summaryrefslogtreecommitdiff
path: root/mm/swap_state.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/swap_state.c')
-rw-r--r--mm/swap_state.c1031
1 files changed, 736 insertions, 295 deletions
diff --git a/mm/swap_state.c b/mm/swap_state.c
index f24ab0dff554..5f97c6ae70a2 100644
--- a/mm/swap_state.c
+++ b/mm/swap_state.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0
/*
* linux/mm/swap_state.c
*
@@ -9,431 +10,871 @@
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/kernel_stat.h>
+#include <linux/mempolicy.h>
#include <linux/swap.h>
-#include <linux/swapops.h>
+#include <linux/leafops.h>
#include <linux/init.h>
#include <linux/pagemap.h>
+#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
-#include <linux/pagevec.h>
#include <linux/migrate.h>
-#include <linux/page_cgroup.h>
-
-#include <asm/pgtable.h>
+#include <linux/vmalloc.h>
+#include <linux/huge_mm.h>
+#include <linux/shmem_fs.h>
+#include "internal.h"
+#include "swap_table.h"
+#include "swap.h"
/*
* swapper_space is a fiction, retained to simplify the path through
- * vmscan's shrink_page_list.
+ * vmscan's shrink_folio_list.
*/
static const struct address_space_operations swap_aops = {
- .writepage = swap_writepage,
- .set_page_dirty = swap_set_page_dirty,
- .migratepage = migrate_page,
+ .dirty_folio = noop_dirty_folio,
+#ifdef CONFIG_MIGRATION
+ .migrate_folio = migrate_folio,
+#endif
};
-static struct backing_dev_info swap_backing_dev_info = {
- .name = "swap",
- .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
+/* Set swap_space as read only as swap cache is handled by swap table */
+struct address_space swap_space __ro_after_init = {
+ .a_ops = &swap_aops,
};
-struct address_space swapper_spaces[MAX_SWAPFILES] = {
- [0 ... MAX_SWAPFILES - 1] = {
- .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
- .a_ops = &swap_aops,
- .backing_dev_info = &swap_backing_dev_info,
- }
-};
+static bool enable_vma_readahead __read_mostly = true;
-#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
+#define SWAP_RA_ORDER_CEILING 5
-static struct {
- unsigned long add_total;
- unsigned long del_total;
- unsigned long find_success;
- unsigned long find_total;
-} swap_cache_info;
+#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
+#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
+#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
+#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
-unsigned long total_swapcache_pages(void)
-{
- int i;
- unsigned long ret = 0;
+#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
+#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
+#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
- for (i = 0; i < MAX_SWAPFILES; i++)
- ret += swapper_spaces[i].nrpages;
- return ret;
-}
+#define SWAP_RA_VAL(addr, win, hits) \
+ (((addr) & PAGE_MASK) | \
+ (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
+ ((hits) & SWAP_RA_HITS_MASK))
+
+/* Initial readahead hits is 4 to start up with a small window */
+#define GET_SWAP_RA_VAL(vma) \
+ (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
+
+static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
void show_swap_cache_info(void)
{
printk("%lu pages in swap cache\n", total_swapcache_pages());
- printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
- swap_cache_info.add_total, swap_cache_info.del_total,
- swap_cache_info.find_success, swap_cache_info.find_total);
- printk("Free swap = %ldkB\n",
- get_nr_swap_pages() << (PAGE_SHIFT - 10));
- printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
+ printk("Free swap = %ldkB\n", K(get_nr_swap_pages()));
+ printk("Total swap = %lukB\n", K(total_swap_pages));
}
-/*
- * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
- * but sets SwapCache flag and private instead of mapping and index.
+/**
+ * swap_cache_get_folio - Looks up a folio in the swap cache.
+ * @entry: swap entry used for the lookup.
+ *
+ * A found folio will be returned unlocked and with its refcount increased.
+ *
+ * Context: Caller must ensure @entry is valid and protect the swap device
+ * with reference count or locks.
+ * Return: Returns the found folio on success, NULL otherwise. The caller
+ * must lock nd check if the folio still matches the swap entry before
+ * use (e.g., folio_matches_swap_entry).
*/
-int __add_to_swap_cache(struct page *page, swp_entry_t entry)
+struct folio *swap_cache_get_folio(swp_entry_t entry)
{
- int error;
- struct address_space *address_space;
-
- VM_BUG_ON(!PageLocked(page));
- VM_BUG_ON(PageSwapCache(page));
- VM_BUG_ON(!PageSwapBacked(page));
-
- page_cache_get(page);
- SetPageSwapCache(page);
- set_page_private(page, entry.val);
-
- address_space = swap_address_space(entry);
- spin_lock_irq(&address_space->tree_lock);
- error = radix_tree_insert(&address_space->page_tree,
- entry.val, page);
- if (likely(!error)) {
- address_space->nrpages++;
- __inc_zone_page_state(page, NR_FILE_PAGES);
- INC_CACHE_INFO(add_total);
- }
- spin_unlock_irq(&address_space->tree_lock);
-
- if (unlikely(error)) {
- /*
- * Only the context which have set SWAP_HAS_CACHE flag
- * would call add_to_swap_cache().
- * So add_to_swap_cache() doesn't returns -EEXIST.
- */
- VM_BUG_ON(error == -EEXIST);
- set_page_private(page, 0UL);
- ClearPageSwapCache(page);
- page_cache_release(page);
+ unsigned long swp_tb;
+ struct folio *folio;
+
+ for (;;) {
+ swp_tb = swap_table_get(__swap_entry_to_cluster(entry),
+ swp_cluster_offset(entry));
+ if (!swp_tb_is_folio(swp_tb))
+ return NULL;
+ folio = swp_tb_to_folio(swp_tb);
+ if (likely(folio_try_get(folio)))
+ return folio;
}
- return error;
+ return NULL;
}
-
-int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
+/**
+ * swap_cache_get_shadow - Looks up a shadow in the swap cache.
+ * @entry: swap entry used for the lookup.
+ *
+ * Context: Caller must ensure @entry is valid and protect the swap device
+ * with reference count or locks.
+ * Return: Returns either NULL or an XA_VALUE (shadow).
+ */
+void *swap_cache_get_shadow(swp_entry_t entry)
{
- int error;
+ unsigned long swp_tb;
- error = radix_tree_preload(gfp_mask);
- if (!error) {
- error = __add_to_swap_cache(page, entry);
- radix_tree_preload_end();
- }
- return error;
+ swp_tb = swap_table_get(__swap_entry_to_cluster(entry),
+ swp_cluster_offset(entry));
+ if (swp_tb_is_shadow(swp_tb))
+ return swp_tb_to_shadow(swp_tb);
+ return NULL;
}
-/*
- * This must be called only on pages that have
- * been verified to be in the swap cache.
+/**
+ * swap_cache_add_folio - Add a folio into the swap cache.
+ * @folio: The folio to be added.
+ * @entry: The swap entry corresponding to the folio.
+ * @gfp: gfp_mask for XArray node allocation.
+ * @shadowp: If a shadow is found, return the shadow.
+ *
+ * Context: Caller must ensure @entry is valid and protect the swap device
+ * with reference count or locks.
+ * The caller also needs to update the corresponding swap_map slots with
+ * SWAP_HAS_CACHE bit to avoid race or conflict.
*/
-void __delete_from_swap_cache(struct page *page)
+void swap_cache_add_folio(struct folio *folio, swp_entry_t entry, void **shadowp)
{
- swp_entry_t entry;
- struct address_space *address_space;
-
- VM_BUG_ON(!PageLocked(page));
- VM_BUG_ON(!PageSwapCache(page));
- VM_BUG_ON(PageWriteback(page));
-
- entry.val = page_private(page);
- address_space = swap_address_space(entry);
- radix_tree_delete(&address_space->page_tree, page_private(page));
- set_page_private(page, 0);
- ClearPageSwapCache(page);
- address_space->nrpages--;
- __dec_zone_page_state(page, NR_FILE_PAGES);
- INC_CACHE_INFO(del_total);
+ void *shadow = NULL;
+ unsigned long old_tb, new_tb;
+ struct swap_cluster_info *ci;
+ unsigned int ci_start, ci_off, ci_end;
+ unsigned long nr_pages = folio_nr_pages(folio);
+
+ VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(!folio_test_swapbacked(folio), folio);
+
+ new_tb = folio_to_swp_tb(folio);
+ ci_start = swp_cluster_offset(entry);
+ ci_end = ci_start + nr_pages;
+ ci_off = ci_start;
+ ci = swap_cluster_lock(__swap_entry_to_info(entry), swp_offset(entry));
+ do {
+ old_tb = __swap_table_xchg(ci, ci_off, new_tb);
+ WARN_ON_ONCE(swp_tb_is_folio(old_tb));
+ if (swp_tb_is_shadow(old_tb))
+ shadow = swp_tb_to_shadow(old_tb);
+ } while (++ci_off < ci_end);
+
+ folio_ref_add(folio, nr_pages);
+ folio_set_swapcache(folio);
+ folio->swap = entry;
+ swap_cluster_unlock(ci);
+
+ node_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
+ lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr_pages);
+
+ if (shadowp)
+ *shadowp = shadow;
}
/**
- * add_to_swap - allocate swap space for a page
- * @page: page we want to move to swap
+ * __swap_cache_del_folio - Removes a folio from the swap cache.
+ * @ci: The locked swap cluster.
+ * @folio: The folio.
+ * @entry: The first swap entry that the folio corresponds to.
+ * @shadow: shadow value to be filled in the swap cache.
+ *
+ * Removes a folio from the swap cache and fills a shadow in place.
+ * This won't put the folio's refcount. The caller has to do that.
*
- * Allocate swap space for the page and add the page to the
- * swap cache. Caller needs to hold the page lock.
+ * Context: Caller must ensure the folio is locked and in the swap cache
+ * using the index of @entry, and lock the cluster that holds the entries.
*/
-int add_to_swap(struct page *page, struct list_head *list)
+void __swap_cache_del_folio(struct swap_cluster_info *ci, struct folio *folio,
+ swp_entry_t entry, void *shadow)
{
- swp_entry_t entry;
- int err;
+ unsigned long old_tb, new_tb;
+ unsigned int ci_start, ci_off, ci_end;
+ unsigned long nr_pages = folio_nr_pages(folio);
+
+ VM_WARN_ON_ONCE(__swap_entry_to_cluster(entry) != ci);
+ VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(!folio_test_swapcache(folio), folio);
+ VM_WARN_ON_ONCE_FOLIO(folio_test_writeback(folio), folio);
+
+ new_tb = shadow_swp_to_tb(shadow);
+ ci_start = swp_cluster_offset(entry);
+ ci_end = ci_start + nr_pages;
+ ci_off = ci_start;
+ do {
+ /* If shadow is NULL, we sets an empty shadow */
+ old_tb = __swap_table_xchg(ci, ci_off, new_tb);
+ WARN_ON_ONCE(!swp_tb_is_folio(old_tb) ||
+ swp_tb_to_folio(old_tb) != folio);
+ } while (++ci_off < ci_end);
+
+ folio->swap.val = 0;
+ folio_clear_swapcache(folio);
+ node_stat_mod_folio(folio, NR_FILE_PAGES, -nr_pages);
+ lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr_pages);
+}
- VM_BUG_ON(!PageLocked(page));
- VM_BUG_ON(!PageUptodate(page));
+/**
+ * swap_cache_del_folio - Removes a folio from the swap cache.
+ * @folio: The folio.
+ *
+ * Same as __swap_cache_del_folio, but handles lock and refcount. The
+ * caller must ensure the folio is either clean or has a swap count
+ * equal to zero, or it may cause data loss.
+ *
+ * Context: Caller must ensure the folio is locked and in the swap cache.
+ */
+void swap_cache_del_folio(struct folio *folio)
+{
+ struct swap_cluster_info *ci;
+ swp_entry_t entry = folio->swap;
- entry = get_swap_page();
- if (!entry.val)
- return 0;
+ ci = swap_cluster_lock(__swap_entry_to_info(entry), swp_offset(entry));
+ __swap_cache_del_folio(ci, folio, entry, NULL);
+ swap_cluster_unlock(ci);
- if (unlikely(PageTransHuge(page)))
- if (unlikely(split_huge_page_to_list(page, list))) {
- swapcache_free(entry, NULL);
- return 0;
- }
+ put_swap_folio(folio, entry);
+ folio_ref_sub(folio, folio_nr_pages(folio));
+}
+
+/**
+ * __swap_cache_replace_folio - Replace a folio in the swap cache.
+ * @ci: The locked swap cluster.
+ * @old: The old folio to be replaced.
+ * @new: The new folio.
+ *
+ * Replace an existing folio in the swap cache with a new folio. The
+ * caller is responsible for setting up the new folio's flag and swap
+ * entries. Replacement will take the new folio's swap entry value as
+ * the starting offset to override all slots covered by the new folio.
+ *
+ * Context: Caller must ensure both folios are locked, and lock the
+ * cluster that holds the old folio to be replaced.
+ */
+void __swap_cache_replace_folio(struct swap_cluster_info *ci,
+ struct folio *old, struct folio *new)
+{
+ swp_entry_t entry = new->swap;
+ unsigned long nr_pages = folio_nr_pages(new);
+ unsigned int ci_off = swp_cluster_offset(entry);
+ unsigned int ci_end = ci_off + nr_pages;
+ unsigned long old_tb, new_tb;
+
+ VM_WARN_ON_ONCE(!folio_test_swapcache(old) || !folio_test_swapcache(new));
+ VM_WARN_ON_ONCE(!folio_test_locked(old) || !folio_test_locked(new));
+ VM_WARN_ON_ONCE(!entry.val);
+
+ /* Swap cache still stores N entries instead of a high-order entry */
+ new_tb = folio_to_swp_tb(new);
+ do {
+ old_tb = __swap_table_xchg(ci, ci_off, new_tb);
+ WARN_ON_ONCE(!swp_tb_is_folio(old_tb) || swp_tb_to_folio(old_tb) != old);
+ } while (++ci_off < ci_end);
/*
- * Radix-tree node allocations from PF_MEMALLOC contexts could
- * completely exhaust the page allocator. __GFP_NOMEMALLOC
- * stops emergency reserves from being allocated.
- *
- * TODO: this could cause a theoretical memory reclaim
- * deadlock in the swap out path.
- */
- /*
- * Add it to the swap cache and mark it dirty
+ * If the old folio is partially replaced (e.g., splitting a large
+ * folio, the old folio is shrunk, and new split sub folios replace
+ * the shrunk part), ensure the new folio doesn't overlap it.
*/
- err = add_to_swap_cache(page, entry,
- __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
-
- if (!err) { /* Success */
- SetPageDirty(page);
- return 1;
- } else { /* -ENOMEM radix-tree allocation failure */
- /*
- * add_to_swap_cache() doesn't return -EEXIST, so we can safely
- * clear SWAP_HAS_CACHE flag.
- */
- swapcache_free(entry, NULL);
- return 0;
+ if (IS_ENABLED(CONFIG_DEBUG_VM) &&
+ folio_order(old) != folio_order(new)) {
+ ci_off = swp_cluster_offset(old->swap);
+ ci_end = ci_off + folio_nr_pages(old);
+ while (ci_off++ < ci_end)
+ WARN_ON_ONCE(swp_tb_to_folio(__swap_table_get(ci, ci_off)) != old);
}
}
-/*
- * This must be called only on pages that have
- * been verified to be in the swap cache and locked.
- * It will never put the page into the free list,
- * the caller has a reference on the page.
+/**
+ * swap_cache_clear_shadow - Clears a set of shadows in the swap cache.
+ * @entry: The starting index entry.
+ * @nr_ents: How many slots need to be cleared.
+ *
+ * Context: Caller must ensure the range is valid, all in one single cluster,
+ * not occupied by any folio, and lock the cluster.
*/
-void delete_from_swap_cache(struct page *page)
+void __swap_cache_clear_shadow(swp_entry_t entry, int nr_ents)
{
- swp_entry_t entry;
- struct address_space *address_space;
-
- entry.val = page_private(page);
+ struct swap_cluster_info *ci = __swap_entry_to_cluster(entry);
+ unsigned int ci_off = swp_cluster_offset(entry), ci_end;
+ unsigned long old;
- address_space = swap_address_space(entry);
- spin_lock_irq(&address_space->tree_lock);
- __delete_from_swap_cache(page);
- spin_unlock_irq(&address_space->tree_lock);
-
- swapcache_free(entry, page);
- page_cache_release(page);
+ ci_end = ci_off + nr_ents;
+ do {
+ old = __swap_table_xchg(ci, ci_off, null_to_swp_tb());
+ WARN_ON_ONCE(swp_tb_is_folio(old));
+ } while (++ci_off < ci_end);
}
-/*
- * If we are the only user, then try to free up the swap cache.
- *
- * Its ok to check for PageSwapCache without the page lock
+/*
+ * If we are the only user, then try to free up the swap cache.
+ *
+ * Its ok to check the swapcache flag without the folio lock
* here because we are going to recheck again inside
- * try_to_free_swap() _with_ the lock.
+ * folio_free_swap() _with_ the lock.
* - Marcelo
*/
-static inline void free_swap_cache(struct page *page)
+void free_swap_cache(struct folio *folio)
{
- if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
- try_to_free_swap(page);
- unlock_page(page);
+ if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
+ folio_trylock(folio)) {
+ folio_free_swap(folio);
+ folio_unlock(folio);
}
}
-/*
- * Perform a free_page(), also freeing any swap cache associated with
- * this page if it is the last user of the page.
+/*
+ * Freeing a folio and also freeing any swap cache associated with
+ * this folio if it is the last user.
*/
-void free_page_and_swap_cache(struct page *page)
+void free_folio_and_swap_cache(struct folio *folio)
{
- free_swap_cache(page);
- page_cache_release(page);
+ free_swap_cache(folio);
+ if (!is_huge_zero_folio(folio))
+ folio_put(folio);
}
/*
* Passed an array of pages, drop them all from swapcache and then release
* them. They are removed from the LRU and freed if this is their last use.
*/
-void free_pages_and_swap_cache(struct page **pages, int nr)
+void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
{
- struct page **pagep = pages;
+ struct folio_batch folios;
+ unsigned int refs[PAGEVEC_SIZE];
- lru_add_drain();
- while (nr) {
- int todo = min(nr, PAGEVEC_SIZE);
- int i;
-
- for (i = 0; i < todo; i++)
- free_swap_cache(pagep[i]);
- release_pages(pagep, todo, 0);
- pagep += todo;
- nr -= todo;
+ folio_batch_init(&folios);
+ for (int i = 0; i < nr; i++) {
+ struct folio *folio = page_folio(encoded_page_ptr(pages[i]));
+
+ free_swap_cache(folio);
+ refs[folios.nr] = 1;
+ if (unlikely(encoded_page_flags(pages[i]) &
+ ENCODED_PAGE_BIT_NR_PAGES_NEXT))
+ refs[folios.nr] = encoded_nr_pages(pages[++i]);
+
+ if (folio_batch_add(&folios, folio) == 0)
+ folios_put_refs(&folios, refs);
}
+ if (folios.nr)
+ folios_put_refs(&folios, refs);
}
-/*
- * Lookup a swap entry in the swap cache. A found page will be returned
- * unlocked and with its refcount incremented - we rely on the kernel
- * lock getting page table operations atomic even if we drop the page
- * lock before returning.
- */
-struct page * lookup_swap_cache(swp_entry_t entry)
+static inline bool swap_use_vma_readahead(void)
{
- struct page *page;
+ return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
+}
- page = find_get_page(swap_address_space(entry), entry.val);
+/**
+ * swap_update_readahead - Update the readahead statistics of VMA or globally.
+ * @folio: the swap cache folio that just got hit.
+ * @vma: the VMA that should be updated, could be NULL for global update.
+ * @addr: the addr that triggered the swapin, ignored if @vma is NULL.
+ */
+void swap_update_readahead(struct folio *folio, struct vm_area_struct *vma,
+ unsigned long addr)
+{
+ bool readahead, vma_ra = swap_use_vma_readahead();
- if (page)
- INC_CACHE_INFO(find_success);
+ /*
+ * At the moment, we don't support PG_readahead for anon THP
+ * so let's bail out rather than confusing the readahead stat.
+ */
+ if (unlikely(folio_test_large(folio)))
+ return;
+
+ readahead = folio_test_clear_readahead(folio);
+ if (vma && vma_ra) {
+ unsigned long ra_val;
+ int win, hits;
+
+ ra_val = GET_SWAP_RA_VAL(vma);
+ win = SWAP_RA_WIN(ra_val);
+ hits = SWAP_RA_HITS(ra_val);
+ if (readahead)
+ hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
+ atomic_long_set(&vma->swap_readahead_info,
+ SWAP_RA_VAL(addr, win, hits));
+ }
- INC_CACHE_INFO(find_total);
- return page;
+ if (readahead) {
+ count_vm_event(SWAP_RA_HIT);
+ if (!vma || !vma_ra)
+ atomic_inc(&swapin_readahead_hits);
+ }
}
-/*
- * Locate a page of swap in physical memory, reserving swap cache space
- * and reading the disk if it is not already cached.
- * A failure return means that either the page allocation failed or that
- * the swap entry is no longer in use.
- */
-struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
- struct vm_area_struct *vma, unsigned long addr)
+struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
+ struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
+ bool skip_if_exists)
{
- struct page *found_page, *new_page = NULL;
- int err;
+ struct swap_info_struct *si = __swap_entry_to_info(entry);
+ struct folio *folio;
+ struct folio *new_folio = NULL;
+ struct folio *result = NULL;
+ void *shadow = NULL;
+
+ *new_page_allocated = false;
+ for (;;) {
+ int err;
- do {
/*
- * First check the swap cache. Since this is normally
- * called after lookup_swap_cache() failed, re-calling
- * that would confuse statistics.
+ * Check the swap cache first, if a cached folio is found,
+ * return it unlocked. The caller will lock and check it.
*/
- found_page = find_get_page(swap_address_space(entry),
- entry.val);
- if (found_page)
- break;
+ folio = swap_cache_get_folio(entry);
+ if (folio)
+ goto got_folio;
/*
- * Get a new page to read into from swap.
+ * Just skip read ahead for unused swap slot.
*/
- if (!new_page) {
- new_page = alloc_page_vma(gfp_mask, vma, addr);
- if (!new_page)
- break; /* Out of memory */
- }
+ if (!swap_entry_swapped(si, entry))
+ goto put_and_return;
/*
- * call radix_tree_preload() while we can wait.
+ * Get a new folio to read into from swap. Allocate it now if
+ * new_folio not exist, before marking swap_map SWAP_HAS_CACHE,
+ * when -EEXIST will cause any racers to loop around until we
+ * add it to cache.
*/
- err = radix_tree_preload(gfp_mask & GFP_KERNEL);
- if (err)
- break;
+ if (!new_folio) {
+ new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id());
+ if (!new_folio)
+ goto put_and_return;
+ }
/*
* Swap entry may have been freed since our caller observed it.
*/
- err = swapcache_prepare(entry);
- if (err == -EEXIST) {
- radix_tree_preload_end();
- /*
- * We might race against get_swap_page() and stumble
- * across a SWAP_HAS_CACHE swap_map entry whose page
- * has not been brought into the swapcache yet, while
- * the other end is scheduled away waiting on discard
- * I/O completion at scan_swap_map().
- *
- * In order to avoid turning this transitory state
- * into a permanent loop around this -EEXIST case
- * if !CONFIG_PREEMPT and the I/O completion happens
- * to be waiting on the CPU waitqueue where we are now
- * busy looping, we just conditionally invoke the
- * scheduler here, if there are some more important
- * tasks to run.
- */
- cond_resched();
- continue;
- }
- if (err) { /* swp entry is obsolete ? */
- radix_tree_preload_end();
+ err = swapcache_prepare(entry, 1);
+ if (!err)
break;
- }
+ else if (err != -EEXIST)
+ goto put_and_return;
- /* May fail (-ENOMEM) if radix-tree node allocation failed. */
- __set_page_locked(new_page);
- SetPageSwapBacked(new_page);
- err = __add_to_swap_cache(new_page, entry);
- if (likely(!err)) {
- radix_tree_preload_end();
- /*
- * Initiate read into locked page and return.
- */
- lru_cache_add_anon(new_page);
- swap_readpage(new_page);
- return new_page;
- }
- radix_tree_preload_end();
- ClearPageSwapBacked(new_page);
- __clear_page_locked(new_page);
/*
- * add_to_swap_cache() doesn't return -EEXIST, so we can safely
- * clear SWAP_HAS_CACHE flag.
+ * Protect against a recursive call to __read_swap_cache_async()
+ * on the same entry waiting forever here because SWAP_HAS_CACHE
+ * is set but the folio is not the swap cache yet. This can
+ * happen today if mem_cgroup_swapin_charge_folio() below
+ * triggers reclaim through zswap, which may call
+ * __read_swap_cache_async() in the writeback path.
+ */
+ if (skip_if_exists)
+ goto put_and_return;
+
+ /*
+ * We might race against __swap_cache_del_folio(), and
+ * stumble across a swap_map entry whose SWAP_HAS_CACHE
+ * has not yet been cleared. Or race against another
+ * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
+ * in swap_map, but not yet added its folio to swap cache.
+ */
+ schedule_timeout_uninterruptible(1);
+ }
+
+ /*
+ * The swap entry is ours to swap in. Prepare the new folio.
+ */
+ __folio_set_locked(new_folio);
+ __folio_set_swapbacked(new_folio);
+
+ if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry))
+ goto fail_unlock;
+
+ swap_cache_add_folio(new_folio, entry, &shadow);
+ memcg1_swapin(entry, 1);
+
+ if (shadow)
+ workingset_refault(new_folio, shadow);
+
+ /* Caller will initiate read into locked new_folio */
+ folio_add_lru(new_folio);
+ *new_page_allocated = true;
+ folio = new_folio;
+got_folio:
+ result = folio;
+ goto put_and_return;
+
+fail_unlock:
+ put_swap_folio(new_folio, entry);
+ folio_unlock(new_folio);
+put_and_return:
+ if (!(*new_page_allocated) && new_folio)
+ folio_put(new_folio);
+ return result;
+}
+
+/*
+ * Locate a page of swap in physical memory, reserving swap cache space
+ * and reading the disk if it is not already cached.
+ * A failure return means that either the page allocation failed or that
+ * the swap entry is no longer in use.
+ */
+struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
+ struct vm_area_struct *vma, unsigned long addr,
+ struct swap_iocb **plug)
+{
+ struct swap_info_struct *si;
+ bool page_allocated;
+ struct mempolicy *mpol;
+ pgoff_t ilx;
+ struct folio *folio;
+
+ si = get_swap_device(entry);
+ if (!si)
+ return NULL;
+
+ mpol = get_vma_policy(vma, addr, 0, &ilx);
+ folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
+ &page_allocated, false);
+ mpol_cond_put(mpol);
+
+ if (page_allocated)
+ swap_read_folio(folio, plug);
+
+ put_swap_device(si);
+ return folio;
+}
+
+static unsigned int __swapin_nr_pages(unsigned long prev_offset,
+ unsigned long offset,
+ int hits,
+ int max_pages,
+ int prev_win)
+{
+ unsigned int pages, last_ra;
+
+ /*
+ * This heuristic has been found to work well on both sequential and
+ * random loads, swapping to hard disk or to SSD: please don't ask
+ * what the "+ 2" means, it just happens to work well, that's all.
+ */
+ pages = hits + 2;
+ if (pages == 2) {
+ /*
+ * We can have no readahead hits to judge by: but must not get
+ * stuck here forever, so check for an adjacent offset instead
+ * (and don't even bother to check whether swap type is same).
*/
- swapcache_free(entry, NULL);
- } while (err != -ENOMEM);
+ if (offset != prev_offset + 1 && offset != prev_offset - 1)
+ pages = 1;
+ } else {
+ unsigned int roundup = 4;
+ while (roundup < pages)
+ roundup <<= 1;
+ pages = roundup;
+ }
+
+ if (pages > max_pages)
+ pages = max_pages;
+
+ /* Don't shrink readahead too fast */
+ last_ra = prev_win / 2;
+ if (pages < last_ra)
+ pages = last_ra;
+
+ return pages;
+}
+
+static unsigned long swapin_nr_pages(unsigned long offset)
+{
+ static unsigned long prev_offset;
+ unsigned int hits, pages, max_pages;
+ static atomic_t last_readahead_pages;
+
+ max_pages = 1 << READ_ONCE(page_cluster);
+ if (max_pages <= 1)
+ return 1;
+
+ hits = atomic_xchg(&swapin_readahead_hits, 0);
+ pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
+ max_pages,
+ atomic_read(&last_readahead_pages));
+ if (!hits)
+ WRITE_ONCE(prev_offset, offset);
+ atomic_set(&last_readahead_pages, pages);
- if (new_page)
- page_cache_release(new_page);
- return found_page;
+ return pages;
}
/**
- * swapin_readahead - swap in pages in hope we need them soon
+ * swap_cluster_readahead - swap in pages in hope we need them soon
* @entry: swap entry of this memory
* @gfp_mask: memory allocation flags
- * @vma: user vma this address belongs to
- * @addr: target address for mempolicy
+ * @mpol: NUMA memory allocation policy to be applied
+ * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
*
- * Returns the struct page for entry and addr, after queueing swapin.
+ * Returns the struct folio for entry and addr, after queueing swapin.
*
* Primitive swap readahead code. We simply read an aligned block of
* (1 << page_cluster) entries in the swap area. This method is chosen
* because it doesn't cost us any seek time. We also make sure to queue
* the 'original' request together with the readahead ones...
*
- * This has been extended to use the NUMA policies from the mm triggering
- * the readahead.
- *
- * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
+ * Note: it is intentional that the same NUMA policy and interleave index
+ * are used for every page of the readahead: neighbouring pages on swap
+ * are fairly likely to have been swapped out from the same node.
*/
-struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
- struct vm_area_struct *vma, unsigned long addr)
+struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
+ struct mempolicy *mpol, pgoff_t ilx)
{
- struct page *page;
- unsigned long offset = swp_offset(entry);
+ struct folio *folio;
+ unsigned long entry_offset = swp_offset(entry);
+ unsigned long offset = entry_offset;
unsigned long start_offset, end_offset;
- unsigned long mask = (1UL << page_cluster) - 1;
+ unsigned long mask;
+ struct swap_info_struct *si = __swap_entry_to_info(entry);
struct blk_plug plug;
+ struct swap_iocb *splug = NULL;
+ bool page_allocated;
+
+ mask = swapin_nr_pages(offset) - 1;
+ if (!mask)
+ goto skip;
/* Read a page_cluster sized and aligned cluster around offset. */
start_offset = offset & ~mask;
end_offset = offset | mask;
if (!start_offset) /* First page is swap header. */
start_offset++;
+ if (end_offset >= si->max)
+ end_offset = si->max - 1;
blk_start_plug(&plug);
for (offset = start_offset; offset <= end_offset ; offset++) {
/* Ok, do the async read-ahead now */
- page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
- gfp_mask, vma, addr);
- if (!page)
+ folio = __read_swap_cache_async(
+ swp_entry(swp_type(entry), offset),
+ gfp_mask, mpol, ilx, &page_allocated, false);
+ if (!folio)
continue;
- page_cache_release(page);
+ if (page_allocated) {
+ swap_read_folio(folio, &splug);
+ if (offset != entry_offset) {
+ folio_set_readahead(folio);
+ count_vm_event(SWAP_RA);
+ }
+ }
+ folio_put(folio);
}
blk_finish_plug(&plug);
-
+ swap_read_unplug(splug);
lru_add_drain(); /* Push any new pages onto the LRU now */
- return read_swap_cache_async(entry, gfp_mask, vma, addr);
+skip:
+ /* The page was likely read above, so no need for plugging here */
+ folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
+ &page_allocated, false);
+ if (unlikely(page_allocated))
+ swap_read_folio(folio, NULL);
+ return folio;
+}
+
+static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start,
+ unsigned long *end)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ unsigned long ra_val;
+ unsigned long faddr, prev_faddr, left, right;
+ unsigned int max_win, hits, prev_win, win;
+
+ max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING);
+ if (max_win == 1)
+ return 1;
+
+ faddr = vmf->address;
+ ra_val = GET_SWAP_RA_VAL(vma);
+ prev_faddr = SWAP_RA_ADDR(ra_val);
+ prev_win = SWAP_RA_WIN(ra_val);
+ hits = SWAP_RA_HITS(ra_val);
+ win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits,
+ max_win, prev_win);
+ atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0));
+ if (win == 1)
+ return 1;
+
+ if (faddr == prev_faddr + PAGE_SIZE)
+ left = faddr;
+ else if (prev_faddr == faddr + PAGE_SIZE)
+ left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE;
+ else
+ left = faddr - (((win - 1) / 2) << PAGE_SHIFT);
+ right = left + (win << PAGE_SHIFT);
+ if ((long)left < 0)
+ left = 0;
+ *start = max3(left, vma->vm_start, faddr & PMD_MASK);
+ *end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE);
+
+ return win;
+}
+
+/**
+ * swap_vma_readahead - swap in pages in hope we need them soon
+ * @targ_entry: swap entry of the targeted memory
+ * @gfp_mask: memory allocation flags
+ * @mpol: NUMA memory allocation policy to be applied
+ * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
+ * @vmf: fault information
+ *
+ * Returns the struct folio for entry and addr, after queueing swapin.
+ *
+ * Primitive swap readahead code. We simply read in a few pages whose
+ * virtual addresses are around the fault address in the same vma.
+ *
+ * Caller must hold read mmap_lock if vmf->vma is not NULL.
+ *
+ */
+static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
+ struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
+{
+ struct blk_plug plug;
+ struct swap_iocb *splug = NULL;
+ struct folio *folio;
+ pte_t *pte = NULL, pentry;
+ int win;
+ unsigned long start, end, addr;
+ pgoff_t ilx;
+ bool page_allocated;
+
+ win = swap_vma_ra_win(vmf, &start, &end);
+ if (win == 1)
+ goto skip;
+
+ ilx = targ_ilx - PFN_DOWN(vmf->address - start);
+
+ blk_start_plug(&plug);
+ for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) {
+ struct swap_info_struct *si = NULL;
+ softleaf_t entry;
+
+ if (!pte++) {
+ pte = pte_offset_map(vmf->pmd, addr);
+ if (!pte)
+ break;
+ }
+ pentry = ptep_get_lockless(pte);
+ entry = softleaf_from_pte(pentry);
+
+ if (!softleaf_is_swap(entry))
+ continue;
+ pte_unmap(pte);
+ pte = NULL;
+ /*
+ * Readahead entry may come from a device that we are not
+ * holding a reference to, try to grab a reference, or skip.
+ */
+ if (swp_type(entry) != swp_type(targ_entry)) {
+ si = get_swap_device(entry);
+ if (!si)
+ continue;
+ }
+ folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
+ &page_allocated, false);
+ if (si)
+ put_swap_device(si);
+ if (!folio)
+ continue;
+ if (page_allocated) {
+ swap_read_folio(folio, &splug);
+ if (addr != vmf->address) {
+ folio_set_readahead(folio);
+ count_vm_event(SWAP_RA);
+ }
+ }
+ folio_put(folio);
+ }
+ if (pte)
+ pte_unmap(pte);
+ blk_finish_plug(&plug);
+ swap_read_unplug(splug);
+ lru_add_drain();
+skip:
+ /* The folio was likely read above, so no need for plugging here */
+ folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
+ &page_allocated, false);
+ if (unlikely(page_allocated))
+ swap_read_folio(folio, NULL);
+ return folio;
+}
+
+/**
+ * swapin_readahead - swap in pages in hope we need them soon
+ * @entry: swap entry of this memory
+ * @gfp_mask: memory allocation flags
+ * @vmf: fault information
+ *
+ * Returns the struct folio for entry and addr, after queueing swapin.
+ *
+ * It's a main entry function for swap readahead. By the configuration,
+ * it will read ahead blocks by cluster-based(ie, physical disk based)
+ * or vma-based(ie, virtual address based on faulty address) readahead.
+ */
+struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
+ struct vm_fault *vmf)
+{
+ struct mempolicy *mpol;
+ pgoff_t ilx;
+ struct folio *folio;
+
+ mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
+ folio = swap_use_vma_readahead() ?
+ swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
+ swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
+ mpol_cond_put(mpol);
+
+ return folio;
+}
+
+#ifdef CONFIG_SYSFS
+static ssize_t vma_ra_enabled_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ return sysfs_emit(buf, "%s\n", str_true_false(enable_vma_readahead));
+}
+static ssize_t vma_ra_enabled_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count)
+{
+ ssize_t ret;
+
+ ret = kstrtobool(buf, &enable_vma_readahead);
+ if (ret)
+ return ret;
+
+ return count;
+}
+static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
+
+static struct attribute *swap_attrs[] = {
+ &vma_ra_enabled_attr.attr,
+ NULL,
+};
+
+static const struct attribute_group swap_attr_group = {
+ .attrs = swap_attrs,
+};
+
+static int __init swap_init(void)
+{
+ int err;
+ struct kobject *swap_kobj;
+
+ swap_kobj = kobject_create_and_add("swap", mm_kobj);
+ if (!swap_kobj) {
+ pr_err("failed to create swap kobject\n");
+ return -ENOMEM;
+ }
+ err = sysfs_create_group(swap_kobj, &swap_attr_group);
+ if (err) {
+ pr_err("failed to register swap group\n");
+ goto delete_obj;
+ }
+ /* Swap cache writeback is LRU based, no tags for it */
+ mapping_set_no_writeback_tags(&swap_space);
+ return 0;
+
+delete_obj:
+ kobject_put(swap_kobj);
+ return err;
}
+subsys_initcall(swap_init);
+#endif