i]); - obj_cgroup_get(objcg); - slab_objcgs(slab)[off] = objcg; - mod_objcg_state(objcg, slab_pgdat(slab), - cache_vmstat_idx(s), obj_full_size(s)); - } else { - obj_cgroup_uncharge(objcg, obj_full_size(s)); - } - } - obj_cgroup_put(objcg); + VM_BUG_ON_PAGE(obj_exts && !(obj_exts & MEMCG_DATA_OBJEXTS) && + obj_exts != OBJEXTS_ALLOC_FAIL, slab_page(slab)); + VM_BUG_ON_PAGE(obj_exts & MEMCG_DATA_KMEM, slab_page(slab)); +#endif + return (struct slabobj_ext *)(obj_exts & ~OBJEXTS_FLAGS_MASK); } -static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, - void **p, int objects) -{ - struct obj_cgroup **objcgs; - int i; - - if (!memcg_kmem_enabled()) - return; - - objcgs = slab_objcgs(slab); - if (!objcgs) - return; - - for (i = 0; i < objects; i++) { - struct obj_cgroup *objcg; - unsigned int off; - - off = obj_to_index(s, slab, p[i]); - objcg = objcgs[off]; - if (!objcg) - continue; - - objcgs[off] = NULL; - obj_cgroup_uncharge(objcg, obj_full_size(s)); - mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s), - -obj_full_size(s)); - obj_cgroup_put(objcg); - } -} +int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, + gfp_t gfp, bool new_slab); -#else /* CONFIG_MEMCG_KMEM */ -static inline struct obj_cgroup **slab_objcgs(struct slab *slab) -{ - return NULL; -} +#else /* CONFIG_SLAB_OBJ_EXT */ -static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr) +static inline struct slabobj_ext *slab_obj_exts(struct slab *slab) { return NULL; } -static inline int memcg_alloc_slab_cgroups(struct slab *slab, - struct kmem_cache *s, gfp_t gfp, - bool new_slab) -{ - return 0; -} - -static inline void memcg_free_slab_cgroups(struct slab *slab) -{ -} +#endif /* CONFIG_SLAB_OBJ_EXT */ -static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, - struct list_lru *lru, - struct obj_cgroup **objcgp, - size_t objects, gfp_t flags) -{ - return true; -} - -static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, - struct obj_cgroup *objcg, - gfp_t flags, size_t size, - void **p) -{ -} - -static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, - void **p, int objects) -{ -} -#endif /* CONFIG_MEMCG_KMEM */ - -#ifndef CONFIG_SLOB -static inline struct kmem_cache *virt_to_cache(const void *obj) -{ - struct slab *slab; - - slab = virt_to_slab(obj); - if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", - __func__)) - return NULL; - return slab->slab_cache; -} - -static __always_inline void account_slab(struct slab *slab, int order, - struct kmem_cache *s, gfp_t gfp) -{ - if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT)) - memcg_alloc_slab_cgroups(slab, s, gfp, true); - - mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), - PAGE_SIZE << order); -} - -static __always_inline void unaccount_slab(struct slab *slab, int order, - struct kmem_cache *s) -{ - if (memcg_kmem_enabled()) - memcg_free_slab_cgroups(slab); - - mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), - -(PAGE_SIZE << order)); -} - -static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) +static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s) { - struct kmem_cache *cachep; - - if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && - !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) - return s; - - cachep = virt_to_cache(x); - if (WARN(cachep && cachep != s, - "%s: Wrong slab cache. %s but object is from %s\n", - __func__, s->name, cachep->name)) - print_tracking(cachep, x); - return cachep; + return (s->flags & SLAB_RECLAIM_ACCOUNT) ? + NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B; } -void free_large_kmalloc(struct folio *folio, void *object); +#ifdef CONFIG_MEMCG +bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, + gfp_t flags, size_t size, void **p); +void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, + void **p, int objects, struct slabobj_ext *obj_exts); +#endif -#endif /* CONFIG_SLOB */ +void kvfree_rcu_cb(struct rcu_head *head); size_t __ksize(const void *objp); static inline size_t slab_ksize(const struct kmem_cache *s) { -#ifndef CONFIG_SLUB - return s->object_size; - -#else /* CONFIG_SLUB */ -# ifdef CONFIG_SLUB_DEBUG +#ifdef CONFIG_SLUB_DEBUG /* * Debugging requires use of the padding between object * and whatever may come after it. */ if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) return s->object_size; -# endif +#endif if (s->flags & SLAB_KASAN) return s->object_size; /* @@ -707,118 +579,19 @@ static inline size_t slab_ksize(const struct kmem_cache *s) * Else we can use all the padding etc for the allocation */ return s->size; -#endif } -static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, - struct list_lru *lru, - struct obj_cgroup **objcgp, - size_t size, gfp_t flags) +static inline unsigned int large_kmalloc_order(const struct page *page) { - flags &= gfp_allowed_mask; - - might_alloc(flags); - - if (should_failslab(s, flags)) - return NULL; - - if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)) - return NULL; - - return s; + return page[1].flags.f & 0xff; } -static inline void slab_post_alloc_hook(struct kmem_cache *s, - struct obj_cgroup *objcg, gfp_t flags, - size_t size, void **p, bool init, - unsigned int orig_size) +static inline size_t large_kmalloc_size(const struct page *page) { - unsigned int zero_size = s->object_size; - size_t i; - - flags &= gfp_allowed_mask; - - /* - * For kmalloc object, the allocated memory size(object_size) is likely - * larger than the requested size(orig_size). If redzone check is - * enabled for the extra space, don't zero it, as it will be redzoned - * soon. The redzone operation for this extra space could be seen as a - * replacement of current poisoning under certain debug option, and - * won't break other sanity checks. - */ - if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && - (s->flags & SLAB_KMALLOC)) - zero_size = orig_size; - - /* - * As memory initialization might be integrated into KASAN, - * kasan_slab_alloc and initialization memset must be - * kept together to avoid discrepancies in behavior. - * - * As p[i] might get tagged, memset and kmemleak hook come after KASAN. - */ - for (i = 0; i < size; i++) { - p[i] = kasan_slab_alloc(s, p[i], flags, init); - if (p[i] && init && !kasan_has_integrated_init()) - memset(p[i], 0, zero_size); - kmemleak_alloc_recursive(p[i], s->object_size, 1, - s->flags, flags); - kmsan_slab_alloc(s, p[i], flags); - } - - memcg_slab_post_alloc_hook(s, objcg, flags, size, p); + return PAGE_SIZE << large_kmalloc_order(page); } -#ifndef CONFIG_SLOB -/* - * The slab lists for all objects. - */ -struct kmem_cache_node { -#ifdef CONFIG_SLAB - raw_spinlock_t list_lock; - struct list_head slabs_partial; /* partial list first, better asm code */ - struct list_head slabs_full; - struct list_head slabs_free; - unsigned long total_slabs; /* length of all slab lists */ - unsigned long free_slabs; /* length of free slab list only */ - unsigned long free_objects; - unsigned int free_limit; - unsigned int colour_next; /* Per-node cache coloring */ - struct array_cache *shared; /* shared per node */ - struct alien_cache **alien; /* on other nodes */ - unsigned long next_reap; /* updated without locking */ - int free_touched; /* updated without locking */ -#endif - -#ifdef CONFIG_SLUB - spinlock_t list_lock; - unsigned long nr_partial; - struct list_head partial; #ifdef CONFIG_SLUB_DEBUG - atomic_long_t nr_slabs; - atomic_long_t total_objects; - struct list_head full; -#endif -#endif - -}; - -static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) -{ - return s->node[node]; -} - -/* - * Iterator over all nodes. The body will be executed for each node that has - * a kmem_cache_node structure allocated (which is true for all online nodes) - */ -#define for_each_kmem_cache_node(__s, __node, __n) \ - for (__node = 0; __node < nr_node_ids; __node++) \ - if ((__n = get_node(__s, __node))) - -#endif - -#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) void dump_unreclaimable_slab(void); #else static inline void dump_unreclaimable_slab(void) @@ -884,16 +657,16 @@ struct kmem_obj_info { void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab); #endif -#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR void __check_heap_object(const void *ptr, unsigned long n, const struct slab *slab, bool to_user); -#else -static inline -void __check_heap_object(const void *ptr, unsigned long n, - const struct slab *slab, bool to_user) + +void defer_free_barrier(void); + +static inline bool slub_debug_orig_size(struct kmem_cache *s) { + return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && + (s->flags & SLAB_KMALLOC)); } -#endif #ifdef CONFIG_SLUB_DEBUG void skip_orig_size_check(struct kmem_cache *s, const void *object); |
