summaryrefslogtreecommitdiff
path: root/mm/slub.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slub.c')
-rw-r--r--mm/slub.c10134
1 files changed, 7456 insertions, 2678 deletions
diff --git a/mm/slub.c b/mm/slub.c
index 3b482c863002..e6a330e24145 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -1,8 +1,9 @@
+// SPDX-License-Identifier: GPL-2.0
/*
* SLUB: A slab allocator that limits cache line use instead of queuing
* objects in per cpu and per node lists.
*
- * The allocator synchronizes using per slab locks or atomic operatios
+ * The allocator synchronizes using per slab locks or atomic operations
* and only uses a centralized lock to manage a pool of partial slabs.
*
* (C) 2007 SGI, Christoph Lameter
@@ -10,30 +11,42 @@
*/
#include <linux/mm.h>
-#include <linux/swap.h> /* struct reclaim_state */
+#include <linux/swap.h> /* mm_account_reclaimed_pages() */
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
+#include <linux/swab.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include "slab.h"
+#include <linux/vmalloc.h>
#include <linux/proc_fs.h>
-#include <linux/notifier.h>
#include <linux/seq_file.h>
-#include <linux/kmemcheck.h>
+#include <linux/kasan.h>
+#include <linux/node.h>
+#include <linux/kmsan.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
+#include <linux/stackdepot.h>
#include <linux/debugobjects.h>
#include <linux/kallsyms.h>
+#include <linux/kfence.h>
#include <linux/memory.h>
#include <linux/math64.h>
#include <linux/fault-inject.h>
+#include <linux/kmemleak.h>
#include <linux/stacktrace.h>
#include <linux/prefetch.h>
#include <linux/memcontrol.h>
-
+#include <linux/random.h>
+#include <kunit/test.h>
+#include <kunit/test-bug.h>
+#include <linux/sort.h>
+#include <linux/irq_work.h>
+#include <linux/kprobes.h>
+#include <linux/debugfs.h>
#include <trace/events/kmem.h>
#include "internal.h"
@@ -41,26 +54,55 @@
/*
* Lock order:
* 1. slab_mutex (Global Mutex)
- * 2. node->list_lock
- * 3. slab_lock(page) (Only on some arches and for debugging)
+ * 2. node->list_lock (Spinlock)
+ * 3. kmem_cache->cpu_slab->lock (Local lock)
+ * 4. slab_lock(slab) (Only on some arches)
+ * 5. object_map_lock (Only for debugging)
*
* slab_mutex
*
* The role of the slab_mutex is to protect the list of all the slabs
* and to synchronize major metadata changes to slab cache structures.
+ * Also synchronizes memory hotplug callbacks.
+ *
+ * slab_lock
+ *
+ * The slab_lock is a wrapper around the page lock, thus it is a bit
+ * spinlock.
+ *
+ * The slab_lock is only used on arches that do not have the ability
+ * to do a cmpxchg_double. It only protects:
+ *
+ * A. slab->freelist -> List of free objects in a slab
+ * B. slab->inuse -> Number of objects in use
+ * C. slab->objects -> Number of objects in slab
+ * D. slab->frozen -> frozen state
+ *
+ * Frozen slabs
+ *
+ * If a slab is frozen then it is exempt from list management. It is
+ * the cpu slab which is actively allocated from by the processor that
+ * froze it and it is not on any list. The processor that froze the
+ * slab is the one who can perform list operations on the slab. Other
+ * processors may put objects onto the freelist but the processor that
+ * froze the slab is the only one that can retrieve the objects from the
+ * slab's freelist.
*
- * The slab_lock is only used for debugging and on arches that do not
- * have the ability to do a cmpxchg_double. It only protects the second
- * double word in the page struct. Meaning
- * A. page->freelist -> List of object free in a page
- * B. page->counters -> Counters of objects
- * C. page->frozen -> frozen state
+ * CPU partial slabs
*
- * If a slab is frozen then it is exempt from list management. It is not
- * on any list. The processor that froze the slab is the one who can
- * perform list operations on the page. Other processors may put objects
- * onto the freelist but the processor that froze the slab is the only
- * one that can retrieve the objects from the page's freelist.
+ * The partially empty slabs cached on the CPU partial list are used
+ * for performance reasons, which speeds up the allocation process.
+ * These slabs are not frozen, but are also exempt from list management,
+ * by clearing the SL_partial flag when moving out of the node
+ * partial list. Please see __slab_free() for more details.
+ *
+ * To sum up, the current scheme is:
+ * - node partial slab: SL_partial && !frozen
+ * - cpu partial slab: !SL_partial && !frozen
+ * - cpu slab: !SL_partial && frozen
+ * - full slab: !SL_partial && !frozen
+ *
+ * list_lock
*
* The list_lock protects the partial and full list on each node and
* the partial slab counter. If taken then no new slabs may be added or
@@ -73,10 +115,41 @@
* slabs, operations can continue without any centralized lock. F.e.
* allocating a long series of objects that fill up slabs does not require
* the list lock.
- * Interrupts are disabled during allocation and deallocation in order to
- * make the slab allocator safe to use in the context of an irq. In addition
- * interrupts are disabled to ensure that the processor does not change
- * while handling per_cpu slabs, due to kernel preemption.
+ *
+ * For debug caches, all allocations are forced to go through a list_lock
+ * protected region to serialize against concurrent validation.
+ *
+ * cpu_slab->lock local lock
+ *
+ * This locks protect slowpath manipulation of all kmem_cache_cpu fields
+ * except the stat counters. This is a percpu structure manipulated only by
+ * the local cpu, so the lock protects against being preempted or interrupted
+ * by an irq. Fast path operations rely on lockless operations instead.
+ *
+ * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
+ * which means the lockless fastpath cannot be used as it might interfere with
+ * an in-progress slow path operations. In this case the local lock is always
+ * taken but it still utilizes the freelist for the common operations.
+ *
+ * lockless fastpaths
+ *
+ * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
+ * are fully lockless when satisfied from the percpu slab (and when
+ * cmpxchg_double is possible to use, otherwise slab_lock is taken).
+ * They also don't disable preemption or migration or irqs. They rely on
+ * the transaction id (tid) field to detect being preempted or moved to
+ * another cpu.
+ *
+ * irq, preemption, migration considerations
+ *
+ * Interrupts are disabled as part of list_lock or local_lock operations, or
+ * around the slab_lock operation, in order to make the slab allocator safe
+ * to use in the context of an irq.
+ *
+ * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
+ * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
+ * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
+ * doesn't have to be revalidated in each section protected by the local lock.
*
* SLUB assigns one slab for allocation to each processor.
* Allocations only occur from these slabs called cpu slabs.
@@ -91,9 +164,7 @@
* minimal so we rely on the page allocators per cpu caches for
* fast frees and allocs.
*
- * Overloading of page flags that are otherwise used for LRU management.
- *
- * PageActive The slab is frozen and exempt from list processing.
+ * slab->frozen The slab is frozen and exempt from list processing.
* This means that the slab is dedicated to a purpose
* such as satisfying allocations for a specific
* processor. Objects may be freed in the slab while
@@ -109,18 +180,85 @@
* free objects in addition to the regular freelist
* that requires the slab lock.
*
- * PageError Slab requires special handling due to debug
+ * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
* options set. This moves slab handling out of
* the fast path and disables lockless freelists.
*/
-static inline int kmem_cache_debug(struct kmem_cache *s)
-{
+/**
+ * enum slab_flags - How the slab flags bits are used.
+ * @SL_locked: Is locked with slab_lock()
+ * @SL_partial: On the per-node partial list
+ * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
+ *
+ * The slab flags share space with the page flags but some bits have
+ * different interpretations. The high bits are used for information
+ * like zone/node/section.
+ */
+enum slab_flags {
+ SL_locked = PG_locked,
+ SL_partial = PG_workingset, /* Historical reasons for this bit */
+ SL_pfmemalloc = PG_active, /* Historical reasons for this bit */
+};
+
+/*
+ * We could simply use migrate_disable()/enable() but as long as it's a
+ * function call even on !PREEMPT_RT, use inline preempt_disable() there.
+ */
+#ifndef CONFIG_PREEMPT_RT
+#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
+#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
+#define USE_LOCKLESS_FAST_PATH() (true)
+#else
+#define slub_get_cpu_ptr(var) \
+({ \
+ migrate_disable(); \
+ this_cpu_ptr(var); \
+})
+#define slub_put_cpu_ptr(var) \
+do { \
+ (void)(var); \
+ migrate_enable(); \
+} while (0)
+#define USE_LOCKLESS_FAST_PATH() (false)
+#endif
+
+#ifndef CONFIG_SLUB_TINY
+#define __fastpath_inline __always_inline
+#else
+#define __fastpath_inline
+#endif
+
#ifdef CONFIG_SLUB_DEBUG
- return unlikely(s->flags & SLAB_DEBUG_FLAGS);
+#ifdef CONFIG_SLUB_DEBUG_ON
+DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
#else
- return 0;
+DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
+#endif
+#endif /* CONFIG_SLUB_DEBUG */
+
+#ifdef CONFIG_NUMA
+static DEFINE_STATIC_KEY_FALSE(strict_numa);
#endif
+
+/* Structure holding parameters for get_partial() call chain */
+struct partial_context {
+ gfp_t flags;
+ unsigned int orig_size;
+ void *object;
+};
+
+static inline bool kmem_cache_debug(struct kmem_cache *s)
+{
+ return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
+}
+
+void *fixup_red_left(struct kmem_cache *s, void *p)
+{
+ if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
+ p += s->red_left_pad;
+
+ return p;
}
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
@@ -140,14 +278,12 @@ static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
* - Variable sizing of the per node arrays
*/
-/* Enable to test recovery from slab corruption on boot */
-#undef SLUB_RESILIENCY_TEST
-
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG
+#ifndef CONFIG_SLUB_TINY
/*
- * Mininum number of partial slabs. These will be left on the partial
+ * Minimum number of partial slabs. These will be left on the partial
* lists even if they are empty. kmem_cache_shrink may reclaim them.
*/
#define MIN_PARTIAL 5
@@ -155,40 +291,45 @@ static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
/*
* Maximum number of desirable partial slabs.
* The existence of more partial slabs makes kmem_cache_shrink
- * sort the partial list by the number of objects in the.
+ * sort the partial list by the number of objects in use.
*/
#define MAX_PARTIAL 10
+#else
+#define MIN_PARTIAL 0
+#define MAX_PARTIAL 0
+#endif
-#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
+#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
SLAB_POISON | SLAB_STORE_USER)
/*
- * Debugging flags that require metadata to be stored in the slab. These get
- * disabled when slub_debug=O is used and a cache's min order increases with
- * metadata.
+ * These debug flags cannot use CMPXCHG because there might be consistency
+ * issues when checking or reading debug information
*/
-#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
+#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
+ SLAB_TRACE)
+
/*
- * Set of flags that will prevent slab merging
+ * Debugging flags that require metadata to be stored in the slab. These get
+ * disabled when slab_debug=O is used and a cache's min order increases with
+ * metadata.
*/
-#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
- SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
- SLAB_FAILSLAB)
-
-#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
- SLAB_CACHE_DMA | SLAB_NOTRACK)
+#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#define OO_SHIFT 16
#define OO_MASK ((1 << OO_SHIFT) - 1)
-#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
+#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
/* Internal SLUB flags */
-#define __OBJECT_POISON 0x80000000UL /* Poison object */
-#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
+/* Poison object */
+#define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
+/* Use cmpxchg_double */
-#ifdef CONFIG_SMP
-static struct notifier_block slab_notifier;
+#ifdef system_has_freelist_aba
+#define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
+#else
+#define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
#endif
/*
@@ -197,8 +338,8 @@ static struct notifier_block slab_notifier;
#define TRACK_ADDRS_COUNT 16
struct track {
unsigned long addr; /* Called from address */
-#ifdef CONFIG_STACKTRACE
- unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
+#ifdef CONFIG_STACKDEPOT
+ depot_stack_handle_t handle;
#endif
int cpu; /* Was running on cpu */
int pid; /* Pid context */
@@ -207,266 +348,682 @@ struct track {
enum track_item { TRACK_ALLOC, TRACK_FREE };
-#ifdef CONFIG_SYSFS
+#ifdef SLAB_SUPPORTS_SYSFS
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
-static void sysfs_slab_remove(struct kmem_cache *);
-static void memcg_propagate_slab_attrs(struct kmem_cache *s);
#else
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
{ return 0; }
-static inline void sysfs_slab_remove(struct kmem_cache *s) { }
+#endif
+
+#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
+static void debugfs_slab_add(struct kmem_cache *);
+#else
+static inline void debugfs_slab_add(struct kmem_cache *s) { }
+#endif
+
+enum stat_item {
+ ALLOC_PCS, /* Allocation from percpu sheaf */
+ ALLOC_FASTPATH, /* Allocation from cpu slab */
+ ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
+ FREE_PCS, /* Free to percpu sheaf */
+ FREE_RCU_SHEAF, /* Free to rcu_free sheaf */
+ FREE_RCU_SHEAF_FAIL, /* Failed to free to a rcu_free sheaf */
+ FREE_FASTPATH, /* Free to cpu slab */
+ FREE_SLOWPATH, /* Freeing not to cpu slab */
+ FREE_FROZEN, /* Freeing to frozen slab */
+ FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
+ FREE_REMOVE_PARTIAL, /* Freeing removes last object */
+ ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
+ ALLOC_SLAB, /* Cpu slab acquired from page allocator */
+ ALLOC_REFILL, /* Refill cpu slab from slab freelist */
+ ALLOC_NODE_MISMATCH, /* Switching cpu slab */
+ FREE_SLAB, /* Slab freed to the page allocator */
+ CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
+ DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
+ DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
+ DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
+ DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
+ DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
+ DEACTIVATE_BYPASS, /* Implicit deactivation */
+ ORDER_FALLBACK, /* Number of times fallback was necessary */
+ CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
+ CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
+ CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
+ CPU_PARTIAL_FREE, /* Refill cpu partial on free */
+ CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
+ CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
+ SHEAF_FLUSH, /* Objects flushed from a sheaf */
+ SHEAF_REFILL, /* Objects refilled to a sheaf */
+ SHEAF_ALLOC, /* Allocation of an empty sheaf */
+ SHEAF_FREE, /* Freeing of an empty sheaf */
+ BARN_GET, /* Got full sheaf from barn */
+ BARN_GET_FAIL, /* Failed to get full sheaf from barn */
+ BARN_PUT, /* Put full sheaf to barn */
+ BARN_PUT_FAIL, /* Failed to put full sheaf to barn */
+ SHEAF_PREFILL_FAST, /* Sheaf prefill grabbed the spare sheaf */
+ SHEAF_PREFILL_SLOW, /* Sheaf prefill found no spare sheaf */
+ SHEAF_PREFILL_OVERSIZE, /* Allocation of oversize sheaf for prefill */
+ SHEAF_RETURN_FAST, /* Sheaf return reattached spare sheaf */
+ SHEAF_RETURN_SLOW, /* Sheaf return could not reattach spare */
+ NR_SLUB_STAT_ITEMS
+};
-static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
+struct freelist_tid {
+ union {
+ struct {
+ void *freelist; /* Pointer to next available object */
+ unsigned long tid; /* Globally unique transaction id */
+ };
+ freelist_full_t freelist_tid;
+ };
+};
+
+/*
+ * When changing the layout, make sure freelist and tid are still compatible
+ * with this_cpu_cmpxchg_double() alignment requirements.
+ */
+struct kmem_cache_cpu {
+ struct freelist_tid;
+ struct slab *slab; /* The slab from which we are allocating */
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+ struct slab *partial; /* Partially allocated slabs */
+#endif
+ local_trylock_t lock; /* Protects the fields above */
+#ifdef CONFIG_SLUB_STATS
+ unsigned int stat[NR_SLUB_STAT_ITEMS];
#endif
+};
static inline void stat(const struct kmem_cache *s, enum stat_item si)
{
#ifdef CONFIG_SLUB_STATS
- __this_cpu_inc(s->cpu_slab->stat[si]);
+ /*
+ * The rmw is racy on a preemptible kernel but this is acceptable, so
+ * avoid this_cpu_add()'s irq-disable overhead.
+ */
+ raw_cpu_inc(s->cpu_slab->stat[si]);
#endif
}
-/********************************************************************
- * Core slab cache functions
- *******************************************************************/
+static inline
+void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
+{
+#ifdef CONFIG_SLUB_STATS
+ raw_cpu_add(s->cpu_slab->stat[si], v);
+#endif
+}
+
+#define MAX_FULL_SHEAVES 10
+#define MAX_EMPTY_SHEAVES 10
+
+struct node_barn {
+ spinlock_t lock;
+ struct list_head sheaves_full;
+ struct list_head sheaves_empty;
+ unsigned int nr_full;
+ unsigned int nr_empty;
+};
+
+struct slab_sheaf {
+ union {
+ struct rcu_head rcu_head;
+ struct list_head barn_list;
+ /* only used for prefilled sheafs */
+ struct {
+ unsigned int capacity;
+ bool pfmemalloc;
+ };
+ };
+ struct kmem_cache *cache;
+ unsigned int size;
+ int node; /* only used for rcu_sheaf */
+ void *objects[];
+};
+
+struct slub_percpu_sheaves {
+ local_trylock_t lock;
+ struct slab_sheaf *main; /* never NULL when unlocked */
+ struct slab_sheaf *spare; /* empty or full, may be NULL */
+ struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */
+};
+
+/*
+ * The slab lists for all objects.
+ */
+struct kmem_cache_node {
+ spinlock_t list_lock;
+ unsigned long nr_partial;
+ struct list_head partial;
+#ifdef CONFIG_SLUB_DEBUG
+ atomic_long_t nr_slabs;
+ atomic_long_t total_objects;
+ struct list_head full;
+#endif
+ struct node_barn *barn;
+};
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
return s->node[node];
}
-/* Verify that a pointer has an address that is valid within a slab page */
-static inline int check_valid_pointer(struct kmem_cache *s,
- struct page *page, const void *object)
+/*
+ * Get the barn of the current cpu's closest memory node. It may not exist on
+ * systems with memoryless nodes but without CONFIG_HAVE_MEMORYLESS_NODES
+ */
+static inline struct node_barn *get_barn(struct kmem_cache *s)
{
- void *base;
+ struct kmem_cache_node *n = get_node(s, numa_mem_id());
- if (!object)
- return 1;
+ if (!n)
+ return NULL;
- base = page_address(page);
- if (object < base || object >= base + page->objects * s->size ||
- (object - base) % s->size) {
- return 0;
- }
+ return n->barn;
+}
- return 1;
+/*
+ * Iterator over all nodes. The body will be executed for each node that has
+ * a kmem_cache_node structure allocated (which is true for all online nodes)
+ */
+#define for_each_kmem_cache_node(__s, __node, __n) \
+ for (__node = 0; __node < nr_node_ids; __node++) \
+ if ((__n = get_node(__s, __node)))
+
+/*
+ * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
+ * Corresponds to node_state[N_MEMORY], but can temporarily
+ * differ during memory hotplug/hotremove operations.
+ * Protected by slab_mutex.
+ */
+static nodemask_t slab_nodes;
+
+/*
+ * Workqueue used for flush_cpu_slab().
+ */
+static struct workqueue_struct *flushwq;
+
+struct slub_flush_work {
+ struct work_struct work;
+ struct kmem_cache *s;
+ bool skip;
+};
+
+static DEFINE_MUTEX(flush_lock);
+static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
+
+/********************************************************************
+ * Core slab cache functions
+ *******************************************************************/
+
+/*
+ * Returns freelist pointer (ptr). With hardening, this is obfuscated
+ * with an XOR of the address where the pointer is held and a per-cache
+ * random number.
+ */
+static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
+ void *ptr, unsigned long ptr_addr)
+{
+ unsigned long encoded;
+
+#ifdef CONFIG_SLAB_FREELIST_HARDENED
+ encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
+#else
+ encoded = (unsigned long)ptr;
+#endif
+ return (freeptr_t){.v = encoded};
+}
+
+static inline void *freelist_ptr_decode(const struct kmem_cache *s,
+ freeptr_t ptr, unsigned long ptr_addr)
+{
+ void *decoded;
+
+#ifdef CONFIG_SLAB_FREELIST_HARDENED
+ decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
+#else
+ decoded = (void *)ptr.v;
+#endif
+ return decoded;
}
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
- return *(void **)(object + s->offset);
+ unsigned long ptr_addr;
+ freeptr_t p;
+
+ object = kasan_reset_tag(object);
+ ptr_addr = (unsigned long)object + s->offset;
+ p = *(freeptr_t *)(ptr_addr);
+ return freelist_ptr_decode(s, p, ptr_addr);
}
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
- prefetch(object + s->offset);
+ prefetchw(object + s->offset);
}
+/*
+ * When running under KMSAN, get_freepointer_safe() may return an uninitialized
+ * pointer value in the case the current thread loses the race for the next
+ * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
+ * slab_alloc_node() will fail, so the uninitialized value won't be used, but
+ * KMSAN will still check all arguments of cmpxchg because of imperfect
+ * handling of inline assembly.
+ * To work around this problem, we apply __no_kmsan_checks to ensure that
+ * get_freepointer_safe() returns initialized memory.
+ */
+__no_kmsan_checks
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
- void *p;
+ unsigned long freepointer_addr;
+ freeptr_t p;
-#ifdef CONFIG_DEBUG_PAGEALLOC
- probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
-#else
- p = get_freepointer(s, object);
-#endif
- return p;
+ if (!debug_pagealloc_enabled_static())
+ return get_freepointer(s, object);
+
+ object = kasan_reset_tag(object);
+ freepointer_addr = (unsigned long)object + s->offset;
+ copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
+ return freelist_ptr_decode(s, p, freepointer_addr);
}
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
- *(void **)(object + s->offset) = fp;
-}
+ unsigned long freeptr_addr = (unsigned long)object + s->offset;
-/* Loop over all objects in a slab */
-#define for_each_object(__p, __s, __addr, __objects) \
- for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
- __p += (__s)->size)
+#ifdef CONFIG_SLAB_FREELIST_HARDENED
+ BUG_ON(object == fp); /* naive detection of double free or corruption */
+#endif
-/* Determine object index from a given position */
-static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
-{
- return (p - addr) / s->size;
+ freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
+ *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
}
-static inline size_t slab_ksize(const struct kmem_cache *s)
+/*
+ * See comment in calculate_sizes().
+ */
+static inline bool freeptr_outside_object(struct kmem_cache *s)
{
-#ifdef CONFIG_SLUB_DEBUG
- /*
- * Debugging requires use of the padding between object
- * and whatever may come after it.
- */
- if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
- return s->object_size;
+ return s->offset >= s->inuse;
+}
-#endif
- /*
- * If we have the need to store the freelist pointer
- * back there or track user information then we can
- * only use the space before that information.
- */
- if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
+/*
+ * Return offset of the end of info block which is inuse + free pointer if
+ * not overlapping with object.
+ */
+static inline unsigned int get_info_end(struct kmem_cache *s)
+{
+ if (freeptr_outside_object(s))
+ return s->inuse + sizeof(void *);
+ else
return s->inuse;
- /*
- * Else we can use all the padding etc for the allocation
- */
- return s->size;
}
-static inline int order_objects(int order, unsigned long size, int reserved)
+/* Loop over all objects in a slab */
+#define for_each_object(__p, __s, __addr, __objects) \
+ for (__p = fixup_red_left(__s, __addr); \
+ __p < (__addr) + (__objects) * (__s)->size; \
+ __p += (__s)->size)
+
+static inline unsigned int order_objects(unsigned int order, unsigned int size)
{
- return ((PAGE_SIZE << order) - reserved) / size;
+ return ((unsigned int)PAGE_SIZE << order) / size;
}
-static inline struct kmem_cache_order_objects oo_make(int order,
- unsigned long size, int reserved)
+static inline struct kmem_cache_order_objects oo_make(unsigned int order,
+ unsigned int size)
{
struct kmem_cache_order_objects x = {
- (order << OO_SHIFT) + order_objects(order, size, reserved)
+ (order << OO_SHIFT) + order_objects(order, size)
};
return x;
}
-static inline int oo_order(struct kmem_cache_order_objects x)
+static inline unsigned int oo_order(struct kmem_cache_order_objects x)
{
return x.x >> OO_SHIFT;
}
-static inline int oo_objects(struct kmem_cache_order_objects x)
+static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
{
return x.x & OO_MASK;
}
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
+{
+ unsigned int nr_slabs;
+
+ s->cpu_partial = nr_objects;
+
+ /*
+ * We take the number of objects but actually limit the number of
+ * slabs on the per cpu partial list, in order to limit excessive
+ * growth of the list. For simplicity we assume that the slabs will
+ * be half-full.
+ */
+ nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
+ s->cpu_partial_slabs = nr_slabs;
+}
+
+static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
+{
+ return s->cpu_partial_slabs;
+}
+#else
+#ifdef SLAB_SUPPORTS_SYSFS
+static inline void
+slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
+{
+}
+#endif
+
+static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
+{
+ return 0;
+}
+#endif /* CONFIG_SLUB_CPU_PARTIAL */
+
+/*
+ * If network-based swap is enabled, slub must keep track of whether memory
+ * were allocated from pfmemalloc reserves.
+ */
+static inline bool slab_test_pfmemalloc(const struct slab *slab)
+{
+ return test_bit(SL_pfmemalloc, &slab->flags.f);
+}
+
+static inline void slab_set_pfmemalloc(struct slab *slab)
+{
+ set_bit(SL_pfmemalloc, &slab->flags.f);
+}
+
+static inline void __slab_clear_pfmemalloc(struct slab *slab)
+{
+ __clear_bit(SL_pfmemalloc, &slab->flags.f);
+}
+
/*
* Per slab locking using the pagelock
*/
-static __always_inline void slab_lock(struct page *page)
+static __always_inline void slab_lock(struct slab *slab)
{
- bit_spin_lock(PG_locked, &page->flags);
+ bit_spin_lock(SL_locked, &slab->flags.f);
}
-static __always_inline void slab_unlock(struct page *page)
+static __always_inline void slab_unlock(struct slab *slab)
{
- __bit_spin_unlock(PG_locked, &page->flags);
+ bit_spin_unlock(SL_locked, &slab->flags.f);
}
-/* Interrupts must be disabled (for the fallback code to work right) */
-static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
- void *freelist_old, unsigned long counters_old,
- void *freelist_new, unsigned long counters_new,
- const char *n)
+static inline bool
+__update_freelist_fast(struct slab *slab, struct freelist_counters *old,
+ struct freelist_counters *new)
{
- VM_BUG_ON(!irqs_disabled());
-#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
- defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
- if (s->flags & __CMPXCHG_DOUBLE) {
- if (cmpxchg_double(&page->freelist, &page->counters,
- freelist_old, counters_old,
- freelist_new, counters_new))
- return 1;
- } else
+#ifdef system_has_freelist_aba
+ return try_cmpxchg_freelist(&slab->freelist_counters,
+ &old->freelist_counters,
+ new->freelist_counters);
+#else
+ return false;
#endif
- {
- slab_lock(page);
- if (page->freelist == freelist_old && page->counters == counters_old) {
- page->freelist = freelist_new;
- page->counters = counters_new;
- slab_unlock(page);
- return 1;
- }
- slab_unlock(page);
+}
+
+static inline bool
+__update_freelist_slow(struct slab *slab, struct freelist_counters *old,
+ struct freelist_counters *new)
+{
+ bool ret = false;
+
+ slab_lock(slab);
+ if (slab->freelist == old->freelist &&
+ slab->counters == old->counters) {
+ slab->freelist = new->freelist;
+ slab->counters = new->counters;
+ ret = true;
}
+ slab_unlock(slab);
+
+ return ret;
+}
+
+/*
+ * Interrupts must be disabled (for the fallback code to work right), typically
+ * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
+ * part of bit_spin_lock(), is sufficient because the policy is not to allow any
+ * allocation/ free operation in hardirq context. Therefore nothing can
+ * interrupt the operation.
+ */
+static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
+ struct freelist_counters *old, struct freelist_counters *new, const char *n)
+{
+ bool ret;
+
+ if (USE_LOCKLESS_FAST_PATH())
+ lockdep_assert_irqs_disabled();
+
+ if (s->flags & __CMPXCHG_DOUBLE)
+ ret = __update_freelist_fast(slab, old, new);
+ else
+ ret = __update_freelist_slow(slab, old, new);
+
+ if (likely(ret))
+ return true;
cpu_relax();
stat(s, CMPXCHG_DOUBLE_FAIL);
#ifdef SLUB_DEBUG_CMPXCHG
- printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
+ pr_info("%s %s: cmpxchg double redo ", n, s->name);
#endif
- return 0;
+ return false;
}
-static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
- void *freelist_old, unsigned long counters_old,
- void *freelist_new, unsigned long counters_new,
- const char *n)
+static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
+ struct freelist_counters *old, struct freelist_counters *new, const char *n)
{
-#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
- defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
+ bool ret;
+
if (s->flags & __CMPXCHG_DOUBLE) {
- if (cmpxchg_double(&page->freelist, &page->counters,
- freelist_old, counters_old,
- freelist_new, counters_new))
- return 1;
- } else
-#endif
- {
+ ret = __update_freelist_fast(slab, old, new);
+ } else {
unsigned long flags;
local_irq_save(flags);
- slab_lock(page);
- if (page->freelist == freelist_old && page->counters == counters_old) {
- page->freelist = freelist_new;
- page->counters = counters_new;
- slab_unlock(page);
- local_irq_restore(flags);
- return 1;
- }
- slab_unlock(page);
+ ret = __update_freelist_slow(slab, old, new);
local_irq_restore(flags);
}
+ if (likely(ret))
+ return true;
cpu_relax();
stat(s, CMPXCHG_DOUBLE_FAIL);
#ifdef SLUB_DEBUG_CMPXCHG
- printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
+ pr_info("%s %s: cmpxchg double redo ", n, s->name);
#endif
- return 0;
+ return false;
+}
+
+/*
+ * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
+ * family will round up the real request size to these fixed ones, so
+ * there could be an extra area than what is requested. Save the original
+ * request size in the meta data area, for better debug and sanity check.
+ */
+static inline void set_orig_size(struct kmem_cache *s,
+ void *object, unsigned int orig_size)
+{
+ void *p = kasan_reset_tag(object);
+
+ if (!slub_debug_orig_size(s))
+ return;
+
+ p += get_info_end(s);
+ p += sizeof(struct track) * 2;
+
+ *(unsigned int *)p = orig_size;
+}
+
+static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
+{
+ void *p = kasan_reset_tag(object);
+
+ if (is_kfence_address(object))
+ return kfence_ksize(object);
+
+ if (!slub_debug_orig_size(s))
+ return s->object_size;
+
+ p += get_info_end(s);
+ p += sizeof(struct track) * 2;
+
+ return *(unsigned int *)p;
}
#ifdef CONFIG_SLUB_DEBUG
+
/*
- * Determine a map of object in use on a page.
- *
- * Node listlock must be held to guarantee that the page does
- * not vanish from under us.
+ * For debugging context when we want to check if the struct slab pointer
+ * appears to be valid.
*/
-static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
+static inline bool validate_slab_ptr(struct slab *slab)
+{
+ return PageSlab(slab_page(slab));
+}
+
+static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
+static DEFINE_SPINLOCK(object_map_lock);
+
+static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
+ struct slab *slab)
{
+ void *addr = slab_address(slab);
void *p;
- void *addr = page_address(page);
- for (p = page->freelist; p; p = get_freepointer(s, p))
- set_bit(slab_index(p, s, addr), map);
+ bitmap_zero(obj_map, slab->objects);
+
+ for (p = slab->freelist; p; p = get_freepointer(s, p))
+ set_bit(__obj_to_index(s, addr, p), obj_map);
+}
+
+#if IS_ENABLED(CONFIG_KUNIT)
+static bool slab_add_kunit_errors(void)
+{
+ struct kunit_resource *resource;
+
+ if (!kunit_get_current_test())
+ return false;
+
+ resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
+ if (!resource)
+ return false;
+
+ (*(int *)resource->data)++;
+ kunit_put_resource(resource);
+ return true;
+}
+
+bool slab_in_kunit_test(void)
+{
+ struct kunit_resource *resource;
+
+ if (!kunit_get_current_test())
+ return false;
+
+ resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
+ if (!resource)
+ return false;
+
+ kunit_put_resource(resource);
+ return true;
+}
+#else
+static inline bool slab_add_kunit_errors(void) { return false; }
+#endif
+
+static inline unsigned int size_from_object(struct kmem_cache *s)
+{
+ if (s->flags & SLAB_RED_ZONE)
+ return s->size - s->red_left_pad;
+
+ return s->size;
+}
+
+static inline void *restore_red_left(struct kmem_cache *s, void *p)
+{
+ if (s->flags & SLAB_RED_ZONE)
+ p -= s->red_left_pad;
+
+ return p;
}
/*
* Debug settings:
*/
-#ifdef CONFIG_SLUB_DEBUG_ON
-static int slub_debug = DEBUG_DEFAULT_FLAGS;
+#if defined(CONFIG_SLUB_DEBUG_ON)
+static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
#else
-static int slub_debug;
+static slab_flags_t slub_debug;
#endif
-static char *slub_debug_slabs;
+static const char *slub_debug_string __ro_after_init;
static int disable_higher_order_debug;
/*
+ * slub is about to manipulate internal object metadata. This memory lies
+ * outside the range of the allocated object, so accessing it would normally
+ * be reported by kasan as a bounds error. metadata_access_enable() is used
+ * to tell kasan that these accesses are OK.
+ */
+static inline void metadata_access_enable(void)
+{
+ kasan_disable_current();
+ kmsan_disable_current();
+}
+
+static inline void metadata_access_disable(void)
+{
+ kmsan_enable_current();
+ kasan_enable_current();
+}
+
+/*
* Object debugging
*/
-static void print_section(char *text, u8 *addr, unsigned int length)
+
+/* Verify that a pointer has an address that is valid within a slab page */
+static inline int check_valid_pointer(struct kmem_cache *s,
+ struct slab *slab, void *object)
+{
+ void *base;
+
+ if (!object)
+ return 1;
+
+ base = slab_address(slab);
+ object = kasan_reset_tag(object);
+ object = restore_red_left(s, object);
+ if (object < base || object >= base + slab->objects * s->size ||
+ (object - base) % s->size) {
+ return 0;
+ }
+
+ return 1;
+}
+
+static void print_section(char *level, char *text, u8 *addr,
+ unsigned int length)
{
- print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
- length, 1);
+ metadata_access_enable();
+ print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
+ 16, 1, kasan_reset_tag((void *)addr), length, 1);
+ metadata_access_disable();
}
static struct track *get_track(struct kmem_cache *s, void *object,
@@ -474,202 +1031,300 @@ static struct track *get_track(struct kmem_cache *s, void *object,
{
struct track *p;
- if (s->offset)
- p = object + s->offset + sizeof(void *);
- else
- p = object + s->inuse;
+ p = object + get_info_end(s);
- return p + alloc;
+ return kasan_reset_tag(p + alloc);
}
-static void set_track(struct kmem_cache *s, void *object,
- enum track_item alloc, unsigned long addr)
+#ifdef CONFIG_STACKDEPOT
+static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
{
- struct track *p = get_track(s, object, alloc);
+ depot_stack_handle_t handle;
+ unsigned long entries[TRACK_ADDRS_COUNT];
+ unsigned int nr_entries;
- if (addr) {
-#ifdef CONFIG_STACKTRACE
- struct stack_trace trace;
- int i;
+ nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
+ handle = stack_depot_save(entries, nr_entries, gfp_flags);
- trace.nr_entries = 0;
- trace.max_entries = TRACK_ADDRS_COUNT;
- trace.entries = p->addrs;
- trace.skip = 3;
- save_stack_trace(&trace);
+ return handle;
+}
+#else
+static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
+{
+ return 0;
+}
+#endif
- /* See rant in lockdep.c */
- if (trace.nr_entries != 0 &&
- trace.entries[trace.nr_entries - 1] == ULONG_MAX)
- trace.nr_entries--;
+static void set_track_update(struct kmem_cache *s, void *object,
+ enum track_item alloc, unsigned long addr,
+ depot_stack_handle_t handle)
+{
+ struct track *p = get_track(s, object, alloc);
- for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
- p->addrs[i] = 0;
+#ifdef CONFIG_STACKDEPOT
+ p->handle = handle;
#endif
- p->addr = addr;
- p->cpu = smp_processor_id();
- p->pid = current->pid;
- p->when = jiffies;
- } else
- memset(p, 0, sizeof(struct track));
+ p->addr = addr;
+ p->cpu = smp_processor_id();
+ p->pid = current->pid;
+ p->when = jiffies;
+}
+
+static __always_inline void set_track(struct kmem_cache *s, void *object,
+ enum track_item alloc, unsigned long addr, gfp_t gfp_flags)
+{
+ depot_stack_handle_t handle = set_track_prepare(gfp_flags);
+
+ set_track_update(s, object, alloc, addr, handle);
}
static void init_tracking(struct kmem_cache *s, void *object)
{
+ struct track *p;
+
if (!(s->flags & SLAB_STORE_USER))
return;
- set_track(s, object, TRACK_FREE, 0UL);
- set_track(s, object, TRACK_ALLOC, 0UL);
+ p = get_track(s, object, TRACK_ALLOC);
+ memset(p, 0, 2*sizeof(struct track));
}
-static void print_track(const char *s, struct track *t)
+static void print_track(const char *s, struct track *t, unsigned long pr_time)
{
+ depot_stack_handle_t handle __maybe_unused;
+
if (!t->addr)
return;
- printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
- s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
-#ifdef CONFIG_STACKTRACE
- {
- int i;
- for (i = 0; i < TRACK_ADDRS_COUNT; i++)
- if (t->addrs[i])
- printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
- else
- break;
- }
+ pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
+ s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
+#ifdef CONFIG_STACKDEPOT
+ handle = READ_ONCE(t->handle);
+ if (handle)
+ stack_depot_print(handle);
+ else
+ pr_err("object allocation/free stack trace missing\n");
#endif
}
-static void print_tracking(struct kmem_cache *s, void *object)
+void print_tracking(struct kmem_cache *s, void *object)
{
+ unsigned long pr_time = jiffies;
if (!(s->flags & SLAB_STORE_USER))
return;
- print_track("Allocated", get_track(s, object, TRACK_ALLOC));
- print_track("Freed", get_track(s, object, TRACK_FREE));
+ print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
+ print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
}
-static void print_page_info(struct page *page)
+static void print_slab_info(const struct slab *slab)
{
- printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
- page, page->objects, page->inuse, page->freelist, page->flags);
+ pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
+ slab, slab->objects, slab->inuse, slab->freelist,
+ &slab->flags.f);
+}
+void skip_orig_size_check(struct kmem_cache *s, const void *object)
+{
+ set_orig_size(s, (void *)object, s->object_size);
}
-static void slab_bug(struct kmem_cache *s, char *fmt, ...)
+static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
{
+ struct va_format vaf;
va_list args;
- char buf[100];
- va_start(args, fmt);
- vsnprintf(buf, sizeof(buf), fmt, args);
+ va_copy(args, argsp);
+ vaf.fmt = fmt;
+ vaf.va = &args;
+ pr_err("=============================================================================\n");
+ pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
+ pr_err("-----------------------------------------------------------------------------\n\n");
va_end(args);
- printk(KERN_ERR "========================================"
- "=====================================\n");
- printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
- printk(KERN_ERR "----------------------------------------"
- "-------------------------------------\n\n");
+}
- add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
+static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
+{
+ va_list args;
+
+ va_start(args, fmt);
+ __slab_bug(s, fmt, args);
+ va_end(args);
}
-static void slab_fix(struct kmem_cache *s, char *fmt, ...)
+__printf(2, 3)
+static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
{
+ struct va_format vaf;
va_list args;
- char buf[100];
+
+ if (slab_add_kunit_errors())
+ return;
va_start(args, fmt);
- vsnprintf(buf, sizeof(buf), fmt, args);
+ vaf.fmt = fmt;
+ vaf.va = &args;
+ pr_err("FIX %s: %pV\n", s->name, &vaf);
va_end(args);
- printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}
-static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
+static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
{
unsigned int off; /* Offset of last byte */
- u8 *addr = page_address(page);
+ u8 *addr = slab_address(slab);
print_tracking(s, p);
- print_page_info(page);
+ print_slab_info(slab);
- printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
- p, p - addr, get_freepointer(s, p));
+ pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
+ p, p - addr, get_freepointer(s, p));
- if (p > addr + 16)
- print_section("Bytes b4 ", p - 16, 16);
+ if (s->flags & SLAB_RED_ZONE)
+ print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
+ s->red_left_pad);
+ else if (p > addr + 16)
+ print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
- print_section("Object ", p, min_t(unsigned long, s->object_size,
- PAGE_SIZE));
+ print_section(KERN_ERR, "Object ", p,
+ min_t(unsigned int, s->object_size, PAGE_SIZE));
if (s->flags & SLAB_RED_ZONE)
- print_section("Redzone ", p + s->object_size,
+ print_section(KERN_ERR, "Redzone ", p + s->object_size,
s->inuse - s->object_size);
- if (s->offset)
- off = s->offset + sizeof(void *);
- else
- off = s->inuse;
+ off = get_info_end(s);
if (s->flags & SLAB_STORE_USER)
off += 2 * sizeof(struct track);
- if (off != s->size)
+ if (slub_debug_orig_size(s))
+ off += sizeof(unsigned int);
+
+ off += kasan_metadata_size(s, false);
+
+ if (off != size_from_object(s))
/* Beginning of the filler is the free pointer */
- print_section("Padding ", p + off, s->size - off);
+ print_section(KERN_ERR, "Padding ", p + off,
+ size_from_object(s) - off);
+}
+
+static void object_err(struct kmem_cache *s, struct slab *slab,
+ u8 *object, const char *reason)
+{
+ if (slab_add_kunit_errors())
+ return;
+
+ slab_bug(s, reason);
+ if (!object || !check_valid_pointer(s, slab, object)) {
+ print_slab_info(slab);
+ pr_err("Invalid pointer 0x%p\n", object);
+ } else {
+ print_trailer(s, slab, object);
+ }
+ add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
+
+ WARN_ON(1);
+}
+
+static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
+ void **freelist, void *nextfree)
+{
+ if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
+ !check_valid_pointer(s, slab, nextfree) && freelist) {
+ object_err(s, slab, *freelist, "Freechain corrupt");
+ *freelist = NULL;
+ slab_fix(s, "Isolate corrupted freechain");
+ return true;
+ }
- dump_stack();
+ return false;
}
-static void object_err(struct kmem_cache *s, struct page *page,
- u8 *object, char *reason)
+static void __slab_err(struct slab *slab)
{
- slab_bug(s, "%s", reason);
- print_trailer(s, page, object);
+ if (slab_in_kunit_test())
+ return;
+
+ print_slab_info(slab);
+ add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
+
+ WARN_ON(1);
}
-static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
+static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
+ const char *fmt, ...)
{
va_list args;
- char buf[100];
+
+ if (slab_add_kunit_errors())
+ return;
va_start(args, fmt);
- vsnprintf(buf, sizeof(buf), fmt, args);
+ __slab_bug(s, fmt, args);
va_end(args);
- slab_bug(s, "%s", buf);
- print_page_info(page);
- dump_stack();
+
+ __slab_err(slab);
}
static void init_object(struct kmem_cache *s, void *object, u8 val)
{
- u8 *p = object;
+ u8 *p = kasan_reset_tag(object);
+ unsigned int poison_size = s->object_size;
+
+ if (s->flags & SLAB_RED_ZONE) {
+ /*
+ * Here and below, avoid overwriting the KMSAN shadow. Keeping
+ * the shadow makes it possible to distinguish uninit-value
+ * from use-after-free.
+ */
+ memset_no_sanitize_memory(p - s->red_left_pad, val,
+ s->red_left_pad);
+
+ if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
+ /*
+ * Redzone the extra allocated space by kmalloc than
+ * requested, and the poison size will be limited to
+ * the original request size accordingly.
+ */
+ poison_size = get_orig_size(s, object);
+ }
+ }
if (s->flags & __OBJECT_POISON) {
- memset(p, POISON_FREE, s->object_size - 1);
- p[s->object_size - 1] = POISON_END;
+ memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
+ memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
}
if (s->flags & SLAB_RED_ZONE)
- memset(p + s->object_size, val, s->inuse - s->object_size);
+ memset_no_sanitize_memory(p + poison_size, val,
+ s->inuse - poison_size);
}
-static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
+static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
void *from, void *to)
{
- slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
+ slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
memset(from, data, to - from);
}
-static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
- u8 *object, char *what,
- u8 *start, unsigned int value, unsigned int bytes)
+#ifdef CONFIG_KMSAN
+#define pad_check_attributes noinline __no_kmsan_checks
+#else
+#define pad_check_attributes
+#endif
+
+static pad_check_attributes int
+check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
+ u8 *object, const char *what, u8 *start, unsigned int value,
+ unsigned int bytes, bool slab_obj_print)
{
u8 *fault;
u8 *end;
+ u8 *addr = slab_address(slab);
- fault = memchr_inv(start, value, bytes);
+ metadata_access_enable();
+ fault = memchr_inv(kasan_reset_tag(start), value, bytes);
+ metadata_access_disable();
if (!fault)
return 1;
@@ -677,11 +1332,16 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
while (end > fault && end[-1] == value)
end--;
- slab_bug(s, "%s overwritten", what);
- printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
- fault, end - 1, fault[0], value);
- print_trailer(s, page, object);
+ if (slab_add_kunit_errors())
+ goto skip_bug_print;
+
+ pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
+ what, fault, end - 1, fault - addr, fault[0], value);
+ if (slab_obj_print)
+ object_err(s, slab, object, "Object corrupt");
+
+skip_bug_print:
restore_bytes(s, what, value, fault, end);
return 0;
}
@@ -692,7 +1352,7 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
* object address
* Bytes of the object to be managed.
* If the freepointer may overlay the object then the free
- * pointer is the first word of the object.
+ * pointer is at the middle of the object.
*
* Poisoning uses 0x6b (POISON_FREE) and the last byte is
* 0xa5 (POISON_END)
@@ -702,15 +1362,16 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
* Padding is extended by another word if Redzoning is enabled and
* object_size == inuse.
*
- * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
- * 0xcc (RED_ACTIVE) for objects in use.
+ * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
+ * 0xcc (SLUB_RED_ACTIVE) for objects in use.
*
* object + s->inuse
* Meta data starts here.
*
* A. Free pointer (if we cannot overwrite object on free)
* B. Tracking data for SLAB_STORE_USER
- * C. Padding to reach required alignment boundary or at mininum
+ * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
+ * D. Padding to reach required alignment boundary or at minimum
* one word if debugging is on to be able to detect writes
* before the word boundary.
*
@@ -724,280 +1385,274 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
* may be used with merged slabcaches.
*/
-static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
+static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
{
- unsigned long off = s->inuse; /* The end of info */
-
- if (s->offset)
- /* Freepointer is placed after the object. */
- off += sizeof(void *);
+ unsigned long off = get_info_end(s); /* The end of info */
- if (s->flags & SLAB_STORE_USER)
+ if (s->flags & SLAB_STORE_USER) {
/* We also have user information there */
off += 2 * sizeof(struct track);
- if (s->size == off)
+ if (s->flags & SLAB_KMALLOC)
+ off += sizeof(unsigned int);
+ }
+
+ off += kasan_metadata_size(s, false);
+
+ if (size_from_object(s) == off)
return 1;
- return check_bytes_and_report(s, page, p, "Object padding",
- p + off, POISON_INUSE, s->size - off);
+ return check_bytes_and_report(s, slab, p, "Object padding",
+ p + off, POISON_INUSE, size_from_object(s) - off, true);
}
/* Check the pad bytes at the end of a slab page */
-static int slab_pad_check(struct kmem_cache *s, struct page *page)
+static pad_check_attributes void
+slab_pad_check(struct kmem_cache *s, struct slab *slab)
{
u8 *start;
u8 *fault;
u8 *end;
+ u8 *pad;
int length;
int remainder;
if (!(s->flags & SLAB_POISON))
- return 1;
+ return;
- start = page_address(page);
- length = (PAGE_SIZE << compound_order(page)) - s->reserved;
+ start = slab_address(slab);
+ length = slab_size(slab);
end = start + length;
remainder = length % s->size;
if (!remainder)
- return 1;
+ return;
- fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
+ pad = end - remainder;
+ metadata_access_enable();
+ fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
+ metadata_access_disable();
if (!fault)
- return 1;
+ return;
while (end > fault && end[-1] == POISON_INUSE)
end--;
- slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
- print_section("Padding ", end - remainder, remainder);
+ slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
+ fault, end - 1, fault - start);
+ print_section(KERN_ERR, "Padding ", pad, remainder);
+ __slab_err(slab);
- restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
- return 0;
+ restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
}
-static int check_object(struct kmem_cache *s, struct page *page,
+static int check_object(struct kmem_cache *s, struct slab *slab,
void *object, u8 val)
{
u8 *p = object;
u8 *endobject = object + s->object_size;
+ unsigned int orig_size, kasan_meta_size;
+ int ret = 1;
if (s->flags & SLAB_RED_ZONE) {
- if (!check_bytes_and_report(s, page, object, "Redzone",
- endobject, val, s->inuse - s->object_size))
- return 0;
+ if (!check_bytes_and_report(s, slab, object, "Left Redzone",
+ object - s->red_left_pad, val, s->red_left_pad, ret))
+ ret = 0;
+
+ if (!check_bytes_and_report(s, slab, object, "Right Redzone",
+ endobject, val, s->inuse - s->object_size, ret))
+ ret = 0;
+
+ if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
+ orig_size = get_orig_size(s, object);
+
+ if (s->object_size > orig_size &&
+ !check_bytes_and_report(s, slab, object,
+ "kmalloc Redzone", p + orig_size,
+ val, s->object_size - orig_size, ret)) {
+ ret = 0;
+ }
+ }
} else {
if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
- check_bytes_and_report(s, page, p, "Alignment padding",
- endobject, POISON_INUSE, s->inuse - s->object_size);
+ if (!check_bytes_and_report(s, slab, p, "Alignment padding",
+ endobject, POISON_INUSE,
+ s->inuse - s->object_size, ret))
+ ret = 0;
}
}
if (s->flags & SLAB_POISON) {
- if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
- (!check_bytes_and_report(s, page, p, "Poison", p,
- POISON_FREE, s->object_size - 1) ||
- !check_bytes_and_report(s, page, p, "Poison",
- p + s->object_size - 1, POISON_END, 1)))
- return 0;
+ if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
+ /*
+ * KASAN can save its free meta data inside of the
+ * object at offset 0. Thus, skip checking the part of
+ * the redzone that overlaps with the meta data.
+ */
+ kasan_meta_size = kasan_metadata_size(s, true);
+ if (kasan_meta_size < s->object_size - 1 &&
+ !check_bytes_and_report(s, slab, p, "Poison",
+ p + kasan_meta_size, POISON_FREE,
+ s->object_size - kasan_meta_size - 1, ret))
+ ret = 0;
+ if (kasan_meta_size < s->object_size &&
+ !check_bytes_and_report(s, slab, p, "End Poison",
+ p + s->object_size - 1, POISON_END, 1, ret))
+ ret = 0;
+ }
/*
* check_pad_bytes cleans up on its own.
*/
- check_pad_bytes(s, page, p);
+ if (!check_pad_bytes(s, slab, p))
+ ret = 0;
}
- if (!s->offset && val == SLUB_RED_ACTIVE)
- /*
- * Object and freepointer overlap. Cannot check
- * freepointer while object is allocated.
- */
- return 1;
-
- /* Check free pointer validity */
- if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
- object_err(s, page, p, "Freepointer corrupt");
+ /*
+ * Cannot check freepointer while object is allocated if
+ * object and freepointer overlap.
+ */
+ if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
+ !check_valid_pointer(s, slab, get_freepointer(s, p))) {
+ object_err(s, slab, p, "Freepointer corrupt");
/*
* No choice but to zap it and thus lose the remainder
* of the free objects in this slab. May cause
* another error because the object count is now wrong.
*/
set_freepointer(s, p, NULL);
- return 0;
+ ret = 0;
}
- return 1;
+
+ return ret;
}
-static int check_slab(struct kmem_cache *s, struct page *page)
+/*
+ * Checks if the slab state looks sane. Assumes the struct slab pointer
+ * was either obtained in a way that ensures it's valid, or validated
+ * by validate_slab_ptr()
+ */
+static int check_slab(struct kmem_cache *s, struct slab *slab)
{
int maxobj;
- VM_BUG_ON(!irqs_disabled());
-
- if (!PageSlab(page)) {
- slab_err(s, page, "Not a valid slab page");
+ maxobj = order_objects(slab_order(slab), s->size);
+ if (slab->objects > maxobj) {
+ slab_err(s, slab, "objects %u > max %u",
+ slab->objects, maxobj);
return 0;
}
-
- maxobj = order_objects(compound_order(page), s->size, s->reserved);
- if (page->objects > maxobj) {
- slab_err(s, page, "objects %u > max %u",
- s->name, page->objects, maxobj);
+ if (slab->inuse > slab->objects) {
+ slab_err(s, slab, "inuse %u > max %u",
+ slab->inuse, slab->objects);
return 0;
}
- if (page->inuse > page->objects) {
- slab_err(s, page, "inuse %u > max %u",
- s->name, page->inuse, page->objects);
+ if (slab->frozen) {
+ slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
return 0;
}
+
/* Slab_pad_check fixes things up after itself */
- slab_pad_check(s, page);
+ slab_pad_check(s, slab);
return 1;
}
/*
- * Determine if a certain object on a page is on the freelist. Must hold the
+ * Determine if a certain object in a slab is on the freelist. Must hold the
* slab lock to guarantee that the chains are in a consistent state.
*/
-static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
+static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
{
int nr = 0;
void *fp;
void *object = NULL;
- unsigned long max_objects;
+ int max_objects;
- fp = page->freelist;
- while (fp && nr <= page->objects) {
+ fp = slab->freelist;
+ while (fp && nr <= slab->objects) {
if (fp == search)
- return 1;
- if (!check_valid_pointer(s, page, fp)) {
+ return true;
+ if (!check_valid_pointer(s, slab, fp)) {
if (object) {
- object_err(s, page, object,
+ object_err(s, slab, object,
"Freechain corrupt");
set_freepointer(s, object, NULL);
break;
} else {
- slab_err(s, page, "Freepointer corrupt");
- page->freelist = NULL;
- page->inuse = page->objects;
+ slab_err(s, slab, "Freepointer corrupt");
+ slab->freelist = NULL;
+ slab->inuse = slab->objects;
slab_fix(s, "Freelist cleared");
- return 0;
+ return false;
}
- break;
}
object = fp;
fp = get_freepointer(s, object);
nr++;
}
- max_objects = order_objects(compound_order(page), s->size, s->reserved);
+ if (nr > slab->objects) {
+ slab_err(s, slab, "Freelist cycle detected");
+ slab->freelist = NULL;
+ slab->inuse = slab->objects;
+ slab_fix(s, "Freelist cleared");
+ return false;
+ }
+
+ max_objects = order_objects(slab_order(slab), s->size);
if (max_objects > MAX_OBJS_PER_PAGE)
max_objects = MAX_OBJS_PER_PAGE;
- if (page->objects != max_objects) {
- slab_err(s, page, "Wrong number of objects. Found %d but "
- "should be %d", page->objects, max_objects);
- page->objects = max_objects;
- slab_fix(s, "Number of objects adjusted.");
+ if (slab->objects != max_objects) {
+ slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
+ slab->objects, max_objects);
+ slab->objects = max_objects;
+ slab_fix(s, "Number of objects adjusted");
}
- if (page->inuse != page->objects - nr) {
- slab_err(s, page, "Wrong object count. Counter is %d but "
- "counted were %d", page->inuse, page->objects - nr);
- page->inuse = page->objects - nr;
- slab_fix(s, "Object count adjusted.");
+ if (slab->inuse != slab->objects - nr) {
+ slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
+ slab->inuse, slab->objects - nr);
+ slab->inuse = slab->objects - nr;
+ slab_fix(s, "Object count adjusted");
}
return search == NULL;
}
-static void trace(struct kmem_cache *s, struct page *page, void *object,
+static void trace(struct kmem_cache *s, struct slab *slab, void *object,
int alloc)
{
if (s->flags & SLAB_TRACE) {
- printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
+ pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
s->name,
alloc ? "alloc" : "free",
- object, page->inuse,
- page->freelist);
+ object, slab->inuse,
+ slab->freelist);
if (!alloc)
- print_section("Object ", (void *)object, s->object_size);
+ print_section(KERN_INFO, "Object ", (void *)object,
+ s->object_size);
dump_stack();
}
}
/*
- * Hooks for other subsystems that check memory allocations. In a typical
- * production configuration these hooks all should produce no code at all.
- */
-static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
-{
- flags &= gfp_allowed_mask;
- lockdep_trace_alloc(flags);
- might_sleep_if(flags & __GFP_WAIT);
-
- return should_failslab(s->object_size, flags, s->flags);
-}
-
-static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
-{
- flags &= gfp_allowed_mask;
- kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
- kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
-}
-
-static inline void slab_free_hook(struct kmem_cache *s, void *x)
-{
- kmemleak_free_recursive(x, s->flags);
-
- /*
- * Trouble is that we may no longer disable interupts in the fast path
- * So in order to make the debug calls that expect irqs to be
- * disabled we need to disable interrupts temporarily.
- */
-#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
- {
- unsigned long flags;
-
- local_irq_save(flags);
- kmemcheck_slab_free(s, x, s->object_size);
- debug_check_no_locks_freed(x, s->object_size);
- local_irq_restore(flags);
- }
-#endif
- if (!(s->flags & SLAB_DEBUG_OBJECTS))
- debug_check_no_obj_freed(x, s->object_size);
-}
-
-/*
* Tracking of fully allocated slabs for debugging purposes.
- *
- * list_lock must be held.
*/
static void add_full(struct kmem_cache *s,
- struct kmem_cache_node *n, struct page *page)
+ struct kmem_cache_node *n, struct slab *slab)
{
if (!(s->flags & SLAB_STORE_USER))
return;
- list_add(&page->lru, &n->full);
+ lockdep_assert_held(&n->list_lock);
+ list_add(&slab->slab_list, &n->full);
}
-/*
- * list_lock must be held.
- */
-static void remove_full(struct kmem_cache *s, struct page *page)
+static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
{
if (!(s->flags & SLAB_STORE_USER))
return;
- list_del(&page->lru);
-}
-
-/* Tracking of the number of slabs for debugging purposes */
-static inline unsigned long slabs_node(struct kmem_cache *s, int node)
-{
- struct kmem_cache_node *n = get_node(s, node);
-
- return atomic_long_read(&n->nr_slabs);
+ lockdep_assert_held(&n->list_lock);
+ list_del(&slab->slab_list);
}
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
@@ -1009,16 +1664,8 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
{
struct kmem_cache_node *n = get_node(s, node);
- /*
- * May be called early in order to allocate a slab for the
- * kmem_cache_node structure. Solve the chicken-egg
- * dilemma by deferring the increment of the count during
- * bootstrap (see early_kmem_cache_node_alloc).
- */
- if (likely(n)) {
- atomic_long_inc(&n->nr_slabs);
- atomic_long_add(objects, &n->total_objects);
- }
+ atomic_long_inc(&n->nr_slabs);
+ atomic_long_add(objects, &n->total_objects);
}
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
{
@@ -1029,214 +1676,338 @@ static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
}
/* Object debug checks for alloc/free paths */
-static void setup_object_debug(struct kmem_cache *s, struct page *page,
- void *object)
+static void setup_object_debug(struct kmem_cache *s, void *object)
{
- if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
+ if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
return;
init_object(s, object, SLUB_RED_INACTIVE);
init_tracking(s, object);
}
-static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
- void *object, unsigned long addr)
+static
+void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
+{
+ if (!kmem_cache_debug_flags(s, SLAB_POISON))
+ return;
+
+ metadata_access_enable();
+ memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
+ metadata_access_disable();
+}
+
+static inline int alloc_consistency_checks(struct kmem_cache *s,
+ struct slab *slab, void *object)
{
- if (!check_slab(s, page))
- goto bad;
+ if (!check_slab(s, slab))
+ return 0;
- if (!check_valid_pointer(s, page, object)) {
- object_err(s, page, object, "Freelist Pointer check fails");
- goto bad;
+ if (!check_valid_pointer(s, slab, object)) {
+ object_err(s, slab, object, "Freelist Pointer check fails");
+ return 0;
}
- if (!check_object(s, page, object, SLUB_RED_INACTIVE))
- goto bad;
+ if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
+ return 0;
- /* Success perform special debug activities for allocs */
- if (s->flags & SLAB_STORE_USER)
- set_track(s, object, TRACK_ALLOC, addr);
- trace(s, page, object, 1);
- init_object(s, object, SLUB_RED_ACTIVE);
return 1;
-
-bad:
- if (PageSlab(page)) {
- /*
- * If this is a slab page then lets do the best we can
- * to avoid issues in the future. Marking all objects
- * as used avoids touching the remaining objects.
- */
- slab_fix(s, "Marking all objects used");
- page->inuse = page->objects;
- page->freelist = NULL;
- }
- return 0;
}
-static noinline struct kmem_cache_node *free_debug_processing(
- struct kmem_cache *s, struct page *page, void *object,
- unsigned long addr, unsigned long *flags)
+static noinline bool alloc_debug_processing(struct kmem_cache *s,
+ struct slab *slab, void *object, int orig_size)
{
- struct kmem_cache_node *n = get_node(s, page_to_nid(page));
+ if (s->flags & SLAB_CONSISTENCY_CHECKS) {
+ if (!alloc_consistency_checks(s, slab, object))
+ goto bad;
+ }
- spin_lock_irqsave(&n->list_lock, *flags);
- slab_lock(page);
+ /* Success. Perform special debug activities for allocs */
+ trace(s, slab, object, 1);
+ set_orig_size(s, object, orig_size);
+ init_object(s, object, SLUB_RED_ACTIVE);
+ return true;
- if (!check_slab(s, page))
- goto fail;
+bad:
+ /*
+ * Let's do the best we can to avoid issues in the future. Marking all
+ * objects as used avoids touching the remaining objects.
+ */
+ slab_fix(s, "Marking all objects used");
+ slab->inuse = slab->objects;
+ slab->freelist = NULL;
+ slab->frozen = 1; /* mark consistency-failed slab as frozen */
- if (!check_valid_pointer(s, page, object)) {
- slab_err(s, page, "Invalid object pointer 0x%p", object);
- goto fail;
- }
+ return false;
+}
- if (on_freelist(s, page, object)) {
- object_err(s, page, object, "Object already free");
- goto fail;
+static inline int free_consistency_checks(struct kmem_cache *s,
+ struct slab *slab, void *object, unsigned long addr)
+{
+ if (!check_valid_pointer(s, slab, object)) {
+ slab_err(s, slab, "Invalid object pointer 0x%p", object);
+ return 0;
}
- if (!check_object(s, page, object, SLUB_RED_ACTIVE))
- goto out;
-
- if (unlikely(s != page->slab_cache)) {
- if (!PageSlab(page)) {
- slab_err(s, page, "Attempt to free object(0x%p) "
- "outside of slab", object);
- } else if (!page->slab_cache) {
- printk(KERN_ERR
- "SLUB <none>: no slab for object 0x%p.\n",
- object);
- dump_stack();
- } else
- object_err(s, page, object,
- "page slab pointer corrupt.");
- goto fail;
+ if (on_freelist(s, slab, object)) {
+ object_err(s, slab, object, "Object already free");
+ return 0;
}
- if (s->flags & SLAB_STORE_USER)
- set_track(s, object, TRACK_FREE, addr);
- trace(s, page, object, 0);
- init_object(s, object, SLUB_RED_INACTIVE);
-out:
- slab_unlock(page);
- /*
- * Keep node_lock to preserve integrity
- * until the object is actually freed
- */
- return n;
+ if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
+ return 0;
-fail:
- slab_unlock(page);
- spin_unlock_irqrestore(&n->list_lock, *flags);
- slab_fix(s, "Object at 0x%p not freed", object);
- return NULL;
+ if (unlikely(s != slab->slab_cache)) {
+ if (!slab->slab_cache) {
+ slab_err(NULL, slab, "No slab cache for object 0x%p",
+ object);
+ } else {
+ object_err(s, slab, object,
+ "page slab pointer corrupt.");
+ }
+ return 0;
+ }
+ return 1;
}
-static int __init setup_slub_debug(char *str)
+/*
+ * Parse a block of slab_debug options. Blocks are delimited by ';'
+ *
+ * @str: start of block
+ * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
+ * @slabs: return start of list of slabs, or NULL when there's no list
+ * @init: assume this is initial parsing and not per-kmem-create parsing
+ *
+ * returns the start of next block if there's any, or NULL
+ */
+static const char *
+parse_slub_debug_flags(const char *str, slab_flags_t *flags, const char **slabs, bool init)
{
- slub_debug = DEBUG_DEFAULT_FLAGS;
- if (*str++ != '=' || !*str)
- /*
- * No options specified. Switch on full debugging.
- */
- goto out;
+ bool higher_order_disable = false;
- if (*str == ',')
+ /* Skip any completely empty blocks */
+ while (*str && *str == ';')
+ str++;
+
+ if (*str == ',') {
/*
* No options but restriction on slabs. This means full
* debugging for slabs matching a pattern.
*/
+ *flags = DEBUG_DEFAULT_FLAGS;
goto check_slabs;
-
- if (tolower(*str) == 'o') {
- /*
- * Avoid enabling debugging on caches if its minimum order
- * would increase as a result.
- */
- disable_higher_order_debug = 1;
- goto out;
}
+ *flags = 0;
- slub_debug = 0;
- if (*str == '-')
- /*
- * Switch off all debugging measures.
- */
- goto out;
-
- /*
- * Determine which debug features should be switched on
- */
- for (; *str && *str != ','; str++) {
+ /* Determine which debug features should be switched on */
+ for (; *str && *str != ',' && *str != ';'; str++) {
switch (tolower(*str)) {
+ case '-':
+ *flags = 0;
+ break;
case 'f':
- slub_debug |= SLAB_DEBUG_FREE;
+ *flags |= SLAB_CONSISTENCY_CHECKS;
break;
case 'z':
- slub_debug |= SLAB_RED_ZONE;
+ *flags |= SLAB_RED_ZONE;
break;
case 'p':
- slub_debug |= SLAB_POISON;
+ *flags |= SLAB_POISON;
break;
case 'u':
- slub_debug |= SLAB_STORE_USER;
+ *flags |= SLAB_STORE_USER;
break;
case 't':
- slub_debug |= SLAB_TRACE;
+ *flags |= SLAB_TRACE;
break;
case 'a':
- slub_debug |= SLAB_FAILSLAB;
+ *flags |= SLAB_FAILSLAB;
+ break;
+ case 'o':
+ /*
+ * Avoid enabling debugging on caches if its minimum
+ * order would increase as a result.
+ */
+ higher_order_disable = true;
break;
default:
- printk(KERN_ERR "slub_debug option '%c' "
- "unknown. skipped\n", *str);
+ if (init)
+ pr_err("slab_debug option '%c' unknown. skipped\n", *str);
}
}
-
check_slabs:
if (*str == ',')
- slub_debug_slabs = str + 1;
+ *slabs = ++str;
+ else
+ *slabs = NULL;
+
+ /* Skip over the slab list */
+ while (*str && *str != ';')
+ str++;
+
+ /* Skip any completely empty blocks */
+ while (*str && *str == ';')
+ str++;
+
+ if (init && higher_order_disable)
+ disable_higher_order_debug = 1;
+
+ if (*str)
+ return str;
+ else
+ return NULL;
+}
+
+static int __init setup_slub_debug(const char *str, const struct kernel_param *kp)
+{
+ slab_flags_t flags;
+ slab_flags_t global_flags;
+ const char *saved_str;
+ const char *slab_list;
+ bool global_slub_debug_changed = false;
+ bool slab_list_specified = false;
+
+ global_flags = DEBUG_DEFAULT_FLAGS;
+ if (!str || !*str)
+ /*
+ * No options specified. Switch on full debugging.
+ */
+ goto out;
+
+ saved_str = str;
+ while (str) {
+ str = parse_slub_debug_flags(str, &flags, &slab_list, true);
+
+ if (!slab_list) {
+ global_flags = flags;
+ global_slub_debug_changed = true;
+ } else {
+ slab_list_specified = true;
+ if (flags & SLAB_STORE_USER)
+ stack_depot_request_early_init();
+ }
+ }
+
+ /*
+ * For backwards compatibility, a single list of flags with list of
+ * slabs means debugging is only changed for those slabs, so the global
+ * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
+ * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
+ * long as there is no option specifying flags without a slab list.
+ */
+ if (slab_list_specified) {
+ if (!global_slub_debug_changed)
+ global_flags = slub_debug;
+ slub_debug_string = saved_str;
+ }
out:
- return 1;
+ slub_debug = global_flags;
+ if (slub_debug & SLAB_STORE_USER)
+ stack_depot_request_early_init();
+ if (slub_debug != 0 || slub_debug_string)
+ static_branch_enable(&slub_debug_enabled);
+ else
+ static_branch_disable(&slub_debug_enabled);
+ if ((static_branch_unlikely(&init_on_alloc) ||
+ static_branch_unlikely(&init_on_free)) &&
+ (slub_debug & SLAB_POISON))
+ pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
+ return 0;
}
-__setup("slub_debug", setup_slub_debug);
+static const struct kernel_param_ops param_ops_slab_debug __initconst = {
+ .flags = KERNEL_PARAM_OPS_FL_NOARG,
+ .set = setup_slub_debug,
+};
+__core_param_cb(slab_debug, &param_ops_slab_debug, NULL, 0);
+__core_param_cb(slub_debug, &param_ops_slab_debug, NULL, 0);
-static unsigned long kmem_cache_flags(unsigned long object_size,
- unsigned long flags, const char *name,
- void (*ctor)(void *))
+/*
+ * kmem_cache_flags - apply debugging options to the cache
+ * @flags: flags to set
+ * @name: name of the cache
+ *
+ * Debug option(s) are applied to @flags. In addition to the debug
+ * option(s), if a slab name (or multiple) is specified i.e.
+ * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
+ * then only the select slabs will receive the debug option(s).
+ */
+slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
{
+ const char *iter;
+ size_t len;
+ const char *next_block;
+ slab_flags_t block_flags;
+ slab_flags_t slub_debug_local = slub_debug;
+
+ if (flags & SLAB_NO_USER_FLAGS)
+ return flags;
+
/*
- * Enable debugging if selected on the kernel commandline.
+ * If the slab cache is for debugging (e.g. kmemleak) then
+ * don't store user (stack trace) information by default,
+ * but let the user enable it via the command line below.
*/
- if (slub_debug && (!slub_debug_slabs ||
- !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
- flags |= slub_debug;
+ if (flags & SLAB_NOLEAKTRACE)
+ slub_debug_local &= ~SLAB_STORE_USER;
+
+ len = strlen(name);
+ next_block = slub_debug_string;
+ /* Go through all blocks of debug options, see if any matches our slab's name */
+ while (next_block) {
+ next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
+ if (!iter)
+ continue;
+ /* Found a block that has a slab list, search it */
+ while (*iter) {
+ const char *end, *glob;
+ size_t cmplen;
+
+ end = strchrnul(iter, ',');
+ if (next_block && next_block < end)
+ end = next_block - 1;
+
+ glob = strnchr(iter, end - iter, '*');
+ if (glob)
+ cmplen = glob - iter;
+ else
+ cmplen = max_t(size_t, len, (end - iter));
- return flags;
+ if (!strncmp(name, iter, cmplen)) {
+ flags |= block_flags;
+ return flags;
+ }
+
+ if (!*end || *end == ';')
+ break;
+ iter = end + 1;
+ }
+ }
+
+ return flags | slub_debug_local;
}
-#else
-static inline void setup_object_debug(struct kmem_cache *s,
- struct page *page, void *object) {}
+#else /* !CONFIG_SLUB_DEBUG */
+static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
+static inline
+void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
-static inline int alloc_debug_processing(struct kmem_cache *s,
- struct page *page, void *object, unsigned long addr) { return 0; }
+static inline bool alloc_debug_processing(struct kmem_cache *s,
+ struct slab *slab, void *object, int orig_size) { return true; }
-static inline struct kmem_cache_node *free_debug_processing(
- struct kmem_cache *s, struct page *page, void *object,
- unsigned long addr, unsigned long *flags) { return NULL; }
+static inline bool free_debug_processing(struct kmem_cache *s,
+ struct slab *slab, void *head, void *tail, int *bulk_cnt,
+ unsigned long addr, depot_stack_handle_t handle) { return true; }
-static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
- { return 1; }
-static inline int check_object(struct kmem_cache *s, struct page *page,
+static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
+static inline int check_object(struct kmem_cache *s, struct slab *slab,
void *object, u8 val) { return 1; }
+static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; }
+static inline void set_track(struct kmem_cache *s, void *object,
+ enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {}
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
- struct page *page) {}
-static inline void remove_full(struct kmem_cache *s, struct page *page) {}
-static inline unsigned long kmem_cache_flags(unsigned long object_size,
- unsigned long flags, const char *name,
- void (*ctor)(void *))
+ struct slab *slab) {}
+static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
+ struct slab *slab) {}
+slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
{
return flags;
}
@@ -1244,365 +2015,1554 @@ static inline unsigned long kmem_cache_flags(unsigned long object_size,
#define disable_higher_order_debug 0
-static inline unsigned long slabs_node(struct kmem_cache *s, int node)
- { return 0; }
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{ return 0; }
static inline void inc_slabs_node(struct kmem_cache *s, int node,
int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
int objects) {}
-
-static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
- { return 0; }
-
-static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
- void *object) {}
-
-static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
-
+static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
+ void **freelist, void *nextfree)
+{
+ return false;
+}
#endif /* CONFIG_SLUB_DEBUG */
/*
- * Slab allocation and freeing
+ * The allocated objcg pointers array is not accounted directly.
+ * Moreover, it should not come from DMA buffer and is not readily
+ * reclaimable. So those GFP bits should be masked off.
*/
-static inline struct page *alloc_slab_page(gfp_t flags, int node,
- struct kmem_cache_order_objects oo)
+#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
+ __GFP_ACCOUNT | __GFP_NOFAIL)
+
+#ifdef CONFIG_SLAB_OBJ_EXT
+
+#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
+
+static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
{
- int order = oo_order(oo);
+ struct slabobj_ext *slab_exts;
+ struct slab *obj_exts_slab;
- flags |= __GFP_NOTRACK;
+ obj_exts_slab = virt_to_slab(obj_exts);
+ slab_exts = slab_obj_exts(obj_exts_slab);
+ if (slab_exts) {
+ unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
+ obj_exts_slab, obj_exts);
- if (node == NUMA_NO_NODE)
- return alloc_pages(flags, order);
- else
- return alloc_pages_exact_node(node, flags, order);
+ if (unlikely(is_codetag_empty(&slab_exts[offs].ref)))
+ return;
+
+ /* codetag should be NULL here */
+ WARN_ON(slab_exts[offs].ref.ct);
+ set_codetag_empty(&slab_exts[offs].ref);
+ }
}
-static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
+static inline bool mark_failed_objexts_alloc(struct slab *slab)
{
- struct page *page;
- struct kmem_cache_order_objects oo = s->oo;
- gfp_t alloc_gfp;
+ return cmpxchg(&slab->obj_exts, 0, OBJEXTS_ALLOC_FAIL) == 0;
+}
- flags &= gfp_allowed_mask;
+static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
+ struct slabobj_ext *vec, unsigned int objects)
+{
+ /*
+ * If vector previously failed to allocate then we have live
+ * objects with no tag reference. Mark all references in this
+ * vector as empty to avoid warnings later on.
+ */
+ if (obj_exts == OBJEXTS_ALLOC_FAIL) {
+ unsigned int i;
+
+ for (i = 0; i < objects; i++)
+ set_codetag_empty(&vec[i].ref);
+ }
+}
- if (flags & __GFP_WAIT)
- local_irq_enable();
+#else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
- flags |= s->allocflags;
+static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
+static inline bool mark_failed_objexts_alloc(struct slab *slab) { return false; }
+static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
+ struct slabobj_ext *vec, unsigned int objects) {}
+
+#endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
+
+static inline void init_slab_obj_exts(struct slab *slab)
+{
+ slab->obj_exts = 0;
+}
+
+int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
+ gfp_t gfp, bool new_slab)
+{
+ bool allow_spin = gfpflags_allow_spinning(gfp);
+ unsigned int objects = objs_per_slab(s, slab);
+ unsigned long new_exts;
+ unsigned long old_exts;
+ struct slabobj_ext *vec;
+
+ gfp &= ~OBJCGS_CLEAR_MASK;
+ /* Prevent recursive extension vector allocation */
+ gfp |= __GFP_NO_OBJ_EXT;
/*
- * Let the initial higher-order allocation fail under memory pressure
- * so we fall-back to the minimum order allocation.
+ * Note that allow_spin may be false during early boot and its
+ * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting
+ * architectures with cmpxchg16b, early obj_exts will be missing for
+ * very early allocations on those.
*/
- alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
+ if (unlikely(!allow_spin)) {
+ size_t sz = objects * sizeof(struct slabobj_ext);
- page = alloc_slab_page(alloc_gfp, node, oo);
- if (unlikely(!page)) {
- oo = s->min;
+ vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT,
+ slab_nid(slab));
+ } else {
+ vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
+ slab_nid(slab));
+ }
+ if (!vec) {
/*
- * Allocation may have failed due to fragmentation.
- * Try a lower order alloc if possible
+ * Try to mark vectors which failed to allocate.
+ * If this operation fails, there may be a racing process
+ * that has already completed the allocation.
*/
- page = alloc_slab_page(flags, node, oo);
+ if (!mark_failed_objexts_alloc(slab) &&
+ slab_obj_exts(slab))
+ return 0;
- if (page)
- stat(s, ORDER_FALLBACK);
+ return -ENOMEM;
}
- if (kmemcheck_enabled && page
- && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
- int pages = 1 << oo_order(oo);
+ new_exts = (unsigned long)vec;
+ if (unlikely(!allow_spin))
+ new_exts |= OBJEXTS_NOSPIN_ALLOC;
+#ifdef CONFIG_MEMCG
+ new_exts |= MEMCG_DATA_OBJEXTS;
+#endif
+retry:
+ old_exts = READ_ONCE(slab->obj_exts);
+ handle_failed_objexts_alloc(old_exts, vec, objects);
+ if (new_slab) {
+ /*
+ * If the slab is brand new and nobody can yet access its
+ * obj_exts, no synchronization is required and obj_exts can
+ * be simply assigned.
+ */
+ slab->obj_exts = new_exts;
+ } else if (old_exts & ~OBJEXTS_FLAGS_MASK) {
+ /*
+ * If the slab is already in use, somebody can allocate and
+ * assign slabobj_exts in parallel. In this case the existing
+ * objcg vector should be reused.
+ */
+ mark_objexts_empty(vec);
+ if (unlikely(!allow_spin))
+ kfree_nolock(vec);
+ else
+ kfree(vec);
+ return 0;
+ } else if (cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
+ /* Retry if a racing thread changed slab->obj_exts from under us. */
+ goto retry;
+ }
- kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
+ if (allow_spin)
+ kmemleak_not_leak(vec);
+ return 0;
+}
+static inline void free_slab_obj_exts(struct slab *slab)
+{
+ struct slabobj_ext *obj_exts;
+
+ obj_exts = slab_obj_exts(slab);
+ if (!obj_exts) {
/*
- * Objects from caches that have a constructor don't get
- * cleared when they're allocated, so we need to do it here.
+ * If obj_exts allocation failed, slab->obj_exts is set to
+ * OBJEXTS_ALLOC_FAIL. In this case, we end up here and should
+ * clear the flag.
*/
- if (s->ctor)
- kmemcheck_mark_uninitialized_pages(page, pages);
- else
- kmemcheck_mark_unallocated_pages(page, pages);
+ slab->obj_exts = 0;
+ return;
}
- if (flags & __GFP_WAIT)
- local_irq_disable();
- if (!page)
+ /*
+ * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
+ * corresponding extension will be NULL. alloc_tag_sub() will throw a
+ * warning if slab has extensions but the extension of an object is
+ * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
+ * the extension for obj_exts is expected to be NULL.
+ */
+ mark_objexts_empty(obj_exts);
+ if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC))
+ kfree_nolock(obj_exts);
+ else
+ kfree(obj_exts);
+ slab->obj_exts = 0;
+}
+
+#else /* CONFIG_SLAB_OBJ_EXT */
+
+static inline void init_slab_obj_exts(struct slab *slab)
+{
+}
+
+static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
+ gfp_t gfp, bool new_slab)
+{
+ return 0;
+}
+
+static inline void free_slab_obj_exts(struct slab *slab)
+{
+}
+
+#endif /* CONFIG_SLAB_OBJ_EXT */
+
+#ifdef CONFIG_MEM_ALLOC_PROFILING
+
+static inline struct slabobj_ext *
+prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
+{
+ struct slab *slab;
+
+ slab = virt_to_slab(p);
+ if (!slab_obj_exts(slab) &&
+ alloc_slab_obj_exts(slab, s, flags, false)) {
+ pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
+ __func__, s->name);
return NULL;
+ }
+
+ return slab_obj_exts(slab) + obj_to_index(s, slab, p);
+}
+
+/* Should be called only if mem_alloc_profiling_enabled() */
+static noinline void
+__alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
+{
+ struct slabobj_ext *obj_exts;
- page->objects = oo_objects(oo);
- mod_zone_page_state(page_zone(page),
- (s->flags & SLAB_RECLAIM_ACCOUNT) ?
- NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
- 1 << oo_order(oo));
+ if (!object)
+ return;
+
+ if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
+ return;
- return page;
+ if (flags & __GFP_NO_OBJ_EXT)
+ return;
+
+ obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
+ /*
+ * Currently obj_exts is used only for allocation profiling.
+ * If other users appear then mem_alloc_profiling_enabled()
+ * check should be added before alloc_tag_add().
+ */
+ if (likely(obj_exts))
+ alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
+ else
+ alloc_tag_set_inaccurate(current->alloc_tag);
}
-static void setup_object(struct kmem_cache *s, struct page *page,
- void *object)
+static inline void
+alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
{
- setup_object_debug(s, page, object);
- if (unlikely(s->ctor))
- s->ctor(object);
+ if (mem_alloc_profiling_enabled())
+ __alloc_tagging_slab_alloc_hook(s, object, flags);
}
-static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
+/* Should be called only if mem_alloc_profiling_enabled() */
+static noinline void
+__alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
+ int objects)
{
- struct page *page;
- void *start;
- void *last;
- void *p;
- int order;
+ struct slabobj_ext *obj_exts;
+ int i;
- BUG_ON(flags & GFP_SLAB_BUG_MASK);
+ /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
+ if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
+ return;
- page = allocate_slab(s,
- flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
- if (!page)
- goto out;
+ obj_exts = slab_obj_exts(slab);
+ if (!obj_exts)
+ return;
- order = compound_order(page);
- inc_slabs_node(s, page_to_nid(page), page->objects);
- memcg_bind_pages(s, order);
- page->slab_cache = s;
- __SetPageSlab(page);
- if (page->pfmemalloc)
- SetPageSlabPfmemalloc(page);
+ for (i = 0; i < objects; i++) {
+ unsigned int off = obj_to_index(s, slab, p[i]);
+
+ alloc_tag_sub(&obj_exts[off].ref, s->size);
+ }
+}
+
+static inline void
+alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
+ int objects)
+{
+ if (mem_alloc_profiling_enabled())
+ __alloc_tagging_slab_free_hook(s, slab, p, objects);
+}
- start = page_address(page);
+#else /* CONFIG_MEM_ALLOC_PROFILING */
+
+static inline void
+alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
+{
+}
+
+static inline void
+alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
+ int objects)
+{
+}
+
+#endif /* CONFIG_MEM_ALLOC_PROFILING */
- if (unlikely(s->flags & SLAB_POISON))
- memset(start, POISON_INUSE, PAGE_SIZE << order);
- last = start;
- for_each_object(p, s, start, page->objects) {
- setup_object(s, page, last);
- set_freepointer(s, last, p);
- last = p;
+#ifdef CONFIG_MEMCG
+
+static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
+
+static __fastpath_inline
+bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
+ gfp_t flags, size_t size, void **p)
+{
+ if (likely(!memcg_kmem_online()))
+ return true;
+
+ if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
+ return true;
+
+ if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
+ return true;
+
+ if (likely(size == 1)) {
+ memcg_alloc_abort_single(s, *p);
+ *p = NULL;
+ } else {
+ kmem_cache_free_bulk(s, size, p);
}
- setup_object(s, page, last);
- set_freepointer(s, last, NULL);
- page->freelist = start;
- page->inuse = page->objects;
- page->frozen = 1;
-out:
- return page;
+ return false;
}
-static void __free_slab(struct kmem_cache *s, struct page *page)
+static __fastpath_inline
+void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
+ int objects)
{
- int order = compound_order(page);
- int pages = 1 << order;
+ struct slabobj_ext *obj_exts;
- if (kmem_cache_debug(s)) {
- void *p;
+ if (!memcg_kmem_online())
+ return;
+
+ obj_exts = slab_obj_exts(slab);
+ if (likely(!obj_exts))
+ return;
+
+ __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
+}
+
+static __fastpath_inline
+bool memcg_slab_post_charge(void *p, gfp_t flags)
+{
+ struct slabobj_ext *slab_exts;
+ struct kmem_cache *s;
+ struct page *page;
+ struct slab *slab;
+ unsigned long off;
- slab_pad_check(s, page);
- for_each_object(p, s, page_address(page),
- page->objects)
- check_object(s, page, p, SLUB_RED_INACTIVE);
+ page = virt_to_page(p);
+ if (PageLargeKmalloc(page)) {
+ unsigned int order;
+ int size;
+
+ if (PageMemcgKmem(page))
+ return true;
+
+ order = large_kmalloc_order(page);
+ if (__memcg_kmem_charge_page(page, flags, order))
+ return false;
+
+ /*
+ * This page has already been accounted in the global stats but
+ * not in the memcg stats. So, subtract from the global and use
+ * the interface which adds to both global and memcg stats.
+ */
+ size = PAGE_SIZE << order;
+ mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, -size);
+ mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, size);
+ return true;
}
- kmemcheck_free_shadow(page, compound_order(page));
+ slab = page_slab(page);
+ s = slab->slab_cache;
- mod_zone_page_state(page_zone(page),
- (s->flags & SLAB_RECLAIM_ACCOUNT) ?
- NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
- -pages);
+ /*
+ * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
+ * of slab_obj_exts being allocated from the same slab and thus the slab
+ * becoming effectively unfreeable.
+ */
+ if (is_kmalloc_normal(s))
+ return true;
+
+ /* Ignore already charged objects. */
+ slab_exts = slab_obj_exts(slab);
+ if (slab_exts) {
+ off = obj_to_index(s, slab, p);
+ if (unlikely(slab_exts[off].objcg))
+ return true;
+ }
- __ClearPageSlabPfmemalloc(page);
- __ClearPageSlab(page);
+ return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
+}
- memcg_release_pages(s, order);
- page_mapcount_reset(page);
- if (current->reclaim_state)
- current->reclaim_state->reclaimed_slab += pages;
- __free_memcg_kmem_pages(page, order);
+#else /* CONFIG_MEMCG */
+static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
+ struct list_lru *lru,
+ gfp_t flags, size_t size,
+ void **p)
+{
+ return true;
}
-#define need_reserve_slab_rcu \
- (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
+static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
+ void **p, int objects)
+{
+}
-static void rcu_free_slab(struct rcu_head *h)
+static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
{
- struct page *page;
+ return true;
+}
+#endif /* CONFIG_MEMCG */
- if (need_reserve_slab_rcu)
- page = virt_to_head_page(h);
- else
- page = container_of((struct list_head *)h, struct page, lru);
+#ifdef CONFIG_SLUB_RCU_DEBUG
+static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
+
+struct rcu_delayed_free {
+ struct rcu_head head;
+ void *object;
+};
+#endif
+
+/*
+ * Hooks for other subsystems that check memory allocations. In a typical
+ * production configuration these hooks all should produce no code at all.
+ *
+ * Returns true if freeing of the object can proceed, false if its reuse
+ * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
+ * to KFENCE.
+ */
+static __always_inline
+bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
+ bool after_rcu_delay)
+{
+ /* Are the object contents still accessible? */
+ bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
+
+ kmemleak_free_recursive(x, s->flags);
+ kmsan_slab_free(s, x);
+
+ debug_check_no_locks_freed(x, s->object_size);
+
+ if (!(s->flags & SLAB_DEBUG_OBJECTS))
+ debug_check_no_obj_freed(x, s->object_size);
+
+ /* Use KCSAN to help debug racy use-after-free. */
+ if (!still_accessible)
+ __kcsan_check_access(x, s->object_size,
+ KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
+
+ if (kfence_free(x))
+ return false;
+
+ /*
+ * Give KASAN a chance to notice an invalid free operation before we
+ * modify the object.
+ */
+ if (kasan_slab_pre_free(s, x))
+ return false;
+
+#ifdef CONFIG_SLUB_RCU_DEBUG
+ if (still_accessible) {
+ struct rcu_delayed_free *delayed_free;
+
+ delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
+ if (delayed_free) {
+ /*
+ * Let KASAN track our call stack as a "related work
+ * creation", just like if the object had been freed
+ * normally via kfree_rcu().
+ * We have to do this manually because the rcu_head is
+ * not located inside the object.
+ */
+ kasan_record_aux_stack(x);
+
+ delayed_free->object = x;
+ call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
+ return false;
+ }
+ }
+#endif /* CONFIG_SLUB_RCU_DEBUG */
+
+ /*
+ * As memory initialization might be integrated into KASAN,
+ * kasan_slab_free and initialization memset's must be
+ * kept together to avoid discrepancies in behavior.
+ *
+ * The initialization memset's clear the object and the metadata,
+ * but don't touch the SLAB redzone.
+ *
+ * The object's freepointer is also avoided if stored outside the
+ * object.
+ */
+ if (unlikely(init)) {
+ int rsize;
+ unsigned int inuse, orig_size;
+
+ inuse = get_info_end(s);
+ orig_size = get_orig_size(s, x);
+ if (!kasan_has_integrated_init())
+ memset(kasan_reset_tag(x), 0, orig_size);
+ rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
+ memset((char *)kasan_reset_tag(x) + inuse, 0,
+ s->size - inuse - rsize);
+ /*
+ * Restore orig_size, otherwise kmalloc redzone overwritten
+ * would be reported
+ */
+ set_orig_size(s, x, orig_size);
- __free_slab(page->slab_cache, page);
+ }
+ /* KASAN might put x into memory quarantine, delaying its reuse. */
+ return !kasan_slab_free(s, x, init, still_accessible, false);
}
-static void free_slab(struct kmem_cache *s, struct page *page)
+static __fastpath_inline
+bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
+ int *cnt)
{
- if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
- struct rcu_head *head;
- if (need_reserve_slab_rcu) {
- int order = compound_order(page);
- int offset = (PAGE_SIZE << order) - s->reserved;
+ void *object;
+ void *next = *head;
+ void *old_tail = *tail;
+ bool init;
+
+ if (is_kfence_address(next)) {
+ slab_free_hook(s, next, false, false);
+ return false;
+ }
+
+ /* Head and tail of the reconstructed freelist */
+ *head = NULL;
+ *tail = NULL;
+
+ init = slab_want_init_on_free(s);
- VM_BUG_ON(s->reserved != sizeof(*head));
- head = page_address(page) + offset;
+ do {
+ object = next;
+ next = get_freepointer(s, object);
+
+ /* If object's reuse doesn't have to be delayed */
+ if (likely(slab_free_hook(s, object, init, false))) {
+ /* Move object to the new freelist */
+ set_freepointer(s, object, *head);
+ *head = object;
+ if (!*tail)
+ *tail = object;
} else {
/*
- * RCU free overloads the RCU head over the LRU
+ * Adjust the reconstructed freelist depth
+ * accordingly if object's reuse is delayed.
*/
- head = (void *)&page->lru;
+ --(*cnt);
}
+ } while (object != old_tail);
- call_rcu(head, rcu_free_slab);
- } else
- __free_slab(s, page);
+ return *head != NULL;
+}
+
+static void *setup_object(struct kmem_cache *s, void *object)
+{
+ setup_object_debug(s, object);
+ object = kasan_init_slab_obj(s, object);
+ if (unlikely(s->ctor)) {
+ kasan_unpoison_new_object(s, object);
+ s->ctor(object);
+ kasan_poison_new_object(s, object);
+ }
+ return object;
+}
+
+static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp)
+{
+ struct slab_sheaf *sheaf;
+ size_t sheaf_size;
+
+ if (gfp & __GFP_NO_OBJ_EXT)
+ return NULL;
+
+ gfp &= ~OBJCGS_CLEAR_MASK;
+
+ /*
+ * Prevent recursion to the same cache, or a deep stack of kmallocs of
+ * varying sizes (sheaf capacity might differ for each kmalloc size
+ * bucket)
+ */
+ if (s->flags & SLAB_KMALLOC)
+ gfp |= __GFP_NO_OBJ_EXT;
+
+ sheaf_size = struct_size(sheaf, objects, s->sheaf_capacity);
+ sheaf = kzalloc(sheaf_size, gfp);
+
+ if (unlikely(!sheaf))
+ return NULL;
+
+ sheaf->cache = s;
+
+ stat(s, SHEAF_ALLOC);
+
+ return sheaf;
}
-static void discard_slab(struct kmem_cache *s, struct page *page)
+static void free_empty_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf)
{
- dec_slabs_node(s, page_to_nid(page), page->objects);
- free_slab(s, page);
+ kfree(sheaf);
+
+ stat(s, SHEAF_FREE);
+}
+
+static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
+ size_t size, void **p);
+
+
+static int refill_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf,
+ gfp_t gfp)
+{
+ int to_fill = s->sheaf_capacity - sheaf->size;
+ int filled;
+
+ if (!to_fill)
+ return 0;
+
+ filled = __kmem_cache_alloc_bulk(s, gfp, to_fill,
+ &sheaf->objects[sheaf->size]);
+
+ sheaf->size += filled;
+
+ stat_add(s, SHEAF_REFILL, filled);
+
+ if (filled < to_fill)
+ return -ENOMEM;
+
+ return 0;
+}
+
+
+static struct slab_sheaf *alloc_full_sheaf(struct kmem_cache *s, gfp_t gfp)
+{
+ struct slab_sheaf *sheaf = alloc_empty_sheaf(s, gfp);
+
+ if (!sheaf)
+ return NULL;
+
+ if (refill_sheaf(s, sheaf, gfp | __GFP_NOMEMALLOC)) {
+ free_empty_sheaf(s, sheaf);
+ return NULL;
+ }
+
+ return sheaf;
}
/*
- * Management of partially allocated slabs.
+ * Maximum number of objects freed during a single flush of main pcs sheaf.
+ * Translates directly to an on-stack array size.
+ */
+#define PCS_BATCH_MAX 32U
+
+static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
+
+/*
+ * Free all objects from the main sheaf. In order to perform
+ * __kmem_cache_free_bulk() outside of cpu_sheaves->lock, work in batches where
+ * object pointers are moved to a on-stack array under the lock. To bound the
+ * stack usage, limit each batch to PCS_BATCH_MAX.
*
- * list_lock must be held.
+ * returns true if at least partially flushed
*/
-static inline void add_partial(struct kmem_cache_node *n,
- struct page *page, int tail)
+static bool sheaf_flush_main(struct kmem_cache *s)
{
- n->nr_partial++;
- if (tail == DEACTIVATE_TO_TAIL)
- list_add_tail(&page->lru, &n->partial);
- else
- list_add(&page->lru, &n->partial);
+ struct slub_percpu_sheaves *pcs;
+ unsigned int batch, remaining;
+ void *objects[PCS_BATCH_MAX];
+ struct slab_sheaf *sheaf;
+ bool ret = false;
+
+next_batch:
+ if (!local_trylock(&s->cpu_sheaves->lock))
+ return ret;
+
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+ sheaf = pcs->main;
+
+ batch = min(PCS_BATCH_MAX, sheaf->size);
+
+ sheaf->size -= batch;
+ memcpy(objects, sheaf->objects + sheaf->size, batch * sizeof(void *));
+
+ remaining = sheaf->size;
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ __kmem_cache_free_bulk(s, batch, &objects[0]);
+
+ stat_add(s, SHEAF_FLUSH, batch);
+
+ ret = true;
+
+ if (remaining)
+ goto next_batch;
+
+ return ret;
}
/*
- * list_lock must be held.
+ * Free all objects from a sheaf that's unused, i.e. not linked to any
+ * cpu_sheaves, so we need no locking and batching. The locking is also not
+ * necessary when flushing cpu's sheaves (both spare and main) during cpu
+ * hotremove as the cpu is not executing anymore.
*/
-static inline void remove_partial(struct kmem_cache_node *n,
- struct page *page)
+static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
{
- list_del(&page->lru);
- n->nr_partial--;
+ if (!sheaf->size)
+ return;
+
+ stat_add(s, SHEAF_FLUSH, sheaf->size);
+
+ __kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]);
+
+ sheaf->size = 0;
+}
+
+static bool __rcu_free_sheaf_prepare(struct kmem_cache *s,
+ struct slab_sheaf *sheaf)
+{
+ bool init = slab_want_init_on_free(s);
+ void **p = &sheaf->objects[0];
+ unsigned int i = 0;
+ bool pfmemalloc = false;
+
+ while (i < sheaf->size) {
+ struct slab *slab = virt_to_slab(p[i]);
+
+ memcg_slab_free_hook(s, slab, p + i, 1);
+ alloc_tagging_slab_free_hook(s, slab, p + i, 1);
+
+ if (unlikely(!slab_free_hook(s, p[i], init, true))) {
+ p[i] = p[--sheaf->size];
+ continue;
+ }
+
+ if (slab_test_pfmemalloc(slab))
+ pfmemalloc = true;
+
+ i++;
+ }
+
+ return pfmemalloc;
+}
+
+static void rcu_free_sheaf_nobarn(struct rcu_head *head)
+{
+ struct slab_sheaf *sheaf;
+ struct kmem_cache *s;
+
+ sheaf = container_of(head, struct slab_sheaf, rcu_head);
+ s = sheaf->cache;
+
+ __rcu_free_sheaf_prepare(s, sheaf);
+
+ sheaf_flush_unused(s, sheaf);
+
+ free_empty_sheaf(s, sheaf);
}
/*
- * Remove slab from the partial list, freeze it and
- * return the pointer to the freelist.
+ * Caller needs to make sure migration is disabled in order to fully flush
+ * single cpu's sheaves
*
- * Returns a list of objects or NULL if it fails.
+ * must not be called from an irq
*
- * Must hold list_lock since we modify the partial list.
+ * flushing operations are rare so let's keep it simple and flush to slabs
+ * directly, skipping the barn
*/
-static inline void *acquire_slab(struct kmem_cache *s,
- struct kmem_cache_node *n, struct page *page,
- int mode, int *objects)
+static void pcs_flush_all(struct kmem_cache *s)
{
- void *freelist;
- unsigned long counters;
- struct page new;
+ struct slub_percpu_sheaves *pcs;
+ struct slab_sheaf *spare, *rcu_free;
+
+ local_lock(&s->cpu_sheaves->lock);
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ spare = pcs->spare;
+ pcs->spare = NULL;
+
+ rcu_free = pcs->rcu_free;
+ pcs->rcu_free = NULL;
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ if (spare) {
+ sheaf_flush_unused(s, spare);
+ free_empty_sheaf(s, spare);
+ }
+
+ if (rcu_free)
+ call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
+
+ sheaf_flush_main(s);
+}
+
+static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu)
+{
+ struct slub_percpu_sheaves *pcs;
+
+ pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
+
+ /* The cpu is not executing anymore so we don't need pcs->lock */
+ sheaf_flush_unused(s, pcs->main);
+ if (pcs->spare) {
+ sheaf_flush_unused(s, pcs->spare);
+ free_empty_sheaf(s, pcs->spare);
+ pcs->spare = NULL;
+ }
+
+ if (pcs->rcu_free) {
+ call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn);
+ pcs->rcu_free = NULL;
+ }
+}
+
+static void pcs_destroy(struct kmem_cache *s)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ struct slub_percpu_sheaves *pcs;
+
+ pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
+
+ /* can happen when unwinding failed create */
+ if (!pcs->main)
+ continue;
+
+ /*
+ * We have already passed __kmem_cache_shutdown() so everything
+ * was flushed and there should be no objects allocated from
+ * slabs, otherwise kmem_cache_destroy() would have aborted.
+ * Therefore something would have to be really wrong if the
+ * warnings here trigger, and we should rather leave objects and
+ * sheaves to leak in that case.
+ */
+
+ WARN_ON(pcs->spare);
+ WARN_ON(pcs->rcu_free);
+
+ if (!WARN_ON(pcs->main->size)) {
+ free_empty_sheaf(s, pcs->main);
+ pcs->main = NULL;
+ }
+ }
+
+ free_percpu(s->cpu_sheaves);
+ s->cpu_sheaves = NULL;
+}
+
+static struct slab_sheaf *barn_get_empty_sheaf(struct node_barn *barn)
+{
+ struct slab_sheaf *empty = NULL;
+ unsigned long flags;
+
+ if (!data_race(barn->nr_empty))
+ return NULL;
+
+ spin_lock_irqsave(&barn->lock, flags);
+
+ if (likely(barn->nr_empty)) {
+ empty = list_first_entry(&barn->sheaves_empty,
+ struct slab_sheaf, barn_list);
+ list_del(&empty->barn_list);
+ barn->nr_empty--;
+ }
+
+ spin_unlock_irqrestore(&barn->lock, flags);
+
+ return empty;
+}
+
+/*
+ * The following two functions are used mainly in cases where we have to undo an
+ * intended action due to a race or cpu migration. Thus they do not check the
+ * empty or full sheaf limits for simplicity.
+ */
+
+static void barn_put_empty_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&barn->lock, flags);
+
+ list_add(&sheaf->barn_list, &barn->sheaves_empty);
+ barn->nr_empty++;
+
+ spin_unlock_irqrestore(&barn->lock, flags);
+}
+
+static void barn_put_full_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&barn->lock, flags);
+
+ list_add(&sheaf->barn_list, &barn->sheaves_full);
+ barn->nr_full++;
+
+ spin_unlock_irqrestore(&barn->lock, flags);
+}
+
+static struct slab_sheaf *barn_get_full_or_empty_sheaf(struct node_barn *barn)
+{
+ struct slab_sheaf *sheaf = NULL;
+ unsigned long flags;
+
+ if (!data_race(barn->nr_full) && !data_race(barn->nr_empty))
+ return NULL;
+
+ spin_lock_irqsave(&barn->lock, flags);
+
+ if (barn->nr_full) {
+ sheaf = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
+ barn_list);
+ list_del(&sheaf->barn_list);
+ barn->nr_full--;
+ } else if (barn->nr_empty) {
+ sheaf = list_first_entry(&barn->sheaves_empty,
+ struct slab_sheaf, barn_list);
+ list_del(&sheaf->barn_list);
+ barn->nr_empty--;
+ }
+
+ spin_unlock_irqrestore(&barn->lock, flags);
+
+ return sheaf;
+}
+
+/*
+ * If a full sheaf is available, return it and put the supplied empty one to
+ * barn. We ignore the limit on empty sheaves as the number of sheaves doesn't
+ * change.
+ */
+static struct slab_sheaf *
+barn_replace_empty_sheaf(struct node_barn *barn, struct slab_sheaf *empty)
+{
+ struct slab_sheaf *full = NULL;
+ unsigned long flags;
+
+ if (!data_race(barn->nr_full))
+ return NULL;
+
+ spin_lock_irqsave(&barn->lock, flags);
+
+ if (likely(barn->nr_full)) {
+ full = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
+ barn_list);
+ list_del(&full->barn_list);
+ list_add(&empty->barn_list, &barn->sheaves_empty);
+ barn->nr_full--;
+ barn->nr_empty++;
+ }
+
+ spin_unlock_irqrestore(&barn->lock, flags);
+
+ return full;
+}
+
+/*
+ * If an empty sheaf is available, return it and put the supplied full one to
+ * barn. But if there are too many full sheaves, reject this with -E2BIG.
+ */
+static struct slab_sheaf *
+barn_replace_full_sheaf(struct node_barn *barn, struct slab_sheaf *full)
+{
+ struct slab_sheaf *empty;
+ unsigned long flags;
+
+ /* we don't repeat this check under barn->lock as it's not critical */
+ if (data_race(barn->nr_full) >= MAX_FULL_SHEAVES)
+ return ERR_PTR(-E2BIG);
+ if (!data_race(barn->nr_empty))
+ return ERR_PTR(-ENOMEM);
+
+ spin_lock_irqsave(&barn->lock, flags);
+
+ if (likely(barn->nr_empty)) {
+ empty = list_first_entry(&barn->sheaves_empty, struct slab_sheaf,
+ barn_list);
+ list_del(&empty->barn_list);
+ list_add(&full->barn_list, &barn->sheaves_full);
+ barn->nr_empty--;
+ barn->nr_full++;
+ } else {
+ empty = ERR_PTR(-ENOMEM);
+ }
+
+ spin_unlock_irqrestore(&barn->lock, flags);
+
+ return empty;
+}
+
+static void barn_init(struct node_barn *barn)
+{
+ spin_lock_init(&barn->lock);
+ INIT_LIST_HEAD(&barn->sheaves_full);
+ INIT_LIST_HEAD(&barn->sheaves_empty);
+ barn->nr_full = 0;
+ barn->nr_empty = 0;
+}
+
+static void barn_shrink(struct kmem_cache *s, struct node_barn *barn)
+{
+ LIST_HEAD(empty_list);
+ LIST_HEAD(full_list);
+ struct slab_sheaf *sheaf, *sheaf2;
+ unsigned long flags;
+
+ spin_lock_irqsave(&barn->lock, flags);
+
+ list_splice_init(&barn->sheaves_full, &full_list);
+ barn->nr_full = 0;
+ list_splice_init(&barn->sheaves_empty, &empty_list);
+ barn->nr_empty = 0;
+
+ spin_unlock_irqrestore(&barn->lock, flags);
+
+ list_for_each_entry_safe(sheaf, sheaf2, &full_list, barn_list) {
+ sheaf_flush_unused(s, sheaf);
+ free_empty_sheaf(s, sheaf);
+ }
+
+ list_for_each_entry_safe(sheaf, sheaf2, &empty_list, barn_list)
+ free_empty_sheaf(s, sheaf);
+}
+
+/*
+ * Slab allocation and freeing
+ */
+static inline struct slab *alloc_slab_page(gfp_t flags, int node,
+ struct kmem_cache_order_objects oo,
+ bool allow_spin)
+{
+ struct page *page;
+ struct slab *slab;
+ unsigned int order = oo_order(oo);
+
+ if (unlikely(!allow_spin))
+ page = alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */,
+ node, order);
+ else if (node == NUMA_NO_NODE)
+ page = alloc_frozen_pages(flags, order);
+ else
+ page = __alloc_frozen_pages(flags, order, node, NULL);
+
+ if (!page)
+ return NULL;
+
+ __SetPageSlab(page);
+ slab = page_slab(page);
+ if (page_is_pfmemalloc(page))
+ slab_set_pfmemalloc(slab);
+
+ return slab;
+}
+
+#ifdef CONFIG_SLAB_FREELIST_RANDOM
+/* Pre-initialize the random sequence cache */
+static int init_cache_random_seq(struct kmem_cache *s)
+{
+ unsigned int count = oo_objects(s->oo);
+ int err;
+
+ /* Bailout if already initialised */
+ if (s->random_seq)
+ return 0;
+
+ err = cache_random_seq_create(s, count, GFP_KERNEL);
+ if (err) {
+ pr_err("SLUB: Unable to initialize free list for %s\n",
+ s->name);
+ return err;
+ }
+
+ /* Transform to an offset on the set of pages */
+ if (s->random_seq) {
+ unsigned int i;
+
+ for (i = 0; i < count; i++)
+ s->random_seq[i] *= s->size;
+ }
+ return 0;
+}
+
+/* Initialize each random sequence freelist per cache */
+static void __init init_freelist_randomization(void)
+{
+ struct kmem_cache *s;
+
+ mutex_lock(&slab_mutex);
+
+ list_for_each_entry(s, &slab_caches, list)
+ init_cache_random_seq(s);
+
+ mutex_unlock(&slab_mutex);
+}
+
+/* Get the next entry on the pre-computed freelist randomized */
+static void *next_freelist_entry(struct kmem_cache *s,
+ unsigned long *pos, void *start,
+ unsigned long page_limit,
+ unsigned long freelist_count)
+{
+ unsigned int idx;
/*
- * Zap the freelist and set the frozen bit.
- * The old freelist is the list of objects for the
- * per cpu allocation list.
+ * If the target page allocation failed, the number of objects on the
+ * page might be smaller than the usual size defined by the cache.
*/
- freelist = page->freelist;
- counters = page->counters;
- new.counters = counters;
- *objects = new.objects - new.inuse;
- if (mode) {
- new.inuse = page->objects;
- new.freelist = NULL;
- } else {
- new.freelist = freelist;
+ do {
+ idx = s->random_seq[*pos];
+ *pos += 1;
+ if (*pos >= freelist_count)
+ *pos = 0;
+ } while (unlikely(idx >= page_limit));
+
+ return (char *)start + idx;
+}
+
+/* Shuffle the single linked freelist based on a random pre-computed sequence */
+static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
+{
+ void *start;
+ void *cur;
+ void *next;
+ unsigned long idx, pos, page_limit, freelist_count;
+
+ if (slab->objects < 2 || !s->random_seq)
+ return false;
+
+ freelist_count = oo_objects(s->oo);
+ pos = get_random_u32_below(freelist_count);
+
+ page_limit = slab->objects * s->size;
+ start = fixup_red_left(s, slab_address(slab));
+
+ /* First entry is used as the base of the freelist */
+ cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
+ cur = setup_object(s, cur);
+ slab->freelist = cur;
+
+ for (idx = 1; idx < slab->objects; idx++) {
+ next = next_freelist_entry(s, &pos, start, page_limit,
+ freelist_count);
+ next = setup_object(s, next);
+ set_freepointer(s, cur, next);
+ cur = next;
}
+ set_freepointer(s, cur, NULL);
+
+ return true;
+}
+#else
+static inline int init_cache_random_seq(struct kmem_cache *s)
+{
+ return 0;
+}
+static inline void init_freelist_randomization(void) { }
+static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
+{
+ return false;
+}
+#endif /* CONFIG_SLAB_FREELIST_RANDOM */
+
+static __always_inline void account_slab(struct slab *slab, int order,
+ struct kmem_cache *s, gfp_t gfp)
+{
+ if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
+ alloc_slab_obj_exts(slab, s, gfp, true);
+
+ mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
+ PAGE_SIZE << order);
+}
+
+static __always_inline void unaccount_slab(struct slab *slab, int order,
+ struct kmem_cache *s)
+{
+ /*
+ * The slab object extensions should now be freed regardless of
+ * whether mem_alloc_profiling_enabled() or not because profiling
+ * might have been disabled after slab->obj_exts got allocated.
+ */
+ free_slab_obj_exts(slab);
- VM_BUG_ON(new.frozen);
- new.frozen = 1;
+ mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
+ -(PAGE_SIZE << order));
+}
+
+static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
+{
+ bool allow_spin = gfpflags_allow_spinning(flags);
+ struct slab *slab;
+ struct kmem_cache_order_objects oo = s->oo;
+ gfp_t alloc_gfp;
+ void *start, *p, *next;
+ int idx;
+ bool shuffle;
+
+ flags &= gfp_allowed_mask;
- if (!__cmpxchg_double_slab(s, page,
- freelist, counters,
- new.freelist, new.counters,
- "acquire_slab"))
+ flags |= s->allocflags;
+
+ /*
+ * Let the initial higher-order allocation fail under memory pressure
+ * so we fall-back to the minimum order allocation.
+ */
+ alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
+ if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
+ alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
+
+ /*
+ * __GFP_RECLAIM could be cleared on the first allocation attempt,
+ * so pass allow_spin flag directly.
+ */
+ slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
+ if (unlikely(!slab)) {
+ oo = s->min;
+ alloc_gfp = flags;
+ /*
+ * Allocation may have failed due to fragmentation.
+ * Try a lower order alloc if possible
+ */
+ slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
+ if (unlikely(!slab))
+ return NULL;
+ stat(s, ORDER_FALLBACK);
+ }
+
+ slab->objects = oo_objects(oo);
+ slab->inuse = 0;
+ slab->frozen = 0;
+ init_slab_obj_exts(slab);
+
+ account_slab(slab, oo_order(oo), s, flags);
+
+ slab->slab_cache = s;
+
+ kasan_poison_slab(slab);
+
+ start = slab_address(slab);
+
+ setup_slab_debug(s, slab, start);
+
+ shuffle = shuffle_freelist(s, slab);
+
+ if (!shuffle) {
+ start = fixup_red_left(s, start);
+ start = setup_object(s, start);
+ slab->freelist = start;
+ for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
+ next = p + s->size;
+ next = setup_object(s, next);
+ set_freepointer(s, p, next);
+ p = next;
+ }
+ set_freepointer(s, p, NULL);
+ }
+
+ return slab;
+}
+
+static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
+{
+ if (unlikely(flags & GFP_SLAB_BUG_MASK))
+ flags = kmalloc_fix_flags(flags);
+
+ WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
+
+ return allocate_slab(s,
+ flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
+}
+
+static void __free_slab(struct kmem_cache *s, struct slab *slab)
+{
+ struct page *page = slab_page(slab);
+ int order = compound_order(page);
+ int pages = 1 << order;
+
+ __slab_clear_pfmemalloc(slab);
+ page->mapping = NULL;
+ __ClearPageSlab(page);
+ mm_account_reclaimed_pages(pages);
+ unaccount_slab(slab, order, s);
+ free_frozen_pages(page, order);
+}
+
+static void rcu_free_slab(struct rcu_head *h)
+{
+ struct slab *slab = container_of(h, struct slab, rcu_head);
+
+ __free_slab(slab->slab_cache, slab);
+}
+
+static void free_slab(struct kmem_cache *s, struct slab *slab)
+{
+ if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
+ void *p;
+
+ slab_pad_check(s, slab);
+ for_each_object(p, s, slab_address(slab), slab->objects)
+ check_object(s, slab, p, SLUB_RED_INACTIVE);
+ }
+
+ if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
+ call_rcu(&slab->rcu_head, rcu_free_slab);
+ else
+ __free_slab(s, slab);
+}
+
+static void discard_slab(struct kmem_cache *s, struct slab *slab)
+{
+ dec_slabs_node(s, slab_nid(slab), slab->objects);
+ free_slab(s, slab);
+}
+
+static inline bool slab_test_node_partial(const struct slab *slab)
+{
+ return test_bit(SL_partial, &slab->flags.f);
+}
+
+static inline void slab_set_node_partial(struct slab *slab)
+{
+ set_bit(SL_partial, &slab->flags.f);
+}
+
+static inline void slab_clear_node_partial(struct slab *slab)
+{
+ clear_bit(SL_partial, &slab->flags.f);
+}
+
+/*
+ * Management of partially allocated slabs.
+ */
+static inline void
+__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
+{
+ n->nr_partial++;
+ if (tail == DEACTIVATE_TO_TAIL)
+ list_add_tail(&slab->slab_list, &n->partial);
+ else
+ list_add(&slab->slab_list, &n->partial);
+ slab_set_node_partial(slab);
+}
+
+static inline void add_partial(struct kmem_cache_node *n,
+ struct slab *slab, int tail)
+{
+ lockdep_assert_held(&n->list_lock);
+ __add_partial(n, slab, tail);
+}
+
+static inline void remove_partial(struct kmem_cache_node *n,
+ struct slab *slab)
+{
+ lockdep_assert_held(&n->list_lock);
+ list_del(&slab->slab_list);
+ slab_clear_node_partial(slab);
+ n->nr_partial--;
+}
+
+/*
+ * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
+ * slab from the n->partial list. Remove only a single object from the slab, do
+ * the alloc_debug_processing() checks and leave the slab on the list, or move
+ * it to full list if it was the last free object.
+ */
+static void *alloc_single_from_partial(struct kmem_cache *s,
+ struct kmem_cache_node *n, struct slab *slab, int orig_size)
+{
+ void *object;
+
+ lockdep_assert_held(&n->list_lock);
+
+#ifdef CONFIG_SLUB_DEBUG
+ if (s->flags & SLAB_CONSISTENCY_CHECKS) {
+ if (!validate_slab_ptr(slab)) {
+ slab_err(s, slab, "Not a valid slab page");
+ return NULL;
+ }
+ }
+#endif
+
+ object = slab->freelist;
+ slab->freelist = get_freepointer(s, object);
+ slab->inuse++;
+
+ if (!alloc_debug_processing(s, slab, object, orig_size)) {
+ remove_partial(n, slab);
return NULL;
+ }
- remove_partial(n, page);
- WARN_ON(!freelist);
- return freelist;
+ if (slab->inuse == slab->objects) {
+ remove_partial(n, slab);
+ add_full(s, n, slab);
+ }
+
+ return object;
}
-static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
-static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
+static void defer_deactivate_slab(struct slab *slab, void *flush_freelist);
+
+/*
+ * Called only for kmem_cache_debug() caches to allocate from a freshly
+ * allocated slab. Allocate a single object instead of whole freelist
+ * and put the slab to the partial (or full) list.
+ */
+static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab,
+ int orig_size, gfp_t gfpflags)
+{
+ bool allow_spin = gfpflags_allow_spinning(gfpflags);
+ int nid = slab_nid(slab);
+ struct kmem_cache_node *n = get_node(s, nid);
+ unsigned long flags;
+ void *object;
+
+ if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) {
+ /* Unlucky, discard newly allocated slab */
+ defer_deactivate_slab(slab, NULL);
+ return NULL;
+ }
+
+ object = slab->freelist;
+ slab->freelist = get_freepointer(s, object);
+ slab->inuse = 1;
+
+ if (!alloc_debug_processing(s, slab, object, orig_size)) {
+ /*
+ * It's not really expected that this would fail on a
+ * freshly allocated slab, but a concurrent memory
+ * corruption in theory could cause that.
+ * Leak memory of allocated slab.
+ */
+ if (!allow_spin)
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ return NULL;
+ }
+
+ if (allow_spin)
+ spin_lock_irqsave(&n->list_lock, flags);
+
+ if (slab->inuse == slab->objects)
+ add_full(s, n, slab);
+ else
+ add_partial(n, slab, DEACTIVATE_TO_HEAD);
+
+ inc_slabs_node(s, nid, slab->objects);
+ spin_unlock_irqrestore(&n->list_lock, flags);
+
+ return object;
+}
+
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
+#else
+static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
+ int drain) { }
+#endif
+static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
/*
* Try to allocate a partial slab from a specific node.
*/
-static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
- struct kmem_cache_cpu *c, gfp_t flags)
+static struct slab *get_partial_node(struct kmem_cache *s,
+ struct kmem_cache_node *n,
+ struct partial_context *pc)
{
- struct page *page, *page2;
- void *object = NULL;
- int available = 0;
- int objects;
+ struct slab *slab, *slab2, *partial = NULL;
+ unsigned long flags;
+ unsigned int partial_slabs = 0;
/*
* Racy check. If we mistakenly see no partial slabs then we
* just allocate an empty slab. If we mistakenly try to get a
- * partial slab and there is none available then get_partials()
+ * partial slab and there is none available then get_partial()
* will return NULL.
*/
if (!n || !n->nr_partial)
return NULL;
- spin_lock(&n->list_lock);
- list_for_each_entry_safe(page, page2, &n->partial, lru) {
- void *t;
+ if (gfpflags_allow_spinning(pc->flags))
+ spin_lock_irqsave(&n->list_lock, flags);
+ else if (!spin_trylock_irqsave(&n->list_lock, flags))
+ return NULL;
+ list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
+ if (!pfmemalloc_match(slab, pc->flags))
+ continue;
- if (!pfmemalloc_match(page, flags))
+ if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
+ void *object = alloc_single_from_partial(s, n, slab,
+ pc->orig_size);
+ if (object) {
+ partial = slab;
+ pc->object = object;
+ break;
+ }
continue;
+ }
- t = acquire_slab(s, n, page, object == NULL, &objects);
- if (!t)
- break;
+ remove_partial(n, slab);
- available += objects;
- if (!object) {
- c->page = page;
+ if (!partial) {
+ partial = slab;
stat(s, ALLOC_FROM_PARTIAL);
- object = t;
+
+ if ((slub_get_cpu_partial(s) == 0)) {
+ break;
+ }
} else {
- put_cpu_partial(s, page, 0);
+ put_cpu_partial(s, slab, 0);
stat(s, CPU_PARTIAL_NODE);
- }
- if (!kmem_cache_has_cpu_partial(s)
- || available > s->cpu_partial / 2)
- break;
+ if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
+ break;
+ }
+ }
}
- spin_unlock(&n->list_lock);
- return object;
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ return partial;
}
/*
- * Get a page from somewhere. Search in increasing NUMA distances.
+ * Get a slab from somewhere. Search in increasing NUMA distances.
*/
-static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
- struct kmem_cache_cpu *c)
+static struct slab *get_any_partial(struct kmem_cache *s,
+ struct partial_context *pc)
{
#ifdef CONFIG_NUMA
struct zonelist *zonelist;
struct zoneref *z;
struct zone *zone;
- enum zone_type high_zoneidx = gfp_zone(flags);
- void *object;
+ enum zone_type highest_zoneidx = gfp_zone(pc->flags);
+ struct slab *slab;
unsigned int cpuset_mems_cookie;
/*
@@ -1616,11 +3576,11 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
* may return off node objects because partial slabs are obtained
* from other nodes and filled up.
*
- * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
- * defrag_ratio = 1000) then every (well almost) allocation will
- * first attempt to defrag slab caches on other nodes. This means
- * scanning over all nodes to look for partial slabs which may be
- * expensive if we do it every time we are trying to find a slab
+ * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
+ * (which makes defrag_ratio = 1000) then every (well almost)
+ * allocation will first attempt to defrag slab caches on other nodes.
+ * This means scanning over all nodes to look for partial slabs which
+ * may be expensive if we do it every time we are trying to find a slab
* with available objects.
*/
if (!s->remote_node_defrag_ratio ||
@@ -1628,54 +3588,55 @@ static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
return NULL;
do {
- cpuset_mems_cookie = get_mems_allowed();
- zonelist = node_zonelist(slab_node(), flags);
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
+ cpuset_mems_cookie = read_mems_allowed_begin();
+ zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
+ for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
struct kmem_cache_node *n;
n = get_node(s, zone_to_nid(zone));
- if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
+ if (n && cpuset_zone_allowed(zone, pc->flags) &&
n->nr_partial > s->min_partial) {
- object = get_partial_node(s, n, c, flags);
- if (object) {
+ slab = get_partial_node(s, n, pc);
+ if (slab) {
/*
- * Return the object even if
- * put_mems_allowed indicated that
- * the cpuset mems_allowed was
- * updated in parallel. It's a
- * harmless race between the alloc
- * and the cpuset update.
+ * Don't check read_mems_allowed_retry()
+ * here - if mems_allowed was updated in
+ * parallel, that was a harmless race
+ * between allocation and the cpuset
+ * update
*/
- put_mems_allowed(cpuset_mems_cookie);
- return object;
+ return slab;
}
}
}
- } while (!put_mems_allowed(cpuset_mems_cookie));
-#endif
+ } while (read_mems_allowed_retry(cpuset_mems_cookie));
+#endif /* CONFIG_NUMA */
return NULL;
}
/*
- * Get a partial page, lock it and return it.
+ * Get a partial slab, lock it and return it.
*/
-static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
- struct kmem_cache_cpu *c)
+static struct slab *get_partial(struct kmem_cache *s, int node,
+ struct partial_context *pc)
{
- void *object;
- int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
+ struct slab *slab;
+ int searchnode = node;
- object = get_partial_node(s, get_node(s, searchnode), c, flags);
- if (object || node != NUMA_NO_NODE)
- return object;
+ if (node == NUMA_NO_NODE)
+ searchnode = numa_mem_id();
- return get_any_partial(s, flags, c);
+ slab = get_partial_node(s, get_node(s, searchnode), pc);
+ if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
+ return slab;
+
+ return get_any_partial(s, pc);
}
-#ifdef CONFIG_PREEMPT
+#ifdef CONFIG_PREEMPTION
/*
- * Calculate the next globally unique transaction for disambiguiation
+ * Calculate the next globally unique transaction for disambiguation
* during cmpxchg. The transactions start with the cpu number and are then
* incremented by CONFIG_NR_CPUS.
*/
@@ -1686,13 +3647,14 @@ static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
* different cpus.
*/
#define TID_STEP 1
-#endif
+#endif /* CONFIG_PREEMPTION */
static inline unsigned long next_tid(unsigned long tid)
{
return tid + TID_STEP;
}
+#ifdef SLUB_DEBUG_CMPXCHG
static inline unsigned int tid_to_cpu(unsigned long tid)
{
return tid % TID_STEP;
@@ -1702,6 +3664,7 @@ static inline unsigned long tid_to_event(unsigned long tid)
{
return tid / TID_STEP;
}
+#endif
static inline unsigned int init_tid(int cpu)
{
@@ -1714,495 +3677,761 @@ static inline void note_cmpxchg_failure(const char *n,
#ifdef SLUB_DEBUG_CMPXCHG
unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
- printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
+ pr_info("%s %s: cmpxchg redo ", n, s->name);
-#ifdef CONFIG_PREEMPT
- if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
- printk("due to cpu change %d -> %d\n",
+ if (IS_ENABLED(CONFIG_PREEMPTION) &&
+ tid_to_cpu(tid) != tid_to_cpu(actual_tid)) {
+ pr_warn("due to cpu change %d -> %d\n",
tid_to_cpu(tid), tid_to_cpu(actual_tid));
- else
-#endif
- if (tid_to_event(tid) != tid_to_event(actual_tid))
- printk("due to cpu running other code. Event %ld->%ld\n",
+ } else if (tid_to_event(tid) != tid_to_event(actual_tid)) {
+ pr_warn("due to cpu running other code. Event %ld->%ld\n",
tid_to_event(tid), tid_to_event(actual_tid));
- else
- printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
+ } else {
+ pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
actual_tid, tid, next_tid(tid));
+ }
#endif
stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
}
static void init_kmem_cache_cpus(struct kmem_cache *s)
{
+#ifdef CONFIG_PREEMPT_RT
+ /*
+ * Register lockdep key for non-boot kmem caches to avoid
+ * WARN_ON_ONCE(static_obj(key))) in lockdep_register_key()
+ */
+ bool finegrain_lockdep = !init_section_contains(s, 1);
+#else
+ /*
+ * Don't bother with different lockdep classes for each
+ * kmem_cache, since we only use local_trylock_irqsave().
+ */
+ bool finegrain_lockdep = false;
+#endif
int cpu;
+ struct kmem_cache_cpu *c;
- for_each_possible_cpu(cpu)
- per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
+ if (finegrain_lockdep)
+ lockdep_register_key(&s->lock_key);
+ for_each_possible_cpu(cpu) {
+ c = per_cpu_ptr(s->cpu_slab, cpu);
+ local_trylock_init(&c->lock);
+ if (finegrain_lockdep)
+ lockdep_set_class(&c->lock, &s->lock_key);
+ c->tid = init_tid(cpu);
+ }
}
/*
- * Remove the cpu slab
+ * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
+ * unfreezes the slabs and puts it on the proper list.
+ * Assumes the slab has been already safely taken away from kmem_cache_cpu
+ * by the caller.
*/
-static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
+static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
+ void *freelist)
{
- enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
- struct kmem_cache_node *n = get_node(s, page_to_nid(page));
- int lock = 0;
- enum slab_modes l = M_NONE, m = M_NONE;
- void *nextfree;
+ struct kmem_cache_node *n = get_node(s, slab_nid(slab));
+ int free_delta = 0;
+ void *nextfree, *freelist_iter, *freelist_tail;
int tail = DEACTIVATE_TO_HEAD;
- struct page new;
- struct page old;
+ unsigned long flags = 0;
+ struct freelist_counters old, new;
- if (page->freelist) {
+ if (READ_ONCE(slab->freelist)) {
stat(s, DEACTIVATE_REMOTE_FREES);
tail = DEACTIVATE_TO_TAIL;
}
/*
- * Stage one: Free all available per cpu objects back
- * to the page freelist while it is still frozen. Leave the
- * last one.
- *
- * There is no need to take the list->lock because the page
- * is still frozen.
+ * Stage one: Count the objects on cpu's freelist as free_delta and
+ * remember the last object in freelist_tail for later splicing.
*/
- while (freelist && (nextfree = get_freepointer(s, freelist))) {
- void *prior;
- unsigned long counters;
+ freelist_tail = NULL;
+ freelist_iter = freelist;
+ while (freelist_iter) {
+ nextfree = get_freepointer(s, freelist_iter);
- do {
- prior = page->freelist;
- counters = page->counters;
- set_freepointer(s, freelist, prior);
- new.counters = counters;
- new.inuse--;
- VM_BUG_ON(!new.frozen);
+ /*
+ * If 'nextfree' is invalid, it is possible that the object at
+ * 'freelist_iter' is already corrupted. So isolate all objects
+ * starting at 'freelist_iter' by skipping them.
+ */
+ if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
+ break;
- } while (!__cmpxchg_double_slab(s, page,
- prior, counters,
- freelist, new.counters,
- "drain percpu freelist"));
+ freelist_tail = freelist_iter;
+ free_delta++;
- freelist = nextfree;
+ freelist_iter = nextfree;
}
/*
- * Stage two: Ensure that the page is unfrozen while the
- * list presence reflects the actual number of objects
- * during unfreeze.
- *
- * We setup the list membership and then perform a cmpxchg
- * with the count. If there is a mismatch then the page
- * is not unfrozen but the page is on the wrong list.
- *
- * Then we restart the process which may have to remove
- * the page from the list that we just put it on again
- * because the number of objects in the slab may have
- * changed.
+ * Stage two: Unfreeze the slab while splicing the per-cpu
+ * freelist to the head of slab's freelist.
*/
-redo:
-
- old.freelist = page->freelist;
- old.counters = page->counters;
- VM_BUG_ON(!old.frozen);
-
- /* Determine target state of the slab */
- new.counters = old.counters;
- if (freelist) {
- new.inuse--;
- set_freepointer(s, freelist, old.freelist);
- new.freelist = freelist;
- } else
- new.freelist = old.freelist;
-
- new.frozen = 0;
-
- if (!new.inuse && n->nr_partial > s->min_partial)
- m = M_FREE;
- else if (new.freelist) {
- m = M_PARTIAL;
- if (!lock) {
- lock = 1;
- /*
- * Taking the spinlock removes the possiblity
- * that acquire_slab() will see a slab page that
- * is frozen
- */
- spin_lock(&n->list_lock);
- }
- } else {
- m = M_FULL;
- if (kmem_cache_debug(s) && !lock) {
- lock = 1;
- /*
- * This also ensures that the scanning of full
- * slabs from diagnostic functions will not see
- * any frozen slabs.
- */
- spin_lock(&n->list_lock);
- }
- }
-
- if (l != m) {
-
- if (l == M_PARTIAL)
-
- remove_partial(n, page);
-
- else if (l == M_FULL)
-
- remove_full(s, page);
-
- if (m == M_PARTIAL) {
-
- add_partial(n, page, tail);
- stat(s, tail);
-
- } else if (m == M_FULL) {
-
- stat(s, DEACTIVATE_FULL);
- add_full(s, n, page);
-
+ do {
+ old.freelist = READ_ONCE(slab->freelist);
+ old.counters = READ_ONCE(slab->counters);
+ VM_BUG_ON(!old.frozen);
+
+ /* Determine target state of the slab */
+ new.counters = old.counters;
+ new.frozen = 0;
+ if (freelist_tail) {
+ new.inuse -= free_delta;
+ set_freepointer(s, freelist_tail, old.freelist);
+ new.freelist = freelist;
+ } else {
+ new.freelist = old.freelist;
}
- }
+ } while (!slab_update_freelist(s, slab, &old, &new, "unfreezing slab"));
- l = m;
- if (!__cmpxchg_double_slab(s, page,
- old.freelist, old.counters,
- new.freelist, new.counters,
- "unfreezing slab"))
- goto redo;
-
- if (lock)
- spin_unlock(&n->list_lock);
-
- if (m == M_FREE) {
+ /*
+ * Stage three: Manipulate the slab list based on the updated state.
+ */
+ if (!new.inuse && n->nr_partial >= s->min_partial) {
stat(s, DEACTIVATE_EMPTY);
- discard_slab(s, page);
+ discard_slab(s, slab);
stat(s, FREE_SLAB);
+ } else if (new.freelist) {
+ spin_lock_irqsave(&n->list_lock, flags);
+ add_partial(n, slab, tail);
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ stat(s, tail);
+ } else {
+ stat(s, DEACTIVATE_FULL);
}
}
/*
- * Unfreeze all the cpu partial slabs.
+ * ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock
+ * can be acquired without a deadlock before invoking the function.
*
- * This function must be called with interrupts disabled
- * for the cpu using c (or some other guarantee must be there
- * to guarantee no concurrent accesses).
+ * Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is
+ * using local_lock_is_locked() properly before calling local_lock_cpu_slab(),
+ * and kmalloc() is not used in an unsupported context.
+ *
+ * With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave().
+ * On !PREEMPT_RT we use trylock to avoid false positives in NMI, but
+ * lockdep_assert() will catch a bug in case:
+ * #1
+ * kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock()
+ * or
+ * #2
+ * kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock()
+ *
+ * On PREEMPT_RT an invocation is not possible from IRQ-off or preempt
+ * disabled context. The lock will always be acquired and if needed it
+ * block and sleep until the lock is available.
+ * #1 is possible in !PREEMPT_RT only.
+ * #2 is possible in both with a twist that irqsave is replaced with rt_spinlock:
+ * kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) ->
+ * tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B)
+ *
+ * local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B
*/
-static void unfreeze_partials(struct kmem_cache *s,
- struct kmem_cache_cpu *c)
-{
+#if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP)
+#define local_lock_cpu_slab(s, flags) \
+ local_lock_irqsave(&(s)->cpu_slab->lock, flags)
+#else
+#define local_lock_cpu_slab(s, flags) \
+ do { \
+ bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \
+ lockdep_assert(__l); \
+ } while (0)
+#endif
+
+#define local_unlock_cpu_slab(s, flags) \
+ local_unlock_irqrestore(&(s)->cpu_slab->lock, flags)
+
#ifdef CONFIG_SLUB_CPU_PARTIAL
+static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
+{
struct kmem_cache_node *n = NULL, *n2 = NULL;
- struct page *page, *discard_page = NULL;
+ struct slab *slab, *slab_to_discard = NULL;
+ unsigned long flags = 0;
- while ((page = c->partial)) {
- struct page new;
- struct page old;
+ while (partial_slab) {
+ slab = partial_slab;
+ partial_slab = slab->next;
- c->partial = page->next;
-
- n2 = get_node(s, page_to_nid(page));
+ n2 = get_node(s, slab_nid(slab));
if (n != n2) {
if (n)
- spin_unlock(&n->list_lock);
+ spin_unlock_irqrestore(&n->list_lock, flags);
n = n2;
- spin_lock(&n->list_lock);
+ spin_lock_irqsave(&n->list_lock, flags);
}
- do {
-
- old.freelist = page->freelist;
- old.counters = page->counters;
- VM_BUG_ON(!old.frozen);
-
- new.counters = old.counters;
- new.freelist = old.freelist;
-
- new.frozen = 0;
-
- } while (!__cmpxchg_double_slab(s, page,
- old.freelist, old.counters,
- new.freelist, new.counters,
- "unfreezing slab"));
-
- if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
- page->next = discard_page;
- discard_page = page;
+ if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
+ slab->next = slab_to_discard;
+ slab_to_discard = slab;
} else {
- add_partial(n, page, DEACTIVATE_TO_TAIL);
+ add_partial(n, slab, DEACTIVATE_TO_TAIL);
stat(s, FREE_ADD_PARTIAL);
}
}
if (n)
- spin_unlock(&n->list_lock);
+ spin_unlock_irqrestore(&n->list_lock, flags);
- while (discard_page) {
- page = discard_page;
- discard_page = discard_page->next;
+ while (slab_to_discard) {
+ slab = slab_to_discard;
+ slab_to_discard = slab_to_discard->next;
stat(s, DEACTIVATE_EMPTY);
- discard_slab(s, page);
+ discard_slab(s, slab);
stat(s, FREE_SLAB);
}
-#endif
}
/*
- * Put a page that was just frozen (in __slab_free) into a partial page
- * slot if available. This is done without interrupts disabled and without
- * preemption disabled. The cmpxchg is racy and may put the partial page
- * onto a random cpus partial slot.
+ * Put all the cpu partial slabs to the node partial list.
+ */
+static void put_partials(struct kmem_cache *s)
+{
+ struct slab *partial_slab;
+ unsigned long flags;
+
+ local_lock_irqsave(&s->cpu_slab->lock, flags);
+ partial_slab = this_cpu_read(s->cpu_slab->partial);
+ this_cpu_write(s->cpu_slab->partial, NULL);
+ local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+
+ if (partial_slab)
+ __put_partials(s, partial_slab);
+}
+
+static void put_partials_cpu(struct kmem_cache *s,
+ struct kmem_cache_cpu *c)
+{
+ struct slab *partial_slab;
+
+ partial_slab = slub_percpu_partial(c);
+ c->partial = NULL;
+
+ if (partial_slab)
+ __put_partials(s, partial_slab);
+}
+
+/*
+ * Put a slab into a partial slab slot if available.
*
* If we did not find a slot then simply move all the partials to the
* per node partial list.
*/
-static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
+static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
{
-#ifdef CONFIG_SLUB_CPU_PARTIAL
- struct page *oldpage;
- int pages;
- int pobjects;
+ struct slab *oldslab;
+ struct slab *slab_to_put = NULL;
+ unsigned long flags;
+ int slabs = 0;
- if (!s->cpu_partial)
- return;
+ local_lock_cpu_slab(s, flags);
- do {
- pages = 0;
- pobjects = 0;
- oldpage = this_cpu_read(s->cpu_slab->partial);
-
- if (oldpage) {
- pobjects = oldpage->pobjects;
- pages = oldpage->pages;
- if (drain && pobjects > s->cpu_partial) {
- unsigned long flags;
- /*
- * partial array is full. Move the existing
- * set to the per node partial list.
- */
- local_irq_save(flags);
- unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
- local_irq_restore(flags);
- oldpage = NULL;
- pobjects = 0;
- pages = 0;
- stat(s, CPU_PARTIAL_DRAIN);
- }
+ oldslab = this_cpu_read(s->cpu_slab->partial);
+
+ if (oldslab) {
+ if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
+ /*
+ * Partial array is full. Move the existing set to the
+ * per node partial list. Postpone the actual unfreezing
+ * outside of the critical section.
+ */
+ slab_to_put = oldslab;
+ oldslab = NULL;
+ } else {
+ slabs = oldslab->slabs;
}
+ }
- pages++;
- pobjects += page->objects - page->inuse;
+ slabs++;
- page->pages = pages;
- page->pobjects = pobjects;
- page->next = oldpage;
+ slab->slabs = slabs;
+ slab->next = oldslab;
- } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
-#endif
+ this_cpu_write(s->cpu_slab->partial, slab);
+
+ local_unlock_cpu_slab(s, flags);
+
+ if (slab_to_put) {
+ __put_partials(s, slab_to_put);
+ stat(s, CPU_PARTIAL_DRAIN);
+ }
}
+#else /* CONFIG_SLUB_CPU_PARTIAL */
+
+static inline void put_partials(struct kmem_cache *s) { }
+static inline void put_partials_cpu(struct kmem_cache *s,
+ struct kmem_cache_cpu *c) { }
+
+#endif /* CONFIG_SLUB_CPU_PARTIAL */
+
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
- stat(s, CPUSLAB_FLUSH);
- deactivate_slab(s, c->page, c->freelist);
+ unsigned long flags;
+ struct slab *slab;
+ void *freelist;
+
+ local_lock_irqsave(&s->cpu_slab->lock, flags);
+
+ slab = c->slab;
+ freelist = c->freelist;
+ c->slab = NULL;
+ c->freelist = NULL;
c->tid = next_tid(c->tid);
- c->page = NULL;
+
+ local_unlock_irqrestore(&s->cpu_slab->lock, flags);
+
+ if (slab) {
+ deactivate_slab(s, slab, freelist);
+ stat(s, CPUSLAB_FLUSH);
+ }
+}
+
+static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
+{
+ struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
+ void *freelist = c->freelist;
+ struct slab *slab = c->slab;
+
+ c->slab = NULL;
c->freelist = NULL;
+ c->tid = next_tid(c->tid);
+
+ if (slab) {
+ deactivate_slab(s, slab, freelist);
+ stat(s, CPUSLAB_FLUSH);
+ }
+
+ put_partials_cpu(s, c);
+}
+
+static inline void flush_this_cpu_slab(struct kmem_cache *s)
+{
+ struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
+
+ if (c->slab)
+ flush_slab(s, c);
+
+ put_partials(s);
+}
+
+static bool has_cpu_slab(int cpu, struct kmem_cache *s)
+{
+ struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
+
+ return c->slab || slub_percpu_partial(c);
+}
+
+static bool has_pcs_used(int cpu, struct kmem_cache *s)
+{
+ struct slub_percpu_sheaves *pcs;
+
+ if (!s->cpu_sheaves)
+ return false;
+
+ pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
+
+ return (pcs->spare || pcs->rcu_free || pcs->main->size);
}
/*
* Flush cpu slab.
*
- * Called from IPI handler with interrupts disabled.
+ * Called from CPU work handler with migration disabled.
*/
-static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
+static void flush_cpu_slab(struct work_struct *w)
{
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
+ struct kmem_cache *s;
+ struct slub_flush_work *sfw;
+
+ sfw = container_of(w, struct slub_flush_work, work);
- if (likely(c)) {
- if (c->page)
- flush_slab(s, c);
+ s = sfw->s;
- unfreeze_partials(s, c);
+ if (s->cpu_sheaves)
+ pcs_flush_all(s);
+
+ flush_this_cpu_slab(s);
+}
+
+static void flush_all_cpus_locked(struct kmem_cache *s)
+{
+ struct slub_flush_work *sfw;
+ unsigned int cpu;
+
+ lockdep_assert_cpus_held();
+ mutex_lock(&flush_lock);
+
+ for_each_online_cpu(cpu) {
+ sfw = &per_cpu(slub_flush, cpu);
+ if (!has_cpu_slab(cpu, s) && !has_pcs_used(cpu, s)) {
+ sfw->skip = true;
+ continue;
+ }
+ INIT_WORK(&sfw->work, flush_cpu_slab);
+ sfw->skip = false;
+ sfw->s = s;
+ queue_work_on(cpu, flushwq, &sfw->work);
}
+
+ for_each_online_cpu(cpu) {
+ sfw = &per_cpu(slub_flush, cpu);
+ if (sfw->skip)
+ continue;
+ flush_work(&sfw->work);
+ }
+
+ mutex_unlock(&flush_lock);
}
-static void flush_cpu_slab(void *d)
+static void flush_all(struct kmem_cache *s)
{
- struct kmem_cache *s = d;
+ cpus_read_lock();
+ flush_all_cpus_locked(s);
+ cpus_read_unlock();
+}
- __flush_cpu_slab(s, smp_processor_id());
+static void flush_rcu_sheaf(struct work_struct *w)
+{
+ struct slub_percpu_sheaves *pcs;
+ struct slab_sheaf *rcu_free;
+ struct slub_flush_work *sfw;
+ struct kmem_cache *s;
+
+ sfw = container_of(w, struct slub_flush_work, work);
+ s = sfw->s;
+
+ local_lock(&s->cpu_sheaves->lock);
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ rcu_free = pcs->rcu_free;
+ pcs->rcu_free = NULL;
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ if (rcu_free)
+ call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
}
-static bool has_cpu_slab(int cpu, void *info)
+
+/* needed for kvfree_rcu_barrier() */
+void flush_all_rcu_sheaves(void)
{
- struct kmem_cache *s = info;
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
+ struct slub_flush_work *sfw;
+ struct kmem_cache *s;
+ unsigned int cpu;
+
+ cpus_read_lock();
+ mutex_lock(&slab_mutex);
+
+ list_for_each_entry(s, &slab_caches, list) {
+ if (!s->cpu_sheaves)
+ continue;
+
+ mutex_lock(&flush_lock);
+
+ for_each_online_cpu(cpu) {
+ sfw = &per_cpu(slub_flush, cpu);
+
+ /*
+ * we don't check if rcu_free sheaf exists - racing
+ * __kfree_rcu_sheaf() might have just removed it.
+ * by executing flush_rcu_sheaf() on the cpu we make
+ * sure the __kfree_rcu_sheaf() finished its call_rcu()
+ */
+
+ INIT_WORK(&sfw->work, flush_rcu_sheaf);
+ sfw->s = s;
+ queue_work_on(cpu, flushwq, &sfw->work);
+ }
+
+ for_each_online_cpu(cpu) {
+ sfw = &per_cpu(slub_flush, cpu);
+ flush_work(&sfw->work);
+ }
+
+ mutex_unlock(&flush_lock);
+ }
+
+ mutex_unlock(&slab_mutex);
+ cpus_read_unlock();
- return c->page || c->partial;
+ rcu_barrier();
}
-static void flush_all(struct kmem_cache *s)
+/*
+ * Use the cpu notifier to insure that the cpu slabs are flushed when
+ * necessary.
+ */
+static int slub_cpu_dead(unsigned int cpu)
{
- on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
+ struct kmem_cache *s;
+
+ mutex_lock(&slab_mutex);
+ list_for_each_entry(s, &slab_caches, list) {
+ __flush_cpu_slab(s, cpu);
+ if (s->cpu_sheaves)
+ __pcs_flush_all_cpu(s, cpu);
+ }
+ mutex_unlock(&slab_mutex);
+ return 0;
}
/*
* Check if the objects in a per cpu structure fit numa
* locality expectations.
*/
-static inline int node_match(struct page *page, int node)
+static inline int node_match(struct slab *slab, int node)
{
#ifdef CONFIG_NUMA
- if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
+ if (node != NUMA_NO_NODE && slab_nid(slab) != node)
return 0;
#endif
return 1;
}
-static int count_free(struct page *page)
+#ifdef CONFIG_SLUB_DEBUG
+static int count_free(struct slab *slab)
+{
+ return slab->objects - slab->inuse;
+}
+
+static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
+{
+ return atomic_long_read(&n->total_objects);
+}
+
+/* Supports checking bulk free of a constructed freelist */
+static inline bool free_debug_processing(struct kmem_cache *s,
+ struct slab *slab, void *head, void *tail, int *bulk_cnt,
+ unsigned long addr, depot_stack_handle_t handle)
{
- return page->objects - page->inuse;
+ bool checks_ok = false;
+ void *object = head;
+ int cnt = 0;
+
+ if (s->flags & SLAB_CONSISTENCY_CHECKS) {
+ if (!check_slab(s, slab))
+ goto out;
+ }
+
+ if (slab->inuse < *bulk_cnt) {
+ slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
+ slab->inuse, *bulk_cnt);
+ goto out;
+ }
+
+next_object:
+
+ if (++cnt > *bulk_cnt)
+ goto out_cnt;
+
+ if (s->flags & SLAB_CONSISTENCY_CHECKS) {
+ if (!free_consistency_checks(s, slab, object, addr))
+ goto out;
+ }
+
+ if (s->flags & SLAB_STORE_USER)
+ set_track_update(s, object, TRACK_FREE, addr, handle);
+ trace(s, slab, object, 0);
+ /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
+ init_object(s, object, SLUB_RED_INACTIVE);
+
+ /* Reached end of constructed freelist yet? */
+ if (object != tail) {
+ object = get_freepointer(s, object);
+ goto next_object;
+ }
+ checks_ok = true;
+
+out_cnt:
+ if (cnt != *bulk_cnt) {
+ slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
+ *bulk_cnt, cnt);
+ *bulk_cnt = cnt;
+ }
+
+out:
+
+ if (!checks_ok)
+ slab_fix(s, "Object at 0x%p not freed", object);
+
+ return checks_ok;
}
+#endif /* CONFIG_SLUB_DEBUG */
+#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
static unsigned long count_partial(struct kmem_cache_node *n,
- int (*get_count)(struct page *))
+ int (*get_count)(struct slab *))
{
unsigned long flags;
unsigned long x = 0;
- struct page *page;
+ struct slab *slab;
spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru)
- x += get_count(page);
+ list_for_each_entry(slab, &n->partial, slab_list)
+ x += get_count(slab);
spin_unlock_irqrestore(&n->list_lock, flags);
return x;
}
+#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
-static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
-{
#ifdef CONFIG_SLUB_DEBUG
- return atomic_long_read(&n->total_objects);
-#else
- return 0;
-#endif
+#define MAX_PARTIAL_TO_SCAN 10000
+
+static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
+{
+ unsigned long flags;
+ unsigned long x = 0;
+ struct slab *slab;
+
+ spin_lock_irqsave(&n->list_lock, flags);
+ if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
+ list_for_each_entry(slab, &n->partial, slab_list)
+ x += slab->objects - slab->inuse;
+ } else {
+ /*
+ * For a long list, approximate the total count of objects in
+ * it to meet the limit on the number of slabs to scan.
+ * Scan from both the list's head and tail for better accuracy.
+ */
+ unsigned long scanned = 0;
+
+ list_for_each_entry(slab, &n->partial, slab_list) {
+ x += slab->objects - slab->inuse;
+ if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
+ break;
+ }
+ list_for_each_entry_reverse(slab, &n->partial, slab_list) {
+ x += slab->objects - slab->inuse;
+ if (++scanned == MAX_PARTIAL_TO_SCAN)
+ break;
+ }
+ x = mult_frac(x, n->nr_partial, scanned);
+ x = min(x, node_nr_objs(n));
+ }
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ return x;
}
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
+ static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
+ DEFAULT_RATELIMIT_BURST);
+ int cpu = raw_smp_processor_id();
int node;
+ struct kmem_cache_node *n;
+
+ if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
+ return;
- printk(KERN_WARNING
- "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
- nid, gfpflags);
- printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
- "default order: %d, min order: %d\n", s->name, s->object_size,
- s->size, oo_order(s->oo), oo_order(s->min));
+ pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
+ cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
+ pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
+ s->name, s->object_size, s->size, oo_order(s->oo),
+ oo_order(s->min));
if (oo_order(s->min) > get_order(s->object_size))
- printk(KERN_WARNING " %s debugging increased min order, use "
- "slub_debug=O to disable.\n", s->name);
+ pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
+ s->name);
- for_each_online_node(node) {
- struct kmem_cache_node *n = get_node(s, node);
+ for_each_kmem_cache_node(s, node, n) {
unsigned long nr_slabs;
unsigned long nr_objs;
unsigned long nr_free;
- if (!n)
- continue;
-
- nr_free = count_partial(n, count_free);
+ nr_free = count_partial_free_approx(n);
nr_slabs = node_nr_slabs(n);
nr_objs = node_nr_objs(n);
- printk(KERN_WARNING
- " node %d: slabs: %ld, objs: %ld, free: %ld\n",
+ pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
node, nr_slabs, nr_objs, nr_free);
}
}
+#else /* CONFIG_SLUB_DEBUG */
+static inline void
+slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
+#endif
-static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
- int node, struct kmem_cache_cpu **pc)
+static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
{
- void *freelist;
- struct kmem_cache_cpu *c = *pc;
- struct page *page;
+ if (unlikely(slab_test_pfmemalloc(slab)))
+ return gfp_pfmemalloc_allowed(gfpflags);
- freelist = get_partial(s, flags, node, c);
+ return true;
+}
- if (freelist)
- return freelist;
+static inline bool
+__update_cpu_freelist_fast(struct kmem_cache *s,
+ void *freelist_old, void *freelist_new,
+ unsigned long tid)
+{
+ struct freelist_tid old = { .freelist = freelist_old, .tid = tid };
+ struct freelist_tid new = { .freelist = freelist_new, .tid = next_tid(tid) };
- page = new_slab(s, flags, node);
- if (page) {
- c = __this_cpu_ptr(s->cpu_slab);
- if (c->page)
- flush_slab(s, c);
+ return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid,
+ &old.freelist_tid, new.freelist_tid);
+}
- /*
- * No other reference to the page yet so we can
- * muck around with it freely without cmpxchg
- */
- freelist = page->freelist;
- page->freelist = NULL;
+/*
+ * Check the slab->freelist and either transfer the freelist to the
+ * per cpu freelist or deactivate the slab.
+ *
+ * The slab is still frozen if the return value is not NULL.
+ *
+ * If this function returns NULL then the slab has been unfrozen.
+ */
+static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
+{
+ struct freelist_counters old, new;
- stat(s, ALLOC_SLAB);
- c->page = page;
- *pc = c;
- } else
- freelist = NULL;
+ lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
- return freelist;
-}
+ do {
+ old.freelist = slab->freelist;
+ old.counters = slab->counters;
-static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
-{
- if (unlikely(PageSlabPfmemalloc(page)))
- return gfp_pfmemalloc_allowed(gfpflags);
+ new.freelist = NULL;
+ new.counters = old.counters;
- return true;
+ new.inuse = old.objects;
+ new.frozen = old.freelist != NULL;
+
+
+ } while (!__slab_update_freelist(s, slab, &old, &new, "get_freelist"));
+
+ return old.freelist;
}
/*
- * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
- * or deactivate the page.
- *
- * The page is still frozen if the return value is not NULL.
- *
- * If this function returns NULL then the page has been unfrozen.
- *
- * This function must be called with interrupt disabled.
+ * Freeze the partial slab and return the pointer to the freelist.
*/
-static inline void *get_freelist(struct kmem_cache *s, struct page *page)
+static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
{
- struct page new;
- unsigned long counters;
- void *freelist;
+ struct freelist_counters old, new;
do {
- freelist = page->freelist;
- counters = page->counters;
+ old.freelist = slab->freelist;
+ old.counters = slab->counters;
- new.counters = counters;
- VM_BUG_ON(!new.frozen);
+ new.freelist = NULL;
+ new.counters = old.counters;
+ VM_BUG_ON(new.frozen);
- new.inuse = page->objects;
- new.frozen = freelist != NULL;
+ new.inuse = old.objects;
+ new.frozen = 1;
- } while (!__cmpxchg_double_slab(s, page,
- freelist, counters,
- NULL, new.counters,
- "get_freelist"));
+ } while (!slab_update_freelist(s, slab, &old, &new, "freeze_slab"));
- return freelist;
+ return old.freelist;
}
/*
@@ -2220,60 +4449,86 @@ static inline void *get_freelist(struct kmem_cache *s, struct page *page)
* And if we were unable to get a new slab from the partial slab lists then
* we need to allocate a new slab. This is the slowest path since it involves
* a call to the page allocator and the setup of a new slab.
+ *
+ * Version of __slab_alloc to use when we know that preemption is
+ * already disabled (which is the case for bulk allocation).
*/
-static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
- unsigned long addr, struct kmem_cache_cpu *c)
+static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
+ unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
{
+ bool allow_spin = gfpflags_allow_spinning(gfpflags);
void *freelist;
- struct page *page;
+ struct slab *slab;
unsigned long flags;
+ struct partial_context pc;
+ bool try_thisnode = true;
- local_irq_save(flags);
-#ifdef CONFIG_PREEMPT
- /*
- * We may have been preempted and rescheduled on a different
- * cpu before disabling interrupts. Need to reload cpu area
- * pointer.
- */
- c = this_cpu_ptr(s->cpu_slab);
-#endif
+ stat(s, ALLOC_SLOWPATH);
- page = c->page;
- if (!page)
- goto new_slab;
-redo:
+reread_slab:
- if (unlikely(!node_match(page, node))) {
- stat(s, ALLOC_NODE_MISMATCH);
- deactivate_slab(s, page, c->freelist);
- c->page = NULL;
- c->freelist = NULL;
+ slab = READ_ONCE(c->slab);
+ if (!slab) {
+ /*
+ * if the node is not online or has no normal memory, just
+ * ignore the node constraint
+ */
+ if (unlikely(node != NUMA_NO_NODE &&
+ !node_isset(node, slab_nodes)))
+ node = NUMA_NO_NODE;
goto new_slab;
}
+ if (unlikely(!node_match(slab, node))) {
+ /*
+ * same as above but node_match() being false already
+ * implies node != NUMA_NO_NODE.
+ *
+ * We don't strictly honor pfmemalloc and NUMA preferences
+ * when !allow_spin because:
+ *
+ * 1. Most kmalloc() users allocate objects on the local node,
+ * so kmalloc_nolock() tries not to interfere with them by
+ * deactivating the cpu slab.
+ *
+ * 2. Deactivating due to NUMA or pfmemalloc mismatch may cause
+ * unnecessary slab allocations even when n->partial list
+ * is not empty.
+ */
+ if (!node_isset(node, slab_nodes) ||
+ !allow_spin) {
+ node = NUMA_NO_NODE;
+ } else {
+ stat(s, ALLOC_NODE_MISMATCH);
+ goto deactivate_slab;
+ }
+ }
+
/*
* By rights, we should be searching for a slab page that was
* PFMEMALLOC but right now, we are losing the pfmemalloc
* information when the page leaves the per-cpu allocator
*/
- if (unlikely(!pfmemalloc_match(page, gfpflags))) {
- deactivate_slab(s, page, c->freelist);
- c->page = NULL;
- c->freelist = NULL;
- goto new_slab;
- }
+ if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin))
+ goto deactivate_slab;
- /* must check again c->freelist in case of cpu migration or IRQ */
+ /* must check again c->slab in case we got preempted and it changed */
+ local_lock_cpu_slab(s, flags);
+
+ if (unlikely(slab != c->slab)) {
+ local_unlock_cpu_slab(s, flags);
+ goto reread_slab;
+ }
freelist = c->freelist;
if (freelist)
goto load_freelist;
- stat(s, ALLOC_SLOWPATH);
-
- freelist = get_freelist(s, page);
+ freelist = get_freelist(s, slab);
if (!freelist) {
- c->page = NULL;
+ c->slab = NULL;
+ c->tid = next_tid(c->tid);
+ local_unlock_cpu_slab(s, flags);
stat(s, DEACTIVATE_BYPASS);
goto new_slab;
}
@@ -2281,74 +4536,257 @@ redo:
stat(s, ALLOC_REFILL);
load_freelist:
+
+ lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
+
/*
* freelist is pointing to the list of objects to be used.
- * page is pointing to the page from which the objects are obtained.
- * That page must be frozen for per cpu allocations to work.
+ * slab is pointing to the slab from which the objects are obtained.
+ * That slab must be frozen for per cpu allocations to work.
*/
- VM_BUG_ON(!c->page->frozen);
+ VM_BUG_ON(!c->slab->frozen);
c->freelist = get_freepointer(s, freelist);
c->tid = next_tid(c->tid);
- local_irq_restore(flags);
+ local_unlock_cpu_slab(s, flags);
return freelist;
+deactivate_slab:
+
+ local_lock_cpu_slab(s, flags);
+ if (slab != c->slab) {
+ local_unlock_cpu_slab(s, flags);
+ goto reread_slab;
+ }
+ freelist = c->freelist;
+ c->slab = NULL;
+ c->freelist = NULL;
+ c->tid = next_tid(c->tid);
+ local_unlock_cpu_slab(s, flags);
+ deactivate_slab(s, slab, freelist);
+
new_slab:
- if (c->partial) {
- page = c->page = c->partial;
- c->partial = page->next;
- stat(s, CPU_PARTIAL_ALLOC);
- c->freelist = NULL;
- goto redo;
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+ while (slub_percpu_partial(c)) {
+ local_lock_cpu_slab(s, flags);
+ if (unlikely(c->slab)) {
+ local_unlock_cpu_slab(s, flags);
+ goto reread_slab;
+ }
+ if (unlikely(!slub_percpu_partial(c))) {
+ local_unlock_cpu_slab(s, flags);
+ /* we were preempted and partial list got empty */
+ goto new_objects;
+ }
+
+ slab = slub_percpu_partial(c);
+ slub_set_percpu_partial(c, slab);
+
+ if (likely(node_match(slab, node) &&
+ pfmemalloc_match(slab, gfpflags)) ||
+ !allow_spin) {
+ c->slab = slab;
+ freelist = get_freelist(s, slab);
+ VM_BUG_ON(!freelist);
+ stat(s, CPU_PARTIAL_ALLOC);
+ goto load_freelist;
+ }
+
+ local_unlock_cpu_slab(s, flags);
+
+ slab->next = NULL;
+ __put_partials(s, slab);
}
+#endif
- freelist = new_slab_objects(s, gfpflags, node, &c);
+new_objects:
- if (unlikely(!freelist)) {
- if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
- slab_out_of_memory(s, gfpflags, node);
+ pc.flags = gfpflags;
+ /*
+ * When a preferred node is indicated but no __GFP_THISNODE
+ *
+ * 1) try to get a partial slab from target node only by having
+ * __GFP_THISNODE in pc.flags for get_partial()
+ * 2) if 1) failed, try to allocate a new slab from target node with
+ * GPF_NOWAIT | __GFP_THISNODE opportunistically
+ * 3) if 2) failed, retry with original gfpflags which will allow
+ * get_partial() try partial lists of other nodes before potentially
+ * allocating new page from other nodes
+ */
+ if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
+ && try_thisnode)) {
+ if (unlikely(!allow_spin))
+ /* Do not upgrade gfp to NOWAIT from more restrictive mode */
+ pc.flags = gfpflags | __GFP_THISNODE;
+ else
+ pc.flags = GFP_NOWAIT | __GFP_THISNODE;
+ }
- local_irq_restore(flags);
+ pc.orig_size = orig_size;
+ slab = get_partial(s, node, &pc);
+ if (slab) {
+ if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
+ freelist = pc.object;
+ /*
+ * For debug caches here we had to go through
+ * alloc_single_from_partial() so just store the
+ * tracking info and return the object.
+ *
+ * Due to disabled preemption we need to disallow
+ * blocking. The flags are further adjusted by
+ * gfp_nested_mask() in stack_depot itself.
+ */
+ if (s->flags & SLAB_STORE_USER)
+ set_track(s, freelist, TRACK_ALLOC, addr,
+ gfpflags & ~(__GFP_DIRECT_RECLAIM));
+
+ return freelist;
+ }
+
+ freelist = freeze_slab(s, slab);
+ goto retry_load_slab;
+ }
+
+ slub_put_cpu_ptr(s->cpu_slab);
+ slab = new_slab(s, pc.flags, node);
+ c = slub_get_cpu_ptr(s->cpu_slab);
+
+ if (unlikely(!slab)) {
+ if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
+ && try_thisnode) {
+ try_thisnode = false;
+ goto new_objects;
+ }
+ slab_out_of_memory(s, gfpflags, node);
return NULL;
}
- page = c->page;
- if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
- goto load_freelist;
+ stat(s, ALLOC_SLAB);
- /* Only entered in the debug case */
- if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
- goto new_slab; /* Slab failed checks. Next slab needed */
+ if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
+ freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
- deactivate_slab(s, page, get_freepointer(s, freelist));
- c->page = NULL;
- c->freelist = NULL;
- local_irq_restore(flags);
- return freelist;
-}
+ if (unlikely(!freelist)) {
+ /* This could cause an endless loop. Fail instead. */
+ if (!allow_spin)
+ return NULL;
+ goto new_objects;
+ }
+
+ if (s->flags & SLAB_STORE_USER)
+ set_track(s, freelist, TRACK_ALLOC, addr,
+ gfpflags & ~(__GFP_DIRECT_RECLAIM));
+ return freelist;
+ }
+
+ /*
+ * No other reference to the slab yet so we can
+ * muck around with it freely without cmpxchg
+ */
+ freelist = slab->freelist;
+ slab->freelist = NULL;
+ slab->inuse = slab->objects;
+ slab->frozen = 1;
+
+ inc_slabs_node(s, slab_nid(slab), slab->objects);
+
+ if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) {
+ /*
+ * For !pfmemalloc_match() case we don't load freelist so that
+ * we don't make further mismatched allocations easier.
+ */
+ deactivate_slab(s, slab, get_freepointer(s, freelist));
+ return freelist;
+ }
+
+retry_load_slab:
+
+ local_lock_cpu_slab(s, flags);
+ if (unlikely(c->slab)) {
+ void *flush_freelist = c->freelist;
+ struct slab *flush_slab = c->slab;
+
+ c->slab = NULL;
+ c->freelist = NULL;
+ c->tid = next_tid(c->tid);
+
+ local_unlock_cpu_slab(s, flags);
+
+ if (unlikely(!allow_spin)) {
+ /* Reentrant slub cannot take locks, defer */
+ defer_deactivate_slab(flush_slab, flush_freelist);
+ } else {
+ deactivate_slab(s, flush_slab, flush_freelist);
+ }
+
+ stat(s, CPUSLAB_FLUSH);
+
+ goto retry_load_slab;
+ }
+ c->slab = slab;
+
+ goto load_freelist;
+}
/*
- * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
- * have the fastpath folded into their functions. So no function call
- * overhead for requests that can be satisfied on the fastpath.
+ * We disallow kprobes in ___slab_alloc() to prevent reentrance
*
- * The fastpath works by first checking if the lockless freelist can be used.
- * If not then __slab_alloc is called for slow processing.
+ * kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of
+ * ___slab_alloc() manipulating c->freelist -> kprobe -> bpf ->
+ * kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast()
+ * manipulating c->freelist without lock.
*
- * Otherwise we can simply pick the next object from the lockless free list.
+ * This does not prevent kprobe in functions called from ___slab_alloc() such as
+ * local_lock_irqsave() itself, and that is fine, we only need to protect the
+ * c->freelist manipulation in ___slab_alloc() itself.
*/
-static __always_inline void *slab_alloc_node(struct kmem_cache *s,
- gfp_t gfpflags, int node, unsigned long addr)
+NOKPROBE_SYMBOL(___slab_alloc);
+
+/*
+ * A wrapper for ___slab_alloc() for contexts where preemption is not yet
+ * disabled. Compensates for possible cpu changes by refetching the per cpu area
+ * pointer.
+ */
+static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
+ unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
+{
+ void *p;
+
+#ifdef CONFIG_PREEMPT_COUNT
+ /*
+ * We may have been preempted and rescheduled on a different
+ * cpu before disabling preemption. Need to reload cpu area
+ * pointer.
+ */
+ c = slub_get_cpu_ptr(s->cpu_slab);
+#endif
+ if (unlikely(!gfpflags_allow_spinning(gfpflags))) {
+ if (local_lock_is_locked(&s->cpu_slab->lock)) {
+ /*
+ * EBUSY is an internal signal to kmalloc_nolock() to
+ * retry a different bucket. It's not propagated
+ * to the caller.
+ */
+ p = ERR_PTR(-EBUSY);
+ goto out;
+ }
+ }
+ p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
+out:
+#ifdef CONFIG_PREEMPT_COUNT
+ slub_put_cpu_ptr(s->cpu_slab);
+#endif
+ return p;
+}
+
+static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
+ gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
{
- void **object;
struct kmem_cache_cpu *c;
- struct page *page;
+ struct slab *slab;
unsigned long tid;
+ void *object;
- if (slab_pre_alloc_hook(s, gfpflags))
- return NULL;
-
- s = memcg_kmem_get_cache(s, gfpflags);
redo:
/*
* Must read kmem_cache cpu data via this cpu ptr. Preemption is
@@ -2356,13 +4794,24 @@ redo:
* reading from one cpu area. That does not matter as long
* as we end up on the original cpu again when doing the cmpxchg.
*
- * Preemption is disabled for the retrieval of the tid because that
- * must occur from the current processor. We cannot allow rescheduling
- * on a different processor between the determination of the pointer
- * and the retrieval of the tid.
+ * We must guarantee that tid and kmem_cache_cpu are retrieved on the
+ * same cpu. We read first the kmem_cache_cpu pointer and use it to read
+ * the tid. If we are preempted and switched to another cpu between the
+ * two reads, it's OK as the two are still associated with the same cpu
+ * and cmpxchg later will validate the cpu.
+ */
+ c = raw_cpu_ptr(s->cpu_slab);
+ tid = READ_ONCE(c->tid);
+
+ /*
+ * Irqless object alloc/free algorithm used here depends on sequence
+ * of fetching cpu_slab's data. tid should be fetched before anything
+ * on c to guarantee that object and slab associated with previous tid
+ * won't be used with current tid. If we fetch tid first, object and
+ * slab could be one associated with next tid and our alloc/free
+ * request will be failed. In this case, we will retry. So, no problem.
*/
- preempt_disable();
- c = __this_cpu_ptr(s->cpu_slab);
+ barrier();
/*
* The transaction ids are globally unique per cpu and per operation on
@@ -2370,34 +4819,53 @@ redo:
* occurs on the right processor and that there was no operation on the
* linked list in between.
*/
- tid = c->tid;
- preempt_enable();
object = c->freelist;
- page = c->page;
- if (unlikely(!object || !page || !node_match(page, node)))
- object = __slab_alloc(s, gfpflags, node, addr, c);
+ slab = c->slab;
+
+#ifdef CONFIG_NUMA
+ if (static_branch_unlikely(&strict_numa) &&
+ node == NUMA_NO_NODE) {
+
+ struct mempolicy *mpol = current->mempolicy;
+
+ if (mpol) {
+ /*
+ * Special BIND rule support. If existing slab
+ * is in permitted set then do not redirect
+ * to a particular node.
+ * Otherwise we apply the memory policy to get
+ * the node we need to allocate on.
+ */
+ if (mpol->mode != MPOL_BIND || !slab ||
+ !node_isset(slab_nid(slab), mpol->nodes))
+
+ node = mempolicy_slab_node();
+ }
+ }
+#endif
- else {
+ if (!USE_LOCKLESS_FAST_PATH() ||
+ unlikely(!object || !slab || !node_match(slab, node))) {
+ object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
+ } else {
void *next_object = get_freepointer_safe(s, object);
/*
* The cmpxchg will only match if there was no additional
* operation and if we are on the right processor.
*
- * The cmpxchg does the following atomically (without lock semantics!)
+ * The cmpxchg does the following atomically (without lock
+ * semantics!)
* 1. Relocate first pointer to the current per cpu area.
* 2. Verify that tid and freelist have not been changed
* 3. If they were not changed replace tid and freelist
*
- * Since this is without lock semantics the protection is only against
- * code executing on this cpu *not* from access by other cpus.
+ * Since this is without lock semantics the protection is only
+ * against code executing on this cpu *not* from access by
+ * other cpus.
*/
- if (unlikely(!this_cpu_cmpxchg_double(
- s->cpu_slab->freelist, s->cpu_slab->tid,
- object, tid,
- next_object, next_tid(tid)))) {
-
+ if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
note_cmpxchg_failure("slab_alloc", s, tid);
goto redo;
}
@@ -2405,124 +4873,1048 @@ redo:
stat(s, ALLOC_FASTPATH);
}
- if (unlikely(gfpflags & __GFP_ZERO) && object)
- memset(object, 0, s->object_size);
+ return object;
+}
+
+/*
+ * If the object has been wiped upon free, make sure it's fully initialized by
+ * zeroing out freelist pointer.
+ *
+ * Note that we also wipe custom freelist pointers.
+ */
+static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
+ void *obj)
+{
+ if (unlikely(slab_want_init_on_free(s)) && obj &&
+ !freeptr_outside_object(s))
+ memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
+ 0, sizeof(void *));
+}
+
+static __fastpath_inline
+struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
+{
+ flags &= gfp_allowed_mask;
+
+ might_alloc(flags);
+
+ if (unlikely(should_failslab(s, flags)))
+ return NULL;
+
+ return s;
+}
+
+static __fastpath_inline
+bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
+ gfp_t flags, size_t size, void **p, bool init,
+ unsigned int orig_size)
+{
+ unsigned int zero_size = s->object_size;
+ bool kasan_init = init;
+ size_t i;
+ gfp_t init_flags = flags & gfp_allowed_mask;
+
+ /*
+ * For kmalloc object, the allocated memory size(object_size) is likely
+ * larger than the requested size(orig_size). If redzone check is
+ * enabled for the extra space, don't zero it, as it will be redzoned
+ * soon. The redzone operation for this extra space could be seen as a
+ * replacement of current poisoning under certain debug option, and
+ * won't break other sanity checks.
+ */
+ if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
+ (s->flags & SLAB_KMALLOC))
+ zero_size = orig_size;
+
+ /*
+ * When slab_debug is enabled, avoid memory initialization integrated
+ * into KASAN and instead zero out the memory via the memset below with
+ * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
+ * cause false-positive reports. This does not lead to a performance
+ * penalty on production builds, as slab_debug is not intended to be
+ * enabled there.
+ */
+ if (__slub_debug_enabled())
+ kasan_init = false;
+
+ /*
+ * As memory initialization might be integrated into KASAN,
+ * kasan_slab_alloc and initialization memset must be
+ * kept together to avoid discrepancies in behavior.
+ *
+ * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
+ */
+ for (i = 0; i < size; i++) {
+ p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
+ if (p[i] && init && (!kasan_init ||
+ !kasan_has_integrated_init()))
+ memset(p[i], 0, zero_size);
+ if (gfpflags_allow_spinning(flags))
+ kmemleak_alloc_recursive(p[i], s->object_size, 1,
+ s->flags, init_flags);
+ kmsan_slab_alloc(s, p[i], init_flags);
+ alloc_tagging_slab_alloc_hook(s, p[i], flags);
+ }
+
+ return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
+}
+
+/*
+ * Replace the empty main sheaf with a (at least partially) full sheaf.
+ *
+ * Must be called with the cpu_sheaves local lock locked. If successful, returns
+ * the pcs pointer and the local lock locked (possibly on a different cpu than
+ * initially called). If not successful, returns NULL and the local lock
+ * unlocked.
+ */
+static struct slub_percpu_sheaves *
+__pcs_replace_empty_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs, gfp_t gfp)
+{
+ struct slab_sheaf *empty = NULL;
+ struct slab_sheaf *full;
+ struct node_barn *barn;
+ bool can_alloc;
+
+ lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
+
+ if (pcs->spare && pcs->spare->size > 0) {
+ swap(pcs->main, pcs->spare);
+ return pcs;
+ }
+
+ barn = get_barn(s);
+ if (!barn) {
+ local_unlock(&s->cpu_sheaves->lock);
+ return NULL;
+ }
+
+ full = barn_replace_empty_sheaf(barn, pcs->main);
+
+ if (full) {
+ stat(s, BARN_GET);
+ pcs->main = full;
+ return pcs;
+ }
+
+ stat(s, BARN_GET_FAIL);
+
+ can_alloc = gfpflags_allow_blocking(gfp);
+
+ if (can_alloc) {
+ if (pcs->spare) {
+ empty = pcs->spare;
+ pcs->spare = NULL;
+ } else {
+ empty = barn_get_empty_sheaf(barn);
+ }
+ }
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ if (!can_alloc)
+ return NULL;
+
+ if (empty) {
+ if (!refill_sheaf(s, empty, gfp | __GFP_NOMEMALLOC)) {
+ full = empty;
+ } else {
+ /*
+ * we must be very low on memory so don't bother
+ * with the barn
+ */
+ free_empty_sheaf(s, empty);
+ }
+ } else {
+ full = alloc_full_sheaf(s, gfp);
+ }
+
+ if (!full)
+ return NULL;
+
+ /*
+ * we can reach here only when gfpflags_allow_blocking
+ * so this must not be an irq
+ */
+ local_lock(&s->cpu_sheaves->lock);
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ /*
+ * If we are returning empty sheaf, we either got it from the
+ * barn or had to allocate one. If we are returning a full
+ * sheaf, it's due to racing or being migrated to a different
+ * cpu. Breaching the barn's sheaf limits should be thus rare
+ * enough so just ignore them to simplify the recovery.
+ */
+
+ if (pcs->main->size == 0) {
+ barn_put_empty_sheaf(barn, pcs->main);
+ pcs->main = full;
+ return pcs;
+ }
+
+ if (!pcs->spare) {
+ pcs->spare = full;
+ return pcs;
+ }
+
+ if (pcs->spare->size == 0) {
+ barn_put_empty_sheaf(barn, pcs->spare);
+ pcs->spare = full;
+ return pcs;
+ }
+
+ barn_put_full_sheaf(barn, full);
+ stat(s, BARN_PUT);
+
+ return pcs;
+}
+
+static __fastpath_inline
+void *alloc_from_pcs(struct kmem_cache *s, gfp_t gfp, int node)
+{
+ struct slub_percpu_sheaves *pcs;
+ bool node_requested;
+ void *object;
+
+#ifdef CONFIG_NUMA
+ if (static_branch_unlikely(&strict_numa) &&
+ node == NUMA_NO_NODE) {
+
+ struct mempolicy *mpol = current->mempolicy;
+
+ if (mpol) {
+ /*
+ * Special BIND rule support. If the local node
+ * is in permitted set then do not redirect
+ * to a particular node.
+ * Otherwise we apply the memory policy to get
+ * the node we need to allocate on.
+ */
+ if (mpol->mode != MPOL_BIND ||
+ !node_isset(numa_mem_id(), mpol->nodes))
+
+ node = mempolicy_slab_node();
+ }
+ }
+#endif
+
+ node_requested = IS_ENABLED(CONFIG_NUMA) && node != NUMA_NO_NODE;
+
+ /*
+ * We assume the percpu sheaves contain only local objects although it's
+ * not completely guaranteed, so we verify later.
+ */
+ if (unlikely(node_requested && node != numa_mem_id()))
+ return NULL;
+
+ if (!local_trylock(&s->cpu_sheaves->lock))
+ return NULL;
+
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ if (unlikely(pcs->main->size == 0)) {
+ pcs = __pcs_replace_empty_main(s, pcs, gfp);
+ if (unlikely(!pcs))
+ return NULL;
+ }
+
+ object = pcs->main->objects[pcs->main->size - 1];
+
+ if (unlikely(node_requested)) {
+ /*
+ * Verify that the object was from the node we want. This could
+ * be false because of cpu migration during an unlocked part of
+ * the current allocation or previous freeing process.
+ */
+ if (page_to_nid(virt_to_page(object)) != node) {
+ local_unlock(&s->cpu_sheaves->lock);
+ return NULL;
+ }
+ }
+
+ pcs->main->size--;
- slab_post_alloc_hook(s, gfpflags, object);
+ local_unlock(&s->cpu_sheaves->lock);
+
+ stat(s, ALLOC_PCS);
return object;
}
-static __always_inline void *slab_alloc(struct kmem_cache *s,
- gfp_t gfpflags, unsigned long addr)
+static __fastpath_inline
+unsigned int alloc_from_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
+{
+ struct slub_percpu_sheaves *pcs;
+ struct slab_sheaf *main;
+ unsigned int allocated = 0;
+ unsigned int batch;
+
+next_batch:
+ if (!local_trylock(&s->cpu_sheaves->lock))
+ return allocated;
+
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ if (unlikely(pcs->main->size == 0)) {
+
+ struct slab_sheaf *full;
+ struct node_barn *barn;
+
+ if (pcs->spare && pcs->spare->size > 0) {
+ swap(pcs->main, pcs->spare);
+ goto do_alloc;
+ }
+
+ barn = get_barn(s);
+ if (!barn) {
+ local_unlock(&s->cpu_sheaves->lock);
+ return allocated;
+ }
+
+ full = barn_replace_empty_sheaf(barn, pcs->main);
+
+ if (full) {
+ stat(s, BARN_GET);
+ pcs->main = full;
+ goto do_alloc;
+ }
+
+ stat(s, BARN_GET_FAIL);
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ /*
+ * Once full sheaves in barn are depleted, let the bulk
+ * allocation continue from slab pages, otherwise we would just
+ * be copying arrays of pointers twice.
+ */
+ return allocated;
+ }
+
+do_alloc:
+
+ main = pcs->main;
+ batch = min(size, main->size);
+
+ main->size -= batch;
+ memcpy(p, main->objects + main->size, batch * sizeof(void *));
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ stat_add(s, ALLOC_PCS, batch);
+
+ allocated += batch;
+
+ if (batch < size) {
+ p += batch;
+ size -= batch;
+ goto next_batch;
+ }
+
+ return allocated;
+}
+
+
+/*
+ * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
+ * have the fastpath folded into their functions. So no function call
+ * overhead for requests that can be satisfied on the fastpath.
+ *
+ * The fastpath works by first checking if the lockless freelist can be used.
+ * If not then __slab_alloc is called for slow processing.
+ *
+ * Otherwise we can simply pick the next object from the lockless free list.
+ */
+static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
+ gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
{
- return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
+ void *object;
+ bool init = false;
+
+ s = slab_pre_alloc_hook(s, gfpflags);
+ if (unlikely(!s))
+ return NULL;
+
+ object = kfence_alloc(s, orig_size, gfpflags);
+ if (unlikely(object))
+ goto out;
+
+ if (s->cpu_sheaves)
+ object = alloc_from_pcs(s, gfpflags, node);
+
+ if (!object)
+ object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
+
+ maybe_wipe_obj_freeptr(s, object);
+ init = slab_want_init_on_alloc(gfpflags, s);
+
+out:
+ /*
+ * When init equals 'true', like for kzalloc() family, only
+ * @orig_size bytes might be zeroed instead of s->object_size
+ * In case this fails due to memcg_slab_post_alloc_hook(),
+ * object is set to NULL
+ */
+ slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
+
+ return object;
}
-void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
+void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
{
- void *ret = slab_alloc(s, gfpflags, _RET_IP_);
+ void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
+ s->object_size);
- trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
+ trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
return ret;
}
-EXPORT_SYMBOL(kmem_cache_alloc);
+EXPORT_SYMBOL(kmem_cache_alloc_noprof);
-#ifdef CONFIG_TRACING
-void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
+void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
+ gfp_t gfpflags)
{
- void *ret = slab_alloc(s, gfpflags, _RET_IP_);
- trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
+ void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
+ s->object_size);
+
+ trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
+
return ret;
}
-EXPORT_SYMBOL(kmem_cache_alloc_trace);
+EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
+
+bool kmem_cache_charge(void *objp, gfp_t gfpflags)
+{
+ if (!memcg_kmem_online())
+ return true;
-void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
+ return memcg_slab_post_charge(objp, gfpflags);
+}
+EXPORT_SYMBOL(kmem_cache_charge);
+
+/**
+ * kmem_cache_alloc_node - Allocate an object on the specified node
+ * @s: The cache to allocate from.
+ * @gfpflags: See kmalloc().
+ * @node: node number of the target node.
+ *
+ * Identical to kmem_cache_alloc but it will allocate memory on the given
+ * node, which can improve the performance for cpu bound structures.
+ *
+ * Fallback to other node is possible if __GFP_THISNODE is not set.
+ *
+ * Return: pointer to the new object or %NULL in case of error
+ */
+void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
{
- void *ret = kmalloc_order(size, flags, order);
- trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
+ void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
+
+ trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
+
return ret;
}
-EXPORT_SYMBOL(kmalloc_order_trace);
-#endif
+EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
-#ifdef CONFIG_NUMA
-void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
+static int __prefill_sheaf_pfmemalloc(struct kmem_cache *s,
+ struct slab_sheaf *sheaf, gfp_t gfp)
{
- void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
+ int ret = 0;
+
+ ret = refill_sheaf(s, sheaf, gfp | __GFP_NOMEMALLOC);
- trace_kmem_cache_alloc_node(_RET_IP_, ret,
- s->object_size, s->size, gfpflags, node);
+ if (likely(!ret || !gfp_pfmemalloc_allowed(gfp)))
+ return ret;
+
+ /*
+ * if we are allowed to, refill sheaf with pfmemalloc but then remember
+ * it for when it's returned
+ */
+ ret = refill_sheaf(s, sheaf, gfp);
+ sheaf->pfmemalloc = true;
return ret;
}
-EXPORT_SYMBOL(kmem_cache_alloc_node);
-#ifdef CONFIG_TRACING
-void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
- gfp_t gfpflags,
- int node, size_t size)
+/*
+ * returns a sheaf that has at least the requested size
+ * when prefilling is needed, do so with given gfp flags
+ *
+ * return NULL if sheaf allocation or prefilling failed
+ */
+struct slab_sheaf *
+kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size)
{
- void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
+ struct slub_percpu_sheaves *pcs;
+ struct slab_sheaf *sheaf = NULL;
+ struct node_barn *barn;
+
+ if (unlikely(size > s->sheaf_capacity)) {
+
+ /*
+ * slab_debug disables cpu sheaves intentionally so all
+ * prefilled sheaves become "oversize" and we give up on
+ * performance for the debugging. Same with SLUB_TINY.
+ * Creating a cache without sheaves and then requesting a
+ * prefilled sheaf is however not expected, so warn.
+ */
+ WARN_ON_ONCE(s->sheaf_capacity == 0 &&
+ !IS_ENABLED(CONFIG_SLUB_TINY) &&
+ !(s->flags & SLAB_DEBUG_FLAGS));
+
+ sheaf = kzalloc(struct_size(sheaf, objects, size), gfp);
+ if (!sheaf)
+ return NULL;
+
+ stat(s, SHEAF_PREFILL_OVERSIZE);
+ sheaf->cache = s;
+ sheaf->capacity = size;
+
+ /*
+ * we do not need to care about pfmemalloc here because oversize
+ * sheaves area always flushed and freed when returned
+ */
+ if (!__kmem_cache_alloc_bulk(s, gfp, size,
+ &sheaf->objects[0])) {
+ kfree(sheaf);
+ return NULL;
+ }
+
+ sheaf->size = size;
+
+ return sheaf;
+ }
+
+ local_lock(&s->cpu_sheaves->lock);
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ if (pcs->spare) {
+ sheaf = pcs->spare;
+ pcs->spare = NULL;
+ stat(s, SHEAF_PREFILL_FAST);
+ } else {
+ barn = get_barn(s);
+
+ stat(s, SHEAF_PREFILL_SLOW);
+ if (barn)
+ sheaf = barn_get_full_or_empty_sheaf(barn);
+ if (sheaf && sheaf->size)
+ stat(s, BARN_GET);
+ else
+ stat(s, BARN_GET_FAIL);
+ }
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+
+ if (!sheaf)
+ sheaf = alloc_empty_sheaf(s, gfp);
+
+ if (sheaf) {
+ sheaf->capacity = s->sheaf_capacity;
+ sheaf->pfmemalloc = false;
+
+ if (sheaf->size < size &&
+ __prefill_sheaf_pfmemalloc(s, sheaf, gfp)) {
+ sheaf_flush_unused(s, sheaf);
+ free_empty_sheaf(s, sheaf);
+ sheaf = NULL;
+ }
+ }
+
+ return sheaf;
+}
+
+/*
+ * Use this to return a sheaf obtained by kmem_cache_prefill_sheaf()
+ *
+ * If the sheaf cannot simply become the percpu spare sheaf, but there's space
+ * for a full sheaf in the barn, we try to refill the sheaf back to the cache's
+ * sheaf_capacity to avoid handling partially full sheaves.
+ *
+ * If the refill fails because gfp is e.g. GFP_NOWAIT, or the barn is full, the
+ * sheaf is instead flushed and freed.
+ */
+void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp,
+ struct slab_sheaf *sheaf)
+{
+ struct slub_percpu_sheaves *pcs;
+ struct node_barn *barn;
+
+ if (unlikely((sheaf->capacity != s->sheaf_capacity)
+ || sheaf->pfmemalloc)) {
+ sheaf_flush_unused(s, sheaf);
+ kfree(sheaf);
+ return;
+ }
+
+ local_lock(&s->cpu_sheaves->lock);
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+ barn = get_barn(s);
+
+ if (!pcs->spare) {
+ pcs->spare = sheaf;
+ sheaf = NULL;
+ stat(s, SHEAF_RETURN_FAST);
+ }
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ if (!sheaf)
+ return;
+
+ stat(s, SHEAF_RETURN_SLOW);
+
+ /*
+ * If the barn has too many full sheaves or we fail to refill the sheaf,
+ * simply flush and free it.
+ */
+ if (!barn || data_race(barn->nr_full) >= MAX_FULL_SHEAVES ||
+ refill_sheaf(s, sheaf, gfp)) {
+ sheaf_flush_unused(s, sheaf);
+ free_empty_sheaf(s, sheaf);
+ return;
+ }
+
+ barn_put_full_sheaf(barn, sheaf);
+ stat(s, BARN_PUT);
+}
+
+/*
+ * refill a sheaf previously returned by kmem_cache_prefill_sheaf to at least
+ * the given size
+ *
+ * the sheaf might be replaced by a new one when requesting more than
+ * s->sheaf_capacity objects if such replacement is necessary, but the refill
+ * fails (returning -ENOMEM), the existing sheaf is left intact
+ *
+ * In practice we always refill to full sheaf's capacity.
+ */
+int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp,
+ struct slab_sheaf **sheafp, unsigned int size)
+{
+ struct slab_sheaf *sheaf;
+
+ /*
+ * TODO: do we want to support *sheaf == NULL to be equivalent of
+ * kmem_cache_prefill_sheaf() ?
+ */
+ if (!sheafp || !(*sheafp))
+ return -EINVAL;
+
+ sheaf = *sheafp;
+ if (sheaf->size >= size)
+ return 0;
+
+ if (likely(sheaf->capacity >= size)) {
+ if (likely(sheaf->capacity == s->sheaf_capacity))
+ return __prefill_sheaf_pfmemalloc(s, sheaf, gfp);
+
+ if (!__kmem_cache_alloc_bulk(s, gfp, sheaf->capacity - sheaf->size,
+ &sheaf->objects[sheaf->size])) {
+ return -ENOMEM;
+ }
+ sheaf->size = sheaf->capacity;
+
+ return 0;
+ }
+
+ /*
+ * We had a regular sized sheaf and need an oversize one, or we had an
+ * oversize one already but need a larger one now.
+ * This should be a very rare path so let's not complicate it.
+ */
+ sheaf = kmem_cache_prefill_sheaf(s, gfp, size);
+ if (!sheaf)
+ return -ENOMEM;
+
+ kmem_cache_return_sheaf(s, gfp, *sheafp);
+ *sheafp = sheaf;
+ return 0;
+}
+
+/*
+ * Allocate from a sheaf obtained by kmem_cache_prefill_sheaf()
+ *
+ * Guaranteed not to fail as many allocations as was the requested size.
+ * After the sheaf is emptied, it fails - no fallback to the slab cache itself.
+ *
+ * The gfp parameter is meant only to specify __GFP_ZERO or __GFP_ACCOUNT
+ * memcg charging is forced over limit if necessary, to avoid failure.
+ *
+ * It is possible that the allocation comes from kfence and then the sheaf
+ * size is not decreased.
+ */
+void *
+kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *s, gfp_t gfp,
+ struct slab_sheaf *sheaf)
+{
+ void *ret = NULL;
+ bool init;
+
+ if (sheaf->size == 0)
+ goto out;
+
+ ret = kfence_alloc(s, s->object_size, gfp);
+
+ if (likely(!ret))
+ ret = sheaf->objects[--sheaf->size];
+
+ init = slab_want_init_on_alloc(gfp, s);
+
+ /* add __GFP_NOFAIL to force successful memcg charging */
+ slab_post_alloc_hook(s, NULL, gfp | __GFP_NOFAIL, 1, &ret, init, s->object_size);
+out:
+ trace_kmem_cache_alloc(_RET_IP_, ret, s, gfp, NUMA_NO_NODE);
- trace_kmalloc_node(_RET_IP_, ret,
- size, s->size, gfpflags, node);
return ret;
}
-EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
-#endif
-#endif
+
+unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf)
+{
+ return sheaf->size;
+}
+/*
+ * To avoid unnecessary overhead, we pass through large allocation requests
+ * directly to the page allocator. We use __GFP_COMP, because we will need to
+ * know the allocation order to free the pages properly in kfree.
+ */
+static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
+{
+ struct page *page;
+ void *ptr = NULL;
+ unsigned int order = get_order(size);
+
+ if (unlikely(flags & GFP_SLAB_BUG_MASK))
+ flags = kmalloc_fix_flags(flags);
+
+ flags |= __GFP_COMP;
+
+ if (node == NUMA_NO_NODE)
+ page = alloc_frozen_pages_noprof(flags, order);
+ else
+ page = __alloc_frozen_pages_noprof(flags, order, node, NULL);
+
+ if (page) {
+ ptr = page_address(page);
+ mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
+ PAGE_SIZE << order);
+ __SetPageLargeKmalloc(page);
+ }
+
+ ptr = kasan_kmalloc_large(ptr, size, flags);
+ /* As ptr might get tagged, call kmemleak hook after KASAN. */
+ kmemleak_alloc(ptr, size, 1, flags);
+ kmsan_kmalloc_large(ptr, size, flags);
+
+ return ptr;
+}
+
+void *__kmalloc_large_noprof(size_t size, gfp_t flags)
+{
+ void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
+
+ trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
+ flags, NUMA_NO_NODE);
+ return ret;
+}
+EXPORT_SYMBOL(__kmalloc_large_noprof);
+
+void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
+{
+ void *ret = ___kmalloc_large_node(size, flags, node);
+
+ trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
+ flags, node);
+ return ret;
+}
+EXPORT_SYMBOL(__kmalloc_large_node_noprof);
+
+static __always_inline
+void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
+ unsigned long caller)
+{
+ struct kmem_cache *s;
+ void *ret;
+
+ if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
+ ret = __kmalloc_large_node_noprof(size, flags, node);
+ trace_kmalloc(caller, ret, size,
+ PAGE_SIZE << get_order(size), flags, node);
+ return ret;
+ }
+
+ if (unlikely(!size))
+ return ZERO_SIZE_PTR;
+
+ s = kmalloc_slab(size, b, flags, caller);
+
+ ret = slab_alloc_node(s, NULL, flags, node, caller, size);
+ ret = kasan_kmalloc(s, ret, size, flags);
+ trace_kmalloc(caller, ret, size, s->size, flags, node);
+ return ret;
+}
+void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
+{
+ return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
+}
+EXPORT_SYMBOL(__kmalloc_node_noprof);
+
+void *__kmalloc_noprof(size_t size, gfp_t flags)
+{
+ return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
+}
+EXPORT_SYMBOL(__kmalloc_noprof);
+
+/**
+ * kmalloc_nolock - Allocate an object of given size from any context.
+ * @size: size to allocate
+ * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT
+ * allowed.
+ * @node: node number of the target node.
+ *
+ * Return: pointer to the new object or NULL in case of error.
+ * NULL does not mean EBUSY or EAGAIN. It means ENOMEM.
+ * There is no reason to call it again and expect !NULL.
+ */
+void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node)
+{
+ gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags;
+ struct kmem_cache *s;
+ bool can_retry = true;
+ void *ret = ERR_PTR(-EBUSY);
+
+ VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO |
+ __GFP_NO_OBJ_EXT));
+
+ if (unlikely(!size))
+ return ZERO_SIZE_PTR;
+
+ if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
+ /* kmalloc_nolock() in PREEMPT_RT is not supported from irq */
+ return NULL;
+retry:
+ if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
+ return NULL;
+ s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_);
+
+ if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s))
+ /*
+ * kmalloc_nolock() is not supported on architectures that
+ * don't implement cmpxchg16b, but debug caches don't use
+ * per-cpu slab and per-cpu partial slabs. They rely on
+ * kmem_cache_node->list_lock, so kmalloc_nolock() can
+ * attempt to allocate from debug caches by
+ * spin_trylock_irqsave(&n->list_lock, ...)
+ */
+ return NULL;
+
+ /*
+ * Do not call slab_alloc_node(), since trylock mode isn't
+ * compatible with slab_pre_alloc_hook/should_failslab and
+ * kfence_alloc. Hence call __slab_alloc_node() (at most twice)
+ * and slab_post_alloc_hook() directly.
+ *
+ * In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair
+ * in irq saved region. It assumes that the same cpu will not
+ * __update_cpu_freelist_fast() into the same (freelist,tid) pair.
+ * Therefore use in_nmi() to check whether particular bucket is in
+ * irq protected section.
+ *
+ * If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that
+ * this cpu was interrupted somewhere inside ___slab_alloc() after
+ * it did local_lock_irqsave(&s->cpu_slab->lock, flags).
+ * In this case fast path with __update_cpu_freelist_fast() is not safe.
+ */
+ if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock))
+ ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size);
+
+ if (PTR_ERR(ret) == -EBUSY) {
+ if (can_retry) {
+ /* pick the next kmalloc bucket */
+ size = s->object_size + 1;
+ /*
+ * Another alternative is to
+ * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT;
+ * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT;
+ * to retry from bucket of the same size.
+ */
+ can_retry = false;
+ goto retry;
+ }
+ ret = NULL;
+ }
+
+ maybe_wipe_obj_freeptr(s, ret);
+ slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret,
+ slab_want_init_on_alloc(alloc_gfp, s), size);
+
+ ret = kasan_kmalloc(s, ret, size, alloc_gfp);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof);
+
+void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
+ int node, unsigned long caller)
+{
+ return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
+
+}
+EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
+
+void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
+{
+ void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
+ _RET_IP_, size);
+
+ trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
+
+ ret = kasan_kmalloc(s, ret, size, gfpflags);
+ return ret;
+}
+EXPORT_SYMBOL(__kmalloc_cache_noprof);
+
+void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
+ int node, size_t size)
+{
+ void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
+
+ trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
+
+ ret = kasan_kmalloc(s, ret, size, gfpflags);
+ return ret;
+}
+EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
+
+static noinline void free_to_partial_list(
+ struct kmem_cache *s, struct slab *slab,
+ void *head, void *tail, int bulk_cnt,
+ unsigned long addr)
+{
+ struct kmem_cache_node *n = get_node(s, slab_nid(slab));
+ struct slab *slab_free = NULL;
+ int cnt = bulk_cnt;
+ unsigned long flags;
+ depot_stack_handle_t handle = 0;
+
+ /*
+ * We cannot use GFP_NOWAIT as there are callsites where waking up
+ * kswapd could deadlock
+ */
+ if (s->flags & SLAB_STORE_USER)
+ handle = set_track_prepare(__GFP_NOWARN);
+
+ spin_lock_irqsave(&n->list_lock, flags);
+
+ if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
+ void *prior = slab->freelist;
+
+ /* Perform the actual freeing while we still hold the locks */
+ slab->inuse -= cnt;
+ set_freepointer(s, tail, prior);
+ slab->freelist = head;
+
+ /*
+ * If the slab is empty, and node's partial list is full,
+ * it should be discarded anyway no matter it's on full or
+ * partial list.
+ */
+ if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
+ slab_free = slab;
+
+ if (!prior) {
+ /* was on full list */
+ remove_full(s, n, slab);
+ if (!slab_free) {
+ add_partial(n, slab, DEACTIVATE_TO_TAIL);
+ stat(s, FREE_ADD_PARTIAL);
+ }
+ } else if (slab_free) {
+ remove_partial(n, slab);
+ stat(s, FREE_REMOVE_PARTIAL);
+ }
+ }
+
+ if (slab_free) {
+ /*
+ * Update the counters while still holding n->list_lock to
+ * prevent spurious validation warnings
+ */
+ dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
+ }
+
+ spin_unlock_irqrestore(&n->list_lock, flags);
+
+ if (slab_free) {
+ stat(s, FREE_SLAB);
+ free_slab(s, slab_free);
+ }
+}
/*
- * Slow patch handling. This may still be called frequently since objects
+ * Slow path handling. This may still be called frequently since objects
* have a longer lifetime than the cpu slabs in most processing loads.
*
* So we still attempt to reduce cache line usage. Just take the slab
- * lock and free the item. If there is no additional partial page
+ * lock and free the item. If there is no additional partial slab
* handling required then we can return immediately.
*/
-static void __slab_free(struct kmem_cache *s, struct page *page,
- void *x, unsigned long addr)
-{
- void *prior;
- void **object = (void *)x;
- int was_frozen;
- struct page new;
- unsigned long counters;
+static void __slab_free(struct kmem_cache *s, struct slab *slab,
+ void *head, void *tail, int cnt,
+ unsigned long addr)
+
+{
+ bool was_frozen, was_full;
+ struct freelist_counters old, new;
struct kmem_cache_node *n = NULL;
- unsigned long uninitialized_var(flags);
+ unsigned long flags;
+ bool on_node_partial;
stat(s, FREE_SLOWPATH);
- if (kmem_cache_debug(s) &&
- !(n = free_debug_processing(s, page, x, addr, &flags)))
+ if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
+ free_to_partial_list(s, slab, head, tail, cnt, addr);
return;
+ }
+
+ /*
+ * It is enough to test IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) below
+ * instead of kmem_cache_has_cpu_partial(s), because kmem_cache_debug(s)
+ * is the only other reason it can be false, and it is already handled
+ * above.
+ */
do {
if (unlikely(n)) {
spin_unlock_irqrestore(&n->list_lock, flags);
n = NULL;
}
- prior = page->freelist;
- counters = page->counters;
- set_freepointer(s, object, prior);
- new.counters = counters;
- was_frozen = new.frozen;
- new.inuse--;
- if ((!new.inuse || !prior) && !was_frozen) {
- if (kmem_cache_has_cpu_partial(s) && !prior)
+ old.freelist = slab->freelist;
+ old.counters = slab->counters;
- /*
- * Slab was on no list before and will be partially empty
- * We can defer the list move and instead freeze it.
- */
- new.frozen = 1;
+ was_full = (old.freelist == NULL);
+ was_frozen = old.frozen;
+
+ set_freepointer(s, tail, old.freelist);
+
+ new.freelist = head;
+ new.counters = old.counters;
+ new.inuse -= cnt;
- else { /* Needs to be taken off a list */
+ /*
+ * Might need to be taken off (due to becoming empty) or added
+ * to (due to not being full anymore) the partial list.
+ * Unless it's frozen.
+ */
+ if ((!new.inuse || was_full) && !was_frozen) {
+ /*
+ * If slab becomes non-full and we have cpu partial
+ * lists, we put it there unconditionally to avoid
+ * taking the list_lock. Otherwise we need it.
+ */
+ if (!(IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) && was_full)) {
- n = get_node(s, page_to_nid(page));
+ n = get_node(s, slab_nid(slab));
/*
* Speculatively acquire the list_lock.
* If the cmpxchg does not succeed then we may
@@ -2533,63 +5925,639 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
*/
spin_lock_irqsave(&n->list_lock, flags);
+ on_node_partial = slab_test_node_partial(slab);
}
}
- } while (!cmpxchg_double_slab(s, page,
- prior, counters,
- object, new.counters,
- "__slab_free"));
+ } while (!slab_update_freelist(s, slab, &old, &new, "__slab_free"));
if (likely(!n)) {
- /*
- * If we just froze the page then put it onto the
- * per cpu partial list.
- */
- if (new.frozen && !was_frozen) {
- put_cpu_partial(s, page, 1);
+ if (likely(was_frozen)) {
+ /*
+ * The list lock was not taken therefore no list
+ * activity can be necessary.
+ */
+ stat(s, FREE_FROZEN);
+ } else if (IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) && was_full) {
+ /*
+ * If we started with a full slab then put it onto the
+ * per cpu partial list.
+ */
+ put_cpu_partial(s, slab, 1);
stat(s, CPU_PARTIAL_FREE);
}
+
/*
- * The list lock was not taken therefore no list
- * activity can be necessary.
+ * In other cases we didn't take the list_lock because the slab
+ * was already on the partial list and will remain there.
*/
- if (was_frozen)
- stat(s, FREE_FROZEN);
- return;
- }
- if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
+ return;
+ }
+
+ /*
+ * This slab was partially empty but not on the per-node partial list,
+ * in which case we shouldn't manipulate its list, just return.
+ */
+ if (!was_full && !on_node_partial) {
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ return;
+ }
+
+ /*
+ * If slab became empty, should we add/keep it on the partial list or we
+ * have enough?
+ */
+ if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
goto slab_empty;
/*
* Objects left in the slab. If it was not on the partial list before
- * then add it.
+ * then add it. This can only happen when cache has no per cpu partial
+ * list otherwise we would have put it there.
*/
- if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
- if (kmem_cache_debug(s))
- remove_full(s, page);
- add_partial(n, page, DEACTIVATE_TO_TAIL);
+ if (!IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) && unlikely(was_full)) {
+ add_partial(n, slab, DEACTIVATE_TO_TAIL);
stat(s, FREE_ADD_PARTIAL);
}
spin_unlock_irqrestore(&n->list_lock, flags);
return;
slab_empty:
- if (prior) {
- /*
- * Slab on the partial list.
- */
- remove_partial(n, page);
+ /*
+ * The slab could have a single object and thus go from full to empty in
+ * a single free, but more likely it was on the partial list. Remove it.
+ */
+ if (likely(!was_full)) {
+ remove_partial(n, slab);
stat(s, FREE_REMOVE_PARTIAL);
- } else
- /* Slab must be on the full list */
- remove_full(s, page);
+ }
spin_unlock_irqrestore(&n->list_lock, flags);
stat(s, FREE_SLAB);
- discard_slab(s, page);
+ discard_slab(s, slab);
+}
+
+/*
+ * pcs is locked. We should have get rid of the spare sheaf and obtained an
+ * empty sheaf, while the main sheaf is full. We want to install the empty sheaf
+ * as a main sheaf, and make the current main sheaf a spare sheaf.
+ *
+ * However due to having relinquished the cpu_sheaves lock when obtaining
+ * the empty sheaf, we need to handle some unlikely but possible cases.
+ *
+ * If we put any sheaf to barn here, it's because we were interrupted or have
+ * been migrated to a different cpu, which should be rare enough so just ignore
+ * the barn's limits to simplify the handling.
+ *
+ * An alternative scenario that gets us here is when we fail
+ * barn_replace_full_sheaf(), because there's no empty sheaf available in the
+ * barn, so we had to allocate it by alloc_empty_sheaf(). But because we saw the
+ * limit on full sheaves was not exceeded, we assume it didn't change and just
+ * put the full sheaf there.
+ */
+static void __pcs_install_empty_sheaf(struct kmem_cache *s,
+ struct slub_percpu_sheaves *pcs, struct slab_sheaf *empty,
+ struct node_barn *barn)
+{
+ lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
+
+ /* This is what we expect to find if nobody interrupted us. */
+ if (likely(!pcs->spare)) {
+ pcs->spare = pcs->main;
+ pcs->main = empty;
+ return;
+ }
+
+ /*
+ * Unlikely because if the main sheaf had space, we would have just
+ * freed to it. Get rid of our empty sheaf.
+ */
+ if (pcs->main->size < s->sheaf_capacity) {
+ barn_put_empty_sheaf(barn, empty);
+ return;
+ }
+
+ /* Also unlikely for the same reason */
+ if (pcs->spare->size < s->sheaf_capacity) {
+ swap(pcs->main, pcs->spare);
+ barn_put_empty_sheaf(barn, empty);
+ return;
+ }
+
+ /*
+ * We probably failed barn_replace_full_sheaf() due to no empty sheaf
+ * available there, but we allocated one, so finish the job.
+ */
+ barn_put_full_sheaf(barn, pcs->main);
+ stat(s, BARN_PUT);
+ pcs->main = empty;
+}
+
+/*
+ * Replace the full main sheaf with a (at least partially) empty sheaf.
+ *
+ * Must be called with the cpu_sheaves local lock locked. If successful, returns
+ * the pcs pointer and the local lock locked (possibly on a different cpu than
+ * initially called). If not successful, returns NULL and the local lock
+ * unlocked.
+ */
+static struct slub_percpu_sheaves *
+__pcs_replace_full_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs)
+{
+ struct slab_sheaf *empty;
+ struct node_barn *barn;
+ bool put_fail;
+
+restart:
+ lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
+
+ barn = get_barn(s);
+ if (!barn) {
+ local_unlock(&s->cpu_sheaves->lock);
+ return NULL;
+ }
+
+ put_fail = false;
+
+ if (!pcs->spare) {
+ empty = barn_get_empty_sheaf(barn);
+ if (empty) {
+ pcs->spare = pcs->main;
+ pcs->main = empty;
+ return pcs;
+ }
+ goto alloc_empty;
+ }
+
+ if (pcs->spare->size < s->sheaf_capacity) {
+ swap(pcs->main, pcs->spare);
+ return pcs;
+ }
+
+ empty = barn_replace_full_sheaf(barn, pcs->main);
+
+ if (!IS_ERR(empty)) {
+ stat(s, BARN_PUT);
+ pcs->main = empty;
+ return pcs;
+ }
+
+ if (PTR_ERR(empty) == -E2BIG) {
+ /* Since we got here, spare exists and is full */
+ struct slab_sheaf *to_flush = pcs->spare;
+
+ stat(s, BARN_PUT_FAIL);
+
+ pcs->spare = NULL;
+ local_unlock(&s->cpu_sheaves->lock);
+
+ sheaf_flush_unused(s, to_flush);
+ empty = to_flush;
+ goto got_empty;
+ }
+
+ /*
+ * We could not replace full sheaf because barn had no empty
+ * sheaves. We can still allocate it and put the full sheaf in
+ * __pcs_install_empty_sheaf(), but if we fail to allocate it,
+ * make sure to count the fail.
+ */
+ put_fail = true;
+
+alloc_empty:
+ local_unlock(&s->cpu_sheaves->lock);
+
+ empty = alloc_empty_sheaf(s, GFP_NOWAIT);
+ if (empty)
+ goto got_empty;
+
+ if (put_fail)
+ stat(s, BARN_PUT_FAIL);
+
+ if (!sheaf_flush_main(s))
+ return NULL;
+
+ if (!local_trylock(&s->cpu_sheaves->lock))
+ return NULL;
+
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ /*
+ * we flushed the main sheaf so it should be empty now,
+ * but in case we got preempted or migrated, we need to
+ * check again
+ */
+ if (pcs->main->size == s->sheaf_capacity)
+ goto restart;
+
+ return pcs;
+
+got_empty:
+ if (!local_trylock(&s->cpu_sheaves->lock)) {
+ barn_put_empty_sheaf(barn, empty);
+ return NULL;
+ }
+
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+ __pcs_install_empty_sheaf(s, pcs, empty, barn);
+
+ return pcs;
+}
+
+/*
+ * Free an object to the percpu sheaves.
+ * The object is expected to have passed slab_free_hook() already.
+ */
+static __fastpath_inline
+bool free_to_pcs(struct kmem_cache *s, void *object)
+{
+ struct slub_percpu_sheaves *pcs;
+
+ if (!local_trylock(&s->cpu_sheaves->lock))
+ return false;
+
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ if (unlikely(pcs->main->size == s->sheaf_capacity)) {
+
+ pcs = __pcs_replace_full_main(s, pcs);
+ if (unlikely(!pcs))
+ return false;
+ }
+
+ pcs->main->objects[pcs->main->size++] = object;
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ stat(s, FREE_PCS);
+
+ return true;
+}
+
+static void rcu_free_sheaf(struct rcu_head *head)
+{
+ struct kmem_cache_node *n;
+ struct slab_sheaf *sheaf;
+ struct node_barn *barn = NULL;
+ struct kmem_cache *s;
+
+ sheaf = container_of(head, struct slab_sheaf, rcu_head);
+
+ s = sheaf->cache;
+
+ /*
+ * This may remove some objects due to slab_free_hook() returning false,
+ * so that the sheaf might no longer be completely full. But it's easier
+ * to handle it as full (unless it became completely empty), as the code
+ * handles it fine. The only downside is that sheaf will serve fewer
+ * allocations when reused. It only happens due to debugging, which is a
+ * performance hit anyway.
+ *
+ * If it returns true, there was at least one object from pfmemalloc
+ * slab so simply flush everything.
+ */
+ if (__rcu_free_sheaf_prepare(s, sheaf))
+ goto flush;
+
+ n = get_node(s, sheaf->node);
+ if (!n)
+ goto flush;
+
+ barn = n->barn;
+
+ /* due to slab_free_hook() */
+ if (unlikely(sheaf->size == 0))
+ goto empty;
+
+ /*
+ * Checking nr_full/nr_empty outside lock avoids contention in case the
+ * barn is at the respective limit. Due to the race we might go over the
+ * limit but that should be rare and harmless.
+ */
+
+ if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) {
+ stat(s, BARN_PUT);
+ barn_put_full_sheaf(barn, sheaf);
+ return;
+ }
+
+flush:
+ stat(s, BARN_PUT_FAIL);
+ sheaf_flush_unused(s, sheaf);
+
+empty:
+ if (barn && data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) {
+ barn_put_empty_sheaf(barn, sheaf);
+ return;
+ }
+
+ free_empty_sheaf(s, sheaf);
+}
+
+bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj)
+{
+ struct slub_percpu_sheaves *pcs;
+ struct slab_sheaf *rcu_sheaf;
+
+ if (!local_trylock(&s->cpu_sheaves->lock))
+ goto fail;
+
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ if (unlikely(!pcs->rcu_free)) {
+
+ struct slab_sheaf *empty;
+ struct node_barn *barn;
+
+ if (pcs->spare && pcs->spare->size == 0) {
+ pcs->rcu_free = pcs->spare;
+ pcs->spare = NULL;
+ goto do_free;
+ }
+
+ barn = get_barn(s);
+ if (!barn) {
+ local_unlock(&s->cpu_sheaves->lock);
+ goto fail;
+ }
+
+ empty = barn_get_empty_sheaf(barn);
+
+ if (empty) {
+ pcs->rcu_free = empty;
+ goto do_free;
+ }
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ empty = alloc_empty_sheaf(s, GFP_NOWAIT);
+
+ if (!empty)
+ goto fail;
+
+ if (!local_trylock(&s->cpu_sheaves->lock)) {
+ barn_put_empty_sheaf(barn, empty);
+ goto fail;
+ }
+
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ if (unlikely(pcs->rcu_free))
+ barn_put_empty_sheaf(barn, empty);
+ else
+ pcs->rcu_free = empty;
+ }
+
+do_free:
+
+ rcu_sheaf = pcs->rcu_free;
+
+ /*
+ * Since we flush immediately when size reaches capacity, we never reach
+ * this with size already at capacity, so no OOB write is possible.
+ */
+ rcu_sheaf->objects[rcu_sheaf->size++] = obj;
+
+ if (likely(rcu_sheaf->size < s->sheaf_capacity)) {
+ rcu_sheaf = NULL;
+ } else {
+ pcs->rcu_free = NULL;
+ rcu_sheaf->node = numa_mem_id();
+ }
+
+ /*
+ * we flush before local_unlock to make sure a racing
+ * flush_all_rcu_sheaves() doesn't miss this sheaf
+ */
+ if (rcu_sheaf)
+ call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf);
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ stat(s, FREE_RCU_SHEAF);
+ return true;
+
+fail:
+ stat(s, FREE_RCU_SHEAF_FAIL);
+ return false;
+}
+
+/*
+ * Bulk free objects to the percpu sheaves.
+ * Unlike free_to_pcs() this includes the calls to all necessary hooks
+ * and the fallback to freeing to slab pages.
+ */
+static void free_to_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
+{
+ struct slub_percpu_sheaves *pcs;
+ struct slab_sheaf *main, *empty;
+ bool init = slab_want_init_on_free(s);
+ unsigned int batch, i = 0;
+ struct node_barn *barn;
+ void *remote_objects[PCS_BATCH_MAX];
+ unsigned int remote_nr = 0;
+ int node = numa_mem_id();
+
+next_remote_batch:
+ while (i < size) {
+ struct slab *slab = virt_to_slab(p[i]);
+
+ memcg_slab_free_hook(s, slab, p + i, 1);
+ alloc_tagging_slab_free_hook(s, slab, p + i, 1);
+
+ if (unlikely(!slab_free_hook(s, p[i], init, false))) {
+ p[i] = p[--size];
+ continue;
+ }
+
+ if (unlikely((IS_ENABLED(CONFIG_NUMA) && slab_nid(slab) != node)
+ || slab_test_pfmemalloc(slab))) {
+ remote_objects[remote_nr] = p[i];
+ p[i] = p[--size];
+ if (++remote_nr >= PCS_BATCH_MAX)
+ goto flush_remote;
+ continue;
+ }
+
+ i++;
+ }
+
+ if (!size)
+ goto flush_remote;
+
+next_batch:
+ if (!local_trylock(&s->cpu_sheaves->lock))
+ goto fallback;
+
+ pcs = this_cpu_ptr(s->cpu_sheaves);
+
+ if (likely(pcs->main->size < s->sheaf_capacity))
+ goto do_free;
+
+ barn = get_barn(s);
+ if (!barn)
+ goto no_empty;
+
+ if (!pcs->spare) {
+ empty = barn_get_empty_sheaf(barn);
+ if (!empty)
+ goto no_empty;
+
+ pcs->spare = pcs->main;
+ pcs->main = empty;
+ goto do_free;
+ }
+
+ if (pcs->spare->size < s->sheaf_capacity) {
+ swap(pcs->main, pcs->spare);
+ goto do_free;
+ }
+
+ empty = barn_replace_full_sheaf(barn, pcs->main);
+ if (IS_ERR(empty)) {
+ stat(s, BARN_PUT_FAIL);
+ goto no_empty;
+ }
+
+ stat(s, BARN_PUT);
+ pcs->main = empty;
+
+do_free:
+ main = pcs->main;
+ batch = min(size, s->sheaf_capacity - main->size);
+
+ memcpy(main->objects + main->size, p, batch * sizeof(void *));
+ main->size += batch;
+
+ local_unlock(&s->cpu_sheaves->lock);
+
+ stat_add(s, FREE_PCS, batch);
+
+ if (batch < size) {
+ p += batch;
+ size -= batch;
+ goto next_batch;
+ }
+
+ if (remote_nr)
+ goto flush_remote;
+
+ return;
+
+no_empty:
+ local_unlock(&s->cpu_sheaves->lock);
+
+ /*
+ * if we depleted all empty sheaves in the barn or there are too
+ * many full sheaves, free the rest to slab pages
+ */
+fallback:
+ __kmem_cache_free_bulk(s, size, p);
+
+flush_remote:
+ if (remote_nr) {
+ __kmem_cache_free_bulk(s, remote_nr, &remote_objects[0]);
+ if (i < size) {
+ remote_nr = 0;
+ goto next_remote_batch;
+ }
+ }
+}
+
+struct defer_free {
+ struct llist_head objects;
+ struct llist_head slabs;
+ struct irq_work work;
+};
+
+static void free_deferred_objects(struct irq_work *work);
+
+static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = {
+ .objects = LLIST_HEAD_INIT(objects),
+ .slabs = LLIST_HEAD_INIT(slabs),
+ .work = IRQ_WORK_INIT(free_deferred_objects),
+};
+
+/*
+ * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe
+ * to take sleeping spin_locks from __slab_free() and deactivate_slab().
+ * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore().
+ */
+static void free_deferred_objects(struct irq_work *work)
+{
+ struct defer_free *df = container_of(work, struct defer_free, work);
+ struct llist_head *objs = &df->objects;
+ struct llist_head *slabs = &df->slabs;
+ struct llist_node *llnode, *pos, *t;
+
+ if (llist_empty(objs) && llist_empty(slabs))
+ return;
+
+ llnode = llist_del_all(objs);
+ llist_for_each_safe(pos, t, llnode) {
+ struct kmem_cache *s;
+ struct slab *slab;
+ void *x = pos;
+
+ slab = virt_to_slab(x);
+ s = slab->slab_cache;
+
+ /* Point 'x' back to the beginning of allocated object */
+ x -= s->offset;
+
+ /*
+ * We used freepointer in 'x' to link 'x' into df->objects.
+ * Clear it to NULL to avoid false positive detection
+ * of "Freepointer corruption".
+ */
+ set_freepointer(s, x, NULL);
+
+ __slab_free(s, slab, x, x, 1, _THIS_IP_);
+ }
+
+ llnode = llist_del_all(slabs);
+ llist_for_each_safe(pos, t, llnode) {
+ struct slab *slab = container_of(pos, struct slab, llnode);
+
+ if (slab->frozen)
+ deactivate_slab(slab->slab_cache, slab, slab->flush_freelist);
+ else
+ free_slab(slab->slab_cache, slab);
+ }
+}
+
+static void defer_free(struct kmem_cache *s, void *head)
+{
+ struct defer_free *df;
+
+ guard(preempt)();
+
+ df = this_cpu_ptr(&defer_free_objects);
+ if (llist_add(head + s->offset, &df->objects))
+ irq_work_queue(&df->work);
+}
+
+static void defer_deactivate_slab(struct slab *slab, void *flush_freelist)
+{
+ struct defer_free *df;
+
+ slab->flush_freelist = flush_freelist;
+
+ guard(preempt)();
+
+ df = this_cpu_ptr(&defer_free_objects);
+ if (llist_add(&slab->llnode, &df->slabs))
+ irq_work_queue(&df->work);
+}
+
+void defer_free_barrier(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work);
}
/*
@@ -2602,56 +6570,956 @@ slab_empty:
*
* If fastpath is not possible then fall back to __slab_free where we deal
* with all sorts of special processing.
+ *
+ * Bulk free of a freelist with several objects (all pointing to the
+ * same slab) possible by specifying head and tail ptr, plus objects
+ * count (cnt). Bulk free indicated by tail pointer being set.
*/
-static __always_inline void slab_free(struct kmem_cache *s,
- struct page *page, void *x, unsigned long addr)
+static __always_inline void do_slab_free(struct kmem_cache *s,
+ struct slab *slab, void *head, void *tail,
+ int cnt, unsigned long addr)
{
- void **object = (void *)x;
+ /* cnt == 0 signals that it's called from kfree_nolock() */
+ bool allow_spin = cnt;
struct kmem_cache_cpu *c;
unsigned long tid;
-
- slab_free_hook(s, x);
+ void **freelist;
redo:
/*
* Determine the currently cpus per cpu slab.
* The cpu may change afterward. However that does not matter since
* data is retrieved via this pointer. If we are on the same cpu
- * during the cmpxchg then the free will succedd.
+ * during the cmpxchg then the free will succeed.
*/
- preempt_disable();
- c = __this_cpu_ptr(s->cpu_slab);
+ c = raw_cpu_ptr(s->cpu_slab);
+ tid = READ_ONCE(c->tid);
+
+ /* Same with comment on barrier() in __slab_alloc_node() */
+ barrier();
+
+ if (unlikely(slab != c->slab)) {
+ if (unlikely(!allow_spin)) {
+ /*
+ * __slab_free() can locklessly cmpxchg16 into a slab,
+ * but then it might need to take spin_lock or local_lock
+ * in put_cpu_partial() for further processing.
+ * Avoid the complexity and simply add to a deferred list.
+ */
+ defer_free(s, head);
+ } else {
+ __slab_free(s, slab, head, tail, cnt, addr);
+ }
+ return;
+ }
- tid = c->tid;
- preempt_enable();
+ if (unlikely(!allow_spin)) {
+ if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) &&
+ local_lock_is_locked(&s->cpu_slab->lock)) {
+ defer_free(s, head);
+ return;
+ }
+ cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */
+ }
- if (likely(page == c->page)) {
- set_freepointer(s, object, c->freelist);
+ if (USE_LOCKLESS_FAST_PATH()) {
+ freelist = READ_ONCE(c->freelist);
- if (unlikely(!this_cpu_cmpxchg_double(
- s->cpu_slab->freelist, s->cpu_slab->tid,
- c->freelist, tid,
- object, next_tid(tid)))) {
+ set_freepointer(s, tail, freelist);
+ if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
note_cmpxchg_failure("slab_free", s, tid);
goto redo;
}
- stat(s, FREE_FASTPATH);
- } else
- __slab_free(s, page, x, addr);
+ } else {
+ __maybe_unused unsigned long flags = 0;
+
+ /* Update the free list under the local lock */
+ local_lock_cpu_slab(s, flags);
+ c = this_cpu_ptr(s->cpu_slab);
+ if (unlikely(slab != c->slab)) {
+ local_unlock_cpu_slab(s, flags);
+ goto redo;
+ }
+ tid = c->tid;
+ freelist = c->freelist;
+
+ set_freepointer(s, tail, freelist);
+ c->freelist = head;
+ c->tid = next_tid(tid);
+
+ local_unlock_cpu_slab(s, flags);
+ }
+ stat_add(s, FREE_FASTPATH, cnt);
+}
+
+static __fastpath_inline
+void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
+ unsigned long addr)
+{
+ memcg_slab_free_hook(s, slab, &object, 1);
+ alloc_tagging_slab_free_hook(s, slab, &object, 1);
+
+ if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s), false)))
+ return;
+
+ if (s->cpu_sheaves && likely(!IS_ENABLED(CONFIG_NUMA) ||
+ slab_nid(slab) == numa_mem_id())
+ && likely(!slab_test_pfmemalloc(slab))) {
+ if (likely(free_to_pcs(s, object)))
+ return;
+ }
+
+ do_slab_free(s, slab, object, object, 1, addr);
+}
+
+#ifdef CONFIG_MEMCG
+/* Do not inline the rare memcg charging failed path into the allocation path */
+static noinline
+void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
+{
+ if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
+ do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
+}
+#endif
+static __fastpath_inline
+void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
+ void *tail, void **p, int cnt, unsigned long addr)
+{
+ memcg_slab_free_hook(s, slab, p, cnt);
+ alloc_tagging_slab_free_hook(s, slab, p, cnt);
+ /*
+ * With KASAN enabled slab_free_freelist_hook modifies the freelist
+ * to remove objects, whose reuse must be delayed.
+ */
+ if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
+ do_slab_free(s, slab, head, tail, cnt, addr);
}
+#ifdef CONFIG_SLUB_RCU_DEBUG
+static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
+{
+ struct rcu_delayed_free *delayed_free =
+ container_of(rcu_head, struct rcu_delayed_free, head);
+ void *object = delayed_free->object;
+ struct slab *slab = virt_to_slab(object);
+ struct kmem_cache *s;
+
+ kfree(delayed_free);
+
+ if (WARN_ON(is_kfence_address(object)))
+ return;
+
+ /* find the object and the cache again */
+ if (WARN_ON(!slab))
+ return;
+ s = slab->slab_cache;
+ if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
+ return;
+
+ /* resume freeing */
+ if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
+ do_slab_free(s, slab, object, object, 1, _THIS_IP_);
+}
+#endif /* CONFIG_SLUB_RCU_DEBUG */
+
+#ifdef CONFIG_KASAN_GENERIC
+void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
+{
+ do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
+}
+#endif
+
+static inline struct kmem_cache *virt_to_cache(const void *obj)
+{
+ struct slab *slab;
+
+ slab = virt_to_slab(obj);
+ if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
+ return NULL;
+ return slab->slab_cache;
+}
+
+static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
+{
+ struct kmem_cache *cachep;
+
+ if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
+ !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
+ return s;
+
+ cachep = virt_to_cache(x);
+ if (WARN(cachep && cachep != s,
+ "%s: Wrong slab cache. %s but object is from %s\n",
+ __func__, s->name, cachep->name))
+ print_tracking(cachep, x);
+ return cachep;
+}
+
+/**
+ * kmem_cache_free - Deallocate an object
+ * @s: The cache the allocation was from.
+ * @x: The previously allocated object.
+ *
+ * Free an object which was previously allocated from this
+ * cache.
+ */
void kmem_cache_free(struct kmem_cache *s, void *x)
{
s = cache_from_obj(s, x);
if (!s)
return;
- slab_free(s, virt_to_head_page(x), x, _RET_IP_);
- trace_kmem_cache_free(_RET_IP_, x);
+ trace_kmem_cache_free(_RET_IP_, x, s);
+ slab_free(s, virt_to_slab(x), x, _RET_IP_);
}
EXPORT_SYMBOL(kmem_cache_free);
+static void free_large_kmalloc(struct page *page, void *object)
+{
+ unsigned int order = compound_order(page);
+
+ if (WARN_ON_ONCE(!PageLargeKmalloc(page))) {
+ dump_page(page, "Not a kmalloc allocation");
+ return;
+ }
+
+ if (WARN_ON_ONCE(order == 0))
+ pr_warn_once("object pointer: 0x%p\n", object);
+
+ kmemleak_free(object);
+ kasan_kfree_large(object);
+ kmsan_kfree_large(object);
+
+ mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
+ -(PAGE_SIZE << order));
+ __ClearPageLargeKmalloc(page);
+ free_frozen_pages(page, order);
+}
+
+/*
+ * Given an rcu_head embedded within an object obtained from kvmalloc at an
+ * offset < 4k, free the object in question.
+ */
+void kvfree_rcu_cb(struct rcu_head *head)
+{
+ void *obj = head;
+ struct page *page;
+ struct slab *slab;
+ struct kmem_cache *s;
+ void *slab_addr;
+
+ if (is_vmalloc_addr(obj)) {
+ obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
+ vfree(obj);
+ return;
+ }
+
+ page = virt_to_page(obj);
+ slab = page_slab(page);
+ if (!slab) {
+ /*
+ * rcu_head offset can be only less than page size so no need to
+ * consider allocation order
+ */
+ obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
+ free_large_kmalloc(page, obj);
+ return;
+ }
+
+ s = slab->slab_cache;
+ slab_addr = slab_address(slab);
+
+ if (is_kfence_address(obj)) {
+ obj = kfence_object_start(obj);
+ } else {
+ unsigned int idx = __obj_to_index(s, slab_addr, obj);
+
+ obj = slab_addr + s->size * idx;
+ obj = fixup_red_left(s, obj);
+ }
+
+ slab_free(s, slab, obj, _RET_IP_);
+}
+
+/**
+ * kfree - free previously allocated memory
+ * @object: pointer returned by kmalloc() or kmem_cache_alloc()
+ *
+ * If @object is NULL, no operation is performed.
+ */
+void kfree(const void *object)
+{
+ struct page *page;
+ struct slab *slab;
+ struct kmem_cache *s;
+ void *x = (void *)object;
+
+ trace_kfree(_RET_IP_, object);
+
+ if (unlikely(ZERO_OR_NULL_PTR(object)))
+ return;
+
+ page = virt_to_page(object);
+ slab = page_slab(page);
+ if (!slab) {
+ free_large_kmalloc(page, (void *)object);
+ return;
+ }
+
+ s = slab->slab_cache;
+ slab_free(s, slab, x, _RET_IP_);
+}
+EXPORT_SYMBOL(kfree);
+
+/*
+ * Can be called while holding raw_spinlock_t or from IRQ and NMI,
+ * but ONLY for objects allocated by kmalloc_nolock().
+ * Debug checks (like kmemleak and kfence) were skipped on allocation,
+ * hence
+ * obj = kmalloc(); kfree_nolock(obj);
+ * will miss kmemleak/kfence book keeping and will cause false positives.
+ * large_kmalloc is not supported either.
+ */
+void kfree_nolock(const void *object)
+{
+ struct slab *slab;
+ struct kmem_cache *s;
+ void *x = (void *)object;
+
+ if (unlikely(ZERO_OR_NULL_PTR(object)))
+ return;
+
+ slab = virt_to_slab(object);
+ if (unlikely(!slab)) {
+ WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()");
+ return;
+ }
+
+ s = slab->slab_cache;
+
+ memcg_slab_free_hook(s, slab, &x, 1);
+ alloc_tagging_slab_free_hook(s, slab, &x, 1);
+ /*
+ * Unlike slab_free() do NOT call the following:
+ * kmemleak_free_recursive(x, s->flags);
+ * debug_check_no_locks_freed(x, s->object_size);
+ * debug_check_no_obj_freed(x, s->object_size);
+ * __kcsan_check_access(x, s->object_size, ..);
+ * kfence_free(x);
+ * since they take spinlocks or not safe from any context.
+ */
+ kmsan_slab_free(s, x);
+ /*
+ * If KASAN finds a kernel bug it will do kasan_report_invalid_free()
+ * which will call raw_spin_lock_irqsave() which is technically
+ * unsafe from NMI, but take chance and report kernel bug.
+ * The sequence of
+ * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI
+ * -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU
+ * is double buggy and deserves to deadlock.
+ */
+ if (kasan_slab_pre_free(s, x))
+ return;
+ /*
+ * memcg, kasan_slab_pre_free are done for 'x'.
+ * The only thing left is kasan_poison without quarantine,
+ * since kasan quarantine takes locks and not supported from NMI.
+ */
+ kasan_slab_free(s, x, false, false, /* skip quarantine */true);
+ do_slab_free(s, slab, x, x, 0, _RET_IP_);
+}
+EXPORT_SYMBOL_GPL(kfree_nolock);
+
+static __always_inline __realloc_size(2) void *
+__do_krealloc(const void *p, size_t new_size, unsigned long align, gfp_t flags, int nid)
+{
+ void *ret;
+ size_t ks = 0;
+ int orig_size = 0;
+ struct kmem_cache *s = NULL;
+
+ if (unlikely(ZERO_OR_NULL_PTR(p)))
+ goto alloc_new;
+
+ /* Check for double-free. */
+ if (!kasan_check_byte(p))
+ return NULL;
+
+ /*
+ * If reallocation is not necessary (e. g. the new size is less
+ * than the current allocated size), the current allocation will be
+ * preserved unless __GFP_THISNODE is set. In the latter case a new
+ * allocation on the requested node will be attempted.
+ */
+ if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE &&
+ nid != page_to_nid(virt_to_page(p)))
+ goto alloc_new;
+
+ if (is_kfence_address(p)) {
+ ks = orig_size = kfence_ksize(p);
+ } else {
+ struct page *page = virt_to_page(p);
+ struct slab *slab = page_slab(page);
+
+ if (!slab) {
+ /* Big kmalloc object */
+ ks = page_size(page);
+ WARN_ON(ks <= KMALLOC_MAX_CACHE_SIZE);
+ WARN_ON(p != page_address(page));
+ } else {
+ s = slab->slab_cache;
+ orig_size = get_orig_size(s, (void *)p);
+ ks = s->object_size;
+ }
+ }
+
+ /* If the old object doesn't fit, allocate a bigger one */
+ if (new_size > ks)
+ goto alloc_new;
+
+ /* If the old object doesn't satisfy the new alignment, allocate a new one */
+ if (!IS_ALIGNED((unsigned long)p, align))
+ goto alloc_new;
+
+ /* Zero out spare memory. */
+ if (want_init_on_alloc(flags)) {
+ kasan_disable_current();
+ if (orig_size && orig_size < new_size)
+ memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
+ else
+ memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
+ kasan_enable_current();
+ }
+
+ /* Setup kmalloc redzone when needed */
+ if (s && slub_debug_orig_size(s)) {
+ set_orig_size(s, (void *)p, new_size);
+ if (s->flags & SLAB_RED_ZONE && new_size < ks)
+ memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
+ SLUB_RED_ACTIVE, ks - new_size);
+ }
+
+ p = kasan_krealloc(p, new_size, flags);
+ return (void *)p;
+
+alloc_new:
+ ret = kmalloc_node_track_caller_noprof(new_size, flags, nid, _RET_IP_);
+ if (ret && p) {
+ /* Disable KASAN checks as the object's redzone is accessed. */
+ kasan_disable_current();
+ memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
+ kasan_enable_current();
+ }
+
+ return ret;
+}
+
+/**
+ * krealloc_node_align - reallocate memory. The contents will remain unchanged.
+ * @p: object to reallocate memory for.
+ * @new_size: how many bytes of memory are required.
+ * @align: desired alignment.
+ * @flags: the type of memory to allocate.
+ * @nid: NUMA node or NUMA_NO_NODE
+ *
+ * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
+ * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
+ *
+ * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
+ * Documentation/core-api/memory-allocation.rst for more details.
+ *
+ * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
+ * initial memory allocation, every subsequent call to this API for the same
+ * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
+ * __GFP_ZERO is not fully honored by this API.
+ *
+ * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
+ * size of an allocation (but not the exact size it was allocated with) and
+ * hence implements the following semantics for shrinking and growing buffers
+ * with __GFP_ZERO::
+ *
+ * new bucket
+ * 0 size size
+ * |--------|----------------|
+ * | keep | zero |
+ *
+ * Otherwise, the original allocation size 'orig_size' could be used to
+ * precisely clear the requested size, and the new size will also be stored
+ * as the new 'orig_size'.
+ *
+ * In any case, the contents of the object pointed to are preserved up to the
+ * lesser of the new and old sizes.
+ *
+ * Return: pointer to the allocated memory or %NULL in case of error
+ */
+void *krealloc_node_align_noprof(const void *p, size_t new_size, unsigned long align,
+ gfp_t flags, int nid)
+{
+ void *ret;
+
+ if (unlikely(!new_size)) {
+ kfree(p);
+ return ZERO_SIZE_PTR;
+ }
+
+ ret = __do_krealloc(p, new_size, align, flags, nid);
+ if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
+ kfree(p);
+
+ return ret;
+}
+EXPORT_SYMBOL(krealloc_node_align_noprof);
+
+static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
+{
+ /*
+ * We want to attempt a large physically contiguous block first because
+ * it is less likely to fragment multiple larger blocks and therefore
+ * contribute to a long term fragmentation less than vmalloc fallback.
+ * However make sure that larger requests are not too disruptive - i.e.
+ * do not direct reclaim unless physically continuous memory is preferred
+ * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
+ * start working in the background
+ */
+ if (size > PAGE_SIZE) {
+ flags |= __GFP_NOWARN;
+
+ if (!(flags & __GFP_RETRY_MAYFAIL))
+ flags &= ~__GFP_DIRECT_RECLAIM;
+
+ /* nofail semantic is implemented by the vmalloc fallback */
+ flags &= ~__GFP_NOFAIL;
+ }
+
+ return flags;
+}
+
+/**
+ * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
+ * failure, fall back to non-contiguous (vmalloc) allocation.
+ * @size: size of the request.
+ * @b: which set of kmalloc buckets to allocate from.
+ * @align: desired alignment.
+ * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
+ * @node: numa node to allocate from
+ *
+ * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
+ * Documentation/core-api/memory-allocation.rst for more details.
+ *
+ * Uses kmalloc to get the memory but if the allocation fails then falls back
+ * to the vmalloc allocator. Use kvfree for freeing the memory.
+ *
+ * GFP_NOWAIT and GFP_ATOMIC are supported, the __GFP_NORETRY modifier is not.
+ * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
+ * preferable to the vmalloc fallback, due to visible performance drawbacks.
+ *
+ * Return: pointer to the allocated memory of %NULL in case of failure
+ */
+void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), unsigned long align,
+ gfp_t flags, int node)
+{
+ bool allow_block;
+ void *ret;
+
+ /*
+ * It doesn't really make sense to fallback to vmalloc for sub page
+ * requests
+ */
+ ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
+ kmalloc_gfp_adjust(flags, size),
+ node, _RET_IP_);
+ if (ret || size <= PAGE_SIZE)
+ return ret;
+
+ /* Don't even allow crazy sizes */
+ if (unlikely(size > INT_MAX)) {
+ WARN_ON_ONCE(!(flags & __GFP_NOWARN));
+ return NULL;
+ }
+
+ /*
+ * For non-blocking the VM_ALLOW_HUGE_VMAP is not used
+ * because the huge-mapping path in vmalloc contains at
+ * least one might_sleep() call.
+ *
+ * TODO: Revise huge-mapping path to support non-blocking
+ * flags.
+ */
+ allow_block = gfpflags_allow_blocking(flags);
+
+ /*
+ * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
+ * since the callers already cannot assume anything
+ * about the resulting pointer, and cannot play
+ * protection games.
+ */
+ return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
+ flags, PAGE_KERNEL, allow_block ? VM_ALLOW_HUGE_VMAP:0,
+ node, __builtin_return_address(0));
+}
+EXPORT_SYMBOL(__kvmalloc_node_noprof);
+
+/**
+ * kvfree() - Free memory.
+ * @addr: Pointer to allocated memory.
+ *
+ * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
+ * It is slightly more efficient to use kfree() or vfree() if you are certain
+ * that you know which one to use.
+ *
+ * Context: Either preemptible task context or not-NMI interrupt.
+ */
+void kvfree(const void *addr)
+{
+ if (is_vmalloc_addr(addr))
+ vfree(addr);
+ else
+ kfree(addr);
+}
+EXPORT_SYMBOL(kvfree);
+
+/**
+ * kvfree_sensitive - Free a data object containing sensitive information.
+ * @addr: address of the data object to be freed.
+ * @len: length of the data object.
+ *
+ * Use the special memzero_explicit() function to clear the content of a
+ * kvmalloc'ed object containing sensitive data to make sure that the
+ * compiler won't optimize out the data clearing.
+ */
+void kvfree_sensitive(const void *addr, size_t len)
+{
+ if (likely(!ZERO_OR_NULL_PTR(addr))) {
+ memzero_explicit((void *)addr, len);
+ kvfree(addr);
+ }
+}
+EXPORT_SYMBOL(kvfree_sensitive);
+
+/**
+ * kvrealloc_node_align - reallocate memory; contents remain unchanged
+ * @p: object to reallocate memory for
+ * @size: the size to reallocate
+ * @align: desired alignment
+ * @flags: the flags for the page level allocator
+ * @nid: NUMA node id
+ *
+ * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
+ * and @p is not a %NULL pointer, the object pointed to is freed.
+ *
+ * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
+ * Documentation/core-api/memory-allocation.rst for more details.
+ *
+ * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
+ * initial memory allocation, every subsequent call to this API for the same
+ * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
+ * __GFP_ZERO is not fully honored by this API.
+ *
+ * In any case, the contents of the object pointed to are preserved up to the
+ * lesser of the new and old sizes.
+ *
+ * This function must not be called concurrently with itself or kvfree() for the
+ * same memory allocation.
+ *
+ * Return: pointer to the allocated memory or %NULL in case of error
+ */
+void *kvrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
+ gfp_t flags, int nid)
+{
+ void *n;
+
+ if (is_vmalloc_addr(p))
+ return vrealloc_node_align_noprof(p, size, align, flags, nid);
+
+ n = krealloc_node_align_noprof(p, size, align, kmalloc_gfp_adjust(flags, size), nid);
+ if (!n) {
+ /* We failed to krealloc(), fall back to kvmalloc(). */
+ n = kvmalloc_node_align_noprof(size, align, flags, nid);
+ if (!n)
+ return NULL;
+
+ if (p) {
+ /* We already know that `p` is not a vmalloc address. */
+ kasan_disable_current();
+ memcpy(n, kasan_reset_tag(p), ksize(p));
+ kasan_enable_current();
+
+ kfree(p);
+ }
+ }
+
+ return n;
+}
+EXPORT_SYMBOL(kvrealloc_node_align_noprof);
+
+struct detached_freelist {
+ struct slab *slab;
+ void *tail;
+ void *freelist;
+ int cnt;
+ struct kmem_cache *s;
+};
+
+/*
+ * This function progressively scans the array with free objects (with
+ * a limited look ahead) and extract objects belonging to the same
+ * slab. It builds a detached freelist directly within the given
+ * slab/objects. This can happen without any need for
+ * synchronization, because the objects are owned by running process.
+ * The freelist is build up as a single linked list in the objects.
+ * The idea is, that this detached freelist can then be bulk
+ * transferred to the real freelist(s), but only requiring a single
+ * synchronization primitive. Look ahead in the array is limited due
+ * to performance reasons.
+ */
+static inline
+int build_detached_freelist(struct kmem_cache *s, size_t size,
+ void **p, struct detached_freelist *df)
+{
+ int lookahead = 3;
+ void *object;
+ struct page *page;
+ struct slab *slab;
+ size_t same;
+
+ object = p[--size];
+ page = virt_to_page(object);
+ slab = page_slab(page);
+ if (!s) {
+ /* Handle kalloc'ed objects */
+ if (!slab) {
+ free_large_kmalloc(page, object);
+ df->slab = NULL;
+ return size;
+ }
+ /* Derive kmem_cache from object */
+ df->slab = slab;
+ df->s = slab->slab_cache;
+ } else {
+ df->slab = slab;
+ df->s = cache_from_obj(s, object); /* Support for memcg */
+ }
+
+ /* Start new detached freelist */
+ df->tail = object;
+ df->freelist = object;
+ df->cnt = 1;
+
+ if (is_kfence_address(object))
+ return size;
+
+ set_freepointer(df->s, object, NULL);
+
+ same = size;
+ while (size) {
+ object = p[--size];
+ /* df->slab is always set at this point */
+ if (df->slab == virt_to_slab(object)) {
+ /* Opportunity build freelist */
+ set_freepointer(df->s, object, df->freelist);
+ df->freelist = object;
+ df->cnt++;
+ same--;
+ if (size != same)
+ swap(p[size], p[same]);
+ continue;
+ }
+
+ /* Limit look ahead search */
+ if (!--lookahead)
+ break;
+ }
+
+ return same;
+}
+
+/*
+ * Internal bulk free of objects that were not initialised by the post alloc
+ * hooks and thus should not be processed by the free hooks
+ */
+static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
+{
+ if (!size)
+ return;
+
+ do {
+ struct detached_freelist df;
+
+ size = build_detached_freelist(s, size, p, &df);
+ if (!df.slab)
+ continue;
+
+ if (kfence_free(df.freelist))
+ continue;
+
+ do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
+ _RET_IP_);
+ } while (likely(size));
+}
+
+/* Note that interrupts must be enabled when calling this function. */
+void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
+{
+ if (!size)
+ return;
+
+ /*
+ * freeing to sheaves is so incompatible with the detached freelist so
+ * once we go that way, we have to do everything differently
+ */
+ if (s && s->cpu_sheaves) {
+ free_to_pcs_bulk(s, size, p);
+ return;
+ }
+
+ do {
+ struct detached_freelist df;
+
+ size = build_detached_freelist(s, size, p, &df);
+ if (!df.slab)
+ continue;
+
+ slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
+ df.cnt, _RET_IP_);
+ } while (likely(size));
+}
+EXPORT_SYMBOL(kmem_cache_free_bulk);
+
+static inline
+int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
+ void **p)
+{
+ struct kmem_cache_cpu *c;
+ unsigned long irqflags;
+ int i;
+
+ /*
+ * Drain objects in the per cpu slab, while disabling local
+ * IRQs, which protects against PREEMPT and interrupts
+ * handlers invoking normal fastpath.
+ */
+ c = slub_get_cpu_ptr(s->cpu_slab);
+ local_lock_irqsave(&s->cpu_slab->lock, irqflags);
+
+ for (i = 0; i < size; i++) {
+ void *object = c->freelist;
+
+ if (unlikely(!object)) {
+ /*
+ * We may have removed an object from c->freelist using
+ * the fastpath in the previous iteration; in that case,
+ * c->tid has not been bumped yet.
+ * Since ___slab_alloc() may reenable interrupts while
+ * allocating memory, we should bump c->tid now.
+ */
+ c->tid = next_tid(c->tid);
+
+ local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
+
+ /*
+ * Invoking slow path likely have side-effect
+ * of re-populating per CPU c->freelist
+ */
+ p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
+ _RET_IP_, c, s->object_size);
+ if (unlikely(!p[i]))
+ goto error;
+
+ c = this_cpu_ptr(s->cpu_slab);
+ maybe_wipe_obj_freeptr(s, p[i]);
+
+ local_lock_irqsave(&s->cpu_slab->lock, irqflags);
+
+ continue; /* goto for-loop */
+ }
+ c->freelist = get_freepointer(s, object);
+ p[i] = object;
+ maybe_wipe_obj_freeptr(s, p[i]);
+ stat(s, ALLOC_FASTPATH);
+ }
+ c->tid = next_tid(c->tid);
+ local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
+ slub_put_cpu_ptr(s->cpu_slab);
+
+ return i;
+
+error:
+ slub_put_cpu_ptr(s->cpu_slab);
+ __kmem_cache_free_bulk(s, i, p);
+ return 0;
+
+}
+
+/* Note that interrupts must be enabled when calling this function. */
+int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
+ void **p)
+{
+ unsigned int i = 0;
+ void *kfence_obj;
+
+ if (!size)
+ return 0;
+
+ s = slab_pre_alloc_hook(s, flags);
+ if (unlikely(!s))
+ return 0;
+
+ /*
+ * to make things simpler, only assume at most once kfence allocated
+ * object per bulk allocation and choose its index randomly
+ */
+ kfence_obj = kfence_alloc(s, s->object_size, flags);
+
+ if (unlikely(kfence_obj)) {
+ if (unlikely(size == 1)) {
+ p[0] = kfence_obj;
+ goto out;
+ }
+ size--;
+ }
+
+ if (s->cpu_sheaves)
+ i = alloc_from_pcs_bulk(s, size, p);
+
+ if (i < size) {
+ /*
+ * If we ran out of memory, don't bother with freeing back to
+ * the percpu sheaves, we have bigger problems.
+ */
+ if (unlikely(__kmem_cache_alloc_bulk(s, flags, size - i, p + i) == 0)) {
+ if (i > 0)
+ __kmem_cache_free_bulk(s, i, p);
+ if (kfence_obj)
+ __kfence_free(kfence_obj);
+ return 0;
+ }
+ }
+
+ if (unlikely(kfence_obj)) {
+ int idx = get_random_u32_below(size + 1);
+
+ if (idx != size)
+ p[size] = p[idx];
+ p[idx] = kfence_obj;
+
+ size++;
+ }
+
+out:
+ /*
+ * memcg and kmem_cache debug support and memory initialization.
+ * Done outside of the IRQ disabled fastpath loop.
+ */
+ if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
+ slab_want_init_on_alloc(flags, s), s->object_size))) {
+ return 0;
+ }
+
+ return size;
+}
+EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
+
/*
* Object placement in a slab is made very easy because we always start at
* offset 0. If we tune the size of the object to the alignment then we can
@@ -2666,20 +7534,15 @@ EXPORT_SYMBOL(kmem_cache_free);
*/
/*
- * Mininum / Maximum order of slab pages. This influences locking overhead
+ * Minimum / Maximum order of slab pages. This influences locking overhead
* and slab fragmentation. A higher order reduces the number of partial slabs
* and increases the number of allocations possible without having to
* take the list_lock.
*/
-static int slub_min_order;
-static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
-static int slub_min_objects;
-
-/*
- * Merge control. If this is set then no merging of slab caches will occur.
- * (Could be removed. This was introduced to pacify the merge skeptics.)
- */
-static int slub_nomerge;
+static unsigned int slub_min_order;
+static unsigned int slub_max_order =
+ IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
+static unsigned int slub_min_objects;
/*
* Calculate the order of allocation given an slab object size.
@@ -2696,97 +7559,101 @@ static int slub_nomerge;
* activity on the partial lists which requires taking the list_lock. This is
* less a concern for large slabs though which are rarely used.
*
- * slub_max_order specifies the order where we begin to stop considering the
- * number of objects in a slab as critical. If we reach slub_max_order then
+ * slab_max_order specifies the order where we begin to stop considering the
+ * number of objects in a slab as critical. If we reach slab_max_order then
* we try to keep the page order as low as possible. So we accept more waste
* of space in favor of a small page order.
*
* Higher order allocations also allow the placement of more objects in a
* slab and thereby reduce object handling overhead. If the user has
- * requested a higher mininum order then we start with that one instead of
+ * requested a higher minimum order then we start with that one instead of
* the smallest order which will fit the object.
*/
-static inline int slab_order(int size, int min_objects,
- int max_order, int fract_leftover, int reserved)
+static inline unsigned int calc_slab_order(unsigned int size,
+ unsigned int min_order, unsigned int max_order,
+ unsigned int fract_leftover)
{
- int order;
- int rem;
- int min_order = slub_min_order;
+ unsigned int order;
- if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
- return get_order(size * MAX_OBJS_PER_PAGE) - 1;
-
- for (order = max(min_order,
- fls(min_objects * size - 1) - PAGE_SHIFT);
- order <= max_order; order++) {
+ for (order = min_order; order <= max_order; order++) {
- unsigned long slab_size = PAGE_SIZE << order;
-
- if (slab_size < min_objects * size + reserved)
- continue;
+ unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
+ unsigned int rem;
- rem = (slab_size - reserved) % size;
+ rem = slab_size % size;
if (rem <= slab_size / fract_leftover)
break;
-
}
return order;
}
-static inline int calculate_order(int size, int reserved)
+static inline int calculate_order(unsigned int size)
{
- int order;
- int min_objects;
- int fraction;
- int max_objects;
+ unsigned int order;
+ unsigned int min_objects;
+ unsigned int max_objects;
+ unsigned int min_order;
- /*
- * Attempt to find best configuration for a slab. This
- * works by first attempting to generate a layout with
- * the best configuration and backing off gradually.
- *
- * First we reduce the acceptable waste in a slab. Then
- * we reduce the minimum objects required in a slab.
- */
min_objects = slub_min_objects;
- if (!min_objects)
- min_objects = 4 * (fls(nr_cpu_ids) + 1);
- max_objects = order_objects(slub_max_order, size, reserved);
+ if (!min_objects) {
+ /*
+ * Some architectures will only update present cpus when
+ * onlining them, so don't trust the number if it's just 1. But
+ * we also don't want to use nr_cpu_ids always, as on some other
+ * architectures, there can be many possible cpus, but never
+ * onlined. Here we compromise between trying to avoid too high
+ * order on systems that appear larger than they are, and too
+ * low order on systems that appear smaller than they are.
+ */
+ unsigned int nr_cpus = num_present_cpus();
+ if (nr_cpus <= 1)
+ nr_cpus = nr_cpu_ids;
+ min_objects = 4 * (fls(nr_cpus) + 1);
+ }
+ /* min_objects can't be 0 because get_order(0) is undefined */
+ max_objects = max(order_objects(slub_max_order, size), 1U);
min_objects = min(min_objects, max_objects);
- while (min_objects > 1) {
- fraction = 16;
- while (fraction >= 4) {
- order = slab_order(size, min_objects,
- slub_max_order, fraction, reserved);
- if (order <= slub_max_order)
- return order;
- fraction /= 2;
- }
- min_objects--;
- }
+ min_order = max_t(unsigned int, slub_min_order,
+ get_order(min_objects * size));
+ if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
+ return get_order(size * MAX_OBJS_PER_PAGE) - 1;
/*
- * We were unable to place multiple objects in a slab. Now
- * lets see if we can place a single object there.
+ * Attempt to find best configuration for a slab. This works by first
+ * attempting to generate a layout with the best possible configuration
+ * and backing off gradually.
+ *
+ * We start with accepting at most 1/16 waste and try to find the
+ * smallest order from min_objects-derived/slab_min_order up to
+ * slab_max_order that will satisfy the constraint. Note that increasing
+ * the order can only result in same or less fractional waste, not more.
+ *
+ * If that fails, we increase the acceptable fraction of waste and try
+ * again. The last iteration with fraction of 1/2 would effectively
+ * accept any waste and give us the order determined by min_objects, as
+ * long as at least single object fits within slab_max_order.
*/
- order = slab_order(size, 1, slub_max_order, 1, reserved);
- if (order <= slub_max_order)
- return order;
+ for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
+ order = calc_slab_order(size, min_order, slub_max_order,
+ fraction);
+ if (order <= slub_max_order)
+ return order;
+ }
/*
- * Doh this slab cannot be placed using slub_max_order.
+ * Doh this slab cannot be placed using slab_max_order.
*/
- order = slab_order(size, 1, MAX_ORDER, 1, reserved);
- if (order < MAX_ORDER)
+ order = get_order(size);
+ if (order <= MAX_PAGE_ORDER)
return order;
return -ENOSYS;
}
static void
-init_kmem_cache_node(struct kmem_cache_node *n)
+init_kmem_cache_node(struct kmem_cache_node *n, struct node_barn *barn)
{
n->nr_partial = 0;
spin_lock_init(&n->list_lock);
@@ -2796,12 +7663,16 @@ init_kmem_cache_node(struct kmem_cache_node *n)
atomic_long_set(&n->total_objects, 0);
INIT_LIST_HEAD(&n->full);
#endif
+ n->barn = barn;
+ if (barn)
+ barn_init(barn);
}
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
{
BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
- KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
+ NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
+ sizeof(struct kmem_cache_cpu));
/*
* Must align to double word boundary for the double cmpxchg
@@ -2818,6 +7689,26 @@ static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
return 1;
}
+static int init_percpu_sheaves(struct kmem_cache *s)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ struct slub_percpu_sheaves *pcs;
+
+ pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
+
+ local_trylock_init(&pcs->lock);
+
+ pcs->main = alloc_empty_sheaf(s, GFP_KERNEL);
+
+ if (!pcs->main)
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
static struct kmem_cache *kmem_cache_node;
/*
@@ -2825,100 +7716,151 @@ static struct kmem_cache *kmem_cache_node;
* slab on the node for this slabcache. There are no concurrent accesses
* possible.
*
- * Note that this function only works on the kmalloc_node_cache
- * when allocating for the kmalloc_node_cache. This is used for bootstrapping
+ * Note that this function only works on the kmem_cache_node
+ * when allocating for the kmem_cache_node. This is used for bootstrapping
* memory on a fresh node that has no slab structures yet.
*/
static void early_kmem_cache_node_alloc(int node)
{
- struct page *page;
+ struct slab *slab;
struct kmem_cache_node *n;
BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
- page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
+ slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
- BUG_ON(!page);
- if (page_to_nid(page) != node) {
- printk(KERN_ERR "SLUB: Unable to allocate memory from "
- "node %d\n", node);
- printk(KERN_ERR "SLUB: Allocating a useless per node structure "
- "in order to be able to continue\n");
+ BUG_ON(!slab);
+ if (slab_nid(slab) != node) {
+ pr_err("SLUB: Unable to allocate memory from node %d\n", node);
+ pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
}
- n = page->freelist;
+ n = slab->freelist;
BUG_ON(!n);
- page->freelist = get_freepointer(kmem_cache_node, n);
- page->inuse = 1;
- page->frozen = 0;
- kmem_cache_node->node[node] = n;
#ifdef CONFIG_SLUB_DEBUG
init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
- init_tracking(kmem_cache_node, n);
#endif
- init_kmem_cache_node(n);
- inc_slabs_node(kmem_cache_node, node, page->objects);
+ n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
+ slab->freelist = get_freepointer(kmem_cache_node, n);
+ slab->inuse = 1;
+ kmem_cache_node->node[node] = n;
+ init_kmem_cache_node(n, NULL);
+ inc_slabs_node(kmem_cache_node, node, slab->objects);
- add_partial(n, page, DEACTIVATE_TO_HEAD);
+ /*
+ * No locks need to be taken here as it has just been
+ * initialized and there is no concurrent access.
+ */
+ __add_partial(n, slab, DEACTIVATE_TO_HEAD);
}
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
int node;
+ struct kmem_cache_node *n;
- for_each_node_state(node, N_NORMAL_MEMORY) {
- struct kmem_cache_node *n = s->node[node];
-
- if (n)
- kmem_cache_free(kmem_cache_node, n);
+ for_each_kmem_cache_node(s, node, n) {
+ if (n->barn) {
+ WARN_ON(n->barn->nr_full);
+ WARN_ON(n->barn->nr_empty);
+ kfree(n->barn);
+ n->barn = NULL;
+ }
s->node[node] = NULL;
+ kmem_cache_free(kmem_cache_node, n);
}
}
+void __kmem_cache_release(struct kmem_cache *s)
+{
+ cache_random_seq_destroy(s);
+ if (s->cpu_sheaves)
+ pcs_destroy(s);
+#ifdef CONFIG_PREEMPT_RT
+ if (s->cpu_slab)
+ lockdep_unregister_key(&s->lock_key);
+#endif
+ free_percpu(s->cpu_slab);
+ free_kmem_cache_nodes(s);
+}
+
static int init_kmem_cache_nodes(struct kmem_cache *s)
{
int node;
- for_each_node_state(node, N_NORMAL_MEMORY) {
+ for_each_node_mask(node, slab_nodes) {
struct kmem_cache_node *n;
+ struct node_barn *barn = NULL;
if (slab_state == DOWN) {
early_kmem_cache_node_alloc(node);
continue;
}
+
+ if (s->cpu_sheaves) {
+ barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node);
+
+ if (!barn)
+ return 0;
+ }
+
n = kmem_cache_alloc_node(kmem_cache_node,
GFP_KERNEL, node);
-
if (!n) {
- free_kmem_cache_nodes(s);
+ kfree(barn);
return 0;
}
+ init_kmem_cache_node(n, barn);
+
s->node[node] = n;
- init_kmem_cache_node(n);
}
return 1;
}
-static void set_min_partial(struct kmem_cache *s, unsigned long min)
+static void set_cpu_partial(struct kmem_cache *s)
{
- if (min < MIN_PARTIAL)
- min = MIN_PARTIAL;
- else if (min > MAX_PARTIAL)
- min = MAX_PARTIAL;
- s->min_partial = min;
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+ unsigned int nr_objects;
+
+ /*
+ * cpu_partial determined the maximum number of objects kept in the
+ * per cpu partial lists of a processor.
+ *
+ * Per cpu partial lists mainly contain slabs that just have one
+ * object freed. If they are used for allocation then they can be
+ * filled up again with minimal effort. The slab will never hit the
+ * per node partial lists and therefore no locking will be required.
+ *
+ * For backwards compatibility reasons, this is determined as number
+ * of objects, even though we now limit maximum number of pages, see
+ * slub_set_cpu_partial()
+ */
+ if (!kmem_cache_has_cpu_partial(s))
+ nr_objects = 0;
+ else if (s->size >= PAGE_SIZE)
+ nr_objects = 6;
+ else if (s->size >= 1024)
+ nr_objects = 24;
+ else if (s->size >= 256)
+ nr_objects = 52;
+ else
+ nr_objects = 120;
+
+ slub_set_cpu_partial(s, nr_objects);
+#endif
}
/*
* calculate_sizes() determines the order and the distribution of data within
* a slab object.
*/
-static int calculate_sizes(struct kmem_cache *s, int forced_order)
+static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
{
- unsigned long flags = s->flags;
- unsigned long size = s->object_size;
- int order;
+ slab_flags_t flags = s->flags;
+ unsigned int size = s->object_size;
+ unsigned int order;
/*
* Round up object size to the next word boundary. We can only
@@ -2933,7 +7875,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
* the slab may touch the object after free or before allocation
* then we should never poison the object itself.
*/
- if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
+ if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
!s->ctor)
s->flags |= __OBJECT_POISON;
else
@@ -2951,33 +7893,60 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
/*
* With that we have determined the number of bytes in actual use
- * by the object. This is the potential offset to the free pointer.
+ * by the object and redzoning.
*/
s->inuse = size;
- if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
- s->ctor)) {
+ if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
+ (flags & SLAB_POISON) || s->ctor ||
+ ((flags & SLAB_RED_ZONE) &&
+ (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
/*
* Relocate free pointer after the object if it is not
* permitted to overwrite the first word of the object on
* kmem_cache_free.
*
- * This is the case if we do RCU, have a constructor or
- * destructor or are poisoning the objects.
+ * This is the case if we do RCU, have a constructor, are
+ * poisoning the objects, or are redzoning an object smaller
+ * than sizeof(void *) or are redzoning an object with
+ * slub_debug_orig_size() enabled, in which case the right
+ * redzone may be extended.
+ *
+ * The assumption that s->offset >= s->inuse means free
+ * pointer is outside of the object is used in the
+ * freeptr_outside_object() function. If that is no
+ * longer true, the function needs to be modified.
*/
s->offset = size;
size += sizeof(void *);
+ } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
+ s->offset = args->freeptr_offset;
+ } else {
+ /*
+ * Store freelist pointer near middle of object to keep
+ * it away from the edges of the object to avoid small
+ * sized over/underflows from neighboring allocations.
+ */
+ s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
}
#ifdef CONFIG_SLUB_DEBUG
- if (flags & SLAB_STORE_USER)
+ if (flags & SLAB_STORE_USER) {
/*
* Need to store information about allocs and frees after
* the object.
*/
size += 2 * sizeof(struct track);
- if (flags & SLAB_RED_ZONE)
+ /* Save the original kmalloc request size */
+ if (flags & SLAB_KMALLOC)
+ size += sizeof(unsigned int);
+ }
+#endif
+
+ kasan_cache_create(s, &size, &s->flags);
+#ifdef CONFIG_SLUB_DEBUG
+ if (flags & SLAB_RED_ZONE) {
/*
* Add some empty padding so that we can catch
* overwrites from earlier objects rather than let
@@ -2986,6 +7955,11 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
* of the object.
*/
size += sizeof(void *);
+
+ s->red_left_pad = sizeof(void *);
+ s->red_left_pad = ALIGN(s->red_left_pad, s->align);
+ size += s->red_left_pad;
+ }
#endif
/*
@@ -2995,524 +7969,428 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
*/
size = ALIGN(size, s->align);
s->size = size;
- if (forced_order >= 0)
- order = forced_order;
- else
- order = calculate_order(size, s->reserved);
+ s->reciprocal_size = reciprocal_value(size);
+ order = calculate_order(size);
- if (order < 0)
+ if ((int)order < 0)
return 0;
- s->allocflags = 0;
- if (order)
- s->allocflags |= __GFP_COMP;
+ s->allocflags = __GFP_COMP;
if (s->flags & SLAB_CACHE_DMA)
s->allocflags |= GFP_DMA;
+ if (s->flags & SLAB_CACHE_DMA32)
+ s->allocflags |= GFP_DMA32;
+
if (s->flags & SLAB_RECLAIM_ACCOUNT)
s->allocflags |= __GFP_RECLAIMABLE;
/*
* Determine the number of objects per slab
*/
- s->oo = oo_make(order, size, s->reserved);
- s->min = oo_make(get_order(size), size, s->reserved);
- if (oo_objects(s->oo) > oo_objects(s->max))
- s->max = s->oo;
+ s->oo = oo_make(order, size);
+ s->min = oo_make(get_order(size), size);
return !!oo_objects(s->oo);
}
-static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
-{
- s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
- s->reserved = 0;
-
- if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
- s->reserved = sizeof(struct rcu_head);
-
- if (!calculate_sizes(s, -1))
- goto error;
- if (disable_higher_order_debug) {
- /*
- * Disable debugging flags that store metadata if the min slab
- * order increased.
- */
- if (get_order(s->size) > get_order(s->object_size)) {
- s->flags &= ~DEBUG_METADATA_FLAGS;
- s->offset = 0;
- if (!calculate_sizes(s, -1))
- goto error;
- }
- }
-
-#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
- defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
- if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
- /* Enable fast mode */
- s->flags |= __CMPXCHG_DOUBLE;
-#endif
-
- /*
- * The larger the object size is, the more pages we want on the partial
- * list to avoid pounding the page allocator excessively.
- */
- set_min_partial(s, ilog2(s->size) / 2);
-
- /*
- * cpu_partial determined the maximum number of objects kept in the
- * per cpu partial lists of a processor.
- *
- * Per cpu partial lists mainly contain slabs that just have one
- * object freed. If they are used for allocation then they can be
- * filled up again with minimal effort. The slab will never hit the
- * per node partial lists and therefore no locking will be required.
- *
- * This setting also determines
- *
- * A) The number of objects from per cpu partial slabs dumped to the
- * per node list when we reach the limit.
- * B) The number of objects in cpu partial slabs to extract from the
- * per node list when we run out of per cpu objects. We only fetch 50%
- * to keep some capacity around for frees.
- */
- if (!kmem_cache_has_cpu_partial(s))
- s->cpu_partial = 0;
- else if (s->size >= PAGE_SIZE)
- s->cpu_partial = 2;
- else if (s->size >= 1024)
- s->cpu_partial = 6;
- else if (s->size >= 256)
- s->cpu_partial = 13;
- else
- s->cpu_partial = 30;
-
-#ifdef CONFIG_NUMA
- s->remote_node_defrag_ratio = 1000;
-#endif
- if (!init_kmem_cache_nodes(s))
- goto error;
-
- if (alloc_kmem_cache_cpus(s))
- return 0;
-
- free_kmem_cache_nodes(s);
-error:
- if (flags & SLAB_PANIC)
- panic("Cannot create slab %s size=%lu realsize=%u "
- "order=%u offset=%u flags=%lx\n",
- s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
- s->offset, flags);
- return -EINVAL;
-}
-
-static void list_slab_objects(struct kmem_cache *s, struct page *page,
- const char *text)
+static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
{
#ifdef CONFIG_SLUB_DEBUG
- void *addr = page_address(page);
+ void *addr = slab_address(slab);
void *p;
- unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
- sizeof(long), GFP_ATOMIC);
- if (!map)
- return;
- slab_err(s, page, text, s->name);
- slab_lock(page);
- get_map(s, page, map);
- for_each_object(p, s, addr, page->objects) {
+ if (!slab_add_kunit_errors())
+ slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
+
+ spin_lock(&object_map_lock);
+ __fill_map(object_map, s, slab);
+
+ for_each_object(p, s, addr, slab->objects) {
- if (!test_bit(slab_index(p, s, addr), map)) {
- printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
- p, p - addr);
+ if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
+ if (slab_add_kunit_errors())
+ continue;
+ pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
print_tracking(s, p);
}
}
- slab_unlock(page);
- kfree(map);
+ spin_unlock(&object_map_lock);
+
+ __slab_err(slab);
#endif
}
/*
* Attempt to free all partial slabs on a node.
- * This is called from kmem_cache_close(). We must be the last thread
- * using the cache and therefore we do not need to lock anymore.
+ * This is called from __kmem_cache_shutdown(). We must take list_lock
+ * because sysfs file might still access partial list after the shutdowning.
*/
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
{
- struct page *page, *h;
+ LIST_HEAD(discard);
+ struct slab *slab, *h;
- list_for_each_entry_safe(page, h, &n->partial, lru) {
- if (!page->inuse) {
- remove_partial(n, page);
- discard_slab(s, page);
+ BUG_ON(irqs_disabled());
+ spin_lock_irq(&n->list_lock);
+ list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
+ if (!slab->inuse) {
+ remove_partial(n, slab);
+ list_add(&slab->slab_list, &discard);
} else {
- list_slab_objects(s, page,
- "Objects remaining in %s on kmem_cache_close()");
+ list_slab_objects(s, slab);
}
}
+ spin_unlock_irq(&n->list_lock);
+
+ list_for_each_entry_safe(slab, h, &discard, slab_list)
+ discard_slab(s, slab);
+}
+
+bool __kmem_cache_empty(struct kmem_cache *s)
+{
+ int node;
+ struct kmem_cache_node *n;
+
+ for_each_kmem_cache_node(s, node, n)
+ if (n->nr_partial || node_nr_slabs(n))
+ return false;
+ return true;
}
/*
* Release all resources used by a slab cache.
*/
-static inline int kmem_cache_close(struct kmem_cache *s)
+int __kmem_cache_shutdown(struct kmem_cache *s)
{
int node;
+ struct kmem_cache_node *n;
- flush_all(s);
- /* Attempt to free all objects */
- for_each_node_state(node, N_NORMAL_MEMORY) {
- struct kmem_cache_node *n = get_node(s, node);
+ flush_all_cpus_locked(s);
+ /* we might have rcu sheaves in flight */
+ if (s->cpu_sheaves)
+ rcu_barrier();
+
+ /* Attempt to free all objects */
+ for_each_kmem_cache_node(s, node, n) {
+ if (n->barn)
+ barn_shrink(s, n->barn);
free_partial(s, n);
- if (n->nr_partial || slabs_node(s, node))
+ if (n->nr_partial || node_nr_slabs(n))
return 1;
}
- free_percpu(s->cpu_slab);
- free_kmem_cache_nodes(s);
return 0;
}
-int __kmem_cache_shutdown(struct kmem_cache *s)
+#ifdef CONFIG_PRINTK
+void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
{
- int rc = kmem_cache_close(s);
+ void *base;
+ int __maybe_unused i;
+ unsigned int objnr;
+ void *objp;
+ void *objp0;
+ struct kmem_cache *s = slab->slab_cache;
+ struct track __maybe_unused *trackp;
+
+ kpp->kp_ptr = object;
+ kpp->kp_slab = slab;
+ kpp->kp_slab_cache = s;
+ base = slab_address(slab);
+ objp0 = kasan_reset_tag(object);
+#ifdef CONFIG_SLUB_DEBUG
+ objp = restore_red_left(s, objp0);
+#else
+ objp = objp0;
+#endif
+ objnr = obj_to_index(s, slab, objp);
+ kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
+ objp = base + s->size * objnr;
+ kpp->kp_objp = objp;
+ if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
+ || (objp - base) % s->size) ||
+ !(s->flags & SLAB_STORE_USER))
+ return;
+#ifdef CONFIG_SLUB_DEBUG
+ objp = fixup_red_left(s, objp);
+ trackp = get_track(s, objp, TRACK_ALLOC);
+ kpp->kp_ret = (void *)trackp->addr;
+#ifdef CONFIG_STACKDEPOT
+ {
+ depot_stack_handle_t handle;
+ unsigned long *entries;
+ unsigned int nr_entries;
+
+ handle = READ_ONCE(trackp->handle);
+ if (handle) {
+ nr_entries = stack_depot_fetch(handle, &entries);
+ for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
+ kpp->kp_stack[i] = (void *)entries[i];
+ }
- if (!rc) {
- /*
- * We do the same lock strategy around sysfs_slab_add, see
- * __kmem_cache_create. Because this is pretty much the last
- * operation we do and the lock will be released shortly after
- * that in slab_common.c, we could just move sysfs_slab_remove
- * to a later point in common code. We should do that when we
- * have a common sysfs framework for all allocators.
- */
- mutex_unlock(&slab_mutex);
- sysfs_slab_remove(s);
- mutex_lock(&slab_mutex);
+ trackp = get_track(s, objp, TRACK_FREE);
+ handle = READ_ONCE(trackp->handle);
+ if (handle) {
+ nr_entries = stack_depot_fetch(handle, &entries);
+ for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
+ kpp->kp_free_stack[i] = (void *)entries[i];
+ }
}
-
- return rc;
+#endif
+#endif
}
+#endif
/********************************************************************
* Kmalloc subsystem
*******************************************************************/
-static int __init setup_slub_min_order(char *str)
+static int __init setup_slub_min_order(const char *str, const struct kernel_param *kp)
{
- get_option(&str, &slub_min_order);
+ int ret;
- return 1;
-}
-
-__setup("slub_min_order=", setup_slub_min_order);
-
-static int __init setup_slub_max_order(char *str)
-{
- get_option(&str, &slub_max_order);
- slub_max_order = min(slub_max_order, MAX_ORDER - 1);
-
- return 1;
-}
-
-__setup("slub_max_order=", setup_slub_max_order);
-
-static int __init setup_slub_min_objects(char *str)
-{
- get_option(&str, &slub_min_objects);
-
- return 1;
-}
+ ret = kstrtouint(str, 0, &slub_min_order);
+ if (ret)
+ return ret;
-__setup("slub_min_objects=", setup_slub_min_objects);
+ if (slub_min_order > slub_max_order)
+ slub_max_order = slub_min_order;
-static int __init setup_slub_nomerge(char *str)
-{
- slub_nomerge = 1;
- return 1;
+ return 0;
}
-__setup("slub_nomerge", setup_slub_nomerge);
+static const struct kernel_param_ops param_ops_slab_min_order __initconst = {
+ .set = setup_slub_min_order,
+};
+__core_param_cb(slab_min_order, &param_ops_slab_min_order, &slub_min_order, 0);
+__core_param_cb(slub_min_order, &param_ops_slab_min_order, &slub_min_order, 0);
-void *__kmalloc(size_t size, gfp_t flags)
+static int __init setup_slub_max_order(const char *str, const struct kernel_param *kp)
{
- struct kmem_cache *s;
- void *ret;
-
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
- return kmalloc_large(size, flags);
+ int ret;
- s = kmalloc_slab(size, flags);
-
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
+ ret = kstrtouint(str, 0, &slub_max_order);
+ if (ret)
+ return ret;
- ret = slab_alloc(s, flags, _RET_IP_);
+ slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
- trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
+ if (slub_min_order > slub_max_order)
+ slub_min_order = slub_max_order;
- return ret;
+ return 0;
}
-EXPORT_SYMBOL(__kmalloc);
-
-#ifdef CONFIG_NUMA
-static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
-{
- struct page *page;
- void *ptr = NULL;
- flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
- page = alloc_pages_node(node, flags, get_order(size));
- if (page)
- ptr = page_address(page);
+static const struct kernel_param_ops param_ops_slab_max_order __initconst = {
+ .set = setup_slub_max_order,
+};
+__core_param_cb(slab_max_order, &param_ops_slab_max_order, &slub_max_order, 0);
+__core_param_cb(slub_max_order, &param_ops_slab_max_order, &slub_max_order, 0);
- kmemleak_alloc(ptr, size, 1, flags);
- return ptr;
-}
+core_param(slab_min_objects, slub_min_objects, uint, 0);
+core_param(slub_min_objects, slub_min_objects, uint, 0);
-void *__kmalloc_node(size_t size, gfp_t flags, int node)
+#ifdef CONFIG_NUMA
+static int __init setup_slab_strict_numa(const char *str, const struct kernel_param *kp)
{
- struct kmem_cache *s;
- void *ret;
-
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
- ret = kmalloc_large_node(size, flags, node);
-
- trace_kmalloc_node(_RET_IP_, ret,
- size, PAGE_SIZE << get_order(size),
- flags, node);
-
- return ret;
+ if (nr_node_ids > 1) {
+ static_branch_enable(&strict_numa);
+ pr_info("SLUB: Strict NUMA enabled.\n");
+ } else {
+ pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
}
- s = kmalloc_slab(size, flags);
-
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
-
- ret = slab_alloc_node(s, flags, node, _RET_IP_);
-
- trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
-
- return ret;
+ return 0;
}
-EXPORT_SYMBOL(__kmalloc_node);
-#endif
-
-size_t ksize(const void *object)
-{
- struct page *page;
-
- if (unlikely(object == ZERO_SIZE_PTR))
- return 0;
- page = virt_to_head_page(object);
+static const struct kernel_param_ops param_ops_slab_strict_numa __initconst = {
+ .flags = KERNEL_PARAM_OPS_FL_NOARG,
+ .set = setup_slab_strict_numa,
+};
+__core_param_cb(slab_strict_numa, &param_ops_slab_strict_numa, NULL, 0);
+#endif
- if (unlikely(!PageSlab(page))) {
- WARN_ON(!PageCompound(page));
- return PAGE_SIZE << compound_order(page);
- }
- return slab_ksize(page->slab_cache);
-}
-EXPORT_SYMBOL(ksize);
-
-#ifdef CONFIG_SLUB_DEBUG
-bool verify_mem_not_deleted(const void *x)
+#ifdef CONFIG_HARDENED_USERCOPY
+/*
+ * Rejects incorrectly sized objects and objects that are to be copied
+ * to/from userspace but do not fall entirely within the containing slab
+ * cache's usercopy region.
+ *
+ * Returns NULL if check passes, otherwise const char * to name of cache
+ * to indicate an error.
+ */
+void __check_heap_object(const void *ptr, unsigned long n,
+ const struct slab *slab, bool to_user)
{
- struct page *page;
- void *object = (void *)x;
- unsigned long flags;
- bool rv;
+ struct kmem_cache *s;
+ unsigned int offset;
+ bool is_kfence = is_kfence_address(ptr);
- if (unlikely(ZERO_OR_NULL_PTR(x)))
- return false;
+ ptr = kasan_reset_tag(ptr);
- local_irq_save(flags);
+ /* Find object and usable object size. */
+ s = slab->slab_cache;
- page = virt_to_head_page(x);
- if (unlikely(!PageSlab(page))) {
- /* maybe it was from stack? */
- rv = true;
- goto out_unlock;
- }
+ /* Reject impossible pointers. */
+ if (ptr < slab_address(slab))
+ usercopy_abort("SLUB object not in SLUB page?!", NULL,
+ to_user, 0, n);
- slab_lock(page);
- if (on_freelist(page->slab_cache, page, object)) {
- object_err(page->slab_cache, page, object, "Object is on free-list");
- rv = false;
- } else {
- rv = true;
+ /* Find offset within object. */
+ if (is_kfence)
+ offset = ptr - kfence_object_start(ptr);
+ else
+ offset = (ptr - slab_address(slab)) % s->size;
+
+ /* Adjust for redzone and reject if within the redzone. */
+ if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
+ if (offset < s->red_left_pad)
+ usercopy_abort("SLUB object in left red zone",
+ s->name, to_user, offset, n);
+ offset -= s->red_left_pad;
}
- slab_unlock(page);
-
-out_unlock:
- local_irq_restore(flags);
- return rv;
-}
-EXPORT_SYMBOL(verify_mem_not_deleted);
-#endif
-
-void kfree(const void *x)
-{
- struct page *page;
- void *object = (void *)x;
-
- trace_kfree(_RET_IP_, x);
- if (unlikely(ZERO_OR_NULL_PTR(x)))
+ /* Allow address range falling entirely within usercopy region. */
+ if (offset >= s->useroffset &&
+ offset - s->useroffset <= s->usersize &&
+ n <= s->useroffset - offset + s->usersize)
return;
- page = virt_to_head_page(x);
- if (unlikely(!PageSlab(page))) {
- BUG_ON(!PageCompound(page));
- kmemleak_free(x);
- __free_memcg_kmem_pages(page, compound_order(page));
- return;
- }
- slab_free(page->slab_cache, page, object, _RET_IP_);
+ usercopy_abort("SLUB object", s->name, to_user, offset, n);
}
-EXPORT_SYMBOL(kfree);
+#endif /* CONFIG_HARDENED_USERCOPY */
+
+#define SHRINK_PROMOTE_MAX 32
/*
- * kmem_cache_shrink removes empty slabs from the partial lists and sorts
- * the remaining slabs by the number of items in use. The slabs with the
- * most items in use come first. New allocations will then fill those up
- * and thus they can be removed from the partial lists.
+ * kmem_cache_shrink discards empty slabs and promotes the slabs filled
+ * up most to the head of the partial lists. New allocations will then
+ * fill those up and thus they can be removed from the partial lists.
*
* The slabs with the least items are placed last. This results in them
* being allocated from last increasing the chance that the last objects
* are freed in them.
*/
-int kmem_cache_shrink(struct kmem_cache *s)
+static int __kmem_cache_do_shrink(struct kmem_cache *s)
{
int node;
int i;
struct kmem_cache_node *n;
- struct page *page;
- struct page *t;
- int objects = oo_objects(s->max);
- struct list_head *slabs_by_inuse =
- kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
+ struct slab *slab;
+ struct slab *t;
+ struct list_head discard;
+ struct list_head promote[SHRINK_PROMOTE_MAX];
unsigned long flags;
+ int ret = 0;
- if (!slabs_by_inuse)
- return -ENOMEM;
-
- flush_all(s);
- for_each_node_state(node, N_NORMAL_MEMORY) {
- n = get_node(s, node);
-
- if (!n->nr_partial)
- continue;
+ for_each_kmem_cache_node(s, node, n) {
+ INIT_LIST_HEAD(&discard);
+ for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
+ INIT_LIST_HEAD(promote + i);
- for (i = 0; i < objects; i++)
- INIT_LIST_HEAD(slabs_by_inuse + i);
+ if (n->barn)
+ barn_shrink(s, n->barn);
spin_lock_irqsave(&n->list_lock, flags);
/*
- * Build lists indexed by the items in use in each slab.
+ * Build lists of slabs to discard or promote.
*
* Note that concurrent frees may occur while we hold the
- * list_lock. page->inuse here is the upper limit.
+ * list_lock. slab->inuse here is the upper limit.
*/
- list_for_each_entry_safe(page, t, &n->partial, lru) {
- list_move(&page->lru, slabs_by_inuse + page->inuse);
- if (!page->inuse)
+ list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
+ int free = slab->objects - slab->inuse;
+
+ /* Do not reread slab->inuse */
+ barrier();
+
+ /* We do not keep full slabs on the list */
+ BUG_ON(free <= 0);
+
+ if (free == slab->objects) {
+ list_move(&slab->slab_list, &discard);
+ slab_clear_node_partial(slab);
n->nr_partial--;
+ dec_slabs_node(s, node, slab->objects);
+ } else if (free <= SHRINK_PROMOTE_MAX)
+ list_move(&slab->slab_list, promote + free - 1);
}
/*
- * Rebuild the partial list with the slabs filled up most
- * first and the least used slabs at the end.
+ * Promote the slabs filled up most to the head of the
+ * partial list.
*/
- for (i = objects - 1; i > 0; i--)
- list_splice(slabs_by_inuse + i, n->partial.prev);
+ for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
+ list_splice(promote + i, &n->partial);
spin_unlock_irqrestore(&n->list_lock, flags);
/* Release empty slabs */
- list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
- discard_slab(s, page);
+ list_for_each_entry_safe(slab, t, &discard, slab_list)
+ free_slab(s, slab);
+
+ if (node_nr_slabs(n))
+ ret = 1;
}
- kfree(slabs_by_inuse);
- return 0;
+ return ret;
}
-EXPORT_SYMBOL(kmem_cache_shrink);
-static int slab_mem_going_offline_callback(void *arg)
+int __kmem_cache_shrink(struct kmem_cache *s)
{
- struct kmem_cache *s;
-
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list)
- kmem_cache_shrink(s);
- mutex_unlock(&slab_mutex);
-
- return 0;
+ flush_all(s);
+ return __kmem_cache_do_shrink(s);
}
-static void slab_mem_offline_callback(void *arg)
+static int slab_mem_going_offline_callback(void)
{
- struct kmem_cache_node *n;
struct kmem_cache *s;
- struct memory_notify *marg = arg;
- int offline_node;
-
- offline_node = marg->status_change_nid_normal;
-
- /*
- * If the node still has available memory. we need kmem_cache_node
- * for it yet.
- */
- if (offline_node < 0)
- return;
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
- n = get_node(s, offline_node);
- if (n) {
- /*
- * if n->nr_slabs > 0, slabs still exist on the node
- * that is going down. We were unable to free them,
- * and offline_pages() function shouldn't call this
- * callback. So, we must fail.
- */
- BUG_ON(slabs_node(s, offline_node));
-
- s->node[offline_node] = NULL;
- kmem_cache_free(kmem_cache_node, n);
- }
+ flush_all_cpus_locked(s);
+ __kmem_cache_do_shrink(s);
}
mutex_unlock(&slab_mutex);
+
+ return 0;
}
-static int slab_mem_going_online_callback(void *arg)
+static int slab_mem_going_online_callback(int nid)
{
struct kmem_cache_node *n;
struct kmem_cache *s;
- struct memory_notify *marg = arg;
- int nid = marg->status_change_nid_normal;
int ret = 0;
/*
- * If the node's memory is already available, then kmem_cache_node is
- * already created. Nothing to do.
- */
- if (nid < 0)
- return 0;
-
- /*
* We are bringing a node online. No memory is available yet. We must
* allocate a kmem_cache_node structure in order to bring the node
* online.
*/
mutex_lock(&slab_mutex);
list_for_each_entry(s, &slab_caches, list) {
+ struct node_barn *barn = NULL;
+
+ /*
+ * The structure may already exist if the node was previously
+ * onlined and offlined.
+ */
+ if (get_node(s, nid))
+ continue;
+
+ if (s->cpu_sheaves) {
+ barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, nid);
+
+ if (!barn) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ }
+
/*
* XXX: kmem_cache_alloc_node will fallback to other nodes
* since memory is not yet available from the node that
@@ -3520,12 +8398,20 @@ static int slab_mem_going_online_callback(void *arg)
*/
n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
if (!n) {
+ kfree(barn);
ret = -ENOMEM;
goto out;
}
- init_kmem_cache_node(n);
+
+ init_kmem_cache_node(n, barn);
+
s->node[nid] = n;
}
+ /*
+ * Any cache created after this point will also have kmem_cache_node
+ * initialized for the new node.
+ */
+ node_set(nid, slab_nodes);
out:
mutex_unlock(&slab_mutex);
return ret;
@@ -3534,21 +8420,16 @@ out:
static int slab_memory_callback(struct notifier_block *self,
unsigned long action, void *arg)
{
+ struct node_notify *nn = arg;
+ int nid = nn->nid;
int ret = 0;
switch (action) {
- case MEM_GOING_ONLINE:
- ret = slab_mem_going_online_callback(arg);
- break;
- case MEM_GOING_OFFLINE:
- ret = slab_mem_going_offline_callback(arg);
+ case NODE_ADDING_FIRST_MEMORY:
+ ret = slab_mem_going_online_callback(nid);
break;
- case MEM_OFFLINE:
- case MEM_CANCEL_ONLINE:
- slab_mem_offline_callback(arg);
- break;
- case MEM_ONLINE:
- case MEM_CANCEL_OFFLINE:
+ case NODE_REMOVING_LAST_MEMORY:
+ ret = slab_mem_going_offline_callback();
break;
}
if (ret)
@@ -3558,11 +8439,6 @@ static int slab_memory_callback(struct notifier_block *self,
return ret;
}
-static struct notifier_block slab_memory_callback_nb = {
- .notifier_call = slab_memory_callback,
- .priority = SLAB_CALLBACK_PRI,
-};
-
/********************************************************************
* Basic setup of slabs
*******************************************************************/
@@ -3577,6 +8453,7 @@ static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
{
int node;
struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
+ struct kmem_cache_node *n;
memcpy(s, static_cache, kmem_cache->object_size);
@@ -3586,19 +8463,16 @@ static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
* IPIs around.
*/
__flush_cpu_slab(s, smp_processor_id());
- for_each_node_state(node, N_NORMAL_MEMORY) {
- struct kmem_cache_node *n = get_node(s, node);
- struct page *p;
+ for_each_kmem_cache_node(s, node, n) {
+ struct slab *p;
- if (n) {
- list_for_each_entry(p, &n->partial, lru)
- p->slab_cache = s;
+ list_for_each_entry(p, &n->partial, slab_list)
+ p->slab_cache = s;
#ifdef CONFIG_SLUB_DEBUG
- list_for_each_entry(p, &n->full, lru)
- p->slab_cache = s;
+ list_for_each_entry(p, &n->full, slab_list)
+ p->slab_cache = s;
#endif
- }
}
list_add(&s->list, &slab_caches);
return s;
@@ -3608,17 +8482,29 @@ void __init kmem_cache_init(void)
{
static __initdata struct kmem_cache boot_kmem_cache,
boot_kmem_cache_node;
+ int node;
if (debug_guardpage_minorder())
slub_max_order = 0;
+ /* Inform pointer hashing choice about slub debugging state. */
+ hash_pointers_finalize(__slub_debug_enabled());
+
kmem_cache_node = &boot_kmem_cache_node;
kmem_cache = &boot_kmem_cache;
+ /*
+ * Initialize the nodemask for which we will allocate per node
+ * structures. Here we don't need taking slab_mutex yet.
+ */
+ for_each_node_state(node, N_MEMORY)
+ node_set(node, slab_nodes);
+
create_boot_cache(kmem_cache_node, "kmem_cache_node",
- sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
+ sizeof(struct kmem_cache_node),
+ SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
- register_hotmemory_notifier(&slab_memory_callback_nb);
+ hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
/* Able to allocate the per node structures */
slab_state = PARTIAL;
@@ -3626,27 +8512,22 @@ void __init kmem_cache_init(void)
create_boot_cache(kmem_cache, "kmem_cache",
offsetof(struct kmem_cache, node) +
nr_node_ids * sizeof(struct kmem_cache_node *),
- SLAB_HWCACHE_ALIGN);
+ SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
kmem_cache = bootstrap(&boot_kmem_cache);
-
- /*
- * Allocate kmem_cache_node properly from the kmem_cache slab.
- * kmem_cache_node is separately allocated so no need to
- * update any list pointers.
- */
kmem_cache_node = bootstrap(&boot_kmem_cache_node);
/* Now we can use the kmem_cache to allocate kmalloc slabs */
- create_kmalloc_caches(0);
+ setup_kmalloc_cache_index_table();
+ create_kmalloc_caches();
-#ifdef CONFIG_SMP
- register_cpu_notifier(&slab_notifier);
-#endif
+ /* Setup random freelists for each cache */
+ init_freelist_randomization();
+
+ cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
+ slub_cpu_dead);
- printk(KERN_INFO
- "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
- " CPUs=%d, Nodes=%d\n",
+ pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
cache_line_size(),
slub_min_order, slub_max_order, slub_min_objects,
nr_cpu_ids, nr_node_ids);
@@ -3654,318 +8535,248 @@ void __init kmem_cache_init(void)
void __init kmem_cache_init_late(void)
{
-}
-
-/*
- * Find a mergeable slab cache
- */
-static int slab_unmergeable(struct kmem_cache *s)
-{
- if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
- return 1;
-
- if (s->ctor)
- return 1;
-
- /*
- * We may have set a slab to be unmergeable during bootstrap.
- */
- if (s->refcount < 0)
- return 1;
-
- return 0;
-}
-
-static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
- size_t align, unsigned long flags, const char *name,
- void (*ctor)(void *))
-{
- struct kmem_cache *s;
-
- if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
- return NULL;
-
- if (ctor)
- return NULL;
-
- size = ALIGN(size, sizeof(void *));
- align = calculate_alignment(flags, align, size);
- size = ALIGN(size, align);
- flags = kmem_cache_flags(size, flags, name, NULL);
-
- list_for_each_entry(s, &slab_caches, list) {
- if (slab_unmergeable(s))
- continue;
-
- if (size > s->size)
- continue;
-
- if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
- continue;
- /*
- * Check if alignment is compatible.
- * Courtesy of Adrian Drzewiecki
- */
- if ((s->size & ~(align - 1)) != s->size)
- continue;
-
- if (s->size - size >= sizeof(void *))
- continue;
-
- if (!cache_match_memcg(s, memcg))
- continue;
-
- return s;
- }
- return NULL;
+ flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
+ WARN_ON(!flushwq);
}
struct kmem_cache *
-__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
- size_t align, unsigned long flags, void (*ctor)(void *))
+__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
+ slab_flags_t flags, void (*ctor)(void *))
{
struct kmem_cache *s;
- s = find_mergeable(memcg, size, align, flags, name, ctor);
+ s = find_mergeable(size, align, flags, name, ctor);
if (s) {
+ if (sysfs_slab_alias(s, name))
+ pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
+ name);
+
s->refcount++;
+
/*
* Adjust the object sizes so that we clear
* the complete object on kzalloc.
*/
- s->object_size = max(s->object_size, (int)size);
- s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
-
- if (sysfs_slab_alias(s, name)) {
- s->refcount--;
- s = NULL;
- }
+ s->object_size = max(s->object_size, size);
+ s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
}
return s;
}
-int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
+int do_kmem_cache_create(struct kmem_cache *s, const char *name,
+ unsigned int size, struct kmem_cache_args *args,
+ slab_flags_t flags)
{
- int err;
+ int err = -EINVAL;
- err = kmem_cache_open(s, flags);
- if (err)
- return err;
+ s->name = name;
+ s->size = s->object_size = size;
- /* Mutex is not taken during early boot */
- if (slab_state <= UP)
- return 0;
-
- memcg_propagate_slab_attrs(s);
- mutex_unlock(&slab_mutex);
- err = sysfs_slab_add(s);
- mutex_lock(&slab_mutex);
-
- if (err)
- kmem_cache_close(s);
-
- return err;
-}
-
-#ifdef CONFIG_SMP
-/*
- * Use the cpu notifier to insure that the cpu slabs are flushed when
- * necessary.
- */
-static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
-{
- long cpu = (long)hcpu;
- struct kmem_cache *s;
- unsigned long flags;
+ s->flags = kmem_cache_flags(flags, s->name);
+#ifdef CONFIG_SLAB_FREELIST_HARDENED
+ s->random = get_random_long();
+#endif
+ s->align = args->align;
+ s->ctor = args->ctor;
+#ifdef CONFIG_HARDENED_USERCOPY
+ s->useroffset = args->useroffset;
+ s->usersize = args->usersize;
+#endif
- switch (action) {
- case CPU_UP_CANCELED:
- case CPU_UP_CANCELED_FROZEN:
- case CPU_DEAD:
- case CPU_DEAD_FROZEN:
- mutex_lock(&slab_mutex);
- list_for_each_entry(s, &slab_caches, list) {
- local_irq_save(flags);
- __flush_cpu_slab(s, cpu);
- local_irq_restore(flags);
+ if (!calculate_sizes(args, s))
+ goto out;
+ if (disable_higher_order_debug) {
+ /*
+ * Disable debugging flags that store metadata if the min slab
+ * order increased.
+ */
+ if (get_order(s->size) > get_order(s->object_size)) {
+ s->flags &= ~DEBUG_METADATA_FLAGS;
+ s->offset = 0;
+ if (!calculate_sizes(args, s))
+ goto out;
}
- mutex_unlock(&slab_mutex);
- break;
- default:
- break;
}
- return NOTIFY_OK;
-}
-
-static struct notifier_block __cpuinitdata slab_notifier = {
- .notifier_call = slab_cpuup_callback
-};
+#ifdef system_has_freelist_aba
+ if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
+ /* Enable fast mode */
+ s->flags |= __CMPXCHG_DOUBLE;
+ }
#endif
-void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
-{
- struct kmem_cache *s;
- void *ret;
-
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
- return kmalloc_large(size, gfpflags);
-
- s = kmalloc_slab(size, gfpflags);
-
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
-
- ret = slab_alloc(s, gfpflags, caller);
+ /*
+ * The larger the object size is, the more slabs we want on the partial
+ * list to avoid pounding the page allocator excessively.
+ */
+ s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
+ s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
- /* Honor the call site pointer we received. */
- trace_kmalloc(caller, ret, size, s->size, gfpflags);
+ set_cpu_partial(s);
- return ret;
-}
+ if (args->sheaf_capacity && !IS_ENABLED(CONFIG_SLUB_TINY)
+ && !(s->flags & SLAB_DEBUG_FLAGS)) {
+ s->cpu_sheaves = alloc_percpu(struct slub_percpu_sheaves);
+ if (!s->cpu_sheaves) {
+ err = -ENOMEM;
+ goto out;
+ }
+ // TODO: increase capacity to grow slab_sheaf up to next kmalloc size?
+ s->sheaf_capacity = args->sheaf_capacity;
+ }
#ifdef CONFIG_NUMA
-void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
- int node, unsigned long caller)
-{
- struct kmem_cache *s;
- void *ret;
+ s->remote_node_defrag_ratio = 1000;
+#endif
- if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
- ret = kmalloc_large_node(size, gfpflags, node);
+ /* Initialize the pre-computed randomized freelist if slab is up */
+ if (slab_state >= UP) {
+ if (init_cache_random_seq(s))
+ goto out;
+ }
- trace_kmalloc_node(caller, ret,
- size, PAGE_SIZE << get_order(size),
- gfpflags, node);
+ if (!init_kmem_cache_nodes(s))
+ goto out;
- return ret;
+ if (!alloc_kmem_cache_cpus(s))
+ goto out;
+
+ if (s->cpu_sheaves) {
+ err = init_percpu_sheaves(s);
+ if (err)
+ goto out;
}
- s = kmalloc_slab(size, gfpflags);
+ err = 0;
- if (unlikely(ZERO_OR_NULL_PTR(s)))
- return s;
+ /* Mutex is not taken during early boot */
+ if (slab_state <= UP)
+ goto out;
- ret = slab_alloc_node(s, gfpflags, node, caller);
+ /*
+ * Failing to create sysfs files is not critical to SLUB functionality.
+ * If it fails, proceed with cache creation without these files.
+ */
+ if (sysfs_slab_add(s))
+ pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
- /* Honor the call site pointer we received. */
- trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
+ if (s->flags & SLAB_STORE_USER)
+ debugfs_slab_add(s);
- return ret;
+out:
+ if (err)
+ __kmem_cache_release(s);
+ return err;
}
-#endif
-#ifdef CONFIG_SYSFS
-static int count_inuse(struct page *page)
+#ifdef SLAB_SUPPORTS_SYSFS
+static int count_inuse(struct slab *slab)
{
- return page->inuse;
+ return slab->inuse;
}
-static int count_total(struct page *page)
+static int count_total(struct slab *slab)
{
- return page->objects;
+ return slab->objects;
}
#endif
#ifdef CONFIG_SLUB_DEBUG
-static int validate_slab(struct kmem_cache *s, struct page *page,
- unsigned long *map)
+static void validate_slab(struct kmem_cache *s, struct slab *slab,
+ unsigned long *obj_map)
{
void *p;
- void *addr = page_address(page);
+ void *addr = slab_address(slab);
- if (!check_slab(s, page) ||
- !on_freelist(s, page, NULL))
- return 0;
+ if (!validate_slab_ptr(slab)) {
+ slab_err(s, slab, "Not a valid slab page");
+ return;
+ }
+
+ if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
+ return;
/* Now we know that a valid freelist exists */
- bitmap_zero(map, page->objects);
+ __fill_map(obj_map, s, slab);
+ for_each_object(p, s, addr, slab->objects) {
+ u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
+ SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
- get_map(s, page, map);
- for_each_object(p, s, addr, page->objects) {
- if (test_bit(slab_index(p, s, addr), map))
- if (!check_object(s, page, p, SLUB_RED_INACTIVE))
- return 0;
+ if (!check_object(s, slab, p, val))
+ break;
}
-
- for_each_object(p, s, addr, page->objects)
- if (!test_bit(slab_index(p, s, addr), map))
- if (!check_object(s, page, p, SLUB_RED_ACTIVE))
- return 0;
- return 1;
-}
-
-static void validate_slab_slab(struct kmem_cache *s, struct page *page,
- unsigned long *map)
-{
- slab_lock(page);
- validate_slab(s, page, map);
- slab_unlock(page);
}
static int validate_slab_node(struct kmem_cache *s,
- struct kmem_cache_node *n, unsigned long *map)
+ struct kmem_cache_node *n, unsigned long *obj_map)
{
unsigned long count = 0;
- struct page *page;
+ struct slab *slab;
unsigned long flags;
spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru) {
- validate_slab_slab(s, page, map);
+ list_for_each_entry(slab, &n->partial, slab_list) {
+ validate_slab(s, slab, obj_map);
count++;
}
- if (count != n->nr_partial)
- printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
- "counter=%ld\n", s->name, count, n->nr_partial);
+ if (count != n->nr_partial) {
+ pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
+ s->name, count, n->nr_partial);
+ slab_add_kunit_errors();
+ }
if (!(s->flags & SLAB_STORE_USER))
goto out;
- list_for_each_entry(page, &n->full, lru) {
- validate_slab_slab(s, page, map);
+ list_for_each_entry(slab, &n->full, slab_list) {
+ validate_slab(s, slab, obj_map);
count++;
}
- if (count != atomic_long_read(&n->nr_slabs))
- printk(KERN_ERR "SLUB: %s %ld slabs counted but "
- "counter=%ld\n", s->name, count,
- atomic_long_read(&n->nr_slabs));
+ if (count != node_nr_slabs(n)) {
+ pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
+ s->name, count, node_nr_slabs(n));
+ slab_add_kunit_errors();
+ }
out:
spin_unlock_irqrestore(&n->list_lock, flags);
return count;
}
-static long validate_slab_cache(struct kmem_cache *s)
+long validate_slab_cache(struct kmem_cache *s)
{
int node;
unsigned long count = 0;
- unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
- sizeof(unsigned long), GFP_KERNEL);
+ struct kmem_cache_node *n;
+ unsigned long *obj_map;
- if (!map)
+ obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
+ if (!obj_map)
return -ENOMEM;
flush_all(s);
- for_each_node_state(node, N_NORMAL_MEMORY) {
- struct kmem_cache_node *n = get_node(s, node);
+ for_each_kmem_cache_node(s, node, n)
+ count += validate_slab_node(s, n, obj_map);
+
+ bitmap_free(obj_map);
- count += validate_slab_node(s, n, map);
- }
- kfree(map);
return count;
}
+EXPORT_SYMBOL(validate_slab_cache);
+
+#ifdef CONFIG_DEBUG_FS
/*
* Generate lists of code addresses where slabcache objects are allocated
* and freed.
*/
struct location {
+ depot_stack_handle_t handle;
unsigned long count;
unsigned long addr;
+ unsigned long waste;
long long sum_time;
long min_time;
long max_time;
@@ -3979,8 +8790,11 @@ struct loc_track {
unsigned long max;
unsigned long count;
struct location *loc;
+ loff_t idx;
};
+static struct dentry *slab_debugfs_root;
+
static void free_loc_track(struct loc_track *t)
{
if (t->max)
@@ -4009,13 +8823,19 @@ static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
}
static int add_location(struct loc_track *t, struct kmem_cache *s,
- const struct track *track)
+ const struct track *track,
+ unsigned int orig_size)
{
long start, end, pos;
struct location *l;
- unsigned long caddr;
+ unsigned long caddr, chandle, cwaste;
unsigned long age = jiffies - track->when;
+ depot_stack_handle_t handle = 0;
+ unsigned int waste = s->object_size - orig_size;
+#ifdef CONFIG_STACKDEPOT
+ handle = READ_ONCE(track->handle);
+#endif
start = -1;
end = t->count;
@@ -4029,10 +8849,13 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
if (pos == end)
break;
- caddr = t->loc[pos].addr;
- if (track->addr == caddr) {
+ l = &t->loc[pos];
+ caddr = l->addr;
+ chandle = l->handle;
+ cwaste = l->waste;
+ if ((track->addr == caddr) && (handle == chandle) &&
+ (waste == cwaste)) {
- l = &t->loc[pos];
l->count++;
if (track->when) {
l->sum_time += age;
@@ -4055,6 +8878,11 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
if (track->addr < caddr)
end = pos;
+ else if (track->addr == caddr && handle < chandle)
+ end = pos;
+ else if (track->addr == caddr && handle == chandle &&
+ waste < cwaste)
+ end = pos;
else
start = pos;
}
@@ -4077,6 +8905,8 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
l->max_time = age;
l->min_pid = track->pid;
l->max_pid = track->pid;
+ l->handle = handle;
+ l->waste = waste;
cpumask_clear(to_cpumask(l->cpus));
cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
nodes_clear(l->nodes);
@@ -4085,171 +8915,25 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
}
static void process_slab(struct loc_track *t, struct kmem_cache *s,
- struct page *page, enum track_item alloc,
- unsigned long *map)
+ struct slab *slab, enum track_item alloc,
+ unsigned long *obj_map)
{
- void *addr = page_address(page);
+ void *addr = slab_address(slab);
+ bool is_alloc = (alloc == TRACK_ALLOC);
void *p;
- bitmap_zero(map, page->objects);
- get_map(s, page, map);
+ __fill_map(obj_map, s, slab);
- for_each_object(p, s, addr, page->objects)
- if (!test_bit(slab_index(p, s, addr), map))
- add_location(t, s, get_track(s, p, alloc));
+ for_each_object(p, s, addr, slab->objects)
+ if (!test_bit(__obj_to_index(s, addr, p), obj_map))
+ add_location(t, s, get_track(s, p, alloc),
+ is_alloc ? get_orig_size(s, p) :
+ s->object_size);
}
+#endif /* CONFIG_DEBUG_FS */
+#endif /* CONFIG_SLUB_DEBUG */
-static int list_locations(struct kmem_cache *s, char *buf,
- enum track_item alloc)
-{
- int len = 0;
- unsigned long i;
- struct loc_track t = { 0, 0, NULL };
- int node;
- unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
- sizeof(unsigned long), GFP_KERNEL);
-
- if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
- GFP_TEMPORARY)) {
- kfree(map);
- return sprintf(buf, "Out of memory\n");
- }
- /* Push back cpu slabs */
- flush_all(s);
-
- for_each_node_state(node, N_NORMAL_MEMORY) {
- struct kmem_cache_node *n = get_node(s, node);
- unsigned long flags;
- struct page *page;
-
- if (!atomic_long_read(&n->nr_slabs))
- continue;
-
- spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(page, &n->partial, lru)
- process_slab(&t, s, page, alloc, map);
- list_for_each_entry(page, &n->full, lru)
- process_slab(&t, s, page, alloc, map);
- spin_unlock_irqrestore(&n->list_lock, flags);
- }
-
- for (i = 0; i < t.count; i++) {
- struct location *l = &t.loc[i];
-
- if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
- break;
- len += sprintf(buf + len, "%7ld ", l->count);
-
- if (l->addr)
- len += sprintf(buf + len, "%pS", (void *)l->addr);
- else
- len += sprintf(buf + len, "<not-available>");
-
- if (l->sum_time != l->min_time) {
- len += sprintf(buf + len, " age=%ld/%ld/%ld",
- l->min_time,
- (long)div_u64(l->sum_time, l->count),
- l->max_time);
- } else
- len += sprintf(buf + len, " age=%ld",
- l->min_time);
-
- if (l->min_pid != l->max_pid)
- len += sprintf(buf + len, " pid=%ld-%ld",
- l->min_pid, l->max_pid);
- else
- len += sprintf(buf + len, " pid=%ld",
- l->min_pid);
-
- if (num_online_cpus() > 1 &&
- !cpumask_empty(to_cpumask(l->cpus)) &&
- len < PAGE_SIZE - 60) {
- len += sprintf(buf + len, " cpus=");
- len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
- to_cpumask(l->cpus));
- }
-
- if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
- len < PAGE_SIZE - 60) {
- len += sprintf(buf + len, " nodes=");
- len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
- l->nodes);
- }
-
- len += sprintf(buf + len, "\n");
- }
-
- free_loc_track(&t);
- kfree(map);
- if (!t.count)
- len += sprintf(buf, "No data\n");
- return len;
-}
-#endif
-
-#ifdef SLUB_RESILIENCY_TEST
-static void resiliency_test(void)
-{
- u8 *p;
-
- BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
-
- printk(KERN_ERR "SLUB resiliency testing\n");
- printk(KERN_ERR "-----------------------\n");
- printk(KERN_ERR "A. Corruption after allocation\n");
-
- p = kzalloc(16, GFP_KERNEL);
- p[16] = 0x12;
- printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
- " 0x12->0x%p\n\n", p + 16);
-
- validate_slab_cache(kmalloc_caches[4]);
-
- /* Hmmm... The next two are dangerous */
- p = kzalloc(32, GFP_KERNEL);
- p[32 + sizeof(void *)] = 0x34;
- printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
- " 0x34 -> -0x%p\n", p);
- printk(KERN_ERR
- "If allocated object is overwritten then not detectable\n\n");
-
- validate_slab_cache(kmalloc_caches[5]);
- p = kzalloc(64, GFP_KERNEL);
- p += 64 + (get_cycles() & 0xff) * sizeof(void *);
- *p = 0x56;
- printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
- p);
- printk(KERN_ERR
- "If allocated object is overwritten then not detectable\n\n");
- validate_slab_cache(kmalloc_caches[6]);
-
- printk(KERN_ERR "\nB. Corruption after free\n");
- p = kzalloc(128, GFP_KERNEL);
- kfree(p);
- *p = 0x78;
- printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
- validate_slab_cache(kmalloc_caches[7]);
-
- p = kzalloc(256, GFP_KERNEL);
- kfree(p);
- p[50] = 0x9a;
- printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
- p);
- validate_slab_cache(kmalloc_caches[8]);
-
- p = kzalloc(512, GFP_KERNEL);
- kfree(p);
- p[512] = 0xab;
- printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
- validate_slab_cache(kmalloc_caches[9]);
-}
-#else
-#ifdef CONFIG_SYSFS
-static void resiliency_test(void) {};
-#endif
-#endif
-
-#ifdef CONFIG_SYSFS
+#ifdef SLAB_SUPPORTS_SYSFS
enum slab_stat_type {
SL_ALL, /* All slabs */
SL_PARTIAL, /* Only partially allocated slabs */
@@ -4265,67 +8949,82 @@ enum slab_stat_type {
#define SO_TOTAL (1 << SL_TOTAL)
static ssize_t show_slab_objects(struct kmem_cache *s,
- char *buf, unsigned long flags)
+ char *buf, unsigned long flags)
{
unsigned long total = 0;
int node;
int x;
unsigned long *nodes;
- unsigned long *per_cpu;
+ int len = 0;
- nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
+ nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
if (!nodes)
return -ENOMEM;
- per_cpu = nodes + nr_node_ids;
if (flags & SO_CPU) {
int cpu;
for_each_possible_cpu(cpu) {
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
+ struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
+ cpu);
int node;
- struct page *page;
+ struct slab *slab;
- page = ACCESS_ONCE(c->page);
- if (!page)
+ slab = READ_ONCE(c->slab);
+ if (!slab)
continue;
- node = page_to_nid(page);
+ node = slab_nid(slab);
if (flags & SO_TOTAL)
- x = page->objects;
+ x = slab->objects;
else if (flags & SO_OBJECTS)
- x = page->inuse;
+ x = slab->inuse;
else
x = 1;
total += x;
nodes[node] += x;
- page = ACCESS_ONCE(c->partial);
- if (page) {
- x = page->pobjects;
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+ slab = slub_percpu_partial_read_once(c);
+ if (slab) {
+ node = slab_nid(slab);
+ if (flags & SO_TOTAL)
+ WARN_ON_ONCE(1);
+ else if (flags & SO_OBJECTS)
+ WARN_ON_ONCE(1);
+ else
+ x = data_race(slab->slabs);
total += x;
nodes[node] += x;
}
-
- per_cpu[node]++;
+#endif
}
}
- lock_memory_hotplug();
+ /*
+ * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
+ * already held which will conflict with an existing lock order:
+ *
+ * mem_hotplug_lock->slab_mutex->kernfs_mutex
+ *
+ * We don't really need mem_hotplug_lock (to hold off
+ * slab_mem_going_offline_callback) here because slab's memory hot
+ * unplug code doesn't destroy the kmem_cache->node[] data.
+ */
+
#ifdef CONFIG_SLUB_DEBUG
if (flags & SO_ALL) {
- for_each_node_state(node, N_NORMAL_MEMORY) {
- struct kmem_cache_node *n = get_node(s, node);
+ struct kmem_cache_node *n;
- if (flags & SO_TOTAL)
- x = atomic_long_read(&n->total_objects);
- else if (flags & SO_OBJECTS)
- x = atomic_long_read(&n->total_objects) -
- count_partial(n, count_free);
+ for_each_kmem_cache_node(s, node, n) {
+ if (flags & SO_TOTAL)
+ x = node_nr_objs(n);
+ else if (flags & SO_OBJECTS)
+ x = node_nr_objs(n) - count_partial(n, count_free);
else
- x = atomic_long_read(&n->nr_slabs);
+ x = node_nr_slabs(n);
total += x;
nodes[node] += x;
}
@@ -4333,9 +9032,9 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
} else
#endif
if (flags & SO_PARTIAL) {
- for_each_node_state(node, N_NORMAL_MEMORY) {
- struct kmem_cache_node *n = get_node(s, node);
+ struct kmem_cache_node *n;
+ for_each_kmem_cache_node(s, node, n) {
if (flags & SO_TOTAL)
x = count_partial(n, count_total);
else if (flags & SO_OBJECTS)
@@ -4346,35 +9045,20 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
nodes[node] += x;
}
}
- x = sprintf(buf, "%lu", total);
+
+ len += sysfs_emit_at(buf, len, "%lu", total);
#ifdef CONFIG_NUMA
- for_each_node_state(node, N_NORMAL_MEMORY)
+ for (node = 0; node < nr_node_ids; node++) {
if (nodes[node])
- x += sprintf(buf + x, " N%d=%lu",
- node, nodes[node]);
+ len += sysfs_emit_at(buf, len, " N%d=%lu",
+ node, nodes[node]);
+ }
#endif
- unlock_memory_hotplug();
+ len += sysfs_emit_at(buf, len, "\n");
kfree(nodes);
- return x + sprintf(buf + x, "\n");
-}
-
-#ifdef CONFIG_SLUB_DEBUG
-static int any_slab_objects(struct kmem_cache *s)
-{
- int node;
-
- for_each_online_node(node) {
- struct kmem_cache_node *n = get_node(s, node);
-
- if (!n)
- continue;
- if (atomic_long_read(&n->total_objects))
- return 1;
- }
- return 0;
+ return len;
}
-#endif
#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
@@ -4386,63 +9070,50 @@ struct slab_attribute {
};
#define SLAB_ATTR_RO(_name) \
- static struct slab_attribute _name##_attr = \
- __ATTR(_name, 0400, _name##_show, NULL)
+ static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
#define SLAB_ATTR(_name) \
- static struct slab_attribute _name##_attr = \
- __ATTR(_name, 0600, _name##_show, _name##_store)
+ static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", s->size);
+ return sysfs_emit(buf, "%u\n", s->size);
}
SLAB_ATTR_RO(slab_size);
static ssize_t align_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", s->align);
+ return sysfs_emit(buf, "%u\n", s->align);
}
SLAB_ATTR_RO(align);
static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", s->object_size);
+ return sysfs_emit(buf, "%u\n", s->object_size);
}
SLAB_ATTR_RO(object_size);
static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", oo_objects(s->oo));
+ return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
}
SLAB_ATTR_RO(objs_per_slab);
-static ssize_t order_store(struct kmem_cache *s,
- const char *buf, size_t length)
+static ssize_t order_show(struct kmem_cache *s, char *buf)
{
- unsigned long order;
- int err;
-
- err = strict_strtoul(buf, 10, &order);
- if (err)
- return err;
-
- if (order > slub_max_order || order < slub_min_order)
- return -EINVAL;
-
- calculate_sizes(s, order);
- return length;
+ return sysfs_emit(buf, "%u\n", oo_order(s->oo));
}
+SLAB_ATTR_RO(order);
-static ssize_t order_show(struct kmem_cache *s, char *buf)
+static ssize_t sheaf_capacity_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", oo_order(s->oo));
+ return sysfs_emit(buf, "%u\n", s->sheaf_capacity);
}
-SLAB_ATTR(order);
+SLAB_ATTR_RO(sheaf_capacity);
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%lu\n", s->min_partial);
+ return sysfs_emit(buf, "%lu\n", s->min_partial);
}
static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
@@ -4451,33 +9122,38 @@ static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
unsigned long min;
int err;
- err = strict_strtoul(buf, 10, &min);
+ err = kstrtoul(buf, 10, &min);
if (err)
return err;
- set_min_partial(s, min);
+ s->min_partial = min;
return length;
}
SLAB_ATTR(min_partial);
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%u\n", s->cpu_partial);
+ unsigned int nr_partial = 0;
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+ nr_partial = s->cpu_partial;
+#endif
+
+ return sysfs_emit(buf, "%u\n", nr_partial);
}
static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
size_t length)
{
- unsigned long objects;
+ unsigned int objects;
int err;
- err = strict_strtoul(buf, 10, &objects);
+ err = kstrtouint(buf, 10, &objects);
if (err)
return err;
if (objects && !kmem_cache_has_cpu_partial(s))
return -EINVAL;
- s->cpu_partial = objects;
+ slub_set_cpu_partial(s, objects);
flush_all(s);
return length;
}
@@ -4487,13 +9163,13 @@ static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
if (!s->ctor)
return 0;
- return sprintf(buf, "%pS\n", s->ctor);
+ return sysfs_emit(buf, "%pS\n", s->ctor);
}
SLAB_ATTR_RO(ctor);
static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", s->refcount - 1);
+ return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
}
SLAB_ATTR_RO(aliases);
@@ -4509,12 +9185,6 @@ static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
}
SLAB_ATTR_RO(cpu_slabs);
-static ssize_t objects_show(struct kmem_cache *s, char *buf)
-{
- return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
-}
-SLAB_ATTR_RO(objects);
-
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
@@ -4524,74 +9194,77 @@ SLAB_ATTR_RO(objects_partial);
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
int objects = 0;
- int pages = 0;
- int cpu;
- int len;
+ int slabs = 0;
+ int cpu __maybe_unused;
+ int len = 0;
+#ifdef CONFIG_SLUB_CPU_PARTIAL
for_each_online_cpu(cpu) {
- struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
+ struct slab *slab;
- if (page) {
- pages += page->pages;
- objects += page->pobjects;
- }
+ slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
+
+ if (slab)
+ slabs += data_race(slab->slabs);
}
+#endif
- len = sprintf(buf, "%d(%d)", objects, pages);
+ /* Approximate half-full slabs, see slub_set_cpu_partial() */
+ objects = (slabs * oo_objects(s->oo)) / 2;
+ len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
-#ifdef CONFIG_SMP
+#ifdef CONFIG_SLUB_CPU_PARTIAL
for_each_online_cpu(cpu) {
- struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
-
- if (page && len < PAGE_SIZE - 20)
- len += sprintf(buf + len, " C%d=%d(%d)", cpu,
- page->pobjects, page->pages);
+ struct slab *slab;
+
+ slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
+ if (slab) {
+ slabs = data_race(slab->slabs);
+ objects = (slabs * oo_objects(s->oo)) / 2;
+ len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
+ cpu, objects, slabs);
+ }
}
#endif
- return len + sprintf(buf + len, "\n");
+ len += sysfs_emit_at(buf, len, "\n");
+
+ return len;
}
SLAB_ATTR_RO(slabs_cpu_partial);
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
-}
-
-static ssize_t reclaim_account_store(struct kmem_cache *s,
- const char *buf, size_t length)
-{
- s->flags &= ~SLAB_RECLAIM_ACCOUNT;
- if (buf[0] == '1')
- s->flags |= SLAB_RECLAIM_ACCOUNT;
- return length;
+ return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}
-SLAB_ATTR(reclaim_account);
+SLAB_ATTR_RO(reclaim_account);
static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
+ return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);
#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
+ return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif
-static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
+#ifdef CONFIG_HARDENED_USERCOPY
+static ssize_t usersize_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
+ return sysfs_emit(buf, "%u\n", s->usersize);
}
-SLAB_ATTR_RO(destroy_by_rcu);
+SLAB_ATTR_RO(usersize);
+#endif
-static ssize_t reserved_show(struct kmem_cache *s, char *buf)
+static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", s->reserved);
+ return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
}
-SLAB_ATTR_RO(reserved);
+SLAB_ATTR_RO(destroy_by_rcu);
#ifdef CONFIG_SLUB_DEBUG
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
@@ -4606,102 +9279,44 @@ static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
}
SLAB_ATTR_RO(total_objects);
-static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
+static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
+ return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
}
+SLAB_ATTR_RO(objects);
-static ssize_t sanity_checks_store(struct kmem_cache *s,
- const char *buf, size_t length)
+static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
- s->flags &= ~SLAB_DEBUG_FREE;
- if (buf[0] == '1') {
- s->flags &= ~__CMPXCHG_DOUBLE;
- s->flags |= SLAB_DEBUG_FREE;
- }
- return length;
+ return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
}
-SLAB_ATTR(sanity_checks);
+SLAB_ATTR_RO(sanity_checks);
static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
+ return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}
-
-static ssize_t trace_store(struct kmem_cache *s, const char *buf,
- size_t length)
-{
- s->flags &= ~SLAB_TRACE;
- if (buf[0] == '1') {
- s->flags &= ~__CMPXCHG_DOUBLE;
- s->flags |= SLAB_TRACE;
- }
- return length;
-}
-SLAB_ATTR(trace);
+SLAB_ATTR_RO(trace);
static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
+ return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}
-static ssize_t red_zone_store(struct kmem_cache *s,
- const char *buf, size_t length)
-{
- if (any_slab_objects(s))
- return -EBUSY;
-
- s->flags &= ~SLAB_RED_ZONE;
- if (buf[0] == '1') {
- s->flags &= ~__CMPXCHG_DOUBLE;
- s->flags |= SLAB_RED_ZONE;
- }
- calculate_sizes(s, -1);
- return length;
-}
-SLAB_ATTR(red_zone);
+SLAB_ATTR_RO(red_zone);
static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
+ return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
}
-static ssize_t poison_store(struct kmem_cache *s,
- const char *buf, size_t length)
-{
- if (any_slab_objects(s))
- return -EBUSY;
-
- s->flags &= ~SLAB_POISON;
- if (buf[0] == '1') {
- s->flags &= ~__CMPXCHG_DOUBLE;
- s->flags |= SLAB_POISON;
- }
- calculate_sizes(s, -1);
- return length;
-}
-SLAB_ATTR(poison);
+SLAB_ATTR_RO(poison);
static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
+ return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}
-static ssize_t store_user_store(struct kmem_cache *s,
- const char *buf, size_t length)
-{
- if (any_slab_objects(s))
- return -EBUSY;
-
- s->flags &= ~SLAB_STORE_USER;
- if (buf[0] == '1') {
- s->flags &= ~__CMPXCHG_DOUBLE;
- s->flags |= SLAB_STORE_USER;
- }
- calculate_sizes(s, -1);
- return length;
-}
-SLAB_ATTR(store_user);
+SLAB_ATTR_RO(store_user);
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
@@ -4713,7 +9328,7 @@ static ssize_t validate_store(struct kmem_cache *s,
{
int ret = -EINVAL;
- if (buf[0] == '1') {
+ if (buf[0] == '1' && kmem_cache_debug(s)) {
ret = validate_slab_cache(s);
if (ret >= 0)
ret = length;
@@ -4722,35 +9337,25 @@ static ssize_t validate_store(struct kmem_cache *s,
}
SLAB_ATTR(validate);
-static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
-{
- if (!(s->flags & SLAB_STORE_USER))
- return -ENOSYS;
- return list_locations(s, buf, TRACK_ALLOC);
-}
-SLAB_ATTR_RO(alloc_calls);
-
-static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
-{
- if (!(s->flags & SLAB_STORE_USER))
- return -ENOSYS;
- return list_locations(s, buf, TRACK_FREE);
-}
-SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */
#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
+ return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}
static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
- size_t length)
+ size_t length)
{
- s->flags &= ~SLAB_FAILSLAB;
+ if (s->refcount > 1)
+ return -EINVAL;
+
if (buf[0] == '1')
- s->flags |= SLAB_FAILSLAB;
+ WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
+ else
+ WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
+
return length;
}
SLAB_ATTR(failslab);
@@ -4764,12 +9369,9 @@ static ssize_t shrink_show(struct kmem_cache *s, char *buf)
static ssize_t shrink_store(struct kmem_cache *s,
const char *buf, size_t length)
{
- if (buf[0] == '1') {
- int rc = kmem_cache_shrink(s);
-
- if (rc)
- return rc;
- } else
+ if (buf[0] == '1')
+ kmem_cache_shrink(s);
+ else
return -EINVAL;
return length;
}
@@ -4778,21 +9380,22 @@ SLAB_ATTR(shrink);
#ifdef CONFIG_NUMA
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
{
- return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
+ return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
}
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
const char *buf, size_t length)
{
- unsigned long ratio;
+ unsigned int ratio;
int err;
- err = strict_strtoul(buf, 10, &ratio);
+ err = kstrtouint(buf, 10, &ratio);
if (err)
return err;
+ if (ratio > 100)
+ return -ERANGE;
- if (ratio <= 100)
- s->remote_node_defrag_ratio = ratio * 10;
+ s->remote_node_defrag_ratio = ratio * 10;
return length;
}
@@ -4804,8 +9407,8 @@ static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
unsigned long sum = 0;
int cpu;
- int len;
- int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
+ int len = 0;
+ int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
if (!data)
return -ENOMEM;
@@ -4817,16 +9420,19 @@ static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
sum += x;
}
- len = sprintf(buf, "%lu", sum);
+ len += sysfs_emit_at(buf, len, "%lu", sum);
#ifdef CONFIG_SMP
for_each_online_cpu(cpu) {
- if (data[cpu] && len < PAGE_SIZE - 20)
- len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
+ if (data[cpu])
+ len += sysfs_emit_at(buf, len, " C%d=%u",
+ cpu, data[cpu]);
}
#endif
kfree(data);
- return len + sprintf(buf + len, "\n");
+ len += sysfs_emit_at(buf, len, "\n");
+
+ return len;
}
static void clear_stat(struct kmem_cache *s, enum stat_item si)
@@ -4852,8 +9458,12 @@ static ssize_t text##_store(struct kmem_cache *s, \
} \
SLAB_ATTR(text); \
+STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf);
STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
+STAT_ATTR(FREE_PCS, free_cpu_sheaf);
+STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf);
+STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
@@ -4878,6 +9488,42 @@ STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
+STAT_ATTR(SHEAF_FLUSH, sheaf_flush);
+STAT_ATTR(SHEAF_REFILL, sheaf_refill);
+STAT_ATTR(SHEAF_ALLOC, sheaf_alloc);
+STAT_ATTR(SHEAF_FREE, sheaf_free);
+STAT_ATTR(BARN_GET, barn_get);
+STAT_ATTR(BARN_GET_FAIL, barn_get_fail);
+STAT_ATTR(BARN_PUT, barn_put);
+STAT_ATTR(BARN_PUT_FAIL, barn_put_fail);
+STAT_ATTR(SHEAF_PREFILL_FAST, sheaf_prefill_fast);
+STAT_ATTR(SHEAF_PREFILL_SLOW, sheaf_prefill_slow);
+STAT_ATTR(SHEAF_PREFILL_OVERSIZE, sheaf_prefill_oversize);
+STAT_ATTR(SHEAF_RETURN_FAST, sheaf_return_fast);
+STAT_ATTR(SHEAF_RETURN_SLOW, sheaf_return_slow);
+#endif /* CONFIG_SLUB_STATS */
+
+#ifdef CONFIG_KFENCE
+static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
+{
+ return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
+}
+
+static ssize_t skip_kfence_store(struct kmem_cache *s,
+ const char *buf, size_t length)
+{
+ int ret = length;
+
+ if (buf[0] == '0')
+ s->flags &= ~SLAB_SKIP_KFENCE;
+ else if (buf[0] == '1')
+ s->flags |= SLAB_SKIP_KFENCE;
+ else
+ ret = -EINVAL;
+
+ return ret;
+}
+SLAB_ATTR(skip_kfence);
#endif
static struct attribute *slab_attrs[] = {
@@ -4885,9 +9531,9 @@ static struct attribute *slab_attrs[] = {
&object_size_attr.attr,
&objs_per_slab_attr.attr,
&order_attr.attr,
+ &sheaf_capacity_attr.attr,
&min_partial_attr.attr,
&cpu_partial_attr.attr,
- &objects_attr.attr,
&objects_partial_attr.attr,
&partial_attr.attr,
&cpu_slabs_attr.attr,
@@ -4898,10 +9544,10 @@ static struct attribute *slab_attrs[] = {
&reclaim_account_attr.attr,
&destroy_by_rcu_attr.attr,
&shrink_attr.attr,
- &reserved_attr.attr,
&slabs_cpu_partial_attr.attr,
#ifdef CONFIG_SLUB_DEBUG
&total_objects_attr.attr,
+ &objects_attr.attr,
&slabs_attr.attr,
&sanity_checks_attr.attr,
&trace_attr.attr,
@@ -4909,8 +9555,6 @@ static struct attribute *slab_attrs[] = {
&poison_attr.attr,
&store_user_attr.attr,
&validate_attr.attr,
- &alloc_calls_attr.attr,
- &free_calls_attr.attr,
#endif
#ifdef CONFIG_ZONE_DMA
&cache_dma_attr.attr,
@@ -4919,8 +9563,12 @@ static struct attribute *slab_attrs[] = {
&remote_node_defrag_ratio_attr.attr,
#endif
#ifdef CONFIG_SLUB_STATS
+ &alloc_cpu_sheaf_attr.attr,
&alloc_fastpath_attr.attr,
&alloc_slowpath_attr.attr,
+ &free_cpu_sheaf_attr.attr,
+ &free_rcu_sheaf_attr.attr,
+ &free_rcu_sheaf_fail_attr.attr,
&free_fastpath_attr.attr,
&free_slowpath_attr.attr,
&free_frozen_attr.attr,
@@ -4945,15 +9593,34 @@ static struct attribute *slab_attrs[] = {
&cpu_partial_free_attr.attr,
&cpu_partial_node_attr.attr,
&cpu_partial_drain_attr.attr,
+ &sheaf_flush_attr.attr,
+ &sheaf_refill_attr.attr,
+ &sheaf_alloc_attr.attr,
+ &sheaf_free_attr.attr,
+ &barn_get_attr.attr,
+ &barn_get_fail_attr.attr,
+ &barn_put_attr.attr,
+ &barn_put_fail_attr.attr,
+ &sheaf_prefill_fast_attr.attr,
+ &sheaf_prefill_slow_attr.attr,
+ &sheaf_prefill_oversize_attr.attr,
+ &sheaf_return_fast_attr.attr,
+ &sheaf_return_slow_attr.attr,
#endif
#ifdef CONFIG_FAILSLAB
&failslab_attr.attr,
#endif
+#ifdef CONFIG_HARDENED_USERCOPY
+ &usersize_attr.attr,
+#endif
+#ifdef CONFIG_KFENCE
+ &skip_kfence_attr.attr,
+#endif
NULL
};
-static struct attribute_group slab_attr_group = {
+static const struct attribute_group slab_attr_group = {
.attrs = slab_attrs,
};
@@ -4963,7 +9630,6 @@ static ssize_t slab_attr_show(struct kobject *kobj,
{
struct slab_attribute *attribute;
struct kmem_cache *s;
- int err;
attribute = to_slab_attr(attr);
s = to_slab(kobj);
@@ -4971,9 +9637,7 @@ static ssize_t slab_attr_show(struct kobject *kobj,
if (!attribute->show)
return -EIO;
- err = attribute->show(s, buf);
-
- return err;
+ return attribute->show(s, buf);
}
static ssize_t slab_attr_store(struct kobject *kobj,
@@ -4982,7 +9646,6 @@ static ssize_t slab_attr_store(struct kobject *kobj,
{
struct slab_attribute *attribute;
struct kmem_cache *s;
- int err;
attribute = to_slab_attr(attr);
s = to_slab(kobj);
@@ -4990,94 +9653,12 @@ static ssize_t slab_attr_store(struct kobject *kobj,
if (!attribute->store)
return -EIO;
- err = attribute->store(s, buf, len);
-#ifdef CONFIG_MEMCG_KMEM
- if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
- int i;
-
- mutex_lock(&slab_mutex);
- if (s->max_attr_size < len)
- s->max_attr_size = len;
-
- /*
- * This is a best effort propagation, so this function's return
- * value will be determined by the parent cache only. This is
- * basically because not all attributes will have a well
- * defined semantics for rollbacks - most of the actions will
- * have permanent effects.
- *
- * Returning the error value of any of the children that fail
- * is not 100 % defined, in the sense that users seeing the
- * error code won't be able to know anything about the state of
- * the cache.
- *
- * Only returning the error code for the parent cache at least
- * has well defined semantics. The cache being written to
- * directly either failed or succeeded, in which case we loop
- * through the descendants with best-effort propagation.
- */
- for_each_memcg_cache_index(i) {
- struct kmem_cache *c = cache_from_memcg(s, i);
- if (c)
- attribute->store(c, buf, len);
- }
- mutex_unlock(&slab_mutex);
- }
-#endif
- return err;
+ return attribute->store(s, buf, len);
}
-static void memcg_propagate_slab_attrs(struct kmem_cache *s)
+static void kmem_cache_release(struct kobject *k)
{
-#ifdef CONFIG_MEMCG_KMEM
- int i;
- char *buffer = NULL;
-
- if (!is_root_cache(s))
- return;
-
- /*
- * This mean this cache had no attribute written. Therefore, no point
- * in copying default values around
- */
- if (!s->max_attr_size)
- return;
-
- for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
- char mbuf[64];
- char *buf;
- struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
-
- if (!attr || !attr->store || !attr->show)
- continue;
-
- /*
- * It is really bad that we have to allocate here, so we will
- * do it only as a fallback. If we actually allocate, though,
- * we can just use the allocated buffer until the end.
- *
- * Most of the slub attributes will tend to be very small in
- * size, but sysfs allows buffers up to a page, so they can
- * theoretically happen.
- */
- if (buffer)
- buf = buffer;
- else if (s->max_attr_size < ARRAY_SIZE(mbuf))
- buf = mbuf;
- else {
- buffer = (char *) get_zeroed_page(GFP_KERNEL);
- if (WARN_ON(!buffer))
- continue;
- buf = buffer;
- }
-
- attr->show(s->memcg_params->root_cache, buf);
- attr->store(s, buf, strlen(buf));
- }
-
- if (buffer)
- free_page((unsigned long)buffer);
-#endif
+ slab_kmem_cache_release(to_slab(k));
}
static const struct sysfs_ops slab_sysfs_ops = {
@@ -5085,26 +9666,19 @@ static const struct sysfs_ops slab_sysfs_ops = {
.store = slab_attr_store,
};
-static struct kobj_type slab_ktype = {
+static const struct kobj_type slab_ktype = {
.sysfs_ops = &slab_sysfs_ops,
+ .release = kmem_cache_release,
};
-static int uevent_filter(struct kset *kset, struct kobject *kobj)
-{
- struct kobj_type *ktype = get_ktype(kobj);
+static struct kset *slab_kset;
- if (ktype == &slab_ktype)
- return 1;
- return 0;
+static inline struct kset *cache_kset(struct kmem_cache *s)
+{
+ return slab_kset;
}
-static const struct kset_uevent_ops slab_uevent_ops = {
- .filter = uevent_filter,
-};
-
-static struct kset *slab_kset;
-
-#define ID_STR_LENGTH 64
+#define ID_STR_LENGTH 32
/* Create a unique string id for a slab cache:
*
@@ -5115,7 +9689,8 @@ static char *create_unique_id(struct kmem_cache *s)
char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
char *p = name;
- BUG_ON(!name);
+ if (!name)
+ return ERR_PTR(-ENOMEM);
*p++ = ':';
/*
@@ -5127,22 +9702,23 @@ static char *create_unique_id(struct kmem_cache *s)
*/
if (s->flags & SLAB_CACHE_DMA)
*p++ = 'd';
+ if (s->flags & SLAB_CACHE_DMA32)
+ *p++ = 'D';
if (s->flags & SLAB_RECLAIM_ACCOUNT)
*p++ = 'a';
- if (s->flags & SLAB_DEBUG_FREE)
+ if (s->flags & SLAB_CONSISTENCY_CHECKS)
*p++ = 'F';
- if (!(s->flags & SLAB_NOTRACK))
- *p++ = 't';
+ if (s->flags & SLAB_ACCOUNT)
+ *p++ = 'A';
if (p != name + 1)
*p++ = '-';
- p += sprintf(p, "%07d", s->size);
+ p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
-#ifdef CONFIG_MEMCG_KMEM
- if (!is_root_cache(s))
- p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
-#endif
-
- BUG_ON(p > name + ID_STR_LENGTH - 1);
+ if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
+ kfree(name);
+ return ERR_PTR(-EINVAL);
+ }
+ kmsan_unpoison_memory(name, p - name);
return name;
}
@@ -5150,8 +9726,13 @@ static int sysfs_slab_add(struct kmem_cache *s)
{
int err;
const char *name;
+ struct kset *kset = cache_kset(s);
int unmergeable = slab_unmergeable(s);
+ if (!unmergeable && disable_higher_order_debug &&
+ (slub_debug & DEBUG_METADATA_FLAGS))
+ unmergeable = 1;
+
if (unmergeable) {
/*
* Slabcache can never be merged so we can use the name proper.
@@ -5166,41 +9747,40 @@ static int sysfs_slab_add(struct kmem_cache *s)
* for the symlinks.
*/
name = create_unique_id(s);
+ if (IS_ERR(name))
+ return PTR_ERR(name);
}
- s->kobj.kset = slab_kset;
- err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
- if (err) {
- kobject_put(&s->kobj);
- return err;
- }
+ s->kobj.kset = kset;
+ err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
+ if (err)
+ goto out;
err = sysfs_create_group(&s->kobj, &slab_attr_group);
- if (err) {
- kobject_del(&s->kobj);
- kobject_put(&s->kobj);
- return err;
- }
- kobject_uevent(&s->kobj, KOBJ_ADD);
+ if (err)
+ goto out_del_kobj;
+
if (!unmergeable) {
/* Setup first alias */
sysfs_slab_alias(s, s->name);
- kfree(name);
}
- return 0;
+out:
+ if (!unmergeable)
+ kfree(name);
+ return err;
+out_del_kobj:
+ kobject_del(&s->kobj);
+ goto out;
}
-static void sysfs_slab_remove(struct kmem_cache *s)
+void sysfs_slab_unlink(struct kmem_cache *s)
{
- if (slab_state < FULL)
- /*
- * Sysfs has not been setup yet so no need to remove the
- * cache from sysfs.
- */
- return;
+ if (s->kobj.state_in_sysfs)
+ kobject_del(&s->kobj);
+}
- kobject_uevent(&s->kobj, KOBJ_REMOVE);
- kobject_del(&s->kobj);
+void sysfs_slab_release(struct kmem_cache *s)
+{
kobject_put(&s->kobj);
}
@@ -5225,6 +9805,11 @@ static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
* If we have a leftover link then remove it.
*/
sysfs_remove_link(&slab_kset->kobj, name);
+ /*
+ * The original cache may have failed to generate sysfs file.
+ * In that case, sysfs_create_link() returns -ENOENT and
+ * symbolic link creation is skipped.
+ */
return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
}
@@ -5236,6 +9821,7 @@ static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
al->name = name;
al->next = alias_list;
alias_list = al;
+ kmsan_unpoison_memory(al, sizeof(*al));
return 0;
}
@@ -5246,11 +9832,11 @@ static int __init slab_sysfs_init(void)
mutex_lock(&slab_mutex);
- slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
+ slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
if (!slab_kset) {
mutex_unlock(&slab_mutex);
- printk(KERN_ERR "Cannot register slab subsystem.\n");
- return -ENOSYS;
+ pr_err("Cannot register slab subsystem.\n");
+ return -ENOMEM;
}
slab_state = FULL;
@@ -5258,8 +9844,8 @@ static int __init slab_sysfs_init(void)
list_for_each_entry(s, &slab_caches, list) {
err = sysfs_slab_add(s);
if (err)
- printk(KERN_ERR "SLUB: Unable to add boot slab %s"
- " to sysfs\n", s->name);
+ pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
+ s->name);
}
while (alias_list) {
@@ -5268,39 +9854,241 @@ static int __init slab_sysfs_init(void)
alias_list = alias_list->next;
err = sysfs_slab_alias(al->s, al->name);
if (err)
- printk(KERN_ERR "SLUB: Unable to add boot slab alias"
- " %s to sysfs\n", al->name);
+ pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
+ al->name);
kfree(al);
}
mutex_unlock(&slab_mutex);
- resiliency_test();
return 0;
}
+late_initcall(slab_sysfs_init);
+#endif /* SLAB_SUPPORTS_SYSFS */
+
+#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
+static int slab_debugfs_show(struct seq_file *seq, void *v)
+{
+ struct loc_track *t = seq->private;
+ struct location *l;
+ unsigned long idx;
+
+ idx = (unsigned long) t->idx;
+ if (idx < t->count) {
+ l = &t->loc[idx];
+
+ seq_printf(seq, "%7ld ", l->count);
+
+ if (l->addr)
+ seq_printf(seq, "%pS", (void *)l->addr);
+ else
+ seq_puts(seq, "<not-available>");
+
+ if (l->waste)
+ seq_printf(seq, " waste=%lu/%lu",
+ l->count * l->waste, l->waste);
+
+ if (l->sum_time != l->min_time) {
+ seq_printf(seq, " age=%ld/%llu/%ld",
+ l->min_time, div_u64(l->sum_time, l->count),
+ l->max_time);
+ } else
+ seq_printf(seq, " age=%ld", l->min_time);
+
+ if (l->min_pid != l->max_pid)
+ seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
+ else
+ seq_printf(seq, " pid=%ld",
+ l->min_pid);
+
+ if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
+ seq_printf(seq, " cpus=%*pbl",
+ cpumask_pr_args(to_cpumask(l->cpus)));
+
+ if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
+ seq_printf(seq, " nodes=%*pbl",
+ nodemask_pr_args(&l->nodes));
+
+#ifdef CONFIG_STACKDEPOT
+ {
+ depot_stack_handle_t handle;
+ unsigned long *entries;
+ unsigned int nr_entries, j;
+
+ handle = READ_ONCE(l->handle);
+ if (handle) {
+ nr_entries = stack_depot_fetch(handle, &entries);
+ seq_puts(seq, "\n");
+ for (j = 0; j < nr_entries; j++)
+ seq_printf(seq, " %pS\n", (void *)entries[j]);
+ }
+ }
+#endif
+ seq_puts(seq, "\n");
+ }
+
+ if (!idx && !t->count)
+ seq_puts(seq, "No data\n");
+
+ return 0;
+}
+
+static void slab_debugfs_stop(struct seq_file *seq, void *v)
+{
+}
+
+static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
+{
+ struct loc_track *t = seq->private;
+
+ t->idx = ++(*ppos);
+ if (*ppos <= t->count)
+ return ppos;
+
+ return NULL;
+}
+
+static int cmp_loc_by_count(const void *a, const void *b)
+{
+ struct location *loc1 = (struct location *)a;
+ struct location *loc2 = (struct location *)b;
+
+ return cmp_int(loc2->count, loc1->count);
+}
+
+static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
+{
+ struct loc_track *t = seq->private;
+
+ t->idx = *ppos;
+ return ppos;
+}
+
+static const struct seq_operations slab_debugfs_sops = {
+ .start = slab_debugfs_start,
+ .next = slab_debugfs_next,
+ .stop = slab_debugfs_stop,
+ .show = slab_debugfs_show,
+};
+
+static int slab_debug_trace_open(struct inode *inode, struct file *filep)
+{
+
+ struct kmem_cache_node *n;
+ enum track_item alloc;
+ int node;
+ struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
+ sizeof(struct loc_track));
+ struct kmem_cache *s = file_inode(filep)->i_private;
+ unsigned long *obj_map;
+
+ if (!t)
+ return -ENOMEM;
+
+ obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
+ if (!obj_map) {
+ seq_release_private(inode, filep);
+ return -ENOMEM;
+ }
-__initcall(slab_sysfs_init);
-#endif /* CONFIG_SYSFS */
+ alloc = debugfs_get_aux_num(filep);
+ if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
+ bitmap_free(obj_map);
+ seq_release_private(inode, filep);
+ return -ENOMEM;
+ }
+
+ for_each_kmem_cache_node(s, node, n) {
+ unsigned long flags;
+ struct slab *slab;
+
+ if (!node_nr_slabs(n))
+ continue;
+
+ spin_lock_irqsave(&n->list_lock, flags);
+ list_for_each_entry(slab, &n->partial, slab_list)
+ process_slab(t, s, slab, alloc, obj_map);
+ list_for_each_entry(slab, &n->full, slab_list)
+ process_slab(t, s, slab, alloc, obj_map);
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ }
+
+ /* Sort locations by count */
+ sort(t->loc, t->count, sizeof(struct location),
+ cmp_loc_by_count, NULL);
+
+ bitmap_free(obj_map);
+ return 0;
+}
+
+static int slab_debug_trace_release(struct inode *inode, struct file *file)
+{
+ struct seq_file *seq = file->private_data;
+ struct loc_track *t = seq->private;
+
+ free_loc_track(t);
+ return seq_release_private(inode, file);
+}
+
+static const struct file_operations slab_debugfs_fops = {
+ .open = slab_debug_trace_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = slab_debug_trace_release,
+};
+
+static void debugfs_slab_add(struct kmem_cache *s)
+{
+ struct dentry *slab_cache_dir;
+
+ if (unlikely(!slab_debugfs_root))
+ return;
+
+ slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
+
+ debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
+ TRACK_ALLOC, &slab_debugfs_fops);
+
+ debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
+ TRACK_FREE, &slab_debugfs_fops);
+}
+
+void debugfs_slab_release(struct kmem_cache *s)
+{
+ debugfs_lookup_and_remove(s->name, slab_debugfs_root);
+}
+
+static int __init slab_debugfs_init(void)
+{
+ struct kmem_cache *s;
+
+ slab_debugfs_root = debugfs_create_dir("slab", NULL);
+
+ list_for_each_entry(s, &slab_caches, list)
+ if (s->flags & SLAB_STORE_USER)
+ debugfs_slab_add(s);
+
+ return 0;
+
+}
+__initcall(slab_debugfs_init);
+#endif
/*
* The /proc/slabinfo ABI
*/
-#ifdef CONFIG_SLABINFO
+#ifdef CONFIG_SLUB_DEBUG
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
{
unsigned long nr_slabs = 0;
unsigned long nr_objs = 0;
unsigned long nr_free = 0;
int node;
+ struct kmem_cache_node *n;
- for_each_online_node(node) {
- struct kmem_cache_node *n = get_node(s, node);
-
- if (!n)
- continue;
-
+ for_each_kmem_cache_node(s, node, n) {
nr_slabs += node_nr_slabs(n);
nr_objs += node_nr_objs(n);
- nr_free += count_partial(n, count_free);
+ nr_free += count_partial_free_approx(n);
}
sinfo->active_objs = nr_objs - nr_free;
@@ -5310,14 +10098,4 @@ void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
sinfo->objects_per_slab = oo_objects(s->oo);
sinfo->cache_order = oo_order(s->oo);
}
-
-void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
-{
-}
-
-ssize_t slabinfo_write(struct file *file, const char __user *buffer,
- size_t count, loff_t *ppos)
-{
- return -EIO;
-}
-#endif /* CONFIG_SLABINFO */
+#endif /* CONFIG_SLUB_DEBUG */