diff options
Diffstat (limited to 'mm/slab_common.c')
| -rw-r--r-- | mm/slab_common.c | 2254 |
1 files changed, 1912 insertions, 342 deletions
diff --git a/mm/slab_common.c b/mm/slab_common.c index 538bade6df7d..b613533b29e7 100644 --- a/mm/slab_common.c +++ b/mm/slab_common.c @@ -1,7 +1,8 @@ +// SPDX-License-Identifier: GPL-2.0 /* * Slab allocator functions that are independent of the allocator strategy * - * (C) 2012 Christoph Lameter <cl@linux.com> + * (C) 2012 Christoph Lameter <cl@gentwo.org> */ #include <linux/slab.h> @@ -9,103 +10,112 @@ #include <linux/poison.h> #include <linux/interrupt.h> #include <linux/memory.h> +#include <linux/cache.h> #include <linux/compiler.h> +#include <linux/kfence.h> #include <linux/module.h> #include <linux/cpu.h> #include <linux/uaccess.h> #include <linux/seq_file.h> +#include <linux/dma-mapping.h> +#include <linux/swiotlb.h> #include <linux/proc_fs.h> +#include <linux/debugfs.h> +#include <linux/kmemleak.h> +#include <linux/kasan.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/page.h> #include <linux/memcontrol.h> +#include <linux/stackdepot.h> +#include <trace/events/rcu.h> +#include "../kernel/rcu/rcu.h" +#include "internal.h" #include "slab.h" +#define CREATE_TRACE_POINTS +#include <trace/events/kmem.h> + enum slab_state slab_state; LIST_HEAD(slab_caches); DEFINE_MUTEX(slab_mutex); struct kmem_cache *kmem_cache; -#ifdef CONFIG_DEBUG_VM -static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name, - size_t size) -{ - struct kmem_cache *s = NULL; - - if (!name || in_interrupt() || size < sizeof(void *) || - size > KMALLOC_MAX_SIZE) { - pr_err("kmem_cache_create(%s) integrity check failed\n", name); - return -EINVAL; - } +/* + * Set of flags that will prevent slab merging + */ +#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ + SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ + SLAB_FAILSLAB | SLAB_NO_MERGE) - list_for_each_entry(s, &slab_caches, list) { - char tmp; - int res; +#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ + SLAB_CACHE_DMA32 | SLAB_ACCOUNT) - /* - * This happens when the module gets unloaded and doesn't - * destroy its slab cache and no-one else reuses the vmalloc - * area of the module. Print a warning. - */ - res = probe_kernel_address(s->name, tmp); - if (res) { - pr_err("Slab cache with size %d has lost its name\n", - s->object_size); - continue; - } +/* + * Merge control. If this is set then no merging of slab caches will occur. + */ +static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); - /* - * For simplicity, we won't check this in the list of memcg - * caches. We have control over memcg naming, and if there - * aren't duplicates in the global list, there won't be any - * duplicates in the memcg lists as well. - */ - if (!memcg && !strcmp(s->name, name)) { - pr_err("%s (%s): Cache name already exists.\n", - __func__, name); - dump_stack(); - s = NULL; - return -EINVAL; - } - } +static int __init setup_slab_nomerge(char *str) +{ + slab_nomerge = true; + return 1; +} - WARN_ON(strchr(name, ' ')); /* It confuses parsers */ - return 0; +static int __init setup_slab_merge(char *str) +{ + slab_nomerge = false; + return 1; } -#else -static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg, - const char *name, size_t size) + +__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); +__setup_param("slub_merge", slub_merge, setup_slab_merge, 0); + +__setup("slab_nomerge", setup_slab_nomerge); +__setup("slab_merge", setup_slab_merge); + +/* + * Determine the size of a slab object + */ +unsigned int kmem_cache_size(struct kmem_cache *s) { - return 0; + return s->object_size; } -#endif +EXPORT_SYMBOL(kmem_cache_size); + +#ifdef CONFIG_DEBUG_VM -#ifdef CONFIG_MEMCG_KMEM -int memcg_update_all_caches(int num_memcgs) +static bool kmem_cache_is_duplicate_name(const char *name) { struct kmem_cache *s; - int ret = 0; - mutex_lock(&slab_mutex); list_for_each_entry(s, &slab_caches, list) { - if (!is_root_cache(s)) - continue; + if (!strcmp(s->name, name)) + return true; + } - ret = memcg_update_cache_size(s, num_memcgs); - /* - * See comment in memcontrol.c, memcg_update_cache_size: - * Instead of freeing the memory, we'll just leave the caches - * up to this point in an updated state. - */ - if (ret) - goto out; + return false; +} + +static int kmem_cache_sanity_check(const char *name, unsigned int size) +{ + if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) { + pr_err("kmem_cache_create(%s) integrity check failed\n", name); + return -EINVAL; } - memcg_update_array_size(num_memcgs); -out: - mutex_unlock(&slab_mutex); - return ret; + /* Duplicate names will confuse slabtop, et al */ + WARN(kmem_cache_is_duplicate_name(name), + "kmem_cache of name '%s' already exists\n", name); + + WARN_ON(strchr(name, ' ')); /* It confuses parsers */ + return 0; +} +#else +static inline int kmem_cache_sanity_check(const char *name, unsigned int size) +{ + return 0; } #endif @@ -113,8 +123,8 @@ out: * Figure out what the alignment of the objects will be given a set of * flags, a user specified alignment and the size of the objects. */ -unsigned long calculate_alignment(unsigned long flags, - unsigned long align, unsigned long size) +static unsigned int calculate_alignment(slab_flags_t flags, + unsigned int align, unsigned int size) { /* * If the user wants hardware cache aligned objects then follow that @@ -124,207 +134,577 @@ unsigned long calculate_alignment(unsigned long flags, * alignment though. If that is greater then use it. */ if (flags & SLAB_HWCACHE_ALIGN) { - unsigned long ralign = cache_line_size(); + unsigned int ralign; + + ralign = cache_line_size(); while (size <= ralign / 2) ralign /= 2; align = max(align, ralign); } - if (align < ARCH_SLAB_MINALIGN) - align = ARCH_SLAB_MINALIGN; + align = max(align, arch_slab_minalign()); return ALIGN(align, sizeof(void *)); } - /* - * kmem_cache_create - Create a cache. + * Find a mergeable slab cache + */ +int slab_unmergeable(struct kmem_cache *s) +{ + if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) + return 1; + + if (s->ctor) + return 1; + +#ifdef CONFIG_HARDENED_USERCOPY + if (s->usersize) + return 1; +#endif + + if (s->cpu_sheaves) + return 1; + + /* + * We may have set a slab to be unmergeable during bootstrap. + */ + if (s->refcount < 0) + return 1; + + return 0; +} + +struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, + slab_flags_t flags, const char *name, void (*ctor)(void *)) +{ + struct kmem_cache *s; + + if (slab_nomerge) + return NULL; + + if (ctor) + return NULL; + + flags = kmem_cache_flags(flags, name); + + if (flags & SLAB_NEVER_MERGE) + return NULL; + + size = ALIGN(size, sizeof(void *)); + align = calculate_alignment(flags, align, size); + size = ALIGN(size, align); + + list_for_each_entry_reverse(s, &slab_caches, list) { + if (slab_unmergeable(s)) + continue; + + if (size > s->size) + continue; + + if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) + continue; + /* + * Check if alignment is compatible. + * Courtesy of Adrian Drzewiecki + */ + if ((s->size & ~(align - 1)) != s->size) + continue; + + if (s->size - size >= sizeof(void *)) + continue; + + return s; + } + return NULL; +} + +static struct kmem_cache *create_cache(const char *name, + unsigned int object_size, + struct kmem_cache_args *args, + slab_flags_t flags) +{ + struct kmem_cache *s; + int err; + + /* If a custom freelist pointer is requested make sure it's sane. */ + err = -EINVAL; + if (args->use_freeptr_offset && + (args->freeptr_offset >= object_size || + !(flags & SLAB_TYPESAFE_BY_RCU) || + !IS_ALIGNED(args->freeptr_offset, __alignof__(freeptr_t)))) + goto out; + + err = -ENOMEM; + s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); + if (!s) + goto out; + err = do_kmem_cache_create(s, name, object_size, args, flags); + if (err) + goto out_free_cache; + + s->refcount = 1; + list_add(&s->list, &slab_caches); + return s; + +out_free_cache: + kmem_cache_free(kmem_cache, s); +out: + return ERR_PTR(err); +} + +/** + * __kmem_cache_create_args - Create a kmem cache. * @name: A string which is used in /proc/slabinfo to identify this cache. - * @size: The size of objects to be created in this cache. - * @align: The required alignment for the objects. - * @flags: SLAB flags - * @ctor: A constructor for the objects. + * @object_size: The size of objects to be created in this cache. + * @args: Additional arguments for the cache creation (see + * &struct kmem_cache_args). + * @flags: See the descriptions of individual flags. The common ones are listed + * in the description below. + * + * Not to be called directly, use the kmem_cache_create() wrapper with the same + * parameters. + * + * Commonly used @flags: * - * Returns a ptr to the cache on success, NULL on failure. - * Cannot be called within a interrupt, but can be interrupted. - * The @ctor is run when new pages are allocated by the cache. + * &SLAB_ACCOUNT - Account allocations to memcg. * - * The flags are + * &SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries. * - * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) - * to catch references to uninitialised memory. + * &SLAB_RECLAIM_ACCOUNT - Objects are reclaimable. * - * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check - * for buffer overruns. + * &SLAB_TYPESAFE_BY_RCU - Slab page (not individual objects) freeing delayed + * by a grace period - see the full description before using. * - * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware - * cacheline. This can be beneficial if you're counting cycles as closely - * as davem. + * Context: Cannot be called within a interrupt, but can be interrupted. + * + * Return: a pointer to the cache on success, NULL on failure. */ - -struct kmem_cache * -kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size, - size_t align, unsigned long flags, void (*ctor)(void *), - struct kmem_cache *parent_cache) +struct kmem_cache *__kmem_cache_create_args(const char *name, + unsigned int object_size, + struct kmem_cache_args *args, + slab_flags_t flags) { struct kmem_cache *s = NULL; - int err = 0; - - get_online_cpus(); - mutex_lock(&slab_mutex); - - if (!kmem_cache_sanity_check(memcg, name, size) == 0) - goto out_locked; + const char *cache_name; + int err; +#ifdef CONFIG_SLUB_DEBUG /* - * Some allocators will constraint the set of valid flags to a subset - * of all flags. We expect them to define CACHE_CREATE_MASK in this - * case, and we'll just provide them with a sanitized version of the - * passed flags. + * If no slab_debug was enabled globally, the static key is not yet + * enabled by setup_slub_debug(). Enable it if the cache is being + * created with any of the debugging flags passed explicitly. + * It's also possible that this is the first cache created with + * SLAB_STORE_USER and we should init stack_depot for it. */ - flags &= CACHE_CREATE_MASK; + if (flags & SLAB_DEBUG_FLAGS) + static_branch_enable(&slub_debug_enabled); + if (flags & SLAB_STORE_USER) + stack_depot_init(); +#else + flags &= ~SLAB_DEBUG_FLAGS; +#endif - s = __kmem_cache_alias(memcg, name, size, align, flags, ctor); - if (s) - goto out_locked; + mutex_lock(&slab_mutex); - s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); - if (s) { - s->object_size = s->size = size; - s->align = calculate_alignment(flags, align, size); - s->ctor = ctor; - - if (memcg_register_cache(memcg, s, parent_cache)) { - kmem_cache_free(kmem_cache, s); - err = -ENOMEM; - goto out_locked; - } + err = kmem_cache_sanity_check(name, object_size); + if (err) { + goto out_unlock; + } - s->name = kstrdup(name, GFP_KERNEL); - if (!s->name) { - kmem_cache_free(kmem_cache, s); - err = -ENOMEM; - goto out_locked; - } + if (flags & ~SLAB_FLAGS_PERMITTED) { + err = -EINVAL; + goto out_unlock; + } - err = __kmem_cache_create(s, flags); - if (!err) { - s->refcount = 1; - list_add(&s->list, &slab_caches); - memcg_cache_list_add(memcg, s); - } else { - kfree(s->name); - kmem_cache_free(kmem_cache, s); - } - } else + /* Fail closed on bad usersize of useroffset values. */ + if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) || + WARN_ON(!args->usersize && args->useroffset) || + WARN_ON(object_size < args->usersize || + object_size - args->usersize < args->useroffset)) + args->usersize = args->useroffset = 0; + + if (!args->usersize && !args->sheaf_capacity) + s = __kmem_cache_alias(name, object_size, args->align, flags, + args->ctor); + if (s) + goto out_unlock; + + cache_name = kstrdup_const(name, GFP_KERNEL); + if (!cache_name) { err = -ENOMEM; + goto out_unlock; + } -out_locked: + args->align = calculate_alignment(flags, args->align, object_size); + s = create_cache(cache_name, object_size, args, flags); + if (IS_ERR(s)) { + err = PTR_ERR(s); + kfree_const(cache_name); + } + +out_unlock: mutex_unlock(&slab_mutex); - put_online_cpus(); if (err) { - if (flags & SLAB_PANIC) - panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", - name, err); + panic("%s: Failed to create slab '%s'. Error %d\n", + __func__, name, err); else { - printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", - name, err); + pr_warn("%s(%s) failed with error %d\n", + __func__, name, err); dump_stack(); } + return NULL; + } + return s; +} +EXPORT_SYMBOL(__kmem_cache_create_args); + +static struct kmem_cache *kmem_buckets_cache __ro_after_init; + +/** + * kmem_buckets_create - Create a set of caches that handle dynamic sized + * allocations via kmem_buckets_alloc() + * @name: A prefix string which is used in /proc/slabinfo to identify this + * cache. The individual caches with have their sizes as the suffix. + * @flags: SLAB flags (see kmem_cache_create() for details). + * @useroffset: Starting offset within an allocation that may be copied + * to/from userspace. + * @usersize: How many bytes, starting at @useroffset, may be copied + * to/from userspace. + * @ctor: A constructor for the objects, run when new allocations are made. + * + * Cannot be called within an interrupt, but can be interrupted. + * + * Return: a pointer to the cache on success, NULL on failure. When + * CONFIG_SLAB_BUCKETS is not enabled, ZERO_SIZE_PTR is returned, and + * subsequent calls to kmem_buckets_alloc() will fall back to kmalloc(). + * (i.e. callers only need to check for NULL on failure.) + */ +kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags, + unsigned int useroffset, + unsigned int usersize, + void (*ctor)(void *)) +{ + unsigned long mask = 0; + unsigned int idx; + kmem_buckets *b; + BUILD_BUG_ON(ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]) > BITS_PER_LONG); + + /* + * When the separate buckets API is not built in, just return + * a non-NULL value for the kmem_buckets pointer, which will be + * unused when performing allocations. + */ + if (!IS_ENABLED(CONFIG_SLAB_BUCKETS)) + return ZERO_SIZE_PTR; + + if (WARN_ON(!kmem_buckets_cache)) + return NULL; + + b = kmem_cache_alloc(kmem_buckets_cache, GFP_KERNEL|__GFP_ZERO); + if (WARN_ON(!b)) return NULL; + + flags |= SLAB_NO_MERGE; + + for (idx = 0; idx < ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL]); idx++) { + char *short_size, *cache_name; + unsigned int cache_useroffset, cache_usersize; + unsigned int size, aligned_idx; + + if (!kmalloc_caches[KMALLOC_NORMAL][idx]) + continue; + + size = kmalloc_caches[KMALLOC_NORMAL][idx]->object_size; + if (!size) + continue; + + short_size = strchr(kmalloc_caches[KMALLOC_NORMAL][idx]->name, '-'); + if (WARN_ON(!short_size)) + goto fail; + + if (useroffset >= size) { + cache_useroffset = 0; + cache_usersize = 0; + } else { + cache_useroffset = useroffset; + cache_usersize = min(size - cache_useroffset, usersize); + } + + aligned_idx = __kmalloc_index(size, false); + if (!(*b)[aligned_idx]) { + cache_name = kasprintf(GFP_KERNEL, "%s-%s", name, short_size + 1); + if (WARN_ON(!cache_name)) + goto fail; + (*b)[aligned_idx] = kmem_cache_create_usercopy(cache_name, size, + 0, flags, cache_useroffset, + cache_usersize, ctor); + kfree(cache_name); + if (WARN_ON(!(*b)[aligned_idx])) + goto fail; + set_bit(aligned_idx, &mask); + } + if (idx != aligned_idx) + (*b)[idx] = (*b)[aligned_idx]; } - return s; + return b; + +fail: + for_each_set_bit(idx, &mask, ARRAY_SIZE(kmalloc_caches[KMALLOC_NORMAL])) + kmem_cache_destroy((*b)[idx]); + kmem_cache_free(kmem_buckets_cache, b); + + return NULL; } +EXPORT_SYMBOL(kmem_buckets_create); -struct kmem_cache * -kmem_cache_create(const char *name, size_t size, size_t align, - unsigned long flags, void (*ctor)(void *)) +/* + * For a given kmem_cache, kmem_cache_destroy() should only be called + * once or there will be a use-after-free problem. The actual deletion + * and release of the kobject does not need slab_mutex or cpu_hotplug_lock + * protection. So they are now done without holding those locks. + */ +static void kmem_cache_release(struct kmem_cache *s) { - return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL); + kfence_shutdown_cache(s); + if (__is_defined(SLAB_SUPPORTS_SYSFS) && slab_state >= FULL) + sysfs_slab_release(s); + else + slab_kmem_cache_release(s); +} + +void slab_kmem_cache_release(struct kmem_cache *s) +{ + __kmem_cache_release(s); + kfree_const(s->name); + kmem_cache_free(kmem_cache, s); } -EXPORT_SYMBOL(kmem_cache_create); void kmem_cache_destroy(struct kmem_cache *s) { - /* Destroy all the children caches if we aren't a memcg cache */ - kmem_cache_destroy_memcg_children(s); + int err; - get_online_cpus(); - mutex_lock(&slab_mutex); - s->refcount--; - if (!s->refcount) { - list_del(&s->list); + if (unlikely(!s) || !kasan_check_byte(s)) + return; - if (!__kmem_cache_shutdown(s)) { - mutex_unlock(&slab_mutex); - if (s->flags & SLAB_DESTROY_BY_RCU) - rcu_barrier(); + /* in-flight kfree_rcu()'s may include objects from our cache */ + kvfree_rcu_barrier(); - memcg_release_cache(s); - kfree(s->name); - kmem_cache_free(kmem_cache, s); - } else { - list_add(&s->list, &slab_caches); - mutex_unlock(&slab_mutex); - printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n", - s->name); - dump_stack(); - } - } else { + if (IS_ENABLED(CONFIG_SLUB_RCU_DEBUG) && + (s->flags & SLAB_TYPESAFE_BY_RCU)) { + /* + * Under CONFIG_SLUB_RCU_DEBUG, when objects in a + * SLAB_TYPESAFE_BY_RCU slab are freed, SLUB will internally + * defer their freeing with call_rcu(). + * Wait for such call_rcu() invocations here before actually + * destroying the cache. + * + * It doesn't matter that we haven't looked at the slab refcount + * yet - slabs with SLAB_TYPESAFE_BY_RCU can't be merged, so + * the refcount should be 1 here. + */ + rcu_barrier(); + } + + /* Wait for deferred work from kmalloc/kfree_nolock() */ + defer_free_barrier(); + + cpus_read_lock(); + mutex_lock(&slab_mutex); + + s->refcount--; + if (s->refcount) { mutex_unlock(&slab_mutex); + cpus_read_unlock(); + return; } - put_online_cpus(); + + /* free asan quarantined objects */ + kasan_cache_shutdown(s); + + err = __kmem_cache_shutdown(s); + if (!slab_in_kunit_test()) + WARN(err, "%s %s: Slab cache still has objects when called from %pS", + __func__, s->name, (void *)_RET_IP_); + + list_del(&s->list); + + mutex_unlock(&slab_mutex); + cpus_read_unlock(); + + if (slab_state >= FULL) + sysfs_slab_unlink(s); + debugfs_slab_release(s); + + if (err) + return; + + if (s->flags & SLAB_TYPESAFE_BY_RCU) + rcu_barrier(); + + kmem_cache_release(s); } EXPORT_SYMBOL(kmem_cache_destroy); -int slab_is_available(void) +/** + * kmem_cache_shrink - Shrink a cache. + * @cachep: The cache to shrink. + * + * Releases as many slabs as possible for a cache. + * To help debugging, a zero exit status indicates all slabs were released. + * + * Return: %0 if all slabs were released, non-zero otherwise + */ +int kmem_cache_shrink(struct kmem_cache *cachep) +{ + kasan_cache_shrink(cachep); + + return __kmem_cache_shrink(cachep); +} +EXPORT_SYMBOL(kmem_cache_shrink); + +bool slab_is_available(void) { return slab_state >= UP; } -#ifndef CONFIG_SLOB +#ifdef CONFIG_PRINTK +static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) +{ + if (__kfence_obj_info(kpp, object, slab)) + return; + __kmem_obj_info(kpp, object, slab); +} + +/** + * kmem_dump_obj - Print available slab provenance information + * @object: slab object for which to find provenance information. + * + * This function uses pr_cont(), so that the caller is expected to have + * printed out whatever preamble is appropriate. The provenance information + * depends on the type of object and on how much debugging is enabled. + * For a slab-cache object, the fact that it is a slab object is printed, + * and, if available, the slab name, return address, and stack trace from + * the allocation and last free path of that object. + * + * Return: %true if the pointer is to a not-yet-freed object from + * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer + * is to an already-freed object, and %false otherwise. + */ +bool kmem_dump_obj(void *object) +{ + char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; + int i; + struct slab *slab; + unsigned long ptroffset; + struct kmem_obj_info kp = { }; + + /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ + if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) + return false; + slab = virt_to_slab(object); + if (!slab) + return false; + + kmem_obj_info(&kp, object, slab); + if (kp.kp_slab_cache) + pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); + else + pr_cont(" slab%s", cp); + if (is_kfence_address(object)) + pr_cont(" (kfence)"); + if (kp.kp_objp) + pr_cont(" start %px", kp.kp_objp); + if (kp.kp_data_offset) + pr_cont(" data offset %lu", kp.kp_data_offset); + if (kp.kp_objp) { + ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; + pr_cont(" pointer offset %lu", ptroffset); + } + if (kp.kp_slab_cache && kp.kp_slab_cache->object_size) + pr_cont(" size %u", kp.kp_slab_cache->object_size); + if (kp.kp_ret) + pr_cont(" allocated at %pS\n", kp.kp_ret); + else + pr_cont("\n"); + for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { + if (!kp.kp_stack[i]) + break; + pr_info(" %pS\n", kp.kp_stack[i]); + } + + if (kp.kp_free_stack[0]) + pr_cont(" Free path:\n"); + + for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) { + if (!kp.kp_free_stack[i]) + break; + pr_info(" %pS\n", kp.kp_free_stack[i]); + } + + return true; +} +EXPORT_SYMBOL_GPL(kmem_dump_obj); +#endif + /* Create a cache during boot when no slab services are available yet */ -void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, - unsigned long flags) +void __init create_boot_cache(struct kmem_cache *s, const char *name, + unsigned int size, slab_flags_t flags, + unsigned int useroffset, unsigned int usersize) { int err; + unsigned int align = ARCH_KMALLOC_MINALIGN; + struct kmem_cache_args kmem_args = {}; + + /* + * kmalloc caches guarantee alignment of at least the largest + * power-of-two divisor of the size. For power-of-two sizes, + * it is the size itself. + */ + if (flags & SLAB_KMALLOC) + align = max(align, 1U << (ffs(size) - 1)); + kmem_args.align = calculate_alignment(flags, align, size); + +#ifdef CONFIG_HARDENED_USERCOPY + kmem_args.useroffset = useroffset; + kmem_args.usersize = usersize; +#endif - s->name = name; - s->size = s->object_size = size; - s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); - err = __kmem_cache_create(s, flags); + err = do_kmem_cache_create(s, name, size, &kmem_args, flags); if (err) - panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", + panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", name, size, err); s->refcount = -1; /* Exempt from merging for now */ } -struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, - unsigned long flags) +static struct kmem_cache *__init create_kmalloc_cache(const char *name, + unsigned int size, + slab_flags_t flags) { struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); if (!s) panic("Out of memory when creating slab %s\n", name); - create_boot_cache(s, name, size, flags); + create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size); list_add(&s->list, &slab_caches); s->refcount = 1; return s; } -struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; +kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES] __ro_after_init = +{ /* initialization for https://llvm.org/pr42570 */ }; EXPORT_SYMBOL(kmalloc_caches); -#ifdef CONFIG_ZONE_DMA -struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; -EXPORT_SYMBOL(kmalloc_dma_caches); +#ifdef CONFIG_RANDOM_KMALLOC_CACHES +unsigned long random_kmalloc_seed __ro_after_init; +EXPORT_SYMBOL(random_kmalloc_seed); #endif /* @@ -333,7 +713,7 @@ EXPORT_SYMBOL(kmalloc_dma_caches); * of two cache sizes there. The size of larger slabs can be determined using * fls. */ -static s8 size_index[24] = { +u8 kmalloc_size_index[24] __ro_after_init = { 3, /* 8 */ 4, /* 16 */ 5, /* 24 */ @@ -360,78 +740,142 @@ static s8 size_index[24] = { 2 /* 192 */ }; -static inline int size_index_elem(size_t bytes) -{ - return (bytes - 1) / 8; -} - -/* - * Find the kmem_cache structure that serves a given size of - * allocation - */ -struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) +size_t kmalloc_size_roundup(size_t size) { - int index; - - if (size > KMALLOC_MAX_SIZE) { - WARN_ON_ONCE(!(flags & __GFP_NOWARN)); - return NULL; + if (size && size <= KMALLOC_MAX_CACHE_SIZE) { + /* + * The flags don't matter since size_index is common to all. + * Neither does the caller for just getting ->object_size. + */ + return kmalloc_slab(size, NULL, GFP_KERNEL, 0)->object_size; } - if (size <= 192) { - if (!size) - return ZERO_SIZE_PTR; + /* Above the smaller buckets, size is a multiple of page size. */ + if (size && size <= KMALLOC_MAX_SIZE) + return PAGE_SIZE << get_order(size); - index = size_index[size_index_elem(size)]; - } else - index = fls(size - 1); + /* + * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR + * and very large size - kmalloc() may fail. + */ + return size; + +} +EXPORT_SYMBOL(kmalloc_size_roundup); #ifdef CONFIG_ZONE_DMA - if (unlikely((flags & GFP_DMA))) - return kmalloc_dma_caches[index]; +#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz, +#else +#define KMALLOC_DMA_NAME(sz) +#endif + +#ifdef CONFIG_MEMCG +#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz, +#else +#define KMALLOC_CGROUP_NAME(sz) +#endif + +#ifndef CONFIG_SLUB_TINY +#define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz, +#else +#define KMALLOC_RCL_NAME(sz) +#endif +#ifdef CONFIG_RANDOM_KMALLOC_CACHES +#define __KMALLOC_RANDOM_CONCAT(a, b) a ## b +#define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz) +#define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz, +#define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz, +#define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz, +#define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz, +#define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz, +#define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz, +#define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz, +#define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz, +#define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz, +#define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz, +#define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz, +#define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz, +#define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz, +#define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz, +#define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz, +#else // CONFIG_RANDOM_KMALLOC_CACHES +#define KMALLOC_RANDOM_NAME(N, sz) #endif - return kmalloc_caches[index]; + +#define INIT_KMALLOC_INFO(__size, __short_size) \ +{ \ + .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ + KMALLOC_RCL_NAME(__short_size) \ + KMALLOC_CGROUP_NAME(__short_size) \ + KMALLOC_DMA_NAME(__short_size) \ + KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \ + .size = __size, \ } /* - * Create the kmalloc array. Some of the regular kmalloc arrays - * may already have been created because they were needed to - * enable allocations for slab creation. + * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time. + * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is + * kmalloc-2M. + */ +const struct kmalloc_info_struct kmalloc_info[] __initconst = { + INIT_KMALLOC_INFO(0, 0), + INIT_KMALLOC_INFO(96, 96), + INIT_KMALLOC_INFO(192, 192), + INIT_KMALLOC_INFO(8, 8), + INIT_KMALLOC_INFO(16, 16), + INIT_KMALLOC_INFO(32, 32), + INIT_KMALLOC_INFO(64, 64), + INIT_KMALLOC_INFO(128, 128), + INIT_KMALLOC_INFO(256, 256), + INIT_KMALLOC_INFO(512, 512), + INIT_KMALLOC_INFO(1024, 1k), + INIT_KMALLOC_INFO(2048, 2k), + INIT_KMALLOC_INFO(4096, 4k), + INIT_KMALLOC_INFO(8192, 8k), + INIT_KMALLOC_INFO(16384, 16k), + INIT_KMALLOC_INFO(32768, 32k), + INIT_KMALLOC_INFO(65536, 64k), + INIT_KMALLOC_INFO(131072, 128k), + INIT_KMALLOC_INFO(262144, 256k), + INIT_KMALLOC_INFO(524288, 512k), + INIT_KMALLOC_INFO(1048576, 1M), + INIT_KMALLOC_INFO(2097152, 2M) +}; + +/* + * Patch up the size_index table if we have strange large alignment + * requirements for the kmalloc array. This is only the case for + * MIPS it seems. The standard arches will not generate any code here. + * + * Largest permitted alignment is 256 bytes due to the way we + * handle the index determination for the smaller caches. + * + * Make sure that nothing crazy happens if someone starts tinkering + * around with ARCH_KMALLOC_MINALIGN */ -void __init create_kmalloc_caches(unsigned long flags) +void __init setup_kmalloc_cache_index_table(void) { - int i; + unsigned int i; - /* - * Patch up the size_index table if we have strange large alignment - * requirements for the kmalloc array. This is only the case for - * MIPS it seems. The standard arches will not generate any code here. - * - * Largest permitted alignment is 256 bytes due to the way we - * handle the index determination for the smaller caches. - * - * Make sure that nothing crazy happens if someone starts tinkering - * around with ARCH_KMALLOC_MINALIGN - */ BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || - (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); + !is_power_of_2(KMALLOC_MIN_SIZE)); for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { - int elem = size_index_elem(i); + unsigned int elem = size_index_elem(i); - if (elem >= ARRAY_SIZE(size_index)) + if (elem >= ARRAY_SIZE(kmalloc_size_index)) break; - size_index[elem] = KMALLOC_SHIFT_LOW; + kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW; } if (KMALLOC_MIN_SIZE >= 64) { /* - * The 96 byte size cache is not used if the alignment + * The 96 byte sized cache is not used if the alignment * is 64 byte. */ for (i = 64 + 8; i <= 96; i += 8) - size_index[size_index_elem(i)] = 7; + kmalloc_size_index[size_index_elem(i)] = 7; } @@ -442,167 +886,286 @@ void __init create_kmalloc_caches(unsigned long flags) * instead. */ for (i = 128 + 8; i <= 192; i += 8) - size_index[size_index_elem(i)] = 8; + kmalloc_size_index[size_index_elem(i)] = 8; } - for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { - if (!kmalloc_caches[i]) { - kmalloc_caches[i] = create_kmalloc_cache(NULL, - 1 << i, flags); +} + +static unsigned int __kmalloc_minalign(void) +{ + unsigned int minalign = dma_get_cache_alignment(); + + if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && + is_swiotlb_allocated()) + minalign = ARCH_KMALLOC_MINALIGN; + + return max(minalign, arch_slab_minalign()); +} + +static void __init +new_kmalloc_cache(int idx, enum kmalloc_cache_type type) +{ + slab_flags_t flags = 0; + unsigned int minalign = __kmalloc_minalign(); + unsigned int aligned_size = kmalloc_info[idx].size; + int aligned_idx = idx; + + if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) { + flags |= SLAB_RECLAIM_ACCOUNT; + } else if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_CGROUP)) { + if (mem_cgroup_kmem_disabled()) { + kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx]; + return; } + flags |= SLAB_ACCOUNT; + } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) { + flags |= SLAB_CACHE_DMA; + } - /* - * Caches that are not of the two-to-the-power-of size. - * These have to be created immediately after the - * earlier power of two caches - */ - if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) - kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags); +#ifdef CONFIG_RANDOM_KMALLOC_CACHES + if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END) + flags |= SLAB_NO_MERGE; +#endif + + /* + * If CONFIG_MEMCG is enabled, disable cache merging for + * KMALLOC_NORMAL caches. + */ + if (IS_ENABLED(CONFIG_MEMCG) && (type == KMALLOC_NORMAL)) + flags |= SLAB_NO_MERGE; + + if (minalign > ARCH_KMALLOC_MINALIGN) { + aligned_size = ALIGN(aligned_size, minalign); + aligned_idx = __kmalloc_index(aligned_size, false); + } - if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) - kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags); + if (!kmalloc_caches[type][aligned_idx]) + kmalloc_caches[type][aligned_idx] = create_kmalloc_cache( + kmalloc_info[aligned_idx].name[type], + aligned_size, flags); + if (idx != aligned_idx) + kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx]; +} + +/* + * Create the kmalloc array. Some of the regular kmalloc arrays + * may already have been created because they were needed to + * enable allocations for slab creation. + */ +void __init create_kmalloc_caches(void) +{ + int i; + enum kmalloc_cache_type type; + + /* + * Including KMALLOC_CGROUP if CONFIG_MEMCG defined + */ + for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) { + /* Caches that are NOT of the two-to-the-power-of size. */ + if (KMALLOC_MIN_SIZE <= 32) + new_kmalloc_cache(1, type); + if (KMALLOC_MIN_SIZE <= 64) + new_kmalloc_cache(2, type); + + /* Caches that are of the two-to-the-power-of size. */ + for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) + new_kmalloc_cache(i, type); } +#ifdef CONFIG_RANDOM_KMALLOC_CACHES + random_kmalloc_seed = get_random_u64(); +#endif /* Kmalloc array is now usable */ slab_state = UP; - for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { - struct kmem_cache *s = kmalloc_caches[i]; - char *n; + if (IS_ENABLED(CONFIG_SLAB_BUCKETS)) + kmem_buckets_cache = kmem_cache_create("kmalloc_buckets", + sizeof(kmem_buckets), + 0, SLAB_NO_MERGE, NULL); +} - if (s) { - n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i)); +/** + * __ksize -- Report full size of underlying allocation + * @object: pointer to the object + * + * This should only be used internally to query the true size of allocations. + * It is not meant to be a way to discover the usable size of an allocation + * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond + * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS, + * and/or FORTIFY_SOURCE. + * + * Return: size of the actual memory used by @object in bytes + */ +size_t __ksize(const void *object) +{ + const struct page *page; + const struct slab *slab; - BUG_ON(!n); - s->name = n; - } - } + if (unlikely(object == ZERO_SIZE_PTR)) + return 0; -#ifdef CONFIG_ZONE_DMA - for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { - struct kmem_cache *s = kmalloc_caches[i]; + page = virt_to_page(object); - if (s) { - int size = kmalloc_size(i); - char *n = kasprintf(GFP_NOWAIT, - "dma-kmalloc-%d", size); + if (unlikely(PageLargeKmalloc(page))) + return large_kmalloc_size(page); - BUG_ON(!n); - kmalloc_dma_caches[i] = create_kmalloc_cache(n, - size, SLAB_CACHE_DMA | flags); - } - } + slab = page_slab(page); + /* Delete this after we're sure there are no users */ + if (WARN_ON(!slab)) + return page_size(page); + +#ifdef CONFIG_SLUB_DEBUG + skip_orig_size_check(slab->slab_cache, object); #endif + + return slab_ksize(slab->slab_cache); } -#endif /* !CONFIG_SLOB */ +gfp_t kmalloc_fix_flags(gfp_t flags) +{ + gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; -#ifdef CONFIG_SLABINFO + flags &= ~GFP_SLAB_BUG_MASK; + pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", + invalid_mask, &invalid_mask, flags, &flags); + dump_stack(); -#ifdef CONFIG_SLAB -#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) -#else -#define SLABINFO_RIGHTS S_IRUSR -#endif + return flags; +} + +#ifdef CONFIG_SLAB_FREELIST_RANDOM +/* Randomize a generic freelist */ +static void freelist_randomize(unsigned int *list, + unsigned int count) +{ + unsigned int rand; + unsigned int i; + + for (i = 0; i < count; i++) + list[i] = i; + + /* Fisher-Yates shuffle */ + for (i = count - 1; i > 0; i--) { + rand = get_random_u32_below(i + 1); + swap(list[i], list[rand]); + } +} + +/* Create a random sequence per cache */ +int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, + gfp_t gfp) +{ + + if (count < 2 || cachep->random_seq) + return 0; + + cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); + if (!cachep->random_seq) + return -ENOMEM; + + freelist_randomize(cachep->random_seq, count); + return 0; +} -void print_slabinfo_header(struct seq_file *m) +/* Destroy the per-cache random freelist sequence */ +void cache_random_seq_destroy(struct kmem_cache *cachep) +{ + kfree(cachep->random_seq); + cachep->random_seq = NULL; +} +#endif /* CONFIG_SLAB_FREELIST_RANDOM */ + +#ifdef CONFIG_SLUB_DEBUG +#define SLABINFO_RIGHTS (0400) + +static void print_slabinfo_header(struct seq_file *m) { /* * Output format version, so at least we can change it * without _too_ many complaints. */ -#ifdef CONFIG_DEBUG_SLAB - seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); -#else seq_puts(m, "slabinfo - version: 2.1\n"); -#endif - seq_puts(m, "# name <active_objs> <num_objs> <objsize> " - "<objperslab> <pagesperslab>"); + seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); -#ifdef CONFIG_DEBUG_SLAB - seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " - "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); - seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); -#endif seq_putc(m, '\n'); } -static void *s_start(struct seq_file *m, loff_t *pos) +static void *slab_start(struct seq_file *m, loff_t *pos) { - loff_t n = *pos; - mutex_lock(&slab_mutex); - if (!n) - print_slabinfo_header(m); - return seq_list_start(&slab_caches, *pos); } -void *slab_next(struct seq_file *m, void *p, loff_t *pos) +static void *slab_next(struct seq_file *m, void *p, loff_t *pos) { return seq_list_next(p, &slab_caches, pos); } -void slab_stop(struct seq_file *m, void *p) +static void slab_stop(struct seq_file *m, void *p) { mutex_unlock(&slab_mutex); } -static void -memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) -{ - struct kmem_cache *c; - struct slabinfo sinfo; - int i; - - if (!is_root_cache(s)) - return; - - for_each_memcg_cache_index(i) { - c = cache_from_memcg(s, i); - if (!c) - continue; - - memset(&sinfo, 0, sizeof(sinfo)); - get_slabinfo(c, &sinfo); - - info->active_slabs += sinfo.active_slabs; - info->num_slabs += sinfo.num_slabs; - info->shared_avail += sinfo.shared_avail; - info->active_objs += sinfo.active_objs; - info->num_objs += sinfo.num_objs; - } -} - -int cache_show(struct kmem_cache *s, struct seq_file *m) +static void cache_show(struct kmem_cache *s, struct seq_file *m) { struct slabinfo sinfo; memset(&sinfo, 0, sizeof(sinfo)); get_slabinfo(s, &sinfo); - memcg_accumulate_slabinfo(s, &sinfo); - seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", - cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, + s->name, sinfo.active_objs, sinfo.num_objs, s->size, sinfo.objects_per_slab, (1 << sinfo.cache_order)); seq_printf(m, " : tunables %4u %4u %4u", sinfo.limit, sinfo.batchcount, sinfo.shared); seq_printf(m, " : slabdata %6lu %6lu %6lu", sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); - slabinfo_show_stats(m, s); seq_putc(m, '\n'); - return 0; } -static int s_show(struct seq_file *m, void *p) +static int slab_show(struct seq_file *m, void *p) { struct kmem_cache *s = list_entry(p, struct kmem_cache, list); - if (!is_root_cache(s)) - return 0; - return cache_show(s, m); + if (p == slab_caches.next) + print_slabinfo_header(m); + cache_show(s, m); + return 0; +} + +void dump_unreclaimable_slab(void) +{ + struct kmem_cache *s; + struct slabinfo sinfo; + + /* + * Here acquiring slab_mutex is risky since we don't prefer to get + * sleep in oom path. But, without mutex hold, it may introduce a + * risk of crash. + * Use mutex_trylock to protect the list traverse, dump nothing + * without acquiring the mutex. + */ + if (!mutex_trylock(&slab_mutex)) { + pr_warn("excessive unreclaimable slab but cannot dump stats\n"); + return; + } + + pr_info("Unreclaimable slab info:\n"); + pr_info("Name Used Total\n"); + + list_for_each_entry(s, &slab_caches, list) { + if (s->flags & SLAB_RECLAIM_ACCOUNT) + continue; + + get_slabinfo(s, &sinfo); + + if (sinfo.num_objs > 0) + pr_info("%-17s %10luKB %10luKB\n", s->name, + (sinfo.active_objs * s->size) / 1024, + (sinfo.num_objs * s->size) / 1024); + } + mutex_unlock(&slab_mutex); } /* @@ -619,10 +1182,10 @@ static int s_show(struct seq_file *m, void *p) * + further values on SMP and with statistics enabled */ static const struct seq_operations slabinfo_op = { - .start = s_start, + .start = slab_start, .next = slab_next, .stop = slab_stop, - .show = s_show, + .show = slab_show, }; static int slabinfo_open(struct inode *inode, struct file *file) @@ -630,19 +1193,1026 @@ static int slabinfo_open(struct inode *inode, struct file *file) return seq_open(file, &slabinfo_op); } -static const struct file_operations proc_slabinfo_operations = { - .open = slabinfo_open, - .read = seq_read, - .write = slabinfo_write, - .llseek = seq_lseek, - .release = seq_release, +static const struct proc_ops slabinfo_proc_ops = { + .proc_flags = PROC_ENTRY_PERMANENT, + .proc_open = slabinfo_open, + .proc_read = seq_read, + .proc_lseek = seq_lseek, + .proc_release = seq_release, }; static int __init slab_proc_init(void) { - proc_create("slabinfo", SLABINFO_RIGHTS, NULL, - &proc_slabinfo_operations); + proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); return 0; } module_init(slab_proc_init); -#endif /* CONFIG_SLABINFO */ + +#endif /* CONFIG_SLUB_DEBUG */ + +/** + * kfree_sensitive - Clear sensitive information in memory before freeing + * @p: object to free memory of + * + * The memory of the object @p points to is zeroed before freed. + * If @p is %NULL, kfree_sensitive() does nothing. + * + * Note: this function zeroes the whole allocated buffer which can be a good + * deal bigger than the requested buffer size passed to kmalloc(). So be + * careful when using this function in performance sensitive code. + */ +void kfree_sensitive(const void *p) +{ + size_t ks; + void *mem = (void *)p; + + ks = ksize(mem); + if (ks) { + kasan_unpoison_range(mem, ks); + memzero_explicit(mem, ks); + } + kfree(mem); +} +EXPORT_SYMBOL(kfree_sensitive); + +size_t ksize(const void *objp) +{ + /* + * We need to first check that the pointer to the object is valid. + * The KASAN report printed from ksize() is more useful, then when + * it's printed later when the behaviour could be undefined due to + * a potential use-after-free or double-free. + * + * We use kasan_check_byte(), which is supported for the hardware + * tag-based KASAN mode, unlike kasan_check_read/write(). + * + * If the pointed to memory is invalid, we return 0 to avoid users of + * ksize() writing to and potentially corrupting the memory region. + * + * We want to perform the check before __ksize(), to avoid potentially + * crashing in __ksize() due to accessing invalid metadata. + */ + if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) + return 0; + + return kfence_ksize(objp) ?: __ksize(objp); +} +EXPORT_SYMBOL(ksize); + +#ifdef CONFIG_BPF_SYSCALL +#include <linux/btf.h> + +__bpf_kfunc_start_defs(); + +__bpf_kfunc struct kmem_cache *bpf_get_kmem_cache(u64 addr) +{ + struct slab *slab; + + if (!virt_addr_valid((void *)(long)addr)) + return NULL; + + slab = virt_to_slab((void *)(long)addr); + return slab ? slab->slab_cache : NULL; +} + +__bpf_kfunc_end_defs(); +#endif /* CONFIG_BPF_SYSCALL */ + +/* Tracepoints definitions. */ +EXPORT_TRACEPOINT_SYMBOL(kmalloc); +EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); +EXPORT_TRACEPOINT_SYMBOL(kfree); +EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); + +#ifndef CONFIG_KVFREE_RCU_BATCHED + +void kvfree_call_rcu(struct rcu_head *head, void *ptr) +{ + if (head) { + kasan_record_aux_stack(ptr); + call_rcu(head, kvfree_rcu_cb); + return; + } + + // kvfree_rcu(one_arg) call. + might_sleep(); + synchronize_rcu(); + kvfree(ptr); +} +EXPORT_SYMBOL_GPL(kvfree_call_rcu); + +void __init kvfree_rcu_init(void) +{ +} + +#else /* CONFIG_KVFREE_RCU_BATCHED */ + +/* + * This rcu parameter is runtime-read-only. It reflects + * a minimum allowed number of objects which can be cached + * per-CPU. Object size is equal to one page. This value + * can be changed at boot time. + */ +static int rcu_min_cached_objs = 5; +module_param(rcu_min_cached_objs, int, 0444); + +// A page shrinker can ask for pages to be freed to make them +// available for other parts of the system. This usually happens +// under low memory conditions, and in that case we should also +// defer page-cache filling for a short time period. +// +// The default value is 5 seconds, which is long enough to reduce +// interference with the shrinker while it asks other systems to +// drain their caches. +static int rcu_delay_page_cache_fill_msec = 5000; +module_param(rcu_delay_page_cache_fill_msec, int, 0444); + +static struct workqueue_struct *rcu_reclaim_wq; + +/* Maximum number of jiffies to wait before draining a batch. */ +#define KFREE_DRAIN_JIFFIES (5 * HZ) +#define KFREE_N_BATCHES 2 +#define FREE_N_CHANNELS 2 + +/** + * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers + * @list: List node. All blocks are linked between each other + * @gp_snap: Snapshot of RCU state for objects placed to this bulk + * @nr_records: Number of active pointers in the array + * @records: Array of the kvfree_rcu() pointers + */ +struct kvfree_rcu_bulk_data { + struct list_head list; + struct rcu_gp_oldstate gp_snap; + unsigned long nr_records; + void *records[] __counted_by(nr_records); +}; + +/* + * This macro defines how many entries the "records" array + * will contain. It is based on the fact that the size of + * kvfree_rcu_bulk_data structure becomes exactly one page. + */ +#define KVFREE_BULK_MAX_ENTR \ + ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) + +/** + * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests + * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period + * @head_free: List of kfree_rcu() objects waiting for a grace period + * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. + * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period + * @krcp: Pointer to @kfree_rcu_cpu structure + */ + +struct kfree_rcu_cpu_work { + struct rcu_work rcu_work; + struct rcu_head *head_free; + struct rcu_gp_oldstate head_free_gp_snap; + struct list_head bulk_head_free[FREE_N_CHANNELS]; + struct kfree_rcu_cpu *krcp; +}; + +/** + * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period + * @head: List of kfree_rcu() objects not yet waiting for a grace period + * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" + * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period + * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period + * @lock: Synchronize access to this structure + * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES + * @initialized: The @rcu_work fields have been initialized + * @head_count: Number of objects in rcu_head singular list + * @bulk_count: Number of objects in bulk-list + * @bkvcache: + * A simple cache list that contains objects for reuse purpose. + * In order to save some per-cpu space the list is singular. + * Even though it is lockless an access has to be protected by the + * per-cpu lock. + * @page_cache_work: A work to refill the cache when it is empty + * @backoff_page_cache_fill: Delay cache refills + * @work_in_progress: Indicates that page_cache_work is running + * @hrtimer: A hrtimer for scheduling a page_cache_work + * @nr_bkv_objs: number of allocated objects at @bkvcache. + * + * This is a per-CPU structure. The reason that it is not included in + * the rcu_data structure is to permit this code to be extracted from + * the RCU files. Such extraction could allow further optimization of + * the interactions with the slab allocators. + */ +struct kfree_rcu_cpu { + // Objects queued on a linked list + // through their rcu_head structures. + struct rcu_head *head; + unsigned long head_gp_snap; + atomic_t head_count; + + // Objects queued on a bulk-list. + struct list_head bulk_head[FREE_N_CHANNELS]; + atomic_t bulk_count[FREE_N_CHANNELS]; + + struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; + raw_spinlock_t lock; + struct delayed_work monitor_work; + bool initialized; + + struct delayed_work page_cache_work; + atomic_t backoff_page_cache_fill; + atomic_t work_in_progress; + struct hrtimer hrtimer; + + struct llist_head bkvcache; + int nr_bkv_objs; +}; + +static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { + .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), +}; + +static __always_inline void +debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) +{ +#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD + int i; + + for (i = 0; i < bhead->nr_records; i++) + debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); +#endif +} + +static inline struct kfree_rcu_cpu * +krc_this_cpu_lock(unsigned long *flags) +{ + struct kfree_rcu_cpu *krcp; + + local_irq_save(*flags); // For safely calling this_cpu_ptr(). + krcp = this_cpu_ptr(&krc); + raw_spin_lock(&krcp->lock); + + return krcp; +} + +static inline void +krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) +{ + raw_spin_unlock_irqrestore(&krcp->lock, flags); +} + +static inline struct kvfree_rcu_bulk_data * +get_cached_bnode(struct kfree_rcu_cpu *krcp) +{ + if (!krcp->nr_bkv_objs) + return NULL; + + WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); + return (struct kvfree_rcu_bulk_data *) + llist_del_first(&krcp->bkvcache); +} + +static inline bool +put_cached_bnode(struct kfree_rcu_cpu *krcp, + struct kvfree_rcu_bulk_data *bnode) +{ + // Check the limit. + if (krcp->nr_bkv_objs >= rcu_min_cached_objs) + return false; + + llist_add((struct llist_node *) bnode, &krcp->bkvcache); + WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); + return true; +} + +static int +drain_page_cache(struct kfree_rcu_cpu *krcp) +{ + unsigned long flags; + struct llist_node *page_list, *pos, *n; + int freed = 0; + + if (!rcu_min_cached_objs) + return 0; + + raw_spin_lock_irqsave(&krcp->lock, flags); + page_list = llist_del_all(&krcp->bkvcache); + WRITE_ONCE(krcp->nr_bkv_objs, 0); + raw_spin_unlock_irqrestore(&krcp->lock, flags); + + llist_for_each_safe(pos, n, page_list) { + free_page((unsigned long)pos); + freed++; + } + + return freed; +} + +static void +kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, + struct kvfree_rcu_bulk_data *bnode, int idx) +{ + unsigned long flags; + int i; + + if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { + debug_rcu_bhead_unqueue(bnode); + rcu_lock_acquire(&rcu_callback_map); + if (idx == 0) { // kmalloc() / kfree(). + trace_rcu_invoke_kfree_bulk_callback( + "slab", bnode->nr_records, + bnode->records); + + kfree_bulk(bnode->nr_records, bnode->records); + } else { // vmalloc() / vfree(). + for (i = 0; i < bnode->nr_records; i++) { + trace_rcu_invoke_kvfree_callback( + "slab", bnode->records[i], 0); + + vfree(bnode->records[i]); + } + } + rcu_lock_release(&rcu_callback_map); + } + + raw_spin_lock_irqsave(&krcp->lock, flags); + if (put_cached_bnode(krcp, bnode)) + bnode = NULL; + raw_spin_unlock_irqrestore(&krcp->lock, flags); + + if (bnode) + free_page((unsigned long) bnode); + + cond_resched_tasks_rcu_qs(); +} + +static void +kvfree_rcu_list(struct rcu_head *head) +{ + struct rcu_head *next; + + for (; head; head = next) { + void *ptr = (void *) head->func; + unsigned long offset = (void *) head - ptr; + + next = head->next; + debug_rcu_head_unqueue((struct rcu_head *)ptr); + rcu_lock_acquire(&rcu_callback_map); + trace_rcu_invoke_kvfree_callback("slab", head, offset); + + kvfree(ptr); + + rcu_lock_release(&rcu_callback_map); + cond_resched_tasks_rcu_qs(); + } +} + +/* + * This function is invoked in workqueue context after a grace period. + * It frees all the objects queued on ->bulk_head_free or ->head_free. + */ +static void kfree_rcu_work(struct work_struct *work) +{ + unsigned long flags; + struct kvfree_rcu_bulk_data *bnode, *n; + struct list_head bulk_head[FREE_N_CHANNELS]; + struct rcu_head *head; + struct kfree_rcu_cpu *krcp; + struct kfree_rcu_cpu_work *krwp; + struct rcu_gp_oldstate head_gp_snap; + int i; + + krwp = container_of(to_rcu_work(work), + struct kfree_rcu_cpu_work, rcu_work); + krcp = krwp->krcp; + + raw_spin_lock_irqsave(&krcp->lock, flags); + // Channels 1 and 2. + for (i = 0; i < FREE_N_CHANNELS; i++) + list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); + + // Channel 3. + head = krwp->head_free; + krwp->head_free = NULL; + head_gp_snap = krwp->head_free_gp_snap; + raw_spin_unlock_irqrestore(&krcp->lock, flags); + + // Handle the first two channels. + for (i = 0; i < FREE_N_CHANNELS; i++) { + // Start from the tail page, so a GP is likely passed for it. + list_for_each_entry_safe(bnode, n, &bulk_head[i], list) + kvfree_rcu_bulk(krcp, bnode, i); + } + + /* + * This is used when the "bulk" path can not be used for the + * double-argument of kvfree_rcu(). This happens when the + * page-cache is empty, which means that objects are instead + * queued on a linked list through their rcu_head structures. + * This list is named "Channel 3". + */ + if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) + kvfree_rcu_list(head); +} + +static bool kfree_rcu_sheaf(void *obj) +{ + struct kmem_cache *s; + struct slab *slab; + + if (is_vmalloc_addr(obj)) + return false; + + slab = virt_to_slab(obj); + if (unlikely(!slab)) + return false; + + s = slab->slab_cache; + if (s->cpu_sheaves) { + if (likely(!IS_ENABLED(CONFIG_NUMA) || + slab_nid(slab) == numa_mem_id())) + return __kfree_rcu_sheaf(s, obj); + } + + return false; +} + +static bool +need_offload_krc(struct kfree_rcu_cpu *krcp) +{ + int i; + + for (i = 0; i < FREE_N_CHANNELS; i++) + if (!list_empty(&krcp->bulk_head[i])) + return true; + + return !!READ_ONCE(krcp->head); +} + +static bool +need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) +{ + int i; + + for (i = 0; i < FREE_N_CHANNELS; i++) + if (!list_empty(&krwp->bulk_head_free[i])) + return true; + + return !!krwp->head_free; +} + +static int krc_count(struct kfree_rcu_cpu *krcp) +{ + int sum = atomic_read(&krcp->head_count); + int i; + + for (i = 0; i < FREE_N_CHANNELS; i++) + sum += atomic_read(&krcp->bulk_count[i]); + + return sum; +} + +static void +__schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) +{ + long delay, delay_left; + + delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; + if (delayed_work_pending(&krcp->monitor_work)) { + delay_left = krcp->monitor_work.timer.expires - jiffies; + if (delay < delay_left) + mod_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay); + return; + } + queue_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay); +} + +static void +schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) +{ + unsigned long flags; + + raw_spin_lock_irqsave(&krcp->lock, flags); + __schedule_delayed_monitor_work(krcp); + raw_spin_unlock_irqrestore(&krcp->lock, flags); +} + +static void +kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) +{ + struct list_head bulk_ready[FREE_N_CHANNELS]; + struct kvfree_rcu_bulk_data *bnode, *n; + struct rcu_head *head_ready = NULL; + unsigned long flags; + int i; + + raw_spin_lock_irqsave(&krcp->lock, flags); + for (i = 0; i < FREE_N_CHANNELS; i++) { + INIT_LIST_HEAD(&bulk_ready[i]); + + list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { + if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) + break; + + atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); + list_move(&bnode->list, &bulk_ready[i]); + } + } + + if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { + head_ready = krcp->head; + atomic_set(&krcp->head_count, 0); + WRITE_ONCE(krcp->head, NULL); + } + raw_spin_unlock_irqrestore(&krcp->lock, flags); + + for (i = 0; i < FREE_N_CHANNELS; i++) { + list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) + kvfree_rcu_bulk(krcp, bnode, i); + } + + if (head_ready) + kvfree_rcu_list(head_ready); +} + +/* + * Return: %true if a work is queued, %false otherwise. + */ +static bool +kvfree_rcu_queue_batch(struct kfree_rcu_cpu *krcp) +{ + unsigned long flags; + bool queued = false; + int i, j; + + raw_spin_lock_irqsave(&krcp->lock, flags); + + // Attempt to start a new batch. + for (i = 0; i < KFREE_N_BATCHES; i++) { + struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); + + // Try to detach bulk_head or head and attach it, only when + // all channels are free. Any channel is not free means at krwp + // there is on-going rcu work to handle krwp's free business. + if (need_wait_for_krwp_work(krwp)) + continue; + + // kvfree_rcu_drain_ready() might handle this krcp, if so give up. + if (need_offload_krc(krcp)) { + // Channel 1 corresponds to the SLAB-pointer bulk path. + // Channel 2 corresponds to vmalloc-pointer bulk path. + for (j = 0; j < FREE_N_CHANNELS; j++) { + if (list_empty(&krwp->bulk_head_free[j])) { + atomic_set(&krcp->bulk_count[j], 0); + list_replace_init(&krcp->bulk_head[j], + &krwp->bulk_head_free[j]); + } + } + + // Channel 3 corresponds to both SLAB and vmalloc + // objects queued on the linked list. + if (!krwp->head_free) { + krwp->head_free = krcp->head; + get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); + atomic_set(&krcp->head_count, 0); + WRITE_ONCE(krcp->head, NULL); + } + + // One work is per one batch, so there are three + // "free channels", the batch can handle. Break + // the loop since it is done with this CPU thus + // queuing an RCU work is _always_ success here. + queued = queue_rcu_work(rcu_reclaim_wq, &krwp->rcu_work); + WARN_ON_ONCE(!queued); + break; + } + } + + raw_spin_unlock_irqrestore(&krcp->lock, flags); + return queued; +} + +/* + * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. + */ +static void kfree_rcu_monitor(struct work_struct *work) +{ + struct kfree_rcu_cpu *krcp = container_of(work, + struct kfree_rcu_cpu, monitor_work.work); + + // Drain ready for reclaim. + kvfree_rcu_drain_ready(krcp); + + // Queue a batch for a rest. + kvfree_rcu_queue_batch(krcp); + + // If there is nothing to detach, it means that our job is + // successfully done here. In case of having at least one + // of the channels that is still busy we should rearm the + // work to repeat an attempt. Because previous batches are + // still in progress. + if (need_offload_krc(krcp)) + schedule_delayed_monitor_work(krcp); +} + +static void fill_page_cache_func(struct work_struct *work) +{ + struct kvfree_rcu_bulk_data *bnode; + struct kfree_rcu_cpu *krcp = + container_of(work, struct kfree_rcu_cpu, + page_cache_work.work); + unsigned long flags; + int nr_pages; + bool pushed; + int i; + + nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? + 1 : rcu_min_cached_objs; + + for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { + bnode = (struct kvfree_rcu_bulk_data *) + __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); + + if (!bnode) + break; + + raw_spin_lock_irqsave(&krcp->lock, flags); + pushed = put_cached_bnode(krcp, bnode); + raw_spin_unlock_irqrestore(&krcp->lock, flags); + + if (!pushed) { + free_page((unsigned long) bnode); + break; + } + } + + atomic_set(&krcp->work_in_progress, 0); + atomic_set(&krcp->backoff_page_cache_fill, 0); +} + +// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() +// state specified by flags. If can_alloc is true, the caller must +// be schedulable and not be holding any locks or mutexes that might be +// acquired by the memory allocator or anything that it might invoke. +// Returns true if ptr was successfully recorded, else the caller must +// use a fallback. +static inline bool +add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, + unsigned long *flags, void *ptr, bool can_alloc) +{ + struct kvfree_rcu_bulk_data *bnode; + int idx; + + *krcp = krc_this_cpu_lock(flags); + if (unlikely(!(*krcp)->initialized)) + return false; + + idx = !!is_vmalloc_addr(ptr); + bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], + struct kvfree_rcu_bulk_data, list); + + /* Check if a new block is required. */ + if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { + bnode = get_cached_bnode(*krcp); + if (!bnode && can_alloc) { + krc_this_cpu_unlock(*krcp, *flags); + + // __GFP_NORETRY - allows a light-weight direct reclaim + // what is OK from minimizing of fallback hitting point of + // view. Apart of that it forbids any OOM invoking what is + // also beneficial since we are about to release memory soon. + // + // __GFP_NOMEMALLOC - prevents from consuming of all the + // memory reserves. Please note we have a fallback path. + // + // __GFP_NOWARN - it is supposed that an allocation can + // be failed under low memory or high memory pressure + // scenarios. + bnode = (struct kvfree_rcu_bulk_data *) + __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); + raw_spin_lock_irqsave(&(*krcp)->lock, *flags); + } + + if (!bnode) + return false; + + // Initialize the new block and attach it. + bnode->nr_records = 0; + list_add(&bnode->list, &(*krcp)->bulk_head[idx]); + } + + // Finally insert and update the GP for this page. + bnode->nr_records++; + bnode->records[bnode->nr_records - 1] = ptr; + get_state_synchronize_rcu_full(&bnode->gp_snap); + atomic_inc(&(*krcp)->bulk_count[idx]); + + return true; +} + +static enum hrtimer_restart +schedule_page_work_fn(struct hrtimer *t) +{ + struct kfree_rcu_cpu *krcp = + container_of(t, struct kfree_rcu_cpu, hrtimer); + + queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); + return HRTIMER_NORESTART; +} + +static void +run_page_cache_worker(struct kfree_rcu_cpu *krcp) +{ + // If cache disabled, bail out. + if (!rcu_min_cached_objs) + return; + + if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && + !atomic_xchg(&krcp->work_in_progress, 1)) { + if (atomic_read(&krcp->backoff_page_cache_fill)) { + queue_delayed_work(rcu_reclaim_wq, + &krcp->page_cache_work, + msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); + } else { + hrtimer_setup(&krcp->hrtimer, schedule_page_work_fn, CLOCK_MONOTONIC, + HRTIMER_MODE_REL); + hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); + } + } +} + +void __init kfree_rcu_scheduler_running(void) +{ + int cpu; + + for_each_possible_cpu(cpu) { + struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); + + if (need_offload_krc(krcp)) + schedule_delayed_monitor_work(krcp); + } +} + +/* + * Queue a request for lazy invocation of the appropriate free routine + * after a grace period. Please note that three paths are maintained, + * two for the common case using arrays of pointers and a third one that + * is used only when the main paths cannot be used, for example, due to + * memory pressure. + * + * Each kvfree_call_rcu() request is added to a batch. The batch will be drained + * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will + * be free'd in workqueue context. This allows us to: batch requests together to + * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. + */ +void kvfree_call_rcu(struct rcu_head *head, void *ptr) +{ + unsigned long flags; + struct kfree_rcu_cpu *krcp; + bool success; + + /* + * Please note there is a limitation for the head-less + * variant, that is why there is a clear rule for such + * objects: it can be used from might_sleep() context + * only. For other places please embed an rcu_head to + * your data. + */ + if (!head) + might_sleep(); + + if (!IS_ENABLED(CONFIG_PREEMPT_RT) && kfree_rcu_sheaf(ptr)) + return; + + // Queue the object but don't yet schedule the batch. + if (debug_rcu_head_queue(ptr)) { + // Probable double kfree_rcu(), just leak. + WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", + __func__, head); + + // Mark as success and leave. + return; + } + + kasan_record_aux_stack(ptr); + success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); + if (!success) { + run_page_cache_worker(krcp); + + if (head == NULL) + // Inline if kvfree_rcu(one_arg) call. + goto unlock_return; + + head->func = ptr; + head->next = krcp->head; + WRITE_ONCE(krcp->head, head); + atomic_inc(&krcp->head_count); + + // Take a snapshot for this krcp. + krcp->head_gp_snap = get_state_synchronize_rcu(); + success = true; + } + + /* + * The kvfree_rcu() caller considers the pointer freed at this point + * and likely removes any references to it. Since the actual slab + * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore + * this object (no scanning or false positives reporting). + */ + kmemleak_ignore(ptr); + + // Set timer to drain after KFREE_DRAIN_JIFFIES. + if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) + __schedule_delayed_monitor_work(krcp); + +unlock_return: + krc_this_cpu_unlock(krcp, flags); + + /* + * Inline kvfree() after synchronize_rcu(). We can do + * it from might_sleep() context only, so the current + * CPU can pass the QS state. + */ + if (!success) { + debug_rcu_head_unqueue((struct rcu_head *) ptr); + synchronize_rcu(); + kvfree(ptr); + } +} +EXPORT_SYMBOL_GPL(kvfree_call_rcu); + +/** + * kvfree_rcu_barrier - Wait until all in-flight kvfree_rcu() complete. + * + * Note that a single argument of kvfree_rcu() call has a slow path that + * triggers synchronize_rcu() following by freeing a pointer. It is done + * before the return from the function. Therefore for any single-argument + * call that will result in a kfree() to a cache that is to be destroyed + * during module exit, it is developer's responsibility to ensure that all + * such calls have returned before the call to kmem_cache_destroy(). + */ +void kvfree_rcu_barrier(void) +{ + struct kfree_rcu_cpu_work *krwp; + struct kfree_rcu_cpu *krcp; + bool queued; + int i, cpu; + + flush_all_rcu_sheaves(); + + /* + * Firstly we detach objects and queue them over an RCU-batch + * for all CPUs. Finally queued works are flushed for each CPU. + * + * Please note. If there are outstanding batches for a particular + * CPU, those have to be finished first following by queuing a new. + */ + for_each_possible_cpu(cpu) { + krcp = per_cpu_ptr(&krc, cpu); + + /* + * Check if this CPU has any objects which have been queued for a + * new GP completion. If not(means nothing to detach), we are done + * with it. If any batch is pending/running for this "krcp", below + * per-cpu flush_rcu_work() waits its completion(see last step). + */ + if (!need_offload_krc(krcp)) + continue; + + while (1) { + /* + * If we are not able to queue a new RCU work it means: + * - batches for this CPU are still in flight which should + * be flushed first and then repeat; + * - no objects to detach, because of concurrency. + */ + queued = kvfree_rcu_queue_batch(krcp); + + /* + * Bail out, if there is no need to offload this "krcp" + * anymore. As noted earlier it can run concurrently. + */ + if (queued || !need_offload_krc(krcp)) + break; + + /* There are ongoing batches. */ + for (i = 0; i < KFREE_N_BATCHES; i++) { + krwp = &(krcp->krw_arr[i]); + flush_rcu_work(&krwp->rcu_work); + } + } + } + + /* + * Now we guarantee that all objects are flushed. + */ + for_each_possible_cpu(cpu) { + krcp = per_cpu_ptr(&krc, cpu); + + /* + * A monitor work can drain ready to reclaim objects + * directly. Wait its completion if running or pending. + */ + cancel_delayed_work_sync(&krcp->monitor_work); + + for (i = 0; i < KFREE_N_BATCHES; i++) { + krwp = &(krcp->krw_arr[i]); + flush_rcu_work(&krwp->rcu_work); + } + } +} +EXPORT_SYMBOL_GPL(kvfree_rcu_barrier); + +static unsigned long +kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) +{ + int cpu; + unsigned long count = 0; + + /* Snapshot count of all CPUs */ + for_each_possible_cpu(cpu) { + struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); + + count += krc_count(krcp); + count += READ_ONCE(krcp->nr_bkv_objs); + atomic_set(&krcp->backoff_page_cache_fill, 1); + } + + return count == 0 ? SHRINK_EMPTY : count; +} + +static unsigned long +kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) +{ + int cpu, freed = 0; + + for_each_possible_cpu(cpu) { + int count; + struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); + + count = krc_count(krcp); + count += drain_page_cache(krcp); + kfree_rcu_monitor(&krcp->monitor_work.work); + + sc->nr_to_scan -= count; + freed += count; + + if (sc->nr_to_scan <= 0) + break; + } + + return freed == 0 ? SHRINK_STOP : freed; +} + +void __init kvfree_rcu_init(void) +{ + int cpu; + int i, j; + struct shrinker *kfree_rcu_shrinker; + + rcu_reclaim_wq = alloc_workqueue("kvfree_rcu_reclaim", + WQ_UNBOUND | WQ_MEM_RECLAIM, 0); + WARN_ON(!rcu_reclaim_wq); + + /* Clamp it to [0:100] seconds interval. */ + if (rcu_delay_page_cache_fill_msec < 0 || + rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { + + rcu_delay_page_cache_fill_msec = + clamp(rcu_delay_page_cache_fill_msec, 0, + (int) (100 * MSEC_PER_SEC)); + + pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", + rcu_delay_page_cache_fill_msec); + } + + for_each_possible_cpu(cpu) { + struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); + + for (i = 0; i < KFREE_N_BATCHES; i++) { + INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); + krcp->krw_arr[i].krcp = krcp; + + for (j = 0; j < FREE_N_CHANNELS; j++) + INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); + } + + for (i = 0; i < FREE_N_CHANNELS; i++) + INIT_LIST_HEAD(&krcp->bulk_head[i]); + + INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); + INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); + krcp->initialized = true; + } + + kfree_rcu_shrinker = shrinker_alloc(0, "slab-kvfree-rcu"); + if (!kfree_rcu_shrinker) { + pr_err("Failed to allocate kfree_rcu() shrinker!\n"); + return; + } + + kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count; + kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan; + + shrinker_register(kfree_rcu_shrinker); +} + +#endif /* CONFIG_KVFREE_RCU_BATCHED */ + |
