summaryrefslogtreecommitdiff
path: root/mm/sparse.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/sparse.c')
-rw-r--r--mm/sparse.c1060
1 files changed, 604 insertions, 456 deletions
diff --git a/mm/sparse.c b/mm/sparse.c
index 308d50331bc3..b5b2b6f7041b 100644
--- a/mm/sparse.c
+++ b/mm/sparse.c
@@ -1,18 +1,22 @@
+// SPDX-License-Identifier: GPL-2.0
/*
* sparse memory mappings.
*/
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/mmzone.h>
-#include <linux/bootmem.h>
+#include <linux/memblock.h>
+#include <linux/compiler.h>
#include <linux/highmem.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/bootmem_info.h>
+#include <linux/vmstat.h>
#include "internal.h"
#include <asm/dma.h>
-#include <asm/pgalloc.h>
-#include <asm/pgtable.h>
/*
* Permanent SPARSEMEM data:
@@ -20,8 +24,7 @@
* 1) mem_section - memory sections, mem_map's for valid memory
*/
#ifdef CONFIG_SPARSEMEM_EXTREME
-struct mem_section *mem_section[NR_SECTION_ROOTS]
- ____cacheline_internodealigned_in_smp;
+struct mem_section **mem_section;
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
____cacheline_internodealigned_in_smp;
@@ -40,11 +43,11 @@ static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif
-int page_to_nid(const struct page *page)
+int memdesc_nid(memdesc_flags_t mdf)
{
- return section_to_node_table[page_to_section(page)];
+ return section_to_node_table[memdesc_section(mdf)];
}
-EXPORT_SYMBOL(page_to_nid);
+EXPORT_SYMBOL(memdesc_nid);
static void set_section_nid(unsigned long section_nr, int nid)
{
@@ -57,19 +60,20 @@ static inline void set_section_nid(unsigned long section_nr, int nid)
#endif
#ifdef CONFIG_SPARSEMEM_EXTREME
-static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
+static noinline struct mem_section __ref *sparse_index_alloc(int nid)
{
struct mem_section *section = NULL;
unsigned long array_size = SECTIONS_PER_ROOT *
sizeof(struct mem_section);
if (slab_is_available()) {
- if (node_state(nid, N_HIGH_MEMORY))
- section = kzalloc_node(array_size, GFP_KERNEL, nid);
- else
- section = kzalloc(array_size, GFP_KERNEL);
+ section = kzalloc_node(array_size, GFP_KERNEL, nid);
} else {
- section = alloc_bootmem_node(NODE_DATA(nid), array_size);
+ section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
+ nid);
+ if (!section)
+ panic("%s: Failed to allocate %lu bytes nid=%d\n",
+ __func__, array_size, nid);
}
return section;
@@ -80,8 +84,15 @@ static int __meminit sparse_index_init(unsigned long section_nr, int nid)
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
struct mem_section *section;
+ /*
+ * An existing section is possible in the sub-section hotplug
+ * case. First hot-add instantiates, follow-on hot-add reuses
+ * the existing section.
+ *
+ * The mem_hotplug_lock resolves the apparent race below.
+ */
if (mem_section[root])
- return -EEXIST;
+ return 0;
section = sparse_index_alloc(nid);
if (!section)
@@ -99,30 +110,6 @@ static inline int sparse_index_init(unsigned long section_nr, int nid)
#endif
/*
- * Although written for the SPARSEMEM_EXTREME case, this happens
- * to also work for the flat array case because
- * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
- */
-int __section_nr(struct mem_section* ms)
-{
- unsigned long root_nr;
- struct mem_section* root;
-
- for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
- root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
- if (!root)
- continue;
-
- if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
- break;
- }
-
- VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
-
- return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
-}
-
-/*
* During early boot, before section_mem_map is used for an actual
* mem_map, we use section_mem_map to store the section's NUMA
* node. This keeps us from having to use another data structure. The
@@ -130,7 +117,7 @@ int __section_nr(struct mem_section* ms)
*/
static inline unsigned long sparse_encode_early_nid(int nid)
{
- return (nid << SECTION_NID_SHIFT);
+ return ((unsigned long)nid << SECTION_NID_SHIFT);
}
static inline int sparse_early_nid(struct mem_section *section)
@@ -139,10 +126,10 @@ static inline int sparse_early_nid(struct mem_section *section)
}
/* Validate the physical addressing limitations of the model */
-void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
+static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
unsigned long *end_pfn)
{
- unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
+ unsigned long max_sparsemem_pfn = (DIRECT_MAP_PHYSMEM_END + 1) >> PAGE_SHIFT;
/*
* Sanity checks - do not allow an architecture to pass
@@ -164,47 +151,113 @@ void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
}
}
+/*
+ * There are a number of times that we loop over NR_MEM_SECTIONS,
+ * looking for section_present() on each. But, when we have very
+ * large physical address spaces, NR_MEM_SECTIONS can also be
+ * very large which makes the loops quite long.
+ *
+ * Keeping track of this gives us an easy way to break out of
+ * those loops early.
+ */
+unsigned long __highest_present_section_nr;
+static void __section_mark_present(struct mem_section *ms,
+ unsigned long section_nr)
+{
+ if (section_nr > __highest_present_section_nr)
+ __highest_present_section_nr = section_nr;
+
+ ms->section_mem_map |= SECTION_MARKED_PRESENT;
+}
+
+static inline unsigned long first_present_section_nr(void)
+{
+ return next_present_section_nr(-1);
+}
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+static void subsection_mask_set(unsigned long *map, unsigned long pfn,
+ unsigned long nr_pages)
+{
+ int idx = subsection_map_index(pfn);
+ int end = subsection_map_index(pfn + nr_pages - 1);
+
+ bitmap_set(map, idx, end - idx + 1);
+}
+
+void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
+{
+ int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1);
+ unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn);
+
+ for (nr = start_sec_nr; nr <= end_sec_nr; nr++) {
+ struct mem_section *ms;
+ unsigned long pfns;
+
+ pfns = min(nr_pages, PAGES_PER_SECTION
+ - (pfn & ~PAGE_SECTION_MASK));
+ ms = __nr_to_section(nr);
+ subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
+
+ pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
+ pfns, subsection_map_index(pfn),
+ subsection_map_index(pfn + pfns - 1));
+
+ pfn += pfns;
+ nr_pages -= pfns;
+ }
+}
+#else
+void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
+{
+}
+#endif
+
/* Record a memory area against a node. */
-void __init memory_present(int nid, unsigned long start, unsigned long end)
+static void __init memory_present(int nid, unsigned long start, unsigned long end)
{
unsigned long pfn;
start &= PAGE_SECTION_MASK;
mminit_validate_memmodel_limits(&start, &end);
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
- unsigned long section = pfn_to_section_nr(pfn);
+ unsigned long section_nr = pfn_to_section_nr(pfn);
struct mem_section *ms;
- sparse_index_init(section, nid);
- set_section_nid(section, nid);
+ sparse_index_init(section_nr, nid);
+ set_section_nid(section_nr, nid);
- ms = __nr_to_section(section);
- if (!ms->section_mem_map)
+ ms = __nr_to_section(section_nr);
+ if (!ms->section_mem_map) {
ms->section_mem_map = sparse_encode_early_nid(nid) |
- SECTION_MARKED_PRESENT;
+ SECTION_IS_ONLINE;
+ __section_mark_present(ms, section_nr);
+ }
}
}
/*
- * Only used by the i386 NUMA architecures, but relatively
- * generic code.
+ * Mark all memblocks as present using memory_present().
+ * This is a convenience function that is useful to mark all of the systems
+ * memory as present during initialization.
*/
-unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
- unsigned long end_pfn)
+static void __init memblocks_present(void)
{
- unsigned long pfn;
- unsigned long nr_pages = 0;
+ unsigned long start, end;
+ int i, nid;
- mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
- for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
- if (nid != early_pfn_to_nid(pfn))
- continue;
+#ifdef CONFIG_SPARSEMEM_EXTREME
+ if (unlikely(!mem_section)) {
+ unsigned long size, align;
- if (pfn_present(pfn))
- nr_pages += PAGES_PER_SECTION;
+ size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
+ align = 1 << (INTERNODE_CACHE_SHIFT);
+ mem_section = memblock_alloc_or_panic(size, align);
}
+#endif
- return nr_pages * sizeof(struct page);
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
+ memory_present(nid, start, end);
}
/*
@@ -214,9 +267,14 @@ unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
*/
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
- return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
+ unsigned long coded_mem_map =
+ (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
+ BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
+ BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
+ return coded_mem_map;
}
+#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Decode mem_map from the coded memmap
*/
@@ -226,78 +284,85 @@ struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pn
coded_mem_map &= SECTION_MAP_MASK;
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}
+#endif /* CONFIG_MEMORY_HOTPLUG */
-static int __meminit sparse_init_one_section(struct mem_section *ms,
+static void __meminit sparse_init_one_section(struct mem_section *ms,
unsigned long pnum, struct page *mem_map,
- unsigned long *pageblock_bitmap)
+ struct mem_section_usage *usage, unsigned long flags)
{
- if (!present_section(ms))
- return -EINVAL;
-
ms->section_mem_map &= ~SECTION_MAP_MASK;
- ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
- SECTION_HAS_MEM_MAP;
- ms->pageblock_flags = pageblock_bitmap;
-
- return 1;
+ ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
+ | SECTION_HAS_MEM_MAP | flags;
+ ms->usage = usage;
}
-unsigned long usemap_size(void)
+static unsigned long usemap_size(void)
{
- unsigned long size_bytes;
- size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
- size_bytes = roundup(size_bytes, sizeof(unsigned long));
- return size_bytes;
+ return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
}
-#ifdef CONFIG_MEMORY_HOTPLUG
-static unsigned long *__kmalloc_section_usemap(void)
+size_t mem_section_usage_size(void)
{
- return kmalloc(usemap_size(), GFP_KERNEL);
+ return sizeof(struct mem_section_usage) + usemap_size();
}
-#endif /* CONFIG_MEMORY_HOTPLUG */
#ifdef CONFIG_MEMORY_HOTREMOVE
-static unsigned long * __init
+static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
+{
+#ifndef CONFIG_NUMA
+ VM_BUG_ON(pgdat != &contig_page_data);
+ return __pa_symbol(&contig_page_data);
+#else
+ return __pa(pgdat);
+#endif
+}
+
+static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
unsigned long size)
{
+ struct mem_section_usage *usage;
unsigned long goal, limit;
- unsigned long *p;
int nid;
/*
* A page may contain usemaps for other sections preventing the
* page being freed and making a section unremovable while
- * other sections referencing the usemap retmain active. Similarly,
+ * other sections referencing the usemap remain active. Similarly,
* a pgdat can prevent a section being removed. If section A
* contains a pgdat and section B contains the usemap, both
* sections become inter-dependent. This allocates usemaps
* from the same section as the pgdat where possible to avoid
* this problem.
*/
- goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
+ goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
limit = goal + (1UL << PA_SECTION_SHIFT);
nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
again:
- p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
- SMP_CACHE_BYTES, goal, limit);
- if (!p && limit) {
- limit = 0;
+ usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
+ if (!usage && limit) {
+ limit = MEMBLOCK_ALLOC_ACCESSIBLE;
goto again;
}
- return p;
+ return usage;
}
-static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
+static void __init check_usemap_section_nr(int nid,
+ struct mem_section_usage *usage)
{
unsigned long usemap_snr, pgdat_snr;
- static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
- static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
+ static unsigned long old_usemap_snr;
+ static unsigned long old_pgdat_snr;
struct pglist_data *pgdat = NODE_DATA(nid);
int usemap_nid;
- usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
- pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
+ /* First call */
+ if (!old_usemap_snr) {
+ old_usemap_snr = NR_MEM_SECTIONS;
+ old_pgdat_snr = NR_MEM_SECTIONS;
+ }
+
+ usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
+ pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
if (usemap_snr == pgdat_snr)
return;
@@ -310,9 +375,8 @@ static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
if (usemap_nid != nid) {
- printk(KERN_INFO
- "node %d must be removed before remove section %ld\n",
- nid, usemap_snr);
+ pr_info("node %d must be removed before remove section %ld\n",
+ nid, usemap_snr);
return;
}
/*
@@ -321,367 +385,389 @@ static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
* gather other removable sections for dynamic partitioning.
* Just notify un-removable section's number here.
*/
- printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
- pgdat_snr, nid);
- printk(KERN_CONT
- " have a circular dependency on usemap and pgdat allocations\n");
+ pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
+ usemap_snr, pgdat_snr, nid);
}
#else
-static unsigned long * __init
+static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
unsigned long size)
{
- return alloc_bootmem_node_nopanic(pgdat, size);
+ return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
}
-static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
+static void __init check_usemap_section_nr(int nid,
+ struct mem_section_usage *usage)
{
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
-static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
- unsigned long pnum_begin,
- unsigned long pnum_end,
- unsigned long usemap_count, int nodeid)
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+unsigned long __init section_map_size(void)
{
- void *usemap;
- unsigned long pnum;
- int size = usemap_size();
-
- usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
- size * usemap_count);
- if (!usemap) {
- printk(KERN_WARNING "%s: allocation failed\n", __func__);
- return;
- }
+ return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
+}
- for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
- if (!present_section_nr(pnum))
- continue;
- usemap_map[pnum] = usemap;
- usemap += size;
- check_usemap_section_nr(nodeid, usemap_map[pnum]);
- }
+#else
+unsigned long __init section_map_size(void)
+{
+ return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
}
-#ifndef CONFIG_SPARSEMEM_VMEMMAP
-struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
+struct page __init *__populate_section_memmap(unsigned long pfn,
+ unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
+ struct dev_pagemap *pgmap)
{
- struct page *map;
- unsigned long size;
+ unsigned long size = section_map_size();
+ struct page *map = sparse_buffer_alloc(size);
+ phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
- map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
if (map)
return map;
- size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
- map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
- PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
+ map = memmap_alloc(size, size, addr, nid, false);
+ if (!map)
+ panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
+ __func__, size, PAGE_SIZE, nid, &addr);
+
return map;
}
-void __init sparse_mem_maps_populate_node(struct page **map_map,
- unsigned long pnum_begin,
- unsigned long pnum_end,
- unsigned long map_count, int nodeid)
+#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
+
+static void *sparsemap_buf __meminitdata;
+static void *sparsemap_buf_end __meminitdata;
+
+static inline void __meminit sparse_buffer_free(unsigned long size)
{
- void *map;
- unsigned long pnum;
- unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
-
- map = alloc_remap(nodeid, size * map_count);
- if (map) {
- for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
- if (!present_section_nr(pnum))
- continue;
- map_map[pnum] = map;
- map += size;
- }
- return;
- }
+ WARN_ON(!sparsemap_buf || size == 0);
+ memblock_free(sparsemap_buf, size);
+}
- size = PAGE_ALIGN(size);
- map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
- PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
- if (map) {
- for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
- if (!present_section_nr(pnum))
- continue;
- map_map[pnum] = map;
- map += size;
- }
- return;
- }
+static void __init sparse_buffer_init(unsigned long size, int nid)
+{
+ phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
+ WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
+ /*
+ * Pre-allocated buffer is mainly used by __populate_section_memmap
+ * and we want it to be properly aligned to the section size - this is
+ * especially the case for VMEMMAP which maps memmap to PMDs
+ */
+ sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
+ sparsemap_buf_end = sparsemap_buf + size;
+}
- /* fallback */
- for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
- struct mem_section *ms;
+static void __init sparse_buffer_fini(void)
+{
+ unsigned long size = sparsemap_buf_end - sparsemap_buf;
- if (!present_section_nr(pnum))
- continue;
- map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
- if (map_map[pnum])
- continue;
- ms = __nr_to_section(pnum);
- printk(KERN_ERR "%s: sparsemem memory map backing failed "
- "some memory will not be available.\n", __func__);
- ms->section_mem_map = 0;
+ if (sparsemap_buf && size > 0)
+ sparse_buffer_free(size);
+ sparsemap_buf = NULL;
+}
+
+void * __meminit sparse_buffer_alloc(unsigned long size)
+{
+ void *ptr = NULL;
+
+ if (sparsemap_buf) {
+ ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
+ if (ptr + size > sparsemap_buf_end)
+ ptr = NULL;
+ else {
+ /* Free redundant aligned space */
+ if ((unsigned long)(ptr - sparsemap_buf) > 0)
+ sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
+ sparsemap_buf = ptr + size;
+ }
}
+ return ptr;
}
-#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
-#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
-static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
- unsigned long pnum_begin,
- unsigned long pnum_end,
- unsigned long map_count, int nodeid)
+void __weak __meminit vmemmap_populate_print_last(void)
{
- sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
- map_count, nodeid);
}
-#else
-static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
+
+static void *sparse_usagebuf __meminitdata;
+static void *sparse_usagebuf_end __meminitdata;
+
+/*
+ * Helper function that is used for generic section initialization, and
+ * can also be used by any hooks added above.
+ */
+void __init sparse_init_early_section(int nid, struct page *map,
+ unsigned long pnum, unsigned long flags)
{
- struct page *map;
- struct mem_section *ms = __nr_to_section(pnum);
- int nid = sparse_early_nid(ms);
+ BUG_ON(!sparse_usagebuf || sparse_usagebuf >= sparse_usagebuf_end);
+ check_usemap_section_nr(nid, sparse_usagebuf);
+ sparse_init_one_section(__nr_to_section(pnum), pnum, map,
+ sparse_usagebuf, SECTION_IS_EARLY | flags);
+ sparse_usagebuf = (void *)sparse_usagebuf + mem_section_usage_size();
+}
- map = sparse_mem_map_populate(pnum, nid);
- if (map)
- return map;
+static int __init sparse_usage_init(int nid, unsigned long map_count)
+{
+ unsigned long size;
+
+ size = mem_section_usage_size() * map_count;
+ sparse_usagebuf = sparse_early_usemaps_alloc_pgdat_section(
+ NODE_DATA(nid), size);
+ if (!sparse_usagebuf) {
+ sparse_usagebuf_end = NULL;
+ return -ENOMEM;
+ }
- printk(KERN_ERR "%s: sparsemem memory map backing failed "
- "some memory will not be available.\n", __func__);
- ms->section_mem_map = 0;
- return NULL;
+ sparse_usagebuf_end = sparse_usagebuf + size;
+ return 0;
}
-#endif
-void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
+static void __init sparse_usage_fini(void)
{
+ sparse_usagebuf = sparse_usagebuf_end = NULL;
}
/*
- * Allocate the accumulated non-linear sections, allocate a mem_map
- * for each and record the physical to section mapping.
+ * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
+ * And number of present sections in this node is map_count.
*/
-void __init sparse_init(void)
+static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
+ unsigned long pnum_end,
+ unsigned long map_count)
{
unsigned long pnum;
struct page *map;
- unsigned long *usemap;
- unsigned long **usemap_map;
- int size;
- int nodeid_begin = 0;
- unsigned long pnum_begin = 0;
- unsigned long usemap_count;
-#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
- unsigned long map_count;
- int size2;
- struct page **map_map;
-#endif
+ struct mem_section *ms;
- /* see include/linux/mmzone.h 'struct mem_section' definition */
- BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
+ if (sparse_usage_init(nid, map_count)) {
+ pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
+ goto failed;
+ }
- /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
- set_pageblock_order();
+ sparse_buffer_init(map_count * section_map_size(), nid);
- /*
- * map is using big page (aka 2M in x86 64 bit)
- * usemap is less one page (aka 24 bytes)
- * so alloc 2M (with 2M align) and 24 bytes in turn will
- * make next 2M slip to one more 2M later.
- * then in big system, the memory will have a lot of holes...
- * here try to allocate 2M pages continuously.
- *
- * powerpc need to call sparse_init_one_section right after each
- * sparse_early_mem_map_alloc, so allocate usemap_map at first.
- */
- size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
- usemap_map = alloc_bootmem(size);
- if (!usemap_map)
- panic("can not allocate usemap_map\n");
+ sparse_vmemmap_init_nid_early(nid);
- for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
- struct mem_section *ms;
+ for_each_present_section_nr(pnum_begin, pnum) {
+ unsigned long pfn = section_nr_to_pfn(pnum);
- if (!present_section_nr(pnum))
- continue;
- ms = __nr_to_section(pnum);
- nodeid_begin = sparse_early_nid(ms);
- pnum_begin = pnum;
- break;
- }
- usemap_count = 1;
- for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
- struct mem_section *ms;
- int nodeid;
+ if (pnum >= pnum_end)
+ break;
- if (!present_section_nr(pnum))
- continue;
ms = __nr_to_section(pnum);
- nodeid = sparse_early_nid(ms);
- if (nodeid == nodeid_begin) {
- usemap_count++;
- continue;
+ if (!preinited_vmemmap_section(ms)) {
+ map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
+ nid, NULL, NULL);
+ if (!map) {
+ pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
+ __func__, nid);
+ pnum_begin = pnum;
+ sparse_usage_fini();
+ sparse_buffer_fini();
+ goto failed;
+ }
+ memmap_boot_pages_add(DIV_ROUND_UP(PAGES_PER_SECTION * sizeof(struct page),
+ PAGE_SIZE));
+ sparse_init_early_section(nid, map, pnum, 0);
}
- /* ok, we need to take cake of from pnum_begin to pnum - 1*/
- sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
- usemap_count, nodeid_begin);
- /* new start, update count etc*/
- nodeid_begin = nodeid;
- pnum_begin = pnum;
- usemap_count = 1;
}
- /* ok, last chunk */
- sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
- usemap_count, nodeid_begin);
+ sparse_usage_fini();
+ sparse_buffer_fini();
+ return;
+failed:
+ /*
+ * We failed to allocate, mark all the following pnums as not present,
+ * except the ones already initialized earlier.
+ */
+ for_each_present_section_nr(pnum_begin, pnum) {
+ if (pnum >= pnum_end)
+ break;
+ ms = __nr_to_section(pnum);
+ if (!preinited_vmemmap_section(ms))
+ ms->section_mem_map = 0;
+ ms->section_mem_map = 0;
+ }
+}
-#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
- size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
- map_map = alloc_bootmem(size2);
- if (!map_map)
- panic("can not allocate map_map\n");
+/*
+ * Allocate the accumulated non-linear sections, allocate a mem_map
+ * for each and record the physical to section mapping.
+ */
+void __init sparse_init(void)
+{
+ unsigned long pnum_end, pnum_begin, map_count = 1;
+ int nid_begin;
- for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
- struct mem_section *ms;
+ /* see include/linux/mmzone.h 'struct mem_section' definition */
+ BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
+ memblocks_present();
- if (!present_section_nr(pnum))
- continue;
- ms = __nr_to_section(pnum);
- nodeid_begin = sparse_early_nid(ms);
- pnum_begin = pnum;
- break;
- }
- map_count = 1;
- for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
- struct mem_section *ms;
- int nodeid;
+ pnum_begin = first_present_section_nr();
+ nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
- if (!present_section_nr(pnum))
- continue;
- ms = __nr_to_section(pnum);
- nodeid = sparse_early_nid(ms);
- if (nodeid == nodeid_begin) {
+ /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
+ set_pageblock_order();
+
+ for_each_present_section_nr(pnum_begin + 1, pnum_end) {
+ int nid = sparse_early_nid(__nr_to_section(pnum_end));
+
+ if (nid == nid_begin) {
map_count++;
continue;
}
- /* ok, we need to take cake of from pnum_begin to pnum - 1*/
- sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
- map_count, nodeid_begin);
- /* new start, update count etc*/
- nodeid_begin = nodeid;
- pnum_begin = pnum;
+ /* Init node with sections in range [pnum_begin, pnum_end) */
+ sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
+ nid_begin = nid;
+ pnum_begin = pnum_end;
map_count = 1;
}
- /* ok, last chunk */
- sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
- map_count, nodeid_begin);
-#endif
+ /* cover the last node */
+ sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
+ vmemmap_populate_print_last();
+}
- for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
- if (!present_section_nr(pnum))
- continue;
+#ifdef CONFIG_MEMORY_HOTPLUG
- usemap = usemap_map[pnum];
- if (!usemap)
- continue;
+/* Mark all memory sections within the pfn range as online */
+void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
+{
+ unsigned long pfn;
-#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
- map = map_map[pnum];
-#else
- map = sparse_early_mem_map_alloc(pnum);
-#endif
- if (!map)
+ for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
+ unsigned long section_nr = pfn_to_section_nr(pfn);
+ struct mem_section *ms;
+
+ /* onlining code should never touch invalid ranges */
+ if (WARN_ON(!valid_section_nr(section_nr)))
continue;
- sparse_init_one_section(__nr_to_section(pnum), pnum, map,
- usemap);
+ ms = __nr_to_section(section_nr);
+ ms->section_mem_map |= SECTION_IS_ONLINE;
}
+}
- vmemmap_populate_print_last();
+/* Mark all memory sections within the pfn range as offline */
+void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
+{
+ unsigned long pfn;
-#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
- free_bootmem(__pa(map_map), size2);
-#endif
- free_bootmem(__pa(usemap_map), size);
+ for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
+ unsigned long section_nr = pfn_to_section_nr(pfn);
+ struct mem_section *ms;
+
+ /*
+ * TODO this needs some double checking. Offlining code makes
+ * sure to check pfn_valid but those checks might be just bogus
+ */
+ if (WARN_ON(!valid_section_nr(section_nr)))
+ continue;
+
+ ms = __nr_to_section(section_nr);
+ ms->section_mem_map &= ~SECTION_IS_ONLINE;
+ }
}
-#ifdef CONFIG_MEMORY_HOTPLUG
#ifdef CONFIG_SPARSEMEM_VMEMMAP
-static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
- unsigned long nr_pages)
+static struct page * __meminit populate_section_memmap(unsigned long pfn,
+ unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
+ struct dev_pagemap *pgmap)
{
- /* This will make the necessary allocations eventually. */
- return sparse_mem_map_populate(pnum, nid);
+ return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
}
-static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
+
+static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
+ struct vmem_altmap *altmap)
{
- unsigned long start = (unsigned long)memmap;
- unsigned long end = (unsigned long)(memmap + nr_pages);
+ unsigned long start = (unsigned long) pfn_to_page(pfn);
+ unsigned long end = start + nr_pages * sizeof(struct page);
- vmemmap_free(start, end);
+ vmemmap_free(start, end, altmap);
}
-#ifdef CONFIG_MEMORY_HOTREMOVE
-static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
+static void free_map_bootmem(struct page *memmap)
{
unsigned long start = (unsigned long)memmap;
- unsigned long end = (unsigned long)(memmap + nr_pages);
+ unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
- vmemmap_free(start, end);
+ vmemmap_free(start, end, NULL);
}
-#endif /* CONFIG_MEMORY_HOTREMOVE */
-#else
-static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
-{
- struct page *page, *ret;
- unsigned long memmap_size = sizeof(struct page) * nr_pages;
- page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
- if (page)
- goto got_map_page;
+static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
+{
+ DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
+ DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
+ struct mem_section *ms = __pfn_to_section(pfn);
+ unsigned long *subsection_map = ms->usage
+ ? &ms->usage->subsection_map[0] : NULL;
- ret = vmalloc(memmap_size);
- if (ret)
- goto got_map_ptr;
+ subsection_mask_set(map, pfn, nr_pages);
+ if (subsection_map)
+ bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
- return NULL;
-got_map_page:
- ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
-got_map_ptr:
+ if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
+ "section already deactivated (%#lx + %ld)\n",
+ pfn, nr_pages))
+ return -EINVAL;
- return ret;
+ bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
+ return 0;
}
-static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
- unsigned long nr_pages)
+static bool is_subsection_map_empty(struct mem_section *ms)
{
- return __kmalloc_section_memmap(nr_pages);
+ return bitmap_empty(&ms->usage->subsection_map[0],
+ SUBSECTIONS_PER_SECTION);
}
-static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
+static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
- if (is_vmalloc_addr(memmap))
- vfree(memmap);
+ struct mem_section *ms = __pfn_to_section(pfn);
+ DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
+ unsigned long *subsection_map;
+ int rc = 0;
+
+ subsection_mask_set(map, pfn, nr_pages);
+
+ subsection_map = &ms->usage->subsection_map[0];
+
+ if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
+ rc = -EINVAL;
+ else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
+ rc = -EEXIST;
else
- free_pages((unsigned long)memmap,
- get_order(sizeof(struct page) * nr_pages));
+ bitmap_or(subsection_map, map, subsection_map,
+ SUBSECTIONS_PER_SECTION);
+
+ return rc;
+}
+#else
+static struct page * __meminit populate_section_memmap(unsigned long pfn,
+ unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
+ struct dev_pagemap *pgmap)
+{
+ return kvmalloc_node(array_size(sizeof(struct page),
+ PAGES_PER_SECTION), GFP_KERNEL, nid);
}
-#ifdef CONFIG_MEMORY_HOTREMOVE
-static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
+static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
+ struct vmem_altmap *altmap)
+{
+ kvfree(pfn_to_page(pfn));
+}
+
+static void free_map_bootmem(struct page *memmap)
{
unsigned long maps_section_nr, removing_section_nr, i;
- unsigned long magic;
+ unsigned long type, nr_pages;
struct page *page = virt_to_page(memmap);
+ nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
+ >> PAGE_SHIFT;
+
for (i = 0; i < nr_pages; i++, page++) {
- magic = (unsigned long) page->lru.next;
+ type = bootmem_type(page);
- BUG_ON(magic == NODE_INFO);
+ BUG_ON(type == NODE_INFO);
maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
- removing_section_nr = page->private;
+ removing_section_nr = bootmem_info(page);
/*
* When this function is called, the removing section is
@@ -695,136 +781,198 @@ static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
put_page_bootmem(page);
}
}
-#endif /* CONFIG_MEMORY_HOTREMOVE */
+
+static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
+{
+ return 0;
+}
+
+static bool is_subsection_map_empty(struct mem_section *ms)
+{
+ return true;
+}
+
+static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
+{
+ return 0;
+}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
/*
- * returns the number of sections whose mem_maps were properly
- * set. If this is <=0, then that means that the passed-in
- * map was not consumed and must be freed.
+ * To deactivate a memory region, there are 3 cases to handle across
+ * two configurations (SPARSEMEM_VMEMMAP={y,n}):
+ *
+ * 1. deactivation of a partial hot-added section (only possible in
+ * the SPARSEMEM_VMEMMAP=y case).
+ * a) section was present at memory init.
+ * b) section was hot-added post memory init.
+ * 2. deactivation of a complete hot-added section.
+ * 3. deactivation of a complete section from memory init.
+ *
+ * For 1, when subsection_map does not empty we will not be freeing the
+ * usage map, but still need to free the vmemmap range.
+ *
+ * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
*/
-int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
- int nr_pages)
+static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
+ struct vmem_altmap *altmap)
{
- unsigned long section_nr = pfn_to_section_nr(start_pfn);
- struct pglist_data *pgdat = zone->zone_pgdat;
- struct mem_section *ms;
- struct page *memmap;
- unsigned long *usemap;
- unsigned long flags;
- int ret;
+ struct mem_section *ms = __pfn_to_section(pfn);
+ bool section_is_early = early_section(ms);
+ struct page *memmap = NULL;
+ bool empty;
- /*
- * no locking for this, because it does its own
- * plus, it does a kmalloc
- */
- ret = sparse_index_init(section_nr, pgdat->node_id);
- if (ret < 0 && ret != -EEXIST)
- return ret;
- memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
- if (!memmap)
- return -ENOMEM;
- usemap = __kmalloc_section_usemap();
- if (!usemap) {
- __kfree_section_memmap(memmap, nr_pages);
- return -ENOMEM;
- }
+ if (clear_subsection_map(pfn, nr_pages))
+ return;
- pgdat_resize_lock(pgdat, &flags);
+ empty = is_subsection_map_empty(ms);
+ if (empty) {
+ unsigned long section_nr = pfn_to_section_nr(pfn);
- ms = __pfn_to_section(start_pfn);
- if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
- ret = -EEXIST;
- goto out;
+ /*
+ * Mark the section invalid so that valid_section()
+ * return false. This prevents code from dereferencing
+ * ms->usage array.
+ */
+ ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
+
+ /*
+ * When removing an early section, the usage map is kept (as the
+ * usage maps of other sections fall into the same page). It
+ * will be re-used when re-adding the section - which is then no
+ * longer an early section. If the usage map is PageReserved, it
+ * was allocated during boot.
+ */
+ if (!PageReserved(virt_to_page(ms->usage))) {
+ kfree_rcu(ms->usage, rcu);
+ WRITE_ONCE(ms->usage, NULL);
+ }
+ memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
}
- memset(memmap, 0, sizeof(struct page) * nr_pages);
+ /*
+ * The memmap of early sections is always fully populated. See
+ * section_activate() and pfn_valid() .
+ */
+ if (!section_is_early) {
+ memmap_pages_add(-1L * (DIV_ROUND_UP(nr_pages * sizeof(struct page), PAGE_SIZE)));
+ depopulate_section_memmap(pfn, nr_pages, altmap);
+ } else if (memmap) {
+ memmap_boot_pages_add(-1L * (DIV_ROUND_UP(nr_pages * sizeof(struct page),
+ PAGE_SIZE)));
+ free_map_bootmem(memmap);
+ }
- ms->section_mem_map |= SECTION_MARKED_PRESENT;
+ if (empty)
+ ms->section_mem_map = (unsigned long)NULL;
+}
- ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
+static struct page * __meminit section_activate(int nid, unsigned long pfn,
+ unsigned long nr_pages, struct vmem_altmap *altmap,
+ struct dev_pagemap *pgmap)
+{
+ struct mem_section *ms = __pfn_to_section(pfn);
+ struct mem_section_usage *usage = NULL;
+ struct page *memmap;
+ int rc;
-out:
- pgdat_resize_unlock(pgdat, &flags);
- if (ret <= 0) {
- kfree(usemap);
- __kfree_section_memmap(memmap, nr_pages);
+ if (!ms->usage) {
+ usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
+ if (!usage)
+ return ERR_PTR(-ENOMEM);
+ ms->usage = usage;
}
- return ret;
-}
-#ifdef CONFIG_MEMORY_HOTREMOVE
-#ifdef CONFIG_MEMORY_FAILURE
-static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
-{
- int i;
+ rc = fill_subsection_map(pfn, nr_pages);
+ if (rc) {
+ if (usage)
+ ms->usage = NULL;
+ kfree(usage);
+ return ERR_PTR(rc);
+ }
- if (!memmap)
- return;
+ /*
+ * The early init code does not consider partially populated
+ * initial sections, it simply assumes that memory will never be
+ * referenced. If we hot-add memory into such a section then we
+ * do not need to populate the memmap and can simply reuse what
+ * is already there.
+ */
+ if (nr_pages < PAGES_PER_SECTION && early_section(ms))
+ return pfn_to_page(pfn);
- for (i = 0; i < PAGES_PER_SECTION; i++) {
- if (PageHWPoison(&memmap[i])) {
- atomic_long_sub(1, &num_poisoned_pages);
- ClearPageHWPoison(&memmap[i]);
- }
+ memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
+ if (!memmap) {
+ section_deactivate(pfn, nr_pages, altmap);
+ return ERR_PTR(-ENOMEM);
}
+ memmap_pages_add(DIV_ROUND_UP(nr_pages * sizeof(struct page), PAGE_SIZE));
+
+ return memmap;
}
-#else
-static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
-{
-}
-#endif
-static void free_section_usemap(struct page *memmap, unsigned long *usemap)
+/**
+ * sparse_add_section - add a memory section, or populate an existing one
+ * @nid: The node to add section on
+ * @start_pfn: start pfn of the memory range
+ * @nr_pages: number of pfns to add in the section
+ * @altmap: alternate pfns to allocate the memmap backing store
+ * @pgmap: alternate compound page geometry for devmap mappings
+ *
+ * This is only intended for hotplug.
+ *
+ * Note that only VMEMMAP supports sub-section aligned hotplug,
+ * the proper alignment and size are gated by check_pfn_span().
+ *
+ *
+ * Return:
+ * * 0 - On success.
+ * * -EEXIST - Section has been present.
+ * * -ENOMEM - Out of memory.
+ */
+int __meminit sparse_add_section(int nid, unsigned long start_pfn,
+ unsigned long nr_pages, struct vmem_altmap *altmap,
+ struct dev_pagemap *pgmap)
{
- struct page *usemap_page;
- unsigned long nr_pages;
+ unsigned long section_nr = pfn_to_section_nr(start_pfn);
+ struct mem_section *ms;
+ struct page *memmap;
+ int ret;
- if (!usemap)
- return;
+ ret = sparse_index_init(section_nr, nid);
+ if (ret < 0)
+ return ret;
- usemap_page = virt_to_page(usemap);
- /*
- * Check to see if allocation came from hot-plug-add
- */
- if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
- kfree(usemap);
- if (memmap)
- __kfree_section_memmap(memmap, PAGES_PER_SECTION);
- return;
- }
+ memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
+ if (IS_ERR(memmap))
+ return PTR_ERR(memmap);
/*
- * The usemap came from bootmem. This is packed with other usemaps
- * on the section which has pgdat at boot time. Just keep it as is now.
+ * Poison uninitialized struct pages in order to catch invalid flags
+ * combinations.
*/
+ page_init_poison(memmap, sizeof(struct page) * nr_pages);
- if (memmap) {
- nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
- >> PAGE_SHIFT;
+ ms = __nr_to_section(section_nr);
+ set_section_nid(section_nr, nid);
+ __section_mark_present(ms, section_nr);
- free_map_bootmem(memmap, nr_pages);
- }
+ /* Align memmap to section boundary in the subsection case */
+ if (section_nr_to_pfn(section_nr) != start_pfn)
+ memmap = pfn_to_page(section_nr_to_pfn(section_nr));
+ sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
+
+ return 0;
}
-void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
+void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
+ struct vmem_altmap *altmap)
{
- struct page *memmap = NULL;
- unsigned long *usemap = NULL, flags;
- struct pglist_data *pgdat = zone->zone_pgdat;
-
- pgdat_resize_lock(pgdat, &flags);
- if (ms->section_mem_map) {
- usemap = ms->pageblock_flags;
- memmap = sparse_decode_mem_map(ms->section_mem_map,
- __section_nr(ms));
- ms->section_mem_map = 0;
- ms->pageblock_flags = NULL;
- }
- pgdat_resize_unlock(pgdat, &flags);
+ struct mem_section *ms = __pfn_to_section(pfn);
+
+ if (WARN_ON_ONCE(!valid_section(ms)))
+ return;
- clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
- free_section_usemap(memmap, usemap);
+ section_deactivate(pfn, nr_pages, altmap);
}
-#endif /* CONFIG_MEMORY_HOTREMOVE */
#endif /* CONFIG_MEMORY_HOTPLUG */